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xv

Foreword

We fi rst met Dr Julio Chaves in one of the annual Nonimaging Optics Inter-
national Workshops, years ago when he was still a PhD student. His scientifi c 
talent was immediately apparent, as was his keen interest in understanding 
nonimaging optics and its fundamentals. We realized later that his learning 
was mostly self-taught, resulting from an original outlook in his search for 
answers. His curiosity, insight, and drive toward a thorough understanding 
of nonimaging optics have come to great fruition in this book.

Our book, coauthored with Prof. Roland Winston, on nonimaging 
optics, which was the continuation and an update of the classic text in the 
fi eld (fi rst written by Walter T. Welford and Roland Winston), had just been 
published when we fi rst heard about this book. Thus, our fi rst thought was 
“Why another book on nonimaging optics?” When we later had the oppor-
tunity to review a draft of this book, it became clear to us that it would be of 
great interest to researchers and engineers as not only a thorough introduc-
tion to nonimaging optics but also as a postgraduate course. This book is 
perfectly complementary to ours, which is for those already acquainted with 
the fi eld.

The title of this book refl ects its content, having the virtue of being a clear, 
self-contained, and well-organized introduction to nonimaging optics. Julio 
Chaves, although not from academia, shows excellent didactic skills, using 
many examples to illustrate the concepts just after they are introduced. Part 
of the reasoning and explanations found in the book belong to his period 
of autodidacticism, revealing his interest in fi nding clear links to the fun-
damentals of geometrical optics. For this reason, the second section of this 
book is devoted to the fundamentals on which nonimaging optics is built. 
Although consulting the classics on the fundamentals of optics is always a 
rewarding exercise, it is usually a lengthy one. Therefore, the reader will be 
gratifi ed to fi nd the answer herein to a basic quick question that may arise in 
his or her mind. At the same time, the book’s fi rst section, which contains the 
description of nonimaging optics, is also complete by itself.

It is a pleasure for us to present the foreword to this excellent book. We 
believe it will strongly contribute to the spread and understanding of non-
imaging optics, helping engineers to fi nd better solutions to many optical 
design problems where the transfer of light energy is critical as, for example, 
in solid-state lighting (using LEDs) and solar energy, both of which have 
applications of ever-growing importance.

Juan C. Miñano and Pablo Benítez
Madrid
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xvii

Preface

This book is an introduction to nonimaging optics or anidolic optics. The 
term “nonimaging” comes from the fact that these optics do not form an 
image of an object, they are nonimaging. The word anidolic comes from the 
Greek (an+eidolon) and has the same meaning. The words anidolico/anidol-
ica are mostly used in the Latin languages, such as Spanish, Portuguese, or 
French, whereas nonimaging is more commonly used in English.

Many optical systems are designed to form an image of an object. In these 
systems, we have three main components: the object, the optic, and the 
image formed. The object is considered as being a set of light-emitting points. 
The optic collects that light (or part of it) and redirects it to an image. The goal 
on this image is that the rays of light coming out of one point on the object 
are again concentrated onto a point. Therefore, it is desirable that there be a 
one-to-one correspondence between the points on the object and those of the 
image. Only a few “academic” optical systems achieve this perfectly.

Instead, in nonimaging optical systems, in place of an object there is a light 
source, the optic is differently designed; and in place of an image there is 
a receiver. The optic simply transfers the radiation from the source to the 
receiver, producing a prescribed radiation distribution thereupon.

Although there has been some pioneering work in nonimaging physical 
optics, nonimaging optics has been developed mostly under the aegis of geo-
metrical optics. Its applications are also based on geometrical optics. Accord-
ingly, this book deals only with nonimaging geometrical optics.

This branch of optics is relatively recent. Its development started in the 
mid-1960s at three different locations by V. K. Baranov (Union of Soviet 
Socialist Republics), Martin Ploke (Germany), and Roland Winston (United 
States), and led to the independent origin of the fi rst anidolic concentra-
tors. Among these three earliest works, the one most developed was the 
 American one, resulting in what nonimaging optics is today.

The applications of this fi eld are varied, ranging from astrophysics to 
particle physics, in solar energy, and in illumination systems. Solar energy 
was the fi rst substantial big application of nonimaging optics, but recently 
illumination has become the major application driving development. These 
two applications are of prime importance today, as lighting’s cost of energy 
increases and awareness of its environmental consequences mounts. Nonim-
aging optics is the ideal tool for designing optimized solar energy collectors 
and concentrators, which are becoming increasingly important as we search 
for alternative and cleaner ways to produce the energy we need. It is also the 
best tool for designing optimized illumination optics, which engenders more 
effi cient designs and, therefore, lower energy consumption. In addition, with 
the advent of solid-state lighting, nonimaging optics is clearly the best tool 
to design the optics to control the light that these devices produce. With the 
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xviii Preface

considerable growth that these markets are likely to have in the near future, 
nonimaging optics will, certainly, become a very important tool.

This book is an introduction to this young branch of optics. It is divided 
into two sections: the fi rst one deals with nonimaging optics—its main con-
cepts and methods. The second section is a summary of the general concepts 
of geometrical optics and some other topics. Although the fi rst section is 
meant to be complete by itself, many general concepts have a different usage 
in nonimaging optics than in other branches of optics. That is why the second 
part may be very useful by explaining those concepts from the perspective 
of nonimaging optics. It is, therefore, a part of the book that the reader can 
refer to while reading the fi rst section, should some concepts seem obscure 
or used differently from what he or she is used to.

Julio Chaves
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ẋ Total derivative of x(t), where t is time: ẋ (t) = dx/dt
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3

1
Fundamental Concepts

1.1 Introduction

Imaging optical systems have three main components—the object, the optic, 
and the image it forms. The object is considered as a set of points that emit 
light in all directions. The light (or part of it) from each point on the object is 
captured by the optical system and concentrated onto a point in the image. 
The distances between points on the image may be scaled relative to those 
on the object resulting in magnifi cation.

Nonimaging optical systems, instead of an object, have a light source 
and instead of an image have a receiver. Instead of an image of the source, 
the optic produces a prescribed illuminance (or irradiance) pattern on the 
receiver.

The fi rst application of nonimaging optics was in the design of concentra-
tors that could perform at the maximum theoretical (thermodynamic) limit. 
The compound parabolic concentrator (CPC) was the fi rst two-dimensional 
(2-D) concentrator ever designed, and the success of the device gave birth to 
nonimaging optics.

This chapter introduces some of the differences between imaging and 
nonimaging optics, presents the CPC as a concentrator, and shows that it is 
ideal in two dimensions.

1.2 Imaging and Nonimaging Optics

Figure 1.1 shows a schematic representation of an imaging setup. On the left 
we have an object EF, at the center an optic CD, and on the right an image AB.

Light coming from edge point F on the object must be concentrated onto 
edge point A of the image. Accordingly, light coming from point E must be 
concentrated onto point B. This condition would still be valid for any point 
P on the object. Light leaving point P is concentrated onto a point Q in the 
image. The distances to the optical axis do and di from points in the object and 
the image, respectively, are related by the following:

 di = Mdo (1.1)
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4 Introduction to Nonimaging Optics

where M is the magnifi cation of the system.1–4 This condition requires that 
the relative dimensions of several parts of the object are maintained in the 
image.

Let us now see how to design such a system using lenses. We can start by 
concentrating light coming from a point in the object onto the corresponding 
point in the image. To solve this problem, a Cartesian oval can be used.1,5 We 
have in this case a set of rays to be focused and a surface to be defi ned as 
shown in Figure 1.2.

D

F

B
Q

di

do
A

CP

E

FIGURE 1.1
In an imaging optical system, light coming from any point P in the object is concentrated onto 
a point Q in the image in such a way that di = Mdo , do and di being the distances between P 
and the optical axis and Q and the optical axis, respectively. In particular, light coming from 
the edge points E and F of the object is concentrated onto edge points B and A of the image, 
respectively.

Q

R

P

Cartesian oval

d
d1

D1D

n

FIGURE 1.2
To solve the problem of forming an image through an optical system, we can start by trying 
to focus light coming from a point on the image onto a point on the object. A way to achieve 
this is by using a Cartesian oval. In this case, each point on the surface is crossed by just one 
ray of light coming from the object. It is then possible to choose the slope of the surface so that 
convergence is guaranteed.
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Fundamental Concepts 5

The optical path length along a straight line between P and Q is given as
S = D + nD1. The optical path length of a light ray passing from P to Q through 
a point R on the surface must also be given by S, so we must have S = d + nd1. 
This condition enables us to obtain all the points of the Cartesian oval.

If we now want, nevertheless, to focus two points of the object onto two 
points of the image AB, a surface is no longer suffi cient. We then need at least 
two surfaces. Let us then suppose that, in fact, two surfaces are suffi cient. 
We now have two sets of edge rays that are to be focused, those coming 
from E and F (that must be focused to B and A respectively), and we have 
two surfaces to be defi ned. Let us then suppose that a lens similar to the one 
presented in Figure 1.3 can be designed so that it focuses the two sets of edge 
rays of the object onto the two sets of edge rays of the image (later in this 
chapter, a way to design such a lens is presented).

However, this new lens does not guarantee that light coming from an 
 intermediate point P in the object is concentrated onto the corresponding point 
Q in the image, because there are not enough degrees of freedom to do so. To 
add new degrees of freedom, however, more surfaces must be added. Since a 
lens can have only two surfaces, more lenses must be added. To guarantee that 
the light coming from more points in the object is concentrated onto the corre-
sponding points in the image, the systems become more complex. Eventually 
this would lead us to systems having an infi nite number of lenses.6,7

If we do not intend to increase the number of lenses, a new degree of freedom 
must be found that allows the focusing of several points of the object onto the 
corresponding points in the image. One way is to consider a lens whose refrac-
tive index varies from point-to-point in its interior.3,6,7 This kind of solution is, 
nonetheless, hard to implement because it is diffi cult to build a material with 
a refractive index varying in accordance with the results of the calculations.

Owing to these and other diffi culties in designing an ideal imaging device, 
the optical devices available do not produce perfect images, but images with 
aberrations. These arguments do not prove that it is impossible to make 

D

B
Q

A

C

P

F

E

D

B

A

C

F

E
(a) (b)

FIGURE 1.3
(a) A lens that focuses onto A and B the light coming from F and E, respectively. Note that E and 
F are edges of the “object” and that A and B are edges of the “image” and (b) the same optical 
system but in a schematic way.
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6 Introduction to Nonimaging Optics

(build) a perfect imaging system, they only show that this task does not seem 
to be easy.

Although the lens of Figure 1.3 does not guarantee the formation of an 
image, it does guarantee that all the radiation exiting EF will eventually pass 
across AB. In fact, if the light rays exiting the edges of the source E and F 
pass through edges A and B of the receiver, the light rays exiting intermedi-
ate points P of the source must also exit between points A and B. Therefore, 
in this case all the radiations coming from EF and hitting CD will end up 
concentrated at AB. This lens then acts as a concentrator with EF as source 
and AB as receiver. This is illustrated in Figure 1.4. In this case, ray r1 com-
ing from edge point F of the source is defl ected toward edge point A of the 
receiver and ray r5 coming from edge E of the source is defl ected to edge 
point B of the receiver. Therefore, rays r2, r3, and r4 coming from intermediate 
points in the source are defl ected to intermediate points on the receiver.

Generally, nevertheless, the light rays coming from a point P in the object, 
as shown in Figure 1.3, will not converge onto a point Q so that no image will 
be formed at AB.

As seen, many degrees of freedom are required for the design of an imag-
ing system because the formation of an image imposes a large number of con-
ditions that must be fulfi lled simultaneously. From this results the diffi culty 
of designing a perfect imaging device since the number of available degrees 
of freedom for the design of an optical system is usually not suffi cient. If 
the  objective is, nonetheless, just to transfer the energy from a source to a 
receiver, image formation is unnecessary. Instead, it suffi ces to require that 
the light rays coming from the edges of the source are transformed into rays 
going to the edges of the receiver, as shown in Figure 1.4. Now there are far 
fewer requirements, and only a small number of degrees of freedom will 
result in an ideal device.

E

F

r1
r2

r3

r4

r5

A

B

FIGURE 1.4
If ray r1 coming from the edge F of the source is defl ected to edge point A on the receiver and 
ray r5 coming from the edge E of the source is defl ected to edge B of the receiver, all other 
rays—r2, r3, r4—coming from intermediate points in source EF will end between points A and 
B on the receiver.
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Fundamental Concepts 7

If the light source is displaced to infi nity, becoming infi nitely large, the 
situation presented in Figure 1.3 becomes that of Figure 1.5.

In this case, the incoming radiation can be characterized by the angular 
aperture θ. This lens now works as a device concentrating onto AB all the 
radiation with half-angular aperture θ falling on CD. This device must be 
designed such that the parallel rays d1 are concentrated onto A and the par-
allel rays d2 are concentrated onto B. In this manner, all the radiation falling 
on the device making an angle to the optical axis smaller than θ must pass 
between A and B.

We can also compare the optical devices presented in Figures 1.1 and 1.3. 
In both the cases, the condition is such that the light coming from EF must 
pass through AB. In the case of the device presented in Figure 1.1, it is also 
required that light coming from F must be concentrated onto A and that the 
light coming from E must be concentrated onto B. Besides, light coming from 
any other point P must be concentrated onto a point Q on the image, being 
the distances do and di of P and Q to the optical axis related by Equation 1.1.

In the case of the device presented in Figure 1.3, the only requirement is 
that the light coming from F must be concentrated onto A and that the light 
coming from E must be concentrated onto B. The light coming from a generic 
point P of the object will not be necessarily concentrated onto any point along 
AB, so generally no image will be formed.

The device presented in Figure 1.1 is imaging and the one presented in 
Figure 1.3 is nonimaging. Note that both perform the same when used as 
radiation collectors.

B

D

A

C

d1

d2

�

�

FIGURE 1.5
The limit case of Figure 1.3b in which the edge points E and F are displaced to infi nity. Now the 
radiation arriving to the optical system CD has an angular aperture θ for each side. Edge rays 
d1 are concentrated onto point A and edge rays d2 are concentrated onto point B.
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8 Introduction to Nonimaging Optics

1.3 The Compound Parabolic Concentrator

As described earlier, nonimaging devices can be used as concentrators. In 
this case, the formation of an image is not a necessary condition. The only 
condition is that the radiation entering the optical device ends up being con-
centrated at its exit.

It was mentioned earlier that optical systems have aberrations. As a matter 
of fact, these can be divided into several categories. The device presented in 
Figure 1.3 can have, for example, chromatic aberrations.1,2,8 This nonideality 
results from the fact that several wavelengths of light are refracted in differ-
ent directions. One of the best known applications of this effect is the use of 
prisms to separate white light from the sun into its several spectral colors. 
To avoid this aberration, mirrors can be used because all wavelengths are 
refl ected in the same way.

We start with a radiation source and a receiver onto which we want to 
concentrate as much light as possible coming out of the source. Figure 1.6a 
shows a source (emitter) E1 and a receiver AB.

If now this source moves to the left, as shown in Figure 1.6b, and grows in 
size from E1 to E2, … so that its edges always touch the rays r1 and r2, which 
make an angle 2θ between each other, the radiation fi eld at AB will tend to be 
the one in Figure 1.7, in which the receiver AB is shown in a horizontal orien-
tation. At each point, the receiver AB “sees” the incoming  radiation contained 
between two edge rays that make an angle 2θ between each other. These 
edge rays are coming from the infi nite source E at an infi nite distance.

Our goal is to concentrate this radiation to the maximum possible extent, 
that is, to send the maximum power through the aperture AB. Our approach 

E2

r2

r1

A

�

�

P

B

(a) (b)

E1

r2

r1 �

�

A

P

B

FIGURE 1.6
As the source E moves to the left and grows so that its edges always touch the rays r1 and r2, 
its size will be E1, E2, …. The radiation received at AB tends to be confi ned at every point to an 
angle 2θ.
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Fundamental Concepts 9

is to let AB be the exit aperture of the device, and then generate mirror pro-
fi les upward from points A and B. We may start with simple fl at mirrors, and 
we place one on point A and another on point B. Owing to the symmetry of 
the problem about the vertical line through mid point P, these mirrors are 
also symmetrical. This situation is presented in Figure 1.8.

To defl ect onto AB the maximum possible radiation, angle β must be 
as small as possible so that the entrance aperture C1D1 can be as large as 
 possible. But there is a limit to the minimum value of β, which is reached 
when the ray of light r1 refl ected at D1 is redirected to point A. If β is smaller, 
there will be rays refl ected by BD1 onto AC1 and from there away from AB. 

BPA

�� �� ��

FIGURE 1.7
Uniform radiation of angular aperture θ for each side and falling on a surface AB.

�

�

D1

BA

C1

r1
r

FIGURE 1.8
To concentrate radiation onto AB, we can place mirrors at A and B. To capture the maximum 
amount of radiation, entrance aperture C1D1 must also be a maximum. Therefore, the angle β 
that these mirrors make with the horizontal must be a minimum. This minimum value of β is 
obtained when the edge ray r1 coming from the left, and falling on D1, is refl ected toward A.
If β decreases, this light ray would be refl ected at D1, then at mirror AC1, and from there would 
be refl ected away from AB. Mirror AC1 is symmetrical to BD1.
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10 Introduction to Nonimaging Optics

After placing the fi rst mirror, a second one can be added above it. Figure 1.9 
presents this possibility.

Also in this case, the slope of the mirrors is chosen so as to maximize the 
width of the entrance aperture, which is now C2D2. Again this means that this 
mirror must redirect the edge rays coming from the left so that the ray r2 is 
refl ected at D2 toward point A. We can now add more and more mirrors atop 
one another. These mirrors have a fi nite size, but they can be made as small 
as desired. As this happens, more and more smaller mirrors can be added. 
The mirrors together tend to adjust to a curve. This situation is presented in 
Figure 1.10. Angle β, which was minimized previously for each small mirror, 
is now the slope of the curve and must also be minimized at each point.

Considering the way this curve is defi ned, it must defl ect onto a point A 
the edge rays r coming from the left. We then have a curve that defl ects a set 
of parallel rays onto a point. The geometrical curve having this characteristic 
is a parabola, so that the curve is a parabola with its axis parallel to the edge 
rays r coming from the left and having its focus at point A. It can also be 
noted that this curve is the one that, at each point P, produces the smallest 
value for β, that is, the one that leads to a maximum entrance aperture C3D3.

As can be seen from Figure 1.11, if the parabola is extended upward, there 
comes a point where it starts tilting inside, reducing the size of the entrance 
aperture.

When this happens, the top of the right mirror starts to shadow the bot-
tom of the left and vice versa. Since we are interested in obtaining the 
maximum possible entrance aperture, the parabolas must be cut at line CD 

r2

D2

D1

C2

C1

BA

FIGURE 1.9
Using the same method presented in Figure 1.8, it is now possible to add new mirrors at points C1 
and D1, enlarging even more the dimension of the entrance aperture that now becomes C2D2.

CRC_54295_CH001.indd   10CRC_54295_CH001.indd   10 4/8/2008   6:03:11 PM4/8/2008   6:03:11 PM



Fundamental Concepts 11

where the distance between them is maxi-
mum. The fi nal concentrator must then look 
like Figure 1.12.

The profi le of this device consists of two par-
abolic arcs—AC and BD. The arc BD is part of 
a parabola having its axis parallel to direction 
BC (i.e., tilted θ to the left) and focus A. Arc AC 
is symmetrical to BD.9–14 It is called the CPC 
because of these two parabolic arcs.

Note that the initial goal was a concentrator 
having the largest possible entrance aperture. 
The design at which we arrived is a combina-
tion of two curves defl ecting the rays coming 
from the edges of the source of radiation onto 
the receiver’s edges. This is the basic principle 
in the design of nonimaging concentrators and 
is called the edge-ray principle—light rays 
coming from the edges of the source must be 
defl ected onto the edges of the receiver.15–17 As 
more examples are given, the terms “edges of 
the source” and “edges of the receiver” will 
become clear.

We can now analyze an important character-
istic of this device. Figure 1.13 shows how the 
parallel edge rays are concentrated onto the 
edges of the receiver.

D3

�

P

BA

C3
r

FIGURE 1.10
The procedure presented in Figure 1.9 can now be extended by adding more mirrors and 
diminishing their size.

D4C4

BA

C D

FIGURE 1.11
As the parabolas are extended 
upward, the distance between 
the mirrors increases until a 
maximum CD is reached and 
then starts to decrease. Also, por-
tions DD4 and CC4 of the mir-
ror shadow the other portions of 
mirror AC and BD, respectively. 
Since the goal is to maximize the 
size of the entrance aperture, the 
parabolas must be cut at CD.
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12 Introduction to Nonimaging Optics

Parabola
axis // r1 
focus A

Parabola
axis // r2 
focus B

D

��

C

A B

r1 r2 

FIGURE 1.12
A CPC is a concentrator with entrance aperture CD that accepts radiation making a  maximum 
angle of ±θ with the vertical and concentrates it into AB.

FIGURE 1.13
Trajectories of the edge rays inside a CPC.
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Fundamental Concepts 13

Figure 1.14a shows the path of an edge ray inside a CPC. This ray enters the 
CPC at an angle θ to the vertical and is refl ected toward the receiver’s edge.

Figure 1.14b presents the case of a ray entering the CPC making an angle to 
the vertical θ1 < θ. Now the ray is refl ected toward the receiver. Figure 1.14c 
presents the case of a ray entering the CPC at an angle θ2 > θ. The ray, after 
some refl ections, ends up going backward and exiting through the entrance 
aperture.

This behavior of the rays inside a CPC is general, in the sense that all the 
rays entering the CPC with an angle θ1 < θ hit the receiver and all the rays 
entering the CPC with an angle θ2 > θ refl ect on its walls until they exit the 
CPC through the entrance aperture. A ray ending on the receiver is said to 
be accepted and a ray that goes back again is said to be rejected. The ratio 
between the number of accepted rays and the number of rays entering the 
CPC is called the acceptance:

 Acceptance =   
number of rays hitting the receiver

   _______________________________   
number of rays entering the CPC

   (1.2)

Therefore, for θ1 < θ and θ1 > −θ, the acceptance is 1 (all the rays entering 
the CPC hit the receiver) and for θ2 > θ or θ2 < −θ, the acceptance is 0 (all the 
rays entering the CPC are rejected, ending with exit through the entrance 
 aperture). Therefore, the acceptance of a CPC has the shape presented in 

�2
�1

�

�

(a) (b) (c)

FIGURE 1.14
Trajectories of three kinds of rays inside a CPC. (a) A ray entering the CPC at an angle to the 
vertical of half-acceptance angle θ. This ray is refl ected to the edge of the receiver. (b) A ray 
entering the CPC at an angle to the vertical smaller than θ is accepted (hits the receiver). (c) A 
ray entering the CPC at an angle larger than θ is rejected by retrorefl ection (ends up exiting 
through the entrance aperture).
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14 Introduction to Nonimaging Optics

 Figure 1.15. Angle θ is called the half-acceptance angle since the CPC accepts 
all the radiation within the angle 2θ contained between −θ and +θ.

The concentrator obtained earlier must be one capable of delivering the 
maximum possible concentration because it was designed so as to maximize 
the size of the entrance aperture without losses of radiation.

We can now calculate the concentration that such a device attains. To 
do this, we need to remember a property of the parabola presented in Fig-
ure 1.16. If a line passing through A and B is perpendicular to the optical 
axis, we have [A, C] + [C, F] = [B, D] + [D, F], where F is the focus and AC 
and BD are rays parallel to the optical axis. Here, [X, Y] represents the dis-
tance between two arbitrary points X and Y.

In Figure 1.17, we have a CPC with entrance aperture a1 and exit aperture 
a2. The half-acceptance angle is θ. Parabola BD has focus A and its axis parallel 
to BC. From the property of the parabola mentioned earlier, we can write in 
the following way:7,18

 [C, B] + a2 = [E, D] + [D, A] ⇔ a2 = a1 sin θ ⇔   
a1 __ a2

   =   1 _____ sin θ    (1.3)

since [C, B] = [D, A] and [E, D] = a1 sin θ.

Angle to the vertical

1

−� +�

A
cc

ep
ta

nc
e

FIGURE 1.15
Acceptance of a CPC. All the rays entering the CPC with an angle to the vertical (axis of sym-
metry) smaller than θ hit the receiver (acceptance = 1). All the rays entering the CPC with an 
angle to the vertical (axis of symmetry) larger than θ are rejected (acceptance = 0).

A

F

B

C
D

FIGURE 1.16
In a parabola, the path length of two light rays ACF and BDF is the same as long as A and B are 
placed on a line perpendicular to the optical axis and AC and BD are parallel to the optical axis.
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Fundamental Concepts 15

We now have a relationship between the sizes of the entrance aperture and 
exit aperture for the concentrator we derived.

Line CE is perpendicular to the edge rays coming from the left. The optical 
path length between the wavefront CE and the focus A is the same for all the 
edge rays perpendicular to CE.

It is also possible to obtain the height h of the CPC. From Figure 1.17b, we 
obtain

 h = h1 + h2 =  
a1/2

 _____ tan θ    +    a2/2
 _____ 

tan θ   = a1   
1 + sin θ ________ 2 tan θ   (1.4)

Note that when θ → 0, h → ∞; so, for small acceptance angles, the CPC 
becomes very tall.7,19

The CPC, although ideal in two dimensions, is not ideal when made into 
a three-dimensional (3-D) device. Figure 1.18 shows a 3-D CPC with circular 
symmetry obtained by rotating the profi le of a 2-D CPC around its axis of 
symmetry.

If now we consider a set of parallel rays at an angle α to the normal to the 
large aperture (vertical direction), we can trace those rays through the CPC and 
see how much of that light gets to the small exit aperture at the bottom. Fig-
ure 1.19 shows the result of such a calculation for CPCs designed for θ = 10°, 
20°, 40°, and 60° acceptance angles. For each one of these design angles, we 
have a transmission curve as a function of incidence angle α. As can be seen, 
the transmission (acceptance) is not a perfect step function, that is, it does not 
fall on a vertical straight line as in Figure 1.15 for the 2-D case. Instead, it falls 
off on a sharp curve. Therefore, the circular 3-D CPC is close to ideal, but 

D

h1

h2

E

C a1

a2 a2

a1

�

�
�

A B
(a) (b)

FIGURE 1.17
(a) The maximum concentration of a CPC; (b) its height is h = h1 + h2.
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16 Introduction to Nonimaging Optics

not ideal. Some skew rays inside the design angle are rejected by the CPC. 
They keep bouncing around until they end up coming out through the 
entrance aperture again. Also, some rays outside the design angle end up 
hitting the small aperture.

If we look at the fl ux transmission inside the design angle θ, we see that all 
is not transmitted. These results are shown in Figure 1.20.

For the points of the large (entrance) aperture of the CPC, we consider all the 
light contained inside a vertical cone of angle θ and see how much of that fl ux 
ends on the small exit aperture of the CPC. As we can see, the light transmitted 
inside the design angle is not 100%. This is due to the fact that the transmission 
is not ideal either inside the design angle, as we can see from Figure 1.19, or 
some skew rays are rejected by the 3-D CPC. As the design angle θ increases, 
the transmission inside θ also increases. Note that as angle θ increases, the mir-
rors of the CPC get smaller and more light hits the small aperture directly.

605040302010
0

0.5

1

Tr
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sm
iss

io
n

� (degrees)

FIGURE 1.19
Transmission curves for circular CPCs designed for acceptance angles of θ = 10°, 20°, 30°, 
and 60°.

Circular
3-D CPC

�

FIGURE 1.18
Circular 3-D CPC and a set of parallel rays at an angle α to the vertical (normal to the entrance 
aperture).
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Fundamental Concepts 17

1.4 Maximum Concentration

The CPC is a 2-D concentrator that was designed for maximum concentra-
tion. To verify that its concentration is, in fact, maximum, we use the second 
principle of thermodynamics.

We consider a trough optical system as in Figure 1.21. It extends to infi nity in 
both directions and consists of a cylindrical black body SR of radius r (on the left) 
at a temperature T and emits light into space at a temperature of 0 K. As radia-
tion travels through space, it eventually reaches an imaginary cylinder of radius 
d. On the face of this imaginary cylinder there is a linear concentrator C.

A black body emitter of area dA at a temperature T emits Lambertian radi-
ation, and the total fl ux (watts) emitted into a hemisphere is given by20,21

 dΦhem = σT 4 dA (1.5)

where σ is the Stephan–Boltzmann constant. A length lU of the cylindrical 
black body then emits a radiation fl ux given by

 ΦU = 2πrσT 4lU (1.6)

In the case where lU = 1 (i.e., when we consider a unit length), we obtain the 
fl ux emitted per unit length, which is given by

 Φ = 2πrσT 4 (1.7)

The optical system of Figure 1.21 is shown again in Figure 1.22 (top view). The 
concentrator C has an entrance aperture of width a1 and exit aperture of 
width a2. Entrance aperture a1 can only exchange radiation with the  radiation 

1

0.98
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n
0.96
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0.92

10 20 30 40 50 60
� (degrees)

FIGURE 1.20
Total fl ux transmission inside the design angle θ for circular CPCs.
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18 Introduction to Nonimaging Optics

source SR or with the rest of the universe, which is at 0 K. The amount of 
radiation that a1 receives per unit length is given by

 Φ = σT 4   2πr ____ 
2πd

   a1 (1.8)

This power can now be concentrated without losses onto area a2 by concen-
trator C.

Let us suppose that on its exit aperture a2, concentrator C has a black body 
that absorbs radiation, and therefore gets heated up. The second principle of 
thermodynamics states that temperature Ta2 of a2 can never be higher than 
the temperature T of the radiation source SR, that is, Ta2 ≤ T. If we had Ta2 > T, 
we could place a heat engine working between a2 and the SR and we would 
have perpetual motion engine, which is impossible. Let us then suppose that 
a2 heats up to the maximum possible temperature, that is, the temperature 
T of SR, where it stabilizes. In this case, it will emit a power per unit length 
given by

 Φ2 = σa2T 4 (1.9)

lU = 1
SR

T r

C

d

0 K

FIGURE 1.21
Linear system.

C

d

d

r
T

SR

0 K

a2
a1

�
�

FIGURE 1.22
Top view of linear system.
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Fundamental Concepts 19

To maintain a stable temperature, it is necessary that a2 is in thermal equilib-
rium, that is, the radiation that it receives from SR equals the radiation emit-
ted to the exterior. In this case, we must have

 Φ = Φ2 ⇔ a2 = a1 r/d ⇔ a2 = a1 sin θ (1.10)

Note that a2 exchanges radiation with SR through the entrance a1 of the con-
centrator. The radiation exiting a1 and coming from a2 can only be headed 
to SR. In fact, if a2 could send radiation to space, it could also receive radiation 
from space, which is at 0 K and, in this case, it could not attain the tempera-
ture of SR. The acceptance angle of the device having entrance aperture a1 
and exit aperture a2 cannot be higher than angle θ represented in Figure 1.22. 
This means that concentrator C cannot accept any radiation that could come 
from a direction outside the angle 2θ. Accordingly, the radiation emitted by 
a2 and exiting through a1 must be confi ned to the same angle 2θ.

In Figure 1.22, the entrance aperture a1 is curved with radius d. However, we 
can make the cylindrical source SR larger and push it further to the left so that 
r/d = constant and, therefore, angle θ is also constant as shown in Figure 1.23.

As the radius d of the entrance aperture a1 of the concentrator C increases, 
it tends to a fl at surface (or straight line in two dimensions). In this limit case, 
the maximum concentration is also given by expression 1.10, that is,

   
a1 __ a2

   =   1 _____ sin θ   (1.11)

which is the same value we obtained for the concentration of the CPC. Thus, 
it can be concluded that the CPC is, in fact, an ideal concentrator.

A similar reasoning can be used to calculate the maximum possible con-
centration for 3-D concentrators. Now, instead of the source SR being an infi -
nite cylinder, it is a sphere as shown in Figure 1.24. The concentrator C has an 
entrance aperture of area A1 and an exit aperture of area A2, and the source 
defi nes at A1 a circular cone of half-angle θ. An example of one of these opti-
cal systems is when source SR is the sun and concentrator C is on earth col-
lecting and concentrating the sun’s energy.

Figure 1.25 shows a vertical cut of this setup where the source SR has 
a radius r, temperature T, and emits radiation into space, which is at a 
 temperature of 0 K. As the emitted radiation travels through space, it will 

a1 a2

C

d

SRSRSR

r r r

�

�

FIGURE 1.23
The cylindrical radiant source SR gets larger while maintaining the ratio r/d and, therefore, the 
angle θ is at the entrance aperture a1 of concentrator C.
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20 Introduction to Nonimaging Optics

eventually illuminate an imaginary spherical surface of radius d. On this 
spherical surface we have the entrance aperture A1 of the concentrator C, 
which concentrates the radiation that falls on A1 onto exit aperture A2.

The fl ux emitted by the spherical source SR is given by

 Φ = 4πr2σT 4 (1.12)

and the radiation that A1 captures is given by

  Φ A1
  =   4πr2σT 4

 ___________ 
4πd2   A1 (1.13)

This radiation will be concentrated onto a black body placed at A2, which 
will heat up to a maximum temperature T, equal to that of the source SR. The 
radiation that A2 emits must equal to the one it receives to maintain thermal 
equilibrium. We have in this case

   4πr 2σT 4
 _______ 

4πd 2
   A1 = A2σT 4 ⇔   

A1 ___ 
A2

   =   d 2 __ 
r 2

   ⇔   
A1 ___ 
A2

   =   1 _____ 
sin2 θ   (1.14)

Although in this construction the entrance aperture A1 is on a sphere of 
radius d, as d goes to infi nity and the source grows in the way shown in 

T

SR
�

�
A1

A2
C

FIGURE 1.24
A concentrator C collects and concentrates radiation emitted by a spherical source SR.

T
r

d

d

0 K

SR
�
�

A1

A2C

FIGURE 1.25
A vertical cut of the geometry of Figure 1.24 showing a spherical source SR at a temperature T, 
emitting radiation to space, and a concentrator C whose entrance aperture A1 is on a sphere of 
radius d.
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Fundamental Concepts 21

Figure 1.23 in which the angle θ is kept constant, the entrance aperture will 
tend to a fl at surface.

A further generalization of this result is obtained when the concentrator C 
is made of a material of refractive index n. In this case, the black body at A2 
is immersed in this medium of refractive index n and, for its radiation emis-
sion, we must use the value of Stephan–Boltzmann constant σ in a material 
of refractive index n, which is given by22

 σ = n2   2π ___ 15     k 4
 ____ 

c0h3   = n2 σV (1.15)

where σV = 5.670 × 10−8 W m−2 K−4 is the value it has in vacuum (n = 1), 
k the Boltzmann constant, h the Planck’s constant, and c0 the speed of light 
in vacuum. Source SR continues to be in vacuum and therefore we continue 
to use n = 1. Expression 1.14 now becomes

   
4πr 2σVT 4

 _________ 
4πd 2

   A1 = A2n2σVT 4 ⇔   
A1 ___ 
A2

   = n2    d 2 ___ 
r 2

   ⇔   
A1 ___ 
A2

   =   n2
 _____ 

sin2 θ   (1.16)

Because A2 now emits n2 times more light, the light concentration may then 
be n2 times higher.

In 2-D geometry, this expression becomes

   
a1 __ a2

   =   n _____ sin θ   (1.17)

It may be seen that the CPC attains this ideal concentration by consider-
ing the case in which the CPC is made of a material of refractive index n as 
shown in Figure 1.26.

In this case, when the light enters the CPC it refracts and its angular aper-
ture diminishes from 2θ to 2θ*, where sin θ = n sin θ*. For the dielectric CPC, 
we have a1 sin θ* = a2 and expression 1.17 follows.

2�

2�*

a1

a2

n

FIGURE 1.26
The light entering a dielectric CPC refracts and its angular aperture diminishes from 2θ to 2θ  *. 
The acceptance of the CPC is still 2θ, but since it is dielectric, it must be designed for the light 
angular aperture 2θ  * after refraction.
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22 Introduction to Nonimaging Optics

The maximum concentration a concentrator can provide is Cmax = n/sinθ 
(as given by expression 1.17) and, in the case where n = 1 (a concentrator 
fi lled with air), the maximum concentration becomes Cmax = 1/sinθ. Nonim-
aging concentrators may reach (or get close to) this maximum limit and this 
makes them very important in solar energy concentration (see Section 3.12, 
after Equation 3.77).

1.5 Examples

The following examples use expressions for the curves and functions that 
are derived in Chapter 17.

Example 1

Design a CPC for an acceptance angle of 30° and a receiver of unit length.
We start by calculating the general expression for the mirrors of a CPC 

and then apply them to the particular case in which the acceptance angle 
is 30°. A general CPC for an acceptance angle θ is shown in Figure 1.27.

It consists of two symmetrical parabolic arcs. The parabola on the 
right has focus F, passes through point P, and its axis r is tilted by an 
angle α = π/2 + θ to the horizontal.

A parabola with focus F = (F1, F2), tilted by an angle α to the horizon-
tal and passing through a point P can be parameterized as

  
  √ 

_____________
   (P – F) ⋅ (P – F)   − (P − F) ⋅ (cos α, sin α)

    ________________________________  
1 − cos φ   (cos (φ + α),

  sin (φ + α)) + (F1, F2) (1.18)

FIGURE 1.27
A CPC is composed of two parabolic arcs tilted by an angle θ to the vertical. The right-hand 
side arc is tilted counterclockwise and the left-hand side one is its symmetrical.

F P

θ θ

x1

x2

r

Parabola
focus F
axis r

π /2+θ

2�−(�/2+� )= 3�/2−�

2π− 2θ
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where the parameter φ is the angle to the axis of the parabola as shown 
in Figure 1.28.

In the particular case of the right-hand side parabola of the CPC in 
Figure 1.27, we can make F = (−a, 0) and P = (a, 0) with a > 0. Replacing 
these values in the expression for the parabola, we get

  ( a   
1 − cos (φ + 2θ) + 2 sin (φ + θ)

   _________________________  cos φ – 1  , a   
cos (φ + θ)

 _________ 
sin2 (φ/2)

    (1 + sin θ) )  (1.19)

with 3π/2 − θ ≤ φ ≤ 2π − 2θ. The left-hand side of the CPC is obtained 
by symmetry about the x2-axis (by changing the sign of the fi rst 
component).

Now, we may apply this result to the particular case of a CPC with an 
acceptance angle of 30°. We assume that the small aperture FP has a unit 
length so that F = (−0.5, 0) and P = (0, 0.5). We also have θ = 30π/180 rad. 
Replacing these values in the above expression for the right-hand side 
parabola, we obtain

  (    0.5(1 − cos (π/3 + φ) + 2 sin (π/6 + φ))
    __________________________________  

cos φ − 1
  , 0.75   

cos (π/6 + φ)
  ____________ 

sin2 (φ/2)
    )  (1.20)

for 4π/3 ≤ φ ≤ 5π/3. The left-hand side parabola is obtained by sym-
metry around the vertical axis, that is, by changing the sign of the fi rst 
component of the parameterization.
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Parabola with focus F, tilted by an angle α to the horizontal and passing through a point P.
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2
Design of Two-Dimensional Concentrators

2.1 Introduction

The compound parabolic concentrator (CPC) is a 2-D concentrator designed 
for capturing and concentrating a radiation fi eld with a given angular aper-
ture onto a fl at receiver. This radiation fi eld can be thought of as being cre-
ated by an infi nitely large source at an infi nite distance. The edge rays of 
the incoming radiation come from the edges of the (infi nite) source and are 
concentrated onto the edges of the receiver. This basic principle can be used 
to generate many other  nonimaging devices. Its generalization is called the 
“edge-ray principle” and is the basis of nonimaging optics.

This chapter explores generalizations of the CPC design. These include, for 
example, different sources and receiver shapes, different light entrance and 
exit angular apertures, and nonparallel entrance and exit apertures.

2.2 Concentrators for Sources at a Finite Distance

The CPC was designed for an infi nitely large source at an infi nite distance. 
It is, however, possible to generalize the CPC design to other sources and 
receiver shapes. Figure 2.1 shows the case in which the radiation source has a 
fi nite size and is at a fi nite distance. Here we have a source EF and a receiver 
AB. We may now design an optic to concentrate as much radiation as possi-
ble coming out of EF onto AB. We will use the edge-ray principle mentioned 
in Section 2.1, which tells us that the light rays coming from the edges of the 
source must be defl ected to the edges of the receiver. In this case, the edges 
of the source are, naturally, points E and F, and the edges of the receiver are 
A and B. The edge-ray principle then states that we must concentrate the rays 
of light coming from E and F onto A and B. Similar to what has been done in 
the case of the CPC, here too, we will use mirrors. As seen in Figure 2.1, the 
upper mirror of this new concentrator must have a slope at each point P such 
that it defl ects the rays coming from edge point E of the source of radiation 
onto edge point A of the receiver. This curve is then an ellipse with foci E 
and A and passing through B. This construction principle ensures that any 
light ray coming from a point G on the source and refl ected at any point P 
on the refl ector will hit the receiver. The concentrator thus obtained is called 
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26 Introduction to Nonimaging Optics

the compound elliptical concentrator (CEC) because it is composed of two 
arcs of ellipses.1

To design one of these systems, we can start, for instance, by defi ning the 
source EF and receiver AB. Then the elliptical arc having foci E and A and 
passing through B can be drawn. This elliptical arc extends from point B until 
it fi nds line AF at point D. Elliptical arc CA can be obtained by symmetry. 
Note that the CPC obtained earlier is a particular case of this new confi gura-
tion. If points E and F are displaced to infi nity along lines CB and AD, respec-
tively, the elliptical arcs tend to become two parabolic arcs, and the CEC turns 
into a CPC. As was the case with the CPC, the CEC is an ideal device.

The CEC can now be compared to an imaging system such as a lens. 
 Figure 2.2 compares a CEC with an ideal imaging lens. As can be seen, in the 
case of the lens, light coming from each point P in the source of light EF is 
concentrated onto a point Q in the image AB. Thus, an observer to the right of 
the image AB will not see light coming from the set of points P that forms EF, 
but instead sees light coming from points Q forming AB. Therefore, instead 
of seeing EF, the observer sees AB, which is an image produced by the lens.

This does not happen with the CEC, where only light coming from edge 
points E and F is concentrated onto points A and B. For a generic point P of 
EF, there is no convergence to a point of AB, thus no image is formed. For this 
reason, they are called nonimaging or anidolic devices.

Note that there is a similarity between the lens in Figure 1.3 and the CEC. 
The lens ideally guarantees the convergence onto point A of the rays of light 
coming from F, as well as the convergence to B of the rays of light coming 
from E, but it does not guarantee the convergence of the rays coming from 
P to Q. With the CEC, something similar happens: Rays coming from E 

B

PD

C

A

F

E

G

r

FIGURE 2.1
Optical device concentrating onto AB the radiation coming from EF. Each point P on the 
 mirror BD must have a slope such that it refl ects to edge point A of the receiver the ray of light 
coming from the edge E of the source. Mirror DB must then refl ect to A the light rays coming 
from E and, therefore, it must be an elliptical arc having foci E and A. Mirror CA is symmetri-
cal to DB. Because this receiver is composed of two elliptical arcs, it is called the CEC.
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Design of Two-Dimensional Concentrators 27

 converge at A and those coming from F converge at B, but there is no guar-
antee of convergence for the rays coming from P. These devices concentrate 
 radiation and transmit it in an ideal way, but lose image pattern, that is, 
information the image might contain.

2.3 Concentrators for Tubular Receivers

Until now, only solutions for linear receivers were presented. Now  consider 
receivers having convex shapes such as circular. This is presented in Fig-
ure 2.3, where the edge rays for the source are still those coming from E and 
F, but now the edge rays for the circular receiver are those tangent to it. There-
fore, the edge-ray principle now states that the rays coming from the edges of 
the source must be refl ected to become tangent to the circular receiver.

The mirror of the concentrator must be designed such that at each point 
P, its slope causes the rays of light coming from E to become tangent to the 
circular receiver. The shape of this mirror is called a macrofocal ellipse 
(see Chapter 17) having focus E and as macrofocus the circular receiver. 
This design method enables us to obtain the portion of the mirror from point 
D to point B, where it meets line ET1 passing through E and tangent to the 
receiver at point T1. From this point forward, the mirror takes the shape of an 
involute extending from point B to point X, which is on the axis of symmetry.

To justify the introduction of the involute, it is necessary to examine its 
optical properties. An involute can be obtained by unrolling a string of con-
stant length around a circle as presented in Figure 2.4a. Its optical behavior 
is presented in Figure 2.4b. A ray of light tangent to the receiver and coming 
from a point T′ is refl ected by the mirror at a point B′ back to T′. Therefore, 
any ray r coming from the space between the receiver and the mirror will be 
refl ected toward the receiver, as desired. Note also that this curve obeys the 
edge-ray principle: An edge ray leaving tangentially from T′ is refl ected at B′ 

F

P

E

C

D
B

A

F

P

E

Q

B

A

(a) (b)

FIGURE 2.2
(a) The CEC is a nonimaging (anidolic) device. Thus, the rays of light exiting point P in the 
source of energy EF will not, in general, converge to a point on the receiver AB, so that no 
image is formed. (b) A quite different imaging system, where the rays of light exiting P meet 
at Q on AB.
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B

PD

F

E

C

A

T2

T1

X

FIGURE 2.3
Nonimaging device concentrating onto the circular receiver, the radiation coming from a 
source EF.

B

B′

XX1

T′T1

r

(a) (b)

FIGURE 2.4
(a) An involute to a circle can be obtained by unrolling a string of constant length. One tip of 
the string is attached to point X1 and the other tip describes an involute. This design method 
generates a curve perpendicular at every point of the tangent to the circle. (b) In optical terms, 
this means that a ray of light T′B′ leaving the circle at point T′ tangentially will be refl ected 
back at the involute at B′ returning toward T′. Therefore, any ray of light r passing through the 
space between the involute and the circle will be refl ected at B′ toward the circle.
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again headed to T′, that is, tangentially to the tube, and so the refl ected ray 
at B′ is also an edge ray.

As mentioned earlier regarding the CEC, in the case of the concentrator in 
Figure 2.3 also, start by designating the source EF and the circular receiver 
so that the mirrors can be calculated. As mentioned earlier, the mirror must 
touch point X on the receiver. To design the concentrator, it may be simpler 
to start by calculating the involute to the receiver starting at point X and 
extending it until it touches (at point B) the line passing through E and T1. 
After point B is determined, the remaining part of the mirror is designed 
according to the method presented earlier. This will extend from point B 
until it touches (at point D) line FT2. Points T1 and T2 are tangency points of 
lines EB and AF with the receiver.

2.4 Angle Transformers

The CPC presented in Figure 2.5a has an acceptance angle θ1 for each side 
and concentrates the incoming radiation to the maximum possible extent, 
therefore making the exit angle π/2. The device in Figure 2.5b is an angle 
transformer.1

D
D

C
C

r2

r1

r3

A AB B

Q

�/2�/2

2�2

2�1

�1 �1 Parabola
axis // r1 
focus A

Flat
mirror

(a) (b)

FIGURE 2.5
(a) A CPC with a half-acceptance angle θ1 and a half exit angle π/2. (b) An angle transformer, 
composed of two parabolic arcs and two fl at mirrors. The half-acceptance angle is θ1 and the 
half exit angle is θ2, which is now smaller than π/2. Note that as θ2 → π/2, the fl at mirrors tend 
to disappear and the angle transformer turns into a CPC.
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30 Introduction to Nonimaging Optics

In this case, the concentration of the device is the maximum for the given 
entrance and exit angles, θ1 and θ2, respectively. Each mirror in this device is 
composed of two portions. For the right-hand side mirror, we have parabola 
DQ and fl at mirror QB. The parabola concentrates to edge A of the receiver, 
the incoming edge rays between r2 and r3. Point Q is such that ray r2 is 
refl ected at Q and exits the device making an angle θ2 to the vertical. Portion 
QB of the mirror refl ects incoming edge rays between r1 and r2 in a direction 
making an angle θ2 to the vertical.

2.5 The String Method

A simple way to obtain the shape of the mirrors consists in using the string 
method or the gardener’s method.2

The optical device (CEC), presented in Figure 2.2, to concentrate onto a 
receiver AB the radiation coming from a source EF is composed of two ellip-
tical arcs. These curves were defi ned point by point so as to refl ect the rays of 
light coming from the edges of the source to the edge points of the receiver.

Another way to obtain the elliptical arc is by using the gardener’s method. 
It has this name because it enables us to design an ellipse easily on the 
ground using a string and two sticks, just as gardeners do. Let us return to 
Figure 2.1 and presume that we have a string having length [E, B, A] and 
whose extremities are fi xed at points E and A. If we stretch it with a marker 
and move the marker (along points P) so as to maintain the string stretched, 
we obtain an ellipse. This is because, on an ellipse, the length [E, P, A] (string 
length) is constant for all its points P. This method of designing an ellipse is 
presented in Figure 2.6.

In the case of the CEC presented in Figure 2.1, the source of radiation, 
EF, is placed at a fi nite distance. Suppose that the edge points F and E of 
the source go to infi nity along lines AD and BC, respectively. The CEC will 
become a CPC in this case. Lines EP and EB will now be parallel and the 

Ellipse

A

P

String

E

w1

FIGURE 2.6
String method to design an ellipse. Fixing the string extremities at points E and A and stretch-
ing it with a marker and moving the marker so as to maintain the string stretched draws an 
ellipse.
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elliptical arc DB will become a parabolic arc, 
with the same thing happening to the ellipti-
cal arc CA. The string method that defi ned the 
ellipses of the CEC can now be adapted to defi ne 
the parabolas of the CPC. Let us then consider 
the construction presented in Figure 2.6. The 
elliptical arc was defi ned keeping in consider-
ation that the distance [E, P, A] is constant. Let us 
now consider that from point E, the rays of light 
are emitted and concentrated onto point A by the 
elliptical arc. The wave front w1 of these rays is 
a circular arc centered at point E. Therefore, the 
distance from E to w1 is constant and the distance 
from w1 to A must also be constant for the points 
of the ellipse. As point E moves away from A, the 
wave front w1 tends to become a straight line and 
the elliptical arc tends to become a parabolic arc 
having focus A. The string method can, in this 
case, be adapted to the design of the parabolic 
arcs, considering the string “fi xed” in the wave 
front w1 and at point A. Figure 2.7 presents the 
application of the string method to the genera-
tion of the parabolic arcs of a CPC. Consider that 
the length [A, P, w1] is constant and the string is 
kept perpendicular to the wave front w1. If the 
string is kept stretched by a marker, moving the 
marker (along points P) draws a parabolic arc. 
The tip of the string on w1 slides on it as point P 
moves on the curve BD.

This method can now be applied to the design of the mirrors of the 
 concentrator presented in Figure 2.3. Let us consider that the mirror 
 presented in Figure 2.8 transforms the wave front w1 into the wave front w2. 
The optical path length between the two wave fronts is constant (see Chap-
ter 11). In this case, n = 1, so that the optical path equals the distance. The 
distance from w1 to w2 must then be constant. If w1 is a circular arc  having 
center E, then the distance between E and w2 is constant. Now consider that 
the wave front w2 has the shape of an involute to the circular receiver. The 
lines  perpendicular to the involute are tangent to the receiver. Because the 
rays of light are perpendicular to the wave front, it can be concluded that, 
in this case, the rays of light are tangent to the receiver. An involute is, by 
construction, a curve w2 such that the distance from w2 to X1 is constant 
for a string attached to a point X1 and rolled around the receiver as shown 
in Figures 2.4a and 2.8. Since we have already concluded that the distance 
from E to w2 is constant, it can now be seen that the distance from E to X1 is 
constant. Therefore, we can fi x a string at E and X1 and generate the mirror 
by the string method.

D

P

A B

C

w1

FIGURE 2.7
String method for the design 
of a parabolic arc. A string 
having a constant length is 
fi xed at point A and kept 
perpendicular to line (wave 
front) w1 (its tip slides on w1). 
Keeping the string stretched 
with a marker and mov-
ing it draws a parabolic arc. 
Note that this possibility 
results from the property 
of the parabola shown in 
Figure 1.16.
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32 Introduction to Nonimaging Optics

The string method enables the generation of generic concentrator profi les 
for any shape of radiation source or receiver. It can then be applied to the 
concentrator presented in Figure 2.3 for a source EF and a circular receiver 
as presented in Figure 2.9.3,4 This method enables us to generate the whole 
mirror. In this case, a tip of the string must be fi xed at point E of the source 
as before, but the other tip must be fi xed at point X of the receiver. The length 
of the string must be such that the resulting mirror touches point X of the 
receiver. The string stretches from X around the receiver and then straight 
to point P and from there to point E. The string method draws a macrofocal 
ellipse having focus E and as macrofocus the circular receiver (points P, P’, …) 
and then the involute to the circular receiver (points P’’).

As seen earlier, the string method can be adapted to the case where the 
source of radiation is placed at infi nity, as shown in Figure 2.10. In this case, 
the string of constant length is fi xed at point X and kept perpendicular to the 
wave front w1.

It is also convenient to note that this method enables us to fi nd the shape 
of the mirrors of ideal optical devices concentrating the light from arbitrary 
sources to arbitrary receivers. Consider, for example, a linear receiver where 
the radiation is concentrated not only from above but also from below. Fig-
ure 2.11a presents such a device, for which the string must initially pass 
through points C–B–X–B–A. The string stretches from C to B, then goes 
underneath the receiver to point X, then back to B and then over the receiver 
to point A. The design of the concentrator then starts at point X. Moving the 

Mirror

X1

E

w2

w1

FIGURE 2.8
The distance between E and w1 is the same for all the rays of light, the same happening between 
the wave fronts w1 and w2. Considering that, in an involute w2, the distance between w2 and a point 
X1 is constant for a string attached to X1 and rolled on the receiver, then the distance from E to X1 is 
constant and a string can be fi xed at points E and X1 and the mirror drawn by the string method.
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string, the points (such as P1) of a  circular arc having center B are obtained. 
Now the string stretches through points C–B–P1–B–A. This arc ends at 
point Q1 where the light coming from the source starts to be visible, that 
is, the edge rays r start to illuminate the mirror. For the mirror points (such 
as P2) between Q1 and Q2, the string unrolls around point B, while being 

P

X

F

E

P′

P′′

FIGURE 2.9
The string method enables us to draw the entire concentrator mirror of Figure 2.3. For this, it 
is necessary to fi x the tips of the string at E and X and to choose its length so that as the mirror 
is designed from P to P′, it ends up touching point X. Point P″ from where edge E of the source 
cannot be seen is on an involute to the circular receiver. The involute portion of the mirror is 
also generated by the same string as rest of the mirror.

P

X

P′

C′

C

w1

�

FIGURE 2.10
The string method presented in Figure 2.9 for the design of concentrators for circular receivers 
can be extended to the case in which the source is placed at infi nity, where the string must be 
kept perpendicular to the wave front w1 for the entire extent of the mirror being drawn.
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34 Introduction to Nonimaging Optics

kept perpendicular to the wave front w1. Therefore, this part of the mirror 
is a parabola having its axis perpendicular to w1 and its focus at B. Here 
the string stretches through points C2–P2–B–A. From point Q2 forward, the 
string unrolls around point A. Therefore, between Q2 and D the mirror is a 
parabola having an axis perpendicular to the wave front w1 and focus at A. 
Now the string stretches through points C3–P3–A.

This method can be extended to other shapes of the receiver. Figure 2.11b 
 presents a concentrator for a triangular receiver A–J–B–A. In this case, between 
X and Q1, the mirror is shaped as a circular arc; between Q1 and Q2, it is shaped 
as a parabolic arc having focus B; between Q2 and Q3, it is shaped as a parabolic 
arc having focus J; and between Q3 and D, it is shaped as a parabolic arc having 
focus A. All the parabolic arcs have axes perpendicular to the wave front w1.

The string method can also be applied in cases where the source has a 
given shape and is placed at a fi nite distance. Figure 2.12 presents a device 
transmitting all the light exiting a circular source onto a receiver having the 
same shape and size.

In this case, the string is wrapped around the source and the receiver.5 The 
mirror of the device presented in Figure 2.12 is a generalization of an ellipse. 
An ellipse ideally transmits all the light from a source E1F1 onto a receiver 
E2F2, as presented in Figure 2.13, if F1 and F2 are its foci.

In this case, the light exiting the source E1F1 is transferred to receiver F2E2.

C3

C2

P2

P3

P1
Q1

Q3

Q1

Q2
Q2

C C

X
X

J

A
A

D D

B
B

String String

w1 w1

r

(a) (b)

FIGURE 2.11
Concentrators having a linear receiver receiving radiation from above and below (a) and  having 
a triangular receiver (b). Both devices can be obtained using the string method. In the case of 
the device presented in (a), the string initially stretches through points C–B–P1–B–A. Point P1 
is part of a circumference having center B. For points P2, the string passes through C2–P2–B–A 
and describes a parabola having focus B. For points P3, the string passes through C3–P3–A and 
describes a parabola having focus A. The parabolic arcs have axes perpendicular to the wave 
fronts w1. The mirrors for concentrator (b) are obtained in a similar manner.
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2.6 Optics with Dielectrics

The concentrators so far had mirrors with interior air (n = 1). Now consider 
devices made of a material having a refractive index n. Figure 2.14 depicts a 
CPC made of a dielectric material of refractive index n.

The design of a CPC made of a dielectric material is in every way  similar to 
that presented earlier for the case with mirrors and interior air. In this case, 

FIGURE 2.12
The string method can also be extended to the case where the source has any shape. This fi gure 
presents the case in which the source and receiver are circles having the same size.

E2F2F1E1

Ellipse foci  F1, F2

FIGURE 2.13
An ellipse ideally transfers the radiation from a source E1F1 onto a receiver F2E2, where F1 and 
F2 are its foci.
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36 Introduction to Nonimaging Optics

a CPC designed for a half-acceptance angle θ *1  will have a half-acceptance 
angle θ1 due to the refraction at the entrance of the CPC. Angles θ1 and θ *1  are 
related by sin θ1 = n sin θ *1. It is possible, in some cases, to use total internal 
refl ection in the walls of the CPC. For the CPC, we have [A, B] = [C, D] sin θ *1. 
Replacing sin θ *1, we have

 [A, B] =    
[C, D]sin θ1 ___________ n   (2.1)

Points on the mirror BD of the CPC obey d1 + nd2 + nd3 = C, where C is the 
constant optical path length.

The CPC made of dielectric material has a useful feature: its entrance 
aperture CD does not necessarily have to be fl at. It is therefore possible 
to design optics with curved entrance aperture and receiver immersed in 
dielectric.6 When the receiver AB is fl at, these are usually called dielectric 
total internal refl ection concentrators (DTIRCs).7,8 One such optic is pre-
sented in Figure 2.15. The advantage of this possibility is that it enables the 
design of more compact devices.

For example, the entrance aperture can be shaped as a circular arc. Once 
the shape of the entrance is defi ned, the shape of the lateral wall DB (and 
its symmetric AC) can be calculated. Rounding the entrance enables us to 
design more compact devices.

The optical path length between w1 and A is constant. This result was 
used earlier to defi ne the string method. This method can now be adjusted 
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2�1
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n
d2

d1

w1

d3

C D

BA

FIGURE 2.14
CPC of a dielectric material having index 
of refraction n can be built. This opens 
up the possibility of using total internal 
refl ection at the walls of the CPC.

FIGURE 2.15
If a concentrator is made of dielectric, its 
entrance aperture no longer needs to be fl at. 
In this case, a curved entrance aperture CD 
enables the design of more compact devices.
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to this new situation. Let us then suppose that the device is made of a 
material having a refractive index n. In this case, we have

 [Q*, Q] + n[Q, P] + n[P, A] = constant (2.2)

Given the shape of the entrance aperture, it is then possible to calculate 
the shape of the lateral walls. Note that the presented concentrator has an 
entrance whose dimension is equivalent to the distance from C to D and not 
to the arc CD. Its concentration is then [C, D]/[A, B], where [C, D] is the dis-
tance from C to D. Also, expression 2.1 still applies to this concentrator.

In the case of the device presented in Figure 2.15, the receiver must be 
immersed in a medium of refractive index n. If this does not happen, the 
device must be designed for an exit angle equal to the critical angle, so that 
there is no total internal refl ection at the exit AB and the radiation leaves the 
device to the air between ±π/2.

2.7 Asymmetrical Optics

A CEC is a device allowing us to concentrate radiation coming from a source 
at a fi nite distance. In the cases presented earlier, the source and receiver 
were arranged in a symmetrical confi guration. This arrangement can, none-
theless, be generalized. Figure 2.16 presents a CEC concentrator designed for 
a generic set source–receiver in which the relative positions and orientations 
of source and receiver are asymmetrical. In this case, the CEC is designed the 
same way as the earlier ones. The elliptical arc BD has foci E and A and the 
elliptical arc AC has foci F and B.

When the source EF tends to infi nity, the asymmetrical CEC tends to an 
asymmetrical CPC. Figure 2.17 presents one such CPC.9,10

D

B

AC

E

F

FIGURE 2.16
CEC for a source and receiver in asymmetrical positions. The elliptical arc BD has foci A and 
E and the elliptical arc AC has foci F and B.
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38 Introduction to Nonimaging Optics

The asymmetrical CPCs were proposed for stationary collectors of solar
energy, which would have different acceptance areas for winter and 
 summer.1,11,12 In summer, the sun is higher in the sky and in winter, it is lower. 
Therefore, in the case presented in Figure 2.17, the direction r1 could corre-
spond to the direction of the sun in summer and the direction r2 could coin-
cide with the direction of the sun in winter. In this case, the CPC would accept 
more radiation and have a higher concentration in winter than in summer. 
This situation could, nonetheless, be inverted if the CPC was used, for exam-
ple, in a heating system or in an air-conditioning system.

Another example of asymmetrical nonimaging optical systems is angle 
rotators.13 These are devices that can rotate the radiation without changing 
their angular aperture; the same way angle transformers can modify the 
angular aperture of the radiation without changing its direction.

Figure 2.18 shows an example of an angle rotator. It is composed of fl at 
 mirrors and an elliptical arc. The acceptance and exit angles are 2θ. The radi-
ation is rotated by an angle φ.

The fl at mirror F1F2 is perpendicular neither to the entrance aperture at 
point F1 nor to the exit aperture at point F2. This is because the elliptical arc 
has a focus at the edge F1 of the entrance and another at point F2 of the exit.

D

BA

r1

A1

A2

r1

r2

r2C

Parabola
focus B
axis // r2

Parabola
focus A
axis // r1

FIGURE 2.17
Asymmetrical CPC. Similar to the CPC, the asymmetrical CPC is also composed of two parabolic 
arcs. Arc BD has focus A and axis parallel to r1. Arc AC has focus B and axis parallel to r2. When 
the radiation comes from direction r2, the area A2 intercepted by the concentrator is larger than 
area A1 intercepted when the radiation comes from direction r1. Therefore, this device accepts 
different amounts of energy and has different concentrations for different acceptance angles.
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A particular case of this angle rotator occurs when points F1 and F2  coincide 
and the fl at mirrors disappear. In this case, the ellipse tends to a circular arc. 
The acceptance and the exit angles must in this particular case be π/2 and we 
get the device presented in Figure 2.19, which is a circular arc with  center C.14

Figure 2.20 shows another example of an angle rotator.15

It is composed of a central circular light guide made of two circular arcs 
with center C bound by sections s1 and s2 and a compound  macrofocal 
 parabolic optic at each end. Each of these optics is made of an exterior 
 macrofocal parabola with an axis parallel to edge rays that are parallel to 

Flat
mirrors

Ellipse
foci F1, F2

F1

F2

�
�

��
�

FIGURE 2.18
An angle rotator rotates the radiation by an angle φ without changing its angular aperture θ. 
The angle rotator presented here is composed of three fl at mirrors and an elliptical arc.

�/2

�/2

�/2

�

Circular arc
center C

�/2

C

FIGURE 2.19
An arc of circumference. (This device accepts radiation having a half-angle π/2 and rotates it 
by an angle φ.)
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40 Introduction to Nonimaging Optics

the ray r2 and the macrofocus CM (see Chapter 17). It refl ects these edge rays 
in directions tangent to CM. These rays reach the inner mirror of the central 
circular portion of the light guide with angle α to the normal. From there, 
they are refl ected and reach the outer mirror of the circular portion, reaching 
it with an angle β to the normal. The inner macrofocal parabola has the axis 
parallel to the edge ray r1 and also the macrofocus CM. It refl ects light rays 
parallel to r1 in a direction such that they appear to come from the tangent 
to the  macrofocus. These rays reach the outer mirror of the central circular 
portion of the light guide with an angle β to the normal.

Inside this circular portion, the edge rays keep bouncing back and forth 
between the two circular mirrors, hitting the inner mirror with angle α and 
the outer mirror with angle β. At the other end of the light guide, a symmetri-
cal compound macrofocal parabolic optic “undoes” what the fi rst did and 
we recover the radiation confi ned between angles ±θ. Angle φ for the central 
portion of the angle rotator can be chosen freely.

A limit case of this kind of optic is shown in Figure 2.21. Now, angle α was 
chosen to be 90° and, therefore, the inner circular mirror is no longer needed 
as edge rays would now be tangent to it.

In this optic, light is confi ned in the space between sections s1 and s2 between 
the circular outer mirror with center C and the caustic CM of these edge rays, 
which is also a circle with center C but has a smaller radius r. The inner sur-
face of the optic between s1 and s2 can now be chosen with any arbitrary shape 
as is a nonoptical surface. It can be used for mechanical applications such as 
 holding the optic in place without introducing light losses. As seen earlier, 
angle φ can be chosen freely.

Macrofocal parabola
macrofocus CM 
axis // r1

Flat mirror

Macrofocal 
parabola
macrofocus CM 
axis // r2

Circle center C

CM

r1

s1
s2

�

�

2�2�

�

�
�

r2 C

FIGURE 2.20
Angle rotator composed of a central circular light guide with a compound macrofocal  parabolic 
optic at each end.
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2.8 Examples

The following examples use expressions for the curves and functions that 
are derived in Chapter 17.

Example 1

Design a CEC for a source RG and a receiver PF, where R = (−3, 10), 
G = (3, 10), P = (−1, 0), and F = (1, 0).

We start by calculating the general expression for the mirrors of a 
CEC and then apply them to this particular case. A general CEC for 
source RG and receiver PF is shown in Figure 2.22.

Left-hand side ellipse PQ has foci F and G and, therefore, is tilted by 
an angle α to the horizontal. This ellipse must pass at point P and this 
defi nes it.

Consider now the general case of an ellipse with given foci F and G 
and that passes through a point P as shown in Figure 2.23.

From the positions of F, G, and P, we can calculate

K = tP + dP = [F, P] + [P, G]

f = [F, G] (2.3)

α = angh(v) with  v = (v1, v2) = G – F

where angh is the function that gives us the angle of a vector to the 
 horizontal. The ellipse is then given by

   
K2 – f 2

 ____________  
2K – 2f cos φ    (cos(φ + α), sin(φ + α)) + F (2.4)

Macrofocal parabola
macrofocus CM 
axis // r2

Flat 
mirror

Macrofocal 
parabola
macrofocus CM 
axis // r1

Circle center C

CM

r1

2�2�

�

r2

s2s1

rC

Nonoptical
surface

Caustic

FIGURE 2.21
Angle rotator with a nonoptical surface.
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42 Introduction to Nonimaging Optics

This same expression can be used to describe the ellipse PQ in Fig-
ure 2.22. The parameter range in this case is φ1 ≤ φ ≤ φ2 with

 φ1 = ang(R – F, G – F) 
 φ2 = ang(P – F, G – F) (2.5)

where ang is the function that gives the angle between two vectors.

GR

Q

P F

�

�1�2

x2

x1

FIGURE 2.22
A CEC composed of two arcs of ellipses with foci at the edges of the source and the receiver. (The 
left-hand side ellipse PQ has foci F and G. The right-hand side ellipse is its symmetrical.)

dP
tP

x2

x1

t (�)
�

�

G

F

P

FIGURE 2.23
General ellipse with foci F and G that passes through a given point P.
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Design of Two-Dimensional Concentrators 43

Now we may apply these results to the particular case in which 
R = (−3, 10), G = (3, 10), P = (−1, 0), and F = (1, 0). Replacing these values 
in the earlier expressions, for the elliptical arc PQ we get

  
(2 + 2  √ 

___
 29  )2 – 104

  ______________________   
2(2 + 2  √ 

___
 29  ) – 4  √ 

___
 26   cos φ

    ( cos ( φ + arc cos  (   1 ____ 
  √ 

___
 26  
   )  ) , 

 sin ( φ + arc cos  (   1 ____ 
  √ 

___
 26  
   )  )  )  + (1, 0) (2.6)

for arc cos(23/  √ 
____

 754  ) ≤ φ ≤ arc cos(–1/  √ 
___

 26  ). The right-hand side elliptical 
arc is symmetrical to this one and can be obtained by changing the sign 
of the fi rst component of the parameterization.

Example 2

Design a concentrator for a circular receiver where the source is a line 
RG with R = (−5, 10) and G = (5, 10) and the receiver is centered at the 
origin and has radius r = 1.

The light emitted by a linear source RG can be captured and con-
centrated onto a circular receiver of radius r by means of a compound 
 macrofocal ellipse concentrator (CMEC). Accordingly, if the circle is a 
light source, the optic will distribute the light over a receiver RG.

This concentrator is composed of an involute section VP and a macro-
focal ellipse section PQ and their symmetrical, as shown in Figure 2.24.

x2

x1tP
SV

T

Q

R G

�

�P

�

�

P

FIGURE 2.24
Concentrator for a tubular receiver and fi nite source RG. (Each side is composed of an involute 
arc and a macrofocal elliptical arc.)
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44 Introduction to Nonimaging Optics

We start by calculating the involute VP and then use its end point P 
to calculate the macofocal ellipse PQ. The involute section VP has the 
equation

    r(cos(φ + αI), sin(φ + αI)) + rφ(cos(φ – π/2 + αI), sin(φ – π/2 + αI)) (2.7)

with αI = −π/2 because it touches the circle at point V that makes 
an angle −π/2 to the horizontal axis x1. The parameterization of the 
 involute then becomes

 r(–φ cos φ + sin φ, –cos φ – φ sin φ) (2.8)

Point T on the receiver and edge point G on the source defi ne a tangent 
line to the receiver. Point T can be obtained from

 β = arc cos (r���G��) 

 T = rR(β) · G���G�� 
(2.9)

where R(β) is a rotation matrix of an angle β. Angle γ can now be 
 calculated as

 γ = ang((0, 1), G – T) (2.10)

where ang is a function that gives the angle that the fi rst argument 
vector makes relative to the second vector argument. The involute VP 
then has the parameter range −(π/2 + γ) ≤ φ ≤ 0. Point P, where the 
involute ends and the macrofocal parabola starts, is obtained from 
the involute parametric equation at the parameter value −(π/2 + γ). 
Angle α that the major axis of the winding macrofocal ellipse PQ makes 
to the horizontal axis x1 is given by

 α = angh(G) (2.11)

where the function angh gives the angle a vector makes to the  horizontal. 
Angle φP for point P is given by

 φP = ang(P – G, G) (2.12)

and distance tP from point T to P is given by

 tP =   √ 
________

 P · P – r2   = r  (   π __ 2   + γ )  (2.13)

We can now calculate

 f =   √ 
______

 G · G   (2.14)
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where f is the distance between the center of the macrofocus (circular 
receiver) and point G. We can now calculate

 K =  t P  + r φ P  +   √ 
_________________________________

     f  2  +  r 2  +  t P   2
   – 2f( t P  cos  φ P  + r sin  φ P )   (2.15)

and the winding macrofocal ellipse PQ is parameterized by

 r(sin(φ + α), –cos(φ + α))

  +   
 (K – rφ) 2  + 2fr sin φ –  f  2  –  r 2 

   _________________________  2(K – rφ – f cos φ)   (cos(φ + α), sin(φ + α)) (2.16)

The parameter ranges between the values

  φ 1  = ang(R – S, G) (2.17)
  φ 2  = ang(P – G, G)

where S is symmetrical to P about the vertical axis x2. We then have 
φ1 ≤ φ ≤ φ2.

In the particular case in which r = 1, the parameterization for the 
involute becomes

 (–φ cos φ + sin φ, –cos φ – φ sin φ) (2.18)

and from the positions of R = (−5, 10) and G = (5, 10), we also have 
γ = 0.55321 rad. Point P = (−1.96684, −1.28177) and the parameterization 
for the macrofocal ellipse is

(F(φ) + sin(1.10715 + φ), –cos(1.10715 + φ) + F(φ) sin(1.10715 + φ)) (2.19)

with

F(φ) = −    
0.5 cos(1.10715 + φ) [126 – (18.4356 – φ ) 2  – 22.3607 sin φ]

     __________________________________________________    18.4356 – φ – 11.1803 cos φ    (2.20)

The parameter range is φ1 ≤ φ ≤ φ2, which in this case is 1.01686 ≤ φ ≤ 
3.05203.

Example 3

Design an angle transformer for an exit (smaller) aperture of  dimension 1 
(unit length), acceptance angle θ1 = 30° = π/6 rad, and exit angle θ2 = 
70° = 70π/180 rad.

We start by placing the edge points of the exit aperture in positions 
E = (0.5, 0) and F = (−0.5, 0) as shown in Figure 2.25.

If a ray r is traced backward in a direction u = (cos β, sin β) with 
β = π/2 − θ2, it refl ects at point E in a direction that makes an angle θ1 to 
the vertical in direction v = (cos α, sin α) with α = π/2 + θ1. The direction 
t tangent to the mirror is given by

 t =   u + v _______  �u + v�    (2.21)

Intersecting a straight line that goes through point F with direction 
u with another straight line passing through point E with direction t, 
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46 Introduction to Nonimaging Optics

we can fi nd the position of point P as

 P = isl(F, u, E, t) = (0.652704, 0.41955) (2.22)

Point Q can be obtained by symmetry about the vertical axis. Mirrors 
EP and FQ are fl at.

We can now calculate the parabola that completes the device. It has 
focus at point F = (F1, F2) and an axis tilted by an angle α = π/2 + θ1 to 
the horizontal and passes through point P as shown in Figure 2.26.

Q

F E

P

t
u

v

x1

x2

r �2

�1

FIGURE 2.25
The edge P of the fl at mirror EP can be obtained from the directions of the incident and refl ected 
rays at point E and also the position of point F.

A
w

v

F E

P

�1

�2
�2

�1

FIGURE 2.26
The parabola PA is tilted by an angle α = π/2 + θ1 to the horizontal, has focus F, and passes 
through point P.
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The parabola can be parameterized as

   
  √ 

______________
  (P – F) · (P – F)   − (P – F) · (cos α, sin α)

    ___________________________________  1 − cos φ  (cos(φ + α), sin(φ + α)) + (F1, F2)

  =   1.43969 ________ 1 − cos φ   (cos(2.0944 + φ) − 0.5, sin(2.0944 + φ)) (2.23)

If w = (cos(π/2 − θ1), sin(π/2 − θ1)), the limits for the parameter φ can 
be obtained as

 φ1 = angp(P – F, v) = 260° 
 φ2 = angp(w, v) = 300° 

(2.24)

The left-hand side parabola is symmetrical to the right-hand side one 
with respect to the vertical axis.

Example 4

Design a concentrator with a half-acceptance angle θ = 40° and a circular 
receiver centered at the origin and with radius r = 1.

Light with an angular spread of 2θ can be captured and concentrated 
onto a circular receiver of radius r by means of a compound  macrofocal 
parabola concentrator  (CMPC). Accordingly, if the  circle is a light source, 
the optic will distribute the light over a total angle of 2θ.

This concentrator is composed of an involute section and a  macrofocal 
parabola section as shown in Figure 2.27.

We start by calculating the involute VP and then use its end point P 
to calculate the macofocal parabola PQ. The involute section VP has 

Q

P

V

T

�

�

�P = �

�/2 + �

�/2 − �

2�

tP

r x1

x2

FIGURE 2.27
Concentrator for a tubular receiver and acceptance angle 2θ. (Each side is composed of an 
 involute arc and a macrofocal parabola arc.)
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48 Introduction to Nonimaging Optics

the equation

r(cos(φ + αI), sin(φ + αI)) + rφ(cos(φ – π/2 + αI), sin(φ – π/2 + αI)) (2.25)

with αI = −π/2 because the involute touches the circle at point V 
that makes an angle −π/2 to the horizontal axis x1. Its equation then 
becomes

 r(–φ cos φ + sin φ, –cos φ – φ sin φ) (2.26)

with −(π/2 + θ) ≤ φ ≤ 0. Mirror PQ is a winding macrofocal parabola 
tilted by an angle α = π/2 − θ to the horizontal. For point P we may get 
the values of

 tP = r (   π __ 2   + θ ) 
 (2.27)

 φP = π 

From the values of tP and φP , we can calculate constant K by

 K = tP − tP cos φP + r + rφP − rπ/2 − r sin φP   (2.28)

or

 K = r  ( 1 +   3π ___ 2   + 2θ )  (2.29)

And now the macrofocal parabola can be calculated from

 r(sin(φ + α), –cos(φ + α)) 

 +    
K – r(φ – π/2) – r(1 – sin φ)

   ________________________  1 – cos φ   (cos(φ + α), sin(φ + α)) (2.30)

as

   r ________ cos φ – 1  (cos θ – cos(φ – θ) + (2π – φ + 2φ) sin(φ – θ), 

  (–2π + φ – 2θ) cos(φ – θ) – sin(φ – θ) – sin θ) (2.31)

with 2θ ≤ φ ≤ π.
In the particular case where the radius of the receiver is r = 1, the 

parameterization of the involute becomes

 (–φ cos φ + sin φ, –cos φ – φ sin φ) (2.32)

for the parameter range −13π/18 ≤ φ ≤ 0. Because the acceptance angle 
is θ = 40π/180 rad, we obtain for the parameterization of the macrofocal 
parabola

  (    cos(2π/9) – cos(2π/9 – φ) – (22π/9 – φ)sin(2π/9 – φ)
     _____________________________________________   cos φ – 1  ,

    
(φ – 22π/9)cos(2π/9 – φ) – sin(2π/9) + sin(2π/9 – φ)     ______________________________________________   

cos(φ) – 1   )  (2.33)

for 4π/9 ≤ φ ≤ π.
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Example 5

Design an angle rotator for a half-acceptance angle of θ = 45° and a rota-
tion angle of β = 50°. The dimension of the entrance and exit apertures 
is d = 1.

Figure 2.28 shows the geometry of an angle rotator and the  parameters 
that defi ne it.

Figure 2.29 shows in more detail the geometry of the entrance  aperture 
of the angle rotator.

x2

x1

d�
�

�
�

R P

A G

Q

F

�

FIGURE 2.28
Geometry of an angle rotator can be defi ned by the dimension d of the entrance and exit 
 apertures, the half-acceptance angle θ, and the rotation angle β for the radiation.
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FIGURE 2.29
Geometry of the entrance aperture of the angle rotator.
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50 Introduction to Nonimaging Optics

The distance d = [G, Q] is given and also the angles θ and β. From 
Figure 2.29b, we obtain

 b sin(θ – β/2) = d sin(π/2 – β/2) 
(2.34)

 c cos(β/2) = b cos θ 

and these expressions allow us to determine b and c as b = 2.64987 and 
c = 2.06744. Now, if point A = (0, 0), we can calculate the position of 
G as G = (c, 0) and then Q = G + d(cos(π/2 − β/2), sin(π/2 − β/2)) = 
(2.49006, 0.906308). Point P can now be calculated by intersecting the 
straight line that passes through G and makes an angle −θ − β/2 to the 
horizontal and the straight line that passes through point Q and makes 
an angle −β/2 to the horizontal. Point P can then be obtained by

 P = isl(G, v, Q, u) (2.35)

where v = (cos(−θ − β/2), sin(−θ − β/2)), and u = (cos(−β/2), sin(−β/2)). We 
then get P = (1.58375, 1.32893). The ellipse arc PR can now be  calculated 
as a portion of an ellipse that has focus F and G and passes through point 
P, where F is symmetrical to G with respect to the vertical axis as shown 
in Figure 2.30.

From the positions of F, G, and P we get K = [F, P] + [G, P] and f = 2c 
and the ellipse is given by

   
 K 2  – f 2

 ___________  
2K – 2f cos φ   (cos φ, sin φ) + F 

 =   10.9899  ____________________  
10.5995 – 8.26977 cos φ   (cos φ – 2.06744, sin φ) (2.36)

for φ1 ≤ φ ≤ φ2, where φ1 = angh(P − F) = 0.349066 rad and φ2 = 
angh(R − F) = 1.22173 rad.

Example 6

Design a DTIRC for an acceptance angle θ = ±10° and a circular entrance 
aperture. The refractive index of the optic is n = 1.5.

GA

x2

�2
�1

d

x1

�
��

�

F

R P

Q

FIGURE 2.30
Arc PR is elliptical with foci F and G. It is parameterized by parameter φ, which is limited by 
the values φ1 and φ2.
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We start by defi ning the circular entrance aperture (refractive 
 surface) between points P1 and P2 and center C = (0, 0) as shown in 
 Figure 2.31. We also consider a unit radius [C, P1] for the entrance 
 aperture as this is just a scale factor. The entrance aperture is then 
parameterized by

 P(φ) =  ( cos (   π __ 2   + φ ) , sin (   π __ 2   + φ )  )  (2.37)

with −φ ≤ φ ≤ φ. We choose angle φ = 50° and get the positions of points 
P1 and P2 as (Figure 2.31):

 P1 =  ( cos (   7π ___ 9   ) , sin (   7π ___ 9   )  )  

 P2 =  ( cos (   2π ___ 9   ) , sin (   2π ___ 9   )  )  
(2.38)

We can now defi ne wave front w perpendicular to the edge rays 
 coming from the left and points W1 and W2 on it. Point W1 is on the ray r1 
through P1 making an angle θ to the vertical. We choose a unit distance 
from P1 to W1 and get

 W1 = (–0.939693, 1.6276) (2.39)

Position of point W2 can now be obtained as

 W2 = isl(W1, vW, P2, v2) = (0.546198, 1.8896) (2.40)
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FIGURE 2.31
DTIRC for an acceptance angle ±θ.
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52 Introduction to Nonimaging Optics

Normal to the receiver entrance aperture at point P1 is  n  P 1   = 
nrm(C – P1) = –P1, and we can refract ray r1 at point P1 and get the 
refracted ray r1* in  direction v1* as

 v1* = rfr(–v2, –P1, 1, n) = (0.416693, –0.909047) (2.41)

Now, the exit aperture size R of the optic is related to the entrance 
 aperture dimension [P1, P2] as

 R = [P1, P2]sin θ/n = 0.177363 (2.42)

Edge point R2 of the exit aperture can now be obtained as

 R2 = isl(P1, v1*, (R/2, 0), e2) = (0.0886815, –1.22186) 

 R1 = (–0.0886815, –1.22186) 
(2.43)

where e2 = (0, 1) and R1 is symmetrical to R2. Edge rays parallel to r1 
must now be concentrated on to point R1 after refraction on the upper 
 surface and refl ection of the side mirror. The optical path length between 
wave front w and point R1 can be obtained from the path of ray r1 that we 
already know as the following:

 S = [W1, P1] + n[P1, R2] + nR = 4.34286 (2.44)

We now take a value for φ of, for example, φ = −10° and get point P on the 
upper refractive surface as P = (0.173648, 0.984808). The  corresponding 
point W on the wave front is given by

 W = isl(W1, vW, P, v2) = (0.0301537, 1.79861) (2.45)

The refracted ray r* at P has direction v* given by

 v* = rfr(–v2, –P, 1, n) = (0.0554755, –0.99846) (2.46)

Finally, point Q on the sidewall can be obtained as

 Q = coptpt(P, v*, R1, n, S – [P, W]) = (0.273056, –0.804356)  (2.47)

By giving different values to angle φ we can calculate different points on 
the sidewall of the concentrator.
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3
Étendue and the Winston–Welford 
Design Method

3.1 Introduction

As light travels through an optical system, it requires area and angular space. 
Figure 3.1 shows a spherical light source SR (e.g., the sun) of radius r emitting 
light into space. As the emitted light expands, it will eventually illuminate 
the inner face of a spherical surface A1 of radius d1. When it reaches the sur-
face, the angular spread of the light is confi ned to angle θ1 defi ned by the 
tangents to SR on the points of A1. This angle θ1 can be obtained from r/d1 = 
sin θ1. The area of the spherical surface A1 is given by A1 = 4π d 1  

2 , or by using 
the expression obtained for sin θ1 we get A1 sin2 θ1 = 4πr2 = AS, where AS is 
the area of the source SR.

We may now compare what happens to the light as it continues to expand 
and illuminates a sphere A2 of a larger radius d2 as shown in Figure 3.2. 
 Similarly to what we did above for A1, we have A2 sin2 θ2 = AS, and thus 
A1 sin2 θ1 = A2 sin2 θ2. As light travels through space further away from 
the source, the area it uses increases, but the angle it uses decreases. This 
 happens in a way that quantity A sin2 θ is conserved.

Now if area A2 separates two media of different refractive indices n1 and n2 
as shown in Figure 3.3, light will refract as it crosses A2. Its angular aperture 
will now change from 2θ2 to 2θ2*, where θ2 and θ2* are related by n1 sin θ2 =
n2 sin θ2* and the light will appear to come from a virtual source SV as it travels 
in the new medium of refractive index n2.

We may therefore write A1 sin2 θ1 = A2 sin2 θ2 = A2( n 2  
2 / n 1  

2 ) sin2 θ2* or  n 1  
2 A1 

sin2 θ1 =  n 2  
2 A2 sin2 θ2* and the quantity n2A sin2 θ is conserved as light travels 

through space. The quantity U = πn2A sin2 θ is called the étendue of the 
radiation crossing area A within a cone of angle ±θ and is conserved in the 
geometry presented earlier.

If the geometry of the system was 2-D, the source SR would be a circle and 
the perimeter of another circle of radius d1 would be a1 = 2πd1, or by using 
the expression obtained earlier for sin θ1 we get a1 sin θ1 = 2πr = aS, where 
aS is the perimeter of the source SR. Similarly, we have a2 sin θ2 = aS, and 
thus a1 sin θ1 = a2 sin θ2. Therefore, as light travels in the plane, the quantity a 
sin θ is conserved. If the light travels through materials of different refractive 
 indices, the conserved quantity is na sin θ. The quantity U2-D = 2na sin θ is 
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56 Introduction to Nonimaging Optics

called the 2-D étendue of the radiation crossing the length a within an angle 
±θ and is conserved in the geometry presented earlier.

In the differential form, the 2-D geometry can be written as dU = n da cos θ 
dθ so that, for the case of a length a illuminated by uniform light confi ned 
between ±θ relative to the vertical (normal to a), we have (Figure 3.4)

 U = na   ∫ −θ  
  θ

   cos θ dθ = 2na sin θ (3.1)

r

2�1

SR

d1

�1

A1

FIGURE 3.1
Angle θ1 and distance d1 are related by r/d1 = sin θ1.

r

A1

2�1

2�2

d1

d2

SR

As

A2

FIGURE 3.2
As the light emitted by a spherical source SR travels through space, the area it illuminates 
increases, but the angular spread of the light diminishes.
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Étendue and the Winston–Welford Design Method 57

In the 3-D geometry, étendue is defi ned as dU = n2 dA cos θ dΩ, where dΩ 
is an element of a solid angle. This expression is derived in the following 
section.

3.2 Conservation of Étendue

A typical application of nonimaging optics is to transfer radiation from a 
source to a receiver by conserving étendue. From this, we can see that éten-
due is a central concept in this fi eld. Conservation of étendue can be derived 
from optical principles (Chapter 14). However, it is also an important concept 

A1

2�1 2�2

n1
n2

SR
SV

A2

2�2

∗

FIGURE 3.3
Light emitted by a spherical source SR travels through space and hits surface A2 that separates 
two media of refractive indices n1 and n2. Refraction changes the angular aperture of the light 
that now appears to come from a spherical virtual source SV.

a

������

FIGURE 3.4
Length a illuminated by uniform light confi ned between ±θ relative to the normal to a.
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58 Introduction to Nonimaging Optics

in other fi elds such as classical (statistical) mechanics (Liouville’s theorem, 
Chapter 14), radiometry and photometry (geometrical extent, Chapter 16), or 
radiation heat transfer (reciprocity relation, Chapter 16).

Here, we present the conservation of étendue from the point of view of 
thermodynamics. This approach has already been used in Chapter 1 when 
calculating the maximum concentration an optic can provide. This proof 
of the conservation of étendue is not rigorous, but it is rather intuitive and 
therefore we use it here. A more rigorous proof can be given in the context of 
Hamiltonian optics (Chapter 14).

We fi rst introduce the concept of radiance that is also presented and dis-
cussed in detail in Chapter 16 (together with luminance for photometric 
quantities). If an area dA emits (or is crossed) by radiation of a fl ux dΦ (energy 
per unit time) at an angle θ to its normal and this fl ux is contained inside a 
solid angle dΩ, we may defi ne a quantity L called radiance by (Figure 3.5a)1–3

 L =   dΦ ___________ 
dA cos θ dΩ   (3.2)

Note that dΦ is a second-order differential because it is proportional to the 
product of dA and dΩ.

If area dA is in a medium of refractive index n, expression 3.2 for the radi-
ance can be rewritten as

 dΦ =   L __ 
n2   n

2 dA cos θ dΩ = L* dU (3.3)

where L* = L/n2 is called the basic radiance and

 dU = n2 dA cos θ dΩ (3.4)

is the étendue.

dA dA

�

�

�

n
n

dΩ

dA cos�

(a) (b)

FIGURE 3.5
Defi nition of radiance.
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The emitted fl ux per solid angle is called intensity and is given by

 I =   dΦ ___ 
dΩ   = L dA cos θ (3.5)

where dA is the area of the emitting surface and angle dΩ is taken in a direc-
tion making an angle θ to the normal n to the surface.

Generally, L may depend on the direction of the light being emitted, but 
an important case is obtained when L is a constant. The intensity is propor-
tional to cos θ, that is, to the projected area in the direction θ, as shown in 
Figure 3.5b. A surface that emits light with this kind of angular distribution 
is called a Lambertian emitter.

We may now calculate the total fl ux emission dΦhem of an area dA immersed 
in a medium of refractive index n over a whole hemisphere by integrating 
expression (3.3) over the solid angle defi ned by that hemisphere. An area dA* 
on the surface of a sphere of radius r defi nes a solid angle dΩ given by

 dΩ =   dA* ____ 
r2   = sin θ dθ dφ (3.6)

as shown in Figure 3.6 in spherical coordinates.
The light emission over a whole hemisphere for area dA is then given by

 dΦhem = L*n2 dA  ∫ 0  
2π

      ∫ 0  
π/2

    cos θ sin θ dθ dφ = πn2 L* dA (3.7)

If area dA is a blackbody emitter at a temperature T, its emission will 
be  Lambertian and the total fl ux (in watts) emitted into the hemisphere is 
given by 4,5

 dΦhem = σ T4 dA (3.8)

r d�

dA*�

r

dA

�

r sin� d�

FIGURE 3.6
Solid angle in spherical coordinates.
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The value of the Stephan–Boltzmann constant σ in a material of refractive 
index n is given by5,6

 σ = n2  2π ___ 15     k4
 ____ 

c0h3   = n2σV (3.9)

where σV = 5.670 × 10−8 Wm−2 K−4 is the value it has in vacuum (n = 1), k 
the Boltzmann constant, h the Planck’s constant, and c0 the speed of light in 
vacuum. From expressions 3.7 through 3.9, we have

 L* =   
σV T4

 _____ π   (3.10)

for the basic radiance of a blackbody emitter at a temperature T. With the 
defi nition of basic radiance L* and its value as a function of temperature, we 
consider a few situations.

Figure 3.7 shows the fi rst of these situations. We have two surfaces dA3 and 
dA4 that are seperated by distance r. The angles their normals n3 and n4 make 
to the direction r are θ3 and θ4. The medium between these surfaces has a 
refractive index n3.

(b)

(a)

r

r

n3

dA4

dA3

n3

n3

n4

n3

n4

�4

�4

�3

�3

dA4

dA3

FIGURE 3.7
First situation: The étendue of the light emitted by dA3 toward dA4 equals that of light emitted 
by dA4 toward dA3.
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If dA3 emits light toward dA4, the étendue of this light is (Figure 3.7a)

 dU34 =  n 3  
2  dA3 cos θ3 dΩ34 =  n 3  

2  dA3 cos θ3   
dA4 cos θ4 _________ 

r2   (3.11)

If dA4 emits light toward dA3 , the étendue of this light is (Figure 3.7b)

 dU43 =  n 3  
2  dA4 cos θ4 dΩ43 =  n 3  

2  dA4 cos θ4   
dA3 cos θ3 _________ 

r2   (3.12)

From  expressions (3.11) and (3.12), we can conclude that

 dU34 = dU43 (3.13)

We now consider a second situation as shown in Figure 3.8. Now we con-
sider that the system is in equilibrium so that the radiation fl ux dΦ34 that dA3 
emits toward dA4 equals fl ux dΦ43 that dA4 emits toward dA3.

From dΦ34 = dΦ43 and expressions 3.3 and 3.13 we have

 L3* = L4* (3.14)

where  L 3  *  is the basic radiance at dA3 of the light emitted from dA3 toward dA4 
and  L 4  *  the basic radiance at dA4 of the light emitted from dA4 toward dA3.

We now consider a third situation as shown in Figure 3.9. Now dA3 is a 
blackbody at a temperature T3 emitting light into a medium of refractive 
index n3.

Between areas dA4 and dA5 we have an optic OP that redirects the light 
it receives from dA3 toward dA5. We consider dA5 as another blackbody 
at a temperature T5. The temperature T5 of dA5 depends on the radiation 
exchange with source dA3. The blackbody dA5 also emits light due to its tem-
perature, and we consider that the optic between dA5 and dA4 redirects this 
light toward dA3.

The second principle of thermodynamics states that a process whose only 
result is to transfer heat from one body to another at a higher temperature 

dA3

dA4

n3

r

FIGURE 3.8
Second situation: At equilibrium, the basic radiance of the light emitted by dA3 toward dA4 
equals that of the light emitted by dA4 toward dA3.
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62 Introduction to Nonimaging Optics

is not possible (postulate of Clausius).7–9 The second principle of thermo-
dynamics then sets a maximum for the temperature of dA5 equal to that of 
dA3, that is, T5max = T3. Therefore, it also sets a maximum for the basic radi-
ance  L 5  *  at dA5 since temperature and basic radiance are related by Equation 
3.10. In the limit case where we have a system in equilibrium at T5 = T3, we 
also have  L 5  *  =  L 3  *  and from expression 3.14 we get

  L 3  *  =  L 4  *  =  L 5  *  (3.15)

We fi nally consider a fourth situation as shown in Figure 3.10.10 Now 
we have a blackbody dA1 at a temperature T1 in a medium of refractive 
index n2. It emits light that travels in the medium of refractive index n2 until 
it is captured by an area dA2 at the entrance aperture of an optic between 
dA2 and dA3. After crossing the optic, this light travels between dA3 and dA4 
in a medium of refractive index n3 and is redirected to a blackbody dA5 by 
another optic OP .

Using the same argument as for the second situation, we can conclude that  
L 1  *  =  L 2  * . Also in this case, the second principle of thermodynamics sets a 

OP

T3

T5

n3

dA5
dA4

dA3

FIGURE 3.9
Third situation: A blackbody dA3 at a temperature T3 emits light toward the entrance aperture 
dA4 of an optic OP. The optic redirects this light to another blackbody dA5. The maximum tem-
perature dA5 can attain is T3.

Optic

dA3dA2

dA1

dA4
dA5

n2

n3
T5

T1

OP

FIGURE 3.10
Fourth situation: A blackbody dA1 at a temperature T1 emits light that enters an optic through 
an area dA2. This same light exits the optic through dA3 toward dA4 and is redirected toward 
dA5 by an optic OP. At thermal equilibrium, T5 = T1.
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maximum temperature T5 = T1 for the blackbody dA5. We then have  L 1  *  =  L 5  * . 
From Equation 3.15, we then get

  L 1  *  =  L 2  *  =  L 3  *  =  L 4  *  =  L 5  *  (3.16)

and the basic radiance is conserved through the system.
In equilibrium, the fl ux dΦ12 that dA1 emits toward dA2 is the same as dΦ21 

that dA2 emits toward dA1, that is, dΦ12 = dΦ21. The optic between dA2 and 
dA3 receives at dA2 a fl ux dΦ12 from dA1 given by dΦ12 =  L 2  *  dU21. Also, the 
fl ux that exit the optic through dA3 toward dA4 is given by dΦ34 =  L 3  *  dU34. If 
the fl ux is conserved, that is, dΦ12 = dΦ34 and since the basic radiance is also 
conserved through the optic  (  L 2  *  =  L 3  *  ) , the étendue is also conserved through 
the optic, and we have

 dU21 = dU34 (3.17)

which states that the étendue of the light entering the optic at dA2 equals that 
of the light exiting the optic at dA3.

3.3 Nonideal Optical Systems

We have seen that étendue and basic radiance are conserved in optical sys-
tems. This, however, is only true in “perfect” optical systems. We now give a 
few examples of “imperfect” optics in which étendue may be lost or increased 
or basic radiance may decrease.

Referring to the system in Figure 3.10, the second principle of thermody-
namics states that the temperature T5 of dA5 cannot be higher than T1 of the 
source dA1. If the optic between dA2 and dA3 would decrease the basic radi-
ance, then  L 3  *  <  L 2  *  =  L 1  *  and T5 < T1. This does not violate the second principle 
and the basic radiance may decrease as the light passes through an optic.11 
The basic radiance then either is conserved or decreases. We may then con-
clude that the second principle of thermodynamics implies that an optic that 
increases basic radiance is not possible.

From dΦ = L* dU, we can see that if the system conserves the fl ux dΦ but 
reduces the basic radiance L*, then the étendue must increase. Note that éten-
due cannot decrease without losing fl ux since, for a constant fl ux, a lower 
étendue would mean a higher basic radiance and this is not possible.

We now consider a few situations of “nonideal” optical systems. In an optical 
system where the radiance L is conserved (no variations in refractive index), 
we may lose étendue if we lose fl ux. From the expression Φ = LU (the case in 
which n = 1), if a part of the fl ux Φ is lost, this means a part of the étendue 
U is also lost. One such possibility is shown in Figure 3.11, where we have a 
set of fl ashlights emitting light with angular aperture α toward a box with a 
hole EF on its side. When entering the box, part of the light is shaded by the 

CRC_54295_CH003.indd   63CRC_54295_CH003.indd   63 4/3/2008   9:31:14 AM4/3/2008   9:31:14 AM



64 Introduction to Nonimaging Optics

walls and only a part of it passes through the hole. The étendue of the light 
entering the box is reduced because there is loss of light.

There are also situations in which the basic radiance may decrease. An 
example is when absorption of light takes place as it travels through a mate-
rial as shown in Figure 3.12.

In this example, we have light with an angular aperture 2α entering a 
space between two parallel mirrors M1 and M2. At the other side, the area 
and angular aperture of light are still the same and therefore étendue is also 
the same. If, however, the material is absorptive, the light fl ux decreases and 
from Φ = L* U we can see that the basic radiance also decreases.

There are situations in which the étendue of the light in an optical system 
may increase. An example is when light hits a diffuser. The angular aper-
ture increases and therefore the area–angle (étendue) also increases. Figure 
3.13 shows the effect of placing a diffuser at the entrance aperture of a box 
whose interior is to be illuminated using a fl ashlight. The diffuser increases 
the angular spread of the light from α to γ without changing the area EF and 
therefore increases the étendue. We cannot, however, “undiffuse” the light 

F

�

E

BoxFlashlights

FIGURE 3.11
When there is a loss of light in a system that conserves radiance, part of the étendue is also lost.

2�

M2

M1

2�

FIGURE 3.12
Light traveling in an absorptive optical system loses fl ux and the radiance decreases.
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once it has been diffused. This means that the étendue of light can be lost or 
increased, but not decreased, as we have seen earlier.

The diffuser in Figure 3.13 also decreases the basic radiance because the 
light fl ux is assumed to be conserved and the étendue is increased.

We have now seen that an optic can conserve the basic radiance (in an 
ideal system) or decrease it (e.g., if the optical system is absorptive), but 
cannot increase it. The opposite happens with étendue: an optic can con-
serve it or increase it, but not decrease it. Étendue can, however, be lost by 
losing light.

3.4 Étendue as a Geometrical Quantity

We can now give a further insight into the physical meaning of  étendue. 
We shall fi rst consider the case in which n = 1. Étendue is given by 
dU = dA cos θ dΩ and it is purely a geometrical quantity as we can see 
from Figure 3.14.

When light passes through an area dA, it requires “room.” This space has 
two components: “spatial room” measured by the area and “angular room” 
measured by the solid angle. However, if light crosses the area dA in a direc-
tion θ to its normal, then it “sees” only the projected area dA cos θ as the 
available area for it to pass through. Therefore, the étendue is the product 
of the available spatial room dA cos θ and the angular room dΩ defi ned by 
the solid angle.

Conservation of étendue then tells us that the product of projected area 
and solid angle is constant. This means that if the area available for the light 
is increased, the solid angle decreases. But if the area decreases, the solid 
angle must increase so that étendue remains constant. For example, imagine 

�

Diffuser

�

E

F

Box

Flashlight

FIGURE 3.13
The étendue may be increased by diffusing the light, but once it has increased, it cannot be 
decreased. There is no “undiffuser” to undo what the diffuser has done.
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we need to illuminate the interior of a box with the light of three fl ashlights. 
These fl ashlights emit a beam of light with an angular aperture α. We may 
open a large hole AB on the side of the box and send the light through it as 
in the case of Figure 3.15. In this case, the light the box receives has a small 
angular aperture α but is spread out over a large area AB.

An alternative way of illuminating the interior of the box is to open a 
smaller hole CD, tilt some of the fl ashlights, and make the light to pass 
through this smaller aperture as shown in Figure 3.16. In this case, however, 

dΩ

dA

 �

dA cos �

FIGURE 3.14
The étendue is a geometrical quantity that measures the amount of “room” available for the 
light to pass through.

B

A

Flashlights Box

�

FIGURE 3.15
The interior of a box is illuminated using three parallel fl ashlights. The hole AB on the  side of 
the box is large, but the light has a small angular spread α.
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the angular aperture of the light entering the box is larger as indicated by 
the angle β.

To illuminate the interior of the box we have two options: (a) either the area 
of the hole is large and the angle of the light is small or (b) the area is small, 
but the angle of the light is large. It is as if the light needed “space” to move 
through. Either we give it some area (physical space) for it to pass through 
or, if we diminish the area, we must give it angular space. This area–angle 
conservancy is the conservation of étendue. If the area diminishes, the angle 
increases and if the area increases, the angle diminishes.

We now consider the case in which n ≠ 1. In a medium of refractive index 
n, we can “fi t” n2 times more light than in air (n = 1) (see expression 3.9) and 
that also “adds” to the room available for the light, which is now dU = n2 dA 
cos θ dΩ.

This is shown in Figure 3.17. Diffuse light traveling inside a medium of 
refractive index n refracts into a medium of refractive index n = 1 (air). The 
light contained inside the critical angle ±αC refracts into air and occupies 
all the angular space available, spreading out to an angle of ±π/2. Bundle 
b1  outside the critical angle suffers total internal refl ection and continues 
in medium n as bundle b2. The same happens to another bundle b2 com-
ing in the reverse direction and hitting the interface. It suffers total internal 
refl ection and continues inside the material as bundle b1. This means that 
the room for the light in air is smaller and, therefore, some light traveling in 
the medium of index n does not “fi t” and is “rejected” (suffers total internal 
refl ection at the interface).

We now reverse the direction of light and consider that the diffuse light 
is coming from air (n = 1) into the medium of refractive index n. We can see 
that, as it refracts into the medium, this light is confi ned to the critical angle 
and, therefore, does not use all the angular space available.

As light travels through an optical system, if the amount of light does not 
change (the fl ux is constant) the room it needs to progress (étendue) is also 

BoxFlashlights

C

D

�

FIGURE 3.16
The interior of a box is illuminated using three converging fl ashlights. The hole CD on the side 
of the box is small, but the light has a large angular spread β.
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constant. This is the basis of radiation concentration. We can reduce the area 
that the light passes through as long as we increase the solid angle so that the 
available room for the light to pass through remains constant.

Also, the basic radiance given by expression 3.3 can be written as L* = 
dΦ/dU and it measures the amount of light fl ux per unit available room for 
the light. It is, therefore, a measure of the light “density.”

3.5 Two-Dimensional Systems

Suppose we have a 2-D system with a Lambertian light source SR illuminat-
ing a curve c(σ) as shown in Figure 3.18. At each point P of the curve, the light 
is confi ned between edge rays rA and rB tangent to the source.

Edge rays rA and rB are perpendicular to wave fronts wA and wB. We may 
then think of a curve c(σ) as being illuminated by light whose edge rays 
are perpendicular to the two given wave fronts wA and wB as shown in 
Figure 3.19. This is a more general situation than that of Figure 3.18, as now 
the radiation fi eld at c(σ) does not necessarily come from a Lambertian light 
source.

Yet another way to look at this situation is as shown in Figure 3.20. Here 
we only consider the curve c(σ) and the direction of the edge rays rA and rB 
at each point P.

�C �C

b1
b2

n

n =1

FIGURE 3.17
In a medium of refractive index n, we can have more light than in a medium of refractive index 
n = 1.
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c(�)

P
rA

rB

wA

wB

SR

FIGURE 3.18
Light emitted by a source SR crossing a curve c(σ).

wB

wA

rB

rA

c(�)

P

FIGURE 3.19
Light whose edge rays are perpendicular to wave fronts wA and wB crossing a curve c(σ).
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70 Introduction to Nonimaging Optics

In all the cases, we have a given angular distribution of light on the curve 
c(σ) and this light has some étendue.

3.6 Étendue as an Integral of the Optical Momentum

Étendue is often used in nonimaging optics in a different form. Instead of 
being defi ned in terms of a general area dA, it is defi ned in terms of an area 
dx1dx2 in the x1x2 plane and instead of the solid angle dΩ, it is defi ned in 
terms of another quantity called optical momentum. The optical momentum 
is a vector defi ned at each point on the path of a ray. It has as its magnitude 
the refractive index of the medium at that point and the same direction as 
the light ray at that point. It is tangential to the light ray at each point. This 
quantity is defi ned and presented in detail in Chapter 11. Figure 3.21 shows 
a light ray traveling in a medium of constant refractive index (straight path) 
and then entering a medium of varying refractive index (curved path), and 
the optical momentum vector p for two points of this light ray.

Vector p can be obtained in terms of its components from the geometry 
shown in Figure 3.22 and can therefore be written as

 p = (p1, p2, p3) = (n cos θ1, n cos θ2, n cos θ3)
 = n(sin θ3  cos φ, sin θ3  sin φ, cos θ3) (3.18)

where θ1, θ2, and θ3 are the angles that p makes to the x1, x2, and x3 axes, 
respectively, and �p� = n. Angle φ is the angle the projection of p onto the x1x2 
plane makes with the x1 axis.

rA

rB
c(�)

P

FIGURE 3.20
Light confi ned between edge rays rA and rB crossing a curve c(σ).
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x2

x1

p

p

Light
ray

FIGURE 3.21
Optical momentum.

�2

�3

�1

= n
pp

p2

p3

p1

x2

x3

x1
�

FIGURE 3.22
The momentum of a ray can be obtained in spherical coordinates.
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72 Introduction to Nonimaging Optics

As defi ned earlier, p1, p2, and p3 are the x1, x2, and x3 components of vector p 
given by expression 3.18 and therefore dp1dp2 can be written as

 dp1dp2 =   
∂(p1, p2) _______ ∂(θ3, φ)

   dθ3dφ =  (   ∂p1 ___ ∂θ3
     
∂p2 ___ ∂φ   −   

∂p1 ___ ∂φ     
∂p2 ___ ∂θ3

   )  dθ3dφ

 = n2 cos θ3 sin θ3 dθ3 dφ = n2 cos θ3 dΩ (3.19)

where dΩ is the solid angle as seen from Figure 3.6 in the particular case in 
which the normal to an area dA is in the direction of axis x3. We can then write

 dU = n2 dx1dx2 cos θ3 dΩ = dx1dx2dp1dp2 (3.20)

for the case in which the area dA is in the plane x1x2 and is given by dA = 
dx1dx2 as in Figure 3.23.

We now analyze the 2-D case. Expression 3.4 simplifi es in this case to

 dU2-D = nda cos θ dθ (3.21)

where da is an infi nitesimal length and θ the angle to the normal to da. This 
situation in 2-D geometry is shown in Figure 3.24a for the particular case in 
which da = dx1 is on the x1 axis and therefore the normal to da is along the 
x2 axis. The expression 3.21 for the étendue in this case is given by

 dU2-D = ndx1 cos θ2 dθ2 (3.22)

�2

�3

�1

x1

dx2

dx1 x2

x3

n

dΩ

FIGURE 3.23
Étendue for the case in which dA = dx1dx2.
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In this particular case, the small length dx1 is immersed in a medium of 
refractive index n and crossed by radiation confi ned to a small angle dθ2 
making an angle θ2 to the normal to dx1.

The optical momentum p in two dimensions is a vector with two compo-
nents that is given by

 p = (p1, p2) = n(cos θ1, cos θ2) (3.23)

as shown in Figure 3.24b, where it is shown touching a circle of radius equal 
to the refractive index n at dx1.

Expression 3.22 for the étendue can now be written as a function of the 
2-D optical momentum. Referring to Figure 3.25a for the case in which p2 > 0 

�2

�2

�1

d�2

dx1

dx1

x1

x2

x1

x2

p1

p2

n

n

n

p

−n

−n

(a) (b)

FIGURE 3.24
Étendue in two dimensions.

�2

�2

�2

n d�2

�1

d�2

d�2

n d�2

−dp1

dp1

x1 x1

n

n n

x2 x2
n

−n

−n −n

−n

(a) (b)

� −�2

FIGURE 3.25
Étendue in two dimensions as a function of the optical momentum component p1.
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74 Introduction to Nonimaging Optics

(since cos θ2 > 0), we see that (ndθ2)cos θ2 = −dp1 because p1 decreases as 
θ2 increases. The result n cos θ2 dθ2 = −dp1 also holds true for the case in 
Figure 3.25b in which p2 < 0 (since cos θ2 < 0).

We can then write

 dU2-D = ndx1 cos θ2 dθ2 = −dx1dp1 (3.24)

If at point (x, 0), radiation is confi ned between pA and pB, the infi nitesimal 
étendue through dx1 is

 dU = −dx1  ∫ pA
  

pB
   dp1 = −dx1(pB1 − pA1) = (pA − pB) . dx1 (3.25)

where dx1 points in the direction of the positive x1 axis and  �dx1�  = dx1 as 
shown in Figure 3.26a.

In the more general case in which light crosses a curve c parameterized by 
c(σ) for σ1 < σ < σ2, we have the situation shown in Figure 3.26b. This situa-
tion is same as that presented in Figure 3.20. Now the étendue is

 U =   ∫ σ1
  

σ2

  (pA − pB) ⋅ dc =   ∫ σ1
  

σ2

 (pA − pB) ⋅   dc ___ 
dσ

   dσ  (3.26)

calculated along the curve.
Another way to calculate the étendue is by rewriting expression 3.26 as

 U =   ∫ c  
 
  n(tA − tB) ⋅ dc =   ∫ c  

 
  ntA ⋅ dc −   ∫ c  

 
   ntB ⋅ dc (3.27)

where  �tA�  =  �tB�  = 1. This now enables us to calculate the étendue as a func-
tion of the angles θA and θB that the edge rays make to the normal n to the 
curve c at each point as shown in Figure 3.27a.

We have
 tA ⋅ dc = −sin θA dc 

 tB ⋅ dc = −sin θB dc 
(3.28)

dx1 dc

c(�)

c(�2)

c(�1)

pB1 pA1 x1

x1

x2 x2

n
n

(a) (b)

x

pB
pB

pA

pA

FIGURE 3.26
Étendue of the light (a) at an infi nitesimal length dx1 on the x1 axis and (b) through an infi ni-
tesimal portion of a curve parameterized by c(σ).
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where dc = ��dc��. From expression 3.27 we then have

   U =   ∫ c      n  sin θB dc −   ∫ c      n sin θA dc 

  =   
  ∫ c      n  sin θB dc

  ___________ 
  ∫ c      dc

     ∫ c      dc −   
  ∫ c  
 

    n sinθA dc
  ___________ 

  ∫ c  
 

    dc  
    ∫ c      dc

  =  〈 n sin θB 〉  a −  〈 n sin θA 〉  a (3.29)

where  〈  〉  denotes the average and a is the length of the curve c. If the refrac-
tive index n does not vary along the curve we have

 U = n [ 〈 sin θB 〉  −  〈 sin θA 〉 ]  a (3.30)

If θA = constant and θB = constant on the curve c, then

 U = na(sin θB − sin θA) (3.31)

Finally, in the particular case shown in Figure 3.27b in which θB = θ and 
θA = −θ for all the points of the curve c, we get

 U = 2na sin θ (3.32)

which is the expression for the 2-D étendue given earlier.

3.7 Étendue as a Volume in Phase Space

Let us suppose that we have light crossing the x1 axis in the direction of x2 
positive. Figure 3.28 shows one of those light rays on the left. It crosses the 
x1 axis at position (x, 0) and has a direction defi ned by an optical momentum p. 
The refractive index on the x1 axis is n.

The optical momentum has components p = (p, q) in space (p1, p2) as shown 
in Figure 3.28 (center). Since we know that the light is propagating toward 

�A

−���B

cc

tA

tA

tB
tB

(b)(a)

n n

dc

FIGURE 3.27
(a) Edge rays of the radiation crossing curve c make angles θA and θB to the normal n to the 
curve. (b) Shows the particular case in which θA = −θ and θB = θ.
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76 Introduction to Nonimaging Optics

positive x2 and ��p�� = n, we have p2 + q2 = n2 with q > 0. Coordinate q of the 
optical momentum can then be obtained as a function of p as

 q =   √ 
_______

 n2 − p2   (3.33)

Note that from Figure 3.28 (center) we can also see that p is a vector from 
the origin to the semicircle of radius n centered at the origin and above the 
x1 axis. Specifying the value of p fully defi nes (p, q) and therefore the vector p 
and the direction of the light ray.

Therefore, the p1 coordinate of the vector p, given by p, is enough to defi ne 
the direction of propagation of the light ray r at point (x, 0). This light ray 
at position (x, 0) can then be defi ned by a point R = (x, p) in space (x1, p1) as 
shown on the right of Figure 3.28. This space (x1, p1) is called phase space and 
a point R on it defi nes the position and direction of a light ray in a medium 
of refractive index n.

Let us now suppose that we have radiation contained between edge rays 
rA and rB at a point (x, 0) immersed in a medium of refractive index n at that 
point, as shown in Figure 3.29a. These rays have optical momentums pA(x) 
and pB(x) whose x1 components are pA1(x) and pB1(x) as shown in Figure 3.29b. 
When represented in phase space (x1, p1), these two light rays correspond to two 
points RA and RB as shown in Figure 3.29c. The rays passing through (x, 0) with 
intermediate directions (contained between rA and rB) will be represented 
in phase space at the same horizontal position x, but with p1 values ranging 
from pB1(x) to pA1(x) as shown in Figure 3.29c. These rays are presented as a 
vertical line in phase space from point RB to point RA.

Let us now consider a line extending on the x1 axis from xm to xM crossed 
by radiation with variable extreme directions from point to point. We have a 
 situation similar to the one presented in Figure 3.30. For each value of x1 (e.g., 
x1 = x), the radiation is contained between the rays with momentum vectors 
pA(x1) and pB(x1), which have p1 components pA1(x1) and pB1(x1) as shown in 
Figure 3.30b. The set of all the edge rays is therefore represented in phase space 
by a line ∂R passing through the points (x1, pA1(x1)) and (x1, pB1(x1)). The zone R 
enclosed by this line represents all the light rays crossing the line xmxM.

p1p

p
q

x1

x2 p2

p1

n

n

n

r

p p
R

x x1x

FIGURE 3.28
A light ray crossing the x1 axis toward x2 positive can be defi ned by a point R in phase 
space x1p1.
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p2

p1

p1

x2

x1

x1

n

n

x

rB rA

pB (x )

pA1(x )

pA1(x )

pB1(x )

pB1(x )

−n

−n
(a) (b)

(c)

RA

RB

x

pA(x )

pA(x )
pB(x )

FIGURE 3.29
(a) Radiation contained between edge rays rA and rB crossing at point (x, 0). (b) The two edge 
rays rA and rB have x1 components of the momentum vector given by pA1 and pB1 and are repre-
sented in phase space as two points RA and RB (c). All the rays crossing at point (x, 0) contained 
between rA and rB are represented by a vertical line between RA and RB.

p1

xm xM

xm

x

xM

x2

x1

x1

pA1(x )

pB1(x)

(a) (b)

R

∂R

x

dx1

dU

pA(x)pB(x)pA
pB

FIGURE 3.30
(a) Radiation crossing line xmxM with variable extreme directions. For each value of x1, the opti-
cal momentum p has x1 components ranging from pB1(x1) to pA1(x1). (b) The zone R represents all 
the light rays crossing xmxM and ∂R represents the edge rays of that radiation. The area inside 
∂R corresponds to the étendue of that radiation.
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78 Introduction to Nonimaging Optics

The étendue of the light crossing xmxM is given by

 U = − ∫          ∫         dp1dx1 = −  ∫ xm
  

xM

   (   ∫ rA
  

rB

  dp1 )  dx1 =   ∫ xm
  

xM 
   [pA1(x1) − pB1(x1)]  dx1 (3.34)

where

 dU =  [pA1(x1) − pB1(x1)]  dx1 (3.35)

is the area of a vertical stripe of thickness dx1 from pB1(x1) to pA1(x1) as shown in 
Figure 3.30b for the particular case of x1 = x. Therefore, U = −∫∫dp1dx1 gives us 
the area of zone R in phase space. It can therefore be concluded that the étendue 
of the radiation crossing xmxM is given by the area of zone R in phase space 
enclosed by ∂R. Note that expression 3.35 is the same as expression 3.25.

3.8 Étendue as a Difference in Optical Path Length

We start with a general situation that we later apply to the calculation of 
étendue. We have one set of rays and the corresponding perpendicular wave 
fronts as in Figure 3.31. We also suppose that if we integrate the optical path 
length along any of the light rays from a reference wave front w to wave front 
w1, we get S = s1 and S = s2 if we integrate from w to w2.

For the particular case, for example, of ray r, this means that

   ∫ w  
w1

  n ds = s1 and   ∫ w  
w2

   n ds = s2 (3.36)

where the integral is taken along r from point W to points W1 and W2.
We now consider the following integral along a curve c:

   ∫ c      nt ⋅ dc (3.37)

where this curve c extends from point P1 to point P2 as shown in Figure 3.32a. 
Unit vector t has ��t�� = 1 and is tangent to the light ray and perpendicular to 
the wave fronts, as shown in Figure 3.32b.

From Figure 3.32 we can see that nt ⋅ dc = dS, where dS is an increment in 
the optical path length and therefore (see Chapter 11)

   ∫ c      nt ⋅ dc =   ∫ P1
  

P2
  nt ⋅ dc = s2 − s1 (3.38)

We now apply this general result to the calculation of étendue. We consider 
the case in which the edge rays of the radiation are perpendicular to the two 
wave fronts as shown in Figure 3.19. Here we consider the general case of a 
variable refractive index in which the light rays are curved.
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Light rays W1
W2

ds
n

rW
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w1

w2

S = s1

S = s2

FIGURE 3.31
Light rays perpendicular to the corresponding wave fronts. 
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dc

S + dS
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c

t

P

P

P2

P1

Light
rays

Light
rays

Wave fronts

Wave fronts

FIGURE 3.32
Integrating nt ⋅ dc along a curve c from P1 to P2, we get the difference in the optical path length 
between P1 and P2, which is s2 − s1. At each point P along the curve c, t ⋅ dc is the projection of 
dc in the direction of t and therefore nt ⋅ dc = dS, where dS is an infi nitesimal increment in the 
optical path length. (b) Shows a detailed  (a) at point P.
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80 Introduction to Nonimaging Optics

We have seen in expression 3.27 that the étendue of the light crossing a 
curve c parameterized by c(σ) whose edge rays have extreme directions given 
by unit vectors tA and tB at each point on the curve can be calculated by

 U =   ∫ c      ntA ⋅ dc −   ∫ c      ntB ⋅ dc (3.39)

The étendue is then obtained by subtracting two integrals such as the one in 
expression 3.38. The fi rst integral is relative to one set of edge rays and the 
second to the other set. Figure 3.33 shows a curve c illuminated by radiation 
confi ned between edge rays rA and rB, similar to that in Figure 3.19.

We now defi ne an optical path length function SA(P) for the bundle of rays 
rA that, for each point P, gives us the optical path length from a wave front wA 
to point P. For example, wave fronts wA1 and wA2 are those through points P1 
and P2 of the curve c. If point P is on wave front wA1, then SA(P) = sA1 and if 
point P is on wave front wA2, then SA(P) = sA2. For example, SA(P1) = sA1 and 
SA(P2) = sA2.

wB1

wA2

wB2

wB

wA1

wA

rA

rB

rB

rA

rB

rA

c

P

G1

P1

P2

G2

F2

F1

FIGURE 3.33
Radiation confi ned between two bundles of edge rays rA and rB crossing a curve c.
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We defi ne the corresponding optical path length function SB(P) for the bun-
dle of rays rB that, for each point P, gives us the optical path length from a wave 
front wB to P. For example, wave fronts wB1 and wB2 are those through points 
P1 and P2 of the curve c. If point P is on wave front wB1, then SB(P) = sB1 and 
if point P is on wave front wB2, then SB(P) = sB2. For example, SB(P1) = sB1 and 
SB(P2) = sB2.

From expressions 3.38 and 3.39 we obtain

 U =   ∫ c      ntA ⋅ dc −   ∫ c      ntB ⋅ dc =   ∫ P1
  

P2
  ntA ⋅ dc −   ∫ P1

  
P2

  ntB ⋅ dc 

 =   ∫ P1
  

P2
  ntA  ⋅ dc +   ∫   P2

  
P1

  ntB ⋅ dc = (sA2 − sA1) + (sB1 − sB2) (3.40)

Taking the two rays rA passing through F1P1 and F2P2 and the two rays rB 
passing through G2P1 and G1P2, we can write12,13

 U = ([[F2, P2]] − [[F1, P1]]) + ([[G2, P1]] − [[G1, P2]]) 

 = [[F2, P2]] + [[G2, P1]] − [[F1, P1]] − [[G1, P2]] (3.41)

where [[A, B]] is the optical path length between A and B. We can also write

 U = ([[F2, P2]] − [[G1, P2]]) − ([[F1, P1]] − [[G2, P1]]) 

 =  [SA(P2) − SB(P2)]  −  [SA(P1) − SB(P1)]  (3.42)

Defi ning

 G =     
(SA − SB)

 _________ 2   (3.43)

we can conclude that the étendue of the light “passing” between the two 
points P1 and P2 of the plane is given by

 U = 2(G(P2) − G(P1)) (3.44)

Note that if P2 = P1 + (dx1, dx2), we have

 G(P2) = G(P1) +  (   ∂G ___ ∂x1
  dx1 +   ∂G ___ ∂x2

  dx2 )  = G(P1) + dG (3.45)

and therefore G(P2) − G(P1) = dG. In this case, the étendue of the radiation 
passing between P1 and P2 is dU and we can write

 dU = 2dG (3.46)
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82 Introduction to Nonimaging Optics

which gives us the étendue as a function of difference in the optical path 
lengths.

We can now apply the general results obtained to some particular cases. 
Let us then suppose, for example, that the rays of light perpendicular to wave 
front wA come from a point F and that the rays of light perpendicular to wB 
come from a point G. This situation is presented in Figure 3.34a.

In this case, the étendue arriving at P1P2 coming from GF is given by 
expression 3.41 obtained earlier. We can write

 [[G2, P1]] − [[G1, P2]]  =  [[G, G2]] + [[G2, P1]] − ([[G, G1]] + [[G1, P2]])

 =  [[G, P1]] − [[G, P2]] (3.47)

since [[G, G2]] = [[G, G1]]. Acting accordingly for [[F2, P2]] − [[F1, P1]], we get

 U = [[F, P2]] + [[G, P1]] − [[F, P1]] − [[G, P2]] (3.48)

If the horizontal dashed line is an axis of symmetry for the system, expres-
sion 3.48 simplifi es to

 U = 2([[F, P2]] − [[F, P1]]) = 2(SA(P2) − SA(P1)) (3.49)

Given the symmetry of the optical system, we can write SA(P1) = SB(P2) and 
therefore

 U = 2(SA(P2) − SB(P2)) = 4G(P2) (3.50)

wA wA

wB wB

F

G
G

G1

P1 P1

P2
P2

G2 G2

G1

F2
F2

F1F1

(a) (b)

F

FIGURE 3.34
Calculation of the étendue from a line FG to another one P1P2 in the case of a medium (a) having 
a variable refractive index from point to point and (b) having a constant refractive index.
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The étendue is then given by a difference in the optical path lengths.13 In the 
particular case of having a medium of refractive index n = 1, the optical path 
lengths coincide with the distances between the points. Therefore, for the 
case presented in Figure 3.34b, the étendue arriving at P1P2 coming from the 
source FG is given by the preceding expressions, but where the optical path 
length [[X, Y]] between points X and Y can be replaced by the distance [X, Y] 
between those same points.

3.9 Flow Lines

Let us consider that we have two wave fronts, wA and wB, propagating through 
an optical system. After propagation, wA1 is transformed to wA2 and wB1 to wB2 
as shown in Figure 3.35.

The optical path length between wA1 and wA2 is constant and equals, for 
example, SA1A2. Accordingly, the optical path length between wB1 and wB2 is 
constant and has a value of SB1B2. Now if we consider a point P between the 

SA2

SB1

wB1wA1

SA1

SB2

wA2wB2

m

P

FIGURE 3.35
The wave front wA1 propagates through an optical system becoming wA2 and wB1 also propa-
gates to become wB2. It is possible to place a mirror m (mirrored on both sides) refl ecting wA1 to 
wB2 and wB1 to wA2 when this mirror bisects at each point the rays coming from wA1 and wB1. The 
points of this mirror belong to a line of constant G.
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84 Introduction to Nonimaging Optics

wave fronts, and if SA1, SB1, SA2, and SB2 are the optical path lengths between 
P and wA1, wB1, wA2, and wB2, respectively, we can write

 SA1 + SA2 = SA1A2 

 SB1 + SB2 = SB1B2 
(3.51)

Now consider a mirror m (mirrored on both sides) placed between the 
wave fronts and shaped so that it refl ects the light rays coming from wA1 to 
wB2 and the rays coming from wB1 to wA2. This can be accomplished if the 
mirror bisects at each point the rays coming from wA1 and wB1. Now wA1 is 
refl ected to wB2 and wB1 to wA2. Therefore, after placing the mirror m, the opti-
cal path length between wA1 and wB2 is now constant and equals, for example, 
SA1B2 and is also constant between wB1 and wA2 having a value of SB1A2. We 
can then write for the rays refl ected at mirror m as follows:

 SA1 + SB2 = SA1B2 

 SB1 + SA2 = SB1A2 
(3.52)

These expressions can be used to obtain the shape of the mirror m. It is cal-
culated by imposing constant optical path length between wA1 and wB2. 
Alternatively, it can also be calculated by imposing constant optical path 
length between wB1 and wA2.

Combining the preceding equations, we also get for the points on mirror m:

 SA1 − SB1 = SA1 + SA2 − (SB1 + SA2) = SA1A2 − SB1A2 = SA1B1 (3.53)

where SA1B1 is a constant. Accordingly, and also for the points on mirror m:

 SA2 − SB2 = SA2 + SB1 − (SB2 + SB1) = SB1A2 − SB1B2 = SA2B2 (3.54)

where SA2B2 is also a constant. It can then be concluded that the points of 
mirror m are those for which SA1 − SB1 = constant (or SA2 − SB2 = constant). 
Therefore, this mirror is a line of constant G. The lines G = constant then 
bisect, at each point, the rays coming from wA1 and wB1. They also bisect 
the rays going to wA2 and wB2 since these rays are the same rays coming 
from wA1 and wB1. Straight or not, such lines of constant G are generally 
known as fl ow lines.

Now consider the particular case in which the two sets of edge rays come 
from the edges of a fl at source, as shown in Figure 3.36. At a given point Q, 
light is confi ned between two edge rays making an angle α between them. 
As point Q moves closer to AB, angle α increases. It has a maximum of α = π 
for the points of AB. At the line AB, radiation is then fully Lambertian and 
confi ned between directions that make angles ±π/2 to its normal. The lines 
of constant G are now hyperbolas. Figure 3.36 shows a Lambertian source 
AB and a fl ow line (line of constant G). Since for each point P on a hyperbola 

CRC_54295_CH003.indd   84CRC_54295_CH003.indd   84 4/3/2008   9:31:23 AM4/3/2008   9:31:23 AM



Étendue and the Winston–Welford Design Method 85

with foci A and B, we have [P, A] − [P, B] = constant, we can conclude that 
this hyperbola is a fl ow line. Wave fronts wA and wB are in this case circles 
centered at A and B, respectively. Figure 3.36 shows wave front wA at posi-
tions wA1 and wA2 and wave front wB at positions wB1 and wB2. Since the radia-
tion is fully Lambertian at AB making angles ±π/2 to its normal, both wave 
fronts wA1 and wB1 and the fl ow lines that touch AB are perpendicular to AB 
when they reach it.

We now place a mirror (mirrored on both sides) along the fl ow line through 
a point P. Before introducing this mirror, light at point P is confi ned between 
edge rays r1 and r2, as shown in Figure 3.37a. After placing the mirror, we 
have the situation in Figure 3.37b in which the bundle of rays is now split 
into two.

The incoming bundle is divided into b1 and b3. If the mirror was not there, 
b1 would come out as bundle b4 and bundle b3 would come out as bundle b2. 
With the mirror, however, b1 is refl ected as b2 and b3 is refl ected as b4. Since 
the mirror bisects the edge rays r1 and r2, bundles b1 and b3 are symmetri-
cal. Bundles b2 and b4 are also symmetrical. For the points to the left of the 
mirror, it shades b3 but at the same time refl ects b1 so that these two effects 
cancel out. The same is true for the points to the right of the mirror. The 
consequence of this is that the radiation fi eld is unaffected by introducing 
the mirror. This means that with or without the mirror along the fl ow line, 
points X and Y in Figure 3.36 see the same radiation fi eld.

We now consider two fl ow lines with G = G1 and G = G2, where G1 and G2 
are constants as shown in Figure 3.38.

�

Flow
line

X

Q Y

BA

P

r2

r1

wB2
wA2

wA1

wB1

FIGURE 3.36
The fl ow lines of the radiation emitted by a fl at Lambertian source AB are hyperbolas with foci 
at the edges A and B of the source.
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r1 r1

r1
r1

r2 r2

r2 r2

b1

b2

b4

b3

P
P

(a) (b)

Mirror along
the flow line

FIGURE 3.37
Introducing a mirror along the fl ow line has no effect on the radiation fi eld.

wB1

wA1

P1

Q1

Q2

P2cP

cQ

G = G1 G = G2

FIGURE 3.38
The étendue of the light crossing a curve cQ between points Q1 and Q2 is the same as that of the 
radiation crossing a curve cP between points P1 and P2 because edges P1 and Q1 on one side and 
P2 and Q2 on the other are on the same fl ow lines.
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A curve cQ has one of the end points Q1 on  the fi rst fl ow line and the other 
end point Q2 on the second fl ow line. The étendue through cQ is given by

 UQ = 2(G(Q1) − G(Q2)) = 2(G1 − G2) (3.55)

On the other hand, we have another curve cP that also has one of the end 
points P1 on the fi rst fl ow line and the other end point P2 on the second fl ow 
line. The étendue through cP is given by

 UP = 2(G(P1) − G(P2)) = 2(G1 − G2) (3.56)

The étendue of the radiation crossing the two curves is then the same, show-
ing that the étendue is conserved between the fl ow lines.

3.10 The Winston–Welford Design Method

The fact that étendue is conserved between the fl ow lines can be used to 
design nonimaging optical devices.13,14 The Winston–Welford design method 
involves in placing two mirrors along two fl ow lines so that the light is 
guided between them, while conserving étendue. For this reason, it is also 
called the fl ow line design method. We will now consider some examples of 
optics designed according to this principle.

As a fi rst example, refer to the situation presented in Figure 3.36 and con-
sider two symmetrical fl ow lines Q1P1 and Q2P2 generated by a Lambertian 
source AB, as shown in Figure 3.39.

Étendue is conserved between the fl ow lines and therefore the étendue 
of the radiation at line cP between P1 and P2 is the same as the étendue at 
line cQ between Q1 and Q2. At line cQ, radiation is fully Lambertian, con-
fi ned between ±π/2. However, at a point V on line cP, radiation is confi ned 
between directions r1 and r2 pointing to B and A.

If we make lines Q1P1 and Q2P2 be mirrors along the fl ow lines, these will 
not change the radiation pattern. This means that point V will still see the 
radiation pattern same as that obtained without the mirrors. This radiation, 
however, now comes from Q1Q2 guided by the mirrors, instead of coming 
from the whole source AB as earlier. The light that crosses cP still appears to 
come from the source AB.

If we invert the direction of light, we can also think of cP as a light source 
emitting toward AB. Mirrors P1Q1 and P2Q2 then concentrate this radiation 
onto Q1Q2 where it becomes fully Lambertian. Figure 3.40 shows this pos-
sibility, in which light emitted from P1P2 toward AB bounces back and forth 
between the mirrors P1Q1 and P2Q2 and ends up on Q1Q2.

For point V, for example, ray r1 emitted toward point B is refl ected by 
the right-hand side mirror toward point A. The left-hand side mirror then 
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88 Introduction to Nonimaging Optics

refl ects it toward B again. This process goes on until (after an infi nite 
number of refl ections) this ray reaches Q1Q2. The same happens to a ray r2 
emitted from V toward A. Intermediate rays between r1 and r2 either bounce 
off the mirrors and reach Q1Q2 or reach it directly without any refl ections. 

wB1wA1

wA2r1r2

wB2
P1

Q1 Q2

P2
cP

cQ

V

A B

FIGURE 3.39
The étendue is conserved between the fl ow lines that connect cQ and cP.

r1

r2

P1

Q1 Q2

P2V

A B

FIGURE 3.40
A concentrator for a source P1P2 emitting toward AB. The radiation is concentrated onto a 
receiver Q1Q2 where it becomes fully Lambertian.
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Étendue and the Winston–Welford Design Method 89

This concentrator is called trumpet15 and maximally concentrates onto 
receiver Q1Q2 all radiation entering its aperture P1P2 headed toward AB. 
Since the étendue from P1P2 toward AB is the same as that of a Lambertian 
source Q1Q2, this concentrator is ideal.16

As a second example consider another situation, as shown in Figure 3.41, 
in which the wave fronts wA2 and wB2 have different shapes. Wave front wA2 
is made of a circle with center A up to ray r1. From that ray to the left it is fl at. 
Wave front wA1 has the same geometry and results from the propagation of 
wA2 to the left. Wave front wB2 is symmetrical to wA2 and wB1 is symmetrical to 
wA1. Since the sections of the wave fronts that touch AB are perpendicular to 
AB when they reach it, the radiation there is again fully Lambertian.

We now look at the fl ow lines defi ned by the rays perpendicular to these 
wave fronts. We have four different zones, shown as 1, 2, 3, and 4 in Figure 3.42. 
In zone 1, the edge rays come from points A and B and we have the same situa-
tion as shown in Figure 3.36. They are hyperbolas with foci A and B, as shown 
in Figure 3.42a.

In zone 3, the edge rays are straight and parallel to symmetrical rays r1 
and r2, so that the fl ow lines are vertical straight lines. In zone 2, one of the 
edge rays comes from point A and the other is parallel to r2. The fl ow lines 
are then parabolas that refl ect the rays parallel to r2 toward point A. Zone 4 is 
symmetrical to zone 2 and the fl ow lines are also parabolas, but with focus B 
and axis parallel to r1, and they refl ect the rays parallel to r1 toward point B.

Note that in the case of Figure 3.39 the fl ow lines were generated by a 
 Lambertian source AB. That is not the case here because only those rays 
that are perpendicular to the circular sections of the wave fronts are coming 

wB1wA1

wA2

r1
r2

wB2

A B

3

4

1

2

Flat

Circle
center A

FIGURE 3.41
Wave fronts made of two different sections: circular and fl at.
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90 Introduction to Nonimaging Optics

from the edges A and B of AB. Therefore, only the portion of the fl ow lines in 
zone 1 can be considered as being generated by a Lambertian source AB.

For a particular case of the fl ow lines that touch the edges A and B, the 
hyperbolas of zone 1 vanish and we are left with the parabolas of zone 2. The 
parabolas AP1 and BP2 form a compound parabolic concentrator (CPC).

When we want to design a CPC, however, we consider only the portions 
of the wave fronts that generate the fl ow line we want for the optic. Figure 
3.42b shows that the possibility in which the parabola BP2 is generated by the 
fi rst of expressions 3.52, that is, SA1 + SB2 = constant. This is also the string 
method, whereby we attach a string of constant length to wave fronts wA1 
and wB2, keep it tight with a pencil, allow the string to slide on wA1 and wA2 
so that it is always perpendicular to wA1 and wA2, and then move the pencil; 
we then obtain the parabolic CPC profi le, as shown in Figure 3.43. The other 
mirror of the CPC is generated in the same way.

As a third example, consider a different situation in which we extend 
the receiver AB in Figure 3.41 downward with, say, two vertical lines, and 
also defi ne wave fronts wA and wB below AB, as shown in Figure 3.44. In 
 Figure 3.44, wave front wB is shown at positions wB0, wB1, and wB2 and wave 
front wA is shown at positions wA0, wA1, and wA2.

Now, besides zones 1–4, we also have zone 5, between the rays r3 and r4, 
and zone 6 between the ray r4 and the receiver. In zone 5, one of the edge 
rays comes from point B and the other is parallel to r2. The fl ow lines are 

wA1
SA1

r1

r2

wB2

SB2

A B

A B

3

4

1

2

P1 P2

P2

Hyperbola
foci A, B

Parabola
focus A
axis // r2

Vertical
line

(a) (b)

FIGURE 3.42
The mirrors of a CPC concentrator seen as fl ow lines.
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FIGURE 3.43
Drawing the profi le of a CPC using the string method.
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FIGURE 3.44
Wave fronts for a receiver with a horizontal section AB and two vertical sections starting at 
points A and B.
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92 Introduction to Nonimaging Optics

then parabolas that refl ect the rays parallel to r2 toward point B. As we move 
closer to ray r4, both edge rays approach this ray r4, and the fl ow lines become 
perpendicular to r4. In zone 6 below r4, both edge rays come from point B and 
the fl ow lines are circles centered at B, perpendicular to those rays at each 
point ( just as what happened at ray r4).

Figure 3.45 shows a concentrator for a receiver CABD designed using the 
wave fronts wA and wB in Figure 3.44.17

This concentrator is composed of a parabola with focus A and axis parallel 
to r2 in zone 2, then it has a parabola with focus B and axis parallel to r2 in 
zone 5, and fi nally it also has a circle with center B in zone 6. Choosing other 
fl ow lines would result in a concentrator for a receiver with different posi-
tions of C and D, as shown in Figure 3.46.

The geometry of this optic is similar to that of the concentrator in Figure 3.45, 
except for the refl ector on the right that extends with a vertical fl at mirror 
along the corresponding fl ow line in zone 3.

As a fourth example, now consider another optic designed by the fl ow-line 
method. We have a receiver AB immersed in a medium of refractive index 
n and an emitter E1E2 in air. These two media are separated by a curve c, 
which in this example is a circle. The exit angle through AB is 2θ, as shown 
in Figure 3.47.

Now we calculate point P and its symmetrical Q on the curve c such that 
the étendue from E1E2 to PQ matches that of the receiver, that is,

 2([E2, P] − [E2, Q]) = 2n[A, B]sin θ (3.57)
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FIGURE 3.45
A concentrator for a receiver CABD.
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FIGURE 3.46
A concentrator for an asymmetrical receiver CABD.
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FIGURE 3.47
A receiver AB immersed in a medium of refractive index n and an emitter E1E2 in air. The 
curve c that separates the two media is a circle and the exit angle through AB is 2θ.
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94 Introduction to Nonimaging Optics

We now calculate the path of ray rP starting at E1 and refracted at P, as shown 
in Figure 3.48a.

We defi ne wave front wB above the curve c and to the right of ray rP as a 
circle W2W4 with center E1. Below the curve c, the portion W1W3 is the propa-
gation of W2W4 through the curve c. Also, we defi ne wave front wB below 
the curve c and to the left of ray rP as a piecewise curve starting at W3 and 
defi ned as fl at and perpendicular to rP, then as a circle with center B and 
as fl at and perpendicular to edge ray r2, ending at W5. Above the curve c, 
the portion W4W6 of wave front wB2 is the propagation of W5W3 through the 
curve c.

This procedure defi nes wave front wB in position wB1 as a curve between 
W1 and W5 and in position wB2 as another curve between W2 and W6. 
Wave front wA is symmetrical to wB about axis of symmetry b, which is 
the  perpendicular bisector of emitter E1E2 and of receiver AB, as shown in 
Figure 3.48b.

With these wave fronts, we can calculate the fl ow line starting at the 
edge B of the receiver. It is also a piecewise curve with several pieces, as 
shown in Figure 3.49, where ray r1 is symmetrical to r2 and ray rQ is sym-
metrical to rP.

Between points B and M3, the fl ow line is fl at, bisecting the rays parallel to 
rP and those parallel to r1. Between points M3 and M2, the fl ow line bisects 
the edge rays coming from E1 and refracted at the curve c and those parallel 
to r1. Between points M2 and M1, the fl ow line bisects the edge rays com-
ing from E1 and refracted at the curve c and those converging to point A. 
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FIGURE 3.48
Wave fronts for defi ning the concentrator.
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Between points M1 and Q, the fl ow line bisects the edge rays coming from E1 
and refracted at the curve c and those parallel to ray rQ. This same fl ow line 
would then continue (not shown) above the curve c as a hyperbola through 
point Q and with foci E1 and E2.

Figure 3.50 shows the complete optic, in which the side PN1N2N3A is sym-
metrical to QM1M2M3B. Light refl ected by the portion QM1 of the right-hand 
side wall is refl ected toward portion N3A of the left-hand side wall, and from 
there toward AB.

In the example just presented, wave front wB2 results from propagating 
wB1 through the curve c. Also, wave front wA2 results from propagating wA1 
through the curve c. 

Now, we consider a possible way of calculating the propagation of wave 
fronts through surfaces. Consider the curve c separating two media of 
refractive indices n1 and n2, as shown in Figure 3.51. Wave front w prop-
agates through this curve c. We start with the wave front at position w1 
and want to calculate its shape at position w2. We defi ne the optical path 
length between w1 and w2 as having a value S. We may, for example, take 
a point P on c and calculate the corresponding point W1 on w1. Point 
W1 is such that the perpendicular to w1 through W1 crosses c at point 
P. Now we can calculate the optical path length between W1 and P as 
S1 = n1[W1, P]. We now have the optical path length between P and the point 
W2 on the propagated wave front w2, which is given by S2 = S − S1. The 
 distance between P and W2 is d2 = S2/n2. Since we know the position of 
W1 and P, we have the direction t1 of the ray incident at P. We now refract this 
ray and obtain the direction t2 (unit vector) of the refracted ray. Point W2 is 
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rQ

b

E1 E2

wB2
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wA2Q
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r1 r22�
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FIGURE 3.49
Flow line starting at point B. It defi nes the shape of the sidewall for the concentrator.
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96 Introduction to Nonimaging Optics

given by W2 = P + d2t2. Repeating the process for other points on c, we obtain 
a set of points on w2. We can now interpolate between those points using, for 
example, a spline method.

Optics such as that shown in Figure 3.50 can be designed for other param-
eter values. Also, we do not have to calculate the shape of the wave fronts to 
design one of these devices. Another example is shown in Figure 3.52, where 
the emitter E1E2 has the same size E as the entrance aperture size AE of the 
optic. Vertical line b is the perpendicular bisector of emitter E1E2 and receiver 
AB. The system is symmetrical relative to b.

We start the design by determining the relative positions of the entrance 
aperture AE and emitter E as presented in Figure 3.52a. Consider, for exam-
ple, that the light at the receiver R is confi ned to an angle ±αC. The étendue 
at the receiver R is then

 UR = 2nR sin αC (3.58)

QP

N1

N2 M2

N3 M3

M1

c

E1 E2

A B

2�

FIGURE 3.50
A concentrator for an emitter E1E2 and a receiver AB immersed in a medium of refractive 
index n. The exit angle through AB is 2θ and the entrance aperture of the optic is a circle C.
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FIGURE 3.51
Propagation of a wave front through a curve c that separates two media of refractive indices 
n1 and n2.
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FIGURE 3.52
An optic made of dielectric material for an emitter E and a receiver R. Light reaches the receiver 
confi ned to an angle ±αC.
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This étendue is the same as that exchanged between AE and E. Considering 
that AE = E, from Figure 3.52a it can be seen that

 α = arctan (   d1 ___ 
AE

   )  
 d2 =   

d1 _____ sin α   
(3.59)

The étendue from AE to E is then

 U = 2(d2 − d1) = 2d1 (   1 _____ sin α   − 1 )  = 2d1 (   1 ________________  
   sin(arctan(d1/AE))

    − 1 )  (3.60)

If étendue is to be conserved, we must have

 nR sin αC = d1 (   1 ________________  
  sin(arctan(d1/AE))

    − 1 )  (3.61)

To defi ne the device, some parameters must be established: for example, the 
angle αC, the value of R = [A, B], and the value of E = [E1, E2] (which equals AE). 
Then, using expression 3.61, we can calculate the distance d1.

The shape of the entrance surface can be chosen as a circular arc with 
radius r. As shown in Figure 3.52b, ray rP coming from edge E1 of the emitter 
can now be refracted at the edge P of the circular entrance surface, and 
since the size of R is known, the receiver position can be determined. Its 
end point B will be on the refracted ray rP at the point whose distance to 
the bisector b is R/2.

We now defi ne a fl at wave front w that makes an angle αC to AB and there-
fore is perpendicular to the right-hand side edge ray at AB, as shown in 
 Figures 3.52b and  3.52c. The optical path length between E1 and wave front 
w can now be determined from ray rP as

 S = [E1, P] + n[P, B] + n[B, w] (3.62)

where [B, w] is the distance between point B and wave front w. This optical 
path length now enables us to calculate the shape of the lateral mirror QB. 
Mirror PA is symmetrical to QB. Points M1 between Q and M are calculated 
for rays r1 from edge E1 of the emitter to edge A of the receiver, as shown in 

Small air gap Small air gapPA

QA

PB

QB

RA RB

FIGURE 3.53
If a light source is placed at RA, its light will exit the left-hand side optic, enter the right-hand 
side optic, and be concentrated onto RB with no losses.
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Étendue and the Winston–Welford Design Method 99

Figure 3.52c. These rays fulfi ll

 S = [E1, C1] + n[C1, M1] + n[M1, A] (3.63)

Points M2 between M and B are calculated for rays r2 from edge E1 of the 
emitter to wave front w at the receiver. These rays fulfi ll

 S = [E1, C2] + n[C2, M2] + n[M2, w] (3.64)

where [M2, w] is the distance between point M2 and wave front w.
Now consider a particular case of this design in which αC is the critical 

angle for the material of refractive index n. Combine two of these optics as 
shown in Figure 3.53. Light enters the optic on the left through its small 
aperture coming from a Lambertian source RA separated from the optic by a 
small air gap. When the light refracts into the material of the optic, it will be 
confi ned to the critical angle ±αC.

Light exits the optic on the left through its aperture PAQA and enters the optic 
on the right through its aperture PBQB. It will then be concentrated on to its 
small aperture, where it is confi ned to the critical angle. When it exits the optic, 
the angular aperture widens to a fully Lambertian illumination of receiver RB.

Source RA and receiver RB are of the same size and radiation is fully 
 Lambertian at both places. Also, light travels through air between PAQA and 
PBQB without any guiding mirrors.

3.11 Caustics as Flow Lines

Figure 3.54 shows an angle rotator for an angle 2θ, where Figure 3.54b shows a 
detail of Figure 3.54a between sections s1 and s2. Between these two  sections, 
s1 and s2, light is confi ned between circular mirror m with center C and cir-
cular caustic c, also centered at C. A fl ow line g between these two sections is 

2� 2�

m

m

g
c

(a) (b)

c

s1
s2

s1 s2

A

A
B

B

C

C

R

�

�

FIGURE 3.54
An angle rotator for an angle 2θ. Caustic c is a limit case of a fl ow line g in which the angle α 
that the edge rays make to the fl ow line becomes zero. This happens as the radius R of fl ow line 
g tends to the distance between C and B.
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100 Introduction to Nonimaging Optics

also a circle with radius R centered at C. The 
edge rays make an angle α to fl ow line g.

As the radius R of g decreases, angle α 
also decreases. In the limit case, where this 
angle becomes zero, the fl ow line tends to 
a caustic c to both sets of edge rays and 
R tends to [C, B]. A mirror placed along the 
caustic would no longer refl ect the edge 
rays and light can be confi ned between 
mirror m and the caustic c. Mirror m is also 
a fl ow line obtained in the case in which 
R = [C, A].

Étendue is conserved between the fl ow 
lines. Since caustic c is a limit case of fl ow 
lines g, étendue is also conserved between 
fl ow line m and caustic c.

Figure 3.55 shows another example of light 
confi nement by caustics. Caustics cL on the 
left and cR on the right confi ne light as it trav-
els through air between optics OA and OB, 
both made of material with refractive index 
n. In this  example, emitter RA and receiver RB 
touch the medium with refractive index n. 
There is no air gap between RA and optic OA 
or between RB and optic OB.

Figure 3.56 shows the geometry of the 
caustics and the edge rays between the optics 
in detail.

FIGURE 3.55
Optics OA and OB exchange light 
through air confi ned between caus-
tics cL on the left and cR on the right.

PA QA

PB QB

RA

OA

OB

cL cR

RB

PA QA

PB QB

cL

lH

lV

cR

r1 r2

r3

CL

FIGURE 3.56
The geometry of the caustics and the edge rays for the radiation exchanged between optics OA 
and OB.
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PA QA

PB QB

OA

cL cR

rM

C

A B

M

E

FIGURE 3.57
Design for optic OA.

Caustic cL on the left is a circle with center CL. Edge 
rays between r1 and r2 all intersect at point PB and 
edge rays between r1 and r3 are tangent to caustic cL. 
The system has top-down symmetry about horizontal 
line lH and left-right symmetry about vertical line lV.

Figure 3.57 shows the design method for optic OA. 
The curved top surface between PA and QA is a circle 
with center C. The points of the side mirrors may be 
defi ned by a string of constant optical path length. 
Ray rM is tangent to caustic cL at point PB.

For the points of the mirror above point M, the  optical 
path length [PB , E] + n[E, M] + n[M, A] is constant, 
where E is a point on the circular top surface of the 
optic. For the points of the mirror below point M, the 
optical path length is still the same, but the string 
(still starting at PB) now rolls around the caustic cL.

The size of emitter AB must be such that the étendue 
of the light it emits matches that exchanged between 
optics OA and OB. This étendue can be obtained from 
the geometry in Figure 3.58.

The étendue for the light emitted between PA and 
QA is, by symmetry, twice that emitted between PA 
and X, where X is the midpoint of PAQA. For each 
point P between PA and X, light is confi ned between 
edge rays rA crossing point QB and rB tangent to caus-
tic cL at point T. Caustic cL is circular with center CL 

FIGURE 3.58
The geometry for calculating the étendue of the light exchanged between the optics.

PA QA

PB QB

cL

R

cRrBCL

P X

T

rA

�

�
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102 Introduction to Nonimaging Optics

and radius R. The étendue is then given by

 U = −2  ∫ PA
  

X
   (cos θB − cos θA) dx (3.65)

where using function angh(…) defi ned in Chapter 17, we have θA = angh(QB − 
P) and θB = θ − α, where θ = angh(CL − P) and α = arcsin(R/[CL, P]).

3.12 Maximum Concentration

Conservation of étendue can also be used to derive the maximum concentra-
tion an optic can provide. We now consider a 3-D situation and calculate the 
étendue of radiation with half-angular aperture θ1 and crossing (or being 
emitted by) an area dA1 immersed in a medium with a refractive index of n1, 
as presented in Figure 3.59.

The étendue of the radiation crossing (or being emitted by) dA1 can be 
obtained from expressions 3.4 and 3.6 as

 UdA1 =  n 1  
2  dA1  ∫ 0  

2π
    ∫ 0  

θ1
  cos θ sin θ dθ dφ = π n 1  

2  dA1 sin2 θ1 (3.66)

If dA1 is a part of an area A1, where the radiation falling on it is uniform, the 
total étendue of the radiation falling on A1 is given by

 U1 = π n 1  
2  sin2 θ1   ∫ 

A1
      dA1 = π n 1  

2  A1 sin2 θ1 (3.67)

We now apply this result to an optical system with entrance aperture A1 and 
exit aperture A2, θ1 being the half-angular aperture for the radiation at the 
entrance aperture and θ2 the half-angular aperture at the exit aperture as 
presented in Figure 3.60.

If the refractive index at the exit aperture is n2, the étendue of the radiation 
exiting the device is given as

 U2 = π n 2  
2  A2 sin2 θ2 (3.68)

Since the étendue is conserved in the passage through an optical system, the 
étendue at the entrance aperture must be equal to the one at the exit, that is, 
U1 = U2, therefore,

   
A1 ___ 
A2

   =     n 2  
2 
 ___ 

 n 1  
2  

     
sin2 θ2 ______ 
sin2 θ1

   (3.69)

the angle θ2 at the exit aperture cannot be higher than π/2; therefore, the 
minimum exit area A2min can be obtained for θ2 = π/2. This area  corresponds 
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Étendue and the Winston–Welford Design Method 103

to the maximum possible concentration:

 Cmax =   
A1 _____ 

A2min
   =    n 2  

2  ___ 
 n 1  

2  
     1 ______ 
sin2 θ1

   (3.70)

or, in the particular case in which the refractive index at the entrance of the 
device is n1 = 1:

 Cmax =    n 2  
2  ______ 

sin2 θ1
   (3.71)

Let us now consider a 2-D optical system with entrance aperture a1 and exit 
aperture a2 and having refractive indices n1 and n2 at the entrance and exit 
apertures, respectively, as shown in Figure 3.61.

�1

dA1

n1

FIGURE 3.59
Surface dA1 immersed in a medium with 
index of refraction n1 receiving radiation 
with half-angular aperture θ1.

FIGURE 3.60
Optical device with an entrance aperture A1 
and exit aperture A2. At the entrance aperture, 
the refractive index is n1 and the half- angular 
aperture of the radiation is θ1. At the exit aper-
ture, the refractive index is n2 and the half-
angular aperture of the radiation is θ2.

�1

�2

n1

n2

A1

A2
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104 Introduction to Nonimaging Optics

Let us further suppose that the radiation is uniform at the entrance and 
exit apertures. The étendue at the entrance aperture can be obtained from

 U1 = −a1  ∫ 
A

  
B
  dp1 = −a1(−p1 − p1) = 2a1p1 = 2n1a1 sin θ1 (3.72)

where the integration is taken from direction pA to pB, that is, the positive 
direction of the angles in Figure 3.24. Similarly, the étendue at the exit aper-
ture is given as

 U2 = 2n2a2 sin θ2 (3.73)

Since the étendue is conserved in the passage through the optical system, we 
must have U1 = U2, therefore,

   
a1 __ a2

   =   
n2 ___ n1

      
sin θ2 _____ sin θ1

   (3.74)

As in the 3-D case analyzed earlier, the exit angle cannot be higher than π/2, 
and therefore the minimum length a2min of the exit aperture can be obtained 
for θ2 = π/2. It corresponds to the maximum possible concentration:

 Cmax =   
a1 _____ a2min

   =   
n2 __ n1

     1 ______ sin θ1
   (3.75)

or, in the particular case in which the refractive index at the entrance of the 
device is n1 = 1:

 Cmax =   
n2 _____ sin θ1

   (3.76)

�1

�2 �2

�1

�1 �1

a2

a1

x2

x1
n2

n1

n1−n1 −p1 p1

−n1

n1

(a) (b)

pApB

FIGURE 3.61
A 2-D optical device with an entrance aperture a1 and exit aperture a2. At the entrance 
aperture, the refractive index is n1 and the half-angular aperture of the radiation is θ1. At the 
exit aperture, the refractive index is n2 and the half-angular aperture of the radiation is θ2.
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Étendue and the Winston–Welford Design Method 105

The preceding expressions allow us to fi nd the maximum possible concen-
tration Cmax as a function of the half-angular aperture θ1 of the incoming 
 radiation. An example of this uniform constant-angle radiation is the one 
coming from the sun. When observed from the earth, the sun has a very 
small angular aperture. Nonimaging concentrators are capable of provid-
ing high concentration of light and therefore are well suited for high con-
centration of solar energy. However, these devices are also useful for smaller 
concentrations.

Since the relations presented earlier give the maximum concentration, the 
real concentration must be smaller than that. Let us then consider, to sim-
plify, that we have a concentrator whose interior is fi lled with air (n = 1). The 
concentration that it can attain must be smaller than Cmax, that is,

 C ≤   1 _____ sin θ   (3.77)

where θ is the half-angular aperture of the radiation. Expression 3.77 can 
now be rewritten in a different form as follows:

 θ ≤ arcsin  (   1 __ 
C

   )  (3.78)

and it can then be concluded that, for a given concentration C of a device, 
the half-acceptance angle cannot be higher than arcsin(1/C). The maximum 
value for the half-acceptance angle is therefore given by

 θmax = arcsin  (   1 __ 
C

   )  (3.79)

Similar expression can be obtained for 3-D systems and containing materi-
als having an index of refraction n ≠ 1. It can then be concluded that the 
nonimaging optical systems have the maximum acceptance angle 2θ for a 
given concentration C. This characteristic makes them very important in the 
concentration of solar energy.18,19

Let us consider a solar concentrator having concentration C. Let us further 
consider that the concentration is low so that the acceptance angle is large. 
Since nonimaging concentrators have the maximum acceptance angle 2θ for 
a given concentration C, they allow us to keep the concentrator stationary for 
the longest time possible while the sun is moving in the sky, as presented in 
Figure 3.62.

As long as the sun moves inside the acceptance angle 2θ, its light is cap-
tured and transferred to the absorber (exit aperture of the device). This is 
an important characteristic since it alleviates the need to track the angular 
motion of the sun in the sky. Besides the radiation arriving at the concentrator 
directly from the sun, there is also some diffuse radiation from the scattering 
of light in the atmosphere. This radiation arrives from all directions, but with 
greatest strength near the sun. Since the acceptance angle is maximum, the 
 concentrator will capture the maximum diffuse radiation as well.
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106 Introduction to Nonimaging Optics

Let us now consider that the concentration is high, and the acceptance 
angle is necessarily small so that it is mandatory to track the sun. The 
 tracking systems are, nonetheless, as complex and expensive in proportion 
to their precision. But since the acceptance angle is maximum, the need for 
precise tracking can be relaxed.

The use of anidolic optics in solar energy systems is therefore advanta-
geous as long as there is some need for concentration. Note that, for a high 
concentration, the acceptance angle is small and the acceptance of diffuse 
radiation is minor. In particular, when the acceptance angle equals the angu-
lar aperture of the sun, there is no longer a collection of diffuse radiation, 
but only of direct radiation. This is usually not done because of unavoidable 
tracking errors.

3.13 Étendue and the Shape Factor

One way to calculate the étendue in a homogeneous medium is by making use 
of the concept of shape factors, from the fi eld of radiative heat transfer. The 
relation between étendue and shape factor is discussed in detail in Chapter 16, 

� �

a1

a2

C = a1/a2

�/2 �/2

FIGURE 3.62
A solar concentrator having a concentration C. An ideal anidolic device having a concentration 
C will have the maximum acceptance angle for the incident radiation. In low-concentration 
solar systems, this characteristic can reduce the need to follow the sun in the sky, in addition to 
allowing the maximum acceptance of diffuse radiation. For high-concentration solar systems 
where the tracking is mandatory, it alleviates the requirement for precise tracking.
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but the results are summarized here for convenience. The étendue of the light 
emitted by an infi nitesimal area dA1 immersed in air toward another infi ni-
tesimal area dA2 also in air is

 dU = dA1 cos θ1 dΩ = dA1 cos θ1   
dA2 cos θ2 _________ 

r2   

 = πdA1   
dA2 cos θ1 cos θ2  _______________ πr2   = π dA1 d F dA1−dA2  (3.80)

as seen from Figure 3.63a. For 3-D systems, the étendue can therefore be 
related to the shape factor FdA1−dA2 of an area dA1 to another area dA2 by

 dU = π dA1 d F dA1−dA2  (3.81)

where

 d F dA1−dA2  =   
dA2 cos θ1 cos θ2  ______________ πr2   (3.82)

For 2-D systems, the situation is similar and is shown in Figure 3.63b.
We can now write

 dU = da1 cos θ1 dθ1 = da1 cos θ1   
da2 cos θ2 ________ r   

 = 2da1   
da2 cos θ1 cos θ2  ______________ 2r   = 2da1 F da1−da2  (3.83)

dA1

da1

da2

dA2

n1

n1

�1

�1

�2

�2

n2

n2

r

r

(a)

(b)

FIGURE 3.63
(a) The étendue of the light emitted from an infi nitesimal area dA1 toward another infi nitesi-
mal area dA2. (b) The étendue for 2-D geometry.

CRC_54295_CH003.indd   107CRC_54295_CH003.indd   107 4/3/2008   9:31:33 AM4/3/2008   9:31:33 AM



108 Introduction to Nonimaging Optics

For 2-D systems, the étendue can therefore be related to the shape factor 
Fda1−da2 of a length da1 to another length da2 by

 dU = 2da1d F da1−da2  (3.84)

where

 d F da1−da2  =   
da2 cos θ1 cos θ2  ______________ 2r   (3.85)

We can then use the known methods for the calculation of shape factors to 
help us calculate the étendue. One of these methods is the Hottel’s crossed-
string method.4 An example of this method can be applied to a system simi-
lar to that presented in Figure 3.34b. Then consider a Lambertian source of 
radiation FG with dimension a1 and a line P1P2 with dimension a2, as pre-
sented in Figure 3.64.

The shape factor from a1 to a2 is given by

  F a1−a2  =     
[[F, P2]] + [[G, P1]] − [[F, P1]] − [[G, P2]]    ___________________________________  2a1

   (3.86)

Integrating expression 3.84, we obtain

 U = 2a1 F a1−a2  (3.87)

Replacing  F a1−a2  in expression 3.87 for U, we again obtain expression 3.48.

F

P1

P2

G

a1 a2

FIGURE 3.64
The shape factor from a1 to a2 can be calculated by the Hottel’s crossed-string method. The 
étendue can then be calculated using the relation between the two quantities: étendue and 
shape factor.
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Étendue and the Winston–Welford Design Method 109

The relation between the shape factor and the étendue in the 3-D case 
enables us to calculate the étendue from a circular source A1 having radius d 
to a circular surface A2 having radius ρ. Let us consider that these two sur-
faces are separated by a distance h as presented in Figure 3.65.

The shape factor from A1 to A2 is given by5

  F A1−A2  =   1 __ 2    ( Z −   √ 
___________

 Z2 − 4X2Y 2   )  (3.88)

with X = ρ/h, Y = h/d, and Z = 1 + (1 + X2)Y 2. Integrating expression 3.81 
for 3-D systems, we get

 U = πA1FA1−A2 (3.89)

Surface A1 has an area πd2; therefore, the étendue from A1 to A2 is given as

 U =   1 __ 2    ( Z −   √ 
___________

 Z2 − 4X2Y 2   )  π2d2 (3.90)

Expression 3.90 can also be written in the following form:13

 U =    π
 2  ___ 4     (   √ 

____________
  (ρ − d)2 + h2   −   √ 

____________
  (ρ + d)2 + h2   )  2  =   π

2
 ___ 4   ([F, P2] − [F, P1])2 (3.91)

F

P1 P2

G

A1

A2

x3

x1

x2h

d

	

FIGURE 3.65
The étendue from a circular source having an area A1 to a circular surface having an area A2 
can be calculated from the shape factor from A1 to A2.
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110 Introduction to Nonimaging Optics

3.14 Examples

The examples presented in this section use expressions for the curves and 
functions that are derived in Chapter 17.

Example 1

Calculate the étendue of radiation with half-angle θ = 20° illuminating a 
straight line P1P2 with length 3.

Figure 3.66 shows the straight line P1P2 and the wave fronts w1 and 
w2 perpendicular to the edge rays making a total angle of 2θ to one 
another.

The étendue of the incoming radiation is given by

 U = [F2, P2] + [G2, P1] − [G1, P2] − [F1, P1] = 2[P1, P2] sin θ (3.92)

In this case, [P1, P2] = 3 and θ = 20° and we get U = 2.05212.

Example 2

Calculate the étendue of a source a emitting light with an angular 
 aperture 2θ tilted by an angle γ to the vertical. The length of a is equal to 
3, γ = 60°, and θ = 10°.

We present several possibilities for calculating this étendue.

Possibility 1. We may consider that the light emitted by a comes from a 
source a* tilted by an angle γ to the horizontal and whose light is 
confi ned by a fl at mirror perpendicular to a* until it reaches a, as 
shown in Figure 3.67.

   Since the mirror is parallel to the direction of propagation of 
the light, it does not alter the angular aperture 2θ of the light. 

F2

F1

G2

G1

P1 P2

w1 w2

�

2�

FIGURE 3.66
Radiation with a half-angle θ illuminating a straight line P1P2.
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The étendue of the light emitted by a must then be equal to that 
emitted by a*. We have

 U = 2a* sin θ = 2a cos γ sin θ (3.93)

  Now by replacing the values for a, γ, and θ, we get U = 0.520945.
Possibility 2. Now consider the same situation, but from a different point 

of view. We now assume that the same source a is on the x1 axis 
between xm and xM, that is, a = xM − xm as shown in Figure 3.68a.

  The étendue of the radiation is given by

 U =   ∫ xm
  

xM

  (pA − pB) ⋅ dc (3.94)

  where pA = (cos(φ − θ), sin(φ − θ)), pB = (cos(φ + θ), sin(φ + θ)), and 
dc = dc(1, 0) since a is on the x1 axis. Note that φ = π/2 − γ.

   In this case dc is an element of length da on a and we obtain

 U =   ∫ xm
  

xM

  (cos(φ − θ) − cos(φ + θ)) da 

 = a(cos(φ − θ) − cos (φ + θ)) = 2a sin θ sin φ (3.95)

  Replacing a, φ = π/2 − γ, and θ, we get U = 0.520945.
Possibility 3. Another possible way to calculate the same étendue is by 

using expression 3.94 differently, where we now make pA = (pA1, pA2) 
and pB = (pB1, pB2) to get

 U =   ∫ xm
  

xM  

   ((pA1, pA2) − (pB1, pB2)) ⋅ (1, 0) da 

 =   ∫ xm
  

xM 

  (pA1 − pB1) da = a(pA1 − pB1) (3.96)

FIGURE 3.67
A source a emitting light with an angular aperture 2θ tilted by an angle γ to the vertical. Light 
appears to come from another source a* whose size is the projection of a in the direction of 
light emission.

2�

2�

Flat
mirror

a

�

a*

�

CRC_54295_CH003.indd   111CRC_54295_CH003.indd   111 4/3/2008   9:31:34 AM4/3/2008   9:31:34 AM



112 Introduction to Nonimaging Optics

  which can also be written as

 U = 2a sin θ sin φ (3.97)

  as can be seen from Figure 3.68b with n = 1.
Possibility 4. Yet another possibility is to represent the radiation emitted 

by a in phase space and calculate the area it uses. Figure 3.69 shows 
this possibility.

   In physical space, source a extends from xm to xM and in angu-
lar space, the radiation is confi ned between directions that have 
p1 component of the optical momentum between pA1 and pB1. The 
étendue equals the area in phase space occupied by the radiation 
and is given by

 U = (xM − xM)(pA1 − pB1) = a(pA1 − pB1) (3.98)

  which is the same as expression 3.96.

�
� �

�
� �

�

�

(a) (b)

xm xM x1

x2

p2

p1
pA1pB1a

n

n−n

pA

pB

2n sin � 

2�

FIGURE 3.68
If the radiation is the same for all points of xmxM, its étendue can be obtained as U = 2na sin θ 
sin φ.

xMxm x1

p1

pA1

pB1

FIGURE 3.69
Area in phase space of radiation with p1 components for the edge rays pA1 and pA2.
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Étendue and the Winston–Welford Design Method 113

Example 3

Calculate the étendue of uniform radiation with a half-angle 5° captured 
by a parabola of rim angle 30°, when it reaches the parabola and after 
refl ection.

A parabola with focus F = (0, 0) and a unit distance between focus 
and vertex [F, V] = 1 is parameterized by

 c(φ) =   2 _________ 1 − cos φ   (cos φ, sin φ) (3.99)

If the rim angle φ = 30°, the parameter range for the parabola is π − φ ≤ φ 
≤ π + φ. Edge points P1 and P2 of the parabola are obtained at the edges of 
the parameter range and are given by P1 = c(π − φ) =  ( 6 − 4  √ 

__
 3  , 4 − 2  √ 

__
 3   )  

and P2 = c(π + φ) =  ( 6 − 4  √ 
__

 3  , −4 + 2  √ 
__

 3   )  as shown in Figure 3.70. The 
half-angle of the light collected by the parabola is θ = 5°.

The étendue of the radiation captured by the parabola is (Figure 3.70)

 U = 2[P1, P2] sin θ = 0.186826 (3.100)

We may now calculate the étendue of the same radiation when it hits the 
parabola. Figure 3.71 shows this situation.

The étendue of the light reaching the parabola is given by

 U =   ∫ π−φ  
π+φ

   (p1 − p2) ⋅ dc =   ∫ π−φ  
π+φ

  (p1 − p2) ⋅   
dc ___ 
dφ   dφ (3.101)

P1

P2

F x1

x2

�
�

2�

2�

2�

V

c (�)

FIGURE 3.70
A parabola with focus F collects light with a half-angle θ.

CRC_54295_CH003.indd   113CRC_54295_CH003.indd   113 4/3/2008   9:31:35 AM4/3/2008   9:31:35 AM



114 Introduction to Nonimaging Optics

where momentum p1 and p2 are unit vectors since the refractive index 
n = 1 and are given by

 p1 = (cos(−θ), sin(−θ)) 

 p2 = (cos θ, sin θ) 
(3.102)

P1

p1

P2

p2

F x1

x2

2�c (�)

dc/d�

n = 1

�

FIGURE 3.71
Radiation with a half-angle θ hits a parabolic mirror.

P1

p1

p2

P2

F x1

x2

2�c (�)

dc/d� n = 1

�

FIGURE 3.72
Radiation with a half-angle θ after refl ection of a parabolic mirror.
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The derivative of the parabola is a tangent vector given by

   dc ___ 
dφ   =  (   −2 sin φ ___________ 

(cos φ − 1)2  ,   
2 ________ cos φ − 1   )  (3.103)

Inserting expressions 3.102 and 3.103 into expression 3.101, the étendue 
is given by

 U =   ∫ π−φ  
π+φ

       
−4 sin (π/36)

  ____________ cos φ − 1   dφ = 0.186826 (3.104)

which is the same as calculated earlier.
After refl ection by the mirror, p1 and p2 are now given by

 p1 = R(−θ) ⋅ nrm(F − c) =   
2 sin2 (φ/2)

 __________ cos φ − 1   (cos (π/36 − φ), sin (π/36 − φ))

 p2 = R(θ) ⋅ nrm(F − c) =   
2 sin2 (φ/2)

 __________ cos φ− 1   (cos (π/36 + φ), sin (π/36 + φ))

as shown in Figure 3.72.
The étendue of the light refl ected by the mirror is also given by expres-

sion 3.101, now with the new values for p1 and p2 so that

 U = 0.348623   ∫ π−φ  
π+φ 

     1 _________ 1 − cos φ   dφ = 0.186826 

The values of the étendue are the same, before light reaches the parabola, 
at the parabola, and after refl ection. 
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4
Vector Flux

4.1 Introduction

We have seen that if we take the fl ow lines generated by a Lambertian source, 
we obtain an ideal trumpet concentrator. Other shapes of Lambertian sources 
generate other shapes of fl ow lines and those can be taken as concentrators 
with different geometries. We now consider some more simple examples of 
nonimaging optics obtained by taking fl ow lines generated by Lambertian 
sources.

An example of uniform illumination is that of sunlight. The sun emits 
light in all directions and when it reaches the earth, this light is confi ned to 
a small angle ±α and therefore it appears to arrive within a cone of angle 2α 
as shown in Figure 4.1.

We take a plate and orient it perpendicularly to the direction of the sun, so 
that all its points will be illuminated by a cone of angle 2α. For point P1 on 
the plate, for example, all radiation is confi ned between edge ray rU and edge 
ray rL as shown in Figure 4.2.

Imagine now that we put a thin mirror M mirrored on both sides in a 
direction perpendicular to plate P as shown in Figure 4.3. The mirror shades 
the light between rays rL1 and rL2 that would hit point P1 if the mirror had not 
been there.

It, however, also mirrors toward P1 the light confi ned between rU1 and rU2 
that, without the mirror, would hit point P2. Therefore, this mirror does not 
alter the radiation that reaches each of these points because what it shades 
on one side, it refl ects on the other. The same argument could be used for any 
other points on the plate.

If we take two of these mirrors we get the geometry in Figure 4.4. It is a 
nonimaging device that accepts radiation with half-angle α and emits radia-
tion with the same angle, maintaining the area. This is a light guide, defi ned 
by mirrors M1 and M2.

As another example, we now consider the round (2-D) Lambertian radia-
tion source SR shown in Figure 4.5. Two edge rays that are tangent to the 
source bound the radiation that crosses any point P. A mirror M that is 
 perpendicular to the source will then bisect the edge rays.

For the reasons presented above, this mirror will not alter the radiation 
fi eld created by the source SR. We may then put two radial fl at mirrors M1 
and M2 on the source as shown in Figure 4.6. These mirrors will not alter 
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118 Introduction to Nonimaging Optics

FIGURE 4.1
When it reaches the earth, the sunlight is confi ned angularly to ±α and therefore its total 
angular aperture is 2α.

Earth
Sun 2�

FIGURE 4.2
A plate P perpendicular to the direction of the sun “sees” incoming light confi ned to an angle 
2α. At point P1, the light is confi ned between the edge rays rU and rL. Something similar  happens 
to the light hitting the other points of plate P.

PrU

rL
P1

P2

P3

Sun

2�

2�

FIGURE 4.3
A mirror M perpendicular to the plate P bisects the edge rays of the incoming light.

M

P

2�

2�
rU1

rU2
rL1

rL2

P1

P2

FIGURE 4.4
Two parallel mirrors can be used as a nonimaging optical device that accepts radiation with 
half-angle α and emits radiation with the same characteristics.

M1

M2

2� 2�
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the radiation fi eld created by the source. At arc a1, the source SR creates a 
 radiation fi eld with an angular aperture 2θ. The presence of the mirrors 
will not alter that. However, the radiation that a1 now receives comes from 
portion a2 of the source since the rest of it is shadowed by the mirrors. We 
may then remove that portion of the source outside the mirrors, and leave 
only the portion a2 that they bound. Circular arc source a2 will then create 
at a1, with the help of M1 and M2, a uniform radiation fi eld with angular 
aperture 2θ.

Inverting now the direction of the radiation, we may imagine that M1 and 
M2 form a concentrator with round entrance aperture a1 and acceptance
angle 2θ, and round receiver a2. Since the radiation at a2 is Lambertian
(radiation angular aperture of ±π/2), this concentrator is ideal and provides 
maximum concentration.

Flow lines bisect the edge rays at every point and the concentrator of 
Figure 4.6 was constructed by taking two fl ow lines of the radiation fi eld 
created by the source SR. Choosing other fl ow lines (radial lines coming out 
of SR), we could get different size concentrators. Also, choosing  different 
heights for these lines would lead to concentrators with different  acceptance 
angles.

FIGURE 4.5
A fl at mirror perpendicular to a circular source bisects the edge rays at each point in space.

P
M

SR

FIGURE 4.6
Light confi ned to an angle 2θ with bisector perpendicular to a1 and headed toward SR is 
 concentrated by mirrors M1 and M2 to a2.

SR

M1

M2

a1

a2

2�
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120 Introduction to Nonimaging Optics

Étendue is conserved in the space between these fl ow lines as shown in 
Figure 4.7a.

The étendue of the radiation confi ned between the mirrors (which follow 
the fl ow lines) M1 and M2 is given by U = 2a2, since the radiation there has 
an angular aperture of ±π/2. It has the same value at circular arc a3 where 
U = 2a3 sin α = 2a2 and at circular arc a1 where it has the value U = 2a1 sin θ = 
2a2. Note that from Figure 4.7b, we have a2 = Rφ and a1 = Dφ, where R is the 
radius of SR and D, the distance from its center to a1. We then have a2/a1 = 
R/D = sin θ.

If the whole source SR is present, the étendue of the radiation cross-
ing between a point P1 on fl ow line M1 and a point P2 on fl ow line M2 is 
 constant as we move P1 on M1 and P2 on M2 (no mirrors). If M1 and M2 are 
mirrors, the étendue of the radiation is conserved as light travels confi ned 
by them.

Note that if we took the portion of the mirrors M1 and M2 between a1 and 
a3, we would get an angle transformer with round entrance aperture a1 and 
acceptance angle 2θ, with concentric exit aperture a3 (also round) and exit 
angle 2α. This optic would fulfi ll the conservation of étendue: 2a1 sin θ = 
2a3 sin α.

The direction of the bisector to the edge rays and the angle between them 
defi ne a direction and a magnitude and, therefore, a vector. It is called the 
vector fl ux J that, at each point on the plane, points in the direction of the 
bisector to the edge rays (the same as mirrors M1 and M2 mentioned ear-
lier), with scalar magnitude � J� = 2n sin θ, when the edge rays make a mutual 
angle 2θ (such as at the aperture a1 in Figure 4.7) and the refractive index at 
the point is n. Figure 4.8 shows a source S emitting light that crosses point 
P bound by edge rays r1 and r2 making an angle 2θ to each other. The vector 
fl ux J at P points in the direction of the bisector of r1 and r2 has magnitude 
2n sin θ, where n is the refractive index at P.

The vector fl ux points in the same direction as the fl ow lines. If the fl ow 
lines are straight, the direction of the vector fl ux is the same as that of these 
lines. If the fl ow lines are curved, then the vector fl ux is tangent to the 
fl ow lines.

FIGURE 4.7
The étendue U is conserved between two fl ow lines M1 and M2 as can be seen from the fact that 
U = 2a2 = 2a3 sin α = 2a1 sin θ.

SR

SR

M1 D
R

M2

a1
a1 a2

a3

a2

2�

�

�2�

(a) (b)
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Vector Flux 121

4.2 Definition of Vector Flux

Let dΦ be the energy fl ux (energy per unit time) crossing a surface dA 
immersed in a medium with refractive index n, through an element of solid 
angle dΩ. We can then write

 dΦ = L* dU = L*n2 dA cos θ dΩ (4.1)

where dU is the étendue of the radiation and L* = L/n2, the basic radiance (or 
basic luminance  L V  *   if photometric quantities are used). Angle θ is the angle 
the normal n to dA makes with the direction t defi ned by solid angle dΩ, as 
shown in Figure 4.9.

If both n and t are unit vectors, then �t� = �n� = 1 and the dot product of 
n and t is given by

 t ⋅ n = �t� �n�cos θ = cos θ (4.2)

Therefore expression 4.1 can be written as

 dΦ = t ⋅ n L* n2 dA dΩ (4.3)

We now consider another situation in Figure 4.10 in which we again have an 
area dA that has normal n. However, now light crosses dA in two  directions, 
tX and tY. In the case of the light crossing dA within solid angle dΩX in 

FIGURE 4.8
The vector fl ux points in the direction of the bisector of the edge rays at each point. Its  magnitude 
is a function of the refractive index and the angle of the edge rays. At point P, the edge rays r1 
and r2 of the radiation emitted by a source S defi ne a vector fl ux J.

J

P

r1

r2

2�

S
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122 Introduction to Nonimaging Optics

direction tX we have tX ⋅ n > 0, which means that dΦ > 0. On the other hand, 
in the case of the light crossing dA within solid angle dΩY in direction tY we 
have tY ⋅ n < 0 and therefore dΦ < 0.

We now consider the total energy crossing an area dA per unit time. It can 
be calculated by integrating expression 4.1 over the solid angle as

 dΦ = dA  ∫       L* n2 cos θ dΩ (4.4)

Note that in this expression dΦ is a fi rst-order differential because it is 
 proportional to dA, while in expression 4.1 dΦ is a second-order  differential 
because it is proportional to the product of dA and dΩ.

FIGURE 4.9
Radiation fl ows through area dA, perpendicular to vector n, and through a solid angle dΩ in 
the direction of vector t.

t

n

n

�

dA

dΩ

FIGURE 4.10
The fl ux of the light crossing dA in direction tX is  positive because tX ⋅ n > 0, but the fl ux of the 
light crossing dA in direction tY is negative because tY ⋅ n < 0.

tY

tx

n

dA

�Y

�X

dΩX dΩY
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If the radiation distribution on dA is Lambertian (isotropic, diffuse) L, and 
therefore L* will not depend on the direction,1,2 and it can be taken out of the 
integral and we get

 dΦ = L* dA  ∫       n2 cos θ dΩ (4.5)

where this integral is calculated over all directions in which there is light. 
Defi ning now

 JN =   dΦ _____ 
L* dA

   (4.6)

it can be seen that the radiation (energy) crossing dA per unit time and per 
unit basic radiance is proportional to the integral:

 JN =   ∫       n2 cos θ dΩ =   ∫       n2 t ⋅ n dΩ (4.7)

Let us now consider n = (cos γ1, cos γ2, cos γ3), where γ1, γ2, and γ3 are the 
angles that vector n makes with the axes x1, x2, and x3, respectively. The same 
way, we can write t = (cos θ1, cos θ2, cos θ3) where θ1, θ2, and θ3 are the angles 
that vector t makes with axis x1, x2, and x3, respectively. We can then write

 t ⋅ n = (cos θ1, cos θ2, cos θ3) ⋅ (cos γ1, cos γ2, cos γ3) 

= (cos θ1 cos γ1, cos θ2 cos γ2, cos θ3 cos γ3) (4.8)

The integral of expression 4.7 can then be written in the form:3

 JN =   ∫       n2(cos θ1 cos γ1 + cos θ2 cos γ2 + cos θ3 cos γ3) dΩ (4.9)

This integral can now be written in the form:

JN = cos γ1   ∫       n2 cos θ1 dΩ + cos γ2   ∫        n2 cos θ2 dΩ + cos γ3   ∫       n2 cos θ3 dΩ (4.10)

That is,

 JN =  (   ∫       n2 cos θ1 dΩ,   ∫       n2cos θ2 dΩ,   ∫        n2 cos θ3 dΩ )  ⋅ (cos γ1, cos γ2, cos γ3) (4.11)

or

 JN = J ⋅ n (4.12)

where the vector

 J =  (   ∫       n2 cos θ1 dΩ,   ∫       n2 cos θ2 dΩ,   ∫       n2 cos θ3 dΩ )  (4.13)
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124 Introduction to Nonimaging Optics

is called the vector fl ux or the light vector.4 From Equation 4.6, we get

   dΦ ___ 
dA

   = L* J ⋅ n (4.14)

for the fl ux per unit area through an area dA with normal n. We can then 
see that J points in the direction of maximum fl ux per unit area. The vector 
fl ux can also be related to the étendue. From expression 4.14 and dΦ = L*dU 
we get

   dU ___ 
dA

   = J ⋅ n (4.15)

J being a measure of the étendue per unit area at each point, if the radiation 
in the optical system comes originally from Lambertian sources, since we 
have considered that L* does not depend on direction.5

It can then be seen from Equation 4.12 that JN is just the magnitude of the 
projection of vector J in the direction of vector n = (cos γ1, cos γ2, cos γ3) nor-
mal to surface dA.

We have seen before in Equation 3.19 that n2 cos θ3 dΩ = dp1 dp2. The same 
way, n2 cos θ1 dΩ = dp2 dp3 and n2 cos θ2 dΩ = dp1 dp3. We can then write vector 
J of expression 4.13 in the form:

 J =  (   ∫       dp2 dp3,   ∫       dp1 dp3,   ∫       dp1 dp2 )  (4.16)

For 2-D systems, the fl ux, basic radiance, and étendue are related by the 2-D 
version of expression 4.1, which is

 dΦ = L*dU = L*n da cos θ dθ (4.17)

where L* = L/n. An expression similar to Equation 4.13 can then be written 
for the 2-D case as

 J =  (   ∫       n cos θ1 dθ1,  ∫       n cos θ2 dθ2 )  (4.18)

The angles to axes x1 and x2 are defi ned as presented in Figure 4.11.
We can see from this fi gure that θ1 = θ2 + π/2 and therefore sin θ1 = cos θ2 

and sin θ2 = −cos θ1. We can then write Equation 4.18 as

 J =  (   ∫       nd(sin θ1),   ∫       nd(sin θ2) )  =  (   ∫       nd(cos θ2), −  ∫       nd(cos θ1) )  (4.19)

and therefore

 J =  (   ∫       dp2, −  ∫       dp1 )  (4.20)
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For each point on the plane, we can defi ne a vector fl ux J. This defi nes a 
 vector fi eld on the plane, as shown in Figure 4.12.

Now consider the lines that are tangent to J at each point, as in Figure 4.12a. 
We consider a point P on one of these lines, as shown in Figure 4.12b. The net 
fl ux through an element of length da on one of these lines is given by the 2-D 
version of expression 4.14 as

 dΦ = daL* J ⋅ n (4.21)

But since the line is tangent to J, the normal n to da is perpendicular to J and 
therefore J ⋅ n = 0. This means that the net fl ux dΦ through da is zero. In this 

FIGURE 4.11
Angles θ1 and θ2 of a light ray to axes x1 and x2, respectively.

�1

�2

x2

x1

FIGURE 4.12
Vector fl ux J fi eld on the plane. The net fl ux crossing a line tangent to J at each point is zero.

Lines 
tangent to J

Lines 
tangent to J

(a) (b)

Line tangent
to J

da
P

J

P n
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case, the fl ux crossing da from left to right cancels the fl ux crossing da from 
right to left, making the net fl ux crossing da zero. The fl ux is then conserved 
between two of these lines, as shown in Figure 4.12a. Since basic radiance is 
also conserved in an optical system, we can conclude from expression 4.1 that 
the étendue is also conserved between two of these lines. We have already 
seen that étendue is conserved between fl ow lines and therefore the lines 
tangent to J are the fl ow lines.

In 3-D geometry, these lines become a surface and the fl ux is conserved 
inside that surface. These surfaces are called tubes of fl ux.4

4.3 Vector Flux as a Bisector of the Edge Rays

We now calculate the direction and magnitude of the vector fl ux J at a given 
point P as a function of the directions of the edge rays crossing P. Let us then 
consider a point P on the plane and that all the radiation passing through P 
is contained between rays rA and rB, as presented in Figure 4.13.

Now consider a local coordinate system whereby the x2 axis bisects the 
edge rays rA and rB. We can then calculate J, considering that

 J =  (   ∫ 
A

  
B
  dp2, −  ∫ 

A
  

B
  dp1 )  = (pB2 − pA2, −(pB1 − pA1)) (4.22)

FIGURE 4.13
(a) When all the radiation passing through a point P is contained between two edge rays rA and 
rB, the vector fl ux J points in the direction of the bisector to rA and rB at P. (b) J has magnitude 
� J� = 2n sin θ, where 2θ is the angle that the edge rays make to each other.

rA

pA

pA2 = pB2

pB

P

J

P

pB1

pA1

x2

x1rB

n

n

−n
−n
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But since pA1 = n sin θ and pB1 = − pA1, we get

 J = (0, −n(−sin θ − sin θ)) = (0, 2n sin θ) (4.23)

It can then be concluded that J points in the direction of the bisector of the 
edge rays and has magnitude � J� = 2n sin θ. This result is in accordance with 
the fact that the lines tangent to J are fl ow lines, since these lines also bisect 
the edge rays of the radiation fi eld.

It can also be seen that, in a medium of given refractive index n(x1, x2), 
the paths of the edge rays are specifi ed by the vector fl ux J. In fact, the 
 magnitude of J gives us the angle between the edge rays at each point and 
its direction gives the orientation of these edge rays relative to the coordi-
nate system.

4.4 Vector Flux and Étendue

We now use the result obtained earlier that the vector fl ux bisects the edge 
rays and consider the relation between the vector fl ux and the étendue.

For 2-D systems, in expression 4.15 instead of an area dA, we have a length 
dc along a curve c(σ) on the plane, so that expression 4.15 can be written as

 dU = dc J ⋅ n = J ⋅ (dc n) = J ⋅ dcN (4.24)

where dcN has magnitude dc, that is �dcN� = dc, and is perpendicular ( normal) 
to the curve c(σ) on which we are calculating the étendue.

As a particular case, we take an infi nitesimal length dx1 on the x1 axis, 
the normal of which is (0, 1), and we defi ne dx1 = (0, dx1). If J = (J1, J2), from 
expression 4.24 we get dU = J ⋅ dx1 = J2dx1. Let us now suppose that we 
have radiation of half-angle θ crossing dx1 in a medium of refractive index 
n and that this radiation makes an angle φ to the horizontal, as shown in 
Figure 4.14.

We have J2 = � J� sin φ and therefore J2 = 2n sin θ sin φ and

 dU = 2n sin θ sin φ dx1  (4.25)

Since from Equation 4.20 we have

 J2 = −  ∫ 
A

  
B
  dp1 = pA1 − pB1 (4.26)

the expression for the étendue can also be written as dU = (pA1 − pB1) dx1. 
The geometrical construction in Figure 4.14 shows that this expression is 
 equivalent to Equation 4.25.
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128 Introduction to Nonimaging Optics

We now consider the general case of light crossing a curve c  parameterized 
by c(σ) on the plane. From Equation 4.24, we then have

 U =   ∫ c      J ⋅ dcN (4.27)

If this curve starts at point P1 and ends at point P2, we have seen in Chapter 3 
that the étendue is given by U = 2(G(P2) − G(P1)).

Now consider the étendue of the radiation passing between two points P1 
and P2 such that P2 = P1 + (dx1, dx2) as presented in Figure 4.15.

FIGURE 4.14
The étendue of radiation with half-angle θ tilted at an angle φ to the horizontal crossing an area 
dx1 can be obtained as dU = J2 dx1 where J2 is the x2 component of the vector fl ux.
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Vector Flux 129

Since from Equation 3.46 dU = 2dG, we have

 dU = J ⋅ dcN = J ⋅ ( −dx2, dx1) = 2dG (4.28)

where (−dx2, dx1) is a perpendicular vector to (dx1, dx2). We can then write

 − J1dx2 + J2dx1 = 2  (   ∂G ____ ∂x1
   dx1 +    ∂G ___ ∂x2

   dx2 )  (4.29)

and therefore we get

  ( 2    ∂G ___ ∂x2
   + J1 )  dx2 +  ( 2   ∂G ___ ∂x1

   − J2 )  dx1 = 0 (4.30)

Since this equation must hold for any dx1 and dx2, we must have

 J1 = −2   ∂G ___ ∂x2
   (4.31)

and

 J2 = 2   ∂G ___ ∂x1
   (4.32)

or6

 J = 2  {−   ∂G ___ ∂x2
  ,    ∂G ___ ∂x1

  }  (4.33)

The lines that are tangent to the vector fl ux J at each point are called lines of 
the vector fl ux J. From the expression 4.33, we have ±(−∂G/∂x2, ∂G/∂x1) ⋅ 
(∂G/∂x1, ∂G/∂x2) = 0 and therefore J ⋅ ∇G = 0. It can then be concluded that the 
vector fl ux J is tangent to the lines G = constant and therefore the lines of the 
vector fl ux J coincide with the lines G = constant, which are the fl ow lines.

The vector fl ux lines cannot cross. If they did cross, this would mean that at 
a given point we would have two fl ux vectors pointing in different  directions 
and this is impossible since we can only have a value of the vector fl ux vector 
at each point given by expression 4.13 in the 3-D case or expression 4.18 in 
the 2-D case.

The divergence of vector fl ux J is given by

 ∇ ⋅ J =   
∂J1 ___ ∂x1

   +   
∂J2 ___ ∂x2

   = 2  ( −  ∂G ______ ∂x1∂x2
    +   ∂G ______ ∂x2∂x1

   )  = 0 (4.34)

in a zone free from sources or attenuators.4

4.5 Vector Flux for Disk-Shaped Lambertian Sources

As examples of how to calculate the vector fl ux for a given Lambertian 
source, we consider the cases of a linear source in 2-D geometry and a disk-
shaped source in 3-D geometry.
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130 Introduction to Nonimaging Optics

We start with a 2-D linear Lambertian source extending between points 
F1 and F2. At a point P, the radiation coming from this source is contained 
between two edge rays rA and rB as presented in Figure 4.16a. This system is 
symmetrical with respect to axis x2.

Since the radiation at point P is limited by edge rays rA and rB, vector J can 
be obtained from

 J =  (   ∫ PA
  

PB
  dp2, −   ∫ PA

  
PB

   dp1 )  = (∆ p2, −∆ p1) = (pB2 − pA2, −(pB1 − pA1)) (4.35)

as can be seen from Figure 4.16b. This vector has the same magnitude and is 
perpendicular to vector:

 ∆ p = ( ∆p1, ∆p2 ) = ( pB1 − pA1, pB2 − pA2 ) = pB − pA (4.36)

as can be seen from Figure 4.16c. Vector ∆p can also be written as

 ∆p =  (   ∫ PA
  

PB
    dp1,   ∫ PA

  
PB

    dp2 )  (4.37)

FIGURE 4.16
The vector fl ux J produced by a linear Lambertian source between points F1 and F2 at point P 
has a magnitude � J � = 2n sin θ and points in the direction of the bisector of angle 2θ defi ned by 
point P and the edges F1 and F2 of the source.
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From Figure 4.16b, it can be seen that

 �∆p� = 2n sin θ (4.38)

and therefore

 � J � = 2n sin θ (4.39)

where vector J points in the direction of the bisector of pA and pB since it is 
perpendicular to ∆p.

The vector fl ux J at point P then points in the direction of the bisector of the 
edge rays rA and rB of the Lambertian source F1F2, as presented in Figure 4.16a. 
Therefore the lines of fl ow of the geometrical vector fl ux J (these lines are 
tangent at each point to the direction of J) are hyperbolas with foci F1 and 
F2.5,7,8 These lines shown in Figure 4.17b bisect at each point of the plane the 
edge rays of the source F1F2, that is, they bisect at each point in the plane the 
rays coming from the edges F1 and F2 of the source.

Now consider the étendue from source F1F2 to a line defi ned by point P 
and its symmetrical Q as shown in Figure 4.17a. If P = (xP1, xP2) then Q = 
(−xP1, xP2) and the étendue from F1F2 to QP is U(Q, P). In this case, we have 
U = 4G from Equation 3.50 and from Equation 4.33, we get

 J =   1 __ 2    {−   ∂U ___ ∂x2
   ,   ∂U ___ ∂x1

  }  (4.40)

which gives us the vector fl ux J at point P.

FIGURE 4.17
A Lambertian source F1F2 produces at a point P a vector fl ux J pointing in the direction of the 
bisector of the edge rays rA and rB of the source (a). The lines of fl ow of the geometrical vector 
fl ux J are therefore shaped as hyperbolas having foci F1 and F2 (b).

F1 F2

F1 F2

rA

rB

d−d

�B�A

pB

pA

PQ
p1

x2

x1

p2

xP2

xP1

n

n

(a) (b)

CRC_54295_CH004.indd   131CRC_54295_CH004.indd   131 4/3/2008   9:32:26 AM4/3/2008   9:32:26 AM



132 Introduction to Nonimaging Optics

The étendue from a source F1F2 to a line PQ (where Q is symmetrical to P 
respect to the x2 axis) is given as

 U = 2n ( [P, F1] − [P, F2] )  (4.41)

where [X, Y] is the distance between points X and Y. If P = (xP1, xP2) and 
F1 = (−d, 0) and F2 = (d, 0), we have P − F1 = (xP1 + d, xP2) and P − F2 = 
(xP1 − d, xP2). We have then

 U = 2n (   √ 
______________

   ( xP1 + d ) 2  +  x P2  
2
     −   √ 

______________
   (xP1 − d) 2  +  x P2  

2
     )  (4.42)

Since this optical system is symmetrical respect to axis x2, using expres-
sion 4.40 and calculating the derivatives of U given by expression 4.42 we 
obtain the components of J given by

J1 = n  (   
xP2 _______________  

  √ 
______________

   (xP1 − d) 2  +  x P2  
2
    
   −   

xP2 _______________  
  √ 

______________
   (xP1 + d) 2  +  x P2  

2
    
   )  = n  (   

xP2 _____ 
[P, F2]

   −   
xP2

 _____ 
[P, F1]

   )   
(4.43)

J2 = n (   xP1 + d
 ______________  

  √ 
______________

   (xP1 + d) 2  +  x P2  
2
    
   −   

xP1 − d
 ______________  

  √ 
______________

   (xP1 − d) 2  +  x P2  
2
    
   )  = n (   xP1 + d

 _______ 
[P, F1]

   −   
xP1 − d

 _______ 
[P, F2]

   )  
or

 J1 = n sin αB − n sin αA = pB2 − pA2 

 J2 = n cos αA − n cos αB = pA1 − pB1 
(4.44)

which is the same as expression 4.35. From expression 4.41 for the étendue, 
it can also be seen that

 U = constant ⇒ [ P, F1 ] − [ P, F2 ] = constant (4.45)

This condition defi nes hyperbolas having foci F1 and F2. Considering a 
 constant étendue, points P and Q must lie along the hyperbolas correspond-
ing to the lines of fl ow of the vector fl ux.

Let us now suppose that the system considered earlier is 3-D with 
 rotational symmetry around the axis x3. Let us consider the étendue from a 
circular source A1 to a circular surface with radius ρ placed at a distance h as 
in  Figure 4.18.

As can be observed from Figure 4.18a, a variation dρ in ρ coordinate 
 corresponds to a circular strip of radius ρ and width dρ having, therefore, an 
area dA = 2πρdρ. From expression 4.15, we get

 dU = 2πρdρJ3 (4.46)

and therefore

 J3 =   1 ____ 2πρ     ∂U ___ ∂ρ   (4.47)
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A variation dh in the distance between the source A1 and the surface 
of radius ρ as shown in Figure 4.18b leads to a variation in the étendue 
given by

 dU = −2πρdhJρ (4.48)

and therefore

 Jρ = −   1 ____ 2πρ     ∂U ___ ∂h
   (4.49)

Note that now the variation dU in the étendue is negative, since the new 
surface of radius ρ obtained by variation dh is now further away from the 
source. The étendue passing through it is then smaller than before. This can 
also be seen as a fl ux decrease, since we have dΦ = L*dU.

The étendue from a source A1 and radius d to a surface of radius ρ placed at 
a distance h has already been calculated and is given by Equation 3.91 as

 U =   π
2
 ___ 4     (   √ 

____________
   ( ρ − d) 2  + h2   −   √ 

____________
  ( ρ + d)2 + h2   )  2  (4.50)

The components of J can now be obtained by8

 J3 =   1 ____ 2πρ     ∂U ___ ∂ρ   =   π __ 2    (   d2 − ρ2 − h2

  _____________________  
  √ 

_____________________
   (d2 + ρ2 + h2) 2  − 4d2ρ2  
   + 1 )  (4.51)

and

 Jρ = −  1 ____ 2πρ     ∂U ___ ∂h
   =   π  __ 2     h __ ρ    (   d2 + ρ2 + h2

  _____________________  
  √ 

_____________________
  (d2 + ρ2 + h2)2 − 4d2ρ2  
    − 1 )  (4.52)

FIGURE 4.18
The étendue from a circular source A1 to a circular surface with radius ρ and placed at a 
 distance h. Variations in the coordinates ρ and h enable us to relate the components Jρ and J3 of 
vector fl ux J with the corresponding variations of étendue.
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134 Introduction to Nonimaging Optics

4.6 Design of Concentrators Using the Vector Flux

The vector fl ux can be used as a tool to obtain ideal concentrators. The 
design method involves placing mirrors along the lines of fl ow of vector 
fl ux J,7,8 which as we have seen, correspond to the fl ow lines. These mirrors 
do not change the radiation pattern and, therefore, do not change the vector 
fi eld of J.

This result can now be applied to the design of concentrators. We have 
seen already that a linear fl at source generates a trumpet concentrator, whose 
 mirrors are hyperbolic. With hyperbolas, nonetheless, it is not  possible to 
obtain a compound parabolic concentrator (CPC) as a shape that does not 
disturb the fi eld J since the CPC  consists of two parabolic arcs and we only 
have hyperbolic lines of fl ow of J available. A parabola can be obtained in the 
limiting case of a hyperbola when one of its foci moves to infi nity. Let us then 
consider Figure 4.17. Lines of fl ow of J shaped as parabolas can be obtained 
by keeping, for example, F2 fi xed and allowing F1 to go to infi nity along line 
F1F2. The Lambertian source then tends to become a straight line starting at 
F2 and extending horizontally to infi nity. The corresponding lines of fl ow of 
J are parabolas with focus F2 and horizontal axis as presented in Figure 4.19. 
Again the vector fl ux J points in the direction of the bisector of the edge rays 
rA and rB of the source.

It is now possible to combine two parabolas to form a CPC. Two parabolas 
can be obtained from two semi-infi nite straight lines. Since in a CPC the two 
parabolic arcs make an angle to the vertical, also the two straight lines must 
make an angle to the vertical. Figure 4.20 presents one such possibility. Here, 
a Lambertian source F2F1F3 is used, where points F1 and F3 are considered to 
be at an infi nite distance.

The visible shape of the source is different for the points in zones 1 and 2 
and therefore vector J is calculated in a different manner in these two zones. 
For points P in the right-zone 1, only the source F1F3 is visible, that is, the 
 visible edges of the source are F1 and F3 (note that F3 is a point placed at 
an infi nite distance). Therefore, the edge rays of the source in a point P of 

FIGURE 4.19
A source shaped as a straight line starting at F2 and extending to infi nity produces lines of 
fl ow of J shaped as parabolas with focus F2 and axis coincident with the straight line. Again the 
 vector fl ux J points in the direction of the bisector of edge rays rA and rB of the source.
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Vector Flux 135

zone 1 on the right side are r1 and r2. Vector fl ux J points in the direction of 
the  bisector to r1 and r2 and the lines of J are parabolas with focus F1 and 
axis parallel to r2 as can be observed in Figure 4.20a. In zone 1 on the left 
side, the lines of J are symmetrical. In zone 2 a source F2F3 is visible, that is, 
the edges of the visible source are F2 and F3. Vector J at a point Q of zone 2 
must then point in the direction of the bisector to the edge rays of the source 
r3 and r2. Therefore, the lines of J in this area are vertical. The lines of J 
generated by a Lambertian source F2F1F3 must then be shaped according to 
what is  represented in Figure 4.20b. The parabolic mirrors AC and BD form 
a CPC concentrator with a half-acceptance angle θ and an inverted V rec eiver 
AF1B.

A CPC for a straight receiver can also be obtained. Truncating the 
 Lambertinan source F2F1F3 at AB, we get the result presented in Figure 4.21.7 
Also in here the space must be divided into several different zones to  analyze 
the shape of the lines of fl ow of J in each one of them. In zone 1, only the 
source BF3 is visible (remember that F3 is placed at an infi nite  distance) and 
therefore in here the lines of J are parabolas with focus B and axis  parallel to 
F3B. In zone 2, a source ABF3 is visible. The Lambertian source ABF3 in these 
points behaves as an equivalent source shaped as a straight line with origin 
at A and parallel to BF3. Therefore, in here, the lines of fl ux of J are parabolas 
with focus A and axis parallel to BF3. From zone 3, a lambertian source F2F3 
is visible and it behaves as an infi nite V-shaped source, therefore making the 
lines of fl ow vertical. Finally, in zone 4, only the segment of a straight line AB 
is visible and therefore here the lines of fl ow are shaped as hyperbolas with 

FIGURE 4.20
Combination of two Lambertian sources shaped as semi-infi nite straight lines starting at F1 
and extending toward F2 and F3 (at an infi nite distance).
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136 Introduction to Nonimaging Optics

foci at A and B. The lines of vector fl ux J from points A to C and B to D form 
a CPC with half-acceptance angle θ and concentrating onto AB the radiation 
falling on CD.

To obtain other types of nonimaging devices using the geometrical vector 
fl ux, we may need to introduce Lambertian absorbers, which act as sinks for J, 
in addition to Lambertian radiators that act as sources of J. That is the case, 
for example, of the compound elliptical concentrator (CEC).9

4.7 Examples

The examples presented use expressions for the curves and functions that 
are derived in Chapter 17.

Example 1

Calculate the vector fl ux at point P = (0.5, 0.35) created by a linear 
 Lambertian source between points A = (−0.5, 0) and B = (0.5, 0)  emitting 
in air.

Angle 2θ between the lines AP and BP is given by

θ = ang( A − P, B − P)/2 = 35.355°

as shown in Figure 4.22.

FIGURE 4.21
Cutting the Lambertian source between points A and B in Figure 4.20, it is possible to obtain 
a pattern of lines of fl ow of J defi ning a CPC, placing mirrors along the parts BD and AC of 
those lines of fl ow.
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The vector fl ux at point P = (0.5, 0.35) is given by

J = 2 sin θ nrm(nrm(P − A) + nrm(P − B)) = (0.66965, 0.943858)

since the refractive index for air is n = 1.

Example 2

Calculate the vector fl ux at point P = (1, 1.5) inside a CPC for an accep-
tance angle of α = 30°, a small aperture of length 2 centered at the origin 
and made of a material of refractive index n = 1.5.

FIGURE 4.23
Flow lines inside a CPC and vector fl ux J at a point P.
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138 Introduction to Nonimaging Optics

The fl ow lines inside a CPC, as shown in Figure 4.23, are hyperbolas 
with foci A and B in the triangle AIB, parabolas with focus A and axis 
parallel to r1 in the area to the right of DIB and vertical straight lines in 
the area above line CID. Flow lines are symmetrical relative to axis x2, 
which is the perpendicular bisector of AB and CD.

The small aperture of the CPC is bounded by points A = (− 1, 0) and 
B = (1, 0). At point P, one of the edge rays as direction AP and the other 
is parallel to r1, that is, to direction (cos(π/2 + α), sin(π/2 + α)) = (−sin α, 
cos α). These two edge rays make an angle 2θ to each other. Angle θ is 
given by

θ = ang(P − A, (−sin α, cos α))/2 = 41.56°

And vector J is given by

J = 2n sin θ nrm(nrm( P − A) + (−sin α, cos α)) = (0.398825, 1.94984)

since the CPC is made of material with refractive index n = 1.5.
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5
Combination of Primaries 
with Flow-Line Secondaries

5.1 Introduction

Heat engines are one of the means that generate electricity from a heat 
source. The effi ciency of these engines increases with the temperature of 
the source, which means that, for high effi ciency, we need high tempera-
tures. Solar energy is a clean, renewable source of energy that can generate 
high heat if highly concentrated. Another possible way to generate clean 
electricity is by using solar cells. They are, however, expensive and it may 
be interesting to replace a large cell by a large optic combined with a small, 
highly effi cient and less-expensive solar cell. This again means a high con-
centration of solar radiation. These are just two examples of application for 
a high concentration of radiation with a small angular aperture (such as 
sunlight).

Nonimaging concentrators, such as the compound parabolic concentrator 
(CPC), are ideal (in 2-D) for the concentration of radiation. For small accep-
tance angles, however, they become very tall and that makes them imprac-
tical. Imaging optics such as lenses or parabolic mirrors are much more 
compact but they cannot achieve high concentrations that nonimaging optics 
can deliver. It is then interesting to combine them into primary–secondary 
systems in which at the focus of the imaging primary we have a nonimaging 
secondary that boosts concentration. Further refi nements can also be made 
in these optics: changing the shape of the primary to improve the effi ciency 
or compactness.

Figure 5.1 presents the geometry of a parabolic mirror.1,2

This device concentrates the radiation arriving with an angular aperture θ 
and falling on P1P2 onto a focal zone of (approximate) width R = 2D sin θ/
cos φ, where D is the distance between the focus of the mirror and edge P1. 
Considering that [P1, P2] = 2D sin φ, where φ is the rim angle of the parabolic 
mirror, the maximum concentration is

 C =   
2D sin φ

 ____________  
2D sin θ/cos φ   =   1 __ 2     

 2 sin φ cos φ
 ___________ sin θ   =   1 __ 2      

sin (2φ)
 _______ sin θ   (5.1)

The maximum concentration can be obtained for φ = π/4:

 Cmax =   1 __ 2     1 _____ sin θ   (5.2)
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140 Introduction to Nonimaging Optics

which is half of the maximum ideal concentration. If a 3-D parabolic mirror 
is considered, the maximum concentration is Cmax 3-D = 1/(4 sin2 θ), which 
corresponds to one-fourth of the ideal concentration. Actually, the concentra-
tion a parabolic mirror can attain is slightly higher if we displace the receiver 
from the focal plane slightly toward the parabolic mirror. The improvement, 
however, is negligible, especially for small angles (θ). The minimum size 
spot will be calculated in Section 5.3 when we combine a parabolic mirror 
with a CEC secondary. The concentration that can be obtained, both in 2-D 
and 3-D cases, is much lower than the ideal maximum. Similar conclusions 
can be reached for converging lenses.

Parabolic mirrors may be combined with kaleidoscope secondaries to 
 produce a uniform fl ux distribution on the receiver.3,4

In the case of circular receivers, the concentration produced by a parabolic 
primary is also lower than the ideal maximum. Figure 5.2 shows the geom-
etry for this case.5

The radius of the circular receiver is R = D sin θ and the maximum 
 concentration is

 C =   
2D sin φ

 _________ 2πD sin θ   =   
sin φ

 ______ π sin θ   (5.3)

The maximum is obtained for φ = π/2:

 Cmax =   1 ______ π sin θ   (5.4)

which is 1/π of the maximum ideal concentration.
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FIGURE 5.1
A parabolic mirror with a fl at receiver falls 
short of the maximum concentration.

FIGURE 5.2
A parabolic mirror with a circular re -
ceiver falls short of the maximum limit 
of concentration.
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Combination of Primaries with Flow-Line Secondaries 141

5.2 Reshaping the Receiver

One way to increase the concentration of a parabolic primary is to reshape 
the receiver to better fi t all the edge rays refl ected by the mirror, as shown in 
Figure 5.3,6 which shows a bundle of edge rays tilted by an angle θ to the left, 
then refl ected off the parabolic mirror.

The edges E1 and E2 of the receiver are at the intersection of edge rays r1 
and r2 with the axis of symmetry of the parabola. From there, we design 
straight sections tangent to the envelope (caustic) of the edge rays. The receiver 
we obtain captures all the rays refl ected off the primary, and is smaller than 
what a circular receiver would need to be to do the same.

To calculate the shape of the receiver, we fi rst calculate the positions of 
E1 and E2 and then, from the equation of the caustic curve, we determine 
the points whose tangents go through these points. For this, however, we 
need to know the shape of the caustic curve. A caustic is the envelope of a 
one-parameter family of light rays. The envelope of a one-parameter family 
of curves is a curve that is tangent to every curve of the family. Also, each 
member of the family is tangent to the envelope. In general, a one-parameter 
family of curves is defi ned in parametric form by

 ( f(t, φ), g(t, φ)) (5.5)

where φ is the parameter of the family and t the parameter of each curve. 
This means that, for a particular value of φ, we have a curve parameterized 
by ( fφ(t), gφ(t)) in parameter t. The envelope can be calculated by solving

   
∂f

 __ 
∂t

     
∂g

 ___ 
∂φ    –    

∂f
 ___ ∂φ     
∂g

 ___ ∂t   = 0 (5.6)

FIGURE 5.3
The receiver of a parabolic mirror can be reshaped to better fi t the ray envelope formed by the 
primary and to increase the concentration.
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142 Introduction to Nonimaging Optics

By giving a value to φ, Equation 5.6 enables us to calculate the correspond-
ing value of t. Or, if we give a value to t, it enables us to obtain φ. Intro-
ducing then the pair (t, φ) into ( f(t, φ), g(t, φ)), we obtain a point on the 
envelope.7

An alternative way of calculating the caustic is to describe the one-parameter 
family of curves implicitly by

 C(x1,  x2,  φ) = 0 (5.7)

where again φ is the parameter of the family. For a particular value of φ, we 
get an expression, Cφ(x1, x2) = 0, which implicitly defi nes one curve. The enve-
lope of this family of curves in this case is given by simultaneously solving

   ∂C ___ 
∂φ   = 0 

 C(x1,  x2,  φ) = 0 
(5.8)

If we give a value to, for example, φ, we can use Equations 5.8 to calculate the 
corresponding value of (x1, x2), which is the point on the envelope.7–9

Then we can solve one of these preceding equations to, for example, φ, 
obtain φ(x1, x2). Inserting this result into the other equation gives an expres-
sion of the form C*(x1, x2) = 0. Giving now a value to, for example, x1, we 
can calculate the corresponding value of x2. Again (x1, x2) is a point on the 
envelope.

We may now use these expressions to calculate the caustic of a family 
of parallel light rays after being refl ected by a parabolic mirror. In this 
case, the family of curves is a family of straight lines, because light rays 
travel straight (in a homogeneous medium). The caustic is the envelope 
of this bundle of straight lines (rays). Figure 5.4 shows a parabola with a 
 horizontal axis and a bundle of parallel rays tilted by an angle θ to the 
horizontal. After refl ection, these rays form a caustic around the focus F of 
the parabola.

We may now fi nd a parameterization for the family of parallel rays after 
refl ection on the parabola. Figure 5.5 shows a light ray (dashed line) traveling 
parallel to the axis of the parabola. It is refl ected at a point P toward a focus 
F = (0, 0). Another ray, traveling at an angle θ to the axis, is also refl ected at 
P in a direction tangent to the caustic. The latter ray can be parameterized 
after refl ection as

 P − tR(−θ) ⋅ P (5.9)

where R(−θ) is a rotation matrix of the angle −θ.
Point P is given by (see chapter 17)

 P = (P1, P2) =   2d _________ 1 − cos φ   (cos φ, sin φ) (5.10)
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Combination of Primaries with Flow-Line Secondaries 143

where d is the distance between the vertex V and the focus F of the parabola. 
Then, for the parameterization of the ray we get

   2d _________ 1 − cos φ   (cos φ − t cos (φ − θ), sin φ − t sin (φ − θ)) (5.11)

For each value of φ (each point P along the parabola), we have a ray with 
the parameter t defi ned by this expression. It then defi nes a one-parameter 
 family of rays with the parameter φ. We can now calculate

   
∂f

 __ ∂t
     
∂g

 ___ ∂φ   −   
∂f

 ___ ∂φ     
∂g

 ___ ∂t   = d2 csc5 (   φ __ 2   )   ( sin  ( θ −   
φ

 __ 2   )  − t sin  (   φ __ 2   )  )  = 0 (5.12)

Solving for t we have

 t = csc  (   φ __ 2   )  sin  (   φ __ 2   − θ )  (5.13)

Inserting 5.13 into expression 5.11, we can calculate the points of the involute 
as a function of φ. For a given θ, the involute is then

C(φ, θ) =   d __ 2   csc3 (   φ __ 
2
   )   ( sin  ( 2θ −   

3φ ___ 2   )  + sin  (   3φ ___ 2   ) ,   
    cos  ( 2θ −   

3φ ___ 2   )  − cos  (   3φ ___ 2   )  )  (5.14)

An other possible way to calculate the involute is giving the bundle of rays 
in an implicit form, such as expression 5.7. A straight line is given by an 
expression of the form x2 = ax1 + b. As shown in Figure 5.5, after refl ection 
at point P, the light ray makes an angle φ − θ to the x1 axis and we have 

FIGURE 5.4
A caustic of a bundle of parallel rays tilted 
by an angle θ after being refl ected by a 
 parabolic mirror with horizontal axis.
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144 Introduction to Nonimaging Optics

a = tan(φ − θ). Also, the ray must go through point P and we can write 
P2 = aP1 + b, where P is given by expression 5.10, giving us b. Then in this 
case we get

 C(x1, x2, φ) = ax1 + b − x2 = 0 (5.15)

or

   
x2 − 2d sin φ + x1 tan (θ − φ) − (x2 + (2d + x1) tan (θ − φ)) cos φ        _________________________________________________________    cos φ − 1   = 0 (5.16)

This can also be written as

 x2 =    
 −2d sin φ + (x1 − (2d + x1) cos φ) tan (θ − φ)   

    ________________________________________   cos φ − 1   (5.17)

Since θ and d are given, expression 5.17 defi nes implicitly a straight line defi n-
ing a ray after refl ection by the parabola for each value of φ. For the points of 
the caustic we also have

   ∂C ___ ∂φ   =      
−2 sec2(θ − φ)sin(φ/2)    

   ______________________  
(cos φ − 1)2    (d sin(2θ − 3φ/2) 

+ sin(φ/2)(d − x1 + (2d + x1)cos φ)) = 0 (5.18)

which can also be written as

 x1 =   d __ 2   csc3  (   φ __ 2   )   ( sin  ( 2θ −   
3φ ___ 2   )  + sin  (   3φ ___ 2   )  )  (5.19)

Inserting this into expression 5.17 gives the corresponding x2 coordinate for 
the point of the caustic, which can now be written as in expression 5.14.

The points of a parabola with a horizontal axis and a focus at the origin are 
given by expression 5.10 (Figure 5.6). Horizontal parallel rays such as r1 and 
r2 are focused to F. The distance d between the vertex V and the focus F is just 
a scale factor in the equation of the parabola. Points P1 and P2 at the edges are 
obtained for φ = φ1 = π − φ and φ = φ2 = π + φ, respectively.

FIGURE 5.6
A parabola with horizontal axis and focus at the origin.
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Combination of Primaries with Flow-Line Secondaries 145

We can replace the parameter φ by another parameter α, such that φ = π + α, 
with −φ ≤ α ≤ φ as the new parameter range for the parabola. The caustic as 
a function of this new parameter is

 C(α, θ) =   d __ 2   sec3 (   α __ 2   )   ( cos  (   3α ___ 2   − 2θ )  − cos  (   3α ___ 2   ) , sin  (   3α ___ 2   − 2θ )  − sin  (   3α ___ 2   )  )  (5.20)

and C(α, θ) is symmetrical to C(−α, −θ) in relative to the x1 axis.

5.3 Compound Elliptical Concentrator Secondary

Two rays r1 and r2 parallel to the axis of a parabola are concentrated onto its 
focus F. We now consider another two rays r3 and r4 making an angle θ to the 
axis of the parabola, as shown in Figure 5.7. After refl ection, they intersect at 
a point X of the intersection of the straight lines passing through points P1 
and P2 with the directions of rays r3 and r4 after refl ection. It is given by

 X =   d ____________  
cos φ + cos2 φ

   (−2 sin2 θ, sin 2θ) (5.21)

The parabolic mirror P1P2 can be considered as a linear Lambertian source 
emitting toward the receiver XY, where Y is symmetrical to X relative to the 
axis x1. It is represented as a dashed line P1P2 in Figure 5.8. This approxima-
tion is not exact. If we had a Lambertian source P1P2 emitting towards XY, 
from midpoint M, we would have two edge rays headed toward X and Y. 
What we have instead are two rays r1 and r2 refl ected at the vertex V of the 
parabolic mirror that do not cross XY at the edges.

FIGURE 5.7
The rays r3 and r4 making an angle θ to the 
axis of the parabola intersect at a point X.
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146 Introduction to Nonimaging Optics

That same mismatch can be seen when we calculate the étendues. The 
étendue received by the parabolic mirror is

 UP = 2[P1, P2] sin θ = 8d sin θ tan  (   φ __ 2   )  (5.22)

whereas the étendue emitted by a Lambertian source P1P2 toward a receiver 
XY is given by

 ULS = 2([P2, X] − [X, P1]) =   
UP _____ cos φ   (5.23)

Since ULS is larger than UP, the concentration we can achieve by approximat-
ing the parabola by a Lambertian source is less than the ideal.

To the parabolic primary, we may now add a compound elliptical concen-
trator (CEC) secondary with an entrance aperture between X and its sym-
metry Y and with a receiver R, as shown in Figure 5.9. The CEC is an ideal 
concentrator for a Lambertian source P1P2.10–13

If we want maximum concentration on the receiver, it must be illuminated 
by radiation with an angular aperture ±π/2. The receiver size R then fulfi lls 
ULS = 2R sin(π/2), or R = ULS/2, and the concentration C the device achieves is

 C =   
[P1, P2] _______ R   =   

cos φ
 _____ 

sin θ   (5.24)

The maximum possible concentration for an optic with a total acceptance 
angle 2θ is Cmax = 1/sin θ. For this optic, the ratio CR between its concentra-
tion and the maximum possible is then

 CR =   C ____ Cmax
   = cos φ (5.25)

which is also the mismatch in étendues between UP and ULS.
If there was no shading of the primary by the secondary, the smaller the φ 

was, the closer the concentration would be to the theoretical maximum. For 
example, for the concentration to be 90% of the theoretical maximum, we 
should have φ = arc cos(0.9) = 26°.

FIGURE 5.9
A parabolic primary and a CEC secondary.
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An optimistic approximation of the shading of the primary by the secondary 
can be obtained by (note that the CEC is wider than [X, Y])

 SH =   
[X, Y]

 _______ 
[P1, P2]

   =   sin 2θ ______ sin 2φ   (5.26)

which increases as φ decreases. Therefore, for smaller values of φ we not only 
have increased  concentration, but also increased shading. The illuminated 
 portion of the primary (not shaded) is given by

 IL = 1 − SH (5.27)

The geometrical concentration that the CEC can provide is given by [P1, P2]/R, 
but the light concentration is affected by the loss mechanism (shading) men-
tioned previously. It is then approximately given by

 C =   
[P1, P2] _______ R   IL = cos φ csc θ − cos θ csc φ (5.28)

It will be maximum when its derivative is zero and that means, for a given 
value of θ
   dC ___ 

dφ   = 0 ⇔ cos θ cot φ csc φ − csc θ sin φ = 0 (5.29)

Solving for φ we get the value φmax for maximum concentration as a function 
of the acceptance angle θ:

 φmax = cot−1  (   2 × 31/3 cot θ − 21/3 ξ 2/3 tan θ   _________________________  62/3 ξ 1/3   )  (5.30)

where

 ξ = −9 cot2 θ csc2 θ +  √ 
________________________

  12 cot6 θ + 81 cot4 θ csc4 θ   (5.31)

For each value of θ, these expressions tell us the value for the rim angle of the 
primary for maximum concentration.

For example, for an acceptance angle of ±1º, we get a rim angle for the pri-
mary of φmax = 14.86º, a concentration of C = 51.5, and a ratio to the  maximum 
concentration of C/(1/sin θ) = 90%. Figure 5.10 shows a parabolic primary 
and a CEC secondary for these parameters.

The parabolic primary may be replaced by a lens, resulting in another 
 primary-secondary optic as shown in Figure 5.11.14,15

FIGURE 5.10
A parabolic primary and a CEC secondary 
designed for maximum concentration.
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148 Introduction to Nonimaging Optics

5.4 Truncated Trumpet Secondary

Another way to increase the concentration of a parabolic primary is to add a 
trumpet secondary. Also in this case, we approximate the parabolic primary 
by a Lambertian source, P1P2, emitting toward XY, just as we did for the CEC 
secondary. The trumpet is composed of two hyperbolic branches with foci 
X and Y as shown in Figure 5.12. The complete trumpet extends all the way 
from the receiver to the primary completely shading it. The fi gure also shows 
the corresponding CEC as a comparison. Both the complete trumpet and the 
CEC are ideal for the Lambertian source P1P2, and therefore, the receiver size 
R is same in both the cases.16–18

The working principle of the trumpet is as shown in Figure 5.13. Light 
emitted by the Lambertian source P1P2 toward XY bounces back and forth 
between the refl ectors of the trumpet until it reaches the receiver R. An edge 
ray r headed toward focus X of the hyperbola is refl ected toward the other 
focus Y. In contrast, an edge ray headed toward the focus Y of the hyperbola 
is refl ected toward the other focus X.

As the complete trumpet totally shades the primary mirror, it must be 
truncated to be usable.19 The truncated trumpet will not capture some of the 
light refl ected by the primary, and will still shade it. For example, if we trun-
cate to the right of point Kr in Figure 5.13, the ray r will not be captured. 
Figure 5.14 shows a truncated trumpet. The light losses by the top hyperbola 
branch for a Lambertian source emitting from P1P2 to XY are given by the 
étendue from P1T to XK as

 ULT = [T, X] − [T, K] + [P1, K] − [P1, X] (5.32)

where T is at the intersection of the straight lines through P1P2 and XK and 
where the subscript L stands for Lost and T for Top.

FIGURE 5.12
Comparison of CEC and trumpet secondaries for the same primary parabolic mirror.
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If the trumpet was truncated to the right of point J, so that point K was also 
to the right of J, point T would be outside the source P1P2. In that case, the 
lost étendue for the top hyperbola branch would be the one from P1P2 to XK 
given by the same expression as ULT, only replacing T by P2. The fraction of 
the étendue lost by the secondary relative to what a Lambertian source P1P2 
would emit is then UL/ULS and the fraction captured is

 cU = 1 − UL/ULS (5.33)

The other loss of light comes from shading, which is given by

 SH =   
[K, L]

 _______ 
[P1, P2]

   (5.34)

Point L is symmetrical relative to point K. The illuminated portion of the 
primary is then given by

 IL = 1 − SH (5.35)

The geometrical concentration the trumpet can provide is given by [P1, P2]/R, 
but the light concentration is affected by the two loss mechanisms mentioned 
previously. It is then approximately given by

 C =   
[P1, P2] _______ R   IL cU =   

cos φ
 _____ sin θ   IL cU (5.36)

FIGURE 5.13
Working principle of the trumpet secondary.
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150 Introduction to Nonimaging Optics

If the hyperbola is parameterized by the parameter φ as in Figure 5.15, for a given 
acceptance angle θ, concentration C can now be obtained as a function of the rim 
angle φ of the primary and the parameter φ of the hyperbola for point K.

The hyperbola (and therefore point K) can be parameterized as

 K(φ) =   
R2 − f 2

 ____________  
2R − 2f cos φ   (cos (φ + π/2), sin (φ + π/2)) + Y (5.37)

where R is the receiver size given by R = ULS/2 and f = [X, Y].
The geometry of the system is defi ned by angles θ, φ, and φ. Parameter d 

appearing in the equation of the parabolic primary (expression 5.10) is only a 
scale factor that does not affect the relative sizes.

If we defi ne the acceptance angle θ, and the rim angle φ for the primary, we 
can plot C as a function of φ, which defi nes the truncation of the primary. This 
curve has a maximum for a given value of φ. By trying different values of φ, we 
can optimize the design. Alternatively, we can give a value to θ and numerically 
search for the maximum of C(φ, φ). For θ = 1°, for example, this maximization 
yields C = 43.2 for φ = 61.9° and φ = 19.4°. This concentration corresponds to 
C sin θ = 75.5% of the maximum. For the amount of light striking the receiver 
we get ILcU = 80%. Ray tracing with the parabolic  primary shows 79% of light 
striking the receiver. Figure 5.16 shows a parabolic primary and a trumpet con-
centrator for these parameters, that is, for maximum concentration.

5.5 Trumpet Secondary for a Large Receiver

Another way to designing the trumpet secondary is to do it for a larger receiver 
RL as shown in Figure 5.17. The hyperbola still has foci X and Y but now inter-
sects line XY further away from its center as needed for a larger receiver.

FIGURE 5.15
Parametric defi nition of the trumpet 
hyperbola.
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FIGURE 5.16
A parabolic primary and a truncated  trumpet sec-
ondary designed for maximum concentration.
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Now the upper branch of the hyperbola intersects line XP1 at point H 
instead of at point P1 as in Figure 5.13. The trumpet, therefore, intersects all 
the light emitted by the Lambertian source P1P2 and no light is lost. Concen-
tration, however, will be smaller because receiver RL is now larger.

The working principle is still the same as discussed earlier. An edge ray r 
headed toward focus X of the hyperbola is refl ected toward the other focus 
Y. However, an edge ray headed toward focus Y of the hyperbola is refl ected 
toward the other focus X. Edge rays keep bouncing back and forth between 
the hyperbola branches until they reach the receiver.

We may start the design by defi ning point H along the line P1X as H = P1 + 
y(X − P1), where 0 ≤ y ≤ 1. The shading produced on the primary is

 SH =   
[H, I]

 _______ 
[P1, P2]

   = 1 − y +   
y csc φ sec φ sin (2θ)

  __________________ 
2d

   (5.38)

where I is symmetrical to H. The receiver size is given by

 RL = [Y, H] − [X, H] (5.39)

And the concentration is approximately given by

 C =   
[P1, P2] _______ RL

   IL (5.40)

where IL = 1 − SH is the portion of the primary that is illuminated. Concen-
tration C is a function of parameter y defi ning the position of H along the line 
P1X and the rim angle φ of the primary. For a half-acceptance angle θ = 1° 
and d = 1, we have C = 35.4 for y = 0.86 and φ = 26.7°. The illuminated por-
tion of the primary is in this case IL = 82%. The ratio to the maximum pos-
sible concentration is C sin θ = 62%. Figure 5.18 shows a parabolic primary 
and a trumpet for a large absorber, designed with these parameters.

FIGURE 5.17
Trumpet for a larger receiver RL.
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152 Introduction to Nonimaging Optics

5.6 Secondaries with Multiple Entry Apertures

CEC secondaries attain higher concentration when the rim angle φ of the 
primary is small. This, however, leads to parabolic primaries with a long focal 
distance, and therefore, concentrators that are quite long. This is, however, 
precisely what we are trying to avoid by going from simple CPCs to pri-
mary–secondary arrangements. One possible way around this problem is 
to divide the primary and secondary into sections and have each section of 
the secondary collect the light from one section of the primary.20 Figure 5.19 
shows one such arrangement with an acceptance angle 2θ.

The primary is made of two parabolic sections P1P2 and P3P4 with a hori-
zontal axis and foci at F1 and F2, respectively. The secondary is a combina-
tion of two CECs with the receiver G2G3. The top CEC is made of a top 
ellipse with foci P2 and G3, a hyperbola with foci G1 and G3 and a bottom 
ellipse with foci P1 and G1. The bottom CEC is symmetrical relative to the 
top one.

In this concentrator, each one of the CECs collects light from a primary 
subtending a small angle φ, whereas the whole primary subtends a total 
angle Φ. 

This kind of devices has been proposed with combinations of larger num-
ber of divisions for the primary and secondary.21 In this case, the  concentrator 
was designed for a high concentration of solar energy, and therefore, the 
acceptance angle 2θ was small (θ = 0.73º). As seen from Figure 5.20, for a 
small acceptance angle 2θ, light rays r1 and r2 are almost parallel, and there-
fore a CEC secondary was approximated by a CPC.

FIGURE 5.19
Primary–secondary arrangement with divided primary and secondary. The light from each 
section of the primary is collected by a corresponding section of the secondary.
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Combination of Primaries with Flow-Line Secondaries 153

The primary is bound by angles φ1 and φ2 to the axis of the parabola 
(which contains its focus F) as shown in Figure 5.20b). The concentrator is a 
 combination of four of these shapes, as shown in Figure 5.21a), with the bot-
tom half shown in greater detail in Figure 5.21b).

Angle φ1 for the parabola P1P2 is 3º to eliminate the central portion of 
the primary that is shaded by the secondary.21 The angles φ2 and φ1 are not 
exactly the same for parabolas P1P2 and P2P3, respectively, to avoid a gap at 
point P2 between these two sections of the primary. Figure 5.22 shows the 
details of the secondary area and also that the exit apertures of the CPCs can 
be combined to illuminate a circular absorber using straight, circular, and 
involute mirrors.21

The CPC on the top illuminates a part of the circular receiver, its light 
being channeled by a straight section 1 and a pair of involute mirrors. The 
CPC at the bottom illuminates another portion of the circular receiver. Its 
light is channeled by a circular arc with a center C, a straight section 2, and 
an involute mirror. Together, these two CPCs illuminate half of the absorber. 
The other half would be illuminated by the CPCs on top, which are symmet-
rical about the concentrator axis of symmetry. The straight section 1 could be 
eliminated. This, however, would push point M on the wall of the CPC above 
the concentrator axis of symmetry.21

These concentrators, for a half-acceptance angle of θ = 0.73º, can be designed 
to collect all the light falling on the primary mirror and attain a concentra-
tion of 82% of the ideal one, which is 1/sin θ.

FIGURE 5.20
Primary and secondary combination. When the acceptance angle 2θ is small, rays r1 and r2 are 
almost parallel and the secondary can be approximated by a CPC, instead of using a CEC.
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154 Introduction to Nonimaging Optics

FIGURE 5.21
Combination of two optics, each one with a parabolic primary and a CPC secondary.
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FIGURE 5.22
The two CPC secondaries can be combined to illuminate half of a circular receiver. The other 
half would be illuminated by two more CPCs symmetrical about the concentrator axis of 
symmetry.
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Combination of Primaries with Flow-Line Secondaries 155

There are other combinations of parabolic primary and nonimaging 
 secondaries that attain high concentrations and have a high collection 
 effi ciency.22 Figure 5.23 shows one such optical system for an acceptance 
angle 2θ with θ = 0.73º and a rim angle φ = 90º.

The right half of the secondary is shown in greater detail in Figure 5.24. 
The left half (not shown) is symmetrical relative to the vertical line contain-
ing the center of the circular receiver C.

This secondary optic has a top mirror composed of an involute curve AB 
and a macrofocal parabola BD with a vertical axis and having as macrofocus 
the circular receiver C. The bottom mirror is made of a macrofocal parabola 
EF with a horizontal axis and having as macrofocus the circular receiver C, 
and a fl at mirror FI tangent to EF at point F. A horizontal light ray r1 entering 
the concentrator hits the fl at mirror, becoming vertical, and is then refl ected 
by the top macrofocal parabola in a direction tangential to C. Another 

FIGURE 5.23
A parabolic primary and a nonimaging secondary.
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156 Introduction to Nonimaging Optics

 horizontal light ray r2 entering the concentrator is refl ected by the bottom 
macrofocal parabola, also in a direction tangential to C. This optic may be 
truncated at CG with C along line AD and G along line EI, and it still collects 
all the radiation entering its entrance aperture coming from the primary.

The perimeter of C is chosen to match the maximum concentration, and is 
therefore given by d sin θ, where d is the size of the entrance aperture defi ned 
by the edges of the primary. For this case and the confi guration with aperture 
DH, the secondary captures 90% of the radiation refl ected by the primary, 
and therefore, attains 90% of the maximum theoretical concentration.22

We may now increase the size of the secondary (optical and circular 
re ceiver C) so that the perimeter of C is chosen to match 82% of the maximum 
concentration. The secondary now captures 98% of the light refl ected by the 
primary and attains 80% of the maximum theoretical concentration.22

5.7  Tailored Edge Ray Concentrators Designed 
for Maximum Concentration

In the designs presented earlier, the primary was considered as a Lambertian 
source, and a nonimaging optic secondary placed close to the focus further 
increases the concentration. It is, however, possible to design secondaries for 
the edge rays across the primary. These optics are called tailored edge ray 
concentrator (TERC).23

Given the parabolic primary with a focus F and an aperture from points 
P1 to P2, the size of the ideal receiver is given by R = [P1, P2]sin θ, where θ is 
the half-acceptance angle and [P1, P2] is the distance from P1 to P2, as shown 
in Figure 5.25.

FIGURE 5.25
Defi nition of a TERC mirror as a secondary for a parabolic primary.
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Combination of Primaries with Flow-Line Secondaries 157

We then refl ect at point P2, a ray making an angle θ to the optical axis of 
the parabola, as shown in Figure 5.25. After refl ection, the ray r1 is headed 
toward the optical axis and we search for the point T along this ray, but on 
the other side of the optical axis, at a distance of R/2 to the optical axis. Point 
T defi nes the position of one edge of the receiver. The other edge is point G, 
which is symmetrical to T.

All rays perpendicular to the wave front w, making an angle θ to the  vertical, 
must be focused to point G, and the TERC mirror can be defi ned by the con-
stant optical path length. For a ray r2, dwP + [P, Q] + [Q, G] = S, where dwP is the 
distance from w to P and S is defi ned 
by the ray r1 as S =  d w P 2   + [P2, T] + [T, 
G], where  d w P 2 

  is the distance from w to 
P2. This condition defi nes the position 
of each point Q on the TERC mirror.

The TERC mirror completely shades 
the primary and must, therefore, be 
truncated, as shown in Figure 5.26.

Between point P3 and its symmetri-
cal P4, all light refl ected by the primary 
is collected by the truncated TERC mir-
ror, but between P3 and P1, and between 
P4 and P2 there will be some light losses 
because some rays miss the secondary. 
Figure 5.27 shows these light losses.

If we place ourselves at point P4 on the 
primary mirror, we can  calculate the 
corresponding point Q4 on the TERC 
by the constant optical path length from 

FIGURE 5.26
A truncated TERC.
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158 Introduction to Nonimaging Optics

the wave front w to the edge T of the receiver. The edge ray r, tilted θ to the opti-
cal axis and refl ected at another point P between P4 and P2, will miss the TERC. 
All the rays between directions vr and v4 will also miss the TERC, where vr is the 
direction of ray r after refl ection and v4 is the direction from P to Q4. The éten-
due of the light that misses that mirror of the TERC can then be  calculated by 
integration along the parabola from point P4 to the edge P2. If focus F = (0, 0), 
then point P on the parabola is given by the expression 5.10, where d can be seen 
as a scale factor. The parameter range is φ1 < φ < φ2, where φ1 is the parameter 
for point P1 and φ2 is the parameter for point P2 as shown in Figure 5.6. We have 
φ1 = π − φ and φ2 = π + φ, where φ is the rim angle of the primary. Point P4 has 
a parameter φ4. Directions v4 and vr are obtained as follows:

 v4 =   
Q4 − P(φ) 

 ___________ 
 �Q4 − P(φ)� 

   (5.41)

and
 vr = −R(−θ) ⋅   P ___ 

�P�
   (5.42)

where R(−θ) is a rotation matrix of an angle −θ. The étendue that is lost by 
that mirror can then be obtained as

 UL(φ4) =   ∫ φ4
  

φ2
   (vr − v4) ⋅   

dP ___ dφ   dφ (5.43)

and the total étendue lost by both mirrors is 2UL.
The étendue balance then starts with that of the light intersected by the 

 concentrator, which is UP = 2[P1, P2] sin θ. The étendue of the light lost to 
shading is USH = 2[Q3, Q4] sin θ. The remaining light continues towards the 
primary, is refl ected by it and an additional étendue given by 2UL is lost 
because of light that misses the secondary mirrors. The étendue that reaches 
the receiver is then

 UR = 2[P1, P2] sin θ − 2[Q3, Q4] sin θ − 2UL (5.44)

If we defi ne shading as:

 SH(φ4) =   
USH ____ UP

   =   
[Q3, Q4] ________ 
[P1, P2]

   (5.45)

the portion of the light that gets to receiver R is then given by

 LR(φ4) =   
UR ___ UP

   = 1 − SH −     
UL ____________  

[P1, P2] sin θ   (5.46)

If all the light got to the receiver, concentration would be the maximum 
 possible. Since it is reduced to LR, concentration is also reduced by the same 
amount. Giving values to φ4 we can plot LR(φ4) against φ4 and maximize 
the light getting to the receiver and, therefore, the light concentration. 
The value of φ4M that maximizes LR(φ4) will also give us the point Q4(φ4M) 
where we should truncate the TERC.

For a half-acceptance angle θ = 0.01 radians, the caustic of the edge rays will 
be above the TERC mirror for rim angles smaller than φ = 36.6°. For this case we 
obtain φ4M = 208.5°, or 28.5° to the optical axis. The optic captures 87.5% of the 
light, or LR = 0.875. Figure 5.28 shows a TERC designed for these parameters.
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Combination of Primaries with Flow-Line Secondaries 159

The optimum performance for a 3-D optic with a rotational symmetry is 
also a trade-off between light captured by the secondary and the shading it 
produces. Shading, however, is S2

H for circular symmetry, which is smaller 
than that in the 2-D case. In 3-D, it is then possible to increase the size of the 
TERC slightly, improving the collection effi ciency. Increasing φ4M by 5° to 
φ4M = 213.5°, we obtain a concentration with a circular symmetry of 92% of 
the theoretical maximum, obtained by ray tracing.24

TERC secondaries may also be designed for lens primaries, as shown in 
 Figure 5.29. As described earlier, for the case of a parabolic mirror primary, 
all rays perpendicular to the wave front w, making an angle θ to the vertical, 
must be focused to point G, and the TERC mirror can be defi ned by the con-
stancy of the optical path length. For a ray r2,  d w P L   + n[PL, PR] + [PR, Q] + [Q, G] 
= S, where  d w P L   is the distance from w to PL on the left-hand side of the lens, 
PR on the right-hand side of the lens, and S is defi ned by ray r1 as S =  d w P 1   + 
[P1, T] + [T, G], where  d w P 1   is the distance from w to P1. This condition defi nes 
the position of each point Q on the TERC mirror.

TERC mirrors are fl ow-line mirrors. If, for example, in Figure 5.25 the optic 
is made of a material with refractive index n and we replace the parabolic 
mirror P1P2 by a refractive surface, we obtain a dielectric total internal refl ec-
tion concentrator (DITRC).

Changing the shape of the primary from a simple parabola in the case of 
a refl ective primary to a more elaborate design, we can improve the optical 
behavior of the TERC secondary.24 Figure 5.30 shows one such possibility. 
The primary is now composed of a central fl at portion V1V2 and a parabolic 
section V2P2 with a focus F at the edge of the receiver R and an axis parallel 
to edge rays r, which make an angle θ to the horizontal.

The portion Q1Q2 of the secondary closer to the receiver receives parallel 
edge rays in a direction r (parallel to r1) and it concentrates them to an edge F 
of the receiver R, as shown in Figure 5.31. This curve is, therefore, a parabola 

FIGURE 5.28
TERC for maximum light collection.
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160 Introduction to Nonimaging Optics

with a focus F and an axis parallel to  r. 
Together with its  symmetrical on the 
other side of the receiver, this portion 
of the secondary is a highly truncated 
CPC.

The remainder of the secondary is a 
TERC mirror calculated by the constant 
optical path length. For a ray r2, dwP + 
[P, Q] + [Q, F] = S, where dwP is the dis-
tance from a fl at wave front w to P and 
S is the optical path length defi ned by 
ray r1 as S =  d w V 2   + [V2, Q2] + [Q2, F], 
where  d w V 2   is the distance from w to V2. 
This condition defi nes the position of 
each point Q on the TERC mirror.

The design of the whole optic can be 
simplifi ed if we eliminate the central 
fl at portion of the primary. Figure 5.32 
shows the altered confi guration—a 
compound parabolic primary.

This primary is now composed of two symmetrical parabolic arcs. The side 
of the primary shown in  Figure 5.32 is a parabola with a focus F and an axis 
parallel to the edge rays r. It then concentrates to the edge F of the receiver one 
bundle of edge rays. The other side of the primary is symmetrical relative to 
the perpendicular bisector of the receiver R. The design of the primary may 
start by defi ning the position and the size of the receiver R. The acceptance 
angle 2θ enables us to calculate the point V that will be the vertex of the pri-
mary. It also defi nes the direction of rays r that make an angle θ to the horizon-
tal. We now defi ne the bottom parabola as having a focus F, an axis parallel to 
r and passing through V. It extends from V to a point P2 at a distance d from 
the perpendicular bisector of the receiver R, such that d sin θ = R/2.

FIGURE 5.32
Defi nition of a compound parabolic primary 
refl ector for a TERC secondary. 
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Combination of Primaries with Flow-Line Secondaries 161

The secondary TERC mirror, as described earlier, is now defi ned so as to 
refl ect the other bundle of edge rays to F (Figure 5.33).

All rays perpendicular to the wave front w, making an angle θ to the  vertical, 
must be focused to point F and the TERC mirror can be defi ned by the constant 
optical path length. For a ray r2, dwP + [P, Q] + [Q, F] = S, where dwP is the dis-
tance from w to P and S the optical path length defi ned by ray r1 as S = dwV + 
[V, T] + [T, F], where dwV is the distance from w to V. This condition defi nes 
the position of each point Q on the TERC mirror. This TERC also completely 
shades the primary and must be truncated to make it usable.

The design without the central fl at portion of the primary is not only 
 simpler, but is also more compact, with a larger rim angle for the primary. 
Figure 5.34 shows two of these optics superimposed, for comparison, both 
with the same acceptance angle and receiver size.

The optic without the central fl at portion is therefore preferable. The maxi-
mum concentration this optic can achieve is similar to that obtained with a 
parabolic primary. The advantage is that now the primary rim angle is larger 
and, therefore, the optic is more compact.

For this more compact case in which the primary has no central fl at 
 section, if the half-acceptance angle is θ and the vertex V of the primary is 
at V = (0, 0), we have for the edge F of the receiver

 F =  (   R ______ 2 tan θ  ,   R __ 2   )  (5.47)

and the points P on the parabola from V to P2 as shown in Figure 5.32 are 
parametrized as

 P(φ) =  (    cos2((φ − 2θ)/2)cot θ  ___________________  1 − cos φ  ,    
sin(φ − 3θ) + 3 sin(φ − θ) + 2 sin θ   ________________________________   8 sin2(φ/2)sin θ      )  (5.48)

FIGURE 5.33
Calculation of the TERC secondary by the 
constant optical path length.
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162 Introduction to Nonimaging Optics

The parameter range is π + 2θ ≤ φ ≤ φ2, where φ2 is the parameter value for 
point P2 = (P21, P22), calculated such that |P22 sin θ| = R/2.

We can now maximize light collection using for this case the same proce-
dure as earlier for the case of a parabolic primary. The étendue that is lost by 
each mirror as a result of the truncation of the TERC is again given by the 
expression 5.43, but now P4 is a point between V and P2. Shading can also be 
calculated by the expression 5.45 and light collection by the expression 5.46. 
For a half-acceptance angle θ = 0.01 rad, the rim angle of the primary (angle 
that the line from the midpoint of receiver R to P2 makes with the optical 
axis) is 53.1°. For this case, we obtain φ4M = 227.6°, or 47.6° to the optical axis. 
The optic captures 85% of the light, or LR = 0.85.

Just as earlier, if we consider the 3-D case in which the optic has rotational 
symmetry, shading is not so high and the TERC can be extended, increasing 
the light collection. The maximum concentration this optic can provide in 
3-D with rotation symmetry is 93% of the theoretical maximum.24

TERC secondaries described earlier for linear receivers can also be designed 
for circular receivers, as shown in Figure 5.35. Just as in the case of a linear 
receiver, we start with the case of a parabolic primary.

For an acceptance angle of ±θ, if the TERC is to achieve maximum 
 concentration, the perimeter of the circular receiver must be given by 2πR = 
[P1, P2]sin θ, where R is now the radius of the receiver. Given the symmetry of 
the optic, its center must be on the vertical axis x2. Its position along this axis 
is such that it is tangent to the ray edge r1 refl ected off the edge of the mirror, 
as shown in Figure 5.35.

The fi rst section of the secondary is an involute. Its end point Q1 is defi ned 
by the rim angle φ of the parabola. The angle φ must be adjusted such that the 
caustic formed by the edge rays lies above the mirror, as shown in  Figure 5.35. 
It is now possible to calculate the TERC mirror by the constant optical path 
length, as shown in Figure 5.36.

FIGURE 5.35
The circular receiver is centered on the optical axis and is tangential to the edge ray r1 refl ected 
off the edge point P1 of the primary. The fi rst part of the secondary is an involute section that 
must not intersect the caustic of the edge rays.
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FIGURE 5.36
Calculation of the TERC portion of the secondary.

Parabolic
primary

P1

r1

r Q
Q1

T1T

R

r1
r

r

�

w

P
P2

� �1

(a) (b)

FIGURE 5.37
A compound primary for a circular receiver.
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We can then write dwP + [P, Q] + [Q, T] + Rα = S for ray r, where dwP is the 
distance from the wave front w to point P and the optical path length S is 
defi ned by ray r1 refl ected at point P1 as S =  d w P 1   + [P1, Q1] + [Q1, T1] + Rα1, 
where  d w P 1   is the distance from the wave front w to point P1. As described 
earlier, the TERC completely shades the primary and must be truncated to 
be usable.

Just as in the case of a TERC for a linear receiver, the shape of the primary 
can be modifi ed to improve the compactness of the optic in the case of a 
 circular receiver also. Figure 5.37 shows a primary made of two parts, a cen-
tral parabolic arc and an outer macrofocal parabolic arc. The total acceptance 
angle for the concentrator is 2θ.25

The fi rst portion of the secondary is an involute with the end point defi ned 
by the line s tilted by an angle α to the vertical and tangent to the circular 
receiver. This line also defi nes the point P where the two curves of the pri-
mary meet. The vertex V of the primary mirror is defi ned by the edge points 
F and G of the involute and the acceptance angle θ. Both the primary mir-
ror curves have their axis in the direction of the parallel rays, r, tilted by an 
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FIGURE 5.39
TERC section for the parabolic portion of 
the primary calculated by the constant opti-
cal path length.
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FIGURE 5.40
Details of the receiver zone for the calcula-
tion of the fi rst part of the TERC mirror.
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angle θ relative to the  vertical, as shown in Figure 5.38. The rays, r, are per-
pendicular to the wave front wR. The focus of the parabolic arc is the point F 
where the left involute ends. The macrofocus of the macrofocal parabola is 
the circular receiver C.

Once the geometry of the primary and the involutes of the secondary are 
defi ned, the fi rst portion of the TERC mirror can be calculated. Figure 5.39 
shows an edge ray r3 perpendicular to the wave front wL and incident on a 
point P3 of the parabolic portion of the primary. The corresponding point M3 
on the secondary as shown in Figure 5.40 can be calculated by the constant 
optical path length.

We have  d  w L  P 3   + [P3, M3] + [M3, T3] + Rα3 = S, where R is the radius of the 
 circular receiver C,  d  w L  P 3   the distance between the wave front wL and point 
P3, and S the optical path length given by S =  d wL

 V + [V, MV] + [MV, TV] + 
RαV, defi ned for ray rV, where  d wL

 V is the distance between the wave front wL 
and point V.

The outermost section of the TERC secondary is calculated in the same 
way, but using the macrofocal parabolic portion of the primary, as shown in 

FIGURE 5.38
The central parabolic arc has a focus F and the macrofocal parabolic arc has a  macrofocus C. 
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Combination of Primaries with Flow-Line Secondaries 165

Figure 5.41. We have an edge ray r4 perpendicular to the wave front wL and 
incident on a point P4 of the macrofocal parabolic portion of the  primary. 
The corresponding point M4 on the secondary, shown in more detail in 
 Figure 5.42, can be calculated by the  constant optical path length.

We have   d wL
  P4 

 + [P4, M4] + [M4, T4] + Rα4 = S for ray r4, where   d wL
  P4

  is the 
distance between the wave front wL and point P4.

As discussed earlier, the TERC completely shades the primary and must 
be truncated to be usable.

5.8  Tailored Edge Ray Concentrators Designed
for Lower Concentration

In all the examples presented earlier, it was always necessary to truncate the 
TERC secondary to prevent complete shading of the primary. An alternative 
approach is to increase the size of the receiver. In this case, the TERC  mirror no 
longer extends all the way to the rim of the primary, as shown in Fig ure 5.43, 
and, therefore, no longer completely shades the primary.

The secondary captures all the radiation refl ected by the primary, but the 
concentration of the optic is lower than ideal.

Enlarging the size of the receiver to prevent complete shading of the 
 primary can also be done for parabolic primaries with circular receivers.5 
Figure 5.44 shows the left half of a parabolic primary with a tubular second-
ary. The center of the circular receiver is on the axis of symmetry s and it 
is tangent to ray r1 refl ected at the edge P1 of the parabolic primary. Before 
refl ection, ray r1 makes an angle θ to the left of the vertical.

The size of the circular receiver is larger than the minimum. This means 
its radius is given by

 R = δ[P1, P6] sin θ/2π (5.49)

where δ > 1 and points P1 and P6 are the edges of the primary, as shown in 
Figure 5.45. The central portion of the secondary mirror is an  involute to the 

FIGURE 5.42
Details of the receiver zone for the 
 calculation of the second part of the 
TERC mirror.

M4

T4�4 r4
rPrV

FIGURE 5.41
TERC section for the macrofocal parabolic 
portion of the primary calculated by the 
constant optical path length.
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PV

rP r4wL
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166 Introduction to Nonimaging Optics

receiver. Although the receiver is tangent to edge ray r1, this will not be the 
case for ray r2 refl ected at points (such as P2) to the right of P1. Because we 
are not trying to get maximum concentration, this is not a problem. Only ray 
r3 refl ected at point P3 is again tangent to the receiver. The involute starts at 
the uppermost point of the receiver and ends at point Q4 where it intersects 
ray r3.

In this example, the caustic intersects the involute. There are, therefore, 
edge rays further to the right of r3, such as ray r34 in Figure 5.46, coming 
from a point on the primary between P3 and P4, that hit the involute and are 
refl ected by it toward the receiver in an uncontrolled way.

Only ray r4, refl ected from point P4 by the primary, reaches the edge of 
the involute. Therefore, from P4 onward, it is possible to design a TERC 
 secondary that redirects the edge rays tangentially to the receiver, as shown 
in Figure 5.47.

FIGURE 5.45
The central portion of the secondary is an involute to the receiver.
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FIGURE 5.43
TERC secondary for a receiver larger than 
the ideal. The TERC mirror does not extend 
all the way to the edge of the primary.
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FIGURE 5.44
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FIGURE 5.46
Details of the rays at the 
end of the involute.
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FIGURE 5.47
Design of the TERC mirror to the right of the central involute section.
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The points of the secondary can be calculated by the constant optical path 
length and we have  dw P5

 + [P5, Q5] + [Q5, T5] + Rα5 = S for ray r5, where R 
is the radius of the circular receiver,  dw P5

  the distance 
between the wave front w and point P5, and S the 
optical path length, given by S =  dw P4

 + [P4, Q4] + [Q4, 
T4] + Rα4 defi ned for ray r4, where  d w P 4   is the distance 
between the wave front w and point P4.

Different design parameters may lead to different 
ray assignments between primary and secondary.5

This method enables us to design simple second-
ary optics that attain high concentrations at large 
primary rim angles. For example, for a rim angle of 
90°, an acceptance angle (θ) of 0.007 rad (0.4°) and a 
concentration of 70% of the ideal maximum, we get 
the concentrator as shown in Figure 5.48. The shading 
of the primary by the secondary is about 2%. All the 
light refl ected by the primary reaches the secondary.

Increasing the concentration also increases the 
shading. If, for example, the same concentrator was 
designed for 90% of the ideal maximum concentra-
tion, the shading would be 15.5%.

FIGURE 5.48
Secondary for a small acceptance angle and a primary with large rim angle.
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168 Introduction to Nonimaging Optics

5.9 Fresnel Primaries

Parabolic mirrors can get quite big and hard to handle, especially for large rim 
angles, those that yield the most compact concentrators. One way around this 
problem is to Fresnelize the mirror, that is, replace it by a set of small  mirrors 
(heliostats) on a straight line, fl ats that mimic the optical behavior of the para-
bolic mirror they replace. Fig ure 5.49 shows a fi eld of heliostats replacing a 
parabolic mirror. They refl ect the incoming light to the receiver R.

To simplify the analysis of this optic, we consider the limit case in which 
we have an infi nite number of infi nitely small heliostats. The heliostat fi eld 
then becomes a continuous Fresnel primary, as represented in Figure 5.50.

If θ is the half-angular aperture of the radiation, φ the rim angle of the pri-
mary, and h the distance (height) from the Fresnel primary to the receiver R, 
the minimum receiver size to capture all the light is given by

 R =   2h sin θ _______ 
cos2 φ

   (5.50)

FIGURE 5.49
Field of heliostats refl ecting light to a receiver R.
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FIGURE 5.50
Minimum absorber size for a Fresnel primary.

D sin�/cos�

D sin�

�

�
�

� �
�

�

�

�

D

h

Fresnel primary Fresnel primary

R

(a) (b)

CRC_54295_CH005.indd   168CRC_54295_CH005.indd   168 4/3/2008   9:34:04 AM4/3/2008   9:34:04 AM



Combination of Primaries with Flow-Line Secondaries 169

where D = h/cos φ is the distance from the center of the absorber to the rim 
of the primary. The maximum étendue this receiver can accept is given by 
2R sin(π/2) = 2R, when it is illuminated by full Lambertian light (±π/2 
angle). Concentration relative to the maximum is the ratio between the 
 étendue (amount of light) it receives from the primary and the maximum it 
can accept:

 C =   
UR ___ 2R   (5.51)

where UR is the étendue the receiver R collects from the primary. To calculate 
the concentration, we need to determine the étendue of the light emitted by 
the primary. The étendue of a small area dx emitting light within a cone 2θ 
whose bisector v is tilted by an angle φ relative to the perpendicular to dx 
and points to the center of R, as shown in Figure 5.51, is given by

 dU = 2dx sin θ cos φ (5.52)

where the cos φ factor is the projection of dx in the direction of v.
The factor cos φ also corresponds to the shading of the heliostats, as shown 

in Figure 5.52. The illuminated area A in the direction of the refl ected rays is 
A = dx cos φ and it corresponds to the radiation between the rays r2 and r3. 
The heliostat to the left shades the remaining radiation between the rays r1 
and r2.

The primary extends from −xM to xM with xM = h tan φ, where φ is the rim 
angle of the primary. The horizontal coordinate of dx is x = h tan φ, where h 
is the height of the receiver R relative to the heliostat fi eld. Since

   ∫ 0  
φ
  cos φ dx =   ∫ 0  

φ
  cos φ   dx ___ φ   dφ = h  ∫ 0  

φ
     1 _____ cos φ   dφ = h ln  ( tan (   π __ 4   +   

 φ
 __ 2   )  )  (5.53)

FIGURE 5.51
Étendue calculation of the Fresnel primary.
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FIGURE 5.52
Heliostat shading produces loss of 
étendue.

Heliostat

r3r2r1
r3

r2

r1

dx

2� 2�

�

A

CRC_54295_CH005.indd   169CRC_54295_CH005.indd   169 4/3/2008   9:34:04 AM4/3/2008   9:34:04 AM



170 Introduction to Nonimaging Optics

the total étendue of the primary is then given by26

 UP = 2 × 2h sin θ ln  ( tan  (   π __ 4   +   
φ

 __ 2   )  )  (5.54)

where φ is the rim angle of the primary and the factor of 2 is due to the two 
sides of the primary Fresnel refl ector. Since all the light is collected by the 
receiver R, we have UR = UP . Concentration can now be written as

 C =   
UR ___ 2R   = cos2φ ln ( tan (   π __ 4   +   

φ
 __ 2   )  )  (5.55)

The maximum is CM = 44.8% of the ideal maximum obtained for a primary 
rim angle of φM = 40.4°.

By lowering collection effi ciency we can increase concentration. Consider, 
for example, the smaller receiver AB as shown in Figure 5.53, such that there 
will be light that misses it. All the light outside the angular space between 
the directions of p1 and p2 misses AB.

Receiver AB is the largest possible width that receives light from all points 
on the primary. For example, a point to the left of A does not receive light 
from point V at the center of the primary. The same thing happens to a point 
to the right of B. Height h acts as a scale factor for the entire optic.

The size of the receiver AB is now given by [A, B] = 2d = 2h tan θ, where 
A = (−d, h) and B = (d, h). Since the refractive index is n = 1, the optical 
momentum of the rays from dx to the edges B and A of the receiver are unit 
vectors:

 p1 = (p11,  p12) =    
B − (x,  0)

 ___________ 
 �B − (x,  0)� 

   (5.56)

and

 p2 = (p21,  p22) =   
A − (x,  0)

 ___________ 
 �A − (x,  0)� 

   (5.57)

FIGURE 5.53
Concentration of a Fresnel primary can be increased by lowering light collection. Only the 
right-hand side of the Fresnel primary is shown.
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The étendue from the Fresnel primary to the receiver AB is then

 UAB = 2  ∫ 0  
xM

  p11 − p21 dx (5.58)

where xM = h tan φ is the distance from the center to the edge of the heliostat 
fi eld. We have

 UAB = 2d  √ 
_______________________________

   csc2 θ + cot θ tan φ(cot θ tan φ + 2)   

 −2d  √ 
________________________________

   csc2 θ + cot θ tan φ (cot θ tan φ − 2)   (5.59)

Concentration is now given by

 C =   
UAB _______ 

2[A, B]
    =   

UAB ____ 
4d

   (5.60)

For a half-acceptance angle θ = 0.01 rad26 and φ = φM, we get C = 64.8% of the 
ideal. The collection effi ciency is η = UAB/UP = 84%, which is the energy fl ux 
the receiver receives divided by the fl ux the Fresnel refl ector emits.

The rim angle φM was calculated as the optimum rim angle for maximum 
concentration when the receiver collected all the light. Now the situation is 
different because the receiver is smaller and collects only part of the light 
emitted by the primary. Increasing the rim angle beyond φM will increase 
the concentration on AB since more light will be directed toward it, but the 
effi ciency will decline because more light will also miss it. For example, for 
an acceptance angle θ = 0.01 rad and a rim angle of φ = 49.6°, we have UP = 
2[A, B], and therefore the étendue the receiver AB can accept matches the 
étendue emitted by the primary. For that rim angle, the amount of light cap-
tured by the receiver is also the effi ciency of the optic, or C = η = UAB/UP . 
We have in that case C = 76.2% of the ideal concentration and also η = 76.2% 
light collection effi ciency.

5.10 Tailored Edge Ray Concentrators for Fresnel Primaries

The TERC secondary mirrors can also be designed for Fresnel primaries.26 
We Fresnelize the primary’s continuous curved mirror by replacing it with 
a set of small mirrors (heliostats) on a straight line, refl ecting the light in a 
way that mimics that of the mirror they replace. We take, for example, the 
case of the compound parabolic primary as in Figure 5.32, which results in 
compact  primary–secondary optics. For the heliostats to mimic the optical 
behavior of this primary, they are oriented so that the edge ray, rA, on the 
right-hand side is refl ected to the left-hand side edge of the receiver A, as 
shown in Figure 5.54. The size of the receiver AB and TERC relative to that of 
the heliostats is grossly exaggerated so as to show them on the same scale.
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172 Introduction to Nonimaging Optics

To calculate the shape of the TERC, we may use a method in which we 
progress along the mirror by very small steps, as shown in Figure 5.55. 
Again, we consider an infi nite number of infi nitely small heliostats so that 
they become a continuum.

We fi rst choose the initial point for the mirror as P0 = B, where B is the left 
edge of the receiver (see Figure 5.54). We know that ray r0 coming from the 
heliostat fi eld at position x0 must be refl ected to edge A of the receiver. This 
condition enables us to calculate the normal n0 to the TERC mirror at point P0. 
We now move on to another point at position x1 on the heliostat fi eld. We 
know the direction of the ray r1 and we can intersect it with the straight line 
passing through point P0 and tangent to the mirror (perpendicular to n0) at P0. 
This yields the position of point P1. As before, ray r1 must be refl ected at P1 
toward A and this enables us to calculate the normal n1 at point P1. We now 
move on to another point at position x2 on the heliostat fi eld. We know the 
direction of the ray r2 and we can intersect it with the straight line  passing 
through point P1 and tangent to the mirror (perpendicular to n1) at P1. This 
yields the position of point P2. As earlier, ray r2 must be refl ected at P2 toward 
A and this enables us to calculate the normal n2 at point P2. We then move 
on to another point x3 on the heliostat fi eld and calculate a new point on the 
TERC mirror. If we want to design a complete TERC, this process goes on 
until the mirror touches the heliostat fi eld (crosses the horizontal axis if the 
geometry is as shown in Figure 5.55).

For good precision in the shape of the mirror using the method described 
previously, we need to proceed in very small steps along the primary and 
calculate many points on the TERC mirror. This does not mean we need to 
save all those points. We may, for example, calculate 106 points, but save the 

FIGURE 5.54
Aiming strategy of the heliostats for a TERC 
secondary.
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position on the TERC only every 104 points. This method will provide us 
with just 100 points on the mirror, but calculated with high precision.

If the TERC is complete in the sense that it extends all the way to the pri-
mary, it will touch the heliostat fi eld at a point a distance xR from its center, 
as shown in Figure 5.56. To calculate the value of xR, we need to calculate the 
point of the primary where its étendue matches that of the receiver AB.

For a complete TERC, the illumination of the receiver AB will be com-
pletely Lambertian and uniform (ignoring the shading of the Fresnel  refl ector 
 heliostats by the TERC and receiver AB). This means that the étendue of the 
light hitting AB is

 UAB = 2[A, B] (5.61)

where [A, B] is the distance from A to B (size of the receiver). This must also 
be the étendue of the radiation captured by the TERC.

For calculating the étendue of the refl ected radiation by the heliostat fi eld, 
we fi rst consider that we have an infi nite number of infi nitely small helio-
stats so that they become a continuum. The étendue of a small area dx emit-
ting light within a cone 2θ with bisector v is tilted by an angle β relative to 
the perpendicular to dx, as shown in Figure 5.57, is given as follows:

 dU = 2dx sin θ cos β (5.62)

where the cos β factor is the projection of dx in the direction of v.
If A is the edge of the receiver and is given by A = (−d, h), then

 β = arc tan  (   x + d _____ 
h
   )  − θ (5.63)

and for the étendue of the heliostat fi eld between xC and xD we get

U(xC, xD) = 2 sin θ  ∫ xC
  

xD

  cos  ( arc tan  (   x + d _____ 
h
   )  − θ )  dx = F(xD) − F(xC ) (5.64)

FIGURE 5.56
TERC for an acceptance angle 2θ. It ends at a radius xR (corresponding to a rim angle φ) for 
which the étendue of the primary matches what the receiver AB can accept.
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with

 F(x) = 2 sin θ  [h cos θ ln ( d + x +   √ 
____________

 h2 + (d + x)2   ) 

 +   √ 
____________

 h2 + (d + x)2   sin θ]  (5.65)

Now, making xC = 0 in expression 5.64 we start the integration at the mid-
point V of the primary and we have

 UxD
 = 2U (0, xD) (5.66)

where the factor of 2 in this expression is due to the two sides (left and right) 
of the heliostat fi eld. By solving numerically

 UAB = UxD
 (5.67)

for xD we get the solution xD = xR for the “radius” (length on each side) of the 
heliostat fi eld and a value

 UP = 2U (0, xR) = 2[A, B] (5.68)

for the étendue emitted by the primary that matches that of the receiver. 
Point (xR, 0) is where the TERC touches the primary. Figure 5.56 shows a 
complete TERC for an acceptance angle 2θ.

As always for TERC secondaries, we need to truncate it to make it usable. 
By doing this we will have two loss mechanisms: shading and light that is 
not captured by the secondary.

If we truncate the TERC at a point T, as in Figure 5.58, the étendue of the 
nonshaded portion of the primary can be obtained by 2U(xT, xR), where the 
factor of 2 again accounts for the two sides of the optic and xT is the horizontal 
coordinate of point T.

FIGURE 5.57
Étendue of a small area dx emitting a cone 2θ tilted by an angle β to the perpendicular of dx.
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We now calculate the étendue of the light that is lost because it misses the 
secondary. If we use the method described earlier to calculate the TERC, 
we have a list of points and normals for the mirror. We truncate the TERC 
at one of its points T that has normal nT. A ray r coming from edge A of the 
source, and refl ected at point T, intersects the primary at point xL, as shown 
in Fig ure 5.59. From xL to xR where the primary ends, there will be losses due 
to light that misses the secondary. To calculate these losses we need to con-
sider the edge rays, emitted from a point Q on the primary, that have optical 
momenta pA and pB. These are unit vectors since the refractive index is n = 1. 
Momentum pA points in the direction from Q to edge A of the receiver and pB 
makes an angle 2θ relative to pA, where 2θ is the total acceptance of the optic.

The light emitted from Q and contained between the directions of pB and 
pT is lost, where pT is the optical momentum of the light ray emitted from 
Q toward T. If pB = (pB1, pB2) and pT = (pT1, pT2), the lost étendue can then be 
written as

 UL =   ∫ xL
  

 xR

   pB1 − pT1 dx (5.69)

as seen from Figure 5.60.
We need to calculate pB1 and pT1 now. If A = (−d, h) and Q = (x, 0), as shown 

in Figure 5.60, we have

 pA =   
A − Q

 ________  �A − Q�    =   1 _____________  
  √ 

____________
 h2 + (d + x)2   
   (−d − x, h) (5.70)

Momentum pB is also a unit vector, but rotated by an angle 2θ relative to pA, 
and therefore

 pB = R(−2θ) ⋅ pA ⇒ pB1 =     
−(d + x) cos (2θ) + h sin (2θ)

   __________________________  
  √ 

____________
 h2 + (d + x)2  
   (5.71)

FIGURE 5.58
Shading of a truncated TERC for a 
 Fresnel primary.
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FIGURE 5.59
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where R(−2θ) is a rotation matrix of the angle −2θ. However, if T = (T1, T2), 
we have for pT

pT =   
T − Q

 ________  �T − Q�    =   1 ______________  
  √ 

_____________
  (T1 − x)2 +  T  2  

2    
   (T1 − x, T2) ⇒ pT1 =   

T1 − x
 ______________  

  √ 
_____________

  (T1 − x)2 +  T   2  
2   
   (5.72)

And the étendue of the radiation that is lost because it misses the secondary 
from position xL to xR is given by

 UL(xL, xR) =   ∫ xL
  

xR

  pB1 − pT1dx = G(xR) − G(xL) (5.73)

with

 G(x) =   √ 
_____________

  (T1 − x)2 +  T  2  
2     −   √ 

____________
 h2 + (d + x)2   cos(2θ) 

 + h sin(2θ)ln ( d + x +   √ 
____________

 h2 + (d + x)2   )  (5.74)

The total étendue of the light that reaches the receiver is given by

 UR = 2(U (xT, xR) − UL(xL, xR)) (5.75)

where the factor of 2 accounts for the two sides of the optic. Optimizing the 
truncation means maximizing UR relative to position of point T.

If we use the method described earlier to calculate the TERC, we have a list 
of points for the mirror. We may simply calculate UR for each one of them 
and take the one that maximizes it. Concentration relative to the maximum 
possible is given by

 C =   
UR ____ UAB

   =     
U(xT, xR) − UL(xL, xR)

  ___________________  
[A, B]

   (5.76)

FIGURE 5.60
The étendue lost by radiation missing the secondary is calculated by the integration of pB1 − pT1 
along the length of the heliostat fi eld from xL to xR.
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Combination of Primaries with Flow-Line Secondaries 177

since the maximum étendue the receiver AB can receive is UAB. The effi ciency 
of the optic is η = UR/UP = C because UP = UAB, that is, the étendue emitted 
by the primary is the same as the maximum the receiver can accept.

Figure 5.61 shows the concentration C and the collection effi ciency η as a 
function of the horizontal coordinate xT of the truncation point of the TERC.

We consider, for example, a receiver of size [A, B] = 1 and an acceptance 
angle of θ = 0.01 rad.26 The rim angle is now φ = 49.5°. With no secondary 
(just the receiver), the ratio to the maximum concentration and the collection 
effi ciency are C = η = 75%, whereas with the truncated TERC the quantities 
have increased ∆η = ∆C = 13% to C = η = 88%. The TERC is truncated at 
a distance of 2.8 from the optical axis. Figure 5.62 shows a TERC secondary 
designed for these parameters.

Just as with the case of the continuous compound parabolic primary, in 
this case of a Fresnel primary also, the TERC mirror may be designed with a 
CPC portion in the center, as shown in Figure 5.63. 

In this case, at the central portion of the heliostat fi eld, from point C to D, 
the heliostats are horizontal (as is the central heliostat in Figure 5.54) so that 
vertical rays are refl ected vertically again. The edge rays rP hitting the por-
tion BP of the mirror are parallel and tilted by an angle θ to the vertical. 
These rays are refl ected to the edge A of the receiver and that makes the 

FIGURE 5.61
Concentration and collection effi ciency as a function of the TERC truncation.
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178 Introduction to Nonimaging Optics

 portion BP of the mirror a parabola with a focus A and tilted by an angle θ 
to the vertical. The other side of the mirror is symmetrical, and therefore the 
top portion of the secondary concentrator is a portion of a CPC.

To the right of point D, heliostats are oriented as before. They refl ect one of 
the edge rays to the edge A of the receiver and the other edge ray is refl ected 
by the TERC, also toward A. This portion of the mirror can be calculated by 
the same method as shown in Figure 5.55, starting at point P where the para-
bolic section ends. Figure 5.64 shows a comparison of two TERCs designed 
for the same receiver size and acceptance angle, but with and without a cen-
tral CPC portion. Just as in the case of the continuous primary, in this case 
also the option in which the secondary has a central CPC portion is less 
compact than the one that does not.

The TERC secondary extends all the way to the primary and must be trun-
cated to be usable.

5.11 Examples

The following examples use expressions for the curves and functions that 
are derived in Chapter 17.

Example 1

Design a CEC secondary for a parabolic primary with a rim angle of 
φ = 15° (φ = π/12 rad) and a concentrator acceptance angle of θ = ±1°.

FIGURE 5.64
A comparison of two TERCs for the same 
receiver size and acceptance angle but with 
and without a central CPC portion.
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FIGURE 5.63
TERC secondary with a central CPC portion.
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FIGURE 5.65
A parabolic primary.
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The parabolic primary is defi ned by the equation

 P(φ) = (P1, P2) =   2 _________ 1 − cos φ   (cos φ, sin φ)  (5.77)

with π − π/12 ≤ φ ≤ π + π/12. The edge points P1 and P2 of the parabola 
are given as P1 = (−0.982994, 0.260813) and P2 = (−0.982994, −0.260813). 
Point X where two of the edge rays through P1 and P2 meet is given by

 X =   1 ___________  
cos φ + cos2 φ

   (−2 sin2 θ, sin 2θ)

= (−0.000320484, 0.0183605) (5.78)

We now have the situation as in Figure 5.65.
The entrance aperture of the CEC will be defi ned by point X and its 

symmetrical relative to the x1 axis. The parabolic primary is considered 
a Lambertian source P1P2 emitting toward the entrance aperture of the 
CEC. The étendue from this Lambertian source is

 ULS =   
8 sin θ tan (φ/2)

  _______________ cos φ    = 0.0188372  (5.79)

If we want maximum concentration, the receiver will be illuminated 
completely by Lambertian radiation with angles ranging between ±π/2. 
The size R of the receiver will then be 2R sin(π/2) = ULS or

 R =   
ULS ____ 2   = 0.00941861  (5.80)

We can now determine the positions of the edge points of the receiver. 
The lower edge R1 of the receiver is at the intersection of ray r1 through X 
coming from P1 and a horizontal line through the point (0, −R/2):

 R1 = isl(X, X − P1, (0, −R/2), (1,  0)) = (0.0931829, −0.00470931)

as shown in Figure 5.66. Point R2 is symmetrical to R1 relative to the 
axis x1.
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180 Introduction to Nonimaging Optics

We now have the foci P2 and R1 for the upper ellipse of the CEC and a 
point X that it must go through. This completely defi nes the curve, which 
is given by

eli(P2, R1, X) =  ( −0.982994 +    
0.0258818 cos(0.23363 + φ)

   ________________________   2.23574 − 2.21246 cos φ   , 

−0.260813 +    
0.0258818 sin(0.23363 + φ) 

   ________________________   2.23574 − 2.21246 cos φ   )  (5.81)

with a parameter range α1 ≤ φ ≤ α2, where

 α1 = ang(R2 − P2, R1 − P2) = 0.473627°  

 α2 = ang(X − P2, R1 − R2) = 2.47363°  
(5.82)

The ellipse at the bottom of the CEC is symmetrical to the one at the top 
relative to the x1 axis.

Example 2

Design a trumpet secondary for a parabolic primary with a rim angle 
of φ = 19.5° (19.5π/180 rad), a concentrator acceptance angle θ = ±1°, 
and a truncation of the hyperbola at a parameter value of φ = 62°.

The parabolic primary is defi ned by the equation

 P(φ) = (P1, P2) =   2 _________ 1 − cos φ   (cos φ, sin φ) (5.83)

with π − 19.5π/180 ≤ φ ≤ π + 19.5π/180. The edge points of the parabola, 
P1 and P2, are given by P1 = (−0.970474, 0.343663) and P2 = (−0.970474, 
−0.343663). The point X where two of the edge rays passing through the 
points P1 and P2 meet is given by

  X =   1 ____________  
cos φ + cos2 φ

   (−2 sin2 θ,  sin 2θ) = (−0.000332661,  0.0190581) (5.84)

FIGURE 5.66
Determining the position of receiver R and calculating the ellipses that compose the CEC 
secondary.
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Combination of Primaries with Flow-Line Secondaries 181

Its symmetrical Y relative to the x1 axis is

 Y = (−0.000332661, −0.0190581)  (5.85)

We now have the situation as in Figure 5.67.
The receiver size R as shown in Figure 5.68 is given by

 R =   
4 sin θ tan(φ/2)

  ______________ cos φ    =  0.0127254  (5.86)

The hyperbola of the trumpet concentrator is given by

 K(φ) =   
R2 − f 2

 ____________  
2R − 2f cos φ   (cos (φ + π/2), sin (φ + π/2)) + Y  (5.87)

where f = [X, Y] = 0.0381162.
The edge point of the truncated hyperbola is obtained as K = K(62°) = 

(−0.110585, 0.039564).
The parabolic primary is considered a Lambertian source P1P2 

 emitting toward XY. The étendue from this Lambertian source is

 ULS =    
8 sin θ tan(φ/2)

  ______________ cos φ   = 0.0254508  

The amount of light that is lost due to the truncation of the hyperbola is 
twice the étendue from P1T to KX (Figure 5.69). Point T can be obtained by

 T = isl(K, K − X, P2, (0, 1)) = (−0.970474, 0.199496)  (5.88)

The étendue lost due to the truncation of the trumpet is then given by

 UL = 2([T, X] − [T, K] + [P1, K] − [P1, X]) = 0.00242781  (5.89)

The fraction of étendue captured by the trumpet is

 cU = 1 − UL/ULS = 0.904608  (5.90)

FIGURE 5.68
Truncated hyperbola of the second-
ary concentrator.
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FIGURE 5.67
A parabolic primary.
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182 Introduction to Nonimaging Optics

The illuminated portion of the primary is given by

 IL = 1 − [K, L]/[P1, P2] = 0.884875  (5.91)

where L is symmetrical to K relative to the axis of symmetry of the optic 
x1. The concentration the optic provides is then

 C =   
[P1, P2] _______ R   ILcU =   

cos φ
 _____ sin θ   ILcU = 43.2348  (5.92)

The ratio to the maximum possible concentration is

 C sin θ = 0.754552  (5.93)

Example 3

Design a TERC secondary for a parabolic primary with a rim angle of 
φ = 36.6°, a concentrator acceptance angle of θ = ±0.01 rad and a fl at 
receiver.

The parabolic primary is defi ned by the following equation:

 P(φ) = (P1, P2) =   2 _________ 1 − cos φ   (cos φ, sin φ)  (5.94)

with π − φ ≤ φ ≤ π + φ. The caustic of the edge rays is given by

 C(φ, θ) =   d __ 2   csc3  (   φ __ 2   )   ( sin  ( 2θ −   
3φ ___ 2   )  + sin  (   3φ ___ 2   ) , 

cos  ( 2θ −   
3φ ___ 2   )  − cos  (   3φ ___ 2   )  )  (5.95)

with π − 36.6π/180 ≤ φ ≤ π + 36.6π/180 and θ = 0.01 rad.

FIGURE 5.69
The parabolic mirror is considered a Lambertian source P1P2. The light emitted by P1T toward 
KX is lost.
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Combination of Primaries with Flow-Line Secondaries 183

The edge points of the parabola P1 and P2 are 

 P1 = P(π − 36.6π/180) = (−0.890625, 0.661437)  
(5.96)

 P2 = P(π + 36.6π/180) = (−0.890625, −0.661437) 

The edge points of the caustic are

 C1 = C(π − 36.6π/180, 0.01) = (−0.00962638, −0.00662272) 
 (5.97)

 C2 = C(π + 36.6π/180, 0.01) = (0.00949201, −0.00681391)

as shown in Figure 5.70. The size of the ideal receiver is

 R = [P1, P2]sin θ = 0.0132285  (5.98)

The position of the lower edge of the receiver can then be calculated by 
the intersection of the upper edge ray refl ected at P1 with a horizontal 
line through the point (−R/2, 0). Note that, since the focus of the parab-
ola is at F = (0, 0), the vector from P1 to F is given by F − P1 = −P1. A ray 
 parallel to the axis of the parabola is refl ected at P1 toward F, and there-
fore has a direction −P1 after refl ection. For this reason, the refl ected top 
edge ray r1 making an angle θ to the horizontal before refl ection has a 
direction −R(−θ)P1 after refl ection at point P1. The edge point R2 of the 
receiver is then given by

 R2 = isl  ( P1, −R(−θ) ⋅ P1,  ( 0,   −R ____ 2   ) , (1, 0) )  
 = (−0.00963753, −0.00661426) (5.99)

where R is the size of the receiver but R(−θ) is a rotation matrix of an 
angle −θ. The other edge R1 = (−0.00963753, 0.00661426) of the receiver 
is symmetrical to R2 relative to the horizontal axis of symmetry x1, as 
shown in Figure 5.70.

The edge points C1 and C2 of the caustic are to the right (larger x1 
components) of the edge points R1 and R2 of the receiver. Therefore, the 
caustic does not intersect the receiver or the TERC mirror that will be to 
the left of R.

We can now defi ne the position of a wave front w perpendicular to 
the incoming edge rays, as shown in Figure 5.71. Vectors v1 (perpen-
dicular to w) and v2 (parallel to w) are given by

 v1 = (cos θ, sin θ)  
(5.100)

 v2 =  ( cos  (    π __ 2   + θ ) , sin   (   π __ 2   + θ )  )  = (−sin θ, cos θ) 

We defi ne point W2 of the wave front w, for example, as

W2 = P2 + 0.2 v1 = P2 + 0.2(cos θ, sin θ)

= (−0.690635, −0.659437) (5.101)
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184 Introduction to Nonimaging Optics

And point W1 can then be obtained by the intersection of the straight 
line through W2 with a direction v2 with the straight line through P1 
with direction v1 as

 W1 = isl(W2, v2, P1, v1) = isl(W2, (−sin θ, cos θ), P1, (cos θ, sin θ))

 = (−0.703863, 0.663304)  (5.102)

We now take points along the parabolic primary and calculate the 
points on the TERC by the constant optical path length. The edge rays 
perpendicular to w refl ect at the parabola, then on the TERC, and are 

FIGURE 5.70
(a) A parabolic primary, a receiver, and a caustic of the edge rays. (b) Details of the receiver.
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FIGURE 5.71
Defi nition of a wave front, w, perpendicular to a set of edge rays.
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Combination of Primaries with Flow-Line Secondaries 185

redirected from there to the top edge R1 of the receiver. The optical path 
length S for these light rays is then

 S = [W1, P1] + [P1, R2] + [R2, R1] = 1.30564 (5.103)

We now take a parameter value for the parabolic primary and calculate 
the corresponding point. For example, for φ4 = π + 20π/180, we have

 P4 = P(π + 20π/180) = (−0.968909, −0.352654)  (5.104)

as shown in Figure 5.72.
We can now calculate the corresponding point on the wave front w by

 W4 = isl(W2, v2, P4, v1) = (−0.693731, −0.349902) (5.105)

Now, we can calculate the optical path length between points P4 and R1 as

 S4 = S − [W4, P4] = 1.03044  (5.106)

The edge ray r4 perpendicular to the wave front w and refl ected at P4 has 
a direction −R(−θ) ⋅ P4 after refl ection. Therefore, the direction of the ray 
after refl ection is given by

 u4 = −nrm(R(−θ) ⋅ P4) = (0.943066, 0.332606) (5.107)

where u4 is a unit vector. Finally, point Q4 on the TERC mirror is given by

 Q4 = coptpt(P4, u4, R1, n, S4)

 = (−0.0293346, −0.0212791) (5.108)

FIGURE 5.72
Calculation of a point Q4 on the TERC mirror.
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186 Introduction to Nonimaging Optics

where the refractive index is n = 1 since the mirrors are in air and the 
optical path length was also calculated with n = 1.

Carrying out the same calculation for other values of parameter φ for 
the parabolic mirror we get other points on the TERC mirror. The com-
plete mirror extends all the way to the edge of the primary, as shown in 
Figure 5.72a.

If we want to truncate the TERC at point Q4, the étendue lost from not 
being collected by the secondary would be

 UL =   ∫ φ4
  

 π+φ
   [vr(φ) − v4(φ)] ⋅    

dP(φ)
 _____ 

dφ   dφ  (5.109)

where

 v4(φ) = nrm(Q4 − P(φ))  
(5.110)

 vr(φ) = nrm(−R(−θ) ⋅ P(φ)) 

and we get UL = 0.00164788. We now defi ne point Q3 as symmetrical 
to Q4 about the axis of symmetry of the system (axis x1) as Q3 = 
(−0.0293346, 0.0212791). Truncation of the TERC mirror at point Q3 results 
in an  additional loss of the étendue also given by UL (due to the  symmetry 
of the optic). Total étendue loss is then 2UL. The shading produced by 
a TERC truncated at point Q4 (and the symmetrical mirror at point Q3) 
is given by

 SH =   
[Q3  , Q4] ________ 
[P1, P2]

    = 0.0321711 (5.111)

The fraction of light captured by the receiver is then

 LR = 1 − SH −   
2UL ___________  2[P1, P2]sin θ   = 0.843259 (5.112)

If we defi ne the angle α such that φ = π + α and the parabolic primary is 
defi ned by P(α) with −φ ≤ α ≤ φ, we can plot LR as a function of trunca-
tion angle αT (in degrees) as shown in Figure 5.73.

FIGURE 5.73
Étendue of the captured light by the truncated TERC as a function of the truncation
parameter αT.
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Combination of Primaries with Flow-Line Secondaries 187

Truncation at point P4 corresponds to truncation at αT = φ4 − π = 20°. 
The maximum is 0.875 for αT = 28.5° giving the point where the TERC 
can be truncated for maximum light collection.

Example 4

Design a TERC secondary for a parabolic primary with a rim angle of 
φ = 38°, a concentrator acceptance angle of θ = ±5° (±π/36 rad), and a 
circular receiver.

The parabolic primary is defi ned by the equation

 P(φ) = (P1, P2) =   −2 _________ 1 + cos α   (cos α, sin α) (5.113)

with −φ ≤ α ≤ φ. The caustics of the edge rays are given by

C(α, θ) =   d __ 2   sec3  (   α __ 
2
   )   ( cos  (   3α ___ 2   − 2θ )  − cos  (   3α ___ 2   ) ,

sin  (   3α ___ 2   − 2θ )  − sin  (   3α ___ 2   )  )  (5.114)

with −φ ≤ α ≤ φ and θ = ±π/36 rad. Figure 5.74 shows the primary mir-
ror with a focus at F = (0, 0) and a rim angle φ. Figure 5.75 shows caustic 
of the edge rays.

The edge points of the parabola are

 P1 = P(−φ) = (−0.881438, 0.688655)  
(5.115)

 P2 = P(φ) = (−0.881438, −0.688655)

FIGURE 5.74
A parabolic primary with a circular receiver.
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188 Introduction to Nonimaging Optics

The edge points C1 and C2 of the caustic formed by the edge rays are

 C1 = C(−φ, θ) = (−0.0910376, −0.0484055)  
(5.116)

 C2 = C(φ, θ) = (0.081249, −0.0634787) 

A ray r1 making an angle θ to the horizontal axis refl ects at point P1 and 
has a direction v after refl ection. The vector v makes an angle σ = φ + θ 
to the horizontal and is given by v = (cos(−σ), sin(−σ)). Point X where ray 
r1 after refl ection intersects the axis x1 is

 X = isl(P1, v, (0, 0), (1, 0)) = (−0.142946, 0)  (5.117)

The circular receiver has a radius given by

 R =    
2[P1, P2]sinθ ___________ 2π   = 0.019105  (5.118)

The center of the circular receiver is at a point

 A = X +  (   R _____ sin σ   , 0 )  = (−0.114933, 0) (5.119)

We can now design the involute mirror to the circular receiver as shown 
in Figure 5.75. It is given by

 IV (γ) = R(cos γ, sin γ) − Rγ(−sin γ, cos γ) + A (5.120)

with −π/2 − α ≤ γ ≤ 0.
Its end point I is on the straight line through P1 with direction v and 

is given by

 I = (−0.0955282, −0.044218) (5.121)

The caustic (bounded by points C1 and C2) is therefore to the right of the 
mirror and does not intersect it.

FIGURE 5.75
A circular receiver, an involute mirror, and caustic of one set of edge rays.
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Combination of Primaries with Flow-Line Secondaries 189

We may now calculate the TERC mirror. We start by defi ning the 
wave front w perpendicular to a set of edge rays as shown in Figure 5.76.

We defi ne point W1 on w as

 W1 = P1 + 0.1(cos θ, sin θ) = (−0.781819, 0.697371) (5.122)

and point W2 as

W2 = isl(W1, (−sin θ, cos θ), P2, (cos θ, sin θ))

= (−0.662235, −0.669477) (5.123)

The ray r1 refl ected at P1 is perpendicular to the wave front w and tan-
gential to the circular receiver at point T. It has a direction v after refl ec-
tion at P1. If t = R(−π/2) ⋅ v = (−sin σ, −cos σ), we have

 T = A + Rt = (−0.127962, −0.0139725) (5.124)

The optical path length is defi ned as

 S = [W1, P1] + [P1, I] + [I, T] + Rδ = 1.26463 (5.125)

where δ = ang(t, e2), where e2 = (0, 1). We can now choose a point P4 on the
parabolic primary and calculate the corresponding point on the TERC 
 mirror as shown in Figure 5.77.

FIGURE 5.76
Defi nition of the wave front w and the optical path length for calculating the TERC mirror.
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190 Introduction to Nonimaging Optics

For example, taking α = 20°, we get

 P4 = P(20π/180) = (−0.950851, −0.443389) (5.126)

We can now calculate the corresponding point on the wave front w as

W4 = isl(W1, (−sin θ, cos θ), P4, (cos θ, sin θ))

= (−0.684058, −0.420048) (5.127)

The ray r4 refl ects at P4 in the direction u4 = −nrm(−R(−θ) ⋅ P4) = 
(0.939693, 0.34202). We defi ne the position of point Q4 as

 Q4 = P4 + xu4 (5.128)

where x is unknown. The tangent point T4 on the receiver can be calcu-
lated as a function of Q4 as shown in Figure 5.78.

The angle β is given by

 β = arc cos  (   R _______ 
[A, Q4]

   )  (5.129)

The vector t4 is then given by

 t4 = R(−β) ⋅ nrm(Q4 − A) (5.130)

and point T4 can be obtained as

 T4 = A + Rt4 (5.131)

FIGURE 5.77
Construction of the TERC mirror.
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Combination of Primaries with Flow-Line Secondaries 191

Since Q4 = Q4(x), we have t4 = t4(x) and T4 = T4(x). The point Q4 on the 
TERC mirror must fulfi ll the condition of constant optical path length:

 [W4, P4] + x + [Q4, T4] + R δ4 = S (5.132)

where δ4 = ang(T4 − A, (0, 1)) and x is the distance between P4 and Q4. 
Solving this equation for x, we get x = 0.747344. We can now calculate 
Q4 = (−0.248578, −0.187783) on the TERC mirror and T4 = (−0.131363, 
0.00974957).

For other values of α we get other points on the parabolic primary 
mirror and the corresponding points on the TERC mirror. 
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6
Stepped Flow-Line Nonimaging Optics

6.1 Introduction

Typically, optical devices designed using the fl ow-line method are quite 
large in the case of small acceptance angles, and they also need to touch the 
edges of the receiver. A possible way around this limitation is to consider a 
step curve along the fl ow lines, with some portions of the curve along the 
fl ow lines and others perpendicular to those lines. The portions along the 
fl ow lines are converted to mirrors and to those perpendicular to the fl ow 
lines we add optics. This results in a microstructured optic with many small 
optical elements combined into one. Different versions of these devices have 
numerous applications, such as very compact concentrators, concentrators that 
do not touch the receiver, backlights and frontlights, and light guides that 
distribute the light of a source to several receivers or those that combine the 
light from several small sources onto a single exit aperture (synthetic large 
source).

6.2 Compact Concentrators

The compound parabolic concentrator (CPC) can be derived by the fl ow-line 
method. For large acceptance angles, the size of the CPC is reasonable, but for 
small acceptance angles it becomes very tall. Combining several small CPCs 
into a single device produces an equivalent, much shorter concentrator.1

Figure 6.1 shows a concentrator for an inverted V-shaped receiver AFB. Up 
to the dashed line s, the left-hand side vector fl ux lines fi inside this device 
are parabolas having a focus F and an axis parallel to r, which is in line with 
AF. Upward from line s, they are all straight lines. All of them have the same 
shape, only scaled upward or downward, as each one of them defi nes the 
same concentrator for different receiver sizes. The right-hand side vector fl ux 
lines are symmetrical to ones on the left-hand side.

Taking two of these vector fl ux lines, we can obtain different  concentrators. 
Figure 6.2 shows three examples. In the case of Figure 6.2a, the radiation is 
“compressed” by multiple refl ections bouncing back and forth between the 
two parabolas into the receiver R. In the case of Figure 6.2b, the receiver is 
asymmetric. Figure 6.2c shows a CPC for a tilted receiver. This  concentrator 
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194 Introduction to Nonimaging Optics

has an acceptance angle 2α and results from taking fl ow line f1 in Figure 6.1 as 
a mirror (which divides in half the CPC for the inverted V-shaped receiver).

It is possible, however, to take other shapes along the vector fl ux lines. 
Figure 6.3a shows one such possibility. In this case, we take a stepped line 
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�

r

f1f2f3f4

s

Parabolas
focus F
axis // r

A B

F

FIGURE 6.1
The vector fl ux lines inside a CPC for an inverted V-shaped receiver are shaped as parabolas 
below the dashed lines and straight lines above them.
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FIGURE 6.2
Different optics can be obtained by taking different fl ow lines inside a CPC for an inverted 
V-shaped receiver. (a) A concentrator with receiver R and composed of two parabolic arcs 
having the same focus and axis direction. (b) A concentrator for an asymmetrical receiver. 
(c) CPC for a tilted receiver. It has an acceptance angle 2α, and results from halving a CPC for 
an inverted V-shaped receiver with a vertical fl ow line.
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Stepped Flow-Line Nonimaging Optics 195

where the vertical lines, vi, are along the vector fl ux lines, but the horizontal 
ones, hi, are perpendicular to them.

If AF is now a source, its radiation will exit through h1, h2, h3, …, and these 
horizontal lines can now be considered as small “sources” emitting radiation 
with the same angular aperture, 2α, as the acceptance angle of the concentra-
tor. A “source” hi will now have a maximum space, ei, from Pi to Qi through 
which its radiation can exit as shown in Figure 6.3b. This means that we can 
decrease the angular spread of the radiation to increase its aperture area and 
make it exit perpendicular to ei fi lling it completely. If hi and ei refer now to 
the sizes, étendue conservation requires that 2hi sin α = 2ei sin θ. Since we 
have hi = ei sin α, we obtain

 θ = arc sin(sin2 α) (6.1)

For the device in Figure 6.3a, we can now put on top of each source hi a con-
centrator such as the one shown in Figure 6.2c, but turned upside down, as 
shown in Figure 6.4.

This transforms the source AF into a set of smaller collinear sources Si. Their 
added widths equal to that of AF. On top of each one of these exits, Si, we 
can now put a CPC with an acceptance angle θ calculated according to 

h1

h2

hi

v1
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v2

h3

v3

F
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�
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ei

2�

(a) (b)

FIGURE 6.3
If AF is now a source of radiation, its light will be divided into h1, h2, and h3, which can now 
also be considered as small sources. Each one of these sources hi now has a distance ei through 
which its radiation can exit. This means that the angular aperture of the radiation can be 
decreased to increase its area and fi ll ei.
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196 Introduction to Nonimaging Optics

expression 6.1. The resulting device is a compact optic shown in Figure 6.5a. 
This optic can now be seen as a concentrator having an acceptance angle 2θ 
and a receiver AF. Horizontal dashed line GF divides the compact optic in 
upper optics (above GF) and lower optic (below GF). The lower optic GA has 
a parabolic shape and concentrates to F the edge rays parallel to r making an 

angle 2α to the horizontal. Figure 6.5b shows 
a similar device, except that it combines a 
larger number of CPCs.

Now consider a light pipe composed of two 
vertical parallel fl at mirrors as shown in Fig-
ure 6.6a. The length of the light pipe is such 
that the lines that connect its opposing edges 
make an angle 2β. If light having an angu-
lar aperture 2α is injected at one end, it will 
bounce around until it exits at the other end 
with the same angular aperture. The vector 
fl ux lines inside this optic are straight, verti-
cal parallel lines. We can now take a stepped 
line along these lines, just as we did previ-
ously. The result is shown in Figure 6.6b.

As described earlier, a source hi will now 
have a maximum width ei from Pi to Qi 
through which its radiation can exit. Again, 
we can decrease the angular spread of the 
radiation to increase its area and make it exit 
perpendicular to ei fi lling it completely. If hi 

S3

S2

S1

F

A

FIGURE 6.4
Placing a CPC for a tilted receiver 
(as in Figure 6.2c) on top of each 
horizontal line, we divide the 
source AF into smaller sources Si.
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FIGURE 6.5
Compact optics: concentrators that result from a combination of several CPCs into a single 
receiver.
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and ei refer now to the sizes, étendue conservation requires that 2hi sin α = 
2ei sin θ. Since hi = ei sin β, we have

 θ = arc sin(sin α sin β) (6.2)

As described previously, on top of each source hi we can now put a CPC 
for a tilted receiver (similar to that of Figure 6.2c) but turned upside down. 
Because of the difference between angles α and β, we also need circular arcs 
with an angle α − β to make the exit apertures of these optics collinear. We 
can now add the CPCs with an acceptance angle 2θ, where θ is determined 
by expression 6.2. We end up with the device as shown in Figure 6.7a.

Figure 6.7b shows the same device, but rotated so that the CPCs are in the 
vertical position. This optic can now be seen as an angle transformer  having 
an acceptance angle 2θ and an exit angle 2α. The horizontal dashed line b 
divides the optic into two. The optics above this line are called the upper 
optics and the optic below this line is called lower optic. Figure 6.8 shows an 
upper optic from Figure 6.7b.

Since these concentrators result from the combination of several small 
CPCs, they are much more compact than the CPCs themselves.

2�

2�
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hi

vi

�

(a) (b)

FIGURE 6.6
A light pipe composed of two vertical fl at mirrors. If light with angular aperture 2α is injected 
at one end, it exits at the other end with the same angular extent. The vector fl ux lines inside 
this device are vertical straight lines. A stepped vector fl ux line can also be taken in this case, 
as shown in (b).
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198 Introduction to Nonimaging Optics

Other such designs can combine several light 
sources into a single exit aperture.2,3 One such 
possibility uses a combination of several optics 
like the one seen in Figure 6.9.

Figure 6.9 shows a CPC with a small aperture 
R and a large aperture AM coupled to an angle 
rotator. Several conic curves form the sidewalls 
of this angle rotator. Between points K and J 
light is not confi ned by a mirror. The optic may 
then be extended to the right of line K-J with a 
 nonoptical surface. This extra material between 
line K-J and the nonoptical surface has no opti-
cal function and may be used, for example, for 
holding the optic. 

The wall ML of the angle rotator is fl at and 
refl ects edge rays parallel to direction r2 into 
a direction parallel to r3. The portion LK is a 
parabola with a focus A and an axis parallel to 
r3. On the other side, the curve AB is a parabola 
with a focus J and an axis parallel to r1. The 

curve BC is an ellipse with foci M and J. The curve CD is a parabola with a 
focus J and an axis parallel to r3. The curve DE is an ellipse with foci K and 
J. The curve EG is an ellipse with foci K and N. This side of the optic ends 
in a fl at portion GH. On the other side, we have a parabola IJ with a focus N 
and an axis parallel to r4.
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FIGURE 6.7
An angle transformer with an acceptance angle 2θ and an exit angle 2α. In (b), the horizontal 
dashed line b divides the device into an upper optics and a lower optic.
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FIGURE 6.8
An upper optic for the device 
shown in Figure 6.7.
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Several of these optics can be combined using a stepped fl ow-line approach, 
as shown in Figure 6.10.

Note that if the direction of the light is reversed, we can place a large source 
at the exit aperture and this optic will distribute its light to several places.

Another possible application of stepped fl ow-line optics is in high effi ciency 
backlights and frontlights.4 A simple example is to replace the  horizontal 
steps shown in Figure 6.6 by tilted steps as shown in Figure 6.11, which 
refl ect the light perpendicular to the direction of the light guide.

The resulting optic consists of a light source, a collimator, and a stepped 
fl ow-line optic. In the case of a backlight (Figure 6.11a), light is refl ected 
through a transmissive screen and will be observed on the other side. In the 
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FIGURE 6.9
A CPC and an angle rotator. Between points K and J there is no need for a mirror to confi ne 
the light.
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FIGURE 6.10
Combination of several light sources into one single exit aperture by a stepped fl ow-line optic.
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200 Introduction to Nonimaging Optics

case of a frontlight (Figure 6.11b), light is refl ected toward a refl ective screen, 
which is refl ected back through the optic and then observed. The size of 
the steps may be made very small compared to the spacing between steps, 
making them imperceptible to the observer. The frontlight then behaves as a 
transparent plate that illuminates a refl ective screen. More elaborate designs 
may illuminate a large target with a single small source, or have a thickness 
that is nearly constant for the whole optic.4

6.3 Concentrators with Gaps

Flow-line design methods typically produce designs in which the  mirrors 
touch the source of radiation or the receiver. It is, however, possible to 
 modify these designs to obtain ideal concentrators that do not touch either 
the source or the receiver.5

The CPC in Figure 6.8 can be seen as a concentrator for an infi nite source 
placed at an infi nite distance. If, however, the source is now, for example, a 
circle placed at a fi nite distance, a tailored concentrator for this new source 
can also be designed.

Let us then consider a circular Lambertian source of radius r, as shown in 
Figure 6.12a. Some of its light is captured by an optic having an acceptance 
angle 2θ and whose entrance aperture is a circular arc AB of radius R. The 
entrance aperture spans an angle δ at the center of the source and its arc length 
is Rδ. The étendue entering the optic will then be U = 2Rδ sin θ. Now, R and r 
are related by r = R sin θ, and therefore, we can write U = 2rδ. If this radiation 
is transferred to the exit aperture F1F2 (Figure 6.12b) and concentrated to the 
maximum (exit angle π/2), we have U2 = 2[F1, F2] for the étendue exiting the 
device, where [F1, F2] is the distance between F1 and F2. We should then have 
2rδ = 2[F1, F2], and therefore [F1, F2] = rδ. The acceptance angle 2θ of the optic 
is related to the angle 2γ between rays r1 and r2 by θ = γ + δ/2. We may then 
calculate angle 2γ from the values of θ and δ, and therefore the directions of 
rays r1 and r2 and thus determine the positions of points F1 and F2.

Figure 6.13 shows one of these devices for the acceptance angle 2θ. Each one 
of its points P is calculated so that l1 + l2 + rφ = Cte, where Cte is a constant.
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Collimator Collimator
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Backlight

Frontlight
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FIGURE 6.11
Stepped fl ow-line optics can be used in the design of backlights and frontlights.
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The whole upper optic as seen in Fig-
ure 6.8 can also be adjusted so that several 
component optics can be placed around 
the circular source. Figure 6.14a shows 
one of these modifi ed upper optics. Now 
the parabola and fl at mirror have become 
elliptical arcs. Figure 6.14b shows how 
these optics can be put around a circular 
source. It shows the upper optic in Fig-
ure 6.14a together with a second upper 
optic obtained by a rotation of an angle δ 
around the center C of the source.

The reason for the angles δ with ver-
tices P1 and P2 in Figure 6.14a is that, 
when this optic is rotated by δ around 
center C to become the next optic in the 
chain, the line P1P3 of the next optic will 
be parallel to P1P4 and the line P2P5 of 
the next optic will be parallel to P2P4.

Let us now consider that vjk is a unit vector pointing from point Pj to point Pk 
as shown in Figure 6.15. This vector can also be written as vjk = (cos θjk, sin θjk), 
where θjk is the angle that line PjPk makes to the horizontal. Point Pk can then 
be obtained from point Pj as Pk = Pj + xjkvjk, where xjk = [Pj, Pk] is the distance 
between Pj and Pk.

Now for calculating the geometry of the upper optic shown in Fig-
ure 6.14, we fi rst note that point P3 = F2 as in Figure 6.13. We can now make 
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FIGURE 6.12
A circular light source with a radius r and geometry for the entrance aperture AB of a concen-
trator that captures light from this circular source. Such a concentrator is seen in (b).
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FIGURE 6.13
A concentrator for a circular source of 
radius r and a receiver F1F2. Its points 
can be drawn with a string of constant 
length, that is, l1 + l2 + rφ = Cte, where 
Cte is a constant.
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202 Introduction to Nonimaging Optics

v35 = (cos θ35, sin θ35) and v36 = (cos θ36 , 
sin θ36), where angles θ35 and θ36 are 
unknown. Since P6 is connected to point 
F1 by a circular arc, it can be obtained as 
P6 = [F1, F2]v36. Point P5 can be obtained 
as P5 = P3 + x35v35, where x35 is unknown. 
Points P1 and P2 can be obtained by P1 = 
P3 − x31v35 and P2 = P3 − x32v36, where dis-
tances x31 and x32 are unknown. Point P4 
can be obtained by rotating point P5 by an 
angle δ around center C, and therefore, we 
have P4 = R(δ) ⋅ P5, where R(δ) is a rotation 
matrix of an angle δ.

All the points are now defi ned as func-
tions of the fi ve unknowns: θ35, θ36, x35, x31, 

and x32. We can now impose on the system the condition resulting from the 
curves and angles δ in Figure 6.14a. For the ellipse with foci P2 and P3, we 
have [P3, P6] + [P6, P2] = [P3, P5] + [P5, P2]. For the ellipse with foci P1 and P2, 
we have [P1, P3] + [P3, P2] = [P1, P4] + [P4, P2]. We must also impose the condi-
tion that v35 ⋅ v14 = cos δ, and v25 ⋅ v24 = cos δ. Vectors v14, v25 , and v24 can be 
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FIGURE 6.14
An upper optic for a circular source. How two of these optics can be combined around the 
source is seen in (b).
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FIGURE 6.15
Defi nition of vector vjk and angle θjk 
from two points, Pj and Pk.
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obtained as functions of the unknowns from the corresponding points. We 
then end up with four equations

[P3, P6] + [P6, P2] = [P3, P5] + [P5, P2]

 [P1, P3] + [P3, P2] = [P1, P4] + [P4, P2] 

 v35 ⋅ v14 = cos δ 

 v25 ⋅ v24 = cos δ 

(6.3)

and fi ve unknowns: θ35, θ36, x35, x31, and x32. We can then give a value to 
one of the unknowns, for example, θ36, and solve this system of equations to 
obtain the values for the four unknowns. We can then determine the posi-
tion of the points by replacing this result into their expressions and then 
calculate the ellipses.

Once the upper optic has been defi ned, the corresponding lower optic can 
be calculated. Figure 6.16 shows an optic having two upper optics and the 
corresponding lower optic. The lower optic is composed of elliptical arcs 
concentrate the light they receive from P1 and Q1 to P2 and Q2. Just like the 
whole second upper optic, also points Q1 and Q2 are obtained from P1 and P2 
by a rotation of an angel δ about the center C of the source.

For the points of the lower optic between L1 (point P5 in Figure 6.14a) 
and L2, points P1 and P2 are “visible”. The edge rays at those points on the 
lower optic are those appearing to come from P1 and those headed to P2 and 
therefore require an ellipse having foci P1 and P2. Beyond point L2, point Q2 
becomes “visible”.

Parabola
focus Q1
axis // r

Ellipse
foci Q1, Q2

Ellipse
foci P1, Q2

Ellipse
foci P1, P2

L2

L1

L3

L4

L5

� �

�

P1

P2

r

r

Q1

Q2

Flat
mirror

X

J

FIGURE 6.16
The lower portion of an optic that captures light coming from a circular source is composed of 
a set of elliptical arcs that concentrate to P2 and Q2, the edge rays it receives from P1 and Q1.
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204 Introduction to Nonimaging Optics

Thus, there must be an ellipse with foci P1 and Q2. At point L3, point P1 stops 
being visible and point Q1 becomes visible; hence there is an ellipse with foci 
Q1 and Q2 that extends until point L4, where Q2 stops being visible.

The design of the fi nal portion of the optic starts by defi ning the fl at mir-
ror JX, which is tangent to the upper optic at point J. The angle φ between 
line Q1J and JX was chosen as the exit angle of the device. The étendue of the 
radiation entering the optic coming from the source is known, and therefore 
the distance [X, L5] can be calculated. Since the exit aperture XL5 is perpen-
dicular to the fl at mirror JX, point L5 can be determined. The design is com-
pleted by a parabolic arc from L4 to L5.

A large number of upper optics can be placed around the source com-
pletely surrounding it.6 Figure 6.17 shows this possibility. The upper optics 
are the same as shown in Figure 6.16 and the design method of the lower 
optic is also the same.

This device is a gap optic and can also be viewed as a concentrator having 
an acceptance angle 2φ and a circular receiver. In this case, it can be seen that 
the optic does not touch the central circular receiver.

It is possible to combine a compact optic (Figure 6.5) with a gap optic 
 (Figure 6.17). To the gap optic of Figure 6.17 we remove a portion of the lower 
optic (above point L16), and adjust the length of the vertical fl at mirror, result-
ing in the optic of Figure 6.18 (shown rotated by 90 degrees relative to the 
position in Figure 6.17).

To optically connect these two optics, we start with the fl at mirror P5C1, 
which is tangent to the upper optic at point P5 (defi ned in Figure 6.14a). Its 
length defi nes angle 2α, and is chosen as to match angle 2α of the upper 
optics of the compact optic. 

Flat
mirror � �

r

r

Parabola
focus X1
axis // r

L16
X1

FIGURE 6.17
Gap optic: a concentrator having an acceptance angle 2α that does not touch its circular 
receiver.
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I
X1

P5

L16

C1
2�

FIGURE 6.18
To optically connect a gap optic and a compact optic, we start from mirror P5C1, tangent to the 
upper optic at P5, and whose chosen length defi nes the angle 2α that matches that for the upper 
optics of the compact optic.

Parabola
focus C1
axis // r

Parabola
focus I
axis // r

Parabola
focus X1
axis // r

I

X1
C1

L16

r
r

r
2�

2�

FIGURE 6.19
Combination of a compact optic and a concentrator with a gap between the optic and the 
receiver.

Figure 6.19 shows a combination of a compact optic and a gap optic. Point 
I is a mirror image of point L16 with P5C1 as the mirror. The upper optics of 
the compact optic are similar to the ones in Figure 6.5. The lower optic is 
composed of a set of parabolic arcs that redirect the edge rays coming from 
the gap optic in direction r, which makes an angle 2α to the horizontal.

Figure 6.20 shows two of the optics of Figure 6.19 placed side by side.
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206 Introduction to Nonimaging Optics

6.4 Examples

The following examples use expressions for the curves and functions that 
are derived in Chapter 17.

Example 1

Design a stepped fl ow-line concentrator for a half-acceptance angle of 
θ = 20°.

We start by the parameterization of a CPC. The right-hand side 
parabola of a CPC with a half-acceptance angle θ and a small aperture 
of dimension 2a centered at the origin is given by

 cR(φ) = (c1(φ), c2(φ)) 

 =  ( a   
1 − cos(φ + 2θ) + 2 sin(φ + θ)

   ___________________________  cos φ − 1  , a   
cos(φ + θ)

 __________ 
sin2(φ/2)

   (1 + sin θ) )  (6.4)

with 3π/2 − θ ≤ φ ≤ 2π − 2θ as shown in Figure 6.21.
The left-hand side parabola is symmetrical relative to the vertical 

axis x2 and is given by cL(φ) = (−c1(φ), c2(φ)). If the center of the small 
aperture is now at a point M instead of at (0, 0), then the parabolas of 
the CPC are given by cR(φ) + M and cL(φ) + M with the same param-
eter range.

To design the stepped fl ow-line concentrator, consider that the hori-
zontal line separating the lower optic from the upper optic is bounded 
by points A = (0, 0) and B = (1, 0), as shown in Figure 6.22.

Begin with the lower optic below line AB. Design it as a parabola AC 
tilted by an angle π − 2α to the horizontal, that is, with its axis parallel 
to r. The half-acceptance angle for the optic is θ = 20° and the angle α 
that defi nes the lower optic is given by

 α = arc sin (   √ 
_____

 sin θ   )  = 35.7906° (6.5)

The parameterization of lower parabola AC is then

 a(φ) = par(π − 2α, B, A) 

 =  ( 1 −    
0.68404 cos(1.24933 − φ)

   ______________________  1 − cos φ  ,    
0.68404 sin(1.24933 − φ)

   ______________________  1 − cos φ   )  (6.6)

FIGURE 6.20
Two of the optics seen in Figure 6.19 placed side by side.
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where 2α ≤ φ ≤ π. Point C is obtained for φ = π as C = (1.10806, −0.324499). 
We can now calculate the position of point F as

 F = isl(B, (cos(−α), sin(−α)), A, (cos(−2α), sin(−2α))) 

 = (−0.31596, 0.948773) (6.7)

Parabola AE has a horizontal axis and focus F, and is given by

 b(φ) = par(0, F, A)

 =  ( −0.31596 +   
0.68404 cos φ  ____________ 1 − cos φ  , 0.948773 +   

0.68404 sin φ  ____________ 1 − cos φ   )  (6.8)

where π ≤ φ ≤ 2π − 2α. Point E is obtained for φ = π as E = (−0.65798, 
0.948773). Finally, add the top CPC whose sidewalls are parabolas EG 
and FH. The midpoint of its small aperture is M = E + 0.5(F − E) = 
(−0.48697, 0.948773) and the parameter a that defi nes the small aperture 
EF is given by a = [E, F]/2 = 0.17101. The parabolas of the CPC are then

 cR(φ) + M 

 =  ( −0.48697 + 0.17101    
1 − cos(0.698132 + φ) + 2 sin(0.349066 + φ)

    _______________________________________   cos φ − 1  ,

0.948773 + 0.229499   
cos(0.349066 + φ)

  ________________  
sin2(0.5φ)

   )  (6.9)

x2

x1

cRcL

��

−a a

FIGURE 6.21
A CPC with a small aperture of 
dimension 2a centered at the origin.

HG
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D
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x2

x1

�

2�

2�
r

r 2�

�−2�

FIGURE 6.22
A stepped fl ow-line concentrator with an upper 
optic (above AB) and a lower optic (below AB).

CRC_54295_CH006.indd   207CRC_54295_CH006.indd   207 4/3/2008   9:34:56 AM4/3/2008   9:34:56 AM



208 Introduction to Nonimaging Optics

x1

x2

FIGURE 6.23
Combination of several optics into a single concentrator.

for the right-hand side and

 cL(φ) + M

 =  ( −0.48697 − 0.17101    
1 − cos(0.698132 + φ) + 2 sin(0.349066 + φ)

    _______________________________________   cos φ − 1  , 

0.948773 + 0.229499   
cos(0.349066 + φ)

  ________________  
sin2(0.5φ)

   )  (6.10)

for the left-hand side, where 3π/2 − θ ≤ φ ≤ 2π − 2θ.
To combine several upper optics with one single lower optic, scale the 

lower optic and make an array of upper optics to cover it. For example, to 
combine 10 upper optics, scale the lower optic by a factor of 10 obtaining 
a parameterization 10a(φ) with the same parameter range. The parabolas 
AE of the upper optics are now an array

 b(φ) + i(B − A), i = 0, 1, ..., 9 (6.11)

with the same parameter range as before for each one of them. The same 
is true for the parabolas of the CPCs that are now given by

 cR(φ) + M + i(B − A), i = 0, 1, ..., 9 (6.12)

for the right-hand side parabolas and 

 cL(φ) + M + i(B − A), i = 0, 1, ..., 9 (6.13)

for the left-hand side parabolas. Figure 6.23 shows the resulting optic.
This optic is composed of several upper optics and a lower optic. 
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7
Luminaires

7.1 Introduction

A luminaire is a mirror (or an optical device) defl ecting the light from a 
source to a receiver so as to obtain on the receiver a prescribed light distribu-
tion. If the dimension of the light source is much smaller than the dimension 
of the luminaire mirror  such that the light source can be considered as a 
point source, and the distance from the luminaire to the receiver is also very 
large, it is possible to obtain the shape of the luminaire mirror by the tradi-
tional design methods.1,2 If the light source is large, it is then necessary to use 
anidolic optics to obtain the shape of the luminaire’s mirrors.1

In the previous analysis of nonimaging optics, we analyzed the problem 
of concentrating the light from a given source. The inverse problem is the 
illumination, where the source takes the place of the receiver or absorber and 
the objective is to produce, at some distance, a given distribution of radia-
tion. The calculation of a luminaire that produces a uniform illumination on 
a plane is simplifi ed if the plane is considered to be at a large distance from 
the luminaire. Let us consider initially an infi nitesimal source da in a 2-D 
space illuminating a line, as presented in Figure 7.1.

The illuminance E produced by this source on the line is given by (see 
 Chapter 16)

   E ___ E0
   =   I __ I0

   cos2 θ (7.1)

where E0 is the illuminance produced at the center of the line (θ = 0) and I0 is 
the intensity of the radiation in the same direction.

To make the illuminance same for all its points, that is, to make E = E0 for 
all points in the line, we must have

 I =   
I0 _____ 

cos2 θ   (7.2)

Since this relation does not depend on the distance from the infi nitesimal 
source da to the line, the angular distribution of radiation must also enable 
us to obtain a constant illuminance on a line placed at an infi nite distance. 
But if the line is now at an infi nite distance, the size of the source is no lon-
ger an issue, and therefore it need not be infi nitesimal. We can then replace 
the point source by a fi nite dimension one, as presented in Figure 7.1b. 
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212 Introduction to Nonimaging Optics

A luminaire for uniform light distribution on a line placed at an infi nite 
distance must then produce an angular intensity distribution for the light, 
which is given by Equation 7.2.

We could consider a compound parabolic concentrator (CPC) with an 
acceptance angle θ as a candidate for this luminaire if the direction of light is 
reversed inside of it. This is not, however, a solution to this problem because 
if we place a Lambertian source at the smaller aperture of the CPC, through 
the larger aperture the radiation will also exit having the characteristics of a 
Lambertian source but radiating inside an angle θ.

We must then look for another solution. In the presentation of the CPC, we 
started by placing fl at mirrors at each side of the receiver, which were then 
transformed into the mirrors constituting the CPC. Here, we could start with 
something similar.

7.2 Luminaires for Large Source and Flat Mirrors

Let us suppose that, at each side of a Lambertian source of light, we place 
two fl at mirrors at an angle π/4 to the horizontal, as presented in Figure 7.2. 
The angles are considered positive if measured clockwise relative to the ver-
tical. Therefore, the angle θ shown in Figure 7.2a is negative and represented 
as −|θ|.

Line

da

Luminaire

� �

(a) (b)

FIGURE 7.1
Figure (a) presents an infi nitesimal source da illuminating a straight line at a fi nite distance. 
(b) If the line is at an infi nite distance, the infi nitesimal source can be replaced by a luminaire 
producing the same angular intensity distribution. It will produce on the plane placed at 
infi nity a uniform distribution of radiation.
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An observer looking into the luminaire from a direction −|θ| sees the 
source OQ. The intensity produced by the source in direction θ is given by 
IS = LV[O, Q]cos θ or

 IS = L V[O, Q] cos θ = L VS (7.3)

where S = [O, Q]cos θ is the dimension of the source when viewed from 
direction θ and LV its luminance.

But the observer also sees an “image” of the source refl ected on the mirror. 
From direction θ, this image has a dimension M. The luminance LV is con-
served on refl ection and therefore the intensity corresponding to the image 
on the mirror is given by

 IM = L V M (7.4)

An observer looking at the luminaire in the direction θ will then see a source 
of radiation of width IS and an image on the mirror of width IM. This set is 
equivalent to a source having width IM + IS.1,3 The luminaire radiates in the 
direction θ a power per unit angle proportional to IM(θ) + IS(θ).

The intensity produced by the luminaire as a function of angle θ is then 
given by

 I(θ) = IM (θ) + IS (θ) = L(M + S) (7.5)

It is important to note that as the absolute value of θ increases, that is, takes 
values θ1, θ2, θ3, …, point R moves along the mirror through points R1, R2, 
R3, … as presented in Figure 7.2b.

O Q

(a) (b)

O Q

R R1

R2

R3
S M

�=0

�

�1 �2 �3

−

� /4
� /4

FIGURE 7.2
The power emitted by a Lambertian source OQ in a direction making an angle θ to the  vertical 
is proportional to the area S of OQ projected in this direction. If mirrors are placed at each 
side of the source, the portion QR of the right-side mirror refl ects in direction θ a power 
 proportional to the width M of the source refl ection. (a) An observer, from direction θ, sees a 
total power proportional to S + M. (b) As angle θ takes values θ1, θ2, and θ3, the refl ection of the 
source on the mirror extends to points R1, R2, and R3, respectively.
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214 Introduction to Nonimaging Optics

Figure 7.3a shows the result of the slope δ of the mirrors when it exceeds π/4.
In this case, for θ = 0, in addition to the radiation coming directly from the 

source, there are two images, one on each mirror, extending through ORL on 
the left-side mirror and through QRR on the right-side mirror. For emission 
angles close to θ = 0 we would then have two images (one on each mirror), 
complicating the analysis of the system.

However, if we had chosen an angle δ smaller than π/4, as in Figure 7.3b, 
a ray coming from O would be refl ected by the mirror at Q, making an 
angle −θ with the vertical. By symmetry, a ray coming from Q toward O 
would be refl ected making an angle θ with the vertical. Therefore, for angles 
between ±θ there would be no images of the source refl ected on the mir-
rors, and in this interval only the radiation produced by the source would 
be available; so it would not be possible to change the distribution of light 
produced by the luminaire to the desired distribution.

The slope of the mirrors (making an angle π/4 to the vertical) in Figure 7.2 is 
chosen in such a way that a ray coming from the edge O of the source would 
be refl ected at edge Q of the mirror and leave the luminaire in the vertical, that 
is, with θ = 0. Therefore, for θ = 0, the whole source is visible but there are no 
images on the mirrors. For other values of θ, the light leaving the luminaire 
comes directly from the source and also from one image of one of the mirrors.

The condition that the light coming from the edge of the source must be 
refl ected by the edge of the mirror and leave the luminaire in the vertical 
will be used later as a boundary condition for the design of luminaires pre-
cisely for the same reasons pointed here.

The distribution of radiation that this luminaire produces on a distant 
target is derived next. From Figure 7.4a we can see that ψ = π/4 − θ. Since 
the internal angles of the triangle ROQ add up to π and considering that 
∠ROQ = 3π/4, we can calculate ∠OQR = θ.

Now d = [O, Q]sin θ = [R, O]sin ψ or

 [R, O] = [O, Q]   sin θ _____ sin ψ    (7.6)

O

RL RR

Q
O Q

� >�/4
� <�/4

� −�

(a) (b)

FIGURE 7.3
(a) If the angle δ made by the mirrors with the horizontal is larger than π/4, for θ = 0 in addition 
to the source, two refl ections ORL and QRR are visible on the mirrors. (b) If δ < π/4, for angles 
with the vertical between ±θ, there will be no visible refl ections on the mirrors, and the distri-
bution of light between these angles is the one given by the source and cannot be changed.
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But IM = LV[R, O]sin ψ and therefore IM = LV[O, Q]sin θ. Since IS = LV[O, Q]
cos θ we get

 I(θ) = LV[O, Q](cos θ + sin θ) = I0(cos θ + sin θ) (7.7)

for the case with image on the left-side mirror with 0 < θ < π/4 and where 
I0 = LV[O, Q]. For the refl ections on the right-side mirror where −π/4 < θ < 0 
and we get

 I(θ) = I0(cos θ − sin θ) (7.8)

From Figure 7.4b, we can also see that the total intensity produced by the 
luminaire is given by

 I = r cos(2α − π/2) = r sin(2α) (7.9)

Expression 7.7 can also be obtained from Figure 7.5. In this fi gure we again 
have a luminaire similar to the one presented in Figure 7.4, that is, mirrors 
AQ and BO make an angle π/4 to the horizontal.

Flat mirrors AQ and OB then create images QOM and OQM of the source, 
respectively. In the example presented in Figure 7.5, we have an observer 
placed far away from the luminaire looking at it from an angle θ. This 
observer is looking at the optical system through the aperture AB. What he 
or she sees is the source OQ and the image OQM. The intensity produced 
by the source is given by LV[O, Q]cos θ and the intensity produced by the 
mirror image OQM is LV[O, QM]cos ζ = LV[O, Q]sin θ since θ + ζ = π/2. We 
then obtain expression 7.7 for the intensity produced by the luminaire. The 
image that the observer sees on the mirror extends from O to R. Note that if 
the observer is looking from a direction that makes an angle to the vertical 
larger than β, he will only be able to see part of the image OQM as shown in 
Figure 7.5b. However, if the observer is looking from the vertical direction 
(perpendicular to the aperture AB), he will only be able to see the source OQ 

Q O Q

R

O

R

d

IM

IS

�

� >0

�/4

�

�

r

I

2� − �/ 2

2�

(a) (b)

FIGURE 7.4
Calculation of the angular intensity distribution produced by a luminaire made of fl at mirrors 
making an angle π/4 with the horizontal.
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216 Introduction to Nonimaging Optics

and no images on the mirrors because the images are perpendicular to this 
viewing direction and therefore cannot be seen.

Since cos(π/4) = sin(π/4), we can write expression 7.8, for the refl ections on 
the right-side mirror with θ < 0, in the following form:

 I(θ) = I0      
cos θ cos(π/4) − sin θ sin(π/4)  

   ____________________________  
cos(π/4)

    = I0    
cos(π/4 + θ)

  ____________ 
cos(π/4)

   (7.10)

We then see that the intensity produced in direction θ with θ < 0 is propor-
tional to cos(π/4 + θ) since I0/cos(π/4) is a constant. Replacing I/I0 in Equa-
tion 7.1 we get

 E =   
E0 ________ 

cos(π/4)
    cos (   π __ 4   + θ ) cos2 θ ⇒ E ∝ cos (   π __ 4   + θ )  cos2 θ (7.11)

and therefore we can conclude that the illuminance on a distant target is pro-
portional to cos(π/4 + θ)cos2 θ.1 As seen, the illuminance on a distant plane 
is not constant and therefore a luminaire for this purpose cannot be built in 
V-shape.

Let us now consider that the fl at mirror of the luminaire does not touch the 
source of light. This situation is presented in Figure 7.6.

If, as mentioned earlier, for θ = 0 we want no images on the mirrors and for 
θ ≠ 0 we want just one image on one mirror, the edge point R0 of the mirror 
must have an angle such that the ray coming from O is refl ected vertically, 
as shown in Figure 7.6. The reasons for choosing this condition are the same 
as given earlier for the case in which the mirrors touched the edges of the 

QM
QM

Q

OM

O

R

B A

B

�

O Q

�



(a) (b)

FIGURE 7.5
(a) Mirrors QA and OB create, respectively, images QOM and OQM of the source. When look-
ing through the aperture AB, one sees the equivalent source QMOQOM. (b) For viewing angles 
larger than β only part of the image OQM will be visible. Therefore, an observer looking into 
the system from direction θ sees source OQ and the image OQM, that is, he sees the equivalent 
source QOQM.
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source. That is, this condition guarantees that for θ ≠ 0 there is an image of 
the source in one mirror so that we can tailor the light distribution. But we 
never have a situation in which we have images in both mirrors.

A point on a mirror can be described in a coordinate system as presented 
in Figure 7.7a, that is, using r(φ). As seen in Figure 7.7b, for different angles 
φ, we have different rays refl ected on the mirror. That is, for different values 
of φ, for example, φ1 and φ2, the corresponding ray of light exiting from O 
is refl ected on the mirror at points R1, R2, … and leave the luminaire mak-
ing angles θ1, θ2, respectively, to the vertical. And also, the incident and 
refl ected rays at R1 and R2 make angles 2α1 and 2α2, respectively. It is there-
fore possible for each shape of the mirror to establish functions φ(θ), α(θ), 
and r(φ(θ)) = r(θ).

O Q

R0

FIGURE 7.6
Luminaire consisting of two fl at mirrors that do not touch the source. The initial point R0 of the 
mirror is such that a ray of light coming from the edge O of the source is refl ected vertically.
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x2

x1

2�1

2�2

�1
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(a) (b)

FIGURE 7.7
(a) The points of a mirror can be described by coordinate r(φ). (b) For different angles φ, the 
light rays are refl ected at different points Ri on the mirror in different directions θi. The inci-
dent and refl ected rays also make different angles αi and, in this case, it is possible to defi ne 
functions φ(θ), α(θ), and r(φ(θ)) = r(θ).
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218 Introduction to Nonimaging Optics

The size of the source OQ is merely a scale factor for the design of the 
luminaire. For a source twice the size, the luminaire would have to be twice 
as large. We can therefore make [O, Q] = 1 without loss of generality. Now 
suppose we want, for example, a constant illuminance on a distant target. 
We can say that the source has a luminance (brightness) LV and that we 
need the luminaire to produce an intensity I(θ) = LV/cos2 θ. Or we can make 
LV = 1 for the source and say that we need the luminaire to produce an 
intensity I(θ) = 1/cos2 θ. This does not affect the shape of the luminaire. 
Without loss of generality, therefore, we can make LV = 1 for the design of 
the luminaire. For a Lambertian source, we then have IS(θ) = I0/cos θ with 
I0 = 1 or IS(θ) = cos θ. From now on we will then use [O, Q] = 1 and LV = 1 
for the source.

The image of the source produced by the mirror in Figure 7.7b is presented 
in Figure 7.8.

The mirror of the luminaire creates an image QMOM of the source. From 
direction θ, only the portion OMOR of the image of the source can be seen 
and it produces the intensity IM in the direction θ. For different values of θ, 
point R is at different positions on the mirror and the visible portion OMOR 
of the source image varies. Again the intensity produced by the luminaire is 
given by IM + IS, as seen in Figure 7.9a.

For obtaining the intensity produced by the mirror, we fi rst defi ne a func-
tion p(θ) given by

 p = r sin(2α) (7.12)

OM

OR
IM

IM

R0

R

QM

O Q

�

FIGURE 7.8
The mirror of the luminaire creates an image QMOM of the source and, in direction θ, it pro-
duces an intensity given by IM.
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The intensity produced by the mirror can now be obtained from the con-
struction presented in Figure 7.9b. For an angle θ, the image of the source in 
the mirror extends from point R0 to point R. The intensity produced by the 
mirror in direction θ can then be obtained from4

 IM = r sin(2α) − r0 sin(2α0) = p − p0 (7.13)

Note that line r in Figure 7.9b represents in fact a ray of light exiting point 
O, being refl ected at R, and exiting the luminaire making an angle θ to the 
vertical. Line r0 does not, however, represent a ray of light because, as we 
have seen in Figure 7.6, a ray of light exiting O and refl ected at R0 leaves the 
luminaire vertically, that is, with an angle θ = 0 to the vertical. For point R0, 
that is, we then have p0(θ) = r0 sin(2α0(θ)), where r0 is the distance between 
points O and R0 , that is, r0 = [O, R0]. For point R we have p(θ) = r(θ)sin(2α(θ)), 
so that

 IM(θ) = p(θ) − p0(θ) (7.14)

The total intensity produced by the luminaire is then given by

 I(θ) = IM(θ) + IS(θ) = r(θ)sin(2α(θ)) − r0 sin(2α0(θ)) + IS(θ) (7.15)

This expression is still valid even in the case where the mirrors are not fl at. 
Note that IM(θ) is the contribution of only one mirror because we never have 
images of the source on both mirrors at the same time.

Another example of a luminaire with fl at mirrors is presented in Figure 7.10, 
where the mirror of the luminaire is defi ned in such a way that a ray refl ected 
vertically at the lower edge point R0 of the mirror is coming from the near 
edge O of the source.

2�r 0sin(2�0)

r sin(2�)

2�0

r0
r

R0
R0

R
R �

�

QOQO

IM

IMIS

(a) (b)

FIGURE 7.9
The mirrors of a luminaire do not necessarily have to touch the edges of the light source. (a) A 
luminaire where the mirrors do not touch the source. The intensity in direction θ is still given by 
IS + IM. (b) The intensity of the refl ection on the mirror is given by IM = r sin(2α) − r0 sin(2α0) = 
p − p0, with p given by p = r sin(2α).
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220 Introduction to Nonimaging Optics

Then, for a different angle θ to the vertical, the observer will see an image 
on the mirror that extends from R0 to R, as seen in Figure 7.10b. The mirror of 
the luminaire creates an image QMOM of the source, as seen in Figure 7.11.

From direction θ, only the portion OMOR of the image of the source can be 
seen and it produces the intensity IM in the direction θ. For different values of 
θ, point R is at different positions on the mirror and the visible portion OMOR 
of the source image varies.

In this case, as seen in Figure 7.10b, the intensity produced by the mirror 
will be proportional to

 IM (θ) = r0 sin(2α0) − r sin(2α) = p0(θ) − p(θ) (7.16)

In contrast to the previous example, where the intensity produced by the 
mirror is given by expression 7.14, the total intensity produced by the lumi-
naire in this case is given by

 I(θ) = IM(θ) + IS(θ) = r0 sin(2α0) − r sin(2α) + IS(θ) (7.17)

Note that in this case also IM(θ) is the contribution of only one mirror because 
we never have images of the source on both mirrors at the same time.

As stated earlier, the position of a point R on the mirror can be defi ned 
using the coordinates r and φ defi ned in Figure 7.7. The position of the edge 
point R0 of the mirror can, however, be also defi ned using the angle γ sub-
tended by the source at R0 and the distance from R0 to the origin as param-
eters. If the origin O is the source edge further away from R0, we have the 
far-edge case, as presented in Figure 7.12.

2�

2�0

R0

R0

R

�=0

Q O

Q O

IM(�)

r0

p0(�)

p (�)

r

(a) (b)

FIGURE 7.10
(a) A luminaire with fl at mirrors. A ray coming from the near edge (to the mirror) of the source 
is refl ected vertically at R0. (b) The width of the image of the source on the mirror is given by 
IM = r0 sin(2α0) − r sin(2α) = p0 − p, with p given by p = r sin(2α).
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R0

OM

OR
QM 

O

R

�

Q

IM

IM

FIGURE 7.11
The mirror of the luminaire creates an image QMOM of the source and, in the direction θ, it 
produces the intensity IM.
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FIGURE 7.12
Calculation of the angle subtended by the source at the edge point R0 of the mirror when the 
origin is at the far edge of the source.
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222 Introduction to Nonimaging Optics

From Figure 7.12, we can see that α = π − (φ0 − γ). In this fi gure, γ < 0 and 
therefore α = π − (φ0 + |γ|). We have cos α = −cos(φ0 − γ). Although we are 
considering sources for which [O, Q] = 1, in this particular calculation we 
will make [O, Q] = s. We then have

 −s cos(φ0 − γ) = −r0 sin γ ⇔ cos(φ0 − γ) =   
r0 __ s   sin γ (7.18)

From Equation 7.18, φ0 can be obtained as

 φ0 = γ + arc cos  (   r0 __ s   sin γ )  (7.19)

If γ and r0 (or r0/s) are given, the angle φ0 can be determined and therefore R0 
can be defi ned as a function of these parameters.

Let us now consider the case in which the origin O is the source edge 
closer to R0. We then have the near-edge case as presented in Figure 7.13.

From Figure 7.13, we can see that

 [Q, C] =   √ 
____________

 s2 −  r 0  
2  sin2 γ   (7.20)

and therefore

 s sin α = [A, B] − [A, O] = [Q, C]cos γ − [A, O] 

 = cos γ   √ 
____________

 s2 −  r  0  
2
   sin2 γ   − r0 sin2 γ (7.21)

B

Q O

A

R0

�

�

�

�0

�0
�

�

C

s

r0 sin�
r0 sin2�

x1

x2

r0

FIGURE 7.13
Calculation of the angle subtended by the source at the edge point R0 of the mirror when the 
origin is at the near edge of the source.
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Since α = π − φ0, we can write for φ0

 φ0 = π − arc sin  ( cos γ   √ 
_____________

  1 −   (   r0 __ s   sin γ )  2    −   
r0 __ s   sin2 γ )   (7.22)

As mentioned earlier, if γ and r0 (or r0/s) are given, angle φ0 can be  determined 
and therefore the position of R0 can be defi ned. By using this result, instead 
of defi ning the edge point R0 in terms of its coordinates R0 = (R01, R02), we 
can defi ne it by the values of r0 and γ.

Angle γ is important because it defi nes the maximum angle θ for which the 
image of the source on the mirror extends to point R0, as seen in Figure 7.14. 
In Figure 14a we have the near-edge case. In this case, for θ > γ the image 
on the mirror will no longer extend to R0 because if a light ray was to leave 
R0 with an angle θ > γ, it would have to come from a point on the source 
further to the left side than Q. But the source ends at Q and therefore this is 
not possible.

Something similar happens in the far-edge case presented in Figure 7.14b. 
Also in this case, for |θ| > γ the image in the mirror will no longer extend to 
R0 because if a light ray was to leave R0 with an angle |θ| > γ, it would have 
to come from a point on the source further to the right side than Q. But the 
source ends at Q and therefore this is not possible.

Expressions 7.14 and 7.16 are obtained for the intensity produced by the 
mirror considering that the image on the mirror extends from a point R 
to the edge point R0. These expressions are therefore valid only for values 
of |θ| smaller than γ. This will be important in the following analysis of 
luminaires with curved mirrors.

Q

(a) (b)

Q

R0

R0

�

�

�

�

r0

r0

r0

r0

O
O

FIGURE 7.14
Angle γ defi nes the maximum angle θ for which the image of the source on the mirror extends 
to point R0. In both cases, ray r0 coming from the origin O is refl ected vertically at R0. If the 
image on the mirror was to extend to R0 for angles θ larger than γ, the light would have to come 
from points at the left side of Q in (a) and at the right side of Q in (b), which is not possible.
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224 Introduction to Nonimaging Optics

7.3 The General Approach for Flat Sources

We can now move forward to the analysis of curved luminaire mirrors. First, 
we need a coordinate system for the mirror parameterizations. Figure 7.15a pres-
ents the customary coordinate system, although this coordinate system is usu-
ally presented with the x2-axis pointing downward, as seen in Figure 7.15b.1,4

As can be seen

 2α = φ − θ (7.23)

If, as discussed earlier, for different values of φ we have different values of θ, 
we can defi ne the function φ(θ) and therefore r(φ) = r(φ(θ)) = r(θ). Also α is a 
function of θ designated by α(θ). Now p(θ) can be written as

 p(θ) = r(φ)sin(φ − θ) ⇔ p(θ) = r(θ)sin(2α(θ)) (7.24)

Then the equation of the mirror, that is, r(φ) can now be obtained from

 r(φ) =   
p(θ)
 _________ 

sin(φ − θ)
   ⇔ r(θ) =   

p(θ)
 _________ 

sin(2α(θ))
   (7.25)

There are two possible expressions for p(θ), which can be obtained from 
expression 7.15

 p(θ) = I(θ) + r0 sin(φ0 − θ) − IS(θ) (7.26)

or from expression 7.17

 p(θ) = −I(θ) + r0 sin(φ0 − θ) + IS(θ) (7.27)

where r0 = r(φ0) is a constant. Note that α0 is obtained for φ = φ0 and is a 
function of θ as seen in Figures 7.9b and 7.10b. Therefore α0(θ) = (φ0 − θ)/2 

(a) (b)

�

�

�
�

�

�
�

Mirror

O
x1

x2

r (�)

�
�

�

�

�

�

�

Mirror

O
x1

x2

r (�)

FIGURE 7.15
(a) The coordinate system used in the parameterization of the luminaire mirrors. (b) The same 
coordinate system, but with the x2-axis pointing downward. This is the usual orientation of the 
axes for the presentation of the luminaires.
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or 2α0(θ) = φ0 − θ. In these expressions, I(θ) is the 
desired intensity distribution for the luminaire.

The expression for p0(θ) can be obtained from 
the initial conditions for the design of the mirror. 
As shown in Figure 7.16, if the position of the edge 
point R0 of the mirror is given, r0 and φ0 can be 
calculated.

Since the desired intensity distribution I(θ) is 
given, the expression for p(θ) can now be calculated. 
If the starting point R0 for the design of the mirror 
is close to the source, we have a situation similar to 
the one in Figure 7.9 and p(θ) is given by expression 
7.26. If the starting point for the design of the mirror 
is away from the source, we have a situation similar 
to the one in Figure 7.10 and p(θ) is given by expres-
sion 7.27.

Since φ can be expressed as a function of θ, that is, 
φ(θ), we can write expression 7.25 as r(φ(θ)) = p(θ)/
sin(φ(θ) − θ) or r(θ) = p(θ)/sin(2α(θ)). However, this 
Equation 7.25 in this form cannot be solved because 
we still do not have the relation α(θ). We then need 
another equation enabling us to obtain α(θ).

Let us then consider an infi nitesimal portion of the mirror. This situation 
is presented in Figure 7.17. When dφ → 0, OA and OC tend to be parallel and 
Figure 7.17a tends to the situation depicted in Figure 7.17b.

From Figures 7.17a and 7.17b, we can verify that CB = dr and AC = rdφ, and 
we can therefore write4

   dr ____ 
rdφ   = tan α ⇔   1 __ r     dr ___ 

dφ   = tan α ⇔   d ln r _____ 
dφ   = tan α (7.28)

Equation 7.28 can be solved for α(θ) using expression 7.23 to relate α and φ 
and Equation 7.24 to replace r by p (see Appendix A) resulting in

 α(θ) = arc tan  (   p(θ)
 _________ 

P(θ) − Cm
   )  (7.29)

where P(θ) the primitive of p(θ) is given by

 P(θ) =   ∫       p(θ)dθ =   ∫       I(θ)dθ + r0 cos(θ − φ0) −   ∫       IS(θ)dθ (7.30)

if p(θ) is given by expression 7.26 and by

 P(θ) =   ∫       p(θ)dθ = −  ∫       I(θ)dθ + r0 cos(θ − φ0) +   ∫       IS(θ)dθ (7.31)

if p(θ) is given by expression 7.27.

R0

�0

r0

O
�0

FIGURE 7.16
The initial conditions for 
the design of the mirror 
are the position of the 
initial point R0 (which 
gives us the values of r0 
and φ0) and the direction 
of the refl ected ray com-
ing from O at R0 (given 
by angle θ0). In previous 
examples, θ0 = 0.
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226 Introduction to Nonimaging Optics

In expression 7.29, Cm is a constant of integration that must be determined 
from the initial conditions. Figure 7.16 shows the initial conditions for the 
design of the mirror. If the position of initial point R0 is given, the values 
of φ0 and r0 can be determined (r0 is the distance between O and R0). The 
expression for p(θ) can then be obtained from expressions 7.26 or 7.27 and for 
P(θ) from expressions 7.30 or 7.31. Let us further suppose that at point R0, the 
ray coming from O is refl ected making an angle θ0 to the vertical. We then 
have the initial conditions necessary to start designing the mirror. Constant 
Cm can be determined for the given value θ0. Note that α0 is related to φ0 and 
θ0 by expression 7.23, that is, α0 = (φ0 − θ0)/2. Expression 7.29 can be solved 
for constant Cm, which can then be obtained from the following expression:

 Cm = P(θ0) −   
p(θ0) _______________   tan((φ0 − θ0)/2)    = P(θ0) −   

p(θ0) _________ tan(α(θ0))
   (7.32)

The points on the mirror can now be calculated. If O is located at O = (O1, O2), 
the points in the mirror then have coordinates of the form (see Figure 7.15):

 R(θ) = O + r(θ)(cos ξ, sin ξ) = O + r(θ) ( cos ( φ(θ) − π/2 ) , sin ( φ(θ) − π/2 )  )  

 = (O1, O2) + r(θ)(sin(2α(θ) + θ), −cos(2α(θ) + θ)) (7.33)

If we consider that O is located at the origin, that is, O = (0, 0), we have

 R(θ) = r(θ)(sin(2α(θ) + θ), −cos(2α(θ) + θ)) (7.34)

and expression 7.25 gives us r(θ).
The process can now be summarized. As initial conditions, we must give 

the source size OQ, the desired angular distribution of intensity I(θ), the 

A

BC

[A,C]=rd�

Mirror

[C,B]=dr

[O,A]=r =[O,C]

d�
�

O

(a)

A

B
C

Mirror [A,C]=rd�

�/2−�

[C,B]=dr

�

�

(b)

FIGURE 7.17
(a) To obtain the differential equation describing the mirror, consider a small part of it. The 
origin of the coordinate system is point O. As dφ → 0, OA and OC tend to become parallel and 
(a) becomes (b), for which dr/(r dφ) = tan α.
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 initial point R0 for the mirror, and the direction of the refl ected ray on R0, 
which comes from the origin O. With these initial conditions, the values of 
r0, φ0, and θ0 are given. Expressions 7.26 or 7.27 then enables us to obtain p(θ). 
The expression for P(θ) is given by expressions 7.30 or 7.31. Expression 7.32 
gives us Cm. The expression for α(θ) is given by expression 7.29 and r(θ) can 
now be obtained from expression 7.25. The points of the mirror are then 
given by expression 7.34.

We have seen that there are two possible sets of equations for designing 
the mirror depending on whether the starting point R0 for the design of the 
mirror is close or far from the source, that is, if p(θ) is given by expressions 
7.26 or 7.27. However, the position for the origin of the coordinate system can 
also be chosen to be on the edge of the source closer to the mirror or away 
from the mirror. This creates a total of four possible confi gurations in the 
design of a luminaire for a fl at source.

7.4 Far-Edge Diverging Luminaires for Flat Sources

We now have the tools needed to calculate the shape of a luminaire, which 
produces a constant illuminance on a distant plane.

We start with a luminaire with initial point R0 for the design of the mirror 
close to the source, so we have a situation similar to that in Figure 7.9. This 
case is called far-edge diverging. Far-edge, because the edge of the source 
chosen for origin is the one further away from the mirror, and diverging 
because the rays coming from the origin O diverge after refl ecting off the 
mirror. In this case, the caustic of the edge rays coming from the origin falls 
behind the refl ector. Then, expression 7.26 is to be used for p(θ). The  luminaire 
to be designed is presented in Figure 7.18.

R

QO

v

R0
r0

x1

x2

�0

�0=0 �<0

FIGURE 7.18
Far-edge diverging luminaire. The design starts at point R0 and the light ray coming from O 
is refl ected vertically at this point. The design then starts at θ = 0 and, as θ evolves to negative 
values, the design evolves to points on the mirror further away from the source.
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228 Introduction to Nonimaging Optics

The process summarized earlier can now be used. Consider a source OQ 
of luminance LV. If we want a constant illuminance on a distant plane, the 
intensity produced by the source and the luminaire must be given by expres-
sion 7.2 where I0 is the intensity for θ = 0. But for θ = 0, there are no images 
of the source on the mirrors, so I0 is only from the source contribution in 
this direction and can be obtained from expression 7.3 with θ = 0. We there-
fore have I0 = LV[O, Q]. The source contribution is given by expression 7.3. 
Replacing these results in expression 7.26, we then have

 p(θ) =    
LV[O, Q] 

 _________ 
cos2 θ   + r0 sin(φ0 − θ) − LV[O, Q]cos(θ) (7.35)

When we have [O, Q] = 1 and LV = 1, we can write

 p(θ) =   1 _____ 
cos2 θ   + r0 sin(φ0 − θ) − cos(θ) (7.36)

and P(θ) can be obtained from expression 7.30 as

 P(θ) =   ∫       p(θ)dθ = tan θ + r0 cos(θ − φ0) − sin θ (7.37)

It is assumed that points O and Q and the initial point for the mirror R0 
are given. If the coordinates of O and R0 are given by O = (O1, O2) and R0 = 
(R01, R02), φ0 can be calculated by (see Figure 7.18)

 φ0 = arc cos (   
v ⋅ r0 ____________  

  √ 
___________

 (v ⋅ v)(r0 ⋅ r0)  
   )  (7.38)

with v = (0, −1) and r0 = (R01, R02) − (O1, O2). If O = (0, 0) we get r0 = (R01, R02). 
We can also obtain r0 by

 r0 = [O, R0] =   √ 
_____

 r0 ⋅ r0   (7.39)

We can now impose the boundary condition θ = θ0 = 0 for φ = φ0, that is, the 
ray coming from O refl ects at R0 leaving the luminaire in the vertical direc-
tion. This is again the boundary condition used earlier. This condition guar-
antees that for θ ≠ 0, there is an image of the source on one mirror, enabling 
a tailoring of the intensity pattern by adjusting the shape of the mirror. We 
never, however, had a situation in which the images of the source appear on 
both mirrors at the same time. In this case, expressions 7.36 and 7.37 can be 
written as

 p(θ0) = r0 sin φ0 (7.40)

and

 P(θ0) = r0 cos φ0 (7.41)
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with φ0 and r0 given by expressions 7.38 and 7.39. From expression 7.32, con-
stant Cm can now be obtained

 Cm = P(θ0) −   
p(θ0) _________ tan(φ0/2)   (7.42)

α(θ) is given by expression 7.29. From expression 7.25 it is now possible to 
obtain r(θ). The mirror points are given by expression 7.34. In this case, the 
design starts with θ = 0 and evolves to negative values of θ, as seen in 
Figure 7.18.

A particular case occurs when point R0 is chosen to be on the edge Q of the 
source. This situation is presented in Figure 7.19. In this case, the equations 
describing the mirror are simpler.

Since the mirror starts at point Q, we then have R0 = Q, r0 = 1, and φ0 = π/2. 
Expressions 7.36 and 7.37 can then be simplifi ed to

 p(θ) =   1 _____ 
cos2 θ   (7.43)

and

 P(θ) = tan θ (7.44)

From the boundary condition φ0 = π/2 for θ0 = 0, we can also conclude that 
α0 = (φ0 − θ0)/2 = π/4. For θ = θ0 = 0, we then have

 p(θ0) = 1 and P(θ0) = 0 (7.45)

These results can also be obtained from expressions 7.40 and 7.41 with r0 = 1 
and φ0 = π/2. From expression 7.42, we then obtain

 Cm = 0 −    1 ________ tan(π/4)    = −1 (7.46)

O

R

Rm

�m
��0=0

�0

Q≡R0
x1

x2

FIGURE 7.19
Luminaire that produces a constant illuminance at a distant plane. Since the whole device 
should extend to infi nity, it has to be truncated. The constant illuminance of a distant plane is 
then only achieved for |θ| < |θm|.
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From expression 7.29, we get

 α(θ) = arc tan (    1/cos2 θ ________ tan θ + 1   )  = arc tan (   1 _________________  
cos θ(cos θ + sin θ)

   )  (7.47)

From expression 7.25, we have

 r(θ) =   
p(θ)
 _________ 

sin(2α(θ))
    =   1 ______________  

cos2 θ sin(2α(θ))
   (7.48)

and fi nally the equation for the mirror can be obtained from expression 7.34. 
Remember that θ is positive when measured clockwise. Therefore, in this 
case, the design starts with θ = 0 and evolves to negative values of θ, as seen 
in Figure 7.19.

From expression 7.47, when θ → −π/4 we see that cos θ + sin θ → 0, and 
therefore α(θ) → π/2, so that r(θ) → +∞. This means that the mirrors extend 
from the source of light to infi nity. They must then be truncated for a  realistic 
design to be obtained. Therefore, the points in the mirrors are given by 
expression 7.34 with θm < θ < 0, where −π/4 < θm < 0.

The shape of the mirrors resulting from these calculations is presented in 
Figure 7.19. As can be verifi ed, the obtained mirrors are almost fl at.1 As seen 
earlier, these do not produce a constant illuminance on a distant plane.

It can also be noted from the obtained result that to design a complete 
luminaire, it should extend to infi nity. This means that, ideally, the mirrors 
should touch the plane at infi nity. This is similar to what happens in the 
design of tailored edge ray concentrators (TERCs) as secondary concentra-
tors for Fresnel primary refl ectors, since the TERC should ideally extend to 
the primary completely covering it. The same method can, in fact, be used 
in both cases.1

Truncating does not affect the uniformity inside the truncating angle, that 
is, does not affect the uniformity for θm < θ < 0. Outside the truncating 
angle, the intensity pattern is uncontrolled.

It can be shown that these luminaires such as the one in Figure 7.19 can be 
designed in the same way as TERC mirrors for Fresnel primaries.1

Three-dimensional rotationally symmetric luminaires with a cross section 
similar to the one in Figure 7.19 can also be designed to enable uniform illu-
minance of a distant target.5

7.5 Far-Edge Converging Luminaires for Flat Sources

We now present a luminaire with initial point R0 being away from the 
source, with the origin O of the coordinate system at the edge of the source 
and further away from the mirror. This case is called far-edge converging. 
Far-edge because the edge of the source chosen for the origin is the one fur-
ther away from the mirror, and converging because the rays coming from 
the origin O converge after refl ecting on the mirror. In this case, the caustic 
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of the edge rays coming from the origin falls in front of the refl ector. Since 
the starting point R0 for the design of the mirror is far from the source, the 
expression 7.27 is to be used for p(θ), as seen in Figure 7.20b. The luminaire to 
be designed is presented in Figure 7.20a.

Let us again suppose that we are interested in designing a luminaire pro-
ducing a constant illuminance on a distant plane. In this case I(θ) = 1/cos2 θ. 
The intensity produced by the source is given by IS(θ) = cos θ. In this case, 
expression 7.27 can be written as

 p(θ) = −   1 _____ 
cos2 θ   + r0 sin(φ0 − θ) + cos θ (7.49)

The primitive of this function is given by expression 7.31:

 P(θ) = −tan θ + r0 cos(θ − φ0) + sin θ (7.50)

It is assumed that points O and Q and the initial point for the mirror R0 are 
given. If the coordinates of O and R0 are given by O = (0, 0) and R0 = (R01, R02), 
φ0 can be calculated by expression 7.38 with v = (0, −1) and r0 = (R01, R02), as 
seen in Figure 7.20a. In the same way, r0 is given by expression 7.39.

We can now impose the boundary condition θ = θ0 = 0 for φ = φ0, that 
is, the ray coming from O refl ects on R0 leaving the luminaire in the vertical. 
This is again the boundary condition used earlier. In this case, expressions 7.49 
and 7.50 can also be written as expressions 7.40 and 7.41. From expression 7.42 
constant Cm can now be obtained.

Q

R

v

R

r sin(2�)

r 0sin(2�0)R0

�0

�0=0

�

�

r0x2

x1 r0

r

IM(�)

R0

QO

O

2�

2�0

(a) (b)

FIGURE 7.20
Far-edge converging luminaire. (a) The design starts at point R0 and the light ray coming from 
O is refl ected vertically at this point. The design then starts at θ = 0 and, as θ evolves to nega-
tive values, evolves toward the source. (b) The power emitted by the luminaire in direction θ 
corresponds to the refl ection of the source on the mirror between points R0 and R.
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The expression for α(θ) is given by expression 7.29 with p(θ), where P(θ) is 
given by expressions 7.49 and 7.50. As mentioned earlier, from expression 7.25 
it is now possible to obtain r(θ). The mirror points are again given by expres-
sion 7.34. In this case, the design starts with θ = 0 and evolves to negative val-
ues of θ, as seen in Figure 7.20a. Figure 7.21 presents a luminaire calculated 
using the method just described.

The initial point for the mirror is R0, and a ray coming from O is refl ected 
vertically at this point. These are the initial conditions for the design of the 
luminaire. The angle subtended by the source at this point is γ as shown in 
Figure 7.21a.

The design of the mirror starts at point R0 and should end, at most, at the 
horizontal line through O and Q, that is, at point RF because beyond this 
point the source is not visible from the mirror as seen in Figure 7.21. From 
point R0, however, it is not possible for light to exit at an angle θ1 larger than 
γ, since this ray of light would have to come from a point between Q and RF, 
and this is not possible, as seen in Figure 7.21b. The desired intensity distribu-
tion is then obtained only for values of θ smaller than γ, so there is no  interest 
in designing the mirror beyond point Rγ . In this case, we have θm = γ. For 
angles θ up to the value θm, the intensity pattern produced will be the desired 
one. Outside this range, the intensity pattern is uncontrolled.

This is a serious limitation of the design because the light distribution pro-
duced by the luminaire can only be tailored for a narrow range of angles. 
This diffi culty can, however, be overcome if we allow multiple refl ections to 
occur on the mirrors of the luminaire. Figure 7.22 presents a luminaire calcu-
lated by the same method, but choosing a different starting point R0.

As discussed earlier, a ray coming from O is refl ected vertically at R0. The 
angle subtended by the source at R0 is γ. The fi nal point Rm of the mirror is 
now on the line connecting R0 and Q. The mirror cannot be extended beyond 
Rm because it would shade the source. Point Rm can be calculated by solving 
the equation

 R(θ) = Q + x(R0 − Q) (7.51)

Q

�

R0

O

Q

�
R0

�1

�

RF

R�

O

(b)(a)

FIGURE 7.21
Far-edge converging luminaire. (a) The design of the mirror starts at R0 and ends at the horizontal 
line through the source. (b) The intensity produced can only be tailored for values of |θ| < γ, 
because for larger angles the image on the mirror no longer extends to R0.
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This is a set of two equations with two unknowns, θ and x. The value 
obtained for x tells us the position of Rm along line QR0 and the obtained 
value θm for θ tells us the maximum value for which the luminaire tailors 
the radiation  pattern. For angles θ up to the value θm, the intensity pattern 
produced will be the desired one. Outside this range, the intensity pattern is 
uncontrolled.

From what was said earlier, the image on the mirror should extend to R0 
only for θ smaller than γ. This would mean that the design method would 
only make sense for values of θ smaller than γ as in the example presented 
earlier. This is not, however, the case for this luminaire because of multiple 
refl ections on the mirror.

When θ reaches the value of γ, we have the situation presented in Figure 7.23. 
Now, the ray of light refl ected at R0 is coming from the edge Q of the source.

FIGURE 7.22
Far-edge converging luminaire designed by choosing the initial point in such a way that the 
mirror now ends at point Rm on the line connecting Q and R0. The mirror cannot be extended 
beyond Rm because it would shade the source.

O Q
Rm

�m

�

R0

�

R�

R0

QO

FIGURE 7.23
If only one refl ection on the mirror is allowed for the light rays before exiting the luminaire, the 
image on the mirror only extends to R0 for values of θ up to γ.
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234 Introduction to Nonimaging Optics

For values of θ larger than the value of γ, there are multiple refl ections on 
the mirror, and the refl ections extend the image of the source to R0 as pre-
sented in Figure 7.24. The mirror can then be designed for θ beyond γ using 
the same equations.

The maximum angle for which we can see light coming out of point R0 is 
the one that is tangent to the mirror at this point.

7.6 Near-Edge Diverging Luminaires for Flat Sources

We now present a luminaire with its initial point R0 away from the source and 
the origin O of the coordinate system at the edge of the source closer to the 
mirror. This case is called near-edge diverging. Near edge because the edge 
of the source chosen for origin is the one closer to the mirror, and diverging 
because the rays coming from the origin O diverge after refl ecting on the mir-
ror. In this case, the caustic of the edge rays coming from the origin falls behind 
the refl ector. Since the starting point R0 for the design of the mirror is far from 
the source, the expression 7.27 is to be used for p(θ) as seen in Figure 7.25b. The 
luminaire to be designed is presented in Figure 7.25a. Note that now the 
positions of O and Q are inverted, since the origin O must now be on the 
edge closer to the mirror to be designed.

The equations describing this luminaire are then the same as the ones 
used for the far-edge converging case presented earlier, but the design starts 
at θ = 0 and progresses through positive values of θ. The mirror must extend 
until it touches the x1-axis, that is, the horizontal line through the source. To 
calculate the corresponding value of θ we can numerically solve the equation:

 φ =   π __ 2   ⇔ 2α(θ) + θ =   π __ 2   (7.52)

�

R0

R2

QO

FIGURE 7.24
If multiple refl ections are allowed for the light rays on the mirrors, then it is possible to extend 
the image of the source to R0, even for angles θ larger than γ.
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This enables us to fi nd the maximum value θm for angle θ. For angles θ up to 
the value θm, the intensity pattern produced will be the desired one. Outside 
this range, the intensity pattern is uncontrolled.

For these luminaires, and depending on the position chosen for the initial 
point R0, the mirrors can partially shade the light coming directly from the 
source for a given angular interval. Figure 7.26 shows a luminaire where this 
shading occurs. This shading effect is presented in Figure 7.27.

Q O

R

R0

r0
x2

x1

�m

�m

�>0

Q O

R

R0

r0

r0sin(2�0)
r sin(2�)

IM

2�0

2�

(a) (b)

FIGURE 7.25
Near-edge diverging luminaire. (a) A light ray coming from the origin O is refl ected vertically 
at initial point R0 at a distance r0 from O. Angle θ starts at 0 and, as it evolves to positive values, 
the design of the mirror evolves toward the source. (b) The power emitted by the luminaire in 
direction θ corresponds to the refl ection of the source on the mirror between points R0 and R.

Q O

Q O
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R0

R0

R
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IM

� �0=0

FIGURE 7.26
The initial point R0 for the design of a near-edge diverging luminaire can be chosen so that the 
mirror shades the source for some values of θ. (a) The design of the mirror evolves toward the 
source as θ evolves from 0 to positive values. (b) The contribution of the mirror to the luminaire’s 
intensity.
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Q P

R0=(R01, R02)

O
x1

x2 �2�1

�

FIGURE 7.27
For angles θ with the vertical larger than θ1, the mirrors shadow the source and therefore only 
the portion QP is visible. For values of θ larger than θ2, the source is no longer visible.

The method of design for these luminaires is similar to the previous one, 
with the same equations. The difference is in the expression used for the 
contribution of the source for the illumination. Depending on the angle θ, the 
expressions differ for this contribution.

For values of θ between ±θ1, the source of light is completely visible. Its 
intensity must then be given by IS(θ) = [O, Q]cos θ.

For a value of θ between θ1 and θ2, only the part PQ of the source is visible. 
Therefore, only this part of the source contributes to the luminaire’s intensity 
in this direction. The expression IM(θ) = [O, Q]cos θ must then be multiplied 
by [P, Q]/[O, Q] for these values of θ. The portion of the source visible for 
angle θ is then given by

 f(θ) =    [Q, P]
 ______ 

[O, Q]
   (7.53)

and the intensity produced by the source is given by

 IS(θ) = [Q, P]cos θ =   
[Q, P]

 ______ 
[O, Q]

   [O, Q]cos θ = f(θ)[O, Q]cos θ (7.54)

for θ1 < |θ| < θ2. Making Q = (Q1, 0), P = (P1, 0), and R0 = (R01, R02), we can 
now calculate

tan θ2 =   
R01 − Q1 ________ R02

   
(7.55)

tan θ =   
R01 − P1 ________ R02
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and conclude that

 tan (θ2) − tan θ =   
R01 − Q1 ________ R02

   −   
R01 − P1 ________ R02

   =   
P1 − Q1 _______ R02

   =   
[Q, P]

 ______ R02
   (7.56)

Therefore, making R02 = y0, we get

 f(θ) = (tan θ2 − tan θ) y0/[O, Q] (7.57)

for θ1 < |θ| < θ2.
Since the source of light is completely visible for |θ| < θ1 and completely 

invisible for |θ| > θ2, and considering [O, Q] = 1, we can write

 f(θ) =  {    1
 

     
  (tan θ2 − tan θ)y0        

0
           

|θ| <  θ1

 
     

 θ1 < |θ| < θ2       
|θ| > θ2

    (7.58)

The design of the luminaire must then be divided into parts according to the 
branches of f(θ).

For constant illuminance, we must have I(θ) = 1/cos2 θ as mentioned ear-
lier. Since the starting point R0 for the design of the mirror is far from the 
source, the expression 7.27 is to be used for p(θ), as seen in Figure 7.26b:

 p(θ) = −   1 _____ 
cos2 θ   + r0 sin(φ0 − θ) + f(θ)cos θ (7.59)

For θ < θ1 we have f(θ) = 1, and therefore the expressions to be used in this 
case are the same as used in the previous example for the far-edge converg-
ing luminaire, since p(θ) is the same as obtained in expression 7.49; but in this 
case, the design starts at θ = 0 and evolves to positive values of θ, as seen in 
Figure 7.26a. The point of the mirror R1 obtained for θ = θ1 is now used as 
boundary condition for the next section of the mirror since it must be con-
tinuous. The boundary condition to be used in the next section of mirror is 
that, for θ = θ1, we must have α = α1 = α(θ1). The part of the mirror from R0 
to R1 is presented in Figure 7.28.

In the new section of the mirror, we have θ1 < |θ| < θ2. In this case, from 
expression 7.59 we obtain

 p(θ) = −  1 _____ 
cos2 θ   + r0 sin(φ0 − θ) + (tan θ2 − tan θ)y0 cos θ (7.60)

where r0 and φ0 still have the same value as the previous section of the mir-
ror because the image of the source on the mirror still extends to R0. Integrat-
ing expression 7.60 we get

 P(θ) = r0 cos(φ0 − θ) + y0   
cos(θ2 − θ)

 __________ cos θ2
   − tan θ (7.61)

Constant Cm can be obtained from expression 7.32 by making θ0 = θ1 and 
α = α1:

 Cm = P(θ1) −   
p(θ1) _____ tan α1

   (7.62)
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Note that, in expression 7.62, p(θ) and P(θ) are 
calculated for the new section of mirror and 
given by expressions 7.60 and 7.61; but α1 = 
α(θ1) for θ = θ1 is obtained from the previous 
section of mirror, that is, from the function 
α(θ) for the previous section of the mirror.

We now have p(θ), P(θ), and Cm for the new 
section of the mirror and a new expression 
for the function α(θ) can then be calculated 
as done earlier by expression 7.29 and a new 
expression for r(θ) by expression 7.25. The mir-
ror points are again given by expression 7.34.

The mirror must extend until it touches the 
x1-axis. To calculate the corresponding value 
of θ, we can numerically solve Equation 7.52. 
This enables us to fi nd the maximum value 
θm of the angle θ. In the case presented in Fig-
ure 7.27, the second section of the mirror 
extends through the interval θ1 < θ < θm.

A comparison between the luminaires 
obtained with and without shading is 
 presented in Figure 7.29. As seen, the lumi-
naire without shading is smaller for the same 
exit aperture and maximum angle θm. Since 
the luminaire with shading is also more com-
plex to calculate, there is no point in using it.

Q O

R1

�1

R0 

FIGURE 7.28
For angles θ with the vertical smaller than θ1, the mirrors do not shadow the source. For this 
range of angles, the mirrors extend from point R0 to R1 and are symmetrical.

O

OQ

Q

�m

�m

FIGURE 7.29
Comparison of two near-edge 
diverging luminaires. The top one 
is designed without shading and 
the bottom one with shading. Both 
have the same exit aperture and 
the same maximum angle θm. As 
seen, the luminaire designed with 
shading is larger (and also more 
complex to design).
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7.7 Near-Edge Converging Luminaires for Flat Sources

We fi nally present a luminaire with initial point R0 close to the source and 
with the origin O of the coordinate system at the edge of the source, closer 
to the mirror. This case is called near-edge converging. Near-edge because 
the edge of the source chosen for origin is the one closer to the mirror, and 
converging because the rays coming from the origin O converge after refl ect-
ing off the mirror. In this case, the caustic of the rays coming from the origin 
falls in front of the refl ector. Since the starting point R0 for the design of the 
mirror is close to the source, the expression 7.26 is to be used for p(θ), as seen 
in Figure 7.30. The equations used to design these luminaires are then the 
same as those used to design the far-edge diverging case, but the design 
starts at θ = 0 and evolves to positive values of θ, as seen in Figure 7.31a.

r0sin(2�0)

r sin(2�)
2�

2�0

R0

OQ
r0r

IM

FIGURE 7.30
Contribution of the mirror to the intensity produced by a near-edge converging luminaire.
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R
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x2
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FIGURE 7.31
Near-edge converging luminaire. (a) The initial point R0 for this design is such that the light 
ray coming from O is refl ected vertically at this point. As θ evolves to positive values, the 
design evolves to points further away from the source. (b) The maximum angle θm is where the 
mirror becomes vertical. Extending the mirror beyond this point will produce shading.
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These luminaires may or may not have shading, as in the case of near-
edge diverging designs presented earlier, but the designs with shading do 
not perform better than the ones without shading, and they are larger.6 
This result is similar to that presented earlier for the near-edge diverging 
luminaires. Therefore, there are no apparent advantages in using near-
edge converging luminaires with shading. Besides, this design method 
is much more complex, since the design of the mirror starts at R0 close to 
the source and therefore the fi nal point Rm of the mirror is unknown. For 
this reason, it is impossible to know at the beginning the shading that the 
mirror will produce. An iterative method is then  necessary in this design. 
We must try in guessing the end position Rm of the mirror and perform 
the calculations using the shading that the mirror would  produce if it 
started at R0 and ended at Rm. If, after designing the luminaire, we verify 
that the mirror does not end at Rm, its position must be changed and a new 
mirror calculated. This iterative process must continue until a coherent 
solution is found, that is, until the mirror profi le terminates at the chosen 
point Rm.

The designs with no shading are much simpler to calculate. Figure 7.30 
presents one such luminaire. The mirror starts at R0. As mentioned earlier, 
the initial condition for the design is that a ray of light coming from O is 
refl ected at R0 and exits the luminaire vertically. The end point of the mirror 
is where the mirror becomes vertical. For this point, the light coming from 
the source, and making an angle θm to the vertical, still leaves the luminaire 
without blocking and the light refl ected at Rm leaves the luminaire also mak-
ing an angle θm to the vertical. This point can be obtained by noting that for 
point Rm, we have φm + θm = π and solving the equation:

 π − φ = θ ⇔ π − (2α(θ) + θ) = θ (7.63)

This enables us to fi nd the maximum value θm for angle θ. For angles θ up to 
the value θm, the intensity pattern produced will be the desired one. Outside 
this range, the intensity pattern is uncontrolled.

We then have four possibilities for the design of the luminaires.4 As for the 
choice of the edge of the source used as a basis for the design, we have two 
possibilities—near edge and far edge. As for the shape of mirrors, we also 
have two possibilities—converging or diverging.

Note that in the far-edge confi gurations, the design of the mirror starts at 
θ = 0 and advances through negative values of θ. In the near-edge confi gura-
tions, the design of the mirror also starts at θ = 0 but now advances through 
positive values of θ.

The equations used for far-edge diverging designs and near-edge converg-
ing confi gurations are the same, and the equations used for far-edge con-
verging designs and near-edge diverging confi gurations are also the same.
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7.8 Luminaires for Circular Sources

The designs presented earlier are based on a linear Lambertian light source. 
It is, however, interesting to have luminaires for other forms of light sources. 
A case also studied is for tubular sources.7–9 A widely used type of these 
sources is the fl uorescent tube.

The designs presented earlier can be immediately applied to tubes (or other 
kinds of source shapes) if this new source is transformed into a Lambertian 
linear source by means of an involute mirror.8 Figure 7.32 shows a tubular 
light source and the corresponding involute mirrors that transform it into a 
virtual linear Lambertian source OQ.

These involute mirrors can be built for any source of light, not just circu-
lar ones.

This arrangement can be directly applied to the luminaires for fl at sources, 
as presented earlier. For example, the fl at source of the luminaire presented in 
Figure 7.22 can be replaced by the source presented in Figure 7.32. Figure 7.33 
presents one such arrangement.

O Q

FIGURE 7.32
A tubular source of radiation can be transformed into an apparent linear source OQ by means 
of two involutes. The design techniques developed for linear sources can now be applied to 
the source OQ.

O Q

O Q

IOM2
IOM1

IM 

IS

(b)(a)

FIGURE 7.33
A tubular source is transformed into an equivalent fl at source OQ by two involute arcs. (a) A 
far-edge converging luminaire for fl at source can tailor the intensity pattern. (b) The contribu-
tion to the luminaire’s intensity by the source is IS, the mirror is IM, and the two involute arcs 
are IOM1 and IOM2.
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It is nevertheless possible to develop the theory presented earlier directly 
for tubes as generalizations of Equations 7.28 and 7.24 for tubular sources.9

In the case of luminaires for linear sources presented earlier, edge rays are 
emitted from a point to obtain the curves (see Figure 7.34a). There are two 
possibilities—the edge rays could come from the near edge or the far edge of 
the source. In the case of tubular sources, this analysis is similar, although 
more complex.

The edge rays to be considered are tangents to the tube and there are two 
possibilities for the design—they can come from the lower part of the tube 
(see Figure 7.34b) or from the upper part of the tube (see Figure 7.34c). The 
case in which the edge rays come from the lower part of the tube is called 
the far edge; the case in which the edge rays come from the upper part of the 
tube is called the near edge.

To analyze the far-edge case, the coordinates in Figure 7.35 will be used. As 
seen, expression 7.23 is still valid in this case.

The equation for the shape of the mirror can now be obtained with the help 
of Figure 7.36.

When dφ → 0, r and r1 become parallel and Figure 7.36a becomes the situa-
tion presented in Figure 7.36b.

From these fi gures it can be verifi ed that [C, B] = dr − adφ and [A, C] = rdφ 
and we can write

   
dr − adφ ________ 

rdφ   = tan α ⇔   1 __ r     dr ___ 
dφ   = tan α +   a __ r   ⇔   d ln r _____ 

dφ   = tan α +   a __ r   (7.64)

As seen, when a → 0, the expression 7.64 tends to Equation 7.28 obtained 
earlier.

Mirror

(a) (b) (c)

Mirror

Mirror

O

O

+O

FIGURE 7.34
(a) In the case of linear sources of radiation, the design of the luminaires is based on one of the 
edges of the source, which is a point. For tubular sources, the situation is different and two cases 
can be considered. (b) The edge rays on which the design of the luminaire is based are those com-
ing from the lower part of the tube. This case is called far edge. (c) The edge rays on which the 
design is based are those coming from the upper part of the tube. This case is called near edge.
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The expression for p(θ) can also be generalized for tubular sources. From 
Figure 7.37 we see that b = a/tan α. The expression for p(θ) can now be gen-
eralized to

 p(θ) =  ( r +   a _____ tan α   ) sin(2α) (7.65)

When the radius of the tube approaches zero, a → 0, and the expression 7.65 
becomes Equation 7.24.

A

AB

B

C

C

O

�

�
�

ad�

a
d�

dr =[C,B]+ad�

[A,C] =rd�

d�r1

r

Mirror

Mirror

�/2−�

(b)(a)

FIGURE 7.36
(a) To fi nd the differential equation describing the mirror, consider a small portion AB. The 
origin of the coordinate system is point O. When dφ → 0, r and r1 become parallel, (a) tends to 
the situation (b), for which (dr − a dφ)/(r dφ) = tan α.

R

O

O1

�

�
�

�

�

�

�

r (�)

a

x1

x2

Mirror

FIGURE 7.35
Coordinate system used to defi ne the mirror of the luminaire in the far-edge case.

CRC_54295_CH007.indd   243CRC_54295_CH007.indd   243 4/3/2008   9:38:24 AM4/3/2008   9:38:24 AM



244 Introduction to Nonimaging Optics

As mentioned earlier, the expression for p(θ) can be used to calculate the 
contribution of the mirror to the intensity produced by the luminaire. Two 
different possibilities for the design can also be considered in this case, simi-
lar to the luminaires for fl at sources. Figure 7.38 presents the case in which 
the edge rays do not intersect after refl ection off the luminaire mirror. This is 
the diverging case, and the contribution of the mirror is given by

 IM = (r + b)sin(2α) − (r0 + b0)sin(2α0) = p(θ) − p0(θ) (7.66)

with b0 = a/tan α0.

O

�

2� 2�

�

a

rb

Mirror

(r +b)sin(2�)

FIGURE 7.37
As in luminaires for linear sources, for tubular sources also, the intensity produced by the mir-
rors is defi ned at the cost of function p(θ).

2�
2�0

r

(r +b)sin(2�)
(r 0+b 0)sin(2�0)

r0

R0

R0

b0

b
IM

(b)(a)

FIGURE 7.38
Near-edge diverging confi guration. (a) The edge (tangent) rays to the cylinder diverge after 
refl ection on the mirror as presented. (b) The contribution of the mirror to the intensity is given 
by IM = p(θ) − p0(θ) with p(θ) given by the expression 7.65.
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Figure 7.39 presents the case where the edge rays intersect after refl ection 
off the luminaire mirror. This is the converging case and the contribution of 
the mirror is

 IM = (r0 + b0)sin(2α0) − (r + b)sin(2α) = p0(θ) − p(θ) (7.67)

with b0 = a/tan α0.
In the case of linear sources, the intensity produced by the luminaire is 

given by expression 7.5. For tubular sources, besides the luminaire mirror we 
have other mirrors, usually involute mirrors, as in Figure 7.33. The expres-
sion for the intensity of the luminaire is then given by

 I(θ) = IS(θ) + IM(θ) + IOM(θ) (7.68)

where IOM(θ) is the contribution of the other mirrors, besides the mirror of 
the luminaire to be designed. As stated, these are usually involute arcs. In 
case of Figure 7.33b, we have IOM(θ) = IOM1(θ) + IOM2(θ), where IOM1(θ) is the 
contribution of the left-side involute and IOM2(θ) the contribution of the right-
side involute.

Expressions 7.66 and 7.67 can now be replaced in expression 7.68 and we get

 I(θ) = IS(θ) + p(θ) − p0(θ) + IOM(θ) 
(7.69)

 p(θ) = I(θ) − IS(θ) + p0(θ) − IOM(θ)

2�

2�0

(r+b)sin(2�)

(r 0+b 0)sin(2�0)

R0

R0

IM

(b)(a)

r0+b0

r+b

FIGURE 7.39
Near-edge converging confi guration. (a) The edge (tangent) rays to the cylinder converge after 
refl ection on the mirror. (b) In this case, the contribution of the mirror to the intensity is given 
by IM = p0(θ) − p(θ) with p(θ) given by expression 7.65.
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or

 I(θ) = IS(θ) + p0(θ) − p(θ) + IOM(θ) 
(7.70)

 p(θ) = IS(θ) + p0(θ) + IOM(θ) − I(θ)

In any case, we can obtain p(θ) if the desired intensity for the luminaire I(θ), 
intensity produced by the source, and intensity produced by the other mir-
rors of the system IOM(θ) are given. These other mirrors are defi ned as a start-
ing point for the design. They are not calculated, so their contribution for the 
intensity must be determined.

As with fl at sources, also in this case we must give a starting point R0 for 
the design of the mirror.

The expression for r(θ) can be obtained from expression 7.65 if α(θ) is given. 
Expressions 7.64 and 7.65 together with 2α = φ − θ result in expression 7.71 
(see Appendix B), which defi nes α(θ) implicitly.

 Cm = P(θ) − (p(θ) − 2a)cot α − 2a arc tan(cot α) (7.71)

In this expression, Cm is a constant to be determined from the initial condi-
tions and

 P(θ) =   ∫       p(θ)dθ (7.72)

We can also write

 Cm = P(θ) − (p(θ) − 2a)cot (   φ − θ ______ 2   )  − 2a arc tan ( cot (   φ − θ ______ 2   )  )  (7.73)

Given an initial point for the mirror, we can calculate φ0. Given also a value 
of θ = θ0 for this initial point, we can obtain Cm.

Now, giving values to θ, the corresponding value for α can be obtained 
by solving Equation 7.71. Repeating the process for different values of θ, we 
can obtain α(θ). The expression for r(θ) can now be obtained from expres-
sion 7.65 as

 r(θ) =   
p(θ)
 _________ 

sin(2α(θ))
    −   a ________ 

tan(α(θ))
   (7.74)

The parameterization for the points of the mirror can now be obtained. From 
Figure 7.35 it is seen that O1 = a(cos φ, sin φ) and from expression 7.33 (in 
which point O is now considered to be at position O1) we have

 R = O1 + r(θ)(sin(2α(θ) + θ), −cos(2α(θ) + θ)) (7.75)

or

 R = a(cos(2α(θ) + θ), sin(2α(θ) + θ)) 

 + r(θ)(sin(2α(θ) + θ), −cos(2α(θ) + θ)) (7.76)
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A luminaire designed for a tubular source starts with an involute. This invo-
lute may or may not touch the source. If it does, we have two  possibilities—
total or partial involute. Figure 7.32 shows a complete involute. In this case, 
the tubular source is completely transformed into a linear source and the 
solutions found for this kind of source can be immediately applied. The solu-
tions with partial involute are designed for truncated involutes.8 Figure 7.40 
presents one of these involutes truncated for an angle µ with the vertical. The 
case of a complete involute can be obtained for |µ| = π/2.

The method of design for the luminaires with partial involutes is similar 
to the one described for linear sources. It is, however, necessary to remem-
ber that the light source has a different geometry, so the equations must 
adapt to this new situation.

For θ between ±µ (both edges O and Q are visible), the source behaves as 
a Lambertian emitter of width OQ. But for |θ| > |µ| (only Q is visible), the 
width d visible for the source is defi ned by an edge point of the involute Q 
and by a tangent point P to the tube8 as presented in Figure 7.41.

OO Q Q

Equivalent
Lambertian
source

(b)(a)

−�

FIGURE 7.40
(a) In tubular sources, the design of a luminaire can start by two mirrors shaped as involutes 
touching the source. In this case, for angles with the vertical smaller than µ, this set behaves 
as a Lambertian source of width OQ. (b) The equivalent Lambertian source is shaped as a 
rounded wedge with edges O and Q.

�

QO

P

d

−�

FIGURE 7.41
For the case presented in Figure 7.40, if the exit angle of light is larger than µ, the tubular source 
plus mirrors behave as a luminous source of width d defi ned by the extremity Q of the mirror 
and tangent to the source at point P.
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248 Introduction to Nonimaging Optics

Similarly, the equations to be used for defi ning the mirrors will depend 
on this behavior and the equations for fl at source or tubular source must be 
used accordingly.

If a far-edge luminaire is to be designed, the edge of the source serving as 
a basis for the design can be the involute edge O or the tangent to the tube. 
Figure 7.42 presents this situation. For the part of the mirror between points 
RB and RT, the edge O is visible. The differential equation defi ning the mir-
ror is then Equation 7.28. For the points beyond RT, the edge of the source 
corresponds to the tangent to the tube and the differential equation to which 
the mirror must obey is expression 7.64.8

This problem does not exist in the design of a near-edge luminaire since, in 
this case, the edge Q is always visible from the mirror, as seen in Figure 7.42.

Figure 7.43 shows a far-edge converging luminaire. Its design can start by 
the involute. Once this is done, we have the coordinates for points O and Q 
and therefore the size of the apparent source is s = [O, Q].

We now choose a point R0 to start the design of the mirror. As seen in 
Figure 7.44, the edge O of the involute can be seen from R0. Therefore, the 
fi rst part of the design is done in the same way as the one for a far-edge 
converging luminaire for a linear source OQ. This enables us to design 
the portion of the mirror from R0 to R1. At point R1, the edge ray from the 
source becomes tangent to the tube, as seen in Figure 7.44a. Now the equa-
tions for a tubular source must be used. Also for this new portion of the 
mirror, the image of the source extends to R0.

Q

R

RT 

RB

O

FIGURE 7.42
If the far edge O is used as the basis for the design of the luminaire, the equations used to 
defi ne the mirror must be different for |θ| < |µ| and |θ| > |µ|. For the portion RBRT of the 
mirror, which is θ < µ, the edge O of the involute is visible and the mirror is described by dif-
ferential equation 7.28 for linear sources. For the portion RTR of the mirror, the point O is no 
longer visible, so the differential equation defi ning it is now expression 7.64.
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The expression for p(θ) can then be obtained from expression 7.70 as

 p(θ) =  ( r0 + a�tan (   φ0 − θ ______ 2   )  )  sin(φ0 − θ) + s cos θ −   s _____ 
cos2 θ   

 = a + a cos(θ − φ0) − r0 sin(θ − φ0) + s cos θ −   s _____ 
cos2 θ   (7.77)

where s = [O, Q] and r0 and φ0 are as indicated in Figure 7.44b. Distance r0 is 
now the distance from point R0 to T0 on the tangent to the source through R0. 

O Q

R0 

a

x2

x1

FIGURE 7.43
Far-edge converging luminaire. It consists of two involute arcs starting at the highest point on 
the tubular source and ending at O and Q, and a mirror starting at R0 and extending toward 
the source.

QO
T1

T1

T0R1 R1

R0 

R0

�0=0
�1

�1

�0

r1

r0

�1

(a) (b)

FIGURE 7.44
(a) A far-edge converging luminaire, its design starting at point R0 from where the edge O of 
the involute can be seen. The portion R0R1 of the mirror is then designed as if we have a linear 
source OQ. Beyond point R1, the equations for a tubular source must be used. (b) The initial 
conditions for the design beyond point R1.
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250 Introduction to Nonimaging Optics

Angle φ0 is defi ned by line T0R0 and the vertical. The expression 7.77 can now 
be integrated to obtain

 P(θ) = aθ + cos θ(r0 cos φ0 − a sin φ0) 
 + sin θ(s + a cos φ0 + r0 sin φ0) − s tan θ (7.78)

Constant Cm given by expression 7.73 can now be obtained from point R1 
where the fi rst part of the mirror ends. This is the initial point for the new sec-
tion of the mirror. From angle θ1, which the light makes to the vertical when 
coming from O and refl ecting at R1, we can obtain p(θ1) and P(θ1). Replacing 
also the values for φ1 and θ1 in expression 7.73, we can calculate Cm. Now, for 
different values of θ we can obtain the corresponding values of α by solv-
ing Equation 7.71 numerically. These pairs (θ, α) can now be introduced in 
expression 7.74 and r(θ) is obtained. Finally, the mirror points can be calcu-
lated by expression 7.76. Figure 7.43 shows the complete luminaire.

Like the design for a far-edge diverging luminaire for a linear source OQ, 
also in this case the design can continue beyond angle γ subtended by the 
source at initial point R0. This angle is indicated in Figure 7.45. Also in this 
case, this is due to multiple refl ections on the mirror. The maximum angle 
that the light can come out of point R0 corresponds to the direction of the 
tangent to the mirror at point R0. Beyond this direction, the luminaire mirror 
can no longer be designed to produce the desired intensity pattern.

Let us now consider a different situation in which the central part of the 
luminaire consists of two involute arcs that do not touch the source, as pre-
sented in Figure 7.46. Their optical behavior is completely different from the 
partial involutes presented earlier in Figure 7.40. It no longer behaves as a 
Lambertian source with edges O and Q. To see this, a brief presentation of 
the optical characteristics of these involute arcs is made in Figure 7.46.

Figure 7.46 presents the contributions of the source IS and images IIL and IIR 
on the left- and right-side involutes, respectively.

The intensity of each of the involutes for the intensity of the luminaire can 
be determined from its geometry as presented in Figure 7.47.

O Q

R0

�

FIGURE 7.45
From initial point R0, the source subtends an angle γ. The luminaire can, however, be designed 
for angles larger than γ due to multiple refl ections on the mirror, as in far-edge converging 
luminaire for a fl at source.
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QO

IIR
IS

IIL

�

�d

�

�R�L

FIGURE 7.46
If the central part of the luminaire is made of two involute arcs, there will be refl ections of the 
source in direction θ in both portions of the involute. Therefore, the intensity produced by the 
optic in direction θ is given by the intensity of the source plus the two parts resulting from 
refl ections on both the mirrors.

Involute

d3

d2

d1
�

�

�

�Ra

FIGURE 7.47
Contribution of refl ection on each of the involute mirrors for the illuminance of the 
luminaire.
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252 Introduction to Nonimaging Optics

From Figure 7.47, we have δ = βR − θ − π/2. We then have d1 = a − a 
cos δ = a − a sin(βR − θ) and d2 = a + a cos δ = a + a sin(βR − θ) and also 
d3 = d2 − d1 = 2a sin(βR − θ). This is the contribution of the right-side invo-
lute. In the same way, the contribution of the left-side involute is given by 
2a sin(βL + θ). Therefore, the sum of the contributions of source IS and the 
involutes II = IIL + IIR is given by

 IS + II = 2a + 2a sin( βR − θ) + 2a sin( βL + θ) (7.79)

Nevertheless, it should be noted that expression 7.79 is valid only for θ in 
the interval ±θd, θd being defi ned in Figure 7.46. For values of θ outside this 
range, it is necessary to recalculate this expression since the images are dis-
jointed.9 The total intensity of the luminaire can then be calculated by

 I(θ) = IS(θ) + II(θ) + IM(θ) (7.80)

where I(θ) is the desired intensity, II(θ) the intensity produced by the  involutes, 
and IM(θ) the intensity of the mirror of the luminaire to be designed.

The analytical method described earlier can be used to design the lumi-
naire mirror for this kind of involute. Let us then suppose that the mirror 
starts at a point R0 and that, at this point, a light ray tangent to the lower 
part of the source is refl ected vertically as presented in Figure 7.48a. This 
 boundary condition is similar to the one used in the examples of fl at-source 
case. The points Ri of the mirror can now be obtained for 0 < θi < γ and 
therefore, the mirror can be obtained for points between R0 and Rγ. For 
these angles θi, the image of the source in the mirror extends from R0 to the 
point Ri. The maximum value γ is the one for which the ray refl ected at R0 
is  tangent to the upper part of the source as presented in Figure 7.48c. For 
angles to the vertical larger than γ, the shape of the mirror can no longer be 
obtained, since no light ray coming from the source can be refl ected at R0 
and leave the luminaire in these directions. For this reason, the image of the 

R0
R0 R0

Ri
R�

�

�i
�

(a) (b) (c)

FIGURE 7.48
At point R0, the ray of light tangent to the lower part of the tube is refl ected vertically (a). For θ ≠ 0, 
we have the situation presented in (b) where the image extends from R0 to another point Ri on the 
mirror. However, this is valid only for values of |θ| smaller than γ. This limit case is presented in (c). 
For larger values of |θ|, the image of the tube on the mirror no longer extends to R0.
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source on the mirror no longer extends to R0 and therefore the intensity that 
this image produces can no longer be obtained by I(θ) = p(θ) − p0(θ).

The mirror can, however, be extended beyond point Rγ using a different 
design method. The part of the mirror between R0 and Rγ calculated earlier 
is used in this extension. Let us then suppose that a light ray sp1 tangent to 
the upper part of the source hits a point P1 on the mirror R0Rγ as presented 
in Figure 7.49. This ray will be refl ected with an angle to the vertical given 
by θ1, that is, it is refl ected as ray rP1. If the desired intensity I1 produced 
by the mirror in this direction is known, line rQ1 can be obtained. This line 
is parallel to rP1 and the distance between them is I1. Since point Rγ of the 
mirror is known, the normal nγ to the mirror at Rγ is also known. Line rQ1 
can then be intersected with the tangent to the mirror at point Rγ and point 
Q1 obtained. The normal n1 of the mirror at point Q1 can also be obtained, 
since at this point the mirror must refl ect ray sQ1 tangent to the source into 
refl ected ray rQ1 leaving the luminaire.

We now consider a light ray sP2 tangent to the upper part of the source 
and hitting a point P2 on the known part of the mirror R0Q1. This ray will 
be refl ected with an angle to the vertical given by θ2, that is, it is refl ected as 
ray rP2. If the desired intensity I2 produced by the mirror in this direction is 
known, line rQ2 can be obtained. This line is parallel to rP2 and the distance 
between them is I2. Point Q1 of the mirror is known and the normal n1 to the 
mirror at Q1 is also known. Line rQ2 can then be intersected with the tangent 
to the mirror at point Q1 and point Q2 is obtained. The normal n2 of the mirror 
at point Q2 can also be obtained, since at this point the mirror must refl ect 
ray sQ2 tangent to the source into refl ected ray rQ2 leaving the luminaire.

This process can now continue for more points on the mirror. To obtain a 
good approximation to the shape of the mirror, it is important to proceed in 
very small steps.

The image of the source in the mirror now extends from P1 to Q1 for angle 
θ1 and from P2 to Q2 for angle θ2. For these θ angles (|θ| > γ), the image of the 

R0 P1
P2

�2�1

n2Q1

Q2

I2

I1

rQ1

SQ1

rP1

rP2

rQ2

SQ2

SP1

SP2

n1
R�

n�

FIGURE 7.49
For angles θ1, θ2, … larger than γ, the image of the source on the mirror extends only to P1, P2, … 
and not to R0. Knowing the desired intensity in these directions, it is possible to calculate new 
points Q1, Q2, … of the mirror based on the part of the mirror already calculated.
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254 Introduction to Nonimaging Optics

source in the mirror is no longer contained between R0 and another point of 
the mirror. Instead of that, it is bounded by the edge rays sP and sQ of the source. 
Rays sQ and sP are called leading edge and trailing edge, respectively.7

Note that the intensity of the luminaire is given by expression 7.68, where 
I is the desired intensity for the luminaire, IS the intensity produced by the 
source itself, IM the intensity produced by the mirror whose construction is 
described earlier, and IOM the contribution of other mirrors that the lumi-
naire may contain (involute arcs).9

Figure 7.50 shows an example of the application of design methods pre-
sented earlier. The side mirrors are calculated from point R0 to point Rγ using 
the analytical method and beyond point Rγ using the numerical method pre-
sented in Figure 7.49. The slope of the mirror at the initial point R0 must be 
such that ray r1 coming from the source is refl ected and exits the luminaire in 
the vertical direction. This is the initial condition also used in the examples 
presented earlier for linear sources.

The analytical method described earlier is valid for |θ| < γ, where γ is the 
angle that the tubular source subtends when seen from R0, as presented in 
Figure 7.50a. In this case, the image of the source on the mirror extends from 
R0 to R1(θ) and the intensity IM for |θ| = |θ1| < γ is represented by d1. This 
analytical method can then be applied in the design of the mirror between 
R0 and Rγ and the points of the mirror obtained from expression 7.76.

From this point onward (i.e., for |θ| > γ), the situation is different, as 
shown in Figure 7.50b, wherein it is impossible for the light to exit R0 in these 
directions. Therefore, the image of the tubular source when seen from |θ| 
= |θ2| > γ extends from RT(θ) to R2(θ). For each θ2, we can then determine 
RT on the part of the mirror already calculated. Based on this point, we can 
calculate a new point R2 ahead. We then see that the new portion of the mir-
ror to be calculated is based on the part of the mirror already calculated. As 
one ray goes through the part of the mirror already calculated, the other one 

R0R0
R1

d1 d2

r1
r1

a

a

R�

R0

R2

RT

R�

�

�

�

�1
�2

(a) (b)

FIGURE 7.50
(a) For θ < γ, we obtain the portion R0Rγ of the mirror. For point R1 on this portion of the mir-
ror, for the corresponding value θ, the refl ection of the source extends from R0 to R1 and the 
intensity resulting from the contribution of the mirror is given by d1. (b) For θ larger than γ, the 
refl ection of the source on the mirror extends from point RT to another point R2. Point RT is on 
the part of the mirror already calculated and point R2 is calculated based on RT. In this case, 
the intensity of the contribution of the source is given by d2.

CRC_54295_CH007.indd   254CRC_54295_CH007.indd   254 4/3/2008   9:38:29 AM4/3/2008   9:38:29 AM



Luminaires 255

enables us to calculate a new portion of the mirror.7,9 In some cases, in the 
design of luminaires, there is an added complexity of the “shade” produced 
by the mirrors as in the luminaire of Figure 7.27.

In the design of a luminaire, an important aspect is to avoid radiation com-
ing from the source being redirected back to the source. The goal is to make 
all the radiation to exit from the luminaire so that the exit power is maxi-
mized. However, one intends that the luminaire should be as compact as 
possible. The central part of the luminaire is then designed by placing two 
involute arcs side by side.

Then, the normal to the mirror cannot intersect the tube, because some radi-
ation will be refl ected back to the source (the case of curve a in Figure 7.51). If 
the normal to the curve passes far-off from the source (case of curve b), this 
problem no longer exists and the light is refl ected far from the source. Nev-
ertheless, the mirror obtained in this case is bigger than necessary. Involute-
shaped curve i is the one that, avoiding the refl ection of radiation back to the 
source, enables us to design the smallest possible mirror.

In the design method presented earlier, the central part of the luminaire 
does not necessarily have to consist of two arcs of involute.9 However, this is 
the solution that enables the design of the most compact devices.

Also, note that the mirror must have a wedge point. This results from the 
fact that the normal to the mirror cannot intersect the tube.

7.9 Examples

The examples presented as follows use expressions for the curves and func-
tions that are derived in Chapter 17.

b

i

a

FIGURE 7.51
The central part of the luminaire has the shape of an involute (curve i) since this is the curve 
that allows more compact designs possible with no light refl ected back to the source. In the 
case of curve a, the normal to the curve intersects the tubular source so that there will be light 
refl ected back to the tube instead of to the target. In the case of curve b, the normal passes far 
from the tube and, therefore, a mirror designed according to one of these curves would be big-
ger than the one shaped as an involute.
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256 Introduction to Nonimaging Optics

Example 1

Design a far-edge converging luminaire for a unit length source and 
uniform illumination of a distant target.

We fi rst defi ne the edges of the source as O = (−0.5, 0) and Q = 
(−0.5, 0). We now defi ne the edge point for the mirror as R0 = (1.82, 1.3). 
We can now calculate

 φ0 = ang(R0 − O, (0, −1)) = 2.08155 
(7.81)

 r0 = [R0, O] = 2.6594 

And we get

 p(θ) = −  1 _____ 
cos2 θ   + r0 sin(φ0 − θ) + cos θ 

 = cos θ − sec2 θ + 2.6594 sin(2.08155 − θ) 
(7.82)

 P(θ) = −tan θ + r0 cos(θ − φ0) + sin θ 

 = 2.6594 cos(2.08155 − θ) + sin θ − tan θ

We set that the ray coming from O and refl ected at R0 exits the luminaire 
in the vertical direction, and we have θ0 = 0. We then get

 p(θ0) = r0 sin φ0 = 2.32 
(7.83)

 P(θ0) = r0 cos φ0 = −1.3 

Constant Cm is now given by

 Cm = P(θ0) −   
p(θ0) _________ 

tan(φ0/2)
   = −2.6594 (7.84)

and

 α(θ) = arc tan (   p(θ)
 _________ 

P(θ) − Cm
   )  (7.85)

Finally, the points of the mirror are given by

 R(θ) = O +   
p(θ)
 _________ 

sin(2α(θ))
    (sin(2α(θ) + θ), −cos(2α(θ) + θ)) (7.86)

To fi nd the maximum value for θ, we numerically solve the equation:

 R(θ) = Q + x(R0 − Q) (7.87)

and get θ = θm = −0.512409 rad = −29.3588° and x = xm = 0.13299. This 
also enables us to obtain Rm = R(θm ), which is on the line connecting Q 
and R0. The mirror is fi nally given by R(θ) with θm ≤ θ ≤ 0. Figure 7.52 
shows the resulting luminaire.
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The illuminance pattern on a distant target can now be determined 
by ray tracing. Figure 7.53 shows the geometry of luminaire and target.

The illuminance pattern on the target as a function of the angle θ is 
shown in Figure 7.54.

A note could now be added about how to ray trace these optics. The 
fi rst thing is to generate a ray set. One way of doing it is by using the 
Monte Carlo integration.

The integral of a function I(θ) over an interval ∆θ from θ1 to θ2, 
where ∆θ = θ2 − θ1 can be approximately calculated using Monte Carlo 
integration:

   ∫ θ1
  

θ2
   I(θ)dθ ≈ ∆θ   1 __ 

N
    ∑ 

i=1
  

N

  I(θi)   (7.88)

It is given by the product of the interval ∆θ by the mean value of the 
function in that interval. Its mean value is approximated by generating 
random values θi uniformly distributed in the interval ∆θ, calculating 
the value of the function at the points I(θi), and then dividing by the total 
number of points.

Using expression 7.88, we can generate random rays that can be used 
to simulate a source in a computer ray trace. Let us consider that we 

O Q

Rm

R0

�m

r0

x2

x1

FIGURE 7.52
Far-edge converging luminaire.

Target

Luminaire

x1

x2

�

FIGURE 7.53
Geometry of far-edge converging luminaire and distant target.
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258 Introduction to Nonimaging Optics

have a uniform 2-D Lambertian source of length LS, for example, line 
source OQ in Figure 7.52, and therefore LS = [O, Q]. The intensity in 
each direction produced by this uniform source is given by I(θ) = I0 cos θ. 
The total fl ux it emits is given by

 Φ =   ∫ −π/2  
π/2

      I(θ) dθ =   ∫ −π/2  
π/2

      I0 cos θ dθ ≈  ∑ 
i=1

  
N

    
 πI0 ____ N   cos θi   (7.89)

We can then generate a set of rays, each of them defi ned by a point Pi = 
(xi, 0), a direction vi = (cos θi, sin θi), and a power given by pi = π I0 cos θi/
N, where N is the number of rays in the ray set. The rays in the rayset are 
then defi ned by (Pi, vi, pi) with i = 1, …, N. The values of xi and θi can be 
obtained by xi = LS(yi − 1/2) and θi = π(zi − 1/2), where yi and zi are ran-
domly generated in the interval from 0 to 1. This simulates a source that 
extends from −LS/2 to LS/2 and emits in angles from −π/2 to π/2.

We may now ray trace these rays through the system. They hit the 
receiver and are collected there. To determine the fl ux distribution on 
the receiver, it is divided into small bins by a process called, naturally 
enough, binning.

Suppose that we have a receptor defi ned by a parameter α that varies 
between αm and αM. In the case of Figure 7.53, the receptor would be the 
target and the parameter α could be the horizontal coordinate x1. We divide 
this parameter space into bins of, for example, equal length as shown in 
 Figure 7.55. In this particular case, we have seven bins, each of a length ∆α, 
and in general we have N bins, each of a length ∆α = (αM − αm)/N.

If a ray hits the receiver now at a point with a parameter value α and 
we want to determine to which bin it corresponds, we will calculate 
b = (α − αm)/∆α. In the particular case of Figure 7.55, b is 3.5 and the point 
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FIGURE 7.54
Normalized illuminance pattern on a distant target as a function of angle θ in degrees.
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Luminaires 259

is in bin number 4. We defi ne sig(b) as a function that returns the smallest 
integer greater than or equal to b. For example, sig(3.1) = 4, sig(3.8) = 4, 
and sig(4) = 4. This function sig(b) will give us the bin number for any 
parameter value α > αm. For α = αm, the bin number is 1.

Figure 7.56 shows a ray with power p exiting the source at a point P 
in a direction v. It goes through the optic and hits the target at a point 
with parameter α.

Every time a ray hits one of these bins, we add the power of the ray to 
that bin. In the end, we will know how much power falls in each bin and, 
therefore, the power distribution on the receiver.

If we are interested in the intensity pattern instead, we would divide 
the angular space into bins and count how much fl ux falls into each bin. 
These bins could be, for example, at angular intervals to the optical axis 
from 0° to 5°, from 5° to 10° and so on. For each ray leaving the optic, we 
could then check the angle it makes to the optical axis and add its power 
to the corresponding bin. In the end, we would have a distribution of 
power as a function of direction to the optical axis.

Example 2

Design a near-edge diverging luminaire for a unit length source and 
uniform illumination of a distant target.

� �M �m

∆�

FIGURE 7.55
Receiver divided into bins.

� �M �m

p

xi

�i
v

P

FIGURE 7.56
A ray with power p leaves the source from point P in a direction v, goes through the optic, and 
hits the receiver at a position defi ned by parameter value α.
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260 Introduction to Nonimaging Optics

We fi rst defi ne the edges of the source as O = (−0.5, 0) and Q = (0.5, 0). 
We now defi ne the edge point for the mirror as R0 = (0.77, 0.5324). We can 
now calculate

 φ0 = ang(R0 − O, (0, −1)) = 153.109° 
(7.90)

 r0 = [R0, O] = 0.579957

And we get

 p(θ) = −  1 _____ 
cos2 θ   + r0 sin(φ0 − θ) + cos θ 

 = cos θ − sec2 θ + 0.579957 sin(2.67225 − θ) 

(7.91)
 P(θ) = −tan θ + r0 cos(θ − φ0) + sin θ 

 = 0.579957 cos(2.67225 − θ) + sin θ − tan θ

We set that the ray coming from O and refl ected at R0 exits the luminaire 
in the vertical direction, and we have θ0 = 0. We then get

 p(θ0) = r0 sin φ0 = 0.262314 
(7.92)

 P(θ0) = r0 cos φ0 = −0.517244

Constant Cm is now given by

 Cm = P(θ0) −   
p(θ0) _________ 

tan(φ0/2)
   = −0.579957 (7.93)

and

 α(θ) = arc tan  (   p(θ)
 _________ 

P(θ) − Cm
   )  (7.94)

Finally, the points of the mirror are given by

 R(θ) = O +   
p(θ)
 _________ 

sin(2α(θ))
    (sin(2α(θ) + θ), −cos(2α(θ) + θ)) (7.95)

To fi nd the maximum value for θ, we numerically solve the equation:

 2α + θ = π/2 (7.96)

and get θ = θm = 0.462083 rad = 26.4754°, which terminates the mir-
ror at the horizontal (x1) axis. The mirror is fi nally given by R(θ) with 
0 ≤ θ ≤ θm. Figure 7.57 shows the resulting luminaire.

The illuminance pattern on a distant target can now be determined 
by ray tracing. Figure 7.58 shows the geometry of luminaire and target.

The illuminance pattern on the target as a function of the angle θ is 
shown in Figure 7.59.
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FIGURE 7.58
Geometry of near-edge diverging luminaire and distant target.
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FIGURE 7.57
Near-edge diverging luminaire.
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FIGURE 7.59
Normalized illuminance pattern on a distant target.
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262 Introduction to Nonimaging Optics

Example 3

Design a far-edge converging luminaire for a tubular source of unit 
radius a = 1 and uniform illumination of a distant target.

The design of the luminaire starts with an involute to the source 
given by

inv(ξ) = a ( cos ( ξ − π/2 ) , sin ( ξ − π/2 )  )  + ξa(cos(ξ − π), sin(ξ − π)) (7.97)

with a = 1 and

 − ( π/2 + μ )  ≤ ξ ≤ π/2 + μ (7.98)

We choose µ = 75° and get Q = inv(π/2 + µ) = (3.04049, 0.22058) and O as 
its symmetrical point, as shown in Figure 7.60.

We now choose a point R0 = (10.4, 6.5) to start the luminaire mirror. 
From point R0 to point R1, the mirror “sees” the edge O of the apparent 
source formed by the source itself and the involute mirrors as shown in 
Figure 7.61.

Involute

x1

x2

QO
a

�

FIGURE 7.60
The design of the luminaire starts with an involute to the source.

x1

R1

R0

x2

Q

v

O

FIGURE 7.61
We choose the position of initial point R0. The fi rst part R0R1 of the mirror is designed as a 
far-edge converging luminaire for a linear source OQ.
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This portion of the mirror is then calculated as a far-edge converging 
luminaire for a linear source OQ. We calculate

 s = [O, Q] = 6.08097 

 φ0 = ang(R0 − O, (0, −1)) = 115.042° (7.99)

 r0 = [R0, O] = 14.835

And we get

 p(θ) = −  s _____ 
cos2 θ   + r0 sin(φ0 − θ) + s cos θ 

 = 6.08097(cos θ − sec2 θ) + 14.835 sin(2.00786 − θ) 
(7.100)

 P(θ) = −s tan θ + r0 cos(θ − φ0) + s sin θ

 = 14.835 cos(2.00786 − θ) + 6.08097(sin θ − tan θ)

We set that the ray coming from O and refl ected at R0 exits the luminaire 
in the vertical direction, and we have θ0 = 0. We obtain

 p(θ0) = r0 sin φ0 = 13.4405 
(7.101)

 P(θ0) = r0 cos φ0 = −6.27942

Constant Cm is now given by

 Cm = P(θ0) −   
p(θ0) _________ 

tan(φ0/2)
    = −14.835 (7.102)

and

 α(θ) = arc tan (    p(θ)
 _________ 

P(θ) − Cm
   )  (7.103)

Finally, the points of the mirror are given by

 R(θ) = O +   
p(θ)
 _________ 

sin(2α(θ))
   (sin(2α(θ) + θ), −cos(2α(θ) + θ)) (7.104)

Vector v in Figure 7.61 is given by v = (cos(π/2−µ), sin(π/2−µ)) and point 
R1 can be obtained by numerically solving the pair of equations (note 
that O, v, and R are two-dimensional):

 O + dv = R(θ) (7.105)

and we obtain θ = θ1 = −23.5297° and d = d1 = 10.4278. The portion of 
the mirror R0R1 is then given by R(θ) for θ1 ≤ θ ≤ 0.

From point R1 downward, point O is no longer visible and the mirror 
is calculated as a far-edge converging luminaire for a tubular source. The 
image on the mirror for this second part of the luminaire also extends all 
the way to R0, so p(θ) and P(θ) are calculated relative to this position. For 
this new section of the mirror, we fi rst calculate point P0 on the source 
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264 Introduction to Nonimaging Optics

that is also on the tangent line to the source through point R0 as shown 
in Figure 7.62.

We have P0 = (−0.45909, 0.88839) and then

 r0 = [P0, R0] = 12.2233 
(7.106)

 φ0 = ang(R0 − P0, (0, −1)) = 117.328°

And also

 p(θ) = a + a cos(θ − φ0) − r0 sin(θ − φ0) + s cos θ − s/cos2 θ 

 = 1 + 16.481 cos θ − 6.08097 sec2 θ + 6.5 sin θ (7.107)

 P(θ) = aθ + cos θ (r0 cos φ0 − a sin φ0) + sin θ (s + a cos φ0 + r0 sin φ0)

 = θ − 6.5 cos θ + 16.481 sin θ − 6.08097 tan θ

To calculate the value of the integration constant Cm, we use the values 
relative to point R1 where this new portion of the mirror starts. We have 
already obtained θ1 and φ1 is given by (Figure 7.61)

 φ1 = ang(R1 − O, (0, −1)) = 105° (7.108)

R0

R1P0

FIGURE 7.62
Point P0 of the source is also on the tangent line to the source that goes through point R0.

R1

R0

x1

x2

�1

�0=0

�m

FIGURE 7.63
Complete luminaire.
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We also have

 p(θ1) = 6.28175 
(7.109)

 P(θ1) = −10.302

Constant Cm is now given by

 Cm = P(θ1) − cot  (   φ1 − θ1 _______ 2   )  (p(θ1) − 2a) − 2a arc tan ( cot (   φ1 − θ1 _______ 2   )  )  
 = −13.2642 (7.110)

We now give a maximum value of θm = −31° to θ. For different values of 
θm ≤ θ ≤ θ1, we can fi nd the corresponding values of α by numerically 
solving the equation:

 Cm = P(θ) − cot α(p(θ) − 2a) − 2a arc tan(cot α ) (7.111)

We obtain, for example, for the pairs (θi, αi): ((−31, 0.94981), (−30, 0.997741), 
(−29, 1.0334), (−28, 1.06044), (−27, 1.08113), (−26, 1.09701), (−25, 1.10912), 
(−24, 1.11822)).

For each of these pairs, we can calculate

 ri =   
p(θi) _______ 

sin(2αi )
   −   a _____ tan αi

   (7.112)

The points of the mirror are fi nally given by

Ri = a(cos(2αi + θi ), sin(2αi + θi )) + ri(sin(2αi + θi ), −cos(2αi + θi )) (7.113)

as

Ri =  ((7.67964, 8.43946), (71.0586, −260.689), (20.1508, −5.73802), (19.5833, 
19.7013), (−27.6671, 94.4873), (−9.60706, 3.42271), (9.64254, 10.9493), 
(4.85006, −25.3726))

Figure 7.63 shows a complete luminaire.
The illuminance pattern on a distant target can now be determined 

by ray tracing. Figure 7.64 shows the geometry of luminaire and target.

Target

Luminaire

x1

x2

�

FIGURE 7.64
Geometry of distant target and far-edge converging luminaire for a tubular source.
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266 Introduction to Nonimaging Optics

The illuminance pattern on a distant target is shown in Figure 7.65 as 
a function of angle θ as defi ned in Figure 7.64.

The pattern is uniform within the design angle.

7.10  Appendix A: Mirror Differential Equation 
for Linear Sources

Solve the equation:

   
d ln r(φ)

 _______ 
dφ   = tan α(θ) (A.1)

for α(θ), where

 φ = 2α(θ) + θ 
(A.2)

 r(θ) =   
p(θ)

 _______ 
sin(2α)

   

in which p(θ) is known.
To solve Equation A.1 for α(θ), we start by calculating the derivative of ln r 

and we get

   d ln r _____ 
dθ   =    d ln r _____ 

dφ     
dφ ___ 
dθ   ⇔    d ln r _____ 

dθ   =   1 __ r     dr ___ 
dφ     dφ ___ 

dθ   (A.3)

From the fi rst expression of A.2 we get

   
dφ ___ dθ   = 2   dα ___ 

dθ   + 1 (A.4)
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FIGURE 7.65
Illuminance pattern on the target as a function of angle θ.
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and therefore we have

   d ln r _____ 
dθ   = tan(α(θ))  ( 2  dα ___ 

dθ   + 1 )  (A.5)

which is a differential equation for α(θ). From the second expression of A.2 
we have

 ln(p(θ)) = ln(r(φ(θ))) + ln(sin(2α(θ))) (A.6)

Calculating the θ derivative, we get

   
d ln p

 _____ 
dθ   =   1 __ r     dr ___ 

dφ     dφ ___ 
dθ   + 2   

cos(2α)
 _______ 

sin(2α)
      dα ___ dθ   (A.7)

Considering Equations A.3 and A.5, we get

   
d ln p

 _____ 
dθ   = tan α ( 2   dα ___ 

dθ   + 1 )  +   cos2 α − sin2 α  _____________ sin α cos α     dα ___ 
dθ   

 =  (   2 sin2 α _________ sin α cos α   +   cos2 α − sin2 α  _____________ sin α cos α   )    dα ___ 
dθ   +   sin α _____ cos α   (A.8)

which is a differential equation for α(θ) since p(θ) is known. We can now 
write4

   dα ___ 
dθ   = sin α cos α    

d ln(p(θ))
 _________ 

dθ   − sin2 θ (A.9)

Dividing Equation A.9 by sin2 α we get

 −  1 _____ 
sin2 α     dα ___ 

dθ   +   1 _____ tan α     
d ln(p(θ))

 _________ 
dθ   = 1 (A.10)

Equation A.10 is an equation for α(θ), which can be solved by making the 
change of variables4

 u =   1 _____ tan α   (A.11)

resulting in

   du ___ 
dθ   + u   

d ln(p(θ))
 ________ 

dθ   = 1 ⇔    
d(up(θ))

 _______ 
dθ   = p(θ) (A.12)

Integrating both sides of this equation, we get

 up =   ∫       p(θ)dθ − Cm ⇔ u(θ) =   
P(θ) − Cm _________ 

p(θ)
   (A.13)

where Cm is the integration constant and P(θ) the primitive of p(θ) given by

 P(θ) =   ∫       p(θ)dθ (A.14)
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We can now obtain α from Equation A.11

 α(θ) = arc tan (   1 __ u   )  = arc tan (   p(θ)
 _________ 

P(θ) − Cm
   )  (A.15)

where Cm is a constant to be determined from the initial conditions of the 
problem.

7.11  Appendix B: Mirror Differential Equation 
for Circular Sources

Obtain an expression for α(θ) from the expression:

   1 __ r     dr ___ 
dφ   = tan α +   a __ r   ⇔    

d ln r(φ)
 ________ 

dφ   = tan α(θ) +   a __ r   (B.1)

where a is a constant and this expression is subject to

 φ = 2α(θ) + θ 
(B.2) p(θ) =  ( r +   a _____ tan α   )  sin(2α) 

where the fi rst expression relates φ, α, and θ, and the second expression 
relates r to a known quantity p.

We start by calculating the logarithm of p, given by

 ln(p(θ)) = ln ( r +   a _____ tan α   )  + ln(sin(2α)) (B.3)

Calculating the θ derivative, we get

   
d ln p

 _____ 
dθ   =   1 __________ 

r + a/tan α     (   dr ___ 
dφ     dφ ___ 

dθ   − a   1/cos2 α ________ 
tan2 α     dα ___ dθ   )  + 2   

cos(2α)
 _______ 

sin(2α)
      dα ___ 

dθ    

 =    
r sin(2α)

 ________ p     1 __ r     dr ___ 
dφ     dφ ___ 

dθ   −   
sin(2α)

 _______ p     a _____ 
sin2 α     dα ___ 

dθ   + 2   
cos(2α)

 _______ 
sin(2α)

     dα ___ 
dθ   (B.4)

Considering expression B.1 and the fi rst expression of B.2, we can write

   
d ln p

 _____ 
dθ   =   

r sin(2α)
 ________ p    ( tan α +   a __ r   )   ( 2  dα ___ 

dθ   + 1 )  

 −   
sin(2α)

 _______ p     a _____ 
sin2 α     dα ___ 

dθ   + 2   
cos(2α)

 _______ 
sin(2α)

     dα ___ 
dθ   

 = tan α  (   r sin(2α)
 ________ p   +    

a sin(2α)
 _________ p tan α   )   ( 2   dα ___ 

dθ   + 1 )  

 −   
sin(2α)

 _______ p     a _____ 
sin2 α     dα ___ 

dθ   + 2   
cos(2α)

 _______ 
sin(2α)

     dα ___ 
dθ    (B.5)
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The second expression of B.2 can now be written as

 r sin(2α) +    
a sin(2α)

 ________ tan α   = p ⇔    r sin(2α)
 ________ p   +    

a sin(2α)
 ________ p tan α   = 1 (B.6)

and therefore

   
d ln p

 _____ 
dθ   = tan α  ( 2   dα ___ 

dθ   + 1 )  −   
sin(2α)

 _______ p     a _____ 
sin2 α     dα ___ 

dθ   + 2   
cos(2α)

 _______ 
sin(2α)

      dα ___ 
dθ   

 =   2 sin2 a _________ sin α cos α     dα ___ 
dθ   −   

(2a/p) cos2 α
 ___________ sin α cos α     dα ___ 
dθ    

 +   cos2 α − sin2 α  _____________ sin α cos α     dα ___ 
dθ   +   sin2 α _________ sin α cos α   (B.7)

so it can be concluded that

  ( 1 −   2a cos2 α ________ p(θ)   )    dα ___ 
dθ 

   = sin α cos α    
d ln(p(θ))

 ________ 
dθ   − sin2 θ (B.8)

As seen, when a → 0, Equation B.8 tends to Equation A.9 presented earlier 
for the case of a linear source. Dividing Equation B.8 by sin2α and making 
d ln p(θ)/dθ = (1/p)dp/dθ, we get

   1 _____ 
sin2 θ     dα ___ 

dθ   −   2a ___ p   cot2 α   dα ___ 
dθ   = cot α   1 __ p     

dp
 ___ 

dθ   − 1 (B.9)

To solve Equation B.9, we can now make

 cot α = tan u (B.10)

Note that, from expression B.10, one can obtain cos u cos α − sin u sin α = 0 or 
cos(u + α) = 0 and therefore u + α = π/2 + nπ or u = (2n + 1)π/2 − α, where 
n is an integer. Squaring both terms of expression B.10 and considering that, 
for any angle β, we have sin2 β + cos2 β = 1, we get

   1 − sin2 α _________ 
sin2 α   =   1 − cos2 u _________ 

cos2 u
   ⇔   1 _____ 

sin2 α   =   1 ______ 
cos2 u

   (B.11)

Calculating the θ derivative of expression B.10 and considering expres-
sion B.11, we get

   d cot α ______ 
dθ   =    d tan u _______ dθ   ⇔ −   1 _____ 

sin2 α      dα ___ 
dθ

   =   1 ______ 
cos2 u

      du ___ 
dθ   ⇔ −  dα ___ dθ   =   du ___ 

dθ   (B.12)

Replacing expressions B.11 and B.12 in expression B.9, we get

 tan u   
dp

 ___ 
dθ   +   

p
 _____ 

cos2 u
     du ___ 
dθ   = p + 2a tan2 u   du ___ 

dθ   (B.13)

which is equivalent to

   d ___ 
dθ   (p tan u) = p + 2a tan2 u   du ___ 

dθ   (B.14)
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Using tan2 u = −(1 − 1/cos2 u), Equation B.14 can now be integrated with θ 
and we get

 p tan u =   ∫ 
 
      p(θ)dθ − 2a(u − tan u) − Cm (B.15)

where Cm is the integration constant. This expression can be rewritten as

 tan u(p − 2a) + 2au = P(θ) − Cm (B.16)

with P(θ) given by expression P(θ) = ∫p(θ)d(θ).
From expressions B.16 and B.10, we have

 Cm = P(θ) − (p(θ) − 2a)cot α − 2a arc tan(cot α) (B.17)

Since from expression B.2 we have 2α = φ − θ, we can therefore write

 Cm = P(θ) − (p(θ) − 2a)cot (   φ − θ ______ 2   )  − 2a arc tan ( cot (   φ − θ ______ 2   )  )  (B.18)

Given the initial values, φ0 and θ0, we can obtain Cm from expression B.18. 
Now, giving values to θ, the corresponding value for α can be obtained by 
solving Equation B.17. This enables us to calculate α(θ).
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8
Miñano–Benitez Design Method 
(Simultaneous Multiple Surface)

8.1 Introduction

This chapter describes a nonimaging optics design method known in the 
fi eld as the simultaneous multiple surface (SMS) or the Miñano–Benitez 
design method. The abbreviation SMS comes from the fact that it enables 
the simultaneous design of multiple optical surfaces.1 The original idea came 
from Miñano. The design method itself was initially developed in 2-D by 
Miñano and later also by Benítez. The fi rst generalization to 3-D geometry 
came from Benítez. It was then much further developed by contributions of 
Miñano and Benítez. Other people have worked initially with Miñano and 
later with Miñano and Benítez on programming the method.

We have seen in previous chapters that in the Winston–Welford (or fl ow-
line) design method, the nonimaging optic is obtained by using the edge 
ray principle, in which the light rays coming from the edge of the source are 
redirected to the edge of the receiver. The edge rays are refl ected by mirrors 
that channel the light, where each mirror refl ects only one set of edge rays. 
In the Miñano–Benitez method the situation is different, and the surfaces 
sequentially refl ect or refract both sets of edge rays.

SMS surfaces (in 2-D geometry) are piecewise curves made of several 
portions of Cartesian ovals, so that some of their characteristics are fi rst 
detailed.

First consider, for example, that we have a point source (emitter) E in air 
 (n = 1) and we want to perfectly focus its light onto another point R (receiver) 
immersed in a medium of refractive index n, as shown in  Figure 8.1a. If 
we choose an optical path length S between E and R, we can design a sur-
face that concentrates on R the light emitted by E. This  surface is called a 
 Cartesian oval, after Descartes, who solved the problem for  spherical wave 
fronts (it was Levi-Civita who solved the general problem in 1900). Although 
it is possible to obtain an analytical expression for this curve2 (or see Chap-
ter 17), a numerical method is presented here because it will be useful for 
the Miñano–Benitez design method presented in this Chapter. If v is a given 
unit vector, point P on the Cartesian oval can be obtained by

 P = E + tv (8.1)
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272 Introduction to Nonimaging Optics

where t is the distance between E and P and v = (cos θ, sin θ). The distance 
between P and R can now be obtained by

 dPR =  √ 
_______________

  (R − P) ⋅ (R − P)   (8.2)

The distance t can be obtained by solving the equation

 t + n  √ 
_________________________

   (E + tv − R) ⋅ (E + tv − R)   = S (8.3)

and therefore point P can be obtained. Point P is given by P = ccoptpt(E, 1, v, 
R, n, S), where ccoptpt is defi ned in Chapter 17. Note that we are considering 
that point E is in air (n = 1) and point R is in a medium of refractive index n. 
By doing this for different direction vectors v, we can completely defi ne the 
 Cartesian oval curve. For each value of θ we get a point P on the curve.

Figure 8.1b presents another situation. Now the light rays emitted by E are 
made parallel after entering the medium of refractive index n. These rays 
will be perpendicular to wave front w defi ned by point Q and normal n. 
Point P can now be calculated as P = coptsl(E, 1, v, Q, n, n, S), where S is 
the optical path length between E and w (see Chapter 17). Note that we are 
considering that point E is in air (n = 1) and wave front w is in a medium of 
refractive index n. As seen earlier, varying angle θ gives different points P on 
the curve (optical surface).

Generally, we have a situation as shown in Figure 8.2. Here, we have two 
given wave fronts w1 and w2, and we have to calculate the refractive curve c, 
separating two media of refraction indices n1 and n2, that refracts w1 to w2. 
Curve c is a generalized Cartesian oval.

This curve can be obtained by the constant optical path length S. For each 
point W1 on w1, we know the direction t1 of the light ray perpendicular to w1. 
We can then calculate the position of point P along this light ray such that 
n1[W1, P] + n2[P, W2] = S. Repeating the process for different points on w1, we 
obtain different points on c. The light ray refracted at P intersects wave front 
w2 at point W2 and points direction t2 perpendicular to w2.

FIGURE 8.1
(a) The light emitted by a point source E is concentrated on to a point R inside a medium of 
refractive index n. (b) The light emitted by a point source E is made parallel after entering a 
medium of refractive index n.
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The same method could be used to calculate a mirror that refl ects one wave 
front to another.

8.2 The RR Optic

The ideas presented previously about the Cartesian ovals can now be used 
to design an SMS optic. We start with a lens, that is, an optic with two refrac-
tive surfaces. The procedure described here calculates the refractive surfaces 
point by point, and is related to the algorithm used by Schulz in the design 
of aspheric imaging lenses.3,4

Figure 8.3 shows an SMS chain, the basic construction of an SMS optic. We 
start, for example, by defi ning two point sources E1 and E2. Here, they are 
shown as the edges of a fl at source. We also defi ne two point receivers, R1 
and R2. Here, they are shown as the edges of a fl at receiver. We assume that 
the system is symmetrical so that the perpendicular bisector b of E1E2 is also 
the perpendicular bisector of R1R2. We want to concentrate the light emitted 
by point E2 on point R1 and the light emitted by E1 on point R2.

Now choose the refractive index n of the lens we want to design.  Consider, 
for example, that E1E2 and R1R2 are both in air (n = 1). Now choose a point 
P0 and its normal n0. Given the symmetry of the system, choose point P0 on 
the bisector line b of E1E2 and R1R2 and its normal n0 as the vertical (perpen-
dicular to both E1E2 and R1R2). Point P0 is on the top surface of the lens to be 
designed. Refract at P0 a ray r1 coming from E2. Choose a point P1 along the 
refracted ray. This point is on the bottom surface of the lens. Force ray r1 to 
be refracted to R1, this condition gives us the direction n1 of the normal at 

FIGURE 8.2
Generalized Cartesian oval.
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274 Introduction to Nonimaging Optics

point P1. Also, from the path of ray r1 we can obtain the optical path length 
between E2 and R1 as

 S = [E2, P0] + n[P0, P1] + [P1, R1] (8.4)

Given the symmetry of the system, this is also the optical path length between 
E1 and R2. Now, refract at P1 a ray r2 coming from point R2. Since we know 
the optical path length S between R2 and E1, we can determine the optical 
path length between P1 and E1 as

 S1 = S − [R2, P1] (8.5)

Since we know the direction of r2 after refraction at P1 and the optical path length 
between P1 and E1, we can calculate the position of another point P2 on the top 
surface of the lens. Calculating the position of P2 is similar to calculating a point 
P in the case of a Cartesian oval, as shown in Figure 8.1a, but now the ray is mov-
ing from a high refractive index material into a low one. From the direction of 
the incident and refracted rays at point P2, we can calculate its normal n2.

Now refract at point P2 a ray r3 coming from E2. Using the same procedure 
as described earlier, calculate a new point P3 and its normal n3 on the  bottom 
surface of the lens. Again, refracting at P3 a ray coming from R2 gives point P4 
and its normal n4 on the top surface of the lens. Refracting at P4 a ray  coming 
from E2 gives point P5 and its normal n5 on the bottom surface of the lens. This 
process goes on and on with the calculation of alternate points on the top and 
bottom surfaces of the lens, building an SMS chain of points and normals.

E1 E2

b

n0

r1

r3

r5

r1

r4 r2

n4

P4

P5

n5

n3

r5 r3 r2r4

r1 n1 b

R2R1

P2
P0

P1

P3

n2

FIGURE 8.3
An SMS chain.
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This process does not completely defi ne the surfaces of the lens, but gives 
us only two sets of isolated points. A way around this limitation is by using 
the construction shown in Figure 8.4.

As earlier, we choose a point P0 on the axis of symmetry of the system and 
its normal n0 as a vertical vector. Refract at P0 a ray r1 coming from  E2. Choose 
the position of a point P1 along the direction of the refracted ray. Force this 
ray r1 to be refracted at P1 toward R1 and this gives us the normal n1 at P1. 
Now, given the symmetry of the system, defi ne a point Q1 symmetrical to P1. 
The normal at Q1 is also symmetrical to n1 at point P1. Now choose a curve 
that goes through P1 and Q1 and is perpendicular to the normals at these two 
points. In the case of Figure 8.4a, make this curve as a circle with center C. 
The position of C is obtained by intersecting a straight line through P1 with 
direction n1 with another straight line through P0 with direction n0. Now we 
have a curve between P1 and Q1 and we can calculate a set of points on that 
curve with the corresponding normals. Now launch a set of rays coming 
from R2 through these points and calculate the corresponding points on a 
portion P0P2 of the top surface of the lens. This is done, for each ray, using the 
same procedure described earlier when calculating the SMS chain of Figure 
8.3. For all these rays, the optical path length S is the same and is calculated as 
earlier by expression 8.4. Now we have a set of points and normals between 
P0 and P2 on the top surface of the lens. We now launch through these points 
a set of rays coming from point E2 (Figure 8.4b). These rays defi ne a new set 
of points between P1 and P3 on the bottom surface of the lens. Again, this is 
done, for each ray, using the same procedure described earlier when calcu-
lating the SMS chain as in Figure 8.3. Now launch a set of rays coming from 
R2 through these points and calculate the corresponding points on a portion 
P2P4 of the top surface of the lens (Figure 8.4c). Next launch a set of rays com-
ing from E2 through these points and calculate the corresponding points on 
a portion P3P5 of the bottom surface of the lens (Figure 8.4c). This process can 
go on as we extend the lens laterally.

Now, we have a large set of points on both surfaces. The more points we 
pick on the initial portion Q1P1, the better defi ned the surfaces of the lens 
will be. The right-hand side of the lens is obtained by symmetry.

As can be seen from the sequence of the calculation shown in Figure 8.4a,
b,c and d, this lens is calculated starting from the center and growing the 
surfaces toward the edge. Sometimes it may be preferable to start the calcula-
tion from the edge, since that may lead to smoother surfaces. The process is 
similar. We start by calculating an SMS chain as in Figure 8.3. Now take the 
last point calculated (in this case point P5) and the one next to it on the same 
surface (in this case point P3).

As we did earlier between points P1 and Q1, we can now interpolate a 
curve c(x) between points P5 and P3 ensuring that it is perpendicular to n5 at 
point P5 and perpendicular to n3 at point P3, as shown in Figure 8.5a. We may 
choose, for example, a third-degree polynomial of the form

 p(x) = a + bx + cx2 + dx3 (8.6)
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FIGURE 8.4
Defi nition of an SMS lens by the alternate addition of portions of the top and bottom surfaces 
of the lens. Calculation is done from the center to the edge.
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Now, if points P5 and P3 are given by P5 = (P51, P52) and P3 = (P31, P32), we have

 P52 = a + bP51 + c P 51  
2
   + d P 51  

3
   

 P32 = a + bP31 + c P 31  
2
   + d P 31  

3
   

(8.7)

Also, for p(x) to have the right derivatives at points P5 and P3, we must have

   
dp(P51) _______ 

dx
   = tan ( α5 +   π __ 2   )  ⇔ b + 2cP51 + 3d P 51  

2
   = tan ( α5 +   π __ 2   )  

   
dp(P31) _______ 

dx
   = tan ( α3 +   π __ 2   )  ⇔ b + 2cP31 + 3d P 31  

2
   = tan ( α3 +   π __ 2   )  

(8.8)

where α5 and α3 are the angles that n5 and n3 make to the horizontal. In this 
particular case, we have α5 < 0 and α3 < 0. Equations 8.7 and 8.8 give us the 
 values of a, b, c, and d and defi ne p(x). The curve is then parameterized by

 c(x) = (x, p(x)) (8.9)

with P51 < x < P31. The normal to the curve is given by

 nC(x) =  ( dp(x)/dx, −1 )  (8.10)

for the same parameter range. The expression for nC(x) can also be normal-
ized to make its length unity for all values of parameter x.

Now we use the same procedure as earlier to calculate the surfaces of the 
lens. We fi rst defi ne a set of points and normals on the portion of curve P5P3 
we just defi ned, as shown in Figure 8.5b.

Now, using the same optical path length S, as was used to calculate the SMS 
chain of Figure 8.3, launch a set of rays from R1 through the points of P5P3 and 
calculate a set of points P4P2 on the top surface, as shown in Figure 8.6a.

FIGURE 8.5
Interpolation of a curve between points P5 and P3. The curve is normal to n5 at point P5 and is 
perpendicular to n3 at point P3.
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FIGURE 8.6
Defi nition of an SMS lens by the alternate addition of portions of surface on the top and bottom 
surfaces of the lens. Calculation is done from the edge to the center.
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Now launch a set of rays coming from E1 through the new points between P4 
and P2 and calculate a new set of points on the bottom surface between points 
P3 and P1 (Figure 8.6b). Next, launch a set of rays from R1 through the points 
of P3P1 and calculate a set of points P2P0 on the top surface (Figure 8.6c). Then 
launch a set of rays coming from E1 through the new points between P2 and P0 
and  calculate a new set of points on the bottom surface between points P1 and Q1 
(Figure 8.6d). The  calculation ends when the surfaces cross the axis of symme-
try b of the system. The right-hand side of the lens is obtained by symmetry.

Figure 8.7 shows the complete lens. All the light emitted by E1 toward the 
entrance aperture of the lens P4Q4 will be redirected to R2 and the light emitted 
by E2 toward the entrance aperture of the lens P4Q4 will be redirected to R1.

The lens, however, is not symmetrical, in the sense that if we reverse the 
direction of the light, the behavior of the lens is different. Suppose then 
that R1 is an emitter. All the light the lens receives between point P5 and 
Q3 is redirected to point E1. The light received by portion Q3Q5, however, is 
not redirected. If we want the light coming from R1 and refracted at Q3Q5 
to be redirected to E2, we would need a further portion of the top surface 
of the lens to the right of Q4. We could design this new portion of the top 

P5

R1 R2

P4

P3

E1 E2

Q4

Q3

Q5

FIGURE 8.7
An SMS lens with an entrance aperture P4Q4 that redirects to R1R2 all the light it receives from 
E1E2. The lens is not symmetrical in the sense that if R1R2 is now the emitter, not all the light 
that hits the entrance aperture P5Q5 will end up on E1E2.
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 surface, but then we would have the same issue 
for the light coming from E1 and refracted 
at this new portion of the top surface. This light 
would not be refracted now toward R2.

The same thing happens for the light emit-
ted by R2 toward the portion P3P5 of the bottom 
surface of the lens. This light is also not concen-
trated on to the point E1.

There are two ways around this situation. One 
of them is to continue building the lens toward 
the edges. As we do that, the points of the SMS 
chains get closer and the asymmetry decreases, 
as shown in Figure 8.8.

As we calculate more points toward the edges 
of the lens and these points become closer, the 
étendue of the light emitted from E1E2 toward 
the entrance aperture of the lens also gets closer 
to the étendue from the exit aperture of the lens 
toward R1R2.

Another possibility for calculating one of 
these lenses is to start both  surfaces from a 
point, as shown in Figure 8.9.

Once we have defi ned the positions of E1 and 
E2 for the emitter and R1 and R2 for the receiver, 
we can defi ne the position of point X where the 
surfaces of the lens start. Since the rays crossing 

the lens at point X do not enter it, the optical path length between E1 and R2, 
which is the same as from E2 to R1, is given by

 S1 + S2 = S3 + S4 (8.11)

as shown in Figure 8.10a.

R1

R2

E1

E2

FIGURE 8.8
As we calculate more and more points on the SMS chains, these points get closer toward the 
edges of the lens.

FIGURE 8.9
RR SMS lens whose surfaces 
touch at the end points X and Y.
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E1 E2

X Y
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This condition can also be written as

 S1 − S3 = S4 − S2 (8.12)

which is the condition that states that the étendue from the emitter E1E2 to 
the entrance aperture XY of the lens is the same as the étendue from the lens 
to the receiver R1R2.

Now, we can defi ne, for example, point X = (X1, y), where X1 is chosen by us 
and y is calculated using expression 8.11. Once we have the position of point 
X, we also have the directions of vectors v1, v3, v4 and v6 defi ned by the edges 
of the emitter and receiver and by point X, as shown in Figure 8.10b.

Consider that the bottom surface, of the lens starting at X has normal nB mak-
ing an unknown angle α to the vertical, as shown in Figure 8.11a. Consider also 
a point X1 on the bottom surface a very small distance δ away from X.

As δ → 0, vector v1 for a light ray emitted from point R1 is the same as in 
Figure 8.10b. We then refract the light ray with direction v1 at point X1 and 
calculate the direction of vector v2 inside the lens. This ray, after  refraction 

X X

x1 x1

x2 x2

E1 E2 E1 E2

R1 R1R2 R2

v4

v6

v1

v3
S3 S1

S2

S4

(a) (b)

FIGURE 8.10
Starting point X of the surfaces of the RR SMS lens.
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282 Introduction to Nonimaging Optics

of the top surface, is headed toward E2, and again as δ → 0, this ray has 
 direction v3 as defi ned in Figure 8.10b. Since we have the directions of an 
incident v2 and refracted v3 rays on the top surface, we can determine its 
normal nT. Next, refract a ray with direction v4 on the top surface with nor-
mal nT calculating the direction v5 of the light inside the lens. Then refract 
a light ray with direction v5 on the bottom surface with normal nB to obtain 
the direction of ray vP6. We iterate on the value of α until vP6 is parallel to v6 
as in Figure 8.10b, or vP6 ⋅ v6 = 0. This gives us the directions of the normals 
nB and nT to the bottom and top surfaces at point X.

Consider that the bottom and top surfaces in the neighborhood of point X 
are fl at with normals nB and nT. Consider again a point X1 very close to point 
X, but at a distance δ > 0 away. We refract at point X1 a ray with the direc-
tion of v1 on the bottom surface and calculate point X2 on the top surface. 
Refract at point X2 a ray with direction v4 and calculate point X3 on the bot-
tom surface, as shown in Figure 8.11a. Between points X1 and X3, consider the 
bottom  surface to be fl at with normal nB, as shown in Figure 8.11b. We now 
calculate the SMS chains as earlier, starting from the portion of the bottom 
surface X1X3. Figure 8.11b shows the fi rst step of this calculation. As earlier, 
the surfaces are calculated to the axis of symmetry and then mirrored to the 
other side. A complete lens is shown in Figure 8.9.

Another possibility for calculating an SMS lens is by imposing the condition 
that the étendues from emitter to the lens and from the lens to the receiver 

�

X

nB nB

nT

nB

X1

X1

X3

X3

X2 X2

v1

v5
v2

v4 v3

vP6

(a) (b)

� X

FIGURE 8.11
SMS chains for generating an RR lens from a thin edge toward the center.
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Miñano–Benitez Design Method (Simultaneous Multiple Surface) 283

are equal and also that the lens has a thick edge.5 Now we choose the points 
at the edges of the surfaces of the lens by using the condition of matching the 
étendues from E1E2 toward the lens and from the lens toward R1R2. Suppose 
that we already have one such lens as shown in Figure 8.12.

The étendue from E1E2 to the entrance aperture NM of the lens is given by

 U = 2([N, E1] − [N, E2]) (8.13)

Also, the étendue from the exit aperture of the lens XY to R1R2 is given by

 U = 2([X, R1] − [X, R2]) (8.14)

If we give a value to the étendue U, we want to couple light between E1E2 and 
R1R2 through the lens; point N must then be on the hyperbola hE defi ned by

 [N, E1] − [N, E2] =   U __ 2   (8.15)

and point X on another hyperbola hR defi ned by

 [X, R1] − [X, R2] =   U __ 2   (8.16)

These hyperbolas can be obtained by using the function hyp(F, G, U, n) as 
defi ned in Chapter 17, in which F and G are either E1 and E2 or R1 and R2 and 
n = 1 since these hyperbolas are considered to be in air. The design of the lens 
then begins by choosing a value for U and choosing point N on the hyperbola 
hE and point X on the hyperbola hR as shown in Figure 8.13.

Consider a ray r1 emitted from E1 toward point N. There it refracts toward 
point X and from there it is redirected to point R1. Since now we know the 
directions of incident and refracted rays at point N, we can calculate its 
 normal nN. Also, since we know the directions of incident and refracted rays 
at point X, we can calculate its normal nX.

R2

R1

E2

E1

M

N X

Y

hE hR

FIGURE 8.12
An SMS lens in which the étendue from E1E2 to the entrance aperture of the lens NM matches 
the étendue of the exit aperture XY of the lens to R1R2.
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284 Introduction to Nonimaging Optics

Point N will receive light emitted from E1 to E2, as shown in 
Figure 8.14.

Knowing the direction of the normal at point N, refract at that point a ray 
r2 coming from E2. This ray is redirected at some point X1 on the right-hand 
side surface of the lens toward R1. We now have a situation in which the light 

R2

R1

E1

E2

N X

hE

nN
nX

hEr1

r1

r1

r1

r1

hR

hR

FIGURE 8.13
Path of a ray r1 from E1 to N, then to X and fi nally to R1. Its path gives the normals at points 
N and X.

FIGURE 8.14
Portion XX1 of the lens concentrates to point R1 the light confi ned between the rays r1 and r2 
coming from point N.
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R2

R1

E1

E2

N

N1

X

hE

hE

nX

r1

r3

r1

r3

r1 r3
r1

r3
r3

r1

hR

hR

FIGURE 8.15
Portion NN1 of the lens concentrates on point E1 the light confi ned between rays r1 and r3 
 coming from point X.

coming out of point N, confi ned between rays r1 and r2 is headed toward 
 portion XX1 of the lens and must be concentrated on to point R1. The portion 
XX1 must then be a Cartesian oval that concentrates on R1 these light rays 
coming from N. Since we know the path of ray r1, we can calculate the optical 
path length between N and R1 as

 SN = n[N, X] + [X, R1] (8.17)

This defi nes portion XX1 of the surface of the lens. Note that for each point of 
XX1 we have the directions of incident and refracted rays and we can, there-
fore, calculate the normal for each one of its points.

Now we have the whole path of ray r2 defi ned as E2–N–X1–R1. We can, 
therefore, calculate the optical path length between E2 and R1 as

 S = [E2, N] + n[N, X1] + [X1, R1] (8.18)

The optic is symmetrical in the sense that if R1R2 was now the source of light 
and E1E2 the receiver, all the light emitted from R1R2 toward the lens would 
have to be redirected to E1E2. We can then use the same reasoning to build a 
portion of the surface on the left-hand side of the lens (Figure 8.15).

Since we know the direction of the normal at point X, we now refract at 
that point a ray r3 coming from R2. This ray is redirected at some point N1 
on the left-hand side surface of the lens toward E1. We now have a situation 
in which the light coming out of point X confi ned between rays r1 and r3 is 
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286 Introduction to Nonimaging Optics

headed toward portion NN1 of the lens and must be concentrated on to point 
E1. The portion NN1 must then be a Cartesian oval that concentrates on E1 
these light rays coming from X. Since we know the path of ray r1, we can 
calculate the optical path length between X and E1 as

 SX = n[X, N] + [N, E1] (8.19)

This defi nes portion NN1 of the surface of the lens. Note that for each point 
of NN1 we have the directions of incident and refracted rays and we can, 
therefore, calculate the normal for each one of its points.

Now, we have the whole path of ray r3 defi ned as R2–X–N1–E1. We can, 
therefore, calculate the optical path length between R2 and E1 as

 S = [R2, X] + n[X, N1] + [N1, E1] (8.20)

Given the symmetry of the system, the optical path lengths calculated by 
Equations 8.20 (between E1 and R2) and 8.18 (between E2 and R1) are equal.

We now have a situation, as in Figure 8.16, that shows the curve NN1 with 
a set of points and their normals and the curve XX1 also with a set of points 
and their normals.

Now, we can calculate the remaining portions of the surfaces of the SMS 
lens using the same method as earlier for calculating the lens of Figure 8.6. 
As shown in Figure 8.17a, launch a set of rays from E2 through the portion 

E1

R1

E2

R2

N

N1
X1

X

r1

r1

r1

r3

r3

r3

r2

r2

r3

r3

r2

r2

r1

r1

FIGURE 8.16
The design of the surfaces of the SMS lens starts at the edge with two Cartesian ovals NN1  
and XX1.
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NN1 of the lens already calculated. These light rays are refracted there and 
we know the optical path length to point R1, so we can calculate a new por-
tion of lens X1X2 on the other side.

We can also launch a set of rays from R2 through the portion XX1 of the 
lens already calculated. These light rays are refracted there and we know 
the optical path length to point E1, so we can calculate a new portion of lens 
N1N2 on the other side.

We now repeat the process for the portions of lens we just calculated, 
as shown in Figure 8.17b. We can launch a set of rays from E2 through the 
 portion N1N2 of the lens already calculated. These light rays are refracted 
there and we know the optical path length to point R1, so we can calculate a 
new portion of lens X2X3 on the other side. We can also launch a set of rays 
from R2 through the portion X1X2 of the lens already calculated. These light 
rays are refracted there and we know the optical path length to point E1, so 
we can calculate a new portion of lens N2N3 on the other side. This process 
 continues to the optical axis. Figure 8.18 shows the last step of this calcula-
tion, when the surfaces of the lens cross the axis of symmetry b.

Since the system is symmetrical relative to line b, we take only the portion 
of the lens above b and mirror it on the other side, completing the lens.

When we do this, we are replacing the portion of the lens we calculated 
below the line b with the mirror image of the lens above the line b. This 
makes the lens nonideal at the center because we are replacing what we 
should have (what we calculated below line b) with something else (the mir-
ror image of the surfaces of the lens above line b). Figure 8.19 shows this 
effect for a ray r. The path of the ray is calculated such that it refracts at point 
N5 on the left-hand side surface of the lens and then at a point X6 on the other 
side. When we mirror the  surfaces of the lens above axis of symmetry b, ray 
r no longer refracts at point X6, but at the mirror image of another point XU 
on the upper portion of the lens.

R1

R1

R2

R2

E2

E2

E1

E1

X2
X3

X2

X1
X

N2

N1

N1
N2

N3

(a) (b)

N
N

X

X1

FIGURE 8.17
By launching rays through the portions of the lens already calculated, we can calculate a new 
portion of lens on the other side.
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288 Introduction to Nonimaging Optics

The regions of the surfaces of the lens for which perfect focusing of the 
light onto R1 and R2 cannot be guaranteed are shown in Figure 8.20. It is 
defi ned by the edge rays crossing the center of the lens. Such minor blurring 
is quite acceptable in numerous situations.

An edge ray emitted from E1 toward CL on the center point of the left-hand 
side surface of the lens defi nes point XC on the other surface. Also, an edge 
ray emitted from R1 toward CR on the center point of the right-hand side 
surface of the lens defi nes point NC on the other surface. Ideality cannot be 
guaranteed for the rays crossing the lens between NC and CL and between 
CR and XC.

This nonideality is, however, quite small and for practical applications 
the lens behaves quite well. Figure 8.21 shows a complete lens, obtained by 

R1

R2

E1

N5

N6 X6

X5

X4
N4

N X

E2

b

FIGURE 8.18
The design of the lens ends when the surfaces cross the axis of symmetry b.

R1

R2

E1

N6 X6

XU
N5

r

E2

b

FIGURE 8.19
Ray r after refraction at point N5 should refract at point X6 calculated for the other side of the 
lens, but when we mirror the top surface of the lens to the other side, ray r will be refracted at 
the mirror image of a point XU on the upper half of the lens.
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 mirroring the top portion of the lens above the axis of symmetry b to the 
other side.

Although we have presented the lens as being perpendicular to the opti-
cal axis, this does not have to be the case. If we just take points X and N 
 according to the conservation of étendue and design the lens, we may get a 
lens with a peak at the center. To avoid this, the positions of points N and 
X must be moved until the desired result is obtained. First point N is kept 
fi xed and point X moved along the hyperbola hR until the left-hand side lens 
surface is perpendicular to the optical axis. Then point X is kept fi xed and 
point N is moved along the hyperbola hE until the right-hand side surface of 

R1

R2

E1

CL CR

XC

NC

E2

b

FIGURE 8.20
The region of the center of the lens for which no perfect focusing can be guaranteed is confi ned 
between points NC and CL for the left-hand side surface and between XC and CR for the right-
hand side.

FIGURE 8.21
An SMS lens that focuses onto R1 and R2 the light rays emitted by E2 an E1.

R1

R2

E1

E2

b
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290 Introduction to Nonimaging Optics

the lens is perpendicular to the opti-
cal axis. This process is repeated until 
both the surfaces are perpendicular to 
the axis of symmetry.

We now go back to the lens shown 
in Figure 8.7. These lenses can also 
be designed for infi nite sources at an 
infi nite distance. Figure 8.22 shows 
one such lens. This is the limit case in 
which the edges E1 and E2 of the emit-
ter are moved to an infi nite distance 
away from the lens. The rays com-
ing from the edges of the emitter are 
now two sets of parallel rays perpen-
dicular to wave fronts w1 and w2. The 
lens focuses at point R1 the rays per-
pendicular to w2 and at R2 those per-
pendicular to w1. The SMS chains are 
calculated in the same way as earlier.

We now consider the lens shown in 
Figure 8.21. These lenses can also be 
designed for infi nite sources at an infi -
nite distance. Figure 8.23 shows such 
a lens.

The edge point X of the lens is on the 
hyperbola hR, as seen earlier, but the 
edge point N is now on a horizontal 
straight line lE. The distance between 

the top and bottom lines lE is such that, if we choose points N and M on those 
lines, the étendue the lens intercepts (given by U = 2[N, M]sin θ) matches that 
defi ned by the hyperbola hR.

The design of the lens is as described earlier. An edge ray r1 perpendicular 
to a fl at wave front w1 makes an angle θ to the horizontal and refracts at point 
N toward X. It then refracts again at X toward R1. The defl ections required 
along the path of this ray give us the normals at points N and X. Now refract 
at point N the rays with directions between those of r1 and r2 and calculate 
the Cartesian oval XX1 that concentrates them on point R1. Refract at point 
X the rays emitted from the receiver toward X. These rays are contained 
between r1 and r3. Then calculate the Cartesian oval NN1 that makes them 
perpendicular to wave front w1.

Next use portions NN1 and XX1 of the lens to calculate the SMS chains, 
using the same method as earlier. Also in this case, the lens surfaces are 
 calculated as far as the optical axis and then mirrored to the other side.

The lenses described previously use two refractions. Refractions in the 
Miñano–Benitez design method are identifi ed as R. These lenses are then 
RR devices because light going through them undergoes two refractions.

R1 R2

w1 w2

FIGURE 8.22
An SMS lens designed for the case in which 
the emitter is infi nitely large at an infi nite 
distance. In this case, the lens focuses at 
points R1 and R2 the rays perpendicular to 
the fl at wave fronts w2 and w1.
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8.3 The XR, RX, and XX Optics

The RR lens presented earlier has two refractive surfaces. Other types of 
SMS optics can also be calculated using the Miñano–Benitez design method. 
For example, the case in which one of the surfaces is refl ective (a mirror) and 
the other refractive. The resulting optic has the geometry as shown in Fig-
ure 8.24. In the Miñano–Benitez design method, refractions are denoted by 
R, refl ections by X (from the Spanish refl exión) and total internal refl ections 
(TIRs) by I. This new optic is, therefore, an XR because light is fi rst refl ected 
and then refracted before reaching the receiver. The rays perpendicular to 
wave front w1 are concentrated on to the edge R2 of the receiver and the edge 
rays perpendicular to w2 are concentrated on to the receiver edge R1. The 
receiver is immersed in a medium of refractive index n.

The algorithm for calculating this optic is the same as for the RR lens shown 
in Figure 8.4.  During the design process we ignore the shadow the secondary 
(refractive element) produces on the primary (mirror). Start with the positions 
of the end points R1 and R2 for the receiver. Now choose a point P0 and its 
normal n0, as shown in Figure 8.25. Next, refract at P0 a ray r1 coming from 
the edge R2 of the receiver and choose a point P1 along the refracted ray.

R1

R2

r2

r2

r3

r3

hR

lE

lE

r1

r1

w1

w2

r1

r2

r3
X

X1

N

N1

�

�

�

�

M

FIGURE 8.23
An SMS lens with a thick edge designed for the case in which the emitter is infi nitely large at 
an infi nite distance. In this case, the lens focuses at points R1 and R2 the rays perpendicular to 
the fl at wave fronts w2 and w1.
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292 Introduction to Nonimaging Optics

This edge ray must be refl ected in a direction perpendicular to the wave front 
w1 and this gives us the direction of the normal n1 at point P1. The ray r1 inter-
sects the wave front w1 at point W1. Point Q1 is symmetrical to point P1 and 
also has a symmetrical normal. The intersection of the axis of symmetry x2 by 
the straight line defi ned by point P1 and its normal n1 gives us point C, which 
we take as the center of a circular arc from P1 to Q1 with normals at P1 and Q1 
matching those calculated for those points.

We now calculate the SMS chains as we did for the RR lens. Figure 8.26 
shows some of the steps in those calculations.

The path of the ray r1 gives us the optical path length between R2 and  w1, 
which is also the optical path length between R1 and w2. It is given by

 S = n[R2, P0] + [P0, P1] + [P1, W1] (8.21)

Refl ect off the mirror a set of rays perpendicular to wave front w2 between 
points P1 and Q1 as shown in Figure 8.26a. By constant optical path length 
calculate a portion P0P2 of the refractive surface. Next refract on that surface 
a set of rays coming from R2 and calculate, again by constant optical path 
length, the points on the mirror between P1 and P3 that refl ect these rays in 
a direction perpendicular to wave front w1 (Figure 8.26b). Again take a set of 
rays perpendicular to wave front w2, refl ect them on the portion P1P3 of the 
mirror and, by the constant optical path length, calculate a portion P2P4 of 
the refractive surface (Figure 8.26c). The process continues to calculate alter-
nate portions of the refl ective (mirror) and refractive surfaces.

Just as with the case of the RR optic in Figure 8.12, also in this case also we 
may design an optic that matches the étendues from the emitter to the optic 
and from the optic to the receiver, as shown in Figure 8.27 for the case in 
which the emitter is a fi nite source E1E2.5

R1 R2

w2

w1

2�

Refractive surface

Receiver

Mirror

FIGURE 8.24
An XR SMS optic. One on the surfaces is a mirror (X) and the other surface is refractive (R). The 
receiver is immersed in a dielectric of refractive index n.
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The design method used to obtain this 
device is similar to the one described for the 
RR lens. It starts by defi ning the positions 
for the starting points N and X. The étendue 
from the source E1E2 to the mirror is given 
by U = 2([N, E1] − [N, E2]). In the same 
way, the étendue from R1R2 to the refrac-
tive surface is given by U = 2([[X, R1]] − [[X, 
R2]]). Note that in the latter case, the optical 
path lengths [[X, R1]] and [[X, R2]] are cal-
culated in a medium of refractive index n, 
and therefore, they are the product of this 
refractive index and the distance between 
the points. The étendue arriving at the mir-
ror from E1E2 must be the same as that exit-
ing the refractive surface toward R1R2. We 
can then choose a value for U. Point N must 
be on the line defi ned by [N, E1] − [N, E2] = 
U/2, that is, on an hyperbola having foci E1 
and E2. Point X must be on a line defi ned 
by [[X, R1]] − [[X, R2]] = U/2, that is, on a 
hyperbola having foci R1 and R2.

Similar to the RR lens shown in Fig-
ure 8.16, in this case also the design of 
the curves begins with portions NN1 of the 
fi rst surface (now a mirror) and XX1 of the 
second (refractive) surface. Portion NN1 of 
the fi rst surface (mirror) focuses to X the 
rays coming from E1. Now it is an ellipse 
with foci E1 and X, and passing through 
point N. Portion XX1 of the second surface 
focuses to R1 the rays coming from N. It is 
a Cartesian oval with foci N and R1, and 
passing through point X. From the path of 
ray E2–N–X1–R1, we can calculate the opti-
cal path length between E2 and R1. Also, from the path of ray R2–X–N1–E1 we 
can calculate the optical path length between R2 and E1. Given the symme-
try of the design, these optical path lengths should be equal to one another. 
The design of the XR optic now continues in a way similar to that shown in 
Figure 8.17 for the RR lens. Launch a set of rays from E2 through the portion 
NN1 of the fi rst surface (mirror) already calculated. We know the optical path 
length to point R1, therefore, we can calculate a new portion X1X2 of the sec-
ond (refractive) surface. We can also launch a set of rays from R2 through the 
portion XX1 of the second surface (refractive) already calculated. We know 
the optical path length to point E1, therefore, we can calculate a new portion 
N1N2 on the fi rst surface (mirror). As in the case of the RR lens, in this case 

R1

W1

R2

Q1P1

P0

n0

n1

x1

x2

r1

r1

w2w1

C

� �

FIGURE 8.25
Calculating the fi rst portion of the 
mirror of an XR optic from which the 
rest of the surfaces will be derived.
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294 Introduction to Nonimaging Optics

also this iterative process is continued until the surfaces reach the optical 
(symmetry) axis. 

Also in this case there will be a central zone for both surfaces for which no 
perfect focusing of the rays is guaranteed. In the case of the mirror, this zone 
is between point NC and its symmetrical point. Point NC is defi ned by the 
edge ray emitted from the edge R1 of the receiver through the center of the 
refractive surface. In the case of the refractive surface, this zone is between 

R2

R1

R1 R2 R1 R2

P2
P2

P2

P4P0 P0

P3 P3P1 P1Q1 Q1P1 Q1

P0

w2 w2w1

(a) (b) (c)

FIGURE 8.26
SMS chains for calculating the shape of the optical surfaces of an XR optic.
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R2 X1
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X
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b
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FIGURE 8.27
XR optic that matches the étendues from the emitter to the optic and from the optic to the 
receiver. It comprises a mirror collecting the light from the emitter and a dielectric piece in con-
tact with the receiver. Also in this case, the Miñano–Benitez design method does not guarantee 
the convergence of all the rays.
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XC and its symmetrical point. Point XC is defi ned by the edge ray emitted 
from the edge E2 of the emitter through the center of the mirror.

Calculating an XR optic can often result in loops on the surface profi les 
caused by caustics formed between the optical surfaces. Adjusting the 
parameters to avoid those loops may prove to be a diffi cult task. One option 
is to calculate the optic with the offending loops and then, when defi ning 
the optical surfaces, take only those points that defi ne smooth surfaces, 
 removing all the loops. The resulting optical surfaces, although not ideal, 
may still work for some applications.

Another possibility for an SMS optic is to have the fi rst surface as refrac-
tive (R) and the second refl ective (X), as shown in Figure 8.28. This optic is 
called RX.6,7 The receiver R1R1 is immersed in a medium of refractive index 
n and faces down (it is illuminated from below).

The calculation method is again the same shown in Figure 8.4 for an RR 
lens. By symmetry, start by choosing a point P0 on the perpendicular bisector 
of the receiver R1R2 and its vertical normal n0. We refract at that point a ray 
r1 perpendicular to wave front w2 and choose a point P1 along the refracted 
ray, as shown in Figure 8.29. Calculate the normal n1 at P1 such that this ray 
is refl ected to edge R1 of the receiver. Point Q1 is symmetrical to P1 and also 
has a  symmetrical normal.

The path of the ray r1 defi nes the optical path length between w2 and R1, 
which is also the optical path length between w1 and R2, as

 S = [W2, P0] + n[P0, P1] + n[P1, R1] (8.22)

FIGURE 8.28
An RX optic. The fi rst surface is refractive (R) and the second refl ective (X).

R1 R2

w2 w1

Refractive
surface

Mirror
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296 Introduction to Nonimaging Optics

Next, choose the curve between P1 and Q1 as a circle whose center is at the 
intersection of the axis of symmetry of the system (or point P0 and normal n0) 
and the straight line defi ned by point P1 and its normal n1.

Refl ect off that curve Q1P1 a set of edge rays coming from the edge R2 of the 
source and calculate portion P0P2 of the top surface so that they are refracted 
in a direction perpendicular to wave front w1, as shown in Figure 8.30.

Refract on P0P2 a set of rays perpendicular to wave front w2 and calculate 
portion P1P3 of the mirror so that these rays are concentrated on to the edge 
R1 of the receiver. The process goes on to calculate alternate portions of the 
refl ective and refractive surfaces.

Yet another possibility for an SMS optic is to have both surfaces refl ective, 
as shown in Figure 8.31.

In this optic, the top mirror is very large and covers the bottom mirror 
almost completely. One way to implement this optic is to make it as two 

R1

W2

R2

Q1P1

P0

n1

r1

r1

w2w1

n0

FIGURE 8.29
Calculating the fi rst portion of the 
mirror of an RX optic from which the 
rest of the surfaces will be derived.

R1

R1
R2

R2

P2 P2 P0

P1 P3 P1Q1 Q1

P0

w1 w2

(a) (b)

FIGURE 8.30
SMS chains for calculating the shape of the optical 
surfaces of an RX optic.
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w2 w1

R1 R2

Mirror

FIGURE 8.31
An XX optic. The fi rst surface is refl ective (X) and the second is also refl ective (X). When design-
ing the optic we ignore the shading the top mirror produces on the bottom mirror.

w2 w1

R1 R2

Mirror
Low refractive
index material

MirrorTIR

FIGURE 8.32
The XX optic can be implemented as two parts or refractive index n separated by a thin layer of 
low refractive index material (such as air). Light goes through this layer, refl ects off the  bottom 
mirror and undergoes TIR off the top mirror toward the receiver. The TIR condition is not 
attained along the whole top surface, where a small central mirror is required.

dielectric parts with a thin layer of low refractive index material between 
them, as shown in Figure 8.32.

The way this layer works is shown in Figure 8.33. A ray r1 traveling in the 
medium of refractive index n and making an angle to the normal smaller 
than the critical angle αC is refracted into the low refractive index layer and 
then again from that layer to the medium of refractive index n and continues 
in the same direction. Therefore, for this ray, it is as if the air gap was not 
there (except for a small lateral shift), but a ray r2 making an angle to the ver-
tical larger than the  critical angle undergoes TIR and is refl ected back. Thus, 
for this ray, it is as if the air gap was a mirror.

For the case of the XX device presented in Figure 8.32, the incoming 
radiation goes through the low refractive index layer as if it was not there. 
After refl ecting on the bottom mirror, however, it is redirected toward the 
top mirror at large angles and undergoes TIR there toward the receiver. 
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298 Introduction to Nonimaging Optics

The condition of TIR is not achieved along all the top surface of the XX, and 
there must be a small central mirror.

The calculation method for the XX is the same as earlier. By symmetry, 
we start by choosing a point P0 on the perpendicular bisector of the receiver 

r2

r2

�C

r1

Low refractive
index material

r1

n

n

FIGURE 8.33
A thin layer of low refractive index material (such as air) separating two parts of a high refrac-
tive index material. This layer behaves as a mirror for light making an angle larger than the 
critical angle to the vertical, but lets the light through if the angle to the normal is smaller than 
the (large) critical angle.

FIGURE 8.34
Calculating the fi rst portion of the mirror of an XX optic from which the rest of the surfaces 
will be derived.
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r1

W1
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P1 Q1
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FIGURE 8.35
SMS chains for calculating the shape of the optical surfaces of an XX optic.

w2 w1

P2

P2

P0
P0

R2

R2R1

P3
P1 Q1

R1

P1 Q1

(a) (b)

R1R2 and its vertical normal n0. We refl ect off that point a ray r1 coming from 
the edge R2 of the receiver, as shown in Figure 8.34. We choose point P1 along 
the refl ected ray and calculate the normal n1 at P1 so that this ray is refl ected 
in a direction perpendicular to wave front w1, intersecting it at point W1. 
Point Q1 is symmetrical to P1 and also has a symmetrical normal.

The path of ray r1 defi nes the optical path length between R2 and w1, which 
is also the optical path length between w2 and R1, as

 S = [R2, P0] + [P0, P1] + [P1, W1] (8.23)

Choose the curve between P1 and Q1 as a circle whose center is defi ned by 
the intersection of the axis of symmetry of the system (or point P0 and nor-
mal n0) and the straight line defi ned by point P1 and its normal n1.

Refl ect off that curve Q1P1 a set of edge rays perpendicular to wave front 
w2 and calculate portion P0P2 of the top surface so that they are refl ected 
toward edge R1 of the receiver, as shown in Figure 8.35.

Refl ect off P0P2 a set of rays coming from edge R2 of the receiver and 
 calculate portion P1P3 of the bottom mirror, so that these rays are redi-
rected in a direction perpendicular to wave front w1. The process goes 
on as we  calculate alternating portions of the refl ective and refractive 
surfaces.
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300 Introduction to Nonimaging Optics

8.4  The Miñano–Benitez Design Method 
with Generalized Wave Fronts

The Miñano–Benitez method can be used with generalized input and output 
wave fronts. Figure 8.36 shows a more general situation with two input wave 
fronts w1 and w2 and two output wave fronts w3 and w4. We want to design 
an optic that couples w1 with w4 and w2 with w3. This optic has two optically 
active surfaces s1 and s2. Surface s1 separates two media of refractive indices 
n1 and n2 and surface s2 separates two media of refraction indices n2 and 
n3.8 If n1 = n2 then the fi rst surface, s1, is refl ective (a mirror), otherwise it is 
refractive. Also, if n2 = n3 then the second surface, s2, is refl ective (a mirror), 
otherwise it is refractive. In any case, these surfaces defl ect (either refl ect or 
refract) light. In the following explanation, we assume that both the surfaces 
are refractive (n1 ≠ n2 and n2 ≠ n3). However, the explanation would still be 
the same if one or both of these surfaces were refl ective (n1 = n2 or n2 = n3), 
by simply replacing “refract” by “refl ect”.

The design procedure is the same as shown in Figures 8.3, 8.4, and 8.6. 
Start by choosing a point P0 and its normal n0 as shown in Figure 8.37.

w2

w3 w4

w1

n1

n2

n3

S1

S2

FIGURE 8.36
The Miñano-Benitez in the more general case in which an SMS optic couples two generalized 
input wave fronts w1 and w2 and two generalized output wave fronts w4 and w3.
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w2

w1

w3

w4

r2

r1

r1
r2

n2

n3

n1

P2
P0

P1

n2

n0

n1

c

Q

FIGURE 8.37
The design process starts by choosing a point P0 and its normal n0. We then build the fi rst steps 
of an SMS chain and interpolate a curve c between points P0 and P2.

Refract at point P0 a ray r1 perpendicular to wave front w2. Choose the 
 optical path length, S23, between w2 and w3. With that value, calculate point 
P1 and its normal n1 so that ray r1 is defl ected at P1 in a direction perpendicu-
lar to wave front w3. Then refract at point P1 a ray r2 perpendicular to wave 
front w4. We choose the optical path length S14 between w1 and w4. With this 
value, we can calculate point P2 and its normal n2 so that ray r2 is defl ected at 
P2 in a direction perpendicular to w1.

Interpolate a curve c between points P2 and P0 such that it is perpendicu-
lar to n0 at P0 and to n2 at P2. For this curve, calculate a set of points and 
normals between P0 and P2. Refract at those points a set of rays perpendicu-
lar to wave front w2, as shown in Figure 8.38a. Since we have the optical path 
length S23 between w2 and w3, we can calculate a new portion P1P3 of surface 
s2 of the optic. Refract at those new points a set of rays perpendicular to w4, 
as shown in Figure 8.38b. Since we have the optical path length S14 between 
w4 and w1, we can calculate a new portion P2P4 of surface s1 of the optic.

This process builds the surfaces leftward from the initial point P0. The 
same process can also build the surfaces s1 and s2 to the right of P0. As earlier, 
calculate a set of points and normals on curve c between P0 and P2 (e.g., the 
same set of points as earlier). Refract at these points a set of rays  perpendicular 
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302 Introduction to Nonimaging Optics

to wave front w1, as shown in Figure 8.39a. Since we have the  optical path 
length, S14, between w1 and w4, we can calculate a new portion P1Q1 of sur-
face s2 of the optic. Refract at those new points a set of rays  perpendicular 
to w3 (Figure 8.39b). Having the optical path length, S23, between w3 and w2, 
calculate a new portion P0Q2 of surface s1 of the optic. The process goes on 
as we calculate another portion of surface s2 (Figure 8.39c) between points Q1 
and Q3 and another portion of top surface s1 (Figure 8.39d) between points 
Q2 and Q4. This process goes on to give the optic as in Figure 8.36.

Now take a closer look at what happens when calculating the path of a 
ray, such as ray r1 in Figure 8.37. Knowing the position of point P0, we must 
determine from which point of wave front w2 ray r1 is coming. Figure 8.40 
shows a similar situation. We have a point P and a wave front defi ned by a 
parameterization w(σ). We want to determine for what point Q the perpen-
dicular to w(σ) goes through the point P.

We now consider a possible way to determine the position of point Q. Take, 
for example, a point Q(σ) on the wave front and determine its tangent a at 
that point. It has unit normal vector n(σ) and unit tangent vector t(σ). For a 
straight line a, we can determine point R(σ) on the line perpendicular to a 
through P as (see Chapter 17)

 R(σ) = isl(P, n(σ), Q(σ), t(σ)) = P +   
(Q − P) ⋅ n

 __________ n ⋅ n   n (8.24)

Now varying the parameter σ on wave front w(σ), we can determine its value 
so that (R(σ) − Q(σ)) ⋅ t(σ) = 0, or that the distance between R(σ) and Q(σ) is 
zero [R(σ), Q(σ)] = 0. This gives us the position of point Q.

w2 w2

w4 w4

w1 w1

w3
w3

P2
P2

P0

P0

P1

P1
P3

P3

P4

(a) (b)

FIGURE 8.38
Starting at curve c between P0 and P2, the design of the optical surfaces proceeds to the left as 
we calculate alternate portions of the top (s1) and bottom (s2 ) surfaces of the optic.
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In the case of ray r1 in Figure 8.37, we could now refract it at point P0 since we 
know its normal n0. The optical path length between w2 and w3 is S23 and we can 
calculate the optical path length between P0 and w3 as S03 = S23 − n1[P0, Q].

We now consider the situation in Figure 8.41 in which we have a point F 
(in the case of ray r1 in Figure 8.37, this point would be P0) emitting a light 
ray in the direction of the unit vector v (in the case of ray r1, this would be 
the direction of the ray after refraction at P0), and we know the optical path 

w2 w2

w2

w2

w4 w4w3
w3

w4 w4

w1 w1

w1 w1

w3 w3

P2

P0

P0 P4

P3

P4

P3

Q1

Q3

Q2
Q2

Q4

Q3Q1

P0

P4

P4

P3

P3

P1
P1

Q1

Q1

Q2

(a)

(c) (d)

(b)

FIGURE 8.39
Starting at curve c between P0 and P2, the design of the optical surfaces proceeds to the right as 
we calculate alternate portions of the top (s1) and bottom (s2 ) surfaces of the optic.
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length S between F and wave front w(σ), which is a curve with parameter σ 
(in the case of ray r1, this wave front would be w3). The refractive index before 
defl ection is n2 and is n3 after defl ection (in the case of ray r1, this defl ection 
occurs at point P1). We want to determine the path of this light ray. Note that 
this situation is also similar to that in Figure 8.2 in which we want to calcu-
late point P on curve c.

Let us now consider a possible way to determine the path of this light ray.
Take a point Q(σ) on the wave front and determine its tangent a at that point. 
It has unit normal vector n(σ) and unit tangent vector t(σ). For a straight line a, 

P P

Q

a

n(�)

w(�)

w(�)
Q(�)

R(�)

t(�)

(a) (b)

FIGURE 8.40
A possible way to fi nd the ray through point P that is perpendicular to a wave front described 
by  parameterization w(σ).

FIGURE 8.41
A possible way to fi nd the ray path from a point F to a wave front parameterized by w(σ), given 
the direction v of the ray at F and the optical path length S between F and w(σ).
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we can determine a point P(σ) that matches the optical path length between 
F and a as (see Chapter 17)

 P(σ) = coptsl(F, n2, v, Q(σ), n3, n(σ), S) = F +   
S − n3(Q − F) ⋅ n

  ________________  n2 − n3 v ⋅ n   v (8.25)

Point R(σ) is given by the intersection between the straight lines defi ned by 
Q(σ) and t(σ) and by P(σ), and n(σ) as (see Chapter 17):

 R(σ) = isl(P(σ), n(σ), Q(σ), t(σ)) = P +   
(Q − P) ⋅ n

 __________ n ⋅ n   n (8.26)

Now varying the parameter σ on wave front w(σ), we can determine its value 
so that (R(σ) − Q(σ)) ⋅ t(σ) = 0, or that the distance between R(σ) and Q(σ) is zero 
[R(σ), Q(σ)] = 0. This gives us the position of point Q as shown in Figure 8.41b.

The tangent vector t(σ) to curve w(σ) is given by

 t(σ) =    
dw(σ)/dσ ___________     �dw(σ)/dσ�   (8.27)

and the normal n(σ) to a is obtained by rotating this vector by either π/2 
 or −π/2.

For P(σ) to be calculated properly with expression 8.25, the normal to 
straight line a must point in the direction of the light ray as it crosses it.
In the case of refraction, this means that the normal n to a must fulfi ll v ∙ n > 0,
as in Figure 8.42a. If it does not, its direction must be inverted.

Note that this construction is also valid in the case in which n2 = n3 = n. 
In this case, as in Figure 8.41b, the light ray would refl ect at point P in a direc-
tion perpendicular to the wave front parameterized by w(σ). To determine 

FIGURE 8.42
Determining the right normal direction to straight line a for the case of refraction (a) and 
 refl ection (b).
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the right normal direction to a in this case, we may start by  calculating point 
X at the intersection of the straight line a and the light ray defi ned by point 
F and direction v, as shown in Figure 8.42b. We calculate the optical path 
length between P and X as SPX = n[P, X]. If SPX < S, then the refl ection is on 
a mirror mB further away than point X and we have normal nB to a, which 
 fulfi lls v ⋅ nB < 0. In this case, point P would be on mB. However, if SPX > S, 
then the refl ection is on a mirror mA closer than point X, and we have normal 
nA to a, which fulfi lls v ⋅ nA > 0. In this case, point P would be on mA.

Unless we already know that we are choosing the right normal direction to 
curve w(σ), we should verify it before iterating in parameter σ.

8.5 The RXI Optic

The optical surfaces of an RXI look similar to those of an XX, but it can be 
implemented as a single piece, instead of two pieces with an air gap between 
them. The RXI is a compact concentrator (or collimator) made of a material 
with a refractive index n. If used as a concentrator, light refracts at the top 
surface s1, then is refl ected at the (mirrored) bottom surface s2, and again 
undergoes TIR at the top surface s1 and from there redirected to the receiver 
AB, which is immersed in the medium of refractive index n.7,9 Its name comes 
from this path of the light, along which there are defl ections by refraction 
(R), refl ection (X), and TIR (I). The center of the top surface s1 is mirror-coated 
so that TIR fails in that surface portion. Figure 8.43 shows two light rays r1 
and r2 and their paths inside an RXI. 

The ray r1 makes an angle −θ to the vertical before entering the CPC. It is 
redirected to left-hand side edge A of the receiver. The ray r2 makes an angle 
+θ to the vertical before entering the CPC. It is redirected to right-hand side 
edge B of the receiver. Figure 8.44 shows the two input fl at wave fronts w1 
and w2. The rays perpendicular to these wave fronts are concentrated on to 
edges A and B of the receiver, respectively.

The design process starts with the defi nition of the receiver size. For exam-
ple, it is centered at the origin and has a length of 2 units so that A = (−1, 0) 

r2

r2

s1

s2

r1

r1
A B

2�

FIGURE 8.43
Paths of two edge rays inside an RXI.
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and B = (1, 0). We choose also the refractive index n of the optic and its 
half-acceptance angle θ. With these values, we can calculate the width of the 
RXI, which is given by conservation of étendue as

 wRXI = n[A, B]/sinθ (8.28)

Now choose a top curve s1. With it we will calculate the bottom curve s2 and 
then recalculate the top curve s1. With the new top curve s1, calculate bottom 
curve s2 and recalculate again the top curve s1. This process goes on until the 
variation in the curves from one iteration to the other is small enough. Fig-
ure 8.45 shows the initial top curve used to generate the RXI in Figure 8.44.

In this particular case, we may fi rst choose the position of point R. It must 
be of the form R = (−wRXI/2, −y), where y is chosen. Then choose point I 
on the horizontal axis x1. There is no special rule for choosing portion RI of 
the upper curve, so in this example it is a straight line. We can now refl ect 
off point I a horizontal ray, rH, coming from the receiver AB and choose a 
point F on the refl ected ray. We now choose portion IP of the top curve as an 
ellipse with foci F and (0, 0), which is the midpoint of the receiver AB. Portion 
PQ is defi ned as a third-degree polynomial through points P and Q (on the 

w1

w2

A B

2�

FIGURE 8.44
The rays perpendicular to wave front w1 are concentrated to point A and those perpendicular 
to wave front w2 are concentrated on to point B.
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−wRXI /2

FIGURE 8.45
A possible initial top curve for calculating an RXI.
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308 Introduction to Nonimaging Optics

 vertical axis x2) that has normal nP at point P (the normal to the ellipse at that 
point) and normal nQ (vertical) at point Q.

Having a possible top curve, calculate the bottom curve. The fi st step is to 
calculate its left-hand side end point X. Refract at point R a ray r1 making an 
angle −θ to the vertical, as shown in Figure 8.46. Intersect the refracted ray 
r1 with the refl ection of ray rH at point I and obtain point X, the fi rst point of 
the bottom surface.

Now we can calculate the fi rst iteration of the bottom surface s2. First defi ne 
the position of wave front w1. We may do that, for example, by choosing a 
point W1 along ray r1. Since we know the path of ray r1, which is W1–R–X–I–A, 
we can calculate the optical path length S1 between w1 and edge A of the 
receiver, as shown in Figure 8.47.

Take a point P3 on the top surface s1 and determine the position W3 on wave 
front w1 of the ray through P3, in this case perpendicular to w1 through P3. 
Now determine the optical path length between P3 and A as  S P3

 = S1 − [W3, 
P3]. Then determine point Q3 on the bottom surface s2, such that ray r3 from W3 
refracts at P3, refl ects at Q3, then refl ects at some point S3 on the top surface s1. 
From there it is redirected to the edge A of the receiver. Repeating this process 
for a set of points on s1, we can determine a set of points and normals for s2.

x1

r1

rH

x2

AR
I

X

B

�

FIGURE 8.46
Calculation of the fi rst point X of the bottom surface.

FIGURE 8.47
Calculation of the bottom curve of the RXI.
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With this new bottom surface s2, we can recalculate the top surface s1. First 
refract at point R a set of rays contained between the edge rays r1 and r2. We 
concentrate these rays to edge B of the receiver. We now consider that ray r1, 
instead of ending at point A, continues to point B. Since we know the path 
of ray r1, which is now R−X−I−B, we can determine the optical path length 
between R and B, as shown in Figure 8.48.

The rays refracted at point R are refl ected off the bottom surface s2 and, 
using the constant optical path length, we can determine a new portion IJ of 
the top surface that concentrates these rays to the edge B of the receiver.

Defi ne the position of the wave front w2, as shown in Figure 8.49. Since 
we know the path of ray r2 (from the step in Figure 8.48), which is now 
W2−R−X2−J−B, we can determine the optical path length S2 between the 
wave front w2 and the edge B of the receiver.

Determine the path W4–P4–Q4 of a ray r4 from wave front w2 to a point Q4 
on the bottom surface, as shown in Figure 8.49.

The optical path length between Q4 and B is now  S Q 4  = S2 − [W4, P4] − 
n[P4, Q4]. Since we know the direction v4 or ray r4 after refl ection at point Q4, 
we can determine the position of point S4 on the new top surface s1. Repeat-
ing this process for a set of points on s2, we can determine a new set of points 
and normals for s1.

With this new top surface s1, we repeat the process: calculate a new bottom 
surface s2 and recalculate the top surface s1. The process ends when the latest 
s1 is close enough to the previous s1.

Just as in the case of the XX, in the case of the RXI also the central por-
tion of the top surface cannot refl ect light by TIR to the receiver. Figure 8.50 
shows this central portion, which has to be mirrored. In Figure 8.50, αC is the 
critical angle inside the material of the RXI. This central mirror on the top 
surface completes the design of the RXI.

s2

s1

r1

r1

r1

r2

r2

AR

X

B
I

r2

J

FIGURE 8.48
Refracting at point R of the top surface a set of rays between the directions of r1 and r2 enables 
the recalculation of the part of the top surface between points I and J.
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310 Introduction to Nonimaging Optics

There are several ways to calculate the points of the bottom and top sur-
faces. We now consider some possible ways to do it. In the fi rst iteration we 
defi ne the top curve, but in the  following iterations it is defi ned by a set of 
points and normals. These points and normals may, for example, be interpo-
lated by a piecewise curve. Between each pair of points we may interpolate a 
third-degree polynomial (similar to what we did in Figure 8.5), which com-
pletely defi nes the top curve s1.

Now, for a given point P3 on the top surface s1, we know the direction of 
the refracted ray r3 and the optical path length between P3 and A. We have, 
therefore, the situation as in Figure 8.51, which shows a ray r3 with a geom-
etry similar to that of ray r3 in Figure 8.47 after refraction at point P3.

A light ray emitted from a point P3 in a direction d (the direction of the 
refracted ray r3 at point P3) refl ects off an unknown point Q3 toward a point 

s2

r2

r2

r2

r4

v4

w2W2
W4

P4

A

S4

R

X2

Q4

B

J

I

New s1 Old s1

FIGURE 8.49
Refracting the rays perpendicular to wave front w2 on the old top surface s1 and refl ecting them 
on the bottom surface s2, we can recalculate the top surface s1 to the right of point J.

Mirror

Receiver

Mirror

2�C

FIGURE 8.50
The central portion of the top surface of the RXI needs to be mirrored because light refl ected 
by the bottom mirror should not undergo TIR there.
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S3 on a given curve s(σ) (in our case s1), and from there it is refl ected to a 
point A. We know the optical path length  S P3

  between P3 and A. Curve s(σ) is 
described as a function of the parameter σ. The ray paths are inside a medium 
of refractive index n.

To calculate the position of point Q3 , fi rst defi ne a straight line w through 
point P3 and perpendicular to d. The tangent to w is given by unit vector t 
and its normal by n = −d.

We now choose a point S(σ) on the curve s(σ). Refl ect off S(σ) the light ray 
coming from A. After refl ection, this ray has the direction of unit vector v(σ). 
The optical path length between S(σ) and w is

 SSw(σ) =  S P3
  − n[A, S(σ)] (8.29)

The situation now simplifi es to a ray r emitted from a point S(σ) with direc-
tion v(σ) that we want to refl ect off a point Q(σ) in a direction perpendicular 
to w, knowing the optical path length SSw between S(σ) and w. The analytical 
solution is (see Chapter 17) 

 Q(σ) = coptsl(S(σ), n, v(σ), P3, n, n, SSw(σ)) = S +   
SSw − n(P3 − S) ⋅ n

  _________________  n − n v ⋅ n   v (8.30)

Point R(σ) on w is on the perpendicular to w through Q(σ). Varying the 
parameter σ on the curve s(σ) determines its value, so that (R(σ) − P3) ⋅ t = 0, 
namely, that the distance between R(σ) and P3 is zero [R(σ), P3] = 0. When this 
happens, Q(σ) converges to the point Q3 to be determined.
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S3

Q3
Q(�)
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n
t

A

R(�)
S(�)
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v(�)

w
r

r

r

n

FIGURE 8.51
A possible method to calculate the points of the bottom surface of the RXI.
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312 Introduction to Nonimaging Optics

For the calculation of the new top surface, and referring back to Fig ure 8.49, 
we may choose a point P4 on the existing top surface, calculate the cor-
responding point W4 on wave front w2, refract the ray at P4, calculate the 
intersection point Q4 with the interpolated bottom surface s2, and refl ect it 
there. Then the calculation of point S4 uses the function S4 = coptpt(Q4, v4, 
B, n, SQ4) as defi ned in Chapter 17. This same function can also be used to 
calculate the points of the top surface between I and J.

Another possible way to calculate points S4 on the top surface is to use the 
points and normal we have for the bottom surface s2. In this case we do not 
need to interpolate the whole bottom surface, but only a small portion between 
points X and X2, which is used to calculate portion IJ of the top surface s2. In 
this alternative way, we take a point Q4 that we previously calculated for the 
bottom surface s2. Now we choose a point P(σ) on the top curve, parameterized 
as s(σ). The normal to s(σ) at point  P(σ) is n(σ), as shown in Figure 8.52.

We refract at P(σ) the ray coming from Q4. We vary the parameter σ until the 
refracted ray at P(σ) makes an angle α(σ) = π/2 + θ to the horizontal, fi xing 
the position of point P4. Point W4 is on the perpendicular to w2 through P4, as 
shown in Figure 8.49. The calculation of S4 in this case is as described earlier.

w2

Q4

s(�)

�(�)

P(�)

n(�)

FIGURE 8.52
A possible way to calculate the path of a light ray from wave front w2 to a given point Q4 on 
the bottom surface.
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8.6 Other Types of Simultaneous Multiple Surface Optics

The RXI can also be used as a collimator. Where we had the receiver now we 
have an emitter, and the direction of the light inside the optic is reversed. In 
this case, the design may also be modifi ed so that the emitter does not have 
to be immersed in a medium of refractive index n, but may be in air.10

The Miñano–Benitez design method can also be used to design a large 
variety of other types of optics.11 Other examples of application include,  a 
focal lenses,12 TIR-R lenses,13 that is, TIR lenses with a secondary covering the 
receiver, or primary–secondary concentrators.14,15 In the latter case, one of the 
advantages of the SMS optics is that the secondary mirror does not have to 
touch the receiver, as in the case of the fl ow-line optics in Chapter 5.

Another possibility is to combine different geometries to form new optics, 
such as, for example, a combination of an RX and an RXI in one single 
optic.16 It is also possible to combine the SMS optics with fl ow-line mirrors 
in a  single device.16 

The Miñano–Benitez method can also be used in the design of SMS optics 
with imaging applications.17,18

The design method can also be extended to 3-D geometry.19–22

8.7 Examples

The following examples use expressions for the curves and functions that 
are derived in Chapter 17.

Example 1

Calculate an RR SMS lens that concentrates on the edge points of the 
receiver, R1 = (−0.5, −2) and R2 = (0.5, −2), the light coming from the 
edges of the emitter, E1 = (−1, 2) and E2 = (1, 2). The refractive index of 
the lens is n = 1.5.

First decide how much étendue to couple between the emitter and 
receiver, say U = 1. If the dimensions were, for example, in millime-
ters, than the étendue would be U = 1 mm. The edges of the entrance 
 aperture of the lens must be on a hyperbola that has foci E1 and E2 and 
each point P on it fulfi lls [P, E1] − [P, E2] = U/2. Also, the exit aperture of 
the lens must be on a hyperbola that has foci R1 and R2 and each point P 
on it fulfi lls [P, R1]−[P, R2] = U/2. These hyperbolas are given by

 hE (φ) = hyp(E1, E2, U, n) 

 = −  15 ______________  4(1 − 4 cos(φ))    (cos(φ), sin(φ)) + (−1, 2) 
(8.31)

 hR(φ) = hyp(R1, R2, U, n) 

 = −  0.75 ___________ 1 − 2 cos(φ)   (cos(φ), sin(φ)) + (−0.5, −2)
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314 Introduction to Nonimaging Optics

for the emitter and receiver, respectively. Now choose two points, one on 
each of these hyperbolas, as starting points for the surfaces of the lens. 
We choose

 N = hE(303.3°) = (0.721303, −0.620433)

 X = hR(42.7°) = (0.673162, −0.917437) 
(8.32)

Design of the lens starts by defi ning the path of ray r1 as E1–N–X–R1. This 
ray path enables us to determine the normals to the lens nN and nX at 
points N and X, respectively, as shown in Figure 8.53.

We start with the normal to the lens at point N. The ray r1 emitted 
by the edge point E1 of the source refracts at point N toward point X 
as shown in Figure 8.53. This enables us to calculate the normal to the 
surface nN at point N as

 nN = rfrnrm(s1, t1, 1, n) = (0.774292, 0.632829) (8.33)

where s1 = nrm(N − E1) and t1 = nrm(X − N) = (−0.16, −0.987117). We 
may now refract the ray r2 coming from E2 toward N at this last point 
 obtaining the direction t2 as

 t2 = rfr(s2, nN, 1, n) = (−0.387389, −0.921916) (8.34)

where s2 = nrm(N − E2). The path E1−N−X−R1 of the ray r1 is known and 
the optical path length between points N and R1 may be calculated as

 SNR1 = n[N, X] + [X, R1] = 2.04764 (8.35)

This enables us to calculate the Cartesian oval between points X and 
X1 that focuses to point R1 the rays coming from N. We now decide the 
number of points NP that we want to calculate for the portion X–X1. 
For example, NP = 5. Intermediate directions between t1 and t2 may be 
 calculated, for example, as

 t = nrm (xt2 + (1 − x)t1) (8.36)

with 0 ≤ x ≤ 1 varying in steps of ∆x = 1/NP. The points on the Cartesian 
oval X–X1 are obtained as

 ccoptpt(N, n, t, R1, 1, SNR1) (8.37)

for each value of t. The list of points for this portion of the curve is CO1 = 
((0.673162, −0.917437, 0.524912, −0.851157), (0.656641, −0.926966, 0.473593, 
−0.880744), (0.638962, −0.935759, 0.416074, −0.909331), (0.620269, −0.943542, 
0.351424, −0.936216), (0.60077, −0.95003, 0.278588, −0.960411), (0.58074, 
−0.954948, 0.196453, −0.980513)), where the fi rst two coordinates of each 
point represent the position and the second two the normal.
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The same method can now be used to calculate the fi rst portion of the 
upper surface of the lens. We fi rst calculate the normal at point X as

 nX = rfrnrm(nrm(X − R1), nrm(N − X), 1, n)

 = (0.524912, −0.851157) (8.38)

which yields the same resulting normal vector calculated for the fi rst 
point (point X) of the Cartesian oval CO1 for portion X–X1 of the lens. We 
can also calculate the optical path length between X and E1 as

  S XE1
  = n[X, N] + [N, E1] = 3.58653  (8.39)

FIGURE 8.53
The design of the RR SMS lens starts with a Cartesian oval X–X1 on the lower surface of the lens.
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316 Introduction to Nonimaging Optics

We calculate also

 t1 = nrm(N − X)

 t2 = rfr(nrm(X − R2), nX, 1, n) 

 = (−0.102201, 0.994764) 

(8.40)

Again t = nrm(xt2 + (1 − x)t1) with 0 ≤ x ≤ 1 varying in steps of ∆x = 
1/NP. The points on the Cartesian oval N–N1 are obtained as

 ccoptpt(X, n, t, E1, 1, S XE1  )  (8.41)

for each value of t. The list of points for this portion of the curve is 
 CO2  =  ((0.721303, −0.620433,  0.774292,  0.632829),  (0.707238, −0.604229,
0.735292,  0.677751),  (0.69149,  −0.5882,  0.690403,  0.723425),  (0.674094, 
−0.572702,  0.638771,  0.769397),  (0.655161, −0.558134,  0.579425,  0.815025), 
(0.63489, −0.544914,  0.511301,  0.859401)), where again the fi rst two coor-
dinates of each point represent the  position and the second two the 
normal. The two portions of the lens calculated so far are shown in 
 Figure 8.54.

We are now ready to start calculating the SMS chains that extend the 
surfaces of the lens to the optical axis. Start by calculating the optical path 
length between points R2 and E1 as  S RE1 = [R2, X] + n[X, N1] + [N1, E1] = 
4.68286 and also the optical path length between points E2 and R1, which 
is  S ER2  =  S RE1  by symmetry.

Let us then take, for example, the third point of the fi rst portion of the 
lower surface of the lens CO1 and calculate the corresponding point 
on the upper surface of the lens. This point has coordinates  X13 = 
(0.638962,−0.935759) and normal  n X13  = (0.416074,  −0.909331). The optical 
path length between X13 and E1 is given by S13 =  S RE1 −[R2, X13] = 3.60958. 
The direction of the refracted ray at X13 coming from R2 is given by 
t13 = rfr(nrm(X13 − R2),  n X13 , 1, n) = (−0.0677209,  0.997704). We can now cal-
culate the corresponding point on the upper surface of the lens as N13 = 
ccoptpt(X13, n, t13, E1, 1, S13) = (0.611426, −0.530086). The normal at N13 is 
given by  n N13  = rfrnrm(t13, nrm(E1 − N13), n, 1) = (0.554893, 0.831922). This 
same  process must be repeated for all the points of X–X1 resulting in a por-
tion of the lens to the left of N1. Accordingly, the same process is repeated 
for all the points of N−N1 resulting in a new portion of the  lens to the 
left of X1. This same process is now repeated for the new  points of the 
lens just calculated, resulting in new portions of the lens while  moving 
toward the axis of symmetry of the emitter and the receiver. After fi ve 
of these iterations, we reach the axis in this example. The design  process 
grows the surfaces to the left of the vertical axis. We take only the points 
to the right of it. A complete list of points for both  surfaces is then 
((0.721303,−0.620433), (0.707238,−0.604229), (0.69149,−0.5882),  (0.674094,
−0.572702), (0.655161,−0.558134), (0.63489,−0.544914), (0.623548,−0.537957), 
(0.611426,−0.530086), (0.598783,−0.521426), (0.585999,−0.51221), (0.573593,
−0.5028), (0.551205,−0.485926), (0.526741,−0.468696), (0.500375,−0.451458), 
(0.472458,−0.434645), (0.44354,−0.418756), (0.415674,−0.404434), (0.385449, 
−0.389485), (0.353339,−0.374315), (0.320157,−0.359443), (0.287099,
−0.345448), (0.242335,−0.328331), (0.193708,−0.312698), (0.142053,−0.299603), 
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(0.0887252,−0.290082), (0.0355541,−0.284913)) for the upper surface and 
((0.673162,−0.917437), (0.656641,−0.926966), (0.638962,−0.935759), (0.620269,
−0.943542), (0.60077,−0.95003), (0.58074,−0.954948), (0.568433,−0.957662), 
(0.555116,−0.961122), (0.541026,−0.965332), (0.526515,−0.970238), (0.512055,
−0.975706), (0.490197,−0.984131), (0.466905,−0.992482), (0.44246,−1.00056), 
(0.417302,−1.00813), (0.39205,−1.01494), (0.364609,−1.02189), (0.334999,
−1.02938), (0.303642,−1.03725), (0.271216,−1.04528), (0.238675,−1.05321),
(0.201091,−1.06175), (0.161133,−1.06961), (0.1196,−1.07627), (0.0776509,
−1.08122), (0.036766,−1.08407)) for the lower surface. The left half of the lens 

FIGURE 8.54
The fi rst two portions of the lens are Cartesian oval curves X–X1 and N–N1.
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318 Introduction to Nonimaging Optics

is obtained by symmetry relative to the central axis. The complete lens is 
shown in Figure 8.55.

We may now defi ne a lens by interpolating the points using, for 
example, a spline. A ray trace is as shown in Figure 8.56.

A detailed analysis of the focus at point R1 shows that it is not a 
point, but has some fi nite size. There are two waists to be considered. 
A smaller waist, w1, is due to the fact that we used a less number of 
points (only fi ve points per SMS section: NP = 5). The more points we 
calculate, the smaller w1 will be. The larger waist, w2, is produced by 
the rays that cross the center of the lens for which this SMS calcula-
tion method cannot guarantee convergence to a point. Both waists are, 
however, very small when compared to the size of the lens, as can be 
seen in Figure 8.56.

Example 2

Design an XR SMS optic that concentrates to the edge points of the 
receiver R1 = (−0.5, 0) and R2 = (0.5, 0) the light reaching the refl ective 
surface with an angular spread of θ = 2°, half-angle. The refractive index 
of the refractive element is n = 1.5.

E2E1

R2R1

FIGURE 8.55
The complete RR SMS lens.
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The XR SMS optic can be designed starting at the edges of the mirror 
and the refractive surface with Cartesian ovals and then calculating the 
SMS chains to build the surfaces toward the center, just as with the RR 
SMS lens in Example 1. The other way to design the optic is to start, for 
example, at the center with a prescribed curve, and then calculate the 
SMS chains toward the edges. This example uses the second method.

Start by specifying a point, for example, P0 = (0,−4) and its normal n0 = 
(0,−1) on the refractive surface as shown in Figure 8.57.

We can now refract at point P0 a ray r1 coming from the edge R2 of the 
source. After refraction it is headed in the direction

 t = rfr(nrm(P0 − R2), n0, n, 1) = (−0.186052, −0.98254)
 
 (8.42)

We now choose the position of point P1 in the direction of the refracted 
ray as

  P1 = P0 + 10t = (−1.86052, −13.8254) (8.43)

Its normal can also be calculated because we know that, after  refl ection 
on the mirror, this ray must be parallel to s1 with s1 = (cos(π/2 + θ), 
sin(π/2 + θ)). The normal at P1 is then given by

 n1 = rfxnrm(t, s1) = (−0.0760445, −0.997104) (8.44)

E2E1

R1

R2R1

w1

w2

(a) (b)

FIGURE 8.56
Ray tracing of an RR SMS lens.
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320 Introduction to Nonimaging Optics

By symmetry, we can also defi ne another point Q1 on the other side of 
the mirror, which will also have a normal symmetric to that of P1. We 
now choose the shape of the mirror between points P1 and Q1 as a circle 
C whose center C is at the intersection of the axis of symmetry x2 and the 
straight line defi ned by point P1 and its normal n1:

 C = isl((0, 0), (0, 1), P1, n1) = (0, 10.57) (8.45)

We must also defi ne the fl at wave fronts w1 and w2 perpendicular to 
the two bundles of incoming parallel rays. The plane wave front w1 is 
defi ned by a straight line passing through point W1 that we choose to be 
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FIGURE 8.57
The design of an XR optic may start by specifying a central portion C and then calculating the 
SMS points based on this curve.

CRC_54295_CH008.indd   320CRC_54295_CH008.indd   320 4/3/2008   9:40:38 AM4/3/2008   9:40:38 AM



Miñano–Benitez Design Method (Simultaneous Multiple Surface) 321

at  position W1 = (W11, W12) = P1 + 15s1 and tangent vector v1 = (cos θ, sin θ). 
The wave front w2 is defi ned by point W2 = (−W11, W12) and tangent  vector 
v2 = (cos(−θ), sin(−θ)).

Now we can calculate the optical path length between w1 and R2 as

 S = [W1, P1] + [P1, P0] + n[P0, R2] = 31.0467 (8.46)

By symmetry this is also the optical path length between w2 and R1.
We now have all the ingredients to start building the SMS chains. 

We can take a set of, for example, NP = 5 points, on C at equiangular 
spacing between Q1 and P1 and the corresponding normals to C. We 
may drop the last point P1 of this list to avoid repeated points in the SMS 
chains. These points are ((1.86052,−13.8254, 0.0760445,−0.997104), (1.117,
−13.8707,  0.0456549,−0.998957), (0.372449,−13.8934,  0.015223,−0.999884), 
(−0.372449,−13.8934,−0.015223,−0.999884), (−1.117,−13.8707,−0.0456549,
−0.998957)), where the fi rst two components are the position and the 
second two the normal.

We now take one of the points on C to exemplify the calculation of 
the SMS chain. For example, take point X = (0.372449,−13.8934) and the 
 corresponding normal, nX = (0.015223,−0.999884). We can now refl ect at 
this point a ray perpendicular to w2. To do this, we need to fi rst determine 
for what point  P w2  of w2, the corresponding light ray passes through X 
(see Figure 8.58). We have

  P w2  = isl(X, s2, W2, v2) = (0.900126, 1.21728) (8.47)

The optical path length between point X and R1 is then SX = S − [X,  P w 2 ] 
= 15.9268. The refl ected ray at point X has direction

 tX = rfx(−s2, nX) = (−0.0653073, 0.997865) (8.48)

We need to now calculate the point on the Cartesian oval that focuses to 
point R1 the ray coming from point X in direction tX:

 X2 = ccoptpt(X, 1, tX, R1, n, SX) = (−0.274686, −4.00547) (8.49)

The normal at this point can now be calculated as

 n X 2  = rfrnrm(tX, nrm(R1 − X2 ), 1, n) = (0.0378641, −0.999283) (8.50)

We can now repeat the process for a ray coming from R2, refracted at X2 
and calculate the corresponding point on the mirror to refl ect it in the 
direction of

   s1 =  ( cos(π/2 + θ), sin(π/2 + θ) )   (8.51)
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The optical path length between X2 and w1 is SX2 = S − n[R2, X2] = 24.9272. 
We now refract at X2 the ray coming from R2 as

  t X2  = rfr(nrm(X2 − R2),  n X2 , n, 1) = (−0.304544, −0.952498) (8.52)

Next calculate the point on the Cartesian oval that makes the rays 
 coming from point X2 to become perpendicular to the straight line w1, 
for a  particular direction tX2:

 X3 = coptsl(X2, 1,  t X2 , W1, 1, s1,  S X2 ) = (−3.36293, −13.6643) (8.53)

Finally, we calculate the normal to the mirror at X3:

  n X3  = frxnrm( t X2 , s1) = (−0.136846, −0.990592) (8.54)

W1 W2

s1

s2

nX3

Pw2

nX2

tX2

nX

v2
R2

R1

X2

w1
w2

XX3

tX

FIGURE 8.58
An SMS chain. A ray coming from  P w 2 refl ects at X toward X2 and there it is refracted to  R1. 
Another ray coming from R2 refracts at X2, and then refl ects off X3 in direction s1.
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This process must now be repeated for all other points of C and then 
for the new points we calculate. A complete list of points is ((−0.372449,
−13.8934), (−1.117,−13.8707),  (−1.86052,−13.8254), (−2.60783,−13.7569), 
(−3.36293,−13.6643), (−4.12466,−13.5471), (−4.89286,−13.4046), (−5.66858,
−13.2358), (−6.45408,−13.0391), (−7.24813,−12.8138), (−8.04916,−12.5595), 
(−8.85805,−12.2751), (−9.6786,−11.9579), (−10.5035,−11.6097), (−11.3162,
−11.2377),(−12.1135,−10.8449), (−12.8973,−10.4318), (−13.6756,−9.99512),
 (−14.424,−9.5502),  (−15.1094,−9.1216), (−15.7396,−8.70992), (−16.3319,
−8.30809), (−16.9082,−7.90342), (−17.4391,−7.51904), (−17.8916,−7.18315),
(−18.2898,−6.88175), (−18.6611,−6.59628), (−19.0324,−6.30671), (−19.3709,
−6.03937), (−19.6433,−5.82238), (−19.8769,−5.63545), (−20.099,−5.45717), 
(−20.3351, −5.26718), (−20.5505,−5.09347), (−20.7113,−4.9639), (−20.8434,
−4.85785), (−20.972,−4.75509), (−21.1199,−4.63747), (−21.2519,−4.53291), 
(−21.3344,−4.46803), (−21.3905,−4.42431), (−21.4416,−4.38492)) for the 
mirror and ((0,−4.), (−0.135644,−4.0014), (−0.274686,−4.00547), (−0.416515,
−4.01198),(−0.560526,−4.02071), (−0.706103,−4.03147), (−0.856721,−4.04432),
(−1.01593,−4.05894), (−1.18322,−4.07455), (−1.35811,−4.09036), (−1.54021,
−4.10571), (−1.733,−4.12013), (−1.93955,−4.13243), (−2.15893,−4.14094), 
(−2.39036,−4.1441), (−2.6335,−4.14049), (−2.88953,−4.1286), (−3.15683,
−4 .10 6 4),  (−3.4 319,−4 .072 21),  (−3.712 28,−4 .0248),  (−3.9971,
−3.96305), (−4.28097,−3.88722), (−4.55523,−3.79897), (−4.81814,
−3.69882), (−5.07093,−3.58644), (−5.31653,−3.46034), (−5.54775,
−3.32438), (−5.75639,−3.18424), (−5.94625,−3.03872),(−6.12191,
−2.8849),  (−6.28754,−2.71858),(−6.43621,−2.54643),  (−6.56186,
−2.37674), (−6.66913,−2.20519),(−6.76167,−2.02585), (−6.84127,−1.83188), 
(−6.90277,−1.63261),  (−6.94319,−1.43863),  (−6.96476,−1.24271), 
(−6.96715,−1.03605), (−6.9467,−0.808906),  (−6.90058,−0.572656),
(−6.82955,−0.339663), (6.72835,−0.098585), (−6.58436,0.165038)) for the 
lens. The profi le of the  optical surfaces may be obtained by the interpola-
tion of these points using, for example, a spline fi t. The optic is shown 
in Figure 8.59.

If we ray trace this optic with sets of parallel rays tilted ±θ to the 
 vertical we will not get perfect focusing onto points R1 and R2. That is 
due to the small number of points (NP = 5) calculated on the initial curve c. 
The higher the NP, the more accurate will be the focusing. 

Receiver

Refractive
surface Mirror

FIGURE 8.59
An XR optic.
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9
The Miñano Design Method 
Using Poisson Brackets

9.1 Introduction

Nonimaging optics are usually designed as 2-D profi les that are then extruded 
to form a trough-like optic or rotated to generate a rotational optic or crossed 
to form a square cross section optic. These optics are usually not ideal in 
3-D geometry. The Miñano design method using Poisson brackets utilizes 
an extra degree of freedom to design ideal 3-D optics: a variable refractive 
index inside the optic. This enables, for example, the design of an ideal 3-D 
concentrator with fl at entrance and exit apertures, acceptance angle θ, and 
maximum concentration.

9.2  Design of Two-Dimensional Concentrators 
for Inhomogeneous Media

Consider the calculation of the refractive index distribution that makes a 
given set of light rays on a plane possible. If we could calculate the optical 
path length along the rays, we could use the eikonal equation

  n 2  =  �∇S� 2  (9.1)

to calculate the refractive index n, except that to calculate S, we need to 
know n. Although we cannot calculate S, we can defi ne a set of curves on the 
plane which are perpendicular to the light rays. These are given by i(x1, x2) = C, 
where C is a constant. For different values of C, different perpendicular lines to 
the rays are obtained. We then have S(x1, x2) = S(i(x1, x2)) or S = S(i) and

 ∇S =   dS ___ di   ∇i (9.2)

∇i is known because the curves i(x1, x2) = C were defi ned. Giving the  function 
dS/di, n can be calculated using the eikonal equation. Replacing Equation 9.2 
in Equation 9.1 we get:

  n 2  =   (   dS ___ di   )  
2
  �∇i� 2  (9.3)
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326 Introduction to Nonimaging Optics

Consider two sets of rays perpendicular to two wave fronts S1 = constant 
and S2 = constant propagating in a given medium of refractive index 
n(x1, x2). For these two wave fronts, we can write

 p1 = ∇S1 (9.4)
 p2 = ∇S2

or
  p 1  +  p 2  = ∇( S 1  +  S 2 ) 

(9.5)
  p 1  −  p 2  = ∇( S 1  −  S 2 )

If the refractive index is the same for both wave fronts, then �p1� = �p2� = n and 
the vector p1 + p2 points in the direction of the bisector of the two sets of rays.

We now have

  � p 1  +  p 2 � 
2  = ( p 1  +  p 2 ) ⋅ ( p 1  +  p 2 ) =  � p 1 � 

2  +  � p 2 � 
2  + 2 p 1  ⋅  p 2  (9.6)

or

 2 n 2  + 2 p 1  ⋅  p 2  =  �∇( S 1  +  S 2 )� 
2  (9.7)

and

  � p 1  −  p 2 � 
2  = ( p 1  −  p 2 ) ⋅ ( p 1  −  p 2 ) =  � p 1 � 

2  +  � p 2 � 
2  − 2 p 1  ⋅  p 2   (9.8)

or

 2 n 2  − 2 p 1  ⋅  p 2  =  �∇( S 1  −  S 2 )� 
2   (9.9)

Summing the two preceding equations gives

 4 n 2  =  �∇( S 1  +  S 2 )� 
2  +  �∇( S 1  −  S 2 )� 

2  (9.10)

or

 n2 =   �∇  (    S 1  +  S 2  _______ 2   )   �  2  +   �∇ (    S 1  −  S 2  _______ 2   ) �  2  (9.11)

We can also write

 ∇( S 1  +  S 2 ) ⋅ ∇( S 1  −  S 2 ) = ( p 1  +  p 2 ) ⋅ ( p 1  −  p 2 ) =  � p 1 � 
2  − � p 2 � 

2  = 0 (9.12)

It can then be concluded that the light rays perpendicular to two given wave 
fronts can coexist in a medium of refractive index n if Equation 9.12 is fulfi lled. 
In this case, the refractive index n(x1, x2) can be calculated using Equation 9.11.

Consider that the two sets of light rays are the edge rays of radiation propa-
gating in the medium. In this case, all that light propagates between the two 
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The Miñano Design Method Using Poisson Brackets 327

given sets of rays. This is the same assumption used in the design of nonim-
aging optics by the fl ow-line method.

Now, having in consideration Equation 9.4, it can be seen that p1 + p2 points 
in the direction of the bisector of the edge rays, and therefore, in the direction of 
the vector fl ux J also, as seen in Figure 9.1.  Consider the following functions:

 G =   
( S 1  −  S 2 ) ________ 2  

 F =   
( S 1  +  S 2 ) ________ 2  

 

(9.13)

In this case, Equations 9.11 and 9.12 can be written as

 n2 = �∇F �2 + �∇G� 2 (9.14)

and

 ∇F ⋅ ∇G = 0 (9.15)

Equation 9.15 tells us that the lines of constant G are tangent to the vector ∇F. 
Also, ∇F points in the direction of p1 + p2 and therefore, in the direction of 
the vector fl ux J. We have seen (see Chapter 3) that the étendue is conserved 
between any two lines of constant G.

If we place mirrors along the fl ow lines, the resulting optical system 
 conserves étendue, and the existing set of light rays is unaltered. This is true 
because such a mirror transforms rays of one wave front into rays of the 

Set of
edge rays

Set of
edge rays

S1=constant

S2=constant

�S1 + �S2

�S1

�S2

FIGURE 9.1
Vector p1 + p2 points in the direction of the bisector of the two sets of rays. (Note that p1 + p2 
points in the direction of ∇(S1 + S2 ) = ∇S1 + ∇S2 and that  �∇S1�  =  �∇S2� .)
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another wave front. Note that the vector fl ux lines bisect the rays of the two 
wave fronts.

Because ∇F ⋅ ∇G = 0, the lines of F = constant and G = constant are 
 perpendicular to each other. We can then defi ne a new coordinate system 
(i1(x1, x2), i2(x1, x2)) on the plane such that the lines i1 = constant coincide with 
the lines G = constant and the lines i2 = constant coincide with the lines 
F = constant. In this case, we can write G = G(i1) and F = F(i2). Note that 
G(x1, x2) = G(i1(x1, x2)) and F(x1, x2) = F(i2(x1, x2)). From G = G(i1), we can see 
that i1 = constant ⇒ G = constant and from F = F(i2), we can see that i2 = 
constant ⇒ F = constant. We also have

 ∇G =   dG ___ 
di1

   ∇i1 and ∇F =   dF ___ 
di2

   ∇i2 (9.16)

so that

 ∇G ⋅ ∇F = 0 ⇔   dG ___ 
di1

     dF ___ 
di2

   ∇i1 ⋅ ∇i2 = 0 ⇔ ∇i1 ⋅ ∇i2 = 0 (9.17)

It can then be concluded that the coordinate system (i1, i2) is orthogonal. 
Equations 9.11 and 9.12 can then, in this coordinate system, be reduced to

 n2 = �∇G(i1)�2 + �∇F(i2)�2 (9.18)

or

 n2 =  (   dG ___ 
di1

   ) 
2

  �∇i1� 2 +  (   dF ___ 
di2

   ) 
2

  �∇i2� 2 (9.19)

since ∇F ⋅ ∇G = 0 is already implicitly contained in the fact that we have 
∇i1 ⋅ ∇i2 = 0, that is, the coordinate system is orthogonal. Making α(i1) = dG/di1 
and β(i2) = dF/di2, and making a1 =  �∇i1�  and a2 =  �∇i2�  gives

 n2 = α(i1)2  a 1  
2  + β(i2)2  a 2  

2  (9.20)

An example of an ideal 2-D concentrator will be given in Section 9.7, which is 
based on this equation.

Note that when the two sets of edge rays are the same, we have S1 = S2 = S 
and therefore, G = 0. Accordingly, F = (S1 + S2)/2 = S. Therefore, Equation 9.19 
simplifi es to Equation 9.3 for the case of a single wave front.

Note that given the functions F and G, expressions 9.13 can be inverted to 
give S1 and S2.

 S1 = F + G 
(9.21)

 S2 = F − G

We now defi ne the i1-lines as those for which i2 = constant (in these lines 
only i1 varies). Accordingly, we defi ne the i2-lines as those for which i1 = 
constant (in these lines only i2 varies). The lines G = constant (i2-lines and 
i1 = constant) are the vector fl ux lines and bisect the edge rays. The lines 
F = constant (i1-lines and i2 = constant) are perpendicular to the vector fl ux 
lines.
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9.3 Edge Rays as a Tubular Surface in Phase Space

Three-dimensional optical systems are described by the canonical Hamilto-
nian equations in which H is the Hamiltonian (see Chapter 10).

   
dx1 ___ 
dx3

   =   ∂H ___ ∂p1
        

dp1 ___ 
dx3

    = −  ∂H ___ ∂x1
   

   
dx2 ___ 
dx3

   =   ∂H ___ ∂p2
        

dp2 ___ 
dx3

    = −  ∂H ___ ∂x2
   (9.22)

 H = −  √ 
___________

 n2 −  p 1  
2  −  p 2  

2    

These equations can also be written in another form for the 3-D systems in 
which P is a new Hamiltonian for the system.

   
dx1 ___ 
dσ     =    ∂P ___ ∂p1

        
dp1 ___ 
dσ     =  −   ∂P ___ ∂x1

   

   
dx2 ___ 
dσ     =    ∂P ___ ∂p2

         
dp2 ___ 
dσ    = −   ∂P ___ ∂x2

   
(9.23)

   
dx3 ___ 
dσ     =     ∂P ___ ∂p3

        
dp2 ___ 
dσ    = −   ∂P ___ ∂x2

  

P =  p 1  
2  +  p 2  

2  +  p 3  
2  − n2 = 0

Two-dimensional optical systems have one less dimension (along x3) and 
are described by the canonical Hamiltonian equations in which H is the 
Hamiltonian.

   
dx1 ___ 
dx2

   =   ∂H ___ ∂p1
      

dp1 ___ 
dx2

   = −  ∂H ___ ∂x1
   

(9.24)
H = −  √ 

_______
  n 2  −  p 1  

2    

These equations can also be written in another form for the 2-D systems in 
which P is a new Hamiltonian for the system.

   
dx1 ___ 
dσ    =    ∂P ___ ∂p1

        
dp1 ___ 
dσ    = −   ∂P ___ ∂x1

   

   
dx2 ___ 
dσ    =    ∂P ___ ∂p2

        
dp2 ___ 
dσ    = −   ∂P ___ ∂x2

   (9.25)

P =  p 1  
2  +  p 2  

2  − n2 = 0

To understand the essential difference between imaging and nonimaging 
optics, it is instructive to analyze 2-D systems, from which the conclusions can 
then be extended to 3-D systems. For this presentation, the formalism defi ned 
by Equation 9.24 is more appropriate than that defi ned by Equation 9.25.
The ray trajectories are then defi ned by the variables (x1, x2, p1).
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330 Introduction to Nonimaging Optics

Suppose that we have an optical system with entrance aperture a1 and exit 
aperture a2, as presented in Figure 9.2. Further, suppose that the entrance aper-
ture receives radiation with variable angular aperture from point to point.

In an imaging device, the objective is to transfer all the rays of light com-
ing from a point with horizontal (x1) coordinate X (object) independent of the 
angle of incidence to a point with horizontal (x1) coordinate x (image). In an 
x1p1 plot, this objective is translated into transforming the vertical lines L1 
at the entrance aperture into vertical lines L2 at the exit aperture.1 Note that 
in an x1p1 plot, a vertical line x1 = x represents all the possible directions of 
incidence of light rays at x. Mathematically, the relation between X and x can 
be written for an imaging system as follows:

 x = M X (9.26)

where M is the magnifi cation of the optical system as it tells us how many 
times the image is larger than the object. As can be seen, the angle of light 
(momentum p) at x does not appear in this equation. This is because the inci-
dence direction is not important. Only the size relations between image and 
object are important.

ra

ra

rb

rb

a1

p1

L1

L2

p1a

p1
∗

a

p1
∗

b

p1

p1b

R1

R2
a2

x1 x1

x1

x2

x

X X

x

�b�a

�b
∗�a

∗

�R1

�R2

(a) (b)

FIGURE 9.2
In an imaging optical system, the light coming from a point with horizontal (x1) coordinate 
X at its entrance aperture a1 must be concentrated onto a point with horizontal coordinate x 
at the exit aperture a2. An imaging optical system transforms vertical lines in phase space at 
the entrance aperture of the device into vertical lines in phase space at the exit. A nonimaging 
system transforms line ∂R1 at the entrance aperture into line ∂R2 at the exit, that is, transforms 
the edge rays at the entrance into edge rays at the exit.
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In the case of nonimaging optics, the approach is completely different. If 
the entrance aperture a1 is illuminated by radiation with a given angular 
distribution, the optic must transfer this radiation to the exit a2 and cause it 
to be emitted therefrom with a different angular distribution.2

At the entrance aperture of the device, line ∂R1 in the x1p1 space represents 
the set of its edge rays, because the line corresponds to the extreme values 
of p1 for each value of x1. For example, for a point with horizontal coordinate 
X at the entrance aperture, the edge rays are represented by phase space 
points (X, p1a) and (X, p1b), which are on the line ∂R1. At the exit aperture of 
the device, the edge rays defi ne a line ∂R2 in the phase space x1p1. What a 
nonimaging device does is it transforms the line ∂R1 at the entrance aperture 
of the device into line ∂R2 at the exit aperture, that is, it transforms the edge 
rays at the entrance aperture into edge rays at the exit aperture.3

For the following analysis, it is convenient to represent the differences 
between imaging and nonimaging optics in terms of representation in phase 
space, that is, in the 3-D space (x1, x2, p1). Imaging and nonimaging optics can 
be represented in phase space in the form presented in Figure 9.3.1

In the imaging approach, to each point with horizontal (x1) coordinate X 
of the object, a corresponding vertical line L1 is in the plane x1p1, which rep-
resents the various angles that light can have when exiting X. An imaging 
optical instrument transforms this line L1 into a new line L2 on the image, 
 corresponding to several angles the light can have when arriving at x from X.

In the case of nonimaging optics, the optical instrument transforms a 
given region R1 of the phase space x1p1 at its entrance aperture into another 
region R2 of the phase space at its exit aperture. To do so, we need to rely 

(a) (b)

Imaging 
optics device

p1

a1

a2

L1

L2

x2

x1
x

X

Nonimaging 
optics devicep1

R1

R2

x1

x2

�R1

�R2

FIGURE 9.3
(a) A nonimaging optics device transforms the edge rays at the entrance aperture correspond-
ing to line ∂R1 into edge rays at the exit aperture corresponding to line ∂R2 in phase space. 
(The edge ray principle tells us that, if ∂R1 is transformed into ∂R2, then all the rays going 
through R1 at the entrance aperture of the device must go through R2 at its exit aperture.) 
(b) An imaging optical device transforms vertical lines L1 in phase space at the entrance aper-
ture of the device into vertical lines L2 at its exit aperture.

CRC_54295_CH009.indd   331CRC_54295_CH009.indd   331 4/3/2008   9:41:40 AM4/3/2008   9:41:40 AM



332 Introduction to Nonimaging Optics

only on the edge ray principle. It states that to transform R1 into R2, it is 
enough to transform the boundary ∂R1 of R1 into the boundary ∂R2 of R2, 
that is, to transform the edge rays of R1 into the edge rays of R2. If the light 
rays from ∂R1 are transformed into ∂R2, then all the rays coming from R1 will 
go through R2.4

Transforming one boundary into the other can be made by joining them 
with a surface of the form

 ω(x1, x2, p1) = 0 (9.27)

as presented in Figure 9.4.1,3,4 For example, a surface of the form  x 1  
2  +  p 1  

2  = R2 
would be a tube of radius R along axis x2.

Transformation of the edge rays at the entrance aperture into edge rays at 
the exit aperture guarantees that all rays of R1 are transported to R2. In fact, 
for a ray of R1 not to pass through R2, it would have to “escape” through the 
surface ω = 0. Nonetheless, before it “escapes,” it becomes a ray of ω = 0. But 
the rays of ω = 0 are transferred into the boundary of R2 and therefore, ω = 
0 does not allow the leakage of light rays from its interior.5

This cannot, however, be any surface. The area of region R1 at the entrance 
aperture of the optical device equals the étendue there.3,4 The same happens 
with the area of R2 at the exit. By cutting, between the entrance and the exit, 
the surface ω(x1, x2, p1) = 0 by planes parallel to the plane x1p1, we obtain the 
regions R3 whose area correspond to the étendue along the device. To guar-
antee the conservation of étendue, it is necessary that areas of R1, R3, and R2 
are equal to one another.

p1

�R1

�R2

R1

R3
R2

x2

x1

�(x1, x2, p1)=0

FIGURE 9.4
To guarantee that ∂R1 is transformed into ∂R2, the two lines can be connected by a surface of 
the form ω(x1, x2, p1) = 0. The trajectories of light on this surface in phase space correspond to 
trajectories of the edge rays inside the device. To guarantee that the étendue is conserved, it is 
necessary to guarantee that the area of any cut parallel to the plane x1p1 has an area R3, which 
is constant and equal to R1 and R2.
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The surface ω(x1, x2, p1) = 0 is made of the trajectories of the edge rays in 
phase space. Note that in the 2-D case analyzed here, we have

 p1 = n cos θ1 = n   
dx1 __________ 

  √ 
_________

  dx 1  
2  +  dx 2  

2   
   = n    x′   1     ________ 

  √ 
_______

 1 +  x′  1  2   
   (9.28)

with  x′  1  
   given by  x′  1  

   = dx1/dx2 and θ1 is the angle the optical momentum 
makes to axis x1 and (dx1, dx2) is an infi nitesimal displacement along the path 
of the light ray. Expression ω(x1, x2, p1) = 0 can then be written as

 ω ( x1, x2,   
dx1 ___ 
dx2

   )  = 0 (9.29)

This differential equation enables us to fi nd the solutions for the trajectories 
x1(x2). These can be written in the form6

 Ψ(x1, x2, c) = 0 (9.30)

where c is the integration constant. For each value of c, a possible trajectory is 
obtained. The set of all of them forms the surface ω(x1, x2, p1) = 0. Equation 9.30 
represents a one-parameter manifold of rays, where c is the parameter of the 
family. Each value of c determines a trajectory on the x1x2 plane of one ray.

An example of a surface of the form ω(x1, x2, p1) = 0 can be made with sinu-
soidal trajectories for the rays in the plane x1x2. This kind of trajectory occurs 
within optical fi bers with a parabolic profi le of refractive index.1,3,6 These 
trajectories on the plane correspond to trajectories shaped as helices in phase 

x1

(a) (b)

Trajectory of the ray 
on the plane x1x2

Trajectory of
the ray in
phase space

x2

x1

p1

x2

x1

p1

x2

x1

p1

�=0

Optical 
fiber

Trajectories of the
edge rays inside
the optical fiber

x2

FIGURE 9.5
The sinusoidal trajectories of light inside an optical fi ber (a) correspond to helicoidal trajectories 
in phase space (b). The set of all the possible sinusoidal trajectories with the same  amplitude 
forms a tube in phase space.
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334 Introduction to Nonimaging Optics

space, as shown in Figure 9.5. Two trajectories on the plane describe two 
 different lines in phase space. The set of all the possible sinusoidal trajecto-
ries of light in the 2-D optical fi ber forms a cylindrical tube in phase space 
corresponding to the surface ω(x1, x2, p1) = 0, as presented in Figure 9.5.

In this case, we must have ω(x1, x2, p1) =  x 1  
2  +  p 1  

2  − R2 = 0, where R is 
the radius of the cylinder, as well as the amplitude of the sinusoids drawn 

by the rays of light in their path in the 
plane x1x2.

Consider the case in which the  optical 
system contains mirrors as in Figure 
9.6. Here light is refl ected  bet ween two 
fl at parallel mirrors. The correspond-
ing trajectories in phase space for two 
rays are presented in  Figure 9.7. The 
rays of light in phase space now move 
onto either a top surface or a  bottom 
surface, being “refl ected” from one to 
the other by vertical walls.

The surface ω(x1, x2, p1) = 0 is now 
made up of top and bottom surfaces 
connected by two vertical lateral walls 
representing the mirrors.6 Note that a 
surface ω = 0, as presented in Figure 9.7, 
has edges. It can be seen, however, as a 
limit case of a surface with no edges, as 
the one presented in Figure 9.5.

In the path between refl ections, the 
angle of the ray with the x1 axis is not 
altered and the ray moves in phase space 
on a plane p1 = constant, that is, paral-
lel to the plane x1x2. When a  refl ection 

Trajectory of the
ray of light on
the plane x1x2

Trajectory of 
the ray of light 
in phase space Top

surface

Bottom
surface

x1

x1
x2

x2

p1

p1

(a) (b)

FIGURE 9.7
Trajectories in phase space of the rays presented in Figure 9.6.

Parallel
flat mirrors

x2

x1

FIGURE 9.6
Trajectory of two light rays between 
two fl at parallel mirrors in a medium 
with constant  refractive index.
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occurs on one of the mirrors, the angle of the ray with the x1 axis now becomes 
its symmetric version and p1 changes sign. In phase space, the ray now moves 
on a plane −p1 = constant until the next refl ection. In phase space, the rays 
move on the planes p1 = constant and −p1 = constant moving from one to 
the other by vertical lines corresponding to the refl ections. The set of all rays 
forms a rectangular tube-shaped surface.

Let us now go back to the description of optics in the formalism of 
 Equation 9.25. In this case, instead of the variables (x1, x2, p1), we will have 
(x1, x2, p1, p2). We have, therefore, another momentum but also another equa-
tion relating these variables, which is P = 0. Therefore, when changing to 
this formalism, we add not only another variable (p2) but also another equa-
tion (P = 0). The condition ω(x1, x2, p1) = 0 must now be written as follows:

 ω(x1, x2, p1, p2) = 0 with P = 0 (9.31)

Note that this new expression ω(x1, x2, p1, p2) = 0 is not different from 
the earlier one ω(x1, x2, p1) = 0 because p1 and p2 are related by  p 1  

2  +  p 2  
2  = 

n2(x1, x2) , that is, P = 0, and therefore, we can obtain p2 = p2(x1, x2, p1), which 
when replaced in Equation 9.31, results in ω(x1, x2, p1) = 0.

9.4 Poisson Brackets

The way light is transferred in phase space from the entrance to the exit aper-
tures of an optical system defi nes its characteristic type of optics (imaging or 
nonimaging). This transfer must, nonetheless, always obey the general laws 
of optics, that is, the equation system (Equation 9.23) because it describes 
every optical system. A system obeying these equations must also obey the 
conservation of étendue law, because this law results from these equations 
(see Chapter 14).

The transfer of the light in phase space from the entrance aperture to the 
exit aperture must be characterized in mathematical terms by an equation 
(or possibly several), which must now be added to Equations 9.23 to form a 
set that describes this particular type of optics. This transfer must, nonethe-
less, obey the conservation of étendue, otherwise it would “confl ict” with 
Equation 9.23 and it would not be possible to fi nd a solution.

In the cases presented in Figure 9.2 and Figure 9.3, the optical system under 
consideration has entrance a1 and exit a2. The light illuminating a1 has a dis-
tribution in phase space given by region R1 and the light illuminating a2 has 
a distribution given by region R2. The way region R1 is transformed into R2 
defi nes the type of optics (imaging versus nonimaging).

There are at least two ways of transforming R1 into R2. In the imaging case, 
vertical lines L1 of R1 are transformed into vertical lines L2 of R2, and the spa-
tial coordinates are related by expression 9.26, that is, x = MX.
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336 Introduction to Nonimaging Optics

In the other case, nonimaging or anidolic optics, the boundary of R1 (called 
∂R1) is transformed into the boundary of R2 (called ∂R2). This transformation is 
achieved in mathematical terms by connecting ∂R1 with ∂R2 by Equation 9.27,
that is, ω(x1, x2, p1) = 0. To guarantee that this surface ensures the conser-
vation of étendue (and therefore, that the optical system is possible), it is 
necessary only to guarantee constancy of the areas corresponding to cuts 
parallel to the plane x1p1.

Consider now the case of a general 3-D nonimaging optical system. Its 
entrance and exit apertures are now connected by a surface of the form

 ω (x1, x2, x3, p1, p2, p3) = 0 (9.32)

Equation 9.32, characteristic of nonimaging optics, plus the general equations 
of optics (Equation 9.23) defi ne a set of equations defi ning nonimaging optical 
systems in mathematical terms. From all the possible optical systems described 
by the general equations (Equation 9.23), we are thus interested solely in those 
systems that satisfy Equation 9.32, that is, nonimaging optical systems.

  
dx1 ___ 
dσ   =   ∂P ___ ∂p1

        
dp1 ___ 
dσ   = −   ∂P ___ ∂x1

   

(9.33)
  
dx2 ___ 
dσ     =    ∂P ___ ∂p2

        
dp2 ___ 
dσ    = −   ∂P ___ ∂x2

  

  
dx3 ___ 
dσ    =    ∂P ___ ∂p3

        
dp3 ___ 
dσ    = −   ∂P ___ ∂x3

  

P =  p 1  
2  +  p 2  

2  +  p 3  
2  − n(x1, x2, x3) = 0

ω(x1, x2, x3, p1, p2, p3) = 0

This system of equations can, fortunately, be simplifi ed. Since ω = 0 repre-
sents a surface in phase space where edge rays move, dω/dσ represents the 
variation of ω as the edge rays progress in the system. But, as seen in Equa-
tion 9.33, ω is constant and equal to zero, implying dω/dσ = 0.6

   dω ___ 
dσ   =  ∑ 

j=1
  

3

    (   ∂ω ___ ∂xj
     
dxj

 ___ 
dσ   +   ∂ω ___ ∂pj

     
dpj

 ___ 
dσ   )  (9.34)

The term ∂ω/∂σ does not appear because we are only considering surfaces 
ω not depending explicitly on σ.7 Note that Equation 9.32 is ω(x1(σ), x2(σ), x3(σ), 
p1(σ), p2(σ), p3(σ)) = 0 and does not depend explicitly on σ. Using the fi rst set of 
equations in Equation 9.33, we can now write

   dω ___ 
dσ   =  ∑ 

j=1
  

3

    (   ∂ω ___ ∂xj
     ∂P ___ ∂pj

   −   ∂ω ___ ∂pj
     ∂P ___ ∂xj

   )  = {ω, P} = 0 (9.35)

where {ω, P} is defi ned by expression 9.35 and is called a Poisson bracket.8–10 
Expression 9.35 already “contains” the differential equations of Equation 9.33 
for dxi/dσ and dpi/dσ because these have already been used in its deriva-
tion. We can then conclude that the trajectories obeying equation ω = 0 and 
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restricted by conditions {ω, P} = 0 and P = 0 obey all the equations of 
Equation 9.33 and therefore, represent the rays of light in the nonimaging 
optical system. The fi nal system of equations is then given by

 {ω, P} = 0

        P = 0 (9.36)

       ω = 0

Equation 9.36 can also be written as

 ∑ 
j=1

  
3

    (   ∂ω ___ ∂xj
     ∂P ___ ∂pj

   −   ∂ω ___ ∂pj
     ∂P ___ ∂xj

   )  = 0

 P =  p 1  
2  +  p 2  

2  +  p 3  
2  − n2(x1, x2, x3) = 0 (9.37)

ω(x1, x2, x3, p1, p2, p3) = 0

The Hamiltonian Equations 9.23 have the same form in the coordinate sys-
tems (x1, x2, x3) and in another generalized coordinate system

 (i1(x1, x2, x3), i2(x1, x2, x3), i3(x1, x2, x3)) (9.38)

(see Chapter 10), thus Equations 9.36 are still valid in this new coordinate 
 system.1,3,7 To the new coordinates (i1, i2, i3), correspond the new moments 
(u1, u2, u3), and {ω, P} = 0 can be written as

 {ω, P} =  ∑ 
j=1

  
3

    (   ∂ω ___ ∂ij
     ∂P ___ ∂uj

   −   ∂ω ___ ∂uj
     ∂P ___ ∂ij

   )  = 0 (9.39)

And in this case, P = 0 is given by the expression

 P =  u 1  
2   a 1  

2 (i1, i2, i3) +  u 2  
2   a 2  

2 (i1, i2, i3) +  u 3  
2   a 3  

2 (i1, i2, i3) − n2 = 0 (9.40)

where ak =  �∇ik�  with k = 1, 2, and 3. Because ik = ik(x1, x2, x3), we have ak = 
ak(x1, x2, x3) or, writing x1, x2, and x3 as functions of i1, i2, and i3, ak = ak(i1, i2, i3). 
Equations 9.37 can now be written as

  ∑ 
j=1

  
3

   (   ∂ω ___ ∂ij
     ∂P ___ ∂uj

   −   ∂ω ___ ∂uj
     ∂P ___ ∂ij

   )   = 0

 P =  u 1  
2  a 1  

2 (i1, i2, i3) +  u 2  
2  a 2  

2 (i1, i2, i3) +  u 3  
2  a 3  

2 (i1, i2, i3) − n2(i1, i2, i3) = 0 (9.41)

ω(i1, i2, i3, u1, u2, u3) = 0 

This is the general system of equations describing a 3-D nonimaging optical 
system.
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338 Introduction to Nonimaging Optics

9.5 Curvilinear Coordinate System

As mentioned earlier, the surface ω = 0 is made of the trajectories of the edge 
rays. The calculation of these trajectories is simplifi ed in a coordinate system, 
where the components p1 and p2 of the optical momentum p have simple 
expressions.

Let us consider, for example, the crossing of two edge rays in the interior of 
a compound parabolic concentrator (CPC), as presented in Figure 9.8.

Two rays r1 and r2 go through a point P in the interior of the CPC fi lled 
with air (n = 1). The projections in the directions of the coordinate axes x1 
and x2 of the unit vectors in the directions of the edge rays are p1 = (p11, p12) 
and p2 = (p21, p22), and enable us to conclude that the p1 components p11 and 
p21 and the p2 components p12 and p22 are different from each other and dif-
ferent for the two edge rays. At point Q at the entrance aperture, however, 
the situation is different. Here the coordinate axis x2 bisects the edge rays. 
The projections, in the directions of the coordinate axes x1 and x2, of the unit 
 vectors in the directions of the edge rays are p1 = (p11, q) and p3 = (p31, q) and 
are, therefore, symmetric. Thus, at point Q, p1 has symmetric values p31 and 
p11 = −p31 for the two edge rays, whereas, p2 has the same value q for both.

To simplify the expressions for p1 and p2, it is advantageous to consider a 
curvilinear coordinate system (i1, i2). The lines i1 = constant and i2 = constant 

P

Q
r1

r2

r1

r3 x1

x2

p11

p31

p21

p11

p12 p22

q

FIGURE 9.8
At a point P in a CPC fi lled with air (n = 1), the optical momenta for the edge rays are p1 = 
(p11, p12) and p2 = (p21, p22) with p11 ≠ p12 ≠ p21 ≠ p22. However, at another point Q, at the 
entrance aperture where the coordinate axis x2 bisects the edge rays, their optical momenta 
are p1 = (p11, q) and p3 = (p31, q) with p11 = −p31 and are, therefore, defi ned by fewer variables.
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Curvilinear 
coordinates
bisecting the
edge rays

P

r2

r1

FIGURE 9.9
Curvilinear coordinate system which points, at each point P, in the direction of the bisector to 
the edge rays r1 and r2 inside a CPC.

must be orthogonal and one of them must bisect the edge rays at each point. 
In the case of a CPC, these lines, which bisect the edge rays at each point, 
have the shape presented in Figure 9.9.

As mentioned earlier, the lines of vector fl ux J bisect the trajectories of 
the edge rays. The curvilinear coordinates to be considered must then coin-
cide with the lines of the vector fl ux. Note that also the lines G = constant 
referred to earlier are along the lines of vector fl ux J. Therefore, the lines G 
= constant and F = constant must coincide with i1 = constant and i2 = con-
stant, that is, with the curvilinear coordinates to be considered. In fact, we 
had already considered that we would have G = G(i1) and F = F(i2) and the 
lines i1 = constant would bisect the edge rays.

We must now defi ne these new lines i1 = constant and i2 = constant. In fact, 
it suffi ces to defi ne one of these sets (e.g., i1 = constant) because the second set 
is made of lines perpendicular to the fi rst ones. Figure 9.10 presents two edge 
rays crossing a given point on the plane.

As can be seen, the component u2 in the direction of ∇i2 of both edge rays 
is the same. The components u1 in the direction of ∇i1 have the same mag-
nitude, but different signs. Therefore, u2 is the same for both edge rays and 
depends only on the coordinates of the point under consideration. We have 
u2 = β(i1, i2) and therefore, we can write, in this case, Equation 9.27 as3

 ω(i1, i2, u2) = 0 ⇔ u2 − β(i1, i2) = 0 (9.42)

which is a simple form of the equation ω = 0.
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9.6 Design of Two-Dimensional Concentrators

In case of 2-D geometry, Equations 9.41 can be written as

 ∑ 
j=1

  
2

    (   ∂ω ___ ∂ij
     ∂P ___ ∂uj

   −   ∂ω ___ ∂uj
     ∂P ___ ∂ij

   )  = 0

P =  u 1  
2  a 1  

2 (i1, i2) +  u 2  
2  a 2  

2 (i1, i2) − n2(i1, i2) = 0 (9.43)

ω(i1, i2, u1, u2) = 0

This is the general system of equations describing a 2-D nonimaging optical 
system.

We can now make use of the simplifi ed expression 9.42 for ω = 0. The 
 system of equations to be solved can be obtained from Equations 9.43 and is 
in this case

{ω, P} = ∑ 
j=1

  
2

    (   ∂ω ___ ∂ij
     ∂P ___ ∂uj

   −   ∂ω ___ ∂uj
     ∂P ___ ∂ij

   )  = 0

 P =  u 1  
2  a 1  

2 (i1, i2) +  u 2  
2  a 2  

2 (i1, i2) − n2(i1, i2) = 0 (9.44)

ω = u2 − β(i1, i2) = 0

From the fi rst of these expressions, we get

 {ω, P} =   ∂ω ___ ∂i1
     ∂P ___ ∂u1

   −   ∂ω ___ ∂u1
     ∂P ___ ∂i1

    +    ∂ω ___ ∂i2
     ∂P ___ ∂u2

   −   ∂ω ___ ∂u2
     ∂P ___ ∂i2

   = 0 (9.45)

J line coincident 
with a line
i1=constant

Edge
rays

x1

x2

u2

u1

−u1

�i2

�i1

FIGURE 9.10
In the curvilinear coordinate system i1, i2, the line i1 = constant points in the same direction as 
the bisector to edge rays. In this case, the magnitude of the u2 component of the moment is the 
same for both edge rays and the u1 component is symmetrical. The edge rays form a V-shape 
around the line i1 = constant.
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From the second expression, we get

   ∂P ___ ∂i1
    = 2a1   

∂a1 ___ 
∂i1

    u 1  
2  + 2a2   

∂a2 ___ ∂i1
    u 2  

2  − 2n  ∂n ___ ∂i1
      ∂P ___ ∂u1

   = 2 a 1  
2 u1 

(9.46)
   ∂P ___ ∂i2

    = 2a1   
∂a1 ___ 
∂i2

    u 1  
2  + 2a2   

∂a2 ___ ∂i2
    u 2  

2  − 2n  ∂n ___ ∂i2
      ∂P ___ ∂u2

   = 2 a 2  
2 u2

and from the third expression, we get

   ∂ω ___ 
∂i1

   = −  
∂β

 ___ ∂i1
      ∂ω ___ ∂u1

   = 0 

(9.47)
   ∂ω ___ ∂i2

   = −  
∂β

 ___ ∂i2
      ∂ω ___ ∂u2

   = 1

making u2 = β, the Poisson bracket of ω and P can be calculated as

  a 1  
2 u1   

∂β ___ 
∂i1

   +  a 2  
2  β   ∂β ___ ∂i2

   − n   ∂n ___ ∂i2
   + a1   

∂a ___ 
∂i2

    u 1  
2  + a2   

∂a2 ___ 
∂i2

   β2 = 0 (9.48)

From the condition P = 0, we can obtain

  u 1  
2  =   

n2 −  a 2  
2  β2

 _________ 
 a 1  

2 
   ⇔ u1 = ±  

  √ 
_________

 n2 −  a 2  
2  β2  
 __________ a1

   (9.49)

where u2 = β. Equation 9.49 gives the two values of u1 for a given value of 
u2, as represented in  Figure 9.10. Substituting for  u 1  

2  from Equation 9.49 into 
Equation 9.48 gives

  (  a 1  
2    

∂β ___ 
∂i1

   ) u1 +  (  a 2  
2  β   ∂β ___ ∂i2

   − n   ∂n ___ ∂i2
   +   

n2 −  a 2  
2  β2

 _________ a1
     

∂a1 ___ ∂i2
   + a2   

∂a2 ___ 
∂i2

   β2 )  = 0 (9.50)

This has the form Au1 + B = 0. This expression must be fulfi lled for both 
possible values of u1, thus Au1 + B = 0 and also −Au1 + B = 0 and therefore, 
A = B = 0. Then a1 =  �∇i1�  ≠ 0 gives

    
∂β ___ ∂i1

   = 0 
(9.51)

  a 2  
2  β   ∂β ___ ∂i2

   − n  ∂n ___ ∂i2
   +   

n2 −  a 2  
2  β2

 _________ a1
     

∂a1 ___ ∂i2
   + a2   

∂a2 ___ 
∂i2

   β2 = 0

From ∂β/∂i1 = 0, we obtain

 β = β(i2) (9.52)

The second condition of Equation 9.51 can be written as

   
 [ ( 2n   ∂n

 __ ∂i2
   − 2β   ∂β

 __ ∂i2
    a 2  

2  − 2a2   
∂a2 ___ 
∂i2

   β2 )   a 1  
2  − 2a1   

∂a1 ___ 
∂i2

    ( n2 − β2 a 2  
2  ) ] 
     _____________________________________________   

 a 1  
4 
   = 0 (9.53)
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that is,

   ∂ ___ ∂i2
    (   n

2 − β2 a 2  
2 
 ________ 

 a 1  
2 
   )  = 0 ⇔   

n2 − β2 a 2  
2 
 ________ 

 a 1  
2 
   = α(i1)2 ⇔ n2 = α(i1)2 a 1  

2  + β(i2)2 a 2  
2  (9.54)

Note that β(i2)a2 = u2a2 is the component of p in the direction of vector ∇i2, 
and therefore, α(i1)a1 must be the component of p in the direction of ∇i1. This 
equation corresponds to Equation 9.20 obtained earlier.

9.7 An Example of an Ideal Two-Dimensional Concentrator

An example of application of Miñano’s design method in two dimensions 
is presented. It applies the earlier ideas in the design of a concentrator with 
maximum concentration and fl at entrance and exit apertures. The entrance 
aperture will be at the x1 axis (x2 = 0) and the exit aperture will be at the line 
x2 = 1. We choose the shape of the i1-lines. The i2-lines are perpendicular to 
the i1-lines and can be obtained from them. The refractive index can then be 
calculated using Equation 9.20 or 9.54 and the boundary conditions for the 
problem.

Figure 9.11 shows the shape of an i1-line (i2 = constant). It is a circumfer-
ence centered at the x2 axis. The reason for choosing this shape for the i1-lines 
becomes apparent in Section 9.8 when we apply these results to the design of 
a 3-D concentrator.

x1

x2

i2=x2

i1-line

R (i2)

FIGURE 9.11
The i1-lines (i2 = constant) are chosen to be circumferences centered at the x2 axis having 
radius R(i2 ).
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If this circumference was centered at (x1, x2) = (0, 0), it would be defi ned 
by an equation of the form  x 1  

2  +  x 2  
2  = R2. However, displacing its center along 

the axis x2 to a position R + i2, its equation is now  x 1  
2  + [(R + i2) − x2]2

 = R2, 
that is,

 x2 = R(i2) + i2 −   √ 
__________

 R(i2)2 −  x 1  
2    (9.55)

Later an expression for R(i2) will be given. This is the equation for the i1-lines 
(i2 = constant). For each value of i2, a value for R(i2) is defi ned and a circum-
ference is obtained. It can be seen that these circumferences cross the x2 axis 
at x2 = i2. Therefore, the line i2 = 0 crosses the x2 axis at x2 = 0 (the x1 axis) and 
the line i2 = 1 crosses the x2 axis at x2 = 1. Lines i2 = 0 and i2 = 1 correspond 
to the entrance and exit apertures of the concentrator, so that they are chosen 
to be fl at. Therefore, for x2 = i2 = 0 and x2 = i2 = 1, we must have R → ∞.

The i2-lines are perpendicular to the i1-lines. These i2-lines can be defi ned 
so that they cross the x1 axis with i1 = x1. The i1- and i2-lines are presented in 
Figure 9.12.

The expression for i1 is given by

 i1 =   
2Rx1 ____________  

R +   √ 
_______

 R2 −  x 1  
2   
   exp (   ∫ 0  

i2
    1 __ R   di2 )  (9.56)

where R is a function R(i2) of i2 and obeys Equation 9.55. We are not going to 
derive Equation 9.56, but instead we prove that the i1- and i2-lines just defi ned 
fulfi ll the conditions mentioned earlier.7 Defi ne a function M(i1) by

 M(i1) = ln (   i1 __ 2   )  = ln [  R _________________  
R/x1 +   √ 

__________
 R2/ x 1  

2  − 1  
    exp (   ∫ 0  

i2 
     1 __ R   di2 ) ]  (9.57)

i2=0.2

x1= i1
x1

i2=x2=0 
i2-line
(i1=constant)

i1-line
(i2=constant)

i2=x2=1
x2

x1= i1xr −xri 1
=0

.0

i 1
=0

.5

i 1
=1

.0

i2=0.4

i2=1.0
x2

x1

(a) (b)

i2=x2

FIGURE 9.12
(a) A set of i1- and i2-lines for the concentrator being designed. (b) The i1-lines cross the x2 axis 
(optical axis) with i2 = x2 and the i2-lines cross the x1 axis (entrance aperture) for i1 = x1 and the 
exit aperture (x2 = 1) for x1 = xr.
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or

 M(i1) = ln R − ln (   R __ x1
   +   √ _______

   R
2
 ___ 

 x 1  
2 
   − 1   )  +   ∫ 0  

i2
     1 __ R   di2 (9.58)

Calculating the x1 and x2 derivatives of M(i1) gives

   ∂M ____ ∂x1
   =    

∂i2/∂x1 _______ R    ( R′ −   R′R ________ 
  √ 

_______
 R2 −  x 1  

2   
   + 1 )  +   R __________ 

x1  √ 
_______

 R2 −  x 1  
2   
   (9.59)

and

   ∂M ____ ∂x2
   =    

∂i2/∂x2 _______ R    ( R′ −    R′R ________ 
  √ 

_______
 R2 −  x 1  

2   
   + 1 )  (9.60)

where R′ = dR(i2)/di2. Note that

   ∫ 0  
i2
     1 __ R   di2 = F(i2) and    

∂F(i2) _____ ∂x2
   =   dF ___ 

di2
     
∂i2 ___ ∂x2

   (9.61)

where F(i2) is a function of i2 and therefore,

   ∂ ___ ∂x1
    (   ∫ 0  

i2
     1 __ R   di2 )  =   1 __ R     

∂i2 ___ ∂x1
   and   ∂ ___ ∂x2

    (   ∫ 0  
i2
     1 __ R   di2 )  =   1 __ R     

∂i2 ___ ∂x2
    (9.62)

The derivatives ∂i2/∂x1 and ∂i2/∂x2 can be obtained by calculating the x1 and 
x2 derivatives of Equation 9.55 and solving for ∂i2/∂x1 and ∂i2/∂x2. (Note that 
dx2/dx2 = 1 and that dx2/dx1 = 0.) These partial derivatives are

   
∂i2 ___ ∂x1

   =   
−x1 �  √ 

_______
 R2 −  x 1  

2   
  _________________  

1 + R′ −    R′R ________ 
  √ 

_______
 R2 −  x 1  

2   
  
   (9.63)

and

   
∂i2 ___ ∂x2

   =   1 _________________  
1 + R′ −   R′R ________ 

  √ 
_______

 R2 −  x 1  
2   
  
   (9.64)

or

 ∇i2 =  ( 1 + R′ −    R′R ________ 
  √ 

_______
 R2 −  x 1  

2   
   ) 

−1
  ( −x1   

1 ________ 
  √ 

_______
 R2 −  x 1  

2   
   , 1 )  (9.65)

Replacing these expressions in Equations 9.59 and 9.60 gives

  (   ∂M ____ ∂x1
   ) 

2

 =   1 __ 
 x 1  

2 
   −   1 ___ 

R2   and  (   ∂M ____ ∂x2
   ) 

2

 =   1 ___ 
R2   (9.66)

Expression 9.66 can also be written as

 ∇M =  (   √ ________

   1 __ 
 x 1  

2 
   −   1 ___ 

R2    ,   
1 __ R   )  =   1 __ R    (   1 __ x1

     √ 
_______

 R2 −  x 1  
2   , 1 )  (9.67)
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and then we get

 ∇i2 ⋅ ∇M = 0 (9.68)

Since M = M(i1) as given by Equation 9.57, we have

 ∇M =   dM ____ 
di1

   ∇i1 ⇔ ∇M =   1 __ 
i1

   ∇i1 (9.69)

and because dM/di1 ≠ 0, we have

 ∇i1 ⋅ ∇i2 = 0 (9.70)

As mentioned earlier, the i2-lines were defi ned in such a way that they cross 
the x1 axis (x2 = 0) with i1 = x1. This can be seen in expression 9.56:

 i1 =   
2x1 ______________  

1 +   √ 
__________

 1 −  x 1  
2 /R2  

   exp (   ∫ 0  
i2
    1 __ R   di2 )  (9.71)

When i2 → 0 and R → ∞ then i1 → x1, because for i2 = 0, we have 

 exp (   ∫ 0  
i2
  (1/R)di2 )  = exp (   ∫   0  

0
  (1/R)di2 )  = exp 0 = 1

At the entrance aperture we then have i1 = x1.
The i2-lines intercept the exit aperture (receiver) for values of x1 such that 

x1 = xr, where xr can be obtained from expression 9.71 making i2 → 1 and 
R → ∞.

 i1 = xr exp (   ∫ 0  
1
    1 __ R   di2 )  (9.72)

Note that R(i2) → ∞ when i2 → 0 and i2 → 1, but R(i2) has fi nite values for
0 < i2 < 1. Now consider that the i2-lines are vector fl ux lines. The fi nal device 
will then be limited by two of these lines, converted to mirrors. The points 
where these two lines cross the entrance aperture (i2 = 0) will then defi ne 
the entrance aperture of the fi nal device and the points where these two lines 
cross the exit aperture will defi ne the exit aperture of the fi nal device. Since 
each one of these lines crosses the entrance aperture at x1 = i1, and the exit 
aperture at x1 = xr, the ratio between the dimensions for the entrance and exit 
apertures will be C2-D = i1/xr . The geometrical concentration for a symmetrical 
concentrator will then be Cg = i1/xr . From expression 9.72, we then obtain

 Cg = exp (   ∫ 0  
1
    1 __ R   di2 )  (9.73)

We still have not given an expression for R(i2). As stated earlier, this function 
must be such that R → ∞ when i2 → 0 and i2 → 1. A possibility is to choose 
the following function:

 R(i2) =   m ________ 
 i 2  
2   ( 1 −  i 2  

2  ) 
   (9.74)
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where m is a constant. To obtain the value of m, we replace this expression for 
R(i2) in expression 9.73 for Cg, giving

 ln Cg =   1 __ m     ∫ 0  
1
   i 2  
2  ( 1 −  i 2  

2  )  di2 ⇔ m =   2 _______ 
15 ln Cg

   (9.75)

We now have a completely defi ned set of i1-lines and the corresponding 
i2-lines. 

We must next fi nd the 2-D refractive index distribution that transforms the 
i2-lines into vector fl ux lines. The refractive index distribution can be found 
from Equation 9.20 or 9.54, that is, n2 = α(i1)2 a 1  

2  + β(i2)2 a 2  
2 . First, we note that  a 1  

2  
=  �∇i1� 2 and  a 2  

2  =  �∇i2� 2. We can then write (see Equations 9.63 and 9.64):

  a 2  
2  =   (   ∂i2 ___ ∂x1

   )  
2

 +   (   ∂i2 ___ ∂x2
   )  

2

  =   [(1 + R′)  √ 
_______

 1 −    x 1  
2  ___ 

R2    
 − R′]  

−2

  (9.76)

From expression 9.66, we can see that

  �∇M 2 � =   1 __ 
 x 1  

2 
   (9.77)

and from Equation 9.69, we get

 �∇i1�2 =   1 __ 
 x 1  

2 
    i 1  

2  (9.78)

and therefore,

 n2 =   1 __ 
 x 1  

2 
    α   * (i1)2 +   [(1 + R′)   √ 

_______

 1 −    x 1  
2  ___ 

R2    
 − R′]  

−2

 β(i2)2 (9.79)

where  α   * (i1) = i1α(i1) and from Equation 9.74:

 R′ =    
dR(i2) ______ 

di2
   =    

2m ( 2 i 2  
2  − 1 ) 
 __________ 

 i 2  
3  (  i 2  

2  − 1 )   2 
   (9.80)

If we want maximum concentration at the exit aperture, the edge rays must 
reach it making angles π/2 with the i2-lines. This implies that the component 
a2u2 of the optical momentum must be zero. Since a2 =  �∇i2� , this component 
of the optical momentum is given by  �∇i2�  β(i2). If we have ∇i2 = 0, it would 
not be possible to defi ne a local system of coordinates because one of the unit 
vectors of this local coordinate system is e2 = ∇i2/ �∇i2� . For this component 
of the optical momentum to be zero at the exit aperture, we must then have 
β(i2) = 0 for i2 = 1. In this case, expression 9.79 can be written as

 n2(i2 = 1) =   1 __ 
 x r  2 

    α   * (i1)2 (9.81)

For the receiver, we have x1 = xr, given by expression 9.72. Combining this 
expression with expression 9.73, we get i1 = xrCg. If we want the refractive 
index to be n = nr at the receiver, we get from Equation 9.81

  α   * (i1) =   
i1nr ____ 
Cg

   (9.82)
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Expression 9.79 can now be written as

 n2 =   1 __ 
 x 1  

2 
      i 1  

2   n r  2  ____ 
 C g  2      

   +   [(1 + R′)   √ 
_______

 1 −    x 1  
2  ___ 

R2    
 − R′]  

−2

 β(i2)2 (9.83)

or by using expression 9.71 for i1 as

 n2 =   [  2 ______________  
1 +   √ 

__________
 1 −  x 1  

2 /R2  
   exp (   ∫ 0  

i2
    1 __ R   di2 ) ]  

2
     n r  2  ___ 
 C g  2 

   

     +   [(1 + R′)  √ 
_______

 1 −    x 1  
2  ___ 

R2    
 − R′]  

−2

 β(i1)2  
  

(9.84)

At the optical axis, that is, for x1 = 0, we have

 n2(x1 = 0) = β(i2)2 +   [exp (   ∫ 0  
i2
     1 __ R   di2 ) ]  

2
    n r  2  ___ 
 C g  2 

    (9.85)

If we now make for the optical axis n = nr, we get

 β(i2) = nr  √ _____________________

  1 −   1 ___ 
 C g  2 

     [exp (   ∫ 0  
i2
     1 __ R   di2 ) ]  

2
    (9.86)

As we progress along the optical axis, the component of the optical momen-
tum relative to the i2-lines must obey a2u2 = a2 β(i2) > 0, and therefore β(i2) > 0 
between the entrance and exit apertures, that is, for 0 < i2 < 1. (Note that a2 =  
�∇i2�  > 0 and β(i2) = 0 for i2 = 1, because maximum concentration is required.) 
The expression obtained for β(i2) fulfi lls these conditions, as seen from 
expressions 9.86 and 9.73. The expression for the refractive index can now 
be written as

 n2 =   1 __ 
 x 1  

2 
     
 i 1  
2  n r  2  ____ 
 C g  2 

   +   [(1 + R′)  √ 
_______

 1 −    x 1  
2  ___ 

R2    
 − R′]  

−2

  n r  2   [1 −   
exp ( 2  ∫ 0  

i2
     1 __ R   di2 ) 

  _____________ 
 C g  2 

  ]  (9.87)

For the entrance aperture, that is, for i2 = 0, we have R → ∞ and i1 = x1. This 
expression then simplifi es to

 n2(i2 = 0) =    n r  2  ___ 
 C g  2 

   +  n r  2   [1 −   1 ___ 
 C g  2 

  ]  =  n r  2  (9.88)

We can thus conclude that for the points of the entrance aperture, we have a 
constant refractive index, n = nr .

From Equations 9.84 and 9.87, the refractive index is

n2 =    
4R2  (  n r  2 / C g  2  )  exp ( 2  ∫ 0  

i2
  1/R di2 ) 

   _________________________  
  ( R +   √ 

_______
 R2 −  x 1  

2    )  2 
   +    

 n r  2  −  (  n r  2 / C g  2  )  exp ( 2  ∫ 0  
i2
  1/R di2 ) 

   __________________________   
  [(1 + R′)  √ 

__________
 1 −  x 1  

2 /R2   − R′]  2 
    (9.89)

We still have to relate the geometrical concentration Cg to the acceptance 
angle φ of the concentrator. At the entrance aperture, the refractive index nr 
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will cause the rays to refract and therefore, to be angularly confi ned within a 
cone with half-angle φ1 given by the law of refraction.

 nr sin φ1 = sin φ (9.90)

Since the concentrator has maximum concentration and the exit aperture has 
a refractive index of nr , inside the device, we have a concentration (which 
equals the geometrical concentration) Cg = 1/sin φ1, so that

 sin φ =   
nr ___ 
Cg

   (9.91)

We can now write

n2 =    
 n r  2  − sin2φ exp ( 2  ∫ 0  

i2
  (1/R)di2 ) 

   _________________________   
 [ (1 + R′)  √ 

__________
 1 − (  x 1  

2 /R2 )    − R′  ] 2
    +    

4R2 sin2 φ exp ( 2  ∫ 0  
i2
  (1/R)di2 ) 

   ________________________  
  ( R +   √ 

_______
 R2 −  x 1  

2    )  2 
   (9.92)

Let us, for example, presume that nr = 1.5 and Cg = 3. We have for the accep-
tance angle

 φ = arc sin (   1.5 ___ 3   )  = 30° (9.93)

Giving values to i2, we can calculate R and R′ using expressions 9.74 and 
9.80. Giving values to x1 also, it is possible to calculate n(x1, i2) using expres-
sion 9.92. Using the values for x1 and i2, it is possible to obtain x2(x1, i2) using 
 Equation 9.55 and therefore, n(x1, x2). The resulting refractive index distribu-
tion is presented in Figure 9.13.

Using expression 9.74 for R in Equation 9.55, we get for x2

 x2 = i2 +   m ______ 
 i 2  
2  −  i 2  

4 
   −   √ ______________

    m2
 _________ 

 i 2  
4   (  i 2  

2  − 1 ) 2
   − x1   (9.94)

1.5
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0.8

FIGURE 9.13
Refractive index distribution inside the concentrator, manifested by contours of constant 
refractive index.
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We can also write

   ∫ 0  
i2
     1 __ R   di2 =   ∫ 0  

i2
     
 i 2  
2  ( 1 −  i 2  

2  ) 
 ________ m   di2 =   [  5 i 2  3  − 3 i 2  5  ________ 15m  ]  0  

i2

  =   5 i 2  
3  − 3 i 2  

5  ________ 15m   (9.95)

Also expression 9.56 for i1 can now be written as follows

 i1 =   
2m x1 exp (  ( 5 i 2  

3  − 3 i 2  
5  ) /15m ) 

   _______________________________   
m −  i 2  

2   (  i 2  
2  − 1 )   √ 

__________________
  m2/ (  i 2  4   (  i 2  

2  − 1 )  2  )  −  x 1  
2   
   (9.96)

This expression can be solved for x1 to give

 x1 =   
4i1 m2 exp (  i 2  3   ( 5 + 3 i 2  

2  ) /15m ) 
   ______________________________________    

 i 1  
2   i 2  

4    (  i 2  
2  − 1 )  2  exp (  2i 2  

5 /5m )  + 4m2 exp ( 2 i 2  
3 /3m )  

  (9.97)

Now, maintaining a fi xed value for i1 and varying i2, different values for 
x1 can be obtained. The corresponding value for x2 can be calculated using 
expression 9.94 and the i2-lines obtained, as presented in Figure 9.12.

Replacing expressions 9.95 and 9.80 for R′ and expression 9.74 for R in 
expression 9.92, we get

 n2 = 4m2A   ( m −  i 2  
2   (  i 2  

2  − 1 )   √ ______________

    m2
 _________ 

 i 2  
4   (  i 2  

2  − 1 )  2 
   −  x 1  

2    )  
–2

  

 +  (  n r  2  − A )    ( 1 +   
2m  ( 2 i 2  

2  − 1 ) 
 __________ 

 i 2  
3   (  i 2  

2  − 1 )  2 
   )  

–2 

    ( 1 +   
m ( 2 − 4 i 2  

2  ) 
 _________ 

   i 2  
3   (  i 2  

2  − 1 )  2 
    −   

 i 2  
4   x 1  

2  (  i 2  2  − 1 ) 2
 __________ 

m2   )  
–1

  (9.98)

with A = sin2 φ exp [2 i 2  
3   ( 5 – 3 i 2  

2  ) /(15m)] . Giving values to i2 and x1, n can be 
obtained. For the same values of i2 and x1, we can also obtain x2 using expres-
sion 9.94, fi nally giving n(x1, x2).

Two vector fl ux lines (i2-lines) can now be chosen as mirrors, completing 
this design for an ideal 2-D concentrator.

9.8 Design of Three-Dimensional Concentrators

The design method for 3-D concentrators is similar to that presented ear-
lier for the 2-D case. Here, only systems with rotational symmetry are 
analyzed.3,7 For solving this problem, we must choose a coordinate system 
that is nothing more than an extension of the coordinate system used in 
the 2-D case. We now have a coordinate system (i1, θ, i3) of space (x1, x2, 
x3), where θ measures the angle around the axis of symmetry (it there-
fore corresponds to the angular coordinate of cylindrical coordinates). For 
θ = constant, we obtain a plane containing the optical axis. On this plane, 
the coordinates i1 and i3 are two curvilinear coordinates similar to the 
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ones (i1, i2) considered earlier for the 2-D case. These coordinates are rep-
resented in Figure 9.14.

The orthogonality of the new curvilinear coordinates is now ensured by

 ∇i1 ⋅ ∇θ = ∇θ ⋅ ∇i3 = ∇i1 ⋅ ∇i3 = 0  (9.99)

We can now make

 a1 = �∇i1� b =   1 __ ρ   = �∇θ� a3 = �∇i3� (9.100)

Let u1, h, and u3 be the momenta corresponding to these coordinates.  Similar 
to what happened in the 2-D case, we can obtain the components of the 
 optical momentum a1u1, bh, and a3u3 relative to ∇i1, ∇θ, and ∇i3, respectively. 
Since the refractive index of the system does not depend on θ, the quantity 
h is a constant called the skew invariant or skewness (see Chapter 13). Note 
that ∇i1 is obtained with θ = constant and i3 = constant, ∇θ is obtained with 
i1 = constant and i3 = constant, and ∇i3 is obtained with i1 = constant and 
θ = constant, that is, in the direction of ∇i1 only i1 varies; in the direction 
of ∇θ only θ varies; and in the direction of ∇i3 only i3 varies. The lines in 
which only i1 varies are called i1-lines, those in which only θ varies are called 
θ-lines, and those in which only i3 varies are called i3-lines.

Edge
rays
(� = 0)

Entrance aperture

x2

x1

x3 i3-lines (i1 = constant)

Plane obtained 
for � = constant

(i3 = constant)

Receiver

	 = constant

i1-lines

�

x1

x2

x3

	

�

P

(a) (b)

FIGURE 9.14
(a) In a system with circular symmetry, the angle θ around the optical axis can be chosen as a 
coordinate. On each plane obtained with θ = constant, a curvilinear coordinate system i1, i3 is 
used. (In this case, the edge rays form a cone around the i3-lines, that is, these lines point in the 
direction of the bisector to the edge rays.) (b) A cylindrical coordinate system. Axis x3 points in 
the direction of the optical axis and ρ is the distance from a point P to axis x3.
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In this coordinate system, the expression for P is given by

 P =  a 1  
2  u 1  

2  + b2h2 +  a 3  
2  u 3  

2  − n2 (9.101)

where

 bh = n cos φ =   h __ ρ    (9.102)

in which h is again the skew invariant (a constant), b = 1/ρ, where ρ is the 
distance to the axis of symmetry and φ is the angle between the tangent to 
the light ray and vector eθ = ∇θ/�∇θ�. The expression for P can now be writ-
ten for this coordinate system in the following form:

 P =  a 1  
2  (i1, i3) u 1  

2  + b2 (i1, i3)h2 +  a 3  
2  (i1, i3) u 3  

2  − n2(i1, i3) (9.103)

The fact that a1, b, a3, and n do not depend on θ is a consequence of the rota-
tional symmetry.

The Poisson bracket of ω and P must now be zero for ω = 0 and P = 0.

{ω, P} =   ∂ω ___ ∂i1
     ∂P ___ ∂u1

   −   ∂ω ___ ∂u1
     ∂P ___ ∂i1

   +   ∂ω ___ ∂θ     ∂P ___ ∂h
   −   ∂ω ___ ∂h

     ∂P ___ ∂θ   +   ∂ω ___ ∂i3
     ∂P ___ ∂u3

   −   ∂ω ___ ∂u3
     ∂P ___ ∂i3

   = 0  (9.104)

The system of equations to be solved is then as follows:

{ω, P} =   ∂ω ___ ∂i
     ∂P ___ ∂u1

   −   ∂ω ___ ∂u1
     ∂P ___ ∂i1

   +   ∂ω ___ ∂θ     ∂P ___ ∂h
   −   ∂ω ___ ∂h

     ∂P ___ ∂θ   +   ∂ω ___ ∂i3
     ∂P ___ ∂u3

   −   ∂ω ___ ∂u3
     ∂P ___ ∂i3

   = 0

 P =  a 1  
2 (i1, i3) u 1  

2  + b2(i1, i3)h2 +  a 3  
2 (i1, i3) u 3  

2  − n2(i1, i3) = 0 (9.105)

ω(i1, θ, i3, u1, h, u3) = 0

A simple form of the equation ω = 0 can also be used in this case. Here, 
expression 9.42 can be written in the following form:3,7

 ω = u3 − β(i1, i3) = 0 (9.106)

where β depends only on i1 and i3 in the same way a1, b, a3, and n do. There is 
at this point no guarantee that an expression such as condition 9.106 for the 
edge rays is valid. Only if a solution for the optical system can be found, it is 
possible to verify that this relation is true. Condition 9.106 requires that all 
the edge rays at the point under consideration have a momentum p with the 
same value for the component u3. This means that the edge rays must form 
a circular cone around the i3-line. In the 2-D cases presented earlier, this 
 circular cone was just a V-shape around the i2-line (i1 = constant line). If the 
i3-lines point in the direction of the bisector to the edge rays, they must also 
coincide with the lines of vector fl ux J.
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Since ω = ω(i1, i3, u3), the system of equations to be solved is then in this 
case as follows

{ω, P} =   ∂ω ___ ∂i1
     ∂P ___ ∂u1

   +   ∂ω ___ ∂i3
     ∂P ___ ∂u3

   −   ∂ω ___ ∂u3
     ∂P ___ ∂i3

   = 0

 P =  a 1  
2 (i1, i3) u 1  

2  + b2(i1, i3)h2 +  a 3  
2 (i1, i3) u 3  

2  − n2(i1, i3) = 0 (9.107)

 ω = u3 − β(i1, i3) = 0

To solve this system of equations, we can start by substituting expression 
9.103 for P and condition 9.106 for ω into expression 9.104 for {ω, P}, that is, 
substituting the second and third equations of Equation 9.107 in the fi rst 
equation. Then we get

   
∂β ___ ∂i1

    a 1  
2 u1 +   

∂β ___ ∂i3
    a 3  

2 u3 −  ( n   ∂n ___ ∂i3
   − a1   

∂a1 ___ ∂i3
    u 1  

2  − b   ∂b ___ ∂i3
   h2 − a3   

∂a3 ___ ∂i3
    u 3  

2  )  = 0 (9.108)

We can now introduce the condition P = 0 to eliminate h2 and ω = 0 to 
replace u3 by β. We get

  u 1  
2   ( a1  

∂a1 ___ 
∂i3

   −    
∂b/∂i3 ______ 

b
    a 1  

2  )  + u1 (   ∂β ___ ∂i1
    a 1  

2  )  

   +  ( −n   ∂n ___ ∂i3
   +    

∂b/∂i3 ______ 
b
   n2 + a3   

∂a3 ___ ∂i3
   β2 −    

∂b/∂i3 ______ b    a 3  
2  β2 + β   ∂β ____ ∂i3

    a 3  
2  )  = 0 (9.109)

Note that these expressions could also be written in terms of (∂ρ/∂i3)/ρ instead 
of (∂b/∂i3)/b because b = 1/ρ; calculating the i3 derivative

   ∂b ___ ∂i3
    = −    

∂ρ/∂i3 ______ ρ2   ⇔    
∂b/∂i3 ______ 

b
   = −    

∂ρ/∂i3 ______ ρ    (9.110)

Since expression 9.109 must be zero for any value of u1, we must have

   
∂β ___ ∂i1

   = 0 

(9.111)a1   
∂a1 ___ ∂i3

   −   
∂b/∂i3 _____ 

b
    a 1  

2  = 0

−n   ∂n ___ ∂i3
   +    

∂b/∂i3 ______ 
b
  n2 + a3   

∂a3 ___ ∂i3
   β2 −    

∂b/∂i3 ______ 
b
    a 3  

2 β2 + β   ∂β ___ ∂i3
    a 3  

2  = 0

From the fi rst of these equations

   
∂β ___ ∂i1

   = 0 ⇔ β = β(i3) (9.112)
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The second equation can be written as

   b __ 
 a 1  

3 
    ( a1   

∂a1 ___ ∂i3
   −    

∂b/∂i3 ______ 
b
    a 1  

2  )  = 0 ⇔     
 ( ∂a1/∂i3 ) b − (∂b/∂i3)a1  ____________________ 

 a 1  
2 
   = 0

  ⇔     
∂(a1/b)/∂i3 __________ 

a1/b
   = 0 ⇔   ∂ ___ ∂i3

   ln (   a1 __ 
b
   )  = 0 (9.113)

which can now be integrated, resulting in

 ln (   a1 __ 
b
   )  = F1(i1) ⇔  �  a1 __ 

b
  �  = F2(i1) ⇔   b

2
 __ 

 a 1  
2 
   = F3(i1)2 (9.114)

Making now F3(i1) = dM(i1)/di1, we get

   b
2
 __ 

 a 1  
2 
   =   (   dM(i1) ______ 

di1
   )  

2

  (9.115)

Since M is a function of i1(x1, x2, x3), we can write

 ∇M =  (   ∂M ____ ∂x1
  ,   ∂M ____ ∂x2

  ,   ∂M ____ ∂x3
   )  =  (   dM ____ 

di1
     

∂i1 ___ ∂x1
  ,   dM ____ 

di1
     

∂i1 ___ ∂x2
  ,   dM ____ 

di1
     

∂i1 ___ ∂x3
   )  =   dM ____ 

di1
   ∇i1 (9.116)

Now considering the defi nition of a1, we can write

 ��∇M��2 =   (   dM ____ 
di1

   )  
2
   a 1  2  (9.117)

Inserting Equation 9.117 into Equation 9.115 gives

 b2 = ��∇M��2 ⇔ ��∇M(i1)��2 =   1 __ ρ2   (9.118)

To integrate the third equation of Equation 9.111, we can write

   [ ( 2n   ∂n ___ ∂i3
   − 2a3   

∂a3 ___ ∂i3
   β2 − 2β   ∂β ___ ∂i3

    a 3  2  )  b2 − 2b   ∂b ___ ∂i3
    ( n2 −  a 3  2  β2 ) ]    b−4 = 0

 ⇔   ∂ ___ ∂i3
    (   n2 −  a 3  

2  β2

 _________ 
b2   )  = 0  (9.119)

Considering expression 9.103 for P and that P = 0, we can conclude that n2 −  
a 3  

2  β2 =  a 1  
2  u 1  

2  + b2h2 ≥ 0; this expression can now be integrated resulting in

   
n2 −  a 3   

2 β2

 ________ 
b2   = η1(i1)2 (9.120)
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We can then make

 n2 = b2η(i1)2 +  a 3  
2  β(i3)2 (9.121)

Making use of Equation 9.114, we can write

 n2 =  a 1  
2 α2(i1) +  a 3  

2  β2(i3) (9.122)

where
 α2(i1) =  (   b

2
 __ 

 a 1  
2 
   )  η2(i1) =  F 3  

2 (i1)η2(i1)

We then obtain the following two equations:

  �∇M(i1)� 2 =   1 __ ρ2   
(9.123)

 n2 =  a 1  
2 α2(i1) +  a 3  

2 β2(i3)

These are the equations used in the example given in Section 9.9. The fi rst 
step is to solve the fi rst equation of Equation 9.123  �∇M(i1)� 2 = 1/ρ2 using the 
boundary conditions. This enables us to obtain the shape of the i1 and i3 
lines. Then the second equation n2 =  a 1  

2 α2(i1) +  a 3  
2 β2(i3) is used to obtain the 

refractive index distribution.
Equation 9.123 can be given other forms. One of them can be obtained by 

making use of Equation 9.114 to get  a 1  
2  F 3  

2 (i1) = 1/ρ2. We can then write

  �∇i1� 2 F 3  
2 (i1) =   1 __ ρ2   

(9.124)
  �∇i1� 2α2(i1) +  �∇i3� 2β2(i3) = n2

Another possible form of Equation 9.123 can be obtained by defi ning two 
functions A(i1) and C(i3) such that dA/di1 = α and dC/di3 = β. We can write

 ��∇A��2 =   (   dA ___ 
di1

   )  
2
   �∇i1� 2 = α2 a 1  

2  

(9.125)
 ��∇C��2 =   (   dC ___ 

di3
   )  

2
   �∇i3� 2 = β2 a 3  

2 

and the second equation of Equation 9.123 can be written as3

 n2 =   �∇A(i1)�  2  +   �∇C(i3)�  2   (9.126)

This expression corresponds to expression 9.18 of the 2-D case. So, from the 
initial system of Equation 9.107, we get two equations.

  �∇M(i1)� 2 =   1 __ ρ2   (9.127)
n2 =   �∇A(i1)�  2  +   �∇C(i3)�  2 

The systems of two Equations 9.123 and 9.124 or Equation 9.127 are equiva-
lent. Either one of these systems of two equations can be used to design ideal 
3-D concentrators with a variable refractive index.7
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9.9 An Example of an Ideal Three-Dimensional Concentrator

We now present an example of application of Miñano’s design method in 
three dimensions. We use Equations 9.123, which are rewritten here:

   �∇M(i1)�  2  =   1 __ ρ2   
(9.128)

 n2 =  a 1  
2 α2(i1) +  a 3  

2  β2(i3)

The example described here can be found in the relevant literature.3,7,12 
Begin with the fi rst equation, which is similar to the eikonal equation 
 �∇S� 2 = n2, where S is the optical path length. In this case, S = constant rep-
resents a wave front, with the rays of light perpendicular to these surfaces. 
The situation is similar to the fi rst of Equations 9.128 if M is seen as optical 
path length S and 1/ρ is seen as refractive index n. In this case, the surfaces 
M = constant are the wave fronts and the lines perpendicular to these sur-
faces are the rays of light. However, M = M(i1) and therefore, M = constant 
implies that i1 = constant. Thus, the surfaces i1 = constant correspond to wave 
fronts and the lines perpendicular to these surfaces correspond to light rays. 
Lines perpendicular to surfaces i1 = constant are the i1-lines, which must then 
have the same shape as light rays propagating in a medium of refractive index 
n = 1/ρ. Given the symmetry of the problem, i3- and i1-lines are on planes 
θ = constant, as seen in Figure 9.14. Also, i3-lines are perpendicular to i1-lines. 
Therefore, the i3-lines must be shaped as the wave fronts of light rays travel-
ing in a medium having a refractive index of n = 1/ρ.

In a medium of refractive index n = 1/ρ, light rays are shaped as circles cen-
tered at the axis of symmetry of the optical system, that is, at ρ = 0, or, what 
is the same, the x3 axis.7,13 These light rays are solutions of the fi rst of Equa-
tions 9.128:  �∇M(i1)� 2 = 1/ρ2. Therefore, the i1-lines must be circles centered 
at the x3 axis. Rotating the i1-lines around this axis gives the i3 = constant 
surfaces. Two of these surfaces will be used as entrance and exit apertures. 
Because these surfaces are obtained by rotating circles around the x3 axis, 
they are spherical surfaces centered on this axis, the radius of each being a 
function of i3 and, if the entrance and exit apertures are fl at, their radii must 
be infi nite for both these apertures. Also choose the entrance aperture as 
the surface defi ned by i3 = 0 and the exit aperture as the surface defi ned by 
i3 = 1. We must then have R(i3) infi nite for i3 = 0 and i3 = 1. Figure 9.15 shows 
the shape of an i1-line, a circle centered on the x3 axis.

The equation of this circle is

 x3 = R(i3) + i3 −   √ 
__________

 R2(i3) − ρ2   (9.129)

This is the equation for the i1-lines (i3 = constant, θ = constant). For each 
value of i3, a value for R(i3) is obtained and a circumference defi ned. Angle θ 
defi nes its angle around the x3 axis. It can be seen that these circumferences 
cross the x3 axis ( ρ = 0) at x3 = i3. Therefore, the surface i3 = 0 coincides with 
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the  surface x3 = 0 and the surface i3 = 1 coincides with the surface x3 = 1. 
Remember that surfaces i3 = 0 and i3 = 1 correspond to the entrance and exit 
apertures of the concentrator, and that they were chosen to be fl at.

On the planes θ = constant, the i3-lines are perpendicular to the i1-lines. 
They correspond to the wave fronts that are solutions of the fi rst of Equa-
tions 9.128, and can be defi ned so that they cross the plane x3 = 0 with
i1 = ρ. The i1- and i3-lines are shown in Figure 9.16.

On a plane θ = constant we have, therefore, the same shapes for the i1- and 
i3-lines as we chose earlier for the i1- and i2-lines in the 2-D example. The rea-
son why we chose these (apparently strange) shapes in the 2-D case is they 
work in the design of a 3-D device.

The planes ρ-x3 in the 3-D case have now the same geometry of the planes 
x1 – x2 in the 2-D case. We can use the results of the 2-D case or 2-D → 3-D, 
which comprises x1 → ρ, x2 → x3, and i2 → i3. Using expression 9.71 for the 2-D 
case gives i1 in the 3-D case as follows:

 i1 =   
2Rρ ____________  

R +   √ 
_______

 R2 − ρ2  
   exp (   ∫ 0  

i3
     1 __ R   di3 )  (9.130)

i3=0.2

i 1
=0

.0

i 1
=0

.5

i 1
=1

.0

i3=0.4

i3=1.0
x3

	

FIGURE 9.16
A set of i1- and i3-lines for the concentrator being designed.

	

i1-line
R(i3)

i3=x3

x3

FIGURE 9.15
The i1-lines (i3 = constant, θ = constant) are circles centered at the x3 axis with radius R(i3).
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and we choose function M(i1) as

 M(i1) = ln (   i1 __ 2   )  = ln [  R ________________  
R/ρ +   √ 

_________
 R2/ρ2 − 1  
    exp (   ∫ 0  

i3
    1 __ R   di3 ) ]  (9.131)

which is similar to the 2-D case in Equation 9.57. We can rewrite the expres-
sion for M(i1) as

 M(i1) = ln R − ln   (   R __ ρ   +   √ _______

   R
2
 ___ ρ2   − 1   )  +   ∫ 0  

i3
     1 __ R   di3 (9.132)

It can be verifi ed that M(i1) given by this equation with the i1-lines defi ned by 
Equation 9.130 satisfi es the fi rst equation of Equation 9.128. Calculating the 
x3 and ρ derivatives of M(i1) and using the expressions for ∂i3/∂x3 and ∂i3/∂ρ 
obtained from expression 9.129 gives

   (   ∂M ____ ∂ρ   )  
2
  =   1 __ ρ2   −   1 ___ 

R2   and   (   ∂M ____ ∂x3
   )  

2
  =   1 ___ 

R2   (9.133)

as we did in expression 9.66 for the 2-D case. It can, therefore, be seen that the 
fi rst of Equations 9.128 is satisfi ed.

As mentioned earlier, the i3-lines were defi ned in such a way that they cross 
the plane x3 = 0 with i1 = ρ. The i3-lines intercept the exit aperture (receiver) 
for values of ρ such that ρ = ρr , where ρr is given by (see expression 9.72)

 i1 = ρr exp (   ∫ 0  
1
     1 __ R   di3 )  (9.134)

The device being designed will have a circular symmetry. Because i3-lines 
are vector fl ux lines, the fi nal device will be limited by two of these lines con-
verted to mirrors (with circular symmetry). The points where these two lines 
cross the entrance aperture (i3 = 0) will then defi ne the entrance aperture of 
the fi nal device and the points where these two lines cross the exit aperture 
will defi ne the exit aperture of the fi nal device. Because each one of these 
lines crosses the entrance aperture at ρ = i1 and the exit aperture at ρ = ρr , the 
ratio between the diameters for the entrance and exit aperture will be i1/ρr . 
The geometrical concentration for the concentrator with circular symmetry 
will then be Cg = (i1/ρr).2 From expression 9.134, we then obtain

 Cg =   [exp (   ∫ 0  
1
     1 __ R   di3 ) ]  

2
  (9.135)

We still have not given an expression for R(i3). As stated earlier, this function 
must be such that R → ∞ when i3 → 0 and i3 → 1. One possibility is to choose 
a function similar to that of the 2-D case earlier (Equation 9.74).

 R(i3) =   m ________ 
 i 3  
2  ( 1 −  i 3  

2  ) 
   (9.136)

where m is a constant. To obtain the value of m, we replace this expression for 
R(i3) in the expression 9.135 for Cg. We get

 ln (   √ 
___

 Cg   ) =   1 __ m     ∫ 0  
1
   i 3  
2   ( 1 −  i 3  

2  ) di3 ⇔ m =   4 _______ 
15 lnCg

   (9.137)
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We now have a completely defi ned set of i1-lines and the corresponding 
i3-lines. Because these lines are contained in θ = constant planes, the follow-
ing step is similar to solving a 2-D problem for these lines, that is, we must 
now fi nd the 2-D refractive index distribution that transforms the i3-lines 
into vector fl ux lines. The refractive index distribution can be found using 
the second expression of Equations 9.128, that is, n2 =  a 1  

2 α2(i1) +  a 3  
2 β2(i3).

This problem can be solved in a manner similar to the previous 2-D prob-
lem. Again, the concentrator is designed for maximum concentration. We get 
the following for x3 from expression 9.129 and Equation 9.136 for R:

 x3 = i3 +   m ______ 
 i 3  
2  −  i 3  

4 
   −   √ ______________

    m2
 _________ 

 i 3  
4   (  i 3  

2  − 1 ) 2
   − ρ    (9.138)

This expression is similar to expression 9.94 obtained earlier for the 2-D case. 
The refractive index is given by

 n2 = 4m2 A   ( m −  i 3  2  (  i 3  2  − 1 )    √ _____________

    m2
 ________ 

 i 3  4  (  i 3  2  − 1 ) 2
   − ρ2   )  

−2

  

 +  (  n r  2  − A )    ( 1 +   
2m ( 2 i 3  2  − 1 ) 

 ___________ 
 i 3  3    (  i 3  2  − 1 )  2 

   )  
–2

    ( 1 +   
m ( 2 − 4 i 3  2  ) 

 _________ 
 i 3  3   (  i 3  2  − 1 )  2 

   −   
 i 2  4  ρ2  (  i 3  2  − 1 )  2 

 __________ 
m2   )  

–1

  (9.139)

with A = sin2 φ exp  [ 2i 3  
3   ( 5 –  3i 3  

2  ) /(15m)]  and where φ is the acceptance angle of 
the optic. Giving values to i3 and ρ enables to obtain n. For the same values 
of i3 and ρ, we can also obtain x3 using expression 9.138. Therefore, n(ρ, x3) 
can be obtained.
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363

10
Lagrangian and Hamiltonian 
Geometrical Optics

10.1 Fermat’s Principle

All of geometrical optics can be derived from the Fermat’s principle, which 
states that, given a light ray between two points and its travel time between 
them, any adjacent path close to it should have the same travel time. Being 
a principle, it is not demonstrated, but accepted as being true and used to 
derive the entire mathematical framework of geometrical optics. It is, how-
ever, possible to infer why it describes the behavior of light by analyzing 
refl ection and refraction.

The law of refl ection has long been known. Back in the Hellenistic age, 
Hero of Alexandria stated that light travels along the shortest path in a 
homogeneous medium.1 His reasoning is illustrated in Figure 10.1a. A light 
ray is emitted from point P1, refl ects off mirror M at point A, and is thereby 
redirected to point P2. The distance between the points P1 and P2 is the same 
as that from Q to P2, where Q is the mirror image of point P1. If light would 
follow a path P1BP2, which equals QBP2, or P1CP2, which equals QCP2, it 
would be traveling a longer distance. This principle explains why the angle 
α between the incident ray and the normal to the surface equals the angle 
between the normal and the refl ected ray.

In mathematical terms, the distance S between the two points P1 and P2 as 
represented in Figure 10.1b is

 S =   √ 
_______

 a2 + x2   +   √ 
____________

 b2 + (d − x)2   (10.1)

and therefore

   dS ___ 
dx

   =   1 __ 2     2x ________ 
  √ 

_______
 a2 + x2  
   −   1 __ 2      

2(d − x)
 _____________   

  √ 
____________

 b2 + (d − x)2   
   = sin α1 − sin α2 (10.2)

We are looking for the position x of point A for which the distance between 
P1 and P2 is minimal. The value of x that minimizes S is obtained by making 
dS/dx = 0, and therefore

 sin α1 = sin α2 ⇔ α1 = α2 (10.3)

which is again the law of refl ection.
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364 Introduction to Nonimaging Optics

The principle that light travels between two points along the shortest pos-
sible distance does not explain refraction. This is apparent from Figure 10.2a, 
where we have two media of different refractive indices (e.g., air and water). 
If light would follow the shortest path, it would go straight from P1 to P2 with 
no refraction. It was Pierre de Fermat who fi rst proposed that light has differ-
ent speeds in different media and that it is time that is minimized when light 
travels between two points P1 and P2.1 Refl ection would be a particular case of 

FIGURE 10.1
(a) On refl ection, light follows the shortest path between the emitting point P1 and the end 
point P2. (b) The angles α1 and α2 that the incident and refl ected rays make to the surface 
 normal are equal to each another.
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FIGURE 10.2
If the light would follow the shortest path between two points P1 and P2, then refraction would 
not occur, as shown by the minimum distance path in (a). Light instead follows the path of 
minimal time (b).
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this principle, in which light always travels in the same medium (always with 
the same speed), as illustrated in Figure 10.1, and therefore minimizing time is 
equivalent to minimizing distance. In the case of refraction, the time T taken 
by light to go from point P1 to point P2 (as shown in Figure 10.2b) is given by

 T =     √ 
_______

 a2 + x2   ________ v1
   +   

  √ 
____________

 b2 + (d − x)2  
  _____________ v2

   (10.4)

where v1 is the speed of light in the medium where P1 is located and v2 the 
speed of light where P2 is located. We therefore have

   dT ___ 
dx

   =   x _________ 
v1  √ 

_______
 a2 + x2  
   −   d − x ______________  

v2  √ 
____________

 b2 + (d − x)2  
    =   

sin α1 _____ v1
   −   

sin α2 _____ v2
  

 =   
(n1 sin α1 − n2 sin α2)  __________________ c   (10.5)

where n = c/v is the refractive index of the material and c the speed of light 
in vacuum. We therefore have n1 = c/v1 and n2 = c/v2. We are looking for the 
position x of point A that minimizes the time taken by the light to travel 
between the points P1 and P2. The value of x that minimizes T is obtained by 
making dT/dx = 0, and therefore

 n1 sin α1 = n2 sin α2 (10.6)

which is Snell’s law of refraction. Note that when n1 = n2, we get the law of 
refl ection.

When minimizing T, we used the expression dT/dx = 0. An alternative way 
of thinking about this minimization problem is to consider that, for a small 
variation dx, we must have dT = 0. Expression 10.5 may then be rewritten as

 dT =   1 __ c  (n1 sin α1 − n2 sin α2) dx (10.7)

and therefore

 dT = 0 ⇔ n1 sin α1 − n2 sin α2 = 0 ⇔ n1 sin α1 = n2 sin α2 (10.8)

Expression dT = 0 then gives us the laws of refraction and refl ection (particu-
larly the case in which n1 = n2). Expression 10.4 may also be written as

 T =   
s1 __ v1

   +   
s2 __ v2

   =   1 __ c  (n1s1 + n2s2) =   1 __ c  S (10.9)

where s1 is the distance between points P1 and A and s2 the distance between 
points A and P2. Now defi ning a new quantity called optical path length S that 
is the product of the refractive index and distance, we can see that S = n1s1 + 
n2s2 is the optical path length between the points P1 and P2.  Minimizing T is 
equivalent to minimizing S since the latter can be obtained from the former 
by multiplying with the same constant c. Also dT = 0 ⇔ dS = 0 since S = cT. 
We then conclude that dS = 0 will yield the laws of refl ection and refraction.
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The case of refl ection is shown in Figure 10.3, where we have a light ray P1AP2 
(an actual path of a light ray). The normal to the surface at A is n. We also 
consider a varied path P1BP2 (not an actual light ray) obtained by displacing 
point A by a distance dx. The refractive index in this example is considered 
constant with value n = 1, and therefore light will travel in straight lines. The 
optical path length for the light ray is S1 = [P1, A] + [A, P2], where [X, Y] is the 
distance between the points X and Y. The varied path has an optical path length 
S2 = [P1, B] + [B, P2] = [P1, A] + ds1 + [A, P2] − ds2. But ds1 = ds2 and, therefore,

 dS = S2 − S1 = 0 (10.10)

for the refl ection at point A.
The principle that light travels along the path for which the optical path 

length S is minimal still does not explain all the situations. An example that 
escapes this principle is the refl ection by an elliptical mirror, as depicted in 
Figure 10.4, where a light ray is emitted from point P1, refl ected off a point A, 
and redirected to point P2. If we consider that light is refl ected by mirror M1, 
which is an ellipse with foci P1 and P2, the optical path length is constant for 
all the points on the mirror. If, for example, the refl ection was at point A1, the 
optical path length would still be the same since from the defi nition of an 
ellipse [P1, A] + [A, P2] = [P1, A1] + [A1, P2] for any point A1.

If, however, the light is refl ected by mirror M2, which lies inside the ellipse, 
refl ection at any other point A2 would mean a smaller optical path length 
and, therefore, for mirror M2, light travels on a path that maximizes the opti-
cal path length.

Finally, if the light is refl ected by mirror M3, which lies outside the ellipse, 
refl ection at any other point A3 would mean a larger optical path length and, 
therefore, for mirror M3, light travels on a path that minimizes the optical 
path length. In all the three cases, however, dS = 0 as can be seen by a similar 
reasoning to the one in Figure 10.3.

FIGURE 10.3
Path P1AP2 corresponds to a light ray and path P1BP2 is a varied path that deviates only infi ni-
tesimally from that light ray. If S1 is the optical path length for P1AP2 and S2 for P1BP2, then 
dS = S2 − S1 = 0.

P1 P2

A BM x1

x2

S1 S2
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In all the situations presented so far, we considered either a constant index 
of refraction n or two media with indices n1 and n2 separated by one surface. 
In general, however, light will travel in some path in a medium with a refrac-
tive index varying from point to point and is therefore given by n(x1, x2, x3). 
The defi nition of optical path length between the two points P1 and P2 is 
generalized in this case to

 S =   ∫ P1
  

P2
   n ds =   ∫ P1

  
P2

  n(x1, x2, x3)ds (10.11)

Figure 10.5 illustrates this more general situation, showing an arbitrary ray 
of light going from one point P1 to another point P2 in a medium of variable 
refractive index.

Here, any trajectory of light is given by a curve s(σ) = (x1(σ), x2(σ), x3(σ)). For 
each value of the parameter σ there exists a point in space, so that when σ 
varies continuously between the values σ1 and σ2 there exists a space curve 
that mathematically represents the light ray. We then have P1 = s(σ1) = (x1(σ1), 
x2(σ1), x3(σ1)) and P2 = s(σ2) = (x1(σ2), x2(σ2), x3(σ2)). The infi nitesimal curve 
length ds is given by

 ds =   √ 
______________

  d x 1  
2  + d x 2  

2  + d x 3  
2    =   √ 

_____________________

    (   dx1 ___ dσ   )  
2
 +   (   dx2 ___ dσ   )  

2
  +   (   dx3 ___ dσ   )  

2
    dσ (10.12)

and therefore the optical path length along the curve s from point P1 to point 
P2 is given by

 S =   ∫ σ1
  

σ2

  n(x1, x2, x3)  √ 
____________________

    (   dx1 ___ 
dσ   )  

2

 +   (   dx2 ___ 
dσ   )  

2

 +   (   dx3 ___ 
dσ   )  

2

    dσ (10.13)

FIGURE 10.4
In general, the path that light follows is not necessarily the one that minimizes travel time. 
 Mirror M1 is an ellipse with foci P1 and P2 and the light travel time (and distance) is the same for 
all points A1 on the mirror. Mirror M2, however, is inside the ellipse and the refl ection at point 
A corresponds to a maximum in travel time and distance. Finally, mirror M3 is exterior to the 
ellipse and the refl ection at point A corresponds to a minimum in travel time and distance.
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A2
A1
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In the preceding examples, condition dS = 0 was used to describe the light 
rays in the case in which the varied path depended only on a single param-
eter x. In general, however, the varied path will have some complex shape 
that is no longer a function of only one parameter x, but is rather another 
independent curve that is very close to the fi rst one. The variation to be con-
sidered in this more general case is then δS = 0, where δS = S2 − S1 and S1 is 
the optical path length for the light ray and S2 the optical path length for the 
varied path. This more general situation is depicted in Figure 10.6.

This condition (δS = 0) means that the optical path length is stationary 
along a light ray. In mathematical terms, we have

 δS = δ  ∫ P1
  

P2
  n ds = 0 (10.14)

FIGURE 10.5
In general, light will travel in a medium wherein the refractive index changes from point to 
point and light rays will take the shape of general curves.
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FIGURE 10.6
If a light ray between points P1 and P2 has an optical path length S1 and a varied path that is 
very close to it has an optical path length S2, then the variation δS = S2 − S1 = 0.
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From Equation 10.13, we can see that expression 10.14 can also be written as

 δ  ∫ σ1
  

σ2

  n(x1, x2, x3)   √ 
_____________

   x′  1  
2  +  x′  2  

2  +  x′  3  
2    dσ = 0 ⇔ δ  ∫ σ1

  
σ2

  L (x1, x2, x3,  x′  1   ,  x′  2   ,  x′  3   ) dσ = 0 
(10.15)

with  x′  k    = dxk/dσ, where k = 1, 2, 3 and function L is defi ned by this expres-
sion. An example of a geometrical interpretation of the principle defi ned by 
expression 10.14 is represented in Figure 10.7 for the case of refraction on a 
surface.2 A light ray coming from a point P1 refracts at a point A on the sur-
face and is redirected toward another point P2. The optical path length for 
this ray is

 S1 =   ∫ P1
  

P2
  n ds = n1s1 + n2s2 (10.16)

FIGURE 10.7
Light ray path P1AP2 and varied path P1BP2 for the case of refraction on a surface.
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where s1 and s2 are, respectively, the distances between P1 and A and A and 
P2, and n1 and n2 are the refractive indices above and below the surface, 
respectively. 

The optical path length for path P1AP2 is S1. Now if point A is moved 
slightly in the direction δs tangent to the surface, another (varied) path P1BP2 
is obtained. This path, in general, is not a possible light ray, but its optical 
path length S2 is such that δS = S2 − S1 = 0. Path P1AP2 will only be a possible 
light ray if this condition is met.

For the varied path P1BP2, the variation in optical path length is δs1 = i ⋅ δs 
before refraction and δs2 = −r ⋅ δs after refraction. Unit vector i points in the 
direction of the incident ray P1A and unit vector r points in the direction 
of the refracted ray AP2. The variation in the optical path length from path 
P1AP2 to path P1BP2 is then

 δS = n1δs1 + n2δs2 = n1i ⋅ δs − n2r ⋅ δs (10.17)

where δs is an infi nitesimal vector tangent to the surface. It is also perpendic-
ular to the surface (unit vector) normal n. We can therefore write δs ⋅ kn = 0, 
where k is a constant. Since we also have δS = 0, we obtain

 (n1i − n2r) ⋅ δs = kn ⋅ δs ⇔ n1i − n2r = kn (10.18)

and therefore i, r, and n, that is, the incident ray, refracted ray, and surface 
normal are coplanar. We can therefore obtain the direction of the refracted 
ray r as a linear combination of the direction of the incident ray i and the 
normal to the surface n as

 r = λi + µn (10.19)

where λ and µ are scalars. Taking the cross product of both terms in Equa-
tion 10.18, and noting that n × n = 0 we obtain Snell’s law:

 n1i × n − n2r × n = kn × n ⇔ n1i × n = n2r × n ⇔ n1 sin α1 = n2 sin α2 

  (10.20)

where α1 and α2 are the angles that the incident and refracted rays make to 
the normal to the surface. Although the geometry shown in Figure 10.7 is 
2-D, the same calculations and results still hold in 3-Ds. In the case of refl ec-
tion, Equation 10.19 is also valid and Equation 10.20 would be α1 = α2.

10.2 Lagrangian and Hamiltonian Formulations

We start with a mathematical construction and later apply the results to the 
particular case of optics. We defi ne

 S =   ∫ P1
  

P2
  L (x1, x2, σ,  x′  1   ,  x′  2   ) dσ  (10.21)
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as the integral of a given function L (x1, x2, σ,  x′  1    ,  x′  2   ) along a path between the 
points P1 and P2. In this expression,  x′  k    = dxk/dσ. We want to fi nd the path 
for which

 δS = 0 ⇔ δ  ∫ P1
  

P2
  L (x1, x2, σ,  x′  1   ,  x′  2   ) dσ = 0 (10.22)

Suppose that we have a given path on the plane x1x2 parameterized by c1(σ) = 
(x1(σ), x2(σ)), where σ is some parameter with σ1 ≤ σ ≤ σ2. Let us further con-
sider that this path starts at point P1 = c1(σ1) and ends at point P2 = c1(σ2). We 
defi ne S1 as the integral of function L along this path c1 as

 S1 =   ∫ σ1
  

σ2

  L (x1, x2, σ,  x′  1   ,  x′  2   ) dσ (10.23)

where x1(σ) and x2(σ) now defi ne the curve c1. For calculating the variation δS, 
we consider a different path c2 that deviates slightly from c1 but also starts at 
P1 and ends at P2 as shown in Figure 10.8. A new path is given by c2 (σ) = ( x 1 * (σ), 
 x 2 *(σ)) also with σ1 ≤ σ ≤ σ2. These two paths are related by

 c2(σ) = c1(σ) + (δx1(σ), δx2(σ)) (10.24)

For example, point Q1 = c1(σQ) on the curve c1 corresponds to point Q2 = 
c2(σQ) on the curve c2 with Q2 = Q1 + (δx1(σQ), δx2(σQ)). We now write

 δx1(σ) = η1(σ) δα 

 δx2(σ) = η2(σ) δα 
(10.25)

in which δα is an infi nitesimal constant and η1(σ) and η2(σ) are any two func-
tions of σ. To ensure that c2 starts at P1 we must make η1(σ1) = η2(σ1) = 0. To 
assure that c2 ends at P2 we must have η1(σ2) = η2(σ2) = 0.

FIGURE 10.8
Path c1 for a light ray between two points P1 and P2 and a separate path c2 between the same 
two points. Path c2 can be related to c1 by c2 = c1 + η δα in which η = (η1(σ), η2(σ)) with η(σ1) = 
η(σ2) = (0, 0) and δα is an infi nitesimal constant.
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The σ derivative of expression 10.25, that is, δx1 = η1δα and δx2 = η2δα can 
be written in the following form:

 δ x′  1    =  η′  1    δα 

 δ x′  2    =  η′  2    δα 
(10.26)

The integral S of Equation 10.21 for the path c2 is given by

 S2 =   ∫ σ1
  

σ2

    ( L +   ∂L ___ ∂x1
   η1 δα +   ∂L ___ ∂x2

   η2 δα +   ∂L ___ ∂ x′  1   
    η′  1    δα +   ∂L ___ ∂ x′  2   

    η′  2    δα )  dσ (10.27)

Therefore, the variation of S is given by

 δS = S2 − S1 = δα  ∫ σ1
  

σ2

   (   ∂L ___ ∂x1
   η1 +   ∂L ___ ∂ x′  1   

    η′  1    +   ∂L ___ ∂x2
   η2 +   ∂L ___ ∂ x′  2   

    η′  2    )  dσ (10.28)

We can now write (k = 1, 2)

   ∫ 
σ1

  
σ2  

   (   ∂L ____ ∂ x′  k    
    η′  k    )  dσ =   ∫ 

σ1

  
σ2

    [  d ___ 
dσ    (   ∂L ___ ∂ x′  k   

   ηk )  −   d ___ 
dσ    (   ∂L ____ ∂ x′  k    

   ) ηk]  dσ 

 = −  ∫ 
σ1

  
σ2

    [  d ___ 
dσ    (   ∂L ____ 

∂ x′  k    
   )  ηk]  dσ (10.29)

since ηk(σ1) = ηk(σ2) = 0. The expression for δS can then be written as

 δS = δα   ∫ 
σ1

  
σ2

    (  [  ∂L ___ ∂x1
   −   d ___ 

dσ    (   ∂L ___ ∂ x′  1   
   ) ]  η1 +  [  ∂L ___ ∂x2

   −   d ___ 
dσ    (   ∂L ___ 

 ∂x′  2   
   ) ]  η2 )  dσ (10.30)

Considering Equation 10.22 that δS = 0 and that it is true for any η1 and η2, 
we can write

   d ___ 
dσ    (   ∂L ___ ∂ x′  1   

   )  =   ∂L ___ ∂x1
   

   d ___ 
dσ    (   ∂L ___ ∂ x′  2   

   )  =   ∂L ___ ∂x2
   

(10.31)

These are the Euler equations for the path (x1(σ), x2(σ)).3–7

The approach described to solve Equation 10.22 is called Lagrangian 
 formulation. We now describe an alternative formulation of the problem, 
called Hamiltonian formulation. We fi rst defi ne

 p1 ≡   ∂L ___ ∂ x′  1   
   

 p2 ≡   ∂L ___ ∂ x′  2   
   

(10.32)
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Each of these quantities is called momentum. The Euler equations 10.31 can 
now be written as

   
dp1 ___ 
dσ   =   ∂L ___ ∂x1

   

   
dp2 ___ 
dσ   =   ∂L ___ ∂x2

   
(10.33)

We now defi ne a new function H by

 H ≡  x′  1    p1 +  x′  2    p2 − L (10.34)

Since L = L (x1, x2, σ,  x′  1    ,  x′  2    ), from expression 10.32 we can obtain

  x′  1     =  x′  1    (x1, x2, p1, p2, σ) 

  x′  2     =  x′  2    (x1, x2, p1, p2, σ) 
(10.35)

and therefore from expression 10.34 we have H = H(x1, x2, p1, p2, σ). We can 
now obtain for the differential of H as follows:3

 dH =  ∑ 
k
         ∂H ___ ∂xk

   dxk +   ∂H ___ ∂pk
   dpk +   ∂H ___ ∂σ   dσ k = 1, 2 (10.36)

However, from the defi nition of H in expression 10.34, we can also obtain for 
the differential of H as follows:

 dH =  ∑ 
k
        x′  k    dpk + pk d x′  k     −   ∂L ___ 

d x′  k   
   d x′  k    −   ∂L ___ 

dxk
   dxk −   ∂L ___ ∂σ   dσ k = 1, 2 (10.37)

Now considering expression 10.32 and the Euler equations 10.33 we obtain

 dH =  ∑ 
k
        x′  k    dpk −  p′  k    dxk −   ∂L ___ ∂σ    dσ k = 1, 2 (10.38)

where  p′  k    = dpk/dσ. Comparing Equation 10.36 with Equation 10.38 we obtain

  x′  k    =   ∂H ___ ∂pk
     p′  k    = −   ∂H ___ ∂xk

   k = 1, 2 

   ∂H ___ ∂σ   = −   ∂L ___ ∂σ   
(10.39)

The differential equations for dx1/dσ, dx2/dσ, dp1/dσ, and dp2/dσ are called 
canonical Hamilton equations in which H is the Hamiltonian.

In the Lagrangian formulation, paths were calculated in space (x1, x2) called 
the confi guration space, defi ned by two second-order differential equations 
called the Euler equations.
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In the Hamiltonian formulation, we have two more variables p1 and p2. 
Paths are now calculated in the space (x1, x2, p1, p2) called a phase space and 
described by four fi rst-order differential equations called canonical  Hamilton 
equations. Each variable p1 and p2 is called momentum.

An alternative way of deriving the canonical Hamilton equations is from 
a modifi ed version of Equation 10.22. We replace L by using expression 10.34 
to obtain

 δ  ∫ P1
  

P2
  ( x′  1   p1 +  x′  2   p2 − H) dσ = 0 (10.40)

Since H = H(x1, x2, p1, p2, σ), Equation 10.40 is a particular case of a more gen-
eral equation of the form:3

 δ  ∫ P1
  

P2
   f(x1, x2, p1, p2, σ,  x′  1   ,  x′  2   ,  p′  1   ,  p′  2   ) dσ = 0 (10.41)

which is the same form as Equation 10.22, only with more variables. The cor-
responding Euler equations are now

   d ___ 
dσ    (   ∂f

 ___ ∂ x′  k   
   )  =   

∂f
 ___ ∂ xk
   k = 1, 2 

   d ___ 
dσ    (   ∂f

 ___ ∂p ′  k   
   )  =   

∂f
 ___ ∂ pk
   k = 1, 2 

(10.42)

In our case, we have f =  x′  1   p1 +  x′  2    p2 − H and therefore ∂f/∂ x′  k    = pk and ∂f/∂xk = 
−∂H/∂xk, and we can write the fi rst group of equations as

  p′  k  
   = −   ∂H ___ ∂xk

   k = 1, 2 (10.43)

However, f does not depend explicitly on  p′  k    and therefore ∂f/∂ p′  k    = 0 so that 
the second group of equations reduces to ∂f/∂pk = 0 or

  x′  k    =   ∂H ___ ∂pk
   k = 1, 2 (10.44)

These two sets of equations correspond to the canonical Hamilton equa-
tions 10.39.

10.3 Optical Lagrangian and Hamiltonian

We now apply the mathematical results obtained earlier to the particular 
case of optics. Consider a ray of light traveling between points P1 and P2. The 
time T taken by the light ray to travel from point P1 to point P2 is given by

 T =   ∫ P1
  

P2
   dt = T2 − T1 (10.45)
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that is, the time of arrival, (T2), minus the time of departure, (T1). A dif-
ferent situation occurs when, instead of knowing the time of departure, 
T1, and the time of arrival, T2, we know the path of the light ray and the 
speed of light at each point. We can now write ds = v dt in which ds is an 
infi nitesimal displacement, v the speed of light in the medium in which it is 
propagating, and dt an infi nitesimal interval of time. Expression 10.45 can 
then be written as

 T =   1 __ c     ∫ P1
  

P2
     c __ v     ds __ 

dt
   dt =   1 __ c     ∫ P1

  
P2

   n ds (10.46)

where n = c/v is the refractive index and c the speed of light in vacuum. 
We are now calculating T by accumulating (integrating) the infi nitesimal 
times dt taken by the light to cover the infi nitesimal distances ds between the 
points P1 and P2.

The optical path length S of a light ray traveling between the two points P1 
and P2 is given by the integral

 S =   ∫ P1
  

P2
   n ds (10.47)

in which n(x1, x2, x3) is the refractive index and ds an infi nitesimal displace-
ment along the path of the light ray. From the defi nitions of S and T, it can be 
seen that they are related by the expression S = cT; therefore, if one of them 
is known, the other can be obtained. The expression for S is, however, totally 
geometrical since time does not appear in it.

Assume that light propagates in a direction in which x3 increases, so that 
we can take x3 as a parameter and make x1 = x1(x3) and x2 = x2(x3). The tra-
jectories for the light rays can be written as s = (x1(x3), x2(x3), x3). The optical 
path length can then be written as

 S =   ∫       n ds =   ∫       n   ds ___ 
dx3

   dx3 =   ∫       L dx3 (10.48)

where L is given by

 L = n  ds ___ 
dx3

   = n  
  √ 

______________
  d x 1  

2  + d x 2  
2  + d x 3  

2   
  _______________ 

dx3
   = n  √ 

____________
 1 +  x′  1  

2  +  x′  2  
2    (10.49)

where  x′  1    = dx1/dx3 and  x′  2    = dx2/dx3. Considering that n = n(x1, x2, x3), it can be 
seen that L = L (x1, x2, x3,  x′  1   ,  x′  2   ). This function L is known as the  Lagrangian 
of the optical system. The laws of geometrical optics can be obtained from 
Fermat’s principle, which states that

 δS = 0 ⇔ δ  ∫ P1
  

P2
   n ds = 0 (10.50)
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or

 δ  ∫ P1
  

P2
  L (x1, x2, x3,  x′  1   ,  x′  2   ) dx3 = 0 (10.51)

As we can see, Equation 10.51 has the same form as Equation 10.23. The main 
difference is that, instead of parameter σ we now have coordinate x3 and 
therefore the paths defi ned by (x1(x3), x2(x3), x3) are light rays in 3-D space. 
The Euler equations 10.31 now become

    d ___ 
dx3

    (   ∂L ___ ∂ x′  1   
   )  =   ∂L ___ ∂x1

   

   d ___ 
dx3

    (   ∂L ___ ∂ x′  2   
   )  =   ∂L ___ ∂x2

   
(10.52)

This is the Lagrangian formulation of geometrical optics.
We now consider the Hamiltonian formulation. Since dx3/dx3 =  x′  3    = 1, 

we can also write L = n  √ 
______________

   x′  1  
2  +  x′  2  

2  +  x′  3  
2    . From the defi nition of pk in expres-

sion 10.32 and also defi ning p3 = ∂L/∂ x′  3   , we can write

pk =   ∂L ____ ∂ x′  k    
   = n    x′  k     ______________  

  √ 
_____________

   x′  1  
2  +  x′  2  

2  +  x′  3  
2   
   = n   

dxk  _______________  
  √ 

______________
  d x 1  

2  +  dx 2  
2  +  dx 3  

2   
   = n   

dxk ___ 
ds

   k = 1, 2, 3 (10.53)

or in the vector form p = n ds/ds. To interpret the physical meaning of vector 
p, we consider an infi nitesimal displacement ds along a light ray. It can be 
written in terms of its components along the x1, x2, and x3 axes, as presented 
in Figure 10.9.

 ds = (dx1, dx2, dx3) = (ds cos α1, ds cos α2, ds cos α3) (10.54)

with ds = �ds� and α1, α2, and α3 being the angles that displacement ds makes 
with the axes x1, x2, and x3, respectively.

Multiplying by the refractive index gives

 n   ds ___ 
ds

   = (n cos α1, n cos α2, n cos α3) (10.55)

From expression 10.53, the optical momentum vector p is also given by

 p = n   ds ___ 
ds

   =  ( n   
dx1 ___ 
ds

  , n   
dx2 ___ 
ds

  , n   
dx3 ___ 
ds

   )  = (p1, p2, p3) (10.56)

This vector is such that �p� = n, or

  p 1  
2  +  p 2  

2  +  p 3  
2  = n2 (10.57)
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and it points along the direction of propagation of the light. It is tangent to 
the light ray at each point. From Equations 10.55 and 10.56 we can also write 
p = n(cos α1, cos α2, cos α3) = nt with �t� = 1. Note that a unit vector projected 
onto the x1, x2, and x3 axes has coordinates (cos α1, cos α2, cos α3), and therefore 
cos2 α1 + cos2 α2 + cos2 α3 = 1.

The Lagrangian L defi ned by Equation 10.49 can be rewritten as

 L = n  √ 
____________

  1 +  x′  1  
2  +   x′  2  

2    =  x′  1      
n x′  1    ____________  

  √ 
___________

 1 +  x′  1  
2  +  x′  2  

2   
    +  x′  2      

n x′  2    ____________  
  √ 

___________
 1 +  x′  1  

2  +  x′  2  
2   
     

 + n   1 ____________  
  √ 

___________
 1 +  x′  1  

2  +  x′  2  
2   
   (10.58)

or, having in consideration expression 10.53:

 L =  x′  1   p1 +  x′  2   p2 + p3 (10.59)

Comparing expression 10.59 with expression 10.34 we can see that

 H = −p3 = −n   1 _____________  
  √ 

____________
 1 +  x′  1  

2  +  x′  2  
2   
   (10.60)

x3

x1

x2

dx3

dx2

dx1

�1

�2

�3 ds

Ray of
light

FIGURE 10.9
A displacement ds along a light ray can be written as ds = (dx1, dx2, dx3) = (ds cos α1, ds cos α2, 
ds cos α3).
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We have n > 0 and also p3 > 0 and therefore H < 0. From expression p3 > 0 
it can be seen that we are considering rays of light with cos α3 > 0. From 
Figure 10.9, it can be seen that we must have 0 ≤ αk ≤ π, and therefore 
cos α3 > 0 implies that 0 ≤ α3 < π/2, which confi rms the preceding assump-
tion that the rays of light are propagating through the system in the direction 
of increasing x3.

We have seen earlier (expression 10.57) that  p 1  
2  +  p 2  

2  +  p 3  2  = n2 and therefore 
p3 =   √ 

___________
 n2 −  p 1  

2  −  p 2  
2    since p3 > 0. Since H = −p3, we can write

 H = −  √ 
___________

 n2 −  p 1  
2  −  p 2  

2    (10.61)

We can fi nally write, combining Equation 10.61 with Equation 10.39:8,9

   
dx1 ___ 
dx3

   =   ∂H ___ ∂p1
      

dp1 ___ 
dx3

   = –   ∂H ___ ∂x1
   

   
dx2 ___ 
dx3

   =   ∂H ___ ∂p2
      

dp2 ___ 
dx3

   = –   ∂H ___ ∂x2
   (10.62)

 H = −  √ 
___________

 n2 −  p 1  
2  −  p 2  

2    

Since n = n(x1, x2, x3), we have H = H(x1, x2, x3, p1, p2) and H depends explicitly 
on parameter x3.

10.4 Another Form for the Hamiltonian Formulation

Let us now consider a more general situation than the one described by 
Equation 10.22 and add one more dimension x3 to the problem so that we 
now have

 δ  ∫ P1
  

P2
   L (x1, x2, x3, σ,  x′  1   ,  x′  2   ,  x′  3   ) dσ = 0 (10.63)

where the path between points P1 and P2 is now parameterized as c(σ) = (x1(σ), 
x2(σ), x3(σ)). The Euler equations 10.31 of the Lagrangian formulation become

   d ___ 
dσ    (   ∂L ___ ∂ x′  1   

   )  =   ∂L ___ ∂x1
   

   d ___ 
dσ    (   ∂L ___ ∂ x′  2   

   )  =   ∂L ___ ∂x2
   (10.64)

   d ___ 
dσ    (   ∂L ___ ∂ x′  3   

   )  =   ∂L ___ ∂x3
   

For the Hamiltonian formulation, we defi ne the optical momentum similarly 
to what we did earlier in expression 10.32 as 

 pk ≡   ∂L ___ ∂ x′  k   
   k = 1, 2, 3 (10.65)
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And if we also defi ne a new Hamiltonian P similar to what we did earlier in 
expression 10.34 as

 P ≡  x′  1   p1 +  x′  2   p2 +   x′  3   p3 − L (10.66)

the canonical Hamilton equations 10.39 now become

   
dx1 ___ 
dσ   =   ∂P ___ ∂p1

      
dp1 ___ 
dσ   = −   ∂P ___ ∂x1

   

   
dx2 ___ 
dσ   =   ∂P ___ ∂p2

      
dp2 ___ 
dσ   = −   ∂P ___ ∂x2

   

   
dx3 ___ 
dσ   =   ∂P ___ ∂p3

      
dp3 ___ 
dσ   = −   ∂P ___ ∂x3

   
(10.67)

   dP ___ ∂σ   = −   ∂L ___ ∂σ   

where P = P(x1, x2, x3, σ, p1, p2, p3). The differential equations for dxk/dσ and 
dpk/dσ are the canonical Hamilton equations, in which P is the Hamiltonian. 
These equations can also be obtained by replacing Equation 10.66 into Equa-
tion 10.63 to obtain

 δ  ∫ P1
  

P2
   ( x′  1   p1 +  x′  2    p2 +  x′  3   p3 − P) dσ = 0 (10.68)

which has the same form as Equation 10.40 with a new spatial variable x3 and 
a new momentum p3.

We may now apply this result to optics. Now, instead of considering coor-
dinate x3 as the parameter for the path of the light rays, we consider a generic 
parameter σ. We then have

 L = n   ds ___ 
dσ   = n   

  √ 
______________

  d x 1  
2  + d x 2  

2  + d x 3  
2   
  _______________ 

dσ   = n(x1, x2, x3)  √ 
_____________

   x′  1  
2  +  x′  2  

2  +  x′  3  
2    (10.69)

where xk = xk(σ) and  x′  k    = dxk/dσ. Therefore, we obtain a Lagrangian

 L (x1, x2, x3,  x′  1   ,  x′  2   ,  x′  3   ) (10.70)

This is a particular case of Equation 10.63 in which the Lagrangian L does 
not depend explicitly on parameter σ. We then have ∂L/∂σ = 0 and therefore 
from the last equation of Equation 10.67 we get ∂P/∂σ = 0, and therefore P 
also does not depend explicitly on σ and we have

 P = P(x1, x2, x3, p1, p2, p3) (10.71)

Now, from Equation 10.69 we can write

 pk =   ∂L ____ ∂ x′  k    
   = n    x′  k    _____________  

  √ 
_____________

   x′  1  
2  +  x′  2  

2  +  x′  3  
2   
   k = 1, 2, 3 (10.72)
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and therefore

 L =  x′  1      
n x′  1    ______________  

  √ 
_____________

   x′  1  
2  +  x′  2  

2  +  x′  3  
2   
   +  x′  2      

n x′  2    ______________  
  √ 

_____________
   x′  1  

2  +  x′  2  
2  +  x′  3  

2   
   +  x′  3      

n x′  3    ______________  
  √ 

_____________
   x′  1  

2  +  x′  2  
2  +  x′  3  

2   
   (10.73)

or

 L =  x′  1   p1 +  x′  2   p2 +  x′  3   p3 (10.74)

From Equation 10.66, we then get P = 0 which, together with Equation 10.71, 
becomes

 P(x1, x2, x3, p1, p2, p3) = 0 (10.75)

From Equation 10.72, we can see that

  p 1  
2  +  p 2  

2  +  p 3  
2  − n2(x1, x2, x3) = 0 (10.76)

The optical Hamiltonian is chosen as

 P =  p 1  
2  +  p 2  

2  +  p 3  
2  − n2(x1, x2, x3) = 0 (10.77)

Expression 10.77 for P together with all except the last equation of 10.67 forms 
a set of equations that describe the light rays:5,10–12

   
dx1 ___ 
dσ   =   ∂P ___ ∂p1

      
dp1 ___ 
dσ   = −   ∂P ___ ∂x1

   

   
dx2 ___ 
dσ   =   ∂P ___ ∂p2

      
dp2 ___ 
dσ   = −   ∂P ___ ∂x2

   

   
dx3 ___ 
dσ   =   ∂P ___ ∂p3

      
dp3 ___ 
dσ   = −   ∂P ___ ∂x3

   
(10.78)

 P =  p 1  
2  +  p 2  

2  +  p 3  
2  − n2(x1, x2, x3) = 0 

where P is a new Hamiltonian for the system. In this case, σ is a parameter 
along the trajectories of the light rays.

Note that the choice of P is not unique.13 For example, we have a function 
f(x) such that f(x) = 0, only if x = 0 and that f′(x) ≠ 0 with f′ = df/dx. We may 
now choose f(P) as a new Hamiltonian. Replacing this in expression 10.78, 
we obtain

   
dxk ___ 
dσ   =   

∂(  f(P))
 ______ ∂pk

   = f′(P)   ∂P ___ ∂pk
   (10.79)

Since for the light rays we must have P = 0, we can write

   
dxk ___ 
dσ   = f′(0)   ∂P ___ ∂pk

   (10.80)
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We can now change coordinates to get

   
dxk ___ 
dτ     dτ ___ 

dσ 
   = f′(0)   ∂P ___ ∂pk

   (10.81)

And if we make dτ/dσ = f′(0), we obtain

   
dxk ___ 
dτ   =   ∂P ___ ∂pk

   (10.82)

which are the same as the original equations, just with a different param-
eterization. The same can be done for the equations for dpk/dσ. For this new 
Hamiltonian f(P), we also have f(P) = 0 since f(0) = 0 and P = 0.

To verify that the systems of equations 10.62 and 10.78 are equivalent, 
the equation P = 0 can be used to eliminate two of the other equations. We 
then have

 P =  p 3  
2  − (n2 −  p 1  

2  −  p 2  
2 ) =  p 3  

2  − H2 = 0 ⇔ p3 = ±H (10.83)

where H2 = n2 −  p 1  
2  −  p 2  

2 . Of the two possible solutions of p3 = ±H, we choose 
(the reason for which will be presented after the derivation of Equation 10.93)

 p3 = −H (10.84)

Suppose that light travels along the x3 axis in the direction of increasing x3, 
equivalent to p3 > 0. We should then have H < 0, so that

 H = −  √ 
____________________

  n2(x1, x2, x3) −  p 1  
2  −  p 2  

2    (10.85)

H is called the Hamiltonian and H = H(x1, x2, x3, p1, p2). From expression 10.78, 
we then have

   
dx3 ___ 
dσ   =   ∂P ___ ∂p3

   =   
∂( p 3  

2  − H2)
 __________ ∂p3

   = 2p3 = −2H (10.86)

Expression 10.86 can now be used in the calculation of

   
dx2 ___ 
dσ   =   

∂( p 3  
2  − H2)

 __________ ∂p2
   = −2H   ∂H ___ ∂p2

   ⇔   
dx2 ___ 
dσ   =   

dx3 ___ 
dσ     ∂H ___ ∂p2

   (10.87)

so that

   
dx2 ___ 
dx3

   =   ∂H ___ ∂p2
   (10.88)

Similarly, we obtain

   
dx1 ___ 
dx3

   =   ∂H ___ ∂p1
   (10.89)
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We can now make similar calculations for the remaining expressions of 
10.78. We then have

   
dp3 ___ 
dσ   = −   ∂P ___ ∂x3

   = 2H   ∂H ___ ∂x3
   = −  

dx3 ___ dσ     ∂H ___ ∂x3
   (10.90)

so that

   
dp3 ___ 
dx3

   = −   ∂H ___ ∂x3
   ⇔   dH ___ 

dx3
   =   ∂H ___ ∂x3

   (10.91)

Similarly, we can further calculate

   
dp2 ___ 
dσ   = −   ∂P ___ ∂x2

   = 2H   ∂H ___ ∂x2
   = −  

dx3 ___ 
dσ     ∂H ___ ∂x2

   ⇔   
dp2 ___ 
dx3

   = –    ∂H ___ ∂x2
   (10.92)

and also

   
dp1 ___ 
dx3

   = −  ∂H ___ ∂x1
   (10.93)

Equations 10.85, 10.88, 10.89, 10.92 and 10.93 can now be put together as the 
system of Equations 10.62. It can be noted that, if in Equation 10.84 we had 
chosen p3 = H instead of p3 = −H, the equations for dxk/dx3 would be of the 
form dxk/dx3 = −∂H/dpk and those for dpk/dx3 would be of the form dpk/dx3 = 
∂H/dxk instead of the form of Equation 10.62.

From expression 10.85 for H, we have H = H(x1(x3), x2(x3), x3, p1(x3), p2(x3)). 
The total x3 derivative of H is then given as

   dH ___ 
dx3

   =   ∂H ___ ∂x1
     
dx1 ___ 
dx3

   +    ∂H ___ ∂x2
     
dx2 ___ 
dx3

   +    ∂H ___ ∂p1
     
dp1 ___ 
dx3

   +    ∂H ___ ∂p2
     
dp2 ___ 
dx3

   +    ∂H ___ ∂x3
    (10.94)

By using Equation 10.62, we obtain

   dH ___ 
dx3

   =   ∂H ___ ∂x1
     
dx1 ___ 
dx3

   +    ∂H ___ ∂x2
     
dx2 ___ 
dx3

   −   
dx1 ___ 
dx3

     ∂H ___ ∂x1
   −   

dx2 ___ 
dx3

     ∂H ___ ∂x2
   +   ∂H ___ ∂x3

   =   ∂H ___ ∂x3
   (10.95)

Equation 10.95 is similar to Equation 10.91. It can be seen that Equation 10.95 
is implicitly contained in Equation 10.62 and thus it need not be included in 
this set.

10.5 Change of Coordinate System in the Hamilton Equations

The general equation

 δ  ∫       L dσ = 0 ⇔ δ  ∫ P1
  

P2
   ( x′  1   p1 +  x′  2   p2 +  x′  3    p3 − P) dσ = 0 (10.96)
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in the particular case of optics, corresponds to the Fermat’s principle and 
results in the canonical Hamilton equations 10.78:

   
dx1 ___ 
dσ   =   ∂P ___ ∂p1

      
dp1 ___ 
dσ   = −   ∂P ___ ∂x1

   

   
dx2 ___ 
dσ   =   ∂P ___ ∂p2

      
dp2 ___ 
dσ   = −   ∂P ___ ∂x2

   (10.97)

   
dx3 ___ 
dσ   =   ∂P ___ ∂p3

      
dp3 ___ 
dσ   = −   ∂P ___ ∂x3

   

subject to the condition that

 P =  p 1  
2  +  p 2  

2  +  p 3  
2  − n2(x1, x2, x3) = 0 (10.98)

Now we consider a change of coordinates in the Hamiltonian formula-
tion defi ned by Equations 10.97 and 10.98. Since we have six independent 
 variables—x1(σ), x2(σ), x3(σ), p1(σ), p2(σ), and p3(σ)—the change of coordinates 
will, in general, be given by4

 i1 = i1(x1, x2, x3, p1, p2, p3, σ) 

 i2 = i2(x1, x2, x3, p1, p2, p3, σ) 

 i3 = i3(x1, x2, x3, p1, p2, p3, σ) 

 u1 = u1(x1, x2, x3, p1, p2, p3, σ) 
(10.99)

 u2 = u2(x1, x2, x3, p1, p2, p3, σ) 

 u3 = u3(x1, x2, x3, p1, p2, p3, σ) 

where i1, i2, and i3 are the new spatial coordinates and u1, u2, and u3 the new 
momenta. We want the equations of the light rays in these new coordinates 
to have the same form as Equation 10.97, so the new coordinates defi ned by 
Equations 10.99 must also verify

 δ  ∫ P1
  

P2
   ( i′  1   u1 +  i′  2   u2 +  i′  3   u3 − Q) dσ = 0 (10.100)

where  i′  k    = dik/dσ and Q is the new Hamiltonian for these new variables. 
Equation 10.96 results in Equations 10.97 and 10.98. Also, Equation 10.100 that 
has the same form as Equation 10.96 merely with new variables, will result 
in equations of the same form as Equations 10.97 and 10.98, but with the new 
variables: x1 → i1, x2 → i2, x3 → i3, p1 → u1, p2 → u2, p3 → u3, and P → Q.

Equations 10.96 and 10.100 may be combined to give3,4

 δ  ∫ P1
  

P2
    [( x′ 1  p1 +  x′ 2  p2 +  x′ 3  p3 − P) − ( i′  1   u1 +  i′  2   u2 +  i′  3   u3 − Q)]  dσ = 0

 
(10.101)

The condition ∫g dσ = 0 is, in general, satisfi ed by g = dG/dσ, where G is an 
arbitrary function.3,4 Applying this result to Equation 10.101 gives

 ( x′ 1  p1 +  x′ 2  p2 +  x′ 3  p3 − P) − ( i′  1   u1 +  i′  2   u2 +  i′  3   u3 − Q) =   dG ___ 
dσ   (10.102)
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384 Introduction to Nonimaging Optics

The transformations of coordinates fulfi lling Equation 10.102 are called 
canonical, and the equations of the light rays in these new coordinates ik and 
uk (k = 1, 2, 3) have the same form as Equation 10.97.

In general, the left-hand side of Equation 10.102 is a function of xk, pk, ik, uk, 
and σ, where k = 1, 2, 3. Function G would therefore, in general, be a func-
tion of all the 13 of these variables. They are, however, related by the six 
 equations in Equation 10.99 so that we can reduce the number of indepen-
dent  variables to seven.4 Depending on whether we choose the old or the 
new spatial  coordinates and the old and the new momenta as the parameters 
of G, we obtain different types of generating functions.

Consider a particular case of function G given by

 G = G2(x1, x2, x3, u1, u2, u3) − ∑ 
k=1

  
3

   uk ik (10.103)

Function G2 is called a generating function of type 2. Inserting it into Equa-
tion 10.102 gives

 (  ∑ 
k=1

  
3

    x′  k 
    pk − P )  −  (  ∑ 

k=1
  

3

    i′  k 
    uk − Q )  =   d ___ 

dσ    ( G2(x1, x2, x3, u1, u2, u3) − ∑ 
k=1

  
3

   uk ik )  (10.104)

and

  (  ∑ 
k=1

  
3

   pk −   
∂G2 ____ ∂xk

   )  dxk +  (  ∑ 
k=1

  
3

   ik −   
∂G2 ____ ∂uk

   )  duk + (Q − P) dσ = 0  (10.105)

Since xk, uk, and σ are independent variables, we have

 pk =   
∂G2 ____ xk

  

 ik =   
∂G2 ____ ∂uk

   (10.106)

 Q = P 

with k = 1, 2, 3. We now choose a specifi c function G2 given by 

 G2 = G2(x1, x2, x3, u1, u2, u3)

 = u1i1(x1, x2, x3) + u2i2(x1, x2, x3) + u3i3(x1, x2, x3) (10.107)

and from Equation 10.106, we obtain

 pk =   
∂G2 ____ ∂xk

   = u1   
∂i1 ___ ∂xk

   + u2   
∂i2 ___ ∂xk

   + u3   
∂i3 ___ ∂xk

   (10.108)
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or in the vector form

 p = u1∇i1 + u2∇i2 + u3∇i3 (10.109)

Also, since

 G2 =  ∑ 
k=1

  
3

   uk ik (10.110)

we have ik = ∂G2/∂uk, with k = 1, 2, 3 or

 i1 = i1(x1, x2, x3)

 i2 = i2(x1, x2, x3)

 i3 = i3(x1, x2, x3)  

(10.111)

and this set of equations gives us the transformation from the old  coordinates 
(x1, x2, x3) to the new coordinates (i1, i2, i3) called a point transformation 
because it involves only the spatial coordinates and not the momenta.

The transformations between G2 and G given by Equation 10.103, and that 
between the Lagrangian and the Hamiltonian in Equation 10.66 are called 
Legendre transformations.

Since the transformations of coordinates between x1, x2, x3, p1, p2, p3 and i1, 
i2, i3, u1, u2, u3 is canonical, it preserves the form of Equation 10.97. In the same 
way as from Equation 10.96 we get Equations 10.97 and 10.98, from Equation 
10.100 we get, since Q = P,

   
di1 ___ 
dσ   =    ∂P ___ ∂u1

      
d u 1  ___ 
dσ   = −   ∂P ___ ∂i1

   

   
di2 ___ 
dσ   =    ∂P ___ ∂u2

      
du2 ___ 
dσ   = −   ∂P ___ ∂i2

   
(10.112)

   
di3 ___ 
dσ   =    ∂P ___ ∂u3

      
du3 ___ 
dσ   = −   ∂P ___ ∂i3

   

 P = p ⋅ p − n2 = 0

We can now rewrite the expression for the optical momentum p as

 p = u1 �∇i1�   
∇i1 _____ �∇i1�

    + u2 �∇i2�   
∇i2 _____ �∇i2�

    + u3 �∇i3�   
∇i3 _____ �∇i3�

    (10.113)

or

 p = u1a1e1 + u2a2e2 + u3a3e3  (10.114)

with ak = �∇ik� and ek = ∇ik/�∇ik�. Vectors e1, e2, and e3 form a basis of unit 
vectors. This geometry is shown in Figure 10.10 for the 2-D case. It should be 
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386 Introduction to Nonimaging Optics

noted that, since ik = ik(x1, x2, x3) and ak = �∇ik�, we have ak = ak(x1, x2, x3) or, 
writing x1, x2, and x3 as functions of i1, i2, and i3 by using Equation 10.111 we 
have ak = ak(i1, i2, i3).

We now further restrict the transformation of coordinates in Equation 10.111 
to the case in which vectors e1, e2, and e3 are orthogonal, that is,

 ∇i1 ̇  ∇i2  = ∇i2 ̇  ∇i3 = ∇i1 ̇  ∇i3 = 0 (10.115)

Vector ∇i1 is perpendicular to the surface i1 = constant, as shown in Fig-
ure 10.11. If, instead of having i1 as constant, both i2 and i3 are kept constant 
simultaneously, we obtain a line along which only i1 varies, called an i1-line. 
Such a line is perpendicular to the surface i1 = constant. Vector ∇i1 is tangent 
to the i1-line. Similar conclusions can be drawn for i2 and i3.

This case in which vectors e1, e2, and e3 form an orthogonal unit basis is 
presented in Figure 10.12 for 2-D geometry. Note that, in general, the i1- and 
i2-lines, and the light rays will be curved.

From the last expression of 10.112, we have �p� = n. Multiplying expression 
10.114 by 1/n gives

   
p
 ___ 

�p�
   =   

u1a1 ____ n   e1 +   
u2a2 ____ n   e2 +   

u3a3 ____ n   e3 (10.116)

where p/�p� is a unit vector. Thus, we can conclude that u1a1/n is the direction 
cosine of the angle α1 that the vector p makes with the vector e1.  Similarly, 
u2a2/n and u3a3/n are the direction cosines of the angles α2 and α3 that the 
vector p makes with the vectors e2 and e3:

   
u1a1 ____ n   = cos α1   u2a2 ____ n   = cos α2   u3a3 ____ n   = cos α3 (10.117)

x1

u2a2

u1a1

x2

e1

e2
p

Light
ray

FIGURE 10.10
Components of the optical momentum p in a basis defi ned by unit vectors e1 and e2 in a 2-D 
geometry.
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i1-line

�i1

�i3�i2

Surface
i1 = constant

FIGURE 10.11
A system of three curvilinear orthogonal coordinates i1, i2, and i3. Also shown is the i1-line and 
the surface i1 = constant.

i2-line

i1-line

Light
ray

x1

p1

p2

u2a2
u1a1

x2

e1

e2

p

�1

�2

FIGURE 10.12
Momentum p in a 2-D coordinate system i1, i2 is given as p = u1a1e1 + u2a2e2 in which ak = �∇ik� 
and the unit vectors ek are given as ek = ∇ik/�∇ik�. Since �p� = n, one can conclude that ukak = 
n cos αk, which can now be extended to 3-D systems.
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388 Introduction to Nonimaging Optics

We then obtain

 p = n cos α1e1 + n cos α2e2 + n cos α3e3 (10.118)

With expression 10.114, expression 10.112 can be fi nally written as

   
di1 ___ 
dσ   =   ∂P ___ ∂u1

      
du1 ___ 
dσ   = −   ∂P ___ ∂i1

   

   
di2 ___ 
dσ   =   ∂P ___ ∂u2

      
du2 ___ 
dσ   = −   ∂P ___ ∂i2

   
(10.119)

   
di3 ___ 
dσ   =   ∂P ___ ∂u3

      
du3 ___ 
dσ   = −   ∂P ___ ∂i3

   

 P =  u 1  
2  a 1  

2  +  u 2  
2  a 2  

2  +  u 3  
2  a 3  

2  − n2 = 0 

These are the canonical Hamilton equations for the generalized coordinates. 
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11
Rays and Wave Fronts

11.1 Optical Momentum

The optical momentum vector p at a point Q on a light ray is tangent to the light 
ray at that point Q. We will now see that p is also perpendicular to the surfaces 
S = constant and, therefore, these surfaces are perpendicular to the light rays.

For the Lagrangian L = L(x1, x2, x3,  x′  1   ,  x 2  ′  ) used in Equation 10.51, we can 
write

   dL ___ 
dx3

   =  ∑ 
k=1

  
2

     ∂L ___ ∂xk
    x′  k  

   +   ∂L ___ ∂ x′  k  
       
d x′  k  

  
 ___ 

dx3
   +   ∂L ___ ∂x3

   (11.1)

Considering the Euler Equations 10.52, we get1

   dL ___ 
dx3

   =  ∑ 
k=1

  
2

     d ___ 
dx3

    (   ∂L ___  ∂x′  k  
     )  xk′ +   ∂L ___ ∂ x′  k  

       
dxk′ ___ 
dx3

   +   ∂L ___ ∂x3
   =   d ___ 

dx3
    (  ∑ 

k=1
  

2

     ∂L ____ ∂ x′  k  
 
        x′  k  

 
   )  +   ∂L ___ ∂x3

   (11.2)

and therefore,

   d ___ 
dx3

    ( L −  ∑ 
k=1

  
2

     ∂L ____ ∂ x′  k  
 
        x′  k  

 
   )  =   ∂L ___ ∂x3

   (11.3)

Considering Equation 10.49 and dx3/dx3 =  x′  3  
   = 1, we can now write

 L −  ∑ 
k=1

  
2

     ∂L ___ ∂ x′  k  
      x′  k  

   = n  √ 
_____________

  1 +   x′  1    
2  +   x′  2    

2     

 −  ∑ 
k=1

  
2

  n    
  x′  k    2  _____________  

  √ 
_____________

  1 +   x′  1    2  +   x′  2    2   
    = n  1 _____________  

  √ 
_____________

  1 +  x′  1  
2  +  x′  2  

2    
   (11.4)

This relation can be written as

 L −  ∑ 
k=1

  
   2

     ∂L ___ ∂ x′  k  
      x′  k  

   = n   x′  3     ______________  
  √ 

_____________
    x 1  ′  

2  +   x′  2    2  +   x′  3    2   
   =   ∂L ____ ∂ x′  3  

     (11.5)

Replacing it into Equation 11.3, we can fi nally write

   d ___ 
dx3

   (   ∂L ____ ∂ x′  3  
  
   )  =   ∂L ___ ∂x3

   (11.6)

Combining this equation with the Euler equations (Equation 10.52), we get

   d ___ 
dx3

   (   ∂L ____ ∂ x′  k  
   
   )  =   ∂L ___ ∂xk

    (k = 1, 2, 3) (11.7)

Since pk = ∂L/∂ x′  k  
  , we can also write

   
dpk ___ 
dx3

   =   ∂L ___ ∂xk
    (k = 1, 2, 3) (11.8)
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390 Introduction to Nonimaging Optics

In the context of Lagrangian optics, considering Equation 10.48, and the Euler 
equations in the form just mentioned, we can write

   ∂S ___ ∂xk
   =   ∂ ___ ∂xk

     ∫       Ldx3  =   ∫         ∂L ___ ∂xk
    dx3 =   ∫         dpk ___ 

dx3
    dx3 = pk (11.9)

or pk = ∂S/∂xk, which can be written as

 p = ∇S (11.10)

From this expression, it can be concluded that vector p is perpendicular to 
the surfaces S = constant, S being the optical path length. Since p is tangent 
to the rays of light, it can be concluded that the surfaces S = constant are 
 perpendicular to the rays of light. Such surfaces are called wave fronts.

The Lagrangian and Hamiltonian formulations are just two alternative for-
mulations of optics. As an example of this, Equation 11.10 relating the rays of 
light with the wave fronts can also be obtained in the context of Hamiltonian 
optics. Considering expression 10.34 and Equation 10.49, we can write

 n  ds ___ 
dx3

   =  x′  1    p1 +  x′  2    p2 − H (11.11)

and therefore,

 S =   ∫       n ds  =   ∫       n  ds ___ 
dx3

    dx3 =   ∫       ( x′  1    p1 +  x′  2    p2 − H)dx3 (11.12)

From which we can obtain

   ∂S ___ ∂x1
   =   ∂ ___ ∂x1

    ∫       ( x′  1    p1 +  x′  2    p2 − H)dx3 =   ∫         ∂ ___ ∂x1
   ( x′  1  

  p1 +  x′  2    p2 − H)dx3 (11.13)

Since we have x1 = x1(x3),  x′  1    =  x′  1   (x3) and thus,  ∂x′  1   /∂x1 = 0. Accordingly, 
 ∂x′  2   /∂x1 = 0. Considering the Hamilton Equations 10.62, we get

   ∂S ___ ∂x1
   =   ∫      −    ∂H ___ ∂x1

  dx3 =   ∫         dp1 ___ 
dx3

   dx3 = p1 (11.14)

The same way

   ∂S ___ ∂x2
   = p2 (11.15)

From expression 10.39 with parameter σ now given by coordinate x3, we have 
∂L/∂x3 = −∂H/∂x3 and therefore,

   ∂ ___ ∂x3
  [ x′  1   p1 +  x′  2   p2 − H] = −  ∂H ___ ∂x3

   (11.16)

and, considering that H = −p3

   ∂S ____ ∂x3
    =   ∂ ____ ∂x3

     ∫       ( x′  1   p1 +  x′  2   p2
 − H)dx3 =   ∫      −    ∂H ___ ∂x3

   dx3 =   ∫         dp3 ___ 
dx3

   dx3 = p3 (11.17)
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Rays and Wave Fronts 391

Equations 11.14, 11.15, and 11.17 can be combined in the following equation:

 p = ∇S (11.18)

which is the same as Equation 11.10.
Optical momentum p points in the direction of the light rays at each 

point. Since it is perpendicular to the wave fronts defi ned by S =  constant, 
the light rays are also perpendicular to the wave fronts, as shown in 
 Figure 11.1.

In a material with continuously varying refractive index, the light rays are 
curved and the optical momentum vector p at a point Q on the light ray is 
tangent to the light ray and has a magnitude equal to the refractive index at 
Q, that is, �p(Q)� = n(Q), as shown in Figure 11.2a. If the refractive index is 
constant and equal to n, the light ray is a straight line and p is parallel to the 
light ray, with �p� = n, as shown in Figure 11.2b.

For vector p = (p1, p2), its p1 component along the x1 axis can then be obtained 
as the product of its magnitude and the cosine of the angle it makes to the 
x1 axis: p1 = �p�cos α1 = �p�cos β1. The same is true for the x2 component: p2 = 
�p�cos α2 = �p�cos β2, as shown in Figure 11.3.

In systems something similar happens, for vector p = (p1, p2, p3). Also in 
this case, p1 = �p�cos α1 = �p�cos β1, where α1 or β1 are the angles that the vec-
tor p makes with axis x1. This can be seen to be the same as the situation of 
Figure 11.3a, if we consider the plane γ containing the x1 axis and vector p, 
as shown in Figure 11.4. Similar conclusions can be drawn for the x2 and x3 
components of p. 

Light
rays

Wave fronts
S = constant

p

FIGURE 11.1
Light rays are perpendicular to the wave fronts defi ned by S = constant. Optical momentum p 
is also perpendicular to the wave fronts.
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392 Introduction to Nonimaging Optics

In 2-D systems, when we specify the value of p1, there are two possible 
rays rA and rB that have the same value as p1 (Figure 11.5a). The two pos-
sible p2 values for these two light rays can be obtained in 2-D systems from 
 p 1  

2  +  p 2  
2  = n2 as

 p2 = ±  √ 
_______

 n2 −  p 1  
2    (11.19)

Something similar happens in 3-D systems, as shown in Figure 11.5b. 
 Specifying the values of p1 and p2, we can obtain the value of p3 as

 p3 = ±  √ 
___________

 n2 −  p 1  
2  −  p 2  

2    (11.20)

x2
x2p

r

Q

x1 x1

p

Q

r

(a) (b)

FIGURE 11.2
(a) In a medium of continuously varying refractive index, the light rays are curved and the 
optical momentum is tangent to the light rays. (b) When the refractive index is constant, the 
light ray is a straight line and the optical momentum has the same direction as the light ray.

(b)(a)

pp

p2

p1

x1
x1

�2

�1 �2

�1

x2
x2

FIGURE 11.3
The p1 component of a vector p is given by v1 = �p�cos α1 = �p�cos β1. Also, the value of x2 is 
given by p2 = �p�cos α2 = �p�cos β2.
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In most optical systems, however, rays propagate in a given direction. Let us 
say that, in the 2-D case, rays propagate in the direction in which x2 increases, 
as shown in Figure 11.6.

In this case, we would have p2 > 0 and, therefore, by specifying the value 
of p1, we would know the corresponding value of p2 and could completely 
determine the ray of light. It would be ray rA in Figure 11.5a for the 2-D case.

For the 3-D case, if rays propagate in a direction of increasing x3, then p3 > 0 
and specifying p1 and p2 will defi ne the ray. It would be ray rA in Figure 11.5b 
that has p3 > 0.

γ

p

x1

�1

�1

p1

x2
x3

FIGURE 11.4
Considering the plane γ defi ned by vector p and the x1 axis, it can be seen that its p1 component 
is given by p1 = �p�cos α1 = �p�cos β1, where α1 and β1 are the angles the vector makes to the 
x1 axis.

(b)(a)

−n

−n

n

n

pB
pB

pA

pA

x3

p2

p3

rA

rB

rA

−p3
−p2

p1

p2

x1

x2

x1

rB

x2

p1

FIGURE 11.5
(a) Specifying the value of p1 for a light ray in a 2-D system is not enough to defi ne a light ray, 
since there are two light rays that have the same p1 value. (b) Something similar happens when 
specifying p1 and p2 in a 3-D system.
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394 Introduction to Nonimaging Optics

11.2 The Eikonal Equation

From Equations 10.56 and 11.10, we can obtain

 p = n  ds ___ 
ds

   = ∇S (11.21)

which can be written in component form as pi = ∂S/∂xi. From expression 10.57, 
it can be seen that �p� = n. Equation 11.21 then enables us to write

   (   ∂S ___ ∂x1
   )  

2
  +   (   ∂S ___ ∂x2

   )  
2
  +   (   ∂S ___ ∂x3

   )  
2
  = n2 ⇔  �∇S� 2  = n2 (11.22)

This is the eikonal equation.2–5 It should be noted that, considering 
 Equation 11.21, the eikonal equation reduces itself to the equation P = 0 of 
the equation system 10.78.

Another possible way to derive the eikonal equation from Equation 11.21 
is by considering the third component of this expression, which is ∂S/∂x3 − 
p3 = 0. Considering expression 10.60, p3 = −H, we get ∂S/∂x3 + H = 0. As can 
be seen in expression 10.85, H = H(x1, x2, x3, p1, p2). Considering the fi rst two 
expressions of Equation 11.21, we can fi nally write

   ∂S ____ ∂x3
    + H  ( x1, x2, x3,   ∂S ___ ∂x1

  ,   ∂S ___ ∂x2
   )  = 0 (11.23)

This is a differential equation for S, called the Hamilton–Jacobi equation.3,4 
The eikonal equation (Equation 11.22) can now be obtained from this equation. 
Introducing the expression for H given by Equation 10.61 into expression 11.23 
gives

   ∂S ___ ∂x3
   −   √ __________________

  n2 −   (   ∂S ___ ∂x1
   )  

2
  −   (   ∂S ___ ∂x2

   )  
2
    = 0 (11.24)

which corresponds to the eikonal equation (Equation 11.22).

x2

x1

FIGURE 11.6
In most optical systems light travels in a given direction along the optical axis. In this case, 
this axis is x2.
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11.3 The Ray Equation

Let us consider Equation 11.21 again, which in its components can be 
 written as

 n  
dxk ___ 
ds

   =    ∂S ___ ∂xk
   (11.25)

The derivative of this expression with respect to path length s is

   d __ 
ds

    ( n  
dxk ___ 
ds

   )  =   d __ 
ds

     ∂S ___ ∂xk
   (11.26)

Considering that S = ∫n ds, we get

   d __ 
ds

    ( n  
dxk ___ 
ds

   )  =   d __ 
ds

     ∂ ___ ∂xk
    ∫       n ds =   d __ 

ds
    ∫         ∂n ___ ∂xk

  ds =   ∂n ___ ∂xk
   (11.27)

or

   d __ 
ds

    ( n  ds __ 
ds

    )  = ∇n (11.28)

This expression is called the ray equation. Considering Equation 11.21, the 
ray equation can also be written as

   
dp

 ___ 
ds

   = ∇n (11.29)

which, in its components can be written as dpk/ds = ∂n/∂xk, where k = 1, 2, 3.
To facilitate the solution of this equation, it is assumed in several applica-

tions that the light rays travel almost parallel to the optical axis of the system 
(paraxial). We fi rst note that, with xk′ = dxk/dx3 and x3′ = 1, we have

   d __ 
ds

   =  (   1 ______________  
  √ 

______________
    x′  1  

2  +  x′  2  
2  +  x′  3  

2   
   )    d ___ 

dx3
   =  (   1 _____________  

  √ 
____________

 1 +  x′  1  
2  +  x′  2  

2   
   )    d ___ dx  

3
 (11.30)

In the paraxial approximation, it is assumed that light rays have paths 
through the optical system such that the trajectories keep almost parallel 
to the optical axis and that the changes in direction are small. This does not 
mean that light rays cannot spatially propagate far from the optical axis; only 
the angles with them are small. Light rays can become distant from the opti-
cal axis by traveling along a long path. Since x1′ and x2′ describe the slope of 
the light ray relative to the optical axis x3, these quantities should be small. 
We then have x1′ << 1 and x2′ << 1. From Equation 11.30, we get the following 
approximation:

   d __ 
ds

   ≈   d ___ 
dx3

   (11.31)
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396 Introduction to Nonimaging Optics

If the optical axis is considered to be along the x3 axis, we can then make 
ds ≈ dx3. The ray equation can then be written as

   d ___ 
dx3

    ( n  ds ___ 
dx3

   )  = ∇n (11.32)

This is the paraxial ray equation.2,4

Given then the refractive index n(x1, x2, x3), Equation 11.32 can be written in 
component form, given that ds = (dx1, dx2, dx3).

   d ___ 
dx3

    ( n(x1, x2, x3)  
dx1 ___ 
dx3

   )  =   
∂n(x1, x2, x3) ___________ ∂x1

   
(11.33)

   d ___ 
dx3

    ( n(x1, x2, x3)  
dx2 ___ 
dx3

   )  =   
∂n(x1, x2, x3) ___________ ∂x2

   

This is a system of differential equations for x1(x3) and x2(x3) so that, given 
the refractive index n(x1, x2, x3), we can calculate the paths of the light rays, 
which are given by (x1(x3), x2(x3), x3). Note that the third component of Equa-
tion 11.32 reduces itself to dn/dx3 = ∂n/∂x3 since dx3/dx3 = 1 and therefore is 
not included in Equations 11.33.

If a function S(x1, x2, x3) is given such that S = constant defi nes the wave 
fronts for the light rays, the refractive index n(x1, x2, x3) that makes those 
wave fronts possible can be obtained by the following eikonal equation:

 n = �∇S� (11.34)

Also, the ray equation enables us to obtain the corresponding paths for the 
light rays.

It should be noted, however, that in nonimaging optics, the angles of light 
rays to the optical axis are often large, and therefore, the paraxial approxima-
tion does not apply. In such a case, the ray equation as given by  Equation 11.28 
must be used to determine the ray trajectories for a given refractive index 
n(x1, x2, x3).

The ray equation can also be obtained from the Lagrangian optics. In this 
case, making k = 1 in Equation 11.7 and considering Equation 10.49 and 
expression 10.53, we get

   d ___ 
dx3

    (   ∂L ___ 
∂ x  1  ′  

   )  =   ∂L ___ ∂x1
   ⇔   d ___ 

dx3
    (    nx 1  ′   _____________  

  √ 
_____________

   x′  1  
2  +  x′  2  

2  + x′  3  
2   
    )  =   √ 

_____________
   x′  1  2  +  x′  2  2  +  x′  3  2      ∂n ___ ∂x1

   (11.35)

and making use of Equation 11.30, we get

   d __ 
ds

    ( n  
dx1 ___ 
ds

   )  =   ∂n ___ ∂x1
   (11.36)

Writing the equations for the other components x2 and x3, we get

   d __ 
ds

    ( n  ds ___ 
ds

   )  = ∇n (11.37)
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Rays and Wave Fronts 397

This is again the ray equation.2,4 It specifi es the light ray direction in terms of 
the refractive index. If the parameterization now is (x1(σ), x2(σ), x3(σ)), the ray 
trajectory will be a continuous curve, s(σ).6

As mentioned earlier, the Lagrangian and Hamiltonian formulations are 
just two alternative formulations of optics. Another example of this can be 
given by deriving the ray equation from the Hamiltonian formulation. From 
Equation 10.62 and calculating the derivatives ∂H/∂pi and ∂H/∂xi, we obtain

  x′  1  
   =   

 p1 ____________  
  √ 

___________
 n2 −  p 1  

2  −  p 2  
2   
      x 2  ′   =   

p2 ____________  
  √ 

___________
 n2 −  p 1  

2  −  p 1  
2   
   (11.38)

and

  p 1  ′   =   n _____________  
  √ 

____________
 n2 −  p 1  

2  −  p 2  
2    

     ∂n ___ ∂x1
     p′  2    =   n _____________  

  √ 
____________

 n2 −  p 1  
2  −  p 2  

2    
     ∂n ___ ∂x2

   (11.39)

From Equation 10.91, we can also obtain

  p′  3    =   n ____________  
  √ 

___________
 n2 −  p 1  

2  −  p 2  
2   
     ∂n ___ ∂x3

   (11.40)

From expression 11.38, we can obtain

 1 +  x′  1  
2  +  x′  2  

2  =   n2 
 __________ 

n2 −  p 1  
2  −  p 2  

2 
    or   √ 

____________
 1 +  x′  1  

2  +  x′  2  
2    =   n ____________  

  √ 
___________

 n2 −  p 1  
2  −  p 2  

2   
   (11.41)

From Equation 10.49, we can see that ds/dx3 =   √ 
____________

 1 +  x′  1  
2  +  x′  2  

2   . Combining this 
with Equation 11.41, we get

   ds ___ 
dx3

   =   n ____________  
  √ 

___________
 n2 −  p 1  

2  −  p 2  
2   
   (11.42)

Equations 11.39 and 11.40 can now be written in a simplifi ed form:

   
dp1 ___ 
ds

   =   ∂n ___ ∂x1
       

dp2 ___ 
ds

   =   ∂n ___ ∂x2
      

dp3 ___ 
ds

   =   ∂n ____ ∂x3
   (11.43)

These are the components of the ray equation (Equation 11.37), which can 
also be written as

   
dp

 ___ 
ds

   = ∇n (11.44)

11.4 Optical Path Length between Two Wave Fronts

The second fundamental theorem of calculus for line integrals can be 
written as7

   ∫ P1
  

P2
   ∇φ ⋅ dr = φ(P2) − φ(P1) (11.45)
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398 Introduction to Nonimaging Optics

in which the integral is calculated along a curve r(ξ) in space with ξ1
 ≤ ξ ≤ ξ2 

and P1 = r(ξ1) and P2 = r(ξ2). As a consequence the line integral of a gradient 
fi eld is independent of the path chosen, depending only on the initial and 
fi nal points of the path of  integration. The line integral of ∇φ along a line 
connecting points P1 and P2 depends only on P1 and P2, that is, on φ(P1) and 
φ(P2) and not on the path between P1 and P2. In case if point P1 coincides 
with point P2, then

   ∮       ∇φ ⋅ dr = 0 (11.46)

This result can now be applied to optics. Replacing the function φ by the 
optical path length S in expression 11.46 gives

   ∮       ∇S ⋅ dr = 0  (11.47)

and in expression 11.45

   ∫ P1
  

P2
   ∇S ⋅ dr = S(P2) − S(P1) (11.48)

Equation 11.21 can be written as

 n   ds ___ 
ds

   = ∇S (11.49)

Inserting accordingly in expression 11.47 gives

   ∮       n   ds ___ 
ds

   ⋅ dr = 0 (11.50)

Consider two points P1 and P2 on the closed curve used for the integration. 
These two points divide the closed curve into two parts (curves c1 and c2), 
both starting at P1 and ending at P2, as presented in Figure 11.7.

c2

c1

P1

P2

FIGURE 11.7
Two points P1 and P2 divide a closed curve into two curves c1 and c2.
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This integral can then be written as4

   ∫ P1
  

P2
  n  

ds1 ___ 
ds1

   ⋅ dr1 =   ∫ P1
  

P2
  n  

 ds2 ___ 
ds2

   ⋅ dr2 (11.51)

in which the integrals are calculated along the curves c1 and c2 resulting 
from the division of the closed curve by points P1 and P2. Vector ds/ds is a 
unit vector pointing in the direction of p, that is, in the direction of the light 
ray. Making t = ds/ds gives

   ∫ P1
  

P2
  nt1 ⋅ dr1 =   ∫ P1

  
P2

  nt2 ⋅ dr2 ⇔   ∫ P1
  

P2
  p1 ⋅ dr1 =   ∫ P1

  
P2

  p2 ⋅ dr2 (11.52)

The integrand nt ⋅ dr is the projection of vector nt, that is, the momentum 
p, in the direction of the curve. This result shows that the integration of nt 
along curve c1 is the same as the integral of this quantity along curve c2, both 
beginning at P1 and ending at P2. It can then be concluded that the integral 
of this quantity along a curve does not depend on the shape of the curve, but 
only on the initial and fi nal points P1 and P2.

Consider two wave fronts: S = s1 and S = s2, as well as two points P1 and P2 
on these wave fronts, as shown in Figure 11.8. The integral  ∫ P1

  P2  nt ⋅ dr taken 
along a curve between points P1 and P2 does not depend on the integration 
path, so that we can choose the portion of the wave front S = s1 between P1 
and Q1 for the integration path and then the portion of the light ray between 
Q1 and P2. The integral between P1 and Q1 is zero because light rays are 
 perpendicular to the wave fronts. The integral between Q1 and P2 equals the 
optical path length between Q1 and P2. We could, nonetheless, have chosen 
another path, for example, from P1 to Q2 along light ray and then from Q2, to 
P2 along the wave front S = s2, to generate the optical path between P1 and 
Q2. It can then be concluded that the optical path lengths between Q1 and P2 

P2

P1

Q1

Q2

Rays of light

Wave front
S = s2

Wave front
S = s1

FIGURE 11.8
The optical path length between the two points P1 and P2 belonging to the two wave fronts S = s1 
and S = s2 equals s2 − s1 and does not depend on the particular path between P1 and P2.
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400 Introduction to Nonimaging Optics

and between P1 and Q2 must be the same. This proves that the optical path 
length between two wave fronts must be the same along any light ray con-
necting them. We can then write

   ∫ P1
  

P2
  nt ⋅ dr = s2 − s1 (11.53)

A particular case can be considered when the two wave fronts involve two 
points. In this case, the optical path length between these two points must be 
a constant for the rays connecting them.8

This result can also be obtained directly from Equation 11.51. Consider 
that the curves connecting the points P1 and P2 are two light rays. In this 
case, the displacement dr along the curve coincides with a displacement ds 
along the light ray. Therefore, dr = ds, and so we can write

S =   ∫ P1
  

P2
  n ds =   ∫ P1

  
P2

  n  ds ___ 
ds

   ⋅ ds =   ∫ 
P1

  
P2

  p ⋅ ds =   ∫ P1
  

P2
   ∇S ⋅ ds = S(P2) − S(P1) (11.54)

Since we are considering integrations along the rays of light, p has the same 
direction as ds. We can also write ∇ × ∇S = 0, where ∇ × is the  rotational 
operator (curl).7 From this, we can obtain ∇ × p = 0.

While we are considering integrations along the light rays, t and dr are 
parallel, such that their scalar product is simply an element ds of the light ray. 
Then from Equation 11.52, we obtain

   ∫ P1
  

P2
   n ds1 =   ∫ P1

  
P2

   n ds2 (11.55)

It can now be seen from this expression that if several light rays leaving P1 
meet at P2, their optical path lengths must be equal. Figure 11.9 shows one 
such situation.

This result is, nonetheless, valid only if the luminous fi eld is continuous, so 
that infi nite light rays smoothly fi ll the space between any two rays considered. 
This result will not be valid if, for example, a light ray travels from P1 to P2 
directly and the other one reaches P2 after refl ecting off a mirror.4

P2

P1

S = s1

S = s2

FIGURE 11.9
The optical path length for the light rays connecting the points P1 and P2 must be the same for 
all of them.
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403

12
Refl ection and Refraction

12.1 Reflected and Refracted Rays

A ray i traveling in a medium of refractive index n1 incident on a surface A 
with normal n is refracted thereupon into a medium of refractive index n2. The 
angle α1 that the ray makes w ith the normal before refraction is related to the 
angle it makes with the normal after refraction, by Snell’s law of refraction:

 n1 sin α1 = n2 sin α2R (12.1)

If surface A was a mirror the ray would be refl ected, and it would continue 
traveling in the medium of refractive index n1. In this case, expression 12.1 
still holds if we make n1 = n2 and replace α2R for refraction with α2X for refl ec-
tion, obtaining (Figure 12.1)

 sin α1 = sin α2X ⇔ α1 = α2X (12.2)

The incident ray i is traveling in a direction defi ned by unit vector i, the 
 normal to the surface is given by unit vector n, and the refracted ray rR travels 
in a direction defi ned by unit vector rR. In the case of refl ection, the refl ected 
ray rX travels in a direction defi ned by unit vector rX. As seen in Chapter 10, in 
the case of refraction, unit vectors i, n, and rR are all in the same plane. In the 
case of refl ection too, unit vectors i, n, and rX are all in the same plane. This 
means that the direction of the refracted or refl ected rays can be obtained by 
a linear combination of the incident direction i and normal n to the surface 
as (Equation 10.19)

 r = λi + µn (12.3)

where r = rR in the case of refraction and r = rX in the case of refl ection. 
 Coeffi cients λ and µ are also different in both cases.

We can now derive the expressions for the direction of the refracted or 
refl ected ray as a function of the direction of the incident ray.1,2

If n is a unit vector normal to the surface, the sine of the angle between 
n and i can be obtained from the magnitude of the cross product of these 
two unit vectors. The same is true for the vectors n and r. Therefore, expres-
sions 12.1 and 12.2 can be written as

 n1i × n = n2r × n (12.4)
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404 Introduction to Nonimaging Optics

This is because i, n, and r are all contained in the same plane (expression 12.3). 
As mentioned earlier, in the case of refl ection, n1 = n2. Expression 12.4 can be 
written as

 p1 × n = p2 × n (12.5)

where p1 = n1i and p2 = n2r are the optical momenta of the ray before and 
after refraction or refl ection, and where � i � = � r � = 1.

Finding the external product of both the sides of expression 12.3 by n, and 
considering expression 12.4 and n × n = 0 gives

 r × n = λi × n ⇒ λ = n1/n2 ⇒ r = n1/n2i + µn (12.6)

Squaring both the sides of Equation 12.6 and considering that (a + b) ⋅ (a + b) = 
a ⋅ a + b ⋅ b + 2a ⋅ b and these are unit vectors, so that r ⋅ r = n ⋅ n = 1 gives

 1 =   (   n1 __ n2
   )  2  + µ2 + 2µ   n1 __ n2

    i ⋅ n ⇔ µ2 +  ( 2q   
n1 __ n2

   )  µ+  [  (   n1 __ n2
   )  2  – 1]  = 0 (12.7)

with q = i ⋅ n. Equation 12.7 of second degree can be solved for µ, result-
ing in

 µ = −q   
n1 __ n2

   ±   √ 
_________________

    ( q   
n1 __ n2

   )  2  −  [  (   n1 __ n2
   )  2  − 1]    = −q   

n1 __ n2
   ±   √ 

_______________

  1 −   (   n1 __ n2
   )  2 (1 − q2)   (12.8)

n1

n2

rR

rX

rR

rX

�2R

�2X

A

n

�1
i

i

FIGURE 12.1
Refracted and refl ected rays from an incident ray i. In the case of refraction, n1 sin α1 = n2 sin α2R. 
In the case of refl ection α1 = α2X.
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Refl ection and Refraction 405

As can be verifi ed, we have two possible solutions. Introducing them into 
Equation 12.6 and replacing q gives

 r =   
n1 __ n2

   i +  ( −(i ⋅ n)   
n1 __ n2

   ±   √ 
_____________________

  1 −   (   n1
 __ n2
   )  2  [1 − (i ⋅ n)2]    )  n (12.9)

Choosing the solution with a positive sign gives

 r =   
n1 __ n2

   i +  ( −(i ⋅ n)    
n1 __ n2

   +   √ 
____________________

  1 −   (   n1 __ n2
   )  2  [1 − (i ⋅ n)2]    )  n (12.10)

which is the direction of the refracted ray as a function of the direction 
of the incoming ray and of the normal to the surface. Remember that in 
expression 12.10, we have �i� = �n� = �r� = 1 (i.e., all are unit vectors). 
 Expression 12.10 can also be written as

 n2r = n1i − (n1i ⋅ n) n +   √ 
__________________

   n 2  
2  −  n 1  

2  + (n1i ⋅ n ) 2      n (12.11)

or

 p2 = p1 − (p1 ⋅ n) n +   √ 
_________________

   n 2  
2  −  n 1  

2  + (p1 ⋅ n ) 2     n (12.12)

To understand the meaning of the solution with a negative sign, in 
 Equation 12.9 we must now consider that, also in the case of refl ection, the 
refl ected vector can be obtained as a linear combination of the incident 
 vector and the normal to the surface, that is, expression 12.3 is also valid 
in this case. Besides, making n1 = n2, expression 12.4 can also be applied to 
refl ection. In this case, as referred, we have n1 = n2, so that, by choosing the 
negative sign solution, in Equation 12.9 we obtain

 r = i +  ( −(i ⋅ n) −   √ 
_______________

  1 − [1 − (i ⋅ n ) 2 ]    )  n (12.13)

Expression 12.13 can be rewritten as:

 r = i − 2(i ⋅ n)n (12.14)

Expression 12.14 gives us the refl ected ray as a function of the incident ray 
and the normal to the surface.

Given a surface, its normal can be given in two opposite directions, as pre-
sented in Figure 12.2 in which n2 = −n1. In the resulting expression for the 
refl ected ray, the direction of the normal is actually not important, since r = i 
− 2(i ⋅ n)n = r = i − 2(i ⋅ (−n))(−n). We can, therefore, choose either normal 
direction n1 or n2 when using expression 12.14.

The same, however, does not apply to expression 12.10 for refraction. In this 
case, the angle between the normal to the surface and the incident ray must 
be smaller than or equal to π/2. Therefore, given two unit vectors i and n cor-
responding to the incident ray and the normal to the surface, if i ⋅ n ≥ 0, the 
refracted ray can be obtained using the normal n. If i ⋅ n < 0, the normal −n 
should be used in the calculation. In the case of Figure 12.2 refraction should 
then be calculate with normal n2 to the surface A.
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406 Introduction to Nonimaging Optics

Expression 12.14 can be interpreted geometrically.3 Figure 12.3 represents 
a refl ection showing the incident ray, the refl ected ray, and the normal to the 
surface, which are all unit vectors, that is, �i� = �r� = �n� = 1, all contained 
in the same plane. Figure 12.3 shows that the refl ected ray is related to the 
incident ray and the normal to the surface by expression 12.14.

From the earlier discussion it can be concluded that, although  Equation 12.9 
can be applied to both refl ection and refraction, only the solution with a 

n1

n2

rR

rX

rX

rR �2R

�2X

A

n1

n2

�1 i

i

FIGURE 12.2
A surface A has two normal directions n1 and n2 = −n1. In the expression for the refl ected ray, 
we can either use n1 or n2, but in the expression for the refracted ray we must use the direction 
n = n2 that fulfi lls i ⋅ n > 0.

n n

r

r

i

i
i

−2(i  n)n⋅

(a) (b)

FIGURE 12.3
(a) A refl ection showing the incident ray, the refl ected ray, and the normal to the surface, which 
are all unit vectors and (b) The relationship among these three vectors.
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Refl ection and Refraction 407

 positive sign has meaning for refraction and only the solution with a  negative 
sign has meaning for refl ection.

Expression 12.10 for refraction is only valid for

  1 −   (   n1 __ n2
   )  2  [1 −  (i ⋅ n) 2 ] ≥ 0 ⇒   

n2 __ n1
   ≥   √ 

__________
 1 − (i ⋅ n ) 2    ⇒ n2 ≥ n1  √ 

__________
 1 − cos2 α1   (12.15)

Note that expression 12.15 can also be obtained from expression 12.12, 
 making  n 2  

2  −  n 1  
2  + (p1 ⋅ n)2 > 0. We can now write

 n2 ≥ n1 sin α1 ⇔ n2 sin (   π __ 2   )  ≥ n1 sin α1 (12.16)

In the case of equality, we have n2 = n1 sin α1. Since sin α1 < 1, in this particu-
lar case of quality, it can be  verifi ed that we must have n2 < n1. The angle α 
for which the equality holds is called the critical angle and can be obtained 
from Equation 12.16 as

 αC = arc sin  (   n2 __ n1
   )  (12.17)

Consider the refraction of a ray of light propagating from within a medium 
of refractive index n1 into a medium of refractive index n2, with n2 < n1, as 
presented in Figure 12.4.

i1

i2

iC

n2

n2 < n1

n1

rC

r1

r2

�C

�1B

�1B

�2

�1A

�/2

FIGURE 12.4
Three rays of light propagating in a medium of refractive index n1. Ray i1 makes an angle 
α1A < αC with the normal to the surface. This ray is refracted by the surface, becoming ray 
r1 propagating through the medium of refractive index n2 < n1. Ray iC, making the angle αC 
with the normal, called the critical angle, is refracted becoming ray rC tangent to the surface of 
separation between the two media. Ray i2, making with the normal an angle larger than αC, is 
refl ected by TIR to become ray r2.
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408 Introduction to Nonimaging Optics

An incident ray i1 is refracted at the surface becoming refracted ray r1. As 
the angle α1A increases, the angle α2 also increases until the limiting case 
where the incident ray iC makes an angle αC with the normal to the surface 
and the refracted ray rC makes an angle π/2 with the normal to the surface, 
that is, the refracted ray is tangent to the surface. This case occurs when 
α2 = π/2, so that αC fulfi lls Equation 12.17. For incidence angles α1B larger 
than αC, the ray of light is no longer refracted, but is refl ected by the surface. 
This  phenomenon is called TIR. Therefore, the incident ray i2 is refl ected to 
become ray r2.

Given the incident and refracted or refl ected rays, it is also possible to fi nd 
the normal to a surface that transforms one into the other.

Consider a refraction with the incoming ray having momentum p1 and the 
refracted ray having momentum p2, as presented in Figure 12.5a. In this case, 
the law of refraction can be written as �p2�sin α2 = �p1�sin α1. The normal to 
the surface has the direction of p1 − p2, so that

 n =   
p1 − p2 ________ 
�p1 − p2�

   (12.18)

Expression 12.18 enables us to obtain the normal to the surface from the 
 incident and refracted rays.

In the case of refl ection, the normal has the direction of p2 − p1, as can be 
seen from Figure 12.5b, so that it can be written as n = (p2 − p1)/�p2 − p1�. 

p1

p1 p2p1

p1 − p2

p2

�1

�1

�2

n

n
n2
n1

p1 = n1
p2 = n2

p1  = p2 

� �

−p1

(a) (b)

FIGURE 12.5
The plane defi ned by the incident and refracted rays (a) or refl ected rays (b) and the normal 
to the surface. In (a), the incident and refracted rays are represented by the momentum vec-
tors p1 and p2 that have magnitude �p1� = n1 and �p2� = n2, respectively, and in (b) �p1� = 
�p2�. In both cases, the normal vector points in the direction of the subtraction of these two 
vectors.
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Since for refl ection we can choose for the normal to the surface either n or −n, 
in this case we can also write

 n =   
p1 − p2 ________ 

�p1 − p2�
   (12.19)

Expression 12.19 is the same as that presented earlier in the case of  refraction. 
In the case of refl ection, the refractive index is the same for the incident 
and refracted rays. Therefore, we have �p1� = �p2� = n. We can then write 
 expression 12.19 as

 n =   i − r ______ 
�i − r�

   (12.20)

where i = p1/n and r = p2/n, and therefore �i� = �r� = 1.

12.2 The Laws of Reflection and Refraction

The expressions to derive the directions of the refracted and refl ected rays 
were based on expressions 12.1 through 12.3, which we now derive.

Suppose that a plane x1x2 separates two media of different refractive  indices 
n1 and n2. The refractive index does not vary along the plane x1x2 but only in 
its perpendicular direction. We then have in this case

   ∂n ___ ∂x1
   =   ∂n ___ ∂x2

   = 0 (12.21)

From the ray equation, that is, from expression 11.29, it can be concluded that 
p1 and p2 must be constant, that is,

 p1(n1) = p1(n2) and p2(n1) = p2(n2) (12.22)

Therefore, considering Equation 10.56, we can write

 n1 cos α1n1 = n2 cos α1n2 (12.23)
 n1 cos α2n1 = n2 cos α2n2 

where αinj is the angle that the light ray makes with axis xi in the medium 
with a refractive index nj. In the case in which n1 ≠ n2, expression 12.23 
 represents the law of refraction for the passage of light through a surface 
separating two media of different refractive indices, and corresponds to 
Snell’s law.4 In the case in which n1 = n2, expression 12.23 represents the law 
of refl ection.

The angles αinj are represented in Figure 12.6a for the case of refraction. 
Figure 12.6b presents the angles that the incident and refracted rays make 
with the surface normal. Note that for the incident ray i, the momentum 
(and the direction of the ray) points in the direction from O to A, and in 
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410 Introduction to Nonimaging Optics

the case of the refracted ray r, the momentum (and the direction of the ray) 
points in the direction from O to B.

In the case of refl ection, the situation is similar and is presented in 
 Figure 12.7. Figure 12.7b shows the angles that the incident and refl ected 
rays make with the normal to the surface. Angles αi1 and αi2 are those 

�2n2

�1n1
�1n2

�2n1

�3n2

�3n1

�3n1

�2 = �3n2

�1 = �3n1

n2

n1

n1

n2

x1 x1

x2

x3

x2

x3

(a) (b)

O

A B

i
i

r

r

�1

FIGURE 12.6
Plane x1x2 separates two media of different refractive indices n1 and n2. A ray of light i traveling 
in the medium of refractive index n1 is refracted at x1x2 and transformed into r. (a) The angles 
that i and r make with the coordinate axes x1, x2, and x3. (b) The angles that i and r make with 
the normal to the surface, that is, the angles with the positive portion of axis x3. The rays i and 
r and the x3 axis are in the same plane.

�12

�32

�31

�21

�31

�1

�2   =  �32

�22

�11

x2 x1
x2

x1

x3
x3

(a) (b)

r r
i

i

FIGURE 12.7
Plane x1x2 represents a mirror. A ray of light i is refl ected at x1x2 and transformed into r. (a) The 
angles that i and r make with the axes x1, x2, and x3. (b) The angles that i and r make with the 
normal to the surface, that is, the angles with the positive portion of axis x3. The rays i and r 
and axis x3 are in the same plane.
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Refl ection and Refraction 411

that the ray of light makes with axis xi before and after the refl ection, 
respectively.

For a ray of light before and after the refraction (n1 ≠ n2) or refl ection (n1 = n2), 
we can write

  p 1  
2 (n1) +  p 2  

2 (n1) +  p 3  
2 (n1) =  n 1  

2  
(12.24)

  p 1  
2 (n2) +  p 2  

2 (n2) +  p 3  
2 (n2) =  n 2  

2  

Considering that p1(n1) = p1(n2) and p2(n1) = p2(n2) and subtracting Equa-
tions 12.24, we obtain

  n 1  
2  −  p 3  

2 (n1) =  n 2  
2  −  p 3  

2 (n2) (12.25)

This expression can also be written as

  n 1  
2  −  n 1  

2  cos α3n1 =  n 2  
2  −  n 2  

2  cos α3n2 (12.26)

that is,

  n 1  
2  sin2 α3n1 =  n 2  

2  sin2 α3n2 (12.27)

In the case of refraction, making α1 = α3n1 and α2 = α3n2, as presented in 
 Figure 12.6b, gives

  n 1  
2  sin2 α1 =  n 2  

2  sin2 α2 (12.28)

Since 0 ≤ α1 ≤ π/2 and 0 ≤ α2 ≤ π/2, we have sin α1 ≥ 0 and sin α2 ≥ 0, and 
we can obtain

 n1 sin α1 = n2 sin α2 (12.29)

The surface separating two media of different indices n1 and n2 is the plane 
x1x2, therefore, having as normal the axis x3, with unit vector e3 = (0, 0, 1). 
It can then be seen that α1 and α2 are the angles that the ray of light makes 
with the normal to the surface before and after refraction. This is the usual 
form of Snell’s law.

In the case of refl ection, the angles that the ray of light makes with the axes 
x1, x2, and x3 are represented in Figure 12.7. In this case, α2 = α32 and α1 + α31 = 
π ⇔ α1 = π − α31. Besides, n1 = n2 and expression 12.27 simplifi es to

 sin α1 = sin α2 ⇔ α1 = α2 (12.30)

since 0 ≤ α1 ≤ π/2 and 0 ≤ α2 ≤ π/2. It can then be concluded that, in the case 
of refl ection, the angle with the normal to the surface is the same before and 
after refl ection.
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412 Introduction to Nonimaging Optics

In the preceding derivation of the law of refraction, we assumed that the 
refracted ray must be in the plane defi ned by the incident ray and by the nor-
mal to the surface e3 = (0, 0, 1) separating the two media of refractive indices 
n1 and n2. We assumed the same for the case of refl ection in which n1 = n2. 
We can now verify this by showing that the refracted or refl ected rays can be 
obtained by a linear combination of the incident ray and the normal to the 
surface. From expression 12.25, we obtain

 p3(n2) = ±  √ 
_______________

   p 3  
2 (n1) +  n 2  

2  −  n 1  
2    (12.31)

The incident ray has the direction of

 pI = (p1(n1), p2(n1), p3(n1)) (12.32)

The refracted ray pR = (p1(n2), p2(n2), p3(n2)), and therefore from expres-
sions 12.22 and 12.31, we can obtain

 pR =  ( p1(n1), p2(n1), ±  √ 
_______________

   p 3  
2 (n1) +  n 2  

2  −  n 1  
2     )  (12.33)

To see that pR is in the plane defi ned by pI and e3, we can verify that pR can 
be obtained as a linear combination of pI and e3, that is,

 pR = apI + be3 (12.34)

which corresponds to a system of three equations and two unknowns 
(a and b):

 p1(n1) = ap1(n1) ⇒ a = 1 

(12.35) p2(n1) = ap2(n1) ⇒ a = 1 

 ±  √ 
______________

   p 3  
2 (n1) +  n 2  

2  − n 1  
2    = ap3(n1) + b ⇒ b = −p3(n1) ±   √ 

_______________
   p 3  

2 (n1) +  n 2  
2  −  n 1  

2    

The system of equations has a solution, and therefore pR, pI, and e3 are 
 vectors in the same plane. Given that these expressions can be applied either 
to refl ection or to refraction, it can be concluded that the refl ected or refracted 
ray is in the plane defi ned by the incident ray and the normal to the surface 
(which can be a mirror or a surface separating two media having different 
refractive index).

Expression 12.29 is general and can be applied to either refraction or refl ec-
tion by any surface. To verify this, again consider a surface separating two 
media having different refractive indices (refraction) or a mirror (refl ection). 
Further, consider a ray of light arriving at point P. We can make the x3 axis 
coincident with the normal to the surface at P. In this case, the plane x1x2 
is tangent to the surface. In the neighborhood of P, the tangent plane well 
approximates the surface. That way, the refracted ray at P should refract 
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Refl ection and Refraction 413

the same way as if it was refracted in the plane tangent to the surface, and 
 expression 12.29 is therefore still applicable. In this case, α1 and α2 are the 
angles that the incident and refracted rays make with the normal to the 
 surface. Also in this case the incident and refracted rays and the normal to 
the surface are contained in the same plane. 
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415

13
Symmetry

13.1 Conservation of Momentum and Apparent Refractive Index

If we refract a light ray with momentum p1 at a surface with normal n, and 
it comes out as a ray with momentum p2 after refraction, p2 and p1 are relat-
ed by (see Chapter 12)

 p2 = p1 −  [(p1 ⋅ n) +   √ 
_________________

   n 2  
2  −  n 1  

2  + (p1 ⋅ n)2   ] n (13.1)

where n1 and n2 are the refractive indices before and after refraction. If we had 
a refl ection instead of refraction, the refl ected ray would have momentum

 p2 = p1 − 2(p1 ⋅ n)n (13.2)

where n is the refractive index of the material in which the refl ection occurs. 
In any case, we can write

 p2 = p1 + σn (13.3)

where σ is a scalar.
We now consider a different situation in which we have the general coordi-

nate axes i1i2i3 and obtain the mathematical relations between the angles α1, 
α2, and α3, which a ray of light makes with the coordinate axes i1, i2, and i3, as 
well as the angles β1 and β2 that its projection onto the plane i1i2 makes with 
the axes i1 and i2, as shown in Figure 13.1.

Consider a ray of light propagating in the direction of the unit vector v, 
making angles α1, α2, and α3 with the axes i1, i2, and i3, respectively. From 
Figure 13.1, we can see that

 cos α2 = sin α3 cos β2 (13.4)

and squaring both sides of Equation 13.4 yields

 sin2 α3 cos2 β2 = cos2 α2 ⇔  ( 1 − cos2 α3 ) cos2 β2 = cos2 α2 (13.5)

Multiplying both sides of Equation 13.5 by the refractive index n gives

  ( n2 − n2 cos2 α3 ) cos2 β2 = n2 cos2 α2 (13.6)
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416 Introduction to Nonimaging Optics

that is,

  ( n2 −  p 3  
2  ) cos2 β2 =  p 2  

2  (13.7)

which will prove useful next.
Consider the refraction (or refl ection) at a point on a surface and orient a 

set of coordinates i1i2i3 such that the normal to the surface at that point and in 
these local coordinates point in direction i1. The normal to the surface is then 
n = (m1, 0, 0) and from Equation 13.3 we can see that the i2 and i3 components 
of the momentum do not change. If p1 = (p1(n1), p2(n1), p3(n1)) and p2 = (p1(n2), 
p2(n2), p3(n2)), then we have p2(n1) = p2(n2) and p3(n1) = p3(n2), that is,

 p2 = constant 
(13.8)

 p3 = constant 

Applying expression 13.7 to the media with refractive indices n1 and n2 
yields

  [ n 1  
2  −  p 3  

2 (n1)] cos2 β2n1 =  p 2  
2 (n1) (13.9)

  [ n 2  
2  −  p 3  

2 (n2)] cos2 β2n2 =  p 2  
2 (n2) 

where β2nj is the angle that the projection of the ray of light onto the plane 
i1i2 makes with the axis i2 in the medium having a refractive index nj, as 
 presented in Figures 13.2 and 13.3. Since p2 and p3 are constant, that is, p2(n1) 
= p2(n2) and p3(n1) = p3(n2), we obtain

  (  n 1  
2  −  p 3  

2  ) cos2 β2n1 =  (  n 2  
2  −  p 3  

2  ) cos2 β2n2 (13.10)

Making nk*2 =  n k  
2  −  p 3  

2  yields

  n1*2      cos2 β2n1 =  n2*2 cos2 β2n2 ⇒ n1* sin β1 = n2* sin β2 (13.11)

�2

�2

�1

�1

�3

sin �3 cos �2 = cos �2

sin �3

v

i3i2

i1

FIGURE 13.1
Projections of a unit vector v, that is, ��v�� = 1, onto the coordinate axes i1, i2, and i3 and onto the 
plane i1i2.
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Symmetry 417

where β1 and β2 are the angles that the projection of the ray of light onto the 
plane i1i2 makes with the axis i1, that is, with the normal to the surface.

It can then be concluded that the projection of the ray onto the plane i1i2 
also fulfi lls the law of refraction when we replace the refractive indices n1 
and n2 by n1* and n2*. Figure 13.3 shows this projection.

We now consider a more general situation in which the normal n to the 
refractive (or refl ective) surface no longer necessarily points in the direction 
of i1, but n is still contained in the plane i1i2 (plane ν) perpendicular to axis 
i3, as shown in Figure 13.4. In this case n = (m1, m2, 0) and p3 is conserved on 
refraction (or refl ection), as seen from Equation 13.3. Equation 13.11 is still 

i1

n1

n2

i2

i3

n
�1

�2

�3n1

�3n 2

FIGURE 13.2
Refraction of a ray at a surface separating two media of refractive indices n1 and n2, also show-
ing normal n and the projection of the ray trajectory onto plane i1i2.

i1

i2

n1

n2

�1

�2n2
�2n1 �2

n

FIGURE 13.3
Projection of a 3-D ray onto plane i1i2.
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418 Introduction to Nonimaging Optics

valid in this case where angles β1 and β2 are the angles that the projection 
of the light ray onto the plane ν makes with the normal n before and after 
refraction (or refl ection). We can then write

   √ 
_______

  n 1  
2  −  p 3  

2    sin β1 =   √ 
_______

  n 2  
2  −  p 3  

2    sin β2 (13.12)

The i3 component of the optical momentum is constant and this means that

 p3 = n1 cos α3n1 = n2 cos α3n2 (13.13)

13.2 Linear Symmetry

We can now apply the result obtained earlier to the case of a system with 
linear symmetry along the axis x3, as shown in Figure 13.5. We align axis 
i3 along x3. The normals to the optical surfaces are perpendicular to x3 and, 
therefore, contained in the plane x1x2 (plane ν, perpendicular to x3). These 
normals have x3 component as zero and, from Equation 13.3, we can then 
conclude that the p3 component of the momentum (along x3) is conserved by 
refl ections and refractions. It is also conserved as the ray travels in a homo-
geneous medium of refractive index n between refl ections or refractions, 
because the angle the ray makes with the axis x3 is constant as it travels in 
a straight line. Component p3 of the optical momentum is then always con-
served in a linear system extruded along the axis x3.

FIGURE 13.4
Axis i3 is tangent to a surface separating two media of refractive indices n1 and n2. The normal 
n to the surface is perpendicular to i3 and contained in plane ν. The projection of the ray trajec-
tory onto plane ν follows the law of refraction with a modifi ed refractive index.

n�

n1

n2
i3

�3n1

�3n2

�1

�2
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The result in expression 13.12 also applies to the linear system in  Figure 13.5. 
We can then study the linear system as a 2-D system in which the refractive 
index is replaced by

 n* =   √ 
_______

 n2 −  p 3  
2    (13.14)

and expression 13.12 is in this case

 n1* sin β1 = n2* sin β2 (13.15)

Then the projections of the light rays of a linear system onto plane x1x2 behave 
as a 2-D system with refractive index given by Equation 13.14.

Consider next a more general way to derive these results. A linear  optical 
system aligned along axis x3 may be described by the coordinate system 
(x1, x2, x3) in which the refractive index does not depend on x3 and n = n(x1, x2). 
From expression 10.78, it can be concluded that in this case ∂P/∂x3 = ∂n/∂x3 = 0; 
therefore, dp3/dσ = 0, and

 p3 = C3 (13.16)

where C3 is a constant. However, from expression 10.78 we can also see that 
∂P/∂p3 = 2p3 = dx3/dσ, and therefore

 x3 = 2p3σ + C (13.17)

that is, x3 = C1σ + C, where C1 and C are constants.

x3

x2

x1

n2

n1

�3n2

�3n1

�2

�1

�
n

FIGURE 13.5
A surface having linear symmetry along axis x3 and normal n, separates two media of refrac-
tive indices n1 and n2. The projected trajectory of a light ray onto plane ν perpendicular to x3 
follows the law of refraction with a modifi ed refractive index.
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Expression 10.78 can then be written as

   
dx1 ___ 
dσ   =   ∂P ____ ∂p1

        dp1 ____ dσ   = −   ∂P ___ ∂x1
   

   
dx2 ___ 
dσ   =   ∂P ____ ∂p2

        dp2 ____ dσ   = −   ∂P ___ ∂x2
   (13.18)

 x3 = 2p3 σ + C  p3 = C3 

 P =  p 1  
2  +  p 2  

2  −  [n2(x1, x2) −  p 3  
2 ]  = 0  

where C and C3 are constants. The behavior of the optical system along the 
axis x3 is then known. The analysis of a 3-D system with linear symmetry 
can then be reduced to the analysis of the 2-D system described by the fol-
lowing system of equations:

   
dx1 ___ 
dσ   =   ∂P ____ ∂p1

        dp1 ___ 
dσ   = −   ∂P ___ ∂x1

   

   
dx2 ___ 
dσ   =   ∂P ____ ∂p2

        dp2 ___ 
dσ   = −   ∂P ___ ∂x2

   (13.19)

 P =  p 1  
2  +  p 2  

2  − n*2 = 0 

With n*2 = n2(x1, x2) −  p 3  
2 , that is,

 n* =   √ 
_____________

  n2 (x1, x2) −  p 3  
2    (13.20)

where p3 is conserved (is constant).
This is a particular result of a general case in which the Hamiltonian does 

not depend on one of the coordinates xk, that is, ∂P/∂xk = 0 ⇒ pk = constant. 
This coordinate xk is called cyclic and the corresponding momentum is 
constant. The system can then be described with one less independent coor-
dinate (one less dimension).1 Further examples of such systems are those 
with circular symmetry, as described in Section 13.3.

Since ∂P/∂xk = −∂L/∂xk, where L is the Lagrangian, we have ∂L/∂xk = 0 for 
the cyclic coordinate xk. The corresponding Euler equation is then

   d ___ 
dσ    (   ∂L ___ ∂xk′

   )  = 0 (13.21)

which can be integrated once resulting in ∂L/∂x k′ = constant. Expres sion 13.21 
is called a fi rst integral of the second-order Euler equation.2 Note that this 
fi rst integral can also be written as pk = constant.

13.3 Circular Symmetry and Skew Invariant

Often optical instruments have circular or axial symmetry, that is, they 
are symmetric around an axis of rotation, assumed here to be x3. Further 
 postulate that light rays progress along the axis x3. Here it is convenient to 
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Symmetry 421

choose a cylindrical coordinate system. Each point P in space is then defi ned 
by coordinate x3, by distance ρ to the x3 axis, and by an angle θ around that 
axis, as presented in Figure 13.6. These coordinates defi ne a local coordinate 
system eρ, eθ, e3. A system with circular symmetry is characterized by the 
fact that a cut with any vertical plane containing axis x3, yields the same 
cross section. In this case, the refractive index will be a function of ρ and x3 
because the optical surfaces do not change with θ.

A light ray is traveling in a medium of refractive index n1 and refracts 
into a medium of refractive index n2. If n1 = n2, then the ray is refl ected. 
Before refraction (or refl ection) the ray has an optical momentum p1 and after 
refraction (or refl ection) it has an optical momentum p2. If the system has 
 circular symmetry, the normals to the optical surfaces at each point have no 
component along eθ, that is, n = (mρ, 0, m3). The component of p1 along eθ will 
therefore remain unchanged by refraction or refl ection. This component is 
given by

 pθ = n cos φ (13.22)

where φ is the angle the light ray makes with eθ. We then have

 n1 cos φ1 = n2 cos φ2 (13.23)

as represented in Figure 13.7.
Note that although pθ is conserved in a refraction (or refl ection), it is not con-

served as the ray propagates straight through the system between refractions 
or refl ections. As we can see from Figure 13.8, going from point A to point B 
along the path of a ray causes angle φ to change and therefore pθ also changes 
because the refractive index n is constant between refractions or refl ections.

We consider again the ray as it propagates through the system between 
refractions or refl ections. We have a situation as shown in Figure 13.9 in 
which  Figure 13.9b is the top view of Figure 13.9a.

The projection of ray r onto plane x1x2, parallel to the plane defi ned by eρ 
and eθ, is line rP. For this projection (and for ray r), we have

 ρ sin α = M (13.24)

x3

x1

x2e3

e	

e�

�

Circular
symmetry

P
	

FIGURE 13.6
Cylindrical coordinate system used in 3-D optical systems with circular symmetry.
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422 Introduction to Nonimaging Optics

where M is a constant, ρ the distance from a point O on the ray to axis x3 , and 
α the angle rP makes with eρ. Quantity M is the minimal distance between 
the light ray and the optical axis, and equals the length of the common per-
pendicular to both straight lines.

We now relate sin α and cos φ by using the construction in Figure 13.10. 
For a ray r defi ned by a point O and a unit vector with direction t,

we have

 OC = cos φ = OB sin α = sin γ sin α (13.25)

x3

x2

x1

�B

�A

�B

�A

A

B

e�A

e�B

FIGURE 13.8
As a light ray travels through an optical 
system with circular symmetry, the θ com-
ponent pθ of the optical momentum changes 
because angle φ also changes.
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x3 e�

e3
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FIGURE 13.9
(a) A light ray traveling straight on a system with circular symmetry is projected onto plane 
x1x2 perpendicular to the axis of symmetry x3. The quantity ρ sin α is constant for this  projection. 
(b) A top view of (a).
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FIGURE 13.7
A light ray refracts at a point O of an opti-
cal system with circular symmetry. The 
θ component pθ of the optical momen-
tum does not change with refraction.
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Since sin γ and the refractive index are constant as the ray propagates between 
refl ections and refractions, we can say that the quantity

 h = nρ sin α sin γ = nM sin γ = nρ cos φ (13.26)

is conserved. We can also write

 pθ = n cos φ = h  1 __ ρ   = bh (13.27)

where b = 1/ρ. From expression 13.23, we have

 n1ρ cos φ1 = n2 ρ cos φ2 (13.28)

and therefore the quantity h is also conserved in refractions and refl ections. 
This quantity is called skew invariant or skewness and we see it is conserved 
in a system with circular symmetry around axis x3.

We can rewrite expression 13.26 in another form with the help of  
Figure 13.11, in which the light ray is defi ned by a point O and by the optical 
 momentum p, which is given by p = nt for t being a unit vector in the direc-
tion of the propagation of the ray. Then ��p�� = n and

 ρ = ��r��sin β = ��e3 × r�� (13.29)

where r is a vector from a point Q on the axis of symmetry to a point O on 
the ray. We can write

 h = ��e3 × r�� ��p��cos φ = p ⋅ (e3 × r) (13.30)

obtaining h as a scalar triple product of p, e3, and r (note that vector e3 × r  
points in the direction of eθ.

e3

x3

x1

x2 r
A

C
�

e	

e�

B

O

t
�

�

FIGURE 13.10
Relating angle φ that a light ray makes with eθ with the angle γ it makes with e3.
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424 Introduction to Nonimaging Optics

Yet another way to write the expression for h is to consider the geometry of 
Figure 13.12. The light ray is again defi ned by a point O and the optical momen-
tum p. Vector pP is the projection of p in the plane x1x2 (parallel to the plane 
defi ned by eρ and eθ) and has magnitude ��pP�� = n sin γ. Also, rP is the projection 
of r onto the x1x2 plane with ��rP�� = ρ and we can write expression 13.26 as

 h = ��pP�� ��rP��sin α = ��rP × pP�� (13.31)

Therefore, if we have r = (x1, x2, x3) and p = (p1, p3, p3), we can rewrite expres-
sion 13.31 as

 h = ��(x1, x2, 0) × (p1, p2, 0)�� (13.32)

Just as in the case of the linear system, also in the case of the circular 
optics, we can use expression 13.12. Now we take coordinate i3 as coordi-
nate θ and we get the system in Figure 13.13. Now plane ν is defi ned as a 
surface θ = constant and is perpendicular to eθ.

The normals to the optical surfaces are perpendicular to eθ and, therefore, 
contained in the planes ν defi ned by eρ and e3 (perpendicular to eθ). The 
pθ component of the optical momentum is unchanged by refraction and is 
given by

 pθ = n1 cos αθn1 = n2 cos αθn2 (13.33)

e3

e3

e�

e2

e1

p

Light
ray

O
�

r

Q e	

e3 × r

�
	

FIGURE 13.11
Construction for writing the expression for 
the skew invariant h as a scalar triple prod-
uct of p, e3, and r, basically the volume of the 
parallelepiped they form.
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FIGURE 13.12
The skew invariant can be calculated as a 
function of the projection onto the plane 
x1x2 of  vectors r and p.
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Note, however, that pθ is not constant while the ray propagates after refrac-
tion, rather what is constant is the skewness h. If the trajectory of the light 
rays is projected onto plane ν, then expression 13.12 now becomes

   √ 
_______

  n 1  
2  −  p θ  

2
     sin β1 =   √ 

_______
  n 2  

2  −  p θ  2
     sin β2 (13.34)

because we are considering that i3 is now θ. From expressions 13.22 and 13.26, 
we obtain pθ = h/ρ and we can write

   √ 
___________

  n 1  
2  − (h/ρ)2     sin β1 =   √ 

___________
  n 2  

2  − (h/ρ)2    sin β2 (13.35)

and therefore, when projected onto the plane ν, the refraction appears to 
 happen with a refractive index

 n* =   √ 
___________

 n2 − (h/ρ)2   (13.36)

Note that as the radius R of the circular system tends to infi nity, its behavior 
tends to become that of a linear system.3

An alternative way to derive the conservation of h is from the Hamilton 
equations 10.119 making i1 → ρ, i2 → θ, and i3 → x3. Expression 10.118 for the 
vec-tor p can be written in this case as

 p = n cos φ eρ + n cos φ eθ + n cos γ e3 (13.37)

where φ, φ, and γ are, respectively, the angles which the direction of the light 
ray makes with unit vectors eρ, eθ, and e3, as shown in Figure 13.14a.

x3

�
�1

R n

n1

n2 e3 e�

e	

�
��n2

��n1

�2

FIGURE 13.13
Projection of a light ray traveling in an optical system with circular symmetry onto a plane ν 
defi ned by θ = constant. The projected trajectory of the light ray onto plane ν follows the law 
of refraction with a modifi ed refractive index.
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426 Introduction to Nonimaging Optics

Expression 10.114, however, states that

 p = u1a1e1 + u2a2e2 + u3a3e3 (13.38)

with ak =  �∇ik�  and ek = ∇ik /  �∇ik� . In this case, with i1 → ρ, i2 → θ, and i3 → x3

 p = uρ  �∇ρ�  eρ + uθ ��∇θ�� eθ + u3  �∇x3�  e3 (13.39)

From Figure 13.14b, we can see that

 θ = arc cos ( x1 �  √ 
_______

  x 1  
2  +  x 2  

2    )  = arc cos(x1/ρ) (13.40)

And we can calculate the gradient of θ as

 ∇θ =  (    ∂θ ___ ∂x1
  ,   ∂θ ___ ∂x2

  ,   ∂θ ___ ∂x3
   )  =  ( −  

  √ 
__

  x 2  2   
 ____ ρ2  ,   

x1x2 _____ 
ρ2  √ 

__
  x 2  2   
  , 0 )  (13.41)

and therefore

 ��∇θ�� = 1/ρ = b (13.42)

where b is defi ned by expression 13.42. Also, from ρ =   √ 
_______

  x  1  
2  +  x  2  

2    we obtain  
�∇ρ�  = 1. We also have  �∇x3�  = 1. This enables us to write Equation 13.39 as

 p = uρ eρ + uθb eθ + u3 e3 (13.43)

x3

x2

x1

e3

dx3

e	

e�

A

x2
x1

� �

�

	

	

O

d	

	 d�

�
�

(a) (b)

FIGURE 13.14
(a) A light ray through points O and A makes angles φ, φ, and γ with unit vectors ep, eθ, and e3, 
respectively. (b) The angle θ is a function of x1 and x2.
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From Equation 10.117, we can see that uθ  = h since

 uθb = n cos φ ⇔ uθ = nρ cos φ (13.44)

The system of differential equations 10.119 can now be rewritten, making 
 i1 → ρ, i2 → θ, and i3 → x3 and renaming uρ = pρ and u3 = p3 to obtain

   
dρ ___ 
dσ   =   ∂P ___ ∂pρ

     
dpρ ___ 
dσ   = −  ∂P ___ ∂ρ   

(13.45)
   dθ ___ 

dσ   =   ∂P ___ ∂uθ
     

duθ ___ 
dσ   =   ∂P ___ ∂θ   

   
dx3 ___ 
dσ   =   ∂P ___ ∂p3

     
dp3 ___ 
dσ    = −  ∂P ___ ∂x3

   

P =  p ρ  2   +  u θ  2  b2 +  p 3  
2  − n2(ρ, x3) = 0

Since P does not depend on θ, we have ∂P/∂θ = 0 and

 uθ = h (13.46)

where h is a constant. The quantity h is the skew invariant or skewness. Also, 
from the equation for dθ/dσ we have

   dθ ___ σ   = 2hb2 =   2h _____ ρ2(σ)
   (13.47)

or

 θ =   ∫         2h _____ ρ2(σ)
   dσ + Cθ = F(σ) + Cθ (13.48)

where Cθ is also a constant. We, therefore, have

   
dρ ___ 
dσ   =   ∂P ___ ∂pρ

      
dpρ ___ 
dσ   = −  ∂P ___ ∂ρ   

(13.49)
 θ = F(σ) + Cθ  uθ = h 

   
dx3 ___ 
dσ   =   ∂P ___ ∂p3

        
dp3 ___ 
dσ   = −  ∂P ___ ∂x3

   

P =  p ρ  2
   +  p 3  2  −  [n2(ρ, x3) − h2b2]  = 0 

The analysis of a 3-D system with circular symmetry can then be reduced 
to the analysis of the 2-D system described by the following system of 
equations:

   
dρ ___ 
dσ   =   ∂P ___ ∂pρ

      
dpρ ___ 
dσ   = −  ∂P ___ ∂ρ   

(13.50)   
dx3 ___ 
dσ   =   ∂P ___ ∂p3

      
dp3 ___ 
dσ   = −  ∂P ___ ∂x3

   

P =  p ρ  2   +  p 3  
2  − n*2 = 0 
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428 Introduction to Nonimaging Optics

with n*2 = n2(ρ, x3) − h2b2, that is,

 n* =   √ _____________

  n2(ρ, x3) −   h
2
 __ ρ2     (13.51)

Skew rays can then be described as rays in the plane if the refractive index n 
is replaced by n*.4

These equations enable us to obtain ρ(σ) and x3(σ). By using ρ(σ), function 
θ(σ) can be obtained. Constant Cθ can be obtained from the initial conditions: 
σ = σ1 ⇒ θ = θ1. We then have

 Cθ = θ1 − F(σ1) (13.52)

so that the value of Cθ can be calculated. The optical momentum is now given 
by Equation 13.43 as

 p = uρ eρ + hb eθ + u3 e3 = uρ eρ + h  1 __ ρ   eθ + u3 e3 (13.53)

Yet another way to derive the conservation of h is directly from Fermat’s 
principle.4 In this case of circular symmetry, the refractive index will be 
a function of ρ and x3 with ρ =   √ 

_______
  x 1  

2  +  x 2  
2   . Fermat’s principle written in the 

form of Equation 10.50, with the Lagrangian given by Equation 10.49, can 
now be written as

 δ  ∫       n( ρ, x3)  √ 
____________

  1 + x1′2 + x2′2    dx3 = 0 (13.54)

Introducing

 x1 = ρ cos θ
 (13.55)

 x2 = ρ sin θ 

we can write for Equation 13.54:4

 δ  ∫       n(ρ, x3)  √ 
______________

  1 + ρ′2 + ρ2θ′2   dx3 = 0 (13.56)

where ρ′ =  dρ/dx3 and θ′ = dθ/dx3. Equation 13.56 can be written in the form:

 δ  ∫       F(ρ, x3, ρ′, θ′)dx3 = 0 (13.57)

with F( ρ, x3, ρ′, θ′) = n( ρ, x3)  √ 
______________

  1 + ρ′2 + ρ2θ′2  . The Euler equation in θ (see 
Equation 10.31) can now be written as

   ∂F ___ ∂θ   −   d ___ 
dx3

    (   ∂F ___ ∂θ′   )  = 0 (13.58)

Since F does not explicitly depend on θ, we have ∂F/∂θ = 0, so that

   d ___ 
dx3

    (   ∂F ___ ∂θ′   )  = 0 ⇔   d ___ 
dx3

    (   nρ2θ′
 _______________  

  √ 
______________

  1 + ρ′2 + ρ2θ′2  
   )  = 0 (13.59)
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therefore,

   
nρ2θ′
 _______________  

  √ 
______________

  1 + ρ′2 + ρ2θ′2   
   = h (13.60)

where h is a constant.4 The quantity h is again the skew invariant or skewness. 
Now, let e3, eθ, and eρ be the mutually orthogonal unit vectors, respectively, 
tangent to the lines in which only x3, θ, and ρ vary. We then have ek = ∇ik/ �∇ik� , 
that is, e3 = ∇i3/ �∇i3� , eθ = ∇iθ/ �∇iθ� , eρ = ∇iρ/ �∇iρ� . From expression 13.60, we 
see that

 h = nρ   
ρ dθ _________________  

  √ 
________________

  d x 3  
2  + dρ2 + ρ2dθ2  

    = ρn cos φ (13.61)

where, as seen from Figure 13.14a, φ corresponds to the angle that the light ray 
passing through point O and A makes with the vector eθ and ρ =   √ 

______
  x 1  

2  +  x 2  
2   .
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431

14
Étendue in Phase Space

14.1 Étendue and the Point Characteristic Function

Here we derive the conservation of étendue from optical fi rst principles, 
 utilizing a reference wave front from which we can calculate the optical path 
length to a given point P = (x1, x2, x3). It is then possible to defi ne a function 
S(P) = S(x1, x2, x3) that gives the optical path length between the reference 
wave front and any given point. The momentum or a light ray at point P 
is given by p = ∇S, where ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3). Accordingly, if we now 
consider another point P* = ( x 1  * ,  x 2  * ,  x 3  * ), we have p* = ∇*S, where  ∇* = (∂/∂ x 1  * , 
∂/∂ x 2  * , ∂/∂ x 3  * ).

Based on the defi nition of function S(P), we can now defi ne the point 
 characteristic function, V(P, P*) = V(x1, x2, x3,  x 1  * ,  x 2  * ,  x 3  * ), which gives the opti-
cal path length between two given points P and P* in the medium.1,2 It is 
given by

 V(x1, x2, x3,  x 1  * ,  x 2  * ,  x 3  * ) =   ∫ 
P
  

P*
   n ds = S(P*) − S(P) 

= S( x 1  * ,  x 2  * ,  x 3  * ) − S(x1, x2, x3) (14.1)

We have ∇V = −∇S and ∇*V = ∇*S. And also, as we have seen, p = ∇S and 
p* = ∇*S. Then

 p = −∇V and p* = ∇*V (14.2)

or in terms of its components:

(p1, p2, p3) = (−Vx1, −Vx2, −Vx3) 

( p 1  * ,  p 2  * ,  p 3  * ) = (Vx1*, Vx2*, Vx3*) 
(14.3)

where Vi = ∂V/∂i.
Let P and P* be defi ned, respectively, at the entrance and exit apertures of 

an optical system.3 Let us further consider that P is located in the plane x1x2 
of its coordinate system, as shown in Figure 14.1.
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432 Introduction to Nonimaging Optics

Considering differentials dx1 and dx2 for the position of P and d x 1  *  and d x 2  *  
for the position of P*, we can write for the corresponding momentum varia-
tions by using Vij = ∂(∂V/∂i)/∂j:

dp1 = −Vx1x1 dx1 − Vx1x2 dx2 − Vx1x1* d x 1  *  − Vx1x2* d x 2  *  

dp2 = −Vx2x1 dx1 − Vx2x2 dx2 − Vx2x1* d x 1  *  − Vx2x2* d x 2  *  

d p 1  *  = Vx1*x1 dx1 + Vx1*x2 dx2 + Vx1*x1* d x 1  *  + Vx1*x2* d x 2  *  
(14.4)

d p 2  *  = Vx2*x1 dx1 + Vx2*x2 dx2 + Vx2*x1* d x 1  *  + Vx2*x2* d x 2  *  

Equation 14.4 can be rearranged in the following matrix form:

 

V V

V V

V V

V V

x x x x

x x x x

x x x x

x x x x

1 1 1 2

2 1 2 2

1 1 1 2

2 1 2 2

0 0

0 0

1 0
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* *

* * * *

* * *
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**

*

*

*

*0 1

1

2

1

2

1 1

�

�

� �







































dx

dx

dp

dp

V Vx x xx x

x x x x

x x x x

x x x x

V V

V V

V V

1 2

2 1 2 2

1 1 1 2

2 1 2 2

1 0

0 1

0 0

0 0

�

� � �

� �

� �

* *

* *









































dx

dx

dp

dp

1

2

1

2

                    BB                                                  �   �M*                       A M�  
 (14.5)

The determinant of matrix B is given by

 det B = Vx1x1*Vx2x2* − Vx1x2*Vx2x1* (14.6)

FIGURE 14.1
Plane x1x2 is at the entrance aperture of the optical system and the plane  x 1  *   x 2  *  is at its exit 
aperture. The rays of a bundle passing through dx1 dx2 in plane x1x2 have different directions, 
such that p1 varies by dp1 and p2 varies by dp2 for these rays. On another plane  x 1  *   x 2  * , these rays 
pass through an elemental area  dx 1  *   dx 2  * , and have different directions, such that  p 1  *  varies by  dp 1  *  
and  p 2  *  varies by d p 2  *  for these rays. The conservation of étendue is expressed as dx1 dx2 dp1 dp2 =
d x 1  *  d x 2  *  d p 1  *  d p 2  * .
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The determinant of matrix A can also be obtained as

 det A = Vx1*x1Vx2*x2 − Vx2*x1Vx1*x2 (14.7)

Making Vx1*x1 = Vx1x1*, Vx1*x2 = Vx2x1*, Vx2*x1 = Vx1x2*, and Vx2*x2 = Vx2x2*, we can 
write

 det A = det B (14.8)

Now noting that the determinant of the product of two matrices is the prod-
uct of the determinants of the matrices, that is, if C and D are two matrices, 
we have det(C ⋅ D) = det C det D, we can write det(B−1 ⋅ B) = det B−1 det B. Since 
det(B−1 ⋅ B) = 1, we obtain det B−1 = 1/det B. Or considering Equation 14.8:

 det B−1 = 1/det A (14.9)

Multiplying the left-hand side of Equation 14.5 by matrix B−1, we obtain

 M* = (B−1 ⋅ A) ⋅ M (14.10)

Considering Equation 14.9, we can write

 det (B−1 ⋅ A) = det B−1 det A = 1 (14.11)

But Equation 14.10 can also be written as
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 (14.12)

and therefore C = B−1 ⋅ A. But, we can also write

  dx 1  *   dx 2  *   dp 1  *   dp 2  *  =   
∂( x 1  * ,  x 2  * ,  p 1  * ,  p 2  * )  _____________  ∂(x1, x2, p1, p2)

   dx1 dx 2 dp2 dp2 (14.13)

where

   
∂( x 1  * ,  x 2  * ,  p 1  * ,  p 2  * )  _____________  ∂(x1, x2, p1, p2)

   = det C (14.14)

since det C = 1,

  dx 1  *   dx 2  *   dp 1  *   dp 2  *  = dx1 dx2 dp2 dp2 (14.15)
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434 Introduction to Nonimaging Optics

which means that the quantity

 dU = dx1 dx2 dp1 dp2 (14.16)

is then conserved as light travels within optical systems. The coordinate 
 system (x1, x2, p1, p2) of these special coordinates and momenta is called a 
phase space. A point R in phase space has coordinates (x1R, x2R, p1R, p2R), 
 corresponding to a point (x1R, x2R) in the x1x2 plane and a direction (p1R, p2R). 
This point in phase space then uniquely defi nes both a spatial point and 
a direction, and therefore a ray. A continuous set of points in phase space 
defi nes a region within which each point represents a ray of light, so that the 
region defi nes a bundle of rays.

The elemental region in phase space has a volume dU = dx1 dx2 dp1 dp2 
(x1, x2, p1, p2) that is called étendue, and Equation 14.15 defi nes the conserva-
tion of étendue in an optical system: dU* = dU.

Consider an elemental area dx1 dx2 and a set of rays leaving it in different 
directions. For these rays, p1 varies by a value dp1 and p2 varies by a value dp2. 
These rays will travel through an optical system and pass through another 
area  dx 1  *   dx 2  * . Now, the directions of these rays are such that  p 1  *  varies by a value  
dp 1  *  and  p 2  *  varies by a value  dp 2  * , as presented in Figure 14.1. The  conservation 
of étendue is expressed as  dx 1  *   dx 2  *   dp 1  *   dp 2  *  = dx1 dx2 dp2 dp2. These rays passing 
through dx1 dx2 and  dx 1  *   dx 2  *  are called a light beam, so that étendue is con-
served for light beams.

Note that dx1 dx2 dp2 dp2 is an elementary region in phase space (x1, x2, p1, 
p2). Therefore, the conservation of étendue states that, if a given set of rays 
occupies a given region of elemental volume dx1 dx2 dp2 dp2 in phase space at a 
given point in an optical system, then after traveling through that optical sys-
tem these rays will still occupy a region of elemental volume  dx 1  *   dx 2  *   dp 1  *   dp 2  *  = 
dx1 dx2 dp2 dp2, that is, the same volume as earlier, although the new region may 
have a different shape. Therefore, the volume in phase space occupied by a set 
of light rays is constant as they travel through the optical system.

For 2-D systems, we have one less dimension and a situation similar to that 
shown in Figure 14.2.

In this case, the quantity that is conserved is dU2-D = dx1 dp1.

14.2 Étendue in Hamiltonian Optics

Here we present the conservation of étendue from the point of view of 
 Hamiltonian optics. Consider a volume V moving in space, as presented 
in Figure 14.3. Let dA be an element of its surface and n be a unit vector 
 perpendicular to dA. Further consider that the element of area (dA) is  moving 
with  velocity v = x⋅ = dx/dt, as shown in Figure 14.3a. During a period of time 
dt, this  element of area moves v dt, producing an increase in volume. In the 
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FIGURE 14.2
Conservation of étendue for 2-D optical systems.
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FIGURE 14.3
(a) A volume V moves in space. A small portion dA of its surface moves with it. (b) The 2-D case: 
if da moves with a velocity v, the increase in volume due to the movement of da during a time 
period dt is given by dV = da v dt cos γ = da(v ⋅ n)dt, n being a unit vector perpendicular to da. 
In the general 3-D case, this relation is still valid and we have dV = dA (v ⋅ n)dt.
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436 Introduction to Nonimaging Optics

2-D case, we have dV = da v dt cos γ = da(v ⋅ n)dt, as shown in Figure 14.3b, 
where v is the magnitude of v. In the 3-D case, we have dV = dA(v ⋅ n)dt. Inte-
grating on the whole surface A delimiting V, the total volume variation is

   dV ___ 
dt

   =   ∫ 
A

     v ⋅ n dA  (14.17)

Using Gauss’s theorem,4 we obtain5

   dV ___ 
dt

   =   ∫ 
A

     v ⋅ n dA =   ∫ V     ∇ ⋅ v dV (14.18)

where ∇ ⋅ v is the divergence of v. The velocity is given by v = x⋅   . In case the 
volume under consideration moves in an n-dimensional space, we have v =  
(x⋅  1, . . ., x⋅   n).

This result can now be applied to Hamiltonian optical systems. A 3-D 
 system is described by the system of equations 10.62, or:

x′1 =   ∂H ___ ∂p1
    p′1 = −   ∂H ___ ∂x1

   

x′2 =   ∂H ___ ∂p2
    p′2 = −   ∂H ___ ∂x2

   (14.19)

H = −  √ 
___________

 n2 −  p 1  2  −  p 2  2    

where the primes represent x3 derivatives since now x3 takes the role of time. 
That is, instead of x⋅   = dx/dt, we have geometrical derivatives x′k = dxk/dx3 
since we now have x1 = x1(x3) and x2 = x2(x3). Coordinate x3 corresponds to 
the system optical axis, that is, the axis along which light propagates in the 
optical system in the direction of increasing x3, so that p3 > 0. Each light ray 
can be defi ned, for each value of x3, by (x1, x2, p1, p2). A point in space (x1, x2, 
p1, p2) defi nes the position (x1, x2) of the light ray and its direction of propa-
gation (p1, p2). Note that p1 and p2 enable the defi nition of the direction of the 
light ray in space x1, x2, x3 since, from  p 1  

2  +  p 2  
2  +  p 3  

2  = n2, p3 can be obtained if p1 
and p2 are given. As the light ray propagates along the axis x3,  coordinates x1, 
x2, p1, and p2 vary and the light ray moves in a 4-D phase space (x1, x2, p1, p2). 
Let us now consider a large number of light rays propagating in the system, 
each occupying a point in phase space, and the entire set of rays constituting 
a region in that space. In particular, if the rays are continuously distributed 
in the optical system, they will occupy a volume V in phase space. Each point 
of this volume moves with “velocity” v = ( x′  1  

  ,  x′  2  
  ,  p′  1  

  ,  p′  2  
  ) with  x′  k  

  = dxk/dx3 and  
p′  k  

  = dpk/dx3. The result (Equation 14.18) obtained earlier can now be applied 
to phase space:

   dV ___ 
dx3

   =   ∫ V     ∇ ⋅ v dV (14.20)
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where, as stated earlier, axis x3 now takes the role of time. The expression for 
∇ ⋅ v can now be calculated from expression 14.19:

∇ ⋅ v =  (    ∂x′  1  
  
 ____ ∂x1
   +   

∂ x′  2  
  
 ____ ∂x2
   +   

∂ p′  1  
  
 ____ ∂p1
   +   

∂ p′  2  
  
 ____ ∂p2
   )  =  (   ∂ ___ ∂x1

      ∂H ____ ∂p1
   +   ∂ ___ ∂x2

      ∂H ___ ∂p2
   −   ∂ ___ ∂p1

      ∂H ___ ∂x1
   −   ∂ ___ ∂p2

      ∂H ____ ∂x2
    )  = 0 

 
(14.21)

so that

 dV/dx3 = 0 (14.22)

This result is called Liouville’s theorem5–7 and applies to any Hamiltonian 
system.

Equation 14.22 enables us to conclude that the elemental region has a 
 constant volume dV = dx1 dx2 dp1 dp2 as the light propagates in the optical 
system, that is, along axis x3. In the case of Hamiltonian optics, this volume  
dV in phase space is called étendue and is represented by dU. We can then 
write dU = constant or3

 U =   ∫       dx1 dx2 dp1 dp2 = constant (14.23)

Let us suppose, for example, that x3 = 0 corresponds to the rectangular 
entrance aperture of a 3-D optical device. This entrance extends between 
x1A < x1 < x1B and x2A < x2 < x2B. Let us further consider that the light entering 
the device makes angles with the coordinate axes such that p1A < p1 < p1B and
p2A < p2 < p2B. We then see that these conditions defi ne a region in the 4-D 
space (x1, x2, p1, p2 ) at the entrance of the device. As the light progresses through 
the optical system, the coordinates and the angles that the light rays make 
with the axes change. The phase space volume, however, remains constant.
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15
Classical Mechanics and Geometrical Optics

15.1 Fermat’s Principle and Maupertuis’ Principle

Equation 10.51 has the form of Hamilton’s principle of classical mechan-
ics. We could then be tempted to conclude that Hamilton’s principle of 
mechanics corresponds to the Fermat’s principle of optics. In fact, this is 
not quite true. The correct variational principle of mechanics with which 
Fermat’s principle can be related is Maupertuis’ principle, or the principle 
of least action.1–5

Hamilton’s principle of classical mechanics is written as

   ∫ t1
  

t2
  L(x1, x2, x3, ẋ1, ẋ2, ẋ3, t) dt (15.1)

where L is the Lagrangian, xi are the generalized coordinates, t the time, and 
ẋk = dxk/dt. The Euler equations are

   d __ 
dt

    (   ∂L ___ ∂x. 1
   )  =   ∂L ___ ∂x1

        d __ 
dt

    (   ∂L ___ ∂x. 2
   )  =   ∂L ___ ∂x2

      d __ 
dt

    (   ∂L ___ ∂x. 3
   )  =   ∂L ___ ∂x3

   (15.2)

The total derivative of L with respect to time t is

   dL ___ 
dt

   =   ∂L ___ ∂t   + ∑ 
k=1

  
3

      ∂L ___ ∂ẋk
     
dẋk ___ 
dt

   +   ∂L ___ ∂xk
   ẋk (15.3)

Let us now assume that L does not depend explicitly on time t:

 L = L(x1, x2, x 3, ẋ1, ẋ2, ẋ3) (15.4)

We then have ∂L/∂t = 0. We can now replace ∂L/∂xk from the Euler equations 
to give

   dL ___ 
dt

   = ∑ 
k=1

  
3

      ∂L ___ ∂ẋk
     
dẋk ___ 
dt

   +   d __ 
dt

    (   ∂L ___ ∂ẋk
   )  ẋk =   d __ 

dt
    (    ∑ 

k=1
  

3

     ∂L ___ ∂ẋk
   ẋk )  (15.5)

or

   d __ 
dt

    (  ∑ 
k=1

  
3

      ∂L ___ ∂ẋk
   ẋk − L )  = 0 (15.6)
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440 Introduction to Nonimaging Optics

Now considering that

 pk =   ∂L ___ ∂ẋk
    (15.7)

we have

   d __ 
dt

    (  ∑ 
i=1

  
3

    pk ẋk − L )  = 0 (15.8)

The Hamiltonian H is defi ned by

 H =  ∑ 
k
       pk ẋk − L (15.9)

We can then conclude that the Hamiltonian does not depend on time and there-
fore is constant. Equation 15.8 expresses the law of conservation of energy, since 
the Hamiltonian corresponds to the energy E of the system.3,4 We then have

 H =  ∑ 
k=1

  
3

   pkẋk − L = E (15.10)

where E is a constant. In this case, it is possible to reduce the number of 
dimensions from four to three by eliminating time.1 Consider x1 and x2 as 
functions of x3, that is, x1 = x1(x3) and x2 = x2(x3), so that

 ẋ1 =   
dx1 ___ 
dx3

   ẋ3  ẋ2 =   
dx2 ___ 
dx3

  ẋ3 (15.11)

and thus

 L(x1, x2, x3, ẋ1, ẋ2, ẋ3) = L  ( x1, x2, x3,   
dx1 ___ 
dx3

  ,   
dx2 ___ 
dx3

  , ẋ3 )  (15.12)

Accordingly,

   ∂L ___ ∂ẋk
    = fk  ( x1, x2, x3,   

dx1 ___ 
dx3

  ,   
dx2 ___ 
dx3

  , ẋ3 )  (15.13)

and considering Equation 15.7, Equation 15.10 can be written as

  ∑ 
k=1

  
3

     fk  ( x1, x2, x3,   
dx1 ___ 
dx3

  ,   
dx2 ___ 
dx3

  , ẋ3 )  ẋk  − L  ( x1, x2, x3,   
dx1 ___ 
dx3

  ,   
dx2 ___ 
dx3

  , ẋ3 )  = E (15.14)

Equation 15.14 can now be solved for ẋ3 to give

 ẋ 3 = Φ ( x1, x2, x3,   
dx1 ___ 
dx3

  ,   
dx2 ___ 
dx3

  , E )  (15.15)
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From Equation 15.11, we also have

 ẋ1 =   dx1 ____ 
dx3

    Φ  ( x1, x2, x3,   
dx1 ___ 
dx3

  ,   
dx2 ___ 
dx3

  , E )   ẋ2 =   
dx2 ____ dx3

    Φ  ( x1, x2, x3,   
dx1 ___ 
dx3

  ,   
dx2 ___ 
dx3

  , E )  (15.16)

Consider all the paths for which the system has some given constant energy 
E. We then compare only varied paths of the same energy as the real path. 
From Equation 15.10, we can write Equation 15.1 as1

   ∫ t1
  

t2 
   (  ∑ 
k=1

  
3

   pk  ẋk − E )  dt =   ∫ t1
  

t2 
   ∑ 
k=1

  
3

   pk ẋk dt −   ∫ t1
  

t2 
  E dt = 0 (15.17)

or 

   ∫ t1
  

t2 
   ∑ 
k=1

  
3

   pk ẋk dt = 0 (15.18)

since ∫E dt = 0 because E is a constant. Considering Equation 15.7, the inte-
gral in Equation 15.18 can be rewritten as

   ∫ t1
  

t2 
   ∑ 
k=1

  
3

     ∂L ___ ∂ẋk
   ẋk dt =   ∫ x31

  
  x32

     (   ∂L ___ ∂ẋ1
     
dx1 ___ 
dx3

   +   ∂L ___ ∂ẋ2
     
dx2 ___ 
dx3

   +   ∂L ___ 
∂ẋ3

    )  dx3 (15.19)

since we are now considering xk = xk(x3), and therefore 

 ẋk dt =   
dxk ___ 
dt

   dt =   
dxk ___ 
dx3

     
dx3 ___ 
dt

   dt =   
dxk ___ 
dx3

   dx3 (15.20)

Now making

 F(x1, x2, x3, ẋ1, ẋ2, ẋ 3) =   ∂L ___ ∂ẋ1
     
dx1 ___ 
dx3

   +   ∂L ___ ∂ẋ2
     
dx2 ___ 
dx3

   +   ∂L ___ 
∂ẋ3

   (15.21)

and replacing for ẋ1, ẋ2, and ẋ3 from Equations 15.15 and 15.16, we have6

   ∫ x31
  

 x32
  F  ( x1, x2, x3,   

dx1 ___ 
dx3

  ,   
dx2 ___ 
dx3

  , E )  dx3 = 0 (15.22)

or since the energy E is given to be constant

   ∫ x31
  

 x32
  F(x1, x2, x3,  x′  1   ,  x′  2   ) dx3 = 0 (15.23)

This is the Maupertuis’ principle of least action. Equation 15.10 enables the 
elimination of time derivatives ẋk = dxk/dt, which can now be expressed as 
geometrical derivatives, given by  x′  k    = dxk/dx3 (k = 1, 2), where x3 is now 
 independent variable. Equation 15.23 is purely geometrical and describes the 
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orbits, not the evolution of the system in time. The latter can be found from 
the canonical equations,1 which are obtained directly from Equations 15.1, 
15.7, and 15.9 as

   
dxk ___ 
dt

   =   ∂H ___ ∂pk
      

dpk ___ 
dt

   = −  ∂H ___ ∂xk
   k = 1, 2, 3 (15.24)

The differential equations derived from Equation 15.23 have the form of the 
Euler equations

   d ___ 
dx3

    (   ∂F ____ ∂ x′  1  
  
   )  =    ∂F ___ ∂x1

      d ___ 
dx3

    (   ∂F ____ ∂ x′  2  
  
   )  =    ∂F ___ ∂x2

   (15.25)

The integral in Equation 15.18 can also be written by using Equation 15.10 as

   ∫ t1
  

 t2
  (L + E)dt =   ∫ t1

  
  t2 

   ∑ 
k
       pk ẋk dt =   ∫ P1

  
 P2 

   ∑ 
k
       pk dxk  =   ∫ P1

  
 P2 

  p ⋅ ds  (15.26)

If T is the kinetic energy of the system and V the potential energy, then the 
total energy is E = T + V. Also, L = T − V.3,4 Replacing this in Equation 15.10, 
we have

  ∑ 
k=1

  
3

   pk ẋk = 2T (15.27)

Replacing this in expression 15.26, we have7,8

   ∫ t1
  

 t2 
 2T dt = 0 ⇔   ∫ t1

  
 t2 

 T dt = 0 (15.28)

Maupertuis’ principle of least action is also presented in classical mechanics 
textbooks as3,6

 ∆  ∫         ∑ 
k
       pk ẋk dt = 0 (15.29)

The variation appearing in expression 15.29 for the principle of least action 
is the ∆ variation. The δ variation corresponds to displacements in which 
the time is held fi xed and the coordinates of the system are varied subject 
to the constraints imposed on the system. In contrast, the ∆ variation deals 
with displacements in which, not only the coordinates of the system are 
varied, but it also involves a change in time. We are only considering cases, 
however, in which the energy is constant. In this case, we have seen that 
the dependence on time can be eliminated from the integral of expression 
15.29. In this case, the ∆ and δ variations can be made identical and there-
fore expression 15.29 can be written as expression 15.26.6
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It can be seen that equation 15.23 is the same as Fermat’s principle:

   ∫ P1
  

 P2 
  n ds =   ∫ x31

  
 x32

  n(x1, x2, x3 )  √ 
__________

 1 +  x’  1  
2  +  x’  2  

2     dx3 (15.30)

 =   ∫ x31
  

 x32
  L(x1, x2, x3,  x′  1   ,  x′  2    )dx3 = 0

Euler equations (Equation 15.25) are also the same as those found in optics. 
Maupertuis’ principle is, therefore, the equivalent in mechanics of Fermat’s 
principle of optics.

It should be noted, however, that, if we consider a mechanical system with 
one less dimension, Equation 15.1 can be written as

    ∫ t1
  

    t2
  L(x1, x2, ẋ1, ẋ2, t)dt = 0 (15.31)

which is also mathematically similar to the form of Fermat’s principle of 
optics (Equation 15.30) if time in Equation 15.31 is replaced by the indepen-
dent variable x3.9 It should be noted, however, that the physical interpreta-
tions of Equations 15.31 and 15.30 are different. Equation 15.30 enables the 
determination of the paths of the system in 3-D space (x1, x2, x3), but not of 
their evolution in time. However, Equation 15.31 enables the determination 
of the evolution in time of a 2-D system in space (x1, x2). This analogy is used 
in the following section.

15.2 Skew Invariant and Conservation of Angular Momentum

There is a relation between the conservation of angular momentum in 
mechanics and the skew invariant in optics.

The constant h defi ned by expression 13.60 corresponds to the angular 
momentum in mechanics. To make this parallel clearer, we can give expres-
sion 13.60 a different form. Using expression 10.53, we obtain

 x1 p2 − x2 p1 = n   
x1 x′  2    − x2 x′  1     _____________  

  √ 
____________

  1 +  x′  1  
2  +   x′  2  

2   
   (15.32)

which, considering expressions 13.55 and 13.60 can be written as10

 x1 p2 − x2 p1 =   
nρ2θ′
 ______________  

  √ 
______________

  1 + ρ′2 + ρ2θ′2  
   = h (15.33)

It can now be noted that x1p2 − x2p1 is the magnitude of vector �(x1, x2, 0) × 
(p1, p2, 0)� = � r × p � = � L �, where L is the angular momentum of a 2-D 
system. This analogy can also be derived from Equation 13.32. In the optics–
mechanics analogy between Equations 15.30 and 15.31, the  coordinate x3 
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takes the role of time. If so, the analysis of a 3-D optical system in space 
(x1, x2, x3) corresponds to the analysis of a mechanical system in space 
(x1, x2, t), t being the time. The trajectories in mechanics will then be 2-D in 
space (x1, x2), whereas in optics the corresponding light rays progress in a 3-D 
space (x1, x2, x3).

15.3 Potential in Mechanics and Refractive Index in Optics

The ray equation (Equation 11.29) is

   
dp

 ___ 
ds

     = ∇n (15.34)

Consider an optical system with its optical axis along x3. Let us further 
 suppose that light rays make small angles with the optical axis, so that we 
can make ds ≈ dx3. As discussed in Chapter 11, this approximation is called 
the  paraxial approximation. Since we are considering the angles of light rays 
with the optical axis to remain small, the variations of the refractive index 
must also be small (otherwise, light rays could undergo large curvatures). 
This being the case, we can write n = n0 − ∆n, where n0 is a constant and ∆n 
a small variation. In this case, expression 15.34 can be written as

   
dp

 ___ 
dx3

   = ∇(n0 − ∆n) ⇔     
dp

 ___ 
dx3

   = −∇(∆n)  (15.35)

If coordinate x3 is replaced by time t and the refractive index n by the poten-
tial V, it can be verifi ed that Equation 15.35 is similar to the equation in 
mechanics for the movement of a particle in a potential fi eld:

   
dp

 ___ 
dt

      = −∇V (15.36)

We then verify that, in the paraxial approximation, a refractive index distri-
bution in optics takes the role of a potential in mechanics,11 the momentum in 
optics takes the role of a mass’s momentum in mechanics, and coordinate x3 
takes the role of time.
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16
Radiometry, Photometry, and 
Radiation Heat Transfer

Radiometry deals with radiant quantities and applies to the entire electro-
magnetic spectrum. Photometry is a subdivision of radiometry that deals 
only with the part of the spectrum perceived by the human eye as light. 
In radiometry it is possible to study nonvisible radiation but in photometry 
only the visible part of the spectrum is considered. Radiation heat transfer, 
as the name suggests, deals with heat exchange by exchange of radiation, 
with bodies absorbing its heat much as the eye absorbs light.

Some concepts of radiometry, photometry, and radiation heat transfer are 
presented here briefl y.

16.1 Definitions

The following defi nitions usually appear in books on radiometry, photom-
etry, or optics, sometimes with entire chapters dedicated to these topics.

The central concept in radiometry is the radiation fl ux. It is the quantity of 
energy that is emitted, transmitted, or received per unit time:

 Φ =   
dQ

 ___ 
dt

   (16.1)

where Q is the energy and t the time.
The human eye has differing sensitivity to different wavelengths (colors) 

of light. We must, therefore, distinguish two concepts. Radiant fl ux is the 
power of the radiation, measured in watts. Luminous fl ux is the measure 
of the perceived power of light by the human eye, measured in lumens. 
These quantities are related by the luminous effi cacy function shown in 
 Figure 16.1.1 This function tells us how many lumens are there for each 1 W 
of power at a given wavelength. It has a maximum of 683 lm/W at 555 nm 
wavelength. For example, for 1 W power of radiation with a wavelength of 
555 nm we have 683 lm of visual sensation. For 1 W power of radiation of 
other wavelengths, the corresponding visual sensation in lumens is given by 
the luminous effi cacy function. For example, radiation of wavelength 900 nm 
(infrared) will not be visible, so its luminous effi cacy is zero.
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448 Introduction to Nonimaging Optics

We may now defi ne the luminosity function V(λ) (or photopic luminous 
effi ciency function) the same way as the luminous effi cacy, but normalized to 
its maximum value of 683, which occurs at 555 nm. We then have V(555) = 1. 
The luminous effi cacy function can then be given by 683V(λ), where V(λ) is 
the luminosity function.2 Note that V(λ) is dimensionless, but is multiplied by 
683 lm/W to give the luminous effi cacy.

Actually, the eye’s sensitivity varies with the overall light level. We call 
photopic vision as the vision of the eye under well-lit conditions (normal 
lighting conditions during the day) and call scotopic vision as the vision of 
the eye in dim light (low-light conditions). The curve in Figure 16.1 refers to 
the eye’s photopic sensitivity.

If a light source emits multiwavelength light with some kind of spectrum, 
there will be a power distribution as a function of wavelength. The strength 
of the corresponding total visual sensation can be calculated by

 ΦV = 683  ∫ 0  
∞
  Φ(λ)V (λ) dλ (16.2)

where Φ(λ) is the power in watts per unit wavelength and ΦV the total lumi-
nous fl ux in lumens. The integration limits, in practice, do not need to exceed 
the range of appreciable values of V(λ), for example, 380–760 nm, rather than 
zero to infi nity.

We now defi ne some more quantities. The radiation fl ux emitted per unit 
surface is called emittance and is defi ned as

 M =   dΦ ___ 
dA

   (16.3)

where dA is an infi nitesimal area emitting radiation. The radiation fl ux fall-
ing on a surface is called irradiance (W/m2) and is defi ned by

 E =   dΦ ___ 
dA

   (16.4)
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FIGURE 16.1
Human eye’s sensitivity as a function of the wavelength of the light.
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Radiometry, Photometry, and Radiation Heat Transfer 449

where dA is an infi nitesimal area receiving radiation. The corresponding 
photometric quantity is called illuminance and is measured in lux (1 lx = 
1 lm/m2).

The intensity of the radiation is defi ned as the fl ux per unit solid angle:

 I =   dΦ ___ 
dΩ   (16.5)

and again we distinguish between the radiometric quantity, which is given 
in watts per steradian (W/sr), and the photometric quantity, which is given 
in candelas where 1 cd = 1 lm/sr.

The radiation fl ux per unit projected area and per unit solid angle is 
given by

 L =   dΦ ___________ 
dA cos θ dΩ   (16.6)

where θ is the angle that normal n to area dA makes with the direction of the 
solid angle dΩ, as shown in Figure 16.2. This quantity is called radiance and 
is measured in watts per steradian per square meter (W/sr/m2). The corre-
sponding photometric quantity is the luminance, also defi ned as

 LV =   
dΦV ___________ 

dA cos θ dΩ   (16.7)

The quantity LV is measured in candelas per square meter (cd/m2). The fl ux 
used to defi ne it is the “visual” fl ux ΦV .

Instead of the notation dΦ, the notation d2Φ is customarily used to stress 
the fact that the fl ux in the defi nition of the radiance is proportional to the 
product of the two differentials dA and dΩ, and thus, is a second-order dif-
ferential. Here, nonetheless, the notation dΦ is used instead of d2Φ.

dA

n

�

d Ω

FIGURE 16.2
Radiation emitted by a solid angle dΩ in a direction making an angle θ with the normal n to 
area dA.
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450 Introduction to Nonimaging Optics

Luminance or radiance may be a function of wavelength. In that case, if 
Lλ(λ) is the spectral radiance, defi ned as the radiance per unit wavelength 
interval, the radiance is

 L =   ∫ 0  
∞
  Lλ (λ) dλ (16.8)

Also, if LVλ( λ ) is the spectral luminance, defi ned as the luminance per unit 
wavelength interval, the luminance is

 L V =   ∫ 0  
∞
  LVλ (λ) dλ (16.9)

Luminance can be obtained from the spectral radiance as3,4

 L V = 683  ∫ 0  
∞
  L(λ) V (λ) dλ (16.10)

The radiation intensity emitted by an area dA is given as

 IdA =   dΦ ___ 
dΩ   = L cos θ dA (16.11)

A similar expression could be written for the photometric quantity. Consider 
the particular case in which the radiance L (or luminance L V) of the emitted 
radiation is uniform over a fi nite area A. The total intensity in direction θ can 
be obtained by

 I(θ) = L cos θ  ∫ 
A

      dA = L(θ) A cos θ (16.12)

Further consider the particular case in which the radiance L (or luminance L V) 
is independent of the direction, that is, L(θ) = L, where L is a constant. For 
θ = 0, the intensity is given by I0 = LA, thus this expression can be written as

 I = I0 cos θ (16.13)

This is the Lambert’s cosine law. A surface is called Lambertian if it emits, or 
if it intercepts radiation with an intensity pattern following this cosine law 
solely due to variation of projected area.3

16.2 Conservation of Radiance in Homogeneous Media

Étendue conservation can be derived in many contexts. Here we present its 
conservation in the context of radiometry. Consider an infi nitesimal area dA1 
emitting radiation in the direction of dA2, as presented in Figure 16.3. These 
two areas are separated by a distance r. Note that r is a fi nite quantity, but 
dA1 and dA2 are infi nitesimal. Areas dA1 and dA2 have normals n1 and n2 that 
make angles θ1 and θ2 in the direction of r.
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Radiometry, Photometry, and Radiation Heat Transfer 451

By defi nition, an elementary light beam is composed of a central ray and 
all the rays passing through both dA1 and dA2 as shown in Figure 16.4.3,5–7

The solid angle dΩ1 is that defi ned at area dA1 by area dA2, and is given as

 dΩ1 =   
dA2 cos θ2 _________ 

r2   (16.14)

In an equal manner, the solid angle defi ned by dA1 in dA2 is given by

 dΩ2 =   
dA1 cos θ1 _________ 

r2   (16.15)

Multiplying dΩ2 by dA2 cos θ2 and dΩ1 by dA1 cos θ1, we can write

 dA1 cos θ1 dΩ1 =   
dA1 dA2 cos θ1 cos θ2  _________________ 

r2   

 dA2 cos θ2 dΩ2 =   
dA1 dA2 cos θ1 cos θ2  _________________ 

r2   

(16.16)

Let us now consider the quantity

 dU = dA cos θ dΩ (16.17)

dA1

dA2

n1

n2

�1

�2
r

FIGURE 16.3
Radiation heat transfer between two surfaces dA1 and dA2.

dA1

dA2

Central
ray

FIGURE 16.4
Illustration of an elementary beam of radiation.
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452 Introduction to Nonimaging Optics

We therefore have

 dU1 = dA1 cos θ1 dΩ1 
 dU2 = dA2 cos θ2 dΩ2 

(16.18)

For an elementary light beam, all the light passing through dA1 (see Fig-
ure 16.3) is that passing through dA2. Therefore, dU, as defi ned in Equa-
tion 16.17 is in this case given by the fi rst equation of expression 16.18. 
However, for the same elementary light beam, all the light passing through 
dA2 is that coming from dA1. Therefore, dU, as defi ned by Equation 16.17 is in 
this case given by the second equation of expression 16.18. For an elementary 
light beam, dU is then conserved since, as seen from Equation 16.16,

 dU1 = dU2 (16.19)

This quantity U is called étendue, throughput, or geometrical extent.3,7–9 The 
étendue of the light beam as it crosses dA1 is the same as when it crosses dA2.

From the defi nition of radiance in Equation 16.6, we can see that it is related 
to the étendue by

 dΦ = L dU (16.20)

and, for a light beam, the same rays pass through dA1 and dA2, so the fl ux 
through these two areas is the same, that is, dΦ1 = dΦ2. Since the étendue is 
also conserved, we obtain

 L1 = L2 (16.21)

and radiance is also conserved.3,5–7,10 Note that relation 16.21 is also valid for 
light traveling in a medium of refractive index n. The arguments used earlier 
are also valid in the case of photometric quantities and, therefore, the lumi-
nance LV is also conserved.

Let us now consider two fi nite areas A1 and A2 and all the light rays pass-
ing through both A1 and A2 as shown in Figure 16.5. 

A1

U1 U2

A2

FIGURE 16.5
The étendue is conserved for the light passing through both areas A1 and A2.
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The étendue of the radiation passing through A1 and going toward A2 is 
given by the integration of the fi rst equation of expression 16.18 in dA1 and 
dA2. However, the étendue passing through A2 for the light coming from A1 
is given by the integration of the second equation of expression 16.18 in dA1 
and dA2. But dU1 = dU2, and therefore, these integrals are also the same and 
the étendue is conserved from A1 to A2.

16.3  Conservation of Basic Radiance in (Specular)
Reflections and Refractions

Consider a light beam refl ected by a mirror, as shown in Figure 16.6. This 
light beam is composed of a central ray and all the rays passing through 
dA1 and dA2. Mirror M creates an image  dA 1  *  of area dA1. But our previous 
result on étendue conservation can be applied to elementary areas  dA 1  *  and 
dA2, establishing that the étendue is conserved for the light beam passing 
through dA2 and the mirror image  dA 1  * . Therefore, the étendue is conserved 
for the light beam passing through dA1 and dA2, and it can be concluded that 
étendue is conserved during refl ection.

Consider a light beam falling on the surface dA1 separating two media 
(mediums 1 and 2) with refractive indices n1 and n2, respectively, as shown in 
Figure 16.7a. The fl ux coming from medium 1 and falling on dA1 is given by

 dΦ1 = L1 dA1 cosθ1 dΩ1 (16.22)

dA1

dA2

dA1∗

M

FIGURE 16.6
The étendue is conserved between area dA2 and the mirror image dA1*. Therefore, it is also con-
served between areas dA1 and dA2. Étendue is then conserved during refl ection.
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In Figure 16.8 surface dA2 defi nes a solid angle dΩ1, which in spherical coor-
dinates is given by

 dΩ1 =   
dA2 ____ 
r2   = sin θ1 dθ1 dφ (16.23)

dA1

dA1

�1

�2

�

n2

n1

x1

x3

x2

dΩ2

d Ω1

dΩ
dΩ

� �

n

(a) (b)

FIGURE 16.7
(a) The refraction of light from a medium with refractive index n1 to another medium with 
refractive index n2. The solid angle occupied by the radiation varies, but the quantity L/n2 is 
constant. (b) A refl ection, where the solid angle is constant. Since n does not vary either, the 
quantity L/n2 is also invariant.

dA1

dA2

rd�1

�1

r sin�1d�
�

r

FIGURE 16.8
Radiation transfer between the surface dA1 and the hemisphere above it, through all of 
which dA1 radiates. The solid angle dΩ1 defi ned at area dA1 by area dA2, is given as dΩ1 = 
sin θ1 dθ1 dφ.
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And therefore,

 dΦ1 = L1 dA1 cos θ1 sin θ1 dθ1 dφ (16.24)

However, the fl ux propagating into medium 2 is given by

 dΦ2 = L2 dA1 cos θ2 dΩ2 = L2 dA1 cosθ2 sinθ2 dθ2 dφ (16.25)

Note that angle φ is the same for both incident and refracted rays, since a 
refracted ray is contained in the plane defi ned by the incident ray and the 
normal to the surface. Assume that the normal to the surface points in the 
direction of axis x3.

Assuming there are no losses at the surface (i.e., Fresnel refl ections are 
neglected or have been suppressed by antirefl ection coatings), we can write 
dΦ1 = dΦ2, and therefore,

   
L1 cos θ1 sin θ1 dθ1  ________________  
L2 cos θ2 sin θ2 dθ2

   = 1 (16.26)

Snell’s law is

 n1 sin θ1 = n2 sin θ2 (16.27)

Calculating the derivatives of both sides of the equation:

 n1 cos θ1 dθ1 = n2 cos θ2 dθ2 (16.28)

therefore,

   
sin θ1 _____ sin θ2

   =   
cos θ1 dθ1 ________ 
cos θ2 dθ2

   =   
n2 __ n1

   (16.29)

Inserting this into expression 16.26 gives

   
L1 ___ 
 n 1  

2  
   =   

L2 ___ 
 n 2  

2  
   ⇔  L 1  *  =  L 2  *  (16.30)

It can then be concluded that the quantity L* = L/n2 is conserved in refrac-
tion, and therefore also conserved in optical systems containing surfaces 
separating two media with different indices of refraction.2,3,5–7,10 A similar 
calculation with n1 = n2, as in Figure 16.7b, enables us to conclude that L, and 
therefore L/n2, are conserved during a refl ection, as previously concluded. 
Thus, any optical system with refl ections or refractions conserves the quan-
tity L* = L/n2, known as basic radiance.3,7,10 Again, these arguments are also 
valid in the case of photometric quantities and the basic luminance  L V  *   = 
LV/n2 is conserved in exactly the same way.

In terms of this quantity L*, the expression for the energy fl ux through an 
elemental area dA can be written as

 dΦ = L dA cos θ dΩ = L*(n2 dA cos θ dΩ) (16.31)
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Assuming loss-less refl ections or refractions (i.e., no scattering or Fresnel 
refl ection), fl ux dΦ must be conserved. Since L* is conserved, it can be con-
cluded that n2 dA cos θ dΩ is conserved as well. Generalizing now the defi ni-
tion of étendue to

 dU = n2 dA cos θ dΩ (16.32)

we verify that the étendue is conserved in an optical system with refl ections 
or refractions. Note that the previous defi nition given by Equation 16.17 is 
still valid in the particular case where n = 1.

As an example, let us consider the optical system presented in Figure 16.9.
This optical system has entrance aperture A1, exit aperture A2, and consists 

of two parallel fl at mirrors M1 and M2. Consider two elementary light beams 
passing through dA1 and dA2 at the entrance and exit apertures, respec-
tively. The light beam b1 is composed of a central ray and all the rays passing 
through dA1 and dA2 and the light beam b2 is composed of a central ray and 
all the rays passing through dA1, being refl ected at the mirror M2 and then 
passing through dA2. We have seen that for beam b1, étendue is conserved. 
We have also seen that refl ection conserves étendue, and therefore, it is also 

dA1

dA2

A1

b1

b2

A2

M2M1

FIGURE 16.9
Étendue is conserved between areas dA1 and dA2 either for light beams that cross them directly, 
as is the case of beam b1, or for light beams refl ected by the mirrors, as is the case of beam b2. 
If étendue is conserved for any of the areas of dA1 and dA2 of A1 and A2, then it is conserved 
between A1 and A2.
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conserved for the elementary light beam b2 passing through dA1 and dA2. 
Integrating now over areas A1 and A2, we can conclude that étendue is con-
served for the radiation passing through A1 and A2. The same conclusion 
could be drawn if the optical system would have refractions, since refraction 
also conserves étendue.

The expression for the energy fl ux through an area dA can be written as

 dΦ = L* dU (16.33)

We then verify that, if the basic radiance is multiplied by the étendue we 
obtain the energy fl ux.

Note that, in the defi nition of étendue in expression 16.32, n is a dimension-
less quantity since it is the ratio of two light speeds (in vacuo and in medio). 
The same happens with solid angle dΩ, which is the ratio of any elemental 
area on a sphere and the square of the sphere’s radius. The solid angle, there-
fore, has the units of area divided by area and is a-dimensional. Something 
similar happens with angle θ, which has dimensions of length divided by 
length and is therefore dimensionless, but nonetheless, not unitless, being 
expressed in degrees or radians. Therefore, dU has the units of dA, that is, 
units of area.

In the real world, refl ections and refractions do not have the perfect char-
acteristics as in geometric optics, because actual engineered surfaces always 
exhibit some scattering that adds to étendue as well as reduces basic radiance 
and luminance (see Chapter 3).

16.4 Étendue and Shape Factor

The energy fl ux per unit time that dA1 emits in the direction of dA2 or that 
passes through dA1 in the direction of dA2, as shown in Figure 16.3, is given 
by expression 16.20 as3,8,10

 dΦ12 = L1 dA1 cos θ1 dΩ1 (16.34)

Replacing the solid angle dΩ1 from expression 16.14, the fl ux emitted by dA1 
in the direction of dA2 is given by

 dΦ12 = L1  
dA1 dA2 cos θ1 cos θ2  _________________ 

r2   (16.35)

Consider the total fl ux emitted by surface dA1, emitted into a hemisphere 
centered at dA1 and covering it, as shown in Figure 16.8. For the light emit-
ted by dA1 we can write an expression similar to Equation 16.24 in spherical 
coordinates, and integrating over the entire hemisphere gives

 dΦhem = L1 dA1  ∫ 0  
2π

    ∫ 0  
π/2

  cos θ1 sin θ1 dθ1 dφ = πL1 dA1 (16.36)
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where dΦhem is the fl ux radiated by dA1 into the hemisphere above it. In the 
situation shown in Figure 16.8 and in the particular case in which dA1 is a 
blackbody surface, the radiation fl ux emitted toward the hemisphere above 
it is given as

 dΦhem1 =  σT   1  
  4  dA1 (16.37)

where σ is the Stephan–Boltzmann constant (σ = 5.670 × 10−8 W m−2 K−4) and 
T1 the temperature of the body containing area dA1.3,11 Comparing expres-
sions 16.36 and 16.37, it can be verifi ed that, in this case,

 L1 =   σ T  1  
   4  ____ π   (16.38)

which is the expression for the radiance of a blackbody at a temperature T1.3

We can now consider again the situation presented in Figure 16.3 and cal-
culate the ratio between the radiation emitted by dA1 that arrives at dA2 and 
all the radiation emitted by dA1. This ratio is given by3,7,8

 dF dA1−dA2  =   
dΦ12 ______ 

dΦhem1
   =   1 _______ πL1 dA1

    ( L1  
dA1 dA2 cos θ1 cos θ2  _________________ 

r2
   )  

   =   
dA2 cos θ1 cos θ2  ______________ πr2   (16.39)

Note that  dF dA1−dA2  is a differential because it is proportional to an infi ni-
tesimal area dA2. The quantity  dF dA1−dA2  is variously called the shape factor, 
angle factor, or confi guration factor, and is used in radiation heat transfer11,12 
to designate the fraction of radiation leaving dA1 that arrives at dA2. With this 
defi nition, the fl ux emitted by dA1 and received by dA2 can now be rewritten 
from expression 16.35 as

 dΦ12 = πL1 dA1  
dA2 cos θ1 cos θ2  ______________ 

πr2
   = πL1 dA1  dF dA1−dA2  (16.40)

We now consider dA1 and dA2 as two blackbody emitters. The fl ux emitted 
by dA1 toward dA2 is given by Equation 16.40, which can be rewritten with 
Equation 16.38 as

 dΦ12 = σ T  1  
4  dA1  dF dA1−dA2  (16.41)

However, the fl ux dΦ2 emitted by dA2 and arriving at dA1 is given by

 dΦ21 = σ T  2  
4  dA2  dF dA2−dA1  (16.42)

CRC_54295_CH016.indd   458CRC_54295_CH016.indd   458 4/3/2008   9:46:52 AM4/3/2008   9:46:52 AM



Radiometry, Photometry, and Radiation Heat Transfer 459

In thermal equilibrium, the temperatures T1 and T2 of dA1 and dA2 are the 
same (T1 = T2) and give dΦ12 = dΦ21, which can be written as

 dA1  dF dA1−dA2  = dA2  dF dA2−dA1  (16.43)

In radiation transfer, this expression is called the reciprocity relation11,12 and 
it tells us that, in thermal equilibrium, the radiation dΦ12 emitted from dA1 
toward dA2 equals dΦ21 emitted from dA2 toward dA1.

The reciprocity relation can also be written as

 dA1  
dA2 cos θ1 cos θ2  ______________ 

πr2
   = dA2  

dA1 cos θ1 cos θ2  ______________ 
πr2

   ⇔ dU1 = dU2 (16.44)

and therefore corresponds to the conservation of étendue as previously 
obtained. The étendue and the shape factor are, thus, related quantities.

To obtain this relation, from dU = dΦ/L and expression 16.36, we obtain 
dUhem1 = dΦhem1/L1 = π dA1, and therefore, relation 16.39 can be written in 
terms of étendue as

 d F dA1−dA2
  =   

dΦ12 ______ 
dΦhem1

   =   
dΦ12/L1 _________ 

dΦhem1/L1
   =   

dU12 ______ 
dUhem1

   =   
dU12 _____ πdA1

   (16.45)

where U12 is the étendue of the light emitted from dA1 toward dA2. This 
expression enables us to use the shape factors to calculate the étendue. Shape 
factors are sometimes listed for different geometries in textbooks of radia-
tion transfer.11

Another possible way to calculate the étendue of the light emitted from 
the area A1 to the area A2 is by using Monte Carlo method of randomized 
computer ray tracing.3 For this, we may also relate the étendue of the light 
emitted from the area A1 toward the area A2 with the fraction of light emitted 
by A1 that reaches A2. From Equation 16.45, we have

 dU12 = πdA1   
dΦ12 ______ 

dΦhem1
   (16.46)

If we now consider dA1 as part of an uniform Lambertian emitter A1 and dA2 
as part of an area A2 as shown in Figure 16.10, we get

 U12 = πA1   
Φ12 _____ Φhem1

   (16.47)

where U12 is the étendue of the light emitted from A1 toward A2, Φ12 the por-
tion of the fl ux emitted by A1 that is captured by A2, and Φhem1 the total fl ux 
emitted by A1.

The étendue U12 of the radiation emitted from A1 toward A2 can then be 
obtained using a ray-tracing package (Monte Carlo method). If A1 emits unit 
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fl ux, so that Φhem1 = 1, and if we assume that A2 is a perfect absorber, the 
 étendue of the light emitted from A1 to A2 is given by U12 = πA1Φ12, where 
Φ12 is the fl ux absorbed by A2.

16.5 Two-Dimensional Systems

Consider a 2-D system, as presented in Figure 16.11.
In a 3-D system, the fl ux from A1 to A2 was given by Equation 16.34. In the 

2-D geometry, the fl ux (energy per unit time) passing through da2 coming 
from da1 is given as

 dΦ1 = L1 da1 cos θ1 dθ1 (16.48)

with

 dθ1 =   
da2 cos θ2 ________ r   (16.49)

Note that da1 and da2 are no longer areas in a 3-D space, but lines (infi nitesi-
mal lengths) in a plane in a 2-D space.

The fl ux radiated by da1 through the entire semicircumference above it, as 
shown in Figure 16.12, is given by

 dΦhem1 = L1 da1  ∫ −π/2  
  π/2

   cos θ1 dθ1 = 2L1 da1 (16.50)

dA1

dA2

�1

�2n1

n2

r

A1

A2

FIGURE 16.10
The fl ux emitted from A1 toward A2 is obtained by integration of dA1 and dA2 on A1 and A2.

CRC_54295_CH016.indd   460CRC_54295_CH016.indd   460 4/3/2008   9:46:52 AM4/3/2008   9:46:52 AM



Radiometry, Photometry, and Radiation Heat Transfer 461

The 2-D shape factor from da1 to da2 is now given by

 d F da1−da2  =   
dΦ1 ______ 

dΦhem1
   = cos θ1   

da2 cos θ2 ________ 2r   =   1 __ 2   cos θ1 dθ1 =   1 __ 2   d(sin θ1) (16.51)

This result coincides with the shape factor obtained for a 3-D system where, 
in Figure 16.11, lines da1 and da2 extend to infi nity in the direction perpen-
dicular to the plane of the text, forming two parallel surfaces.11,12

The étendue given in 3-D by Equation 16.17 is now given in 2-D by

 dU = da cos θ dθ = da d(sin θ) (16.52)

This must be conserved in the passage through an optical system. If we con-
sider a 2-D system and the refraction on a line in the plane, we again have 
Snell’s law of refraction:

 nA sin θA = nB sin θB (16.53)

da1

da2

n1

n2

�1

�2
r

FIGURE 16.11
Radiation transfer between two lines da1 and da2 in a 2-D system.

da1

da2

�1

r

FIGURE 16.12
Radiation transfer between a line da1 and a semicircumference above it. All the light emitted 
by da1 crosses this semicircumference.
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where nA and θA are the refractive index and angle to the normal to the line 
before refraction and nB and θB the refractive index and angle to the normal 
to the curve after refraction as shown in Figure 16.13.

Calculating the differentials of both sides gives

 nA cos θA dθA = nB cos θB dθB ⇔ dUA = dUB (16.54)

and therefore, the 2-D étendue is conserved in 2-D refractions. In the case in 
which nA = nB, we obtain the conservation of étendue by refl ections.

Also in this case, we have dU = dΦ/L, thus from Equation 16.50 we can 
obtain dUhem1 = dΦhem1/L1 = 2da1, and the equivalent of Equation 16.45 for 
2-D geometry becomes

 d F da1−da2  =   
dU1 ____ 
2da1

   (16.55)

If light passes through media with different refractive indices, the  étendue 
given in 3-D by expression 16.32 is now given in 2-D by

 dU = n da cos θ dθ = n da d(sin θ) (16.56)

and is conserved. In this case, the fl ux passing through a line can be written 
in similar to Equation 16.33 as

 dΦ = L* dU (16.57)

where L* = L/n is the basic radiance. Again, a similar result is obtained for 
the basic luminance if photometric quantities are used.

d�A

d�B

nA

nB

�A

�B

FIGURE 16.13
Refraction by a 2-D optic.
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16.6 Illumination of a Plane

Consider the cases in which we want to illuminate a plane using an infi ni-
tesimal fl at light source parallel to the plane, as shown in Figure 16.14.

Let dA2 be an elemental area of the plane to be illuminated and dA1 an 
infi nitesimal source parallel to the plane and placed at a distance D, as shown 
in Figure 16.14.

In this case, dA1 and dA2 are parallel and we have θ1 = θ2 = θ. In addition, 
distance r between dA1 and dA2 can be related to distance D between dA1 and 
the plane of dA2 by

 r =   D _____ cos θ   (16.58)

Expression 16.35 can be written in this case as

 dΦ = L   
dA1 dA2 _______ 

D2   cos4 θ ⇔ E =   dΦ ____ 
dA2

   = L   
dA1 ____ 
D2   cos4 θ (16.59)

where E is the irradiance at area dA2 and is defi ned by E = dΦ/dA2. The irra-
diance E is, therefore, the energy fl ux per unit area passing through dA2. For 
θ = 0, expression 16.59 can be written as

 E0 = L0   
dA1 ____ 
D2   (16.60)

dA1

dA2
r

�

�

Plane

P D

FIGURE 16.14
Illumination of a plane by an infi nitesimal light source dA1.
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Dividing Equation 16.59 by 16.60 gives

   E ___ E0
   =   L __ L0

   cos4 θ (16.61)

In the case where L is independent of the direction (i.e., in the case in which 
dA1 is a Lambertian source) L in direction θ equals L0 in the direction per-
pendicular to elemental area dA1, giving L = L0, so that13,14

 E = E0 cos4 θ (16.62)

from which we can conclude that the irradiance produced by the light emit-
ted by an infi nitesimal area on a parallel plane is proportional to cos4 θ. This 
steep fall is well known in, for example, the design of image projectors.

Now, we determine the (nonuniform) intensity pattern that dA1 must emit 
to produce a uniform illumination of the plane. We no longer require dA1 to 
be parallel to the plane. In this case, we can write

 dΦ = I dΩ (16.63)

where I is the intensity of the radiation coming from dA1. Now, the quantity I 
characterizes the source only in terms of the direction in which the radiation is 
emitted. Considering expression 16.14 for dΩ1 and expression 16.58, we get

 dΦ = I   
dA2 cos3θ _________ 

D2   (16.64)

so that

   E ___ E0
   =   I __ I0

   cos3 θ (16.65)

For constant irradiance E in the plane, we must have E = E0, so that

 I =   
I0 _____ 

cos3θ   (16.66)

As can be verifi ed, this expression does not depend on the distance D from 
point P to the plane. This being the case, the distance D can have any value 
and can even go to infi nity. In this case, expression 16.66 determines the 
angular intensity distribution of the radiation that a source must have to 
produce a constant irradiance on the plane placed at infi nity. This result is 
still valid even if the source now has a fi nite dimension.

Consider next the 2-D case in which an infi nitesimal source da1 illuminates 
a straight line, as shown in Figure 16.15. Expression 16.63 can be written in 
this case as

 dΦ = I dθ (16.67)
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From Figure 16.15, we can see that

 dθ =   
da2 cos θ ________ r   (16.68)

therefore,

 dΦ = I   
da2 cos2 θ ________ D   (16.69)

and

   E ___ E0
   =   I __ I0

   cos2 θ (16.70)

from which it can be concluded that, in a 2-D system, for an infi nitesimal 
source to produce a constant irradiance on a line, we must have

 I =   
I0 _____ 

cos2 θ   (16.71)

As before, this expression does not depend on the distance D from the source 
to the line, so this angular distribution also enables a uniform radiation 
distribution produced on a line placed at an infi nite distance. In this case, 
the dimension of the source can be taken as fi nite. It can then be concluded 
that, to have a fi nite-sized source producing a constant irradiance on a plane 
placed at an infi nite distance, its angular distribution of radiation must fulfi ll 
Equation 16.71.

These arguments also apply to the case of photometric quantities and the 
results obtained for irradiance are also valid for illuminance. 

da1

da2

r

�

�

D

FIGURE 16.15
A 2-D system where an infi nitesimal source da1 illuminates a straight line.
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17
Plane Curves

17.1 General Considerations

This chapter presents some plane curves1 that are useful in designing non-
imaging optics.

The magnitude of a vector v is given by

  �v�  =   √ 
____

 v ⋅ v   (17.1)

A normalized vector with the same direction as v, but with unit magnitude 
can be obtained from

 nrm v =   v ___ 
 �v� 

   =   v _____   √ 
____

 v ⋅ v     (17.2)

The distance [A, B] between two points A and B is given by the magnitude 
of the vector B – A, that is,  �B – A�  or

 [A, B] =   √ 
________________

  (B − A) ⋅ (B − A)   (17.3)

The angle between two vectors u and v is given by

 ang(v, u) = θ = arc cos  (   v ⋅ u ______ 
 �v�   �u� 

   )  = arc cos  (    v ⋅ u __________   √ 
____

 v ⋅ v     √ 
____

 u ⋅ u     )  (17.4)

This angle, however, is 0 ≤ θ ≤ π. Consider then that vectors u and v are 2-D 
and that u = (u1, u2) and v = (v1, v2). We can defi ne the vectors U = (u1, u2, 0) 
and V = (v1, v2, 0) in three dimensions. The cross product of U and V is

 U × V = (0, 0, u1v2 − u2v1) (17.5)

If the third component of U × V is positive, then v is in the counterclockwise 
direction from u. Also, if the third component of U × V is negative, then v 
is in the clockwise direction from u. We now defi ne the angle in the positive 
direction from u to v as

 angp(v, u) = ang(v, u) if u1v2 − u2v1 ≥ 0 

 angp(v, u) = 2π − ang(v, u) if u1v2 − u2v1 < 0 
(17.6)
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468 Introduction to Nonimaging Optics

This is the angle that v makes relative to u in the positive direction and in 
the range 0 ≤ φ < 2π.

In the particular case where u = (1, 0), then angp(v, u) is the angle that vec-
tor v = (v1, v2) makes with axis x1 and we defi ne

 angh v = arc cos  (   v1 _____   √ 
____

 v ⋅ v     )  if v2 ≥ 0 

 angh v = 2π − arc cos  (   v1 _____   √ 
____

 v ⋅ v     )  if v2 < 0 
(17.7)

This is the angle vector v = (v1, v2) makes with the horizontal axis x1. 
These functions are represented in Figure 17.1, where φ = angp(v, u) and 
β = angh(v).

Now consider the rotation of a point around the origin. A point P = (P1,  P2)
can be rotated by an angle α around the origin by applying a rotation
matrix to it

 R(α) =  (  cos α −sin α          sin α  cos α   )  (17.8)

thus, the rotated point is given by

 R(α) ⋅ P =  (  cos α −sin α          sin α  cos α   )  ⋅  (  P1   P2
  )  (17.9)

The effect of the rotation matrix is represented in Figure 17.2.
The intersection point between two straight lines can be obtained from the 

defi nitions of a straight line in terms of points and vectors. A point P and a 
vector v, as shown in Figure 17.3, defi ne a straight line. Accordingly, another 
point Q and vector u defi ne another straight line.

FIGURE 17.1
(a) Function angp(v, u) takes two vectors as parameters and gives the angle that the fi rst makes 
relative to the second. (b) In the particular case where the second vector is in the x1 direction, 
this function gives the angle of a vector to the x1 axis.

x2 x2

x1 x1

v

u

v

� = angp(v, u) � = angh(v)

(a) (b)
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The intersection point X fulfi lls the following:

 uP ⋅ (X − Q) = 0 

 X = P + dv 
(17.10)

where uP is a vector perpendicular to u. If u = (u1, u2), then

 uP = R  (   π __ 2   )  ⋅ u = (−u2, u1) (17.11)

Replacing X in the fi rst expression of Equation 17.10, solving for d, and 
 introducing the result into the second expression gives

 X = P +   
(Q − P) ⋅ uP 

  ___________ v ⋅ uP
   v (17.12)

We can defi ne a function (intersect straight lines) as follows:

 isl(P, v, Q, u) = P +   
(Q − P) ⋅ uP ___________ v ⋅ uP

   v (17.13)

Now consider a further situation wherein a circle of radius r is centered at 
point F and a point P is exterior to the circle, that is, the distance from F to 
P is greater than r, with [F, P] > r, as presented in Figure 17.4. Also consider 
point T* on the tangent to the circle that contains point P. Direction T*P is in 
the counterclockwise direction from FP.

Now calculate the distance tP from T* to P and angle φP that line PT* makes 
to a vector u tilted by an angle α to the horizontal.

Distance tP from T* to P is given by

 tP =   √ 
___________________

  (P − F) ⋅ (P − F) − r2   (17.14)

FIGURE 17.2
Rotation of a point P by an angle α around 
the origin accomplished by multiplying it 
on the left by a rotation matrix R(α).

� P

R (�) . P

x1

x2

FIGURE 17.3
Intersection between two straight lines.

X

u

v

uP

Q

P
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Angle δ is given by

 δ = arc sin  (   r ________________  
  √ 

_______________
  (P − F) ⋅ (P − F)  
   )  (17.15)

Vector u is given by u = (cos α, sin α) and angle φ is given by

 φ = angp(P − F, u) (17.16)

Angle φP can now be obtained from

 φP = φ + δ (17.17)

Now consider a similar situation, but point T is on the other side of the circle, as 
shown in Figure 17.5, that is, now TP is in the clockwise direction from FP.

The value for tP is still given by expression 17.14. Also, angles δ and φ are 
still given by expressions 17.15 and 17.16, respectively. We can now obtain 
angle φP from φ and δ. To ensure that 0 ≤ φP < 2π, we have

 φP = φ − δ if φ − δ ≥ 0 

 φP = 2π + φ − δ if φ − δ < 0 
(17.18)

We now calculate the positions of points T* and T from the positions of point 
P and center F and radius r of the circle, as shown in Figure 17.6.

FIGURE 17.4
A circle with center F and radius r and an 
exterior point P. Distance tP from P to the 
tangent point T* to the circle and the angle 
φP that T*P makes to a direction tilted by an 
angle α to the horizontal. Direction T*P is in 
counterclockwise from FP.

�

�
�

v

u
F

P

T*
�Pr

tP

x1

x2

FIGURE 17.5
A circle with center F and radius r and an 
exterior point P. Distance tP from P to the 
tangent point T* to the circle and the angle 
φP that TP makes to a direction tilted by an 
angle α to the horizontal. Direction TP is 
in the clockwise direction from FP.

P

T

x2

x1

tP

r
F

�

�
�P

�
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Angle β can be obtained from r = [F, P] cos β as

 β = arc cos  (   r _____ 
[P, F]

   )  (17.19)

and

 T = F + rR( β) ⋅ nrm(P − F) 

 T* = F + rR(−β) ⋅ nrm(P − F) 
(17.20)

17.2 Parabola

For a parabola, we have t + s = K, where K is a constant and t and s are defi ned 
as shown in Figure 17.7. But s = −t cos φ and therefore t − t cos φ = K or

 t(φ) =   K _________ 1 − cos φ   (17.21)

To fi nd the value of K, we note that, when φ = π, we have t = d, where d 
is the distance between the focus F of the parabola and its vertex V. Then
d − d cos π = K or K = 2d.

The equation for a parabola in polar coordinates is then

 t (φ) (cos φ, sin φ) (17.22)

FIGURE 17.6
Circle with center F and radius r and an exterior point P. Tangent points T and T* for the lines 
that pass through P and are tangent to the circle.

T∗

P

T
r�

F
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with

 t(φ) =   2d _________ 1 − cos φ   (17.23)

A parabola rotated by an angle α has the equation

 t(φ) (cos(φ + α), sin(φ + α)) (17.24)

A parabola rotated by an angle α and with focus at a point F = (F1, F2) has 
the equation:

 t(φ) (cos(φ + α), sin(φ + α)) + (F1, F2) (17.25)

Now consider that we want to determine the equation of a parabola  having a 
given focus F, tilted by a given angle α to the horizontal, and passing through a 
given point P, as shown in Figure 17.8. In this case, for φ = φP , we have t = tP = 
[F, P] and therefore the constant K in the equation for the parabola is given by 
[F, P] − [F, P] cos φP = K. The equation for t(φ) for this parabola is then

  
  √ 

_______________
  (P − F) ⋅ (P − F)   − (P − F) ⋅ (cos α, sin α)

    ____________________________________   1 − cos φ   (cos(φ + α),

 sin(φ + α)) + (F1, F2) (17.26)

Note that instead of giving angle α to defi ne the direction of the parabola’s 
axis, we may alternatively give two points: focus F and another point G on 
the axis in the direction where the parabola opens, as shown in Figure 17.9.

FIGURE 17.7
In a parabola with a horizontal axis, horizontal incoming rays are concentrated at the focus. 
This curve also fulfi lls s + t = K, where K is a constant.

x2

x1

P s

t
�

FdV
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In this case, the angle α can be calculated by

 α = angh v with v = (v1, v2) = G − F (17.27)

with angh as defi ned in Equations 17.7. The parabola can then be obtained by 
expression 17.26. We can also obtain d by d = K/2 as

d =   
tP − tP cos φP  ____________ 2   =   

  √ 
_______________

  (P − F) ⋅ (P − F)   − (P − F) ⋅ (cos α, sin α)
    ____________________________________  2   (17.28)

FIGURE 17.9
The direction of the axis of a parabola can be given by its focus F and another point G on
the axis.
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FIGURE 17.8
(a) A parabola can be completely determined by the position of its focus F, the angle α that its 
axis makes to the horizontal and a point P. (b) The parabola can be parameterized as a function 
of angle φ to its axis.
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17.3 Ellipse

Let us now consider an ellipse, as in Figure 17.10, with foci F = (0, 0) and
G = (     f, 0).

Point P has coordinates P = (P1, P2) = t(cos φ, sin φ), where t is the distance 
from F to P. The distance s from point P to G is given by

 s =   √ 
________________

  (G − P) ⋅ (G − P)   =   √ 
_________________

    f  2 + t 2 − 2ft cos φ   (17.29)

Ellipses fulfi ll t + s = K, where K is a constant, that is, the distance between the 
vertices of the ellipse, as shown in Figure 17.10. This can also be written as

 s2 = (K − t) 2 ⇔  f  2 + t2 − 2 ft cos φ = (K − t)2 (17.30)

or
 t(φ) =   

K 2 − f  2
 ____________  

2K − 2 f cos φ    (17.31)

and the ellipse is given by

   
K 2 − f  2

 ____________  
2K − 2 f cos φ   (cos φ, sin φ) (17.32)

with 0 ≤ φ < 2π and K > f.
We can now write the equation for the general case of an ellipse, given foci 

F and G, that passes through a given point P, as presented in Figure 17.11.
From the positions of F, G, and P, we have

 K = tP + s = [F, P] + [P, G] 

 f = [F, G] 
(17.33)

 α = angh v with v = (v1, v2) = G − F 

FIGURE 17.10
An ellipse refl ects all the light emitted by a point source F to a point G. Points F and G are the 
foci of the ellipse. This curve fulfi lls t + s = K, where K is a constant.
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where angh is defi ned in Equations 17.7. The ellipse is then given by

   
K 2 − f  2

 ____________  
2K − 2f cos φ   (cos(φ + α), sin(φ + α)) + F (17.34)

17.4 Hyperbola

Let us now consider a hyperbola, as in Figure 17.12 with foci F = (0, 0) and 
G = (  f, 0).

It is also described by an expression of the form t(φ) (cosφ, sinφ). For angle φ 
corresponding to point P on the right-hand side hyperbola, we have t > 0 
and the points on this curve are defi ned by the condition t − s = K, where 
K is a constant. For angle φ* corresponding to point Q on the left-hand side 
hyperbola, we have t < 0 and the points on this curve are defi ned by the con-
dition s − |t| = K or s + t = K, where K is the constant same as that for the 
right-hand side curve. In both the cases, we can write

 s 2 = (K − t) 2 (17.35)

where K is the distance between the two vertices of the hyperbola, as shown 
in Figure 17.12. The hyperbola is then given by the equation same as that of 
the ellipse:

   
K2 − f  2

 ____________  
2K − 2f cos φ   (cos φ, sin φ) (17.36)

with 0 ≤ φ < 2π and K < f.

FIGURE 17.11
A general ellipse can be defi ned by the position of its two foci F and G and a point P.
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476 Introduction to Nonimaging Optics

We can now write the equation for the general case of a hyperbola, given foci 
F and G, that passes through a given point P, as presented in Figure 17.13.

From the positions of F, G, and P, we have

 K = � t − s� = �[F, P] − [P, G]| 

 f = [F, G] (17.37)

 α = angh v with v = (v1, v2) = G − F 

FIGURE 17.12
(a) If F is a point source, the hyperbola refl ects its light as if it is diverging from another point 
G. Similarly, light directed toward G is refl ected to F. Points F and G are its foci. The hyperbola 
has two branches with similar optical characteristics. (b) For points P on the right branch, we 
have t − s = K (with t > 0) and for the left one s + t = K (with t < 0), where K is a constant.

x2

x1

x2

x1

F G

Q

F G

P

�*

�

K f

t

t
s

s

(a) (b)

FIGURE 17.13
A general hyperbola can be defi ned by the position of its two foci F and G and a point P.

x2

x1

tP

�P

P

G

F
�

CRC_54295_CH017.indd   476CRC_54295_CH017.indd   476 4/3/2008   9:48:00 AM4/3/2008   9:48:00 AM



Plane Curves 477

where angh is defi ned in Equations 17.7. The hyperbola is then given by

   
K2 − f  2

 ____________  
2K − 2f cos φ   (cos(φ + α), sin(φ + α)) + F (17.38)

17.5 Conics

The three expressions obtained earlier for the parabola, ellipse, and  hyperbola 
can be combined in a single expression for all the three conic curves.

For the ellipse, we have K > f and therefore, we can make K − f = 2d, where 
d > 0. We then have K = 2d + f and we can replace this in the expression for 
t(φ) for the ellipse

 t(φ) =   
K 2 − f  2

 ____________  
2K − 2f cos φ   =   

2d2 + 2fd
 _____________  

f + 2d − f cos φ   (17.39)

and making g = 1/f, the ellipse is described by

   
2d2g + 2d

  ______________  
1 + 2dg − cos φ   (cos φ, sin φ) (17.40)

Now consider a hyperbola rotated by an angle π. Its parametric representa-
tion is

   
K 2 − f 2

 ____________  
2K − 2f cos φ   (cos(φ + π), sin(φ + π))

 =   
 K2 − f 2

 _____________  −2K + 2f cos φ   (cos φ, sin φ) (17.41)

For the hyperbola, we have K < f and therefore, we can make f − K = 2d, 
where d > 0. Then making K = f − 2d and g = 1/f, we can write for the 
 hyperbola rotated by an angle π as

   
−2d2g + 2d

  ______________  
1 − 2dg − cos φ   (cos φ, sin φ) (17.42)

When f → ∞, g → 0 and both expressions, for the ellipse and the hyperbola 
rotated by an angle π, converge to the same parabola. We can then write as

   
2d2δg + 2d

  _______________  
1 + 2dδg − cos φ   (cos φ, sin φ) (17.43)

If δ = 1, we have an ellipse; if δ = 0, we have a parabola; and if δ = −1, we have 
a hyperbola. Figure 17.14 shows the three curves for the same value of d.
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478 Introduction to Nonimaging Optics

17.6 Involute

Figure 17.15 shows an involute to a circle. It refl ects rays tangent to the circle 
back to the circle again, still tangent (as indicated by the double arrow in the 
line connecting T and P).

This curve can be obtained by a string of constant length attached at point A,
wrapping around the circle up to tangent point T, and then going straight to 
point P on the curve. The total length of the string A–T–P is given by t + rγ, 
which is a constant value K* for the points on the curve. Since φ = γ + π/2, 
we have

 t + rγ = K* ⇔ t(φ) = K* − rγ = K* − r(φ − π/2) = K − rφ (17.44)

where K is a constant. The value of K may be obtained if a point P on the 
curve is given as shown in Figure 17.15b. For this point, we have

 K = tP + rφP (17.45)

The values of tP and φP can be obtained from expressions 17.14 and 17.17. The 
curve is therefore given by

 r(cos (φ − π/2), sin (φ − π/2)) + t(φ)(cos φ, sin φ) (17.46)

where t(φ) is given by Equation 17.44 with K given by Equation 17.45. If the 
center of the circle is at a point F = (F1, F2) on the plane, the curve is given by

 r(sin φ, −cos φ) + t(φ)(cos φ, sin φ) + (F1, F2) (17.47)

FIGURE 17.14
An ellipse has two foci F and G. As focus G tends to +∞, the ellipse becomes a parabola. As the 
focus G now approaches F, but from −∞, the parabola becomes a hyperbola.
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As angle φ increases, the string winds around the circle, thus this curve is 
called the winding involute through point P.

Another possibility is as angle φ increases, the string unwinds, as shown 
in Figure 17.16, and the curve is now called the unwinding involute through 
point P.

FIGURE 17.15
(a) An involute can be defi ned by a string of constant length A–T–P, and as angle γ increases, 
t decreases. Also, the string winds around the circle and, therefore, this curve is called a 
 winding involute. (b) An involute can be defi ned by the center F of the circle, its radius r, and 
a point P on the curve.
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FIGURE 17.16
(a) As angle φ increases, the string unwinds around the circle and the curve is called an 
unwinding involute. (b) An involute can be defi ned by the center F of the circle, its radius r, and 
a point P on the curve. 
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480 Introduction to Nonimaging Optics

In this case, the string A–T–P has a constant length, given by rβ + t = K*, 
and is constant for all points P on the curve. Angle β is given by β = 2π − 
(φ + π/2) = 3π/2 − φ, giving

 t(φ) = K* − r(3π/2 − φ) = K + rφ (17.48)

If the center of the circle is at a point F, the curve is given by

 r(−sin φ, cos φ) + t(φ)(cos φ, sin φ) + F (17.49)

where t(φ) is given by Equation 17.48 and K is obtained from the position of 
a point P on the curve as

 K = tP − rφP (17.50)

where tP and φP are given by expressions 17.14 and 17.18, respectively.
Given a circle and an external point P, there are, therefore, two possible 

involutes passing through point P (winding and unwinding). The concepts of 
winding and unwinding will also be used in the defi nition of the  macrofocal 
parabolas and ellipses in the following sections.

17.7 Winding Macrofocal Parabola

In a parabola, the sum of the distance t between its focus F and a point P and 
the distance s between the point and a line vL perpendicular to the parabola’s 
axis x1 is a constant, that is, t + s = K, where K is a constant and t and s are 
defi ned as shown in Figure 17.17a. The points P on the parabola can then be 
generated by a string of constant length with one tip at the focus F and the 
other at line vL in such a way that PQ is perpendicular to vL.

In a macrofocal parabola,2 the focus is replaced by a circle of radius r as 
shown in Figure 17.17b. In this case, the string wraps around the macrofocus 
in such a way that one of its tips is at point A and the other tip at a point 
Q on line vL. The length of the string in this case is, r(φ − π/2) + t + s and 
it is constant for the points P on the curve. As angle φ increases, the string 
winds around the macrofocus and therefore this curve is called a winding 
 macrofocal parabola.

If used as a mirror, this curve refl ects parallel horizontal rays so they 
become tangent to a circular receiver, as shown in Figure 17.18.

Applying constant string length to this curve, we have the geometry 
 presented in Figure 17.19, where M is the mirror.

In this case, we have s2 + s1 + t + r(φ − π/2) = K, where K is a constant. But, 
s1 = −t cos φ and s2 = r − r cos(φ − π/2). We can then write

 r − r cos  ( φ −   π __ 2   )  − t cos φ + t + rφ = KW (17.51)
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FIGURE 17.17
In the same way a parabola refl ects parallel rays to a point (a), a macrofocal parabola refl ects 
parallel rays tangent to a circular macrofocus of radius r (b). Just as with the parabola, the 
 macrofocal parabola can be defi ned by a string of constant length Q–P–T–A. In this case, 
as angle φ increases, the string winds around the macrofocus, so this is called a winding 
 macrofocal parabola.
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FIGURE 17.18
A macrofocal parabola refl ects parallel rays 
to become tangent to a circular  macrofocus. 
These parallel rays are also parallel to its 
axis, which in this case is the horizontal 
axis x1.
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The points on the macrofocal parabola ful-
fi ll the condition s2 + s1 + t + r(φ − π/2) = 
K, where K is a constant.
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482 Introduction to Nonimaging Optics

or

 t(φ) =   
KW + r(sin φ − 1 − φ)

  ____________________  1 − cos φ   (17.52)

Note that for r = 0, we obtain an equation for a parabola. Constant KW can 
now be determined from a point on the curve, just as with the case of the 
parabola. The macrofocal parabola can now be obtained from

 r(cos(φ − π/2), sin(φ − π/2)) + t(φ)(cos φ, sin φ) (17.53)

or

 r(sin φ, −cos φ) + t(φ)(cos φ, sin φ) (17.54)

A macrofocal parabola rotated by an angle α around the origin and the  center 
of the macrofocus at a position F = (F1, F2) is given by

 r(sin(φ + α), −cos(φ + α)) + t(φ)(cos(φ + α), sin (φ + α)) + (F1, F2) (17.55)

This situation is presented in Figure 17.20 for the case in which the  macrofocal 
parabola passes through a given point P.

Constant KW can now be obtained by solving Equation 17.52 with respect 
to KW, noting that for point P, we have φ = φP and t(φ) = tP . Given the distance 
tP and angle φP, KW is given by

 KW = tP(1 − cos φP) + r(1 + φP − sin φP) (17.56)

The values of tP and φP can be calculated from the position of point P by 
expressions 17.14 and 17.17.

FIGURE 17.20
A general macrofocal parabola can be defi ned by the center F of its macrofocus and its radius, 
the angle that its axis makes to the horizontal, and a point P on the curve.
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17.8 Unwinding Macrofocal Parabola

Figure 17.21 shows another example of a macrofocal parabola. This curve 
can also be generated by a string of constant length. In this case, the string 
wraps around the macrofocus in such a way that one of its tips is at point 
A and the other tip at a point Q on line vL. In this case, however, the string 
starts at point A and goes under the macrofocus instead of going over it, as 
in the case of the winding macrofocal parabola. The length of the string is, 
in this case, rβ + t + s and it is constant for the points P on the curve. As 
angle φ increases, the string unwinds around the macrofocus and therefore 
this curve is called an unwinding macrofocal parabola. Angle β is given by 
β = 2π − (φ + π/2) = 3π/2 − φ.

If used as a mirror, this curve refl ects parallel horizontal rays to become 
tangent to a circular receiver of radius, as shown in Figure 17.22.

This parabola is symmetrical with respect to the x1 axis relative to a wind-
ing macrofocal parabola, as shown in Figure 17.23.

FIGURE 17.21
Macrofocal parabola generated by a string 
Q–P–T–A of constant length. As angle φ 
increases the string unwinds around the 
macrofocus, so that this curve is called a 
unwinding macrofocal parabola.
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FIGURE 17.22
A macrofocal parabola refl ects  parallel 
rays to become tangent to the circular 
 macrofocus. These parallel rays are 
also parallel to its axis that, in this case, 
is  horizontal axis x1.
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FIGURE 17.23
The winding and unwinding macrofocal parabolas with horizontal axis are the same curve, 
but refl ected about the horizontal axis.
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Point P on the winding macrofocal parabola is symmetrical to point Q on 
the unwinding macrofocal parabola. For these two points, we have tP = tQ 
and φQ = 2π − φP . Replacing in the expression for t(φ) for the winding para-
bola φ by 2π − φ, we get

t(φ) =    
KW − r − r((2π − φ) − sin (2π − φ))

   ________________________________   
1 − cos (2π − φ)

   =   
KU + r(φ − 1 – sin φ)

  ___________________  1 − cos φ   (17.57)

where KU is a constant and the unwinding macrofocal parabola is given by

 r(cos(φ + π/2), sin (φ + π/2)) + t(φ)(cos φ, sin φ) (17.58)

or

 r(−sin φ, cos φ) + t(φ)(cos φ, sin φ) (17.59)

where angle φ and t are defi ned as shown in Figure 17.24, where M is the 
mirror.

Equation 17.59 can also be derived from a constant string length, as shown 
in Figure 17.25.

We have rβ + t + s = K, where K is a constant. Since β = 2π − (φ + π/2) = 
3π/2 − φ and s = r − s1 = r − (t cos φ − r sin φ), we have t(φ) given by expres-
sion 17.57.
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Constant KU can be obtained from a point P on the curve. If this point is 
defi ned by tP and φP, we have

 KU = tP(1 − cos φP) + r (1 − φP + sin φP) (17.60)

The values of tP and φP can be calculated from the position of point P by 
using expressions 17.14 and 17.18.

17.9 Winding Macrofocal Ellipse

In an ellipse, the sum of the distances between a point and the foci is 
 constant for all points. Therefore, attaching a string of constant length to 
both foci, keeping it stretched with a marker, and moving the marker, draws 
an ellipse.

In a macrofocal ellipse,2 a circle of radius r, as shown in Figure 17.26, replaces 
one of the foci. In this case, the string wraps around the  macrofocus in such 
a way that one of its tips is at point A and the other tip at the focus G, which 
is still a point focus. The length of the string is, in this case, rφ + t + s, and 
it is constant for the points P on the curve. As angle φ increases, the string 
winds around the macrofocus and this curve is accordingly called a winding 
macrofocal ellipse. The macrofocal ellipse is actually a spiral curve.

If used as a mirror, this curve refl ects rays emitted from a point source G 
tangent to a circular receiver of radius r, as shown in Figure 17.27.

FIGURE 17.24
The unwinding macrofocal parabola 
defi ned by angle φ and distance t from 
the tangent point T to the mirror M.
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FIGURE 17.25
The unwinding macrofocal parabola 
can be obtained by a string of constant 
length s + t + rβ.
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Applying constant string length to this curve, we have the geometry 
 presented in Figure 17.28, where F = (0, 0) and G = (  f, 0).

Point P is defi ned by

 P = r(cos(φ − π/2), sin(φ − π/2)) + t(cos φ, sin φ) 

 = (t cos φ + r sin φ, t sin φ – r cos φ) (17.61)

The distance s from point P to G = (  f, 0) is given by

 s =   √ 
________________

  (P − G) ⋅ (P − G)   =   √ 
______________________________

   f  2 + r2 + t2 − 2 f(t cos φ + r sin φ)    (17.62)

FIGURE 17.26
A macrofocal ellipse refl ects the light rays emitted by a point source G tangent to a circular 
macrofocus. It can be generated by a string of constant length G–P–T–A. In this case, as angle 
φ increases, the string winds around the macrofocus and therefore this is a winding macrofo-
cal ellipse.
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FIGURE 17.27
The light rays emitted by a point source G are refl ected tangent to the macrofocus of center F 
and radius r. The macrofocal ellipse is actually a spiral curve.
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From Figure 17.28, we now have

 rφ + t + s = KW (17.63)

where K is a constant and therefore,

 t(φ) =   
(KW − rφ)2 + 2 fr sin φ − f  2 − r 2

   ____________________________   
2(K − rφ − f cos φ)

   (17.64)

The constant KW can now be determined from any point on the curve. The 
macrofocal ellipse can now be obtained from

 r(cos(φ − π/2), sin(φ − π/2)) + t(φ)(cos φ, sin φ) (17.65)

or

 r(sin φ, −cos φ) + t(φ)(cos φ, sin φ) (17.66)

A winding macrofocal ellipse rotated by an angle α around the origin and 
with the center of the macrofocus at a position F = (F1, F2) is given by

 r(sin (φ + α), −cos (φ + α)) + t(φ)(cos (φ + α), sin (φ + α)) + (F1, F2) (17.67)

This case is shown in Figure 17.29 where the macrofocal ellipse passes 
through a given point P.

Constant K can now be obtained by solving expression 17.64 with respect 
to KW, noting that, for point P, we have φ = φP and t(φ) = tP. Given distance tP 
and angle φP, we have two possible values for constant KW given by

 KW = tP + rφP ±   √ 
_________________________________

   f 2 + r2 +  t P  2
   − 2 f(tP cos φP + r sin φP)   (17.68)

FIGURE 17.28
Geometry for determining the parameterization of a macrofocal ellipse. Its points are defi ned 
by s + t + rφ = K, where K is a constant.
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We choose the following positive sign solution:

 KW = tP + r      φP +   √ 
_________________________________

   f  2 + r2 +  t P  2
   − 2f(tP cos φP + r sin φP)   (17.69)

From the positions of F and G, we can calculate f, the distance between F
and G as

 f = [F, G] =   √ 
________________

   (F − G) ⋅ (F − G)   (17.70)

From the positions of F and G, we can also calculate angle α as

 α = angh v with v = (v1, v2) = G − F (17.71)

The values of tP and φP can be calculated from the position of point P by 
using expressions 17.14 and 17.17. Note that from these expressions we have 
0 ≤ φP < 2π. If point P should have a different parameter value (e.g., between 
2π and 4π), we must change the curve’s parameterization.

17.10 Unwinding Macrofocal Ellipse

Figure 17.30 shows another example of a macrofocal ellipse. As seen earlier, 
this curve can also be generated by a string, but the string wraps around the 
macrofocus, as shown in Figure 17.30, in such a way that one of its tips is at 
point A and the other tip at a point focus G. As angle φ increases, the string 
unwinds around the macrofocus, and thus this curve is called an unwinding 
macrofocal ellipse.

If used as a mirror, this curve refl ects rays emitted from a point source at G 
tangent to a circular receiver of radius r, as shown in Figure 17.31.

FIGURE 17.29
A general macrofocal ellipse can be defi ned by the radius r of its macrofocus and its center F, 
the position of the other focus G, and a point P.
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We can derive the unwinding macrofocal ellipse equations from the 
 winding case in the same way as with the macrofocal parabola. Accordingly 
replacing φ by 2π − φ in expression 17.64 gives

 t(φ) =    
(KU + rφ)2 − 2 fr sin φ − f 2 − r2

   ____________________________   
2(KU + rφ − f cos φ)

   (17.72)

where KU = KW − 2πr and the unwinding macrofocal ellipse is given by

 r(cos(φ + π/2), sin(φ + π/2))+ t(φ)(cos φ, sin φ) (17.73)

FIGURE 17.30
Unwinding macrofocal ellipse generated by a string G–P–T–A of constant length that unwinds 
around the macrofocus as angle φ increases.
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FIGURE 17.31
A macrofocal ellipse refl ects rays emitted by a point source G tangent to the circular 
macrofocus.
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490 Introduction to Nonimaging Optics

or

 r(−sin φ, cos φ) + t(φ)(cos φ, sin φ) (17.74)

An unwinding macrofocal ellipse rotated by an angle α around the origin with 
the center of its macrofocus F displaced to a position F = (F1, F2) is given by

 r(−sin (φ + α), cos (φ + α)) + t(φ)(cos (φ + α), sin (φ + α)) + (F1, F2)  (17.75)

Given a point P defi ned by tP and φP, constant KU can be obtained from 
expression 17.72 as

 KU = tP − rφP ±   √ 
___________________________________

    f  2 + r2 + t  P    2   − 2 f tP cos φP + 2 f r sin φP   (17.76)

Again we choose the solution with the positive sign

 KU = tP − rφP +   √ 
_________________________________

     f 2 + r2 + t P     2
   − 2  f (tP cos φP − r sin φP)   (17.77)

The values of tP and φP can be calculated from the position of point P by 
using expressions 17.14 and 17.18.

17.11 Cartesian Oval for Parallel Rays

An optical refractive surface can redirect the light rays emitted by a point 
source F immersed in a medium of refractive index n1, in such a way that 
they are parallel after refraction as they enter into a medium of refractive 
index n2. This curve verifi es

 n1t + n2s = K* (17.78)

where K* is a constant and t and s are defi ned as shown in Figure 17.32. 
Replacing

 s = r − t cos φ (17.79)

we get

 t(φ) =   
K* − n2r ____________  n1 − n2 cos φ   =   K ____________  n1 − n2 cos φ   (17.80)

where K is another constant, since r is also a constant. Now for φ = 0, we have 
t = t0, and therefore we can write

 t(φ) =   
t0(n1 − n2) ____________  n1 − n2 cos φ   (17.81)

Now making

 C = 2t0   
n1 _______ n1 + n2

    f = 2t0   
n2 _______ n1 + n2

   (17.82)
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We can also write

 t(φ) =   
C2 − f  2

 ____________  
2C − 2 f cos φ   (17.83)

This is the equation of an ellipse or a hyperbola, depending on whether n1 > 
n2 or n1 < n2, respectively. The variable f is the distance between the foci and 
C the distance between the vertices of the conic curves.

The limits of parameter φ are shown in Figure 17.32a, where αC is the  critical 
angle, given by αC = arc sin(min(n1, n2)/max(n1, n2)), and where functions min 
and max give the minimum and maximum, respectively, between their two 
variables. If the incoming ray from F to a point P and the ray leaving P make 
an angle δ > δC = π/2 + αC, then refraction is possible, but for the portions 
of the ellipse for which δ < δC = π/2 + αC, refraction is not possible, thus, 
this portion of the curve cannot be used for a refractive optic. Something 
similar happens in the case of the hyperbola of Figure 17.32b. This condition 
 translates to −(π/2 − αC) ≤ φ ≤ π/2 − αC for the parameter, in both the cases 
in Figure 17.32.

Now consider the general case of a Cartesian oval tilted by an angle α and 
with focus at a position F = (F1, F2) and that passes through a given point P 
defi ned by an angle φP and distance tP to the focus, as shown in Figure 17.33.

In this case, the constant K can be obtained from expression 17.80 as K = 
tP(n1 − n2 cos φP), and the parameterization of the curve becomes

   
tP(n1 − n2 cos φP)  _______________  n1 − n2 cos φ   (cos (φ + α), sin (φ + α)) + (F1, F2) (17.84)

for −(π/2 − αC) ≤ φ ≤ π/2 − αC.
Note that not every point P can be chosen for the Cartesian oval to pass 

through. Point P must fulfi ll δ ≥ δC = π/2 + αC, where δ is defi ned in 

FIGURE 17.32
Cartesian oval curve that refracts light rays from a point source and makes them parallel. 
(a) The source is immersed in a medium with high refractive index and the curve is an ellipse. 
(b) The source is in a low-refractive index medium and the curve is a hyperbola.
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492 Introduction to Nonimaging Optics

Figure 17.32. In the general case presented in Figure 17.33, this condition can 
be  written as

 δ = arccos  (    (F − P) ⋅ (cos α, sin α)
  ___________________  

  √ 
_______________

  (F − P) ⋅ (F − P)  
   )  ≥   π __ 2   + αC (17.85)

This curve will also converge parallel rays traveling in a medium of refrac-
tive index n2 and being refracted into another medium of refractive index n1 
to point F.

17.12 Cartesian Oval for Converging or Diverging Rays

The light emitted from a point source F in a medium of refractive index n1 
can be concentrated onto a point G in a medium of refractive index n2 by 
a refractive surface, as shown in Figure 17.34. In this case, the optical path 
length from F to G is a constant given by n1t + n2s = K.

Also, the light emitted from F immersed in a medium of refractive index 
n1 can be refracted into a medium of refractive index n2 in such a way that it 
appears to be diverging from another point G, as shown in Figure 17.35. In 
this case, if C is a circle with center G and radius r, the optical path length 
n1t + n2d = K*, where K* > 0 is a constant. We can write d = r − s and there-
fore, n1t − n2s = K* − n2r, that is, n1t − n2s = K, where K is another constant.

Referring to Figure 17.34, consider that F = (0, 0) so that the point P is given 
by coordinates P = (P1, P2) = t(cosφ, sinφ). The points on the curve of Fig-
ure 17.35 can be obtained in a similar way. We also consider that G = (f, 0). 
The distance s from point P to G is given by

 s =   √ 
________________

  (G − P) ⋅ (G − P)   =   √ 
________________

   f 2 + t2 − 2f t cos φ   (17.86)

FIGURE 17.33
A general Cartesian oval that refracts the rays from a point source and makes them parallel can 
be defi ned by the position of the source F, the angle the parallel rays make to the horizontal, 
the refractive indices of the two media, and a point P on the curve. Cases in which n1 > n2 (a) 
or in which n1 < n2 (b).
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The points on these curves can be obtained from

 n1t ± n2s = K ⇒ s2 =   (   K − n1t _______ n2
   )  

2
  (17.87)

where K is a constant. We get

 t1(φ) =   
Kn1 − f  n 2  

2  cos φ − n2  √ 
__

 D  
  _____________________  

 n 1  
2  −  n 2  

2 
   

(17.88)

 t2(φ) =   
Kn1 − f  n 2  

2  cos φ + n2  √ 
__

 D  
  _____________________  

 n 1  
2  −  n 2  

2 
   

with

 D = (  f n1 − K cos φ)2 +  (  K  2  − f  2  n 2  
2   ) sin2φ (17.89)

FIGURE 17.34
Cartesian oval curve that refracts light rays from a point source and concentrates them onto 
another point G. It is parameterized as a function of angle φ to the line connecting F and G.
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FIGURE 17.35
(a) Cartesian oval curve that refracts light rays from a point source and makes them diverge 
as if they appear to come from another point G. (b) It is defi ned by condition n1t + n2d = K 
with K constant and is parameterized as a function of angle φ that line t makes with the line 
connecting F and G.
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494 Introduction to Nonimaging Optics

The two possible plane curves C1 and C2 are then defi ned by

 C1 = t1(φ)(cos φ, sin φ) 
(17.90)

 C2 = t2(φ)(cos φ, sin φ) 

We will consider the case in which n1 > n2. Figure 17.36 shows an example of 
one of these curves.

Note that in the particular case where K 2 – f  2  n 2  
2  = 0, then t2(φ) and t1(φ) can 

be written as

 t(φ) = –   
f  n 2  

2  ± Kn2 _________ 
 n 1  

2  −  n 2  
2 
   cos φ +   

Kn1 ± fn1n2 ___________ 
 n 1  

2  −  n 2  
2 
   (17.91)

which has the form t(φ) = 2a cos φ + b, as in the case of a Limaçon of Pascal.
Although curves C1 and C2 defi ned by Equation 17.90 completely  surround 

the point source F, only some portions of the curves can be used as refractors. 
The portions of the curves that can be used depend on the curves’ parameters. 
The  reason for this is that, as we move along the curves, we may reach a criti-
cal point, where the light emitted from F hits the surface at the critical angle. 
Beyond that point, light rays no longer converge or appear to diverge from G. 
These critical points are Q for curve C1 and R for curve C2 in Figure 17.36. Fig-
ure 17.37 shows the geometry of the curves at those points.

Since the surfaces separate two media of refractive indices n1 and n2 with 
n1 > n2, the critical angle αC fulfi lls sin αC = n2/n1. We then have the  following 
for points Q and R:

 f cos φC = t ± s sin αC ⇔ cos φC =   
n1t ± n2s ________ 

fn1
   (17.92)

FIGURE 17.36
Cartesian ovals may completely surround the source, but it does not mean that the whole 
curve can be used as a refractor. Only those portions where refraction is possible can be used 
optically.
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and we can defi ne

 φC = arc cos  (   K ___ 
fn1

   )  if |K| ≤ fn1 
(17.93) φC = 0  if |K| > fn1 

where the positive and negative signs are for the cases of Figures 17.37a 
and 17.37b, respectively.

For the converging Cartesian oval shown in Figure 17.34, its vertex V must 
be contained between the foci F and G. Vertex V also verifi es the condition 
K = n1[F, V] + n2[V, G] that defi nes the curve. The maximum value of K is 
then obtained making V = G, so that K = n1[F, G] = n1   f. The minimum value 
of K is obtained when V = F, so that K = n2[F, G] = n2    f. The value of K must 
then be contained between these two extreme values. A point P on the curve 
must fulfi ll

 K = n1[F, P] + n2[P, G] with n2   f < K < n1  f (17.94)

In this case, the parameter range for angle φ is −φC ≤ φ ≤ φC for the portion of 
the curve where refraction is possible. To guarantee that the point P is on the 
portion of the curve that can be used to refract the light, we must have φP = θ 
≤ φC, where θ is given by expression 17.4, with v = P − F and u = G − F.

The limitations on K for the diverging solution of Figure 17.35 are different. 
When K > fn1, then φC does not exist and the whole curve can be used as a 
refractive optic. In this case, the parameter range is 0 ≤ φ ≤ 2π, as shown in 
Figure 17.38a, but when K = −fn2, then

 t2(φ) =   
n2 [−fn1 − fn2 cos φ +   √ 

________________
  (  fn1 + fn2 cos φ)2   ] 
    ____________________________________  

 n 1  2  −  n 2  2 
   (17.95)

FIGURE 17.37
The point Q or R on the curves for which the incidence angle reaches the critical angle limits 
the region of the Cartesian oval curves that can be used to refract the light.
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496 Introduction to Nonimaging Optics

and therefore, the curve C2 described by t2(φ) tends to a point at position F as 
K → −fn2. This case is shown in Figure 17.38b, where the value for K is close 
to −fn2. This imposes a lower limit on K, so that K > −fn2. For −fn2 < K < 
fn1, we can calculate the value of φC, and the parameter range for curve C2 is 
φC ≤ φ ≤ 2π − φC. To guarantee that a point P is on the portion of the curve 
that can be used to refract the light, we must also have φP = θ ≥ φC, where θ 
is given by expression 17.4 with v = P − F and u = G − F. These two param-
eter ranges can be written as φC ≤ φ ≤ 2π − φC for K > − fn2, if φC is defi ned 
by expression 17.93.

Figures 17.39a and 17.39b show the shape of these curves for different 
values of K, for the converging (light converges to G) and diverging (light 
appears to diverge from G) Cartesian ovals, respectively.

The Cartesian ovals are limited to the region of space in which refraction is 
possible. In the case of the converging ovals of Figure 17.39a, this region is the 
interior of the curved dashed line. For the points Q on this line, the angle the 
incident and refracted rays make is δ = π/2 + αC, where αC is the critical angle, 
as shown in Figure 17.37a. For the points outside this curve, we would have 
δ < π/2 + αC and refraction would be impossible due to total internal refl ec-
tion (TIR). For the points inside the dashed curved line angle δ > π/2 + αC, 
refraction is possible, so we can design the Cartesian oval curves as shown. 
The shape of this dashed curve can be obtained, for example, by making 
φ = φC in the expression for curve C1. The result can now be plotted as a func-
tion of K for n2   f < K < n1   f.

Something similar happens in the case of the diverging Cartesian ovals 
of Figure 17.39b, but now these curves are limited to the space outside the 
curved dashed line shown.

We have analyzed the case where the source F was in a high-refractive 
index medium and the focus G was in a low-index medium. We now  consider 

FIGURE 17.38
(a) For large values of K (K > fn1), the Cartesian oval does not cross the line FG and the entire 
curve can be used as a refractor. (b) As the value of K diminishes, the size of the curve that can 
be used as a refractor gets smaller and smaller when K tends to −fn2.
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the opposite case where the source is in a low-refractive index medium and 
the focus is in a high-index medium.

The curves, however, are the same in both cases. From Figure 17.34 we can 
see that, if now G is considered as the point source, the refractive surface 
will concentrate the light emitted from G on to point F. Something similar 
 happens for the diverging Cartesian oval of Figure 17.35.

Figure 17.40a shows point F immersed in a low-refractive index medium 
(e.g., air) of refractive index n1. The surface separates this medium from a 

FIGURE 17.39
Regions of space where the Cartesian oval curves can be used as refractors. (a) The light  emitted 
by point source F converges to point G. (b) The light emitted by F appears to diverge from G.
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FIGURE 17.40
(a) A light ray emitted by F is refracted at a surface so that it appears to diverge from G. (b) A 
similar situation but now with the refractive indices interchanged. Now G is the source  emitting 
a ray that is refracted as if it appears to come from F. In both cases, we have n2 sin α = n1 sin β.
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498 Introduction to Nonimaging Optics

higher refractive index medium of refractive index n2. A ray r1 leaves F, mak-
ing an angle β to the normal to the surface, it refracts and enters medium n2 
with a smaller angle α to the vertical, where n2 sin α = n1 sin β. After refrac-
tion, this ray now appears to come from point G.

Figure 17.40b shows a similar situation, but now with points G immersed in 
a high-refractive index medium of refractive index n2. The surface now sepa-
rates this medium from a lower refractive index medium of refractive index 
n1 (e.g., air). A ray r2 leaves G, making an angle α to the normal to the surface, 
it refracts and enters medium n1 with a higher angle β to the vertical, where n2 
sin α = n1 sin β. After refraction, this ray now appears to come from point F.

So, if we have a surface that refracts rays emitted by F in such a way that 
they appear to be coming from G, that same surface will refract rays  coming 
from G in a way that they appear to be coming from F, provided that the 
refractive indices this surface separates are interchanged.

Figure 17.41 shows the same curve as Figure 17.35, but now with the values 
of the refractive indices interchanged. Point G is now a source and F the 
focus from where the rays appear to diverge.

In any case, the refractive index n1 associated with F is larger than the refrac-
tive index n2 associated with G. The same curve then describes the situations 
in which the light of a point source F in a high-refractive index medium (n1) 
is refracted as if it appears to come from a point G in a low-refractive index 
medium n2 (Figure 17.35), as well as the case in which the light of a point 
source G in a low-refractive index medium (n2) is refracted as if it appears to 
come from a point F in a high-refractive index medium (n1) (Figure 17.41).

FIGURE 17.41
The same Cartesian oval curve of Figure 17.35 but with the refractive indices interchanged. We 
also interchange the roles of F and G, and we have a point source G that emits light, which is 
refracted at the Cartesian oval in such a way that it appears to come from a point F.

n1

x2

n2

x1
GF

CRC_54295_CH017.indd   498CRC_54295_CH017.indd   498 4/3/2008   9:48:10 AM4/3/2008   9:48:10 AM



Plane Curves 499

We now summarize the expressions given earlier, which enable us to cal-
culate Cartesian oval curves for some particular cases. One of the foci, F, is at 
the origin F = (0, 0) surrounded by a medium of refractive index n1. The other 
focus, G, is at a position G = ( f, 0) and is surrounded by a medium of refrac-
tive index n2 with n2 < n1. Now, we may give a point P to defi ne the curve.

If we want to design a converging Cartesian oval, we may calculate K = 
n1[F, P] + n2[P, G]. If we have n2   f < K < n1   f, then the Cartesian oval exists 
and is given by C1(φ) = t1(φ)(cosφ, sinφ), where t1(φ) is defi ned by expression 
17.88 and D by Equation 17.89. The parameter range for this curve is −φC ≤ 
φ ≤ φC, where φC is given by expression 17.93. Point P must also fulfi ll φP = 
θ ≤ φC, where θ is given by expression 17.4 with v = P − F and u = G − F. If 
point F is the source, this curve focuses the light rays to point G. If point G is 
the light source, this curve focuses the light rays to point F.

If we need to design a diverging Cartesian oval, we must calculate 
K = n1[F, P] − n2[P, G]. If we have K > −fn2, then the Cartesian oval exists and 
is given by C2(φ) = t2(φ)(cos φ, sin φ), where t2(φ) is defi ned by expression 17.88 
and D by Equation 17.89. The parameter range for the curve C2 is φC ≤ φ ≤ 
2π − φC, where φC is given by expression 17.93. In this case, point P must also 
fulfi ll φP = θ ≥ φC, where θ is given by expression 17.4 with v = P − F and 
u = G − F. If point F is the source, this curve causes the light rays to diverge 
from point G. If point G is the light source, this curve causes the light rays to 
diverge from point F.

Now consider the more general case of arbitrary positions for foci F and 
G. We start by calculating f = [F, G]. Focus F is surrounded by a medium 
of refractive index n1 and focus G is surrounded by a medium of refractive 
index n2, with n2 < n1. Now, we may point P to defi ne the curve.

If we need to design a converging Cartesian oval, we must calculate 
K = n1[F, P] + n2[P, G]. If we have n2   f < K < n1  f, then the Cartesian oval exists 
and is given by C1(φ) = F + t1(φ)(cos(φ + α), sin(φ + α)), where t1(φ) is defi ned 
by expression 17.88, D by Equation 17.89, and α is the angle vector G − F 
makes to the horizontal given by α = angh(G − F). Point P must also fulfi ll 
ang(P − F, G − F) ≤ φC. The parameter range for this curve is −φC ≤ φ ≤ 
φC, where φC is given by expression 17.93. If point F is the source, this curve 
focuses the light rays to point G. If point G is the light source, this curve 
focuses the light rays to point F.

If we want to design a diverging Cartesian oval, we may calculate 
K = n1[F, P] − n2[P, G]. If we have K > −fn2, then the Cartesian oval exists and 
is given by C2(φ) = F + t2(φ)(cos(φ + α), sin(φ + α)), where t2(φ) is defi ned by 
expression 17.88, D by Equation 17.89, and α is the angle vector G − F makes 
to the horizontal given by α = angh(G − F). The parameter range for the 
curve C2 is φC ≤ φ ≤ 2π − φC, where φC is given by expression 17.93. In this 
case, point P must also fulfi ll ang(P − F, G − F) ≥ φC. If point F is the source, 
this curve causes the light rays to diverge from point G. If point G is the light 
source, this curve causes the light rays to diverge from point F.
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17.13 Cartesian Ovals Calculated Point by Point

The Cartesian ovals presented earlier can also be calculated point by point. 
Figure 17.42 presents the case in which we have a light source F immersed 
in a medium of refractive index n1. There is also a focus G, immersed in a 
medium of refractive index n2, onto which the light may be concentrated, or 
from where it may appear to diverge.

If t is the distance from F to P and s the distance from P to G, the optical 
path length S between F and G is S = n1t + n2s in the case where the light 
from F is refracted and concentrated to G (converging case). 

When light appears to diverge from G after refraction (diverging case), we 
may also calculate an “optical path length” given by S* = n1t – n2s. Note that 
quantity S* may be negative, whereas an optical path length is always a posi-
tive quantity. S* is the “optical path length” between F and a virtual “point 
wave front” at G. However, to make the functions defi nitions (Section 17.15) 
simpler, we also use S for this case and make n1t – n2s = S.

Given this optical path length, it is possible to calculate the points on the 
Cartesian oval by constant optical path length. Points P on this curve must 
then satisfy the following condition:

 n1t ± n2s = S (17.96)

For each value of angle φ, we can defi ne a unit vector v = (cos φ, sin φ) and 
point P is then defi ned by

 P = F + tv (17.97)

FIGURE 17.42
(a) A point source F in a medium of refractive index n1 emits a light ray in a given direction. If 
the optical path length to another point G in a medium of refractive index n2 is known, then 
the point P on the Cartesian oval curve that refracts light from F to G can be calculated by 
constant optical path length. (b) The same thing happens when the ray is refracted at point P 
as if it appears to come from point G.
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FIGURE 17.43
A point source F in a medium of refractive index n1 emits a light ray in a given direction v. We 
want it to be refracted perpendicular to a plane wave front in a medium of refractive index n2 
and defi ned by its normal vector n and a point G. The point P on the corresponding Cartesian 
oval curve can be calculated by constant optical path length.
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The distance from P to G is

 s =   √ 
_________________________

   (F + tv − G) ⋅ (F + tv − G)   (17.98)

replacing Equation 17.98 in expression 17.96, we can solve for t and we get the 
following for point P:

 P = F +   
C1 + δ   √ 

_______________
  C2  (  n 2  

2  −  n 1  
2  ) +  C 1  

2   
   ______________________  

 n 1  
2  −  n 2  

2 
   v (17.99)

with

 C1 = n1S +  n 2  
2 (F − G) ⋅ v 

 C2 = S2 −  n 2  
2 (F − G) ⋅ (F − G) (17.100)

 
δ = ±1

with δ = −1 for n1 > n2 and δ = 1 for n1 < n2 for the converging case and 
δ = 1 for n1 > n2 and δ = −1 for n1 < n2 for the diverging case. Varying the 
value of angle φ gives the points on the Cartesian oval that concentrates the 
light emitted by F onto G. One of these curves is presented in Figure 17.34.

Expression 17.96 can be written as (t − S/n)2 = s2 for the case in which 
n1 = n2 = n (the case of refl ection) and we get

 P = F +   
  (S/ n)2 − (F − G) ⋅ (F − G)

   _______________________  2(S/n + (F − G) ⋅ v)     v (17.101)

for both the converging and diverging cases.
A similar procedure can be used to calculate the points of a Cartesian oval 

that collimates (makes parallel) the light rays emitted by a point source F. 
This situation is depicted in Figure 17.43, where a light source F is immersed 
in a medium of refractive index n1 and we are calculating the points of a 
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502 Introduction to Nonimaging Optics

 surface that refracts the light in a direction perpendicular to a plane wave 
front defi ned by a point Q and a unit normal vector n = (cos β, sin β) pointing 
in the direction of propagation of the light.

If the optical path length S between F and the wave front is given, points P 
in this curve must then satisfy the following condition:

 n1t + n2s = S (17.102)

where t is the distance from F to P and s the distance from P to the wave 
front. For each value of the angle α, we can defi ne a unit vector v = (cos φ, sin φ) 
and the point P is then defi ned by

 P = F + tv (17.103)

The distance from P to the wave front is

 s = (Q − P) ⋅ n (17.104)

replacing expression 17.104 in Equation 17.102, we can solve for t to get
point P as

 P = F +   
S − n2(Q − F) ⋅ n

  _______________  n1 − n2 v ⋅ n   v (17.105)

Varying the value of angle α gives the points on the Cartesian oval that col-
limates the light emitted by F in the direction n. These curves are shown in 
Figure 17.33.

17.14 Equiangular Spiral

The rays emitted by a point source F can be refl ected by TIR at the  critical 
angle by a curve separating two media of different refractive indices, as 
shown in Figure 17.44. This curve is called equiangular spiral, logarithmic 
spiral, or logistique.

The shape of this curve can be calculated from a differential equation. 
 Figure 17.45a shows the geometry of an element of curve with an  infi nitesimal 
length.

The equiangular spiral can be parameterized by t(φ)(cos φ, sin φ). Function 
t(φ) is given by a differential equation, where αC is the critical angle:

   dt ____ 
tdφ   = tan αC ⇔ ln t = φ tan αC + K ⇔ t = C exp(φ tan αC ) (17.106)

with C = eK where K and C are constants. If the curve must pass through 
a given point P, as shown in  Figure 17.45b, the initial condition for this 
equation is that, for φ = φP we have t = tP, where φP = angh(P − F) and 
tP = [F, P]. We then get

 C =   
tP 
 _____________  

exp(φP tan αC )
   and t(φ) = tP exp((φ − φP)tan αC) (17.107)
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FIGURE 17.44
An equiangular spiral refl ects (by TIR) the light coming from a point source at the critical angle 
for all its points.
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FIGURE 17.45
An equiangular spiral can be defi ned by a differential equation. (a) The geometry of an  element 
of infi nitesimal length on the curve. (b) Once its equation has been obtained, the position of a 
point P completely determines the shape of the curve.
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504 Introduction to Nonimaging Optics

In the particular case where the surface separates a medium with refractive 
index n from air (n = 1), the critical angle αC is related to the refractive index 
of the dielectric by sin αC = 1/n, so that cos2 αC = 1 − 1/n2, giving

 tan αC =   1 _______ 
  √ 

______
 n2 − 1  
   (17.108)

and

 t(φ) = tP exp  (   φ − φP _______ 
  √ 

______
 n2 − 1  
   )   (17.109)

If the focus of the spiral is at a point F, then its parameterization becomes

 tP exp  (   φ − φP _______ 
  √ 

______
 n2 − 1  
   )  (cos φ, sin φ) + F (17.110)

In this solution, the distance from the curve to the source F increases as 
angle φ increases. Another solution in which the distance from the curve 
to the source F decreases as angle φ increases is possible. In this case, the 
 differential equation would be

   dt ____ 
tdφ   = −tan αC (17.111)

and the curve is described by

 tP exp  (   φP − φ _______ 
  √ 

______
 n2 − 1  
   )  (cos φ, sin φ) + F (17.112)

17.15 Function Defi nitions

The functions and curve equations given earlier can be summarized in a 
list of functions that can then be used to calculate a variety of nonimaging 
optical devices.

 1. The magnitude of a vector is given by

  �v�  =   √ 
____

 v ⋅ v   (17.113)

 2. A unit vector (magnitude 1) in direction v is given by

 nrm(v) =    v ___  �v�    =   v _____   √ 
____

 v ⋅ v     (17.114)

 3. The distance between two points A and B is given by

 [A, B] = �B − A� (17.115)
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 4. The angle between two vectors u and v in the range 0–π is given by

 ang(v, u) = arc cos  (   v ⋅ u ______  �v�   �u� 
   )  = arc cos  (   v ⋅ u ___________   √ 

____
 v ⋅ v     √ 

____
 u ⋅ u     )  (17.116)

 5. The angle between two vectors u = (u1, u2) and v = (v1, v2) in the plane 
measured in the positive direction from u to v (i.e., the angle of v 
relative to u measured in the positive direction) is given in the range 
0–2π by (see Figure 17.1)

 angp(v, u) = ang(v, u) if u1v2 − u2v1 ≥ 0 
(17.117)

 angp(v, u) = 2π − ang(v, u) if u1v2 − u2v1 < 0 

 6. The angle of a vector to the horizontal (axis x1) is given by (see Fig-
ure 17.1)

 angh(v) = angp(v, (1, 0))  (17.118)

 7. A rotation matrix R(α) is given by (see Figure 17.2)

 R(α) =  (  cos α −sin α         sin α   cos α   )  (17.119)

 8. A vector v can be rotated by an angle α if multiplied on the left by a 
rotation matrix as

 R(α) ⋅ v (17.120)

 9. The intersection between two straight lines, one of them defi ned by 
point P and vector v and the other defi ned by point Q and vector u 
is given by (see Figure 17.3)

 isl(P, v, Q, u) = P +   
(Q − P) ⋅ uP ___________ v ⋅ uP

   v (17.121)

where

 uP = R(π/2) ⋅ u (17.122)

 10. A parabola tilted by an angle α to the horizontal, with focus at a 
point F and passing through a point P is given by (see Figure 17.8)

par(α, F, P) =    
[P, F] − (P − F) ⋅ (cos α, sin α)

   __________________________  1 − cos φ   (cos (φ + α),

 sin(φ + α)) + F (17.123)

where φ is the parameter.
 11. An ellipse with foci F and G and passing through a point P is given 

by (see Figure 17.11)

 eli(F, G, P) =      
([F, P] + [P, G])2 − [F, G]2

   _____________________________     2([F, P] + [P, G]) − 2[F, G]cos φ    (cos(φ + α),

  sin(φ + α)) + F  (17.124)
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where

 α = angh(G − F) (17.125)

and φ is the parameter.
 12. A hyperbola with foci F and G and passing through a point P is 

given by (see Figure 17.13)

 hyp(F, G, P) =    
([F, P] – [P, G])2 – [F, G]2

   ____________________________     2|[F, P] – [P, G]| – 2[F, G]cos φ   (cos(φ + α),

 sin (φ + α)) + F (17.126)

where

 α = angh(G − F) (17.127)

and φ is the parameter. Alternatively, if U = 2n|[F, P] − [P, G]|, we 
can also write

 hyp(F, G, U, n) =     
(U/2n)2 − [F, G]2

  ___________________  
 U/n − 2[F, G]cos φ     (cos(φ + α),

 sin (φ + α)) + F (17.128)

 13. A winding involute passing through a point P and designed for a 
circle with center F and radius r is given by (see Figure 17.15)

 winv(P, F, r) = r(sin φ, −cos φ) + (K − rφ)(cos φ, sin φ) + F (17.129)
where

 φP = angh(P − F) + arc sin  (   r _____ 
[P, F]

   )  
(17.130)

 K =   √ 
__________

 [P, F]2 − r2   + rφP

 14. An unwinding involute passing through a point P and designed for 
a circle with center F and radius r is given by (see Figure 17.16)

 uinv(P, F, r) = r(−sin φ, cos φ) + (K + rφ)(cos φ, sin φ) + F

 (17.131)

where

 φP = angh(P − F) − arc sin(r/[P, F]) 

 If φP < 0 then φP = 2π + φP (17.132)

 K =   √ 
__________

 [P, F]2 − r2   − rφP  
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 15. A winding macrofocal parabola tilted by an angle α to the  horizontal, 
with macrofocus having center F and radius r and passing through a 
point P is given by (see Figure 17.20)

wmp(α, F, r, P) = r(sin (φ + α), −cos (φ + α))

 +   
K + r(sin φ − 1 − φ)

  __________________  1 − cos φ   (cos (φ + α), sin (φ + α)) + F 

 (17.133)

with

 φP = angp(P − F, (cos α, sin α)) + arc sin  (   r _____ 
[P, F]

   )  
 K =   √ 

__________
 [P, F]2 − r2   (1 − cos φP) + r(1 + φP − sin φP) 

(17.134)

 16. An unwinding macrofocal parabola tilted by an angle α to the hori-
zontal, with macrofocus having center F and radius r and passing 
through a point P is given by

 ump(α, F, r, P) = r (−sin(φ + α), cos(φ + α)) 

 +   
K + r(φ − 1 − sin φ)

  __________________  1 − cos φ   (cos (φ + α), sin (φ + α)) + F 

 (17.135)

with

φP = angp(P − F, (cos α, sin α)) − arc sin  (   r _____ 
[P, F]

   ) 

 If φP < 0 then φP = 2π + φP (17.136)

 K =   √ 
__________

 [P, F]2 − r2   (1 − cos φP) + r(1 − φP + sin φP) 

 17. A winding macrofocal ellipse with macrofocus of center F and 
radius r, point focus G and passing through a point P is given by 
(see Figure 17.29)

 wme(F, r, G, P) = r (sin (φ + α), −cos (φ + α))

 +    
(K − rφ)2 + 2f r sin φ − f 2 − r2

   ___________________________   
2(K − rφ − f cos φ)

   (cos (φ + α),

  sin (φ +  α)) + F (17.137)
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with

 α = angh(G − F) 

 f = [G, F] 

 φP = angp(P − F, (cos α, sin α)) + arc sin  (   r _____ 
[P, F]

   )  (17.138)

 tP =   √ 
__________

 [P, F]2 − r2   

 K = tP + rφP +   √ 
_________________________________

    f 2 + r2 +  t  P  2
   − 2f(tP cos φP + r sin φP)   

 18. An unwinding macrofocal ellipse with macrofocus of center F and 
radius r, point focus G and passing through a point P is given by

 ume(F, r, G, P) = r(−sin(φ + α), cos (φ + α)) 

 +   
(K + rφ)2 − 2  f r sin φ − f  2 − r 2

   ____________________________   2(K + rφ − f cos φ)   (cos (φ + α), 

 sin(φ + α)) + F (17.139)

with

 α = angh(G − F) 

 f = [G, F] 

 φP = angp(P − F, (cos α, sin α)) − arc sin  (   r _____ 
[P, F]

   )  
(17.140)

 If φP < 0 then φP = 2π + φP  

 tP =   √ 
__________

 [P, F]2 − r2   

 K = tP − rφP +   √ 
_________________________________

     f  2 + r2 +  t P   2
   − 2 f (tP cos φP − r sin φP)   

 19. A Cartesian oval that receives the rays emitted by a point source F 
immersed in a medium of refractive index n1 and collimates them 
(makes them parallel) into a medium of refractive index n2 and that 
passes through a point P and the axis and the emitted parallel rays 
of which are tilted by an angle α to the horizontal is given by (see 
Figure 17.33)

 cop(F, n1, n2, P, α) =    
[F, P](n1 – n2 cos φP)  __________________  n1 – n2 cos φ   (cos(φ + α),

sin(φ + α)) + F (17.141)
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where

 φP = ang(P – F, (cos α, sin α)) (17.142)

 20. A converging Cartesian oval with focus F immersed in a medium of 
refractive index n1 and another focus G immersed in a medium of 
refractive index n2, where n1 > n2 and passing through a point P is 
given by cco(F, n1, G, n2, P). See Figure 17.34, but note that points F 
and G are arbitrary and do not have to be on the x1 axis.

We fi rst calculate

 K = n1[F, P] + n2[P, G]

 f = [F, G] 

 φC =  {  arc cos(K/( fn1)) if |K| ≤ n1  f                  
             0                  if |K| > n1  f

    

(17.143)

If n2   f < K < n1   f and ang(P − F, G − F) ≤ φC, the Cartesian oval is 
 possible through point P and is given by

cco(F, n1, G, n2, P) =   
Kn1 – f  n 2  

2  cos φ – n2  √ 
__

 D  
  ____________________  

 n 1  
2  –  n 2  

2 
   (cos(φ + α),

 sin(φ + α)) + F (17.144)

where

 D = (  fn1 – K cos φ)2 +  ( K2 – f  2  n 2  
2  )  sin2 φ

 α = angh(G – F) 
(17.145)

Note: If F is a point source in a high-refractive index medium of refrac-
tive index n1, this curve refracts light to a point G in a low-refractive index 
medium of refractive index n2. If G is a point source in a low-refractive index 
medium of refractive index n2, this curve refracts light to a point F in a high-
refractive index medium of refractive index n1.

 21. A diverging Cartesian oval with focus F immersed in a medium of 
refractive index n1 and another focus G immersed in a medium of 
refractive index n2, where n1 > n2 and passing through a point P is 
given by dco(F, n1, G, n2, P). See Figure 17.35, but note that points F 
and G are arbitrary and do not have to be on the x1 axis.
 We fi rst calculate

 K = n1[F, P] – n2[P, G]

 f = [F, G] (17.146)

 φC =  {  arc cos (K/( fn1)) if |K| ≤ n1 f
                  

               0                if |K| > n1 f
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If K > −n2  f and ang(P − F, G − F) ≥ φC the Cartesian oval is possible 
through point P and is given by

 dco(F, n1, G, n2, P) =    
Kn1 – f n 2  

2  cos φ + n2  √ 
__

 D  
  ____________________  

 n 1  
2  –  n 2  

2 
   (cos (φ + α), 

 sin (φ + α)) + F (17.147)

where

 D = ( f n1 – K cos φ)2 +  ( K2 – f 2 n 2  
2  ) sin2 φ 

 α = angh(G – F) (17.148)

Note: If F is a point source in a high-refractive index medium of refractive 
index n1, this curve refracts light as if it appears to come from a point G in a 
low-refractive index medium of refractive index n2. If G is a point source in 
a low-refractive index medium of refractive index n2, this curve refracts light 
as if it appears to come from a point F in a high-refractive index medium of 
refractive index n1.

 22. A ray coming from a point F immersed in a medium of refractive 
index n1 in a direction v is refracted at a point P

 a. Toward another point G immersed in a medium of refractive 
index n2 (Figure 17.42a). The optical path length between F and G 
is S = n1[F, P] + n2[P, Q].

 b. And appears to diverge from a point G immersed in a medium 
of refractive index n2 (Figure 17.42b). The “optical path length” 
between F and G is S = n1[F, P] − n2[P, Q].

The point P (on a Cartesian oval) at which the refraction occurs is 
given by

 coptpt (F, n1, v, G, n2, S, γ) = F +   
C1 + δ   √ 

_______________
  C2  (  n 2  

2  –  n 1  
2  )  +  C 1  

2   
  _____________________  

 n 1  
2  –  n 2  

2 
   v (17.149)

with

 C1 = n1S +  n 2  
2  (F – G) ⋅ v

 C2 = S2 –  n 2  
2  (F – G) ⋅ (F – G) 

(17.150)

and

 δ = –γ for n1 > n2

 δ = γ for n1 < n2 
(17.151)
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In this function, parameter γ is

 γ = 1 when light converges to F

 γ = –1 when light appears to diverge from G 
(17.152)

We can also defi ne

 ccoptpt(F, n1, v, G, n2, S) = coptpt(F, n1, v, G, n2, S, 1) (17.153)

for the converging case (γ = 1) and

 dcoptpt(F, n1, v, G, n2, S) = coptpt(F, n1, v, G, n2, S, –1) (17.154)

for the diverging case (γ = −1).
In the case where n1 = n2 = n, we have

 coptpt(F, v, G, n, S) = F +    
(S/n)2 – (F – G) ⋅ (F – G)

   ______________________  2(S/n + (F – G) ⋅ v)     v (17.155)

for both the converging and diverging cases.
 23. A ray coming from a point F immersed in a medium of refractive 

index n1 in a direction v is refracted into a direction perpendicular 
to a straight line (plane wave front) defi ned by a point Q and a nor-
mal vector n. The optical path length between F and the plane wave 
front is S. The point (on a Cartesian oval) at which refraction occurs 
is given by (see Figure 17.43)

 coptsl(F, n1, v, Q, n2, n, S) = F +   
S – n2(Q – F) ⋅ n

  _______________  n1 – n2 v ⋅ n   v (17.156)

 24. An incident ray with direction i is refl ected at a point on the surface 
with normal n. The refl ected ray is given by (see Chapter 12)

 rfx(i, n) = i – 2(i ⋅ n)n (17.157)

where  �i�  =  �n�  = 1.
 25. An incident ray with direction i is refracted at a point on the surface 

with normal nS and that separates two media of refractive indices n1 
and n2. The direction of the refracted ray is given by

 rfr (i, nS, n1, n2) =  {    
n1 __ n2

   i +  ( –(i ⋅ n)   
n1 __ n2

   +   √ 
__

 ∆   )  n if ∆ > 0
                      

                rfx (i, nS)                 if ∆ ≤ 0
    (17.158)
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where the second case (∆ ≤ 0) refers to TIR and

 n =  { nS  if i ⋅ nS ≥ 0
          –nS if i ⋅ nS < 0
   

(17.159)
  ∆ = 1 –  (   n1 __ n2

   ) 
2
 [1 – (i⋅n)2]

and  �i�  =  �nS�  = 1.
 26. Given an incident ray i and a refracted ray r of a surface that sepa-

rates two media of refractive indices n1 and n2, the normal to the 
surface can be calculated as

 rfrnrm(i, r, n1, n2) =   
n1i – n2r _________ 

 �n1i – n2r� 
   (17.160)

where  �i�  =  �r�  = 1.
 27. Given an incident ray i and a refl ected ray r of a surface, the normal 

to the surface can be calculated as

 rfxnrm(i, r) = rfrnrm(i, r, 1, 1) =   i – r _____ 
 �i – r� 

   (17.161)

where  �i�  =  �r�  = 1.
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stepped fl ow-line nioptics, compact 
concentrators, 198–200

two-dimensional design
asymmetrical optics, 38–41
entrance apertures, 49–52

Winston –Welford design, caustic 
fl ow lines, 99–102

Angle transformers
design examples, 45–52
stepped fl ow-line nioptics, compact 

concentrators, 197–200
two-dimensional concentrator 

design, 29–30
Angular distribution

étendue design
example, 110–111
two-dimensional systems, 68–70

luminaires
curved mirror design, 226–227
far-edge convergence, 232–234
large source and fl at mirrors, 

213–223
vector fl ux, 117–121

Angular momentum
circular symmetry and skew 

invariant, 427–429
étendue design, 70–75

phase space volume, 75–78
point characteristic function, 

431–434
geometric optics

alternative Hamiltonian 
formulation, 378–382

classical mechanics and, skew 
invariant and, 443–444

coordinate system Hamiltonian, 
385–388

optical Lagrangian/Hamiltonian 
equations, 376–378

imaging vs. nonimaging optics, 
333–335

light rays and wave fronts, 389–394
refl ection and refraction, 408–409
symmetry and, 415–418

“Angular room” component, étendue 
design, 65–68

Angular space, nonimaging optics, 
55–56

Anidolic devices
compound elliptical concentrator, 

fi nite distance sources, 
26–27

Poisson brackets, 336–337
Winston–Welford design, maximum 

concentration, 105–106
Aperture characteristics. See also 

Entrance aperture; 
Exit aperture

simultaneous multiple surface, 
RR optic, 279–290

Winston–Welford design, maximum 
concentration, 102–106

Asymmetrical optics
simultaneous multiple surface, 

RR optic, 279–290
two-dimensional concentrator 

design, 37–41
Axis of symmetry

linear symmetry, 418–420
simultaneous multiple surface

lens design example, 316–318
RR optic, 275–290
XR, RX, and XX optics, 292–299

three-dimensional concentrators
ideal design, 355–358
Poisson bracket design, 350–354

Index
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B

Backlights, stepped fl ow-line nioptics, 
compact concentrators, 
199–200

Bisectors
curvilinear coordinate system, 

339–340
three-dimensional concentrators, 

Poisson bracket, 351–354
vector fl ux

edge rays, 126–127
étendue design, 127–129
overview, 119–121

Black body emission
conservation of étendue, 59–63
étendue and shape factor, 458–460
maximum concentration, compound 

parabolic concentrator, 
17–22

Boltzmann constant
compound parabolic concentrator, 

maximum concentration, 
21–22

conservation of étendue and, 60–63
Boundary conditions

imaging vs. nonimaging optics, 
332–335

luminaires
circular light sources, 252–255
far-edge convergence, 231–234
far-edge divergence, 228–230

C

Cartesian oval
function defi nitions, 508–512
imaging optic systems, 4–7
plane curve properties

converging/diverging rays, 
492–500

parallel rays, 490–492
point-by-point calculations, 

500–502
RR optic, 273–290
simultaneous multiple surface

lens design example, 314–318
Miñano–Benitez design method, 

271–273

receiver XR optic example, 
319–323

XR, RX, and XX optics, 293–299
Caustics

fl ow line primaries and secondaries, 
receiver reshaping, 141–145

Winston–Welford fl ow lines, 99–102
Chromatic aberrations, compound 

parabolic concentrator, 
8–17

Circular light sources
luminaires, 241–255

mirror differential equation, 
268–270

stepped fl ow-line nioptics, gapped 
concentrators, 200–206

symmetry, 420–429
three-dimensional concentrators, 

ideal design, 355–358
Classical mechanics, geometrical 

optics and Fermat’s and 
Maupertuis’ principles, 
439–443

refractive index and, 444
skew invariant and angular 

momentum conservation, 
443–444

Clausius postulate, conservation of 
étendue and, 62–63

Collimators
Cartesian ovals, point-to-point 

calculations, 500–502
RXI optic, 313

Collinear sources, stepped fl ow-
line nioptics, compact 
concentrators, 195–200

Compact optic concentrators
RXI optic, 306–312
stepped fl ow-line nioptics, 193–200

gap optics and, 203–206
Compound elliptical concentrator (CEC)

examples, 41–52
multiple entry apertures, 152–156
secondary fl ow lines, 145–147
two-dimensional design

asymmetrical optics, 37–41
fi nite distance sources, 26–27
string method, 30–35
tubular receivers, 27–29

vector fl ux, 136
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Compound macrofocal ellipse 
concentrator (CMEC), 43–45

Compound macrofocal parabola 
concentrator (CMPC), 47–48

Compound parabolic concentrator (CPC)
basic principles, 8–17
curvilinear coordinate system, 

338–340
fl ow line primaries and secondaries, 

overview, 139–141
history of, 3
luminaires, 212
maximum concentration, 17–22
multiple entry apertures, 152–156
stepped fl ow-line nioptics

compact design, 193–200
gapped concentrators, 200–206
half-acceptance angle example, 

206–207
two-dimensional design

angle transformers, 29–30
asymmetrical optics, 37–41
dielectric optics, 35–37
examples, 41–52
fi nite distance sources, 25–27
overview, 25
string method, 30–35
tubular receivers, 27–29

vector fl ux, 135–136
fl ow lines, 136–138

Winston–Welford design, 90–99
Concentration calculations, compound 

parabolic concentrator, 14–17
Concentrators

nonimaging optic design, 3
stepped fl ow-line nioptics

compact concentrators, 193–200
gapped concentrators, 200–206
multiple optic combinations, 208

vector fl ux
design principles, 134–136
overview, 117–121

Winston–Welford design, 92–99
Conics, plane curve properties, 477–478
Conservation of angular momentum, 

geometric optics and 
classical mechanics, 443–444

Constant of integration, luminaires, 
curved mirror design, 
226–227

Converging fl ashlight example, étendue 
design, 66–68

Converging rays, Cartesian ovals, 492–500
Coordinate systems

circular symmetry and skew 
invariant, circular 
coordinations, 421–429

curvilinear coordinates
edge-ray trajectories, 338–340
three-dimensional concentrators, 

351–354
étendue design, phase space, 431–434
geometric optics, Hamiltonian 

equations, 382–388
luminaires

circular light sources, 242–255
parametrization, 224–227

three-dimensional concentrators, 
Poisson bracket design, 
349–354

two-dimensional concentrators, 
inhomogeneous media 
design, 328

Cost of function, luminaires, circular 
light sources, 243–255

Critical angle, refl ection and refraction, 
407–409

Curve properties
dual wave fronts, optical path length, 

398–400
étendue design

fl ow lines, 85–87
optical momentum, 74–75
two-dimensional systems, 68–70

fl ow line primaries and secondaries, 
receiver reshaping, 141–145

luminaires, 224–227
plane curves

Cartesian oval
converging/diverging rays, 

492–500
parallel rays, 490–492
point-by-point calculations, 

500–502
conics, 477–478
ellipse, 474–475
equiangular spiral, 502–504
function defi nitions, 504–512
general principles, 467–471
hyperbola, 475–477
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Curve properties (contd.)
involute, 478–480
parabola, 471–473
unwinding macrofocal ellipse, 

488–490
unwinding macrofocal parabola, 

483–485
winding macrofocal ellipse, 

485–488
winding macrofocal parabola, 

480–482
simultaneous multiple surface

Miñano–Benitez design, 
generalized wave front, 
301–306

Miñano–Benitez design method, 
271–273

RR optic, 276–290
RXI optic, 307–312
XR, RX, and XX optics, 293–299

vector fl ux, 136–138
Curvilinear coordinate system

edge ray trajectories, 338–340
geometric optics, coordinate system 

Hamiltonian, 386–388
three-dimensional concentrators, 

Poisson bracket design, 
349–354

Cyclical radiant source, maximum 
concentration, compound 
parabolic concentrator, 
19–22

Cylindrical coordinates, circular 
symmetry and skew 
invariant, 421–429

D

Degrees of freedom, imaging optics, 6–7
Derivatives

étendue design, phase space, 436–437
specular radiance conservation, 

455–457
two-dimensional concentrator 

design, ideal example, 
343–349

Dielectric materials, two-dimensional 
concentrator design, 35–37

Dielectric total internal refl ection 
concentrators (DTIRCs), 
two-dimensional 
concentrator design, 36–37

examples, 50–52
Differential equations

circular symmetry and skew 
invariant, 425–429

equiangular spiral, 502–504
geometric optics

classical mechanics and, 441–443
Lagrangian/Hamiltonian 

formulations, 373–378
imaging vs. nonimaging optics, 

333–335
light rays and wave fronts, 394

ray equations, 395–397
luminaires

circular light sources, 243–255, 
268–270

curved mirror design, 225–227
linear sources, 266–268

Poisson brackets, 336–337
two-dimensional optics, radiation 

heat transfer, 460–463
Diffusers, étendue design, 64–65
Disk-shaped Lambertian sources, vector 

fl ux, 129–133
Diverging rays, Cartesian ovals, 492–500
Dual wave fronts, optical path length, 

397–400

E

Edge-ray principle
compound elliptical concentrator 

secondary, 145–147
compound parabolic concentrator, 

11–17
curvilinear coordinate system, 

338–340
étendue design

fl ow lines, 83–87
optical momentum, 74–75
optical path length, 78–83
two-dimensional systems, 68–70

imaging vs. nonimaging optics, 
330–335
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luminaires
circular light sources, 241–255
large source and fl at mirrors, 

213–223
receiver reshaping, 141–145
simultaneous multiple surface

receiver XR optic example, 
319–323

RR optic, 279–290
RXI optic, 306–312

three-dimensional concentrators
phase space tubular surface, 

329–335
Poisson bracket design, 350–354

trumpet secondary, large receiver, 
150–151

two-dimensional concentrators, 25
asymmetrical optics, 39–41
fi nite distance sources, 25–27
ideal example, 345–349
inhomogeneous media design, 

326–328
tubular receivers, 27–29

vector fl ux
basic principles, 124–126
bisectors, 126–127
overview, 117–121

Winston–Welford design, 87–99
caustic fl ow lines, 99–102

Edge-to-center calculations, 
simultaneous multiple 
surface, RR optic, 276–290

Eikonal equation
light rays and wave fronts, 394
three-dimensional concentrators, 

ideal design, 355–358
two-dimensional concentrators, 

inhomogeneous media 
design, 325–328

Ellipses
conics properties, 477–478
function defi nitions, 505–506
geometric optics, Fermat’s principle, 

366–370
macrofocal

function defi nitions, 507–508
two-dimensional concentrator 

design, 27–29
asymmetrical optics, 39–41

string method, 32–35
unwinding, 489–490
winding, 485–488

plane curve properties, 474–475
stepped fl ow-line nioptics, gapped 

concentrators, 201–206
two-dimensional concentrator design

examples, 41–52
string method, 30–35

Emittance, defi ned, 448
Energy fl ux, vector fl ux and, 121–126
Entrance aperture

étendue design, phase space, 437
point characteristic function, 

431–434
imaging vs. nonimaging optics, 

330–335
Poisson brackets, 335–337
simultaneous multiple surface, 

RR optic, 279–290
specular radiance conservation, 

456–457
two-dimensional concentrator 

design, ideal example, 
344–349

Equiangular spiral, plane curve 
properties, 502–504

Étendue design
compound elliptical concentrator 

secondary, 146–147
conservation of, 57–63

basic principles, 57–63
homogeneous media, 450–453
specular radiance in refl ection/

refraction, 453–457
Winston–Welford design, caustic 

fl ow lines, 99–102
examples, 110–115
fl ow lines, 83–87
as geometrical quantity, 65–68
imaging vs. nonimaging optics, 

332–335
nonideal optical systems, 63–65
optical momentum integral, 70–75
optical path length difference, 78–82
phase space volume, 75–78

Hamiltonian optics, 434–437
point characteristic function, 

431–434
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Étendue design (contd.)
Poisson brackets, 336–337
shape factor and, 106–109, 457–460
simultaneous multiple surface

lens design example, 313–318
RR optic, 281–290
XR, RX, and XX optics, 294–299

stepped fl ow-line nioptics, compact 
concentrators, 197–200

two-dimensional systems, 68–70
two-dimensional/three-dimensional 

defi nitions, 56–57
vector fl ux

bisectors, 127–129
disk-shaped Lambertian sources, 

129–133
overview, 120–121

Euler equations
light rays and wave fronts, optical 

momentum, 389–394
Euler equations, geometrical optics

classical mechanics and, 439–443
Lagrangian/Hamiltonian 

formulations, 372–378
optical Lagrangian/Hamiltonian 

equations, 376–378
Exit apertures

imaging vs. nonimaging optics, 
332–335

simultaneous multiple surface, 
RR optic, 280–290

three-dimensional concentrators, 
ideal design, 355–358

two-dimensional concentrator 
design, ideal example, 
342–349

Exit power maximization, luminaires, 
circular light sources, 255

F

Far-edge convergence, luminaires
circular light sources, 242–255, 

248–255
fl at sources, 230–234
large source and fl at mirrors, 221–223
tubular light source, 262–266
uniform illumination example, 

256–259

Far-edge divergence, luminaires
circular light sources, 242–255, 

248–255
fl at sources, 227–230
large source and fl at mirrors, 221–223

Fermat’s principle
circular symmetry and skew 

invariant, 428–429
geometrical optics, 363–370

classical mechanics and, 439–443
coordinate system Hamiltonian, 

382–388
optical Lagrangian/Hamiltonian 

equations, 375–378
Finite distance sources

simultaneous multiple surface, XR, 
RX, and XX optics, 292–299

two-dimensional concentrator 
design, 25–27

Flat mirrors
imaging vs. nonimaging optics, 

334–335
luminaires

far-edge convergence, 230–234
far-edge divergence, 227–230
large sources, 212–223
near-edge convergence, 239–240
near-edge divergence, 234–238

two-dimensional concentrator design, 
ideal example, 342–349

Flow-line method
étendue design, 83–87
primary/secondary combination

compound elliptical concentrator, 
145–147

examples, 178–191
Fresnel primaries, 168–171
large receiver trumpet secondary, 

150–151
multiple entry aperture 

secondaries, 152–156
overview, 139–141
receiver reshaping, 141–145
tailored edge ray concentrators

Fresnel primaries, 171–178
lower concentration, 165–168
maximum concentration, 

156–165
truncated trumpet secondary, 

148–150
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stepped fl ow-line nioptics
compact concentrators, 193–200
examples, 206–208
gapped concentrators, 200–206
overview, 193

two-dimensional concentrators, 
inhomogeneous media 
design, 327–328

vector fl ux
concentrator design, 134–136
fl at Lambertian, 136–138
overview, 117–121

Winston–Welford design, 87–99
caustics, 99–102

Flux transmission
compound parabolic concentrator, 

16–17
étendue and shape factor, 458–460
étendue design

conservation, 59–63
nonideal optical systems, 

63–65
two-dimensional étendue, 460–463

Fresnel primary refl ectors, luminaires, 
far-edge divergence, 230

Frontlights, stepped fl ow-line nioptics, 
compact concentrators, 200

G

Gap optics, stepped fl ow-line nioptics, 
concentrator design, 
200–206

Gardener’s method, two-dimensional 
concentrator design, 30–35

Gauss’s theorem, étendue design, phase 
space, 436–437

Generating functions, geometric 
optics, coordinate system 
Hamiltonian, 384–388

Geometrical optics
alternative Hamiltonian formulation, 

378–382
circular symmetry and skew 

invariant, 424–429
classical mechanics and

Fermat’s and Maupertuis’ 
principles, 439–443

refractive index and, 444

skew invariant and angular 
momentum conservation, 
443–444

equiangular spiral, 502–504
étendue design, 65–68

phase space, 436–437
Fermat’s principle, 363–370
Hamiltonian coordinate system, 

382–388
Lagrangian/Hamiltonian 

formulations, 370–378
luminaires

circular light sources, 250–255
far-edge convergence example, 

257–259
near-edge divergence example, 

259–261
tubular source far-edge 

convergence, 265–266
refl ection and refraction, 406–409
two-dimensional concentrator 

design, ideal example, 
347–349

Winston–Welford design, 92–99
caustic fl ow lines, 99–102

Gradient fi eld integrals, optical path 
length, dual wave fronts, 
398–400

H

Half-acceptance angle
simultaneous multiple surface

receiver XR optic example, 318–323
RXI optic, 307–312

stepped fl ow-line nioptics, 
concentrator design 
example, 206–207

Half-angular aperture
étendue design, example, 110
Winston–Welford design, maximum 

concentration, 102–106
Hamiltonian equations

circular symmetry and skew 
invariant, 425–429

étendue design, phase space, 434–437
geometrical optics

alternative formulation, 378–382
basic formulation, 370–378
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Hamiltonian equations (contd.)
classical mechanics and, 439–443
coordinate systems, 382–388
Fermat’s principle, 363–370

light rays and wave fronts
optical momentum, 390–394
ray equations, 397

linear symmetry, 420
Poisson brackets, 337
three-dimensional concentrators, 

tubular surface edge rays, 
329–335

Hamilton–Jacobi equation, light rays 
and wave fronts, 394

Heat engines, fl ow line primaries and 
secondaries, overview, 
139–141

Helicoidal trajectories, imaging vs. 
nonimaging optics, 333–335

Homogeneous medium
geometric optics, Fermat’s principle, 

363–370
radiance conservation, 450–453

Hottel’s crossed-string method, étendue 
shape factor and, 108–109

Human eye sensitivity, basic 
mechanisms, 447–450

Hyperbolas
conics properties, 477–478
étendue design, fl ow lines, 84–87
function defi nitions, 506
plane curve properties, 475–477
simultaneous multiple surface

lens design example, 313–318
RR optic, 282–290

truncated trumpet secondary, 148–150
vector fl ux

concentrator design, 134–136
disk-shaped Lambertian sources, 

132–133

I

Illuminance
defi ned, 449
luminaires, 211–212

far-edge convergence, 231–234, 
257–259

example, 264–266
far-edge divergence, 228–230

large source and fl at mirrors, 
215–223

near-edge divergence, 237–238, 
259–261

Imaging optics
basic components, 3–7
Poisson brackets, 335–337
two-dimensional vs. 

three-dimensional, 329–335
Incident rays

function defi nitions, 511–512
laws of refl ection and refraction, 

409–413
refl ection and refraction, 403–409

Infi nitesimal sources
étendue design

optical momentum, 74–75
shape factor and, 106–109

geometric optics, optical 
Lagrangian/Hamiltonian 
equations, 375–378

luminaires, 211–212
curved mirror design, 225–227
far-edge divergence, 229–230

plane illumination, 463–465
radiation and, 448
simultaneous multiple surface, 

RR optic, 290
Inhomogeneous media, 

two-dimensional 
concentrator design, 
325–328

Integration constant
imaging vs. nonimaging optics, 

333–335
linear symmetry, 420
luminaires

far-edge convergence, 264–266
mirror differential equations, 

268–270
Intensity

conservation of étendue and, 59–63
luminaires

circular light sources, 243–255
curved mirror design, 224–227
large source and fl at mirrors, 

213–223
near-edge convergence, 239–240

plane illumination, 464–465
radiation, 449

CRC_54295_INDEX.indd   520CRC_54295_INDEX.indd   520 4/3/2008   9:49:23 AM4/3/2008   9:49:23 AM



Index 521

Intersects
defi ned, 505
plane curves, 468–471

Involutes
compound macrofocal ellipse 

concentrator, 43–52
function defi nitions, 506
luminaires, 241–255

far-edge convergence example, 
262–266

plane curve properties, 478–480
receiver reshaping, 143–145
two-dimensional concentrator 

design, tubular receivers, 
27–29

Irradiance
defi ned, 448–449
plane illumination, 463–465

L

Lagrangian equations
geometric optics

alternative Hamiltonian 
formulation, 379–382

basic formulation, 370–378
coordinate system Hamiltonian, 

385–388
Fermat’s principle, 363–370

light rays and wave fronts
optical momentum, 389–394
ray equations, 397

Lambertian sources
compound elliptical concentrator 

secondary, 145–147
étendue design

conservation, 59–63
fl ow lines, 84–87
shape factor, 108–109, 459–460
two-dimensional systems, 

68–70
luminaires

circular sources, 241–255
large source and fl at mirrors, 

212–223
maximum concentration, compound 

parabolic concentrator, 
17–22

plane illumination, 463–465

stepped fl ow-line nioptics, gapped 
concentrators, 200–206

truncated trumpet secondary, 
148–150

vector fl ux
basic properties, 123–126
concentrator design, 134–136
disk-shaped sources, 129–133
linear calculation example, 

136–138
overview, 117–121

Winston–Welford design, 87–99
Lambert’s cosine law, defi ned, 450
Law of refl ection

basic principles, 409–413
symmetry, conservation of 

momentum and refractive 
index, 415–418

Law of refraction
basic principles, 409–413
symmetry, conservation of 

momentum and refractive 
index, 415–418

Least action, Maupertuis’ principle 
of, geometrical optics and 
classical mechanics, 441–443

Legendre transformations, geometric 
optics, coordinate system 
Hamiltonian, 385–388

Lenses
compound elliptical concentrator, 

fi nite distance sources, 
26–27

imaging optic systems, 4–7
simultaneous multiple surface

design example, 313–318
Miñano–Benitez design, 313
RR optic, 274–290

Light confi nement, Winston–Welford 
design, caustic fl ow lines, 
99–102

Light pipe, stepped fl ow-line nioptics, 
compact concentrators, 
196–200

Light rays
circular symmetry and skew 

invariant, 421–429
eikonal equation, 394
étendue design, nonideal optical 

systems, 63–65
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Light rays (contd.)
geometric optics, optical 

Lagrangian/Hamiltonian 
equations, 374–378

imaging optics, 5–7
luminaires

circular light sources, 252–255
far-edge convergence, 232–234
far-edge convergence example, 

258–259
large source and fl at mirrors, 

215–223
near-edge convergence, 239–240

optical momentum, 389–394
radiance conservation in 

homogeneous media, 
450–453

ray equation, 395–397
refl ection and refraction properties, 

403–409
simultaneous multiple surface

lens design example, 314–318
Miñano–Benitez design, 

generalized wave front, 
301–306

RR optic, 274–290
XR, RX, and XX optics, 294–299

stepped fl ow-line nioptics, gapped 
concentrators, 200–206

symmetry, conservation of 
momentum and refractive 
index, 415–418

two-dimensional concentrators, 
inhomogeneous media 
design, 325–328

vector fl ux, 121–126
Winston–Welford design, 96–99

Linear sources
luminaires

circular light sources, 245–255
mirror differential equation, 

266–268
maximum concentration, compound 

parabolic concentrator, 
17–22

Linear symmetry, basic principles, 
418–420

Line integrals, light rays and wave 
fronts, optical path length, 
397–400

Lower optics, stepped fl ow-line nioptics, 
gapped concentrators, 
203–206

Luminaires
basic properties, 211–212
circular sources, 241–255

mirror differential equations, 
268–270

examples, 255–266
fl at sources, 224–227

far-edge convergence, 230–234
far-edge divergence, 227–230
mirror differential equations, 

266–268
near-edge convergence, 239–240
near-edge divergence, 234–238

large source and fl at mirrors, 212–223
mirror differential equations

circular sources, 268–270
linear sources, 266–268

Luminance
defi ned, 449–450
luminaires

far-edge divergence, 228–230
large source and fl at mirrors, 

213–223
vector fl ux, 121–126

Luminosity function, defi ned, 448
Luminous fl ux, defi ned, 447

M

Macrofocal ellipse
concentrator (CMEC) design

example, 43–45
function defi nitions, 507–508
two-dimensional concentrator 

design, 27–29
asymmetrical optics, 39–41
string method, 32–35

unwinding, 489–490
winding, 485–488

Macrofocal parabolas
function defi nitions, 507
unwinding, 483–485
winding, 480–482

Maupertuis’ principle, geometric optics 
and classical mechanics, 
439–443

CRC_54295_INDEX.indd   522CRC_54295_INDEX.indd   522 4/3/2008   9:49:23 AM4/3/2008   9:49:23 AM



Index 523

Maximum concentration
compound parabolic concentrator, 

17–22
fl ow line primaries and secondaries

basic principles, 139–141
compound elliptical concentrator 

secondary, 146–147
multiple entry apertures, 152–156

luminaires, near-edge divergence, 
234–238

two-dimensional concentrator 
design, ideal example, 
342–349

Winston–Welford design, 102–106
Miñano–Benitez design method

Poisson brackets
basic properties, 335–337
curvilinear coordinate system, 

338–340
overview, 325
three-dimensional concentrator

design, 349–354
ideal example, 355–358

tubular surface edge rays, phase 
space, 329–335

two-dimensional concentrators
design, 340–342
ideal example, 342–349
inhomogeneous media, 

325–328
simultaneous multiple surface

collimator applications, 
RXI optic, 313

examples, 313–323
generalized wave fronts, 300–306
overview, 271–273
RR optic, 273–290
RXI optic, 306–312
XR, RX, and XX optics, 291–299

Minimum radiation value, compound 
parabolic concentrator, 8–17

Mirror design
étendue fl ow lines, 84–87
geometric optics, Fermat’s principle, 

366–370
imaging vs. nonimaging optics, 

334–335
luminaires

circular light sources, 243–255
curved mirrors, 224–227

differential equations, 266–270
far-edge convergence, 232–234, 

262–266
far-edge divergence, 228–230
large source and fl at mirrors, 

212–223
near-edge convergence, 239–240
near-edge divergence, 234–238

simultaneous multiple surface
RR optic, 287–290
XR, RX, and XX optics, 293–299

specular radiance conservation, 
453–457

stepped fl ow-line nioptics, compact 
concentrators, 196–200

two-dimensional concentrators
asymmetrical optics, 38–41
inhomogeneous media design, 

327–328
string method, 31–35

vector fl ux, 117–121
Winston–Welford method, 87–99

Momentum
circular symmetry and skew 

invariant, 427–429
étendue design, 70–75

phase space volume, 75–78
point characteristic function, 

431–434
geometric optics

alternative Hamiltonian 
formulation, 378–382

classical mechanics, skew 
invariant and, 443–444

coordinate system Hamiltonian, 
385–388

optical Lagrangian/Hamiltonian 
equations, 376–378

imaging vs. nonimaging optics, 
333–335

light rays and wave fronts, 389–394
refl ection and refraction, 408–409
symmetry and, 415–418

Monte Carlo tracing, étendue 
calculation, 459–460

Multiple entry apertures, compound 
parabolic concentrator 
secondaries, 152–156

Multiple refl ections, luminaires, far-
edge convergence, 232–234
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N

Near-edge convergence, luminaires
circular light sources, 244–255
fl at sources, 239–240
large source and fl at mirrors, 221–223

Near-edge divergence, luminaires
example, 259–261
fl at sources, 234–238
large source and fl at mirrors, 221–223

Net fl ux crossing, vector fl ux, 124–126
Nonideal optical systems

étendue design and, 63–65
simultaneous multiple surface, 

RR optic, 288–290
Nonimaging optics

compound elliptical concentrator, 
fi nite distance sources, 
26–27

compound parabolic concentrator, 
8–17

maximum concentration, 17–22
examples, 22–23
imaging systems vs., 3–7
light rays and wave fronts, ray 

equations, 395–397
overview and background, 3
Poisson brackets, 335–337
two-dimensional vs. three-

dimensional, 329–335

O

One-parameter curve family, fl ow line 
primaries and secondaries, 
receiver reshaping, 141–145

Optical Lagrangian/Hamiltonian 
equations, geometric optics, 
374–378

Optical path length
Cartesian ovals, 500–502
étendue design, 78–83

fl ow lines, 84–87
phase space, point characteristic 

function, 431–434
geometric optics

alternative Hamiltonian 
formulation, 379–382

Fermat’s principle, 363–370

Lagrangian/Hamiltonian 
calculations, 373–378

optical Lagrangian/Hamiltonian 
equations, 375–378

light rays and wave fronts
dual wave fronts, 397–400
optical momentum equations, 

390–394
ray equation, 395–397

simultaneous multiple surface
lens design example, 314–318
Miñano–Benitez design, 

generalized wave front, 
301–306

receiver XR optic example, 
320–324

RR optic, 274–290
RXI optic, 309–312
XR, RX, and XX optics, 292–299

three-dimensional concentrators, 
ideal design, 355–358

Winston–Welford design, 98–99
Orthogonality

geometric optics, coordinate system 
Hamiltonian, 386–388

three-dimensional concentrators, 
Poisson bracket design, 
350–354

two-dimensional concentrators, 
inhomogeneous media 
design, 328

P

Parabolas
compound elliptical concentrator 

secondary, 145–147
compound parabolic concentrator, 

10–17
fl ow line primaries and 

secondaries, 139–141
maximum concentration, 21–23

conics properties, 477–478
function defi nitions, 505
macrofocal

function defi nitions, 507
unwinding, 483–485
winding, 480–482

plane curve properties, 471–473
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receiver reshaping, 141–145
truncated trumpet secondary, 

148–150
two-dimensional concentrator 

design, string method, 
31–35

vector fl ux, concentrator design, 
134–136

Winston–Welford design, 92–99
Parallel light rays

Cartesian ovals, 490–492
étendue design, 66–68
imaging vs. nonimaging optics, 

334–335
receiver reshaping, 142–145

Parallel mirrors, vector fl ux, 117–121
Parametrization techniques

Cartesian ovals, parallel rays, 
491–492

equiangular spiral, 502–504
geometric optics

alternative Hamiltonian 
formulation, 378–382

Lagrangian/Hamiltonian 
formulations, 371–378

luminaires, 224–227
circular light sources, 246–255

receiver reshaping, 141–145
simultaneous multiple surface

Miñano–Benitez design, 
generalized wave front, 
303–306

RR optic, 276–290
Paraxial ray equation

geometric optics, classical mechanics 
and, 444

light rays and wave fronts, 396–397
Phase space

étendue design, 75–78
example, 110–112
Hamiltonian optics, 434–437
point characteristic function, 

431–434
Poisson brackets, 335–337
three-dimensional concentrators, 

tubular surface edge rays, 
329–335

Photometry, defi ned, 447–450
Planck’s constant, conservation of 

étendue and, 60–63

Plane curves
Cartesian oval

converging/diverging rays, 
492–500

parallel rays, 490–492
point-by-point calculations, 

500–502
conics, 477–478
ellipse, 474–475
equiangular spiral, 502–504
function defi nitions, 504–512
general principles, 467–471
hyperbola, 475–477
involute, 478–480
parabola, 471–473
unwinding macrofocal ellipse, 

488–490
unwinding macrofocal parabola, 

483–485
winding macrofocal ellipse, 485–488
winding macrofocal parabola, 

480–482
Plane illumination, infi nitesimal light 

source, 463–465
Point characteristic function, étendue 

design, phase space, 
431–434

Point rotations, plane curves, 468
Point-to-point calculations, Cartesian 

ovals, 500–502
Poisson brackets, Miñano–Benitez 

design method
basic properties, 335–337
curvilinear coordinate system, 

338–340
overview, 325
three-dimensional concentrator

design, 349–354
ideal example, 355–358

tubular surface edge rays, phase 
space, 329–335

two-dimensional concentrators
design, 340–342
ideal example, 342–349
inhomogeneous media, 325–328

Primary optics, fl ow line secondaries
compound elliptical concentrator, 

145–147
examples, 178–191
Fresnel primaries, 168–171
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Primary optics (contd.)
large receiver trumpet secondary, 

150–151
multiple entry aperture secondaries, 

152–156
overview, 139–141
receiver reshaping, 141–145
tailored edge ray concentrators

Fresnel primaries, 171–178
lower concentration, 165–168
maximum concentration, 156–165

truncated trumpet secondary, 
148–150

R

Radiance
defi ned, 449–450
étendue design

conservation, 57–63
nonideal optical systems, 63–65

homogeneous media and 
conservation of, 450–453

specular conservation in refl ection/
refraction, 453–547

vector fl ux, 121–126
Radiation fl ux, defi ned, 447
Radiation heat transfer

defi ned, 447–450
étendue and shape factor, 458–460
two-dimensional optics, 460–463

Radiation sources
étendue design, phase space volume, 

76–78
stepped fl ow-line nioptics, compact 

concentrators, 194–200
two-dimensional concentrator 

design
fi nite distance sources, 25–27
string method, 30–35

vector fl ux, 117–121
Radiative heat transfer, étendue and 

shape factor, 106–109
Radiometry

defi ned, 447–450
radiance conservation in 

homogeneous media, 
450–453

Ray equation
geometric optics, classical mechanics 

and, 444
light rays and wave fronts, 395–397

Rays. See Light rays
Receiver characteristics

fl ow line primaries and secondaries, 
141–145

luminaires, far-edge convergence 
example, 258–259

RXI optic, 306–312
stepped fl ow-line nioptics, compact 

concentrators, 193–200
trumpet secondary, large receiver, 

150–151
two-dimensional concentrator 

design, ideal example, 
346–349

XR optic example, 318–323
Reciprocity relation, radiation transfer, 

458–460
Refl ection

Fermat’s principle, 363–370
laws of, 409–413
linear symmetry, 418–420
luminaires, circular light sources, 

250–255
radiance conservation, 453–457
ray properties, 403–409
simultaneous multiple surface, 

Miñano–Benitez design, 
generalized wave front, 
304–306

specular radiance conservation, 
453–547

symmetry, conservation of 
momentum and refractive 
index, 415–418

Refraction
laws of, 409–413
linear symmetry, 418–420
radiance conservation, 453–457
ray properties, 403–409
specular radiance conservation, 

453–547
symmetry, conservation of 

momentum and refractive 
index, 415–418

Refractive index
angular space, 55–56
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Cartesian ovals
converging/diverging rays, 

497–500
function defi nitions, 508–512
parallel rays, 490–492

circular symmetry and skew 
invariant, 422–429

étendue design
conservation, 60–63
geometrical quantity, 67–68
optical momentum integral, 70–75
phase space volume, 75–78

geometric optics
classical mechanics and, 444
Fermat’s principle, 364–370
optical Lagrangian/Hamiltonian 

equations, 375–378
light rays and wave fronts

optical momentum, 391–394
ray equations, 396–397

linear symmetry, 418–420
refl ection and refraction

laws, 409–413
ray properties, 403–409

simultaneous multiple surface
collimators, 313
Miñano–Benitez design, 

generalized wave front, 
304–306

receiver XR optic example, 
318–323

RXI optic, 307–312
XR, RX, and XX optics, 293–299

symmetry and, 415–418
three-dimensional concentrators, 

ideal design, 355–358
two-dimensional concentrators

dielectric materials, 35–37
ideal example, 346–349
inhomogeneous media design, 

325–328
vector fl ux, 121–126

edge ray bisectors, 126–127
Winston–Welford design, 94–99

Rotational symmetry systems, three-
dimensional concentrators, 
Poisson brackets, 349–354

Rotation matrix
defi ned, 505
plane curves, 468–471

RR optic, simultaneous multiple surface
lens design example, 313–318
Miñano–Benitez design method, 

273–290
RXI optic combination, 313

RXI optic, simultaneous multiple 
surface, 306–312

collimators, 313
RR optic combination, 313

RX (refractive/refl exive) optic, 
simultaneous multiple 
surface, Miñano–Benitez 
design, 291–299

S

Secondary optics, primary fl ow-line 
combinations

compound elliptical concentrator, 
145–147

examples, 178–191
Fresnel primaries, 168–171
large receiver trumpet secondary, 

150–151
multiple entry aperture secondaries, 

152–156
overview, 139–141
receiver reshaping, 141–145
tailored edge ray concentrators

Fresnel primaries, 171–178
lower concentration, 165–168
maximum concentration, 156–165

truncated trumpet secondary, 
148–150

Shading, luminaires
near-edge convergence, 240
near-edge divergence, 234–238

Shape factor
étendue design, 457–460
étendue design and, 106–109

Sidewall shaping, Winston–Welford 
design, 94–99

Simultaneous multiple surface (SMS), 
Miñano–Benitez design 
method

collimator applications, RXI optic, 
313

examples, 313–323
generalized wave fronts, 300–306
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Simultaneous multiple surface (contd.)
overview, 271–273
RR optic, 273–290
RXI optic, 306–312
XR, RX, and XX optics, 291–299

Sinusoidal trajectories, imaging vs. 
nonimaging optics, 333–335

Skew invariant
circular symmetry and, 420–429
geometric optics and classical 

mechanics, 443–444
Snell’s law of refraction, geometric 

optics, Fermat’s principle, 
365–370

Solar energy collectors
two-dimensional design, 

asymmetrical optics, 38–41
Winston–Welford design, maximum 

concentration, 105–106
Solid angle, conservation of étendue, 

59–63
“Spatial room” component, étendue 

design, 65–68
Specular conservation, radiance, 

453–547
Speed of light in vacuum, geometric 

optics
Fermat’s principle, 365–370
optical Lagrangian/Hamiltonian 

equations, 375–378
Spherical coordinates, étendue design, 

optical momentum integral, 
71–75

Spherical source, compound parabolic 
concentrator, maximum 
concentration, 19–22

Stephan–Boltzmann constant
conservation of étendue, 60–63
étendue and shape factor, 458–460
maximum concentration, compound 

parabolic concentrator, 17–22
Stepped fl ow-line nioptics

compact concentrators, 193–200
examples, 206–208
gapped concentrators, 200–206
overview, 193

String method
two-dimensional concentrator 

design, 30–35
Winston–Welford design, 90–99

Surface properties
refl ection and refraction, 403–409
simultaneous multiple surfaces

collimator applications, 
RXI optic, 313

examples, 313–323
generalized wave fronts, 300–306
overview, 271–273
RR optic, 273–290
RXI optic, 306–312
XR, RX, and XX optics, 291–299

Symmetry
axis of

simultaneous multiple surface
lens design example, 

316–318
RR optic, 275–290
XR, RX, and XX optics, 292–299

three-dimensional concentrators
ideal design, 355–358
Poisson bracket design, 

350–354
circular symmetry and skew 

invariant, 420–429
conservation of momentum and 

refractive index, 415–418
linear symmetry, 418–420

T

TERC design, luminaires, far-edge 
divergence, 230

Thermal equilibrium, maximum 
concentration, compound 
parabolic concentrator, 
19–22

Thermodynamics
étendue design

conservation, 58–63
nonideal optical systems, 6365

maximum concentration, compound 
parabolic concentrator, 
17–22

Three-dimensional optical systems
circular symmetry and skew 

invariant, 427–429
compound parabolic concentrator, 

15–17
maximum concentration, 19–22
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étendue
phase space, 434–437
shape factor and, 108–109

light rays and wave fronts, optical 
momentum, 392–394

Miñano–Benitez design method
ideal example, 355–358
Poisson brackets, 349–354
simultaneous multiple surface, 

271–273, 313
tubular surface edge rays, phase 

space, 329–335
Poisson brackets, 336–337
radiation heat transfer, 460–463
vector fl ux, 126

disk-shaped Lambertian sources, 
129–133

Total fl ux emission, conservation of 
étendue, 59–63

Total internal refl ection (TIR)
equiangular spiral, 502–504
simultaneous multiple surface

lens design, 313
RXI optic, 306–312
XR, RX, and XX optics, 291–299

two-dimensional concentrator 
design, dielectric materials, 
37

Trajectory calculations
circular symmetry and skew 

invariant, 424–429
compound parabolic concentrator, 

11–17
curvilinear coordinate system, 

338–340
geometric optics

alternative Hamiltonian 
formulation, 380–382

classical mechanics, skew 
invariant and, 443–444

Fermat’s principle, 367–370
optical Lagrangian/Hamiltonian 

equations, 375–378
imaging vs. nonimaging optics, 

333–335
Poisson brackets, 336–337
RXI optic, 310–312
symmetry, conservation of 

momentum and refractive 
index, 415–418

Transmission curves, compound 
parabolic concentrator, 
16–17

Trumpet concentrators
large receiver secondary, 150–151
truncated trumpet secondary, 

148–150
Truncated concentrator design, 

luminaires, far-edge 
divergence, 229–230

Truncated trumpet secondary, fl ow line 
parameters, 148–150

Tubular receivers
luminaires, 241–255

far-edge convergence example, 
262–266

three-dimensional concentrators, 
phase space edge rays, 
329–335

two-dimensional concentrators, 
27–29

vector fl ux, 126
Two-dimensional étendue

angular space, 55–56
design principles, 68–70
optical momentum integral, 72–75
radiation transfer, 460–463
shape factor and, 107–109
vector fl ux, 124–126

design principles, 127–129
Winston–Welford design, maximum 

concentration, 103–106
Two-dimensional optical systems

circular symmetry and skew 
invariant, 427–429

design principles
angle transformers, 29–30
asymmetrical optics, 37–41
dielectric optics, 35–37
examples, 41–52
fi nite distance sources, 25–27
overview, 25
string method, 30–35
tubular receivers, 27–29

étendue design, phase space, 
434–437

geometric optics, coordinate system 
Hamiltonian, 386–388

light rays and wave fronts, optical 
momentum, 392–394
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Two-dimensional optical systems (contd.)
Miñano–Benitez design method

ideal example, 342–349
inhomogeneous media design, 

325–328
Poisson brackets, 340–342

simultaneous multiple surface, 
Miñano–Benitez design 
method, 271–273

three-dimensional concentrator 
comparisons, tubular 
surface edge rays, 329–335

vector fl ux, 117–121
disk-shaped Lambertian sources, 

129–133

U

Uniform radiation
compound parabolic concentrator, 

8–17
étendue design, example, 113–115
luminaires

far-edge convergence, 256–259
near-edge divergence example, 

259–261
vector fl ux, 117–121

Unit vectors
circular symmetry and skew 

invariant, 421–429
defi ned, 504
dual wave fronts, optical path length, 

399–400
geometric optics, coordinate system 

Hamiltonian, 386–388
refl ection and refraction, 403–409
simultaneous multiple surface

Miñano–Benitez design, 
generalized wave front, 
304–306

RXI optic, 311–312
symmetry, conservation of 

momentum and refractive 
index, 415–418

Unwinding macrofocal ellipses, 489–490
function defi nitions, 508

Unwinding macrofocal parabolas, 
483–485

function defi nitions, 507

Upper optics, stepped fl ow-line nioptics, 
gapped concentrators, 
201–206

V

Vector angles, defi ned, 505
Vector fl ux

concentrator design, 134–136
curvilinear coordinate system, 

339–340
defi nition, 121–126
disk-shaped Lambertian sources, 

129–133
edge ray bisector, 126–127
étendue design and, 127–129
examples, 136–138
geometric optics, coordinate system 

Hamiltonian, 386–388
laws of refl ection and refraction, 

411–413
light rays and wave fronts, optical 

momentum, 391–394
overview, 117–121
simultaneous multiple surface, RR 

optic, 281–290
stepped fl ow-line nioptics, compact 

concentrators, 193–200
three-dimensional concentrators, 

Poisson bracket, 351–354
two-dimensional concentrator 

design, ideal example, 349
Vector magnitude

defi ned, 504
plane curves, 467

Visual fl ux, defi ned, 449–450
V-shaped receiver, stepped 

fl ow-line nioptics, compact 
concentrators, 193–200

W

Wave fronts
eikonal equation, 394
étendue design

fl ow lines, 83–87
phase space, point characteristic 

function, 431–434
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optical momentum, 389–394
optical path length, dual wave fronts, 

397–400
ray equation, 395–397
simultaneous multiple surface

Miñano–Benitez design, 300–306
receiver XR optic example, 

320–324
XR, RX, and XX optics, 292–299

two-dimensional concentrators, 
inhomogeneous media 
design, 325–328

Winston–Welford design, 89–99
Winding macrofocal ellipses, 485–488

function defi nitions, 507–508
Winding macrofocal parabolas, 480–482

function defi nitions, 507

Winston–Welford design
basic properties, 87–99
caustics as fl ow lines, 99–102
étendue and shape factor, 106–109
maximum concentration, 102–106

X

XR optic, simultaneous multiple surface
design example, 318–323
Miñano–Benitez design, 291–299

XX (refl exive/refl exive) optic, 
simultaneous multiple 
surface, Miñano–Benitez 
design, 291–299
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