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Preface
Chemical reactions take place due to the redistribution of electron density among the
reacting partners. Focusing on changes in electron density, which accompany the
breaking and forming of chemical bonds, instead of the changes in the wave function
accompanying them, allows us to use the ‘‘classical’’ three-dimensional language.
Conceptual density functional theory (DFT) quantifies the possible responses of the
system to various changes in density. Popular concepts like electronegativity, hard-
ness, and electrophilicity, which explain a large number of diverse types of reactions
in a systematic fashion, are grounded in conceptual DFT.

The aim of this book is to introduce various aspects of DFT and their con-
nections to a chemical reactivity theory at a broadly accessible level. To this end,
34 chapters have been written by 65 eminent scientists from 13 different countries.
Although the book is designed for readers with little or no prior knowledge of the
subject, the breadth of the book and the expertise of the authors ensure that even
experienced scientists will benefit from its contents.

The book comprises chapters on bonding, interactions, reactivity, dynamics,
toxicity, and aromaticity as well as fundamental aspects of DFT. Several chapters
are minireviews of the key global and local reactivity descriptors and their variations
under different perturbations.

I am grateful to all the authors and the reviewers who cooperated with me to ensure
the publication of the book on time. It is a great pleasure to express my gratitude to my
teachers, Professors S.C. Rakshit, B.M. Deb, and R.G. Parr, for kindly introducing me
to the fascinating field of quantum mechanics as applied to many-electron systems.
I would especially like to thank Professor Paul Ayers, Lance Wobus, David Fausel,
and Santanab Giri. Finally, I must express my gratitude to my wife Samhita and my
daughter Saparya for their wholehearted support.

Pratim Kumar Chattaraj
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1 How I Came
about Working
in Conceptual DFT

Robert G. Parr

CONTENTS

1.1 Bonding of Quantum Physics with Quantum Chemistry .............................. 1
References ................................................................................................................. 4

When Pratim Chattaraj asked me to provide some kind of ‘‘foreword’’ to this book, my
first reaction was ‘‘no,’’ since everyone knows that the past is not so important in
science and that one person’s recollections often are faulty. What we had here was just
a long-laboring quantum chemist with a rigorous training in classical Gibbsian chem-
ical thermodynamics, always enchanted with the chemical potential. So when quantum
chemistry was suddenly confronted with the density functional theory (DFT), I was
ready and happy to plunge into work with DFT, the chemical potential again taking a
central role. To say a little more, below is reproduced a short piece which I provided
for a 2003 Springer book entitled Walter Kohn (two photographs which were in the
original are omitted). What this contains is the story of how DFT came into chemistry
proper, broadening computational chemistry and enlightening chemical concepts both
old and new. Concepts are what this volume is mainly about: conceptual DFT.

1.1 BONDING OF QUANTUM PHYSICS
WITH QUANTUM CHEMISTRY*

The bond that developed between quantum physics and quantum chemistry, that led
to the award of a big chemistry prize to the physicist Walter Kohn in 1998,
developed not without trial. Here I give an account of it. An element in this bond
has been a friendship between Walter Kohn and me. My having reached 80 first, he
has already kindly spoken of this [1]. Now it is my turn.

In the 20s and early 30s there was a flush of successes in establishing the ability of
quantum mechanics to describe the simplest molecules accurately: the Born-
Oppenheimer approximation, the nature of chemical bonding, and the fundamentals

* I thank Springer for allowing me to reproduce this article.
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of molecular spectroscopy. But then the quantitative theory of molecular structure,
which we call quantum chemistry, was stymied, by the difficulty of solving the
Schrödinger equation for molecules. The senior chemical physicists of the 30s pro-
nounced the problem unsolvable. But the younger theoreticians in the period coming
out of WWII thought otherwise. Clearly one could make substantial progress toward
the goal of complete solution, because the equation to solve was known and had a
simple universal structure.

The boundary conditions too were known. It would not be as easy as handling an
infinite periodic solid, but a number of us set to work. The special demand of
chemistry was to quantify very small molecular changes. Successes came slowly,
but with the development of computers and a lot of careful, clever work, by the 90s
the quantitative problem was essentially solved. The emergent hero of the chemical
community was John Pople, whose systematic strategy and timely method develop-
ments were decisive. The methods of what is termed ‘‘ab initio’’ quantum chemistry
became available and used everywhere.

Over the years the quantum chemists did a lot more than gradually improve their
ability to calculate wavefunctions and energies from Schrödinger’s equation. All the
while they have served molecular spectroscopy, physical inorganic chemistry, and
physical organic chemistry. Relevant for the present story was the development by
Per-Olov Löwdin in 1955 of the density matrix reduction of the Schrödinger equation,
especially the identification andmathematical physics of natural spin orbitals and their
occupation numbers. The hope was, although hope floundered, that the Schrödinger
problem could be resolved in terms of the first- and second-order density matrices.
Foundering came because of the difficulty of incorporating the Pauli principle.

Beginning way back in the 20s, Thomas and Fermi had put forward a theory
using just the diagonal element of the first-order density matrix, the electron density
itself. This so-called statistical theory totally failed for chemistry because it could not
account for the existence of molecules. Nevertheless, in 1968, after years of doing
wonders with various free-electron-like descriptions of molecular electron distribu-
tions, the physicist John Platt wrote [2] ‘‘We must find an equation for, or a way of
computing directly, total electron density.’’ [This was very soon after Hohenberg and
Kohn, but Platt certainly was not aware of HK; by that time he had left physics.]

From the end of the 40s, I was a happy participant in most of these things,
ab initio and the rest, although from about 1972 I became pretty much an observer.
We plunged into density-functional theory.

DFT soon intoxicated me. There were the magnificient Hohenberg-Kohn and
Kohn-Sham 1964 65 papers. The Xalpha method of John Slater was popular in
those days, but it was not sufficient for the high accuracy needed. And I was much
taken by the work of Walter Kohn, whom I had known since 1951. There were many
things to do: Improve upon the LDA to reach the accuracy needed for chemical
applications. Shift the emphasis on fixed, very large electron number toward vari-
able, small number, since that most concerns chemistry. Enlarge the language to
include chemical as well as solid-state concepts. Introduce into DFT, as appropriate,
some of the theoretical advances already made within quantum chemistry. All of
these things subsequently came about. The methods and concepts of DFT became
available and used throughout the chemical community.
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I had been on the faculty of Carnegie Institute of Technology for a couple of
years when Walter Kohn arrived in 1951. I was aware from the beginning of the
strength of physics at Carnegie, especially solid state physics. Fred Seitz was the
Head when I arrived, and several other solid state experts also were there. I bought
Seitz’s great book for $6.38 and browsed in it, noting in particular the fine descrip-
tion of the Hartree-Fock method (but not finding any treatment of the invariance to
unitary transformation of orbitals that is so important for understanding the equiva-
lence of localized and non-localized descriptions of molecules). I enjoyed pleasant
interactions with a number of the physicists. Soon after Kohn arrived, I had two
physicist postdocs, Tadashi Arai from Japan and Fausto Fumi from Italy, who
became acquainted with him. On the thesis examination committee of Walter’s
graduate student Sy Vosko, I learned that it was okay to use trial wavefunctions
with discontinuous derivatives. I was pleased to attend an evening party at the
Kohns, and I was disappointed when Walter left Carnegie for elsewhere.

I do not recall when I first heard of the Hohenberg-Kohn-Sham papers, but I do
know that the quantum chemistry community at first paid little attention to them. In
June of 1966 Lu Sham spoke about DFT at a Gordon Conference. But in those days,
there was more discussion about another prescription that had been on the scene
since 1951, the Slater Xa method. The Xa method was a well-defined, substantial
improvement over the Thomas-Fermi method, a sensible approximation to exact
Kohn-Sham. Debate over Xa went on for a number of years. Slater may never have
recognized DFT as the major contribution to physics that it was. [When I asked John
Connolly five or six years ago how he thought Slater had viewed DFT, he replied
that he felt that Slater regarded it as ‘‘obvious.’’]

Walter Kohn’s appearance at the Boulder Theoretical Chemistry Conference of
1975 was memorable. On June 24, he presented a formal talk, in which he outlined
DFT to the assemblage of skeptical chemists. There were many sharp questions and a
shortage of time, so the chair of the conference decided to schedule a special session
for the afternoon of June 26. With quite a crowd for an informal extra session like
this, Walter held forth on his proof. In his hand, he held a reprint of the HK paper,
from which he quietly read as he slowly proceeded: ‘‘. . . . and now we say . . . ’’. The
audience sobered down quickly. It was a triumph. The interest of quantum chemists
in DFT began to grow at about this time.

Our group began contributing to DFT in the 1970s. In some of our first work,
my graduate student Robert Donnelly generalized the original idea to functionals of
the first-order density matrix. In 1977, I described the central result at Walter Kohn’s
luncheon seminar in San Diego: All natural orbitals with nonzero occupation
numbers have the same chemical potential. Discussing this with Walter at the
blackboard afterwards, I remember his saying ‘‘This must be correct.’’ [Walter
himself recently recalled this incident.] First-order density matrix functional theory
is receiving fresh attention nowadays.

As we ourselves kept plugging along, the quantum chemical community largely
was negative about DFT, even antagonistic. Their ‘‘house journal’’ International
Journal of Quantum Chemistry, in 1980, published a pointed criticism of it [3]:
‘‘There seems to be a misguided belief that a one-particle density can determine the
exact N-body ground state.’’ In 1982, Mel Levy and John Perdew replied with a
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letter that was both incisive and eloquent [4]: ‘‘The belief is definitely not mis-
guided.’’ Yet, in the same issue of IJQC, the editors called for further discussion of
the ‘‘controversial’’ subject [5]. It was going to be awhile before quantum chemists
were convinced.

Over the period 1979 1982, Mel Levy supplied a major advance with introduc-
tion and careful discussion of the constrained search formulation of density func-
tional theory. This greatly heightened confidence in the theory (and it still does!).
Then in 1983 came Elliott Lieb’s masterly detailed analysis, which validated DFT as
rigorous mathematical physics. [Once in the 70s I asked Barry Simon, the mathem-
atician who with Lieb had done a famous rigorous analysis of the Thomas-Fermi
theory, what his opinion was of DFT. ‘‘It may be good physics,’’ he said, ‘‘but it is
not good mathematics’’]. Lieb’s paper signaled the end of the period of doubt about
DFT. The space for further development was now wide open and the interest of
chemists began to accelerate.

What computational chemists wanted above all else was calculational methods
for molecules, and the LDA just was not enough. The need for more accurate
exchange-correlation functionals was met in the 80s, with an accuracy that has
proved quite good enough for the times. The Nobel award in 1998, one may point
out, was specifically designated to be a prize for computational chemistry. Well,
good, and immensely deserved in my opinion. I note, however, that there is another
whole side of DFT which has concerned and still concerns many of us, the ‘‘con-
ceptual’’ side. This side is rich in potential, and it is not without accomplishment.
The concepts of DFT neatly tie into older chemical reasoning, and they are useful for
discussing molecules in course of reaction as well as for molecules in isolation.
Where solid-state physics has Fermi energy, chemical potential, band gap, density of
states, and local density of states, quantum chemistry has ionization potential,
electron affinity, hardness, softness, and local softness. Much more too. DFT is a
single language that covers atoms, molecules, clusters, surfaces, and solids.

Walter Kohn has been a great help to many scientists over many years, an expert
consultant and helpmate and a fine, unobtrusive, even-handed host of good meetings
in lovely places. We thank him. In recent years I have discussed with him (among
other things), circulant orbitals, the monotonic density theorem, and the information
theory point of view on what constitutes an atom in a molecule, the latter during a
stolen few minutes in a Stockholm hotel in December of 1999 [6]. Walter may or
may not ‘‘like’’ chemistry [7], and he claims not to have studied chemistry in the
university. But what does one call a great teacher of chemical principles? I would
say, CHEMIST, full caps.
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2.1 INTRODUCTION

The description of chemical reactivity implies, among other aspects, the study of the
way in which a molecule responds to the attack of different types of reagents. In
order to establish this response, one usually adopts the electronic structure of the
molecule in its isolated state as the reference point and considers the effects of an
attacking reagent on this state. This procedure leads to the description of what we
may call the inherent chemical reactivity of a molecule.

The inherent chemical reactivity of a great variety of molecules has been
described over the years through different concepts and principles. To mention
some, the concept of electronegativity, together with the electronegativity equaliza-
tion principle, has been used to qualitatively establish the distribution of electronic
charge between the different atoms in a molecule, or the direction of the flow of
charge when two species interact. The concepts of hardness and softness, together
with the hard and soft acids and bases principle, have been used to explain the vast
world of Lewis acid base chemistry qualitatively.

Undoubtedly, from a theoretical viewpoint, from the wave function approach
to the description of chemical processes, molecular orbitals have been amply used
for a basically qualitative, but at the same time conceptually simple and general,
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interpretation of the inherent chemical reactivity. Particularly, the frontier orbital
theory has been used to understand fundamental aspects of a great variety of organic
and inorganic reactions. In order to achieve greater accuracy in the description of
chemical processes through a wave function language, one needs to include correl-
ation effects at the expense of losing the conceptual simplicity of the orbital picture.

In the last three decades, density functional theory (DFT) has been extensively
used to generate what may be considered as a general approach to the description of
chemical reactivity [1 5]. The concepts that emerge from this theory are response
functions expressed basically in terms of derivatives of the total energy and of the
electronic density with respect to the number of electrons and to the external
potential. As such, they correspond to conceptually simple, but at the same time,
chemically meaningful quantities.

Unlike the wave function description, in which increasing accuracy implies a
greater complexity in the interpretation, the density functional approach maintains its
simplicity, since the derivatives can be evaluated as accurately as possible, but their
chemical meaning remains the same.

The objective of the present chapter is to analyze the chemical reactivity criteria
that emerge from DFT. Thus, in Section 2.2, we present the extension of DFT to
noninteger number of electrons. In Section 2.3, we discuss the behavior of the energy
as a function of the number of electrons in order to link the concept of electro-
negativity with the negative of the chemical potential of DFT, and to identify the
concept of hardness. In Section 2.4, we examine the derivatives of the electronic
density with respect to the number of electrons to present the concepts of the Fukui
function and the dual descriptor, together with their main properties. In Section 2.5,
we derive the expressions for all these derivatives in the Kohn Sham (KS) and the
Hartree Fock (HF) methods to establish their interpretation in an orbital language.
Finally, in Section 2.6, we give some concluding remarks.

2.2 DENSITY FUNCTIONAL THEORY FOR NONINTEGER
NUMBER OF ELECTRONS

In DFT, the ground-state energy of an atom or a molecule is written in terms of the
electronic density r(r), and the external potential v(r), in the form [1,6]

E[r] ¼ F[r]þ
ð
drr(r)v(r), (2:1)

where F[r] is the universal Hohenberg Kohn functional,

F[r] ¼ T[r]þ Vee[r], (2:2)

where
T [r] represents the electronic kinetic energy functional
Vee[r] the electron electron interaction energy functional

The minimization of the total energy, subject to the condition that the total number of
electrons N is fixed,
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N ¼
ð
drr(r), (2:3)

leads to an Euler Lagrange equation of the form

m ¼ dE

dr(r)

� �
v

¼ v(r)þ dF

dr(r)
, (2:4)

where m, the Lagrange multiplier, is the chemical potential. The solution of this
equation leads to the ground-state density, from which one can determine the
ground-state energy.

The external potential [1] is responsible for keeping the electrons confined to a
region of space. For the case of an isolated molecule, the external potential is the
potential generated by its nuclei.When one considers the interaction between amolecule
and another species, then the external potential is the one generated by the nuclei of both
species, and it acts on all the electrons. However, when they are very far apart from each
other, since the electrons of both species are localized in, basically, separated regions,
then the external potential of each species may be assumed to be the one generated by its
own nuclei, and by the nuclei and the electrons of the other species.

The starting point of the DFT of chemical reactivity is the identification of
the concept of electronegativity, x, with the chemical potential, through the
relationship [7]

m ¼ @E

@N

� �
v

¼ �x, (2:5)

where the second equality corresponds to the definition of electronegativity given
by Iczkowski and Margrave [8] as a generalization of the definition of Mulliken [9],
and the first equality, established by Parr et al. [7], links the chemical potential of
DFT with the derivative of the energy with respect to the number of electrons.

The chemical potential of DFT measures the escaping tendency of the electrons
froma system [1]. That is, electronsflow from the regionswith higher chemical potential
to the regions with lower chemical potential, up to the point in which m becomes
constant throughout the space. Thus, the chemical potential of DFT is equivalent to
the negative of the concept of electronegativity, and the principle of electronegativity
equalization [10,11] follows readily from this identification [1,7,12,13].

The next step is the identification of the concept of chemical hardness, h, with
the second derivative of the energy with respect to the number of electrons, formu-
lated by Parr and Pearson [14]

h ¼ @2E

@N2

� �
v

¼ @m

@N

� �
v

: (2:6)

The original definition was established as 1=2 of the second derivative; however, the
one given in Equation 2.6 is more convenient and it has become the most common
one in the recent literature.
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The identification given by Equation 2.6 is consistent with the hard and soft
acids and bases principle [12,15 21] established originally by Pearson [22] to
explain many aspects of Lewis acid base chemistry.

It is important to mention that when one considers the derivative of a quantity at
constant external potential, it means that the changes in the quantity are analyzed for
a fixed position of the nuclei. These types of changes are known as vertical
differences, precisely because the nuclei positions are not allowed to relax to a
new position associated with a lower total energy.

Since the definitions given by Equations 2.5 and 2.6 require the energy to be well
defined for noninteger number of electrons and to be differentiable with respect toN, let
us presentfirst the extension ofDFT to open systems that can exchange electronswith its
environment, developed by Perdew, Parr, Levy, and Balduz (PPLB) [23].

An open system with a fluctuating number of particles is described by an
ensemble or statistical mixture of pure states and the fractional electron number
may arise as a time average. Thus, let N0 be an integer electron number, and N be an
average in the interval N0<N<N0þ 1. In this case G is an ensemble or statistical
mixture of the N0 -electron pure state with wave function �N0

and probability 1� t,
and the (N0þ 1)-electron pure state with wave function CN0þ1 and probability t,
where 0< t< 1.

Now, PPLB showed, through a constrained search of the minimum energy over
all ensembles G yielding a given density and then over all densities integrating to a
given electron number, that the ground-state density and the ground-state energy for
the N electrons subject to the external potential v(r), are

rN(r) ¼ rN0þt(r) ¼ (1� t)rN0
(r)þ trN0þ1(r), (2:7)

and

EN ¼ EN0þt ¼ (1� t)EN0 þ tEN0þ1, (2:8)

where rN0
(r) and EN0

represent the ground-state density and the ground-state
energy of the N0-electron system, while rN0þ1 (r) and EN0þ1 correspond to the
(N0þ 1)-electron system, in both cases subject to the external potential v(r).

Integrating Equation 2.7 over the whole space leads to

N ¼ (1� t)N0 þ t(N0 þ 1) ¼ N0 þ t: (2:9)

The relationship expressed in Equation 2.8 indicates that the total energy as a
function of the number of electrons is given by a series of straight lines connecting
the ground-state energies of the systems with integer number of electrons (see Figure
2.1). Thus, since the energy is a continuous function of the number of electrons, the
differentiation with respect to electron number is justified. However, it is clear from
Equation 2.8 that the first derivative will present discontinuities.

Finally, it is important to mention that the joined straight line structure has been
confirmed through arguments based on the size consistency of the energy without
invoking the grand canonical ensemble [24,25].

10 Chemical Reactivity Theory: A Density Functional View



2.3 DERIVATIVES OF THE ENERGY WITH RESPECT
TO THE NUMBER OF ELECTRONS

Let us first rewrite Equation 2.8 in the form

EN0þt � EN0

t
¼ EN0þ1 � EN0 ¼ �A, (2:10)

and the equivalent of Equation 2.8 for the interval between N0� 1 and N0 in the form

EN0 � EN0 t

t
¼ EN0 � EN0 1 ¼ �I, (2:11)

where I and A are the vertical first ionization potential and the vertical electron
affinity, respectively. Note that the energy difference in the right-hand side of
Equations 2.10 and 2.11 is independent of t. Thus, if one takes the limit t ! 0
in Equations 2.10 and 2.11, then [23,26,27]

lim
t!0

EN0þt � EN0

t
¼ @E

@N

� �þ

v

¼ mþ ¼ EN0þ1 � EN0 ¼ �A, (2:12)

and

lim
t!0

EN0 � EN0 t

t
¼ @E

@N

� �
v

¼ m ¼ EN0 � EN0 1 ¼ �I, (2:13)

where Equation 2.5 has been used.

E
I

A

N0 − 1 N0 + 1 NN0

FIGURE 2.1 Plot of the total energy as a function of the number of electrons. The solid
straight lines correspond to Equation 2.8, while the dashed curve corresponds to Equation 2.18.

Chemical Reactivity Concepts in Density Functional Theory 11



A very important consequence of the behavior of the energy as a function of the
number of electrons is that the left (m ) and right (mþ) first derivatives are not equal.
From a chemical perspective, this differentiation with respect to charge addition or
charge removal is important, because, in general, one could expect that the chemical
species will respond differently to these two processes, and therefore the left
derivative m (response to charge removal) could be different from the right
derivative mþ (response to charge addition).

Note that the arithmetic average of the one-sided derivatives

@E

@N

� �0

v

¼ m0 ¼ 1
2
(m þ mþ) ¼ � 1

2
(I þ A), (2:14)

corresponds to the definition of electronegativity given by Mulliken [9].
According to the results obtained for the first derivative, Equations 2.12 and

2.13, the second derivative, i.e., the hardness, is zero when evaluated from the left or
from the right, and it is not defined for integer number of electrons. However, Ayers
[25] has shown that if one makes use of the Heaviside step function

Q(x) ¼ 0, x < 0 ,
1, x > 0 ,

�
(2:15)

the chemical potential can be written in the form

m(N0þx) ¼ m þQ(x)(mþ � m ), �1 � x � 1: (2:16)

Thus, since the derivative of the Heaviside function is the Dirac delta function,
(dQ(x)=dx)¼ d(x), taking the derivative in Equation 2.16 with respect to x, one finds,
using Equation 2.6, that the hardness is given by

h(N0þx) ¼ (mþ � m )d(x) ¼ (I � A)d(x), �1 � x � 1, (2:17)

where Equations 2.12 and 2.13 have been used.
Up to this point, we have worked with the nonsmooth expression for the energy

that results from the ensemble extension to fractional electron numbers, and that has
been confirmed through the size consistency of the energy. However, in order to
incorporate the second-order effects associated with the charge transfer processes,
the most common approach has been to make use of a smooth quadratic interpolation
[14]. That is, with the two definitions given in Equations 2.5 and 2.6, the energy
change DE due to the electron transfer DN, when the external potential v(r) is kept
fixed, may be approximated through a second order Taylor series expansion of the
energy as a function of the number of electrons

DE ¼ mDN þ 1
2
h(DN)2: (2:18)
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The values of the two derivatives, m and h, at the reference point N0, may be approxi-
mated through this smooth quadratic interpolation between the points E(N0� 1), E(N0)
and E(N0þ 1), when combined with the two conditions, E(N0� 1)�E(N0)¼ I and
E(N0)�E(N0þ 1)¼A (see Figure 2.1). This procedure leads to the well-known
finite differences approximations

m ¼ �x � � I þ A

2
, (2:19)

and

h � I � A: (2:20)

A remarkable fact is that Equation 2.19 is the same as Equation 2.14, and Equation
2.20 is the same as Equation 2.17 if one ignores the Dirac delta function, although
Equations 2.14 and 2.17 result from the ensemble approach, while Equations 2.19
and 2.20 result from the smooth quadratic interpolation. Thus, the expressions given
by Equations 2.19 and 2.20 are fundamental to evaluate the chemical potential
(electronegativity) and the chemical hardness.

When the experimental values of I and A are known, one can determine through
these expressions the values of m and h. Since for atoms and molecules, the trends
shown by these values of m and h are, in general, in line with those provided by
several empirical scales constructed intuitively by chemists, the identification of
these global DFT descriptors with their associated chemical concepts is strength-
ened. In other words, the quantity (IþA)=2 shows, in general, the same behavior as
that of the electronegativity concept, while the quantity (I�A) shows, also in
general, the same behavior as that of the chemical hardness concept.

Finally, it is important to mention that in the case of Equation 2.18 the energy
and its derivatives are continuous functions of the number of electrons around N0, so
that a single value for m and a single value for h are used to describe charge transfer
processes. That is, the advantage of this procedure is to have well-defined first and
second derivatives and the disadvantage is that they are the same for charge addition
and for charge removal processes.

On the other hand, in the case of Equation 2.8, in spite of the mathematical
difficulties associated with the discontinuities, one has the advantage of being able to
differentiate the response of the system to charge donation from that corresponding
to charge acceptance.

2.4 DERIVATIVES OF THE ELECTRONIC DENSITY
WITH RESPECT TO THE NUMBER OF ELECTRONS

Let us consider now the response functions that arise when a chemical system is
perturbed through changes in the external potential. These quantities are very
important in the description of a chemical event, because for the early stages of
the interaction, when the species are far apart from each other, the change in the
external potential of one of them, at some point r, is the potential generated by the
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nuclei and electrons of the other one at that point, and vice versa. As a consequence,
the functional derivatives of the energy, the chemical potential, and the chemical
hardness, with respect to the external potential, provide information on the response
of a molecule to the presence of a reagent.

For the energy, one can make use of first-order perturbation theory for a non-
degenerate state. Thus, if the state C0

k is perturbed to the state Ck ¼ C0
k þC1

k by the
one-electron perturbation DV ¼ P

i dv(ri), the energy change to first order is [1]

dE ¼ E1
k ¼

ð
dxNC0

kDVC
0
k ¼

ð
drr(r)dv(r), (2:21)

so that, according to the definition of functional derivative, one has that

dE

dv(r)

� �
N

¼ r(r): (2:22)

For the chemical potential [28] and the chemical hardness [29,30] one finds that

dm

dv(r)

� �
N

¼ @r(r)

@N

� �
v

¼ f (r), (2:23)

and

dh

dv(r)

� �
N

¼ @2r(r)

@N2

� �
v

¼ Df (r), (2:24)

through the use of Equations 2.5, 2.6, and 2.22. The function f(r) is known as the
Fukui function, and the function Df(r) is known as the dual descriptor. From
Equation 2.3 one has

ð
drf (r) ¼ 1, (2:25)

and

ð
drDf (r) ¼ 0: (2:26)

It is important to mention that the chemical potential and the hardness, m and h, are
global-type response functions that characterize the molecule as a whole, while
the electronic density r(r), the Fukui function f(r), and the dual descriptor Df(r)
are local-type response functions whose values depend upon the position within the
molecule.

Now, let us rewrite Equation 2.7 in the form

rN0þt(r)� rN0
(r)

t
¼ rN0þ1(r)� rN0

(r), (2:27)
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and the equivalent of Equation 2.7 for the interval between N0� 1 and N0 in
the form

rN0
(r)� rN0 t(r)

t
¼ rN0

(r)� rN0 1(r): (2:28)

Note that again, as in the case of the energy, the densities’ difference in the right-hand
side of Equations 2.27 and 2.28 is independent of t. Thus, if one takes the limit t! 0
in Equations 2.27 and 2.28, then [31,32]

lim
t!0

rN0þt(r)� rN0
(r)

t
¼ @r(r)

@N

� �þ

v

¼ fþ(r) ¼ rN0þ1(r)� rN0
(r), (2:29)

and

lim
t!0

rN0
(r)� rN0 t(r)

t
¼ @r(r)

@N

� �
v

¼ f (r) ¼ rN0
(r)� rN0 1(r), (2:30)

where Equation 2.23 has been used. The relationships given by Equations 2.29 and
2.30 are notable in the sense that for the exact DFT, the finite differences lead to the
exact Fukui functions.

The Fukui function f (r) corresponds to the case in which the system donates
charge, because it is interacting with an electrophilic reagent, while the Fukui
function fþ(r) corresponds to the case in which the system accepts charge, because
it is interacting with a nucleophilic reagent. In the case in which the system is
interacting with a neutral (or radical) reactant, the arithmetic average of the one-
sided derivatives seems to be a good approximation [28], that is,

f 0(r) ¼ @r(r)

@N

� �0

v

¼ 1
2

f (r)þ fþ(r)ð Þ ¼ 1
2

rN0þ1(r)� rN0 1(r)
� �

: (2:31)

In Equations 2.29 through 2.31, rN0 1(r), rN0
(r), and rN0þ1(r) are the electronic

densities of the N0� 1-, N0-, and N0þ 1-electron systems, calculated for the external
potential of the ground-state of the N0-electron system.

A remarkable fact about the interpretation of the Fukui function [31] is that the
most stable way to distribute the additional charge DN in a molecule is given by the
product DN fþ(r), while the most stable way to remove the charge DN from a
molecule is given by the product DNf (r). This means that a molecule accepts
charge at the regions where fþ(r) is large and it donates charge from the regions
where f (r) is large. Thus, the Fukui functions provide information about the site
reactivity within a molecule.

A common simplification of the Fukui function is to condense its values to
individual atoms in the molecule [33]. That is, through the use of a particular
population analysis, one can determine the number of electrons associated with
every atom in the molecule. The condensed Fukui functions is then determined
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through a finite differences approach, so that for the kth atom in the molecule A one
has that

fAk ¼ NAk(N0)� NAk(N0 � 1), for electrophilic attack, (2:32)

fþAk ¼ NAk(N0 þ 1)� NAk(N0), for nucleophilic attack, (2:33)

and

f 0Ak ¼
1
2

fAk þ fþAk
� �

¼ 1
2

NAk(N0 þ 1)� NAk(N0 � 1)ð Þ, for neutral (or radical) attack: (2:34)

In these relationships NAk(N0� 1), NAk(N0), and NAk(N0þ 1) are the number of
electrons associated with the kth atom in the molecule A, when the total number
of electrons in the molecule is N0� 1, N0, and N0þ 1 electrons, respectively. The
calculation of the N0� 1- and the N0þ 1-electron system is done at the ground-state
geometry of the N0-electron system.

For the second derivative of the electronic density with respect to the number of
electrons, the dual descriptor, one can proceed as in the case of the energy. That is,
the Fukui function using the Heaviside function [25] is written as

f (N0þx)(r) ¼ f (r)þQ(x) fþ(r)� f (r)ð Þ, �1 � x � 1: (2:35)

Then, taking the derivative in Equation 2.35 with respect to x, one finds, using
Equation 2.24, that the dual descriptor is given by

Df (N0þx)(r) ¼ fþ(r)� f (r)ð Þd(x), �1 � x � 1: (2:36)

Now, as in the case of the energy, up to this point, we have worked with the
nonsmooth expression for the electronic density. However, in order to incorporate
the second-order effects associated with the charge transfer processes, one can make
use of a smooth quadratic interpolation. That is, with the two definitions given in
Equations 2.23 and 2.24, the electronic density change Dr(r) due to the electron
transfer DN, when the external potential v(r) is kept fixed, may be approximated
through a second-order Taylor series expansion of the electronic density as a
function of the number of electrons,

Dr(r) ¼ f 0(r)DN þ 1
2
Df (r)(DN)2: (2:37)

The values of the two derivatives, f 0(r) and Df (r), at the reference point N0,
may be approximated through this smooth quadratic interpolation between the
points rN0 1(r), rN0

(r), and rN0þ1
(r), when combined with the two conditions,
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f (r)¼ rN0
(r)� rN0 1(r) and f

þ(r)¼ rN0þ1(r)� rN0
(r). This procedure leads to Equa-

tion 2.31 for f 0(r) and to

Df (r) ¼ fþ(r)� f (r): (2:38)

Through a similar procedure, one finds that for the condensed dual descriptor

DfAk ¼ fþAk � fAk: (2:39)

From the interpretation given to the Fukui function, one can note that the sign of the
dual descriptor is very important to characterize the reactivity of a site within a
molecule toward a nucleophilic or an electrophilic attack [29,30]. That is, if
Df(r)> 0, then the site is favored for a nucleophilic attack, whereas if Df(r)< 0,
then the site may be favored for an electrophilic attack.

2.5 DERIVATIVES IN AN ORBITAL LANGUAGE

Up to this point, we have established general expressions for the derivatives of the
energy and density with respect to the number of electrons. These general expres-
sions require basically the knowledge of the total energy and the electronic density of
the reference system and its corresponding cation and anion. Consequently, one can
make use of any molecular electronic structure method to calculate these quantities,
from which one can determine the DFT reactivity criteria. However, it is important
to analyze these quantities through an orbital language in order to establish their
relationship with orbital concepts.

Thus, let us consider first the KS approach [34] in which the spin orbitals ci(r)
are self-consistent solutions of the equations

� 1
2
r2 þ vS(r)

� �
ci(r) ¼ «ici(r), (2:40)

with

vS(r) ¼ v(r)þ dJ[r]

dr(r)
þ dEXC[r]

dr(r)
, (2:41)

where
J[r] ¼ 1

2

Ð Ð
dr dr0r(r)r(r0)=jr� r0j is the classical Coulomb energy

EXC[r] is the exchange-correlation energy functional

The electronic density is given by

r(r) ¼
X
i

ni ci(r)j j2, (2:42)
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where the occupation numbers ni equals 1 for all the spin orbitals up to N0, and
equals 0 for all the spin orbitals above N0.

PPLB showed that for a nondegenerate ground state, if ni equals 1 for all the
spin orbitals below N0, equals 0 for all the spin orbitals above N0, and equals t for
the spin orbital corresponding to N0, then [23,26,27]

m ¼ «N0 (N0) ¼ �IN0 ¼ E(N0)� E(N0 � 1), N0 � 1 < N < N0, (2:43)

while for the case corresponding to a fractional occupation t in the N0þ 1 spin
orbital,

mþ ¼ «N0þ1(N0 þ 1) ¼ �AN0 ¼ E(N0 þ 1)� E(N0), N0 < N < N0 þ 1, (2:44)

where Equations 2.12 and 2.13 have been used. Thus, from Equations 2.43 and 2.44
one has

IN0 � AN0 ¼ mþ � m ¼ «N0þ1(N0 þ 1)� «N0 (N0) (2:45)

or, adding and subtracting «N0þ1(N0),

IN0 � AN0 ¼ «N0þ1(N0)� «N0(N0)þ DXC, (2:46)

where DXC is the discontinuity of the exact exchange correlation potential,

DXC ¼ «N0þ1(N0 þ 1)� «N0þ1(N0): (2:47)

Since «N0þ1(N0) and «N0
(N0) are the eigenvalues of the lowest unoccupied molecular

spin orbital (LUMO), «L, and the highest occupied molecular spin orbital (HOMO),
«H, respectively, it is clear that their difference cannot be identified directly with the
chemical hardness, expressed as IN0

�AN0
, because it must be corrected by the

discontinuity DXC. Besides, common approximations to the exchange-correlation
potential [1,35] such as the local density approximation (LDA) or the generalized
gradient approximation (GGA), which are continuum functionals and do no exhibit
the derivative discontinuity, approximately average over it in the energetically
important regions where electrons are concentrated. However, they fail to do so
asymptotically [36 38]. This behavior leads to a good description of the electronic
density and the total energy, but a poor description of the KS eigenvalue spectrum.

Thus, in these cases, the calculation of the chemical potential (electronegativity)
and the chemical hardness through the values of I and A is accurate when it is done
through energy differences, but it is poorly described when it is done through the KS
eigenvalues.

Nevertheless, it is important to mention that from a qualitative viewpoint, the
approximations

m ¼ �x � 1
2
(«L þ «H), (2:48)
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and

h � «L � «H, (2:49)

are conceptually very important and useful to understand many aspects of chemical
reactivity.

Now, the Fukui function is closely related to the frontier orbitals. This can be
seen from Equations 2.29 and 2.30, together with Equation 2.42, because if one
determines the electron densities of the N0� 1- and the N0þ 1-electron systems with
the orbitals set corresponding to the N0-electron system, then

f (r) � rH(r) and fþ(r) � rL(r), (2:50)

and

Df (r) � rL(r)� rH(r), (2:51)

where rH(r) and rL(r) are the densities of the highest occupied and lowest unoccu-
pied molecular orbitals, respectively. However, one can see that the Fukui function,
in contrast with frontier orbital theory, includes the orbital relaxation effects associ-
ated with electron addition or removal and the electron correlation effects. In some
cases, these effects are very important. Nevertheless, again, from a qualitative
viewpoint, the approximations given by Equations 2.50 and 2.51, together with the
condensed version of these expressions for a Mulliken-like population analysis [39],
are conceptually very important and useful to understand many aspects of chemical
reactivity.

Finally, it is important to mention that in the case of the HF method, the
calculation of the chemical potential and the hardness, through energy differences,
to determine I and A, leads, in general, to a worst description than in the KS
approach, because the correlation energy is rather important, particularly for the
description of the anions. However, the HF frontier eigenvalues provide, in general,
a better description of m and h, through Equations 2.48 and 2.49, because they lie
closer to the values of� I and�A than the LDA- or GGA-KS values, as established
by Koopmans’ theorem.

On the other hand, the calculation of the Fukui function with the HF frontier
orbitals is, in general, qualitatively very similar to the one obtained through KS
orbitals. However, there may be cases where the absence of correlation effects in HF
may lead to large differences with respect to the KS description.

2.6 CONCLUDING REMARKS

In the preceding sections, we have analyzed the derivatives of the energy and of
the density with respect to the number of electrons. The former is identified with
the concepts of chemical potential (electronegativity) and hardness and measure the
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global response of a chemical species to changes in the number of electrons since
they are independent of the position. The latter give rise to the concepts of the Fukui
function and the dual descriptor and measure the local response of the chemical
potential and the hardness to changes in the external potential, since they depend on
the position.

The usual way to make use of these concepts to describe the inherent chemical
reactivity of a molecule is, in general, through a second-order Taylor series expan-
sions of the energy as a function of the number of electrons N and the external
potential v(r), around the reference state that corresponds to that of the isolated
species [40]. Thus, on one hand, there will be terms associated with the chemical
potential and the chemical hardness that will give information on the global behavior
of the chemical species as a whole. On the other hand, there will be terms corre-
sponding to integrals over the whole space involving the Fukui function or the dual
descriptor. In this case, the values of these integrals will have a strong dependence on
the overlap between these local reactivity descriptors and the change in the external
potential (the potential generated by the nuclei and electrons of the reagent). Con-
sequently, the Fukui function and the dual descriptor provide information on site
selectivity [29,30,41 43].

Although we have concentrated in this chapter on the derivatives of the energy
and density, there are other chemically meaningful concepts that can be derived from
the ones presented here [44 46]. Among these, the chemical softness, the inverse of
the chemical hardness, and the local softness [47,48] have proven to be quite useful
to explain intermolecular reactivity trends.

Also, it is interesting to note that in the smooth quadratic interpolation, the curve
of the total energy as a function of the number of electrons shows a minimum for
some value of N beyond N0 (see Figure 2.1). This point has been associated by Parr
et al. [49] with the electrophilicity index that measures the energy change of an
electrophile when it becomes saturated with electrons. Together with this global
quantity, the philicity concept of Chattaraj et al. [50,51] has been extensively used to
study a wide variety of different chemical reactivity problems.

As already mentioned, through DFT, it has been possible to explain the electro-
negativity equalization principle [1,7,10 13] and the hard and soft acids and bases
principle [12,15 22] and, additionally, it has also been possible to introduce new
ones like the maximum hardness principle [52,53] and the local hard and soft acids
and bases principle [20,54 56].

In conclusion, the reactivity concepts that emerge from DFT provide a concep-
tually simple, but at the same time, chemically meaningful framework to explain the
behavior of a wide variety of systems. In this chapter, we have analyzed some of the
fundamental aspects required to understand its basis.
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The concept of valence and bonding are central to chemistry and helps to understand
molecular structure and reactivity in a systematic way. The principles that govern the
formation of molecules from atoms and intermolecular interactions are of paramount
interest and have attracted much attention. Initially it was believed that certain types of
chemical species were joined together by means of chemical affinity to form a
chemical bond. A clear concept of a chemical bond emerged only after Lewis
introduced the concept of electron pair bond in his landmark paper in 1916 [1] and
his ideas continue to dominate a chemist’s perception toward chemical bonding and
molecular structure. The theory of chemical bonding has received considerable
attention ever since and several theories have been put forward to understand the
nature of atoms and how atoms come together to form molecules, followed by the
Lewis theory of paired electron bond [2 9]. Linus Pauling, in his highly influential
book The Nature of the Chemical Bond, has orchestrated rules for the shared electron-
bond on the basis of electron paired bond on which the valence bond (VB) theory was
built [2]. This chapter aims to introduce chemical bonding at the molecular and
supramolecular levels starting from the Lewis concept. Early ideas are presented as
a historical note and the development of chemical bonding models after the advent of
quantum mechanics are described in a logical way. The importance and computation
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of electron correlation are discussed and then various kinds of noncovalent inter-
actions are outlined quoting a few standard examples. This will form a basis on how
the early concepts, which are mostly wave function based, describe bonding and
reactivity in greater detail. This would naturally be a prelude to understand reactivity
from density functional theory (DFT) point of view.

3.1 QUANTUM MECHANICAL TREATMENT
OF CHEMICAL BONDING

A rigorous mathematical formalism of chemical bonding is possible only through the
quantum mechanical treatment of molecules. However, obtaining analytical solu-
tions for the Schrödinger wave equation is not possible even for the simplest systems
with more than one electron and as a result attempts have been made to obtain
approximate solutions; a series of approximations have been introduced. As a first
step, the Born Oppenheimer approximation has been invoked, which allows us to
treat the electronic and nuclear motions separately. In solving the electronic part,
mainly two formalisms, VB and molecular orbital (MO), have been in use and they
are described below. Both are wave function-based methods. The wave function � is
the fundamental descriptor in quantum mechanics but it is not physically measurable.
The squared value of the wave function j�j2dt represents probability of finding an
electron in the volume element dt.

Heilter and London made the first quantum mechanical treatment of a chemical
bond in 1927 [10] and their ideas have laid the foundations for the general theory of
chemical bonding known as VB theory, with seminal contributions from London and
Pauling. In contrast to the two-electron wave functions in the VB theory, a mathemat-
ically elegant formalism based on the one-electron wave function, MO theory, has
been introduced and developed parallelly by Lennard-Jones in 1929, which was
refined and applied to a large number of systems by Mulliken and Hund. VB and
MO theories have become two alternatives to explain chemical bonding. While VB
theory [11] is chemically intuitive and is primarily responsible for the understanding
of chemical concepts based on lone pairs and bond pairs, MO theory [12] has been
highly successful in predicting spectroscopic properties and more importantly the MO
wave functions are orthogonal and follow the group theoretical principles. All these
lead to the emergence ofMO theory as themethod of choice over VB theory during the
second half of the twentieth century and the position of MO has further consolidated
upon the arrival of computers and quantum mechanical programs. With increasing
computer power, the computationally attractive orthogonal MO formalism has
become much more tractable on medium-sized molecules, while the progress in VB
is restricted due to the technical bottlenecks in the implementation of the formalism.

VB and MO theories can be applied to simple molecular systems as follows.
According to VB theory, if wa and wb are wave functions of independent systems a
and b then the total wave function c and total energy E are written as follows:

c ¼ wawb (3:1)

E ¼ Ea þ Eb (3:2)
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If c1, c2, c3, � � � are acceptable wave functions for the system, then according to the
principle of superposition the true wave function � could be expanded as the linear
combination of them:

C ¼ c1c1 þ c2c2 þ c3c3 þ � � � (3:3)

For example, for the hydrogen molecule,

c1 ¼ 1sa(1)1sb(2) (3:4)

where
a and b denote the atoms
1 and 2 represent the electrons

Particle indistinguishability allows that the product c2¼ 1sa(2) 1sb(1) is also equally
acceptable.

Therefore, the true wave function can be written as

c ¼ c11sa(1)1sb(2)þ c21sa(2)1sb(1) (3:5)

In hydrogen molecule, because of symmetry the component wave functions 1sa(1)
1sb(2) and 1sa(2) 1sb(1) contribute with equal weight:

c ¼ c11sa(1)1sb(2)þ c21sa(2)1sb(1) (3:6)

c21 ¼ c22 and c1 ¼ �c2 (3:7)

cs ¼ 1sa(1)1sb(2)þ 1sa(2)1sb(1) (3:8)

ca ¼ 1sa(1)1sb(2)� 1sa(2)1sb(1) (3:9)

while
cs represents a bonding state
ca corresponds to the antibonding or repulsive state (Figure 3.1)

The curve c1 exhibits a minimum but the stabilization is not significant. It should be
noted that when electrons are allowed to interchange, there is a substantial stabiliza-
tion, which comes from exchange interaction as a consequence of particle indis-
tinguishability. Bonding energy explained using cs is still substantially above the
experimental value and this indicates that the wave function should be improved
further. One way to improve the wave function is considering the admixture of other
electron configurations, such as ionic structures

c3 ¼ 1sa(1)1sa(2) � � � HAH
þ
B (3:10)

c4 ¼ 1sb(1)1sb(2) � � � Hþ
AHB (3:11)
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Again owing to the symmetry, c3 and c4 are virtually identical and thus are equally
probable. Now the total wave function including ionic contribution is written as

cs ¼ ccovalent þ lcionic (3:12)

where

ccovalent ¼ 1sa(1)1sb(2)þ 1sa(2)1sb(1) (3:13)

cionic ¼ 1sa(1)1sa(2)þ 1sb(1)1sb(2) (3:14)

and l is a measure of contribution of ionic structures. Obviously, inclusion of ionic
structures has led to further stabilization of the bonding state, which is known as the
resonance stabilization energy (Figure 3.1).

The total wave function is a product of orbital (space) and spin wave functions.
In a two-electron system like the H2 molecule, the possible spin wave functions are
a(1)a(2), b(1)b(2), a(1)b(2), and a(2)b(1). The first two spin states represent the
parallel spin and the last two antiparallel spins. Particle indistinguishability forces the
linear combination 1= 2

p
a(1)b(2)� a(2)b(1)ð Þ. Here the functionsa(1)a(2),b(1)b(2),

and 1= 2
p

a(1)b(2)þ a(2)b(1)ð Þ represent the triplet state and 1= 2
p

a(1)b(2)�ð
a(2)b(1)Þ represent the singlet state. An H2 molecule is a closed shell system and will
have a singlet multiplicity in the ground state. Further improvement on the VB wave
function has been done by allowing the orbital exponent to change when atoms approach
during the bond formation. Though the VB theory successfully explained bonding in
molecules, it has some drawbacks. A major bottleneck is that the localized VB wave
functions are not orthonormal, thus leading to complicated equations. The impact of
VB declined greatly as the MO theory introduced by Lennard-Jones in 1929 became
much popular. It is quite interesting to see that the practitioners of the alternative
formalisms MO and VB are more at loggerheads than in harmony [13].
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FIGURE 3.1 VB potential energy for H2 molecule.
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The MO theory differs greatly from the VB approach and the basic MO theory is
an extension of the atomic structure theory to molecular regime. MOs are delocalized
over the nuclear framework and have led to equations, which are computationally
tractable. At the heart of the MO approach lies the linear combination of atomic
orbitals (LCAO) formalism

ci ¼
X
i

aiwi (3:15)

Suppose atoms a and b form a molecule and their atomic orbitals are wa and wb,
respectively, then

cMO ¼ cawb þ cbwb (3:16)

The combining orbitals should lie closer in energy and have same symmetry with
optimal overlap in space. The positive overlap leads to bonding, negative overlap to
antibonding, and zero overlap to nonbonding situations. The MOs are arranged in
ascending order of energy and electrons are fed into their following Pauli and Aufbau
principles. For example, the MOs of hydrogen molecule can be written as

cMO ¼ ca1sa þ cb1sb (3:17)

Because of the symmetry c2a ¼ c2b; ca ¼ �cb

cb ¼ 1sa þ 1sb (3:18)

ca ¼ 1sa � 1sb (3:19)

where cb and ca represent bonding and antibonding states. They are also referred to as
1ssg and 1ssu states. The ground state electron configuration of the hydrogen molecule
is 1ss2

g. The ground state wave function of the hydrogenmolecule in Slater determinant
form is as follows:

c ¼ 1

2
p 1ssg(1) 1ssg(1)

1ssg(2) 1ssg(2)

����
���� (3:20)

cMO ¼ 1ssg(1)1ssg(2)
1

2
p (a1b2 � b1a2) (3:21)

and this corresponds to the singlet state of H2 where the spin part of the wave function
is antisymmetric with respect to electronic interchange and the space part is a sym-
metric combination of 1sa and 1sb. The contribution of covalent and ionic terms to the
wave function can be understood by expanding the space part of its wave function

cs ¼ 1sa(1)þ 1sb(1)f g 1sa(2)þ 1sb(2)f g
¼ 1sa(1)1sb(2)þ 1sa(2)1sb(1)f g þ 1sa(1)1sa(2)þ 1sb(1)1sb(2)f g
¼ ccovalent þ cionic (3:22)
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The method of generating MOs from LCAOs has been proved to be quite useful in
establishing the relationship between the atoms and molecules from an electronic
structure point of view. The ways in which s, p, and d orbitals interact with each
other to form MOs of various symmetry kinds such as s, p, and d are depicted in
Figure 3.2a through 3.2c, respectively.

It is also possible that orbitals of different kinds on the two atomic centers such
as s-pz, pz-d

2
z , dxz-px, etc. can combine to generate the MO for the diatomic molecules.

As the one-center atomic orbitals are not orthogonal in molecules, for the depiction of
electronic structure, the concept of hybridization is quite useful.

MO wave functions in the above form give equal importance to covalent and
ionic structures, which is unrealistic in homonuclear diatomic molecules like H2. This
should be contrasted with cVB, which in its simple form neglects the ionic contribu-
tions. Both cVB and cMO are inadequate in their simplest forms; while in the VB
theory the electron correlation is overemphasized, simple MO theory totally neglects
it giving equal importance to covalent and ionic structures. Therefore neither of them
is able to predict binding energies closer to experiment. The MO theory could be
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FIGURE 3.2 MO diagram: Formation of chemical bonds due to overlap of orbitals. (a)
s bonding: A result of overlapping s orbitals. (b) s and p bonding: A result of overlapping
p orbitals. (c) s , p , and d bonding: A result of overlapping d orbitals.
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improved through configuration interaction (CI). Excitation of one or more electrons
could be done from occupied levels to unoccupied ones and several singly, doubly,
and multiply occupied ‘‘configurations’’ can be generated. MO wave functions could
be improved by incorporating Slater determinants corresponding to such excited
configurations. In the hydrogen molecule case, doubly excited configurations have
proper symmetry to interact with ground state configuration and stabilize the bonding
state. Physically, inclusion of such electronic configurations, which belong to the
exited state leads, by populating antibonding orbitals, which results in the depletion of
electron density in the internuclear region. Therefore, although VB and MO theories
appear to represent two extremes in treating electron correlation, improvements in
their procedures lead to convergence and binding energies very close to experiment.

Due to the simplicity and the ability to explain the spectroscopic and excited
state properties, the MO theory in addition to easy adaptability for modern computers
has gained tremendous popularity among chemists. The concept of directed valence,
based on the principle of maximum overlap and valence shell electron pair repulsion
theory (VSEPR), has successfully explained the molecular geometries and bonding
in polyatomic molecules.

MO theories for polyatomic molecules could be broadly classified into two,
based on the rigor. They are electron-independent or non self-consistent field (SCF)
and electron-dependent or SCFmethods. Electron-independent theories do not consider
electron electron interaction explicitly and they include Hückel [12,14] and the
extended Hückel theory [15]. While the former considers only p basis, the latter takes
into account all valence basis. They involve many approximations and parameteri-
zations. Approximations are mathematical neglect and parameterization means
replacing certain integrals through parameters derived from experiment. SCF methods
iteratively solve many-electron Schrödinger wave equations in matrix form based on
Hartree Fock (HF) theory. They are either called ab initiomethodwhen the Fockmatrix
is constructed from first principles and semiempirical when certain approximations are
invoked and parameters introduced. In recent years, density-based methods are gaining
popularity due to the considerable time advantage and conceptual simplicity. The
following chapters deal with this subject in sufficient detail.

3.2 ELECTRON CORRELATION

The HF method does not consider the instantaneous electrostatic interactions, but it
treats the interaction of one electron with the average field due to the other electrons.
Thus the correlated motions of electrons are neglected and as a consequence HF
energies are always higher than the exact energy of the system. The difference
between the exact and HF energies is defined as the correlation energy. It may be
noted that exchange correlation, which says that two electrons of same spin cannot
occupy a single orbital, is already included in the HF theory. Inclusion of electron
correlation is necessary for the reliable description of structure and properties of
molecules, and therefore the development of post-HF methods have been
of paramount importance. The following procedures are available to improve the
HF-SCF theory, which includes the correlation energy: (1) CI, (2) many-body
perturbation theory (MBPT), and (3) coupled cluster (CC) theory.
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It is possible to divide electron correlation as dynamic and nondynamic correl-
ations. Dynamic correlation is associated with instant correlation between electrons
occupying the same spatial orbitals and the nondynamic correlation is associated
with the electrons avoiding each other by occupying different spatial orbitals.
Thus, the ground state electronic wave function cannot be described with a single
Slater determinant (Figure 3.3) and multiconfiguration self-consistent field (MCSCF)
procedures are necessary to include dynamic electron correlation.

However, in a large number of closed shell molecules, a single Slater determin-
ant describes the ground state wave function fairly accurately. Even in such cases
inclusion of excited state configuration results in substantial lowering of total
electronic energy, and this is referred to as nondynamic electron correlation.

3.2.1 CONFIGURATION INTERACTION

HF method determines the energetically best determinantal trial wave function (f0)
and this would be improved further by including more ‘‘configurations.’’ Let w0 be
represented as

f0 ¼ f1f2 � � �fafb � � �fnj j (3:23)

where fa, fb are occupied spin orbitals. Excited configuration could be generated by
promoting electron from occupied orbitals to virtual orbitals as follows:

fp
a ¼ f1f2 � � �fpfb � � �fn

�� �� (3:24)

f
pq
ab ¼ f1f2 � � �fpfq � � �fn

�� �� (3:25)

where fp
a and f

pq
ab represent singly, doubly excited configurations, respectively. In a

similar way, any multiply excited configuration could be generated and used. Here
the multideterminantel wave function could be written as

cCI ¼ aowHF þ
X
S

aSwS þ
X
D

aDwD þ
X
T

aTwT þ � � � þ
X
i¼0

aiwi (3:26)

S, D, and T stand for singly, doubly, and triply excited states relative to the HF
configuration.

Slater determinant = D = 1
n!

u1(1) u2(1) un(1)… …

u1(n) u2(n) un(n)u3(n) …
… … …… …

u1(3) … …… …
u1(2) … un(2)… …

FIGURE 3.3 Slater determinant. The spin orbital u is the product of orbital (u) and spin
(s¼a=b) functions.
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3.3 MULTICONFIGURATION SELF-CONSISTENT FIELD

In the multiconfiguration SCF, the MOs are used for constructing the determinants
and the coefficients were optimized by the variational principle. The MCSCF optimi-
zation is iterative like SCF the procedure, where the iterations required for achieving
convergence tend to increase with the number of configurations included. The major
problem with MCSCF method is selecting the configurations that are necessary to
include for the property of interest. One of the most popular approaches in this theory
is the complete active space self-consistent field method (CASSCF). The selection of
configuration is performed by partitioning the MOs into active and inactive spaces.
The active MOs will have some of the highly occupied and some of the lowest
unoccupied MOs from an RHF calculation. However, the highly stable orbitals as
well as the very high lying virtual orbitals, which are not part of the active space, are
referred to as inactive orbitals. Thus, the inactive orbitals are either doubly occupied
or completely unoccupied in all the excitations that are considered.

3.4 MANY-BODY PERTURBATION THEORY

The perturbation method is a unique method to determine the correlation energy of
the system. Here the Hamiltonian operator consists of two parts, H0 and H0, where H0

is the unperturbed Hamiltonian and H0 is the perturbation term. The perturbation
method always gives corrections to the solutions to various orders. The Hamiltonian
for the perturbed system is

H ¼ H0 þ lH0 (3:27)

where l is a parameter determining the strength of the perturbation.

H0fi ¼ Eifi i ¼ 0, 1, 2, . . . ,1 (3:28)

The solution of the unperturbed Hamiltonian operator forms a complete orthonormal
set. The perturbed Schrödinger equation is given by

Hc ¼ Wc (3:29)

If l¼ 0, then H¼H0, c¼f0, and W¼E0. As the perturbation is increased from
zero to a finite value, the energy and wave function also change continuously and can
be written as a Taylor expansion in the power of the perturbation parameter l:

W ¼ l0W0 þ l1W1 þ l2W2 þ l3W3 þ � � � (3:30)

c ¼ l0c0 þ l1c1 þ l2c2 þ l3c3 þ � � � (3:31)

c1, c2, . . . , and W1, W2, . . . , are first- and second-order corrections to the wave
function and energies.
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3.5 COUPLED CLUSTER THEORY

The CC method was developed for the system of interacting particles. The basic
equation for this theory is

c ¼ eTw0 (3:32)

where
c is the ground state molecular electronic wave function
f0 is the normalized ground state HF wave function
eT is defined by the Taylor series as

eT � 1þ T̂ þ T̂2

2!
þ T̂3

3!
þ � � � ¼

X1
k¼0

T̂k

k!
(3:33)

The cluster operator T is defined as

T ¼ T1 þ T2 þ T3 þ � � � þ Tn (3:34)

where
n is the total number of electrons
various Ts are the excitation operators

The one-particle excitation operator T̂1 and the two-particle excitation operator T̂2

are defined by

T1f0 ¼
Xocc
i

Xvir
a

tai f
a
i (3:35)

T1f0 ¼
Xocc
i<j

Xvir
a<b

tabij f
ab
ij (3:36)

where
fa
i is a singly excited Slater determinant

tai is a numerical coefficient
fab
ij is a Slater determinant with the occupied spin-orbitals

tabij is a numerical coefficient

The trial wave functions of a Schrödinger equation are expressed as determinant of
the HF orbitals. This will give coupled nonlinear equations. The amplitudes were
solved usually by some iteration techniques so the cc energy is computed as

f0jHjeTf0

� � ¼ ECC (3:37)
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The cc correlation energy is determined by the single and double amplitudes and the
two-electron MO integrals. However, the recent progress in computational methods
is largely influenced by DFT. One primary advantage of DFT over conventional HF-
SCF procedures is that the former includes electron correlation fairly adequately
(some times too much) at a fractional cost compared to a typical post-SCF (CI,
MBPT, or CC) calculation.

3.6 INTERMOLECULAR INTERACTIONS

Having understood the formation of molecules from atoms through chemical bonds,
it is important to understand the molecular aggregation and their relationship to
materials. Conventionally, intermolecular interactions, also known as noncovalent or
nonbonded interactions, are weak and it is assumed that the change in the geometric
and electronic structures of the individual components is minimum during the
complex formation. Obviously, hydrogen bonding is the most important and elab-
orately studied nonbonded interactions [16,17]. Figure 3.4 depicts a couple of
examples of dimers, which are bound through nonbonded interactions. Such inter-
actions play a pivotal role in determining the structure, stability, and dynamics of
biological systems such as proteins and DNA and thus the accurate theoretical
description of these interactions is of critical importance [18 20].

Noncovalent interactions operate at larger internuclear distances of several ang-
stroms. The formation of a covalent bond requires overlapping of partially occupied
orbitals of interacting atoms, which share a pair of electrons. In noncovalent inter-
actions, no overlapping is necessary because the attraction comes from the electrical
properties of the building blocks. Noncovalent or van derWaals interactions were first
recognized by J. D. van der Waals in the nineteenth century. Their role in nature has
been unraveled only during the past three to four decades.

The noncovalent interactions or van der Waals forces involved in supramolecular
entities may be a combination of several interactions, e.g., ion-pairing, hydrophobic,
hydrogen bonding, cation p, p p interactions, etc. They comprise interactions
between permanent multipoles, between a permanent multipole and an induced
multipole, and between a time-variable multipole and an induced multipole.

D

D

H

H
H

H

Ar

Ar

(a) (b) (c)

FIGURE 3.4 (See color insert following page 302.) The prototypical noncovalent inter
actions between (a) water dimer, (b) Ar dimer, and (c) benzene dimer.
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The stabilizing energy of noncovalent complexes is generally said to consist of
the following energy contributions: electrostatic (or coulombic), induction, charge
transfer (CT), and dispersion. These terms are basically attractive terms. The repul-
sive contribution, which is called exchange repulsion, prevents the subsystems from
drawing too close. The term induction refers to general ability of charged molecules
to polarize neighboring species, and dispersion (London) interaction results from the
interactions between fluctuating multipoles. In charge transfer (CT) interactions,
the electron flow from the donor to the acceptor is indicated. The term van der
Waals (vdW) forces is frequently used to describe dispersion and exchange repulsion
contributions, but sometimes other long-range contributions are also included in the
definition. The vdW energy is calculated by the following equation:

EvdW (r) ¼ « (r0=r)
12 � 2(r0=r)

6
� �

(3:38)

where
r is the current distance between atoms
r0 is the equilibrium distance
« is the minimum energy

All of these interactions involve a host and a guest as well as their surroundings
like solvation, crystal lattice, and gas phase. Electrostatic interactions are the driving
force behind the ion pairing (ion ion, ion dipole, dipole dipole, etc.) interactions,
which are undeniably important in natural and supramolecular systems. The electro-
static interaction energy E is given by

E ¼ q1q2
«r

(3:39)

where
q1, q2 are the charges
r the distance between the two
« is the dielectric coefficient

Ion ion interactions are between two oppositely charged particles and because of
the electrostatic force between them, they stick together and a considerable amount
of energy will be required to separate them. They form an ion pair, a new particle,
which has a positively charged area and a negatively charged area. There are fairly
strong interactions between these ion pairs and free ions, so that these clusters tend to
grow, and they will eventually fall out of the gas phase as a liquid or solid
(depending on the temperature). The presence of these interactions plays a crucial
role in the transportation of ions through ion-channels in biochemical pathways. An
ion dipole force is an attractive force that results from the electrostatic attraction
between an ion and a neutral molecule that has a dipole. They are most commonly
found in solutions, and especially important for solutions of ionic compounds in
polar liquids. Various methods have been put forward to understand the role of
electrostatics in a variety of molecules.
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Charges are heavily delocalized in organic ions, which complicate the theor-
etical analysis of ion pairing. Between neutral polar molecules the electrostatic
contributions comes mostly from dipole dipole interactions. Perhaps van der
Waals interactions are the most important class of dipole dipole interactions where
one or both molecules do not have a permanent dipole. These interactions are valid
for any two atoms that come into close contact with each other, and are called van
der Waals interactions. Another very important noncovalent interaction is the hydro-
phobic interaction. As the term hydrophobic suggests, this interaction is an effective
interaction between two nonpolar molecules that tend to avoid water and, as a result,
prefer to cluster around each other.

While the qualitative understanding of the nonbonded interactions is well estab-
lished, quantitative evaluation of their interaction strength and other properties are
very challenging. As the very presence of several biological systems and supramo-
lecular assemblies are due to the presence of the nonbonded interactions, clearly the
quest to unravel their structure and energetics are of great importance. Virtually all
quantum chemical calculations computing the interaction energy between two non-
covalently bound molecules is based on ab initio MO theory. One noteworthy
development is to employ methods, which delineate the composition of various
components, such as electrostatic, polarization, and other terms, to the total inter-
action energy, a procedure known as energy decomposition analysis. It started with
an interesting paper by Morokuma in 1971 [21] and later several ingenious ways in
which the contributions of various components to the total interaction energy is
calculated were developed. In recent years, there is a heightened activity in gauging
the effect of basis set superposition error [22], electron correlation, and cooperativity
[23] (nonadditivity of the interaction strengths) among various nonbonded inter-
actions. In addition to the energy decomposition analysis, the natural bond order
(NBO) analysis [24] and the evaluation of the electron density distributions through
atoms in molecules (AIM) theory [25] are also employed to probe into the nature of
the noncovalent interactions. Several studies are reported in the literature, where the
hydrogen bonding and van der Waals interactions are characterized using the AIM
theory.

Ab initio MO based methods have played a pivotal role in qualitatively and
quantitatively understanding covalent and noncovalent interactions in chemistry.
These methods form the basis for modeling chemical and biological reactivity.
The exponential raise, starting from early 1990s, the application of DFT-based
calculations made an enormous impact on theoretical and computational quantum
chemistry. Following this, there is a renewed interest in devising and exploring
conceptual DFT-based protocols in understanding the structure and reactivity of
molecules, which will be described in detail in the forthcoming chapters [26,27].
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4.1 INTRODUCTION [1–3]

During the last five decades, an alternative way of looking at the quantum theory
of atoms, molecules, and solids in terms of the electron density in three-dimensional
(3D) space, rather than the many-electron wave function in the multidimensional
configuration space, has gained wide acceptance. The reasons for such popularity of
the density-based quantum mechanics are the following:
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1. Electron density is a fundamental variable and can be determined
experimentally.

2. Considerable conceptual advantages are gained through the building of
various transparent, interpretative models of structure, properties (including
reactivity), and dynamics in terms of the single-particle density. Being
simple but rigorous, such conceptual models ought to replace popular,
ad hoc models in chemistry.

3. Simplicity and accuracy in computation, especially with large molecules for
which other ab initio quantum chemical methods currently in vogue require
computational labor of at least one order of magnitude greater for delivering
results of comparable accuracy.

The three main approaches based on the single-particle density are the density
functional theory (DFT), quantum fluid dynamics (QFD), and studying the properties
of a system through local quantities in 3D space. In this chapter, we present simple
discussions on certain conceptual and methodological aspects of the single-particle
density; for details, the reader may consult the references listed at the end of this chapter.

4.2 WHAT IS A SINGLE-PARTICLE DENSITY
AND WHY IS IT IMPORTANT? [1–5]

To answer these questions, let us first consider the normalized wave function for a
system of N electrons, given by c (x1, x2,. . . . , xN), where xi denotes the set of space
and spin coordinates for the ith electron, i.e., xi � (ri, si), ri being the position vector
in 3D space and si the spin variable. c is postulated to contain all information about
the system. One can define a single-particle reduced density matrix (RDM) and a
two-particle RDM as follows:

r1 x1jx01
� � ¼ N

ð
c(x1, x2, . . . , xN)c

� x01, x2, . . . , xN
� �

dx2 . . . dxN (4:1)

G2 x1,x2jx01,x02
� �¼ (1=2)N(N� 1)

ð
c(x1, x2, . . . , xN)c

� x01, x
0
2, . . . , xN

� �
dx3 . . .dxN

(4:2)

In Equations 4.1 and 4.2, the numbers before the integral signs occur due to the
indistinguishability of electrons and electron pairs, respectively. The single-particle
density r(x) is defined as the diagonal element of the single-particle density matrix
r1(x1jx10), viz.,

r(x) ¼ N

ð
c(x, x2, . . . , xN)c

�(x, x2, . . . , xN)dx2 . . . dxN (4:3)

The spin-averaged single-particle density is given by

r(r) ¼
ð
r(x)ds (4:4)
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where r(r) has three important properties, viz.,

r(r) � 0, for all r;
ð
r(r)dr ¼ N;

ð ��grad r(r)1=2��2dr < 1 (4:5)

The second property in Equation 4.5 normalizes r(r) to the total number of
electrons in the system by integrating over the whole 3D space. Note that in atomic
units (used throughout this chapter unless otherwise mentioned), the number
density r(r) becomes the electronic charge density, thereby paving the way to
various useful, interpretative approaches as described below.

The nonrelativistic quantum mechanics of many-electron systems (atoms, mole-
cules, nanomaterials, and condensed matter) can be formulated entirely in terms of
the two-particle RDM (for Hartree Fock systems or single-determinantal wave
functions, the single-particle RDM will suffice because the two-particle RDM can
be written in terms of the single-particle RDM), bypassing the many-particle wave
function. Thus, the two-electron RDM contains all information about a system and
the many-electron wave function, involving 3N space and N spin variables, is not
necessary. This is undoubtedly a great simplification. However, since the wave
function is being bypassed, a question arises: How does one know whether a given
one-electron or two-electron RDM corresponds to an antisymmetric wave function?
This is the well-known N-representability problem, which has been solved for the
one-electron RDM but is unfortunately intractable for the two-electron RDM. In
other words, the promising RDM approach cannot bypass the wave function
approach.

However, it is indeed fortunate that the N-representability problem for the
electron density r(r) greatly simplifies itself. In fact, the necessary and sufficient
conditions that a given r(r) be N-representable are actually given by Equation 4.5
above. Nevertheless, question remains: Can the single-particle density contain all
information about a many-electron system, at least in its ground state? An affirmative
answer to this question can be given from Kato’s cusp condition for a nuclear site in
the ground state of any atom, molecule, or solid, viz.,

@r(r)=@rjr¼0 ¼ �2Zr(r ¼ 0) (4:6)

where Z is the nuclear charge at the site of the cusp. Equation 4.6 has a profound
significance. It says that the electron density r(r) contains all information about
the system in the ground state as follows: Let r(r) alone be given for an unknown
system in its ground state. One can, in principle, calculate the slope of the density
at many points in 3D space and thereby hit upon all the cusps given by Equation
4.6. Thus, all the nuclei in the system and the total number of electrons become
known, from which the Schrödinger equation for the system can be written and all
information about the system can, in principle, be obtained. In other words, the
single-particle density contains all information about the system, at least in
the ground state. This conclusion forms the core of modern DFT (see Section 4.5).
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4.3 SOME FUNDAMENTAL AND INTERPRETATIVE PROPERTIES
OF ELECTRON DENSITY

4.3.1 ASYMPTOTIC BEHAVIOR [1]

While Equation 4.6 describes the short-range behavior of r(r), the long-range
behavior is given by the asymptotic relation

r(r) � exp �2(2I)1=2r
h i

, for r ! 1 (4:7)

where I is the first ionization potential of the system.

4.3.2 MONOTONIC VARIATION AND SHELL STRUCTURE IN ATOMS [2,5,6]

The electron density r(r) in the ground state of any atom falls offmonotonically from the
nuclear site until it vanishes asymptotically at infinity. For any atom in the ground state,
a plot of the radial probability density 4pr2r(r) against r (or, more clearly against r1=2)
reveals the atomic shell structure in two ways: (1) The number of maxima equals
the number of shells and (2) the locations of the minima indicate the approximate
regions where the preceding shell ends and the next one begins. The changes in sign
ofr2r(r) wherer2 is the Laplacian also indicates atomic shell structure. For a pair
of atoms involved in the formation of a chemical bond, r(r) has a saddle-point between
the two nuclei; the saddle-point is a minimum along the bond direction and a maximum
perpendicular to the bond direction. Therefore, from either of the two nuclear sites or
cusps, the density falls off monotonically toward the saddle-point.

4.3.3 ELECTROSTATIC HELLMANN–FEYNMAN THEOREM [7,8]

Assuming the validity of the Born Oppenheimer approximation, the electrostatic
Hellmann Feynman (H F) theorem expresses the force FA on a nucleus A, of charge
ZA, in a molecule or solid, as

FA ¼ ZA
X
B 6¼A

ZBRAB=R
3
AB � ZA

ð
r(r)rA=r

3
A

� �
dr (4:8)

where
RAB is the distance between the nuclei A and B
rA is the position vector from A

The first and second terms on the right-hand side of Equation 4.8 represent the
nuclear nuclear repulsive force and electron nuclear attractive force, respectively.
The great simplicity and visuality of this force concept in chemistry, involving r(r),
have been of enormous advantage in obtaining detailed qualitative and quantitative
insights into the nature of chemical binding, molecular geometry, chemical reactivity
as well as other properties.
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4.3.4 ELECTROSTATIC POTENTIAL [9]

Since force is the negative gradient of the corresponding potential, one can also
define an electrostatic potential (ESP) at a point r in the space around a molecule or
solid, in terms of r(r), as

V(r) ¼
X
A

ZA=jRA � rj �
ð
r(r0)=jr � r0jð Þdr0 (4:9)

Equation 4.9 has been extensively applied to study the mechanisms of electrophilic
(e.g., protonation) reactions, drug nucleic acid interactions, receptor-site selectivities
of pain blockers as well as various other kinds of biological activities of molecules in
relation to their structure. Indeed, the ESP has been hailed as the ‘‘most significant
discovery in quantum biochemistry in the last three decades.’’ The ESP also occurs
in density-based theories of electronic structure and dynamics of atoms, molecules,
and solids. Note, however, that Equation 4.9 appears to imply that r(r) of the system
remains unchanged due to the approach of a unit positive charge; in this sense, the
interaction energy calculated from V(r) is correct only to first order in perturbation
theory. However, this is not a serious limitation since using the correct r(r) in
Equation 4.9 will improve the results.

4.3.5 ATOMS IN MOLECULES [2,6]

Chemists have long been intrigued by the question, ‘‘Does an atom in a molecule
somehow preserve its identity?’’ An answer to this question comes from studies on
the topological properties of r(r) and grad r(r). It has been shown that the entire
space of a molecule can be partitioned into ‘‘atomic’’ subspaces by following the
trajectories of grad r(r) in 3D space. These subspaces themselves extend to infinity
and obey a subspace virial theorem (2 hTiþ hVi¼ 0). The subspaces are bounded by
surfaces of zero flux in the gradient vectors of r(r), i.e., for all points on such a
surface,

grad r(r) � n(r) ¼ 0 (4:10)

where n(r) is a unit vector normal to the surface at r. Both r(r) and grad r(r) vanish at
infinity.

4.3.6 PROPERTY DENSITIES IN 3D SPACE [2,3]

For a system, one can define a property density function (PDF) p(r) in 3D space such
that the corresponding property P is given by

P ¼
ð
p(r)dr (4:11)
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Examples of p(r) are energy density, charge density, current density (see Section 4.6),
difference density (difference between a final density and an initial density), electric
moment density, magnetic moment density, local reactivity functions (see Section
4.5.2), force density, etc. Note that, for ensuring the stability of matter, the net force
density must vanish everywhere in space. The concept of a PDF has generated many
significant developments in interpretative quantum chemistry.

From the preceding discussion, it is quite clear that r(r) is indeed a fundamental
quantum mechanical entity of no less significance than the wave function and that
r(r) generates numerous attractive and transparent models of chemical behavior.
How does one calculate r(r)? One way would of course be to calculate it from the
normalized occupied orbital densities, viz.,

r(r) ¼
X
i

ni wi(r)j j2 (4:12)

where wi(r) is an orbital with occupation number ni. For a usual atomic or molecular
orbital, ni equals 0, 1, or 2, whereas for a natural orbital in principle, the most
accurate orbital description of a many-electron system, since it is based on an
accurate single-particle density matrix one has 0 � ni � 1. However, Equation
4.12 still ties the single-particle density to the apron strings of the wave function and
it is therefore interesting to enquire whether r(r) can be directly calculated bypassing
the wave function formalism. As discussed in Section 4.5, this is achieved by
modern DFT, at least for the ground state.

4.4 THOMAS–FERMI STATISTICAL MODEL
AND ITS MODIFICATIONS [2,4,5]

The Thomas Fermi (TF) model (1927) for a homogeneous electron gas provides the
underpinnings of modern DFT. In the following discussion, it will be shown
that the model generates several useful concepts, relates the electron density to the
potential, and gives a universal differential equation for the direct calculation of
electron density. The two main assumptions of the TF model are as follows:

1. The electrons in an atom or any many-electron system move under an
effective potential. The electronic distribution results from feeding two
electrons into a volume h3 of the 6D phase space; this is in accord with
Pauli exclusion principle.

2. The effective potential is determined by nuclear charges and this electronic
distribution.

In order to calculate the electronic energy, consider the 3D space to be divided into
small cubic cells, each cell of length l, volume DV¼ l3, containing DN electrons. The
system is at 0 K, the cells are independent, and the electrons move independently of
one another. The familiar expression for the energy of a particle in a cubical box
(with potential energy taken as zero) is
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«(nx, ny, nz) ¼ (h2=8ml2) n2x þ n2y þ n2z

� �
¼ (h2=8ml2)R2 (4:13)

where
nx, ny, nz¼ 1, 2, 3, . . . , etc.
R is the radius of a sphere described by the quantum numbers

For high quantum numbers, i.e., high R, the number of distinct energy levels with
energy not greater than « is given by (note that only the first octant of the sphere of
quantum numbers, without the origin, is to be taken into account)

F(«) ¼ (1=8)(4pR3=3) ¼ (p=6)(8ml2«=h2)3=2 (4:14)

Define a density of states g(«) at energy «, so that the number of states between « and
«þ d« is

g(«)d« ¼ F(«þ d«)�F(«) ¼ (p=4)(8ml2=h2)3=2«1=2d«þ O (d«)2
� �

(4:15)

To calculate the total energy of the cell with DN electrons, one needs f(«), the
probability for the state with energy « to be occupied by an electron. This is given
by Fermi Dirac statistics as

f («) ¼ 1= 1þ exp b(«� «F)½ 	ð Þ; b ¼ 1=kT (4:16)

where «F is the highest energy (Fermi energy) of an occupied state. At T¼ 0 K, f («)
becomes unity for «< «F and vanishes for «> «F, since b ! 1; in other words, all
states with «< «F are occupied and all states with «> «F are unoccupied. Therefore, the
total energy (kinetic energy only) of the electrons in this cell is (see assumption 1 above)

D« ¼ 2
ð
«f («)g(«)d« ¼ 4p(2m=h2)3=2l3

ð
«3=2d«

¼ (8p=5)(2m=h2)3=2l3«5=2F (4:17)

the integration limits being 0 to «F. Using the same integration limits, one has

DN ¼ 2
ð
f («)g(«)d« ¼ (8p=3)(2m=h2)3=2l3«3=2F (4:18)

Dividing Equation 4.17 by Equation 4.18 and simplifying by using Equation 4.18,
one obtains

D« ¼ (3=5)DN«F ¼ (3h2=10m)(3=8p)2=3l3(DN=l3)5=3 (4:19)

Replace (DN=l3) by r, the finite density of the homogeneous electron gas. Taking
DV ! 0, r can be locally replaced by r(r). Using atomic units and summing the
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contributions from all cells, the total TF kinetic energy becomes a functional of
the electron density (see Ref. [4] for an account of functional calculus), viz.,

TTF[r] ¼ cTF

ð
r5=3(r)dr (4:20)

where the TF constant cTF¼ (3=10) (3p2)2=3¼ 2.8712. Equation 4.20 is called the
local density approximation (LDA) to the kinetic energy of a many-electron system.
The total electronic energy of an atom (of nuclear charge Z), neglecting two-electron
quantum effects such as exchange and correlation but including a classical Coulomb
repulsion term, can now be written as

ETF[r] ¼ cTF

ð
r5=3(r)dr � Z

ð
r(r)=rð Þdr þ 1=2

ðð
r(r)r(r0)=jr � r0jð Þdrdr0 (4:21)

with
Ð
r(r)dr ¼ N, the total number of electrons. The term (�Z=r) is called the

external (electron nuclear attraction) potential (see Section 4.5.2) for the electron gas
in an atom. For obtaining a differential equation for the direct determination of
electron density, we now perform a constrained variation whereby the density is
always kept normalized to the total number of electrons, as

d ETF[r]� mTF

ð
r(r)dr � N

� �	 

¼ 0 (4:22)

where the Lagrange multiplier mTF can be identified as the TF chemical potential (note
its dimensional equivalence with the thermodynamic chemical potential). It will be seen
in Section 4.3.4 that the concept of chemical potential plays a fundamental role in DFT.

By functional differentiation, Equation 4.22 leads us to the Euler Lagrange
deterministic equation for the electron density, viz.,

mTF ¼ dETF[r]=dr ¼ (5=3)cTFr
2=3(r)� w(r) (4:23)

where the ESP is

w(r) ¼ Z=r �
ð
r(r0)=jr � r0jð Þdr0 (4:24)

As mentioned before, the ESP has been a quantity of great significance in quantum
biochemistry. Using Poisson’s equation of classical electrostatics, as applied to an
atom, one can write

r2w(r) ¼ 4pr(r)� 4pZd(r) (4:25)

where d(r) is the Dirac delta function. Using the substitutions

x ¼ ar; a ¼ 1:1295Z1=3, and x(r) ¼ (r=Z)w(r) (4:26)
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where vectors are replaced by scalars and x(r) is a dimensionless function, one
eventually obtains the TF universal differential equation,

d2x(x)=dx2 ¼ x 1=2x3=2(x); x(0) ¼ 1, x(1) ¼ 0 (4:27)

One can improve upon the TF model by incorporating two-electron effects into
ETF[r] as the approximate, local Dirac exchange energy functional (cX is the Dirac
exchange constant)

EX[r] ¼ �cX

ð
r4=3(r)dr; cX ¼ (3=4p)(3p2)1=3 ¼ 0:7386 (4:28)

with the exchange potential proportional to r1=3(r) and the approximate, local
Wigner correlation energy functional

Ec[r] ¼ �
ð
r(r)vc[r]dr (4:29)

where the correlation potential vc[r] is given by

vc[r] ¼ aþ br 1=3(r)
� �.

aþ (3b=4)r 1=3(r)
� �2

; a ¼ 9:810, b ¼ 28:583

(4:30)

The interesting implication of Equations 4.28 and 4.29 is that the single-particle
density can incorporate two-particle effects such as exchange and correlation. In
modern DFT, the three density functionals ETF[r], EX[r], and EC[r] are sometimes
employed as nonlocal functionals, involving gradients of r(r). The universal value of
the ratio cTF=cX has been shown to correlate nicely with variations in atomic radii,
ionic radii, van der Waals radii, Wigner Seitz radii, atomic polarizability, London
dispersion coefficient, lanthanide contraction, etc. among the rows and columns of
the Periodic Table. The Thomas Fermi Dirac (TFD) atomic energy can also be
expanded in terms of Z1=3, the first term involving Z7=3.

The TFD model does not reveal atomic shell structure as well as the correct short-
range and long-range behavior of the electron density. Furthermore, it does not show
any chemical binding, thereby wrongly implying that no molecule or solid can exist.
This problem occurs due to replacing (see Equation 4.20) the particle-in-a-box wave
functions locally by plane waves. An explicit correction to the TFD kinetic energy,
involving deviation from plane waves, is provided by the Weizsäcker inhomogeneity
correction

TW[r] ¼ (1=8)
ð
(grad r)2=r
� �

dr (4:31)

This provides partial chemical binding. Note that TTF[r] and TW[r] constitute the
first two terms in a gradient expansion of the kinetic energy.
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The conclusion that it may be possible to formulate the quantum mechanics of
many-electron systems solely in terms of the single-particle density was put on a firm
foundation by the two Hohenberg Kohn theorems (1964), which are stated below,
without proof.

4.5 SIMPLE ACCOUNT OF TIME-INDEPENDENT DENSITY
FUNCTIONAL THEORY

4.5.1 HOHENBERG–KOHN THEOREMS FOR THE GROUND STATE
OF A MANY-ELECTRON SYSTEM [4,5,10–12]

Theorem 1. The external potential v(r) is determined, within a trivial additive
constant, by the electron density r(r). (The implication of this existence theorem is
that r(r) determines the wave function and therefore all electronic properties in the
ground state; see also Equation 4.6.)

Theorem 2. For a trial density ~�(r), satisfying the N-representability conditions,
the trial ground-state energy Ev satisfies the relation

E0 � Ev[~r] ¼
ð
~r(r)v(r)dr þ F[~r] (4:32)

where
E0 is the true ground-state energy
the universal functional F[r] is a sum of the electronic kinetic energy
T[r], classical Coulomb repulsion energy J[r], and quantum exchange-
correlation energy EXC[r] functionals

The implication of this theorem is that it gives a prescription for the variational
determination of the ground-state electron density, since the latter minimizes the
energy.

4.5.2 HOHENBERG–KOHN–SHAM EQUATIONS FOR DETERMINING

DENSITY [4,5,10–12]

One can write the total electronic energy of the system as

E[r] ¼
ð
r(r)v(r)dr þ T[r]þ J[r]þ EXC[r] (4:33)

Since the ground-state electron density minimizes the energy, subject to the normal-
ization constraint,

Ð
r(r)dr � N ¼ 0, the Euler Lagrange equation (see Equation 4.23)

becomes

m ¼ dE[r]=dr ¼ n(r)þ dT[r]=dr þ dJ[r]=dr þ dEXC[r]=dr (4:34)

where the chemical potential m (see Section 4.4) has been shown to be the zero-
temperature limit of the chemical potential defined for the finite-temperature grand
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canonical ensemble in statistical mechanics. Of the four terms on the right-hand side
of Equation 4.34, only the functionals T[r] and EXC[r] are unknown.

The problem of T[r] is cleverly dealt with by mapping the interacting many-
electron system on to a system of ‘‘noninteracting electrons.’’ For a determinantal
wave function of a system of N ‘‘noninteracting electrons,’’ each electron occupying
a normalized orbital ci (r), the Hamiltonian is given by

Hs ¼
XN
i¼1

(�r2
i 2)þ

XN
i¼1

vsi(r) (4:35)

where
r2

i is the Laplacian operator for the ith electron
vsi is the ith electron nuclear attraction term

Therefore, the density and the kinetic energy can be written as

r(r) ¼
XN
i¼1

jci(r)j2 (4:36)

Ts[r] ¼
XN
i¼1

hcij�r2
i =2jcii (4:37)

One now replaces the interacting T[r] in Equation 4.34 by the noninteracting Ts[r].
This means that any kinetic energy missing as a result of this replacement must be
included in EXC[r]; clearly, T[r]> Ts[r]. Equation 4.34 now becomes

m ¼ veff (r)þ dTs[r]=dr (4:38)

where the effective potential veff(r) is given by

veff(r) ¼ v(r)þ dJ[r]=dr þ dEXC[r]=dr

¼ v(r)þ
ð
r(r0)=jr � r0jð Þdr0 þ vXC(r) (4:39)

where vXC(r) is the exchange-correlation potential. Now, for N noninteracting
electrons, one can obviously write the Schrödinger equation

�r2=2þ vs(r)
� �

wi(r) ¼ liwi(r); i ¼ 1, 2, . . . , N (4:40)

where li is the energy eigenvalue for the orbital wi (r). In view of the above mapping
of an interacting electron system into a ‘‘noninteracting electron’’ system, it is now
possible to write the Hohenberg Kohn Sham (HKS) ‘‘Schrödinger-like’’ equations
for the interacting electron system as

�r2=2þ veff(r)
� �

ci(r) ¼ «ici(r); i ¼ 1, 2, . . . , N (4:41)
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where «i is the energy eigenvalue for the DFT orbital ci (r). In Equation 4.41, veff(r)
itself depends on the solutions of Equation 4.41, which is therefore a nonlinear
Schrödinger equation with potentially interesting mathematical properties, some of
which remain to be explored. Equation 4.41 can be solved iteratively and self-
consistently as follows: (1) Assume a trial set of orbitals {ci (r)}, i¼ 1, 2, . . . ,N,
and an accurate, though approximate, form of EXC[r]; (2) calculate r(r), vXC(r), and
veff(r); (3) solve for new sets {ci(r)} and {«i}; (4) repeat (2) and (3) iteratively until
the final {«i} agrees with the {«i} in the previous iteration within a prescribed limit of
tolerance. This process yields the self-consistent DFT orbitals and their energies. The
computations are economical in time, with the labor being comparable to that of the
Hartree method although the results are significantly more accurate than the Hartree
Fock method. This is the main reason behind the enormous popularity and wide
applicability of DFT in dealing with atoms, molecules, nanosystems, and condensed
matter in general, involving chemical, physical, biological, and geological phenomena.

Some explanations concerning Equation 4.41 are necessary. First, note that all
electron interactions are included in veff(r), which vanishes as r!1. Second, unlike
the Koopmans’ theorem in Hartree Fock theory, the DFT orbital energies {«i} do
not have a simple interpretation. One can, however, show that «i¼ (@E=@ni), where
ni is the occupation number of the ith orbital, as well as «max¼�I, the ionization
potential. Most interesting, however, is the chemical potential m, which yields a
deterministic equation for the electron density through m¼ dE=dr. Using simple
arguments, it has been shown that m
�(IþA)=2¼�kM, where kM is Mulliken
electronegativity, thus validating the concept of electronegativity quantum mechan-
ically. Therefore, electronegativity plays a basic variational role in DFT, similar to
the role played by energy in wave function based variation theory. This again
emphasizes that DFT ought to be a fundamental theory of chemistry. Note that the
principle of ‘‘electronegativity equalization’’ may serve as an important guideline for
interactions (e.g., bond-making, bond-breaking, and chemical reactivity in general)
between atomic=molecular species with differing electronegativities.

Several other quantities of chemical significance have been defined in terms of
the chemical potential, viz.,

Hardness, h ¼ (1=2)(@m=@N)v ¼ (1=2)(@2E=@N2)v 
 (I � A)=2; h � 0 (4:42)

Softness, S ¼ 1=2h ¼ (@N=@m)v (4:43)

Fukui function (a local reactivity index), f (r)¼ (@r=@N)v

¼ (@m=@v)N ;
ð
f (r)dr¼ 1 (4:44)

Local softness, s(r) ¼ (@r=@m)v; S ¼
ð
s(r)dr; f (r) ¼ s(r)=S (4:45)

Local hardness, h(r) ¼ (1=2N)
ðð

d2F[r]= dr(r)dr(r0)ð Þ �
r(r0)dr0;

h ¼
ð
f (r)h(r)dr (4:46)
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Both the local functions f(r) and s(r) contain useful information about relative
activities of different sites in a molecule or solid.

At this point, it is necessary to say a few words about the v-representability of the
electron density. An electron density is said to be v-representable if it is associated
with the antisymmetric wave function of the ground state, corresponding to an
external potential v(r), which may or may not be a Coulomb potential. Not all
densities are v-representable. Furthermore, the necessary and sufficient conditions
for the v-representability of an electron density are unknown. Fortunately, since the
N-representability (see Section 4.2) of the electron density is a weaker condition than
v-representability, one needs to formulate DFT only in terms of N-representable
densities without unduly worrying about v-representability.

4.5.3 EXCHANGE-CORRELATION HOLE [4,5,13]

As indicated in Equation 4.21, the interelectronic Coulomb repulsion energy func-
tional J[r] is written as the classical expression

J[r] ¼ 1=2
ðð

r(r)r(r0)=jr � r0jð Þdrdr0 (4:47)

Since the Coulomb, exchange, and correlation energies are all consequences of the
interelectronic 1=r12 operator in the Hamiltonian, one can define the exchange energy
functional EX[r] in the same manner as

EX[r] ¼ 1=2
ðð

r(r)rX(r, r
0)=jr � r0jð Þdrdr0 (4:48)

where the exchange density matrix rX(r, r0) has the property

ð
rX(r, r

0)dr0 ¼ �1, for all r (4:49)

Equation 4.49 defines the exchange or Fermi hole. It is as if an electron of a given
spin ‘‘digs’’ a hole around itself in space in order to exclude another electron of the
same spin from coming near it (Pauli exclusion principle). The integrated hole charge
is unity, i.e., there is exactly one electron inside the hole. Likewise, the correlation
energy functional can be defined as

EC[r] ¼ 1=2
ðð

r(r)rC(r, r
0)= r � r0j jð Þdrdr0 (4:50)

where

ð
rC(r, r

0)dr0 ¼ 0, for all r (4:51)
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indicating that the correlation ‘‘hole’’ is overall neutral. Assuming that EXC[r]¼
EX[r]þEC[r], one can write an exchange-correlation density matrix rXC(r, r0)¼
rX(r, r0)þ rC(r, r0), thereby defining an exchange-correlation hole such that

ð
rXC(r, r

0)dr0 ¼ �1, for all r (4:52)

4.6 QUANTUM FLUID DYNAMICS: TIME-DEPENDENCE
OF SINGLE-PARTICLE DENSITY [2,3,14,15]

Since the beginning of quantum mechanics, there have been significant attempts
to explain quantum phenomena based on familiar ‘‘classical’’ concepts. An earlier
attempt was by Madelung who transformed the one-particle, time-dependent
Schrödinger equation (TDSE) into two fluid dynamical equations of classical appear-
ance, viz., a continuity equation signifying the absence of any source or sink, as well
as a Euler-type equation of motion. The continuity of the density over the whole
space imparts to the quantum or Schrödinger fluid more fluid-like character than
even a classical fluid, thereby raising the possibility of a ‘‘classical’’ description of
quantum mechanics through the fluid dynamical viewpoint. The Madelung trans-
formation for a single-particle wave function is defined in the following.

One may write the time-dependent wave function in the polar form, viz.,

C(r, t) ¼ R(r, t) exp iS(r, t)=h½ 	 (4:53)

Then, the TDSE can be reformulated in terms of two fluid-dynamical equations:

Continuity equation: @r=@t þ div(�v) ¼ 0 (4:54)

Euler-type equation of motion: mrdv=dt ¼ �rgrad(V þ Vqu) (4:55)

where

r ¼ R2; v ¼ (1=m)grad S; j ¼ rv (4:56)

dv=dt ¼ @v=@t þ (v � grad)v (4:57)

and

Vqu ¼ (�h2=2m)r2R=R (4:58)

In Equation 4.56, the real quantities r, v, and j are the charge density, velocity field,
and current density, respectively. The above equations provide the basis for the fluid
dynamical approach to quantum mechanics. In this approach, the time evolution of a
quantum system in any state can be completely interpreted in terms of a continuous,
flowing fluid of charge density r(r, t) and the current density j(r, t), subjected to
forces arising from not only the classical potential V(r, t) but also from an additional
potential Vqu(r, t), called the quantum or Bohm potential; the latter arises from the
kinetic energy and depends on the density as well as its gradients. The current
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density vanishes in the ground state but not in a general excited state. This is the
reason why while the ground-state density contains all information about the system
(HK Theorem 1), the same is not true for the pure-state density of a general excited
state because then the current density will also be involved. Obviously, in general,
the complex-valued wave function can be replaced by two real-valued functions
(r and j) but not by just one of them, except in special cases.

The above fluid dynamical analogy to quantum mechanics has been extended to
many-electron systems. Subsequently, this has provided the foundations for the
developments of TD DFT and excited-state DFT, two areas which had remained
unaccessed for many years. However, these developments are outside the scope of
the present chapter.

4.7 CONCLUSION

Five decades of extensive studies on the statics and dynamics of the single-particle
density in atoms, molecules, clusters, and solids have established that an alternative
quantum mechanics of many-electron systems can be constructed solely in terms of the
single-particle density, thus bypassing the wave function for most practical purposes.
The ability of r(r) to yield transparent and deep insights into problems concerning
binding, structure, properties and dynamics covering physical, chemical, biological,
and even geological phenomena has been astounding. Undoubtedly, such develop-
ments would continue in the years to come.
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The discussion of atoms and molecules by physicists and chemists until the 1920s,
was limited to position space. Exploration of these systems in momentum space
began with the pioneering work [1] of Pauling and Podolsky in 1929, in which they
applied a Fourier Dirac transformation [2], as given by Jordan in 1927, to the
hydrogenic orbitals. The aim of this was to obtain the wave function in momentum
space and thereby the probability of an electron having momentum in a given range.
This was related to the experimental Compton line shapes giving electron momen-
tum densities (EMDs) for an atomic system [3]. It was shown by Pauling and Podolsky
[1] that the orbitals in position space transformed to momentum space yield the
familiar associated Legendre functions Pm

l (cos u) multiplied by e�imf. In momentum
space, the radial part was described by a Gegenbauer polynomial instead of the
Laguerre polynomial in position space [1].

Figure 5.1 illustrates the Fourier transform (FT) of a simple function, viz.,
a Gaussian. The relatively sharp Gaussian function with the exponent a¼ 1 depicted
in Figure 5.1a, yields a diffuse Gaussian (in dotted line) in momentum space. A flat
Gaussian function in position space with a¼ 0.1, transforms to a sharp one (cf.
Figure 5.1b). Connected by an FT, the wave functions in position and momentum
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spaces bear a reciprocal relation, i.e., a narrow wave function in position space leads
to a broad one in momentum space and vice versa.

The atomic and molecular wave functions are usually described by a linear
combination of either Gaussian-type orbitals (GTO) or Slater-type orbitals (STO).
These expressions need to be multiplied by a center dependent factor exp(�ip�A).
Further the STOs in momentum space need to be multiplied by Ylm(up,fp).
Examining the expressions [4], one notices the Gaussian nature of the GTOs even
after the FT. The STOs are significantly altered on FT. From the expressions in Table
5.1, STOs are seen to exhibit a decay� p 4, which is the decay of the slowest 1s

[2a/p]¼ exp(–ax2)
[2pa]–¼ exp(–p2/4a)

a = 1.0 a = 0.1
1.0

0.8

0.4

0.2

1.0

0.4

0.2

−4 −2 0 2 4 0 2 4−4 −2
(a) (b)

0.6

0.0 0.0

0.6

0.8

FIGURE 5.1 FT of a Gaussian (2a=p)1=4exp( ax2) for two different values: (a) a¼ 1.0 and
(b) a¼ 0.1.

TABLE 5.1
Expressions for GTO in Cartesian Momentum Coordinates
and STO in Spherical Polar Momentum Space Coordinates

GTO STO

(s)
1

(2pa)3=4
exp( p2=4a) (1s)

2a
p

� �1=2 8pa5=2

a2 þ p2ð Þ2

(px)
1

(2p)3=4a5=4
ipx exp p2=4a

� �
(2s)

2a
3p

� �1=2 4a2(3a2 p2)

a2 þ p2ð Þ3

d2z
� � 21=4

3
p

(ap)1=4
1

p2z
2a

� �
exp p2=4a

� �
(2p)

2a
3p

� �1=2 16pa3

a2 þ p2ð Þ3

(dxy)
1

(2p)3=4a7=4
pxpy exp p2=4a

� �
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function. Isosurfaces of the GTOs in momentum space are plotted in Figure 5.2,
which are qualitatively similar in shape to their position space counterparts.

The many-particle momentum space wave function, F(p1, p2, p3, . . . ,pN) is
obtained as the 3N dimensional FT of the corresponding position space counterpart
viz., �(r1, r2, r3, . . . , rN) {only the spatial parts are explicitly denoted}:

F(p1,p2, . . . ,pN)¼ (2p) 3N=2
ð
C(r1, r2, r3, . . . , rN)

exp �i(p1 �r1þ���þpN �rN)½ �d3r1 � � �d3rN (5:1)

The EMD, g(p) can be extracted from F(p1, p2, . . . ,pN) on squaring, followed by a
suitable integration over all but one momentum coordinate. Here y depends both on p
and the spin:

g(p) ¼ N
X
s

ð
F(y, y2, . . . , yN)
�� ��2d3p2 � � � d3pN (5:2)

5.1 ATOMIC MOMENTUM DENSITIES

In spite of their familiarity, there still remains a lot to be said about the nature of
atomic charge densities in position space. Atomic densities have a fairly simple but
intriguing structure. A spherical symmetry for the atomic density profiles is one that
is always chosen out of convenience. The ground state atomic charge densities
possess a finite maximum at the nuclear position. The spherically averaged charge
density r(r) satisfies the Kato’s cusp condition [5] at the nuclear position, i.e.,
dr=drjr 0¼�2Zr(0), where Z is the nuclear charge. Thus the charge density for
an atom resembles exp(�2Zr) near the nucleus and exp(�2

p
2Ir) (I is the ionization

potential) at the asymptotes [6]. There exists (a yet unproven) postulate termed as the
monotonic density postulate [7] which states that dr=dr< 0 for all r, for ground
states of atoms.

The spherically symmetric atomic momentum densities, in contrast, exhibit mono-
tonic as well as nonmonotonic behavior even in their ground states. Further, it was

Pz

Pz

Pz

Py

Py Py
Py

Px Px
Px

Px

FIGURE 5.2 The s, px, d
2
z , dxy Gaussian functions with exponent a¼ 1.0 in momentum
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shown by Smith and Benesch [8] that they exhibit an asymptotic decay �p 8.
Two examples of ground state atomic densities for He and Ne are depicted in
Figure 5.3. In contrast to the monotonic momentum density of He, the momentum
density of Ne has a minimum at p¼ 0 and a maximum at p¼ 0.9 a.u. The behavior
of the spherically averaged ground state atomic densities has been studied in detail [9].
A nonmonotonic behavior has been noticed by Thakkar [10a] for carbon, nitrogen,
oxygen, fluorine, neon, and argon atoms. The carbon, nitrogen, oxygen, and fluorine
atoms were found to show atmost three maxima in their spherically averaged momen-
tum densities. Later, Koga et al. [10b] classified the 103 elements of the periodic
table into three groups with atoms being: (1) monotonic (2) nonmonotonic, and (3)
those having two maxima, one at p¼ 0 and the other at p > 0.

At this point, one may wonder why there is an interest in the atomic momentum
densities and their nature and what sort of information does one derive from them. In
a system in which all orientations are equally probable, the full three-dimensional
(3D) momentum density is not experimentally measurable, but its spherical average
is. The moments of the atomic momentum density distributions are of experimental
significance. The moments and the spherically averaged momentum densities are
defined in the equations below.

I(p) ¼ (1=4p)
ð
g(p)p2 sin up dup dfp (5:3)

hpni ¼ 4p
ð
I(p)pndp, for �2 � n � 4 (5:4)
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These moments have a physical significance with n¼ 2, giving a measure of the
kinetic energy of the atom, n¼�1 being proportional to the peak heights of
experimentally measurable Compton profiles, n¼ 1 giving measures of shielding
in nuclear magnetic resonance, and n¼ 4 being equivalent to the Breit Pauli
relativistic correction.

5.2 MOLECULAR ELECTRON MOMENTUM DENSITIES

The chemistry of momentum densities becomes more interesting when one goes over
to molecules. There is an inherent stabilization when atoms bond together to form
molecules. One of the first chemical interpretations of the EMD was presented by
Coulson [11]. The simplest valence bond (VB) and molecular orbital (MO) wave
functions for H2 molecule given in the following equations were used for this
purpose:

CMO ¼ 1

2(1þ S2)
p wa(r1)þ wb(r1)½ � (5:5)

CVB ¼ 1

2(1þ S)
p wa(r1)wb(r2)þ wa(r2)wb(r1)½ � (5:6)

Here wa is the 1s atomic Slater functions (a3=2=p1=2) exp(�ajr� raj) with the atom
being centered at position vectors ra. The overlap between these functions is given by
S. After an FT and integrating over momentum coordinates of one particle, the EMD
of H2 molecule within VB and MO theory are derived as

jg(p)j2 ¼ 1þ cos p � (ra � rb)½ �
1þ S

jA(p)j2 (5:7)

jg(p)j2 ¼ 1þ S cos p � (ra � rb)½ �
1þ S2

jA(p)j2 (5:8)

where
(ra� rb) is the bond vector A(p) is the FT of the 1s atomic Slater function.
It is interesting to note that the factor cos[p � (ra� rb)] induces a maximality in a

momentum direction perpendicular to (ra� rb), i.e., bonding direction because for
p � (ra� rb)¼p=2, it becomes zero and for p � (ra� rb)¼ o, it attains a maximum.
Coulson termed the factor 1þ cos[p � (ra� rb)] as a diffraction factor in analogy with
intensity of diffraction patterns. The maximal nature of the EMD perpendicular to the
position space bonding directions was termed as the bond directionality principle.
The maximal directions in the EMD and the corresponding position space density for
H2 molecule are illustrated in Figure 5.4. The coordinate space charge density shows
the cusp maxima at the nuclear positions, even evidencing the bonding, where the
density is a minimum on a line connecting the two nuclei and a maximum in
comparison with all directions perpendicular to it. Analyzing the isosurfaces of the
corresponding momentum density, it is seen that the contours have a larger extent
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along the Px direction and a smaller extent along the Pz axis, which is perpendicular
to the X-axis in the coordinate space.

The next step for Coulson was towards polyatomic systems of ethylene, butadi-
ene, and naphthalene [11]. He concluded that, ‘‘Whenever there is a certain direction
in a molecule such that several bonds lie exactly or close along it, then the
momentum is likely to have a small component rather than a large one in this
direction. In the case of consecutive or conjugated bonds, this tendency is consider-
ably enhanced due to the high mobility of certain electrons. High mobility in any
direction usually gives rise to low values of momentum in this direction.’’ Thus was
the graphical generalization of the bond directionality principle which would be
again referred to in the latter part of this chapter. Several studies on molecular EMDs
and Compton profiles were reported by Epstein and Lipscomb [12] in 1970s, in
which localized MOs were employed.

The EMD is closely related to intensities obtained from Compton scattering
experiments, in which the obtained distribution depends on the incident wavelength
and the scattering angle. The intensity of the scattered radiation is proportional to the
theoretically obtained Compton profile given by the equation

J(q) ¼ 1
2

ð1

q

I(p)dp

p
(5:9)

where I(p) is the spherically averaged EMD given by Equation 5.3. These relation-
ships provided a method for estimating the electronic energy of a molecular system
from the Compton line shapes via the virial theorem. By virial theorem, the elec-
tronic energy of Coulombic systems is the negative of the kinetic energy and can be
obtained from the Compton profiles as [13],

Emol ¼ � 1
2

ð1

0

p2I(p)dp ¼
ð1

0

p3
dJ

dq

� �
q¼p

dp ¼ �3
ð
p2J(p)dp (5:10)
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FIGURE 5.4 (See color insert following page 302.) Coordinate and momentum space
charge densities of H2 molecule illustrating the bond directionality principle. Isosurfaces from
0.04 to 0.01 a.u. are plotted for the coordinate space charge density (a). Isosurfaces from 1.0 to
0.01 a.u. are plotted for the momentum space charge density (b).
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In chemistry, several properties such as enthalpy of formation, dipole moments, etc.,
are analyzed for molecules on the basis of an additivity approximation. The same
was applied to Compton profiles by Eisenberger and Marra [14], who measured the
Compton profiles of hydrocarbons and extracted bond Compton profiles by a least
squares fitting. This also enabled an approximate evaluation of the energy of these
systems from the virial theorem.

All these and other related studies gave rise to some qualitative and semiquanti-
tative principles as a guide to interpret molecular EMDs. These principles apart from
the previously described FT one, are as follows:

1. Virial theorem: Lowering the energy of system either by an improved wave
function or by a chemical change such as bonding, leads to a shift of
momentum density from regions of lower to higher momentum.

2. Bond oscillation principle: In the spirit of the bond directionality principle
advocated by Coulson, Kaijser and Smith [15] proposed that the momentum
distributions and Compton profiles associated with the bond will exhibit
oscillations.

3. Hybrid orbital principle: Increased p character in an spn-type hybrid orbital
results in increased density at higher momentum.

The above qualitative principles are useful for chemical interpretation of molecular
EMDs. The first step for a quantitative analysis is to study the nature of EMDs and
characteristics with respect to symmetry and topography.

5.3 SYMMETRY IN MOMENTUM SPACE

The 3D profiles of momentum densities on examination, initially, baffle a chemist
who is very familiar with coordinate space densities, because of the absence of a
nuclei-centric structure. Symmetry is manifested in chemistry via molecular geom-
etries as revealed by nuclear structure. However, EMDs have an additional charac-
teristic of being inversion symmetric, viz., g(p)¼ g(�p). This inversion symmetry
arises [15 17] due to the FT involved in obtaining the momentum space wave
function, which is a precursor to the momentum density. Examining the definition
of momentum densities as given by the Equations 5.1 and 5.2 and taking a complex
conjugate of the integral, the following expression is derived:

g(p) ¼ g(p)* ¼ (2p) 3
ð
e ip�(r r0)G(rjr0)d3rd3r0

� 	
*

¼ (2p) 3
ð
eip�(r r0)G(rjr0)d3rd3r0 ¼ g(�p) (5:11)

Here G(rjr0) signifies what is termed as the first-order reduced density matrix, which
is defined as

G(rjr0) ¼ N

ð
C(r, r2, r3, . . . , rN)C*(r0, r2, r3, . . . , rN)d3r2d3r3 . . . d3rN (5:12)
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A visual manifestation of this inversion symmetry is given in Figure 5.5, for the
momentum density of water molecule. The position space symmetry of water
molecule as per the familiar group theoretical terms, is given by the point group
C2v, whose symmetry operations have been given in the figure. This point group is
purely due to the geometry of the water molecule. In momentum space, the nuclei are
absent and hence the symmetry is given by the profiles of the 3D EMD. For the
EMD, it can be seen that it is the maximal nature of the profiles that dictates the
symmetry. The effect of the inversion property is quite evident in the profile which
converts it to a D2h point group [17]. Obtaining theoretically, the point groups in
momentum space involves a direct product of the group in position space with the
inversion operator i. This is worked out in Table 5.2 for the point group C2v. The
point group in position and momentum spaces remains the same when the group
already contains the inversion operator i.

5.4 TOPOGRAPHY OF ELECTRON MOMENTUM DENSITIES

The next step toward a systematic analysis of the structure of EMDs is an examin-
ation of its topography (Greek, topos, place; graphia, writing) [18]. Topography is
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FIGURE 5.5 Symmetry enhancement from coordinate to momentum space: C2v to D2h for
water molecule.

TABLE 5.2
Direct Product Table for C2v Point Group in Coordinate Space with i to Give
the D2h Point Group in Momentum Space

C2v!D2h E C2(z) s(xz) s(yz) i s(xy) C2(x) C2(y)

E E C2(z) s(xz) s(yz) i s(xy) C2(x) C2(y)

C2(z) C2(z) E s(yz) s(xz) s(xy) i C2(y) C2(x)
s(xz) s(xz) s(yz) E C2(z) C2(y) C2(x) s(xy) i

s(yz) s(yz) s(xz) C2(z) E C2(x) C2(y) i s(xy)

i i s(xy) C2(y) C2(x) E C2(z) s(yz) s(xz)
s(xy) s(xy) i C2(x) C2(y) C2(z) E s(xz) s(yz)
C2(x) C2(x) C2(y) s(xy) i s(yz) s(xz) E C2(z)
C2(y) C2(y) C2(x) i s(xy) s(xz) s(yz) C2(z) E
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described in terms of isosurfaces, critical points (CPs), gradient paths, etc. Bader [19]
has pioneered the use of topographical concepts in chemistry, with major emphasis
on the nature of the coordinate space charge density. The CP of a 3D function is
defined as a point at which all its first-order partial derivatives vanish. The nature of
the CP of a 3D function f(x1, x2, x3) is then determined by the Hessian matrix at the
CP, viz., Hij¼ @2f=@xi@xjjCP [17]. The number of nonzero eigenvalues of the Hessian
matrix is termed as its rank R which is equal to the order of the largest square
submatrix whose determinant is nonzero. If all the eigenvalues of the Hessian matrix
are nonzero, then the CP is termed to be nondegenerate. To determine whether the
CP is a minimum, maximum or a saddle, a quantity defined as the signature, s, is
used. The signature of a CP is equal to the algebraic sum of the signs of the
eigenvalues. For a 3D function, there can be four types of nondegenerate CPs. The
notation used for them will be of the form (R, s) and they are

1. (3, þ3), a true minimum in all directions
2. (3, þ1), saddle which is a maximum at least in one direction
3. (3, �1), saddle which is a minimum at least in one direction
4. (3, �3), a true maximum in all directions

The topography of EMD was extensively mapped and analyzed by Kulkarni and
Gadre [20], for a variety of molecules. The inversion symmetric nature of the scalar
field requires the point p¼ 0 to be a CP. The nondegenerate CP at p¼ 0 is unique in
its nature as determined by the value of EMD and its signature. The CPs occurring
elsewhere follow a hierarchy as shown in Table 5.3, with the signature increasing
with respect to the CP at p¼ 0. The CP at p¼ 0 is thus a harbinger of the topography
of the complete scalar field. When a (3, þ3) is at p¼ 0, all the other types of CPs
((3, þ1), (3, �1) and (3, �3)) are found elsewhere. For a (3, þ1) at p¼ 0, (3, �1),
and (3, �3) CPs and for a (3, �1) CP at p¼ 0 only (3, �3) CPs occur at other p. A
true maximum at p¼ 0 is a unique CP with no other CP occurring elsewhere. The
question ‘‘why is there such a structure for EMDs?’’ is unanswered and needs further
examination and attention.

TABLE 5.3
Depiction of the Hierarchy Principle of CPs
in EMD

CP at p 0 CP Found Elsewhere

(3, þ3) (3, þ1), (3, 1), (3, 3)

(3, þ1) (3, 1), (3, 3)
(3, 1) (3, 3)
(3, 3) No other CP found

Source: Kulkarni, S.A., Gadre, S.R., and Pathak, R.K., Phy.
Rev. A., 45, 4399, 1992; Balanarayan, P. and

Gadre, S.R., J. Chem. Phy., 122, 164108, 2005.
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5.5 CHEMISTRY IN MOMENTUM SPACE

Although the absence of nuclei-centric structure makes direct chemical interpretation
difficult, the EMD does have some other advantages. For instance, it is related to
energy via the virial theorem stated previously and carries the valence information
around p¼ 0. The entire nature of EMD topography is fixed by that at p¼ 0, as
described by the hierarchy principle.

Analyzing the chemical reactions in momentum space, armed with just the infor-
mation around p¼ 0 has been one of the attractive prospects of momentum space [20].
This information could be in the form of g(0) or the entire set of eigenvalues at 0. The
information around p¼ 0 indeed refers to the ‘‘valence region,’’ which is of supreme
importance for understanding the chemical reactions. For a corresponding study in
position space, a search for various bond-, ring-, and cage-type CPs has to be carried
out in three dimensions. On the other hand, in the momentum space, the information
around a single point could be used as a practical tool for probing the chemical reactions
[20]. The nature of the EMD for the isomerization reaction of HCN toHNC is portrayed
in Figure 5.6. The snapshots of themomentumdensities at various points on the reaction
path are plotted. The close connection with energetics is apparent in momentum space,
with the nature of the CP at p¼ 0 changing around the transition state and the EMD
values at zero momentum closely following the energetics.

Yet another chemical concept that has been related to EMDs is strain [21]. The
classical definition of molecular strain originated in the work of Baeyer. In modern

−92.84

−92.86

−92.88

−92.90

−92.92
−6 −4 −2 0 2 4 6 8

Ps

Px

Py

Py

Y

X

En
er

gy

Reaction coordinate for HNC to HCN

FIGURE 5.6 (See color insert following page 302.) Momentum and coordinate space
charge density profiles for the reaction path from HNC to HCN.
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terms, carbon atoms whose bond angles deviate substantially from standard bond
angles 109.58, 1208, and 1808, respectively, for sp3, sp2, and sp hybrid orbitals are
said to be strained. Interestingly, the ‘‘bent banana bond’’ model of cyclopropane
was introduced by Coulson and Moffitt [22], whose preliminary findings triggered
the interest in molecular EMDs. The topographical features of EMD provide a
measure of molecular strain through angular deviations and bond ellipticities as put
forth by Bader and coworkers [19]. As noted earlier, EMDs have an interpretative
problem in this respect, as they lack an atom-centric visual description of molecular
structure. However, EMDs are intimately connected to kinetic energy densities, which
in turn can be closely linked with strain, as it is heuristically expected.

The effects of ring strain are manifested in the momentum densities as: (1) The
momentum density at p¼ 0 is higher in magnitude for the strained system as
compared to its unstrained isomeric counterparts, with the distribution tending to a
maximum at low momenta. (2) A partitioning of the total distribution into atoms
reveals that the carbons accumulate more density in comparison with the unstrained
reference, and the hydrogens are more positive. (3) Within the strained systems, the
carbons become less negative with increasing strain. (4) The spherically averaged
values also seem to indicate crowding of the density around p¼ 0, although there is a
loss of information on spherical averaging.

Particular instances in which the absence of nuclear structure for EMD has
turned out to be a blessing in disguise are those in quantitative structure activity
relationships (QSAR) [24 27] and molecular similarity. One of the most popular
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FIGURE 5.7 Momentum density isosurfaces (in a.u.) of cyclopropane and (a) momentum
density of tetrahedrane along the pz axis. Parts b, c, and d show the variation of the density for
the same axis for a single, two, and three CH2 insertions, respectively.
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similarity measures based on coordinate space charge densities is known as the
Carbó index [24 27], which is a correlation measure between two charge densities.
An important step in its evaluation involving translation and rotation of one of the
species, is to find a particular alignment that maximizes this correlation measure and
hence does involve some computation. However, such a problem of alignment does
not arise at all in momentum space due to the absence of a nuclei-centric structure.
The only operation involved is rotation around any fixed axis. This advantage for
EMDs [24 27] has made it a good ‘‘descriptor’’ in several QSAR studies such as
similarity measures for Hammond’s postulate and prediction of water octanol par-
tition coefficients.

The nature of bonding in solids can also be probed via experimental Compton
profile measurements. Philips and Weiss [28a] had investigated the bonding in
LiF by analyzing the Compton profiles. They noticed that the momentum density
of LiF was more similar to superposition of the momentum densities of Liþ and F ,
rather than a superposition of the momentum densities of Li0 and F0. Thus it
was possible to conclude about the degree of ionicity involved in the bonding of
LiF. There have been several experiments on solids, metals, etc., involving the
measurement of momentum densities. A discussion of these is beyond the scope
of this chapter. The reader is referred to a comprehensive book giving these
details [28b].

5.6 MOMENTUM DENSITY MEASUREMENTS:
SPECTROSCOPIC TECHNIQUES

Several experimental techniques such as Compton scattering, positron annihilation,
angular correlation, etc., are used for measuring momentum densities. One of the
most popular techniques involved in measuring momentum densities is termed as
electron momentum spectroscopy (EMS) [29]. This involves directing an electron
beam at the surface of the metal under study. Hence EMS techniques fall under what
is classified as coincidence spectroscopy.

The experiment uses a beam of electrons of known kinetic energy E0 and known
momentum k0. The beam is incident on a target consisting of atoms, molecules, or a
solid film. The incident electron knocks a second electron out of the target both of
which are detected. Their kinetic energies and momenta, Ef and kf for the faster one
and Es and ks for the slower one, are observed. The binding energy « and momentum
q of the target electron are given by «¼E0�Es�Ef and q¼ ks� kf� k0. In
the independent-particle model, the probability that one measures a certain binding
energy momentum combination is proportional to the absolute square of the
momentum space orbital of the target electron, which hence gives the momentum
density of the orbital, via a fitting procedure of theoretically obtained orbital
momentum densities.

These experiments have been applied to a variety of molecules, the predominant
ones being strained organic molecules such as cubane, norbornane, cyclopropane,
etc. [30 33]. Recently, van der Waals complexes of formic acid have been subjected
to EMS spectroscopy [34].
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5.7 INTERCONNECTIONS BETWEEN POSITION
AND MOMENTUM SPACES

The Schrödinger equation in momentum space for a single particle system is
obtained on taking an FT of its position space counterpart in the form

p2

2
f(p)þ

ð
V(p� p0)f(p0)d3p0 ¼ Ef(p) (5:13)

where V(p) ¼ (�2p) 3=2
Ð
V(r) exp (�ip � r)d3r. The multiplicative potential energy

operator in position space thus leads to a convolution procedure involving FT. The
kinetic energy operator has become local and multiplicative. Attempts at solving the
momentum space Schrödinger equation for the multielectron He atom were pioneered
by McWeeny and Coulson [35a] who presented a solution for the Hþ

2 molecular ion.
However, due to difficulties in solving integral equations accurately, no significant
progress seems to have been made in the literature, although there have been a few
attempts in that direction [35b,c].

The position space density study has immensely benefitted from the development
of density functional theory (DFT) [36], wherein the energy is evaluated solely from
the knowledge of the 3D function, i.e., the position space charge density. Such a
development for momentum densities has not yet been achieved, the difficulty being
in the handling of integrals of the Coulombic kind. The Hohenberg Kohn theorem,
which is the fundamental basis of DFT emerges as an existence theorem in momentum
space [37]. The advantage in momentum space is again the local multiplicative nature
of the kinetic energy functional. Invoking quasiclassical consideration, Pathak and
Gadre [38] had formulated an approximate DFT for atoms in momentum space, which
yielded quick estimates for gross properties in momentum space.

A standing problem related to momentum space densities is a one-to-one
mapping with coordinate space densities, which to date has not yet been solved.
Given just the position space charge density of a molecule what would be its
corresponding momentum density and vice versa? A direct answer to such a question
would certainly aid in chemical interpretation. The FT of the coordinate space charge
density leads to the scattering factor f(k), which is measured in an X-ray crystallo-
graphic experiment. The inverse FT of the momentum density also does not yield the
position space charge density. Hence, there have been several approximate relations
found connecting the position and momentum space. A simple and approximate
semiclassical procedure has been outlined in the literature [39]. In this study, the
spherically averaged momentum densities and thereby the Compton profiles were
estimated only from the knowledge of the coordinate space charge density. The
momentum p is evaluated from the coordinate space charge density r(r) as p¼
(3=10)[3p2 r(r)]1=3 and the approximate spherically averaged momentum density for
this p is related to the volume enclosed by the isosurface of r(r) at that momentum
value [39].

Yet another indirect connection between momentum and coordinate space
charge densities is derived via a quantity called the Shannon information entropy
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[40]. The information entropy of a probability distribution is defined as S[pi]¼�S pi
ln pi, where {pi} forms the set of probabilities of a distribution. For continuous
probability distributions such as momentum densities, the information entropy is
given by S[g]¼�Ð

g(p) ln g(p) d3p, with an analogous definition in position space
[41]. The information entropy is a quantitative measure of the uncertainty in a
distribution with lower information entropy giving lesser uncertainty, which implies
a higher probability for a particular event. The FT relationship between position and
momentum space and the inverse behavior in both the spaces hence connect the
information entropies of the distributions as well. An interesting uncertainty type
relation has been given by Białynicki-Birula and Mycielski [42] in terms of the
information entropies as �hlnj�j2i� hlnjFj2i	n(1þ ln p). Gadre and Bendale
[43] derived a lower bound to the sum of information entropies in position and
momentum spaces, viz., S[r]þ S[g] 	 3N(1þ ln p)� 2N ln N. This led to postu-
lating a new maximum entropy principle [43] in dual spaces, which has been used in
a variety of applications.

5.8 CONCLUDING REMARKS

Starting from the FT of hydrogenic orbitals to EMDs of molecules and solids, the
work on momentum densities has progressed through several phases, dealing with
interpretation, spectroscopic measurements, and practical aspects of energy evalu-
ation. As seen earlier, the Schrödinger equation is not easily solvable in momentum
space. Rigorous as well as pragmatic interconnections between position and
momentum densities need to be built. For a chemist and physicist, the momentum
density still remains a mystery with the absence of nuclear structure, making
it difficult to interpret. In spite of this, the very absence of nuclear structure has
made EMDs amicable to similarity studies in QSAR. The local nature of kinetic
energy and the availability of valence information around p¼ 0 has proved to be
useful in a practical sense.

To derive some chemistry out of the momentum distribution, a bridge between
the electron densities in position and momentum spaces needs to be built. The studies
in momentum space are therefore still a breeding ground for further conceptual and
developmental work.
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6.1 INTRODUCTION

The study of behavior of many-electron systems such as atoms, molecules, and
solids under the action of time-dependent (TD) external fields, which includes
interaction with radiation, has been an important area of research. In the linear
response regime, where one considers the external field to cause a small perturbation
to the initial ground state of the system, one can obtain many important physical
quantities such as polarizabilities, dielectric functions, excitation energies, photo-
absorption spectra, van der Waals coefficients, etc. In many situations, for example,
in the case of interaction of many-electron systems with strong laser field,
however, it is necessary to go beyond linear response for investigation of the
properties. Since a full theoretical description based on accurate solution of TD
Schrodinger equation is not yet within the reach of computational capabilities, new
methods which can efficiently handle the TD many-electron correlations need to
be explored, and time-dependent density functional theory (TDDFT) is one such
valuable approach.
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One of the important concepts that has led to tremendous advantages for
describing the properties of atoms, molecules, and solids is the concept of single-
particle electron density [1]. It provides a conceptually simple and computationally
economic route to the description of many-particle systems within a single-particle
framework through the well-known theoretical approach known as density func-
tional theory (DFT) [2 4], which uses the single-particle electron density as a basic
variable. While there has been conspicuous success of DFT for the ground state of
many-electron systems, the progress in the area of excited states and TD situations
has been rather less spectacular.

The precursor of DFT is the well-known Thomas Fermi (TF) theory [5], which
was proposed as a thermodynamic and electrostatic model of the electron cloud in
atoms, soon after the Schrodinger equation-based formulation of quantum mechanics
was proposed. A corresponding TD version of the TF theory followed soon through
the work of Bloch [6]. The static TF theory, although introduced initially in a
somewhat intuitive manner, was later upgraded to the status of a rigorous
DFT when it was derived as its approximate version with a local density form for
the kinetic energy density functional and neglecting the exchange correlation (XC)
contribution altogether. The TD theory of Bloch is also essentially a phenomeno-
logical and approximate version of a more general TDDFT. Both TF and Bloch theory
have been strongly based on an underlying classical picture of the electron cloud. The
desire to have a classical interpretation of the strange world of quantummechanics was
so strong that soon after the Schrodinger equation was proposed, its hydrodynamic
analog was derived by Madelung [7] and the resulting framework of quantum fluid
dynamics (QFD) [8,9] played a major role in the development of TDDFT in later
years. A major aspect in which TDDFT differs from DFT is the roping of the
additional density variable, i.e., the current density in addition to the electron density.

DFT was formally born through the pioneering work of Hohenberg and Kohn
(HK) [3], which demonstrated the uniqueness of the density to potential mapping for
the ground state of many-electron systems. A formal TDDFT was born much later
mainly through the works of Peuckert [10], Bartolotti [11], and Deb and Ghosh [12]
on oscillating time dependence and subsequently, Runge and Gross [13] paved the
way to a generalized TDDFT for an arbitrary scalar potential, which was later
extended to TD electric and magnetic fields with arbitrary time dependence by
Ghosh and Dhara [14]. Besides the formal foundations of DFT and TDDFT, for
practical application, a suitable form of the XC energy density functional is also
needed. In absence of an exact form for this quantity, several approximate forms are
in use and the situation is more critical for TD potentials where the development has
been rather less exhaustive. For excellent recent reviews, see Refs. [15 19].

In what follows, we present in this short review, the basic formalism of TDDFT
of many-electron systems (1) for periodic TD scalar potentials, and also (2) for
arbitrary TD electric and magnetic fields in a generalized manner. Practical schemes
within the framework of quantum hydrodynamical approach as well as the orbital-
based TD single-particle Schrodinger-like equations are presented. Also discussed is
the linear response formalism within the framework of TDDFT along with a few
miscellaneous aspects.
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6.2 DENSITY FUNCTIONAL THEORY OF MANY-ELECTRON
SYSTEMS FOR TIME-INDEPENDENT AND PERIODIC
TIME-DEPENDENT POTENTIALS

The DFT, as already stated, was formally born with the pioneering works of Hohen-
berg and Kohn [3] who proved a theorem demonstrating a unique mapping between
the electron density of a many-electron system and the external potential that charac-
terizes the system. In the Hohenberg Kohn Sham version of DFT, the energy of an
N-electron system characterized by an external potential vN(r) (say, due to the nuclei)
is expressed as a functional of the single-particle electron density r(r), and is given by

E[r] ¼ Ts[r]þ
ð
drvN(r)r(r)þ Uint[r]þ Exc[r] (6:1)

where Ts[r] is the kinetic energy of a fictitious noninteracting system of same
density, given by

Ts[r] ¼ � h2

2m

X
k

< c�
k(r)jr2jck(r) > , (6:2)

Uint[r] is the classical Coulomb energy and Exc[r] is the XC energy. It is the
functional form of this XC functional, which is usually approximated in absence
of an exact expression. The one-electron orbitals {ck(r)} are obtained through self-
consistent solution of the Kohn Sham equations

� h2

2m
r2 þ veff(r)

� �
ck(r) ¼ «kck(r), (6:3)

where the effective potential is given by

veff (r) ¼ vN(r)þ vSCF(r); vSCF(r) ¼ vCOUL(r)þ vXC(r);

vCOUL ¼ dUint

dr

� �
; vXC ¼ dExc

dr

� �
: (6:4)

Although originally proved for the ground state, the scope of the theorem was later
extended to include excited states, and oscillating TD potentials. For systems
subjected to external potential vext(r, t) with periodic time dependence, Deb and
Ghosh [12] proved a HK-like theorem by considering the Hamiltonian for the steady
state, i.e., (H(t)� ih(@=@t)) and following a HK-like procedure using the minimal
property of the quasienergy quantity defined as a time average of its expectation
value over a period. They derived the TD analog of the Kohn Sham equation,
given by

� h2

2m
r2 þ vN(r)þ vext(r, t)þ vSCF(r, t)

� �
ck(r, t) ¼ ih

@

@t

� �
ck(r, t) (6:5)
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to calculate the electron density and the current density using the relations

r(r, t) ¼
X
k

c�
k(r, t)ck(r, t); (6:6a)

j(r, t) ¼ � ih

2m

X
k

c�
k(r, t)rck(r, t)� ck(r, t)rc�

k(r, t)
� �

: (6:6b)

The effective potential has a form similar to that for the time-independent case
with the density argument replaced by the TD density variable. Also some of the
functionals may be current density dependent.

6.3 FORMAL FOUNDATIONS OF DENSITY FUNCTIONAL
THEORY FOR TIME-DEPENDENT ELECTRIC AND
MAGNETIC FIELDS

As already mentioned, the scope of the original HK theorem was extended to include
excited states, oscillating TD potentials, and also the case of arbitrary time depend-
ence. The elegant work of Runge and Gross [13] on the TDDFT corresponding to
arbitrary TD scalar potentials [20] has been extended [14] to aribitrary TD scalar as
well as TD vector potentials, thus enabling it to be applicable to the study of
interaction with electromagnetic radiation, magnetic field, etc. We present here the
formalism for TD electric and magnetic field, so that the other cases can be derived
as special cases of this generalized situation.

We consider an N-electron system where the electrons experience the mutual
Coulomb interaction along with an external potential vN(r) due to the nuclei. The
system is then subjected to an additional TD scalar potential f(r, t) and a TD vector
potential A(r, t). The many-electron wavefunction c(r1, r2, . . . , rN; t) of the system
evolves according to the TD Schrodinger equation

ih
@

@t
� Ĥ

� �
c ¼ 0, (6:7)

where the many-body Hamiltonian Ĥ can be written, using the Coulomb gauge
r �A¼ 0, as

Ĥ ¼ Ĥ0 � e
X
k

f(rk, t)� i
eh

mc

� �X
k

A(rk , t) � rk þ e2

2mc2

� �X
k

A2(rk, t) (6:8a)

with

Ĥ0 ¼ � h2

2m

� �X
k

r2
k þ

X
k

vN(rk)þ e2
X
k<l

1
jrk � rlj , (6:8b)

where the spin-dependent terms are omitted and other symbols have their usual
significance.
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The single-particle electron density r(r, t) and the current density j(r, t), which
are defined as the expectation values,

r(r, t) ¼ hcjr̂jci; j(r, t) ¼ hcĵjjci, (6:9)

of the density operator �̂ and the current density operator ĵ given, respectively, by

r̂ ¼
X
k

d(r� rk) (6:10a)

and

ĵ ¼ ĵ0 þ
e

mc

X
k

A(rk, t) d(r� rk);

ĵ0 ¼ � ih

2m

X
k

rkd(r� rk)þ d(r� rk)rk½ �,
(6:10b)

are the two basic variables of the TDDFT for such systems.
Following the approach of Runge and Gross [13], Ghosh and Dhara [14] proved

that if the two potentials f(r, t) and A(r, t) can be expanded into Taylor series with
respect to time around t¼ t0, both the potentials are uniquely (apart from only an
additive TD function) determined by the current density j(r, t) of the system.

Let us first consider two scalar potentials f(r, t) and f0(r, t), which differ by
more than a mere TD function, and two vector potentials A(r, t) and A0(r, t), which
are also different. Their Taylor expansions demand that there must exist at least one
time derivative of the potentials differing from zero, in the case of scalar as well as
vector potentials. In other words, there must exist a minimal nonnegative integer, say
k for the scalar potential and l for the vector potential, such that

@n

@tn

� �
f(r, t)� f0(r, t)ð Þ

����
t¼t0

6¼ 0, n ¼ k
¼ 0, 0 � n < k

(6:11a)

@n

@tn

� �
A(r, t)� A0(r, t)ð Þ

����
t¼t0

6¼ 0, n ¼ l
¼ 0, 0 � n < l:

(6:11b)

Let the two densities corresponding to the two potential sets {f(r, t), A(r, t)} and
{f0(r, t), A0(r, t)} be denoted by r(r, t) and r0(r, t) and the two current densities be
j(r, t) and j0(r, t), respectively. We assume, without any loss of generality, the
evolution to be from a fixed initial state c(t0), i.e., at t¼ t0, r(t0)¼ r0(t0), j(t0)¼
j0(t0), and also f(t0)¼f0(t0); A(t0)¼A0(t0).

The time derivative of the current density can easily be obtained from the general
equation of motion for an arbitrary operator �̂(t), given by

ih
d

dt

� �
hc(t)jV̂(t)jc(t)i ¼

	
c(t) ih

@

@t

� �
V̂(t)þ V̂(t), Ĥ(t)

h i����
����c(t)



(6:12)
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by specializing to the current density operator ĵ(t) given by Equation 6.10b, thus
leading to

ih
d

dt

� �
j(r, t) ¼

	
c(t) ih

@

@t

� �
ĵ(t)þ ĵ(t), Ĥ(t)

h i����
����c(t)



(6:13a)

¼
	
c(t) ih

e

mc

� �X
k

@

@t

� �
Ak(t)d(r� rk)þ ĵ(t), Ĥ(t)

h i�����
�����c(t)



: (6:13b)

By applying the equation of motion repeatedly, say for n times and making use of the
initial conditions at t¼ t0, one obtains considering both j and j0 after some algebra,
the result

ih
@

@t

� �n
j(r, t)� j0(r, t)½ �

����
t¼t0

¼ e

mc

� �
r(r, t0) ih

@

@t

� �n
A(r, t)� A0(r, t)½ �

����
t¼t0

þ ih
e

m

� �
r(r, t0)r ih

@

@t

� �n 1

f(r, t)� f0(r, t)½ �
�����
t¼t0

8<
:

9=
; (6:14)

where all the lower derivatives of the differences of the potential terms have been
assumed to vanish. Equation 6.14 is the key equation on which the proof that follows
is based.

Ghosh and Dhara [14] considered three possibilities for the relative values of
n, k, and l, i.e., the cases (1) l> kþ 1, (2) l< kþ 1, and (3) l¼ kþ 1. In the first case,
i.e., for the choice n¼ kþ 1< l, clearly the first term on the right-hand side of
Equation 6.14 vanishes but the second term is nonzero according to Equation
6.11a, thus implying that the left-hand side of Equation 6.14 is nonzero. Hence it
is clear that there exists at least one (nth with n¼ kþ 1) derivative of the difference
of the two current densities j(r, t) and j0(r, t) appearing in their Taylor expansion,
which is nonzero. It implies that they will differ infinitesimally after t¼ t0. In the
second case, for the choice n¼ l< kþ 1, the second term on the right-hand side of
Equation 6.14 vanishes but the first term remains as nonzero and hence once again, at
least one (nth with n¼ l) derivative of the two current densities j(r, t) and j0(r, t)
appearing in their Taylor expansion is different. This situation also clearly implies
that the two current densities will differ infinitesimally after t¼ t0. Analogous
conclusion has been reached for the third case as well. For the first case, it has
also been shown by coupling Equation 6.14 with the continuity equation that at least
one (kþ 2)th derivative of the two electron densities r(r, t) and r0(r, t) is different,
implying that the two densities will differ infinitesimally after t¼ t0.

Thus, it is clear that the two sets of TD potentials {f(r, t), A(r, t)} and {f0(r, t),
A0(r, t)} cannot lead to the same current density j(r, t) even if only any one of them is
different. Thus, the current density j(r, t) fixes both scalar and vector potentials
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uniquely (apart from arbitrary constant or gauge transformation). The current density
j(r, t), of course, determines the electron density uniquely as is obvious from the
continuity equation which relates the two. The energy and other quantities for the TD
problems can, therefore, be treated as functionals of the current density or more
conveniently as functionals of both j(r, t) and r(r, t) unlike the stationary ground
state where electron density alone suffices as a basic variable.

6.4 PRACTICAL SCHEMES FOR THE CALCULATION OF DENSITY
AND CURRENT DENSITY VARIABLES IN TDDFT

It has been shown that for practical calculation of the density quantities r(r, t) and
j(r, t), one can have several schemes of which we discuss only two. In the first
scheme, one has to solve the hydrodynamical equations, i.e., the continuity equation

@

@t

� �
r(r, t)þr:j(r, t) ¼ 0 (6:15)

and the Euler equation

@

@t

� �
j(r, t) ¼ P{v} r(r, t), j(r, t)½ � (6:16)

where the vector P{v}[r(r, t), j(r, t)] is a functional of the two densities r(r, t) and
j(r, t) for specified external potential denoted by {v}, and can be written as

P{v} r(r, t), j(r, t)½ � ¼ 1
ih
hc(t)j[̂j0, Ĥ0]jc(t)i

� 1
m
r(r, t) rvN(r)þ eE(r, t)½ � � e

mc
j(r, t)� B(r, t): (6:17)

Here E(r, t) and B(r, t) denote the TD electric and magnetic fields defined by the
scalar and vector potentials as

E(r, t) ¼ �rf(r, t)� 1
c

@

@t
A(r, t); B(r, t) ¼ r� A(r, t) (6:18)

and the operators ĵ0 and Ĥ0 are defined in Equations 6.10b and 6.8b, respectively. In
Equation 6.17, the last two terms on the right-hand side denote the classical forces
due to various external potentials, while the first term corresponds to forces of
quantum origin and includes the XC contributions, which are to be expressed as
density functionals of r(r, t) and j(r, t) so that the set of hydrodynamical equations
(Equations 6.15 through 6.18) can be used for the direct calculation of these
density quantities.
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While the hydrodynamical scheme mentioned above involves the density quan-
tities directly, an alternative second scheme based on their orbital partitioning along
the lines of the Kohn Sham [4] version of time-independent DFT has been derived
by Ghosh and Dhara [14]. In this scheme, one obtains the exact densities r(r, t) and
j(r, t) from the TD orbitals ck(r, t) obtained by solving the effective one-particle TD
Schrodinger-like equations given by

1
2m

�ihrþ e

c
Aeff (r, t)

h i2
þ veff (r, t)

� �
ck(r, t) ¼ ih

@

@t

� �
ck(r, t) (6:19)

and using the relations

r(r, t) ¼
X
k

c�
k(r, t)ck(r, t) (6:20a)

and

j(r, t) ¼ � ih

2m

X
k

c�
k(r, t)rck(r, t)� ck(r, t)rc�

k(r, t)
� �

þ e

mc
r(r, t)Aeff (r, t): (6:20b)

In Equation 6.19, which can be called TD Kohn Sham-type equation, the effective
scalar and vector potentials veff(r, t) and Aeff(r, t), respectively, consist of contribu-
tions from the external potentials augmented by internal contributions determined by
the density variables and can be expressed as

veff(r, t) ¼ vN(r)� ef(r, t)þ c

e

dUint

dr

� �
þ c

e

dExc

dr

� �
þ e2

2mc2

� �
A2
eff � A2

 �
(6:21a)

Aeff (r, t) ¼ A(r, t)þ c

e

dUint

dj

� �
þ c

e

dExc

dj

� �
: (6:21b)

The derivation of these expressions involves lengthy algebra details which can
be found in Ghosh and Dhara [14]. Here, the internal energy Uint[r, j] is
basically the classical Coulomb energy, while the term Exc[r, j] denotes the well-
known XC energy density functional. With a suitable chosen form for Exc[r, j],
Equations 6.19 through 6.21 have to be solved self-consistently for the density and
the current density.

The picture that emerges here is that the density and current density of the actual
system of interacting electrons characterized by the given external potentials are
obtainable by calculating the same for a system of noninteracting particles moving
in the field of effective scalar and vector potentials veff(r, t) andAeff(r, t), respectively.
It is interesting to note that, in a recent work, Vignale [21] has provided a generaliza-
tion of this aspect proving that the TD density and current density of a many-electron
system evolving under the action of fixed external potentials from an initial quantum
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state can be reproduced in another many-particle system with a different two-particle
interaction subjected to other suitable external potentials and starting from an initial
state which yields the same density and current as the original state.

6.5 LINEAR RESPONSE WITHIN TDDFT

From the discussion so far, it is clear that the mapping to a system of noninteracting
particles under the action of suitable effective potentials provides an efficient means
for the calculation of the density and current density variables of the actual system of
interacting electrons. The question that often arises is whether there are effective
ways to obtain other properties of the interacting system from the calculation of
the noninteracting model system. Examples of such properties are the one-particle
reduced density matrix, response functions, etc. An excellent overview of response
theory within TDDFT has been provided by Casida [15] and also more recently
by van Leeuwen [17]. A recent formulation of density matrix-based TD density
functional response theory has been provided by Furche [22].

Here, we consider the response theory which has been successful for many
investigations. For simplicity, we consider the N-electron system to be initially in
the ground state, which is subjected to an external TD electric field. The density
change dr(r, t) induced by an external perturbation dvext(r, t) can be written in the
response theory framework, in terms of quantities in frequency domain as

dr(r, v) ¼
ð
dr0x(r, r0;v)dvext(r0, v) (6:22a)

which can also be rewritten in the form of perturbation in the effective potential
dveff(r0, t) for an equivalent noninteracting system within the Kohn Sham theory as

dr(r,v) ¼
ð
dr0x0(r, r

0;v)dveff (r0,v): (6:22b)

Here, the frequency-dependent response functions x(r, r0; v) and x0(r, r0;v) corres-
pond, respectively, to the actual interacting system and the equivalent Kohn Sham
noninteracting system. Using the expression of the effective potential, one can write

dveff (r,v) ¼ dvext(r,v)þ dvSCF(r,v) (6:23a)

dvSCF(r,v) ¼
ð
dr0

1
jr� r0j þ fXC(r, r

0,v)
� �

dr(r0,v), (6:23b)

where fXC(r, r0,v) is defined in the time domain as

fXC(r, r
0, t � t0) ¼ dvXC(r, t)

dr(r0, t0)
: (6:24)

Time-Dependent Density Functional Theory of Many-Electron Systems 79



Using Equation 6.22a for dr(r0,v) in Equation 6.23 and using Equation 6.22b, one
obtains the integral relation involving the two response kernels, viz.,

x(r, r0;v) ¼ x0(r, r
0;v)þ

ð
dr00

ð
dr000x0(r, r

00;v)

� 1
jr00 � r000j þ fXC(r

00, r000;v)
� �

x(r000, r0;v): (6:25)

Thus, the response kernel for the interacting system can be obtained from that of the
noninteracting system if one has a suitable functional form for the XC energy density
functional for TD systems. The standard form for the kernel x0(r, r00;v) for the
noninteracting system, expressed in terms of the Kohn Sham orbitals ck(r), their
energy eigenvalues «k, and the occupation numbers nk, is given [17,19] by

x0(r, r
0;v) ¼ lim

h!0þ

X
k,l

(nk � nl)
ck(r)c

�
l (r)c

�
k(r

0)cl(r
0)

v� («k � «l)þ ih
: (6:26)

While the present discussion of the response property is limited to scalar potential
only, an analogous description is also possible for the vector potential and a similar
equation can be derived.

6.6 CONCLUDING REMARKS

In this short review, a brief overview of the underlying principles of TDDFT has
been presented. The formal aspects for TDDFT in the presence of scalar potentials
with periodic time dependence as well as TD electric and magnetic fields with
arbitrary time dependence are discussed. This formalism is suitable for treatment
of interaction with radiation in atomic and molecular systems. The Kohn Sham-like
TD equations are derived, and it is shown that the basic picture of the original Kohn
Sham theory in terms of a fictitious system of noninteracting particles is retained and
a suitable expression for the effective potential is derived.

Although TDDFT is considered to be a well-established tool for the investigation
of dynamical properties of molecular systems, development of better and more
accurate XC functionals of density and current density is still an ongoing process.
Spin polarization has been neglected in the present discussion, which is, however,
important particularly in view of the many recent developments in the areas of
magnetism and spintronics. While only a few chosen aspects have been covered in
this chapter to provide a glimpse of the basic formalism, there have been many new
developments in this exciting area of research in recent years.
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7.1 INTRODUCTION

Among various theories of electronic structure, density functional theory (DFT) [1,2]
has been the most successful one. This is because of its richness of concepts and at
the same time simplicity of its implementation. The new concept that the theory
introduces is that the ground-state density of an electronic system contains all the
information about the Hamiltonian and therefore all the properties of the system.
Further, the theory introduces a variational principle in terms of the ground-state
density that leads to an equation to determine this density. Consider the expectation
value hHi of the Hamiltonian (atomic units are used)
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H ¼
X
i

� 1
2
r2

i þ vext(~ri)

� �
þ 1
2

X
i, j
i 6 j

1
j~ri �~rjj (7:1)

of a system of N electrons. In the expression above, vext(~r) is the potential with which
the electrons are moving in. For example, in an atom vext(~r)¼�(Z=r), in a molecule
vext(~r) ¼

P
i Zi=~r �~Ri

�� ��, where Zi indicates the nuclear charge on the ith atom of
the molecule and ~Ri its position, and vext(~r) ¼ 1

2 kr
2 if electrons are moving in a

harmonic potential. While in conventional theory the expectation value hHi is
a functional E[�] of the wave function �, in DFT it is [3] a functional E[r] of the
ground-state density r. The density is given in terms of the wave function as

r(~r) ¼ N

ð
C(~r,~r2,~r3 . . .~rN)j j2d~r2d~r3 . . . d~rN (7:2)

The equation satisfied by the wave function �, the Schrödinger equation, is obtained
by minimizing the functional E[�] with respect to �, with the energy of the system
appearing as a Lagrange multiplier to ensure the normalization of the wave function.
Similarly in DFT, the equation for the density is obtained by minimizing the
functional E[r] with respect to the density r and leads to the Euler equation

dE[r]

dr(~r)
¼ m (7:3)

where m appears as a Lagrange multiplier to ensure that the density integrates to the
correct number of electrons N. The physical interpretation of m as the chemical
potential and its derivatives has been discussed in other chapters of this book. For the
purposes of this chapter, we note that the chemical potential of an electronic system
equals the negative of its ionization energy when an electron is removed from it and
negative of its electron affinity when an electron is added to it [4].

Equation 7.3 can alternatively be written [5] in terms of single particle orbitals as

� 1
2
r2 þ vext(~r)þ

ð
r(~r0)
j~r �~r0j d~r

0 þ vxc(~r)

� �
fi ¼ «ifi (7:4)

where vxc(~r) is known as the exchange-correlation potential. This equation is the famous
Kohn Sham equation of DFT. Its solutions {fi} are called the Kohn Sham orbitals. By
construction, the connection of this equation with Equation 7.3 is through the following
two relations: (1) density r(~r) is given in terms of the single particle orbitals as

r(~r) ¼
X
i

jfi(~r)j2 (7:5)

and (2) the chemical potential m is equal to the eigenvalue «max of the highest
occupied orbital, i.e.,

m ¼ «max (7:6)
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Coupled with the fact that the chemical potential equals the ionization energy of a
system, Equation 7.6 implies that the eigenvalue «max will be equal [4] to the
negative of the ionization potential I of a system, i.e.,

«max ¼ �I (7:7)

This is known as the ionization potential theorem. Equation 7.7 between «max and
ionization potential I can also be obtained alternatively by looking at the asymptotic
behavior of the density of a many-electron system. For atoms and molecules, the
asymptotic decay of the density is given as [6 11]

r(r ! 1) � exp (�2 2I
p

r) (7:8)

On the other hand, asymptotic density of the corresponding Kohn Sham system is
determined completely by the highest occupied orbital and is given as

r(r ! 1) � exp (�2 �2«max

p
r) (7:9)

A comparison of Equations 7.8 and 7.9 leads to Equation 7.7.
As an example of these ideas, we plot in Figure 7.1 the exact Kohn Sham

potential for the neon atom. The potential has been obtained by applying the
Zhao Parr (ZP) method [12], which generates the exact Kohn Sham potential
for a given density to a highly accurate density of neon [13]. The corresponding
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FIGURE 7.1 Exchange correlation potential Vxc (in atomic units) for neon as a function of
distance r (in atomic units) from the nucleus. The potential is obtained from the ground state
density by employing the ZP method.
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«max equals �0.773 a.u. that has essentially the same magnitude as the experimental
ionization potential of neon, which is [14] 0.793 a.u.

The total energy of the system in terms of the Kohn Sham orbitals is given as

E[r] ¼
X
i

fi �
1
2
r2

����
����fi

� �
þ
ð
vext(~r )r(~r )d~r þ 1

2

ð ð
r(~r )r(~r 0)
j~r �~r 0j d~rd~r 0 þ Exc[r]

¼
X
i

«i � 1
2

ð ð
r(~r )r(~r 0)
j~r �~r0j d~rd~r 0 �

ð
vxc(~r )r(~r )d~r þ Exc[r] (7:10)

In the equation above, the functional Exc[r] is the exchange-correlation (XC) energy
functional and is the sum of the conventional quantum mechanical XC energy

EQM
xc [r] ¼ C

�����
1
2

X
i, j
i 6 j

1
j~ri �~rjj

�����C
* +

� 1
2

ð ð
r(~r )r(~r 0)
j~r �~r 0j d~rd~r 0 (7:11)

and the difference

Tc ¼ C
X
i

� 1
2
r2

i

�����
�����C

* +
�
X
i

*
fi �

1
2
r2

�����fi

�����
+

(7:12)

between the kinetic energy of the true system and that of the Kohn Sham system.
Thus the XC energy in Kohn Sham theory is given as

Exc[r] ¼ C

�����
1
2

X
i, j
i 6 j

1
j~ri �~rjj

�����C
* +

� 1
2

ð ð
r(~r )r(~r 0)
j~r �~r 0j d~rd~r 0 þ Tc (7:13)

We note that Tc is small in magnitude; in the above example of neon its value is 0.34
a.u. in comparison to the total kinetic energy, which is 128.93 a.u. and the quantum
mechanical XC energy, which is 12.79 a.u. (see Ref. [15] for results for a number of
atoms including neon).

In the Kohn Sham equation above, the Coulomb potential and the XC potential
are obtained from their energy counterparts by taking the functional derivative of the
latter with respect to the density. Thus

ð
r(~r 0)
j~r �~r 0j d~r

0 ¼ d

dr(~r)

1
2

ð ð
r(~r )r(~r 0)
j~r �~r 0j d~rd~r 0

� 	
(7:14)

and

vxc(~r ) ¼ dExc[r]

dr(~r)
(7:15)

86 Chemical Reactivity Theory: A Density Functional View



However, while the Coulomb potential above is easy to understand it is the
electrostatic potential produced by the charge distribution r(~r) physical meaning
of the XC potential is not clear. The focus of this chapter is in providing this
understanding. For this, we begin with the definition of the exchange-correlation
energy in terms of the corresponding XC hole.

7.2 EXCHANGE-CORRELATION ENERGY AND EXCHANGE-
CORRELATION HOLE

We start with a physical understanding of the conventional XC energy in terms of
XC hole. To see this, we write the conventional XC energy in Equation 7.11 as

EQM
xc [r] ¼ 1

2

ð ð
r(~r )

j~r �~r 0j
� N(N � 1)

r(~r)

ð
C(~r,~r 0,~r3 . . .~rN)j j2d~r3 . . . d~rN � r(~r 0)


 �
d~rd~r 0 (7:16)

after performing some algebraic manipulations and using the fact that j�(~r1,~r2, . . . )j2
is symmetric with respect to an interchange of~ri and~rj. We identify the expression in
curly brackets in Equation 7.16 as the XC hole

rQMxc (~r,~r 0) ¼ N(N � 1)
r(~r)

ð
C ~r,~r 0,~r3 . . .~rNð Þj j2d~r3 . . . d~rN � r(~r 0)


 �
(7:17)

and write the XC energy as

EQM
xc [r] ¼ 1

2

ð ð
r(~r )rQMxc (~r,~r 0)

j~r �~r 0j d~rd~r 0 (7:18)

Thus the XC energy is the energy of interaction between the electrons and a charge
distribution represented by rQMxc (~r,~r 0). The question we wish to answer now is
whether the expression in Equation 7.18 is just the rewriting of the XC energy in a
different way or does it have a physical interpretation. We now show that it indeed
has a physical interpretation: the term represents the deficit in the density of electrons
at~r 0 when an electron is at~r.

Since the probability density of finding an electron at~r is r(~r)=N, one expects
the probability density P2(~r,~r 0) that one electron is at~r and another at~r 0, would be
given by multiplying the probability density r(~r )=N that an electron is found at ~r
and the probability density that another electron (from the N� 1 left) is found at~r 0.
Normally one would calculate the latter by subtracting from density r(~r 0), the
average density of one electron r(~r 0)=N and dividing the resulting expression by
(N� 1). Thus,
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P2(~r,~r
0) ¼ r(~r )

N

1
(N � 1)

r(~r 0)� r(~r 0)
N


 �
(7:19a)

¼ r(~r )

N

r(~r 0)
N

(7:19b)

which is nothing but the product of the two probability densities. This, however,
would be true only if all the electrons were moving independent of each other and
therefore an electron does not affect the motion of any other electron. On the other
hand, this is not the case in an interacting electron system. Thus this probability is
modified. The probability density that an electron is at~r and another at~r 0 is given byÐ
C ~r,~r 0,~r3, . . . ,~rNð Þj j2 d~r3 . . . d~rN . We now rewrite it, after some manipulations, in

the form given by Equation 7.19a as

P2(~r,~r
0)¼ r(~r )

N

1
(N� 1)

� r(~r 0)þ N(N� 1)
r(~r)

ð
C(~r,~r 0,~r3, . . . ,~rN)j j2d~r3 . . . d~rN � r(~r 0)


 �� 	
(7:20)

Further, if the wave function depends also on the electron spins, spin variables over
all electrons should also be integrated; we will see this below, in the calculation of
exchange hole. The expression in the curly brackets above is exactly the XC
hole rQMxc (~r,~r 0) defined in Equation 7.17. A comparison with Equation 7.19a
shows that adding the hole to the density is similar to subtracting the density of
one electron r(~r 0)=N from it. The hole thus represents a deficit of one electron from
the density. This is easily verified by integrating rQMxc (~r,~r 0) over the volume d~r 0,
which gives a value of �1. However, the structure of the hole is not simple and this
is because of the motion of different electrons correlated due to the Pauli exclusion
principle and the Coulomb interaction between them. Finally we note that the
product r(~r )rQMxc (~r,~r 0) is symmetric with respect to an exchange in the variables
~r and~r 0.

The physical picture that emerges out of the exercise above is that the electron
electron interaction energy

1
2

X
i, j
i6 j

1
j~ri �~rjj

* +

is not simply the Coulomb energy of a charge distribution given by r(~r) corrected
only for the electronic charge being finite. If that were the case, this energy would be
obtained by subtracting the self energy of N electrons from the Coulomb energy of
charge distribution r(~r) and will be given as

1� 1
N

� �
1
2

ð ð
r(~r )r(~r 0)
j~r �~r 0j d~rd~r 0 (7:21)
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Rather, the energy is given by the expectation value

1
2

X
i 6¼j
i, j

1

~ri �~rj
�� ��

* +
¼ 1

2

ð ð
r(~r )r(~r 0)
j~r �~r 0j d~rd~r 0 þ EQM

xc (7:22)

The XC energy represents the correction to the Coulomb energy for the self-energy
of an electron in amany-electron system. The latter is due to both the direct self-energy
of the electron as well as the redistribution of electronic density around each electron
because of the Pauli exclusion principle and the Coulomb interaction. As an
example, we now discuss the case of Fermi hole and the exchange energy in
Hartree Fock (HF) theory [16]. For brevity, we restrict ourselves to closed-shell cases.

7.2.1 EXCHANGE ENERGY AND EXCHANGE HOLE

For a closed-shell system, the wave function in HF theory is given as a Slater
determinant

CHF ¼ 1

N!
p

x1(x1) x1(x2) . . . x1(xN)
x2(x1) x2(x2) . . . x2(xN)
. . . . . . . . . . . .
. . . . . . . . . . . .

xN(x1) xN(x2) . . . xN(xN)

����������

����������
(7:23)

where x¼ (~r, s) represents the space and spin variables of an electron and x(x)¼
fs(~r)a(s) or x(x)¼fs(~r)b(s) are the spin orbitals. Here we have explicitly taken
into account the possibility that the space orbitals may have a dependence on the
spin. The wave function can alternatively be written as

CHF ¼ 1

N!
p

X
P

(�1)PP x1(x1)x2(x2) . . . xN(xN)ð Þ (7:24)

where P represents a permutation of the electron variables (x1, x2, . . . , xN). In this
case, the Fermi Coulomb hole is known as the Fermi hole rx(~r,~r 0) because HF wave
function has only the Pauli exclusion principle and not the Coulomb correlations
built into the wave function. Substituting Equation 7.24 in Equation 7.17 for the hole
results in

rx(~r,~r
0) ¼ N(N � 1)

N!

1
r(~r)

ðX
P,P0

(�1)P(�1)P
0
P x1(~r, s1)x2(~r

0, s2) . . . xN(xN)ð Þ

� P0 x1(~r, s1)x2(~r
0, s2) . . . xN(xN)ð Þds1ds2dx3dx4 . . . dxN � r(~r) (7:25)

and describes the deficit in the density of the electron at~r 0 if there is an electron at~r,
irrespective of their spins. That is why their spins (s1, s2) have been integrated over
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(integration over spin implies a sum over them). To evaluate the expression in
Equation 7.25, we write the permutation over the variables (~r, s1) and (~r 0, s2)
explicitly so that one of the permutations is

Pij x1(~r, s1)x2(~r
0, s2) . . . xN(xN)ð Þ ¼ xi(~r, s1)xj(~r

0, s2)PN 2

� (N � 2) spin orbitalsð Þ (7:26)

Here PN 2 represents the permutations over the rest (N� 2) orbitals, and i and j are
two occupied spin orbitals. Thus the sum over permutations is

P
P ¼P i, j

j 6 i

P
PN 2

.

For a given permutation Pij, there will be two permutations contributing from P0 that
have rest of the orbitals in the same order, P0

ij with a positive sign and P0
ji with a

negative sign. Thus the expression under the integral sign in Equation 7.25 can be
written as

ðX
i, j
j6¼i

xi*(~r, s1)xj*(~r
0, s2)(xi(~r, s1)xj(~r

0, s2) xi(~r
0, s2)xj(~r, s1))ds1ds2

8><
>:

9>=
>;

�
ð X
PN 2, P0

N 2

( 1)PN 2 ( 1)P
0
N 2PN�2((N 2) orbitals)P0

N�2((N 2) orbitals) dx3dx4 . . . dxN

(7:27)

The second integral above is a standard integral in the HF theory and gives (N� 2)!
In the first integral, we can remove the restriction ( j 6¼ i) in the summation because
that term cancels. Second, the integration over the spin variables forces the spin
of the ith and jth orbitals to be the same in the second term inside the curly brackets.
Taking all these facts into account, the Fermi hole comes out to be

rx(~r,~r
0) ¼ � 1

r(~r)

X
sj¼si

i, j

f�
i,si

(~r )f�
j,sj

(~r 0)fi,si
(~r 0)fj,sj

(~r ) (7:28)

Thus in HF theory, the deficit in density around an electron at~r arises solely from
electrons of the same spin. The corresponding exchange energy is given as

Ex ¼ � 1
2

X
sj¼si

i, j

ð
f�
i,si

(~r )f�
j,sj

(~r 0)fi,si
(~r 0)fj,sj

(~r )

j~r �~r 0j d~rd~r 0 (7:29)

Note again that the product r(~r)rx(~r,~r 0) is also symmetric with respect to an
interchange of~r and~r 0.

In the above discussion, we have shown that the conventional exchange-
correlation energy of a many-electron system can be thought of as the energy of
interaction between the electrons and the Fermi Coulomb hole. In Kohn Sham DFT
too, the XC energy can be expressed [17] in exactly the same manner, except that the
Fermi Coulomb hole is going to be slightly different from that given above because
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it also includes the effects of the difference in the kinetic energy given by Equation
7.10 above. Thus

EDFT
xc [r] ¼ 1

2

ð ð
r(~r )rDFTxc (~r,~r 0)

j~r �~r 0j d~rd~r 0 (7:30)

The expression for the XC hole of Kohn Sham theory is derived by a coupling
constant integration over the quantum mechanical expression. The exchange hole
and the exchange energy, on the other hand, are calculated by employing the Kohn
Sham orbitals in the expressions of Equations 7.28 and 7.29. We note that the XC
hole of DFT also satisfies the symmetry that the product r(~r )rDFTxc (~r,~r 0) remains
unchanged if~r and~r 0 are interchanged in it.

7.3 EXCHANGE-CORRELATION POTENTIAL
FROM THE FERMI–COULOMB HOLE

Having understood the physical meaning of the XC energy in terms of the corre-
sponding hole, the next step would be to apply the same meaning to the XC potential
of Equation 7.4 and calculate it as the electrostatic potential arising from the XC
hole. Thus one is tempted to write the XC potential as

vxc(~r ) ¼
ð
rDFTxc (~r,~r 0)
j~r �~r 0j d~r 0 (7:31)

Can this be true? Let us examine it in the case of exchange potential because it can be
calculated in terms of orbitals.

7.3.1 EXCHANGE POTENTIAL

The exchange potential of Equation 7.31 is called the Slater potential [12], because it
was Slater who had proposed [18] that the nonlocal exchange potential of HF theory
can be replaced by the potential

vSlaterx (~r ) ¼
ð
rx(~r,~r

0)
j~r �~r 0j d~r

0 (7:32)

so that the solution of HF equations is simplified. In Figure 7.2 we compare the
exact exchange potential obtained by applying the ZP method to the HF density
(obtained from the analytical HF orbitals [19]) and self-consistently determined
Slater potential for the neon atom. It is seen that the Slater potential overestimates
the exact exchange potential over the entire atom. In the outer regions, however, both
the potentials go as �(1=r). What could be the reason for this overestimate? We now
answer this question.

The key to understanding the difference between the Slater potential and the
exact exchange potential lies in the explicit dependence of the Fermi hole rx(~r,~r 0) on
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position~r of the electron. Because of this dependence, the Fermi hole changes [16,20]
as an electron moves in a many-electron system. In such a situation, calculating the
electrostatic potential as given by Equation 7.32 is not correct. Rather the potential
should be calculated [20] as the work done in moving an electron in the electric field

~Fx(~r ) ¼
ð
rx(~r,~r

0)
~r �~r 0j j3 (~r �~r 0)d~r 0 (7:33)

of the Fermi hole. Note that if the Fermi hole did not depend on the position of
the electron, the field in Equation 7.33 would have been equal to the gradient of the
Slater potential of Equation 7.32; it is not precisely because rx(~r, ~r 0) depends on
position~r. We draw a parallel of this proposal with a textbook example. Consider the
surface charge density induced on the surface of a grounded conductor because of a
charge in front of it. The charge density depends on the position of the charge in
front. In this case too, the image potential is not the electrostatic potential as
calculated using the standard formula. However, if the work done in moving the
charge in the electric field of the induced charge is calculated, it is indeed the correct
way of calculating the potential and gives the image potential. Let us, therefore, write
the exchange potential as

Wx(~r ) ¼ �
ð~r

1

~Fx(~r
0) � d~l0 (7:34)
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FIGURE 7.2 Different exchange potentials Vx (in atomic units) for neon, as functions of
distance r (in atomic units) from the nucleus. The solid line indicates the potential obtained
from the HF density by employing the ZP method, long dashes ( ) the Wx potential of
Equation 7.31 and short dashes ( ) the Slater potential of Equation 7.29.
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At this point one question must be answered: Is the potential calculated in the manner
above path independent [21]? Equivalently, is the field given by Equation 7.33 curl-
free? For one-dimensional cases and within the central field approximation for
atoms, it is. For other systems, there is a small solenoidal component [21,22] and
we will see later that it arises from the difference in the kinetic energy of the true
system and the corresponding Kohn Sham system (in this case the HF system and its
Kohn Sham counterpart). For the time being, we explore whether the physics of
calculating the potential in the manner prescribed above is correct in the cases where
the curl of the field vanishes.

Plotted in Figure 7.2 is also the self-consistently determined exchange potential
Wx for neon. As is evident from the figure, the potential is highly accurate. This
indicates the correctness of the physics invoked to calculate the potential as the work
done in moving an electron in the field created by its Fermi Coulomb hole. Notice
that we have calculated the potential directly from the hole rather than taking the
functional derivative of the exchange energy functional, as is done in Equation 7.15.
We now connect the exchange potential of Equation 7.34, potential and the exchange
energy given by Equation 7.29, mathematically.

The relationship between the exchange potential of DFT and the corresponding
energy functional is established through the virial theorem. The two are related via
the following relationship derived by Levy and Perdew [23]

Ex ¼ �
ð
r(~r )~r � ~rvx(~r )d~r (7:35)

Since the gradient of the potential is the field given by Equation 7.33, its substitution
in Equation 7.35 gives

Ex ¼ �
X
sj¼si

i, j

ð
fi,si
* (~r )fj,sj

* (~r 0)fi,si
(~r 0)fj,sj

(~r )

~r �~r 0j j3 ~r � (~r �~r 0)d~rd~r 0 (7:36)

Now interchanging~r and~r 0 in Equation 7.36 does not affect the value of the integral
above. Thus the exchange energy can be written as the sum of expression of
Equation 7.36 and that obtained by interchanging~r and~r 0 and dividing the sum by
2. This immediately leads to the exchange energy expression of Equation 7.29. Thus
we see that the exchange potential proposed satisfies the virial theorem sum rule that
connects the local potential of Kohn Sham theory to the corresponding energy
functional. The next question that we ask is if self-consistent solutions of Equation
7.4 can be obtained with the proposed exchange potential. The answer is in the
affirmative and we discuss the results next.

7.3.1.1 Self-Consistent Solutions for the Ground States

Given in Table 7.1 are the results [24] of the total energy of some atoms obtained
by solving the Kohn Sham equation self-consistently with the exchange potential
Wx within the central field approximation. The energy is obtained from Equation 7.10
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by substituting the exchange energy of Equation 7.29 for the exchange-correlation
energy. As such, the results are compared with those of HF theory [25]. As is evident
from the numbers presented, the local exchange potential Wx gives the energies
which are very close to their HF counterparts. In fact, the difference is in parts per
million (ppm). It will be discussed later why this potential leads to slightly higher
energies.

In Table 7.2, we show the eigen energies corresponding to the highest occupied
orbital of the atoms in Table 7.1. Again it is seen that these eigen energies are very
close to their HF counterparts as well as the negative of their ionization energies.

A severe test that a potential can be put to is to see whether it can give self-
consistent solutions for the negative ions. The potential proposed above gives the
solutions [26] for the negative ions also with energies close to their HF energies. The
energies for the negative ions of hydrogen, lithium, fluorine, and chlorine are shown
in Table 7.3. In Table 7.4, the eigen energies for the highest occupied orbital are
shown and compared with the corresponding HF eigenvalues and the experimental
electron affinity [27] of the neutral atoms (ionization energy of the negative ions).
The accuracy of the numbers obtained is self-evident.

7.3.1.2 Excited States

An advantage of obtaining the exchange potential Wx through physical arguments is
that unlike its Kohn Sham counterpart, it is equally valid for the excited states [20].
Thus the densities and energies of excited states can also be obtained by solving
Equation 7.4 in the excited-state configuration and by employing potential Wx for

TABLE 7.1
Negative of the Energies (Atomic Units) of Some Atoms
Calculated with the Potential Wx Equation 7.34

Atom Configuration Wx HF

He 1s2(1S) 2.862 2.862
Be [He]2s2(1S) 14.571 14.573

C [He]2s22p2(3P) 37.685 37.689
O [He]2s22p4(3P) 74.805 74.809
Ne [He]2s22p6(1S) 128.542 128.547

Al [Ne]3s23p1(2P) 241.868 241.877
Cl [Ne]3s23p5(2P) 459.472 459.482
Ar [Ne]3s23p6(1S) 526.804 526.818

Ca [Ar]4s2(1S) 676.743 676.758
Kr [Ar]3d104s24p6(1S) 2752.030 2752.055

Note: Comparison is made with the corresponding HF energies. Note that the Wx

energies are slightly above those of HF.
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the XC potential. The excitation energy is then calculated as the difference in the
excited-state energy and the ground-state energy. A large number of calculations for
the excited states of atoms have been performed [28] employing the potential Wx

alone or by employing the sum of Wx and a local correlation potential. All these
calculations give highly accurate results for the excitation energies of the systems
studied. As a demonstration, we discuss the case of excited states of negative ions.
As pointed out above, negative ions pose a real challenge for a theory to be tested.

TABLE 7.2
Negative of the Highest Occupied Orbital Eigen
Energies (Atomic Units) of Some Atoms Calculated
with the Potential Wx Equation 7.34

Atom Wx HF
Experimental

Ionization Potential

He 0.918 0.918 0.904
Be 0.313 0.310 0.343
C 0.409 0.434 0.414

O 0.625 0.632 0.500
Ne 0.857 0.850 0.793
Al 0.203 0.210 0.220

Cl 0.503 0.507 0.477
Ar 0.589 0.591 0.579
Ca 0.201 0.196 0.250

Kr 0.518 0.524 0.515

Note: Comparison is made with the corresponding HF energies and

experimental ionization potential.

TABLE 7.3
Negative of the Energies (Atomic Units)
of Some Negative Ions Calculated with
the Potential Wx Equation 7.34

Ion Wx HF

H 0.488 0.488

Li 7.427 7.428
F 99.455 99.459
Cl 459.565 459.576

Note: Comparison is made with the corresponding HF
energies.
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In Table 7.5, we display the results [29] for energies of some excited states of the
negative ions Li and Be of lithium and beryllium. The calculations have been
performed both at the exchange-only level by employing the potential Wx alone, and
also at the XC level by adding the Lee Yang Parr (LYP) [30] correlation potential to
Wx. The exchange-only results are compared with those of HF theory [31] and the
XC results with other accurate calculations [32]. As these results show, the accuracy
of the potential Wx in obtaining the excited-state energies is the same as that for the
ground-state energies. In Table 7.6, we show the transition wavelengths correspond-
ing to two transitions in these ions as calculated [29] using the (WxþLYP) potential.
A comparison with the experimental numbers [32,33] given in the table shows the
results obtained to be highly accurate.

TABLE 7.4
Negative of the Highest Occupied Orbital Eigen
Energies (Atomic Units) of Some Negative Ions
Calculated with the Potential Wx Equation 7.34

Ion Wx HF
Experimental

Electron Affinity [20]

H 0.046 0.046 0.028
Li 0.015 0.015 0.023
F 0.178 0.181 0.125

Cl 0.144 0.150 0.133

Note: Comparison is made with the corresponding HF energies and
experimental electron affinity of the corresponding neutral atoms.

TABLE 7.5
Negative of the Energies (Atomic Units) of Some Excited States
of Li and Be along with the HF and the Fully Correlated Energies

Ion State Wx HF Wxþ LYP Literature

Li 1s2s2p2(5P) 5.364 5.364 5.393 5.383 5.387

1s2p3(5S) 5.222 5.223 5.261 5.254 5.256
1s2s2p3p(5P) 5.329 5.368 5.368

Be [He]2s2p2(4P) 14.508 14.509 14.581 14.571 14.578
[He]2p3(4S) 14.327 14.328 14.408 14.400 14.406

1s2s2p3(6S) 10.428 10.429 10.476 10.462 10.471

Note: The present results at exchange only level are given in the third column (Wx) and
those with correlation included in the fifth column (WxþLYP).
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As is evident from the above, both the physics invoked to derive the potential of
Equation 7.31 and the numerical results presented show that Wx gives an accurate
exchange potential for the excited states. When the proposal was initially made, there
was no mathematical proof of the existence of a Kohn Sham equation for excited
states. It is only during the past few years that DFT of excited states [34 37], akin to
its ground-state counterpart, is being developed.

An important aspect of calculations with potentialWx is that the transition energy
of a single-electron excitation is well estimated [38] by the eigen energy difference
obtained in a ground-state calculation, of the orbitals involved in transition. The
same is not the case in HF theory. This is because in HF theory the eigen energy of
the unoccupied orbital corresponds to that of an (Nþ 1) electron system, whereas in
calculations with a local potential this is not the case. Thus the eigen energy
differences as obtained in a calculation performed with Wx potential can be taken
to give a decent estimate of the energy difference between an excited state and the
ground state. For example, experimental transition energies [39] in Na atom for
transitions 32S! 42S, 32S! 52S, 32S! 32P, and 32S! 42P are 0.117, 0.151,
0.077, and 0.138 a.u., respectively. The corresponding Wx eigenvalue differences
are [31] 0.115, 0.153, 0.079, and 0.141 a.u.

Having shown the correctness of physics in calculating the exchange potential
as the work done in moving an electron in the electric field of its Fermi hole,
we next discuss if the XC potential could also be obtained in the same way from
the Fermi Coulomb hole. We will see that in calculating the XC potential in the
prescribed manner, the kinetic energy contribution to it, as indicated by Equation
7.13 is left out. Following that we discuss the work of Holas and March [40] who
proved that the XC potential can indeed be thought of as the work done in moving
an electron in a field, which is the sum of the field of its Fermi Coulomb hole and
a very small field arising from the difference as given by Equation 7.12 in the
kinetic energy of an interacting and a noninteracting system, and in the process
deriving an expression for the latter. Further, we will see that it is precisely this
difference in the kinetic energy that is responsible [41] for the slight difference
in the energies of atoms obtained by employing the Wx potential and those of
HF theory.

TABLE 7.6
Transition Wavelengths (in nm) for Transitions in Li and
Be as Calculated Employing the (Wxþ LYP) Potential

Transition
Wavelength
(Wxþ LYP) Experiment

Li 1s2s2p2(5P)!1s2p3(5S) 345.96 349.07, 349.0
Be [He]2s2p2(4P)![He]2p3(4S) 264.14 265.301, 265.318, 265.331

Note: Comparison is made with the corresponding experimental numbers.
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7.3.2 EXCHANGE-CORRELATION POTENTIAL

If we wish to obtain the XC potential of Equation 7.15 as the work done in moving
an electron in the field of its Fermi Coulomb hole rxc(~r,~r 0), we first calculate the
field as

~F DFT
xc (~r ) ¼

ð
rDFTxc (~r,~r 0)

j~r �~r 0j3 (~r �~r 0)d~r 0 (7:37)

and then obtain the potential

Wxc(~r ) ¼ �
ð~r

1

~FDFT
xc (~r 0) � d~l0 (7:38)

by doing a line integration. Let us first see if the potential derived in this manner
satisfies the Levy Perdew relationship [23], similar to the one in Equation 7.35, for
the XC potential. The relationship for the XC potential is given as

EDFT
xc ¼ �

ð
r(~r )~r � ~rvxc(~r )d~r þ Tc (7:39)

where Tc is given by Equation 7.12. Now if we substitute the expression for ~FDFT
xc (~r)

of Equation 7.37 for the gradient ~rvxc(~r) of the XC potential in Equation 7.39 and
use the symmetry of the product r(~r )rDFTxc (~r,~r 0) with respect to an interchange of~r
and~r 0, we get

Tc ¼ 0 (7:40)

which is not correct [42]. Thus the definition (Equation 7.38) for the exchange-
correlation potential misses out on the kinetic energy component of the XC energy
and potential of DFT. In other words, the definition (Equation 7.38) represents the
potential only due to the quantum mechanical exchange-correlation hole rQMxc (~r,~r 0).
In the original work, it was therefore proposed [43] that this component has to be
added separately and would represent the functional derivative dTc[r]=dr(~r), i.e., the
kinetic energy component of the DFT exchange-correlation potential. How this
component is obtained from the many-particle wave function became clear only
after Holas and March [40] derived the differential virial theorem and on the basis of
it, obtained an expression for the XC potential as a line integral. This, in turn, also
gives a mathematical derivation starting from the many-electron Schrödinger equa-
tion of our physical interpretation of the XC potential. Next we discuss the derivation
by Holas and March.
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7.4 DIFFERENTIAL VIRIAL THEOREM AND EXCHANGE-
CORRELATION POTENTIAL

We now look at how the ideas developed so far on the basis of purely physical
arguments, can be derived starting from the many-body Schrödinger equation. This
is done through the differential form of the virial theorem. Consider the Hamiltonian
of Equation 7.1 and its eigenfunction �(~r1,~r2, . . . ,~rN) for a bound state. Then the
differential virial theorem relates the gradient ~rvxc(~r) of the external potential to
the wave function through the following relationship:

�~rvext(~r ) ¼ � 1
4r(~r)

~rr2r(~r )þ~z(~r )

r(~r)
�
ð
(~r �~r 0)

j~r �~r 0j3 r(~r 0)þ rQMxc (~r,~r 0)
� 

d~r 0 (7:41)

where rQMxc (~r,~r 0) is the XC hole as given by Equation 7.17, and vector~z(~r) is related
to the kinetic energy tensor defined next. The kinetic energy tensor

tab(~r ) ¼
1
4

ð @
@r1a

C*(~r1,~r2,~r3 . . .~rN) @
@r1b

C(~r1,~r2,~r3 . . .~rN)

þ @
@r1b

C*(~r1,~r2,~r3 . . .~rN) @
@r1a

C(~r1,~r2,~r3 . . .~rN )

 !
d~r2d~r3 . . . d~rN

�����
~r1 ~r2 ~r

(7:42)

where a,b¼ 1, 2, 3 stand for the Cartesian components. The component za of the
vector~z(~r) is related to the kinetic energy tensor through the relationship

za ¼ 2
X
b

@

@rb
tab(~r ) (7:43)

The quantity tab(~r) is known as the kinetic energy tensor because the total kinetic
energy T is related to it through~z(~r) as

2T ¼
ð
r(~r )~r �~z(~r )d~r (7:44)

The reason why the relationship in Equation 7.41 is called the differential virial
theorem is because if we take the dot product of both sides with vector~r, multiply
both sides by r(~r), and then integrate over the entire volume, it gives

2T ¼

*
C
X
i

~ri � ~ri vext(~ri)þ
X

j
j 6 i

1
j~ri �~rjj

0
B@

1
CA

�������

�������
C

+
(7:45)

which is the global virial theorem.
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Our aim here is to apply the differential virial theorem to get an expression for
the Kohn Sham XC potential. To this end, we assume that a noninteracting system
giving the same density as that of the interacting system exists. This system satisfies
Equation 7.4, i.e., the Kohn Sham equation. Since the total potential term of Kohn
Sham equation is the external potential for the noninteracting system, application of
the differential virial relationship of Equation 7.41 to this system gives

�~rvext(~r )þ
ð
(~r �~r 0)

j~r �~r 0j3 r(~r
0)d~r 0 � ~rvxc(~r ) ¼ � 1

4r(~r)
~rr2r(~r )þ~zS(~r )

r(~r)
(7:46)

Here the vector ~zS(~r) is constructed from the kinetic energy tensor obtained
by employing the solutions of the Kohn Sham equation in Equation 7.42. Thus
it is, in general, different from the vector~z(~r). A comparison of Equations 7.41 and
7.46 gives

~rvxc(~r ) ¼~z(~r )�~zS(~r 0)
r(~r)

�
ð
(~r �~r 0)

j~r �~r 0j3 r
QM
xc (~r,~r 0)d~r 0 (7:47)

Performing a line integral of the vector field given on the right-hand side of the
equation above leads to the exact XC potential of a system. We now compare this
expression with that of Equation 7.38 that calculates the exchange-correlation
potential as the work done in moving an electron in the field of its XC hole.

The exact expression of Equation 7.47 also calculates the XC potential as the
work done in moving an electron in a field that is a sum of the electric field due to its
Fermi Coulomb hole and a non-Coulombic field related to the difference in the
kinetic energy tensor of the interacting and Kohn Sham systems. It is easily verified
that the potential given by Equation 7.47 satisfies the Levy Perdew relationship of
Equation 7.39. Further, the curl of the expression on its right-hand side vanishes
because it represents the gradient of a scalar function. As noted in the beginning, the
value of the difference in the kinetic energies of the interacting and Kohn Sham
systems is very small. Thus, although numerically the term (~z(~r)�~zS (~r 0)=r(~r))
represents a very small correction to the potential of Equation 7.38, it is significant
for important qualitative reasons.

As noted above, the curl of the expression on the right-hand side of Equation
7.47 vanishes. However, it does not mean that the Coulombic and non-Coulombic
components the former is the electric field produced by the Fermi Coulomb
hole and the latter arises from the kinetic energy tensor of this field also have
vanishing curl. Thus the potential Wxc of Equation 7.38 may sometimes be path
dependent [21].

7.4.1 DIFFERENTIAL VIRIAL THEOREM AND HARTREE–FOCK THEORY

Now we discuss the differential virial theorem for HF theory and the corresponding
Kohn Sham system. The Kohn Sham system in this case is constructed [41] to
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reproduce the HF density. As such, the equation describing the differential virial
theorem in HF theory is

�~rvext(~r ) ¼ � 1
4rHF(~r)

~rr2rHF(~r )þ
~zHF(~r )

rHF(~r)
�
ð
(~r �~r 0)

j~r �~r 0j3
� rHF(~r

0)þ rx(~r,~r
0)ð Þd~r 0 (7:48)

where the subscript ‘‘HF’’ implies that all the quantities in the equation above have
been calculated by employing HF orbitals. Similarly, the XC hole rxc(~r,~r 0) is now
replaced by the Fermi hole rx(~r,~r 0) calculated by using HF orbitals in Equation 7.28.
The local exchange potential vx(~r) whose orbitals give the same density then has the
gradient

~rvx(~r ) ¼~zHF(~r )�~zS(~r 0)
rHF(~r)

�
ð
(~r �~r 0)

j~r �~r 0j3 rx(~r,~r
0)d~r 0 (7:49)

Thus for the exchange potential also there is a non-Coulombic contribution arising
from the difference in the kinetic energy of the HF theory and the corresponding
Kohn Sham theory, although both the theories are based on single-particle orbitals.
This is expected as the Kohn Sham system is constructed to reproduce the HF
density only and it does not mean that the corresponding kinetic energy will also
be equal to the HF kinetic energy. It is because of this difference that the exchange
potential Wx of Equation 7.34, calculated from the Fermi hole alone, may also be
path dependent. However, as the results presented in Sections 7.3.1.1 and 7.3.1.2
show, this difference is not very significant numerically.

7.5 CONCLUDING REMARKS

In this chapter, we have discussed how the XC potential of Kohn Sham theory can
be interpreted in a physical way. Before this work, the potential was thought of
purely in mathematical terms as the functional derivative of the XC energy func-
tional; within the exchange-only theory, the local exchange potential was generated
[44] numerically by looking for a local potential whose orbitals minimize the HF
expression for the energy. Our work therefore provides an alternate way of under-
standing the exchange and XC potential. Further, the potential is absolutely general
and can be applied to the ground as well as excited states. In fact, when the
interpretation was proposed, there was no other theory that could be applied to
perform excited-state calculations with a local potential.

Mathematical derivation of the potential as the work done in moving an electron
in a field is provided through differential virial theorem. The theorem proves that the
XC potential of Kohn Sham theory is indeed the work done in moving an electron in
the field of its Fermi Coulomb hole plus a non-Coulombic field related to the
difference in the kinetic energies of the interacting and the corresponding Kohn
Sham system. This way of looking at Kohn Sham theory has also been given the
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name Quantal Density-Functional Theory, and many results derived and understood
(as an example see Refs. [45,46]) on the basis of the physical interpretation are
discussed in an eponymous book [47].
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8.1 INTRODUCTION

Since the early days of quantum mechanics, the wave function theory has proven to
be very successful in describing many different quantum processes and phenomena.
However, in many problems of quantum chemistry and solid-state physics, where the
dimensionality of the systems studied is relatively high, ab initio calculations of
the structure of atoms, molecules, clusters, and crystals, and their interactions are
very often prohibitive. Hence, alternative formulations based on the direct use of
the probability density, gathered under what is generally known as the density matrix
theory [1], were also developed since the very beginning of the new mechanics. The
independent electron approximation or Thomas Fermi model, and the Hartree and
Hartree Fock approaches are former statistical models developed in that direction
[2]. These models can be considered direct predecessors of the more recent density
functional theory (DFT) [3], whose principles were established by Hohenberg,
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Kohn, and Sham [4,5] in the mid-1960s. According to this theory, the fundamental
physical information about a many-body system is provided by single-particle
densities in a three-dimensional space, which are obtained variationally within a
time-independent framework. When compared with other previous formalisms, DFT
presents two clear advantages: (1) it is able to treat many-body problems in a
sufficiently accurate way and (2) it is computationally simple. This explains why it
is one of the most widely used theories to deal with electronic structure the
electronic ground-state energy as a function of the position of the atomic nuclei
determines molecular structures and solids, providing at the same time the forces
acting on the atomic nuclei when they are not at their equilibrium positions.
At present, DFT is used routinely to solve many problems in gas phase and
condensed matter. Furthermore, it has made possible the development of accurate
molecular dynamics schemes in which the forces are evaluated quantum mechanic-
ally ‘‘on the fly.’’ Nonetheless, DFT is a fundamental tool provided the systems
studied are relatively large; for small systems, standard methods based on the use of
the wave function render quite accurate results [6]. Moreover, it is also worth
stressing that all practical applications of DFT rely on essentially uncontrolled
approximations [7] (e.g., the local density approximation [4,5], the local spin-density
approximation, or generalized gradient approximations [8]), and therefore the valid-
ity of DFT is conditioned to its capability to provide fairly good values of the
experimental data.

As mentioned above, standard DFT is commonly applied to determine ground
states in time-independent problems. Hence, reactive and nonreactive scatterings as
well as atoms and molecules in laser fields have been out of the reach of the
corresponding methodology. Nevertheless, though it is less known than the standard
DFT, a very interesting work in this direction can also be found in the literature
[9 15], where DFT is combined with quantum hydrodynamics (or quantum fluid
dynamics [QFD]) (QFD-DFT) in order to obtain a quantum theory of many-electron
systems. In this case, the many-electron wave function is replaced by single-particle
charge and current densities. The formal grounds of QFD-DFT rely on a set of
hydrodynamical equations [10 12]. It has the advantage of dealing with dynamical
processes evolving in time in terms of single-particle time-dependent (TD) equa-
tions, as derived by different authors [14]. Apart from QFD-DFT, there are other
TD-DFT approaches based on similar grounds, such as the Floquet DFT [16,17] or
the quantal DFT [18]. Furthermore, we would like to note that TD-DFT does not
necessarily require to pass through a QFD or QFD-like formulation in order to
be applied [19]. As happens with standard DFT, TD-DFT can also be started
directly from the many-body TD Schrödinger equation, the density being deter-
mined from solving a set of TD Schrödinger equations for single, noninteracting
particles [12].

Although trajectories are not computed in QFD-DFT, it is clear that there
is a strong connection between this approach and the trajectory or hydrodynamical
picture of quantum mechanics [20], independently developed by Madelung [21], de
Broglie [22], and Bohm [23], which is also known as Bohmian mechanics.
From the same hydrodynamical equations, information not only about the system
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configuration (DFT calculations) but also about its dynamics (quantum trajectories)
is possible to obtain. This fact is better understood when the so-called quantum
potential is considered, as it allows to associate the probability density (calculated
from DFT) with the quantum trajectories. Note that this potential is determined by
the curvature of the probability density and, at the same time, it governs the
behavior displayed by the quantum trajectories. Because of the interplay between
probability density and quantum potential, the latter conveys fundamental physical
information: it transmits the nonseparability contained in the probability density
(or, equivalently, the wave function) to the particle dynamics. This property, on the
other hand, is connected with the inherent nonlocality of quantum mechanics [24],
i.e., two distant parts of an entangled or nonfactorizable system will keep a strong
correlation due to coherence exhibited by its quantum evolution.

The purpose of this chapter is to show and discuss the connection between
TD-DFT and Bohmian mechanics, as well as the sources of lack of accuracy in
DFT, in general, regarding the problem of correlations within the Bohmian frame-
work or, in other words, of entanglement. In order to be self-contained, a brief
account of how DFT tackles the many-body problem with spin is given in Section
8.2. A short and simple introduction to TD-DFT and its quantum hydrodynamical
version (QFD-DFT) is presented in Section 8.3. The problem of the many-body
wave function in Bohmian mechanics, as well as the fundamental grounds of this
theory, are described and discussed in Section 8.4. This chapter is concluded with a
short final discussion in Section 8.5.

8.2 MANY-BODY PROBLEM IN STANDARD DFT

There are many different physical and chemical systems of interest, which are
characterized by a relatively large number of degrees of freedom. However, in most
of the cases, the many-body problem can be reduced to calculations related to a
sort of inhomogeneous gas, i.e., a set of interacting point-like particles which
evolve quantum mechanically under the action of a certain effective potential
field. This is the typical DFT scenario, with an ensemble of N electrons in a
nuclear or external potential representing the system of interest. DFT thus tries
to provide an alternative approach to the exact, nonrelativistic N-electron wave
function C(r1s1, . . . , rNsN), which satisfies the time-independent Schrödinger
equation and where rN and sN are the space and spin coordinates, respectively.
Because the methodology based on DFT is easy and computationally efficient in its
implementation, this theory is still enjoying an ever-increasing popularity within
the physics and chemistry communities involved in many-body calculations.

To understand the main idea behind DFT, consider the following. In the absence
of magnetic fields, the many-electron Hamiltonian does not act on the electronic spin
coordinates, and the antisymmetry and spin restrictions are directly imposed on
the wave functionC(r1s1, . . . , rNsN). Within the Born Oppenheimer approximation,
the energy of an N-electron system with a fixed M-nuclei geometry R takes the
following form in atomic units:
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E ¼ � 1
2

ð
r1¼r01

r � rTg1(r1; r
0
1)

� �
dr1 þ

ð
vext(R, r1)g1(r1)dr1

þ
ð
g2(r1, r2)

r12
dr1dr2, (8:1)

where g1(r1) and g2(r1, r2) are the diagonal elements of g1(r1; r
0
1) and g2(r1, r2;

r01, r
0
2), respectively, which represent the one-electron (or one-particle) density and

the electron electron (or two-particle) correlation function, commonly used in
DFT and electronic structure theory. In principle, it might seen that all the informa-
tion about the system, necessary to evaluate the energy, is contained in g1(r1) and
g2(r1; r2), and therefore one could forget about manipulating the wave function.
However, in order to avoid unphysical results in the evaluation of the energy, it is
still necessary to compute the wave function C(r1s1, . . . , rNsN) that generates the
correct g1(r1) and g2(r1; r2) densities. Equation 8.1 is the starting point of DFT,
which aims to replace both g1(r1; r

0
1) and g2(r1, r2) by r(r). If we are only interested

in the system ground state, the Hohenberg Kohn theorems state that the exact
ground-state total energy of any many-electron system is given by a universal,
unknown functional of the one-electron density. However, only the second term of
Equation 8.1 is an explicit functional of r(r). The first term corresponds to the kinetic
energy, which is a functional of the complete one-electron density function g1(r1; r

0
1).

For N-electron systems, the most important contribution to the electron electron term
comes from the classical electrostatic self-energy of the charge interaction, which is an
explicit functional of the diagonal one-electron function. The remaining contribution
to the electron electron term is still unknown. These two terms are a functional of
the one-electron density, namely the ‘‘exchange-correlation’’ functional. Thus, it is
possible to define a universal functional, which is derivable from the one-electron
density itself and with no reference to the external potential yext(R, r). According to
McWeeny [25], we can reformulate the DFT by ensuring not only that a variational
procedure leads to r(r) which is derivable from a wave function C(r1s1, . . . , rNsN)
(the so-called N-representability problem) but also the wave function belongs to
the totally irreducible representation of the spin permutation group A. From a math-
ematical point of view, the above proposition can be expressed (in atomic units) as

E¼ min
r!g1 derived fromC2A

�1
2

ð
r1¼r01

r�rTg1(r1; r
0
1)

� �
dr1þ

ð
vext(R,r1)g1 r1ð Þdr1

8><
>:

þ1
2

ð
g1(r1)(L� P̂12)g1(r2;r

0
2)

r12
dr1dr2þ min

g2 derived fromC2A
Ecorr[g2(r1,r2)]

)
: (8:2)

This equation shows the relationship between the one-electron function, g1(r1; r
0
1),

and the main part of the energy functional the rest of the functional, which is the
electron electron repulsion, depends on g2(r1, r2). The last term is also a functional
of the one-electron density. In the new reformulation of DFT, the methodology is
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almost universally based on the Kohn Sham (KS) approach and only differs in a
particular way to model the unknown ‘‘exchange-correlation’’ term.

8.3 TIME-DEPENDENT DENSITY FUNCTIONAL THEORY

An extension of standard DFT is its TD version. This generalization is necessary
when dealing with intrinsic TD phenomena. In addition, it preserves the appealing
flavor of the classical approach to the theory of motion.

The rigorous foundation of the TD-DFT was started with the works by Bartolotti
[10] and Deb and Ghosh [11]. However, the proofs of the fundamental theorems were
provided by Runge and Gross [12]. One of those theorems corresponds to a Hohen-
berg Kohn-like theorem for the TD Schrödinger equation. The starting point for the
derivation of the TD KS equations is the variational principle for the quantum
mechanical action (throughout this section, atomic units are also used):

S[C] ¼
ðt1
t0

C(t) i
@

@t
� Ĥ(t)

� �����
����C(t)

� �
dt: (8:3)

This variational principle is not based on the total energy because in TD systems, the
total energy is not conserved. The so-called Runge Gross theorem then states that
there exists a one-to-one mapping between the external potential (in general, TD),
yext(r, t), and the electronic density, r(r, t), for many-body systems evolving from a
fixed initial state, C(t0). Runge and Gross thus open the possibility of deriving the
TD version of the KS equations. This procedure yields the TD Schrödinger equation
for the KS electrons described by the orbitals fk(r, t),

i
@fk(r, t)

@t
¼ HKS(r, t)fk(r, t), (8:4)

where the KS Hamiltonian is

HKS(r, t) ¼ � 1
2
r2 þ vKS[r(r, t)], (8:5)

with a TD-KS effective potential, usually given by the sum of three terms which
account for external, classical electrostatic, and exchange interactions. The latter is
the source of all nontrivial, nonlocal, strongly correlated many-body effects.

By construction, the exact TD density of the interacting system can then be
calculated from a set of noninteracting, single-particle orbitals fulfilling the TD-KS
Equation 8.4 and reads

r(r, t) ¼
XN
k¼1

jfk(r, t)j2: (8:6)

Further analysis from the minimum action principle shows that the exchange (xc)
potential is then the functional derivative of that quantity in terms of the density:
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vxc(r, t) ¼ dSxc
dr(r, t)

, (8:7)

where Sxc includes all nontrivial many-body parts of the action. The above equations
provide the starting ground for further derivations of the theory. Thus, in addition to
the TD-KS scheme, other variants have been proposed over the years, which include
the TD spin-DFT, the TD current-DFT, the TD linear response DFT, and the basis-
set DFT [26]. Each method has its range of applicability, but discussing them is out
of the scope of this chapter.

Here we focus on yet another implementation, the single-particle hydrodynamic
approach or QFD-DFT, which provides a natural link between DFT and Bohmian
trajectories. The corresponding derivation is based on the realization that the density,
r(r, t), and the current density, j(r, t) satisfy a coupled set of ‘‘classical fluid,’’
Navier Stokes equations:

@r(r, t)
@t

¼ �rj(r, t), (8:8)

@j(r, t)
@t

¼ P[r](r, t), (8:9)

with

P[r](r, t) ¼ �ihC[r](t)j[j(r), H(t)]jC[r](t)i, (8:10)

being a functional of the density and with initial conditions r(r, t0) and j(r, t0).
One can finally show that the above coupled equations translate into one

single-particle nonlinear differential equation for the hydrodynamical wave function
F(r, t)¼ r(r, t)1=2eiS(r,t) in terms of potential energy functionals:

� 1
2
r2 þ veff [r]

	 

F(r, t) ¼ i

@F(r, t)
@t

, (8:11)

with yeff[r] given by

veff[r] ¼ dEel el

dr
þ dEnu el

dr
þ dExc

dr
þ dTcorr

dr
þ dEext

dr
(8:12)

where j(r, t)¼ r(r, t)v(r, t), with rS(r, t)¼ v(r, t). For many-particle systems, this is
still an open problem (see Section 8.4.2 for a new discussion). In Equation 8.12, each
term corresponds, respectively, to the interelectronic repulsion energy, the Coulomb
nuclear electron attraction energy, the exchange and correlation energy, the non-
classical correction term to Weizsäcker’s kinetic energy, and the electron external
field interaction energy functionals. A judicious choice in the form of the above
functionals yields surprisingly good results for selected applications.
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As a simple mathematical approach to QFD-DFT, let us consider that the
N-electron system is described by the TD orbitals fk(r, t) when there is an external
periodic, TD potential, for which we want to obtain the (TD) density r(r, t). These
orbitals can be expressed in polar form:

fk(r, t) ¼ Rk(r, t)e
iSk(r,t), (8:13)

where the amplitudes Rk(r, t) and phases Sk(r, t) are real functions of space and time,
and the former are subjected to the normalization condition:

ð
t

ð
Rk(r, t)Rl(r, t)dr ¼ dkl, (8:14)

where
Ð
t denotes the time-averaged integration over one period of time. The kinetic

energy associated with this (noninteracting) N-electron system reads [10] as

Ts[{Rk , Sk}]t ¼ � 1
2

XN
k¼1

ð
t

ð
Rk(r, t) r2Rk(r, t)

� �� Rk(r, t) rSk(r, t)
2

� �
dr: (8:15)

Similar to the time-independent case, we also assume the constraint that the sum of
the squares of the Rk gives the exact density r(r, t), i.e.,

XN
k¼1

R2
k(r, t) ¼ r(r, t): (8:16)

Moreover, we introduce an additional constraint: the conservation of the number of
particles,

XN
k¼1

@R2
k

@t
¼ @r

@t

	 

¼ �r � j, (8:17)

where j is the single-particle quantum density current vector. After minimizing
Equation 8.15 with respect to the Rk (which is subject to the previous constraints),
we reach the Euler Lagrange equation:

� 1
2
r2Rk þ veffRk ¼ «kRk: (8:18)

where yeff(r, t) and «k(r, t) are the Lagrange multipliers associated with the constraint
defined in Equation 8.16 and the conservation of the number of particles given by
Equations 8.14 and 8.17, respectively. Moreover, «k(r, t) can be split up as a sum of
two terms:
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«k(r, t) ¼ «(0)k þ «(1)k (r, t): (8:19)

The quantity «(0)k is a result of the normalization constraint, while «(1)k are the
Lagrange multipliers associated with the charge-current conservation defined by
Equation 8.17. On the other hand, if Equation 8.18 is divided by Rk we can reexpress
the corresponding equation as

Qk(r, t)þ veff (r, t) ¼ «k(r, t) (8:20)

where Qk is the so-called quantum potential associated with the state fk,

Qk(r, t) ¼ � 1
2
r2Rk

Rk
: (8:21)

Next, we minimize Ts[{Rk, Sk}]t with respect to Sk to be subjected to the constraint

@Sk
@t

¼ �«k(r, t): (8:22)

The resulting Euler Lagrange equation is given by

@R2
k

@t
þr � R2

krSk
� � ¼ 0: (8:23)

The coupled equations, Equations 8.18 and 8.23, provide a means for determining
the exact TD density of the system of interest. We note that, at the solution point, the
current vector is given by

j(r, t) ¼
XN
k¼1

R2
k(r, t)rSk(r, t): (8:24)

Note that, in the limit that the time dependence is turned off, the TD-DFT approach
correctly reduces to the usual time-independent DFT one, as rSk vanishes, Equa-
tions 8.17, 8.22, and 8.23 are identically satisfied, and Equation 8.15 will reduce to
the time-independent kinetic energy of an N-electron system.

8.4 BOHMIAN MECHANICS: A TRAJECTORY PICTURE
OF QUANTUM MECHANICS

8.4.1 SINGLE-PARTICLE TRAJECTORIES

Apart from the operational, wave or action-based pictures of quantum mechanics
provided by Heisenberg, Schrödinger, or Feynman, respectively, there is an add-
itional, fully trajectory-based picture: Bohmian mechanics [20,23]. Within this
picture, the standard quantum formalism is understood in terms of trajectories defined
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by very specific motion rules. Although this formulation was independently formu-
lated by Bohm, it gathers two former conceptual ideas: (1) the QFD picture proposed
by Madelung and (2) the pilot role assigned to the wave function, proposed by
de Broglie. In this way, the time evolution or dynamics of the system is described as
an ideal quantum fluid with no viscosity; the evolution of this flow of identical
particles is ‘‘guided’’ by the wave function.

The Bohmian formalism follows from the Schrödinger one in the position
representation after considering a change of variables, from the complex wave
function field (C, C*) to the real fields (r, S) according to the transformation
relation:

C(r, t) ¼ R(r, t)eiS(r, t)=h, (8:25)

with r¼R2. Substituting this relation into the TD Schrödinger equation for a single
particle of mass m,

i h
@C(r, t)

@t
¼ �

h2

2m
r2 þ V(r)

" #
C(r, t), (8:26)

and then separating the real and imaginary parts from the resulting expression, two
real coupled equations are obtained:

@r

@t
þr � r

rS

m

	 

¼ 0, (8:27a)

@S

@t
þ (rS)2

2m
þ Veff ¼ 0, (8:27b)

where

Veff ¼ V þ Q ¼ V �
h2

2m
r2R

R
¼ V �

h2

4m
r2r

r
� 1
2

rr

r

	 
2
" #

(8:28)

is an effective potential resulting from the sum of the ‘‘classical’’ contribution V and
the so-called quantum potential Q which depends on the quantum state via r, or
equivalently on the instantaneous curvature of the wave function via R. Note that in
the case V¼ yeff and � given as in Section 8.3, one gets Veff¼ «k or Veff¼ «k(r, t)
depending on whether we are considering the time-independent or the TD case,
respectively. The action of the whole ensemble through the wave function on the
particle motion can be seen as a dynamical manifestation of quantum nonlocality.
Equation 8.27a is the continuity equation for the particle flow (or the probability
density, from a conventional viewpoint) and Equation 8.27b is a generalized (quan-
tum) Hamilton Jacobi equation. As in classical mechanics, the characteristics or
solutions S of Equation 8.27b define the particle velocity field,
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v ¼ rS

m
, (8:29)

from which the quantum trajectories are known. Uncertainty arises from the
unpredictability in determining the particle initial conditions distributed according
to r(r, t¼ 0) [20] but not from the impossibility to know the actual (quantum)
trajectory pursued during its evolution.

An alternative way to obtain the quantum trajectories is by formulating the
Bohmian mechanics as a Newtonian-like theory. Then, Equation 8.29 gives rise to
a generalized Newton’s second law:

m
dv

dt
¼ �rVeff : (8:30)

This formulation results very insightful; according to Equation 8.30, particles move
under the action of an effective force�rVeff, i.e., the nonlocal action of the quantum
potential here is seen as the effect of a (nonlocal) quantum force. From a computa-
tional viewpoint, these formulation results are very interesting in connection to
quantum hydrodynamics [21,27]. Thus, Equations 8.27 can be reexpressed in
terms of a continuity equation and a generalized Euler equation. As happens with
classical fluids, here also two important concepts that come into play: the quantum
pressure and the quantum vortices [28], which occur at nodal regions where the
velocity field is rotational.

Since TD-DFT is applied to scattering problems in its QFD version, two
important consequences of the nonlocal nature of the quantum potential are worth
stressing in this regard. First, relevant quantum effects can be observed in regions
where the classical interaction potential V becomes negligible, and more important,
where r(r, t)� 0. This happens because quantum particles respond to the ‘‘shape’’
of C, but not to its ‘‘intensity,’’ r(r, t). Notice that Q is scale-invariant under
the multiplication of r(r, t) by a real constant. Second, quantum-mechanically the
concept of asymptotic or free motion only holds locally. Following the classical
definition for this motional regime,

m
dv

dt
� 0, (8:31)

which means in Bohmian mechanics that rVeff� 0, i.e., the local curvature of
the wave function has to be zero (apart from the classical-like requirement that
V� 0). In scattering experiments, this condition is satisfied along the directions
specified by the diffraction channels [29]; in between, although V� 0, particles are
still subjected to strong quantum forces.

8.4.2 BOHMIAN TRAJECTORIES DESCRIBING MANY-BODY SYSTEMS

In the case of a many-body problem, the Bohmian mechanics for an
N-body dynamics follows from the one for a single system, but replacing Equation
8.25 by
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C(r1, r2, . . . , rN ; t) ¼ R(r1, r2, . . . , rN ; t)e
iS r1, r2,..., rN ; tð Þ=h

, (8:32)

with r(r1, r2, . . . , rN; t)¼R2(r1, r2, . . . , rN; t). If we are interested in the density of a
single particle, we need to ‘‘trace’’ over the remaining N� 1 degrees of freedom in
the corresponding density matrix (see Section 8.4.3). On the other hand, in order to
know the specific trajectory pursued by the particle associated with the kth degree of
freedom, we have to integrate the equation of motion

vk ¼ rkS

m
, (8:33)

whererk¼ @=@rk. The velocity field is irrotational in nature except at nodal regions.
Obviously, there will be as many equations of motion as degrees of freedom. Note
that as each degree of freedom represents a particle that is interacting with the
remaining N� 1 particles in the ensemble, the corresponding trajectory will be
strongly influenced by the evolution of those other N� 1 particles. This entangle-
ment is patent through the quantum potential, which is given here as

Q ¼ �
h2

2m

XN
k¼1

r2
kR

R
, (8:34)

where Q¼Q(r1, r2, . . . , rN; t), is nonseparable and therefore, strongly nonlocal.
Note that this nonlocality arises from correlation among different degrees of free-
dom, which is different from the nonlocality that appears when considering sym-
metry properties of the wave function, not described by the Schrödinger equation but
by quantum statistics. In this sense, we can speak about two types of entanglement:
symmetry and dynamics. The general N-body wave function (Equation 8.32) is
entangled in both aspects.

Now, if the many-body (electron) problem can be arranged in such a way that
the many-body, nonseparable wave function is expressed in terms of a separable
wave function, which depends on N single-particle wave functions (Hartree approxi-
mation), i.e.,

C(r1, r2, . . . , rN ; t) ¼
YN
k¼1

ck(rk; t) ¼
YN
k¼1

Rk(rk; t)e
iSk(rk ;t)=h, (8:35)

then, in terms of trajectories, we find a set of uncoupled equations of motion,

vk ¼ rkSk
m

, (8:36)

which will only depend implicitly (through yeff) on the other particles. Note that the
factorization of the wave function implies that the quantum potential becomes a
separable function of the N particle coordinates and time,
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Q ¼
h2

2m

XN
k¼1

r2
kRk

Rk
¼

XN
k¼1

Qk, (8:37)

where each Qk measures the local curvature of the wave function associated with the
ith orbital associated to the corresponding particle. Therefore, each degree of free-
dom can be studied separately from the rest (with the exception that we have to take
into account the mean field created by the remaining N 1 particles). Factorizability
implies physical independence, statistical independence, or in other words, that
particles obey Maxwell Boltzmann statistics (they are distinguishable) and the
associate wave function is, therefore, not entangled.

In TD-DFT, the wave function is antisymmetrized and therefore, nonfactorizable
or entangled. However, as said above, it is not entangled from a dynamical point of
view because the quantum forces originated from a nonseparable quantum potential
as in Equation 8.34 are not taken into account.

8.4.3 REDUCED QUANTUM TRAJECTORY APPROACH

In Section 8.4.2, we considered the problem of the reduced dynamics from a standard
DFT approach, i.e., in terms of single-particle wave functions from which the
(single-particle) probability density is obtained. However, one could also use an
alternative description which arises from the field of decoherence. Here, in order to
extract useful information about the system of interest, one usually computes its
associated reduced density matrix by tracing the total density matrix r̂t (the
subscript t here indicates time-dependence), over the environment degrees of free-
dom. In the configuration representation and for an environment constituted by N
particles, the system reduced density matrix is obtained after integrating
r̂t � Cj it t Ch j over the 3N environment degrees of freedom, {rk}

N
k¼1,

~p(r, r0; t) ¼
ð
r, r1, r2, . . . , rN jC(t)h i C(t)jr0, r1, r2, . . . , rNh idr1dr2 . . . drN : (8:38)

The system (reduced) quantum density current can be derived from this expression,
being

~j(r, t) � h

m
Im[rr~r(r, r

0; t)]jr0¼r, (8:39)

which satisfies the continuity equation

_~r þr~j ¼ 0: (8:40)

where ~r is the diagonal element (i.e., ~r � ~r(r, r; t)) of the reduced density matrix.
Taking into account Equations 8.39 and 8.40, now we define the velocity field _r
associated with the (reduced) system dynamics as

~j ¼ ~r _r, (8:41)
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which is analogous to the Bohmian velocity field. Now, from Equation 8.41, we
define a new class of quantum trajectories as the solutions to the equation of motion

_r � h

m

Im[rr~r(r, r0; t)]
Re[~r(r, r0; t)]

����
r0¼r

(8:42)

These new trajectories are the so-called reduced quantum trajectories [30], which are
only explicitly related to the system reduced density matrix. The dynamics described
by Equation 8.42 leads to the correct intensity (time evolution of which is described by
Equation 8.40) when the statistics of a large number of particles are considered.
Moreover, Equation 8.42 reduces to the well-known expression for the velocity field
in Bohmian mechanics, when there is no interaction with the environment.

8.5 FINAL DISCUSSION AND CONCLUSIONS

Nowadays the success of DFT and TD-DFT is out of question in both the physics
and chemistry communities. The numerical results obtained are most of cases in
good agreement to those from experimental and other theoretical methods with a
relative small computational effort. However, in this chapter, our goal is to present
the TD-DFT from a Bohmian perspective and to analyze, from a conceptual level,
some of the aspects which are deeply rooted in DFT.

Working with a system of fermions, where the total wave function has to be
antisymmetrized with respect to two-particle interchanges, it gives rise to the appear-
ance of new quantum forces from the quantum potential, which are not described by
the DFT Hamiltonian. The DFT wave function will then be nonfactorizable and
therefore, entangled from a symmetry point of view but not from a dynamical point
of view. In this sense, as mentioned above, the effective potential Veff plays a
fundamental role not only in the nonlocality of the theory, but in the so-called
invertibility problem of the one-to-one mapping up to an additive TD function
between the density and yeff. In our opinion, the central theorems of TD-DFT should
be written in terms of Veff instead of yeff, as the quantum potential is also state-
dependent and a functional of the density. An infinite set of possible quantum
potentials can be associated with the same physical situation and Schrödinger equation
and therefore, the invertibility should be questioned. Moreover, for scattering prob-
lems, when yeff is negligible in the asymptotic region, the quantum potential can still
be active and the time propagation should be extended much farther in order to obtain
a good numerical convergence.

In Bohmian mechanics, the way the full problem is tackled in order to obtain
operational formulas can determine dramatically the final solution due to the context-
dependence of this theory. More specifically, developing a Bohmian description
within the many-body framework and then focusing on a particle is not equivalent to
directly starting from the reduced density matrix or from the one-particle TD-DFT
equation. Being well aware of the severe computational problems coming from the
first and second approaches, we are still tempted to claim that those are the most
natural ways to deal with a many-body problem in a Bohmian context.
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9.1 INTRODUCTION

Density functional theory was originally formalized for the ground state [1]. It is
valid for the lowest energy state in each symmetry class [2,3]. To calculate excitation
energies, Slater [4] introduced the transition state method, which proved to be a
reasonably good one to calculate excitation energies.

Density functional theory was first generalized for excited states by Theophilou
[5]. The density functional variational principle for excited states was studied by
Perdew and Levy [6] and Lieb [7]. Formalisms for excited states were also provided
by Fritsche [8] and English et al. [9]. The subspace theory of Theophilou was
enlarged into the theory of unequally weighted ensembles of excited states by
Gross et al. [10]. The relativistic generalization of this formalism was also done
[11]. A theory of excited states was presented utilizing Görling Levy perturbation
theory [12,13]. Kohn [14] proposed a quasilocal density approximation and excita-
tion energies of He atom were calculated using this method [10]. Excitation energies
of several atoms [15 18] were determined using the ensemble theory, and several
ground-state approximate functionals were tested [19]. The coordinate scaling for the
density matrix of ensembles was explored [20]. The adiabatic connection formula
was extended to the ensemble exchange-correlation energy and a simple local
ensemble exchange potential was presented [21]. The subspace density and pair
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density at the coincidence of the first excited state for two harmonically interacting
electrons with antiparallel spins under isotropic harmonic confinement were calcu-
lated [22]. (For reviews of excited-state theories, see Refs. [18,23].)

Unfortunately, the exchange-correlation part of the ensemble Kohn Sham
potential is not known exactly. The optimized potential method (OPM) and its
approximations turned to be very successful in treating the exchange exactly in the
ground-state theory [24 28], were generalized for ensembles of excited states. The
first generalization was based on the ensemble Hartree Fock method [29]. Later, a
ghost-interaction correction to this scheme was proposed [30]. Then another more
appropriate OPM was developed [31]. The combination of this method, the self-
interaction-free Perdew Zunger approximation, and ghost- and self-interaction
corrected (GSIC) ensemble Kohn Sham potential was constructed and applied to
determine ensemble energies and excitation energies [32 34]. The virial theorem
was also derived in the ensemble theory [35]. Based on the ensemble theory, a
relationship between excitation energy and hardness was derived, the concept of the
ensemble Kohn Sham hardness was introduced, and it was proposed that the first
excitation energy can substitute for the hardness as a reactivity index [36].

Two theories for a single excited state [37 40] are the focus of this chapter.
A nonvariational theory [37,38] based on Kato’s theorem is reviewed in Section 9.2.
Sections 9.3 and 9.4 summarize the variational density functional theory of a single
excited state [39,40]. Section 9.5 presents some application to atoms and molecules.
Section 9.6 is devoted to discussion.

There are other noteworthy single excited-state theories. Görling developed a
stationary principle for excited states in density functional theory [41]. A formalism
based on the integral and differential virial theorems of quantum mechanics was
proposed by Sahni and coworkers for excited state densities [42]. The local scaling
approach of Ludena and Kryachko has also been generalized to excited states [43].

An alternative theory is the popular time-dependent density functional theory
[44], in which transition energies are obtained from the poles of dynamic linear
response properties. There are several excellent reviews on time-dependent density
functional theory. See, for instance, Ref. [45].

9.2 NONVARIATIONAL THEORY FOR A SINGLE EXCITED STATE

According to the Hohenberg Kohn theorem of the density functional theory, the
ground-state electron density determines all molecular properties. E. Bright Wilson
[46] noticed that Kato’s theorem [47,48] provides an explicit procedure for
constructing the Hamiltonian of a Coulomb system from the electron density:

Zb ¼ 1
2n(r)

@n(r)

@r

����
r¼Rb

: (9:1)

Here n denotes the angular average of the density n and the right-hand side is
evaluated at the position of nucleus b. From Equation 9.1, the cusps of the density
tell us where the nuclei are (Rb) and what the atomic numbers Zb are. The integral of
the density gives us the number of electrons:
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N ¼
ð
n(r)dr: (9:2)

Consequently, from the density the Hamiltonian can be readily obtained, and then
every property of the system can be determined by solving the Schrödinger equation
to obtain the wave function. One has to emphasize, however, that this argument
holds only for Coulomb systems. By contrast, the density functional theory
formulated by Hohenberg and Kohn is valid for any external potential.

Kato’s theorem is valid not only for the ground state but also for the excited
states. Consequently, if the density ni of the i-th excited state is known, the
Hamiltonian Ĥ is also known in principle and its eigenvalue problem

ĤCk ¼ EkCk (k ¼ 0, 1, . . . , i, . . . ) (9:3)

can be solved, where

Ĥ ¼ T̂ þ V̂ þ V̂ee: (9:4)

T̂ ¼
XN
j¼1

� 1
2
r2

j

� �
, (9:5)

V̂ee ¼
XN 1

k¼1

XN
j¼kþ1

1

rk � rj
�� �� (9:6)

and

V̂ ¼
XN
k¼1

XM
J¼1

�ZJ
rk � RJj j (9:7)

are the kinetic energy, the electron electron energy, and the electron nuclear energy
operators, respectively.

There are certain special cases, however, where Equation 9.1 does not provide
the atomic number. The simplest example is the 2p orbital of the hydrogen atom,
where the density

n2p(r) ¼ cr2e Zr (9:8)

and the derivative of the density are zero at the nucleus. Though Kato’s theorem
(Equation 9.1) is valid in this case too, it does not give us the desired information,
that is, the atomic number. Similar cases occur in other highly excited atoms, ions, or
molecules, for which the spherical average of the derivative of the wave function is
zero at the nucleus, that is where we have no s-electrons.

Pack and Brown [49] derived cusp relations for the wave functions of these
systems. We derived the corresponding cusp relations for the density [50,51]. Let us
define
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hl(r) ¼
n(r)

r2l
, (9:9)

where l is the smallest integer for which hl is not zero at the nucleus. The new cusp
relations for the density are

@hl(r)

@r

����
r¼0

¼ � 2Z
lþ 1

hl(0): (9:10)

For the example of a one-electron atom in the 2p state, Equation 9.9 leads to

h2p(r) ¼
n2p
r2l

¼ ce Zr (9:11)

and the new cusp relation has the form:

�2Zh2p(0) ¼ 2h0
2p(0): (9:12)

So we can again readily obtain the atomic number from the electron density. Other
useful cusp relations have also been derived [52,53]. There are several other works
concerning the cusp of the density [54 63].

Next, using the concept [2,64] of adiabatic connection, Kohn Sham-like equa-
tions can be derived. We suppose the existence of a continuous path between the
interacting and the noninteracting systems. The density ni of the ith electron state is
the same along the path.

Ĥa
i C

a
k ¼ Ea

kC
a
k , (9:13)

where

Ĥa
i ¼ T̂ þ aV̂ee þ V̂a

i : (9:14)

The subscript i denotes that the density of the given excited state is supposed to be
the same for any value of the coupling constant a. a¼ 1 corresponds to the fully
interacting case, while a¼ 0 gives the noninteracting system:

Ĥ0
i C

0
k ¼ E0

kC
0
k : (9:15)

For a¼ 1, the Hamiltonian Ĥa
i is independent of i. For any other value of a, the

‘‘adiabatic’’ Hamiltonian depends on i and we have different Hamiltonians for
different excited states. Thus the noninteracting Hamiltonian (a¼ 0) is different
for different excited states. If there are several ‘‘external’’ potentials Va 0 leading
to the same density ni, we select that potential for which the one-particle density
matrix is closest to the interacting one-particle density matrix.

To solve the Kohn Sham-like equation (Equation 9.15), one has to find an
approximation to the potential of the noninteracting system. The OPM [25] can be
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generalized for a single excited state also. It was shown [37] that because the energy
is stationary at the true wave function, the energy is stationary at the true potential.
This is the consequence of the well-known fact that when the energy is considered to
be a functional of the wave function, the only stationary points of E[�] are those
associated with the eigenvalues=eigenvectors of the Hamiltonian

dE

dCk
¼ 0 (k ¼ 1, . . . , i, . . . ): (9:16)

From the density of a given excited state ni, one can obtain the Hamiltonian, the
eigenvalues and eigenfunctions, and (through adiabatic connection) the noninteract-
ing effective potential Va¼0

i . The solution of equations of the noninteracting system
then leads to the density ni. Thus, we can consider the total energy to be a functional
of the noninteracting effective potential:

E[Ci] ¼ E Ci V
0
i

� �� �
: (9:17)

Making use of Equation 9.16, we obtain

dE

dV0
i

¼
ð
dE

dCi

dCi

dV0
i

þ c:c: ¼ 0: (9:18)

So an optimized effective potential can be found for the given excited state. The
Knieger-Li-Iafrate (KLI) approximation to the optimized effective potential can also
be derived [37].

Exchange identities utilizing the principle of adiabatic connection and coordinate
scaling and a generalized Koopmans’ theorem were derived and the excited-state
effective potential was constructed [65]. The differential virial theorem was also
derived for a single excited state [66].

9.3 VARIATIONAL THEORY FOR A NONDEGENERATE
SINGLE EXCITED STATE

The theory discussed in the Section 9.2 is a nonvariational one. It presumes that the
interacting excited-state density is known. Two of the authors showed, accordingly,
that there exists a variational excited-state density functional theory that generates
the interacting excited-state density as well as the corresponding energy [39].
Consider first the nondegenerate case. The functionals in this variational theory are
universal bifunctionals. That is, they are functionals of not only the given excited-
state trial density n, but of the ground-state density n0 as well.

The variational principle is written in the form of a constrained search

Ei ¼ min
n

min

C?C0,...,Ci 1

C!n
C Ĥ
�� ��C� �

: (9:19)

The minimization process is done in two steps. The first minimization is over all
wave functions that are orthogonal to the first i� 1 states of Ĥ and simultaneously
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gives the trial the density, n. The second minimization is over the set of all N-electron
trial densities. We can write this procedure as

Ei ¼ min
n

ð
v(r)n(r)drþ Fi n, n0½ �

	 

¼

ð
v(r)ni(r)drþ Fi ni, n0½ �, (9:20)

where the universal functional Fi[n, n0] is defined as

Fi n, n0½ � ¼ min

C?C0,...,Ci 1

C!n
C T̂ þ V̂ee

�� ��C� � ¼ C n, n0½ �jT̂ þ V̂eejC n, n0½ �� �
: (9:21)

In Equation 9.21, � yields n and is orthogonal to the first i� 1 state of the Hamilto-
nian for which n0 is the ground-state density. Here, this Hamiltonian is the Ĥ in
Equation 9.19. Note that instead of the ground-state electron density n0, we could use
the external potential v or any ground-state Kohn Sham orbital, etc. Thus we could
use Fi[n, v]. The extension to degenerate states is studied in Section 9.4.

Now define the noninteracting kinetic energy Ts,i[n, n0] by

Ts,i n, n0½ � ¼ min
F!n

F?F0,...,Fm 1

FjT̂ jF� � ¼ F n, n0½ �T̂ jF n, n0½ �� �
, (9:22)

where each F is orthogonal to the first m� 1 (with m � 1) states of that noninter-
acting Hamiltonian whose ground state resembles n0 closest, say in a least squares
sense, and for which ni is the mth state density. With

wi( ni, n0½ �; r) ¼ � dTs,i n, n0½ �
dn

����
n¼ni

(9:23)

we then have the minimum principle

Ts,i ni, n0½ � þ
ð
wi( ni, n0½ �; r)ni(r)dr

¼ min
n

Ts,i n, n0½ � þ
ð
wi( ni, n0½ �; r)n(r)dr

	 

: (9:24)

The Kohn Sham equations take the form

� 1
2
r2 þ wi( ni, n0½ �; r)

� �
fi
j(r) ¼ «ijf

i
j(r), (9:25)

where the orbitals are occupied as necessary, so that

ni ¼
X
k¼1

lik f
i
k

�� ��2: (9:26)

The occupation numbers lik will be 0,1, or 2 for a nondegenerate system. Since ni
is an excited-state density of a noninteracting system whose potential is wi, at least
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one of the lik will be zero. As in the usual Kohn Sham scheme, wi is obtained by
first approximating it with a starting guess for ni in the Kohn Sham potential, and
then the Kohn Sham equations are solved in a self-consistent manner. The total
excited-state energy is

Ei ¼
ð
v(r)ni(r)d(r)� 1

2

X
j

lij fi
j r2
�� ��fi

j

��D E
þ Gi ni, n0½ �, (9:27)

where

Gi n, n0½ � ¼ Fi n, n0½ � � Ts,i n, n0½ � (9:28)

is the sum of the Coulomb and exchange-correlation energy. For practical calcula-
tions, G must be approximated. The OPM and the KLI approximation mentioned
above can also be generalized to approximate G and the Kohn Sham potential w.
Consider partitioning Gi[n, n0] as

Gi n, n0½ � ¼ Qi n, n0½ � þ Ei
c n, n0½ �, (9:29)

where
Qi is the Coulomb plus exchange component
Ei
c is the correlation component of Gi

A crucial constraint for approximating Qi and dQi=dn is [39]

F ni, n0½ � V̂ee

�� ��F ni, n0½ �� �� FN 1 ni, n0½ � V̂ee

�� ��FN 1 ni, n0½ �� �

¼
ð
d(r) ni(r)� nN 1

i (r)
� � dQi n, n0½ �

dn

����
n¼ni

,
(9:30)

where FN 1 is the ground state of the noninteracting Hamiltonian with potential
wi([ni, n0]; r) (but with N� 1 electrons), and nN 1

i is the density of FN 1. Also, it is
understood that both wi and dQi=dn vanish as jrj !1. Equation 9.30 is analogous to
the ground-state exchange-only Koopmans’ relation that has been previously
obtained for finite systems [27,67]. Moreover, the highest occupied orbital energy
must equal the exact excited-state ionization energy, unless prevented by symmetry
[68]. Other useful constraints can also be derived [39,69].

(By the way, through ensemble theory with unequal weights, Ref. [68] identifies
an effective potential derivative discontinuity that links physical excitation energies
to excited Kohn Sham orbital energies from a ground-state calculation.)

9.4 VARIATIONAL THEORY FOR A DEGENERATE
SINGLE EXCITED STATE

Now, we turn to the degenerate case. Consider the solutions of the Schrödinger
equation

ĤjCi
gi ¼ EijCi

gi g ¼ 1, 2, . . . , gið Þ, (9:31)
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where gi is the degeneracy of the ith excited state. For the sake of simplicity, only
one index is used to denote the symmetry both in spin and spatial coordinates.
Instead of treating one wave function, the subspace Si spanned by a set of wave
functions Ci

g will be considered.
We define the density matrix in subspace Si as

D̂i ¼
Xgi
g¼1

hi
g Ci

g

��� E
Ci

g

D ���, (9:32)

where the weighting factors hi
g satisfy the conditions

1 ¼
Xgi
g¼1

hi
g (9:33)

and

hi
g � 0: (9:34)

In principle, any set of weighting factors hi
g satisfying the above conditions in

Equations 9.33 and 9.34 can be used. Now, we define the subspace density as

ni ¼ N
Xgi
g¼1

hi
g

ð
Ci

g

��� ���2ds1dx2 . . . dxN , (9:35)

where x stands for a space spin coordinate. The weighting factors hi
g should satisfy

the conditions Equation 9.33 and Equation 9.34. If all hi
g are equal, the density has the

property of transforming according to the totally symmetric irreducible representation
[70,71]. (For instance, for atoms the subspace density will be spherically symmetric.)
But, it is possible to select other values for the weighting factors hi

g. Equal weighting
factors have the advantage that the subspace density has the symmetry of the external
potential.

Now, we define the functional

F ni, n0½ � ¼ Min
S!ni

Xgi
g¼1

hg CgjT̂þ V̂eejCg

� �
: (9:36)

It can be rewritten applying the density matrix

F ni, n0½ � ¼ min
S!ni

tr D̂ T̂ þ V̂ee

 �� �
, (9:37)

where ni and n0 are arbitrary densities. n0 is a ground-subspace density, while ni is
the trial excited subspace density we are considering. All the subspaces correspond-
ing to the first i� 1 states of that Hamiltonian for which n0 is the ground-state
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subspace density are supposed to be orthogonal to the subspace considered. Thus the
total energy of the ith excited state has the form

Ei ¼ min
Si

Xgi
g¼1

hg Ci
g Ĥv

�� ��Ci
g

D E

¼ min
ni

min
Si!n

Xgi
g¼1

hg Ci
g Ĥ
�� ��Ci

g

D E( )

¼ min
ni

F ni, n0½ � þ
ð
ni(r)v(r)dr

	 

: (9:38)

Ei can be rewritten with the density matrix:

Ei ¼ min
Si

tr D̂iĤ
� � ¼ min

ni
min
Si!ni

tr D̂iĤ
� �	 


: (9:39)

The noninteracting Kohn Sham system is defined by adiabatic connection,

Ĥi,a ¼ T̂ þ aV̂ee þ
XN
k¼1

via rkð Þ: (9:40)

yia r; ni, n0½ �ð Þ is defined so that the subspace density ni (a) remains independent of a
and (b) the ground state of Ĥi,a is closest to n0 in a least squares sense. The
noninteracting Kohn Sham Hamiltonian is obtained for a¼ 0:

Ĥi
w ¼ Ĥi:a¼0 ¼ T̂ þ

XN
j¼1

wi ni, n0½ �; rj
 �

: (9:41)

Both the noninteracting Hamiltonian Ĥi
w and the Kohn Sham-like potential

wi ni, n0½ �; rð Þ ¼ yi0(r) depend on i; they are different for different excited states.
The Kohn Sham-like equations read

Ĥi,0
��Ci,0

g

� ¼ Ei,0
��Ci,0

g

�
(g ¼ 1, 2, . . . , gi), (9:42)

where the noninteracting density matrix can be constructed from the wave functions
Ci,0

g as

D̂i
s ¼

Xgi
g¼1

hg Ci,0
g

��� E
Ci,0

g

D ���, (9:43)

while the noninteracting kinetic energy takes the form

Ts,i ni, n0½ � ¼ tr D̂i
sT̂

� �
: (9:44)
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Ts,i can also be given variationally as

Ts,i ni, n0½ � ¼ Min
Si!ni

tr D̂iT̂
� � ¼ tr D̂i

s ni, n0½ �T̂� �
, (9:45)

where each Si is orthogonal to all subspaces corresponding to the first m 1 states of
Ĥi

w and ni is the subspace density of the mth excited state of Ĥi
w: D

i
s ni, n0½ � is the

noninteracting excited-state density matrix of Ĥi
w whose subspace density is ni.

Minimizing the noninteracting kinetic energy

Ts,i ni, n0½ � þ
ð
ni(r)w

i ni, n0½ �; rð Þdr ¼ Min
ni

Ts ni, n0½ � þ
ð
ni rð Þwi ni, n0½ �; rð Þdr

	 


(9:46)

leads to the Euler equation

wi ni, n0½ �; rð Þ þ dTs,i ni, n0½ �
dn

����
n¼ni

¼ mi, (9:47)

where mi is a Lagrange parameter. The Kohn Sham potential takes the form

wi(r) ¼ v(r)þ dG ni, n0½ �
dn

����
n¼ni

, (9:48)

where the functional G[ni, n0] is defined by the partition

F ni, n0½ � ¼ Ts,i ni, n0½ � þ G ni, n0½ �: (9:49)

A further partition of G[ni, n0] gives

G ni, n0½ � ¼ J ni½ � þ Ex ni, n0½ � þ Ec ni, n0½ � (9:50)

J, Ex, and Ec are the Coulomb, exchange, and the correlation components of G:

J ni½ � þ Ex ni, n0½ � ¼ tr D̂iV̂ee

� �
, (9:51)

Ec ni, n0½ � ¼ tr D̂iV̂ee

� �� tr D̂i
sV̂ee

� �
: (9:52)

Therefore, the Kohn Sham potential has the form

wi(r) ¼ v(r)þ viJ(r)þ vixc(r), (9:53)

where v(r), viJ, and vixc(r) are the external, Coulomb, and the exchange-correlation
potentials, respectively.

The Kohn Sham equations can be obtained from the minimalization of the
noninteracting kinetic energy after expressing it with one-electron orbitals. Because
Ci,0

g is generally a linear combination of several Slater determinants, the form of the
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Kohn Sham equations is rather complicated for an arbitrarily selected set of weight-
ing factors, and has to be derived separately for every different case of interest. For a
spherically symmetric external potential and equal weighting factors, however, the
Kohn Sham equations have a very simple form, as shown in Ref. [72]. In this case
the noninteracting kinetic energy is given by

Ts,i ¼
XN
j¼1

lij

ð
Pi
j � 1

2
Pi
j

� �00

þ lij

lij þ 1

�
2r2

Pi
j

" #
dr, (9:54)

where Pi
j and lij are the radial wave functions and the occupation numbers corre-

sponding to the given configuration, respectively. In Equation 9.54, (Pi
j)
00 denotes the

second derivative of Pi
j with respect to r. The radial subspace density

Ri ¼
XN
j¼1

lij Pi
j

� �2
(9:55)

in this particular case is spherically symmetric. Theminimization of the noninteracting
kinetic energy leads to the radial Kohn Sham equations

� 1
2

Pi
j

� �00
þ lj lj þ 1

 �
2r2

Pi
j þ wiPi

j ¼ «ijP
i
j: (9:56)

9.5 APPLICATION TO ATOMS AND MOLECULES

To perform excited-state calculations, one has to approximate the exchange-
correlation potential. Local self-interaction-free approximate exchange-correlation
potentials have been proposed for this purpose [73]. We can try to construct these
functionals as orbital-dependent functionals. There are different exchange-correlation
functionals for the different excited states, and we suppose that the difference between
the excited-state functionals can be adequately modeled through the occupation
numbers (i.e., the electron configuration). Both the OPM and the KLI methods have
been generalized for degenerate excited states [37,40].

Table 9.1 presents excitation energies for a few atoms and ions. Calculations were
performed with the generalized KLI approximation [69,74]. For comparison, experi-
mental data and the results obtained with the local-spin-density (LSD) exchange-
correlation potential [75] are shown. The KLI method contains only the exchange.

The inclusion of correlation in OPM and KLI methods is straightforward in
principle. One needs a correlation functional as a functional of the orbitals and then
the method of derivation and calculation is exactly the same. Orbital-based correla-
tion functionals already exist for the ground state (e.g., the functionals of Becke
[76] and Mori Sánchez et al. [77]). Unfortunately, we do not have excited-state
correlation functionals. In the existing approximating functionals, exchange and
correlation are treated together and if we change only the exchange part (into KLI
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or OPM), the balance between the exchange and correlation is ruined and we might
receive worse results than in the exchange-only case. To find an appropriate approxi-
mate correlation functional for excited states will be the subject of future research.

In a recent paper, Glushkov and Levy [78] have presented an OPM algorithm
that takes into account the necessary orthogonality constraints to lower states. One
has to solve the problem

P̂(Ĥ � E)P̂jCii ¼ 0, Cii ¼ P̂jCii, i ¼ 1, 2, . . . , m, (9:57)

usjCih i ¼ 0 s ¼ 1, 2, . . . q < m (9:58)

on a finite dimentional subspace M, dim(M)¼m with the associated projector P. For
the lowest excited state, the Kohn Sham equations have the form

P̂1 � 1
2
r2 þ Vs

eff

� �
P̂1jfsigma

1, i i ¼ «s1,ijfs
1,ii, s ¼ a, b, (9:59)

subjected to the constraints

P̂a
n jfa

1, ji ¼ 0 j ¼ 1, 2, . . . , na, (9:60)

where

P̂a
n ¼ fa

0, n

�� �
fa
0, n

� �� (9:61)

and P̂1 is the orthoprojector defined from the basis set chosen for the excited state
under consideration. OPM equations were derived using a variational principle with
orthogonality constraints. The Kohn Sham potential is expressed in a parametrized

TABLE 9.1
Calculated and Experimental Excitation
Energies (in Ry)

Atom Transition KLI LSD Exp.

Li 2s 2S ! 2p 2P 0.135 0.136 0.136
Na 3s 2S ! 3p 2P 0.144 0.164 0.154

K 4s 2S ! 4p 2P 0.103 0.124 0.118
Neþ 2s22p5 2S ! 2s2p6 2S 2.166 1.671 1.978
C 2s22p2 3P ! 2s 2p3 3D 0.588 0.591 0.584

Si 3s23p2 3P ! 3s 3p3 3D 0.469 0.486 0.441
O 2s22p4 3P ! 2s 2p5 3P 1.252 1.058 1.151
Fþ 2s22p4 3P ! 2s 2p5 3P 1.597 1.363 1.505

Oþ 2s22p3 4S ! 2s 2p4 4P 1.106 1.082 1.094
B 2s22p 2P ! 2s 2p2 2D 0.433 0.411 0.436
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form as a direct mapping of the external potential [79,80]. The second column of
Table 9.2 presents the exchange-only OPM excited-state energies for the HeH
molecule. For comparison, the Hartree Fock and configuration interaction (CI)
results are also shown.

9.6 DISCUSSION

We would like to emphasize that the generalizations of the Hohenberg Kohn
theorems to excited states reviewed in Sections 9.3 and 9.4 are different from the
ground-state Hohenberg Kohn theorems. The universal variational functionals for
the kinetic and electron electron repulsion energies in this excited-state variational
theory are bifunctionals. That is, they are functionals of either the trial excited-state
density and the ground-state density or of either the trial excited-state density and the
external potential of interest. The standard Hohenberg Kohn theorems for a single
excited-state density do not exist [81 83]. Indeed, in recent studies, Gaudoin and
Burke [82] and Sahni et al. [83] have presented examples of the nonuniquess of
the potential. That is, they presented cases where a given excited-state density
corresponds to several different ‘‘Kohn Sham’’ potentials. Samal et al. [84], on the
other hand, have argued that in the Levy Nagy theory, the criterion based on the
ground-state density of the Kohn Sham potential may fix the density-to-potential
map uniquely. In another recent paper, Samal and Harbola [85] have proposed a
different criterion. Based on numerical examples, they recommend a criterion based
on the kinetic energy instead of the ground-state density.

Two approaches to the excited-state problem have been the focus of this chapter.
The nonvariational one, based on Kato’s theorem, is pleasing in that it does not
require a bifunctional, but it presumes that the excited-state density is known. On
the other hand, the bifunctional approach is appealing in that it actually generates
the desired excited-state density, which results in the generation of more known
constraints on the universal functional for approximation purposes.
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TABLE 9.2
Excited State Energies (in Ry) of the HeH
Molecule at R¼ 1.5 bohrs

State OPM HF CI

A 2Sþ 6.1296 6.1346 6.2254
C 2Sþ 6.0298 6.0308 6.1116

D 2Sþ 5.9688 5.9698 6.0600
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10.1 INTRODUCTION

Taking into account the spin degree of freedom of electrons is important to develop
theories and methods robust enough to handle open shell systems and magnetic
properties. In addition, nowadays manipulate spin transfer is a reality due to the
development of spintronics. However, the relativistic nature of spin imposes a strong
restriction to build theories with feasible wide applicability in electronic structure
studies. Such restriction is present in wave function and density functional
approaches. In both worlds, most of the applications of spin-dependent methods
are done in the nonrelativistic spin-polarized limit. For the wave function approach,
the limit is quite easy to achieve at least in a conceptual form: solving the Schrö-
dinger equation with a fully flexible wave function constructed as an infinite linear
combination of Slater determinants. The spin variable is introduced in the form of
spin orbitals. On the density functional theory (DFT) side, the development of spin-
dependent theories was introduced since the very beginning [1]. In this chapter, a
brief description of the DFT relativistic method is outlined and the most widely used
nonrelativistic limit is presented. Also, the chemical reactivity analysis that emerged
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from such limit is summarized in the light of several practical applications. In order
to emphasize the physical meaning of the reactivity parameters, the discussion of
them is done in the context of their formal definition rather than in the environment
of their working equations within the spin-polarized Kohn Sham method.

10.2 SPIN-POLARIZED DENSITY FUNCTIONAL THEORY

The Schrödinger formulation of quantum mechanics does not include the spin as an
explicit variable in the Hamiltonian. This limitation is partially eliminated by the
introduction of the spin variable in the wave function. This is done by using spin
orbitals as building blocks for the Slater determinants. In this way, each element of
the Slater determinant is a simple product of a spatial and a spin function; by
construction the antisymmetry property required for the fermion nature of the
electrons is satisfied. In the wave function approach, the spin is properly taken into
account by the Dirac equation, but its complexity has avoided the possibility of using it
for the systematic study of polyatomic systems. Accordingly, one may say that the spin
is treated in the Schrödinger formulation in a nonrelativistic framework. On the side of
DFT, there is a similar distinction in the approaches that address the treatment of spin
variable. The original Hohenberg Kohn Sham formalism was introduced in the
context of a nonrelativistic treatment of the spin variable [1,2]. Indeed, the spin was
only mentioned in a short discussion of the spin susceptibility of a uniform electron
gas. The first step in the direction of an appropriate treatment of the spin was done,
almost simultaneously, by Von Barth and Hedin [3], Pant and Rajagopal [4], and by
Rajagopal and Callaway [5]; they introduced the nonrelativistic limit for spin-polarized
systems in a way that prevails until now as the most widely used spin-polarized DFT
method. On the other hand, Ragajopal and Callaway provided the first demonstration
that the Hohenberg Kohn theorems can be extended to the case of many-electron
systems characterized in terms of quantum electrodynamics [5]. It was until the late
1970s that the seminal works by Rajagopal [6] and by MacDonald and Vosko [7]
settled down the relativistic formalism for a spin-polarized system. In the next
section, a brief summary of this formalism is presented following the notation and
approach presented in more detail in the Dreizler and Gross book [8].

10.2.1 RELATIVISTIC DENSITY FUNCTIONAL THEORY

In the relativistic version of DFT, the ground state energy of the system is a unique
functional of the fermion four-current density, JAm(r):

EA JAm

h i
¼ FA JAm

h i
þ
ð
drJAm(r)A

m
ext(r): (10:1)

In this equation, Am
ext is a given external four-potential and JAm(x) is the four-current

density. As the treatment is for stationary states, the external four-potential and the
fermion four-current are independent of time.
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The variational principle can be stated as

EA JAm

h i
� EA JAm

� �0h i
, (10:2)

in which (JAm)
0 is any nonequivalent Am-representable four-current density.

It is also possible to extend the Kohn Sham formalism by defining an energy
term TS that includes the kinetic energy of the noninteracting system, and the total
rest mass of the electron [8]:

TS¼1
2

ð
dr

X
«n<«f

cn(x)[�ig �rþm]cn(x)�
X
«n>«f

cn(x)[�ig �rþm]cn(x)

( )
: (10:3)

The equation above is written using the units h¼ c¼ 1. The quantity g is a vector of
Dirac matrices, m is the electron mass multiplied by a Dirac matrix. cn(x) is a spinor
dependent on the space and time coordinates, x, and cn(x) is its corresponding
adjoint. «n is an eigenvalue and «f is the Fermi level. With this definition the energy
functional is

E[Jm] ¼ TS[J
m]þ

ð
drJm(x)A

m
ext(r)þ

1
2

ð
drdr0

Jm(x)Jm(x0)
r � r0j j þ EXC[J

m]: (10:4)

It is important to notice that the Coulomb-like term (the third term in the equation) is
written in terms of the four-current, and the exchange and correlation energy is
given by

EXC[J
m] ¼ F[Jm]� TS[J

m]� 1
2

ð
drdr0

Jm(x)Jm(x0)
r � r0j j : (10:5)

In Equations 10.1, 10.4, and 10.5, the standard implicit sum on the index m is
assumed. The relativistic Kohn Sham equations are obtained by minimization of
the Equation 10.4 with respect to the orbitals. In contrast to the nonrelativistic case,
the variational procedure gives rise to an infinite set of coupled equations (see the
summation restrictions in Equation 10.3) that have to be solved in a self-consistent
manner:

g � �ir� Aeff(r)ð Þ þ mþ g0veff(r)½ �cn(r) ¼ «ng0cn(r); (10:6)

in these equations

veff(r) ¼ �e A0
ext(r)þ

ð
dr0

J0(r0)
r � r0j j þ

dEXC[Jm]

dJ0(r)

� �
(10:7)
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and

Aeff(r) ¼ �e Aext(r)þ
ð
dr0

J(r0)
r � r0j j þ

dEXC[Jm]

dJ(r)

� �
: (10:8)

Solving this iterative process gives rise to a set of orbitals to construct the ground
state four-current, Jm(x), including vacuum polarization corrections due to the exter-
nal field as well as the field mediating the interaction between the electrons. As the
charge density in the nonrelativistic case, the four-current has the form of a reference
noninteracting N-electron system, JAm

Jm(x) � JmS (x) ¼ �e
X

m<«n<«f

cn(x)g
mcn(x)þ JmS (x)vac: (10:9)

The summation starts in �mc2, and the energy in the current units is just m. To
simplify the iterative process, a standard approximation neglects the vacuum polar-
ization effects giving a simpler structure of the four-current [5,7]:

JmS (r) ¼ �e
X

m<«n<«f

cn(x)g
mcn(x): (10:10)

The general relativistic Hohenberg Kohn Sham formalism, outlined above, con-
tains the spin degrees of freedom in a complete form. Consequently, the spin
and kinetic motion effects are not separable. Indeed, they are contained in the
external potential term as one can see if such term is written using the orbital current
density as [9]

Hexth i ¼
ð
dr Ĵ0(r)A

0
ext(r)� ĵorb(r) � Aext(r)þ

mb

2
ĉ (x)sijĉ(x)F

ji
ext(r)

n o
: (10:11)

In this expression the orbital current density is

jorb(r) ¼ � e

2m

ĉ (x) �ir� eÂ(x)� eAext(r)
� �

ĉ(x)
� 	

� �ir� eÂ(x)� eAext(r)
� �

ĉ (x)
h i

ĉ(x)

( )
: (10:12)

It is important to notice that in Equation 10.11, only the sum of the three terms
is Lorentz invariant. The first term corresponds to the interaction of the charge
density with the external Coulomb potential and the last term can be written in
the form

�
ð
drm(r) � Bext(r), (10:13)

where m(r) is the magnetization and Bext(r) a external magnetic field. As only
the combination of the three terms in Equation 10.11 is covariant, any explicit
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approximations in terms of the charge density r(r) and the magnetization m(r) alone
would depend on the Lorentz frame chosen. That is the case for the nonrelativistic
scheme described below.

10.2.2 SPIN-POLARIZED NONRELATIVISTIC LIMIT

As in the case of the Schrödinger approach in which spin is introduced by giving a
specific form to the wave function, the spin dependence in the Hohenberg Kohn
Sham formalism in a nonrelativistic framework is introduced by imposing some form
of restrictions to the functional. Namely, the total energy can be written as [3,5]

Ev,B[r,m] ¼ F[r,m]þ
ð
dr v(r)r(r)� B(r) �m(r)½ �, (10:14)

where F[r, m] is a universal functional of the electron density r(r) and of the
magnetization m(r); v(r) is the external potential related to A0

ext(r) in Equation 10.7.
This functional satisfy a variational principle [3,5] Ev0,B0 [r0, m0] � Ev0,B0[r, m]:

Ev0,B0 [r0, m0] denote the ground state energy with density r0(r), and magnetization
m0(r) of a particular system characterized by the external fields (v0(r), B0(r)). One of
the main differences between the spin-restricted and spin-polarized cases is that the
one-to-one relation between the external potential and the density cannot be extra-
polated to the set of quantities (v0(r), B0(r)) and (r0(r), m0(r)) [3].

If the external magnetic field B(r), and m(r) have only a nonvanishing
z-component, B(r)¼ (0, 0, B(r)) and m(r)¼ (0, 0, m(r)), the universal functional
F[r, m] may then be considered as a functional of the spin densities rS(r) and r(r),
F[rS(r), r(r)], because the spin density is proportional to the z-component of the
magnetization: m(r)¼�mBrS(r); mB is the electron Bohr magneton. It is of worth
mentioning that it is possible to define two spin densities that are the diagonal
elements of the density matrix introduced by von Barth and Hedin [3]. These
correspond to the spin-up (alpha) electrons density r"(r), and the spin-down (beta)
electrons density r#(r). In terms of these quantities, the electron and spin densities
can be written as

r(r) ¼ r"(r)þ r#(r) and rS(r) ¼ r"(r)� r#(r): (10:15)

Then, it is clear that the functional of the energy could be written in terms of any of the
two sets of variables E[r, rS] or E[r", r#]. Consequently, the nonrelativistic spin-
polarized DFT can be developed in both sets of variables {r, rS} or {r", r#}. In the
next section, the set of variables {r, rS} will be used in the discussion of the reactivity
parameters.

The impact of Equation 10.14 in the treatment of spin-polarized systems is in
two directions: on the one hand, it allows the inclusion of external magnetic field
effects in the description of N-electron systems; on the other hand, when the limit of
zero magnetic field is imposed, the formalism becomes useful for N-electron systems
having spin-polarized ground state in the absence of a external magnetic field. This
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last feature has been widely exploited in practical applications within the framework
of the Kohn Sham method.

10.3 CHEMICAL REACTIVITY

The ionization potential and electron affinity are some of the first concepts intro-
duced in chemistry courses to understand chemical reactivity. These quantities
measure the energy changes when the system loses or gains electrons. However,
when this happens, the system also suffers changes in the paired or unpaired electron
number, because the number of electrons N is given by N¼N"þN#, where N" are the
number of electrons with spin-up or a, and N# are the number of electrons with spin-
down or b. The examples above and many other physical situations indicate that to
analyze the chemical reactivity from a more general point of view, a spin-polarized
theory is necessary. The spin-polarized density functional theory (SP-DFT) distin-
guishes between the changes produced by charge transfer, it means changes in N and
those produced by the redistribution of the electronic density, i.e., changes in the spin
number, NS¼N"þN#.

As mentioned in the previous section, the SP-DFT may be developed in both set
of variables {r", r#} or {r, rS}. Ghosh and Ghanty [10] used the first set of variables
and generated some reactivity indexes within this approach, however, we are pre-
senting here the SP-DFT using the {r, rS} set that has received more attention since
it was presented in 1988 by Galván et al. [11].

If we consider a system in the presence of a magnetic field B(r) in the z-direction,
the energy functional of Equation 10.14 can be written as

E[r, rS, v,B] ¼ F[r, rS]�
ð
v(r)r(r)dr � mB

ð
B(r)rS(r)dr, (10:16)

where F[r, rS] is a universal functional of r and rS, independent of v(r) and B(r).
One may consider that r and rS are independent functions, this implies that the

changes in r are decoupled from changes in rS. Thus, the minimization of the energy
functional of Equation 10.16 can be done with respect to both the variables using the
Lagrange multiplier technique.

To assure the correct value of N and NS, the restrictions to minimize
Equation 10.16 are

Ð
r(r)dr ¼ N and

Ð
rS(r)dr ¼ NS. In this way, {dE�mNN}¼ 0

and {dE�mSNS}¼ 0 must be solved, where mN and mS are the Lagrange multipliers
associated to the restrictions. Thus, there are two Euler Lagrange equations for the
minimization of Equation 10.16:

mN ¼ dE

dr(r)


 �
rS

¼ v(r)þ dF

dr(r)


 �
�S

(10:17)

and

mS ¼ dE

drS(r)


 �
r

¼ �mBB(r)þ
dF

drS(r)


 �
r

: (10:18)
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It is important to notice that the above functional derivatives are performed along
specific paths in the {r, rS} space. Namely, those paths in which r" and r# change
according to Equation 10.15, to satisfy the condition imposed. By solving Equations
10.17 and 10.18 simultaneously, the Lagrange multipliers and the charge and spin
densities are obtained. The total energy is computed by substituting r and rS in
Equation 10.16. It is important to emphasize that two Lagrange multipliers appeared
due to the fact thatN andNS are kept fixed in the minimization, and this is equivalent to
fix N" and N#. It may be possible to keep just N fixed during the minimization, thus,
only mN as in Equation 10.17 would remain and mS in Equation 10.18 would be zero.

It can be proved that

mN ¼ @E

@N


 �
NS ,v(r),B(r)

(10:19)

and

mS ¼ @E

@NS


 �
N,v(r),B(r)

: (10:20)

Equations 10.19 and 10.20 are known as global reactivity indexes within the
SP-DFT, because they are constant over the entire space in the molecule. Equation
10.19 resembles the electronic chemical potential found in the spin-restricted DFT, it
also measures the energy changes when the electron number in the system varies,
and it is called chemical potential as well. However, it is important to note that the
derivative in Equation 10.19 is carried out at NS fixed, this is a different path and we
cannot expect that m of the spin-restricted case and mN of the SP-DFT must be equal.
Actually, it has been shown for atoms that mN does not correspond to the negative of
the electronegativity while m does [12].

Due to the fact that N and NS are fixed during the minimization, mS in Equation
10.20 has an equivalent role to that of mN in the mathematical structure of the theory.
Thus, mS is related to the tendency of the system to change the spin polarization or
multiplicity, for this reason this quantity is called the spin potential. In Figure 10.1, a
schematic plot for the total energy as a function of NS for an open-shell atom in the
absence of a magnetic field is depicted, there are some important features to observe
in this curve. There is a discontinuous first derivative around the ground state
multiplicity, it implies that for an open shell system there is one derivative toward
higher multiplicities (mþ

S ) and a different one toward lower multiplicities (mS ) and
the average (m0

S) between both. The spin transfer in a closed shell system only exists
toward higher multiplicities. In this way, the values of the slope of the curve E vs. NS

may be used to predict the direction of spin transfer when the system interacts. Some
applications of spin potential will be discussed later in this chapter.

There is another important feature to note in the curve of Figure 10.1, the second
derivative of the energy with respect to NS is discontinuous at the ground state
multiplicity and must be negative in both directions, due to the fact that both
branches in the plot have negative curvatures. This second derivative, as in the
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spin-restricted DFT case, is related to the system hardness and it is called the spin
hardness (hSS),

hSS ¼ @2E

@N2
S


 �
N,v(r),B(r)

¼ @mS

@NS


 �
N,v(r),B(r)

: (10:21)

The nature of the negative of spin hardness was first established by Ortiz [13].
The chemical and spin potentials according to Equations 10.19 and 10.20

can be seen as a function of N, NS, v(r), and B(r), then one can write the variations
of mN and mS,

dmN ¼ hNNdN þ hNSdNS þ
ð
fNN(r)dv(r)dr þ mB

ð
fSN(r)dB(r)dr (10:22)

and

dmS ¼ hSNdN þ hSSdNS þ
ð
fNS(r)dv(r)dr þ mB

ð
fSS(r)dB(r)dr: (10:23)

Let us to make a parenthesis in these equations, to analyze the physics behind
them. Equations 10.22 and 10.23 must be interpreted in terms of chemical reactivity,
for this we must understand first what dv(r) and dB(r) are. Keeping in mind the
meaning of external potential, its changes dv(r) may be produced by changes in
the geometry of the reacting molecule, but also due to the potential generated by the
species that surround it. Similarly, the change in the magnetic field dB(r) can also be
analyzed as changes produced by the magnetic field generated by the species that
surround the reacting molecule, provoking a magnetic interaction. Thus, the response
of the chemical system interacting or reacting with another may be understood in

E

GS

NS

FIGURE 10.1 Schematic representation of the energy as a function of spin number.
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general through Equations 10.22 and 10.23, by considering that the changes in the
external potential and magnetic field arise from the presence of the surrounding
species. As the spin and chemical potentials must be constant over the entire space, if
two different species interact to form a new one, two equalization processes must be
carried out: the chemical potential equalization and the spin potential equalization.
The first one will be achieved by the change in the electron number, that is, charge
transfer. For the second, a ‘‘spin transfer’’ must be observed, and it actually corres-
ponds to redistributions in the spin-up and spin-down densities that imply changes in
the regional values of NS, that is, multiplicity changes. Thus, in terms of spin and
chemical potentials, there may be cases in which the charge transfer drives the
process, because the chemical potential between two species may be very different.
Or, there may be another in which the species may have very large differences in their
spin potentials, and the spin redistributions drive the process. Or may be both
potentials have big differences, then spin and charge transfer would be important. In
this sense, all the quantities that appear in Equations 10.22 and 10.23 are reactivity
indexes that can give us information about the changes that are carried out when two
chemical species interact.Wemay distinguish in Equations 10.22 and 10.23, the global
and local reactivity indexes. The global hardnesses, as the generalized hardnesses

hNS � @mN

@NS


 �
N,v(r),B(r)

¼ @mS

@N


 �
NS,v(r),B(r)

� hSN, (10:24)

hNN � @mN

@N


 �
NS ,v(r),B(r)

, (10:25)

and the spin hardness hSS which was defined before in Equation 10.21, are constant
over the entire space as the spin and chemical potentials. The local reactivity indexes,
appearing in Equations 10.22 and 10.23, are generalizations of Fukui function for the
spin-polarized case, so they are called generalized Fukui functions, and they are
defined as

fNN � @r(r)

@N


 �
NS ,v(r),B(r)

¼ dmN

dv(r)


 �
NS,N,B(r)

, (10:26)

fNS � @r(r)

@NS


 �
N,v(r),B(r)

¼ dmS

dv(r)


 �
NS,N,B(r)

, (10:27)

fSN � @rS(r)

@N


 �
NS ,v(r),B(r)

¼ � 1
mB

dmN

dB(r)


 �
NS ,N,v(r)

, (10:28)

and, finally

fSS � @rS(r)

@NS


 �
N,v(r),B(r)

¼ � 1
mB

dmS

dB(r)


 �
NS ,N,v(r)

: (10:29)
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These generalized Fukui functions are local reactivity indexes, as they depend on the
coordinates r where they are determined, in other words their values vary from one
point to another within the molecule. It is clear that these quantities can be used to
know how the charge or (and) spin densities respond when there are charge or (and)
spin transfer to the reacting molecule.

The relevance of the reactivity indexes that emerge in SP-DFT may be clarified if
we turn to the Parr and Yang postulate [14]; it establishes that the preferred direction
of a reaction will be such that it provokes the maximum initial chemical potential
response of a reactant. In SP-DFT, the chemical potential response (jdmNj) not only
depends on the response of charge density as in the spin-restricted case, but also on
fSN(r) which, according to Equation 10.27, takes into account the response of the
spin density due to the local charge transfer. It may be the cases of reactants where
this could be more important, thus the preferred reactive sites will be identified with
large changes in rS(r). In a different situation, the preferred direction of a reaction
may be governed by the initial maximum change in the spin potential (jdmSj), in this
case the reactive sites will be those where fNS(r) or fSS(r) are large.

In this way, the SP-DFT using {r, rS} as variables set provides global and local
reactivity indexes that give us the possibility to study processes that involve changes
in the number of electrons, multiplicity (changes in the spin number), or both. Some
examples are discussed in Section 10.4.

10.4 APPLICATIONS OF GLOBAL SP-DFT REACTIVITY INDEXES

In the {N, NS} representation, the total energy is a function of N, NS and a functional
of v(r) and B(r). Thus, the energy functional can be expanded in a Taylor series
around a reference ground state N0,N0

S, v
0(r)

� �
in the absence of a magnetic field,

as [15]

DE ffi E N,NS, v(r)½ � � E N0,N0
S, v

0(r)
� 	

¼ m0
NDN þ m0

SDNS þ
ð
r0(r)Dv(r)dr þ h0

NN(DN)
2 þ 1

2
h0
SS(DNS)

2

þ h0
NS(DN)(DNS)þ DN

ð
f 0NN(r)Dv(r)dr

þ DNS

ð
f 0NS(r)Dv(r)dr þ

1
2

ð ð
x0(r, r0)Dv(r)Dv(r0)drdr0: (10:30)

In this equation DN, DNS, and Dv(r) are the changes with respect to each variable
in the expansion; x0(r, r0) is the linear response function at the reference ground
state, and the other quantities have been already defined in the previous section; the
upper index 0 indicates that all reactivity indexes are evaluated at the reference state.

The capability of the Equation 10.30 to describe the energy changes has been
applied on process at fixed N; it means at a constant number of electrons, in this case,
one may analyze changes in the multiplicity without charge transfer. Thus, Equation
10.30 takes the form,
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DE ffi E N0, NS, v(r)
� 	� E N0, N0

S, v
0(r)

� 	
¼ m0

SDNS þ
ð
r0(r)Dv(r)dr þ 1

2
h0
SS(DNS)

2

þ DNS

ð
f 0NS(r)Dv(r)dr þ

1
2

ð ð
x0(r, r0)Dv(r)Dv(r0)drdr0: (10:31)

The changes in Equation 10.31 can be understood by splitting them into different
paths (Figure 10.2). Following path I, one may analyze changes where NS is
changing at fixed external potential (vertical multiplicity energy changes), for
example in atoms or molecules with a fixed molecular geometry, then Equation
10.31 becomes

DEv ffi m0
SDNS þ 1

2
h0
SS(DNS)

2, (10:32)

where the lower index v refers to a vertical change in the energy. It is important to
point out that in Equation 10.32 just global reactivity indexes appear and they are
evaluated at the ground state.

Using the path II, we may analyze a process when the multiplicity does not
change but the external potential does, that is, the relaxation of the geometry would
provoke the system going from one stationary state in the potential energy surface to
another. Now, Equation 10.31 is reduced to

DENS
ffi

ð
r0(r)Dv(r)dr þ 1

2

ð ð
x0(r, r0)Dv(r)Dv(r0)drdr0: (10:33)

The second term in Equation 10.33 implies to evaluate a nonlocal quantity, x(r, r0);
the linear response function depends on two different points within the molecule.

I

N S III

II

v

GS

FIGURE 10.2 Schematic representation of the different process that involve changes in the
spin number and external potential.
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The path III in Figure 10.2 represents the changes in the energy when the
multiplicity and external potential change (relaxation on the geometry is permitted);
it means adiabatic multiplicity energy changes. This trajectory may be analyzed with
the full Equation 10.30.

10.4.1 VERTICAL ENERGY CHANGES

In this section some practical applications of path I are described. As the first
example, let us analyze the case of pairing energy, defined as the energy required
to produce the spin arrangement of the low spin complex [16,17]; this quantity is
useful to predict the preference of a metallic ion to produce high or low spin
complexes. For metallic ions, the pairing energy can be related with changes to
lower multiplicities without changing the external potential, in this sense Equation
10.32 has been used to analyze this process.

Remembering the previous discussion about Figure 10.1, it is important to
distinguish the direction of the process, in the case of pairing energy the direction
is toward lower multiplicities and DNS is equal to �2. Thus Equation 10.32 must be
expressed as

DEv ffi �2mS þ 2hSS: (10:34)

It is important to keep in mind that all global quantities appearing in the equations
above can be evaluated within the spin-polarized Kohn Sham method. All the
working equations to calculate them depend on the eigenvalues of the frontier
Kohn Sham spin-down and up orbitals. The expressions can be consulted in
Refs. [12,18].

By an explicit calculation using frontier orbital eigenvalues, it is shown that mS

follows the trend of pairing energy for cations of metallic atoms, indicating that the
spin potential, in this case, measures the tendency of a metal cation to form high or
low spin complexes [12]. We also showed that including the spin hardness, as it is
described in Equation 10.34, helps to get better quantitative agreement with metal
cation pairing energy.

As another example of the applications of Equation 10.32, let us analyze singlet
triplet energy gaps. On the contrary to pairing energy, in this case one has to analyze
the energy change from a lower multiplicity state toward a higher multiplicity state.
For singlet triplet energy changes DNS¼ 2, as for the initial singlet state NS¼ 0 and
for the final triplet state NS¼ 2. Thus Equation 10.32 becomes

DEv ffi 2m(s)þ
S þ 2h(s)þ

SS : (10:35)

It is important to note that the derivatives of the energy (spin potential and spin
hardness) must be evaluated to higher multiplicities at fixed external potential, both
at the singlet (S) ground state. The Equation 10.35 was applied to study vertical
singlet triplet energy differences, it means without relaxation on the geometry,
on halocarbenes, carbenes, silylenes, germylenes, and stannylenes [12,19,20].
It was found that the first order of Equation 10.35, 2m(S)þ

S , follows the trend of
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singlet triplet vertical energy, exhibiting the spin potential meaning as the tendency
of a system to change its multiplicity. In order to include the second-order contri-
bution on Equation 10.35, h(s)þ

SS must be evaluated, it implies a second derivative.
However, by a finite difference scheme,

h(S)þ
SS ffi m(T)

S � m(S)þ
S

2
, (10:36)

where m(T)
S is the spin potential of the triplet toward lower multiplicity. Note that for

the estimation of derivatives up to the second order, two different states are neces-
sary. When the second order is included in Equation 10.35, the singlet triplet vertical
energy is quantitatively described. It was also found that the contribution of the
relaxation of the geometry to obtain the singlet triplet adiabatic energy gaps is
constant as this correlates linearly with the vertical singlet triplet energy gaps.
Whether the correlation observed for this class of molecules could be valid for
other systems or is just valid for this particular case, is a question waiting to be
solved. Such kind of correlations would represent an important simplification of
Equation 10.31.

10.4.2 SPIN-PHILICITY AND SPIN-DONICITY

Starting from Equation 10.32, Perez et al. [21] defined spin-donicity and spin-
philicity. Following a variational calculation, as used by Parr et al. [22] to define the
electrophilic power, they obtain, for the maximum change in energy (DEmax) when
the system modifies its spin number from NS to NSþDNS in a ‘‘reservoir of spins,’’

DEmax,v ¼ � m0
S

� �2
2h0

SS

: (10:37)

In the direction of increasing spin multiplicity (DNS> 0), using this energy differ-
ence the spin-philicity vþ

S can be defined as

vþ
S � mþ

S

� �2
2h0

SS

: (10:38)

To obtain results according to chemical intuition, Olah et al. proposed the following
convention [19]: a large negative number for the spin-philicity index is obtained
when the energy change between the higher and lower spin states is large, and a
small negative spin-philicity index when the energy difference is small. It was found
that molecules with large negative spin-philicity are good spin catalysts.

In the direction of decreasing spin multiplicity (DNS< 0), the spin-donicity can
be defined as

vS � mS

� �2
2h0

SS

: (10:39)

Spin-Polarized Density Functional Theory: Chemical Reactivity 149



A large spin-donicity number is expected when the energy difference is smaller
between the triplet and singlet states. Thus, spin-philicity and spin-donicity are also a
measure of the energy differences between singlet and triplet states, furthermore, it
has been demonstrated the applicability of these reactivity indexes in the prediction
of the spin transfer observed in the spin-catalysis phenomenon [21]. Equivalent
quantities at fixed NS (v�

NN) have been defined [20].
Spin potential, spin hardness, spin-donicity, and spin-philicity indexes have also

been applied successfully to other specific problems [19,23,24].

10.4.3 LOCAL REACTIVITY INDEXES IN SP-DFT

Up to this point, just applications of global reactivity indexes have been analyzed.
However, as we can see in Equation 10.30, besides the charge density, generalized
Fukui functions (f 0NN(r) and f

0
NS(r)) come to light and must be considered. When there

are changes in the spin number without charge transfer (Equation 10.31), just the
charge density and the f 0NS(r) as local reactivity indexes are involved. Some efforts
have been taken to apply f 0NS(r). According to Equation 10.27, f 0NS(r) gives us
information about the changes in the charge density when there is a ‘‘spin transfer,’’
in other words, multiplicity changes. It is well known that the first derivative of the
energy with respect to the electron number has discontinuities, furthermore it has been
shown that the curve of the energy with respect to NS, also presents this behavior [12].
These discontinuities are mapped on the charge density, thus, its derivatives must be
evaluated in the direction where the changes are carried on. There is a study of fNS(r) in
atoms, from Z¼ 5 to Z¼ 9, where the valence shell is systematically populated and the
unpaired electrons are diminishing [25]. Figure 10.3 shows an example for Z¼ 9, that
illustrates this series of general behavior of this generalized Fukui function for this

0.010

0.008

0.006

0.004

0.002

0.000
1 2 3

r (a.u.)

Ra
di

al 
di

str
ib

ut
io

n 
fu

nc
tio

n 
(a

.u
.)

4 5
−0.002

−0.004

−0.006

0 6

FIGURE 10.3 Radial distribution function of the f�NS for fluorine atom (Z¼ 9) obtained by
numerical derivation of atomic density.
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series of atoms. In the series studied, as the nuclear charge increases, the peak in the
inner region is closer to the nucleus; the size of that peak depends on the number of
unpaired electrons and is smaller at Z¼ 9. To understand this behavior, an approach
based on the {r", r#} set was applied; [25] the derivatives of r"(r) and r#(r) with respect
to NS were analyzed. It was found that the redistribution of r"(r) toward the nucleus is
more pronounced for nitrogen and decays as the number of unpaired electrons
decreases, indicating a correlation of the r"(r) contraction with the number of unpaired
electrons. This tendency is in agreement with the idea that the stability of half-filled
shells is a consequence of the charge redistributions induced by Fermi correlation.

There is no more research on the analysis or applications of SP-DFT generalized
Fukui functions, per se. Instead, condensed-to-atoms SP-DFT Fukui function
schemes have been developed and applied to different chemical reactivity problems.
In these schemes, the information of the Fukui functions is condensed on an atomic
position. In addition, the Fukui function f�SS(r) is related with the extension of global
to local spin-donicity and spin-philicity, defined as [20]

v�
S (r) ¼ v�

S f
�
SS(r), (10:40)

where instead of f�SS(r) the condensed-to-atoms Fukui function models are used and
applied to the analysis of chemical reactivity [23,26].

The SP-DFT has been shown to be useful in the better understanding of chemical
reactivity, however there is still work to be done. The usefulness of the reactivity
indexes in the {r", r#} representation has not been received much attention but it is
worth to explore them in more detail. Along this line, the new experiments where it
is able to separate spin-up and spin-down electrons may be an open field in the
applications of the theory with this variable set. Another issue to develop in this
context is to define response functions of the system associated to first and second
derivatives of the energy functional defined by Equation 10.1. But the challenge in
this case would be to find the physical meaning of such quantities rather than build
the mathematical framework because this is due to the linear dependence on the four-
current and external potential.
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11.1 INTRODUCTION

Normally, density functional theory (DFT) is used to study large chemical systems,
as systems with only a few electrons and nuclei have already been solved by
traditional methods. Nevertheless, there are reasons for looking at simple systems
in terms of DFT. Being simple, it is much easier to visualize and comprehend any
results. Also, we already have a wealth of information available on these systems
from earlier work.

The original premise of Hohenberg and Kohn has led to new methods of
calculating energies, very useful for large systems [1]. We shall not go into this
important area, but instead concentrate on another aspect of DFT: the new chemical
concepts that have arisen, mainly from the work of Parr and his coworkers [2].

Two quantities derived from DFT are the electronic chemical potential m and the
chemical hardness h [2]. The definitions of these quantities are

m ¼ @E

@N

� �
v

(11:1)

h ¼ @m

@N

� �
v

(11:2)

where
E is the total energy
n is the potential due to the nuclei, held fixed in position
N is the number of electrons
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The chemical potential is constant everywhere if the system is in equilibrium. The
hardness, however, is a function of position. Equations 11.1 and 11.2 also imply

m ¼ (dE=dr)v (11:3)

h ¼ (dm=dr)v (11:4)

so that changes in r will change both m and h. That is, they have a functional
dependence on the electron density r.

If a wave function is an approximate one, as is usually the case, m will not be
constant everywhere and electron density should move from regions where m is too
positive to regions where m is too negative. This will equalize m and also change the
assumed r to a better one. The hardness acts as a resistance to changes in r due to
differences in m. The energy will decrease from E0, the value calculated for the
approximate wave function, to E, a better one.

Using Equations 11.1 and 11.2, the energy can be expanded about E0 as a power
series in DN. From this, the total change in energy can be calculated:

DE ¼ E � E0 ¼ (m� �m)DN þ h

2
(DN)2 (11:5)

where DN is the weighted sum over all space, of the small changes in electron
density for each volume element. If not weighted, this sum would be zero. We are
not changing N, the total number of electrons, but rearranging them.

The weighting factor is (m� �m)¼Dm, where �m is the average value of the
chemical potential of the approximate wave function, c0. When Dm is positive,
DN is negative; when Dm is negative, DN is positive. In Equation 11.5, the first
term is negative and is energy-lowering due to electron density shifting to or from m
to �m. The second term is positive and is due to any energy increase that accompanies
the overall changes in m. Actually the electron density at those points in space where
m¼ �m does not change. Electron density transferred there is balanced by density
transferred out. The average value �m is simply a convenient marker.

The virial theorem tells us that

DE ¼ DV

2
¼ �DT (11:6)

so that the energy can only be lowered by lowering the potential energy. The kinetic
energy must increase half as much as DV is lowered. There are also the character-
istics of Equation 11.5, if the first term is all potential energy, then the second term
all kinetic energy.

The minimum energy of Equation 11.5 is reached when the fraction of an
electron transferred is given by

DN ¼ �Dm

h
(11:7)
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and the energy lowering is a maximum,

DE ¼ DNDm

2
¼ � (Dm)2

2h
(11:8)

Since the approximate m is a function of position, Equations 11.7 and 11.8 apply to
volume elements DV, and must be summed over space:

DE ¼ �
ð
(m� m)2

2h
rdV (11:9)

Equation 11.9 certainly implies that the local hardness should be used. It is known
that this depends only on the functional dependence of the kinetic energy and
electron repulsion terms upon the value of r [3]. However, it is difficult to calculate
local values. In spite of this uncertainty, Equation 11.9 or its equivalent has often
been used to calculate the interaction between two chemical systems [4].

In atomic theory or molecular orbital theory, the chemical potential is related
to the orbital energy [5,6]. In the case of one or two electrons in the same orbital,
the local orbital energy « is equal to the local chemical potential:

« ¼ m ¼ vn þ ve �r2F

2F
(11:10)

where
vn is the potential due to the nuclei
ve the potential of the other electrons, and the last term is the kinetic energy
F is an orbital

Confusion can arise because, in this chapter, both the chemical potential and the
hardness will be treated as variables dependent on position. The original articles
introducing the chemical hardness gave a useful operational definition [7].

h ¼ (I � A) (11:11)

where
I is ionization potential
A the electron affinity of the system [8]

Another approximate equation is

h ¼ («LUMO � «HOMO) (11:12)

where the hardness is the energy gap between the highest occupied molecular
orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO) [8].
In addition, there are a number of other approximate equations [9]*. The corres-
ponding operational definition for the electronic potential is

�m ¼ 1
2
(I þ A) (11:13)

* A factor of 1=2 from Ref. [7] has been dropped.
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for the chemical potential [10]. In the latter case, �m has been called the absolute
electronegativity [11].

These are constant numbers obtained from experiments or independent calcula-
tions. They are properties of the atom or the molecule and have been useful in
predicting the chemical behavior of the system. In addition to its use as a scale of
electronegativity, the chemical potential is also a measure of the intrinsic strength of
generalized acids and bases [12].

The hardness measures the stability of the system. A hard molecule resists
changes within itself, or in reaction with others. As a result, a molecule will arrange
itself to be as hard as possible, the principle of maximum hardness. This usually is
interpreted as the placing of the nuclei.

The variable hardness in this work is the local hardness as given by the basic
theory [2]. The electronic chemical potential in this work is a property if a given
molecule (arrangement of nuclei) is also of the approximate wave function used to
describe it. This does not represent an equilibrium system. The variation of the
chemical potential is a consequence.

The average value of the orbital energy can be calculated from the assumed wave
function. If the wave function were exact, the orbital energy would indeed be
constant, as required. For the approximate �0, the average orbital energy is equal
to the ionization potential I, according to Koopmans’ theorem. In Equation 11.13, the
electron affinity A has dropped out.

This is reasonable as Equations 11.11 and 11.13 apply to open systems where
electrons can be gained from or lost to systems external to the one of interest.
Quantities such as A or «LUMO have much relevance.

In this chapter, we are trying to improve the energy of an approximate wave
function by rearranging the electron density corresponding to it. We are dealing with
closed systems in which electrons can only be lost. The hardness of a closed system
is quite different from that of an open system. The latter is useful for predicting
chemical behavior. The former is useful for predicting the stable structure of
chemical systems and the energies of such structures. It is the hardness to which
the principle of maximum hardness applies [13,14].

11.2 HARDNESS

Basic theory does give recipes for finding both the local hardness and the average, or
global hardness [2,15]. Unfortunately, they are very difficult to use. Let us examine
an equation for the local hardness h(r),

h(r) ¼
ð
d2Fr1dV1

drdr1
(11:14)

where F is the local value of the kinetic energy and electron-repulsion energy of
the system [22]. The equation may be interpreted as the change in F due to a change
in r, as influenced by the value of r that already exists. Obviously this is why vn is
not included in F. The local hardness is the average value of a quantity called the
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hardness kernel. The global hardness, in turn, is the average value of the local
hardness. The interpretation of Equation 11.14 is that h(r) is the change in F caused
by a change in r, as influenced by the value of r that existed before the change.

The examples to be considered are the ground states of He and the related two-
electron ions from H to Ne8þ. In all cases, the single-zeta function of Kellner will be
the approximate wave function used [16]. This function is �0¼Ne a0r. The local
chemical potential is given by

m0 ¼ «0 � 2
r
þ 1
r12

� a 2
0

2
þ a0

r
(11:15)

The terms in Equation 11.15 are vn, ve, and t, in that order, for He, a0 is 1.6875. Now
consider the two-electron ions from H to Ne8þ. All values of a0 are given by the
simple relation, a0¼ Z� 0.3125, where Z is the nuclear charge. Therefore, a0

will vary from 0.6875 to 9.6875 in going from H to Ne8þ. Effects scaling with
either a0 or a 2

0 should be distinguishable. All the properties of the two-electron
systems are the same, except for the changes due to a0. We also know that ve scales
as a0 and t scales as a 2

0 .
Table 11.1 shows the values of E0¼�a 2

0 , EHF the Hartree Fock energy, and E0,
the nearly exact values for the series. In spite of the large range of a0 values, the
values of E�EHF and E�E0 are almost constant. They range from 0.0550 to 0.0591
for E�E0. If H is omitted, the ranges are even smaller. It is important that the
corrections needed are small, showing that the single-zeta wave function is quite
good. Equation 11.8, which we are testing, is based on Equation 11.5. This is
obviously an approximation, valid for small DN. This is only possible if the starting
wave function is a good one.

TABLE 11.1
Various Energies for the Two-Electron Ions

Ion E0 EHF
a E0

b Ec

H 0.4727 0.4877 0.5278 0.5263

(He) 2.8477 2.8616 2.9037 2.9013
Liþ 7.2227 7.2365 7.2799 7.2763
Be2þ 13.5977 3.6113 13.6556 13.6513

B3þ 21.9727 21.9862 22.0310 22.0263
C4þ 32.3477 32.3612 32.4063 32.4013
N5þ 44.7227 44.7362 44.7815 44.7763

O6þ 59.0977 59.1111 59.1566 59.1513
F7þ 75.4727 75.4861 75.5317 75.5267
Ne8þ 93.8477 93.8611 93.9068 93.9013

a C.C.J. Roothaan and A.W. Weiss, Rev. Mod. Phys., 186,
32, 1960.

b C.L. Pekeris, Phys. Rev. 1699, 112, 1958.
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In addition to the difference between t and ve in their dependence on a0, there is
another important difference between them. The repulsive potential felt by an
electron of, say, a-spin, depends on the existing density of b-spin. But the kinetic
energy depends on the existing density of a-spin. Any change in the density of
a-spin will cause a change in the kinetic energy. Since the hardness acts as a
resistance to change, the increase in kinetic energy that occurs (Equation 11.6)
must be more important than the change in ve, which decreases. This leads to a
result for h(r) as

h(r) ¼ t1 þ t2 ¼ a0

r1
þ a0

r2
(11:16)

Averaging over the two-electron density function r leads to the global value
h¼ 2a2

0. The constant part of the kinetic energy does not change with changes
in r. Also, it has a negative value.

There are two ways of expressing ve. One is to find the average value of the
interelectron potential by integrating over the coordinates of one electron. This gives
ve as a function of the position of the second electron:

ve ¼ 1
r
� e 2a0r

r
(1þ a0r) (11:17)

The overall average can now be found by integrating over the coordinates of the
second electron.

This gives the well-known result hvei¼ (5a0=8). The second way is to use the
instantaneous value, ve¼ (1=r12). The average value can now be found by using
the Hylleraas coordinates u¼ r12, s¼ (r1þ r2), and t¼ (r1� r2) [17]. This also gives
hvei¼ (5a0=8)¼h1=ui.

But Equation 11.9 also requires finding h1=u2i. The Hylleraas coordinates give a
value of (2a2

0=3). In an earlier work [5], the potential of Equation 11.17 was simply
squared leading to an average value of h1=u2i equal to (a2

0=2). Using this result and
using the global value of h¼ 2a2

0, we find

�DE ¼ h(m� �m)2i
2h

¼ 0:0548a2
0

4a2
0

¼ 0:0137 (11:18)

This correction is constant for all values of a0 and is very close to the average value
of (E�EHF) for all the systems, excluding H , of value 0.0136. The independence of
the correction on a0 is important, as it shows that the hardness must indeed depend
only the kinetic energy, as was assumed.

It is also reasonable that using the average value of the interelectronic potential
should correct the energy only to the Hartree Fock level. There is no correlation
between the two electrons in �0, and Equation 11.18 introduces none. However, the
instantaneous value of h1=r12i does introduce correlation. Note that the correlation is
in m and not in �0, which is unchanged.
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Using the instantaneous value of (1=u) and the correct value of h1=u2 i, we
can recalculate h(m� �m)2i, which is 0.2956a2

0, much greater than the 0.0548a 2
0

of Equation 11.18. We will also find DE greater than before, showing correlation.
But if we use h¼ 2a2

0, as before, we find DE¼�0.0739 a.u., whereas we only need
a correction of about �0.058 a.u. The average hardness needed must be larger.
Adding ve to h almost works for He but is inadequate for Ne8þ, because hvei depends
on a0, not on a 2

0 . The hardness must be increased in a way that keeps it dependent
on a 2

0 .
Fortunately the local hardness h(r) is simple enough so that we can solve

Equation 11.9 directly. This gives DE directly and the result of �0.0586 a.u. is
valid for all the systems. Adding this correction to E0 gives the corrected energies
Ec, shown in Table 11.1. The closeness of Ec to E0 is better than could have been
expected, even with H included.

The average error is �0.005 a.u., which is 3.15 kcal=mol. Clearly this is near the
range of a chemically significant accuracy. Of course, if we now use the local
hardness and the ve of Equation 11.17, we no longer get the excellent agreement
that the average hardness gave. The calculated DE is only about �0.006 a.u. The
good results when the average hardness is used to correct the average potential must
be regarded as largely fortuitous. But there may be some connection between using
average values in both cases.

11.3 SUMMARY

It appears that the simple single-zeta function contains all the information needed to
calculate a nearly exact energy for the ground energy of all two-electron atomic
systems. The calculations are very simple. We need expressions for the local
chemical potential m0, and the local hardness h(r). These are properties of c0 only.
The correction to the energy occurs by electron density moving to a lower energy
chemical potential. If the instantaneous value of the interelectronic potential is used,
the movement is correlated. Density moves from small values of r12 to larger values.
This causes a substantial lowering of hvei.

It is remarkable that the energy scale given by the chemical potential of an
approximate wave function can lead to an energy close to that of the exact wave
function. The implications are, of course, very great. But it is by no means certain
that these results for a two-electron, single-orbital system, can be generalized.

The conclusion that the local hardness is given entirely by the variable parts of
the kinetic energy is very logical. It is the kinetic energy increase which limits the
distribution of electron density in all systems with fixed nuclei. Since the equilibrium
state of atoms and molecules is characterized by minimum energy, they will also
be marked by maximum kinetic energy because of the virial theorem. This will put
them in agreement with the principles of maximum hardness, for which much
evidence exists.

The proof of the equation for local hardness is as much heuristic as mathe-
matical. The constant value for (E0�E0) over a large range of a0 values is well
established. Since (m� �m)2 varies as a2

0, the hardness must also vary as a2
0.

The validity of Equations 11.5 and 11.8 is supported by calculations showing that
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DE does equal h(DNDm=2)i, as predicted by Equation 11.8 [18]. This strengthens
Equation 11.9. The accuracy of DE is probably limited by Equation 11.5, which is
based on an expansion in which DN is small.

In earlier work, it was thought that (m� �m) was an approximation for (m�m0),
where m0 is the exact chemical potential. This is incorrect, as there is no assurance
that the calculation will lead to the exact value of the energy, or the exact r0. The
advantage of using �m is that it will always lower the energy and reduce the variance
of m, which are the desired results. Also it is an easily calculated property. Finally, if
rHF is calculated independently, using �HF, it is found that (rHF� r0) is zero when
(m� �m)¼ 0. That is, there is no driving force for density transfer at these points in
space [5]. This is not true for m¼m0, or any other value for the chemical potential.

Extension of this method for correcting the energies of approximate wave
functions to systems containing more electrons and orbitals would be very useful.
But difficulties quickly arise. The interelectronic effects become complicated
because of exchange and correlation. More importantly, in DFT, it is only the highest
occupied orbital whose energy is equal to the electronic chemical potential. This
potential is valid for the total electron density.

However, in studies of the atoms from lithium to neon, good results have been
obtained by simply assuming that the orbital energies of lower-lying orbitals are
equal to ‘‘orbital’’ electronic potentials [5,19]. The calculations were made using a
global hardness equal or nearly equal to that derived in this work. The average
electron potential of Equation 11.17 was used. The energy corrections were made
only to the Hartree Fock level, as expected. Similar calculations have been made for
Hþ

2 and H2 [5].
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12.1 INTRODUCTION

In density functional theory (DFT), electron density is the key quantity determining
the properties of a molecular system. Electron density is always positive and its value
constitutes a fundamental descriptor. However, chemical reactivity of a molecule
cannot be described by its electron density alone, because the course of a reaction is
rather determined by its response toward different perturbations caused by an
approaching reagent. Sensitivities of an electron density toward structural modifica-
tions and its responses to changes in external potential and conditions are actually
more important in reflecting the reactivity of the corresponding system, than its
absolute values. Several global and local reactivity indices have thus been derived
within the framework of DFT that are basically the measures of molecular system’s
responses. As discussed in various chapters of this book, these global and local
reactivity indices, such as chemical potential (m), hardness (h), and Fukui function,
are defined as the first or second derivative of electronic energy and electron density.
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The global parameters help understanding the behavior of a system and lead to
applicable and useful principles such as the principle of maximum hardness (MHP)
[1]. In this chapter, however, our main focus is to introduce the working formula
of local reactivity parameters, their actual computations, and practical ways of
application to different types of organic reactions. In this process, we mention briefly
some of the relevant global reactivity parameters and their calculations as well just to
have continuity in the subject matter.

12.2 GLOBAL PARAMETERS

The chemical potential (m), electronegativity (x), hardness (h), and softness (S) are
defined as follows [2]:

m ¼ @E

@N

� �
v(r)

¼ �x (12:1)

h ¼ 1
2

@m

@N

� �
v(r)

¼ 1
2

@2E

@N2

� �
v(r)

(12:2)

S ¼ 1
2h

(12:3)

where
E is the energy
N the number of electrons
v the external potential of the molecular system under consideration

Evaluation of m and h faces a practical difficulty due to the discontinuity of the
energy E with respect to the variation of N [3]. The implication of this discontinuity
in conceptual DFT has also been pointed out recently [4]. One generally makes a
finite difference approximation to calculate these quantities, and Scheme 12.1

Slope = ≈ –(IE + EA)/2dE
dN

E

Curvature =

Slope: –IE

Slope: –EA

S+ S–S
N

≈ (IE – EA)d2E
dN2

SCHEME 12.1
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provides a practical way for evaluating them. Accordingly, for a substrate S, the
energies of S, Sþ, and S are determined, all at the optimized structure of S to keep
the external potential constant, and the first vertical ionization energy (IE) and
electron affinity (EA) can be evaluated from the respective energy differences.
Once the energies of the neutral (S), cationic (Sþ), and anionic (S ) systems are
known, chemical potential and hardness (or softness) values can easily be estimated
from the following formulas:

m ¼ �(IEþ EA)=2 ¼ (ENþ1 � EN 1)=2 (12:4)

h ¼ (IE� EA)=2 ¼ (EN 1 þ ENþ1 � 2EN)=2 (12:5)

In the simplest frozen orbital approach, both IE and EA values can be approximated
as the negative of the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) energies, respectively, following the
Koopmans’ theorem. A better way is to calculate the energies of the system and
its cationic and anionic counterparts separately and then estimate m and h from
Equations 12.4 and 12.5, respectively.

The hardness (or softness) is a global molecular property and provides information
about the general behavior of a reactive molecule. Theoretical justification of the well-
known hard and soft acids and bases (HSAB) principle [5] has also been given using
chemical potential and softness [6]. Further explanations about the basis of HSAB rule
have been given from the minimum energy principle andMHP. It has been shown that
the fundamental driving force behind the HSAB principle is electron transfer [7].
When the HSAB principle was proposed, the size, charge, and dipole polarizability
(a) of systems were used for a qualitative hard and soft classifications. There have
been, in fact, numerous analytical and numerical evidences that softness has a closer
link with those properties, especially with polarizability [8,9] and can thus be used for
the hard soft classification of molecules in a quantitative way.

12.3 LOCAL REACTIVITY DESCRIPTORS

In order to understand the detailed reaction mechanism such as the regio-selectivity,
apart from the global properties, local reactivity parameters are necessary for differ-
entiating the reactive behavior of atoms forming a molecule. The Fukui function [10]
( f ) and local softness [11] (s) are two of the most commonly used local reactivity
parameters.

The Fukui function is primarily associated with the response of the density
function of a system to a change in number of electrons (N) under the constraint of
a constant external potential [v(r)]. To probe the more global reactivity, indicators in
the grand canonical ensemble are often obtained by replacing derivatives with
respect to N, by derivatives with respect to the chemical potential m. As a conse-
quence, in the grand canonical ensemble, the local softness s(r) replaces the Fukui
function f(r). Both quantities are thus mutually related and can be written as follows:

f (r) ¼ @r(r)

@N

� �
v(r)

¼ dm

dv(r)

� �
N

(12:6)
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s(r) ¼ @r(r)

@m

� �
v(r)

¼ @r(r)

@N

� �
v

@N

@m

� �
v

¼ S � f (r) (12:7)

Accordingly, Fukui function also represents the response of the chemical potential of a
system to a change in external potential. As the chemical potential is a measure of the
intrinsic acidic or base strength, and the local softness incorporates the global reactivity,
both parameters provide us with a pair of indices to probe for example, the specific sites
of interaction between two reagents. Generally, it is demonstrated that the larger the
value of the Fukui function, the greater the reactivity of the corresponding site.

Once again, due to the discontinuity of the electron density with respect to
N, finite difference approximation leads to three types of Fukui function for a system,
namely (1) f þ(r) for nucleophilic attack measured by the electron density change
following addition of an electron, (2) f (r) for electrophilic attack measured by the
electron density change upon removal of an electron, and (3) f 0(r) for radical attack
approximated as the average of both previous terms. They are defined as follows:

fþ(r) ¼ rNþ1(r)� rN(r)

f (r) ¼ rN(r)� rN 1(r)

f 0(r) ¼ 1
2
[rNþ1(r)� rN 1(r)]

(12:8)

Using one-electron orbital picture, Fukui functions can be approximately defined as

fþ(r) ¼ rLUMO(r)

f (r) ¼ rHOMO(r)

f 0(r) ¼ 1
2
[rLUMO(r)� rHOMO(r)]

(12:9)

These relations highlight the fact that the formalism of DFT-based chemical reacti-
vity built by Parr and coworkers, captures the essence of the pre DFT formulation of
reactivity under frontier molecular orbital theory (FMO). Berkowitz showed that
similar to FMO, DFT could also explain the orientation or stereoselectivity of a
reaction [12]. In addition, DFT-based reactivity parameters are augmented by more
global terms expressed in the softness.

For studying reactivity at the atomic level, however, a more convenient way of
calculating the f(r) functions at atomic resolution is used. The condensed-to-atom
Fukui functions for an atom k in a molecule are expressed as [13]

fþk ¼ qk(N þ 1)� qk(N)

fk ¼ qk(N)� qk(N � 1)

f 0k ¼ 1
2
[qk(N þ 1)� qk(N � 1)]

(12:10)

where qk is the electronic population of atom k in the molecule under consideration.
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Fukui functions and other response properties can also be derived from the one-
electron Kohn Sham orbitals of the unperturbed system [14]. Following Equation
12.9, Fukui functions can be connected and estimated within the molecular orbital
picture as well. Under frozen orbital approximation (FOA of Fukui) and neglecting
the second-order variations in the electron density, the Fukui function can be
approximated as follows [15]:

f a(r) � fa
f (r)

��� ���2 (12:11)

where fa
f (r) is a particular FMO chosen depending upon the value of a¼þ or �.

Expanding the FMO in terms of the atomic basis functions, an orbital (say m)
component of the Fukui function can be defined as

f am ¼ jcmaj2 þ cma
X
n 6¼ˆ

cnaSmn (12:12)

where
cma is the expansion coefficient for orbital a
Smn is the overlap integral between basis functions xm(r) and xn(r)

Similar to condensed Fukui function defined in terms of atomic charge, one can also
define condensed-to-atom (k) Fukui function, by summing over contribution of all
the basis functions centered at k:

f ak ¼
X
m2k

f am (12:13)

This provides us with an avenue for the direct evaluation of Fukui function without
considering the cationic and anionic systems. However, this approach is not gener-
ally accepted due to many inherent limitations, and Fukui functions are evaluated
from finite difference formula (Equation 12.10) using atomic charges. Once the
Fukui function is evaluated following a particular scheme, condensed-to-atom soft-
ness can easily be evaluated from the relation (following Equation 12.7)

sak ¼ S � f ak (a ¼ þ,� or 0) (12:14)

Since all charge schemes obtained from partition of the total electron density are
arbitrary (do not come from first-principles), evaluation of Fukui functions from
Equation 12.10 suffers from the same deficiency. The value of the Fukui function
inherently depends upon the charge partitioning scheme and also on the quantum
chemical method and one-electron basis set used for electronic structure calculations.
Atomic net charges obtained from the natural population analysis (NPA) [16] and
electrostatic potential driven charges are perhaps the good choice for calculating
Fukui functions. Recently, it has been advocated that Hirshfelder population analysis
(HPA)-based atomic charges may be a better choice for Fukui function calculations,

Fukui Function and Local Softness as Reactivity Descriptors 167



especially to avoid seemingly unrealistic negative Fukui function [17], and plausible
explanations have also been given to show why partitioning scheme based on HPA
would be a better choice [18]. Another interesting aspect about these parameters is
that although their genesis is in DFT, they can however be calculated using any
electronic structure theory, either ab initio MO theory or DFT.

Let us consider an example for the calculation of reactivity parameters of
formaldehyde (H2CO) from DFT calculations (Table 12.1).

Accordingly, we can derive the different parameters as

. Hardness:h¼ (�114.13970� 114.47139þ 2� 114.53634)¼ 0.2307 a.u.¼
6.28 eV

. Condensed-to-atom Fukui functions for nucleophilic and electrophilic
attacks on H2CO estimated from Equation 12.10:

fþc ¼ 6:26� 5:71 ¼ 0:55 and fþ0 ¼ 8:75� 8:48 ¼ 0:27

fc ¼ 5:71� 5:67 ¼ 0:04 and f0 ¼ 8:48� 7:94 ¼ 0:54

Condensed-to-atom softness values for nucleophilic and electrophilic attacks can
easily be estimated by multiplying the respective FF values by global softness value.

12.4 SOME APPLICATIONS

12.4.1 APPLICABILITIES

The most useful and important application of Fukui function and local softness
resides in the interpretation and thereby, prediction of reaction mechanism, espe-
cially in the site selectivity or regioselectivity. Since long FMO theory has generally
been used to probe the regioselective nature of a reaction, in particular of organic
compounds, but the DFT-based local reactivity parameters have emerged as

TABLE 12.1
Total Energies (ET in a.u.) and Net Atomic
Charges (q) on Carbon and Oxygen Atom of
H2CO and Its Corresponding Cationic (H2CO

þ)
and Anionic (H2CO ) Species as Obtained from
the B3LYP=6-311G(d,p) Calculations at the
Optimized Structure of H2CO

H2CO H2CO
þ H2CO

ET 114.53634 114.13970 114.47139

qc 0.29 0.33 0.26
q0 0.48 0.06 0.75
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useful alternative tool for rationalizing, interpreting, and predicting diverse aspects of
chemical bonding and molecular mechanism. Let us first outline the general proced-
ures for applying local reactivity parameters.

In general, an application of Fukui function is based on the following consider-
ation: ‘‘Of the two different sites with generally similar dispositions for reacting with
a given reagent, the reagent prefers the one which is associated with the maximum
response of the system’s chemical potential. Thus, the greater the Fukui function
value the higher should be the reactivity’’ [10].

The next consideration is the HSAB principle formulated at a local level. Let us
consider the interaction energy between two chemical species A and B, in which one
is electrophilic and the other nucleophilic. From a global point of view and neglect-
ing the effect of change in external potential of A and B, the change in grand
canonical potential can be expressed as [7a]

DVA ¼ � 1
2
(mB � mA)

2

(SA þ SB)
2 S2BSA (12:15)

DVB ¼ � 1
2
(mB � mA)

2

(SA þ SB)
2 S2ASB (12:16)

It can be shown that grand potential of all the atoms in A and B becomes minimum,
when A and B have an approximately equal global softness. Extending the idea to
the atomic level, when two molecules A and B approach to each other to form a new
molecule AB, then the change in grand potential for each atom in A (say i) and B
(say k) can be written as [19]

DVAi ¼ � 1
2
(mB � mA)

2

(SA þ SB)
2 S2BSAfAi (12:17)

DVBk ¼ � 1
2
(mB � mA)

2

(SA þ SB)
2 S2ASBfBk (12:18)

If the interaction between A and B occurs through the ith atom of A and the kth atom
of B, then the most favorable situation that arises from the minimization of DVAi and
DVBk leads to sAi¼ sBk. Hence, the interaction between A and B is favored when it
takes place between those atoms whose softnesses are approximately equal. This is
essentially the local HSAB principle.

It has been shown [20] from the energy perturbation analysis that for hard
reaction, the site having a minimal Fukui function is the most reactive site, whereas
the site having the maximal Fukui function is preferred for soft reaction. This differs
slightly from the original proposition of Parr and Yang, but considering the fact that
hard reactions are generally dominated by long-range electrostatic interactions, such
a trend is expected. In fact, recently it was shown from the deprotonation study of
1,2-dialkylpyridinium ions, that reactivity for hard hard interactions can be
explained only from minimal Fukui function criteria [21]. Of course, this conjecture
is yet to be tested for a wide variety of systems. Meanwhile, it has been demonstrated
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taking protonation of hydroxylamine as a test case that the hard hard interactions are
actually charge controlled and thus charge is the better descriptor, whereas Fukui
function is the ideal descriptor for soft soft interactions [22]. Moreover, for strong
polarizing reagent, or for reaction leading to strong charge reorganization (such as
protonation), this reactivity parameter may not be applicable, because they are based
on isolated molecular properties. Nevertheless, in most of the cases in organic
reaction, both hard and soft reactions can be rationalized by the softness matching
criteria originated from local HSAB principle.

12.4.2 INTRAMOLECULAR REACTIVITY

Evaluation of the only appropriate Fukui function is required for investigating an
intramolecular reaction, as local softness is merely scaling of Fukui function
(as shown in Equation 12.7), and does not alter the intramolecular reactivity trend.
For this type, one needs to evaluate the proper Fukui functions ( f þ or f ) for the
different potential sites of the substrate. For example, the Fukui function values for
the C and O atoms of H2CO, shown above, predicts that O atom should be the
preferred site for an electrophilic attack, whereas C atom will be open to a nucleo-
philic attack. Atomic Fukui function for electrophilic attack (fC ) for the ring
carbon atoms has been used to study the directing ability of substituents in electro-
philic substitution reaction of monosubstituted benzene [23]. In some cases, it was
shown that relative electrophilicity ( f þ=f ) or nucleophilicity ( f =f þ) indices
provide better intramolecular reactivity trend [23]. For example, basicity of
substituted anilines could be explained successfully using relative nucleophilicity
index ( f =f þ) [23]. Note however that these parameters are not able to differentiate
the preferred site of protonation in benzene derivatives, determined from the absolute
proton affinities [24].

The Fukui function for nucleophilic attack ( f þ) should be considered
for nucleophilic addition reaction. Experimentally observed higher reactivity of the
b-position for nucleophilic attack on different a,b-unsaturated aldehydes and
ketones could be explained from the higher value of f þ for the b-position than
a-position [25].

12.4.3 INTERMOLECULAR REACTIVITY

To study the intermolecular reactivity of two partners, the general procedures to be
considered are

1. Classification of the two reactants as electrophilic or nucleophilic
2. Calculation of the appropriate local reactivity parameters (values for

nucleophilic attack for the electrophilic reactant and vice versa)
3. Application of the local HSAB principle to determine the preferred site

of attack

Each of the reactants (A and B) can be classified as electrophilic or nucleophilic by
evaluating the energy cost for an electron transfer from A to B, described by the
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term IEA EAB, or vice versa. The process associated with the lower energy cost
should be the preferred one in determining the reactant character.

12.4.3.1 [2þ 1] Addition

In this simplest type of addition reaction, a single interaction site at one of the
partners can react with two possible sites of the other partner (Scheme 12.2). In
general, two modes of attack (k ! i or k ! j) will have different reaction barrier
introducing different kinetics and regioselectivity.

The pathway characterized with the lower energy barrier is expected to be the
preferred reaction channel, especially when the addition leads to the same product.
Following the local HSAB principle, one has to look at the softness matching criteria,
and theminimumof jsAi� sBkj and jsAj� sBkjwill determine the preferred site of attack.

Example 1

Addition of isocyanide to dipolarophiles [26]. Energy cost analysis from the terms
IEX Y EAHNC and vice versa, shows that HNC acts as a nucleophile in these
addition reactions. Thus s� for the C atom of HNC and sþ for the X and Y atoms
should be considered for determining the preferred reaction site (Scheme 12.3).

It is clear from the Ds values in Table 12.2 that the site associated with the lower Ds
value, implying a better satisfaction of the local HSAB principle, is the preferred site
of attack for this type of reaction [26].

A

i

j

k B

SCHEME 12.2
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C

N

YX

C

N

Y

SCHEME 12.3
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12.4.3.2 Cycloaddition Reactions

Perhaps the most successful application of Fukui function and local softness is in the
elucidation of the region-selective behavior of different types of pericyclic reactions
including the 1,3-dipolar cycloadditions (13DC), Diels Alder reactions, etc. These
reactions can be represented as shown in Scheme 12.4. Considering the concerted
approach of the two reactants A and B, there are two possible modes of addition as
shown in Pathway-I and Pathway-II.

TABLE 12.2
Global and Atomic Softness Values of HNC and Various
Dipolarophiles Calculated from B3LYP=6-31G(d,p) Method

Molecule S Atoma sþ Ds

HN�C 1.694 C 1.88b

H2C SiH2 2.733 C 0.31 2.19

Si* 2.31 0.43
H2C NH 2.049 C* 1.00 0.88

N 0.56 1.32

H2C O 2.121 C* 1.30 0.58
O 0.45 1.43

H2Si O 2.481 Si* 2.34 0.46

O 0.10 1.78
HP NH 2.751 P* 2.11 0.23

N 0.48 1.40

Note: Ds measures the difference between the softness of electrophilic attack of
the carbon atom of HNC and softness for nucleophilic attack for the X or

Y atom of dipolarophile. Values are given in a.u.
a Preferred site of attack as determined by barrier height calculations is shown

by asterisk (*).
b Correspond to s value.

A

j l

i k

B

Pathway-I

A

j k

i l

B

Pathway-II

SCHEME 12.4
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These two paths are normally associated with different barrier heights intro-
ducing, thus, a regio-selectivity in the cycloadditive process. The path associated
with the lower energy barrier should be preferred, and the corresponding cycloadduct
will be dominant. Now, direct application of HSAB at the local level is not possible
here, because it has to be satisfied for both the termini simultaneously. A softness
matching criteria, thus, needs to be defined for the multisite interaction that measures
the extent of the fulfillment of local HSAB principle. A quantity (Ds) can, thus, be
defined to measure the softness matching criteria for the two paths in a least square
sense, and the minimum value of this quantity should be preferable [27]:

Dsklij ¼ si � sþk
� �2þ sj � sþl

� �2

Dslkij ¼ si � sþl
� �2þ sj � sþk

� �2
(12:19)

The smaller value of these two quantities should indicate the lower energy TS and
thereby, the preferred mode of cycloaddition:

min Dkl
ij (TS) ! TS�

The regiochemistry of several types of 13DC reactions have successfully been
explained using this softness matching critera [28,29]. Interestingly, it was also
observed that the lower energy transition structure (TS) has larger hardness and
lower polarizability compared to the other TS of addition [28,29]. Let us consider a
typical 13DC whose main characteristics are shown in Example 2 and Scheme 12.5.

Example 2

Cycloaddition reaction of phenylazide with styrene and phenylacetylene (Scheme
12.5) [29a]. Two possible cycloaddition products are shown, but in both the cases
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the first one (normal) is known to be the major product. The 1,3 dipole phenylazide
acts as a nucleophile in these reactions. The Ds values were estimated for both
possible orientations for additions to various dipolarophiles, from the appropriate
atomic softness values calculated from the B3LYP=6 31G(d,p)method. TheDs values
for the two products of phenylazide and styrene reaction are 0.11 and 0.42, respect
ively, whereas the Ds values are 0.17 and 0.46 for the two products of phenylazide
and phenylacetylene reaction. Thus in both the cases, the approach that satisfies
local HSAB principle to a larger extent, is found to be the preferred product.

Applications of local HSAB principle have been used for the determination of
the softer regions in Si clusters by using Ga as probe atom [30a], or the site for
H-atom adsorption on Si clusters. In the latter case, the isomer predicted by the Fukui
function was found but it is not always the most stable one. The use of the reactivity
indices is only valid when the adsorption process does not induce strong deformation
of the cluster [30b].

Local HSAB principle can also be used to calculate the relative homolytic bond
dissociation energies (BDE). For the homolytic dissociation of para-substituted
phenols:

X�C6H4�OH ! X�C6H4Oþ H

the negative of interaction energy (DEint) can be estimated from the expression [31]

�DEint ¼ � (mxC6H4O
� mH)

2

2(hH þ hO)
� l(hHhO)

2(hH þ hO)
(12:20)

where
mx and hx are the chemical potential and hardness for the species x where
X¼O, H; O stands for XC6H4O

l is an adjustable parameter related to the effective number of electrons

The DEint value provides the corresponding BDE. It was shown that good relative
BDE could be obtained from a suitable choice of value for the parameter l.

The use of a dual descriptor defined in terms of the variation of hardness with
respect to the external potential, and it is written as the difference between nucleo-
philic and electrophilic Fukui functions, Equation 12.21, can also be used as an
alternative to rationalize the site reactivity [32]:

Df (r) ¼ fþ(r)� f (r) (12:21)

12.4.3.3 Radical Reactions

Addition of radicals to a different unsaturated substrate is an important class of
organic reactions. To understand its regiochemistry, one needs to examine the
condensed Fukui function ( f 0) or atomic softness (s0) for radical attack of the
different potential sites within the reactant substrate. We consider now a simple
problem summarized in Example 3.
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Example 3

The regiochemistry ofmethyl radical attack (CH3) to a series of substituted ethylenes
(Scheme 12.6) [33]. Generally, the radical attack occurs at the less substituted
end of of the olefins. It has been found that while there is no correlation between
the global softness (S) for radicals and the barrier heights for radical addition, the
barrier tends to decrease with the increase in electronegativity of the radicals.

The f 0 value calculated at theB3LYP=6-31G(d,p) levelwas found to be consistently
larger for the less substituted carbon atom than the substituted bearing carbon atom.

Radical addition takes place at the carbon atom with greater atomic softness value
for radical attack, in agreement with the numerous experimental observations. This
proposition works well as long as potential sites of radical attack have similar atoms.
There is a certain correlation between the s0 values and barrier heights when only the
additions to carbon atom are taken into account. In contrast, the f 0 values fail to explain
the observed regiochemistry of radical addition to heteroatom double bond (C¼X), or to
heteronuclear ring compounds [34]. In fact, the f 0 or s0 values are consistently greater
for oxygen atom than the carbon atom in aldehydes, but the radical attack takes place
at the carbon atom. The main reason behind this failure lies in the inherent deficiency
in the definition of the Fukui function for radical attack. The present definition
f 0 ¼ 1

2 (f
þ þ f ) considers the radical as amphoteric and it has no tendency to gain or

lose electron. Most importantly, this definition implies the same site selectivity for the
addition of all radicals to a particular substrate, which is simply unrealistic.

One possible solution of this problem is to differentiate a radical first as electrophilic
or nucleophilic with respect to its partner, depending upon its tendency to gain or lose
electron. Then the relevant atomic Fukui function ( f þ or f ) or softness (sþ or s )
should be used. Using this approach, regiochemistry of radical addition to heteratom
C¼Xdouble bond (aldehydes, nitrones, imines, etc.) and heteronuclear ring compounds
(such as uracil, thymine, furan, pyridine, etc.) could be explained [34]. A more rigorous
approach will be to define the Fukui function for radical attack in such a way that it
takes care of the inherent nature of a radical and thus differentiates one radical from
the other.

12.4.3.4 Radical Abstraction Reactions

DFT-based descriptors can be applied for studying the most potential site for
hydrogen abstraction reaction of a radical from a substrate. For H-abstraction

X

C C

R.

SCHEME 12.6
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processes from a series of polycyclic aromatic hydrocarbons (PAHs), local softness
is found to be well suited to predict the preferred H-abstraction site [35]. A
qualitative agreement is also observed between local softness differences (between
softness of H atom and the central atom of the abstracting radical) and energy
barriers at 0 K [36]. It was also observed for the H-abstraction reaction of propene
with a series of radicals (such as CH3, CF3, C2H, C2H3, C2H5, OH) that the barrier
height for H-abstraction decreases with the increase in electronegativity of the radical,
and a linear relation is observed between them [37]. The more electronegative is the
attacking radical, the lower is the energy barrier for H-abstraction.

12.5 FURTHER COMMENTS AND OUTLOOK

We discussed mainly some of the possible applications of Fukui function and local
softness in this chapter, and described some practical protocols one needs to follow
when applying these parameters to a particular problem. We have avoided the deeper
but related discussion about the theoretical development for DFT-based descriptors
in recent years. Fukui function and chemical hardness can rigorously be defined
through the fundamental variational principle of DFT [37,38]. In this section, we
wish to briefly mention some related reactivity concepts, known as electrophilicity
index (W), spin-philicity, and spin-donicity.

The electrophilicity of a system is defined as [39]

v ¼ m2

2h
(12:22)

The name stems from the fact that the above relation resembles the equation of
power (¼V2=R) in classical electricity. It, therefore, represents the electrophilic
power of a chemical species.

Following Equation 12.14, the corresponding condensed-to-atom philicity index
can be expressed as [40]

va
k ¼ v � f ak (a ¼ þ,�, or 0) (12:23)

These indices have been used to study the reactivity for a series of chlorobenzenes
and a good correlation is observed, for example, between W and toxicity of chlor-
obenzene [41]. For a detail discussion of this concept and its applications, we refer
the readers to a recent review [41,42]. For studying intramolecular reactivity, these
philicity indices and local softness contain the same information as obtained from the
Fukui functions, because they simply scale the Fukui functions. In some cases the
‘‘relative electrophilicity’’ and ‘‘relative nucleophilicity’’ may be used although they
provide similar trends as s(~r) and v(~r) in most cases [43]. In the same vein, the spin-
donicity and spin-philicity, which refer to the philicity of open-shell systems [44],
could also be utilized to unravel the reactivity of high-spin species, such as the
carbenes, nitrenes, and phosphinidenes [45].

In summary, the DFT-based reactivity descriptors are conceptually simple
and easy to evaluate. They are useful for studying reactivity, especially in probing
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the regiochemistry of different types of chemical reactions. As these parameters
incorporate the essential features of frontier orbital theory, they are expected to have,
at least, similar performance, and thus provide an alternative to the latter. In both
approaches, one needs to be careful about their applicability to a particular problem
and their limitations. The DFT-based reactivity descriptors are good prediction
tools, especially for soft soft interaction where electronic factor dominates the
course of a reaction.
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13.1 INTRODUCTION

Electrophilicity [1] is the property of being electrophilic and a measure of the the
relative reactivity of an electrophile. An electrophile is a reagent attracted to elec-
trons that participates in a chemical reaction by accepting electrons to form a bond
with the nucleophile. Because electrophiles accept electrons, they are Lewis acids [2]
according to the general acid base theory of Brönsted and Lowry [3,4]. Most
electrophiles are positively charged, having an atom which carries a partial positive
charge, or does not have an octet of electrons. Qualitatively, as Lewis acidity is
measured by relative equilibrium constants, electrophilicity is measured by relative
rate constants for reactions of different electrophilic reagents toward a common
substrate (usually involving attack at a carbon atom). Closely related to electrophi-
licity is the concept of nucleophilicity, which is the property of being nucleophilic,
the relative reactivity of a nucleophile. A nucleophile is a reagent that forms a
chemical bond to its reaction partner (an electrophile) by donating bonding electrons.
Because nucleophiles donate electrons, they are by definition Lewis bases. All
molecules or ions with a free pair of electrons can act as nucleophiles, although
anions are more potent than neutral reagents.

It is generally believed that it was Ingold [1] in the early 1930s who proposed the
first global electrophilicity scale to describe electron-deficient (electrophile) and
electron-rich (nucleophile) species based on the valence electron theory of Lewis.
Much has been accomplished since then. One of the widely used electrophilicity
scales derived from experimental data was proposed by Mayr et al. [5 12]:
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log k ¼ s(E þ N), (13:1)

where
k is the equilibrium constant involving the electrophile and nucleophile
E and N are, respectively, the electrophilicity and nucleophilicity parameters
s is a nucleophile-specific constant

The second well-known electrophilicity or nucleophilicity scale was by Legon and
Millen [13,14]. In this scale, the assigned intrinsic nucleophilicity is derived from the
intermolecular stretching force constant k, recorded from the rotational and infrared
(IR) spectra of the dimer B . . . HX formed by the nucleophile B and a series of HX
species (for X halogens) and other neutral electrophiles. The nucleophilicity number
in this case is obtained from the empirical relation

k ¼ cNE, (13:2)

where
c is a constant
N is the nucleophilicity value of B
E is the electrophilicity value of HX

The implementation of this model is as follows: a nucleophilicity number n¼ 10 for
H2O and an electrophilicity number E¼ 10 for HF were assigned as references.

In addition to the above prescriptions, many other quantities such as solution
phase ionization potentials (IPs) [15], nuclear magnetic resonance (NMR) chem-
ical shifts and IR absorption frequencies [16 18], charge decompositions [19], low-
est unoccupied molecular orbital (LUMO) energies [20 23], IPs [24], redox
potentials [25], high-performance liquid chromatography (HPLC) [26], solid-state
syntheses [27], Ke values [28], isoelectrophilic windows [29], and the harmonic
oscillator models of the aromaticity (HOMA) index [30], have been proposed in the
literature to understand the electrophilic and nucleophilic characteristics of chemical
systems.

13.2 THEORY

Can the concept of electrophilicity be generally formularized on a solid theoretical
ground? In 1999, prompted by an earlier proposal by Maynard et al. [31], the concept
of electrophilicity index was quantitatively introduced by Parr et al. [32] as the
stabilization energy when atoms or molecules in their ground states acquire addi-
tional electronic charge from the environment. The question to address is to what
extent partial electron transfer contributes to the lowering of the total binding energy
by maximal flow of electrons.

Consider an electrophile immersed in an idealized zero-temperature free electron
sea of zero chemical potential, which could be an approximation to its binding
environment in a protein, a DNA coil, or a surface. It will become saturated with
electrons, to the point that its chemical potential increases to zero, thereby becoming
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equal to the chemical potential of the sea. To the second order, the energy change DE
due to the electron transfer DN satisfies the formula [33]

DE ¼ mDN þ 1=2h(DN)2, (13:3)

where m and h are the chemical potential (negative of the electronegativity) and
chemical hardness, respectively defined by

m ¼ @E

@N

� �
y

, (13:4)

and

h ¼ @2E

@N2

� �
y

, (13:5)

with y(r) as the external potential of the electrophile. According to Mulliken [34 38],
using a finite difference method, working equations for the calculation of m and h
may be given as

m ¼ �x ¼ � 1
2
(I þ A) (13:6)

and

h ¼ I � A, (13:7)

where I and A are the first IP and electron affinity (EA), respectively. According to,
the Koopmans’ theorem for closed-shell molecules, based on the finite difference
approach, I and A can be expressed in terms of the highest occupied molecular orbital
(HOMO) energy, «HOMO, and the LUMO energy, «LUMO, respectively, I��«HOMO;
A��«LUMO.

If the electron sea provides enough electrons, the electrophile will become
saturated with electrons according to Equation 13.3

dDE

dDN
¼ 0, (13:8)

leading to the maximum amount of electron charge (see examples in Table 13.1)

DNmax ¼ �m

h
, (13:9)

and the total energy decrease

DEmin ¼ �m2

2h
: (13:10)
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Notice that since h> 0, we always have DE< 0, i.e., the charge transfer process is
energetically favorable. We proposed the new density functional theory (DFT)
reactivity index, electrophilicity index v as

v � m2

2h
(13:11)

as the measure of electrophilicity of an electrophile. The reason that v can be viewed
as a measure of the electrophilicity power is because it is analogous to the classical
electrostatics power, V2=R, and m and h serve the purpose of potential (V) and
resistance (R), respectively.

Is the electrophilicity index in Equation 13.11 consistent with the experimental
electrophilicity scale proposed by Mayr et al. in Equations 13.1 and 13.2? To test the
reliability of the theoretical electrophilicity scale, Pérez et al. [39] selected a series of
diazonium ions whose global electrophilicity pattern was evaluated earlier by Mayr
et al. [5 12]. The series included the benzenediazonium ion and a series of substi-
tuted derivatives containing a wide variety of electron-withdrawing and electron-
releasing groups in the ortho- and para-positions. The strong correlation between the
E value in Equation 13.1 and the v value in Equation 13.11, is shown in Figure 13.1,
suggesting that the global electrophilicity pattern of a series of diazonium ions, as
described by the global electrophilicity index introduced by Equation 13.11, com-
pares fairly well with the kinetic scale of electrophilicity proposed by Mayr et al. in
Equation 13.1.

Also, since EA is a quantity that measures the capability of an electrophile to
accept an electron, is EA related to v? It is anticipated that v should be related to EA,

TABLE 13.1
Ionization Potential (IP), Electron Affinity (EA),
Maximal Charge Acceptance DNmax, and
Electrophilicity Index v in the Ground State for the
First and Second Row Atoms (Units in eV)

IP EA DNmax v

H 13.60 0.75 0.56 2.01
Li 5.39 0.62 0.63 0.95

B 8.30 0.28 0.54 1.15
C 11.26 1.26 0.63 1.96
N 14.53 0.07 0.50 1.84

O 13.62 1.46 0.62 2.34
F 17.42 3.40 0.74 3.86
Na 5.14 0.55 0.62 0.88

Al 5.99 0.44 0.58 0.93
Si 8.15 1.39 0.71 1.68
P 10.49 0.75 0.58 1.62

S 10.36 2.08 0.75 2.34
Cl 12.97 3.61 0.89 3.67
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FIGURE 13.1 Correlation between experimental electrophilicity (E) and theoretical electro
philicity (v) of a series of benzene diazonium ion and its derivatives containing a large variety
of electron releasing and electron withdrawing groups in the ortho and para positions.
(Reprinted from Pérez, P., J. Org. Chem., 68, 5886, 2003; Pérez, P., Aizman, A., and Contreras,
R., J. Phys. Chem. A, 106, 3964, 2002. With permission.)
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because both v and EA measure the capability of an agent to accept some number of
electrons. However, EA reflects the capability of accepting only one electron from
the environment, whereas the electrophilicity index v measures the energy lowering
of a ligand due to maximal electron flow between donor and acceptor. The electron
flows may be either less or more than one. Figure 13.2 gives v versus EA for 54
neutral atoms and 55 simple molecules in the ground state, showing that EA is
somehow related to v but does not correlate well with it. Further examinations
indicate that the outliers in the Figure 13.2 are those whose DNmax values from
Equation 13.9 are less than 1.

13.3 EXTENSIONS

Since its inception, the concept of electrophilicity index as the theoretical measure of
the electrophilic power of an electrophile has attracted considerable interests in the
literature. There has been a comprehensive review in Chemical Reviews by Chattaraj
et al. [40] specifically on this topic. Only a few recent extensions and developments
according to my personal flavor are outlined here. For more information and
comprehensive review of the subject, refer to Ref. [40].

13.3.1 NUCLEOPHILICITY

The pair of electrophilicity and nucleophilicity comes together in chemistry text-
books. Just as the former is formally defined in Equation 13.11, is there a similar,
straightforward formalization for the latter? It turns out that it is not the case. One of
the reasons may lie in the theoretical difficulty in dealing with local hardness [41,42],
a quantity that is intrinsically related to nucleophilicity. Another reason stems from
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FIGURE 13.2 Correlation between electrophilicity index and EA of 54 neutral atoms and 55
simple molecules in the ground state parabola model. (Reprinted from Parr, R.G., Szentpaly,
L.V., and Liu, S.B., J. Am. Chem. Soc., 121, 1922, 1999. With permission.)
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the more intriguing role that the electrophilic partner plays. Since different electro-
philic molecules can accept different amount of charge, a nucleophile can be a good
donor for one electrophile but a bad one for another, leading to the difficulty, if not
impossible, to define a universal scale of nucleophilicity for a nucleophile.

Recently, Jaramillo et al. [43] introduced a nucleophilicity scale, depending on the
electrophilic partner, and suggested that the nucleophilicity index can be written as

v ¼ 1
2

mA � mB

hA þ hB

� �2

hA, (13:12)

assuming that A is the nucleophile and B is the electrophile. Hence, the correspond-
ing nucleophilicity scale is of a relative nature, in contrast to the absolute nature of
the electrophilicity scale. They considered the process with the grand canonical
ensemble, where the natural variables are the chemical potential and the external
potential [44]

V ¼ V m, y(r)½ �: (13:13)

Assuming that the external potential is fixed and is in light of Equation 13.3, one has

DV ¼ �NDm� 1=2 S(Dm)2: (13:14)

Minimizing DV in Equation 13.14 with respect to Dm, one has

Dm ¼ �Nh and DV ¼ �1=2N2h: (13:15)

Making use of the following relation by Parr et al. [33] and Malone [45],

N ¼ mA � mB

hA þ hB

, (13:16)

one then obtains Equation 13.12. Correlating Equation 13.12 with the experimentally
defined nucleophilicity scale in Equation 13.2 showed strong statistical significance
(see Figure 13.3 as an example).

De Proft and coworkers [46] recently examined the relationship between Equa-
tions 13.11 and 13.12 for a group of radicals (Figure 13.4) and found that the global
electrophilicity index and the nucleophilicity index for 35 radicals correlate well, but
for some weak electrophiles and nucleophiles and the hydroxyl radical, which possess
very large values of the chemical hardness, only intermediate to large values of the
electronic chemical potential are encountered. For 15 radicals, a comparison between
the classifications obtained with the global electrophilicity index and Principal Com-
ponent analysis (PCA) was made. The agreement is astonishingly good, considering
that the theoretical electrophilicity scale is absolute and free from input of reaction data
(neither experimental nor theoretical).

Other proposals on the theoretical quantification of nucleophilicity are available in
the literature. For instance, Chattaraj et al. [47] suggested a multiplicative inverse of
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the electrophilicity index (1=v), as well as an additive inverse (1�v). Cedillo et al.
[48] proposed a nucleophilicity index employing the electrostatic potential with a test
charge q at r0, v ¼ � 1

2 w(r0)j j2=hxir0 , where w(r0) is the electrostatic potential at r0,
x(r, r0) is the first-order static density response function, and the quantity hxir0 is
defined by
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FIGURE 13.3 Comparison between calculated nucleophilicity (v�, in eV) and experimental
efficiency (nucleophilicity measure) for anions in the X�þCH3Cl reaction. (Reprinted from
Jaramillo, P., Perez, P., Contreras, R., Tiznado, W., and Fuentealba, P., J. Phys. Chem. A, 110,
8181, 2006. With permission.)

FIGURE 13.4 Electrophilicity versus nucleophilicity (value of v� times 10). (Reprinted
fromDeVleeschouwer, F., Van Speybroeck, V., Waroquier, M., Geerlings, P., and De Proft, F.,
Org. Lett., 9, 2721, 2007. With permission.)
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hxir0 �
ðð

x(r, r0)
r � r0j j r0 � r0j j drdr

0:

Figure 13.5 shows its correlation with the experimental scale [13].

13.3.2 LOCAL EXTENSIONS

To describe the electrophilic character of a reactive site within a molecule, a local
electrophilicity index v(r) has been proposed [49,50]:

v(r) ¼ vf þ(r) (13:17)

with fþ(r) the Fukui function for nucleophilic attack. For the computation of fþ(r) the
finite differences approximation condensed to atoms using electronic population
analyses through, for example, the natural population analysis (NPA) can be used.
For the analysis of electrophile nucleophile interactions, v(r) has been found to be a
better reactivity descriptor than the corresponding Fukui function, because the local
electrophilicity index is a product of a global index, v, and a local index, fþ(r) [51].
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FIGURE 13.5 Comparison between experimental gas phase nucleophilicity n in Equation
13.2 and the theoretical nucleophilicity index v� evaluated at the B3LYP=6 311(d,p) level of
theory for the series of neutral nucleophiles that have been fully investigated using the
experimental spectroscopic scale given in Ref. [10]. R is the regression coefficient, N the
number of points included in the regression, and P the probability that the observed correlation
was randomly obtained. (Reprinted from Cedillo, A., Contreras, R., Galván, M., Aizman, A.,
Andrés, J., and Safont, V.S., J. Phys. Chem. A, 111, 2442, 2007. With permission.)
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A generalized version of the above local quantity termed as philicity has been
made by Chattaraj et al. [52], who extended the local quantity through the resolution
of the identity associated with the normalization of the Fukui function as

v ¼ v

ð
f (r)dr ¼

ð
vf (r)dr ¼

ð
v(r)dr (13:18)

where

v(r) ¼ vf (r): (13:19)

Notice that from v(r), one can also obtain local softness, global softness, and
hardness when chemical potential is given. The corresponding condensed-to-atom
variants may be defined as

va
k ¼ vf ak ; with a ¼ þ, �, 0 (13:20)

13.3.3 MINIMUM ELECTROPHILICITY PRINCIPLE

Is there a minimum electrophilicity principle (MEP) in chemical processes, analogous
to the maximum hardness principle (MHP) [53 55]? Noorizadeh [56,57] and Chat-
taraj [58] separately addressed the issue and concluded that ‘‘the natural direction of a
chemical reaction is toward a state of minimum electrophilicity.’’ In a recent work,
Noorizadeh [57] investigated the regio and stereoselectivity of a few Paternó Büchi
reactions and found that although in most cases MHP successfully predict the major
oxetane products of these reactions, but in all of the considered reactions, with no
exception, the main products have the lesser electrophilicity values than the minor
isomers, and therefore MEP correctly predicts the most stable stereoisomer of the
reaction, suggesting that not only MEP is able to predict correctly the regioselectivity
during a photocycloaddition reaction, but it also successfully predicts the major
stereoisomer for the reaction. It was claimed that at equilibrium, a chemical system
attempts to arrange its electronic structure to generate species with the lesser electro-
philicity so that more stable isomers correspond to lesser electrophilicity values.

13.3.4 OTHER DEVELOPMENTS

Two new reactivity indices related to electrophilicity and nucleophilicity, electro-
fugality and nucleofugality, have recently been introduced by Ayers et al. [59 61].
Electrofugality DEe is defined as

DEe ¼ vþ I, (13:21)

and DEn as

DEn ¼ v� A, (13:22)
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assessing the quality of electron-fleeing and electron-accepting, leaving groups,
respectively, in terms of the leaving group’s ionization potential I and EA A. This
definition allows one to measure the inherent quality of a leaving group, as opposed
to the effects due to a particular reaction environment (e.g., molecule- and solvent-
specific effects).

Extension of Equation 13.11 to spin-polarized DFT has recently been made,
from which two new concepts were proposed: spin-philicity and spin-donicity
[62,63], where the system of interest was considered to be embedded in a zero-
potential sea of spins, emphasizing that the spin properties of electrons have to be
considered in the treatment. A good linear correlation has been revealed between the
energy difference estimated by the sum of the spin potentials and the vertical triplet
energy gaps independent of the ground state of the molecule and the atomic number
of the central atom. The spin-philicity values can predict the singlet triplet gaps to a
satisfactory accuracy [62,63].

13.4 RECENT APPLICATIONS

Besides the applications of the electrophilicity index mentioned in the review article
[40], following recent applications and developments have been observed, including
relationship between basicity and nucleophilicity [64], 3D-quantitative structure
activity analysis [65], Quantitative Structure-Toxicity Relationship (QSTR) [66],
redox potential [67,68], Woodward Hoffmann rules [69], Michael-type reactions
[70], SN2 reactions [71], multiphilic descriptions [72], etc. Molecular systems
include silylenes [73], heterocyclohexanones [74], pyrido-di-indoles [65], bipyridine
[75], aromatic and heterocyclic sulfonamides [76], substituted nitrenes and phosphi-
nidenes [77], first-row transition metal ions [67], triruthenium ring core structures
[78], benzhydryl derivatives [79], multivalent superatoms [80], nitrobenzodifuroxan
[70], dialkylpyridinium ions [81], dioxins [82], arsenosugars and thioarsenicals [83],
dynamic properties of clusters and nanostructures [84], porphyrin compounds
[85 87], and so on.

13.5 CONCLUDING REMARKS

The purpose of this chapter is to give a general, pedagogical introduction about how
electrophilicity and related chemical concepts can theoretically be quantified
together with brief outlines of some recent developments in the literature. The
formulation in Equation 13.11 has been showing tremendous interpretive power
and predictive potential in providing insights about structure, properties, stability,
reactivity, bonding, toxicity, and dynamics of many-electron systems in ground and
excited states for systems from almost every arena of chemistry. The field is still
undergoing vivid and ever-expanding developments as witnessed by the growing
number of published papers each year pertaining to the title topic.

Looking ahead, I am optimistic that we will see continued growth of our
knowledge about this and other conceptual DFT-based reactivity and selectivity
descriptors as well as broadening applications in understanding a diverse class of
biophysicochemical properties and processes.
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14.1 INTRODUCTION

Our attempt in this chapter is to demonstrate the application of density functional
theory (DFT) to real-life problems in transition metal organometallic chemistry
through examples. Organometallic chemistry is an area where use of DFT to predict
the structure, bonding, and reactivity has become complementary to experimental
studies. A major part of the organometallic chemistry can be viewed profitably as
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resulting from the replacement of small groups in the organic structures by the
transition metal fragments. The transformation of the organic moiety as a result of
the attachment of a metal fragment is so delicate and specific that seemingly similar
fragments make large changes in the system. We have selected the reactions of the
biscyclopentadienyl titanium (Cp2Ti) and biscyclopentadienyl zirconium (Cp2Zr)
complexes as an example to demonstrate the dramatic changes brought in by these
metallocenes. The in situ generated metallocenes (Cp2Ti, Cp2Zr), with d2 valence
electron count, have been playing a pivotal role in the stoichiometric and catalytic
reactions [1]. In their many different forms, these metallocenes are extensively used as
catalysts in olefin polymerization [2]. Their importance is attributed to their specific
catalytic activity for the generation of stereoregular and stereospecefic polyolefins.
Cp2Ti and Cp2Zr are also used in the synthesis of several precursors for the organo-
metallic chemical vapor deposition of ceramic thin films [3]. Recently, Chirik and
coworkers reported the formation of a tetramethylated cyclopentadienyl zirconium
complex with side-on bound dinitrogen. This dinitrogen complex on hydrogenation
gives ammonia [4a]. Pentamethylated cyclopentadienyl derivative of zirconium com-
plex under similar reaction conditions forms end-on-bound dinitrogen complex and
further reaction of this complex with H2 does not yield ammonia [4]. On the contrary, a
similar reaction with dinitrogen complexes of Cp2Ti does not show any activity
toward the addition of H2 across the Ti��N bonds [4d]. DFT calculations performed
by Morokuma and coworkers explain these experimental observations [5]. The
metallocenes (Cp2Ti, Cp2Zr) play an important role in the C��C coupling and
cleavage reactions of unsaturated molecules such as alkynes, olefins, acetylides,
and vinylides [1,6,7]. The difference in the reactivity of Cp2Ti and Cp2Zr complexes
toward C��C coupling and cleavage reaction is dramatic. The systematic study of
Rosenthal [7a,b], Erker [7c e], and others [7f o] reveals that, from similar
starting materials, titanocene forms the C��C coupled structure 1 (the two central
carbon C2 and C3 are connected by a bond), whereas zirconocene favors the structure
2, where the coupling between the two central carbon atoms C2 and C3 is absent
(Scheme 14.1) [7].
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SCHEME 14.1 Schematic representation of the structural variations observed for the acetyl
ide bridging in the bimetallic complexes of various transition and nontransition metals.
Structures 1 and 2 are reported for M¼Ti, Zr, and structures 3 and 4 are reported for
M¼Li, Be, Al, Ga, In, Cu, Ag, Er, and Sm. (Reproduced from Pravan Kumar, P.N.V. and
Jemmis, E.D., J. Am. Chem. Soc., 110, 125, 1988. With permission.)
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Our interest in this started with the structural variations available for the com-
plexes where two acetylide ligands bridge between two metal centers (Scheme 14.1).
These structural variations are observed (1, 2, 3, and 4) as a function of metal.
The main group bimetallic complexes of Li, Na, Be, and Al prefer structures 3 and 4
(Scheme 14.1) and transition metals prefer structures 1 and 2 [7,8]. Even though
acetylinic p bonds of the bridged acetylides in 4 are slightly bent, they are not
strongly involved in the interaction with the metal centers. This is evident from the
C1��C2 distances of the acetylide units, which are almost the same in structures 3
and 4 [8]. The situation changes considerably in the presence of transition metal
fragments Cp2Ti and Cp2Zr, where either p bridging structure 2 or C��C coupled
structure 1 is preferred over structures 3 and 4. Interestingly, Ti gives the C��C
coupled structure 1 as a final product, whereas Zr gives the C��C cleaved structure 2
as the final product [7]. The formation of C��C coupled structure for Ti and C��C
decoupled structure for Zr led to the theoretical study of the reactivity of Cp2M
(M¼Ti, Zr) fragments. Rosenthal et al. (Scheme 14.2a) [9] and Lang et al.
(Scheme 14.2b) [7m] independently suggested the plausible reaction mechanism
for this C��C coupling and decoupling reactions exhibited by Cp2M (M¼Ti, Zr)
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SCHEME 14.2 (a) Mechanistic scheme proposed by Rosenthal and coworkers for the forma
tion of various complexes of Ti and Zr acetylides. (b) Reaction steps proposed by Lang and
coworkers for the formation of the C C decoupled complex of Ti and Zr. (Reproduced from
Jemmis, E.D. and Giju, K.T., J. Am. Chem. Soc., 120, 6952, 1998. With permission.)
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fragments. The mechanism proposed by Lang included a paramagnetic complex of
type 3, which was also suggested by Royo et al. [7l]. This paramagnetic dimer 3 was
found to isomerize to the diamagnetic structures 1 and 2 depending on the solvent
and temperature. According to Rosenthal, exchange of acetylides is possible at some
stage of the reaction, which leads to butadiyne, that is different from what present
in the beginning of the reaction [10]. Therefore, this reaction can be considered as an
alkane metathesis reaction (Equation 14.1).

R��C��C��C��C��Rþ R0��C��C��C��C��R0

�����!Cp2M

M¼Ti, Zr
2 R��C��C��C��C��R0 (14:1)

Over the years, we have developed detailed understanding of the reactions of
the Cp2M fragment to form several metallacycles and further reaction of those
metallacycles [11]. The metallacycles are involved in important reactions such as
the synthesis of carbocyclic and heterocyclic compounds and they have unusual
ability to stabilize highly reactive organic entities [1,6]. We begin our discussion
with a description of the nature of the frontier orbitals of bent metallocenes, followed
by their reactions with organic ligands to form unusual metallacycles, especially
the metallacyclocumulenes. We will particularly concentrate on the structure,
bonding, and reactivity of the key intermediate of the C��C coupling and decoupling
reactions, the metallacyclocumulene (5). The organic counterpart of the metallacy-
clocumulene is not stable due to high ring strain [11e]. The possible isomeric forms
of metallacyclocumulene (5) are metallacyclopropene (6) and metal bisacetylide (7)
(Scheme 14.3) [11d]. The preference for these isomers varies with the metal in the
Cp2M (M¼Ti, Zr) fragment. Zr prefers the metallacyclocumulene (5) complexes
and Ti exists in a dynamic equilibrium between the metallacyclocumulene (5) and
metallacyclopropene (6) [7e,9b]. Our DFT calculations explain these observations
[11f]. Lastly, we describe the different mechanistic steps involved in the C��C
coupling and cleavage reactions of Ti and Zr complexes using DFT studies.

We have used hybrid HF-DFT method, B3LYP [12,13] for optimization of the
molecules using Gaussian program package [14]. This method is based on Becke’s
three-parameter functionals including Hartree Fock exchange contribution with a
nonlocal correction for the exchange potential proposed by Becke [13a,b] together
with the nonlocal correction for the correlation energy provided by Lee et al. [13c].
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SCHEME 14.3 Schematic representation of different isomers of Cp2M(C4R2), M¼Ti, Zr;
metallacyclocumulene (5), metalacyclopropene (6), and metal bis acetylide (7) complexes.
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We used the LANL2DZ basis set with the effective core potentials of Hay and
Wadt [15]. Frequency calculations were carried out at the same level of theory to
characterize the nature of the optimized structures. A better understanding of the
structures is obtained from the fragment molecular orbital calculations [16].
We have obtained reasonable agreement with experiment in terms of relative energe-
tics and structural parameters using this level of theory. The accuracy of the energy
values and geometrical parameters, calculated by B3LYP functional, is well docu-
mented [17a,b]. The geometrical parameters in the transition metal complexes are
reported to be close to the experimental values [17a]. However, the errors in the
energy values are usually in the range of 3 5 kcal=mol [17a]. Due to computational
limitations, we have replaced the actual ligands on metal and butadiyne with smaller
substituents. These replacements will be mentioned in the appropriate contexts
during the course of the discussion. The Kohn Sham DFT has become one of the
most popular and widely used tool in the electronic structure calculation due to its
modest computational cost, which makes it applicable to large systems as compared
with correlated wave function theory [17a f]. Nevertheless, one should be aware of
certain limitations of the DFT. The reliability of this method is limited by the
functionals used. The main challenge in a DFT calculation at this level is the quality
of the nonclassical exchange and correlation interactions between electrons. More-
over, there are cases where DFT fails [17g l]. It is inaccurate for interactions which
are dominated by correlation energy such as van der Waals attractions, noncovalent
interactions, and p p stacking. Photochemistry, strongly correlated systems, physi-
sorption, and polymers are poorly described in standard DFT. The major drawback
in using these DFT methods is that they cannot be systematically improved unlike
the wave function-based methods. As a result, the performance testing of the
different density functionals is necessary before it is applied to a specific research
problem. Several attempts to get better functionals than the popular B3LYP during
the last few years have been fruitful [18]. Many groups are actively participating in
the design of new functionals to overcome the above mentioned limitations of
B3LYP. At present, several new and improved functionals are available in the
literature [18]. Some of the newly developed functionals are B2PLYP [18a],
B2PLYP-D [18b], B3PW91 [18c], mPW1PW91, mPWPW91 [18d], PBEPBE
[18e], M05-2X [18f], M05, PW6B95, PWB6K, and MPWB1K [18g]. However,
when we started these studies, B3LYP was the best available functional for the
calculation involving transition metal organometallic complexes. The calculations
done using B3LYP are retained in this discussion, so that all calculations need not be
done again. We have checked several crucial steps with more recent functionals and
they give similar results [11h]. It is clear that the study of a new problem must be
undertaken after ascertaining the applicability of the functional for that specific
system. Other chapters in this book provide several guidelines for this.

14.2 BENT METALLOCENES: Cp2M (M¼ Ti, Zr)

Unlike ferrocene, group-4 metallocenes are 14-electron species and hence,
very reactive [19]. These are generated in situ, for immediate reaction [9b,20] and
have bent geometry (Scheme 14.4). The electron deficiency forces them to accept
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electrons from other ligands. The bent metallocenes Cp2M (M¼Ti, Zr) have three
in-plane valence molecular orbitals and two electrons (d2 system) available for
bonding with other ligands (Figure 14.1a) [19]. The similarity of the frontier orbitals
of Cp2M (M¼Ti, Zr) fragment, with the frontier orbitals of the carbene, can be
easily understood (Figure 14.1b) [6b]. Carbene has two in-plane molecular orbitals,
whereas Cp2M fragment has three in-plane molecular orbitals. The highly directed
and contracted molecular orbitals available in carbene lead to the typical organic

M M

Ferrocene
18e complex

Titanocene
Zirconocene
14e complex

SCHEME 14.4 Schematic representation of ferrocene and bent metallocene (Titanocene
and Zirconocene).

Cp2M
M = Ti, Zr

CH2

(a)

(b)

FIGURE 14.1 (See color insert following page 302.) Frontier molecular orbitals of
(a) bent metallocenes (Cp2M; M¼Ti, Zr) and (b) carbene.
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reactions of carbene. Carbene cannot stabilize the strained organic fragments to the
extent a Cp2M fragment can do with its more diffuse orbitals that are available for
bonding. Moreover, the three frontier molecular orbitals of Cp2M fragment can
rehybridize to form suitably oriented molecular orbitals for the interaction with the
ligand. Therefore, the replacement of CH2 fragment in organic molecules by Cp2M
(M¼Ti, Zr) fragment brings dramatic changes in the structure, bonding, and reacti-
vity of the organometallic moiety as compared with the organic molecule. One such
example is obtained by replacing CH2 fragment in highly strained cyclopentatriene
molecule by Cp2M (M¼Ti, Zr) fragment to generate metallacyclocumulenes (5).

14.3 STRUCTURE AND BONDING
IN METALLACYCLOCUMULENE

These bent metallocenes on reaction with unsaturated molecules such as alkynes,
olefins, acetylides, and vinyls form several metallacycles [9,10]. One rather unusual
five-membered metallacycle is metallacyclocumulene (5). It has been synthesized in
several ways. In 1994, the first stable metallacyclocumulene (Cp2Zr(h

4-t-BuC4-t-Bu))
was synthesized by Rosenthal et al. and was obtained by the reaction of Cp2Zr
(pyridine)(h2-Me3SiC2SiMe3) with t-BuC��C��C��C-t-Bu [21]. A few years later,
the titanacyclocumulenes Cp2Ti(h

4-RC4R), R¼ t-Bu and Ph, were synthesized from
Cp2Ti(h

2-Me3SiC2SiMe3) and RC��C��C��CR [22]. Later on several derivatives
of both titanacyclocumulenes and zirconacyclocumulenes have been synthesized in
many different ways (Scheme 14.5) [6h,6i,23 25].

+ R RCp2M
(L)

SiMe3

Cl

Cl

R

R

+ Mg
Cp2M

R

R

M = Ti, Zr
R = Ph, SiMe3, t-Bu, Me

5

hn

SiMe3

+ R RCp2M

Cp2M

SCHEME 14.5 Different synthetic routes for the preparation of metallacyclocumulene (5).
Note: The perception of strain energy in the cyclocumulene is so high that initial attempts at
publishing the experimental single crystal data of the metallacyclocumulene (5) met with
strong resistance from referees (personal comments from Prof. U. Rosenthal). Characterization
of the structure computationally helped in gaining acceptance of the structure.
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This complex seems unusual in the beginning, as the organic counterpart of
metallacyclocumulene (5), i.e., cyclopentatriene (C5H4), is highly unstable due to the
nonlinear C¼¼C¼¼C¼¼C bond and the resulting ring strain [11e,26]. On the basis of
x-ray structural data and IR spectra, there is substantial interaction between the metal
and the middle C¼¼C bond of the metallacyclocumulene [6h,i,21 25]. The calcula-
tions onmetallacyclocumulene (5) show that themetal atom and the four carbon atoms
of the metallacyclocumulene ring are coplanar [11d,e,g]. All the M��C bonds are
within the bonding range, and the middle M��C bonds are marginally longer than the
end ones (Table 14.1 and Figure 14.2a). The computed geometrical parameters of the
metallacyclocumulenes are not far from the experimental structures (Table 14.1). The
C2��C3 bond lengths of the metallacyclocumulenes Cp2Zr(C4H2) and Cp2Ti(C4H2)
are of comparable magnitude, indicating a similarity in the electronic structure as well.

The computed C��C and M��C bond indices and populations reveal the
cumulenic nature of 5 [11d,e,g]. The electronic structure of metallacyclocumulene
is best analyzed from a fragment molecular orbital approach [16]. The metal in
the Cp2M fragment is in the formal oxidation state of þ2 with two valence electrons.
The three frontier orbitals of Cp2M are in the MC4 plane. The in-plane frontier
orbitals of the HCCCCH fragment are formed from the two in-plane p-orbitals on
the two middle carbon atoms (C2 and C3) and the sp hybrid orbitals on the end
carbon atoms, C1 and C4. These form four linear combinations, similar to the
orbitals of butadiene. The lowest two orbitals among these are filled. The next
MO, the lowest unoccupied molecular orbital (LUMO) of the C4H2 fragment,
corresponds to the in-plane equivalent of the LUMO of the butadiene p-orbitals
and is bonding between C2 and C3. The strongest stabilizing interaction is
between this LUMO of C4H2 fragment and the highest occupied molecular orbital
(HOMO) of Cp2M fragment (Figures 14.2b and 14.3). This interaction stabilizes
the C2��C3 bond (HOMO, Figure 14.2b). This is in contrast with the familiar
Dewar Chatt Duncanson model of metal to p* backbonding, which would have
lengthened the C2��C3 bond [27]. This effect is tempered by the two p MOs

TABLE 14.1
Geometrical Parameters of the Metallacyclocumulene Complexes (5),
Cp2Zr(C4H2) and Cp2Ti(C4H2), Calculated at B3LYP=LANL2DZ
Level of Theory

Bond Length (Å) Bond Angle (8)

Molecule C1 C2 C2 C3 M C1 M C2 C1 C2 C3 M C1 C2

Cp2Zr(C4H2) 1.316 1.342 2.353 2.373 146.6 74.7

(1.280) (1.310) (2.357) (2.303) (150.0)
Cp2Ti(C4H2) 1.302 1.344 2.242 2.259 145.1 73.9

(1.277) (1.338) (2.252) (2.210) (147.6)

Note: Experimental values are given in parenthesis [25].
Source: Reproduced from Bach, M.A., Parameswaran, P., Jemmis, E.D., Rosenthal, U.

Organometallics, 26, 2149, 2007.
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perpendicular to the MC4 plane, typical of butadiene. Another stabilizing interaction
is the donation of electrons from the HOMO of C4H2 to the empty d-orbital
of the metal atom (HOMO-3, Figures 14.2b and 14.3). The contour plot of the
HOMO of 5 indicates significant interaction between the central carbon atoms with
metal and in-plane delocalization of electrons in the ring (Figure 14.2c). The p
delocalization in the plane of the ring (HOMO and HOMO-3) and in the plane
perpendicular to the ring (HOMO-1 and HOMO-2) indicates the bis-homoaromatic
nature of the metallacyclocumulene. Homo- and bis-homoaromaticity are usually
observed in charged species, but neutral homoaromatic and bis-homoaromatic sys-
tems are very rare. We have done nuclear independent chemical shift (NICS)
calculations to understand the cyclic delocalization of electrons or aromaticity
[29]. This calculation indicates possible interactions between the metal and the
carbon atoms in the metallacyclocumulenes (5). A very strong aromatic stabilization
is found in the metallacyclocumulene with both M¼Zr and Ti, as indicated by their

Metallacyclocumulene (5)(a)

HOMO HOMO-1

HOMO-3HOMO-2(b) (c)

M = Ti, Zr
H

H

3
4

5
cp2M

1
2 145.1�

(146.6�)
2.259
(2.373)

(2.353)

2.242

1.344
(1.342)

(1 316)1 302

FIGURE 14.2 (See color insert following page 302.) (a) Structure and important geomet
rical parameters of metallacyclocumulene (5). (b) molecular orbitals of metallacyclocumulene
(5). The values in normal font correspond to M¼Ti and the values in parenthesis correspond
to M¼Zr. (c) A contour diagram of the HOMO of metallacyclocumulene (5) showing the
in plane interaction of metal and the ligand. (Reproduced from Bach, M.A., Parameswaran, P.,
Jemmis, E.D., Rosenthal, U., Organametallics, 26, 2149, 2007; Jemmis, E.D., Phukan, A.K.,
Jiao, H., and Rosenthal, U., Organometallics, 22, 4958, 2003. With permission.)

Application of Density Functional Theory in Organometallic Complexes 201



large NICS(0) (�34.4 and �36.2 for M¼Zr and Ti, respectively) and NICS(1)
(�15.0 and �16.7 for M¼Zr and Ti, respectively) values [11e]. These are due to the
3c 2e bonding in the plane of the five-membered ring and p-bond perpendicular to
the plane of the five-membered ring. Thus, one might conclude that they are neutral
bis-homoaromatic.

The interaction between the central carbon atoms with metal and in-plane
delocalization of electrons in the ring reduce the strain in the five-membered
metallacyclocumulene as compared to corresponding organic counterpart, cyclopen-
tatriene [11e]. The ring strains were calculated by successive hydrogenation energies
from the unsaturated cyclocumulene (C5H4, Cp2Ti(C4H2) and Cp2Zr(C4H2)) to the
saturated cyclopentane (C5H10, Cp2Ti(C4H8) and Cp2Zr(C4H8)) (Scheme 14.6). As
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FIGURE 14.3 Interaction diagram between the cumulene (C4H2) and Cp2Zr fragment in
metallacyclocumulene complex (5, Cp2Zr(C4H2)) obtained using ADF2007.01 program pack
age [28]. The other less important interactions are omitted for clarity. A similar interaction
diagram is obtained for Cp2Ti(C4H2) complex.
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Cp2Ti(C4H8) and Cp2Zr(C4H8) at the B3LYP=LANL2DZ level of theory.
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expected, the C��C cumulenic bond in cyclopentatriene (C5H4) has a very high
hydrogenation energy (123.4 kcal=mol), which is five times the value (23.1
kcal=mol) of cyclopentadiene (C5H6). This is due to the enhanced strain in the
cyclopentatriene, and it is not surprising that this molecule is still elusive [26]. The
small hydrogenation energies for metallacyclocumulene (38.5 kcal=mol for M¼Ti
and 31.5 kcal=mol for M¼Zr) indicate that the metal fragment nearly eliminates the
strain energy present in the cyclopentatriene molecule [11e]. These reduced hydro-
genation energies can be ascribed to very strong stabilizing interaction between the
metal center and the cumulene. Another component responsible for the reduction in
strain is the longer M��C bonds as opposed to the corresponding C��C bonds in
cyclopentatriene. The C1��C2��C3 angle of 114.78 in the cumulinic part of the
cyclopentatriene is far away from the ideal linearity anticipated for cumulenes.
The complexation with metal increases this angle in metallacyclocumulene to
145.18 for M¼Ti and 146.68 for M¼Zr (Figure 14.2a) and helps in reducing the
strain in five-membered ring. However, this angle is still far away from linearity.

After observing the low value of the strain energy of the metallacyclocumulenes,
it is not surprising that these are similar in energy to their less strained isomers such
as metallacyclopropenes (6) and metal bis-acetylides (7). It is interesting to note that
the most stable isomer among the organic counterpart of the molecules 5, 6, and 7 is
the least strained acyclic species 7; the cyclocumulene derivative 5 is higher in
energy by 51.6 kcal=mol and the cyclopropene derivative 6 is higher in energy by
16.7 kcal=mol. The introduction of Cp2Ti and Cp2Zr metal fragment brings
a remarkable change in the stability of these molecules and such a clear spread
of energy between the three structures vanishes [11d]. Calculations indicate that
the metallacyclocumulene derivative 5 and the metal bis-acetylide derivative 7
are almost comparable in energy for both Ti and Zr [11d]. The difference between
Ti and Zr is shown in the relative energies of the metallacyclopropene derivative 6.
The titanacyclopropene is lower in energy (8.1 kcal=mol) than the other two
isomers, while the zirconacyclopropene is higher in energy (4.7 kcal=mol). It is
clearly seen from the experiments so far that the Cp2Ti fragment prefers a metalla-
cyclopropene structure [6b,21]. On the other hand, similar experiments with Zr gives
structures which may be derived from 5 [6b,24]. Either of these isomers, metal
bis-acetylides (7) or metallacyclocumulene (5), can react further with another Cp2M
fragment to form the bimetallic complexes 1 or 2. The detailed energetics for these
set of reactions are discussed in the next section.

14.4 MECHANISM OF C C COUPLING AND DECOUPLING
REACTIONS OF Cp2M (M¼ Ti, Zr)

The possible mechanism for the formation of C��C coupled (1) and decoupled
(2) bimetallic complexes from Cp2M has been investigated [11b,c]. We followed a
stepwise procedure to arrive at a model that was practical and at the same time
realistic. In the first stage, the substituted cyclopentadienyls were replaced by Cp and
the substituents on acetylides and butadiynes were replaced by H. The relative
energies showed that, the C��C coupled structure 1 for M¼Ti when L¼Cp and
R¼H is more stable than 2 by 3 kcal=mol, while 2 is calculated to be 14.8 kcal=mol
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lower in energy than 1 for M¼Zr when L¼Cp and R¼H (Figure 14.4) [11b,c].
This follows the experimental trend. However, the systems with cyclopentadienyl
ligand on the metal fragment were too large to perform computation. We had
substituted the ligand on Ti and Zr by Cl and calculated the relative energies for
the structures 1 and 2 for M¼Ti and Zr. Even though, the C��C coupled structure
was unfavorable for both Ti and Zr, the C��C coupled structure 1 for Zr complex is
higher in energy as compared to the C��C coupled structure for Ti complex. For a
detailed study of the mechanistic details, even these systems were too large. Thus
while several calculations were carried out with this model, further simplification
was sought by replacing the Cl by H. As Figure 14.4 indicates, this did not change
the energetics substantially. However, the replacement of Cp by Cl or H has a larger
effect on the energetics of the Ti complexes and the energetics of the Zr complexes
are less affected by the substitution. It should be noted that, if these studies have been
carried out in recent times, the real-life ligands could have been used. Selected
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FIGURE 14.4 Comparison of relative energies (in kcal=mol) of the complexes 1 and 2 with
M¼Ti, Zr and L¼H, Cl, and Cp calculated at the B3LYP=LANL2DZ level of theory.
(Reproduced from Jemmis, E.D. and Giju, K.T., J. Am. Chem. Soc., 120, 6952, 1998. With
permission.)
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computations on the structures with Cp ligands indicate that the general conclusions
of this study remain the same.

On the basis of the analysis of various steps of the reactions and previous
suggestions (Scheme 14.2a and b), we had proposed a reaction mechanism, which
accounts for most of the experimental observations in the C��C coupling and
decoupling reaction (Scheme 14.7). This mechanistic proposal was based on the
structures of homo- or heterobinuclear transition metal complexes isolated pre-
viously [3,7,9]. All the intermediates in this reaction scheme, except the complex 8
for homo-bimetallic complexes with M¼Ti, Zr, and 1 for M¼Zr are reported
experimentally for both Ti and Zr complexes. Thus, the chemistry of Ti and Zr
provides many similarities along with dramatic contrasts. However, the mechanism
proposed by us from DFT calculations is found to be different from the suggested
mechanisms (Scheme 14.2) [7m,9]. In the bimetallic complexes 8 and 1, the central
carbon atoms C2 and C3, are bonded to each other. These structures can thus be
considered as C��C coupled structures. On the other hand, the structures 9 and 2 do
not have a bond between the central carbon atoms (C2 and C3), and hence these
structures can be considered as C��C decoupled structures. If we consider the
reaction pathway starting from structure 5 to structure 2, then it is obvious that the
central C��C bond in 5 is cleaved during the reaction. Similarly, the reaction
pathway from structure 7 to 1 indicates a C��C coupling reaction.

Scheme 14.7 gives the detailed energetics for M¼Ti, Zr and L¼H of all the
possible reaction steps starting from the monometallic complexes 5 and 7. The order
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of the relative energies obtained for L¼Cl is not very different from what is
obtained for L¼H [11b,c]. The first step is the formation of the bimetallic complex
8 from metallacyclocumulene (5). This process is exothermic by 68.3 kcal=mol for
M¼Ti and L¼H (Scheme 14.7). The major change observed here is the elongation
of the C2��C3 bond in complex 8 as compared to complex 5 (Figures 14.2a and
14.5a). From the earlier bonding analysis of metallacyclocumulene (5) it is clear
that the perpendicular p-orbitals are delocalized (HOMO-1 and HOMO-2,
Figure 14.2b) and hence less available for further interaction with the second metal.
There is only the in-plane molecular orbital (HOMO, Figure 14.2b) available in
metallacyclocumulene for bonding to another Cp2M fragment [11d,e,g,h]. The
HOMO of the metallacyclocumulene donates electrons to the empty d-orbital of the
second Cp2M fragment to form the complex 8 (HOMO-1, Figure 14.5b). This reduces
the bonding interaction between C2 and C3. At the same time, back donation from the
filled d-orbital of Cp2M fragment to the LUMO of metallacyclocumulene also takes
place (HOMO, Figure 14.5b). Both these interactions lead to an increase in the
antibonding interaction between C2 and C3, which results in the elongation of
C2��C3 bond in structure 8 as compared to that in the structure 5 [11d,e,g].
The striking feature of the structure 8 is the coexistence of two adjacent planar
tetra-coordinated carbon atoms C2 and C3 [11g]. While there have been several
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FIGURE 14.5 (See color insert following page 302.) (a) The structure and important
geometrical parameters of the bimetallic complex 8. The values in the normal font correspond
to M¼Ti and the values in parenthesis correspond to M¼Zr. (b) Molecular orbitals of the
complex 8 showing the in plane delocalization.
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examples of structures with single planar tetra-coordinated carbon atom, structures
with two adjacent planar tetra coordinated carbon atoms are not common [9b,10c,30].

The metal in metallacyclocumulene (5) is in the formal þ4 oxidation state and
retains the þ4 oxidation state while forming the bimetallic complex 8. The longer
C2��C3 bond distance in 8 justifies the description of C4 as a buta-1,3-diene
tetraanion making both metals formally þ4. On the other hand, the bis-acetylide
complex 7 (metal is in þ4 oxidation state) reacts similarly with ML2 and forms a
complex 9. This can be viewed as formed by the donation of the p-MO in the metal
bis-acetylide (7) complex to another ML2 fragment. The formation of the redox
complex 9, in which one metal center formally is in theþ 4 and the other is inþ 2
oxidation state, is more exothermic (103.2 kcal=mol for M¼Ti and L¼H) than the
formation of 8 from 5. Thermodynamically, 9 is favored over 8 partly because of
the absence of stabilization due top-coordination towards the metal center in the latter
complex. Since the in-plane p bond of C2��C3 is already delocalized with the metal
(M5) in metallacyclocumulene (5), the metal p interaction in complex 8 (interaction
of M6 with C2��C3) does not have optimum orbital hybridizations for the best
overlap (Figure 14.5b) [11g,h]. The complex 9 can rearrange to 2 by the inversion
of one of the C¼¼C p-bond and similarly complex 8 can isomerize to 1 through
the movement of one C¼¼Cp-bond. The relative energy difference between 9 and 2 is
1.4 kcal=mol forM¼Ti and�1.2 kcal=mol forM¼Zr. Rosenthal et al. had suggested
the rearrangement of 8 to 1 as a possible step in the mechanism (Scheme 14.2a). This is
also calculated to be thermodynamically favorable for Ti and Zr (Scheme 14.7). The
structural difference between 1 and 2 is not very large and 2 can form 1 by a C��C
bond formation between the two central carbon atoms, C2 and C3.

These energetics points out that the thermodynamic preferences of ground-state
structures are not sufficient for deciding the most feasible mechanistic steps. The
potential energy diagram for the overall reaction mechanism including various
transition structures are shown in Figure 14.6 for Ti and Zr complexes. Comparison
of barrier heights of different reaction steps helps to predict the favorable pathway.
The conversion of the complex 8 to 1 suggested in the experimental Scheme 14.2a
by Rosenthal et al. is calculated to have the highest barrier (34.1 kcal=mol for M¼Ti
and 33.4 kcal=mol for M¼Zr) on the potential energy surface. However, the M M
axis in 8 is orthogonal to the middle C��C bond, which is already highly stretched
for a conjugated carbon chain, making its activation feasible. The same conversion
can be achieved through intermediates 9 and 2. The barriers for the isomerization
reaction 8 to 9 are calculated to be practically nil (0.9 kcal=mol for M¼Ti and
0.3 kcal=mol for M¼Zr). The next step 9 to 2 also have reasonably low barrier
heights of 13.4 kcal=mol for M¼Ti and 14.3 kcal=mol for M¼Zr, justifying the
dynamic processes observed in solution [7,9]. The final step, involving the C��C
bond formation from 2 to 1, has barriers 10.4 kcal=mol and 18.1 kcal=mol for Ti and
Zr complexes, respectively. This is the largest difference calculated between energet-
ics of the Ti and Zr complexes in these sets of reactions. Thus, the analysis of different
mechanistic pathways outlined in Scheme 14.7 suggests the possibility of the reaction
to proceed via 5-8-9-2-1 rather than any other pathways. Details of the transition
structures give hints about the reason for high or low barriers. An interesting case is
the transformations of 8 to 1 and 9 to 2 (Scheme 14.8). Both involve shifting of a

Application of Density Functional Theory in Organometallic Complexes 207



H

H

H
H

H

H

H

H H

H

H

H 34.1
(33.4)

TS81

103.2
(113.0)

68.3
(76.4)

8
TS89

0.9
(0.3)

21.3
(25.7)

TS92

13.4
(14.3)

12.0
(15.5)

2

10.4
(18.1)

TS21
1.7
 (0.7)

1

44.4
  (44.5)

H
H

H

H

H

H

H
H

H

H

H

HH

H

H
9

H

H

H
Ti Ti Ti Ti

Ti Ti

H

H

Ti Ti

Ti Ti

7

7 + TiH2

14.5
(9.4)
5 + TiH2

FIGURE 14.6 Potential energy surface at the B3LYP=LANL2DZ level of theory for the
mechanism of C C coupling and decoupling reactions given in Scheme 14.7. The energy
values are in kcal=mol. The energetics with L¼Cl also gives similar trend in the order of the
relative energies [11b,c]. The values in normal font correspond to M¼Ti and values in
parenthesis correspond to M¼Zr. (Reproduced from Jemmis, E.D. and Giju, K.T., J. Am.
Chem. Soc., 120, 6952, 1998. With permission.)

H

H H

H

H

H

H H

H

H

H

H

H

H

H

H

HHH

H

H

H

HH

H

H

H

H

H

H H

H
H

H H

H2.034

(2.184) 2.084

(2.288) 1.3
63

(1.
372

) 1.989

(2.164)

2.001
(2.154)

1.979

(2.143)
1.913
(2.072) 1.994

(2.157)
1.289

(1.294)

2.135

(2.300)2 253(2 413)
2.235
(2.400)

2 195(2 322)2 187(2 322)

2.033

(2.193)

1.324

(1.355)1.288

(1.292)

2 127

(2 292)2 328(2 494)

1.549
(1.584)

1.980
(2.009)

1.607
(1.637)

2 285(2 478)
1.522

(1.570)
1 943(2 130) 1.301

(1.317)

2.314
(2 505)

1 353(1 366)

1 349(1 364) 2 154(2 227)M M M M
M M

MMMMMM

2TS929

8(a)

(b)

TS81 1

1.245
(1.246)

SCHEME 14.8 Important bond lengths of the complexes and transition states forM¼Ti, Zr at
the B3LYP=LANl2DZ level of theory; (a) 8, TS81 and 1; (b) 9, TS92, and 2. The values in
normal font correspond toM¼Ti and values in parenthesis correspond toM¼Zr. (Reproduced
from Jemmis, E.D. and Giju, K.T., J. Am. Chem. Soc., 120, 6952, 1998. With permission.)

208 Chemical Reactivity Theory: A Density Functional View



p-bonded C2 unit from one metal to another. However, the former transformation has
a very high barrier compared to the latter one. This is because the middle C��C bond
of the C4H2 unit in 8 does not allow much room for adjustment in the transition state
(TS81) while transition state connecting 9 and 2 (TS92) has enough feasibility to
retain reasonable geometry around the metal even in the transition state structure.
Among all the mechanistic steps in Scheme 14.7, the major step in distinguishing Ti
from Zr in C��C coupling is the formation of 1 from 2.

The experiments suggest a delicate thermodynamic balance between the com-
plexes 2 and 1 for the two metals; Zr prefers structure 2 and Ti prefers structure
1 [7,9]. This forced us to study the mechanism of this step of the reaction in greater
detail [11b,c]. The formal oxidation states þ3 can be assigned to the metals in 2
and þ4 to the metals in 1. Hence, complex 2 has two 17-electron metal centers
(when L¼Cp) and complex 1 has two 16-electron metal centers (when L¼Cp).
Therefore, the formation of 1 from 2may be described as an unusual oxidative C��C
coupling (change of oxidation state from þ3 to þ4 with concomitant C��C coup-
ling). At this stage, it was tempting to conclude that Ti, a first-row transition metal,
can accommodate both 16 and 17 electron counts (for L¼Cp), but Zr may not be
able to do the same. As a result, the formation of C��C decoupled structure 2 is only
observed for M¼Zr and Ti forms both the complexes 1 and 2. However, this need
not be true, because the substituents on the 1,3-butadiyne may also change the
thermodynamic stabilities substantially. The preference for the structure 2 shown
by Ti complexes with R¼ Si(CH3)3 [31] suggests a complementary strategy for
stabilizing the C��C coupled structures 1 for Zr. The highly electron-withdrawing
substituents such as fluoride on the acetylide bridging group might help in making
structure 1 more competitive to 2. Accordingly, the energetics for the transformation
of 2 to 1 were calculated using R¼H, F, and CN on the 1,3-butadiyne and L¼H
(Figure 14.7).

The change in the thermodynamic stability in going from R¼H to R¼ F was as
expected. While 1 (R¼H) is 17.4 kcal=mol less stable than 2, the complex 1 (R¼ F)
is 3.9 kcal=mol more stable than 2 for M¼Zr (Figure 14.7) [11b,c]. Model studies
indicate that Ti prefers C��C coupled product 1 over Zr even when R¼H and
this preference becomes more prominent with R¼ F. The C��C coupled structure
1 is more preferred for Zr complexes than the uncoupled structure 2, when R¼ F
(Figure 14.7). Thus, we suggest that fluoride substituents on 1,3-butadiyne would
force the reaction into the side of structure 1 for M¼Zr. These trends can be used in
designing appropriate ligands for the experimental synthesis of C��C coupled Zr
complex. The thermodynamic preference for the structure 2 with M¼Zr and
R¼CN did not reverse, and the coupled product 1 is less favorable by 9.1 kcal=mol
than the decoupled product 2 (Figure 14.7). This indicates that the CN substituent is
not sufficiently electron accepting to enforce the shift in the equilibrium. Further
calculations on the model complexes 1 and 2 for both the metals, where L¼Cp and
R¼H, were carried out to verify the trend obtained with the simplistic model
complexes (L¼H and R¼H). The change in the thermodynamic preference from
R¼H to R¼ F for M¼Zr retains with L¼Cp. The relative energy difference of
14.8 kcal=mol (17.4 kcal=mol with L¼H) between the C��C decoupled structure 2
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and C��C coupled structure 1 with R¼H was brought down to �10.6 kcal=mol
(�3.9 kcal=mol with L¼H) with R¼ F when Cp is used for M¼Zr.

The difference in the energetics of 1 and 2 for Ti and Zr requires an explanation.
The difference in the ionic radii between Ti and Zr suggests a possible justification.
The larger size of Zr leads to the longer C1��C2 bond and consequently the C1 and
C2 are almost equidistant from M5 in structure 2, for Cp2Zr. This in turn results in a
longer C2��C3 bond (3.003 Å, with L¼Cp) in 2. This facilitates p-bonding to M6,
while maintaining s interaction with M5. In the isostructural Ti complex 2, the
corresponding C2��C3 bond length is 2.985 Å (L¼Cp), which is further along the
path to C��C bond formation. We found that the fluoride substitution also helps in
reducing the C2��C3 distance in the Zr complex 2 from 3.003 Å when R¼H to
2.985 Å (R¼ F, L¼Cp). The relative energies of the transition state structures
indicate that C��C coupling is considerably more favorable for Ti than for Zr
(Figure 14.7). The analysis of the transition state structure for the transformation
of 2 to 1, indicates that the movement of the central carbon atoms required for
M¼Ti is less compared to Zr. During the process of C��C bond formation, with
L¼H, the C2��C3 distance varies from 2.786 Å (in 2) ! 1.964 Å (in transition
state TS21) ! 1.607Å (in 1) for Ti complexes. A similar variation in Zr complexes,
with L¼H, is 2.986Å (in 2) ! 1.944Å (in transition state TS21) ! 1.637Å (in 1).
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Comparison of the x-ray crystal structure data of similar Ti and Zr complexes 2 shows
that the Zr Zr distance (3.522 Å) is shorter compared to the Ti Ti distance (3.550 Å).
This is interesting for the following reason. The conventional electron counting leads
to þ3 oxidation state and d1 electron count for the metals in 2. The covalent radius of
Zr (1.45 Å) is larger than that of Ti (1.32 Å). Despite this, the Zr��Zr distance is
shorter than that of the Ti Ti distance. The charge analysis with L¼Cp and R¼H for
M¼Ti and Zr indicates a major electrostatic metal ligand interaction for M¼Zr in
comparison to M¼Ti [11c]. This might lead to a possible antiferomagnetic inter-
action mediated through the bridging acetylides to the shortening of Zr Zr distance
compared to Ti Ti distance in 2. In conclusion, the unusual C��C coupling observed
in dimeric titanium complexes and lacking in the corresponding zirconium complexes
is a consequence of thermodynamic energy differences.

14.5 CONCLUSION

It is clear from the above discussion that the theoretical calculations using DFT
contribute enormously to the understanding of the structure, bonding, and reactivity
of the organometallic complexes. It also gives such insight into the structure,
bonding, and reactivity, which otherwise could not have been obtained from experi-
ments. Major advances have been made in analyzing the nature of the electron-
deficient metallocenes, Cp2M (M¼Ti, Zr). We have also studied successfully the
formation of the unusual organometallic complex, the metallacyclocumulene, from
these electron-deficient metallocenes. Besides, the reactivity of metallacyclocumu-
lenes toward another Cp2M fragment is also analyzed using DFT. Theoretical studies
could answer several crucial questions in this area of the reaction of Cp2M fragment
with unsaturated organic molecule such as acetylide and butadiyne. It could satis-
factorily explain the stability of the unusual metallacyclocumulene complex from the
bonding studies, which indicates predominant interaction between ligand and metal
as the prime cause for the stability. A thorough mechanistic study at the DFT level
explains that the difference in the reactivity of M¼Ti and M¼Zr to form C��C
coupled and C��C decoupled products is governed by the thermodynamic energy
difference. Our experience clearly indicates that chemical understanding of great
importance can be obtained by considering all aspects of a set of chemical structures
and reactions rather than a single chemical transformation.
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15.1 INTRODUCTION

‘‘The underlying physical laws necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus completely known . . .’’. This assertion
stated in 1929 by P. A. M. Dirac [1] sets a clear goal for theoretical chemists. Put
simply, every chemist, and the theoretical chemists probably first, should strive to
frame chemistry within the context of quantum mechanics. Unfortunately, after
nearly 80 years, we are far from having achieved this aspiration. Chemistry is still
described by a wealth of concepts that are neither rooted in quantum mechanics nor
directly derived from it [2]. Two reasons immediately come to mind. Firstly, chem-
istry has a long history whereas quantum mechanics is a relatively young discipline.
Recasting an older science with its own traditional views within the context of a
newer one is hard and often meets opposition. Secondly, in the distant past, chemists
had already developed their own parlance, which continues to suit their needs very
well till now. A good example is the chemical bond. The chemical bond was already
mentioned by Frankland in 1866 [3], long before the Heitler London wave function
for H2 [4] was derived, and thus much before one could put it in a quantum
mechanical framework.

It would have been easier to put vague and intuitive concepts on a firmer
quantum mechanical footing if they had not been so successful. Indeed, one can
only admire the amount of interpretation and prediction accomplished by chemists
using their toolbox of concepts. Some of these ‘‘toolbox users’’ may be distrustful of
theoretical chemists trying to fix something that, according to these users, is not
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broken [5]. On the other hand, chemistry does need the input of quantum mechanics
for a different reason. Chemists want to fundamentally understand why a chemical
bond between the two same atoms is so similar in different molecules and why
molecules in a homologous series behave in such a similar way, for example.

Current computational resources enable highly accurate predictions of molecular
structures and properties. As a result, the theoretical chemist is appreciated within a
broader chemical community as being able to contribute to the ever growing field of
chemistry. This mutual understanding is partially due to all involved speaking the
same (often conceptual) chemical language. Suddenly abandoning this language may
quickly turn the theoretical chemist into the outsider he once was in the chemical
community. But every theoretician should remember Dirac’s remark mentioned
above and speak the language of quantum mechanics.

The debate on several chemical concepts between those following a more
‘‘intuitive’’ path and those following a ‘‘physically rigorous’’ path remains lively.
The present chapter deals exactly with such a concept: the atom in the molecule
(AIM). Some consider it a product of the mind, a noumenon [6], others accept only a
strict quantum mechanical definition. The dust does not seem to have settled yet as
far as this argument is concerned. In order to give the reader an idea of the
discussions arising from confronting different AIM methods, emphasis is put on
describing different AIM techniques. Some thoughts on the deeper roots of the AIM
will be shared at the end. This chapter will also introduce some key ideas on
population analysis. Nevertheless, we limit the coverage of population analyses
because the concept of an AIM is wider than a mere atomic charge.

15.2 ATOMS IN MOLECULES VERSUS POPULATION ANALYSIS

Although the title of this chapter reads Atoms in Molecules and Population Analysis,
it should be clear from the beginning that the two topics in the title need to be
differentiated. A population analysis is a computational technique to obtain atomic
charges. An intuitively plausible population analysis should quantitatively recover
the qualitative consequences of electronegativity, where more electronegative atoms
‘‘draw’’ more electrons to themselves than less electronegative ones. Any sound
approach that yields a definition of an AIM should allow obtaining an AIM popu-
lation and thus an AIM charge. The reverse is not always possible. To show this we
discuss the ubiquitous electrostatic potential (ESP)-derived charges [7 10].

The electron density r(r) and the molecular M-nuclear framework {ZA, RA}
together generate an EPS V(ri) in all points of space ri:

V(ri) ¼
XM
A

ZA
jri � RAj �

ð
r(r)

jri � rj dr (15:1)

There is much interest in the ESP because it plays a major role in molecular
recognition. Repeated evaluation of the ESP is very costly, especially for large
molecules during simulations. Therefore finding an alternative way to compute
ab initio quality ESPs at much lower cost is important. Methods that simplify
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Equation 15.1 have been derived. The key idea is to replace the continuous density
function and the nuclear framework with the following much simpler expression (for
a review, see Ref. [9]):

V 0(ri) ¼
XM
A

QA

jri � RAj (15:2)

The introduction of point charges in Equation 15.2, usually placed at nuclear posi-
tions, is a popular simplification of Equation 15.1. Naturally these charges need to be
fitted in order to attain the best possible agreement between V rið Þ and V 0 rið Þ. The
atomic charges QA are optimized under the constraint of adding up to the molecular
charge, and often also under the constraint of reproducing some molecular multipole
moments. The input for the optimization consists usually of a (very) large set of data
points ri,V(ri)f g, where the V rið Þ values were computed from Equation 15.1. The
points rif g are chosen on some predetermined molecular surface so that the proced-
ure effectively reproduces the ESP in regions around the molecule where interactions
are assumed to take place. This simple description of ESP-derived charges shows
how a population analysis is performed without any notion of an AIM. In fact, one
can easily think of adding more sites to position charges, for instance, in the middle
of each bond. Nevertheless, point charges continue to dominate applications both in
biochemistry and material science in spite of their well-documented deficiencies. The
literature on determination of point charges is relatively large and highlights a
surprising lack of mathematical understanding of the fitting procedures used to
determine them. A thorough and informed analysis of this problem [11] demon-
strated that the fitting procedure is underdetermined. In other words, there are too
many point charges (i.e., degrees of freedom) to reproduce the exact ESP V as best as
possible. This leads to point charge values being erratically assigned and further
reduction of their chemical meaning. Overall, it is more desirable to model intermo-
lecular interactions by means of multipole moments [12 14].

15.3 BASIC REQUIREMENTS OF AN AIM METHOD

If population analysis is not synonymous with the concept of an AIM, it becomes
necessary to introduce a proper set of requirements before one can speak of an AIM.
An AIM is a quantum object and as such has an electron density of its own. This
atomic electron density must obviously be positive definite and the sum of these
atomic densities must equal the molecular density. Each atomic density rA(r) can be
obtained from the molecular density r(r) in the following way:

rA(r) ¼ ŵAr(r) (15:3)

where ŵA is a positive definite operator. As the atomic densities sum to the molecular
density,

X
A

rA(r) ¼ r(r) (15:4)
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it follows that

X
A

ŵA ¼ 1 (15:5)

All the different AIM methods that will be discussed below basically use this same
approach but quite different in the nature of ŵA. Chronologically, we will discuss the
Mulliken AIM, the Hirshfeld AIM, and the Bader AIM. This last approach will
henceforth be called quantum chemical topology (QCT)*. There are more AIM
methods, but most of them can be easily understood by the three selected emblematic
approaches.

15.4 MULLIKEN APPROACH

Before introducing the form of the Mulliken operator, ŵMull
A , it is appropriate

to return to the concepts of early days of quantum mechanics. Heitler and London
wrote down the singlet wave function for H2 in terms of the hydrogen 1s atomic
orbitals on both hydrogen atoms A and B [4]:

C ¼ N 1sA(1)1sB(2)þ 1sB(1)1sA(2)ð Þ a(1)b(2)� a(2)b(1)ð Þ (15:6)

From this wave function, one sees how even in the early beginning of molecular
quantummechanics, atomic orbitals were used to construct molecular wave functions.
This explains why one of the first AIM definitions relied on atomic orbitals. Now-
adays, molecular ab initio calculations are usually carried out using basis sets consist-
ing of basis functions that mimic atomic orbitals. Expanding the electron density in the
set of natural orbitals and introducing the basis function expansion leads to [15]

r(r) ¼
X
nm

Dnmjnihmj (15:7)

* In the literature of the 1980s and 1990s, the acronym AIM was uniquely used to refer to the ‘‘quantum
theory of atoms in molecules’’ pioneered by the Bader group. To differentiate this approach from others
the acronym, QTAIM was introduced later. Extensive work by the Bader group provided QTAIM with a
rigorous quantum mechanical foundation by proving that the topological condition of zero flux serves as
the boundary condition for the application of Schwinger’s principle of stationary action in the definition
of an open system. One of us has proposed the name quantum chemical topology (QCT) to better capture
the essential and unique features of QTAIM. Secondly, QCT facilitates future developments, general
izations, and applications. The acronym AIM (or QTAIM) is actually too narrow because, strictly
speaking, it only makes sense as a term if one analyses the electron density topologically. Only then
does one recover an ‘‘atom in a molecule.’’ A topological analysis of the Laplacian of the electron
density (which is part of QTAIM) or the topology of the electron localization function (ELF), for
example, does not yield ‘‘atoms in molecules.’’ However, they can both be put under the umbrella of
QCT since they share the central topological idea of partitioning space by means of a gradient vector
field. Also, returning to the electron density, one could use the topological analysis to recover molecules
in van der Waals complexes or condensed matter. Again, as a name, AIM does not describe this result.
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where we use Dirac’s bra-ket notation for the basis functions jni and hmj. The symbol
Dnm denotes an element of the charge and bond order matrix [15]. Greek letters refer
to the basis functions used in the calculation. In order to establish the Mulliken AIM,
the required operator can be written as [16]

ŵMull
A ¼

X
s2A

X
l

S( 1)
sl jsi ljh (15:8)

where S( 1)
sl is the element sl of the inverse of the overlap matrix. Letting this

operator act on Equation 15.7 one finds that

rMull
A (r) ¼ ŵMull

A r(r)

¼
X
nm

X
s2A

X
l

DnmS
( 1)
sl jsihl nihmj j

¼
X
nm

X
s2A

X
l

DnmS
( 1)
sl Sln sihmj j

¼
X
nm

X
s2A

Dnmdsn sihmj j

¼
X
s2A

X
m

Dsm sihmj j (15:9)

The well-known expression embodying the Mulliken population analysis [17 20]
then follows after integration over all space,

ð
rMull
A rð Þdr ¼

X
s2A

(DS)ss (15:10)

The operator ŵMull
A has an interesting characteristic, namely that

ŵMull
A ŵMull

B ¼
X
s2A

X
l

X
n2B

X
m

S( 1)
sl SlnS

( 1)
nm sihmj j

¼
X
s2A

X
n2B

X
m

dsnS
( 1)
nm sihmj j

¼ 0 if A 6¼ B

¼ ŵMull
A if A ¼ B (15:11)

This means that the operators are mutually exclusive and that the operator is
idempotent. Nevertheless, in three-dimensional Cartesian space the atoms do over-
lap, often even to a large extent. So they have no boundaries.

It is clear that the Mulliken operator works in the Hilbert space of the basis
functions, which has repercussions on the way the electron density is assigned to the
nuclei. The basis functions are allocated to the atomic nuclei they are centered on; the
decision as to which portion of the electron density belongs to which nucleus rests on
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the centering itself. The decision is encapsulated in expressions such as ‘‘s2A’’
appearing in Equations 15.8 through 15.11. This allocation is a direct consequence of
an approach that invokes atom-centered basis functions. Such an allocation scheme
will fail when basis functions centered on other locations were included in the basis
set, or if the basis functions have no center, as in plane waves. The Mulliken
approach is thus intertwined with linear combination of atomic orbitals (LCAO)
theory. Secondly, if diffuse basis functions are included in the basis set, the Mulliken
population analysis may become ‘‘unstable.’’ Large fluctuations in the atomic
charges may appear upon changing the number of basis functions in the basis set.
Diffuse functions decline slowly while moving away from the nucleus. Hence they
contribute to a relatively large part of the electron density that is remote from this
nucleus. However, the contribution of the diffuse functions to the electron density is
still allocated to the nucleus. This leads to spurious results [21].

15.5 HIRSHFELD APPROACH

This approach, also often called the stockholder scheme, was introduced in 1977 by
Hirshfeld [22]. The central idea of the Hirshfeld method originates in x-ray crystal-
lography. It proposes to divide the electron density among the atoms in a molecule,
guided by a promolecular density. More precisely, once a molecular geometry is
known, a promolecular density r0(r) is composed by simply summing the density of
each atom A (denoted r0A(r)) in an isolated state:

r0(r) ¼
X
A

r0A(r) (15:12)

where the sum runs over all constituent atoms. The idea of using a promolecule to
distinguish AIM was not new in 1977 since it had been proposed earlier by Daudel
and coworkers [23 25].

At each point in space, the share of the atom is calculated as

wH
A (r) ¼

r0A(r)P
A
r0A(r)

(15:13)

This share is used as the Hirshfeld operator. The assumption behind the Hirshfeld
AIM is that this same weight operator can be used to divide the electron density of
the molecule via

rA(r) ¼ wH
A (r)r(r) ¼

r0A(r)P
A
r0A(r)

r(r) (15:14)

This so-called Hirshfeld scheme is particularly popular within the so-called concep-
tual density functional theory (DFT) [26,27]. The weighting function, which identifies
the AIM as one that is most similar to the isolated atom [28], has been shown to be
directly derivable from information entropy [6,29 33]. Here again, the atoms do not
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have sharp boundaries and extend to infinity although a relatively sharp drop in
the weight of an atom may be expected in the neighborhood of other atoms. As
such, it is also reminiscent of other techniques such as the fuzzy atoms of Mayer
and Salvador [34] or Becke’s scheme [35].

Hirshfeld atomic populations were found to be mildly dependent on the basis set
[36,37], thus remedying one of the important problems of the Mulliken technique.
However, new problems are introduced. First, a promolecular density is a nonphys-
ical concept since it does not comply with the Pauli principle. Several other ques-
tionable aspects of the Hirshfeld technique have been revealed as well. Firstly, the
promolecule is not defined uniquely. Davidson and Chakravorty [38], Bader and
Matta [39], Matta and Bader [40], and Bultinck et al. [41] have questioned the
apparently conventional choice of neutral ground state isolated atom densities as
building blocks for the promolecular density. A different promolecular density
results in a different set of atomic charges. Davidson and Chakravorty [38] showed
this for the case of N2, where the atomic charges differed significantly whether one
took it as a promolecule Nþ and N or as two neutral nitrogen atoms. This is clearly
undesirable and Bader and Matta [39] and Matta and Bader [40] raised the question
as to what would be the proper Li density to use in the promolecule for LiF: Liþ or
neutral Li? Bultinck and coworkers [37,41,42] investigated this matter and found
that using Li0þ F0 as promolecule resulted in charges ofþ0.57 and� 0.57, respect-
ively. Using the combination, Liþþ F as promolecule yielded a charge of� 0.98,
and a charge of� 0.30 was found when using Li þ Fþ as promolecule. The only
constant is that Li is assigned the positive charge. The reported charge fluctuations
are dramatic, which corroborates the criticism by Bader and Matta [39] and Matta
and Bader [40]. A second concern is that, for covalently bonded systems the
Hirshfeld atomic charges are virtually zero. For instance, in the case of H2O the
atomic charges are 0.16 (H) and� 0.32 (O). Compared with any other type of
population analysis, these values are rather small. Even for cases where one expects
significant contributions from charge transfer between atoms, the charges remain very
small. Relying on the proof by Ayers that the Hirshfeld, AIM is the one that keeps the
AIM as similar as possible to the reference isolated atom [28], this may indicate that
indeed the AIM also wants to keep its charge as close as possible to that of the
reference atom, i.e., zero. This problem becomes even larger for charged systems.

A third concern follows from the information theory background provided by
Parr, Nalewajski, and coworkers [6,29 32]. In order to use the Kullback Liebler
formula for missing information for the AIM, an essential criterion is that the AIM
density and the density of the isolated atom used in the promolecule must normalize
to the same number [6]. This is almost never the case when using neutral atoms as a
reference. All these concerns led Bultinck and coworkers [37,41,42] to develop the
iterative Hirshfeld method, denoted Hirshfeld-I. This method, which actually coin-
cides with the suggestion of Davidson and Chakravorty [38] to find a self-consistent
Hirshfeld method, proceeds in the following way. First, a regular Hirshfeld popula-
tion analysis is carried out, resulting in a first set of atomic populations. Then a new
promolecule is constructed using atomic densities that normalize to the populations
produced in the previous step. Using that promolecule, the Hirshfeld analysis is
again carried out. This procedure is repeated until eventually the populations that
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result from the ith iteration are the same as those that were used in the promolecule in
the same iteration. Once self-consistency is obtained, one can proceed with the
extraction of Hirshfeld-I AIMs and use them for further analysis.

The results [41,42] of implementing this scheme reveal that the atomic
charges tend to grow much bigger, roughly by a factor of 3. Even charges below�1
or aboveþ1 do appear now. In many studies, Bader’s AIM charges (detailed
explanation in the following sections) were criticized for being too large. However,
the charges of the self-consistent Hirshfeld scheme seem to grow quite large as well.
Secondly, the Hirshfeld-I scheme also makes charged molecules tractable without
using promolecular densities that normalize differently from the molecular density.
Finally, the Kullback Liebler formula is strictly valid in assessing information
loss [43]. Also, the basis set dependence has been shown to be very small [37].
Returning to LiF, the Hirshfeld-I procedure yields AIM charges of� 0.932, which
agree well with those of an ionic bond. LiH is another molecule for which Hirshfeld
and similar approaches are problematic according to Bader and coworkers [39,40].
The regular Hirshfeld method yields charges of� 0.43, which are indeed very low
for this kind of species. On the other hand, using the Hirshfeld-I scheme, the charges
become� 0.930. As is the case for the Bader method [39], the Hirshfeld-I charges of
LiH and LiF have become very similar.

Introducing self-consistency in the Hirshfeld-I scheme removes most of the
arbitrariness in choosing a promolecule. It was also proven that the corresponding
AIM populations [37] are independent from the starting point of the iterative process.
Still, one arbitrary decision remains. The states of the isolated atoms used in
constructing the promolecule are chosen arbitrarily as the ground state. In principle,
this problem can also be solved in the spirit of information theory. One could initiate
the Hirshfeld-I procedure for every possible combination of states of every atom,
carry it out until convergence, and then compute the information loss. Routine
application of this procedure is of course impossible. On the other hand, Rousseau
et al. [45] showed that, in the regular Hirshfeld scheme, changing the states of the
neutral reference atoms has little impact on the final AIM populations.

15.6 BADER APPROACH

The original ‘‘atoms in molecules’’ method [45 47] as developed by the Bader
group is based on the topology of the electron density r and that of the Laplacian of
r. Instead of an in-depth discussion of the topological features of the electron density
we just introduce a few essential characteristics here. A key concept is the gradient
vector field, which is a collection of gradient paths. Here, a gradient path is a trajectory
of steepest ascent in the electron density. The topology of the electron density is best
revealed through its gradient vector field. At the so-called critical points, the gradient
of the electron density vanishes. The critical points are best classified in terms of their
rank and signature. At a critical point, the Hessian of r is computed and its eigenvalues
are obtained. The rank is the number of nonzero eigenvalues and the signature is the
sum of the signs of the Hessian eigenvalues. For example, a maximum in r has three
negative eigenvalues, and hence its signature is�3¼ (�1)þ (�1)þ (�1). The rank is
usually 3, which gives rise to four possible signatures, namely �3, �1,þ1, andþ3.
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The nature of a critical point is denoted as (rank, signature). For example, a minimum
in r is designated by (3,þ 3) and a maximum by (3,�3). The two remaining types of
critical points, (3,�1) and (3,þ1) are saddle points, called bond critical point and ring
critical point, respectively.

Gradient paths can be classified by means of the type of critical points (i.e., their
signature) that they connect. This was achieved exhaustively for the first time in
2003 [48]. In the gradient vector field of r, the vast majority of gradient paths
terminate at (3,�3) critical points, which (approximately) coincide with nuclear
positions. A collection of gradient paths that terminates at a given nucleus is called
an atomic basin. These basins are mutually exclusive and thus partition three-
dimensional space into disjoint (i.e., nonoverlapping) domains. The basin together
with the nucleus inside it is then defined as the AIM within the context of QCT.
Figure 15.1 shows a few examples of QCT atoms, using a new algorithm based on
finite elements [49]. It is clear that a water dimer, which is a van der Waals complex,
can also be partitioned into QCT atoms, in the same manner as a single molecule.
The electron density’s topology does not distinguish intramolecular interactions from
intermolecular interactions. In principle, a QCT atom can be completely bounded by
topological surfaces called interatomic surfaces provided there are enough neighbor-
ing atoms. The hydrogen atom in the middle of the water dimer, for example, is
bounded by an interatomic surface on the left and one on the right. Only a very
small edge of a nontopological surface bounds it at the top and at the bottom. This
nontopological surface is an envelope of constant electron density, typically set at
r ¼ 0.001 a.u. For most atoms in the systems shown, such an envelope is vital to
bound an atom visually. Secondly, an atom also needs to be bounded in order
to have a finite volume for a numerical integration [50 52] to be possible over the
atomic basin. The picture showing cyclopropane marks the bond critical points as
purple points. These carbon carbon bond critical points are at the center of the
interatomic surface that separates the two carbons.

Till now, the AIM in QCT comes from an entirely topological origin. The single
most important step forward in the theory was the realization that a quantum
mechanical AIM coincides exactly with this topological atom [53]. The definition
of an interatomic surface is given by

rr(r) � n(r) ¼ 0 for all r 2 S (15:15)

FIGURE 15.1 (See color insert following page 302.) Examples of the QCT partitioning of
the electron density. (left) All atoms in cyclopropane (except for the front methylene group);
(middle) acrolein; and (right) a water dimer (global minimum).
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This equation means that the normal to the surface S, n(r), is orthogonal to the gradient
of the electron density. In other words, the surface is parallel to rr, or rephrased
again, the surface consists of gradient paths. The interatomic surface is a bundle
of gradient paths that terminate at the bond critical point at the center of the surface.

It can be shown that Equation 15.15 means no less than the QCT AIM itself is a
quantum mechanical object within the global quantum object. A common misun-
derstanding is that the AIM in this case becomes a closed system. This is incorrect.
The QCT AIM should be seen as an open system [54], free to exchange electronic
charge, for instance.

In order to frame the QCT method within the general expression (3), we need to
give an expression for the weight operator ŵQCT

A . From the above discussion, it is
clear that this operator will depend on r and that it is a binary operator, so its value is
either 0 or 1. For a given atom A, the operator vanishes at every point in space,
except within the basin of A, where it is equal to one. This way all atomic basins are
indeed mutually exclusive.

Figure 15.1 also shows molecular graphs, which is a collection of special
gradient paths that embody chemical bonds. Two such gradient paths originate
from a given bond critical point and when traced in opposite directions, each
terminate at a nucleus. This pair of gradient paths is called an atomic interaction
line. In an equilibrium geometry, they are known as bond paths. A debate has
emerged about whether bond paths can always be identified with a chemical bond.
Unfortunately, this debate remained circular until the careful work of the Oviedo
group and Gatti in 2007. They recently published an important paper [55], in which
the exchange-correlation energy between atoms, Vxc(A,B), is invoked to cut the
vicious circle that fueled the bond path debate. The authors show that bond paths are
‘‘privileged exchange channels’’ and highlight a remarkable set of observations for
classical test systems. It is clear that the competition between various Vxc(A,B) terms
is expressed by the presence or absence of bond paths. One should note that QCT not
only proposes an AIM but also recovers bonding.

15.7 AIM PROPERTIES AND COMPARISON OF AIM METHODS

The properties of a quantum mechanical system such as an AIM are readily calcu-
lated from any method as long as they involve an operator acting on the electron
density, e.g., for the case of the dipole moment. The problem would seem to become
harder for other properties, although the introduction of property densities allows us
to generally introduce AIM expectation values [45]. The expectation value of a
property A for atom a in the Hirshfeld and QCT methods can be written as

Aa ¼
ð
wa(r)dr

ð
dt0

N

2
C*ÂCþ ÂC

� �
*C

� �
(15:16)

where dt0 denotes integration over all coordinates of all electrons in the system,
except one. For QCT, this means that computing the average value of an atomic
property warrants integration over the atomic basin only. In the case of both the
Hirshfeld schemes (original and I), one integrates over all space but weights the
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result with the appropriate wH
A (r). In the case of the Mulliken method, the expres-

sions are analogous, except that manipulations are carried out in the Hilbert space of
the basis functions.

Many studies have focused on the comparison of AIM methods. Most concen-
trate on comparing the results from the AIM populations. Therefore, no such
comparison will be repeated here. The issue to be addressed here is of a more
fundamental nature. Although all the three methods addressed here have been
and continue to be used widely, none of them is without its own problems. These
may be computational in nature, such as the basis set dependence of the Mulliken
method, the high CPU cost of QCT, or the arbitrariness of the promolecule in the
Hirshfeld method. The most fundamental criticism is that in the Mulliken and
Hirshfeld methods, the AIM is introduced whereas the AIM can be deduced from
the QCT analysis of the electron density. In particular, in the Hirshfeld method, one
composes a promolecule based on the atoms that constitute the molecule, thus from
the beginning the concept of an atom is introduced. In the Mulliken approach, one
needs to rely on the use of atom-centered basis functions that mimic the atomic
orbitals, thereby introducing the atoms a priori. In QCT, the atoms can be obtained
solely from the electron density, although one must then accept finding atoms
without nucleus. These are the so-called nonnuclear attractors or pseudoatoms that
appear occasionally. The appearance of such nonnuclear attractors can be an artifact
from the use of small basis sets, although some can be genuine in that they survive at
high level of theory [56]. These nonnuclear attractors do not fit well within our usual
view of the molecular graph or molecular structure, but accepting QCT, one needs
to accept the existence of pseudoatoms as well, and thus the concept of an atom
without a nucleus because the atom has been defined as the union of the nucleus with
its basin.

Finally, it is worth turning back to the question whether atoms in molecules can
be defined uniquely. According to Parr et al., the AIM cannot be defined uniquely
[6]. According to these authors, an AIM can neither be observed directly from
experiment, nor could one gather enough properties of the AIM to define it unam-
biguously. They cannot conceive any experimental measurement that would show
that one definition is uniquely correct, and so they accept the existence of several
different approaches, all possibly useful in specific contexts. The AIM is therefore
considered a noumenon: an object or pure thought not connected with sense percep-
tion. This point of view was scrutinized by Bader and Matta, claiming QCT to be the
only correct and coherent way to define the AIM [40]. According to the latter
authors, the QCT AIM is also confirmed by experiment.

Since Dalton, chemists have thought of molecules in terms of a collection of
atoms. The entire discussion between the two different points of view, namely the
noumenon view and Bader’s view, is not about the usefulness of the AIM concept.
There seems to be agreement on the usefulness of the concept. Rather, it is about
pinpointing the AIM through a definition that excludes every other possibility. In any
event, given the philosophy of Dirac’s statement at the beginning of the chapter,
QCT does have the advantage of allowing AIM to be derived from quantum
mechanics. An atom was neither directly nor indirectly introduced at any stage.
Yet, domains that do conform to the concept of an atom in a molecule resulted.
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16.1 INTRODUCTION

Similarity between quantum systems, such as atoms and molecules, plays a very
important role throughout chemistry. Probably the best example is the ubiquitously
known periodic system of the elements. In this system, elements are arranged both
horizontally and vertically in such a way that in both directions, elements have a high
similarity to their neighbors. Another closely related idea is that of transferability. In
chemistry, one speaks of transferability of an entity when its properties remain
similar between different situations. An example is the transferability of the proper-
ties of a functional group between one molecule and another. The main motto of
using similarity in chemistry is the assumption that similar molecules have similar
properties.

Although chemical reasoning very often implies using the concept of similarity,
the very definition of similarity depends often on the people involved. A physical
chemist might base the judgment of a degree of similarity between two molecules A
and B on a completely different basis from an organic chemist, and this may again be
different from what a medicinal chemist might think of the degree of similarity. One
could say that: ‘‘Similarity, like beauty, lies in the eyes of the beholder’’ [1]. A clear
example is found in the field of human psychology, where it was shown that the
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degree of similarity perceived by an observer between different facial expressions
depends on the observer’s mental state [1 3]. This dependence of its perception upon
the observer makes it clear that similarity is often considered as a qualitative concept.

Such dependence is naturally not acceptable if one wants to put similarity
between quantum systems in a theoretical framework. As will be shown below, the
so-called theory of molecular quantum similarity (MQS) does offer a solid basis. The
aim of the present chapter is to introduce the basic aspects of the theory and to allow
the reader to follow the literature. For applications and a more in-depth presentation
of the mathematical aspects, the reader is referred to the review by Bultinck et al. [4].

16.2 MOLECULAR DESCRIPTORS

Prior to developing the MQS theory, it is worth introducing the concept of a
molecular descriptor. A molecular descriptor effectively describes a certain feature
of a molecule. Examples are the molecular weight, the number of atoms of a certain
element, and its dipole moment. Totally, there are at least several hundreds of such
descriptors in use, some derived purely from computation and some from experi-
ment. These features are used to express the degree of similarity between molecules.
The dependence of the degree of similarity between two molecules on the perception
of the observer can now easily be translated in to the choice of molecular descriptor
that chemists of different fields may apply to assess the similarity. A medicinal
chemist may use a completely different set of descriptors, namely those of most
importance to his field, whereas an inorganic chemist may use a different set of
descriptors. Moreover, the same chemist may turn to different descriptors depending
on the project he is working on. Molecular descriptors also play a crucial role in
quantitative structure property or activity relationships (QSP(A)R). In such relation-
ships one links an observable property or activity of a molecule to the set of descriptors
in a quantitative way to be able to find more information on some mechanism
underlying the property or activity and to be able to predict this property or activity
for some molecule whose property or activity is not yet known. Reviews of the many
types of molecular descriptors may be found in the works by Downs [5], Brown [6],
Mason and Pickett [7], and Bajorath [8].

A specific class of molecular descriptors is the one based on quantum chemical
calculations. These descriptors may or may not be observables themselves. They
may correspond to a computed value for some experimentally verifiable quantity, or
they may be purely conceptual descriptors. A review of quantum chemical molecular
descriptors has been given by Karelson et al. [9,10].

Although one could consider the electron density as just one of the many
quantum chemical descriptors available, it deserves special attention. In QSM, it is
the only descriptor used for a number of reasons. The idea of using the electron
density as the ultimate molecular descriptor is founded on the basic elements
of quantum mechanics. First of all, it is the all-determining quantity in density
functional theory (DFT) [11] and also holds a very close relation to the wave
function. Convincing arguments were given by Handy and are attributed to
Wilson [12], although initial ideas can also be traced back to Born [13] and von
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Neumann [14]. The electron density r(r) has several important features. First, it
gives the number of electrons N,

ð
r(r)dr ¼ N (16:1)

Secondly, information is obtained on the nature of the nuclei in the molecule from the
cusp condition [11]. Thirdly, the Hohenberg Kohn theorem points out that, besides
determining the number of electrons, the density also determines the external potential
that is present in the molecular Hamiltonian [15]. Once the number of electrons is
known from Equation 16.1 and the external potential is determined by the electron
density, the Hamiltonian is completely determined. Once the electronic Hamiltonian is
determined, one can solve Schrödinger’s equation for the wave function, subsequently
determining all observable properties of the system. In fact, one can replace the whole
set of molecular descriptors by the electron density, because, according to quantum
mechanics, all information offered by these descriptors is also available from the
electron density.

All this form a quite convincing argument to use the electron density as the most
fundamental and in fact the only descriptor. According to Dean, similarity in the
activity or properties of a molecule will occur whenever molecules have similar
electron densities [16].

16.3 MOLECULAR QUANTUM SIMILARITY

In 1980, Carbó et al. were the first to express molecular similarity using the electron
density [17]. They introduced a distance measure between two molecules A and B in
the sense of a Euclidean distance in the following way:

d2AB ¼
ð
dr[rA(r)� rB(r)]

2 (16:2)

where
rA(r) is the electron density of molecule A
rB(r) is the electron density of molecule B

Working out Equation 16.2 yields

d2AB ¼
ð
dr[rA(r)]

2 þ
ð
dr[rB(r)]

2 � 2
ð
dr[rA(r)rB(r)] (16:3)

Introducing the notion of a molecular quantum similarity measure (MQSM) ZAB as

ZAB ¼
ð
dr[rA(r)rB(r)] (16:4)

Equation 16.3 can be rewritten in terms of the so-called self-similarity and ZAB

dAB ¼ ZAA þ ZBB � 2ZAB (16:5)

Molecular Quantum Similarity 231



In case of perfect similarity between two molecules A and B, one would find
dAB¼ 0, and the more the two density functions differ, the larger will be the value
of dAB and the smaller will be ZAB. Besides the distance measure of similarity
between two electron densities, another index was developed which is known as
the Carbó similarity index [17]. For two molecules A and B, this index is given as

CAB ¼
Ð
dr[rA(r)rB(r)]Ð

dr[rA(r)]
2
Ð
dr[rB(r)]

2
q ¼ ZAB

ZAAZBB
p (16:6)

According to this index, a perfect similarity is indicated by CAB¼ 1, and lower
values indicate decreasing similarity.

16.4 EXTENSION TO OTHER OPERATORS

Till now, all MQSM rely on overlap integrals between electron densities. However,
this is not the only possibility. Based on the development of the theory of vector
semispaces, Carbó et al. have shown that one can extend the QSM theory to include
different kinds of operators [18,19]. In general, a MQSM can be obtained via

ZAB ¼
ð
dr1dr2[rA(r1)V(r1, r2)rB(r2)] (16:7)

where till now, the operator V(r1, r2) corresponded to the Dirac delta function, i.e.,

V(r1, r2) ¼ d(r1 � r2) (16:8)

This is certainly not the only possibility, and MQSM can be defined using many
choices of V(r1, r2) provided it remains positive definite. Examples include the
Coulomb MQSM and kinetic QSM. In case of the Coulomb operator, one does not
perform the point-by-point similarity calculation as in Equation 16.4 but introduces
weighting of the surrounding points using as an operator:

V(r1, r2) ¼ jr1 � r2j 1
(16:9)

The case of a so-called kinetic MQSM corresponds to [20]

ZAB ¼
ð
dr1[rrA(r1)rrB(r1)] (16:10)

In fact, one can even use a positive definite operator, the electron density of yet a
third molecule X acting as template, to obtain [21,22]

ZAB ¼
ð
dr1[rA(r1)rX(r1)rB(r1)] (16:11)
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16.5 SIMILARITY MATRICES

Having established different possible operators to compute MQSM, one can pick one
of these operators and compute the MQSM between each two molecules in a set.
Putting all these MQSM in a (N�N) matrix, one obtains the so-called MQS matrix,
denoted by Z:

Z ¼
Z11 � � � Z1N
..
. . .

. ..
.

ZN1 � � � ZNN

2
64

3
75 (16:12)

Each of these columns of this symmetrical matrix may be seen as representing a
molecule in the subspace formed by the density functions of the N molecules that
constitute the set. Such a vector may also be seen as a molecular descriptor, where
the infinite dimensionality of the electron density has been reduced to just N scalars
that are real and positive definite. Furthermore, once chosen a certain operator in the
MQSM, the descriptor is unbiased. A different way of looking at Z is to consider it
as an N-dimensional representation of the operator within a set of density functions.
Every molecule then corresponds to a point in this N-dimensional space. For the
collection of all points, one can construct the so-called point clouds, which allow one
to graphically represent the similarity between molecules and to investigate possible
relations between molecules and their properties [23 28].

Similarity matrices have often been used to cluster molecules and to derive some
molecular set taxonomy. Besides the point clouds described above, one can construct
dendrograms in different ways. Starting from the MQS matrix Z0, Bultinck and Carbó-
Dorca [29] first obtain a similaritymatrixC holding as elements, theCAB obtained using
some similarity index transformation (for example the Carbó index [6]). Having done
this, one can construct a sequential agglomerative hierarchical nonoverlapping dendro-
gram by searching the sequence of the largest values ofCAB. In the first step, the largest
element of the matrix C is sought and the two molecules involved are clustered. This
cluster of twomolecules is represented by a new, virtual quantumobject. Its descriptor in
the quantum similarity matrix is obtained by averaging the vectors of both molecules in
Z0 (and not C). So the descriptor for the artificial molecule X is obtained as

8K ¼ [1 . . .N]: ZKX ¼ Z0
KA þ Z0

KB

2
(16:13)

where the values of ZKX constitute a descriptor vector in a new MQS matrix Z. From
this Z, a new matrix C is constructed and the entire process is repeated until all
molecules are clustered. At every stage when two objects (molecules or clusters) A
and B are clustered into an object X, a new column for X is constructed in a new
matrix Z according to

8K ¼ [1 . . .N]: ZKX ¼ 1
NA þ NB

XNAþNB

I2{A,B}
Z0
KI (16:14)

Where the sum runs over all the objects already contained in A and B.
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16.6 COMPUTING MOLECULAR QUANTUM
SIMILARITY MEASURES

Having established the most important concepts for MQS, the next step is to actually
compute the numerical values associated with the quantum similarity measures.
Electron densities can naturally be obtained from many quantum chemical methods
such as DFT, Hartree Fock, configuration interaction, and many more, even from
experiment.

The electron density can quite generally be written as

r(r) ¼
X
n

X
m

Dmnfn*(r)fm(r) (16:15)

where
Dmn is the charge and bond order matrix
fn(r) and fm(r) are the basis functions

It then follows that the MQSM are given as

ZAB ¼
X
n2A

X
m2A

X
s2B

X
l2B

ð
dr1dr2DmnDls[fn*(r1)fm(r1)V(r1, r2)fs*(r2)fl(r2)] (16:16)

This means that for the evaluation of the MQSM, one needs to solve many integrals
involving four basis functions. Although there are many good algorithms for com-
puting these integrals, their number can become limitative for routine application,
especially when higher order angular momentum basis functions are involved or
when the MQSM have to be evaluated for large numbers of large molecules. Another
reason to find an alternative approach to the evaluation of the MQSM is that often the
MQSM have to be calculated repeatedly, as in maximization of the MQSM, as it will
be described later.

It is well-known that a superposition of isolated atomic densities looks remark-
ably much like the total electron density. Such a superposition of atomic densities is
best known as a promolecular density, like it has been used by Hirshfeld [30] (see
also the chapter on atoms in molecules and population analysis). Carbó-Dorca and
coworkers derived a special scheme to obtain approximate electron densities via the
so-called atomic shell approximation (ASA) [31 35]. Generally, for a molecule A
with atoms N, a promolecular density is defined as

r
pro
A (r) ¼

XN
a¼1

r0a(r) (16:17)

where r0a(r) is the density of the isolated atom a. The key feature of the ASA method
is that the atomic electron densities are computed directly in terms of only s-type
Gaussians, instead of the usual expansion of the molecular orbitals in terms
of Gaussians. The key equation for the promolecular ASA density then becomes
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r
pro
A (r) ¼

XN
a¼1

r0a(r) ¼
XN
a¼1

Par
ASA
a (r) (16:18)

with Pa the number of electrons attached to the atom a. In most applications,
however, the value of Pa is chosen as the atomic number of the element involved.
In some cases, a degree of internal charge transfer is introduced by putting Pa equal
to the population of the atom according to an ab initio calculation and some specific
choice of population analysis.

The ASA density for this atom is expressed in terms of the s-type Gaussians as

rASAa (r) ¼
Xm
i¼1

wi si(r)j j2 (16:19)

with wi the weighting coefficients of the s-type Gaussians si(r). Note that the ASA
atomic densities possess a norm 1, although it is trivial to renormalize them to N.
A special scheme has been developed to derive these ASA atomic densities by fitting
an expansion of s-typeGaussians against true ab initio computed atomic densities.Much
attention is paid to make sure that all wi remain strictly positive definite, resulting in
nonlinear optimizations. The reason for this stringent condition is naturally that no
negative electron densities could arise within a finite volume. For more information
on this optimization, the reader is referred to the works of Carbó-Dorca et al. [31 35].

Replacing ab initio densities with promolecular densities using the ASA expan-
sion may seem a quite drastic approximation, but experience has shown that this is
not the case [36 40]. The reason is that the ASA method very well captures those
areas where the density is the highest, namely near the cores of the atoms. On the
other hand, the valence region is characterized by a much smaller density and thus
has no big influence on the MQSM so that the ASA approach is certainly viable from
a computational point of view.

The main advantage of using the ASA method to obtain approximate electron
densities is the very important gain in computational efficiency to compute MQSM
and thus perform similarity analysis among the molecules of some molecular set.
This is important for those cases where either the molecules are very numerous, or
very big or a combination of both.

As stated above, the valence region contributes relatively little to the MQSM,
hence the good performance of the ASA method. One might be concerned whether
this is not disadvantageous for the use of molecular similarity in, for example,
comparing molecular reactivity. It is well known that chemistry and chemical
reactions involve changes mainly in the valence regions and therefore one would
expect that these should have a bigger impact on the MQSM. Different ways to deal
with this problem have been used. Among the more often used approaches, one can
refer to the momentum space density similarities of Cooper and Allan allowing to
reduce the dominating impact of the core regions on the MQSM [41 43]. Concern-
ing the link to chemical reactivity, the work of Boon et al. [44 47] and Bultinck
and Carbó-Dorca [48] is worth mentioning where MQSM computed over density

Molecular Quantum Similarity 235



functions were not used, but using different conceptual DFT quantities such as the
Fukui function.

16.7 ROLE OF MOLECULAR ALIGNMENT

The MQSM values are quite strongly dependent on the alignment between the
molecules whose similarity is being computed. It is clear that when two molecules
are positioned very remotely from each other the MQSM will be very low. As an
example, two hydrogen molecules put at a very large distance will yield a very low
MQSM, whereas when aligning them perfectly the MQSM will be maximal. Like-
wise, the Carbó index will change from nearly zero to one. This has a profound effect
on the use of the QSM theory for concluding degrees of similarity.

It is therefore highly desirable to establish an algorithm that allows to consist-
ently perform molecular alignment before concluding any degree of similarity
between molecules. Generally speaking, two approaches are used routinely.

The first approach involves structural alignment. The most often used algorithm
for QSM is the topogeometrical superposition approach (TGSA), where the topo-
logically most similar regions on the molecule are aligned so that the MQSM can be
computed [49,50]. It is based on recognizing the largest common substructure. For
TGSA only the molecular coordinates are required after which the chemical bonds are
assigned. The chemical bonds between the heavy atoms constitute a set of dyads, and
every dyad in the first molecule is compared to every dyad in the secondmolecule. The
two dyads are considered sufficiently similar if their difference in bond length is below
some threshold. From the set of dyads that meet this requirement, one can proceed to
define sets of three atoms by adding a third atom bonded to one of the dyad atoms to
this dyad. Then these three atomic sets are compared between the twomolecules and if
a successful match can be found, the molecules are aligned based on this match. If
different alignments are found, for each alignment theMQSM is computed in the ASA
approach and the one with the highest MQSM is retained for further use. The
advantage of such topogeometrical alignment schemes is that chemical bonding,
mainly a valence region effect, is used and as such the alignment produced corres-
ponds usually to a chemist’s alignment of the molecules.

The problem with such structural alignments is that different algorithms may
yield different alignments and thus MQSM values. Also, these algorithms are largely
limited to cases where some degree of structural similarity is encountered. An
alternative procedure relies on maximizing the MQSM in terms of the alignment
parameters. Two specific algorithms have been developed specifically for this goal,
namely the MaxiSim [51] and QSSA [52] algorithms. The QSSA algorithm is the
most general as it does not at any stage require any element of structural alignment. It
simply computes the MQSM for some chosen initial alignment and then using the
simplex method, locally optimizes the MQSM via changing the alignment param-
eters. Experience has shown that this maximization regularly gets stuck in local
maxima so that QSSA also includes a genetic algorithm to enhance the chances of
locating the global maximum. Both MaxiSim and QSSA make use of the ASA
approximate densities as usually numerous calculations of the MQSM have to be
performed.
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The maximum similarity algorithms always give a similarity between two
molecules that is equal to or larger than the value computed after structural align-
ment. However, structural alignment very often succeeds at giving chemically more
relevant alignments. The maximum similarity approaches very often reach their high
values because of the alignment of the heaviest atoms in the molecules, ignoring the
kind and number of chemically similar bonds or functional groups.

Finally, it is worth mentioning that alignment-free methods for evaluating
molecular similarity have been tested [45]. Recently, the question about the
necessary positive definite nature the MQSM matrices must possess has been put
forward and a building up algorithm for a set of molecular structures has been
described [53].

16.8 SIMILARITY INDICES

Many applications of QSM use not the MQSM values as such but similarity indices.
There exist many such indices and for a review, the reader is referred to Willett et al.
[54]. One example that was touched upon above is the Carbó index. The Carbó index
is one of the so-called C-class descriptors giving a value between 0 and 1 where a
higher value indicates higher similarity. Although originally defined for overlap
MQSM, it can be generalized to different operators V so that the Carbó index
becomes

CAB ¼
Ð
dr1dr2[rA(r1)V(r1,r2)rB(r2)]Ð

dr1dr2[rA(r1)V(r1,r2)rA(r2)]
Ð
dr1dr2[rB(r1)V(r1,r2)rB(r2)]

p
¼ ZAB(V)

ZAA(V)ZBB(V)
p (16:20)

Besides the Carbó index another index that has been used in the field of QSM is the
Hodgkin Richards index, which uses an arithmetic mean instead of the geometric
mean [55,56]:

CAB ¼ 2ZAB(V)

ZAA(V)þ ZBB(V)
(16:21)

Other examples of similarity indices include the Petke [57] and Tanimoto [58]
indices, both of which have been investigated in the QSM context. Several studies
have shown that mutual relationships between these different indices exist [59 62].

A different class of indices is the D indices, where similarity is expressed as a
distance. With these indices, perfect similarity is characterized by a zero distance. The
best known is the Euclidean distance, introduced in Equation 16.5. Again, different
connections have been found to exist between C- and D-class indices [59 62].

According to some authors, the similarity between shape functions might give
more interesting information than using the electron density [63]. In this context, it
should be mentioned that the Carbó index retains the same value. Moreover, it has
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been found that using the shape function instead of the electron density usually does
not result in substantially different degrees of similarity, even when using other
similarity indices. Only in case one goes to very diverse molecular sets, some
differences may arise [48].

16.9 FRAGMENT SIMILARITY

It is well known, as it has been previously commented, that chemists rely quite often
on the concept of transferability of the properties of atoms or functional groups
between different molecules. In this context, a molecular fragment is more transfer-
able if it is more similar to the same fragment in a different molecule.

From the perspective of MQS, this means that the similarity needs to be
computed between fragments of a molecule. This requires methods to obtain a
fragment density from a molecular electron density. Generally speaking, use is
made of some operator wf acting on the molecular density rMol(r) to yield the
fragment density as rf(r):

rf (r) ¼ wfr
Mol(r) (16:22)

Several forms of wf have already been used within the field of MQS. These methods
include the Hirshfeld partitioning [30], Bader’s partitioning based on the virial
theorem within atomic domains in a molecule [64], and the Mulliken approach [65].
For more information on all the three methods, refer to Chapter 15.

Quite generally the fragment similarity measure for a fragment f between two
molecules A and B is then computed as

Zf
AB(V) ¼

ð
dr1dr2 wA

f rA(r1)V(r1, r2)w
B
f rB(r2)

� �
(16:23)

where wA
f is the operator used to extract the fragment density from molecule A.

Different studies have appeared on fragment similarity using all the three
partitioning schemes mentioned above, although in the case of the Hirshfeld method,
the stockholder partitioning has also been applied directly to the similarity index
[46,66,67].

Cioslowski et al. used fragment similarity indices to compute the degree of
similarity between atoms of the same element in different molecules, where the
atoms were those derived from Bader’s atoms in molecules theory [68,69]. They
introduced a novel atomic similarity index for atom A in molecule X and atom B in
molecule Y defined as [70]

CA(X),B(Y) ¼

Ð
vAB

rX(r)drÐ
vA

rX(r)dr

2
64

3
75

Ð
vBA

rY (r)drÐ
vB

rY (r)dr

2
64

3
75 (16:24)
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where
vA is the basin of atom A in molecule X
vAB¼vBA is the intersection of this basin with the basin of atom B in

molecule Y(vA)

A case of specific interest in recent years addressed the validation of the
holographic electron density theorem [71]. According to this theorem, all the infor-
mation on any property of the molecule is not only contained in the global molecular
electron density but also in every infinitesimal volume element of that density. This
has been studied thoroughly in recent years in the specific case of quantifying a
degree of chirality in a molecule. Considering a molecule with a chiral center, for
example a carbon atom, Mezey et al. and Boon et al. studied the similarity between
that atom in both enantiomers of a molecule [46,66,67,72]. It was found that not only
near the center of chirality, the similarity index was significantly different from 1, but
also for atoms further away from the center of chirality. This effect has been
observed also in other cases. Moreover, the effect of chirality can even be transferred
from a chiral center to a loosely bound achiral solvent molecule. Such an effect has
recently been described in literature and confirmed experimentally using vibrational
circular dichroism spectroscopy [73,74]. Another application of fragment similarity
has been the study of the similarity between atoms to establish if the same trends as
in the periodic system could be found [75 77].

The generality of similarity as a basic concept throughout chemistry makes it the
theory of MQS very useful nearly in any field of chemistry including for instance
biological activity. Not only is similarity by itself an interesting subject, it also opens
the path to many related issues such as complexity and more generally many
concepts in information entropy measures [78].

16.10 CONCLUSION

This chapter has dealt with introducing the main concepts within a theory called
MQS. It has discussed the different steps to be taken to evaluate and quantify a
degree of similarity between molecules in some molecular set but also fragments in
molecules. QSM provides a scheme that relieves the arbitrariness of molecular
similarity by using the electron density function as the sole descriptor, in agreement
with the Hohenberg Kohn theorems. It also addressed the different pitfalls that are
present, for example the dependence on proper molecular alignment.

By its size, this chapter fails to address the entire background of MQS and for
more information, the reader is referred to several reviews that have been published
on the topic. Also it could not address many related approaches, such as the density
matrix similarity ideas of Ciosloswki and Fleischmann [79,80], the work of Leherte
et al. [81 83] describing simplified alignment algorithms based on quantum simi-
larity or the empirical procedure of Popelier et al. on using only a reduced number of
points of the density function to express similarity [84 88]. It is worth noting that
MQS is not restricted to the most commonly used electron density in position space.
Many concepts and theoretical developments in the theory can be extended to
momentum space where one deals with the three components of linear momentum
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rather than with Cartesian coordinates. This has the advantage of reducing the bias
of molecular alignment toward aligning the core electron distributions [41 43],
it also proves valuable in providing information on theoretical studies of the chem-
ical bond [78].
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17.1 COULOMB’S LAW AND THE ELECTROSTATIC POTENTIAL

Consider two stationary point charges, Q1 and Q2, separated by a distance R. Let R
be the distance vector from Q1 to Q2. Then Coulomb’s law states that the electrostatic
force F exerted upon Q2 by Q1 is

F ¼ 1
4p«0

Q1Q2

R2
i (17:1)

where
«0 is the permittivity of free space, which is a constant
i is a unit vector in the direction of R

If Q1 and Q2 have the same sign, then F is positive and therefore in the direction of
i (and R), meaning that Q2 is being repelled away from Q1. When Q1 and Q2 have
different signs, F is negative and hence opposite to i; Q2 is now being attracted to Q1.
(An analogous analysis applies to the force exerted by Q2 upon Q1)

Suppose next that Q2 is brought in infinitesimal increments dR from infinity to
the separation R. The work involved is
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W ¼
ðR

1
F � dR ¼

ðR

1
jFj cos ujdRj (17:2)

where u is the angle between F and dR; the latter is opposite in direction to R. If F
is positive (repulsive), then u¼ 1808, cos u¼�1; for F negative (attractive), u¼ 08,
cos u¼ 1. Substituting Equation 17.1 into Equation 17.2 and integrating yields W¼
(1=4p«0)(jQ1Q2j=R) when Q1 and Q2 have the same sign, and W¼�(1=4p«0)
(jQ1Q2j=R) when they have different signs. These two expressions can be combined
into one by removing the absolute value signs:

W ¼ 1
4p«0

Q1Q2

R
¼ DE (17:3)

If the process of bringing Q1 and Q2 together is adiabatic (no heat transfer), then
W¼DE, the change in energy. Thus energy must be provided (DE> 0) to bring
Q1 and Q2 together when they repel, and it is released (DE< 0) when they attract.
DE, as given by Equation 17.3, is the interaction energy of Q1 and Q2.

Now divide DE in Equation 17.3 by Q2. This gives V(R), Equation 17.4, the
electrostatic potential produced at the distance R by the charge Q1:

V(R) ¼ 1
4p«0

Q1

R
(17:4)

The term ‘‘electrostatic’’ signifies that Q1 is stationary. V(R) is a scalar quantity, just
like DE, and depends only upon Q1. V(R) can be viewed as indicating what is the
‘‘potential’’ for interaction at the distance R with any other charge Qi; comparing
the signs of V(R) and Qi will show whether the interaction would be attractive or
repulsive, and the product QiV(R) will give its strength, i.e., the interaction energy.

Equation 17.5 can easily be extended to a group of stationary point charges Qi.
If it is desired to know the net electrostatic potential that they produce at some point
in space r, this is given simply by

V(r) ¼ 1
4p«0

X
i

Qi

Ri
(17:5)

in which Ri is the distance from Qi to the point r.
Our interest in this chapter is in the electrostatic potentials that are produced

by the nuclei and the electrons of atoms and molecules. The effect of the nuclei can
be obtained by treating them as stationary point charges (invoking the Born
Oppenheimer approximation) and using Equation 17.5. The electrons are a greater
problem, because they are in continual motion. However we do, in principle, have
means of determining either computationally or experimentally the electronic
density function r(r), which gives the average number of electrons in the volume
element dr around each point in space. If each r(r)dr is multiplied by the charge of
an electron, �e, then we have the average electronic charge in that dr and can again
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use Equation 17.5, summing over each �er(r)dr. However the summation over this
infinite number of charges is done by integration; thus,

V(r) ¼ 1
4p«0

X
A

ZAe

RA � rj j � e

ð
r(r0)dr0

r0 � rj j

" #
(17:6)

where
ZA is the atomic number of nucleus A
ZAe is its charge
RA is the position of nucleus A
jRA� rj is then its distance from the point r

The electronic charge in each volume element dr0 is �e r(r0)dr0 and jr0 � rj is its
distance to r.

V(r) is the electrostatic potential created at the point r by the nuclei and the
electrons of an atom or a molecule. (For atoms, the summation in Equation 17.6
contains only one term.) It may seem inconsistent that Equation 17.6 came from
Coulomb’s law, which is for stationary charges, and electrons are not stationary.
(Nor are nuclei, but we are working within the framework of the Born Oppenheimer
approximation.) This apparent inconsistency is resolved by noting that we treat the
electronic density r(r) as static; the average number of electrons in each volume
element is constant, even though the electrons do not remain as the same ones. V(r)
can be either positive or negative in a given region, depending upon whether the
effect of the nuclei or that of the electrons is dominant there. It is important to note
that V(r) is a measurable physical property, which can be determined experimentally,
via diffraction techniques [1 3], as well as computationally.

For convenience, Equation 17.6 is often written in terms of atomic units, au,
whereby it takes the form

V(r) ¼
X
A

ZA
jRA � rj �

ð
r(r0)dr0

jr0 � rj (17:7)

Even though V(r) is energy or charge, as was seen above, it is customary to express it
in energy units, e.g., hartrees (which are the atomic units of energy), kcal=mol, or
kJ=mol. What is then being given is actually the energy of the interaction of the atom
or molecule’s charge distribution with a positive unit point charge (i.e., a proton)
placed at the point r. This is used as the measure of V(r). Relevant conversion factors
are hartrees� 627.5¼ kcal=mol and kcal=mol� 4.184¼ kJ=mol.

17.2 FEATURES OF ATOMIC AND MOLECULAR
ELECTROSTATIC POTENTIALS

The electrostatic potential V(r) is a local property; it has a separate value at
each point r in the space of an atom or a molecule. However, it may only be of
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interest and necessary to evaluate it at certain points, depending upon the situation
and purpose.

For spherically averaged atoms and monoatomic ions, the electrostatic potential
depends only on the radial distance r from the nucleus. Hence, V(r)¼V(r), and it
could be determined only along one radian, since it will be the same along all others.
For neutral ground-state atoms and monatomic positive ions, V(r) is positive every-
where, the effect of the highly concentrated nucleus dominating that of the dispersed
electrons; for these species, V(r) decreases monotonically with increasing r, reaching
zero at infinity [4,5].

For negative monatomic ions, on the other hand, V(r) is positive near the
nucleus but then decreases to a negative minimum at a radial distance rmin that is
characteristic of the particular ion, after which it increases to zero at infinity. It has
been shown that the electronic charge encompassed within the spherical volume
between r¼ 0 and r¼ rmin exactly equals the ion’s nuclear charge [5], which is
therefore, by Gauss’ law, totally shielded. V(rmin) accordingly reflects the excess
negative charge of the ion, and so is a determinant of the strength of its inter-
actions. We have demonstrated that rmin values are good estimates of crystallo-
graphic ionic radii [5,6] and that the magnitudes of V(rmin) correlate well with
lattice energies, for a given cation. The concept of the minimum of V(r) defining a
characteristic boundary surface for monatomic anions has been extended by Gadre
and Shrivastava to polyatomic ones, establishing the boundary by applying the
criterion rV(r) � s(r)¼ 0, where s(r) is a unit vector perpendicular to the anion
boundary surface at r [7].

While V(r) is positive everywhere for neutral ground-state atoms, their
interaction to form molecules normally produces some regions of negative electro-
static potential. These are most often found near (1) lone pairs of the more
electronegative atoms (N, O, F, Cl, etc.), (2) p electrons of unsaturated molecules,
and (3) strained C C bonds. Every such negative region necessarily has one or
more local minima, Vmin, at which V(r) reaches the most negative values in that
region. It has been proven, however, that V(r) has no local maxima other than at
the positions of the nuclei [8]. Accordingly V(r) decreases monotonically
from each nucleus to the negative local minima, between which are saddle points.
For a detailed topological analysis of V(r) for a group of 18 molecules, see Leboeuf
et al. [9].

As V(r) is a local maximum at each nucleus in a molecule, if it is plotted along
the internuclear axis z between two bonded atoms, there must be an axial minimum
of V(z) (usually positive) at some point zm along that axis. This axial minimum has
the interesting property that a point charge Qi placed at zm would feel no electrostatic
force in either direction along the internuclear axis [10,11].

Proof: The electrostatic interaction energy of Qi with the molecule would be
QiV(zm). By Equations 17.2 and 17.3, the force along the axis in either direction
depends upon (@QiV(z)=@z)zm, which is zero, since V(z) is a minimum at zm.

Thus, the point zm appears to define a natural axial boundary between the two
bonded nuclei. We have shown that the zm, when determined for a large number of
bonds, can indeed be used to establish an effective set of covalent radii [10,11].
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17.3 MOLECULAR ELECTROSTATIC POTENTIALS
AND REACTIVITY

17.3.1 BACKGROUND

In seeking to analyze and predict the reactivities of molecules in terms of their
electrostatic potentials, it is necessary to take into account that V(r) is based upon
static average electronic charge distributions. Thus if it is desired to use the electro-
static potential of a molecule X to gain insight into how it may interact with some
approaching Y, it is only relevant to consider V(r) of X in its outer regions. There the
perturbing effect of Y is quite small and the V(r) of isolated X is still a meaningful
indicator of how Y ‘‘sees’’ and ‘‘feels’’ X. As Y comes closer, its presence polarizes
in some manner the r(r) and hence the V(r) of X, so that these are no longer what
they were originally. (This is shown graphically by Francl [12] and Alkorta et al.
[13].) There have been some attempts to correct for this via perturbation theory; this
was reviewed some time ago by Politzer and Daiker [14], and more recently by
Orozco and Luque [15].

What has been done more typically, however, is to evaluate V(r) only at or beyond
some appropriate distances from the nuclei. For instance, what was formerly often
done was to compute two-dimensional contour plots of V(r) in planes passing through
a molecule (but omitting the regions near the nuclei) or in planes well removed from
the nuclei, e.g., 1.75 Å [3,14,16,17]. This approach is of course more straightforward
for planar molecules than for nonplanar ones. Another possibility that is sometimes
utilized is to show just one, presumably important, three-dimensional outer contour of
V(r) [18]. This introduces the problem of choosing which one to show.

In the past 20 years, it has become common to determine V(r) on a three-
dimensional outer surface of themolecule. Such a surface can be established in various
ways, such as overlapping spheres centered on the nuclei and having the van derWaals
(or other) radii of the respective atoms [19,20]. Our preference is the widely followed
suggestion by Bader et al. [21] that the surface be taken to be an outer contour of the
molecule’s electronic density r(r), e.g., r(r)¼ 0.001 au (electrons=bohr3), which
encompasses more than 95% of the molecule’s electronic charge. Such a surface has
the advantage that it reflects the actual features of the particular molecule such as lone
pairs, p electronic charge, strained bonds, etc. One could of course choose some other
outer contour of r(r), such as the 0.002 or 0.0015 au. While this would change the
magnitudes of the surface potential, our experience has been that the important trends
and conclusions would be unaffected. We use the notation VS(r) to designate the
electrostatic potential on a molecular surface.

To illustrate, Figure 17.1 shows VS(r) on the 0.001 au surface of 1-butanol,
H3C CH2 CH2 CH2OH, computed at the density functional B3PW91=6-31G(d,p)
level. Looking first at the alkyl portion of the molecule, its VS(r) is fairly bland; the
hydrogens are weakly positive and the carbons weakly negative. More interesting is
the region of the hydroxyl group. The electrostatic potential on the surface of the
oxygen is quite negative, reflecting its electronegativity and lone pairs; VS(r) reaches
a negative extreme of VS,min¼�36 kcal=mol. In contrast, the hydrogen has lost
electronic charge to the oxygen, and has a strongly positive surface potential, with a
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maximum, VS,max, of þ43 kcal=mol. (It was stated earlier that the electrostatic
potential V(r) throughout the total space of a molecule has maxima only at the
nuclei. However the potential VS(r) on a surface of a molecule can have several local
maxima VS,max as well as local minima VS,min, the most negative values.)

It might seem that the VS,min and VS,max on a suitable molecular surface should
indicate sites susceptible to electrophilic and nucleophilic reactants, respectively.
Such reasoning has had some success in the past [3,14,16,17], but it is not reliable.
For example, shown in Figure 17.2 is the electrostatic potential on a surface of
anisole (methoxybenzene), 1, which is well known to undergo electrophilic attack at
the ortho and para positions.

OCH3

1

However, the most negative surface potentials are at the methoxy oxygen,
VS,min¼�24 kcal=mol and above and below the central portion of the ring, both
having VS,min¼�20 kcal=mol; the latter are due to the aromatic p electrons. Thus
VS(r) does not predict ortho and para reactivity. The problem is that the most negative
regions are not necessarily the sites of the most reactive, least-strongly held electrons; to
find these, some other indicator is needed, such as the local ionization energy [22,23],
the Fukui [24], or related functions [25]. With respect to nucleophilic attack, the
difficulty is that the most positive VS(r) are often associated with hydrogens. In general,
therefore, the electrostatic potential on molecular surfaces is not a dependable guide to
chemical reactivity.

FIGURE 17.1 (See color insert following page 302.) Electrostatic potential on the r(r)¼
0.001 au molecular surface of 1 butanol, computed at the B3PW91=6 31G(d,p) level. Color
ranges, in kcal=mol, are: red, more positive than 30; yellow, between 15 and 30; green,
between 0 and 15; blue, between 20 and 0; purple, more negative than 20. The hydroxyl
hydrogen is at the far right (red and yellow), and the oxygen is below it (purple and blue).
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17.3.2 NONCOVALENT INTERACTIONS

Noncovalent interactions include, for example, those between the molecules in con-
densed stages (liquids, solids, solutions), hydrogen bonding, physical adsorption, the
early stages of biological recognition processes, etc. Such interactions are primarily
electrostatic in nature [18,26], and the participants are sufficiently far apart that
polarization and charge transfer are minimal. The electrostatic potential VS(r) evalu-
ated in an outer region or on an outer surface of a molecule should therefore be well
suited for analyzing and predicting its noncovalent interactive behavior.

One approach, which has been used extensively in pharmacological areas [27], is
to look for characteristic patterns of positive and negative regions that may enhance
or inhibit a certain type of activity. The early stages of drug receptor and enzyme
substrate interactions, in which the participants ‘‘recognize’’ each other through their
outer electrostatic potentials, can be analyzed in this manner [28]. We were able, on
this basis, to find qualitative trends in the toxicities of chlorinated dibenzo-p-dioxins
and related systems [29].

More quantitative is to look specifically at the most positive and most negative
values of the surface potential, the VS,max and VS,min. For instance, one would
anticipate that the VS,min might reveal hydrogen bond acceptor sites such as the
oxygen in 1-butanol, Figure 17.1, while the high VS,max associated with the hydroxyl
hydrogen might indicate potency as a donor. (Compare this hydrogen to the aromatic
and alkyl ones in Figures 17.1 and 17.2.) These roles for VS,min and VS,max have been
confirmed; good correlations were found between VS,min and VS,max and empirical
measures of hydrogen-bond-accepting and -donating tendencies, respectively [30].

FIGURE 17.2 (See color insert following page 302.) Electrostatic potential on the r(r)¼
0.001 au molecular surface of anisole, 1, computed at the B3PW91=6 31G(d,p) level. Color
ranges, in kcal=mole, are: yellow, between 10 and 20; green, between 0 and 10; blue, between
15 and 0; purple, more negative than 15. The methoxy group is at the upper left. The most

negative regions (purple) are by the oxygen and above and below the ring.
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Another type of noncovalent interaction, in relation to which the molecular
surface electrostatic potential has been very important, is s-hole bonding. Some
covalently bonded Group V, VI, and VII atoms are able to interact attractively in a
highly directional manner with negative regions on other molecules, e.g., the lone
pairs of Lewis bases [31 34]. When a Group VII atom is involved, it is often called
‘‘halogen bonding.’’ Since many Group V VII covalently bonded atoms are con-
sidered to be negative in character, it maybe surprising that they might interact
attractively with negative sites. It has been found, however, originally by Brinck
et al., for halogens [35], that such atoms can, in appropriate molecular environments,
have regions of positive electrostatic potential (s-holes) on the outer portions of their
surfaces, on the extensions of their covalent bonds [31 36]. These positive s-holes
correspond to the electron-deficient outer lobes of half-filled p bonding orbitals.

This can be seen in Figure 17.3 for SBr2. Each bromine has a positive region on
its surface, VS,max¼þ22 kcal=mol, on the extension of its S Br bond, while the
sulfur has two positive regions, each with VS,max¼þ20 kcal=mol, on the extensions
of the Br S bonds. The remainders of the sulfur and bromine surfaces are negative;
thus there can be several different attractive interactions between positive and
negative portions of their surfaces: S---Br, S---S, Br---Br. Note that the last two
are ‘‘like like’’ interactions, between the same atom in each of two identical mol-
ecules [37]; this could not be explained in terms of atomic charges assigned to an
atom as a whole.

FIGURE 17.3 (See color insert following page 302.) Electrostatic potential on the r(r)¼
0.001 au molecular surface of SBr2, computed at the B3PW91=6 31G(d,p) level. Color ranges,
in kcal=mol, are: red, more positive than 15; yellow, between 10 and 15; green, between 0 and
10; blue, between 9 and 0. One of the two bromines is at the bottom, while the sulfur is at
the upper right. The red regions are the positive s holes, on the extensions of the S Br and
Br S bonds.
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s-Hole bonding, which is competitive with hydrogen bonding [38 40], has been
observed both experimentally and computationally [31 34,36 41]. Its significance,
particularly in molecular biology [36,41] and in crystal engineering [32,39,41], is
recognized increasingly being.

Hydrogen bonding and s-hole bonding can be treated in terms of the VS,max and
VS,min on a molecular surface. To deal with noncovalent interactions in general,
however, it is necessary to go beyond the qualitative pattern of VS(r) and its VS,max

and VS,min, and to fully access the whole range of information that VS(r) contains.
This is done by analyzing it in terms of several statistically defined features, adopted
over a period of years as we saw specific needs to be addressed. These features are

(1) The averages of the positive and negative potentials on the surface, �Vþ
S

and �VS ,

�Vþ
S ¼ 1

m

Xm
i¼1

Vþ
S (ri) and �VS ¼ 1

n

Xn
j¼1

VS (rj) (17:8)

where the m points ri are those at which VS(r) is positive, Vþ
S (ri), and the n

rj are those where it is negative, VS (rj).
(2) The average deviation, P,

P ¼ 1
mþ n

Xmþn

k¼1

VS(rk)� �VSj j (17:9)

in which �VS is the overall average of VS(r), �VS ¼ m�Vþ
S þ n�VS

� �
=(mþ n).

P provides a measure of the internal charge separation in a molecule, more
meaningful for this purpose than the dipole moment, which is so dependent
on symmetry; for instance, the dipole moment of p-dinitrobenzene is zero,
even though it is composed of highly polar components. P has been found
to correlate with several empirical indices of polarity [42].

(3) The positive, negative, and total variances, s2
þ, s

2 , and s2
tot,

s2
tot ¼ s2

þ þ s2 ¼ 1
m

Xm
i¼1

[Vþ
S (ri)� �Vþ

S ]
2 þ 1

n

Xn
j¼1

[VS (rj)� �VS ]
2 (17:10)

These quantities indicate the variability of the positive, negative, and total
surface potentials, i.e.,Vþ

S (ri), VS (rj), andVS(r). Due to the terms in Equation
17.10 being squared, the variances are particularly sensitive to the extrema of
VS(r),VS,max, andVS,min. It may seem that there is some similarity betweens2

tot

and P, but in fact the former is normally much larger in magnitude and they
may not even show the same trend in a series of molecules [43].

(4) A balance parameter, n,

n ¼ s2
þs

2

s2
tot

� �2 (17:11)
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which is intended to indicate the degree of balance between the positive and
negative surface potentials. From Equation 17.11, n reaches a maximum of
0.250 when s2

þ ¼ s2 , whether they may be large or small. Accordingly,
the closer the n is to 0.250, the better the ability of the molecule to interact
through both its positive and negative regions, either strongly or weakly.

The quantities defined by Equations 17.8 through 17.11, plus the positive and
negative surface areas Aþ

S and AS , provide a detailed characterization of the electro-
static potential on a molecule’s surface, and thereby a basis for analyzing and
describing its noncovalent interactions. It has indeed been possible to develop
good correlations between various combinations of these quantities and a number
of condensed phase physical properties that depend upon noncovalent interactions,
including heats of phase transitions, boiling points and critical constants, solubilities
and solvation energies, partition coefficients, surface tensions, viscosities, diffusion
constants, etc. The procedure is to establish an experimental database for the property
of interest, to compute the quantities defined by Equations 17.8 through 17.11 for the
respective molecules, and then to use multivariable statistical analyses to determine
the best subset of the computed quantities for fitting the database. The resulting
analytical relationship then allows the property to be predicted for compounds for
which it is not known. This work has been reviewed on several occasions [43 45].

The quantities that best represent a particular property can often be rationalized
on the basis of physical intuition. For example, those that reflect interactions between
like molecules, such as heats of sublimation and vaporization, can be expressed well
in terms of molecular surface area and the product ns2

tot. A large value for this
product means that each molecule has both significantly positive and significantly
negative surface potentials, which is needed to ensure strongly attractive inter-
molecular interactions, with consequently higher energy requirements for the solid !
gas and liquid! gas transitions.

The analytical expression for a given property can be reparametrized, if desired,
to apply to a particular class of compounds. Our tendency is usually to have, as
general, a database as possible. But for example, Byrd and Rice desired to optimize
the heat of sublimation and heat of vaporization equations specifically for nitro
derivatives [46]. They retained the dependence on surface area and ns2

tot, but used
a nitro compound database to obtain new coefficients for these quantities.

17.4 FUNDAMENTAL NATURE OF ELECTROSTATIC POTENTIAL

Our focus in this chapter has been upon the relationship of the electrostatic potential
to molecular interactive behavior. However the significance of V(r) goes far beyond,
as we shall briefly point out. A more detailed overview, with relevant references, has
been given by Politzer and Murray [47].

V(r) is linked to the electronic density r(r) by both Equation 17.7 and Poisson’s
equation,

r2V(r) ¼ 4pr(r)� 4p
X
A

ZAd(r� RA) (17:12)
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According to the Hohenberg Kohn theorem [48], the properties of a system of
electrons and nuclei in its ground state are determined entirely by r(r). Thus the
total energy, for example, is a functional of r(r), E¼=[r(r)].

According to the rigorous relationship between r(r) and V(r) mentioned above, it
can be argued that V(r) is also fundamental in nature. In addition, it has the
advantage of lending itself better to further analytical development. For instance, it
was shown long ago that V(r) must decrease monotonically with radial distance from
the nucleus for a ground-state atom [4]. It is known empirically that r(r) does the
same [4], but the proof of this remains elusive.

As another example, the functional expression for the energy in terms of r(r) is
known only approximately. However exact formulas have been developed that
relate the energies of atoms and molecules to the electrostatic potentials at
their nuclei [49 52]. This has been done as well for the chemical potentials
(electronegativities) of atoms [53]. Thus, both the intrinsic significance and the
practical applications of the electrostatic potential continue to be active areas of
investigation.
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18.1 WHAT IS THE FUKUI FUNCTION?

The Fukui function, denoted by f(r), is defined as the differential change in electron
density due to an infinitesimal change in the number of electrons [1]. That is,

f (r) ¼ @r(r)

@N

� �
v(r)

, (18:1)

where r(r) is the electron density and

N ¼
ð
r(r)dr (18:2)

is the total number of electrons in the system. For isolated molecules at zero
temperature, the Fukui function is ill-defined because of the derivative discontinuity
[2 4]. To resolve this difficulty, Fukui functions from above and below are defined
using the one-sided derivatives,

fþ(r) ¼ @r(r)

@N

� �þ

v(r)

¼ |{z}lim
«!0þ

rNþ«(r)� rN(r)

«
(18:3)
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f (r) ¼ @r(r)

@N

� �
v(r)

¼ |{z}lim
«!0þ

rN(r)� rN «(r)

«
: (18:4)

When a molecule accepts electrons, the electrons tend to go to places where fþ(r) is
large because it is at these locations that the molecule is most able to stabilize
additional electrons. Therefore a molecule is susceptible to nucleophilic attack at
sites where fþ(r) is large. Similarly, a molecule is susceptible to electrophilic attack
at sites where f (r) is large, because these are the regions where electron removal
destabilizes the molecule the least. In chemical density functional theory (DFT), the
Fukui functions are the key regioselectivity indicators for electron-transfer controlled
reactions.

This chapter will overview the historical development of the Fukui function
concept from its origins in the work of Parr and Yang [1] to the present day. The
recent review by Levy and one of the present authors provides a more mathematical
perspective on the Fukui function [5].

18.2 CONTEXT

The genesis of chemical DFT can be traced back to the 1978 paper published by
of Parr et al. [6]. That paper identified the electronic chemical potential as the
derivative of the electronic energy with respect to the number of electrons at fixed
molecular geometry:

m ¼ @E

@N

� �
v(r)

: (18:5)

The electronic chemical potential is constant for a system in its electronic ground
state, which led Parr et al. to associate the chemical potential with minus one times
the electronegativity, since the electronegativity is also equalized in the ground state
[7]. This equalization of the chemical potential also suggests that electronic structure
theory can be expressed in a way that resembles classical thermodynamics. Ergo,
Parr et al. wrote the total differential of the energy as

dEv,N ¼ @Ev,N

@N

� �
v(r)

dN þ
ð

dEv,N

dv(r)

� �
N

dv(r)dr

¼ mv,NdN þ
ð
rv,N(r)dv(r)dr: (18:6)

In 1982, Nalewajski and Parr took the thermodynamic analogy to its logical conclu-
sion by extending the Legendre-transform structure of classical thermodynamics to
DFT [8]. One of their results was the Maxwell relation for Equation 18.6,

dmv,N

dv(r)

� �
N

¼ @rv,N(r)

@N

� �
v(r)

: (18:7)
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By differentiating with respect to the number of electrons, the preceding equations
presuppose that one can compute the energy (Equation 18.5) and the density
(Equation 18.7) for systems with noninteger numbers of electrons. But how?
Every real and finite system has an integer number of electrons.

This issue was resolved in 1982 by Perdew et al. [2,9], who showed how to
formulate DFT for systems with fractional electron number by adapting the zero-
temperature grand-canonical ensemble construction of Gyftopoulos and Hatsopoulos
[10]. Their analysis reveals that the energy and electron density should be linearly
interpolated between integer values:

Ev,N ¼ 1þ bNc � Nð ÞEv,bNc þ N � bNcð ÞEv,dNe (18:8)

rv,N(r) ¼ 1þ bNc � Nð Þrv,bNc(r)þ N � bNcð Þrv,dNe(r) (18:9)

Here, rv,N(r) and Ev,N denote the ground-state density and electronic energy for N
electrons bound by the external potential v(r). bNc and dNe denote the nearest integer
below and above N, respectively (e.g., b9.1c¼ 9; d9.1e¼ 10). Although the key
equations were originally derived by thermodynamic arguments, they are much more
fundamental. Indeed, Equations 18.8 and 18.9 can be derived directly from the
properties of the Hohenberg Kohn F[r] functional [3,4].

18.3 ORIGINS

By 1984, it was clear that the derivatives that arise in this ‘‘DFT thermodynamics’’
contain chemically useful information. m is�1 times the electronegativity. r(r) is the
electron density fundamental in its own right, but also closely related to the
electrostatic potential. If, in analogy to Equation 18.6, one writes the total differential
for the chemical potential,

dm ¼ @m

@N

� �
v(r)

dN þ
ð

dm

dv(r)

� �
N

dv(r)dr

¼ hdN þ
ð
f (r)dv(r)dr (18:10)

then the chemical hardness, h, appears. Already in 1983, Parr and Pearson had
established the relevance of h for the hard or soft acid or base principle [11]. So it
seems certain that the function, f(r), that enters into Equation 18.10 is also relevant to
chemistry. What does f (r) mean? This is the question that Prof. Robert Parr posed to
one of the present authors (W.Y.), early in 1984. And then Parr left for a conference.

Upon Parr’s return, W.Y. conveyed the following: (a) a large change in the
chemical potential should be favorable (‘‘dm big is good’’), and so molecules should
be most reactive where f(r) is large. (b) Referring to the Maxwell relation, f(r) is
related to the change in density in response to changes in the number of electrons, N.
(c) From Equation 18.9, it is apparent that one cannot differentiate the electron
density with respect to N when N is an integer. Instead one has the one-sided
derivatives,
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fþv,N(r) ¼ rv,Nþ1(r)� rv,N(r) (18:11)

fv,N(r) ¼ rv,N(r)� rv,N 1 (18:12)

Parr immediately pointed out that, in the frozen orbital approximation, these deriva-
tives can be approximated with the squares of the lowest unoccupied (LUMO) and
highest occupied molecular orbitals (HOMO):

fþv,N(r) ¼ fLUMO
v,N (r)

�� ��2¼ rLUMO
v,N (r) (18:13)

fv,N(r) ¼ fHOMO
v,N (r)

�� ��2¼ rHOMO
v,N (r) (18:14)

Based on the orbital approximations, it is clear that f(r) is the DFT analog of the
frontier orbital regioselectivity for nucleophilic fþv,N(r)

� �
and electrophilic fv,N(r)

� �
attack. It is then reasonable to define a reactivity indicator for radical attack by
analogy to the corresponding orbital indicator,

f 0v,N(r) ¼
1
2

fþv,N(r)þ fv,N(r)
� � ¼ 1

2
rv,Nþ1(r)� rv,N 1(r)
� �

� 1
2

rHOMO
v,N (r)þ rLUMO

v,N (r)
� �

(18:15)

All of these regioselectivity indicators are called Fukui functions, in honor of
Kenichi Fukui, who pioneered the analogous frontier orbital reactivity descriptors
in the early 1950s [12 14]. The Fukui function and its twin, the local softness [15].

s(r) ¼ @r(r)

@m

� �
v(r)

¼ @N

@m

� �
v(r)

f (r) ¼ f (r)

h
,

/ f (r)

(18:16)

provide a DFT-based approach to many of the chemical phenomenon that are
normally explained using frontier orbitals.

18.4 A BIT MORE THAN ‘‘JUST FMO THEORY’’

Based on the foregoing discussion, one might suppose that the Fukui function is
nothing more than a DFT-inspired restatement of frontier molecular orbital (FMO)
theory. This is not quite true. Because DFT is, in principle, exact, the Fukui function
includes effects notably electron correlation and orbital relaxation that are
a priori neglected in an FMO approach. This is most clear when the electron density
is expressed in terms of the occupied Kohn Sham spin-orbitals [16],

rv,N(r) ¼
XN
i¼1

���f(i)
v,N(r)

���2: (18:17)
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Differentiating this expression with respect to the number of electrons gives a
frontier orbital approximation in Equation 18.13 plus a correct due to orbital
relaxation [17,18],

fþv,N(r) ¼ f(Nþ1)
v,N (r)

�� ��2þXN
i¼1

@ f(i)
v,N(r)

�� ��2
@N

 !
v(r)

fv,N(r) ¼ f(N)
v,N(r)

�� ��2þXN
i¼1

@ f(i)
v,N(r)

�� ��2
@N

 !
v(r)

(18:18)

In most cases, the orbital relaxation contribution is negligible and the Fukui function
and the FMO reactivity indicators give the same results. For example, the Fukui
functions and the FMO densities both predict that electrophilic attack on propylene
occurs on the double bond (Figure 18.1) and that nucleophilic attack on BF3 occurs
at the Boron center (Figure 18.2). The rare cases where orbital relaxation effects are
nonnegligible are precisely the cases where the Fukui functions should be preferred
over the FMO reactivity indicators [19 22]. In short, while FMO theory is based
on orbitals from an independent electron approximation like Hartree Fock or
Kohn Sham, the Fukui function is based on the true many-electron density.

18.5 CONDENSED FUKUI FUNCTIONS

In chemistry, one is rarely interested in which ‘‘point’’ in a molecule is most reactive;
rather one wishes to identify the atom in a molecule is most likely to react with an
attacking electrophile or nucleophiles. This suggests that a coarse-grained atom-by-
atom representation of the Fukui function would suffice for chemical purposes. Such
a representation is called a condensed reactivity indicator [23].

(b)(a)

FIGURE 18.1 (See color insert following page 302.) Propylene is susceptible to electro
philic attack on the double bond. This can be deduced by plotting (a) the Fukui function from
below, f �(r), or (b) the HOMO density, rHOMO(r), on the van der Waals’ surface of the
molecule.
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To coarse-grain the Fukui function, consider an atomic partition of unity,

1 ¼
X
a

w(a)(r); 0 � w(a)(r): (18:19)

w(a)(r) represents the fraction of the electron density (or any other molecular
property density) at r that can be associated with atom a. If the atomic partition of
unity is inserted inside the derivative that defines the Fukui function, one obtains

f �v,N(r) ¼
@
P
a
w(a)(r)r(r)

@N

0
@

1
A
�

v(r)

¼
X
a

@w(a)(r)r(r)

@N

� ��
v(r)

¼
X
a

@r(a)(r)

@N

� ��
v(r)

(18:20)

where r(a)(r)¼w(a)(r)r(r) is the density of the atom in the molecule (AIM).
Equation 18.20 suffices to decompose the Fukui function into a sum of atomic
contributions; integrating over each of these contributions gives an expression for
the condensed Fukui functions in terms of the atomic populations [23],

f þ,a
v,N ¼

ð
@r(a)(r)

@N

� �þ
v(r)

dr ¼ @p(a)

@N

� �þ
v(r)

¼ p(a)v,Nþ1 � p(a)v,N (18:21)

f ,a
v,N ¼

ð
@r(a)(r)

@N

� �
v(r)

dr ¼ @p(a)

@N

� �
v(r)

¼ p(a)v,N � p(a)v,N 1 (18:22)

(a) (b)

FIGURE 18.2 (See color insert following page 302.) BF3 is susceptible to nucleophilic
attack at the boron site. This can be deduced by plotting (a) the Fukui function from above,
fþ(r), or (b) the LUMO density, rLUMO(r), on the van der Waals’ surface of the molecule.
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or, more conveniently, in terms of the atomic charges,

fþ,a
v,N ¼ q(a)v,N � q(a)v,Nþ1 (18:23)

f ,a
v,N ¼ q(a)v,N 1 � q(a)v,N : (18:24)

One advantage of this ‘‘response of molecular fragment’’ approach [24] to condensed
Fukui functions is that Equations 18.21 through 18.24 are easily evaluated from the
population analysis data that accompanies the output of most quantum chemistry
calculations.

An alternative construction, termed ‘‘fragment of molecular response’’ [24],
inserts the atomic partition of unity outside the derivative,

f�v,N(r) ¼
X
a

wa(r)
@r(r)

@N

� ��

v(r)

¼
X
a

w(a)(r)f�v,N(r), (18:25)

and gives rise to an alterative, and generally inequivalent, expression for the con-
densed Fukui functions [25],

f�,a
v,N ¼

ð
w(a)(r)f�v,N(r)dr: (18:26)

There seems to be no mathematical reason to favor one formulation of the condensed
Fukui function over the other.

The condensed Fukui functions for propylene and BF3 are given below.

Atom C1 C2 C3 H H H H H H

f�,a
propylene 0.2796 0.2159 0.0718 0.0883 0.0732 0.0387 0.0732 0.0829 0.0763

Atom B F F F

fþ,a
BF3

0.6049 0.1316 0.1316 0.1319

For propylene, the condensed Fukui function not only predicts that the electrophilic
attack occurs on one of the doubly bonded carbon atoms, but it also predicts that
there is a preference for the terminal carbon, in accordance with Markonikov’s rule.
Nucleophilic attack is predicted at the boron atom in BF3.

In these examples, the condensed Fukui functions were computed using Hirsh-
feld population analysis [26], which is unique among the commonly employed
population analysis methods, because the same results are obtained from the
‘‘response of molecular fragment’’ and the ‘‘fragment of molecular response’’
approaches [24]. There are other arguments in favor of the Hirshfeld scheme too
[27,28], many of them based on the tendency for the atom-condensed Hirshfeld
Fukui functions to be nonnegative [25,29,30]. Nonetheless, condensed Fukui func-
tions maybe computed using any population analysis method: common methods

Fukui Function 261



include the Mulliken [31 34], Bader [35,36], Voronoi, Hirshfeld-I [37,38], and
electrostatic fitting approaches [39 41].

18.6 COMPUTATIONAL CONSIDERATIONS

There are four strategies for computing the Fukui function. The first is to use
the result of an orbital-based method (Hartree Fock or Kohn Sham DFT) on the
N-electron system to evaluate the FMO approximation in Equations 18.13 and 18.14.
This approach cannot be recommended (it neglects the effects of orbital relaxation),
but neither should it be denigrated (it is one of the easiest ways to compute the
Fukui function, and it is usually effective). The second approach uses single-point
calculations to calculate the density of the N� 1 and Nþ 1 electron systems and then
computes the Fukui function using the equations for the Fukui function from exact
theory (Equations 18.11 and 18.12). This approach gives accurate results, but it is
logically inconsistent because it presupposes Equation 18.9, which is usually not true
in approximate calculations (e.g., Kohn Sham DFT with an approximate exchange-
correlation functional, Hartree Fock, or MP2) [42 45]. The third approach features
mathematical constructions that allow one to exactly [46] or approximately [47]
compute the derivatives in Equations 18.3 and 18.4. This approach is conceptually
satisfying and generally reliable, but it is more difficult (it requires computer
programming to implement) and computationally expensive. A fourth approach,
which has been proposed but not yet implemented, would compute Fukui functions
at the ab initio level using electron propagator theory [48,49] or the closely related
extended Koopmans’ theorem [50 54]. These approaches are computational costly
and difficult to implement, but potentially valuable for benchmarking.

For small molecules, we recommend using the second approach. The computa-
tional cost of both the first and the second approaches is dominated by the geometry
optimization on the N-electron species, so the computational cost of additional
single-point calculations on the N� 1 and Nþ 1 electron species is negligible.
In addition, even though most of the exchange-correlation functionals used in
Kohn Sham DFT calculations overstabilize systems with fractional numbers of
electrons and thus do not satisfy Equations 18.8 and 18.9, these functionals are
comparatively accurate for calculations with integer numbers of electrons. For this
reason, it is better to use the DN¼�1 formulas from the exact theory (Equations
18.11 and 18.12) than it is to use the infinitesimal change dN formulas.

For larger molecules, one is caught between the localization error of Hartree
Fock (which tends overstabilize subsystems with integer numbers of electrons,
leading to Fukui functions that are localized on one part of the system) and the
delocalization error of most approximate DFT functionals (which tend to overstabi-
lize subsystems with fractional numbers of electrons, and thus favor delocalizing the
Fukui function over the entire molecule) [55,56]. Since accurate ab initio calcula-
tions are computationally impracticable for large systems, we advise using a Kohn
Sham DFT calculation with an exchange-correlation functional (e.g., MCY3 [57]),
that was designed to behave correctly for systems with fractional numbers of
electrons. When such a functional is used, the second (DN¼�1) and third
(DN¼�dN) computational approaches will give equally reliable results.
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For neutral molecules, the DN¼þ1 electron calculation requires computing the
energy of an anion, and it is possible that the additional electron is unbound. When
that occurs, the molecule has zero electron affinity, and it is such a poor nucleophiles
that the Fukui function from above, fþv,N(r), does not exist. Some molecules with
unbound anions have negative electron affinities associated with metastable reson-
ances embedded in the continuum. In such cases, the response of the (negative)
electron affinity to changes in external potential provides an ansatz for computing
fþv,N(r), though it is not clear exactly how the resulting Fukui function should be
interpreted [58].

18.7 WHY DOES THE FUKUI FUNCTION WORK?

Why and when does the Fukui function work? The first restriction already
noted in the original 1984 paper is that the Fukui function predicts favorable
interactions between molecules that are far apart. This can be understood because
when one uses the perturbation expansion about the separated reagent limit to
approximate the interaction energy between reagents, one of the terms that arises
is the Coulomb interaction between the Fukui functions of the electron donor and
the electron acceptor [59,60],

Jf [AB] ¼ �(DN)2
ðð

fþA (r)fB (r0)
r� r0j j drdr0 (18:27)

This term can only control regioselectivity if the transition state occurs relatively
early along the reaction path (so that the asymptotic expansion about the separated
reagent limit is still relevant) and if the extent of electron-transfer is large compared
to the electrostatic interactions between the reagents. The importance of Equation
18.27 for explaining the utility and scope of the Fukui function was first noted by
Berkowitz in 1987 [59].

The utility of the Fukui function for predicting chemical reactivity can also
be described using the variational principle for the Fukui function [61,62]. The
Fukui function from the above discussion, fþv,N(r), represents the ‘‘best’’ way to add
an infinitesimal fraction of an electron to a system in the sense that the electron
density rv,N(r)þ «fþv,N(r) has lower energy than any other Nþ «-electron density
for this system. A Lewis base (also known as reducing agent, nucleophile, etc.) will
attack the system in the place where it is most able to accept additional electrons.
Thus, the Lewis base will attack the system where fþv,N(r) is the largest. Similarly, the
Fukui function below, fv,N(r) is the ‘‘least bad’’ way to remove an infinitesimal
fraction of an electron from a system. A Lewis acid (also called oxidizing agent,
electrophiles, etc.) will attack the system in the place where it is most willing
to donate electrons. Thus the Lewis acid will attack the system where fv,N(r)
is the largest. Although the mathematical details for this explanation of the
Fukui function’s predictive power are relatively modern (from 2000) [62], the
basic ideas described in this paragraph date back to the first papers on the Fukui
function [1,17].
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To this point, we have always discussed the Fukui function as a reactivity
indicator for reactions where electron-transfer effects make the dominant energetic
contribution and thus control the reactivity. Electron transfer tends to be the domin-
ant effect when a soft acid reacts with a soft base; such reactions are classified by
Klopman as being ‘‘orbital-controlled’’ [63]. When a hard acid reacts with a hard
base, the reaction is usually ‘‘charge controlled.’’ In such reactions, electrostatic
effects dominate. Nonetheless, there has been recent controversy about whether the
Fukui function can be used as a reactivity indicator for reactions between hard acids
and bases. Li and Evans argue that the Fukui function can be used, and that hard
acids and hard bases tend to react at the site where the Fukui function is the smallest
[64]. Melin et al. criticize this conclusion by pointing out hard hard interactions
tend to be electrostatically controlled, so that the best regioselectivity indicator for
such reactions is not the Fukui function, but the electrostatic potential [65]. Finally,
a detailed mathematical analysis was performed by Anderson et al. [60]. That
analysis finds the middle ground between these two interpretations. The electrostatic
potential is the dominant reactivity indicator for hard hard interactions, but when
there are two molecular sites that are electrostatically similar, the Fukui function
enters as a ‘‘tie breaker’’ indicator. In most cases, the site with the largest Fukui
function will be the most reactive. However, for reactions between extremely hard
reagents (i.e., in the limit of strong electrostatic control), the site with the minimum
Fukui function is preferred.

18.8 PROSPECTS

The Fukui function is certainly among the most fundamental and useful reactivity
indicators in chemical DFT, and it will certainly continue to be widely used in
routine applications. It would be interesting to see what might be learned from
applying the Fukui function to problems beyond conventional small-molecule chem-
istry. For example, will the Fukui function reveal something about enzyme ligand
docking and enzymatic catalysis that current, electrostatically focused, methods
miss? There are some favorable preliminary results along those lines [66 68].

On the theoretical side, however, there is room for skepticism: the rate of
progress since the Berkowitz’s 1987 paper has been astonishingly slow. One issue
with the Fukui function and with chemical DFT in general is that there is rarely
any reason to favor the Fukui function over the corresponding FMO descriptors.
Given that most chemists find FMO theory more familiar and easier to use than the
Fukui function, one may reasonably question the practical utility of the Fukui
function. The Fukui function sometimes works even when FMO theory fails. Indeed,
there are some chemical phenomena that FMO is intrinsically incapable of explain-
ing. For example, there has been significant recent interest in redox-induced electron
rearrangements (RIER), where oxidization of a metal complex induces the reduction
of one or more metal centers (or vice versa) [69]. This phenomenon cannot be
explained by FMO theory because when one removes an electron from the
HOMO, the electron density decreases everywhere including the metal centers that
are known, from experiment, to be reduced. By contrast, this phenomenon is readily
explained by the Fukui function: the key insight is that orbital relaxation effects
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cause the Fukui function on the metal centers to be negative [22]. In fact, RIER can
be considered to be a ‘‘success story’’ for the Fukui function: a theoretical study of
the Fukui function predicted the existence of RIER even before the phenomenon was
experimentally observed [21], and the current ‘‘best explanation’’ of RIER is based
on studies of negative Fukui functions [21,22,25]. Nonetheless, if one wishes to
make a compelling argument favoring Fukui functions over FMOs, one needs to
identify more chemical phenomena where the Fukui function works but FMO theory
fails.

A theoretical obstacle that prevents broader application of the Fukui function
was alluded to in Section 18.6: How does one know whether a given reaction is
electron-transfer controlled (so that the Fukui function is the relevant reactivity
indicator), electrostatically controlled (so that the electrostatic potential is the rele-
vant reactivity indicator), or somewhere in between? Most practitioners in chemical
DFT have developed an intuition for ‘‘what indicator works when,’’ but there do not
seem to be any objective criteria for deciding which reactivity indicator to use.
(Indeed, selecting the right indicator sometimes requires trial and error.) Trans-
forming chemical DFT from a descriptive theory to a predictive theory requires
developing tools for discerning when the Fukui function is the relevant reactivity
indicator, and when something else is. This problem may not be insolvable because,
unlike FMO theory, chemical DFT has an elegant and simple mathematical structure
that is conducive to the systematic derivation of ‘‘reactivity rules’’ for chemical
reactions.

ACKNOWLEDGMENTS

P.W.A. acknowledges the financial support from NSERC, the Canada Research
Chairs, and Sharcnet; W.Y. acknowledges financial support from NSF; L.J.B.
acknowledges financial support from RENCI@ECU.

REFERENCES

1. Parr, R. G. and Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049.
2. Perdew, J. P., Parr, R. G., Levy, M., and Balduz, J. L., Jr. Phys. Rev. Lett. 1982, 49, 1691.
3. Yang, W. T., Zhang, Y. K., and Ayers, P.W. Phys. Rev. Lett. 2000, 84, 5172.
4. Ayers, P. W. J. Math. Chem. 2008, 43, 285.
5. Ayers, P. W. and Levy, M. Theor. Chem. Acc. 2000, 103, 353.
6. Parr, R. G., Donnelly, R. A., Levy, M., and Palke, W. E. J. Chem. Phys. 1978, 68, 3801.
7. Sanderson, R. T. Science 1951, 114, 670.
8. Nalewajski, R. F. and Parr, R. G. J. Chem. Phys. 1982, 77, 399.
9. Zhang, Y. K. and Yang, W. T. Theor. Chem. Acc. 2000, 103, 346.

10. Gyftopoulos, E. P. and Hatsopoulos, G. N. Proc. Natl. Acad. Sci. U.S.A. 1965, 60, 786.
11. Parr, R. G. and Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.
12. Fukui, K., Yonezawa, T., and Shingu, H. J. Chem. Phys. 1952, 20, 722.
13. Fukui, K., Yonezawa, T., and Nagata, C. J. Chem. Phys. 1953, 21, 174.
14. Fukui, K., Yonezawa, T., and Nagata, C. Bull. Chem. Soc. Japan 1954, 27, 423.
15. Yang, W. T. and Parr, R. G. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 6723.
16. Kohn, W. and Sham, L. J. Phys. Rev. 1965, 140, A1133.
17. Yang, W. T., Parr, R. G., and Pucci, R. J. Chem. Phys. 1984, 81, 2862.

Fukui Function 265



18. Cohen, M. H. and Ganduglia Pirovano, M. V. J. Chem. Phys. 1994, 101, 8988.
19. Langenaeker, W., Demel, K., and Geerlings, P. Theochem J, Molec. Struct. 1991,

80, 329.
20. Bartolotti, L. J. and Ayers, P. W. J. Phys. Chem. A 2005, 109, 1146.
21. Ayers, P. W. PCCP 2006, 8, 3387.
22. Melin, J., Ayers, P. W., and Ortiz, J. V. J. Phys. Chem. A 2007, 111, 10017.
23. Yang, W. T. and Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.
24. Bultinck, P. F. S.; Van Alsenoy, C., Ayers, P. W., and Carbo Dorca, R. J. Chem. Phys.

2007, 127, 034102.
25. Ayers, P. W., Morrison, R. C., and Roy, R. K. J. Chem. Phys. 2002, 116, 8731.
26. Hirshfeld, F. L. Theor. Chim. Act. 1977, 44, 129.
27. Nalewajski, R. F. and Parr, R. G. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 8879.
28. Ayers, P. W. J. Chem. Phys. 2000, 113, 10886.
29. Roy, R. K., Pal, S., and Hirao, K. J. Chem. Phys. 1999, 110, 8236.
30. Roy, R. K., Hirao, K., and Pal, S. J. Chem. Phys. 2000, 113, 1372.
31. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.
32. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1841.
33. Mulliken, R. S. J. Chem. Phys. 1955, 23, 2343.
34. Mulliken, R. S. J. Chem. Phys. 1955, 23, 2338.
35. Bader, R. F. W., Nguyendang, T. T., and Tal, Y. J. Chem. Phys. 1979, 70, 4316.
36. Bader, R. F. W. Atoms in Molecules: A Quantum Theory, Clarendon, Oxford, 1990.
37. Bultinck, P., Ayers, P. W., Fias, S., Tiels, K., and Van Alsenoy, C. Chem. Phys. Lett.

2007, 444, 205.
38. Bultinck, P., Van Alsenoy, C., Ayers, P. W., and Carbo Dorca, R. J. Chem. Phys. 2007,

126, 144111.
39. Singh, U. C. and Kollman, P. A. J. Comput. Chem. 1984, 5, 129.
40. Besler, B. H., Merz, K. M., and Kollman, P. A. J. Comput. Chem. 1990, 11, 431.
41. Breneman, C. M. and Wiberg, K. B. J. Comput. Chem. 1990, 11, 361.
42. Mori Sanchez, P., Cohen, A. J., and Yang, W. T. J. Chem. Phys. 2006, 125, 201102.
43. Ruzsinszky, A., Perdew, J. P., Csonka, G. I., Vydrov, O. A., and Scuseria, G. E. J. Chem.

Phys. 2007, 126, 104102.
44. Mandado, M., Van Alsenoy, C., Geerlings, P., De Proft, F., and Mosquera, R. A.

Chemphyschem 2006, 7, 1294.
45. Cohen, M. H. and Wasserman, A. Isr. J. Chem. 2003, 43, 219.
46. Ayers, P. W., De Proft, F., Borgoo, A., and Geerlings, P. J. Chem. Phys. 2007, 126,

224107.
47. Michalak, A., De Proft, F., Geerlings, P., and Nalewajski, R. F. J. Phys. Chem. A 1999,

103, 762.
48. Ohrn, Y. and Born, G. Adv. Quantum Chem. 1981, 13, 1.
49. Melin, J., Ayers, P. W., and Ortiz, J. V. J. Chem. Sci. 2005, 117, 387.
50. Day, O. W., Smith, D. W., and Morrison, R. C. J. Chem. Phys. 1975, 62, 115.
51. Smith, D. W. and Day, O. W. J. Chem. Phys. 1975, 62, 113.
52. Ellenbogen, J. C., Day, O. W., Smith, D.W., and Morrison, R. C. J. Chem. Phys. 1977,

66, 4795.
53. Morrell, M. M., Parr, R. G., and Levy, M. J. Chem. Phys. 1975, 62, 549.
54. Ayers, P. W. and Melin, J. Theor. Chem. Acc. 2007, 117, 371.
55. Mori Sanchez, P., Cohen, A. J., and Yang, W. T. Phys. Rev. Lett. 2008, 100, 146401.
56. Cohen, A. J., Mori Sanchez, P., and Yang, W. T. Phys. Rev. B 2008, 77, 115123.
57. Cohen, A. J., Mori Sanchez, P., and Yang, W. T. J. Chem. Phys. 2007, 126, 191109.
58. Tozer, D. J. and De Proft, F. J. Chem. Phys. 2007, 127, 034108.
59. Berkowitz, M. J. Am. Chem. Soc. 1987, 109, 4823.
60. Anderson, J. S. M., Melin, J., and Ayers, P. W. J. Chem. Theor. Comput. 2007, 3, 358.

266 Chemical Reactivity Theory: A Density Functional View



61. Chattaraj, P. K., Cedillo, A., and Parr, R. G. J. Chem. Phys. 1995, 103, 7645.
62. Ayers, P. W. and Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010.
63. Klopman, G. J. Am. Chem. Soc. 1968, 90, 223.
64. Li, Y. and Evans, J. N. S. J. Am. Chem. Soc. 1995, 117, 7756.
65. Melin, J., Aparicio, F., Subramanian, V., Galvan, M., and Chattaraj, P. K. J. Phys. Chem.

A 2004, 108, 2487.
66. Roos, G., Loverix, S., De Proft, F., Wyns, L., and Geerlings, P. J. Phys. Chem. A 2003,

107, 6828.
67. Roos, G., Loverix, S., Brosens, E., Van Belle, K., Wyns, L., Geerlings, P., and Messens,

J. Chembiochem 2006, 7, 981.
68. Beck, M. E. J. Chem Inf. Model. 2005, 45, 273.
69. Min, K. S., DiPasquale, A. G., Golen, J. A., Rheingold, A. L., and Miller, J. S. J. Am.

Chem. Soc. 2007, 129, 2360.

Fukui Function 267





19 Shape Function

Paul W. Ayers and Andrés Cedillo

CONTENTS

19.1 What is the Shape Function? ................................................................... 269
19.2 Origins...................................................................................................... 270
19.3 Resurgence: Applications to Chemical DFT ........................................... 271
19.4 Reinterpretation: Using the Shape Function as the Fundamental

Descriptor................................................................................................. 274
19.5 Shape Function as a Descriptor of Atomic

and Molecular Similarity ......................................................................... 276
19.6 Prospects .................................................................................................. 277
Acknowledgments................................................................................................. 278
References ............................................................................................................. 278

19.1 WHAT IS THE SHAPE FUNCTION?

The shape function, denoted as s(r), is defined as the electron density per particle,

s(r) ¼ r(r)

N
, (19:1)

where r(r) is the electron density and

N ¼
ð
r(r)dr (19:2)

is the total number of electrons in the system. The shape function is the one-electron
probability distribution the probability of observing a specific electron (say, the
third) somewhere in the system. The shape function captures information about the
relative abundance of the electrons from place to place; on its surface, it does not
contain any information about the total number of electrons. The aptly named
shape function allows one to consider the shape (s(r)) and size (N) of the electron
density separately.

This chapter reviews the historical development of the shape function concept
from its origins in the work of Parr and Bartolotti [1] to the present day. The recent
review by Geerlings, De Proft, and one of the present authors provides an alternative
perspective [2].
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19.2 ORIGINS

The shape function had a role in theoretical chemistry and physics long before it was
named by Parr and Bartolotti. For example, in x-ray measurements of the electron
density, what one actually measures is the shape function the relative abundance of
electrons at different locations in the molecule. Determining the actual electron
density requires calibration to a standard with known electron density. On the theor-
etical side, the shape function appears early in the history of Thomas Fermi theory.
For example, theMajorana Fermi Amaldi approximation to the exchange potential is
just [3,4]

vMFA
x (r) ¼ �

ð
s(r0)
jr� r0j dr

0: (19:3)

In the context of density functional theory (DFT), the shape function can be
considered to be the fundamental variable in the Levy-constrained search [5],

F[r] ¼ FN[s] ¼ |{z}min
s(r1)¼

ÐÐ
���
Ð ��C(r1,r2,...rN )

��2dr2dr3...drN
C T̂ þ Vee

�� ��C� �
: (19:4)

The contribution of Parr and Bartolotti is not diminished by these precedents; they
were the first to recognize that s(r) is a quantity of interest in its own right, separate
from the electron density [1]. They also deserve credit for coining the name, ‘‘shape
function,’’ which captures the essence of the quantity and provides an essential
verbal handle that facilitated future work.

The paper of Parr and Bartolotti is prescient in many ways [1]. It defines the
shape function and describes its meaning. It notes the previously stated link to Levy’s
constrained search. It establishes the importance of the shape function in resolving
‘‘ambiguous’’ functional derivatives in the DFT approach to chemical reactivity the
subdiscipline of DFT that Parr has recently begun to call ‘‘chemical DFT’’ [6 9].
Indeed, until the recent resurgence of interest in the shape function, the Parr
Bartolotti paper was usually cited because of its elegant and incisive analysis of
the electronic chemical potential [10],

m ¼ dEv r[v; N]½ �
dr(r)

� �
¼ @E[v; N]

@N

� �
v(r)

, (19:5)

where

Ev[r] ¼ F[r]þ
ð
r(r)v(r)dr (19:6)

is the variational energy functional of Hohenberg and Kohn [11], and r[v; N, r] and

E[v; N] ¼ |{z}min
r(r)�0

hr(r)i N

Ev[r] (19:7)

270 Chemical Reactivity Theory: A Density Functional View



are the ground-state electron density and the ground-state electronic energy, respect-
ively, for N-electrons bound by the external potential v(r). In the DFT variational
principle, Equation 19.7, the only variations of the electron density that are allowed
are those that preserve the normalization. This raises the issue of how one should
deal with the constrained variational derivative,

dEv r[v; N]½ �
dr(r)

� �
N

¼ dEv r[v; N]½ �
d Ns(r)ð Þ

� �
N

¼ 1
N

dEv N�s[v ;N]½ �
ds(r)

� �
N

: (19:8)

In particular, is it possible to determine the chemical potential (which obviously depends
on how the energy responds to variations in the number of electrons) from the variation
of the electron density at fixed electron number? Parr and Bartolotti show that this is not
possible: the derivatives in Equation 19.8 are equal to an arbitrary constant and thus ill
defined. One has to remove the restriction on the functional derivative to determine the
chemical potential. Therefore, the fluctuations of the electron density that are used in
the variational method are insufficient to determine the chemical potential.

Notice that how the shape function naturally enters this discussion. Because the
number of electrons is fixed, the variational procedure for the electron density is
actually a variational procedure for the shape function. So it is simpler to restate the
equations associated with the variational principle in terms of the shape function.
Parr and Bartolotti have done this, and note that because the normalization of the
shape function is fixed,

1 ¼
ð
s(r)dr, (19:9)

functional derivatives with respect to the shape function are determined only up to an
additive constant,

dX[s; N]
ds(r)

� �
N

¼ N
dX[r]

dr(r)

� �
þ constant: (19:10)

This constant is often chosen to be zero.
One oft-overlooked facet of the Parr Bartolotti paper is its mathematical treat-

ment of constrained functional derivatives. The problem of constrained functional
derivatives [2,12 16] arises repeatedly in DFT often in the exactly the same
‘‘number conserving’’ context considered by Parr and Bartolotti but their work is
rarely cited in that context. Much of the recent work on the shape function is related
to its importance for evaluating the constrained functional derivatives associated
with the DFT variational principle [13 15].

19.3 RESURGENCE: APPLICATIONS TO CHEMICAL DFT

After its introduction by Parr and Bartolotti, the shape function concept lay dormant
for about a decade. It made occasional appearances; for example, the shape function
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makes a cameo in the definition of the local hardness in terms of the hardness
kernel [17 19],

h(r) ¼
ð
s(r0)h(r, r0)dr0: (19:11)

But there was no significant further development of the ideas set forth by Parr and
Bartolotti until 1994, when one of the present authors (A.C.) realized that the shape
function provided the key to resolve a mathematical difficulty that is inherent in the
different Legendre-transform representations of chemical DFT [20].

The use of the electron density and the number of electrons as a set of independent
variables, in contrast to the canonical set, namely, the external potential and the
number of electrons, is based on a series of papers by Nalewajski [21,22]. A.C.
realized that this choice is problematic because one cannot change the number of
electrons while the electron density remains constant. After several attempts, he found
that the energy per particle possesses the convexity properties that are required by the
Legendre transformations. When the Legendre transform was performed on the
energy per particle, the shape function immediately appeared as the conjugate variable
to the external potential, so that the electron density was split into two pieces that can
be varied independent: the number of electrons and their distribution in space.

The Legendre transform is a mathematical ‘‘trick’’ that provides four distinct but
equivalent ways to understand changes in electronic structure [21,22]. The first
distinction is based on whether one examines the system from an electron-following
perspective (where the external potential changes, and the electron density adapts to
those changes) or an electron-preceding perspective (where the electron density
changes, and the external potential responds to those changes) [23 26]. The electron-
following perspective is most conventional, and it is called the canonical representation.
The electron-preceding perspective is called the isomorphic representation. The second
distinction is based on whether one can determine the number of electrons in the system
(e.g., an isolated molecule) or whether the number of electrons in the system fluctuates
due to the presence of a reservoir of electrons with a specified chemical potential
(e.g., molecules in solution, macroscopic samples of condensed matter). When the
number of electrons is fixed, the system is said to be closed; when the number of
electrons fluctuates, it is said to be open. The latter representations are associated with
the grand canonical ensemble (open system; electron-following perspective) or the
grand isomorphic ensemble (open system; electron-preceding perspective), in analo-
gous to the corresponding ensembles in classical statistical mechanics.

Just as in classical statistical mechanics, the different pictures of electronic
changes are related by Legendre transforms. The state function for closed systems
in the electron-following picture is just the electronic ground-state energy, E[v;N].
The total differential for the energy provides reactivity indicators for describing how
various perturbations stabilize or destabilize the system,

dE ¼ @E

@N

� �
v(r)

dN þ
ð

dE

dv(r)

� �
N

dv(r)dr

¼ mdN þ
ð
r(r)dv(r): (19:12)
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Moving from the closed-electron-following picture (canonical ensemble) to the
open-electron-following picture (grand canonical ensemble) is done by Legendre
transform, generating the new state function:

V[v; m] ¼ E[v; N]� @E

@N

� �
v(r)

N ¼ E � mN: (19:13)

The total differential of the grand potential is

dV ¼ �Ndmþ
ð
r(r)dv(r)dr: (19:14)

The closed-electron-preceding picture (isomorphic ensemble) requires a Legendre
transform to eliminate the external potential as a variable,

F[r; N] ¼ E[v; N]�
ð

dE

dv(r)

� �
N

v(r)dr

¼ E[v; N]�
ð
r(r)v(r)dr: (19:15)

As previously mentioned, this expression is conceptually clumsy because the num-
ber of electrons is a function of the electron density through Equation 19.2. As one
cannot vary the number of electrons if the electron density is fixed, the naïve
expression for the total differential

dF ¼ @F

@N

� �
r(r)

dN þ
ð

dF

dr(r)

� �
N

dr(r)dr (19:16)

is nonsensical. Notice, however, that the second term in Equation 19.16 is precisely
the sort of constrained functional derivative that Parr and Bartolotti expressed in
terms of the shape function (cf. Equation 19.8). This suggests rewriting the total
differential in terms of the shape function [27]:

dF ¼ @F

@N

� �
s(r)

dN þ
ð

dF

ds(r)

� �
N

ds(r)dr: (19:17)

The preceding expression is mathematically correct and conceptually useful: it
separates energetic effects by increasing the number of electrons (dN) and of
polarizing the electron density (ds(r)).

Equation 19.17 is not the original way the {N, r(r)} ambiguity was resolved
[20]. As mentioned previously, the original paper on the shape function in the
isomorphic representation performed the Legendre transform on the energy per
particle. This gives an intensive, per electron, state function [20]:

f[s; N] ¼ F Ns(r)½ �
N

¼ E[v; N]
N

�
ð
s(r)v(r)dr (19:18)
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for the isomorphic ensemble. Most recent work, however, is based on Equation 19.17.
The open-electron-preceding picture (grand isomorphic ensemble) is similarly

obtained. One has the state function:

R[r; m] ¼ V[v; m]�
ð
r(r)v(r)dr

¼ F[r; N]� mN (19:19)

with the total differential [27]:

dR ¼ @R

@m

� �
s(r)

dmþ
ð

dR

ds(r)

� �
m

ds(r)dr: (19:20)

Equations 19.17 and 19.20 provided the foundation for further progress on the shape
function-based perspective on chemical DFT. The first extension, by Baekelandt
et al. [27], laid out the mathematical structure associated with these new pictures and
introduced new reactivity indicators. This paper reveals that the isomorphic ensem-
ble provides a particularly useful approach to the ‘‘hardness’’ picture of chemical
reactivity, and allows one to define a local hardness indicator,

h(r) ¼ 1
N

dm

ds(r)

� �
N

, (19:21)

that is less ambiguous than the conventional Ghosh Berkowitz Parr form [17,18].
Referring to Equation 19.10, it is clear that the definition in Equation 19.21 is unique
except for an arbitrary constant shift. The equivalence class of acceptable forms for
the conventional definition of the local hardness, h(r)¼ (dm=dr (r))v(r), is far
larger [12]. After this came a flurry of papers, providing further development of
the hardness concept in the isomorphic ensemble [28] and further interpretation for
the first-order [29] and higher-order response functions [30].

19.4 REINTERPRETATION: USING THE SHAPE FUNCTION
AS THE FUNDAMENTAL DESCRIPTOR

This flurry of interest in the shape function was just beginning to dissipate in when
one of the authors (P.W.A.) began graduate school. That June, Weitao Yang
organized a satellite symposium on DFT for the 9th International Congress on
Quantum Chemistry. Understanding the talks at this symposium required a compet-
ence far above his own, and during one of the morning sessions (most likely on June
4, 1997), he had a hypnagogic revelation: maybe you do not need the electron
density; maybe the shape function has enough information in it all by itself. After
the session, P.W.A. excitedly (and rudely) interrupted Prof. Robert Parr (who was
talking to Prof. John Pople, though P.W.A. did not know this) during the stroll to
lunch and expounded on this idea. Prof. Parr’s response was to politely introduce
P.W.A. to Prof. Pople and query ‘‘Can you prove it?’’ Which he could not.
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But the proof is deceptively simple [31]. Because the shape function is propor-
tional to the electron density, it inherits the characteristic electron-nuclear coales-
cence cusps at the positions of the atomic nuclei [32,33]. The location of those cusps
determines the positions of the nuclei, Ra; the ‘‘steepness’’ of the cusps determines
the atomic charges, Za. So the shape function determines the external potential for
any molecular system [31].

It is more surprising that the shape function also determines the number of
electrons. However, the number of electrons can be deduced from the asymptotic
decay of the shape function [31,34 40],

s(r) � r2be 2ar,

a ¼ 2IP
p

,

b ¼
P

a Za � N þ 1
a

� 1:

(19:22)

For a molecule, or more generally, any electronic system with a Coulombic external
potential:

v(r) ¼
X
a

�qa
jr� Raj , (19:23)

where s(r) determines both v(r) and N, and through them all properties of the
system [31].

The preceding theorem falls well short of the Hohenberg Kohn theorem because
it is restricted to Coulombic external potentials. The theorem is not true for all
external potentials. In fact, for any Coulombic system, there always exists a one-
electron system, with external potential,

v(r) ¼ r2 s(r)
p

2 s(r)
p , (19:24)

that has the same ground-state s(r). The theorem can be extended to excited states
using the excited-state cusp conditions that are directly analogous to the ones used by
Nagy in her DFT theory for single excited states [31,41 43]. Like the density, the
shape function is also analytic except at the location of the atomic nuclei. This means
that if one does not need to know the entire shape function: if one knows the
shape function in any connected region with finite volume, this is sufficient to
determine the shape function for the entire molecule [2,44]. This holographic
shape function theorem is derived in precisely the same way as its analogue for
the electron density [45 47].

Like the first Hohenberg Kohn theorem, the preceding theorems are ‘‘existence’’
theorems; they say that ‘‘the shape function is enough’’ but they do not provide any
guidance for evaluating properties based on the shape function alone. Once one
knows that shape functionals exist, however, there are systematic ways to construct
them using, for example, the moment expansion technique [48 51]. For atomic
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systems, moment-based shape functionals have been developed for the number of
electrons [31], the Kohn Sham kinetic energy (Ts) [52], the exchange energy (Ex)
[52], and the ionization potential [53]. The approximate functional for the number of
electrons not only provides numerical evidence for the sufficiency of the shape
function in property calculations, but also demonstrates that approximate shape
functions (which generally do not have the correct asymptotic decay) are still
adequate for approximating molecular properties. The shape functionals for the
kinetic and exchange energies are key components of a variational shape function
principle for determining the ground-state energy [54]. In these cases, however, the
shape functionals are less accurate than the corresponding density functionals. Since
the computational cost of evaluating shape functionals and density functionals is
similar (the limiting step in both cases is the evaluation of numerical integrals), there
would seem to be a little reason to prefer ‘‘shape-functional theory’’ to DFT.
However, the shape functional for the ionization potential is more accurate than
the analogous density functional [53]. Based on this result, it seems that the shape
function is a preferable descriptor to the electron density when one is attempting to
model periodic properties, or other atomic or molecular properties that do not depend
strongly on the number of electrons. On the other hand, when computing properties
that grow in tandem to the number of electrons (N, Ts, Ex, etc.), the electron density
is preferable. A more detailed analysis about when shape functionals are superior or
inferior to their density-functional analogues may be found in Ref. [53]. As a rule of
thumb, shape functionals are better for ‘‘chemical’’ properties (i.e., properties that
depend strongly on the column in the periodic table) while density functionals are
better for ‘‘physical’’ properties (properties that depend strongly on the number of
electrons).

19.5 SHAPE FUNCTION AS A DESCRIPTOR OF ATOMIC
AND MOLECULAR SIMILARITY

Because of its utility for describing the chemical properties of systems, the shape
function has proved to be very useful for studies of atomic [55 58] and molecular
similarity [54,59 61]. For example, the Carbó indicator of molecular similarity is in
fact a shape functional [59]:

Zs
AB ¼

Ð
sA(r)sB(r)drÐ

s2
A(r)dr

q Ð
s2
B(r)dr

q : (19:25)

This similarity indicator, in fact, precedes Parr and Bartolotti’s introduction of the
‘‘shape function’’ terminology [59]. In general, it seems that the shape function is
preferred to the electron density as a descriptor of molecular similarity whenever one
is interested in chemical similarity. Similarity measures that use the electron density
will typically predict that ‘‘fluorine resembles chlorine less than it resembles sodium,
oxygen, or neon’’ using the shape function helps one to avoid conflating similarity of
electron number with chemical similarity [53,57].
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The shape function is also used to measure the similarity between an atom in a
molecule (AIM) and an isolated atom or ion [62,63],

I rAjr0A
� 	 ¼

ð
rA(r) ln

rA(r)

r0A(r)

� �
dr

¼ NA ln
NA

N0
A

� �
þ
ð
sA(r) ln

sA(r)

s0
A(r)

� �
dr

� �
: (19:26)

The first term in this expression is an ‘‘entropy of mixing term’’ related to electron
transfer; the second term is the information loss due to polarization of the AIM.
Minimizing the information loss per atom results in the Hirshfeld population
analysis [64,65] and many other results in the broad field of chemical information
theory [26,66 75]. Zeroing the entropy of mixing term by choosing a reference ion
that has the same number of electrons as the AIM, one obtains the Hirshfeld-I
population analysis [76,77].

19.6 PROSPECTS

Whither the shape function? The shape function concept is unquestionably durable,
and so the main question is whether the shape function will remain an incidental
component of other theories or whether, eventually, the shape-functional theory will
emerge as an important field of inquiry in its own right. The essential theoretical
foundations for a chemical shape-functional theory are already well established at
this stage: one has total differentials that show how key state functions respond
to changes in the number of electrons and polarization of the electron density
(cf. Section 19.3), and one has the fundamental existence theorem which states
that all properties of molecule can be deduced from knowledge of its state function
(cf. Section 19.4). But there is little current progress in these directions. Further
progress will almost certainly require computational rather than theoretical develop-
ments, because the theory cannot progress much further without the concrete guid-
ance of computation provides. One nominee for such computational scrutiny would
be the shape-Fukui function [27,44]:

f�s (r) ¼ @s(r)

@N

� �
v(r)

¼ f�(r)� s(r)

N
: (19:27)

This quantity is trivially computed from the Fukui function, f�(r) [78 80], and the
shape function, and it has a simple interpretation: the shape Fukui function measures
where the relative abundance of electrons increases or decreases when electrons are
added to (or removed from) a system. In our experience, plotting f�s (r) often
provides a simpler and easier way to interpret picture of chemical reactivity than
the Fukui function itself. Perhaps this is because s(r) is the local density approxi-
mation (LDA) to the Fukui function [81]. Since the numerator in Equation 19.27,
f�(r)�s(r), is the ‘‘post LDA correction’’ to the Fukui function [81], the shape
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Fukui function represents the deviation of the system’s response to adding or sub-
tracting electrons from electron gas behavior.

Currently, the most exciting work on the shape function is being done in the
fields of atomic and molecular similarity. One certainly expects the shape function
to continually appear as those fields continue to progress. However, the role of the
shape function in those fields is presently incidental: the shape function appears,
but underlying theory plays no essential role. It would be interesting to develop
molecular similarity measures that exploit the insights from the shape-functional
pictures of electronic changes.
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‘‘Of course, perhaps Lewis put it the right way . . . ’’

Agatha Christie
The Hollow

The role of quantum theory in chemistry has a history of almost 100 years, and the
advances have been important. Nowadays, it is possible to do quantitative predic-
tions with chemical accuracy for middle-size molecules, and some type of calcula-
tions, especially density functional-based methodologies, are routinely done in many
chemical laboratories. One very important aspect on the influence of quantum theory
in chemistry is the one of understanding. There are many chemical concepts which
can be understood only through the laws of quantum mechanics. This chapter is
about conceptual understanding and is not about the other very important issue of
computing with chemical accuracy.

One of the most important models to understand chemistry is the electron pair
concept of Lewis [1]. He put forward the model where in an atom or molecule
‘‘ . . . each pair of electrons has a tendency to be drawn together.’’ This very important
model, which is at the very beginning of any general chemistry textbook, has
however an important problem. It goes against the Coulomb’s law. Lewis noticed
it and he went on further to even affirm that perhaps ‘‘ . . . Coulomb’s law of inverse
squares must fail at small distances.’’ This remarkable fact is to our knowledge never
discussed in the textbooks. At that time Lewis had no knowledge of the development
of quantum mechanics, and already in the 1930s, he retracted this statement [2].
Now, the explanation of why the electrons have a tendency to be drawn together,
even against the Coulomb’s law, is found in the Pauli exclusion principle and the
influence of the kinetic energy. The Pauli exclusion principle is not only the reason
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for this tendency but also for the existence of the periodic table of elements. Hence, it
is the Pauli exclusion principle that makes chemistry as we know it.

Let us start with the Schrödinger equation

HC ¼ EC (20:1)

Of course, the Coulomb interaction appears in the Hamiltonian operator, H, and is
often invoked for interpreting the chemical bond. However, the wave function, C,
must be antisymmetric, i.e., must satisfy the Pauli exclusion principle, and it is the
only fact which explains the Lewis model of an electron pair. It is known that all the
information is contained in the square of the wave function, jCj2, but it is in general
much complicated to be analyzed as such because it depends on too many variables.
However, there have been some attempts [3]. Lennard-Jones [4] proposed to look at
a quantity which should keep the chemical significance and nevertheless reduce the
dimensionality. This simpler quantity is the reduced second-order density matrix

P2 x1, x2ð Þ ¼ N(N � 1)
2

ð
dx3 � � � dxN jC x1, x2, x3, . . . , xNð Þj2 (20:2)

which depends only on three spatial coordinates, ~r, plus spin, s, for each of the
electrons of the pair (x stands for the couple ~rs). Hence, P2 ~r1s1,~r2s2ð Þ times an
infinitesimal volume element squared is interpreted as the probability to find one
electron with spin s1 in a volume element around~r1, and another electron with spin
s2 in a volume element around~r2. The prefactor comes from the fact that electrons
are indistinguishable. Notice the analogy with the one-particle density r(x),

r(x) ¼ N

ð
dx2 � � � dxN jC(x1, x2, x3, . . . , xN)j2 (20:3)

which is related to the probability to find a particle with spin s around~r.
It is evident that Lennard-Jones was following the track opened by Lewis, by

concentrating on the pair of electrons. To get some insight into P2(x1, x2), it is natural
to start with the simplest antisymmetric wave function, a Slater determinant con-
structed by real orbitals. In this case, one obtains

P2,det x1, x2ð Þ ¼ 1
2

rs1
~r1ð Þrs2

~r2ð Þ � ds1,s2gs1
~r1,~r2ð Þ2

h i
(20:4)

where rs is the s-spin component of the electron density:

rs(~r ) ¼ gs(~r,~r ) (20:5)

and

gs ~r1,~r2ð Þ ¼
X

fi(~r,s)fi(~r
0,s) (20:6)

282 Chemical Reactivity Theory: A Density Functional View



where the fi are the spin orbitals making the Slater determinant. To understand the
features of P2,det, it is useful to consider that the fi are localized. There is no loss of
generality as P2,det is invariant with respect to rotations among the orbitals. A further
simplification makes it particularly easy to see how P2,det behaves. Imagine that the
space can be divided into regions Vi, such that the localized orbitals fi satisfy the
following relationship:

fi(~r,s) ¼ rs(~r )
p

for~r 2 Vi

0 for~r =2 Vi

�
(20:7)

In this case

gs(~r,~r
0) ¼ rs(~r )rs(~r 0)

p
for~r,~r 0 2 Vi

0 otherwise

�
(20:8)

Now, using Equation 20.4, one can construct the reduced second-order density
matrix. For s1 6¼ s2, P2,det is quite boring:

P2,det(~r1s1,~r2s2) ¼ 1
2
rs1

(~r1)rs2
(~r2) (20:9)

Hence, the probability of finding one electron with spin a around~r1 and another with
spin b around~r2 is just the product of the probabilities of finding one particle in the
given positions. The probabilities are independent, which means that the behavior of
electrons is not correlated. However, for the case of two electrons with the same spin:

P2,det(~r1s,~r2s) ¼ 0 for~r,~r 0 2 Vi
1
2 rs(~r )rs(~r2) otherwise

�
(20:10)

the probability changes dramatically when one of ~r1, ~r2 share the same V or not.
Imagine exploring space with a probe electron in~r1. P2 is zero for a whole region
~r2 2 Vi, for all~r1 2 Vi. The moment~r1 leaves this region, all probabilities change
because a new region is defined. Thus, the electrons with spin a or b partition the
space into regions Vi. For a closed shell system, the picture is even more simple, as
localized orbitals are the same for both spins, the regionsVi will be the same for both
spins. In such a case, each region is occupied by a pair of electrons, one with a-spin
and the other with b-spin. Moreover, each electron with spin a or b ‘‘excludes’’
another electron with the same spin from that region. This is the ultimate explanation
for the Lewis electron pair model. There is not a new attractive force between a pair
of electrons. It is just a repulsion between electrons of the same spin due to the Pauli
exclusion principle, which explains the electron pair model of Lewis.

Let us now consider a simple example: four noninteracting fermions in a one-
dimensional box, x 2 [0, p]. The wave function is a Slater determinant with two
doubly occupied orbitals:

fk(x) ¼
2
p

r
sin (kx), k ¼ 1, 2 (20:11)
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To analyze jCj2, it is sufficient to consider jCa(x1, x2)j2 and jCb(x1, x2)j2, where the
index indicates the spin. As there are only two particles of a given spin, moving in
one dimension, it is possible to plot jCsj2, as shown in Figure 20.1 [5].

One finds twomaxima independent of the spin: one electron around x� 0.955 and
the other one around x� 2.186. It is easier to understand the origin of the maxima by
considering localized orbitals,C ¼ 1

2
p f1 � f2ð Þ. Both couples of orbitals are shown

in Figure 20.2, and in Figure 20.3 the one-particle density is shown.
Remember that the square of the wave function, or any of the reduced density

matrices, are independent of a unitary transformation of the orbitals. Hence, any pair
of orbitals is as good as the other. However, the chemical picture of molecular
orbitals is easily understood for most of the chemists. In this case, it is easier looking

FIGURE 20.1 (See color insert following page 302.) Plot of Csj j2, s ¼ a, b for four
independent fermions in a box.
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FIGURE 20.2 (a) Two lowest energy orbitals, f1, f2, for particles in a box and (b) two
localized orbitals, for four independent fermions in a box.
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at the localized orbitals. The plot of jCsj2 shows that the maxima are located close to
the maximum of each orbital, and taking into account that each orbital is occupied by
two electrons, one of each spin, the two maxima show us the regions where is most
probable to find an electron pair in the sense of Lewis.

Let us now look at the one particle density and compare it with the pair density
P2(x1s, x2s

1). We have to examine now the two possibilities, both electrons with
the same spin or with different spin. In Figure 20.4, we have the pair density for the

2.0
r

x

1.5

1.0

0.5

0.5 1.0 1.5 2.0 2.5 3.0

FIGURE 20.3 One particle density for four noninteracting fermions in a one dimensional
box. The dots on the abscissa show different positions in which the density has the same value.

FIGURE 20.4 (See color insert following page 302.) P2,det(x1, x2) for fermions in a box,
for s1¼a and s2¼b.
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case of different spin. It is clear that its structure corresponds to one of one-particle
density because the probabilities are not correlated. However, for the case of the two
electrons with the same spin, the picture looks different (Figure 20.5).

Now, the probability of finding both electrons with the same spin around the
same point, x1¼ x2, has vanished, as the consequence of the Pauli principle. The box
has been partitioned into its left and its right parts. As long as one particle with one
spin is in one part, it will impose the other electron of the same spin to be in the other
half of the box. For example, we can consider the points chosen among those marked
by dots on the abscissa on the Figure 20.3 showing the one-particle density. While
for different spin, P2 will be the same for any pair of positions selected; this is not the
case when both electrons have the same spin. When the spin is the same, and the
electrons are on the points marked on the same half of the box, P2 will be very small.
However, if one point belongs to those on the left, the other to those of the right, P2 is
as large as for electrons with different spin.

Although the reduction of dimensionality by reducing jCj2 to P2 is, in general,
enormous, having to work in six dimensions is still difficult for the human mind, and
probably not needed for the analysis of the chemical bond: we see molecules in three
dimensions. A way to further reduce dimensions has been noticed by Luken and
Culberson [6] and by Becke and Edgecombe [7]. The idea is simple: as P2 ~r1s,~r2sð Þ
is relatively insensitive as~r1 moves within a given region Vi, but changes suddenly
as it moves to another region Vj, one could concentrate on the change of P2. A
simple way to look at it is to consider a small sphere, which moves together with the

FIGURE 20.5 (See color insert following page 302.) P2,det(x1, x2) for fermions in a box,
for s1¼s2¼a.
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reference electron in r1 [8]. If the radius of the sphere is R, the probability to find two
electrons of spin s in this small sphere is

ð
small sphere

P2 ~r1s,~r2sð Þd3r2 ¼ C ~r1ð Þ
ð
r212d

3r12 þ � � � (20:12)

where we have used the expansion:

P2 ~r1s,~r2sð Þ ¼ C ~r1ð Þr212 þ � � � (20:13)

We see immediately that as long as the sphere stays in one Vi, the probability of
having two electrons with the same spin in it is very small. When the sphere overlaps
with two different Vi, the probability increases. How large should the sphere be? It
turns out that it is useful to choose the sphere in such a way that the probability of
having two electrons with opposite spin is the same, independently of~r1 [9]. In other
words, using the expression of P2,det ~r1s1,~r2s2ð Þ for~r1 ¼~r2, s1 6¼ s2,

4pR3

3

� �
/ 1=r ~r1ð Þ (20:14)

where we restricted the formula to the closed shell case. Thus, we get for the quantity
of interest,

C(~r )r(~r ) 5=3 (20:15)

Kohout [10] used this function as an electron localization indicator (ELI). In the
electron localization function (ELF), this function is scaled:

h(~r ) ¼ 1þ k(C(~r )r(~r ) 5=3)2
� � 1

(20:16)

where the constant k comes from the proportionality relationship of Equation 20.14,
but has now a well-defined value [7]. In this way, the values of ELF range between 0
and 1. A large value of ELF, close to 1, occurs when ELI is small, and it means a
region where probability exists for finding an electron pair. A small value of ELF
corresponds to a large value of ELI. Referring to our example of four independent
particles in a box, one can see both functions in Figure 20.6.

It is clear that both functions are in some way the inverse of each other, but the
interpretation is the same, the electron tends to localize at the borders of the box.

The final form of the ELF is

h(~r ) ¼ 1þ DP

DF

� �� � 1

(20:17)

where

DF ¼ cFr(~r )
5=3 (20:18)
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and

DP ¼ 1
2

X
i

rfi

�� ��2� 1
8

rr

�� ��2
r

(20:19)

the first term on the right-hand side represents the kinetic energy density of the
noninteracting system and the second one is the von Weizsäcker kinetic energy
density. This is the most important ingredient of the ELF, and the one which allows
us a qualitative understanding of the relationship between the ELF and the exclusion
principle of Pauli. The von Weizsäcker kinetic energy is the exact kinetic energy
functional for a system composed of noninteracting bosons, particles which do not
follow the Pauli exclusion principle. It is also exact for the hydrogen atom or any
other one-particle system, the most localized system in a rigorous quantum mech-
anics sense. It is exact for the helium atom or any other two electron system in the
Hartree Fock approximation, the best examples of an electron pair. Hence for all
those examples the term DP will be exactly 0 and the value of the ELF will be 1.
After helium atom, the best examples of localized electron pair are surely the most
inner electrons of any other molecular or atomic system, i.e., electrons with a
configuration very close to 1s2, the kinetic energy density of these pair of electron
is surely very well approximated by the von Weizsäcker term. Hence in the regions
very near to nuclei, the ELF will also have a value close to 1. One can then
hypothesize that the von Weizsäcker term will be a very good approximation in all
regions where there is a localized electron pair. This is what we found in our example
in Figure 20.6b. Hence, the ELF appears to be a measure of the excess of kinetic
energy density due to the exclusion principle [11]. The other terms of the function
can be thought as a way to map a function, which goes for �1 to þ1 to a better
behaved function, which goes from 0 to 1.

The ELF was proposed by Becke and Edgecombe [7] in 1990 and very soon
extensively applied to a variety of systems ranging from atoms to inorganic and
organic molecules to solids [9]. In 1994, a topological analysis of the ELF was
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FIGURE 20.6 (a) Cr�3 for four particles in a one dimensional box and (b) h(x) for four
particles in a one dimensional box.
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developed [12], which permits it to perform a more quantitative analysis of the three-
dimensional function. From then on, the ELF has been extensively applied to a great
amount of systems and has also been used to quantify other chemical concepts
like strength of the hydrogen bond [13] and aromaticity [14]. Beside the first review
article [9,15] there are other more recent review articles [16] where the reader
can find a variety of different applications. In the final part of this article, we
concentrate on one simple application of the ELF. Mainly we will analyze the ELF
of the series of diatomic molecules of the type E2 with E¼C, Si, Ge, Sn, and Pb on
their triplet and singlet lowest states.

The atoms of the group 14 present a diverse chemistry. Whereas the first member
of the series, carbon atom, is unique in the variety of bonding it forms, the other
members change the bonding nature also because of the predominance of relativistic
effects, mainly the spin orbit coupling, in the last member of the series. For instance,
the existence of a double bond in the family of molecules of the type R2C¼CR2 is
something obvious for any chemistry student. However, for the rest of the series
R2E¼ER2 with E¼ Si, Ge, Sn, and Pb is by no way obvious. In fact, the most
simple member of the series with R¼H does not exist. A nice application of the ELF
to understand this type of bonds can be found in Ref. [17]. Within this context, it
appears interesting to look at the ELF of the homonuclear dimers E2 in both the
singlet and the triplet states. However, it is necessary to be forewarned that theore-
tical calculation of the electronic structure of the dimers of the group 14 is a very
difficult task. It is one of this situations where the smallest molecules are the most
difficult ones. Starting from C2, which presents an important multideterminantal
character of the wave function, making it hard to obtain quantitative results with
any Kohn Sham methodology, and finishing in Pb2 where the spin orbit effects are
very important, making it hard to obtain quantitative results using any one-compon-
ent scheme. Therefore, the present analysis is only qualitative in an attempt to
interpret the results obtained using a density constructed with Kohn Sham orbitals
calculated using the Stuttgart pseudopotential [18] for all atoms. For the heavier
atoms of Ge, Sn, and Pb, the small core pseudopotentials were used. The studied
configurations are s2

gs
2
u p

1
u p

1
us

2
g,

3Sg, for the triplets and s2
gs

2
u p

2
u p

2
u,

1Sg, for the
singlet in all molecules. Note that the configuration of the singlet state is unusual.
The two s orbitals do not contribute to the bonding because they are a bonding
antibonding pair adding nothing to the bond order. Therefore, the state is stable only
due to the existence of two bonding p-orbitals, and the molecules could be classified
as ‘‘only p-bonding.’’ This point has interesting consequence in the form of the ELF
as will be discussed below.

In Table 20.1, one can see the calculated values of dissociation energy, highest
occupied molecular orbital (HOMO) lowest unoccupied molecular orbital (LUMO)
gap, triplet singlet gap, and bond length for the triplet and singlet states. In all
molecules, the triplet state is the lowest in energy in agreement with the experimental
evidence. However, as stated above, the values are only a rough estimate of the
experimental dissociation energies, which are 6.2, 3.21, 2.65, 2.04, and 0.86 eV, for
the dimers of C2, Si2, Ge2, Sn2, and Pb2, respectively. The HOMO LUMO gap is not
so small in any case, but the presence of low-lying states is known. It is also
interesting to observe that the bond lengths of the singlet states are shorter than
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the ones of the triplet state, which is the strongest bond. Hence those molecules
do not obey the simple rule: the stronger the bond, the shorter the bond length. They
do not follow the simple bond order of molecular orbital theory, because all of them
present a bond order of 2 in the singlet as well as in the triplet state.

Let us look at the ELF of those molecules in Figure 20.7. Looking at a three-
dimensional function presents some ambiguities in the way the function is shown.We
have chosen isosurfaces instead of maps of contours, and the value of the isosurface is
arbitrary. However, for molecules of the second and third periods, it is generally
accepted that any value between 0.7 and 0.9 is good enough to represent the regions
where it is most probable to find localized electrons. For the heavier atoms where the
d-electrons or f-electrons play an important role, the ELF values are lower and the
maxima are not greater than 0.7 0.8. Hence the isosurfaces to show the interesting
regions are approximately 0.3 0.5. The small values because of the presence of
d-electrons, were first noticed by Kohout and Savin [19] and later on discussed by
Burdett and McCornick [20] and Kohout et al. [21]. The colors are also arbitrary. We
have chosen red for the isosurfaces representing the core electrons, yellow for the
bonding electron pair, blue for the lone pairs, and green for the ‘‘not obvious’’ bonding
electrons in the singlet states. For C2 and Si2 there are no core basins because of the
use of pseudopotential. Let’s start analyzing the triplet state. There is no evidence of a
triple bond because of the existence of a lone pair behind the atoms (blue regions). The
form of the isosurface for the bonding electrons is similar in all studied molecules, but
it is getting smaller when one goes down the periodic table. For Pb2, the isosurface of
the basin representing the bond region is so small that it does not have the character-
istics of the basins of the other molecules, and the form of the isosurface is more
similar to the ones of the singlet than to the other molecules in a triplet state. The
comparison from Ge2 to Pb2 shows clearly a change in the topology of the basin. It is
interesting to note that for the lighter atoms, the HOMO orbital is clearly the double
occupied sg, whereas for Pb2, it is the degenerate pair pu, which are the HOMO in all
the singlet states. This could explain the similarity in the form of the localization

TABLE 20.1
Dissociation Energy, HOMO–LUMO Gap, Triplet–Single Gap, and Bond
Length for the Triplet and Singlet States of the Studied Molecules

Dimer Multiplicity De GapH L GapT S Bond Length

C2 Triplet 5.33 2.55 0.62 1.372
Singlet 4.71 1.87 1.258

Si2 Triplet 2.96 1.91 1.10 2.304
Singlet 1.86 0.77 2.068

Ge2 Triplet 2.87 1.92 1.22 2.406

Singlet 1.65 0.60 2.176
Sn2 Triplet 2.40 1.73 1.22 2.781

Singlet 1.18 0.42 2.543

Pb2 Triplet 2.21 1.72 1.29 2.912
Singlet 0.93 0.33 2.678

Note: All energy values in eV and bond lengths in Å.
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domains. Remember that in the singlet state there is no s bond. It is only ap bond with
a nodal surface through the line connecting both atoms. The basins are cylindrical in
shape and of other nature. They represent a pure p bond. One can then speculate that
in the singlet state the bond length is shorter but weaker than in the triplet state because
it does not have any s bond.

C2 0.80 0.84

Si2 0.80 0.85

Ge2 0.50 0.70

Sn2 0.50 0.66

Pb2 0.50 0.55

FIGURE 20.7 (See color insert following page 302.) ELF isosurfaces for triplet (left) and
singlet (right) of the different molecules. The values of the isosurfaces are indicated below
each picture.
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21.1 POTENTIAL ENERGY CURVES AND REACTION
COORDINATES

A convenient and effective technique for following the course of a chemical or
physical process is by means of a two-dimensional diagram depicting the change in
the energy of the system as it proceeds from its initial to final state. This is commonly
called a potential energy plot, even though it is the total energy that is being shown,
because the latter is typically varying in accordance with the relative positions of the
atoms that comprise the system. (In general, potential energy is associated with
position, kinetic energy with motion.)

The other axis in such a plot is the ‘‘reaction coordinate,’’ which is simply some
variable in terms of which the progress of the process can be measured. For a
bond dissociation, XY ! XþY, an obvious choice for the reaction coordinate is
the X Y separation. But in many processes, there maybe several possibilities,
some better than others. For example, in the addition of Cl2 to ethylene, one option
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might be the C C distance, as the bond changes from double to single.
Another might be one of the H C C H dihedral angles, reflecting the transition of
the carbons from planar to tetrahedral configurations.

In a one-step chemical reaction, the reactants and products are typically separ-
ated by an energy barrier, the maximum of which corresponds to the transition state;
this is in fact a unique structure along the energy profile. A universal reaction
coordinate for any such process can be established by using the classical equations
of motion to obtain the paths of lowest potential energy leading from the transition
structure to the reactants and to the products. When these paths are described in terms
of mass-weighted Cartesian coordinates, they represent what is designated as the
‘‘intrinsic reaction coordinate’’ [1,2]. For a multistep reaction, perhaps involving
several intermediates and transition states, the same procedure can be followed with
respect to each of the latter.

Figure 21.1a is a representative plot of the variation of the potential energy V(Rc)
along the intrinsic reaction coordinate Rc for a one-step process A ! B. Note that
Rc is treated as a vector, always in the direction from reactants to products. For
the reverse process, therefore, Rc would increase in the opposite direction. V(Rc)
goes through a maximum at the point jRcj ¼Rc¼b, which is the position of the

(c)

0k

Rc

A a b g B
Rc

En
er

gy

Re
ac

tio
n 

fo
rc

e

A(a) (b)

0

A a b g Bb B

Rc

FIGURE 21.1 Profiles of (a) energy, (b) reaction force, and (c) reaction force constant for a
generic endoenergetic elementary step. Vertical dashed lines indicate the limits of the reaction
regions defined in the text.
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transition structure. The energy barrier (activation energy) for the forward
reaction, A ! B, is therefore DEact,f¼V(b)�V(A); for the reverse, B ! A, it
would be DEact,r¼V(b)�V(B). In the example shown, V(B)>V(A), meaning that
the forward reaction A ! B must absorb energy, DEf¼V(B)�V(A)> 0. The
reverse, B ! A, accordingly releases energy, DEr¼V(A)�V(B)< 0. The ensuing
discussion will be independent of whether a reaction has DE> 0 or DE< 0.

21.2 REACTION FORCE

From classical physics, the negative gradient of a potential energy is a force:�DV(r)¼
F(r). It follows that a force can also be associatedwith a process described by a potential
energy V(Rc):

F(Rc) ¼ � @V(Rc)

@Rc

(21:1)

F(Rc) is labeled the ‘‘reaction force.’’ For a V(Rc) profile such as that in
Figure 21.1a, F(Rc) has the form shown in Figure 21.1b. From A to b, V(Rc)
is increasing and so F(Rc) is negative, by Equation 21.1. At Rc¼a, V(Rc) has an
inflection point, and F(Rc) passes through a minimum:

@2V(Rc)

@R2
c

¼ 0 ¼ � @F(Rc)

@Rc

(21:2)

At b, V(Rc) has a maximum, and F(Rc) is therefore zero:

@V(Rc)

@Rc

¼ 0 ¼ �F(Rc) (21:3)

After b, V(Rc) is decreasing and F(Rc) is positive, with a maximum at g, where
V(Rc) has another inflection point. Since the reactants and products correspond to
minima of V(Rc), F(A)¼F(B)¼ 0. For the reverse process, B ! A, in which Rc

increases from B to A, F(Rc) would be the negative (i.e., mirror image) of that in
Figure 21.1b; it would have a minimum at g and a maximum at a.

The minimum and maximum of the reaction force, in a natural and universal
manner, divide any process having V(Rc) such as that in Figure 21.1a into three
reaction regions along the intrinsic reaction coordinate: A ! a, a ! g, and g ! B,
as shown in Figure 21.1b. What is the significance of these regions? Our answers to
this come out of our experience with a number of chemical reactions and conforma-
tional transformations [3 13].

In the first, ‘‘preparative’’ or ‘‘reactant’’ region, from the reactants at A to the
force minimum at a, what occurs are primarily structural distortions in the reactants,
such as bond stretching, angle bending, rotations, etc. These are a preparation for
what is to follow. The resistance of the system (i.e., the reactants) to these changes
manifests itself in a negative, retarding reaction force. (Keep in mind that the positive
direction is from A to B.) Overcoming this retarding force requires an energy
DE(A! a), where
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DE(A ! a) ¼ V(a)� V(A) ¼ �
ða

A

F(Rc) � dRc (21:4)

DE(A! a) is just the negative of the area under the F(Rc) curve between Rc¼A and
Rc¼a. At a, the system can be said to consist of distorted states of the reactants.

It is in the second region, from the force minimum at a to its maximum at g, that
the main part of the transition to products takes place, the changes in electronic
density distributions and related properties. For example, new bonds may begin to
form. These factors produce an increasingly positive driving force that, starting at
Rc¼a, gradually overcomes the retarding one (between a and b); thus the resultant
F(Rc) becomes less negative. At the transition structure, at Rc¼b, the two opposing
forces exactly balance. V(Rc) has been increasing all the while, and here, it reaches
its maximum. The driving force continues to increase between b and g and is now
dominant; F(Rc)> 0. It reaches its maximum at Rc¼ g. Thus, only the transition to
products region is characterized (throughout) by an increasing driving force. The
energy associated with this region can be expressed as the sum of the contributions
from its two zones, a ! b and b ! g:

DE(a ! g) ¼ DE(a ! b)þ DE(b ! g) ¼ �
ðb

a

F(Rc) � dRc �
ðg

b

F(Rc) � dRc

(21:5)

DE(a ! b) is positive, since F(Rc) is opposite in direction to Rc between a and b,
while DE(b ! g) is negative, because F(Rc) is now in the same direction as Rc.

Note that the activation energy is composed of two components, consisting
of the energies associated with the reactant region and the first zone of the transition
region:

DEact,f ¼ DE(A ! b) ¼ DE(A ! a)þ DE(a ! b) (21:6)

The significance of this will be discussed later in this chapter.
At Rc¼ g, the system can be described as being in a distorted state of the

products. At last, ‘‘product’’ region, g ! B, reaction force diminishes as the system
relaxes structurally to its final state. An energy DE(g ! B) is released:

DE(g ! B) ¼ �
ðB

g

F(Rc) � dRc (21:7)

For the reverse reaction, B ! A, for which F(Rc) would have the opposite signs, the
DE corresponding to each region would be obtained simply by reversing the limits in
the integrals in Equations 21.4, 21.5, and 21.7.

296 Chemical Reactivity Theory: A Density Functional View



To summarize, structural changes occur throughout a process, but in the first and
third regions, they are the dominant factor. The electronic properties that are affected
by the process, which can include electrostatic potentials, ionization energies, elec-
tronic populations, etc., are, in general, more restricted in their variation, which tends
to be slow and gradual in the reactant and product regions but strikingly rapid and
extensive in the two zones (a ! b and b ! g) of the transition region.

As an example, consider the SN2 substitution [9,12],

H3C�Clþ H�OH ! H3C�OHþ H�Cl (21:8)

In the reactant region, before the force minimum at Rc¼a, the major event
is stretching of the C��Cl bond, which is accompanied by the CH3 group becoming
more planar. In the first zone of the transition region, between a and b, the C O
bond begins to form, while the chlorine, still moving away from the carbon, becomes
increasingly negative. The second transition zone, b ! g, sees the stretching of
an H OH bond and the beginning of the H Cl covalent bond formation. In the
product region, g! B, occur the final separation of H from OH and the relaxation of
the C O and H Cl bonds to their equilibrium lengths in the products.

The calculated (B3LYP=6-31G*) electrostatic potential associated with oxygen
illustrates the often dramatic variation in electronic properties that occurs primarily
in the transition region [9]. The value is �36 kcal=mol in H OH and increases only
slightly in the reactant region, to �34 kcal=mol at Rc¼a. In the transition region,
however, between a and g, it goes all the way to �7 kcal=mol, before leveling off to
a final �20 kcal=mol in H3C OH.

Consider the proton transfer [13],

HC C SH HC C S
OHOO O

(21:9)

for which the profiles of global electronic properties (dipole moment and chemical
hardness) together with local bond electronic populations have been calculated at
the B3LYP=6-311G** level. These properties are displayed in Figure 21.2. It can be
observed in Figure 21.2a that the dipole moment, a measure of the polarity of the
system, remains practically constant in the reactant region. Then, it starts to increase
rapidly in the transition region, where it changes dramatically by about 2D.
Hardness, a global electronic property that is related to the reactivity of molecular
systems [14], also remains constant in the reactant region, but then, upon entering the
transition region, it decreases sharply until reaching the product region where it
converges smoothly to the product value. Also interesting is the behavior of the CO
and CS bond electronic populations. Within the reactant region, the former keeps
quite consistently maintains its double bond character and the latter conserves its
single bond character. In the transition region, the CO and CS bond populations
exhibit strong changes and cross each other at exactly the transition structure, where
a maximum delocalization within the reactive OCS backbone should be expected. In
the product region, the CO and CS bond populations converge smoothly to their final
values, with CS now having double bond character and CO being a single bond.
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21.3 TWO COMPONENTS OF THE ACTIVATION ENERGY

As mentioned earlier, the minimum reaction force at Rc¼a divides the activation
energy into two components, Equation 21.6. DE(A ! a) and DE(a ! b) are,
respectively, the energies needed for the preparative portion of the reaction in the
reactant region A ! a, and for the initial phase of the transition to products in
the zone between Rc¼a and Rc¼b. For the reverse process, B ! A, the minimum
F(Rc) would be at Rc¼ g, and the activation energy would be

DEact,r ¼ DE(B ! g)þ DE(g ! b) (21:10)

We have usually found the energy required in the reactant region (A ! a in A ! B
and B! g in B! A) to be larger than that needed for the first phase of the transition
to products (a ! b in A ! B and g ! b in B ! A) [3,4,6 13], although on
occasion, they may be similar [5].

The natural division of an activation energy into two components by the force
minimum can provide useful insight into the activation process. The activation
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energy for the forward proton transfer reaction (Reaction 21.9), 35.7 kcal=mol, is
higher than for the reverse, 31.2 kcal=mol, which seems surprising since it would
be expected that the hydrogen would prefer the more electronegative oxygen.
Analysis of the two components of DEact,f and DEact,r clarifies this apparent
anomaly. The preparative stage of the forward process in the reactant region
requires considerably more energy than that of the reverse, 25.8 vs. 16.2 kcal=mol.
The second component of the activation energy, corresponding to the first zone
of the transition region, does indeed demand more energy for the reverse process,
15.0 kcal=mol, than for the forward reaction, 9.9 kcal=mol.

Looking at the two components of the activation energy can be particularly
helpful in elucidating the role of an external agent such as a solvent or a catalyst.
For example, we have looked at the SN2 substitution given in Equation 21.8 in
both, the gas phase and in aqueous solution [12]. Table 21.1 shows that the
presence of the solvent lowers the activation energy in both, the forward and
reverse directions, by 7.8 kcal=mol for the former and 8.3 kcal=mol for the latter.
What is noteworthy, however, is that this lowering occurs primarily in the prepara-
tive stage of each process, the reactant region before the force minimum. The
energies required in the initial zones of the transition regions are decreased by only
1.3 and 2.5 kcal=mol, respectively. This indicates that the effect of the solvent is
not to stabilize the transition state, as might be inferred from considering only the
overall changes in the activation barriers, but rather to facilitate the structural
effects in the preparative stages of the processes.

Table 21.1 contains computed activation data for the keto Ð enol tauto-
merization of thymine [10], Equation 21.11, both, in the presence and absence of

H3C H3C

H

H

H

H

H

H

O

O

O

ON

N

N

N
(21:11)

Mg(II) ion. The Mg(II) promotes keto ! enol, decreasing DEact,f by 5.4 kcal=mol,
but inhibits enol ! keto, increasing DEact,r by 13.3 kcal=mol. In both instances,
however, it is again the preparative components of the activation energies that are, by
far, the most affected.

In both examples, the external agent whether solvent or catalyst has affected
primarily, the preparative phase of the reaction. More studies are needed in this area,
and are, in fact, in progress [15].

21.4 REACTION FORCE CONSTANT

The second derivative of a potential energy along any given path is the correspond-
ing force constant. Thus, we can introduce the reaction force constant, k(Rc), just as
we did the reaction force F(Rc) earlier [17]:
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k(Rc) ¼ @2V(Rc)

@R2
c

¼ � @F(Rc)

@Rc

(21:12)

The variation of k(Rc) along Rc can be seen in Figure 21.1c. k(Rc) is positive in the
reactant region A ! a, where F(Rc) is decreasing, and it has a maximum at the first
inflection point of F(Rc). k(Rc) then passes through zero at the minimum F(Rc) and
is negative throughout the transition to products region, in which F(Rc) is increasing.
k(Rc) has a negative minimum at the second inflection point of F(Rc), and then goes
to zero at the maximum of the latter. In the product region, g ! B, k(Rc) is again
positive, due to F(Rc) decreasing, and has another maximum at the third inflection
point of F(Rc).

TABLE 21.1
Computed Activation Energies and Their Components, in kcal=mol,
for Reactions 21.9,a 21.8,b and 21.11c

Reaction

HC C SH HC C S
OHOO O

(21.9)

H3C ClþH OH Ð H3C OHþH Cl (21.8)

H3C H3C

H

H

H

H

H

H

O

O

O

ON

N

N

N
(21.11)

Forward Reverse

Reaction DEact,f DE(A!a) DE(a!b) DEact,r DE(B!g) DE(g!b)

21.9 35.7 25.8 9.9 31.2 16.2 15.0
21.8, gas phase 66.6 39.1 27.5 61.6 34.9 26.7
21.8, aqueous 58.8 32.6 26.2 53.3 29.1 24.2

21.11, without
Mg(II)

49.6 32.6 17.0 30.5 23.5 7.0

21.11, with Mg(II) 44.2 27.1 17.1 43.8 34.4 9.4

a B3LYP=6 311G**, Ref. [13].
b CCSD(T)=aug cc pVTZ, Ref. [12].
c B3LYP=6 311þþG**, Ref. [10].
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What is particularly significant is that k(Rc) is negative throughout the transition
region, between a and g. A nonlinear system has 3N 6 internal degrees of freedom
(N being the number of atoms), which correspond to normal modes of vibration.
For the reactants and products, the energy is minimum with respect to all
these degrees of freedom, while at the transition structure (Rc¼b), it is maximum.
For the latter, the force constant for one of these degrees of freedom is negative,
the corresponding vibration frequency being imaginary; this is indeed how transition
states are commonly identified computationally. Miller et al. have discussed the
procedure for the vibrational analysis of the nonstationary states along Rc [16].
For these, one of the 3N 6 degrees of freedom should be along Rc, with the
others corresponding to normal modes orthogonal to Rc. Movement along Rc

and infinitesimal rotations and translations must be projected out of the force
constant matrix.

We have carried out this type of analysis for the proton transfer [17],

HO� N ¼ S ! O ¼ N� SH (21:13)

We found that the force constant for movement along Rc, kR(Rc), has a profile
strikingly similar to that of k(Rc) (Figure 21.1c). kR(Rc) is positive and has maxima
in the reactant and product regions, goes to zero very near Rc¼a and Rc¼ g, and is
negative with a minimum in the transition region. It was further noted that the
average, hki, of all 3N 6 force constants had sharp and deep minima at a and g.
Thus, significant features of the results of the vibrational analysis coincide with the
key points defined by the reaction force, its minimum and maximum. What is also
very significant is that both, k(Rc) and kR(Rc) are negative not only at Rc¼b, the
transition structure, but throughout the a ! g region, thus providing support for
linking the entire region to the transition to products, rather than focusing only upon
the transition state itself.

21.5 DISCUSSION AND SUMMARY

The reaction force naturally and universally divides a process into well-defined
regions along the reaction coordinate. When the latter is chosen to be the intrinsic
reaction coordinate, each of these reaction regions emphasizes a particular aspect of
the process. While our focus in this chapter has been upon one-step chemical
reactions having an energy barrier in both, the forward and reverse directions,
more complex processes perhaps having one or more intermediates and additional
transition states can be treated in the same manner. F(Rc) will then have several
minima and maxima; see, for example, Herrera and Toro-Labbé [11]. An interesting
special case is bond dissociation or formation, for which we have found a rather
remarkable uniformity in the position of the F(Rc) extremum (which is a minimum
for dissociation, maximum for formation) [18]. We have found, in general, that
structural factors tend to be dominant in those regions in which F(Rc) is decreasing,
whereas rapid and extensive changes in electronic properties are likely to be
associated with regions in which F(Rc) is increasing.
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An important consequence of reaction force analysis is that it shows that an
activation energy is composed of two components, representing the energies required
in the reactant (preparative) region of the process and the first zone of the transition
to products. This can provide considerable insight into what is happening during the
activation portion of the process, especially into the roles of any external agents such
as solvents, catalysts, inhibitors, etc.

The full potential of the reaction force as a rigorously defined approach to
analyzing chemical and physical processes has yet to be realized. It continues to
be explored.
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22.1 INTRODUCTION

One of the most important questions of chemical reactivity is what happens during
chemical reactions. This question can be understood in reaction dynamical experi-
ments and calculations simulating them. In the theoretical description, the motion of
atoms is followed in time. The motion of atoms depends on what kind of forces act
between the atoms at various relative arrangements, which is determined by the
potential energy surface (PES) of the reaction. This is a multidimensional surface
(hypersurface), giving the energy as a function of the 3N coordinates of the N atoms
participating in the reaction. If the conditions ensuring the applicability of the Born
Oppenheimer approximation are valid, then the forces acting between atoms do not
depend on the velocities of the atomic nuclei, and the potential energy is given by the
solution of the electronic Schrödinger equation at each molecular arrangement.
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An example of a potential surface of a reacting system in Figure 22.1. This kind
of plot shows the potential energy for a special (collinear or bent) arrangement of
atoms during a bimolecular reaction in a triatomic system:

Aþ BC ! ABþ C (22:1)

The full multidimensional surface cannot be visualized in its entirety. Even in
the simplest case, a triatomic system, there are three independent coordinates
specifying the arrangement of atoms. However, in three-dimensional space avail-
able for us, one axis is needed to show the energy, and only two dimensions are left
for the independent variables. In fortunate cases, this is satisfactory to understand
the topology of the PES, but in general, we need to constrain our attention on
the qualitatively important features. The main features of a potential surface can be
recognized in Figure 22.1, where the potential energy is plotted against the A B
and B C distances. The reactant limit corresponds to large reactant separation (rAB)
and small B C distance; here, the relevant section of the reactants’ potential
surface around their equilibrium geometry is visible, in this simple case, that of
the BC vibration. The same characterizes the product limit (large rBC, small rAB).
If rAB decreases from the reactant limit or rBC from the product limit, the potential
does not change until the reactants start to ‘‘notice’’ each other. This way the
reactant valley and the product valley are formed, which are connected. At smaller
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separation, the valleys bend and their bottom increases. (Note that in unimolecular
reactions the partners never go far away and the valleys are reduced to basins
closed on all sides.) When the reactants (or products from the other side) are close
together, the potential energy at the bottom increases, and, along the line corre-
sponding to the bottom of the valley passes through a maximum. The line traced by
the coordinates corresponding to the bottom of the valley is called minimum energy
path (MEP). In topological terms, the maximum along the MEP corresponds to a
saddle point (marked as SP in Figure 22.1), which is a maximum along the
direction of the MEP and a minimum along that perpendicular to it (in multi-
dimensional systems along all other coordinates perpendicular to the MEP) akin to
a mountain pass separating two valleys. The structure corresponding to the saddle
point is called transition structure (TS). Reaction occurs if the atoms in real three-
dimensional space move along a path that corresponds to motion along the MEP.
Obviously, the shape of the potential surface (height, curvature) at the saddle point
and its neighborhood is the bottleneck for the reaction, as this forms a barrier
for the system that needs to be passed when going from the reactant valley to the
product valley. The rate of the reaction can be approximately calculated in
the following way. Let us assume that there is a (multi)dimensional dividing surface
that separates the reactants from products, in the sense that if the system passes this
surface from one side to the other, reaction occurs. A ‘‘good’’ dividing surface is such
that if the system passes it, it will never come back (point of no return). Because of this
property, the dividing surface is called transition state (for which also the TS abbre-
viation is used), which corresponds to a whole set of geometrical arrangements that are
in-between the reactant and product limits. The rate of reaction is given by the flux
through this surface which can be calculated using the principles of statistical mech-
anics. This method is called transition-state theory (TST). In variational TST, the
location of the dividing surface is varied, treating the ensemble of reacting molecules
either as a microcanonical or a canonical one. As a first approximation, a plausible
location for the dividing surface is a plane perpendicular to the MEP at the saddle
point, but this is only approximate because, in general, it is not a point of no return
(this version of the theory is called conventional TST). In this case, the transition state
is located at the TS (note that although both are abbreviated as TS, the two are
conceptually different, the former being a dynamical and the latter a topological
concept). Chemists tend to think in terms of conventional TST and created the smart
combination transition-state structure (see e.g., Ref. [1]).

To understand the factors determining the reactivity in a system, one needs to
know what determines the shape of the potential surface. Note that in the discus-
sion of reactions in terms of the shape of the potential surface, we often say what
happens ‘‘first’’ and what happens later when we walk along the MEP, visualizing
that, as the reaction proceeds, the system moves from the reactant side to the
product side strictly along the MEP. It should be noted that this has nothing to do
with the actual temporal progress of a reaction as the point representing the system
never follows strictly the MEP, it can make turns and back-and-forth oscillations.
When time is used in these discussions, one should keep in mind that it only means
the position along the MEP.
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22.2 CALCULATION OF BOND ORDER AND VALENCE INDICES

In a chemical reaction, some bonds are broken and some new ones are made. Bond
breaking requires energy, whereas during bond formation, energy is released. This is
what gives rise to the barrier along the MEP. In elementary chemical reactions, the
breakage of the ‘‘old’’ bond and formation of the ‘‘new’’ one take place simultane-
ously. As a consequence, the energy to be invested is not as high as that needed to
completely break a bond. Chemists would like to understand how the properties of
atoms influence the energetic consequences of the changes of chemical bonds. A
very useful tool for this purpose is to follow the degree of bonding between the
atoms of the system changes during the reaction. The degree of bonding can be
measured by the multiplicity of a bond, called bond number if integer, or bond order
if fractional [2,3]. The bond order cannot be guessed by chemical intuition for a
geometrical arrangement intermediate between reactants and products. Fortunately,
it can be calculated from ab initio wave functions.

In this chapter, we use the definitions of bond order and valence indices provided
by Mayer [4 6] (for a historical account, see Ref. [6a] and for other types of bond
indices, see Ref. [6b]). In terms of electronic structure theory, they represent an
extension to Mulliken’s population analysis. The bond order is defined as

BAB ¼
X
m2A

X
n2B

(PS)mn(PS)nm þ (PsS)mn(P
sS)nm

� �
(22:2)

and the valence of an atom is

VA ¼
X
B 6¼A

BAB (22:3)

In open-shell systems, the sum of the bond orders of all bonds in which atom A
participates differs from the valence defined according to Equation 22.2; the differ-
ence accounts for the ‘‘unsatisfied’’ bonding capability of the atom, the free valence,
expressed as

FA ¼
X
m,n2A

(PsS)mn(P
sS)nm, (22:4)

then, the total valence of atom A is

VA ¼
X
B 6¼A

BAB þ FA (22:5)

The calculation of the indices requires the overlap matrix S of atomic orbitals and
the first-order density (or population) matrix P (in open-shell systems in addition the
spin density matrix Ps). The summations refer to all atomic orbitals m centered on
atom A, etc. These matrices are all computed during the Hartree Fock iteration that
determines the molecular orbitals. As a result, the three indices can be obtained
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essentially at no cost after the self-consistent field (SCF) calculation because the few
matrix multiplications and summations involved are done extremely fast.

Note that the bond order index defined by Mayer accounts for the covalent
contribution to the bond (this is why of late it is often mentioned as ‘‘shared
electron pair density index,’’ SEDI). As such, the index cannot be expected to
produce the integer values corresponding to the Lewis picture if a bond has a
significant ionic contribution. The bond order index defined in this way measures
the degree of correlation of the fluctuation of electron densities on the two atoms in
question [7].

One has to note that the formulas are based on the atomic orbital basis set used in
the SCF calculation. The atom is, in a sense, identified by its nucleus and the
ensemble of atomic orbitals centered on it. (This is often expressed as the ‘‘Hilbert
space description’’ of an atom [8], and the analysis of properties is referred to as
‘‘Hilbert space analysis.’’) These basis sets are centered on the atoms and are
developed so that they could describe, in the most efficient way, the molecular
orbitals in hopefully all molecules of the selected atom. As a consequence, they
differ from the traditional s, p, d orbitals, which are so fruitfully used in the
interpretation of bonding. One complication that arises from this difference is easy
to visualize as follows. The atomic orbitals in a good basis set have a significant
contribution from diffuse constituents, which are necessary to get good molecular
orbitals, but it is hard to assign chemical content to them. The diffuse orbitals have
significant amplitude at large distances from the nucleus of the atom they are
centered on, even in the neighborhood of the other nuclei in the molecule. From
Equation 22.1, one can see that the bond order index contains contributions from
different atomic orbitals. The diffuse orbitals do contribute to the electron density in
the close neighborhood of another nucleus they penetrate, which clearly belongs to
that atom, but this contribution is assigned to their ‘‘mother’’ atom (as if they ‘‘stole’’
electron density from another atom). If the mutual contribution of atoms to each
other’s internal ‘‘affairs’’ is not balanced, the bond order index will also be distorted.
Experience shows that the most reasonable bond order values can be obtained if one
uses a basis set that is close to chemists’ way of thinking. Such basis sets are minimal
basis sets in which the atom is assumed to have as many s, p, d, . . . type orbitals as
are needed to accommodate all electrons and at the same time assure that the basis set
is spherically symmetric. (This means that if a subshell is occupied by any number of
electrons, all orbitals belonging to the subshell has to be included this guarantees
spherical symmetry.) The prototype and most generally used version of such basis
sets is the STO-3G set designed by Pople and coworkers [9,10], which was proposed
to be used in the calculation of bond order and valence indices [11].

Tables 22.1 and 22.2 show how the general principles sketched above are
manifested in real systems. The C C and C H bond order indices and the C and H
valence indices were calculated for ethane, ethene, ethyne, and benzene at the
HF=6-31G* geometry with various basis sets. The bond order of the C H bond is
close to unity in all cases. The carbon carbon bonds have bond orders close to one,
two and three in ethane, ethene, and ethyne, respectively. In benzene, all C C bonds
have the same bond order, which is close to 1.5. Note that definition (Equation 22.1)
yields nonzero bond orders between nonbonded atoms also, and in certain cases,
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small negative values are also obtained, but no chemical meaning is to be assigned to
such values. Also, note that it does not make sense to consider and present bond
orders with many-digit accuracy. Two digits beyond the decimal point are accurate
enough in the study of reactions and in the analysis of special structures. Three digits
can be used if a tendency is to be presented in a series of similar systems or reactions.
More ‘‘accurate’’ values do not make sense for two reasons. Firstly, the value can
change more than 0.0001 by a geometry change of 0.001 Å. Secondly, and more
importantly, we are calculating a qualitative index, which is not the expectation value
of an operator, but the product of a reasonable but ad hoc definition. This property of
bond order and valence indices explains why they have to be treated in a way
different from physical quantities like molecular geometry, relative energies, vibra-
tional frequencies, etc. One can compare this situation to that of Hückel theory vs.
ab initio calculations: with the former, nice clear pictures of bonding, reactivity
tendencies, etc. can be generated; in the latter, the simplicity is lost in the wealth of
data. The physical properties are the better the closer we approach the accurate
solution of the molecule’s Schrödinger equation. In the regular linear combination of

TABLE 22.1
Bond Order Indices Calculated for Prototype Hydrocarbon Molecules
Calculated from Hartree–Fock Wave Functions at the 6-31G* Equilibrium
Geometry

Molecule C2H6 C2H4 C2H2 C6H6

Bond C–C C–H C–C C–H C–C C–H C–C C–H

STO 3G 1.01 0.98 2.02 0.98 3.00 0.98 1.45 0.94
6 31G 0.92 0.96 1.95 0.96 3.43 0.82 1.45 0.94
6 31G* 0.97 0.96 1.98 0.96 3.19 0.87 1.45 0.96

6 31G** 0.97 0.98 1.97 0.98 3.19 0.89 1.82 0.77
6 31þG* 0.83 0.96 2.18 0.93 3.67 0.76 1.87 0.74
6 31þþG** 1.01 0.97 2.26 0.93 3.62 0.78 2.08 0.65

TABLE 22.2
Valence Indices Calculated for Prototype Hydrocarbon Molecules Calculated
from Hartree–Fock Wave Functions at the 6-31G* Equilibrium Geometry

Molecule C2H6 C2H4 C2H2 C6H6

Atom C H C H C H C H

STO 3G 3.97 1.00 3.98 0.98 3.99 0.98 3.86 1.00
6 31G 3.76 0.93 3.84 0.96 4.29 0.82 3.91 0.93

6 31G* 3.82 0.93 3.86 0.96 4.08 0.87 3.92 0.93
6 31G** 3.86 0.95 3.89 0.98 4.12 0.89 4.42 0.95
6 31þG* 3.64 0.92 4.05 0.93 4.55 0.76 4.59 0.92
6 31þþG** 3.90 0.95 4.19 0.93 4.53 0.78 4.87 0.95
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atomic orbital molecular orbital (LCAO MO) approach, this is done in terms of
basis sets that are designed to represent the most ‘‘useful’’ dimensions of an abstract
infinite-dimensional space (the ‘‘unit vectors’’ of the Hilbert space), and not to reflect
qualitative, chemical properties. A consequence is that it does not make too much
sense to search for ‘‘converged’’ bond order and valence indices as can clearly be
seen in Table 22.1: the ‘‘convergence’’ of the indices with the increase of the quality
of the basis set is erratic and changes from molecule to molecule. One can see that
the minimal STO-3G basis set provides the most reasonable values, which is also
observed in other systems.

One way of getting rid of distortions and basis set dependence could be that one
switches to the formalism developed by Bader [12] according to which the three-
dimensional physical space can be partitioned into domains belonging to individual
atoms (called atomic basins). In the definition of bond order and valence indices
according to this scheme, the summation over atomic orbitals will be replaced by
integration over atomic domains [13]. This topological scheme can be called ‘‘physi-
cal space analysis.’’ Table 22.3 shows some examples of bond order indices obtained
with this method. Experience shows that the bond order indices obtained via Hilbert
space and physical space analysis are reasonably close, and also that the basis set
dependence is not removed by the physical space analysis.

The disadvantage of the physical space analysis is that the calculation of atomic
basins and the subsequent integration is not always straightforward, and definitely
requires much more time than the Hilbert space analysis (recall the latter is instan-
taneous). Our experience shows that the latter analysis does provide satisfactory
information so that it is not necessary to perform the physical space analysis.

The calculation of Mayer bond orders and valence indices is straightforward
using the codes that Mayer has made available on the Internet [14]. The formulas
have been built into several electronic structure codes, like HONDO [15], Gaussian
03 [16] (note that in Gaussian only the closed-shell formulas have been coded), ADF
[17], and some versions of GAMESS [18].

Formulas 21.1 through 21.3 are designed for Hartree Fock wave functions.
There are some attempts to define similar indices using wave functions obtained
via methods including electron correlation [19]. Similarly, to the situation with
respect to basis set improvement, the results based on correlated wave functions do
not necessarily make the qualitative picture of bonding easier to understand.
An exception is when there is a significant nondynamical correlation in the system,

TABLE 22.3
Bond Order Indices Calculated Using the Topological Definition

Molecule C2H6 C2H4 C2H2 C6H6

Bond C–C C–H C–C C–H C–C C–H C–C C–H

6 31G* 1.013 0.966 1.984 0.972 2.885 0.953 1.399 0.963
6 31þþG** 0.987 0.966 1.881 0.984 2.860 0.977 1.386 0.977

Source: Ángyán, J.G., Loos, M., and Mayer, I. J. Phys. Chem. 98, 5244, 1994.
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i.e., a multideterminant wave function is required to characterize the bonding in the
molecule qualitatively correctly.

22.3 ANALYSIS OF SIMPLE REACTIONS

Equipped with these tools one can investigate how bond orders change in a simple
chemical reaction like dissociation of the H2 molecule. Note that this type of
calculation requires spin polarization, i.e., unrestricted Hartree Fock or multiconfig-
uration treatment. In Figure 22.2 the bond order and the free valence of the atoms as
well as the energy in the H2 molecule are plotted as a function of the bond length,
obtained with the Hartree Fock method and the STO-3G basis set. The restricted
Hartree Fock wave function is the only solution at small distances; the unrestricted
solution splits off at a bond length of about 1.2 Å. Accordingly, the bond order is
unity in the neighborhood of the equilibrium bond length, 0.74 Å, and decreases as
the bond is stretched, as one expects. The decrease first is observed at a separation of
1.2 Å, where the UHF solution first appears, and the bond order approaches zero
slower and slower, just as the energy converges to its asymptotic value. Note that the
bond order does not increase above 1 if the bond is compressed. This is not
surprising as the two electrons are all involved in the bond, and a single bond is
made by one pair of electrons. (Actually, the bond order that can be calculated using
Mayer’s definition for diatomic molecules sooner or later decreases when the bond
length is reduced because larger and larger parts of the atomic orbitals go not only
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near but even beyond the other nucleus, and contribute to the electron density there.)
The development of the free valence is complementary to that of the bond order
index, as during the whole process, the total valence of the two atoms, in this case,
the sum of the bond order and the free valence index, is constant, unity at the
(U)HF=STO-3G level. At the equilibrium bond length, the two atoms have zero
free valence, indicating that the electrons are all ‘‘occupied’’ in bonding. With
increasing bond length, nonzero free valence appears on both atoms and at the
limit of two dissociated atoms, both have a free valence of unity. The spin density
localized on each atom changes analogously.

Dissociation of polyatomic molecules shows a slightly different picture, as can
be seen for the C C rupture in ethane in Figure 22.3. The decrease of the bond length
is much faster and follows more closely the change of energy. In the H2 molecule,
the bond order is still around 0.5 at a nuclear separation of 1.5 Å when in terms of
bond energy, the molecule has dissociated to as much as 75%. The behavior of other
diatomic molecules is similar. The reason for the slow decrease of the bond order in
diatomic molecules is that the bonding electrons necessarily remain between the two
atoms, as there is no other bond they could move to. In dissociating polyatomic
molecules and especially during chemical reactions, the electrons originally partici-
pating in a chemical bond can be shifted into other bonds and the bond order index
can follow more closely the actual status of bonding. In turn, for the same reason,
when the bond is compressed in polyatomic molecules, the bond order index can
increase above unity even for formally single bonds.

In a bimolecular reaction, at least two bonds change simultaneously. Figure 22.4
shows how bond orders and valences change in the reaction of methane with a H
atom (shown in the deuterium-labeled form that can be studied experimentally)
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CD3H
0 þ H ! CD3 þ H0H (22:6)

The figure shows the indices along the MEP of the reaction. The abscissa shows the
distance along the MEP measured in both directions from the saddle point. One
can see that the bond order of the breaking C H0 bond decreases, that of the forming
H0 H bond increases at the same pace as one moves along the MEP from the reactant
to product direction. Note that at the saddle point the bond order of the C H0 and H H0

bonds is 0.3 and 0.65, respectively. This means that this reaction is not ‘‘halfway’’
between reactants and products at the saddle point, the TS is product-like: both the
breakage of the old bond and the formation of the new bond is roughly 70% complete.
The free valence of H decreases as the atom gets more and more involved in bonding,
while VC increases. All these processes take place at a harmonious parallel pace.
A consequence of this concerted bond development along the MEP is that the H0 atom
does not exhibit any significant free valence during the reaction, its bonding capability
remains saturated along the MEP. The figure shows that the sum of the bond orders of
the bonds which atom H0 forms, i.e., of C H0 and H H0, remains constant along the
MEP, and is essentially unity. This is called the principle of bond order conservation.
Bond order is found to be conserved in many H atom transfer reactions, not only in
bimolecular, but also in intramolecular reactions like 1.5 H atom transfer isomeriza-
tion of alkyl radicals, as well as in numerous other reactions. The principle was
heuristically formulated in the 1960s before bond orders were possible to get from
molecular wave functions, and some semiempirical methods of generating potential
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surfaces: the bond energy bond order (BEBO) method [20 22] and the related bond
strength bond length (BSBL) method [23,24] were formulated based on it.

22.4 MODELING THE BEHAVIOR OF A SERIES OF REACTIONS

What we noticed above, namely, that the TS, while being intermediate between the
reactants and products may resemble one of them, makes bond orders a useful tool
to judge whether a TS is reactant- or product-like. The question whether a TS
resembles more a reactant or the product is important when studying a series of
reactions. Understanding tendencies manifested in a series of related systems is one
of the most important tasks in chemistry. A simple model illustrates how one can
get information on the tendencies expected for a series of reactions if the parameter
characterizing the ‘‘location’’ of a member reaction in the series is the reaction
enthalpy. Utilizing the principle of bond order conservation and the correlation of
bond energy and bond order, one can approximately determine the potential profile
along the MEP and locate the barrier, the maximum on this profile. The parameters
are changing in the series of reactions, and, as a consequence, the location and
height of the barrier is shifted. The model [25] starts from the principle of bond
order conservation for an AþBC!ABþC type reaction:

BAB þ BBC ¼ 1 (22:7)

At the beginning, BAB¼ 1 and BBC¼ 0. As the reaction progresses (i.e., we walk
along the MEP from the reactant limit to the product limit), BAB decreases and
BBC increases. The smaller the bond order is the less strong is the bond. Various
assumptions can be made about the BEBO correlation, based on the comparison of
experimental binding energies and bond orders [20,21] or by investigating the
change of bond order and the energy with the variation of bond length of a
diatomic molecule in ab initio calculations [25], the most generally valid being

VXY ¼ �DXYB
p
XY (22:8)

where
VXY is the energy of the X��Y bond
DXY is the binding energy of the diatomic molecule at its equilibrium geometry
BXY the bond order of the stretched bond

The exponent p varies [25] between 1 and 2.
If one assumes that the energy change due to the A��C interaction is much smaller

than that due to the breaking and forming of a bond, the energy along the MEP will
be the sum of the contributions from the A��B and B��C bonds, the zero of energy
being set to the reactant level:

VMEP ¼ DBC � DABB
p
AB � DBCB

p
BC (22:9)

In the experimental studies of series of reactions, one reactant is generally held
constant and the other is varied. The model is applicable if the dominant change
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due to changing a reactant is the dissociation energy of the breaking or forming bond.
The change of the dissociation energy implies that the reaction heat changes.
Figure 22.5 shows how the profile looks, for several values of the energy difference
DBC DAB. The shape of these curves is concave everywhere, in contrast to the
commonly seen bell-shaped picture where the potential energy along the MEP first
increases slowly, then speeds up where the interaction becomes strong, and slows
down again when passing the barrier. The reason is that our variable, the bond order,
differs from the bond distance type geometrical variables. The bond order, as we
shall see later, is exponentially related to the length of the bond, i.e., when the bond
order changes by 0.01 in the left side of Figure 22.5, the bond length changes by a
large amount, while in the middle part, the same change of the bond order is
connected to a much smaller bond length change (for a more detailed discussion
of the BO BL correlation, see the section near the end of this chapter). If the plot
is converted to bond length coordinates, we get back the usual bell shape. The
maximum of each curve in Figure 22.5 corresponds to the saddle point on the PES,
and is shifted from left to right if the reaction energy is increased from very negative
(very exothermic limit) to large positive values (very endothermic limit). For very
exothermic reactions BBC at the maximum is small, and, accordingly, BAB¼ 1 BBC

is close to one, which means that the formation of the B C bond and the rupture of
the A��B bond is in an early stage: the TS is reactant-like. At the same time, the
barrier is low. The opposite is true for the very endothermic limit: the TS is product-
like, and the barrier of the AþBC reaction is high. These two statements conform
very well with Hammond’s principle [1,26], which states that the TS resembles more
the structure that is energetically closer to it. It is interesting to see how the height of
the barrier changes as a function of the reaction energy. This is shown in Figure 22.6.
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The curve is close to linear in both, the very exothermic and very endothermic limits,
which can be connected to two general principles of physical organic chemistry. One
of them is the linear free energy relationship, exemplified by the Evans Polanyi rule
[27], which states that there exists a linear correlation between the activation energy
(which is closely related, but not identical, to the barrier height) and the reaction
enthalpy. As noted above, the barrier height vs. reaction energy curve is linear at the
two extremes, so that one can expect that a linear free energy relationship can be
observed for those a series of reactions, which are all either very exothermic or very
endothermic, but not for an entire series covering the whole reaction energy range. A
similar conclusion is obtained from the application of the Marcus theory to this kind
of reactions [28]. The other principle is the reactivity selectivity principle [29]
according to which large reactivity is characterized by small selectivity and vice
versa. In terms of reaction rates, it can be worded as: in a series of reactions, there is a
large difference between the rates of neighboring members of the series if the
reactions are slow, while if the reactions are fast small rate difference can be
observed between two members of the series separated by the same reaction heat
difference. It is exactly what one can see in Figure 22.6: the slope of the curve (which
determines the difference between two neighbors) is small on the exothermic side
and large on the endothermic side. This means that if two very exothermic reactions
are separated by a reaction heat difference of 1 kcal=mol, the barrier height differs
much less than when both reactions are very endothermic. If the barrier heights
are small, the activation energies are also small, so that the reaction rates are high.
In other words, the reactivity is large, the rate difference is small. On the other end
of the series, the slope of the barrier height reaction heat curve is large, the barrier
height itself is also large; the rate is small and the rate differences are large.
The simple model based on bond orders reproduces a number of experimental
observations.
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FIGURE 22.6 The height of the barrier along the MEP in a series of reactions as a function
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22.5 MULTIBOND REACTIONS

The most exciting application of bond order indices concerns the description of
chemical reactions involving the simultaneous change of several bonds. An example
is the unimolecular decomposition of ethanol, which can happen at high temperature
or IR multiphoton excitation of the molecule. Out of the possible dissociation
channels, the lowest barrier characterizes the concerted water loss of the molecule,
yielding ethene and H2O [30].

Scheme 22.1 shows the bond orders in the reactant, the TS and the products,
calculated at the B3LYP=6-31G* geometry. Note that this geometry is essentially the
same as that obtained with complete active space multiconfiguration SCF calcula-
tions. In ethanol, all bonds are single, and the calculated bond orders are very close to
unity. Concerning the products, we have already seen that the bond order of the
carbon carbon double bond is very close to 2. Water has two O H bonds both with
a bond order close to 1. In the TS, the O atom is separated from the carbon atom it
was connected to in ethanol by about 1.88 Å, the H atom is at 1.45 Å from the other
carbon, the length of the newly formed O H bond is 1.25 Å. The bond orders of the
bonds involved in the reaction are: C O 0.57, C C 1.27, C H 0.43, and O H 0.47.
At first glance, it is not easy to see whether this TS is reactant- or product-like. One
can, however, bring the progress of the formation=transformation of the bonds on
equal footing by calculating the progress variable [11] which shows the degree of
completion of the formation, rupture or bond transformation at the TS:

XTS
AB ¼ BTS

AB � BR
AB

BP
AB � BR

AB

(22:10)

where BR
AB, B

TS
AB, and B

P
AB denote the bond order of the A B bond in the reactant, TS,

and the product, respectively. These indices are: C O 0.58, C C 0.75, C H 0.44, and
O H 0.50. This means that the transformation of the C C bond from single to double
is about 75% complete and the rupture of the C O bond, the formation of the O H
bond and the rupture of the C H bond is somewhat in a less advanced stage at the
TS, around 50%. It implies that in the TS the degree of completion of some bonds
differs from that of some others, and the TS can be considered to be neither reactant-
nor product-like. This is not uncommon in multibond reactions.
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The definition of the progress variable can be extended to any point along the
MEP, and it can be used to decide more precisely the progress of the development of
bonds, both, with respect to the energetics and even with respect to each other. As an
example, Figure 22.7 shows the potential energy in the 1,5-H atom transfer reaction
in the 1-pentyl radical, which takes place via a six-member cyclic TS. The two
curves correspond to the energy plotted against the progress variables calculated
using the definition (Equation 22.10) for the breaking C1 H and for the forming C2 H
bond. In principle, the two curves should coincide, but the bond orders do not develop
perfectly in-phase, which causes the slight asymmetry. From this plot, one can see the
‘‘natural’’ accuracy of tendencies that can be achieved via the calculation of bond
orders. In the light of the discussion on the semiquantitative nature of bond orders, the
slight mismatch between the forward and backward progress of an identity reaction is
not surprising and has to be accepted as an intrinsic property.
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As another example, a detailed analysis of the isomerization reactions in the
C2H2O system [31] (ketene ethynol oxirene formyl-methylene) can be found in
Ref. [11], in terms of bond orders calculated along the MEP of the possible reactions.
Here, we present two cases, representing two typical scenarios, a 1,2- and a 1,3-H
atom transfer reaction of ethynol. As can be seen in Scheme 22.2, in the first reaction,
the alcoholic H atom moves from the O to the neighboring carbon atom, in the
second to the terminal carbon. Both reactions are concerted: there is a single barrier
separating the reactants from products on the MEP of both reactions. From the
analysis we shall see, however, that the two differ in the microscopic mechanism:
the 1,2-H atom transfer is synchronous, the 1,3-H-transfer is asynchronous. The
meaning of this term will become clear soon. Shown in Figure 22.8 are the bond
orders of the C C, C H, and O H bonds as a function of the angle that characterizes
best the change of the molecular geometry during the two reactions, namely, the
H O C angle. (From the point of view of the nature of the TS and the progress
of reaction the actual choice of the geometrical parameter is not important as long
as all bond orders are plotted against the same coordinate.) During the 1,2-H
atom transfer from the O atom to carbon C1 the O H bond breaks, a new C1 H
bond is formed and the triple carbon carbon bond of ethynol turns into a
single bond. The terminal carbon C2 is tetravalent at the beginning and bivalent at
the end: in singlet carbenes, in general, carbon can form two s bonds, the other two
valence electrons form a singlet pair and do not participate in bonding. As the left
panel of Figure 22.8a shows, these processes take place simultaneously, each of them
being in the same stage along the MEP. In the 1,3-H atom transfer, in addition to the
breakage of the O H bond and the formation of a new C2 H bond, the triple C1 C2

bond is degraded from triple to double, and the C O bond is converted from single
to double. In the right panel of Figure 22.8a, one can see that during the reaction,
the O H2 rupture takes place earlier than the build-up of the C2 H2 bond. The triple-
to-double C C conversion happens in phase with the O H rupture, and, with a small
delay with respect to these, the C O single to double conversion takes place in phase
with the formation of the C2 H bond. Although the old bond that connected the H
atom which is transferred breaks earlier than the new C H bond is formed, the
bonding capacity of H remains saturated during the reaction. The price for this is that
it forms a temporary bond with the central C2 atom it passes near by. This is not
surprising: the C2 H2 distance is almost constant along the central part of the PES, and
is shorter than either the breaking or the forming bond. The fact that the development
of bonds in this reaction is not in the same phase as the reaction progresses is referred
to as nonsynchronicity, a term proposed by Dewar [32]. The progress variable defined
earlier makes the visualization of nonsynchronicity easy. In Figure 22.8b, the progress
variables of the bonds are plotted against the same reaction coordinate as in
Figure 22.8a. In the left panel the curves showing the progress of bond transformation
run close together, while in the ethynol ketene reaction (right panel) two distinct
groups are obtained, representing two groups of bonds developing together. In another
representation the potential energy can be plotted as a function of the progress variable
of various bonds (as shown in Ref. [11]). The barrier will be at an early position on
this plot for the group of bonds that change in the first stage of the reaction and at a
late position for those that are completed in a later phase of the reaction.
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22.6 CORRELATION BETWEEN BOND ORDER
AND BOND LENGTH

Bond order, as the index showing the degree of bonding between two atoms, is a
measure of the strength of the interaction between them. The larger the bond order is,
the stronger the bond is. On the other hand, the strength of the bond is reflected in the
length of the bond: the stronger the bond, the shorter it is expected to be, and, in fact,
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of the transformation of the bonds involved in the isomerization reaction of ethynol to formyl
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can be observed be so. Obviously, there must be a correlation between the length and
the bond order of a bond. The existence of such a correlation was so clear already in
the early days of quantum chemistry that Pauling empirically derived a correlation,
and defined the quantity called chemist’s bond order via

nXY ¼ exp �b RXY � R0
XY

� �� �
(22:11)

where RXY and R0
XY are the actual and the equilibrium single bond distances for the

X Y atom pair. Definition (22.2) enables us to calculate bond orders for a variety of
molecules in a variety of reacting systems. Figure 22.9 shows the correlation for C C
and C H bonds taken from the reactants, products, TSs and points along the MEP
of many reactions. The good correlation between the ab initio bond orders and
Pauling’s formula indicate that an exponential correlation is rather reasonable. This
helps to understand why chemist’s bond orders can be used so successfully in many
applications, like in the BEBO method mentioned earlier and in other approximate
methods for constructing potential surfaces [33], in generating interatomic force
fields in modeling surface processes, as well as in the deciding which atoms are
connected when creating a visual image of a molecule.

22.7 SUMMARY

Bond order and valence indices are easy to calculate from wave functions generated
in computational chemistry. The examples presented in this chapter indicate that the
little computational cost can bring valuable information about changes in bonding
during chemical reactions. Bond order indices help us to characterize the reactant- or
product-like nature of the TS of reactions, follow the progress of the conversion of
bonds, and find out whether the reaction is synchronous or not.
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23.1 INTRODUCTION

Conceptual density functional theory (DFT) [1 7] has been quite successful in
explaining chemical bonding and reactivity through various global and local reactivity
descriptors as described in the previous chapters. The Fukui function (FF) [4,5] is an
important local reactivity descriptor that is used to describe the relative reactivity of
the atomic sites in a molecule. The FF [4,5] is defined as

f (~r ) ¼ [dm=dv(~r )]N ¼ @r(~r )=@N½ �v(~r ) (23:1)

where r(~r ) is the density of an N-electron system and the chemical potential and
external potential are denoted m and v(~r ), respectively. As proposed by Yang and
Mortier [6], the condensed FFs, { f ak }, may be expressed using a finite difference
method, giving:

fþk ¼ qk(N þ 1)� qk(N) for nucleophilic attack (23:2a)

fk ¼ qk(N)� qk(N � 1) for electrophilic attack (23:2b)
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f ok ¼ qk(N þ 1)� qk(N � 1)½ �=2 for radical attack (23:2c)

where qk is the electronic population of atom k. The electronic populations of the
Nþ 1-electron and N� 1-electron species are computed at the optimized geometry
of the N-electron molecule, so that the condensed FF measures the change in atomic
population at fixed molecular geometry.

23.2 LOCAL REACTIVITY PROFILES

In this chapter, we study the variation in the FF during asymmetric stretching and
bending in ammonia, internal rotation in H2O2, and along the intrinsic reaction
coordinate (IRC) of three prototypical examples of chemical reactions, viz., (1) a
thermoneutral reaction, such as a symmetrical gas-phase SN2 type nucleophilic
substitution:

Fa þ CH3 � Fb ! Fa � CH3 þ Fb (23:3)

(2) an endothermic reaction

HCN ! CNH (23:4)

and (3) an exothermic reaction

CH3Fþ H0 ! CH3 þ H0F: (23:5)

In Chapter 22, the variation in bond order is described. In order to understand
the change in local reactivity during vibration, rotation, and reaction, the energy
profiles and transition states (TSs) of the aforementioned reactions are determined by
DFT calculations (using B3LYP=6 311þG(d,p) and the Gaussian 03 and 98 [8]
programs). After the TS structures for Reactions 23.3 through 23.5 were determined,
the minimum energy path (MEP) was constructed using Fukui’s steepest-descent
method from the TS [9]. All along the MEP, the condensed FFs [6], f ak , were
computed using Equation 23.2. The atomic populations are calculated using the
Mulliken population analysis (MPA) [10] scheme. For reactions 23.3 through 23.5,
respectively, the bond making and bond breaking processes are breaking of C Fb,
H C, and C F bonds and making of Fa C, N H, and F H0 bonds.

Figure 23.1 depicts the optimized structures of NH3 and H2O2. The asymmetric
stretching and bending modes of NH3 are studied. For this purpose, the distortions in
bond length (DR) and bond angle (Du) are performed along the symmetry modes as
described by Pearson and Palke [11]. The profiles of the energy and the FFs for
the stretching and bending modes are presented in Figures 23.2 and 23.3, respect-
ively. Due to symmetry, all H-atoms are equally reactive at the equilibrium (DR¼ 0,
Du¼ 0) configuration. Reactivity of H3 and H4 (alternately N H3 and N H4

bond lengths are increasing and decreasing) varies in the opposite sense during
the asymmetric stretching whereas that of N and H2 remains more or less
constant. For the bending mode, f þk and fk show opposing trends for all three
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H-centers. Moreover, both, fþ and f of H3 and H4 exhibit changes in the opposite
directions.

As shown in Figure 23.4, the energy profile for internal rotation in H2O2 [12] has
a local maximum at v¼ 08, a local minimum at v¼ 608, and a global maximum at
v¼ 1808. The susceptibility to electrophilic attack at the O and H centers does not
change appreciably. A global maximum (minimum) is observed for fþH ( fþO ) at v¼ 08
and a local maximum (minimum) is observed for fþH ( fþO ) at v¼ 1808. While
fþH > fþO at v¼ 08, fþO > fþH at v¼ 1808. This crossover, however, does not take
place exactly at v¼ 608.

Figure 23.5 shows the profiles of fFa and fFb for the thermoneutral reaction
(Reaction 23.3) as a function of the IRC, the distance along the MEP. In this
reaction, the nucleophile Fa first forms a strongly electrostatically bound complex
in which the bonds in CH3Fb are intact, and a similar complex is formed between the
products. These complexes are taken to be reactants and products in the figure. The
profiles of bond order [13] and the energy are also provided. The maximum energy
structure (IRC¼ 0) corresponds to the TS. The effectiveness of electrophilic attack
(i.e. nucleophilicity) at the Fa (Fb ) center gradually decreases (increases) and passes
through an inflection point around the TS and then levels off. The reactivity of Fa is
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FIGURE 23.1 Optimized geometries of the NH3 and H2O2 molecules.
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the maximum before the reaction and decreases in the presence of CH3 Fb
due to the incipient formation of a bond with the carbon atom. In the course of the
reaction, the reactivity of Fb increases because it is in the process of breaking a bond

0.40

0.35
Energy

f +
Hf +

O

f −
Hf −

O

0.30

0.25

0.20

0.15

0.10

−30 0 30 60 90
ω (degree)

120 150 180 210
−151.604

−151.602

−151.600

−151.598

−151.596

En
er

gy
 (a

u)

f− O,
 f

+ O,
 f

− H
, f

+ H

−151.594

−151.592

−151.590

−151.588

−151.586

−151.584

FIGURE 23.4 (See color insert following page 302.) Profiles of energy and FF values due
to the internal rotation in H2O2 molecule.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

−0.1
−3 −2 −1 0

IRC

Fa
− +CH3−Fb F a

−−CH3+F b
−

1 2

Energy
f Fa

+f Fb

f− F a
, f

− F b
, [

f− F a
 + 

f− F b
]

f Fb

f Fa

BO (C–Fb)

BO (Fa−C)
C

H −

H H

FbFa

3

−239.686

−239.688

−239.690

−239.692

−239.694

−239.696

−239.698

−239.700

−239.702

−239.704 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

En
er

gy
 (a

u)

Bo
nd

 o
rd

er

FIGURE 23.5 Profiles of different local reactivity descriptors (electrophilic attack) along the
path of the gas phase SN2 substitution: F�a þ CH3 Fb ! Fa CH3 þ F�b . Profiles of energy
and bond order are also shown. (Reprinted from Chattaraj, P.K. and Roy, D.R., J. Phys. Chem.
A, 110, 11401, 2006. With permission.)

Variation of Local Reactivity 327



and becoming an anion. In the TS, the reactivities of both, the Fa and Fb are
equal. Therefore, the reactivity can complement the pictures of bonding and inter-
action. The intersection point between fFa and fFb coincides with the saddle point
of this SN2 reaction and in addition to the energy and bond order profiles, it may
be used in locating the TS (IRC¼ 0). The coincidence is, however, due to symmetry
and neither bond order nor Fukui indices can be used to strictly locate the TS of an
arbitrary reaction. Like the bond order conservation [14,15], a principle of reactivity
conservation appears to exist: [7] [fFa þ fFb ] remains approximately constant
along the IRC.

The profiles of fN and fC for the endothermic reaction (Reaction 23.4) are shown
in Figure 23.6. Also superimposed are the profiles of bond orders of the C H and
H N bonds and the energy. It may be noted that the point of intersection between fN
and fC lies slightly left to the TS (toward the reactant). At the TS, the bond orders of
C H and H N bonds are closer to their values at the product limit than to the reactant
limit, i.e., the TS is product-like, in agreement with the Hammond postulate [16].
Based on this, one can expect that as both bond breaking and bond forming are more
than 50% complete, the intersection point between lines showing the progress of
these two processes lies slightly left to the TS (toward the reactant) and at the TS, it
already crossed the intersection point conforming to the product reactivity pattern.

The sum of the reactivities of the C and N atoms, [ fN þ fC ], remains more or
less conserved when compared to the variations in fN , fC , and E. The principle of
reactivity conservation, however, seems to be obeyed less well than in the thermo-
neutral reaction (Reaction 23.3).

Figure 23.7 presents the profiles of fC , fH0 , fC þ fH0
� �

, E, and the F H0 and C F
bond orders along the MEP of the exothermic reaction. The point of intersection
between fC and fH0 lies slightly right to the TS (toward the product). The net
reactivity given by [fC þ fH0 ] remains more or less conserved. For an exothermic
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reaction, the TS lies closer to the reactant in energy and geometry and the corre-
sponding intersection point lies slightly right to the TS, in accordance with the
Hammond postulate [16].

Therefore, for a thermoneutral reaction, the intersection point between the bond
order profiles for the bond making and the bond breaking processes coincides with
the TS; the reactivity of the two reacting atoms also equalizes at the TS, as can be
seen from the intersection of their FF profiles. These intersection points of the
associated bond orders and condensed FFs lie toward the left (right) of the TS for
an endothermic (exothermic) reaction, in agreement with the Hammond postulate.
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24 Reactivity and
Polarizability Responses
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24.1 INTRODUCTION

Density functional theory (DFT) [1,2] is widely applied to evaluate atomic and
molecular polarizabilities. The interested reader may consult, for instance, excellent
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books [3,4] covering the main formal and technical aspects of this topic and its main
applications to chemistry. Our purpose in this chapter is different: we emphasize
the relations between the responses of a molecule to a potential and its chemical
reactivity. After an elementary introduction to polarizabilities, we review the relations
between atomic and molecular polarizabilities and DFT reactivity descriptors [5 8],
namely the chemical hardnesses and softnesses [9 13], and the Fukui functions
[14,15]. We also present new definitions and interpretations of these concepts starting
from the first principles.

DFT reactivity theory is a perturbative approach in which the chemical descriptors
are defined for isolated chemical moieties. For this reason, they provide only an
indirect and approximative description of the actual reaction between two reagents,
which approach each other at a chemical bond distance in well-defined physicochem-
ical conditions (temperature, pressure, salt, etc.). It is legitimate to have doubts about
the relevance of the DFT descriptors for chemistry. Are the DFT descriptors really
useful? The answer to this provocative question is yes for the following reasons.

From a theoretical point of view, a knowledge of the many-body free energy
surface is required for a complete microscopic description of a chemical reaction
between reagents. By including potential of mean forces (describing the effective
interactions between the atoms at finite temperature) and a heat bath, one may, in
principle, simulate the formation and the break of chemical bonds by using a formal-
ism ‘‘à la Langevin.’’ Such a complete statistical approach is rarely feasible in
practice. Indeed, an essential ingredient of the free energy surface is the underlying
potential energy surface. Calculations of accurate potential energy surface in the
Born Oppenheimer approximation is not an easy task. A potential between atoms is
a small number compared to the value of the total energy of each isolated atom. An
accurate evaluation of differences between large total energies is a difficult numerical
task and computationally expensive. An alternative road to a direct calculation of
potential energies is the application of perturbation theory [8]. Only the properties of
isolated systems are computed. The propensity of an atom or molecular fragment to
‘‘react’’ is then evaluated by a response function, i.e., a derivative of the total energy.
These derivatives are called ‘‘descriptors of the chemical reactivity’’ [5,6] and are
discussed inmany chapters of this book. The simplest descriptor is maybe the electronic
density itself [16,17]. Another example is the molecular electrostatic potential used in
structural biology to compare ligand substrate interactions [16,17]. DFT descriptors
describe, to a certain extent, how the energy varies when a local interaction is switched
on and they help us to understand the local reactivity of large molecules.

On the other hand, there is considerable interest to quantify the similarities
between different molecules, in particular, in pharmacology [7]. For instance, the
search for a new drug may include a comparative analysis of an active molecule with
a large molecular library by using combinatorial chemistry. A computational com-
parison based on the similarity of empirical data (structural parameters, molecular
surfaces, thermodynamical data, etc.) is often used as a prescreening. Because the
DFT reactivity descriptors measure intrinsic properties of a molecular moiety, they
are in fact chemical fingerprints of molecules. These descriptors establish a useful
scale of similarity between the members of a large molecular family (see in particular
Chapter 15) [18 21].
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The (nonlocal) polarizabilities are important DFT reactivity descriptors. But,
how are polarizabilities related to chemistry? As stated above, an essential ingredient
of the free energy surface is the potential energy surface and, in particular, its
gradients. In a classical description of the nuclei, they determine the many possible
atomic trajectories. Thanks to Feynman, one knows a very elegant and exact
formulation of the force between the atoms namely [22,23]

FI ¼ ZIe
2
X
J 6¼I

ZJ
RI � RJð Þ
RI � RJj j3 þ

ð
dr0 r(r0)

r0 � RIð Þ
r0 � RIj j3

" #
, (24:1)

where
ZI is the nuclear charge
e is the elementary charge
r(r0) is the ground-state electronic density of the molecule

This famous electrostatic theorem states that the internuclear forces, which drive the
formation and breakage of bonds, are equal to the forces computed from electro-
statics. Of course, the simplicity of this formula hides a formidable difficulty: r(r0)
depends itself on the positions of all atoms, it is an unknown functional of the
electron nuclei potential vext(r):

vext(r) ¼ �
X
J

e2ZJ
r� RIj j : (24:2)

r(r0) must be evaluated for each nuclear configuration along the (classical) trajectory.
An alternative is the calculation of its variation dr(r0) for (small) atomic displace-
ments by using perturbation theory, i.e., by using the polarizability responses.

They are, in fact, two possible perturbative approaches. In the first approach, one
considers two (or any number) reagents A and B as a single system where A and B
are two fragments in interactions. The total density is r(r0)¼ rA(r0)þ rB(r0) [24].
Displacement of A relative to B is an internal mechanical deformation of the
complete system: it is related to response function of AþB. For instance, a small
displacement UK of an atom K of B will modify the force on the other atoms by

DFI ¼ ZIZKe
2 RI � RK � UKð Þ

RI � RK � UKj j3 �
RI � RKð Þ
RI � RKj j3

" #

þ ZIe
2
ð
dr0 dr(r0)

r0 � RIð Þ
r0 � RIj j3 (24:3)

where I 6¼K and in which dr(r0) is the variation of the density induced by themotion of
K. dr can be computed by perturbation [25 27]. To the first perturbation order, one has

d(1)r(r) ¼
ð
dr0

dr(r)

dvext(r0)

� �
N

dvext(r
0) �

ð
dr0x1(r, r

0)dvext(r0), (24:4)
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in which x1(r, r0) is the linear polarizability kernel [25] of the A B system. The
functional derivative in Equation 24.4 is carried out at constant electron number N.
d(1)r is the part of the density deformation, which is proportional to the perturbation.
In this approximation, one has

d(1)r(r) ¼ þe2Zk

ð
dr0x1(r, r

0)
1

r0 � RKj j �
1

r0 � RK � UKj j
� �

’ �e2ZK

ð
dr0x1(r, r

0)
r0 � RKð Þ
r0 � RKj j3

" #
� UK (24:5)

For larger displacement UK, the variation of x1(r, r0) relative to UK can be computed
by using the nonlinear polarizability kernels xn defined below [26] (see Section
24.4). Forces and nonlocal polarizabilities are thus intimately related.

In a second approach of the reactivity, one fragment A is represented by its
electronic density and the other, B, by some ‘‘reactivity probe’’ of A. In the usual
approach, which permits to define chemical hardness, softness, Fukui functions, etc.,
the probe is simply a change in the total number of electrons of A. [5,6,8] More
realistic probes are an electrostatic potential f, a pseudopotential (as in Equation
24.102), or an electric field E. For instance, let us consider a homogeneous electric
field E applied to a fragment A. How does this field modify the intermolecular forces
in A? Again, the Hellman Feynman theorem [22,23] tells us that for an instantaneous
nuclear configuration, the force on each atom changes by

DFI ¼ e2
X
J

ZJ

ð
dr0 dr(r0)

r0 � RJð Þ
r0 � RJj j3 , (24:6)

where dr(r0) is the density induced by the field. For small electric fields, one has (see
Section 24.2)

d(1)r(r) ¼ e

ð
dr0x1(r, r

0)r0 � E, (24:7)

where x1(r, r0) is now the linear polarizability kernel of the isolated A fragment.
One may conclude that linear and nonlinear polarizabilities kernels are directly
related to the forces between atoms and are thus probes of ‘‘chemical reactivity.’’
Nonlinear responses also describe the effects of electric fields due to the environ-
ment on the linear chemical descriptors (see Chapter 25). Finally, the (nonlocal)
polarizabilities are also descriptors of the similarity between molecules and
fragments [28].

Polarizabilities are responses to a potential (the gradient of which is a field).
On the contrary, Fukui functions, chemical hardness and softness are responses to
a transfer or removal of an integer number of electrons. Both responses are
DFT descriptors but the responses which involve a change in the number of
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electrons are called ‘‘chemical electronic responses’’ [26]. Formal relations between
polarizabilities and chemical electronic responses have been derived in the literature
[5,8,29 33]. An intriguing question arises from these works: the polarizabilities
represent a polarization where no electron number is changed. How are they related
to chemical electronic responses that involve an actual charge transfer? A change in
the number of electrons implies a change of Hamiltonian but the polarizabilities are
computed from only one well-defined Hamiltonian. The paradox is solved below by
introducing a new concept: a polarization Fukui function (Equation 24.44). This
response describes an internal charge transfer from a part of a molecule to another.
Because an internal charge transfer does not change the total number of electrons,
this Fukui function and its corresponding polarization hardness are continuous
derivatives of the total energy relative to an ‘‘electron number’’ (partial charge)
(see Section 24.3).

This chapter aims to present the fundamental formal and exact relations
between polarizabilities and other DFT descriptors and is organized as follows.
For pedagogical reasons, we present first the polarizability responses for simple
models in Section 24.2. In particular, we introduce a new concept: the dipole atomic
hardnesses (Equation 24.20). The relationship between polarizability and chemical
reactivity is described in Section 24.3. In this section, we clarify the relationship
between the different Fukui functions and the polarizabilities, we introduce new
concepts as, for instance, the polarization Fukui function, and the interacting Fukui
function and their corresponding hardnesses. The formulation of the local softness
for a fragment in a molecule and its relation to polarization is also reviewed in detail.
Generalization of the polarizability and chemical responses to an arbitrary perturb-
ation order is summarized in Section 24.4.

24.2 PERTURBATION THEORY: ELEMENTARY MODELS

24.2.1 ATOM IN AN ELECTRIC FIELD

General properties and definitions of polarizabilities can be introduced without
invoking the complete DFT formalism by considering first an elementary model:
the dipole of an isolated, spherical atom induced by a uniform electric field. The
variation of the electronic density is represented by a simple scalar: the induced
atomic dipole moment. This coarse-grained (CG) model of the electronic density
permits to derive a useful explicit energy functional where the functional derivatives
are formulated in terms of polarizabilities and dipole hardnesses.

24.2.1.1 Polarizabilities

The ground-state electronic density r(r) is uniquely related to the external potential
vext(r) as stated by the fundamental theorems of DFT [1,2,8]. At zero field, the
external potential of an atom is due to its nuclei and vext(r)¼�Ze2=r where Z is
the nuclear charge. It is shifted by the quantity V

V(x;E) ¼ exE, (24:8)
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when a field E is applied along the x Cartesian direction (e¼ 1.602� 10 19 C is the
elementary charge). This variation of the potential induces a deformation of the
electronic density, which is a functional of V and a function of E. The variation, dr(r;
E)¼ r(r; E) r(r; 0) can be quantified by its first moment, i.e., by the atomic dipole
moment p induced by the field:

p(E) � �e

ð
dx x dr(r;E): (24:9)

The polarizabilities an are defined by the derivatives of the density (represented here
by the dipole p) relative to the potential applied (represented here by the field E):

an � @np

@En

� �
0

, (24:10)

where the derivative is evaluated at zero field. Because we consider the response to a
field applied along one direction, the polarizabilities are simple scalars instead of
tensors or kernels (see below). (For a complete description of the tensorial character
of the polarizabilities, the reader may consult, for instance, Ref. [4].) The dipole-
induced p(E) is computed by using a Taylor expansion around the reference state
(E¼ 0):

p(E) ¼
X1
n¼1

an

n!
En �

X1
n¼1

dpn: (24:11)

an is called the response of nth order because the variation dpn is proportional to the
nth power of the perturbation. The leading term in Equation 24.11 is in general the
linear response (n¼ 1), the nonlinear terms (n 6¼ 1) are called ‘‘hyperpolarizabilities’’
and are important in nonlinear optics [34].

The polarizabilities are useful only if the series Equation 24.11 converges, i.e., in
general for values of E not too large. In this case, the series can be truncated to the
lowest orders. For the purpose of this chapter, we consider nonlinear responses up to
the order 5:

p(E) ¼ a1E þ a3

3!
E3 þ a5

5!
E5 þ O E7

� �
: (24:12)

The expansion (Equation 24.12) does not contain even powers of the field because of
the spherical symmetry of an isolated atom. Indeed for an atom, the even derivatives
in Equation 24.10 are zero as well as for any molecule having an inversion center.
Note that a3 and a5 are, in fact, the components of tensors, respectively of the so-
called second and fourth hyperpolarizabilities [4].

A variation of the density (p) implies a variation of the energy («). The variation
of the energy of the atom is the work done by the field

D«(E) � �
ðE

0

dE0 p(E0): (24:13)
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Using Equation 24.12 in Equation 24.13, one finds

D«(E) ¼ � 1
2
a1E

2 � a3

4!
E4 � a5

6!
E6 þ O E8

� �
: (24:14)

Equation 24.14 provides an alternative definition of the electronic responses: they are
derivatives of the energy « relative to the field E. Note that the response of order n,
the nth derivative of the response to the perturbation, is the nþ 1th derivative of the
energy relative to the same perturbation. Hence, the linear response a1 is a second
derivative of the energy. Because the potential (E) and the density (p) are uniquely
related to each other, the field can be formulated as a function of the dipole moment p.
The expansion of the field in function of p can be obtained from Equation 24.12 which
can be easily inverted to give

E � h1pþ
h3

3!
p3 þ h5

5!
p5 þ O p7

� �
, (24:15)

in which we have defined

h1 ¼
1
a1

,

h3 ¼ � a3

a1ð Þ4 ,

h5 ¼
10 a3ð Þ2�a1a5

a1ð Þ7 :

(24:16)

As it can be easily checked, Equations 24.12 through 24.16 are consistent. D« in
Equation 24.14 represents the energy gained by an atom in a field E. It can be
reformulated in terms of the deformation of its electronic density (p) by using
Equations 24.15 and 24.16 in Equation 24.14:

D«(E) ¼ D«(p) ¼ � h1
2
p2 � h3

4!
p4 � h5

6!
p6 þ � � � , (24:17)

where we have introduced new quantities

h1 ¼ h1,

h3 ¼ 3h3,

h5 ¼ 5h5:

(24:18)

24.2.1.2 Dipole Hardnesses

Equation 24.17 shows that the energy gained by the systemwhen a field E is applied is a
function of the electronic density represented by p. According to the variational principle
of DFT, the energy in the ground state (in the absence of a field) is minimum [1,2].
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Therefore, at zero field, any variation of the p relative to its ground-state value cost
an energy we note as ~D«. The energy cost is a function of p and is exactly

~D«(p;0) ¼ �D«(E) ¼ h1
2
p2 þ h3

4!
p4 þ h5

6!
p6 þ O p8

� �
: (24:19)

Equation 24.19 is valid for any dipole p which is ‘‘E-representable’’: For an isolated
atom, all dipoles are E-representable because any dipole p can be viewed as
induced by some uniform electric field E. We call the derivatives of the energy
relative to the dipole p

hn � @n~«

@pn
, (24:20)

the dipole hardnesses. They are analogous to the so-called linear (n¼ 1) and
nonlinear (n 6¼ 1) hardness kernels [5,8,26,30] introduced in the DFT theory of
reactivity (see Section 24.3).

The hardness hn are intimately related to the linear and nonlinear electronic
responses as shown explicitly in Equation 24.18. In particular, h1 is simply the
inverse of the linear polarizability: it is well known in chemistry that a ‘‘hard
atom’’ has a low polarizability. The nonlinear terms hn 6 1, could allow to better
quantify the hardness=softness and polarizability relations (see Section 24.2.2).
Note that for an atom in a molecule, the contribution of a2 has to be considered as
well in Equation 24.12 through Equation 24.18. On the other hand, Equation 24.18
shows that all the polarizabilities can be formulated in terms of the linear one, if the
derivatives hn, which are function of p, are known:

a3 ¼ �h3 a1ð Þ4=3,

a5 ¼ 10 a3ð Þ2�h5=5 a1ð Þ7
a1

:
(24:21)

Equations 24.21 are very particular cases of a general theorem for the responses
demonstrated previously [26]. It is interesting to note that the evaluation of nonlinear
hyperpolarizabilities is a stringent test of the validity and robustness of exchange-
correlation functionals [35]. Equation 24.21 permits to explain qualitatively why:
the electrostatic part of energy does not contribute at all to h3, which depends only
on the exchange-correlation functional. On the contrary, h1 is dominated by the
Coulomb propagator.

24.2.2 LINEAR AND NONLINEAR DIPOLE HARDNESSES: NUMERICAL RESULTS

As the formation of a covalent bond between two atoms implies a (dipolar)
deformation of the density, polarizability and reactivity must be related. Indeed,
Nagle demonstrated an empirical relation between the atomic polarizabilities
(response to a field) and the scales of electronegativities (reactivity) [36]. More
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precisely, various scales of atomic electronegativities are reproduced by the follow-
ing linear relation [36]:

x ¼ A
n

a1

� �1=3
þB, (24:22)

where the exact values of the constants A and B depend on the electronegativity scale
chosen and where n is the number of valence electrons. The first term in Equation
24.22 can be interpreted as the inverse of an atomic radius R (as a1 ’ R3).

The concept of dipole hardness permit to explore the relation between polariz-
ability and reactivity from first principles. The physical idea is that an atom is more
reactive if it is less stable relative to a perturbation (here the external electric field).
The atomic stability is measured by the amount of energy we need to induce a dipole.
For very small dipoles, this energy is quadratic (first term in Equation 24.19). There
is no linear term in Equation 24.19 because the energy is minimum relative to the
dipole in the ground state (variational principle). The curvature h1 of E(p) is a first
measure of the stability and is equal exactly to the inverse of the polarizability.
Within the quadratic approximation of E(p), one deduces that a low polarizable atom
is expected to be more ‘‘stable’’ or ‘‘less reactive’’ as it does in practice. But if the
dipole is larger, it might be useful to consider the next perturbation order:

~D«(p; 0) ’ h1
2
p2 þ h3

4!
p4 ¼ 1

2a1

� �
p2 � a3

8 a1ð Þ4
" #

p4: (24:23)

We have computed Equation 24.23 for various elements of the Mendeliev table by
using the recommended theoretical values of the atomic polarizabilities a1 and a3

published recently (see Tables 3 and 10 in Chapter IV of Ref. [4]). The results are
presented in Figures 24.1 and 24.2. In the later figure, we have assumed a3¼ 0. By
comparing Figures 24.1 and 24.2, we observe that the nonlinearity (h3) has a major
effect only for hydrogen (curve with diamonds) and helium (curve with squares), at
least in the range of dipole moment considered (<0.5 D). For these two light
elements, there is an ‘‘activation barrier’’: the energy cost to create a dipole has a
maximum at about p¼ 0.36 D (0.141 a.u.). For He, this value corresponds to a static
field of about 0.014 a.u. (Equation 24.15) enough to induce (weak) nonlinear effects
[37]. Such a maximum exists probably also for the other elements but at higher
dipole moments. However, for large dipole moments (not represented), we should
probably include the higher order terms (h5, h7, . . . ), which are unknown. In Figure
24.1, the value of the energy at p¼ 0.5 D, for instance, decreases in the following
order: Ne, F, O, N, Ar, C, Cl, S, B, P, Si Be, Al, Mg, Na Li. The pairs of atoms
Si Be and Li Na follow nearly the same energy curves. It is interesting to note that
Ne is the most stable atom and Na Li is less stable. The scale of stability is not
modified if we neglect h3 (Figure 24.2), the energy is the highest for Ne (most stable)
and the lowest for Li Na (less stable). The stability, expected for H and He, is
therefore determined by a1 only.
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The peculiar behavior of H might be relevant to understand the hydrogen bond,
which deforms the electronic cloud of the proton. On the other hand, it is surprising
to discover an ‘‘anomalous’’ behavior for a closed-shell atom like He. However, it
has been demonstrated in helium-atom-scattering that interactions between He atoms
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FIGURE 24.1 E(p) function as computed from Equation 24.23 in the text. The curve with
squares (diamonds) represent the result for He (H). The other curves are for the elements Ne,
F, O, N, Ar, C, Cl, S, B, P, Si Be, Al, Mg, Na Li in the order of decreasing energy. The curves
are for Li and Na (Si and Be) cannot be distinguished at the scale drawn.
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FIGURE 24.2 E(p) function as computed from Equation 24.23 in the text with h3¼ 0. The
curve with squares (diamonds) represent the result for He (H). The other curves are for the
elements Ne, F, O, N, Ar, C, Cl, S, B, P, Si Be, Al, Mg, Na Li in the order of decreasing
energy. The curves for Li and Na (Si and Be) cannot be distinguished at the scale drawn.
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and metal surfaces are not simple: He is not an ‘‘inert’’ probe [27,38]. There is
hybridization of the valence electronic states of He with the electronic wave function
at the Fermi level of metals at several angstroms from the surface and He behaves
very differently from Ne [38].

Figure 24.1 is the first application of a concept of ‘‘dipole hardness.’’ There is
now an entire field to explore: what will this concept tell us about reactivity of
molecules? How are dipole hardnesses related to vibrational properties the energy
of which is the order of magnitude considered in Figure 24.1?

24.2.3 A MOLECULE IN AN ELECTRIC FIELD: THE BARE AND SCREENED

RESPONSE FUNCTIONS

24.2.3.1 Theory

One uses a simple CG model of the linear responses (n¼ 1) of a molecule in a
uniform electric field E in order to illustrate the physical meaning of the screened
electric field and of the bare and screened polarizabilities. The screened nonlocal CG
polarizability is analogous to the exact screened Kohn Sham response function xs
(Equation 24.74). Similarly, the bare CG polarizability can be deduced from the
nonlocal polarizability kernel x1 (Equation 24.4). In DFT, x1 and xs are related to
each other through another potential response function (PRF) (Equation 24.36). The
latter is represented by a dielectric matrix in the CG model.

The CG model represents the deformation of the electronic density by a collec-
tion of atomic dipoles. Although the definition of the dipole moment of an atom p in
a molecule is not unique, the partitioning of the molecular dipole moment in atomic
contributions can be built rigorously by partitioning the electronic density [39,40] in
fragments (see Chapter 14). This permits to compute the polarizability of an atom
in a molecule (see, for instance, Refs. [41 43]). In fact, all atomic multipoles (in
particular, atomic charges [44]) can be properly defined using a density partitioning
[45].

In the present model, each atom numbered by J¼ 1, 2, . . . has a screened
nonlocal polarizability tensor, a$~ (K, J) defined by

~auv(J,K) ¼ @pu(J)

@~Eu(K)

� �
0

, (24:24)

in which pu(J) is the Cartesian component u of the dipole moment of atom J induced
by the field E applied. The derivative in Equation 24.24 is evaluated at zero applied
field and ~Ev(K) is the local field in the direction Cartesian v evaluated at the position
of the atom K. The local screened polarizability is the diagonal element of the
nonlocal polarizability matrix: ~auv(K,K) � ~auv(K). Obviously, for an atom in a
molecule, a$~ (K) is different from the polarizability of an isolated atom a

$
1 (Equation

24.10) because the atom is bonded. In addition, the response of an atom to a field is
nonlocal (Equation 24.24) in a molecule.

The screened field, ~Ev(K), corresponds to the total electric field evaluated at the
atom K, which is not, in general, simply the field applied because of the influence of
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the other atoms. Indeed, each atom bears a dipole moment induced by the applied
field. Each dipole generates itself a field (proportional to the magnitude of the
dipole). All these fields add to define the local field felt by an atom within
the molecule. The mutual polarization of the atoms is described by the following
general relation:

~Eu(K) ¼ Eu(K)þ
X
L 6¼K

X
u

Uvu(K,L)Eu(L), (24:25)

or in matrix notation

~E ¼ Eþ U
$
E, (24:26)

where Ev, (K) is the value of the field applied at site K and U
$

is a propagator
represented by a tensor:

Uvu(K, L) � @~Eu(K)

@Eu(L)

� �
0

8K 6¼ L, (24:27)

which measures the influence of the applied field at site L on the local field at site K.
In other words, U

$
‘‘propagates’’ the perturbation of the atom L to the atom K.

Equation 24.25 can be written as

~E ¼ $
M 1E, (24:28)

where
$
M is a nonlocal field response, the inverse of which is given by

M 1
vu ¼ @~Eu(K)

@Eu(L)

� �
0

¼ dvudJK þ Uvu(J,K): (24:29)

The physical meaning of Equation 24.28 is clear: the local field felt by an atom is not
the bare applied field but a field screened by

$
M 1, which is the inverse of a molecular

nonlocal field response. The bare nonlocal polarizability a
$(L, J) describing the

response of the atom (dipole induced at) L to the bare field E applied at the atom J
is also related to

$
M 1 by

avu(K, J) ¼ @pu(K)

@Eu(J)
¼

X
L

X
t

@pu(K)

@~Et(L)

@~Et(L)

@Eu(J)
,

a
$ ¼ a

$~ $
M 1:

(24:30)

24.2.3.2 Numerical Application

A large number of dipole models have been developed in the past to predict the
molecular polarizabilities [46,47]. In these models, two atoms interact via Coulomb
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forces between dipoles centered on their nuclei. The atomic dipoles are point or
extended dipoles [47]. From these models, one deduces:

Mvu(K,L) ¼ dvudKL � (1� dKL)

� l5
3 RKu � RLuð Þ RKv � RLvð Þ

R5
KL

� l3
duv

R3
KL

� �
~auv(K, L), (24:31)

where l5 and l3 are damping constants equal to 1 for point dipoles. Equation 24.31
can be applied to any molecule. In simple models, ~auv(K,L) ¼ duvdKL~a [46]. Let us
apply Equation 24.31 to a homopolar diatomic molecule with a bond along the
Cartesian axis X (bond length¼ L). Each atom has an isotropic (screened) atomic
polarizability ~auv(K,L) ¼ duvdKL~a. For this simple model, one finds a block diag-
onal matrix

$
M

$
M ¼

1 0 0 x 0 0
0 1 0 0 � x

2 0
0 0 1 0 0 � x

2
x 0 0 1 0 0
0 � x

2 0 0 1 0
0 0 � x

2 0 0 1

2
6666664

3
7777775
, (24:32)

where x � �2~a=L3. The inverse is

$
M 1 ¼

1
1 x2 0 0 � x

1 x2 0 0

0 1
1 x2=4 0 0 x

2 1 x2=4ð Þ 0

0 0 1
1 x2=4 0 0 x

2 1 x2=4ð Þ
� x

1 x2 0 0 1
1 x2 0 0

0 x
2 1 x2=4ð Þ 0 0 1

1 x2=4 0

0 0 x
2 1 x2=4ð Þ 0 0 1

1 x2=4

2
666666664

3
777777775
: (24:33)

One deduces from Equation 24.30:

axx(K) ¼ axx(L) ¼ ~a

1� 2~a
L3
,

ayy(K) ¼ ayy(L) ¼ ~a

1þ ~a
L3
,

azz(K) ¼ ayy(K) ¼ ayy(L)

: (24:34)

For a Cl atom ~a¼ 1.934 Å3 in a Cl2 molecule (L¼ 1.988 Å) [46]. According to
Equation 24.34, the atomic polarizability (response to the bare field) along the bond is
axx¼ 3.81 Å3 and the transverse polarizability (response to the bare field) is
ayy¼ 1.05 Å3. The measured atomic polarizabilities in Cl2 (equal to half of the com-
ponents of the molecular polarizability) are close:axx¼ 3.30Å3 andayy¼ 1.81Å3 [46].
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The atomic polarizability along the bond is increased relative to ~a: the field felt by the
atom is enhanced by the field of the other atom in this direction [46].

24.3 NONLOCAL POLARIZABILITY AND CHEMICAL REACTIVITY

24.3.1 POTENTIAL RESPONSE FUNCTION AND FUKUI FUNCTIONS

In DFT, the PRF [31 33] is a nonlocal response similar to the matrix
$
M introduced in

the CG model described above (Equation 24.28). Indeed, in Kohn Sham theory
[1,2,8], (the gradient of) the external potential yext(r) is analogous to a bare field E
and (the gradient of) the Kohn Sham potential yKS(r) is analogous to a screened field
~E. A perturbation of the external potential dyext(r) (as induced by a field applied or
due to a change of the molecular geometry) implies a variation of the Kohn Sham
potential yKS(r),

dvKS(r) �
ð
dr0 k 1(r, r0)dvext(r0), (24:35)

where the inverse PRF response is simply

k 1(r, r0) � dvKS(r)

dvext(r0)

� �
N

, (24:36)

in which the functional derivative is carried out at constant electron number N.
The PRF and its inverse play a fundamental role in DFT of reactivity where it is

related to the Fukui functions [5,32]. The Fukui functions F�(r) (see Chapter 17) are
reactivity indices, which measure the propensity of a region in a molecule to accept
(þ) or donate (�) electrons in a chemical reaction [8,15]:

F�(r) ¼ @r(r)

@N

� ��
: (24:37)

The Fukui functions generalize the concept of frontier orbitals by including the
relaxation of the orbital upon the net addition or removal of one electron. Because
the number of electrons of an isolated system can only change by discrete integer
number, the derivative in Equation 24.37 is not properly defined. Only the finite
difference approximation of Equation 24.37 allows to define these Fukui functions
(noted here by capital letters) F�(r)

F�(r) � �r(r,N � 1)� r(r,N): (24:38)

Equation 24.38 implies that F�(r) are properties of both, the ground-state of the
molecule and its single charged ions.

An alternative formulation of the Fukui functions based on the mutual polari-
zation of the reagents can be constructed as follows [24,32]. In a chemical reaction,
the description of a local electron transfer does not need to involve any actual change
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in the total electron numbers N of the reagents. It is enough to consider the local
modification of the electronic density in some local volume around a reference site
(for instance, the nuclei of an atom) as the result of a local polarization. The
modification of the external potential and of the Kohn Sham self-consistent potential
are chemical perturbations, which do not change the total number of electrons N. In
this polarization formulation, the Fukui functions are equal to Kohn Sham frontier
orbitals screened by the inverse potential response [24,32]. For instance, the Fukui
function f (r) (response of the molecule related to the loss of an electron) is related
to the highest occupied molecular orbital (HOMO) by the following relation:

f (r) ¼
ð
dr0rHOMO(r

0)k 1(r0, r): (24:39)

We call the Fukui function f (r) the HOMO response. Equation 24.39 is demon-
strated as follows. The rHOMO(r) is the so-called Kohn Sham Fukui function
denoted as fs (r) [32]. According to the first-order perturbation theory, one has

fs (r) ¼ d«HOMO

dvKS(r)

� �
N

¼ rHOMO(r): (24:40)

We define similarly the HOMO response f (r) by

f (r) � d«HOMO

dvext(r)

� �
N

: (24:41)

By using the chain rule for functional derivatives, we prove Equation 24.39

f (r) ¼
ð
dr0

d«HOMO

dvKS(r0)

� �
N

dvKS(r0)
dvext(r)

� �
N

: (24:42)

The same reasoning can be applied to the lowest unoccupiedmolecular orbital (LUMO)
response fþ(r) (response of the molecule related to the gain of an electron) using

fþ(r) � d«LUMO

dvext(r)

� �
N

: (24:43)

The definitions in Equations 24.40 and 24.43 do not involve any derivative relative
to the number of electrons N and can thus always be properly defined for any
molecular system. One should emphasize that the «LUMO is often badly described
in any one-electron orbital theory. One cannot therefore expect fþ(r) to be a
meaningful quantity. On the contrary, f (r) is involved in all charge reorganizations
of a molecular system, including a charge transfer between two of its fragments. But,
it should be clear that f (r) can only approximately represent any property of the
molecular cation being a property of the ground-state system.
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24.3.2 POLARIZATION AND CHEMICAL HARDNESS FUKUI FUNCTION

As mentioned in [Section 24.1], and as already demonstrated in Equation 24.39, the
Fukui functions as well as the chemical hardness of an isolated system can be
properly defined without invoking any change in its electron number. We define a
new Fukui function called polarization Fukui function, which very much resembles
the original formulation of the Fukui function but with a different physical interpret-
ation. Because of space limitation, only a brief presentation is given here. More
details will appear in a forthcoming work [33]. One assumes a potential variation
duext(r), which induces a deformation of the density dr(r). A normalized polarization
Fukui function is defined by

dr(1)(r) ¼ lfP(r)þ Dr(r), (24:44)

where dr(1)(r) is the first-order density response. In Equation 24.44, l is an internal
(non-integer) charge which can be computed ab initio using Hartree Fock or
Kohn Sham orbital theories as demonstrated in our recent work [33]. More
precisely, one has

l ¼ �
ð
dr0Dr(r0): (24:45)

Both l and Dr(r) depend on the perturbation duext(r). The linear response x1
(Equation 24.4) is obtained by functional derivative of Equation 24.44:

x1(r, r
0) ¼ dr(1)(r)

dvext(r0)

� �
N

,

¼ dl

dvext(r0)

� �
N

fP(r)þ xl¼0
1 (r, r0), (24:46)

where xl¼0
1 (r, r0) is the response at zero internal charge transfer describing the Dr(r)

deformation. Because x1 is a symmetric kernel, one deduces finally

fP(r) ¼ C
dl

dvext(r)

� �
N

, (24:47)

in which C is a constant. The value of C is obtained by using the conservation of the
number of electrons (a potential cannot create a net charge but only an internal
charge transfer l). By integrating Equation 24.46 and using Equations 24.45 and
24.47, we obtain

C ¼ �1Ð
dr

Ð
dr0xl¼0

1 (r, r0)
� 1

hP

, (24:48)
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where we define a polarization hardness hP. From Equations 24.46 and 24.47, one
also finds

fP(r) ¼
Ð
dr0xl¼0

1 (r0, r)Ð
dr00

Ð
dr000xl¼0

1 (r00, r000)
: (24:49)

The physical meaning and value of l depend on the choice of fP(r). We may choose
fP(r) as being the solution of the following equation:

ð
dr0h(r, r0)fP(r0) ¼ hP: (24:50)

Equation 24.50 is an important property of the usual Fukui function in DFT [48,49].
We show here that this Fukui function can be formulated as a polarization Fukui
function and does not involve any change in electron number. Equation 24.50 implies

xl¼0
1 (r, r0) ¼ �h 1(r, r0): (24:51)

From Equations 24.46 through 24.51, we deduce

x1(r, r
0) ¼ �h 1(r, r0)þ fP(r)fP(r0)

hP

, (24:52)

which is analogous to the so-called Berkowitz Parr relation [30] but with the Fukui
function and hardness interpreted as responses to a potential (polarization) and not to
a change in electron number N. In addition, the charge transfer involved l, being an
internal charge transfer, is a continuous variable. In particular, we have exactly [28]

hP ¼
@2«

@2l2

� �
0

: (24:53)

The internal charge transfer l depends also on the potential. It should be emphasized
that lP and hP can be defined in principle for any arbitrary choice of fP(r) in Equation
24.44. Derivation of fP(r) does not involve any chemical potential. It is an unique
property of the Hamiltonian with N electrons [28,33].

24.3.3 EXACT RELATIONS BETWEEN THE DIFFERENT FUKUI FUNCTIONS

OF AN ISOLATED SYSTEM

24.3.3.1 Introduction

In addition to popular finite difference approximations of Fukui functions of an
isolated system (Equation 24.38), at least six other different Fukui functions can be
defined as responses to a potential. These later concepts do not depend on a net
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change in the number of electrons and are related by exact relations to the different
polarizability kernels. In this section, we derive the exact relations between them.

We introduce the following notations for the energy functional « [r; vext] and its
components [1,2,8]:

« r; vext½ � ¼ Ts[r]þ EI[r]þ
ð
dr r(r)vext(r), (24:54)

where Ts[r] is the Kohn Sham kinetic energy functional and EI[r] the electron
electron energy component. We have

Ts[r] ¼ � h2

2m

X
i

ni

ð
dr0 f*i (r

0)r2fi(r
0), (24:55)

in which the sum is over N (the number of electrons) occupied microstates of
the molecule. The occupation number ni¼ 0 or 1 and fi(r0) is the spatial part of
the spin orbital i. Each microstate is doubly degenerate when the molecular density
is not polarized in spin. The difference between the interaction energy «I[r] and
the classical Coulomb electron electron repulsion is the exchange-correlation
energy «xc[r]

«xc[r] ¼ «I[r]� 1
2

ð
dr r(r)

ð
dr0 r(r0)

e2

[r� r0]

� �
: (24:56)

The Kohn Sham potential is [2]

vKS(r) ¼ vext(r)þ d«I
dr(r)

: (24:57)

24.3.3.2 Six Fukui Functions and Three Hardnesses of an Isolated System

We demonstrate now that six Fukui functions at constant electron number can be
defined for an isolated molecule. The two Kohn Sham Fukui functions are [32]

f�s (r) � d«�
dvKS(r)

� �
0

, (24:58)

where «þ(« ) is «HOMO(«LUMO). According to the first-order perturbation theory
fþs (fs ) is equal to rHOMO(r) [rLUMO(r)]. We define two other HOMO and LUMO
responses by [32]

f�(r) � d«�
duext(r)

� �
0

: (24:59)
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On the other hand, in addition to the polarization Fukui response fP(r0) obeying
Equation 24.50, a sixth electron electron Fukui response fI(r0) is now introduced as
the solution of

ð
dr0hI(r, r0)fI(r0) ¼ hI, (24:60)

where hI is an electron electron hardness kernel or propagator [32]

hI(r, r
0) ¼ d2«I

dr(r)dr(r0)

� �
0

, (24:61)

and hI is a new interacting hardness

hI ¼
1Ð

dr00 Ð
dr0h 1

I (r0, r00
)
: (24:62)

To complete this presentation, we define a Kohn Sham hardness (gap) by

hs ¼ «LUMO � «HOMO, (24:63)

and a Kohn Sham ‘‘chemical potential’’ ms as

ms ¼
«LUMO þ «HOMO

2
: (24:64)

The derivatives of these Kohn Sham quantities relative to the potentials are other
reactivity descriptors:

dhs

dvKS(r)

� �
N

¼ rLUMO(r)� rHOMO(r),

dhs

dvext(r)

� �
N

¼ fþ(r)� f (r),

dms

dvKS(r)

� �
N

¼ rLUMO(r)þ «HOMO(r)

2
,

dms

dvext(r)

� �
N

¼ fþ(r)þ f (r)

2
:

(24:65)

All these functional derivatives are well defined and do not involve any actual
derivative relative to the electron number. It is remarkable that the derivatives of
the Kohn Sham chemical potential ms gives the so-called ‘‘radical’’ Fukui function
[8] either in a frozen orbital approximation or by including the relaxation of the KS
band structure. On the other hand, the derivative of the Kohn Sham HOMO LUMO
gap (defined here as a positive quantity) is the so-called nonlinear Fukui function
f 0(r) [26,32,50] also called Fukui difference [51].
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24.3.3.3 Finite Difference Approximations of Fukui Functions
as Potential Derivatives

Although we will not discuss the finite difference approximations F�(r) further in
this section, it is useful to note that these functions can be defined also as potential
derivatives of a ‘‘gap’’ and a chemical potential. The gap is the usual definition of
the chemical hardness [8,9],

h ¼ I � A, (24:66)

and the chemical potential is the usual DFT electronegativity (change of sign) [8,52]

m ¼ � I þ A

2

� �
: (24:67)

The ionization potential and electron affinity of the molecule are I and A, respec-
tively. By construction, these definitions involve three Hamiltonians (N 1,
N, Nþ 1). However, one may define Fukui functions without invoking any actual
derivative relative to the number of electrons by using the derivative of the chemical
potential relative to the potential [8]

F (r) � � dI

dvext(r)

� �
N

¼ dE(N)

dvext(r)

� �
N

� dE(N � 1)
dvext(r)

� �
N 1

,

¼ r(r; N)� r(r; N � 1) ¼ F (r): (24:68)

and similarly,

Fþ(r) � � dA

dvext(r)

� �
N
¼ r(r; N þ 1)� r(r; N) ¼ Fþ(r): (24:69)

The potential derivatives of the gap and of the chemical potential are therefore

dh

dvext(r)

� �
N

¼ Fþ(r)� F (r), (24:70)

dm

dvext(r)

� �
N

¼ F (r)þFþ(r)
2

: (24:71)

Equations 24.68 and 24.69 represent the response to electrophilic and nucleophilic
reagents, respectively [8]. On the other hand, Equation 24.70 is a nonlinear Fukui
function [51] and Equation 24.71 represents a radical Fukui function [8]. All these
functions are computed by using different molecular Hamiltonians.
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24.3.3.4 Theorems for the Fukui Functions of an Isolated System

The frontier orbitals responses (or bare Fukui functions) f�(r) and the Kohn Sham
Fukui functions (or screened Fukui functions) f�s (r) are related by Dyson equations
obtained by using the PRF and its inverse [32]. Indeed, by using Equation 24.57 and
the chain rule for functional derivatives in Equation 24.36, one obtains

k 1(r, r0) ¼ d(r� r0)þ d

dvext(r0)
d«I
dr(r)

� �
,

¼ d(r� r0)þ
ð
dr00hI(r, r00)x1(r

00, r0), (24:72)

and

k(r, r0) ¼ d(r� r0)� d

dvKS(r0)
d«I
dr(r)

� �
,

¼ d(r� r0)�
ð
dr00hI(r, r00)xs(r

00, r0), (24:73)

where xs is the noninteracting response function (analogous to the screened polar-
izability response of the CG model above, Equation 24.24)

xs(r, r
0) ¼ dr(r)

dvKS(r0)

� �
N

: (24:74)

Using Equations 24.72 and 24.39, one obtains

f�(r0) ¼ f�s (r0)þ
ð
dr00

ð
drf�s (r)hI(r, r

00)x1(r
00, r0): (24:75)

On the other hand, using Equation 24.73, one finds

f�s (r0) ¼ f�(r0)�
ð
dr00

ð
drf�(r)hI(r, r00)xs(r

00, r0): (24:76)

Equations 24.75 and 24.76 generalize the Dyson equations derived previously [32].
The differences between f� and the frontier orbitals f�s have nice and simple
physical interpretations [24,32] as either the variation of the electronic density
induced by effective external potentials dvf�s

dr�ee(r) � f�(r)� f�s (r) ¼
ð
dr0x1(r, r

0)dvf�s (r
0), (24:77)

in which

dvf�s (r) ¼
ð
dr0hI(r, r0)f�s (r0), (24:78)

Reactivity and Polarizability Responses 351



or as the variation of the electronic density induced by an effective Kohn Sham
potential dvf

dr�ee(r) ¼
ð
dr0xs(r, r

0)dvf (r0), (24:79)

in obvious notations. Without the exchange-correlation energy, these effective
potentials are reduced to the electrostatic potentials generated by the Fukui functions
f� and f�s , respectively. They are related to the covalent atomic radii [24,53].

It is worth noting that screened response xs(r, r0) can be computed from the
Kohn Sham orbital wave functions and energies using standard first-order pertur-
bation theory [3]

xs(r, r
0) ¼

X
i¼1

ni
X
k 6¼i

f*i (r)fk(r)f
*
k (r

0)fi(r
0)

«i � «k
, (24:80)

where the sum is over all Kohn Sham microstates. ni¼ 1 for an occupied state and 0
for an empty state. The calculation of the bare response x1(r, r0) is more difficult as
we have to solve the following equation (analogous to Equation 24.30 of the CG
dielectric model used above):

x1(r, r
0) ¼

ð
dr00xs(r, r

00)k 1(r00, r0), (24:81)

which reduces to the famous Bethe Salpter equation [54]

x1(r, r
0) ¼ xs(r, r

0)þ
ð
dr00

ð
dr000xs(r, r

00)hI(r00, r000)x1(r
000, r0): (24:82)

A possible computational strategy is to calculate xs(r, r0) first using the standard
sum-over states formula (Equation 24.80). Equation 24.75 can be used next to
generate successive ‘‘Born approximations’’ of the functions f�(r). For instance,
the first Born approximation would be

f�(r0) ¼ f�s (r0)þ
ð
dr00

ð
dr f�s (r)hI(r, r

00)xs(r
00, r0): (24:83)

It is worth noting that an alternative computational scheme to solve the Dyson
equations Equations 24.75 and 24.76 has appeared recently [55,56]. Simple models
of the response xs have also been developed and applied to reactivity [57].

We end this section by demonstrating that the interacting and polarization Fukui
functions are eigenvectors of bare response functions. Indeed, one proves that fI(r),
(Equation 24.60), is an (left) eigenvector of the PRF by multiplying Equations 24.72
and 24.73 by fI(r) and by integrating

ð
dr fI(r)k

1(r, r0) ¼
ð
dr fI(r)k(r, r

0) ¼ fI(r
0), (24:84)
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where the eigenvalue is equal to 1. For fP(r), defined by Equation 24.50, we find

ð
dr fP(r)a

1(r, r0) ¼
ð
dr fP(r)a(r, r

0) ¼ fP(r
0), (24:85)

where the new function a 1(r, r0) is defined as follows:

a 1(r, r0) � d

dvext(r0)
d«

dr(r)

� �
N

,

¼ d(r� r0)þ
ð
dr00h(r, r00)x1(r

00, r0): (24:86)

Using h¼ hIþ hs, one obtains the relation between the inverse PRF and a 1,

a 1(r, r0) ¼ k 1(r, r0)þ
ð
dr00hs(r, r00)x1(r

00, r0): (24:87)

24.3.4 SOFTNESSES, COULOMB HOLE, AND MOLECULAR FRAGMENTS

The different Fukui functions are defined on the entire space and are normalized.
Therefore, their average values decrease with the system size. In order to compare the
properties of a molecular group in molecules of different sizes, one must compare
instead, the corresponding local softnesses. For each Fukui function, there exists a
local softness s(r) defined simply by [13]

s(r) ¼ f (r)

h
, (24:88)

where h is the corresponding hardness [12]. The integral of the local softness is the
global softness S [13]

S ¼ 1
h
: (24:89)

One of the applications of the theory of reactivity is to compare the similarities and
differences of a set of molecules using DFT descriptors as Fukui functions and local
softnesses [6,18,58]. But the comparison of continuous functions s(r) in 3D is not
an easy task. Chemistry proceeds in general by partitioning a large molecule into
fragments; each fragment having its own intrinsic reactivity modulated by the groups
to which it is bonded. The softness s(r) can be partitioned as well into molecular
fragments. These fragments descriptors are the so-called ‘‘condensed reactivity indices’’
[59 64]. The lost of information due to the condensation is not critical in general, and
simplifies the treatment of a large set of molecules. There is, therefore, a considerable
scope for applications in chemistry and pharmacology and a growing interest to develop
the DFT theory for fragments descriptors and its numerical implementation.
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In recent papers, the local softness (or Fukui function) of a molecular fragment
reformulated in terms of polarization was demonstrated [18,29]. Application of these
fragments descriptors to biomolecules is very promising. The descriptors are intro-
duced by dividing a molecule into two regions 1 and 2 (the generalization to any
number of fragments is straightforward). One starts with the property [48]

ð
dr0 H(r, r0)S(r0) ¼ 1, (24:90)

where H and S are generic quantities, they are either equal to (see Equation 24.50)

H(r, r0) ¼ h(r, r0)

S(r0) ¼ sP(r
0) ¼ fP(r0)

hP

,

S ¼
ð
dr0S(r0) ¼ SP,

(24:91)

or (see Equation 24.60)

H(r, r0) ¼ hI(r, r
0)

S(r0) ¼ sI(r
0) ¼ fI(r0)

hI

,

S ¼
ð
dr0S(r0) ¼ SI:

(24:92)

The integral in Equation 24.90 is the sum of an integration on each molecular
fragment which occupies a volume V1 and V2, respectively

ð
V1

dr0H(r, r0)S(r0)þ
ð
V2

dr0 H(r, r0)S(r0) ¼ 1: (24:93)

We define the hardness kernels H1 and H2 of the two fragments by

H(r, r0) ¼ H1(r, r
0) if r 3 V1 and r0 3 V1, (24:94)

H(r, r0) ¼ H2(r, r
0) if r 3 V2 and r0 3 V2, (24:95)

Using the definitions, we deduce

ð
V1

dr0 H1(r, r
0)S(r0)þ

ð
V2

dr0 H(r, r0)S(r0) ¼ 1, (24:96)

S(r000)þ
ð
V1

dr H 1
1 (r000, r)

ð
V2

dr00 H(r, r00)S(r00) ¼ s1(r
000), (24:97)
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where we define a regional softness and its integral as

s1(r
000) �

ð
V1

dr H 1
1 (r000, r), (24:98)

SR
1 ¼

ð
V1

dr000 s1(r000): (24:99)

The integral of the regional softness is a property built from the hardness kernel
(more precisely its inverse) defined entirely in the region V1. Equation 24.97 can be
reformulated as

S(r000)� S2

ð
V1

dr H 1
1 (r000, r)v2(r) ¼ s1(r

000), (24:100)

where we have defined the softness of a fragment

S2 �
ð
V2

dr0000S(r0000), (24:101)

and a pseudopotential

v2(r) �
Ð
V2

dr00 H(r, r00)S(r00)
S2

: (24:102)

By integrating Equation 24.100 and by using the property

S2 þ S1 ¼ S, (24:103)

one finally obtains a ‘‘softness softness’’ relation [18,28]

S ¼ SR
1 þ S2(1� Q0(1)), (24:104)

where Q0(1) is an internal charge transfer (analogous to l in Equation 24.45)

Q0(1) ¼ �
ð
V1

dr0000
ð
V1

dr H 1
1 (r000, r)v2(r): (24:105)

Note that Equation 24.104 can be formulated in terms of Fukui functions instead of
softnesses.

The physical meaning of Equation 24.104 is: The global molecular softness S
and the softnesses of its parts SR1 (regional) and S2 are related through a linear relation
where Q0(1) represents the net charge induced on fragment 1 due to a pseudo-
potential v2(r) generated by a normalized charge distribution on fragment 2 equal to
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S(r00)=S2. Indeed, this charge distribution S(r00)=S2 induces a deformation of the
density Dr1 on the fragment 1 via the potential v2 (Equation 24.102)

Dr1(r) ¼ �
ð
V1

dr0H 1
1 (r, r0)v2(r0),

¼
ð
V1

dr0xl¼0
1 (r, r0)v2(r0), (24:106)

where xl¼0
1 is a response function at zero intramolecular charge transfer (Equation

24.51). In the usual interpretation of the softnesses, Dr1(r) would correspond to the
density deformation on fragment 1 when the fragment 2 is ‘‘charged’’with one electron
distributed according to S(r)=S2. Dr1(r) is what we called the ‘‘Coulomb hole’’ in Refs.
[18,29] In a CG model, one demonstrates that this quantity can be understood as the
polarization charge accompanying one test electron in a molecular system [29]. When
S(r0)¼ sI(r0) [Equation 24.92], it corresponds to the density generated on the fragment 1
by one electron localized on the fragment 2 due to electron electron interactions.

Equation 24.104 can be used to compute ab initio the similarity and differences
between the members of a molecular family. In the case of amino acids, for instance,
[18], SR1 is chosen as a constant fragment (the amino-carboxyl part) and S2 corres-
ponds to the local softness of the side chain. In Table 24.1, we report the average
value of local softness (S2) computed for each group of amino acids: local softness
only permits to clearly distinguish between the different types of amino acids which
have all nearly the same global softness. Calculations of S and S2 for each of the
twenty amino acids permits to prove the linear relationship (Equation 24.104) and
deduces the values of SR1 and Q0(1) [18].

24.4 LINEAR AND NONLINEAR RESPONSES

24.4.1 NONLOCAL POLARIZABILITIES

Because of limitations of space, we will give only a brief introduction to the
nonlinear responses here and show how these derivations are related to the new

TABLE 24.1
Global Softness and Local Softness (Side Chains) of Amino
Acids Computed at MP2=6–311G(d,p) in Ref. [18]

Name S2 (a.u.) S (a.u.)

Aliphatic and hydroxyl residues 0.3583 1.8393
Acidic residues 0.6675 2.0454

Amide residues 0.7784 1.8562
Basic residues 1.1929 2.2212
Sulfur containing residues 1.5875 2.0505

Histidine 1.7234 2.1717
Aromatic residues 2.2704 2.3621
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polarization and interacting Fukui functions fP and fI. The interested reader may
consult Refs. [26,32] where the extension of the DFT theory of reactivity to non-
linear responses is explained in detail. The first derivation of nonlinear descriptors
can be found in Ref. [50].

We consider a variation of the external potential dvext(r) at constant electron
number N. The formal expression of the energy variation due to this perturbation can
be found by a direct application of the Hellman Feynman theorem [22,23,26].

D« dr; dvext½ � ¼
ð
dr0r0(r

0)dvext(r0)

þ
X1
n¼1

1
nþ 1

ð
dr0drn(r

0)dvext(r0), (24:107)

where the nth-order variation of the electronic density, drn, is proportional to the nth
power of the perturbation dvext and is given by

drn(r) ¼
1
n!

ð
dr1

ð
dr2 � � �

ð
drnxn r, r1, r2, . . . , rnð Þ

þ dvext r1ð Þdvext r2ð Þ � � � dvext rnð Þ: (24:108)

The linear (n¼ 1) and nonlinear (n 6¼ 1) nonlocal polarizability responses xn are

xn r, r1, r2, . . . , rnð Þ � dnr(r)

dvext r1ð Þ � � � dvext rnð Þ
� �

N

: (24:109)

Equations 24.108 and 24.109 are generalization of Equations 24.11 and 24.10 intro-
duced to represent the polarizabilities of an atom in a uniform electric field above.

The linear response x1 plays a fundamental role. It can be evaluated using the
Bethe Salpter equation (Equation 24.82) where the screened response xs is evalu-
ated from Kohn Sham equations (Equation 24.80). It is remarkable that any non-
linear response can be computed using the linear one and the hardness kernels
[26,32]. For instance, x3(r, r1, r2, r3) (see diagram 52a in Ref. [26]) is

x3(r, r
0, r00, r000) ¼ 3 � x1 r, r1ð Þ � x1 r0, r2ð Þ � �x1 r4, r3ð Þh r1, r2, r3ð Þ

� � � x1 r00, r5ð Þx1 r000, r6ð Þh r4, r5, r6ð Þ
þ �x1 r, r1ð Þ � x1 r0, r2ð Þ � x1 r00, r3ð Þ � x1 r000, r4ð Þh r1, r2, r3, r4ð Þ:

(24:110)

In Equation 24.110, each filled dot corresponds to an integral over one ri coordinate.
Equation 24.110 permits to formulate the nonlinear dipole hardness h3 of an

atom in an electric field (Equation 24.18) in terms of the responses xn. We assume a
field applied along the x Cartesian direction. The nonlinear polarizability a3

(Equation 24.10) is

a3 ¼ � � � � x3(r, r
0, r00, r000)x x0 x00 x000, (24:111)
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and the linear one is

a1 ¼ � � x1(r, r
0)x x0: (24:112)

Therefore, we conclude that

h3 ¼� 9 p1p1p1p1h r1, r2, r3ð Þx1h r1, r5, r6ð Þ
� 3p1p1p1p1h r1, r2, r3, r4ð Þ: (24:113)

In Equation 24.113, all variables are integrated and p1 is a local dipole:

p1(r) �
Ð
dr1x1 r, r1ð Þx1Ð

dr1
Ð
dr2x1x1 r1, r2ð Þx2 : (24:114)

The hardness kernels in Equation 24.110 depend on the kinetic energy functional as
well as on the electron electron interactions. Thomas Fermi models can be used to
evaluate the kinetic part of these hardness kernels and can be combined with a band
structure calculation of the linear response x1.

On the other hand, functional derivatives of the Bethe Salpeter equation allows to
evaluate the nonlinear responses using the interaction kernels hI only (which depend
on the Hartree and exchange-correlation energies). The relations between the screened
nonlinear responses and the bare ones are derived by using nonlinear PRF [32].

hn r, r1, r2, . . . , rnð Þ ¼ dnvext(r)

dvKS r1ð Þ . . . dvKS rnð Þ
� �

N

: (24:115)

It is emphasized that the PRF and their inverse involve only quantities which can
be computed in the KS formulation of DFT, i.e., the responses xn and the kernels
hI [32].

24.4.2 NONLINEAR CHEMICAL ELECTRONIC RESPONSES

The generalization of the Fukui functions to nonlinear and nonlocal chemical
responses is done in Refs. [26,32] by using N derivatives and the KS perturbation
equations. In this section, we propose a brief survey of a complementary derivation
based on the concept of the internal charge transfer l introduced above. A more
detailed discussion, including computational schemes, will be presented elsewhere.

The present formulation does not involve any global change in the number of
electrons of a molecule and can be properly defined for an isolated system.We consider
a variation dr(r) induced by a potential (which does not need to be small) dvext(r) and
generalize the formula Equation 24.44 to an arbitrary perturbation order

dr(r) ¼
X1
n¼1

drn(r) ¼
X1
n¼1

ln

n!
f (n)P (r)þ D(n)r(r), (24:116)
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with f (1)P (r) ¼ fP(r) and the nonlinear polarization Fukui functions equal to
f (n6¼1)
P ¼ (r). Because a potential does not induce a change in electron number, one
must have

ð
dr f (n)P (r) ¼

ð
dr

@ndr(r)

@ln
¼ 0 8n 6¼ 1: (24:117)

Linear and nonlinear polarization hardnesses are defined by

h(n)
P ¼ @n«

@ln
: (24:118)

The relations between the polarization chemical electronic responses
f (n)P (r), h(n)

P , . . .
� �

and the polarizability responses xn are similar to the exact equa-
tions we derived earlier when fp(r) is defined by Equation 24.50 [26]. For instance,
the expression of the first nonlinear hardness h(2)

P is obtained by deriving the linear
equation (Equation 24.50) relative to l, and by using again the chain rule for
functional derivatives:

h(2)
P ¼

ð
dr0h(r, r0)f (2)P (r0)þ

ð
dr0

ð
dr00h(r, r0, r00)fP(r00)fP(r0),

¼
ð
dr

ð
dr0

ð
dr00fP(r)h(r, r0, r00)fP(r00)fP(r0): (24:119)

The nonlinear Fukui function is also easily obtained by deriving Equation 24.50
relative to the external potential

f (2)P (r0) ¼ dhP

dvext(r)

� �
N

¼
ð
dr0h(r, r0)jP(r

0, r)

þ
ð
dr0

ð
dr00h(r, r0, r00)x1(r

00, r)fP(r0),

¼
ð
dr

ð
dr0

ð
dr00fP(r)h(r, r0, r00)x1(r

00, r)fP(r0): (24:120)

Finally, one may define a nonlocal Fukui (nonlinear) function jP(r0, r) as

jP(r
0, r) � dfP(r)

dvext(r)

� �
N

: (24:121)

Similar relations can be obtained for the nonlinear fI functions. Kohn Sham orbital
formulations of these nonlinear responses can be constructed along the lines
described previously [32] and will be presented elsewhere.
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25.1 INTRODUCTION

In the past decade, conceptual density functional theory (DFT) has been of consid-
erable interest to the community of computational chemists [1 3]. Recently,
the area has been extensively reviewed by Geerlings et al. [4]. The energy and
electron density of an atom or a molecule contain the information on stability and
reactivity, respectively. Hence, the behavior of electron density and its variation
with respect to the perturbations can reveal many interesting features concerning
the reactivity pattern of the atomic and molecular systems [5 8]. Due to small
perturbations, the electron density of the interacting systems will be redistributed
and hence, would signify the reactivity pattern. Therefore, it is important to study
such external field perturbations on the energy and electron density as they would
enrich us with the knowledge of the interaction of a molecule with the external
field. The derivatives of the energy and electron density with respect to the number
of electrons collectively form the set of reactivity descriptors. These offer
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satisfactory information about the stability and reactivity of the molecular systems
under external perturbation.

This chapter is intended to provide basic understanding and application of the
effect of electric field on the reactivity descriptors. Section 25.2 will focus on the
definitions of reactivity descriptors used to understand the chemical reactivity, along
with the local hard soft acid base (HSAB) semiquantitative model for calculating
interaction energy. In Section 25.3, we will discuss specifically the theory behind the
effects of external electric field on reactivity descriptors. Some numerical results will
be presented in Section 25.4. Along with that in Section 25.5, we would like to
discuss the work describing the effect of other perturbation parameters. In Section
25.6, we would present our conclusions and prospects.

25.2 THEORY

The time-independent nonrelativistic electronic Hamiltonian, under the Born
Oppenheimer approximation can be written as [1]

Ĥ ¼ � 1
2

XN
i¼1

r2
i �

XN
i,A¼1

ZA
riA

þ
XN
i<j

1
rij

(25:1)

where the notations have their usual meaning. The external field, electric or magnetic
field, can be introduced as a perturbation parameter. The dipolar interaction of the
Hamiltonian with the electric field, F can be written as,

Ĥ ¼ Ĥ0 � d̂ �~F (25:2)

where
Ĥ0 is the unperturbed Hamiltonian
d is the dipole moment operator

The total energy of the system can be written as

E¼E0�
X
i

diFi�1
2

X
i,j

aijFiFj�1
6

X
i,j,k

bijkFiFjFk�1
3

X
i,j

QijFij���� (25:3)

where
di is the permanent dipole moment
Qij is the quadrupole moment
aij, bijk are the dipole polarizability and hyperpolarizability, respectively
Fij is the component of the field gradient

However, in general, the energy of a perturbed system can be expanded in a Taylor
series as
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where the subscript 0 means that the derivatives are evaluated at zero field. Thus, we
have

di ¼ � @E
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� �
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; aij ¼ � @2E
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� �
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; bijk ¼ � @3E

@Fi@Fj@Fk

� �
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(25:5)

Similarly, the interaction with a magnetic field can be written in terms of a magnetic
dipole, quadrupole, and other moments. However, the first derivative in the Taylor
series expansion, in the presence of magnetic field, is the permanent magnetic dipole
moment; the second derivative is the magnetizability. For a further study on the
electrical and magnetic properties, one can refer to Dykstra [9].

25.2.1 REACTIVITY DESCRIPTORS

The basic theorem in DFT is the Hohenberg Kohn theorem, where the ground-state
energy is defined as a functional of electron density and is given by [10]

E[r] ¼ FHK[r]þ
ð
v(r)r(r)dr (25:6)

The global reactivity descriptors, such as chemical potential and chemical hardness,
are the derivative of energy with respect to the number of electrons. The formal
expressions for chemical potential (m) and chemical hardness (h) are [1,11]

m ¼ @E[r]

@N

� �
v(r)

¼ �I � A

2
(25:7)

h ¼ 1
2

@m

@N

� �
v(r)

¼ I � A

2
(25:8)

The working equations, due to the finite difference approximation, are given along-
side where ionization energy and electron affinity are represented as I and A,
respectively. Electronegativity, chemical potential, and hardness have been com-
puted using this finite difference approximation. Global softness, S, is the inverse of
hardness. These descriptors are used to describe the system globally. However, the
local reactivity descriptors (LRD) such as Fukui function (FF), local softness [12b],
etc., are derivatives of electron density and are used to understand the reactivity of an
atom in a molecule. Fukui function ( f(r)) is defined as, [12a]

f (r) ¼ @r(r)

@N

� �
v(r)

¼ dm

dv(r)

� �
N

(25:9)
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It is to be noted that f(r) is normalized to unity. Due to discontinuity problem in the
number of electrons [13] in atoms and molecules, the right- and left-hand side deriva-
tives at a fixed number of electrons introduces the concepts of FF for nucleophilic and
electrophilic attack, respectively. Introducing the finite difference approximation and
the concept of atom condensed Fukui function (CFF) [14], the working equations are

fþk � qN0þ1
k � qN0

k (25:10)

fk � qN0
k � qN0 1

k (25:11)

Along the same line, the CFF for radical attack is defined as the average of fþk and
fk . Descriptors such as electrophilicity index and its local counterpart are also a
useful quantity [15]. Several other reactivity descriptors have been proposed to
explain the reactivity of chemical species [16,17].

25.2.2 INTERACTION ENERGY USING LOCAL HSAB PRINCIPLE

Let us consider two systems A and B, which interact through their atoms. If the
interaction between the systems occur through the atom x of A with the atom k of the
molecular system B, one can express the total interaction energy from the local point
of view as [18,19]

DEintð ÞAx Bk¼
� mA � mBð Þ2

2
SAfAxSBfBk

SAfAx þ SBfBk

� �
v

� 1
4

l

SAfAx þ SBfBk

� �
m

(25:12)

where the notations have their usual significance. For a detailed mathematical
derivation, one can refer to Ref. [18]. The first term in the interaction energy arises
due to the equalization of chemical potential of A and B, where the normal global
softness has been replaced by the local softnesses of the reacting site. The second
term is due to the maximization of hardness among equichemical potential ensem-
bles. This term involves the knowledge of the complex and the expression for the
interaction energy has been modeled in terms of charge transfer term l, which has
been proposed as the difference in the sum of the atomic charges of the system A or
B before and after the interaction [20]. This development was extended later to
interactions occurring through more than a pair of atoms or sites in A and B [21].

25.3 EFFECT OF ELECTRIC FIELD: THEORY

The effect of external field on reactivity descriptors has been of recent interest.
Since the basic reactivity descriptors are derivatives of energy and electron density
with respect to the number of electrons, the effect of external field on these
descriptors can be understood by the perturbative analysis of energy and electron
density with respect to number of electrons and external field. Such an analysis has
been done by Senet [22] and Fuentealba [23]. Senet discussed perturbation of these
quantities with respect to general local external potential. It can be shown that since
r(r)¼ dE=dvext, Fukui function can be seen either as a derivative of chemical potential
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with respect to the external potential or of electron density with respect to the number
of electrons. Further, response of f(r) with N provides the same results as response of
h with respect to vext

df (r)

dN
¼ d3E

dvextdNdN
¼ dh

dvext
(25:13)

Higher-order derivatives with respect to external potential define x1(r, r0), x2(r, r0, r00),
etc., and their response with N define j1(r, r0), j2(r, r0, r00), etc. This chain of deriva-
tives is diagrammatically depicted in Figure 25.1 [22]. Thus, an exact one-electron
formulation of all chemical responses (linear and nonlinear; hardness, FF) in terms of
Kohn Sham orbital of the unperturbed system was derived [22b].

With specific reference to a homogeneous electric field as external potential, one
can derive similar response. It can be shown that

dm

d~F
¼ d2E

d~FdN
¼ d~D

dN
(25:14)

where ~F is the homogeneous external field and ~D(�dE=d~F) is dipole operator.
Following Senet, similar nonlinear response with respect to ~F can be derived.

It may be recalled that specifically, response of chemical hardness with respect to
external field was discussed by Pal and Chandra [24] quite long back. Using a finite
field approximation of h as ENþ1þEN 1� 2EN, it can be shown that

dh

d~F
¼ ~DNþ1 þ ~DN 1 � 2~DN (25:15)
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c3 (r, r1, r2, r3)

x1 (r, r1)

x2 (r, r1, r2)x1�(r, r1)

FIGURE 25.1 Energy derivatives are defined by increasing the order of perturbation from 0
to 3. Left arrow represents derivative with respect to number of electrons while right arrow
designates derivatives with respect to external potential. (Reprinted from Senet, P., J. Chem.
Phys., 107, 2516, 1997. With permission.)

External Field Effects and Chemical Reactivity 367



By a numerical observation, it was found that

dh

d~F
j~F¼0

is a linearly decreasing function of cube root of polarizability, a linear relation
between cube root of polarizability of N-electron system with dipole moments of
Nþ 1, N� 1, and N electron system was derived.

Few years later, Fuentealba and Cedillo [23] has shown that the variation of
the Kohn Sham FF with respect to the external perturbation depends on the know-
ledge on the highest occupied molecular orbital (HOMO) density and a mean energy
difference of all of the occupied and unoccupied orbital. The quantity, mean energy
difference, has been approximately interpreted as hardness. Under this approxima-
tion, it has been stated that the greater the hardness, the smaller the variation of the
FF, under the external perturbation. This statement then signifies that the system will
become less reactive as the hardness of the system increases due to the external
perturbation.

These external fields can affect the physical properties and reactivity of the
molecular systems. Such effects are especially important in ordered crystalline envir-
onments such as solid oxides and biological macromolecules [25 28]. These local
electrostatic fields play an important role in catalytic functions and in governing the
stabilization of many biomolecular systems [29 32]. These environmental effects
cause dramatic changes in the reactivity, which can be different from the gas phase.

However, another study concluded that the changes of the hydrogen-bond
stability may be important in biological processes. For these, the influence of local
electric fields created by Liþ, Naþ, and Mg2þ ions on the properties and reactivity
of hydrogen bonds in HF and HCl dimer has been carried out by means of ab initio
self-consistent field (SCF) method [33]. A few years later, the effect of intensity
and vector direction of the external electric field on activation barriers of unimole-
cular reactions were studied using the semiempirical MINDO=3 method [34].
However, both semiempirical and ab initio calculations were performed to study
the multiplicity change for carbene-like systems in external electric fields of different
configurations (carbene and silylene) and the factor that determines the multiplicity
and hence the reactivity of carbene-like structures is the nonuniformity of the
field [35].

Among the recently published works, the one which showed that the cyclic
structures of water clusters open up to form a linear structure above a certain
threshold electric field value a was a systematic ab initio study on the effect of
electric field on structure, energetics, and transition states of trimer, tetramer, and
pentamer water clusters (both cyclic and acyclic) [36]. Considering cis-butadiene as
a model system, the strength and the direction of a static electric field has been used
to examine the delocalization energy, the probabilities of some local electronic
structures, the behavior of electron pairs, and the electronic fluctuations [37].
Another recent work performed by Rai et al. focused on the studies using the DFT
and its time-dependent counterpart of effects of uniform static electric field on
aromatic and aliphatic hydrocarbons [38].
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25.4 EFFECT OF ELECTRIC FIELD: NUMERICAL RESULTS

The effect of external electric field on reactivity descriptors was recently presented
by some numerical analysis [39 41]. All these studies concentrated on the effect
of uniform electric field on the reactivity descriptors and were performed with
Becke’s three-parameter hybrid functional [42] (B3) combined with the electron
correlation functional of Lee, Yang, and Parr (LYP) [43]. One of those considered
formaldehyde and acetaldehyde molecules with 6 31þG* basis set using G98W
[44] and DMOL3 packages [45]. It was observed that the variation of the reactivity
descriptors with electric field strength was nonlinear and nonuniform [39]. This
may be due to the field range chosen, i.e., the electric field varies from 0.0 to
1.0 a.u. [1 a.u. electric field strength ffi51.42 V=Å]. They observed that the changes
in the pattern of reactivity indices are strongly influenced by the electric field, thus
leading to nonlinear dependence of the descriptors at larger values of the field.
However, the field was only applied parallel to the C H bond in formaldehyde and
C C bond in acetaldehyde, i.e., only along the bond axis. The effect of electric field
on the perpendicular directions would have been an important issue, as there is
induced polarization perpendicular to the plane of these nonlinear molecules. This
fact has been dealt in our recent work, where we apply electric field in all the three
perpendicular directions as the direction of the field is an important factor in
deciding the stability and reactivity [41]. Moreover, a clear understanding on the
variation of the local reactivity indices with the field was essential.

Now, let us try to analyze systematically the behavior of the reactivity descrip-
tors in the presence of electric field. It is always a good idea to start with some simple
linear molecules [40] such as HF, HCN, CO, and C2H2 to understand the response of
the field on these descriptors. All these calculations were performed by GAMESS
software [46] with 6-31G(d,p) basis set and a comparatively weak field range was
chosen to vary from 0.000 to 0.012 a.u. In the following, we summarize the results
obtained in Refs. [40,41].

25.4.1 RESPONSE OF REACTIVITY DESCRIPTORS FOR LINEAR MOLECULES

When the electric field is directed toward the more electronegative atom, along the
bond, the chemical potential of all the above molecules, except CO, decreases with
the increase in the field strength (Figure 25.2a). This behavior of CO can be
attributed to its small dipole moment [40]. However, hardness values decrease
with the increase in the field values for all the molecules (Figure 25.2a). Due to
the symmetrical nature of acetylene, the hardness is invariant to the change in the
field strength (Figure 25.2a).

However, the behavior of the local descriptors of reactivity is somewhat
different. The local quantities are calculated using the Löwdin-based method of
population analysis [47]. It was observed that when the electric field is applied
toward the more electronegative atom of the systems HF and HCN, the value of its
nucleophilicity (CFF for electrophilic attack) decreases with increasing field
strength (Figure 25.2c). The variation of FF can be well supported with the
variation in the induced dipole moment, given in Table 25.1, of the species in
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that field direction. As an example, when the field is applied toward N and F atom
in HCN and HF, respectively, their nucleophilicity and induced dipole moment
decrease (Figure 25.2c; Table 25.1). The exception to this is provided by CO.
The induced dipole moment of C Oþ decreases as the field is applied toward C
atom, however, the nucleophilicity of C atom increases marginally. The anomaly
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FIGURE 25.2 (a) Variation of changes in chemical potential and chemical hardness (both
in a.u.) with respect to zero field versus electric field (in a.u.) for linear molecules HF, HCN,
CO, and C2H2. � chemical potential=chemical hardness for HF; 4 chemical potential=
chemical hardness for HCN; & chemical potential=chemical hardness for CO; and �

chemical potential=chemical hardness for HCCH. Bold lines represent change in hardness
while thinner ones represent values of change in chemical potential. (b) Variation of changes
in CFF for nucleophilic attack with respect to zero fields versus electric field (in a.u.) for
linear molecules HF, HCN and C2H2. & fþH of HF; � fþH of HCN; and � fþH of HCCH:
(c) Variation of changes in CFF for electrophilic attack with respect to zero fields versus
electric field (in a.u.) for linear molecules HF and HCN. � fF of HF; � f�N of HCN. In all
three figures, dashed line represents the direction of the electric field when it is toward the
more electronegative atom while the solid line represents the electric field when it is in
opposite direction. (Reprinted from Kar, R., Chandrakumar, K.R.S., and Pal, S., J. Phys.
Chem. A, 111, 375, 2007. With permission.)
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can be explained by the small dipole moment of CO, which is very sensitive to the
calculation [40]. On the other hand, the electrophilicity (CFF for nucleophilic
attack) of the electropositive atom in HF increases when the field is applied toward
that atom, (Figure 25.2b). However, on the same line, the electrophilicity of H and
O atom in HCN and CO, respectively, decreases. This behavior of CO is anomal-
ous with the behavior of induced dipole moment and is expected to be due to its
small dipole moment. With the acetylene molecule, the electrophilicity of the H
atom, toward which the field is applied, decreases (Figure 25.2b).

At this point, it is significant to mention that the direction of the electric field
plays an important role in deciding the chemical reactivity of a species (Figure 25.2a
through c), i.e., when the field direction is reversed, the behavior of these descriptors
reverses. Moreover, it can be observed that the variation of reactivity descriptors is
linear and uniform in this field range.

It should be noticed that for the same field direction, the hardness as well as the
CFF decreases (discussed above). A qualitative explanation for the above results is
that the variation of the hardness parameter in the presence of external perturbation is
actually dependent on the net effect exhibited by all the atoms present in the
molecule [40].

25.4.2 RESPONSE OF STABILIZATION ENERGY CALCULATED THROUGH LOCAL

HSAB MODEL

The variation of the interaction energy (both local HSAB and quantum chemical) of
NCH CO, NCH OC, HCCH CO, HCCH OC, FH CO, FH OC, HCCH NCH
complexes (reactive atoms are bold) with electric field, as obtained in Ref. [40] is

TABLE 25.1
Variation of Dipole Moment (in D) of HF, HCN, and CO
with Electric Field

Electric
Field
(in a.u.)

Dipole
Moment
(H)a of HF

Dipole
Moment
(F) of HF

Dipole
Moment
(C) of CO

Dipole
Moment
(O) of CO

Dipole
Moment

(H) of HCN

Dipole
Moment

(N) of HCN

0 1.7972 1.7972 0.1412 0.1412 2.8794 2.8794
0.002 1.8194 1.7748 0.0793 0.2033 2.9773 2.7812
0.004 1.8414 1.7523 0.0176 0.2655 3.075 2.6827

0.006 1.8634 1.7297 0.044 0.3279 3.1724 2.584
0.008 1.8851 1.7068 0.1054 0.3905 3.2696 2.4851
0.01 1.9068 1.6839 0.1667 0.4532 3.3666 2.3858
0.012 1.9282 1.6607 0.2278 0.5161 3.4633 2.2863

Source: Reprinted from Kar, R., Chandrakumar, K.R.S., and Pal, S., J. Phys. Chem. A, 111, 375, 2007.
With permission.

a Atom in parentheses means that the electric field is toward that atom.
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depicted in Figure 25.3. Before discussing the variation of interaction energy
with the electric field, we would like to throw light on the charge transfer term
mentioned in Equation 25.12. This charge transfer term is calculated using the
Löwdin-based method of population analysis. It is observed that when the field is
directed toward CO (considering the interaction through either C or O atom), the
intermolecular charge transfer term l always increases. With HCN, when the field
is directed toward it and if the interaction occurs through N atom with HCCH or
HF, there is an increase in the l value with the increase in field strength. It also
shows that the direction of the external field is important for the intermolecular
charge transfer, trends reverse in opposite direction, which will eventually affect
the mutual interaction between the monomer systems and hence, the stability of the
complexes [40].
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FIGURE 25.3 Variation of the change in interaction energy (kcal=mol) for FH CO, FH OC,
NCH CO, NCH OC and HCCH CO, HCCH OC, and HCCH NCH complexes with respect
to zero field versus electric field (in a.u.). & FH CO; � FH OC; 4 NCH OC; 	 NCH CO;
� HCCH OC; � HCCH CO; and HCCH NCH. Dashed lines signify that the field is
applied along CO while solid lines represent the interaction energy values when the field
direction is reversed. For interactions occurring through N atom, dashed lines signify that the
field is applied along NCH while solid lines represent the interaction energy values when the
field direction is reversed. Bold lines represent the values of quantum chemical interaction
energy calculated as DEQC ¼ EAB (EA þ EB). (Reprinted from Kar, R., Chandrakumar,
K.R.S., and Pal, S., J. Phys. Chem. A, 111, 375, 2007. With permission.)
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It is observed that the stability of the above complexes, formed with CO (either
through C or O atom), increases when the field is applied along the CO direction
(Figure 25.3). The nucleophilicity of C is stronger than O in CO, hence, the HF gets
more stabilized with the former than the latter. This is well supported by the quantum
chemical calculations (Figure 25.3). However, the local HSAB interaction energy of
C2H2 and HCN with CO does not follow with the quantum chemical energy. This
anomaly can be attributed to the combined effect of both the values of charge transfer
term and FF of the reactive atoms. But, as far as the complex HCCH NCH inter-
acting through the N atom of HCN is concerned, they get stabilized when the field is
applied toward HCN, whereas the interaction decreases when the field direction is
reversed. The actual quantum chemical calculation for all these complexes also
shows this similar trend [40]. Now, if we compare the local HSAB interaction
energy of the above complexes, we can conclude that the complexes FH CO,
NCH OC, and HCCH NCH are more stabilized than the others and their stability
increases with the increase in field strength at a particular direction (Figure 25.3).

25.4.3 RESPONSE OF REACTIVITY DESCRIPTORS FOR SOME C2V MOLECULES

Similarly, the response of the reactivity descriptors on some C2v molecules was
studied very recently [41]. Again, some simple molecules belonging to C2v point
group symmetry such as H2O, CH2S, HCHO, SO2, and O3 were considered. The
principal axis of all these molecules is the C2 axis of symmetry which passes through
the central atoms. All the calculations were performed with 6-31þþG (d, p) basis
set. However, now the field is varied from 0.000 to 0.006 a.u. because it is found that
for higher field values sometimes is unable to converge to the correct state for
(N
 1) systems. In order to verify whether the applied field is strong enough to
really mimic the molecular interaction and reaction, we calculated the difference in
the energy of the molecule with 0.000 and 0.006 a.u. field. The above molecular
systems in this field range, applied along the principal axis and in perpendicular
direction, clearly suggests that there is a weak interaction with the external electric
field [41].

It is observed that when the field is applied toward the central atom (say from the
line joining the two H atoms to the O atom along the principal axis, in case of H2O)
of all the species, and if the central atom is more electronegative, the chemical
potential and hardness decrease with increasing field values [41]. For example, when
the electric field is applied toward the O atom in H2O, the chemical potential and
hardness decrease. On the other hand, when the field is applied along the principal
axis toward the central atom, the nucleophilicity decreases for that atom, provided
the central atom is more electronegative. The nucleophilicity of O in H2O decreases
when the electric field is applied toward that atom. Moreover, the electrophilicity of
H atoms in H2O decreases. This trend is the same as observed in case of linear
molecules. Here, the results of only one molecule (H2O) are presented. For details,
the reader may refer to our recent paper [41].

Besides, we calculated the field at which the linearity in the variation of
reactivity descriptors breaks down and tried to put forward some perturbative
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analysis. In general, the Fukui function in the presence of external electric field (F)
can be written as

f (r) ¼ f0(r)þ f 0(r)F þ 1
2!
f 00(r)F � F þ � � � (25:16)

The first term f0(r) is the FF at zero field. The second term f 0(r)¼ d2r(r)=dNdF and
the third term f 00(r) is equal to d3r(r)=dNdFdF can be related, respectively, to the
linear Fukui response and nonlinear Fukui response (Figure 25.1). At rather stronger
fields, the linearity in the variation of the reactivity descriptors breaks down [41].
Electrophilicity index and its local counterpart have been used along with the other
indices to study the response of electric field [39].

25.5 EFFECT OF OTHER PERTURBATION PARAMETERS

Apart from the external electric field, one can think of magnetic field, geometry, etc.,
as a perturbation parameter. Tanwar et al. proposed a principle named minimum
magnetizability principle (MMP) [48], in line with the minimum polarizability
principle (MPP) [49] to extend the domain of application of conceptual DFT to
magnetochemistry. It was shown that there is a minimum value of magnetizability at
equilibrium geometry. Otherwise, HSAB principle [50] and maximum hardness
principle (MHP) [51] are also extensively used. Apart from this, the effects of an
external magnetic field, the electron nucleus (hyperfine) interaction, and the lifetime
of the radicals on the yield of the cage recombination products, the chemically
induced polarization of the nuclei in weak magnetic fields, and the magnetic isotope
effect were examined [52].

However, Nalewajski used DFT-based charge sensitivity approach for an analy-
sis of the ground-state couplings between the geometrical and population degrees of
freedom of open molecular or reactive systems, which includes how the hardness
changes with the system geometry, coupling between the electronic and geometrical
structure parameters etc. [53]. Another interesting work by Chattaraj et al. focused on
the study of the dynamical behavior of the global and local reactivity indices within
the framework of quantum fluid DFT [54].

In addition to these external electric or magnetic field as a perturbation parameter,
solvents can be another option. Solvents having different dielectric constants would
mimic different field strengths. In the recent past, several solvent models have been
used to understand the reactivity of chemical species [55,56]. The well-acclaimed
review article on solvent effects can be exploited in this regard [57]. Different solvent
models such as conductor-like screening model (COSMO), polarizable continuum
model (PCM), effective fragment potential (EFP) model with mostly water as a
solvent have been used in the above studies.

25.6 CONCLUSION AND PROSPECTS

In this chapter, we have tried to give an introduction to the response of reactivity
descriptors to the external perturbation. We have systematically studied the response
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of external field, mainly the electric field, to linear molecules by means of the
conceptual DFT. It is demonstrated that the global and local indices have different
behavior and both have to be considered for a complete understanding of the
response of external field. However, complexes formed by these linear molecules
are more stabilized at the higher field applied in a specified direction than at the zero
fields. Moreover, it is interesting to monitor that although the value of hardness
increases or decreases for all the systems in the presence of the electric field, there is
a further enhancement or decrease of the bond strength of these complexes at the
higher field values. This interesting feature can be ascribed to the increase or
decrease in the value of the FF indices and the parameter l due to the applied
electric field in a particular direction.

Presently, we have only discussed the effect of the uniform field on the reactivity
descriptors. However, in case of the nonuniform field, the terms arising due to higher
moments such as quadrupole, octupole, etc., moments would become important. It
would also be of great interest to discuss and understand the influence of external
electric field on the reactivity of important biological molecules such as deoxyribo-
nucleic acid bases and the Watson Crick-type base pair interaction energies. More-
over, the behavior of the reactivity descriptors can be analyzed in the presence of
magnetic field. Combining the effects of electric and magnetic field, one may be able
to relate intuitively the spectroscopic properties to the reactivity descriptors.
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26.1 INTRODUCTION

It is well known that the surrounding solvent environment plays a crucial role in a
chemical reaction. For example, the formation of tetraethylammonium iodide has been
studied in many nonpolar and polar solvents. It is found that the rate of the reaction is
quite sensitive to the solvent. From the least polar (hexane) to the most polar (nitro-
benzene) solvent, the rate constant increases by 2700 times [1]. The polar transition
state of this reaction is stabilized in a high dielectric constant medium. Since the

* Dedicated to my research supervisor and mentor, Dr. T. Ramasami, Secretary, Department of Science
and Technology, Government of India, on his 60th birthday.
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solvent effect is environmental, its dielectric constant, dipole moment, viscosity, size,
etc. may affect the rate of a reaction.

Understanding the effect of solvation on chemical reactions was one of the main
objectives of research in the last century [2 11] as evident from the wealth of literature
available on this subject; numerous experimental and theoretical studies have been
made in the past to assess the importance of solvent environment on the structure,
stability, spectra, and reactivity. It is a well-known fact that accurate treatments of
solvent effect on various chemical systems are particularly challenging for theoretical
chemistry [3 5]. The reaction is primarily determined by changes in the electronic
structure of various species involved. In addition, if reactions are occurring in solution,
the change in the electronic energy is similar to that of the solvation energy. Hence, the
solvent effect is an important factor of the chemical reaction. It is also essential to
realize that the solvent significantly influences the electronic structure of various
species involved in the chemical reaction. As a consequence, it is necessary to treat
the electronic structure and the solvation together.

26.2 TREATMENT OF SOLVENT MOLECULES
AND THERMODYNAMICS BACKGROUND

There are several ways by which the solvent molecules can influence the chemical
reactivity. In some reactions, solvent molecules are directly involved in chemical
reactions and are tightly bound to the solutemolecules. In these cases, solvent molecules
effectively form an integral part of the solute and hence these solvent molecules should
be treated explicitly. In other systems, the solvent molecules do not interact directly with
the solute and provide an environment that strongly influences the behavior of the solute
molecules. The typical characteristic of this category of systems is high anisotropic
environment around liquid crystal or lipid bilayer. In these cases, the environment
strongly influences the conformations of the dissolved solutes. Here, it is not necessary
to treat the solvent molecules explicitly but they are modeled using mean field theories
proposed by Marcelja [12]. These methods provide a useful compromise between
realism and simplicity. Using this approach, meaningful simulations on the required
timescale can be carried out. Only a single molecule or a chain is treated explicitly in
terms of a realistic all-atom description, and the interactions with the other part
of the system (e.g., the surrounding lipid and solvent) are parametrized using a potential
of mean force and appropriate random forces. This makes it possible to sample the large
number of configurations that are needed to accurately represent the equilibrium state of
the bilayer systems [5].

In the third model, solvent molecules act as a bulk medium and significantly
modify the solute properties. In this type, solute solvent interaction is modeled using
the continuum approach [8 11]. A variety of models have been proposed in the
literature to treat solvent molecules in different situations.

The solvation free energy is defined as the free energy change to transfer a solute
molecule from vacuum to solvent [13 15]. It can be considered to have three
components:

DGsolvation ¼ DGelectrostatic þ DGvdw þ DGcavity (26:1)
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where the first term is the electrostatic contribution to the solvation free energy.
The electrostatic free energy contributes significantly to polar solvents and charged
solutes. The second term is the van der Waals interaction between the solute
and the solvent. This can be further divided into DGrepulsive and DGdispersive.
The third term is the free energy required to form solute cavity within the solvent.
It is made up of the entropic penalty associated with the solvent reorganization
around the solute and the energy required to create cavity. In addition to these
terms, DGhydrogen-bonding can be included to treat the hydrogen bonding interaction
between the solute and the solvent. In modeling the effect of solvation, different
methods based on classical and quantum mechanics (QM) are used. Methods of
treating solvation range from a detailed description at the atomic level to reaction
field-based continuum methods. Some of the salient features of the various models
are described in Table 26.1.

It can be seen from Table 26.1 that various methods used to model the effect of a
solvent can be broadly classified into three types: (1) those which treat the solvent
as continuous medium, (2) those which describe the individual solvent molecules
(discrete=explicit solvation), and (3) combinations of (1) and (2) treatments. The
following section provides a brief introduction to continuum models.

TABLE 26.1
Different Kinds of Solvation Models

Models

Features Explicit Model Continuum Model Combined Model

Representation Solvent molecules
are explicitly treated

Represented as a solvent
continuous medium

Combined representation
of solute solvent

Merits It is generally more
accurate and detailed

atomic interaction
of solute solvent

Simple, inexpensive
to calculate

Atomic interaction of
solute solvent and bulk

effects are included.
Generally it gives better
results than pure

continuum models
Disadvantages Computationally

expensive
Ignore specific hydrogen
bonding interactions

Computationally
expensive when
compared to continuum

models and less demanding
when compared to full
explicit treatment
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26.3 CONTINUUM MODEL

The treatment of solvation effects based on continuum models has dominated this
field since the early nineteenth century. The seminal works of Born [16] on the
electrostatic free energy of insertion of a monatomic ion in a continuum dielectric
[16] and Onsager [17] as well as Kirkwood [18] on the electrostatic free energy of
insertion of dipolar solutes have formed the basis for the development of various
continuum solvation models. Continuum models are included in molecular mechan-
ics (MM) and classical molecular dynamics approaches (force field-based simula-
tions) to understand the solvent effect on large systems, specifically biomolecules
[5]. These methods are successful to understand the effect of solvation on structure,
stability, spectra, and reactivity [8 11]. Both quantum and classical formulations
have different options to describe electrostatic contributions to solvation energy
[8 11]. The approaches are (1) multipole expansion, (2) apparent surface charge,
(3) image charge, (4) finite difference, and (5) finite elements. The quantum formu-
lations of the first three approaches have been implemented in the electronic structure
calculations [19] and all the five approaches are used in classical models.

In continuum model, the solvent is described as a uniform polarizable dielectric
medium («) and the solute of suitable shaped cavity is placed in the dielectric medium
[8 11]. By definition, the continuum can be considered as a configuration-averaged
or time-averaged solvent environment, where the averaging is Boltzmann-weighted
at the temperature of interest. The creation of the solute cavity in the solvent
continuum is a destabilization process. On the other hand, the dispersive interaction
(van der Waals interaction) between the solute and the solvent is attractive in nature,
which stabilizes the system. The electrostatic interaction of a solute with the solvent
depends upon the charge distribution and polarizability of the solute. The presence of
solute molecules in the dielectric continuum further polarizes the medium, which in
turn repolarizes the solute molecules, and therefore electrostatic interaction between
the solute and the solvent stabilizes the entire system. This interaction is called as
reaction field. A general strategy employed in the continuum model is explained
below.

The solute molecule with electronic distribution rM can be written as the sum of
contribution from nuclear rnuc and that from electron rel:

rM r: {R}ð Þ ¼ rnuc r: {R}ð Þ þ rel r: {R}ð Þ (26:2)

rnuc r: {R}ð Þ ¼
X

Zad r � Rað Þ (26:3)

where R represents the position of nuclei that govern electron distribution paramet-
rically. The contribution from electron can be obtained from wave function.
Using the basic definition of the dielectric continuum model, the solute is located
in the cavity and immersed in the dielectric medium. The basic equation for dielectric
continuum model is Poisson Laplace equation. The electrostatic fields in the cavity
and outside the cavity are fin and fout. These quantities can be obtained by solving
the following equations with appropriate boundary conditions.
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r2win ¼ �4prM(r) (26:4)

r2fout ¼ 0 (26:5)

The electrostatic potential in the cavity (fin) can be separated into the direct
contribution from solute (fsolute) and continuum medium (fmedium). The electrostatic
energy between the solute and the continuum is calculated as

WMS ¼
ð
dtrMfmedium (26:6)

The solvation free energy is the work done (WMS) by moving infinitely small
charges:

DGsol ¼ 1
2
WMS (26:7)

In the classical approach, it is relatively simple to calculate the solvation energies.
However, in the quantum mechanical formulations, the electronic structure of the
solute molecule depends on the reaction field and the reaction field in turn depends
on the structure of the solute. It is a typical nonlinear problem and has to be solved
iteratively. Several approaches have been proposed for solving this problem [8 11].
All of them are based on the modification of the Hamiltonian in the following
equation:

H0 þ HRF½ � C ¼ EC (26:8)

where H0 is the usual Hamiltonian for an isolated molecule and HRF is the
Hamiltonian representing the interaction between the solute and the continuum
medium:

CjHRFjCh i ¼ WMS (26:9)

In the case of the Hartree Fock method for a closed shell systems, the new Fock
matrix is written as

F1
nm ¼ F(0)

nm þ mjHRFjnh i (26:10)

where F(0) is the Fock matrix of isolated molecule. The basic differences in the
various continuum models are presented in the following section.

Various components of the interactions are calculated using different formal-
isms. In fact, the shape and size of the cavity are defined differently in various
versions of the continuum models. It is generally accepted that the cavity shape
should reproduce that of the molecule. The simplest cavity is spherical or ellipsoidal.
Computations are simpler and faster when simple molecular shapes are used. In Born
model, with simplest spherical reaction field, the free energy of difference between
vacuum and a medium with a dielectric constant is given as [16]
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DGelec ¼ � q2

2a
1� 1

«

� �
(26:11)

where DGelec is the work done to transfer the ion from vacuum to the solvent phase,
q is the molecular charge, and a is the radius of the cavity. In this model, the
charge and net dipole moment of the solute molecule are taken into account,
and cavity and dispersive interaction are neglected. The model based on spherical
cavity with dipole is known as Onsager model [17]. The free energy of solvation is
written as

DG (m)
elec ¼ � «� 1

2«þ 1
m2

a3
(26:12)

where m is the dipole moment. In the Kirkwood model, the multipole expansion in a
cavity is used [16]. The same model with ellipsoidal cavity is referred as Kirkwood
Westheimer model [20]. This model does not include the back polarization effect. By
taking into account of the back polarization effect of the medium on the solute
molecules, the free energy of solvation is given by

DG (m)
elec ¼ � «� 1

2«þ 1
m2

a3
1� «� 1

2«þ 1
2a
a3

� � 1

(26:13)

where a is the polarizability of the molecule.

26.4 SELF-CONSISTENT REACTION FIELD METHOD

Self-consistent reaction field (SCRF) models are the most efficient way to include
condensed-phase effects into quantum mechanical calculations [8 11]. This is
accomplished by using SCRF approach for the electrostatic component. By design,
it considers only one physical effect accompanying the insertion of a solute in a
solvent, namely, the bulk polarization of the solvent by the mean field of the solute.
This approach efficiently takes into account the long range solute solvent electro-
static interaction and effect of solvent polarization. However, by design, this model
cannot describe local solute solvent interactions.

The salient features of quantum formulation of Onsager reaction field model
(dipole model) is described here. In this method, the reaction field is treated as
perturbation to the Hamiltonian of the isolated molecule. If H0 is the Hamiltonian of
the isolated molecule and HRF is the reaction field [21], the Hamiltonian of the whole
system (Htot) is represented as

Htot ¼ H0 þ HRF (26:14)

HRF ¼ �mT 2(«� 1)
(2«þ 1)a3

cjmjch i (26:15)
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By solving Equation 26.14, the electrostatic contribution to the solvation free energy
is obtained as

DGelec ¼ cjHtotjch i � c0jH0jc0h i þ 1
2
2(«þ 1)
(2«þ 1)

m2

a3
(26:16)

where m is the dipole moment operator. One of the limitations of this method is the
use of a spherical cavity: molecules are rarely in exact spherical shape. However, a
spherical representation is the first approximation to the shape of many molecules. It
is also possible to use an ellipsoidal cavity, which may be the more appropriate shape
for some molecules. In the case of a spherical cavity, the radius can be calculated
from the molecular volume:

a3 ¼ 3Vm

4pNA

(26:17)

where Vm is the molecular volume and NA is the Avogadro’s number. The molecular
volume can be calculated from (1) ratio of molecular weight=density, (2) largest
distance within the molecule, and (3) electron density contour.

Pisa group of Tomasi and coworkers have made significant contributions to the
development and implementation of these solvation models [8 11]. They have
developed a variety of quantum formulations of continuum models. In polarizable
continuum method (PCM), more realistic cavity shape based on the van der Waals
radii of the atoms in solute is defined [22]. In this method, cavity surface is divided
into a large number of small surface elements with point charges. This system of
point charges represents the polarization of solvent, and the magnitude of each
surface charge is proportional to the electric gradient at that point. The total electro-
static potential at each surface element equals to the sum of potential due to solute
and that of other surface charges. Various versions of PCM approach have been
developed [8 11]. Dielectric PCM (DPCM) [23], isodensity PCM (IPCM) [24], and
self-consistent isodensity PCM (SCIPCM) [25] are some of the versions of PCM
method. In addition, integral equation formalism (IEF) has also been developed to
model solvation process [26 28].

In addition to the Pisa group, extensive and systematic work on solvation has
been carried out by the Barcelona group [10]. Luque, Orozco, and coworkers have
reformulated the DPCM model. They have referred this method as Miertus, Scrocco,
and Tomasi (MST) model [10,22]. This method has been applied to almost all
aspects of solvation problems with special reference to organic and biological
systems. In this method, various contributions to the free energy of solvation such
as (1) cavitation, (2) van der Waals, and (3) electrostatic have been calculated. In the
quantum mechanical framework, the electrostatic contribution is determined by
adding the perturbation operator to the solute Hamiltonian and self-consistently
solving the corresponding nonlinear Schrodinger equation.

Conductor-like screening model (COSMO) is one of variants of PCM method
[29]. In this method, the cavity is considered to be embedded in a conductor with an
infinite dielectric constant [29]. An extension to this method, called COSMO-RS
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(conductor-like screening model for real solvents), has been proposed by Klamt [30].
In COSMO-RS method, the interactions in a fluid is described as local contact
interactions of molecular surfaces and the screening charge densities from molecular
contact is used to quantify the interaction energies. COSMO-RS has become a
predictive method for the thermodynamic properties of pure and mixed fluids.

26.5 SOLVATION MODELS

In the development of solvation models, Cramer and Truhalar have made several
noteworthy contributions [8 11]. Most of the implicit solvation models do not
include the effect of first solvation shell on the solute properties. This can be
satisfactorily treated by finding the ‘‘best’’ effective radii within implicit models.
In addition to the first-solvent-shell effects, dispersion interactions and hydrogen
bonding are also important in obtaining realistic information on the solvent effect of
chemical systems.

The magnitude of the free energy effect associated with any first-solvation-shell
phenomenon is approximately proportional to the number of solvent molecules in the
first solvation shell. It can be calculated from the solvent-accessible surface area
(SASA). This concept of SASA is introduced by Lee and Richards [31] and
independently by Hermann [32]. The SASA is calculated as the area traced out by
the center of a ball rolling over the surface of a solute, where the radius of the ball is
the effective half width of the first solvent shell (1 2 Å for water). In models (SMx)
developed by the Cramer and Truhalar, the concept of SASA has been used with
empirical surface tensions [9]. This term is included along with the electrostatic term
in the continuum model. This model has the advantage of bulk-dielectric model
along with the first solvation effects. Cramer and Truhalar have refined the SMx by
parameterization of atomic surface tensions not only in terms of properties of the
atoms of the solute but also in terms of solvent properties [9]. By using widely
available solvent descriptors, this has allowed the development of several SMx

solvation models that are applicable not only to water but to any organic solvent
also. These models are called as universal solvation models [9].

26.6 NONELECTROSTATIC CONTRIBUTION
TO THE SOLVATION FREE ENERGY

In the previous section, various methods employed to calculate the electrostatic
contributions to the free energy of solvation have been presented. However, it is
important to provide some ideas about the calculation of nonelectrostatic contribu-
tions. These factors are essential for solutes, which are neither charged nor polar. The
cavity and van der Waals terms can be combined and represented as [5]

DGcav þ DGvdw ¼ gAþ b (26:18)

where A is the SASA and g and b are constants. The cavity terms arise due to the
solvent pressure and reorganization of solvent molecules around the solute. The
solvent molecules, which are present in the first solvation shell, are the most affected
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by reorganization. As mentioned in the previous section, the number of solvent
molecules present in the first shell is proportional to the SASA of the solute.
Similarly, the solute solvent van der Waals interactions depend on the number of
solvent molecules present in the first solvation shell. Hence, both cavity and van der
Waals contributions are modeled in terms of SASA.

26.7 QM=MM MODEL

The combined QM=MM methods are used to study the solvation of the systems that
(1) are too large for QM treatments, (2) cannot be appropriately modeled by classical
methods because they involve large electron density redistributions, and (3) involve
breaking or formation of chemical bonds [10]. A variety of schemes have been
proposed in the literature to combine QM=MM regions. The coupling scheme
proposed by Morokuma and coworkers is generally known by the acronym
ONIOM (our own n-layered integrated molecular orbitalþmolecular mechanics)
[33]. The continuum solvation models are implemented in the ONIOM approach.
These models are applied to study the properties of solvated molecular systems. It is
evident from the results that these methods appear to be a promising tool for accurate
calculations on large molecules in solution [34,35].

26.8 SOLVENT EFFECT AND ELECTRON CORRELATION

With sufficiently large basis set, the Hartree Fock (HF) method is able to account for
�99% of the total energy of the chemical systems. However, the remaining �1% is
often very important for describing chemical reaction. The electron correlation
energy is responsible for the same. It is defined as the difference between the exact
nonrelativistic energy of the system («0) and Hartree Fock energy (E0) obtained in
the limit that the basis set approaches completeness [36]:

Ecorr ¼ «0 � E0 (26:19)

The dispersive force arises due to the intermolecular electron correlation between
the solute and the solvent. Further, it is also important to include the changes
in intramolecular and intermolecular solvent electron correlation upon insertion of
the solute in the solvent continuum. Further, electron correlation affects the structure
of the solute and its charge distribution. Hence, the wave function obtained from
the calculation with electron correlation provides a more accurate description of
reaction field.

26.9 APPLICATIONS OF SOLVATION MODELS

The solvation models are used to predict the properties of small molecules and
large biomolecules employing different levels of theory. In the prediction of solvent
effect using electronic structure calculation, semiempirical, HF, post-HF, and DFT-
based hybrid methods have been widely used [2 11]. Since a wealth of literature is
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available on the applications of solvation models, it is a mammoth task to present
the complete details. Some of the important applications are presented in the next
section.

26.10 SOLVENT EFFECT ON EQUILIBRIA

Many research groups have applied the continuum models to understand the effect of
solvation on conformational, tautomeric, acid=base, or other equilibria. The utility
of continuum solvation models can be understood with the following example.
The keto enol tautomerism 2-pyridone to 2-hydroxypyridine have been estimated
using HF=6 31G* geometries at QCISD=6 31þG** levels of calculation employ-
ing Onsager dipole model [37]. The calculated change in free energy of reaction
(DG0

r ) in gas phase, cyclohexane, and acetonitrile are �0.6, 0.4, and 2.3 kcal=mol,
respectively. These are in reasonable agreement with the corresponding experimental
values of �0.8, 0.3, and 3.0 kcal=mol. It can be observed from the results that (1)
the level of theory, (2) size of the basis sets, and (3) rigorousness in solvent
representation are the important factors that determine the quality of results.

26.11 REACTION MECHANISMS

The effect of solvent environment on the chemical reactivity is well known. How-
ever, it is a challenging problem for theoretical chemists to predict the effect of the
solvent on the chemical reactivity. With the confidence gained in understanding the
chemical reaction mechanism in vacuum using various electronic structure calcula-
tion methods, several attempts have been made to probe the reactivity in solvent
medium. The success of solvation models in predicting the SN2 reactions in solvent
environments is illustrated [8 11,38].

26.12 SOLVENT EFFECT ON SPECTRA

Along with a variety of electronic structure methods, the continuum solvation
models have been used to predict the electronic, vibrational, and nuclear magnetic
resonance (NMR) spectra [8 11]. It is well known that carbonyl stretching frequency
undergoes shift in the solvent environment. Several calculations have been carried
out on prediction of stretching frequency in different solvent environments using
various continuum models. It is possible to establish a linear relationship between
the solvent-induced shifts and the other physicochemical properties in solution.
Recently, the solvent-induced shifts of the carbonyl (C¼O) stretching frequency
of acetone in 21 organic solvents have been studied [39]. Results of the multiple
regression analysis have shown that four descriptors, namely (1) the solvation free
energy of solute in continuous dielectric medium, (2) the global interaction energy of
the solute solvent system, (3) the maximum electrostatic potential on the hydrogen
atom of the solvent molecule, and (4) the maximum condensed nucleophilic Fukui
functions are important descriptors in predicting the shifts in various solvents.
Tomasi and coworkers have demonstrated the effects of solvent environment on
NMR shielding parameters [11]. Using high-level quantum chemical calculations
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with coupled description of solvent environment with continuum and discrete solv-
ation model provided insight into the solvent-induced shifts. Recently, Klein et al.
have carried out ab initio calculations on the 17O NMR chemical shifts for water
using PCM model [40]. They have investigated the limitations of PCM approach in
predicting the NMR shifts of water clusters. It is clearly evident from the literature
that it is possible to gain insight into the effect of solvent on the spectra of molecules
using continuum and combined models.

26.13 SOLVENT EFFECT ON THE CONCEPTUAL DFT-BASED
REACTIVITY DESCRIPTORS

Many important concepts of chemical reactivity have been defined in density
functional theory (DFT) via electron density of the chemical system [41]. Both
global and local reactivity descriptors have been used to understand the global
chemical reactivity and site selectivity. Electronegativity (x), chemical potential
(m), chemical hardness (h), and electrophilicity (v) are the global descriptors used
to understand the various qualitative concepts in chemical reactivity [42 45].
The local reactivity and site selectivity can be quantified with the help of various
local descriptors such as Fukui functions, local hardness, local softness, and local
philicity. Chemical potential measures the escaping tendency of an electron cloud.
It is negative of electronegativity. Small or zero hardness means that the substance is
highly reactive. Softness is reciprocal of hardness. Fukui function is derivative of
electronic chemical potential and it is space dependent (local) function. It describes
the sensitivity of system’s chemical potential to external perturbation at a particular
point. With the help of various local descriptors, it is possible to gain insight into
the site selectivity for nucleophilic, electrophilic, and radical attack. Since chemical
reactivity is influenced by the solvent environment, it is of interest to study the effect
of the same on various descriptors. In the following section, the effect of solvent on
various descriptors is described.

26.14 SOLVENT EFFECT ON ELECTRONEGATIVITY,
HARDNESS, AND SOFTNESS

Lipinski and Komorowski have predicted the effect of solvent on the electronega-
tivity and hardness in a homogeneous polar medium using a virtual charge model
[46]. It is found that the hardness of ions decreases with increasing solvent polariz-
ability, whereas the electronegativity index decreases for cations and increases for
anions. The calculated x and h for molecules showed minor dependencies with
solvent polarity. Safi et al. [47] have employed the continuum approach for the first
time to study the influence of solvent on group electronegativity and hardness values
of CH2F, CH2Cl, CH3, CH3 CH2, and C(CH3)3. It is observed and concluded
that the groups become less electronegative and less hard with increasing dielectric
constant.

In addition to the continuum models, the explicit solvation has also been
used to quantify the reactivity [48]. In this study, the effect of solvent on the
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electronegativity, hardness, condensed Fukui function, and atomic softness for a set
of molecules and ions have been studied. All anions show a significant change in the
chemical potential. Both HOMO and LUMO energy levels decrease in the solvent
phase when compared to the gas phase. For acids, the increase in the LUMO orbital
energy is larger than that of HOMO energy. For the group of salts, it is interesting to
note that LUMO energies increase with a decrease in the HOMO energy levels. This
leads to a small change in the chemical potential.

Menses et al. have studied the solvent effects on two main global descriptors of
reactivity, namely the electronic chemical potential (the negative of electronegativ-
ity) and the chemical hardness by taking neutral molecules and ions [49]. It is evident
from this study that the electronic potential of cations increases by solvation, and
therefore their solution phase electronegativity decreases as a consequence of charge
transfer from the solvent to the solute. For anions, the electronic chemical potential
decreases by solvation and therefore their electronegativity increases as a conse-
quence of charge transfer from the solute to the solvent. It is also important to
mention that the chemical hardness always decreases upon solvation because the
electrostatic potential decreases as the effective radius of the solute increases.
However, it is very difficult to give an order of decreasing pattern in hardness for
cations versus anions because this quantity strongly depends on the actual structure
of the charged solute and its solvation layer.

26.15 SOLVENT EFFECT ON ELECTROPHILICITY

In a recent review, Chattaraj et al. have provided a detailed account of aspects
of electrophilicity index [45]. Perez et al. have systematically investigated the
continuum solvent effect on the electrophilicity index using the self-consistent
isodensity-polarized continuum model (SCI-PCM) [50]. It is interesting to observe
a linear relationship between the change in electrophilicity index and the solvation
energy. Further, it is found that solvation enhances the electrophilicity power of
neutral electrophilic ligands and decreases the power in charged and ionic electro-
philes. Depending on the nature of molecule, the elctrophilicity varies with different
solvent environments. Theoretical study of the trans-N2H2! cis-N2H2 and
F2S2! FSSF intramolecular rearrangement reactions in gas and solution phases
has been carried out by Chattaraj et al. [51]. In both reactions, the electrophilicity
decreases in the presence of the solvent, and all the species associated with these
reactions become less electrophilic in the solution phase. The partitioning of the
changes in electrophilicity has been made. It is evident from the results that changes
in electrophilicity in solvent medium is primarily determined by the changes in the
electronic chemical potential and the amount of charge transfer.

A detailed analysis of the global and local reactivity patterns of neutral and
charged peroxides have been studied using continuum IPCM and SCIPCM models
[52]. It can be seen from the results that the energy barriers for the (1,2) hydrogen
shift are modified by the presence of the solvent environment. In fact, it is interesting
to note that both implicit and explicit solvation models provide similar trend about
the reactivity. Nucleophilic cyclopropane ring opening in duocarmycin derivatives
by methanol under acid conditions has been studied in both gas and solvent phase
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[53]. It is evident from the calculated values that solvent effect decreases the
electrophilicity. However, the presence of same environment reduces the hardness
value considerably, thereby making the reaction feasible.

26.16 SOLVENT EFFECT ON LOCAL DESCRIPTORS

Continuum model has been applied for the first time to predict the Fukui functions of
formaldehyde, methanol, acetone, and formamide in water medium [54]. The results
reveal that the potential for electrophilic and nucleophilic attack increases when
passing from the gas phase to an aqueous medium. The calculated Fukui functions
for formaldehyde at Hartree Fock (HF) level of theory are presented in Table 26.2.

It can be noted that solvent has only marginal effect on the Fukui functions and
hence local site selectivity. A systematic investigation has been made to study the
effect of solvation on the local philicity indices of carbonyl compounds using
B3LYP scheme employing direct calculation method [55]. It is possible to observe
from the results that solvation marginally influences the local reactivity profiles.

Recently, a comprehensive analysis has been made to probe the effect
of solvation on the reactivity and toxicity of the complete series of chlorobenzenes
through the conceptual DFT-based global and local descriptors [56]. Using the
reactivity values in gas and solvent phases, quantitative structure toxicity relation-
ship (QSTR) has been developed for selected chlorobenzene against Rana japonica
tadpoles. It is interesting to observe that reactivity descriptors obtained from
solvation calculation provides good correlation between the experimental and
the predicted toxicity values. Overall, the solvent effect significantly influences the
global electrophilicity than its local counterpart.

26.17 SUMMARY

It is established that a detailed understanding of chemical or biochemical
systems is impossible without an accurate description of their solvent effects.
Hence, tremendous effort has been made in the past to develop solvation models.
In this chapter, a brief introduction to continuum solvation models and their
applications are presented. Continuum models reasonably predict solvent effect on

TABLE 26.2
Calculated Fukui Function for Formaldehyde in Gas and Solvent (Water)
Phases at HF=6–31G** Level Using Mulliken Population Analysis

Gas Phase Solvent Phase

Atom fþk f�k f0k fþk f�k f 0k

C 0.305 0.018 0.161 0.324 0.020 0.162
O 0.271 0.508 0.389 0.242 0.509 0.376
H 0.212 0.237 0.225 0.227 0.236 0.231

H 0.212 0.237 0.225 0.227 0.236 0.231
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chemical systems in which solvent molecules act as a bulk medium. The results have
clearly shown that the level of quantum chemistry calculation, quality of force field
in the classical molecular mechanics molecular dynamics as well as rigorousness in
the description of the solvent effect are very important factors in the prediction of
results. Solvation models cannot describe the specific hydrogen bonding interaction
between the solute and the solvent. In order to account for specific solute solvent
interactions, the combined model is an attractive alternative approach. The combined
solvation model realistically describes the effect of first solvation shell and bulk
dielectric environment.
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27.1 INTRODUCTION

The advent of density functional theory (DFT) [1,2] has had a profound impact
on quantum and computational chemistry. The ingenious proof, given in 1964
by Hohenberg and Kohn [1], that the wave function of a many-electron system
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(atom, molecule, etc.), a function of the three spatial and a single spin coordinate of all
N electrons of that system, could be replaced as basic carrier of information by the
electron density function r(r), a function of only three spatial coordinates, offered a
perspective for dramatic computational simplification of electronic structure calcula-
tions. The price to be paid was (and still is) the unknown exchange correlation
potential vXC(r) also appearing in the working equations of DFT, the celebrated
Kohn Sham equations [3], being the counterpart of the Hartree Fock equations in
wave function theory. Due to the efforts of many leading quantum chemists, exchange
correlation potentials of ever increasing performance were presented in the past two
decades (although sometimes suffering from heavy parameterization) [4] so that at this
moment DFT is undoubtedly the main workhorse for computational studies on
geometrical and electronic characteristics of molecular ground states and their evolu-
tion upon a chemical reaction, for molecules involving not too heavy main or
transition group elements, representable by a single configuration [5]. On the other
hand, since the pioneering work by Parr in the late 1960s [6], DFT turned out to be a
highly valuable instrument for describing and interpreting chemical reactivity starting
from sharper definitions of various traditional chemical concepts such as electro-
negativity, hardness, and softness. This branch of DFT, termed conceptual density
functional theory [7], plays a fundamental role in understanding reactions on the basis
of the properties of the individual reactions following Parr’s dictum ‘‘to calculate a
molecule is not to understand it’’ [7] (for reviews see Refs. [8 12]). The basic
ingredient is the perturbation expansion [13] of the energy of a system in terms
of the two variables characterizing the Hamiltonian: the number of electrons N and
the external potential v(r), i.e., the potential felt by the electrons due to the
nuclei (the influence of external electromagnetic fields will be left out of consider-
ation) [13 15]. The final aim is to describe the interaction between two systems A and
B in terms of the coefficients @nE=@Nmdv(r)m

0� �
(n¼mþm0) of the isolated reactants

A and Bwhen expanding the E¼E[N, v(r)] functional. The latter quantities can easily
be looked upon as response functions and can be global in nature (i.e., r-independent,
e.g., the electronegativity x ¼ �(@E=@N)v), local (i.e., r-dependent, e.g., the density
itself r(r) ¼ dE=dv(r)Nð Þ, or nonlocal (i.e., dependent on two or more positions in
space, e.g., the linear response function x(r, r0) ¼ d2E=dv(r)dv(r0)

� �
N (vide infra)).

These descriptors have been widely used for the past 25 years to study ‘‘chemical
reactivity,’’ i.e., the propensity of atoms, molecules, surfaces to interact with one or
more reaction partners with formation or rupture of one or more covalent bonds.
Kinetic and=or thermodynamic aspects, depending on the (not always obvious and
even not univoque) choice of the descriptors were hereby considered. In these
studies, the reactivity descriptors were used ‘‘as such’’ or within the context of
some principles of which Sanderson’s electronegativity equalization principle [16],
Pearson’s hard and soft acids and bases (HSAB) principle [17], and the maximum
hardness principle [17,18] are the three best known and popular examples.

In this context, an avalanche of studies were devoted to acid base reactions in
their broadest sense (i.e., the Lewis picture), also involving complexation reactions,
to the typical organic reactions of addition, substitution, and elimination types,
involving nucleophilic and electrophilic reagents including the case of radicalar
reactions and excited states (for a review see Ref. [11]) in which our group has
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been active for nearly 15 years [11,19]. In recent contributions, our particular
attention has been focused on the formulation of selection rules for pericyclic
reactions, the famous Woodward Hoffmann rules [20], in terms of density-based
reactivity descriptors [21] and to the description of redox reactions, which maybe
unexpected due to the dominant role of the change in number of electrons, hardly
received attention in this context [22].

A domain of fundamental importance in chemistry and biochemistry hardly
treated in the conceptual DFT context are intermolecular interactions not leading
to a new constellation of covalent bonds, the so called noncovalent interactions [23].
This type of interactions (e.g., H-bonding, dispersion interaction, etc.) has only
recently been touched upon in the literature mainly by our group. The aim of the
present chapter is to present an eye opener when and how these interactions can
be described in terms of the DFT-based reactivity descriptors. After a brief summary
of the basic theory and calculation of the descriptors in Section 27.2, we will
subsequently describe their application in Section 27.3, as interpretational tools, in
the study of H-bonding (Section 27.3.1) and p p stacking interactions, and their
repercussion on H-bonding (Section 27.3.2). In Section 27.3.3, we show how DFT-
based descriptors may be of interest when evaluating dispersion interactions hereby
turning conceptual DFT from an interpretative tool to a computational tool.

27.2 CONCEPTUAL DFT AS A SOURCE OF INTERACTION
DESCRIPTORS

As stated in the introduction, conceptual DFT is based on a series of reactiv-
ity descriptors mostly originating from a functional Taylor expansion of the
E¼E[N, v(r)] functional. These @nE=@Nmdv(r)m

0� �
quantities can be considered

as response functions quantifying the response of a system for a given perturbation in
N and=or v(r). In the case of molecular interactions (leading to a new constellation of
covalent bonds or not), the perturbation is caused by the reaction partner. In Scheme
27.1 an overview of the interaction descriptors up to n¼ 2 (for a more complex
tabulation and discussion of descriptors up to n¼ 3, see Refs. [11,12]) is given.

E = E[N, ν(r)]

Electronic chemical potential

(=–electronegativity)

n =1

n = 2

Chemical hardness Electronic Fukui function f(r) Linear response function

∂E = m – c
∂N ν(r)

∂2E = – = h
∂N2

ν(r)

∂2E =
∂Nδv(r)

δm =
δv(r) N

= = χ(r, r´)δρ(r)
δv(r´) N

∂ρ(r) = f(r)
∂N v(r) N

δ2E
δv(r)δv(r´)

∂c
∂N

= r(r)

Electron density

δE
δv(r) N

SCHEME 27.1 Response functions @nE=@Nmdv(r)m
0
up to n¼ 2.
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The preponderant role of the electronegativity and density itself as first-order
response functions is clear: the identification of the electronegativity as the negative
or the electronic chemical potential [24], appearing in the DFT analogue of the
time-independent Schrödinger equation [2], links the basics of DFT and conceptual
DFT. The simplest of the second-order response functions is the global descriptor
@2E=@N2ð Þv, identified by Parr and Pearson as the chemical hardness h [25]. It turns
out to be natural to define its counterpart as chemical softness: S¼ 1=h. These
concepts were put forward by Pearson in the early 1960s in his HSAB theory on
an empirical basis with criteria derived from experimental data on the strength of
interaction between generalized acids and bases [25].

The second member of the n¼ 2 series is a mixed derivative @2E=@Ndv(r)ð Þ,
which can easily be seen to be equal to @r(r)=@Nð Þv. This quantity indicates how the
electron density at a given point r changes when the total number of electrons of a
given system changes. In view of its reduction to the highest occupied molecular
orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) density (when the
left or right derivative is considered), this quantity has been termed Fukui function
f(r) [26]. Multiplied by the total softness it turns the global quantity S into its local
counterpart s(r), the local softness. The search for a local counterpart of the hardness
h(r) has been much less trivial [27] and is still the subject of debate in today’s
literature [28]. In the present contribution, we will adopt an intuitive approach and
use h(r) as a measure of charge concentration in a given point r in analogy with the
global hardness, which is well known to be high in the case of highly charged, small
systems (i.e., small, highly charged cations or small anions [in the gas phase being
singly charged at most]). A popular working equation involves the negative of the
electronic part [29] of the molecular electrostatic potential [30].

h(r) ¼ 1
2N

Vel(r) ¼ � 1
2N

ð
r(r0)
r � r0j j dr

0 (27:1)

Note that recently Ayers and coworkers have shown how the Molecular Electrostatic
Potential (MEP)

MEP(r) ¼
X
A

ZARA

RA � rj j �
ð

r(r0)
r0 � rj j dr

0 (27:2)

where the summation over A runs over all nuclei with charge ZA and position RA

could be considered as an integral part of the hard hard interactions [31].
In the examples to be discussed in Section 27.3, the toolbox of descriptors will

be relatively compact, containing h, S, f(r), s(r), and h(r). The evaluation of these
quantities will, in most cases, be done by the finite difference approach (for a review
see Ref. [10]) leading to the working equations

h ¼ I � A S ¼ 1
I � A

(27:3)

where I and A are the vertical ionization energy and electron affinity, respectively.
In the same vein f(r) will be evaluated as
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fþ(r) ¼ rNþ1(r)� rN(r) (27:4a)

or

f (r) ¼ rN(r)� rN 1(r) (27:4b)

when considering nucleophilic or electrophilic interaction types, and combined with
S to yield the corresponding s (r) or sþ(r) functions

sþ(r) ¼ Sfþ(r) s (r) ¼ Sf (r) (27:5)

Details on the numerical evaluation of the descriptors will be given in the individual
cases but in most cases a computational DFT approach is used, with a hybrid
functional of the B3LYP type [32]. Condensation of f(r) or s(r) is done with
conventional population analysis techniques (Mulliken [33], Natural Population
Analysis (NPA) [34]) or with the Hirshfeld technique [35], often used by our
group [36].

27.3 CASE STUDIES OF CONCEPTUAL DFT IN NONCOVALENT
INTERACTIONS

27.3.1 HYDROGEN BONDING: THE ROLE OF (LOCAL) SOFTNESS IN (VERY)
STRONG HYDROGEN BONDING

Hydrogen bonding [37] is a unique type of inter- and intramolecular interaction
not only for its fundamental role in the vital biological and chemical processes, but
also for the amount of ambiguity in its operative range. In reality, the spectrum
of hydrogen bond strengths extend from 1 to 4 kcal=mol for weak bonds to
4 15 kcal=mol for moderate bonds, and 15 40 kcal=mol for strong bonds [37].
Various models have been developed in order to reveal the mysterious nature of
this wide range of interactions. Hydrogen bonding, schematically represented as
A��H � � �B, involves electronegative proton donor (A) and acceptor atoms (B).
Therefore, the first models were developed on a purely electrostatic basis. Later
on, Gilli et al. would qualify this model as the simple electrostatic model (SEM) [38].
By Coulson’s [39] introduction of valence-bond (VB) theory into hydrogen bonding,
the electrostatic picture was further modulated by delocalizational, repulsive, and
dispersive contributions. This idea of partitioning the interaction energy into its
components was revisited by Morokuma and others using molecular orbital Theory
[40a,b] and used to demonstrate the importance of covalency in hydrogen bonding
by Fonseca Guerra et al. and Poater et al. [40c f]. The inadequacy of the SEM in
describing the resonance-assisted hydrogen bonding (RAHB), among others
observed in O��H � � �O type of bonds, has led Gilli et al. to focus more on the
covalent nature of the hydrogen bonding, which was already suggested occasionally
on the basis of both x-ray and neutron diffraction experiments [41], and ab initio
and semiempirical calculations [42 44]. The conclusion stating that ‘‘forces deter-
mining the hydrogen bond strength are a mixture of both electrostatic and covalent
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contributions’’ forms the basis for the electrostatic covalent hydrogen bond model
(ECHBM) [38] According to this model, weak hydrogen bonds are electrostatic in
nature. As the strength of the interaction increases, the covalent character of the bond
also increases and very strong hydrogen bonds are actually three-center-four-electron
covalent bonds. In a vital synthesis, Gilli et al. finally classified the hydrogen
bonds as strong (with subclasses negative charge-assisted (( )CAHB), positive
charge-assisted, ((þ) CHAB), and resonance-assisted (RAHB)), moderate (with
one subclass of polarization-assisted hydrogen bonds (PAHB)), and weak [38,45].

Concentrating on strong and moderate H-bonds and taking, e.g., a homonuclear
H-bond of the type O��H � � �O, the different cases can be represented as [��O � � �H � � �
O��] ((�)CAHB), [¼O � � �H � � �O¼ ]þ ((þ)CAHB), ��O H � � �O¼ with the
two oxygens connected by a p conjugated system of variable length, and

O

R

H O H

R

(PAHB).

Gilli et al. pinpointed to the lack of general chemical rules or a unified
hydrogen-bond theory as the H-bond puzzle [38]. An alternative view on solving
this puzzle using the tools of conceptual DFT such as local hardness, h(r) and local
softness, s(r) is shown below. A series of both homonuclear and heteronuclear
resonance-assisted hydrogen bonds of the O��H� � �N, N��H� � �O, N��H� � �N, and
O��H� � �O type with strength varying from weak to very strong have been studied
(Figure 27.1) for this purpose, all of them being the intramolecular hydrogen bond
type [46].

Monosubstituted heteronuclear hydrogen bonds
(R1) (-X-H∙∙∙Y=) (R2)  R1 = H or R2 = H

Monosubstituted homonuclear hydrogen bonds
(R1) (-X-H∙∙∙X=) (R2)  R1 = H or R2 = H

Disubstituted homonuclear hydrogen bonds
(R1) (-X-H∙∙∙X=) (R2)  R1 ≠ H; R2 ≠ H

H H
O OHN NH

R1 R1R2 R2X= N X= O

H
O O

R1 R2
X = O

H
HN O

R1 R2X=N, Y=O

H
NH O

R1 R2X=O, Y=N

FIGURE 27.1 Heteronuclear and homonuclear mono and disubstituted hydrogen bonded
structures studied. (Reprinted from Ozen, A.S., Aviyente, V., De Proft, F., and Geerlings, P.,
J. Phys. Chem., A110, 5860, 2006. With permission.)
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The electrostatic component in this picture can be translated into a conceptual
DFT framework by introducing the negative charge concentration on the acceptor
atom as revealed, e.g., in the NPA charge [47,48], the MEP [49], or local hardness
[27b,27c,27d,29]. On the other hand, the highly charged H-atom may stabilize the
system by polarizing A and B, and local softness values may be employed to probe
the propensity of polarization of A and B, and this might provide a measure of
covalency. As an indication that electrostatics is not telling the whole story in the
case of strong hydrogen bonding we plot in Figure 27.2 the hydrogen bond energy
vs. the MEP at the acceptor atom.

For weak and moderate H-bonding the usual pattern is observed, i.e., the more
negative the MEP in the acceptor region, the stronger the H-bond (higher EHB) (filled
bullets in Figure 27.2). A reasonable linear correlation can be drawn (R2¼ 0.81) until a
kind of plateau of 15 kcal=mol is reached. It is, however, seen that in the strong
hydrogen bonding regime above 15 kcal=mol the data points (unfilled bullets) do not
show any correlation at all. This suggests that above the plateau the hydrogen bonding
loses its dominant electrostatic nature and acquires a partial covalent nature. As a result
of the relationship between covalent bonding and soft interactions [12,50] the softness
values s0 (average of sþ and s ) were evaluated both for these acceptor and donor atoms.

In Figure 27.3, the relationship between the hydrogen bond energy and the
product of the local softness values of donor and acceptor atom (A and B) is given
for a series of closely related O��H � � �O types of bonds (NR2, NO2 family, etc.).

It is clear that above 15 kcal=mol, a region of saturation of the first-order
electrostatic effect is entered, and a second-order effect can be discerned becoming
the discriminating factor of hydrogen bond strength.

The appearance and dominance of this second-order effect can be interpreted
through the strong polarization of the acceptor and donor atoms. It should also
be noted that a special approach to softness matching [11,19,51] has been adapted
in this study. According to this method, which was originally derived from Pearson’s
HSAB principle, [17] the most favorable interaction between the sites A and B

–0.08 –0.06 –0.04 –0.02 0

R2 = 0.81
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B (
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20
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MEP (acceptor)

FIGURE 27.2 Hydrogen bond energy (EHB) vs. MEP of acceptor atom in the moderate and
moderate to strong hydrogen bond region for O H � � �O type of hydrogen bonds (Unfilled
bullets above the plateau are not incorporated in the regression). (Reprinted from Ozen, A.S.,
Aviyente, V., De Proft, F., and Geerlings, P., J. Phys. Chem., A110, 5860, 2006. With
permission.)
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occurs when Ds¼ sA sB¼ 0 or in other words, when sA¼ sB. However, in the
present strong hydrogen bonded systems, the spirit of softness matching has
changed from looking for a minimal Ds value to a maximal value which is the
product sA� sB. This procedure can be justified in the following way: the local
version of the HSAB principle states that soft soft interactions occur preferentially
between sites of the same softness. However, if both values are small at the local
level, one can hardly expect a matching to represent an ideal situation for soft soft
interactions. On the other hand, the product of local softness values combines the
idea that the difference should be small, but at the same time the individual values
should be large and therefore, is a better approach to the soft soft interactions in the
present systems.

Since there is a one-to-one correspondence between covalent and soft inter-
actions, the local-softness-related trends obtained in the strong hydrogen-bonding
region might be promising as a sign of the covalent character involved, supporting
the ECHBM. In conclusion and as a first application of conceptual DFT in studying
noncovalent interactions, these results illustrate the electrostatic versus covalent
aspect of hydrogen bonding, not in a wave function context (VB theory) but in a
conceptual DFT context.
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FIGURE 27.3 (a) EHB (kcal=mol) vs. local softness of acceptor for NR2 family. (With
permission.) (b) EHB (kcal=mol) vs. local softness of donor for NO2 family. (Reprinted from
Ozen, A.S., Aviyente, V., De Proft, F., and Geerlings, P., J. Phys. Chem., A110, 5860, 2006.
With permission.)
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27.3.2 p–p STACKING: THE ROLE OF LOCAL HARDNESS AND ELECTROSTATICS

AND ITS INTERPLAY WITH HYDROGEN BONDING

Intermolecular interactions involving aromatic rings are common in various areas of
chemistry, biochemistry, and biology. In proteins, e.g., p stacking has been the
subject of systematic search in crystal structures, showing that the side chains
preferentially interact in a parallel-displaced orientation [52]. Although the disper-
sion energy is known to be the principal source of stabilization of stacked complexes,
the electrostatic component of the interaction is not negligible, though its role is still
controversial [53].

A series of experimental studies revealed that the interaction between phenyl rings
increases monotonically when passing from an electron-donating to an electron-
withdrawing substituent [54]. In line with these results, Hunter and coworkers [55]
proposed a set of rules stating that the aromatic ring can be described as ‘‘a positively
charged s-framework between two regions of negatively charged p-electron density.’’
According to this electrostatics-based model, an electron-donating substituent on one
of the interacting molecules should increase the negative charge of the p-cloud and
thus the repulsion between the two stacked aromatic cycles, whereas electron with-
drawing substituents should show the inverse behavior. However, in contrast toHunter
Sanders rules and experimental results, several recent high-level computational studies
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FIGURE 27.3 (continued) (c) Combined effect of the local softness values of the acceptor
and donor atoms on hydrogen bonding energy. (Reprinted from Ozen, A.S., Aviyente, V., De
Proft, F., and Geerlings, P., J. Phys. Chem., A110, 5860, 2006. With permission.)
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of substituent effects on p p interactions showed that in the parallel-stacked benzene
dimers, substituted benzenes with electron-withdrawing or -donating substituents bind
stronger to benzene than unsubstituted benzene [56,57]. It was stated that electrostatics,
dispersion, induction, and exchange-repulsion are significant to the overall binding
energies. In our latest studies, substituted benzenes were found to bind stronger to
aromatic nitrogen bases than unsubstituted benzene [58,59].

In the case study discussed below [60], part of our ongoing interest in the
application of DFT reactivity descriptors to biosystems [61 66], the interaction
between cytosine and substituted benzenes is studied. Cytosine, a nucleobase derived
from pyridine, was chosen because of its small size and because it possesses both a
nitrogen and an oxygen atom as H-bond acceptors sites.

MP2 calculations [67] were performed on cytosine stacked with a series of seven
monosubstituted benzenes (Ph X; X¼NO2, CHO, F, H, CH3, OH, NH2). Although
it is known that MP2 overestimates the p p interactions as compared to higher level
CCSD(T) calculations [68], trends can be expected to be correctly reproduced.
After correction for the basis set superposition error (BSSE) [69], the total interaction
energy DEMP2 can be expressed as the sum of the Hartree Fock interaction energy
DEHF and the correlation contribution to the interaction energy corresponding to the
dispersion energy. The electrostatic component of the interaction energy was
extracted via Stone’s distributed multipole analysis [70]. The geometry of the
complexes was optimized in a parallel-displaced arrangement, with the substituent
X located as far as possible from the H-bond acceptor atoms of cytosine, avoiding
direct interactions between the substituent and these atoms (Figure 27.4).

In Table 27.1, the properties of the optimized complexes of cytosine and the
substituted benzenes are given. It is seen that the correlation part of the interaction
energy, i.e., the dispersion energy, constitutes the major source of stabilization of
the complexes though the electrostatic term exhibits negative values, which are
of the order of 50% on the average indicating that electrostatics is playing a

Stacked cytosine
MEPmin

Stacking benzene

NH2

N3
N

O2

X

Δq

ΔEHF, ΔECorr, ΔEElec

FIGURE 27.4 Geometry of the stacking interaction between substituted benzenes and cyto
sine. (Reprinted from Mignon, P., Loverix, S., Steyaert, J., and Geerlings, P., Nucl. Acids Res.,
33, 1779, 2005. With permission.)
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nonnegligible role in the stabilization process. It is seen that the charge transfer Dq
between the stacking benzene and the stacked cytosine increases with decreasing
hardness of the substituted benzene in agreement with the simple electronegativity
equalization models showing that charge transfer in an acid base interaction is
inversely proportional to the sum of the hardnesses of acid and base [11,17b].
Increasing charge transfer invariably leads to deeper (i.e., more negative) MEP
values both at N3 and O2, i.e., stronger H-bonding.

These results can be related to the evolution of the local hardness h(r) evaluated
at a distance of 1.7 Å above the isolated benzene rings (about half the distance
between the rings in the optimized complexes).

Table 27.1 indicates that the overall local hardness increases with decreasing
electron-withdrawing character of the substituents. Consequently, a larger repulsion
between the p-electron clouds of the two stacked rings is expected, yielding a
smaller contribution to the electrostatic component of the stabilization energy DEelec

as revealed also in the table.
Figure 27.5 nicely illustrates this trend. Once the system is given the freedom to

interact with its partner and to get rid of this accumulation of negative charges, a
(larger) charge transfer occurs with increasing H-bond capacity at the donor atom.

In summary, h(r) turns out to be a key index in connecting the electrostatic
component of the stacking interaction energy with the hydrogen bonding capacity of
cytosine as schematically represented is Figure 27.6.

27.3.3 ROLE OF DFT DESCRIPTORS IN THE (EVALUATION OF) DISPERSION

INTERACTION: FROM LOCAL POLARIZABILITY TO LOCAL SOFTNESS

27.3.3.1 Introduction

As stated in Section 27.3.2, dispersion interactions are fundamental building blocks
in intermolecular interactions. Their accurate calculation in the case of larger systems
(say p stacking of aromatic rings) remains, however even today, despite the
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FIGURE 27.5 Electrostatic interaction energy (DEelec) between cytosine and the substituted
benzenes Ph X (kcal=mol) vs. the local hardness h(r). (Reprinted from Mignon, P., Loverix,
S., Steyaert, J., and Geerlings, P., Nucl. Acids Res., 33, 1779, 2005. With permission.)
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spectacular evolution in quantum chemical methodologies and computing power, an
almost unsurmountable task. Hartree Fock and DFT dramatically fail in reproducing
these effects [71].

In wave function theory, highly correlated calculation levels should be used, at
least second-order Møller Plesset perturbation theory, or preferentially higher level
methods such as coupled cluster (e.g., CCSD(T)) [72]. These methods only in recent
years became applicable to system of the size relevant for the study of aromatic ring
stacking [73]. The exponential increase in computing power will bring systems of
ever-increasing size into reach but the unfavorable scaling of even MP2 [72] makes
the progress go slow. This drawback at the wave function approach and the spec-
tacular success of DFT incited considerable effect in recent years to construct
DFT methods with a correct description of dispersion interactions using conven-
tional functionals [74 76] or with dedicated correlation functionals [77 80] taking
long-range dispersion interactions into account. An alternative is the inclusion of
empirical dispersion energy corrections, analogous to the ansatz in molecular mech-
anics force fields. The latter approach received considerable attention in recent years
because of its modest computational cost [81 85].

Empirically corrected DFT theories almost invariably go back to second-order
perturbation theory with expansion of the interaction Hamiltonian in inverse powers
of the intermolecular distance, leading to R 6, R 8, and R 10 corrections to the
energy in an isotropic treatment (odd powers appear if anisotropy is taken into
account [86]).

MEPη(r) Δq H-bonding

Stacked base

The
H-bonding ability

is inversely correlated with
electrostatic stabilization

η(r) is a key index: Measures the negative charge
accumulation above the aromatic cycle

O2

η(r) is related to the π–π
repulsion of the
stacked rings: ΔEelec

ΔEElec

X

Δq

Stacking molecule

π–π electrostatic
repulsion

ΔEelecη(r)

η(r) is related to the
charge transfer, and
thus to the H-bonding
capacity of the base

FIGURE 27.6 (See color insert following page 302.) h(r) can be used for the estimation
of the electrostatic interaction and the hydrogen bonding ability. (Reprinted from Mignon, P.,
Loverix, S., Steyaert, J., and Geerlings, P., Nucl. Acids Res., 33, 1779, 2005. With
permission.)
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Using an average energy or Unsold approximation [87] an expression of the type

E � U1U2

U1 þ U2

1
R6

a1a2 (27:6)

is obtained with a1 and a2 being the average polarizabilities of the molecules and
U1 and U2 being the fixed energies associated to the molecules in their considered
electronic state (e.g., their ionization energy) [88]. When considering large mol-
ecules and realizing that polarizability is an additive property [89,90], the idea that
some parts of the molecules contribute to a larger extent to the dispersion energy (6)
than others, shows up. The local polarizability a(r) concept [91,92] with

ð
a(r)dr ¼ a (27:7)

may be taken as a basis to split up the molecular polarizability in group contributions
[93]. In the case of stacked aromatic rings, this splitting allows us to estimate the
contribution to the dispersion energy (and its evolution, e.g., upon substitution) of
the stacked ring, eliminating the direct influence of the constituents on the dispersion
energy.

27.3.3.2 Toward Aromatic Ring Polarizabilities

To estimate the dispersion interaction contribution to the overall interaction between
stacked rings we studied, in parallel with the role of electrostatics in Section 27.3.2,
the interaction between monosubstituted benzenes Ph X (X¼H, F, NH2, Cl, CH3,
OH, CN, COOH, CHO, NO2) and pyridine, a simpler case with only one H-bond
accepting site [58], and cytosine (with two H-bond accepting sites). An offset
parallel geometry was chosen, keeping the X group and the N atom of pyridine at
maximal distance, the level used being MP2=6 31G*(0.25)==MP2=6 31G with
BSSE correction [68].

In order to eliminate the direct influence of the substituents the polarizability of
the substituted benzenes Ph X was split up, as mentioned above, as

a(Ph---X) ¼ aPh þ aX (27:8)

where aX was evaluated as the polarizability of the isolated radical corresponding
to the substituent (e.g., .CH3 for CH3) in line with our previous work on the
evaluation of group properties in a conceptual DFT context [93]. Equation 27.6,
when referring to the benzene ring contribution to the dispersion energy, can then be
simplified to

DEdisp R 6
� � � �aPh

R6
(27:9)

where aPh is the polarizability of the benzene ring in the substituted benzene
(data given in Tables 27.1 and 27.2). In Figure 27.7 we plot the contribution of the
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dispersion energy to the interaction energy, obtained as the difference between the
MP2 an HF energies vs. aPhR

6. A striking linear relationship is obtained, confirmed
in the case of cytosine (Table 27.1) (Figure 27.8), the correlation coefficient being in
both cases 0.94.

Both correlations indicate that polarizability at local level can be used to quantify
the dispersion energy. In the next section, we take a further step within direction,
moving to an atoms-in-molecules level, thereby linking local polarizability to local
softness.

TABLE 27.2
Interaction Energies at MP2 Level, DEMP2, Their HF
Counterparts DEHF, and Their Dispersion (DEcorr)
and Electrostatic (DEelec) Contributions for Pyridine
and Substituted Benzenes (Ph–X) (kcal=mol)

X DEMP2 DEHF DECorr DEElec

NO2 3.79 6.89 10.67 0.57
CN 4.13 4.99 9.12 0.55

COOH 3.49 7.87 11.35 0.45
CHO 3.90 5.18 9.08 0.41
Cl 3.35 8.12 11.47 0.63

F 2.89 7.92 10.81 0.34
H 2.78 7.89 10.67 0.15
CH3 3.34 5.68 9.02 0.02

OH 2.69 8.39 11.08 0.21
NH2 3.20 7.66 10.86 0.51
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FIGURE 27.7 Correlation part of the interaction energy DEcorr between pyridine and
the substituted benzenes (Ph X) (kcal=mol) vs. the benzene ring polarizability aPh divided
by R6 (see Equation 27.8) (a.u.). (Reprinted from Mignon, P., Loverix, S., De Proft, F., and
Geerlings, P., J. Phys. Chem. A, 108, 6038, 2004. With permission.)
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27.3.4 ROLE OF DFT DESCRIPTORS IN THE (EVALUATION OF) DISPERSION

INTERACTIONS: FROM ATOMS-IN-MOLECULES POLARIZABILITY

TO LOCAL SOFTNESS

Recently Becke and Johnson [94] presented an elegant model for the evaluation of
the C6, C8, and C10 coefficients characterizing the dispersion energy between two
nonoverlapping systems A and B at distance R:

Edisp ¼ � C6

R6
þ C8

R8
þ C10

R10

� �
(27:10)

starting from the instantaneous dipole moment of an electron and its exchange role.
At reference point r1 and for an electron with spin s, this quantity can be written as

dxs r1ð Þ ¼ 1
rs r1ð Þ

X
ij

wis r1ð Þwjs r1ð Þ �
ð
r2wis r2ð Þwjs r2ð Þdr2

" #
� r1 (27:11)

where wis and wjs are the occupied orbitals and rs denotes the electron density
associated with spin s. It was shown that C6, C8, C10 could be expressed in terms of
the polarizability and the ground state expectation values of the square of the multi-
pole moments associated with dxs.

For example,

C6 ¼
aAaB M2

1

� �
A

M2
1

� �
B

aA M2
1

� �
B
þaB M2

1

� �
A

(27:12)
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FIGURE 27.8 Correlation part of the interaction energy (DECorr) between cytosine and the
substituted benzenes Ph X (kcal=mol) vs. the benzene ring polarizability divided by R6 (see
Equation 27.8) (a.u.). (Reprinted from Mignon, P., Loverix, S., Steyaert, J., and Geerlings, P.,
Nucl. Acids Res., 33, 1779, 2005. With permission.)
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where the expectation values of M2
l are approximated as

M2
l

� � ¼ X
s

ð
rs(r) rl � (r � d�s)

l
h i2

dr (27:13)

The dispersion coefficients can, to a very good approximation, be expressed in terms
of atom atom interactions between the atoms constituting A and B as (taking again
C6 as example)

C6,AB ¼
XA
a

XB
b

C6,ab (27:14)

with

C6,ab ¼
aaab M2

1

� �
a
M2

1

� �
b

aa M2
1

� �
b
þab M2

1

� �
a

(27:15)

indicating the need for ‘‘optimal’’ atomic polarizability values, preferentially dependent
on the molecular environment for a given atom. Such atoms-in-molecules [95] polariz-
abilities were recently presented by Krishtal et al. [96] based on a Hirshfeld-type [35]
partitioning scheme, as a sequel to previous work, in collaboration with our group,
on electron density partitioning [97]. In the Hirshfeld scheme the total density r(r)
at a given point, r is written as a sum of atom contributions ra(r) where each atom
gets a weight factor equal to its contribution to the promolecular density, i.e., the
density written as a sum of isolated atomic densities with the positions of the nuclei
being chosen as those in the real molecule.

r(r) ¼
X
a

wa(r)ra(r) wa(r) ¼ r0a(r)
.X

b

r0b(r) (27:16)

It was proven [96] that the molecular polarizability can be written as a sum of
intrinsic atomic polarizabilities of the atoms in the molecule and a charge delocal-
ization term. Thus, the xy element of the molecular polarizability tensor of molecule
A can be decomposed as

aA
xy ¼

X
a(A)

aa
xy þ xaq

(y)
a

� 	
(27:17)

with xa being the Cartesian coordinate of atom a in the x-direction. The atomic
intrinsic polarizability is obtained using the following numerical integration:

aa
xy ¼

ð
wa(r)xar

(y)(r)dr (27:18)
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where wa(r) is the Hirshfeld weight defined in Equation 27.16 and r(y)(r) is the first-
order perturbed molecular density in the y-direction [98], which is calculated by
methods such as coupled perturbed HF or KS. q(y)a in Equation 27.17 is the first-order
perturbed atomic charge on atom a, given by

q(y)a ¼
ð
wa(r)r

(y)(r)dr (27:19)

The intrinsic atom-in-molecule polarizabilities were tested by us [99] for their
performance in the calculation of the dispersion energy for a set of Van der
Waals complexes, at their equilibrium geometry using a DFT- B3LYP computational
ansatz combined with an aug-cc-pVTZ basis set for the calculation of the M2

l

� �
values using Van Alsenoy’s STOCK program, also used to partition the polarizabil-
ities [100].

In Table 27.3 and Figure 27.9 the results are summarized and compared with the
‘‘best’’ values extracted from the literature [94d].

It is seen that, except for the p-benzene complex, which is clearly an outlier, and
which is also problematic in Becke’s approach (for a detailed discussion see
Ref. [96]), the dispersion energy evaluated with our method and including up to
the C10 term shows a fair correlation with the high-level results. Figure 27.9 shows
a linear correlation of 0.97, with a slope (0.97) close to 1, indicating that with a
two-parameter equation, the dispersion energy can be obtained with 3% and a
systematical error of 0.12 kcal=mol. Note that if the regression line is forced to
pass through the origin, the correlation only slightly decreases to 0.95 whereas the
slope changes to 1.08, allowing with a one parameter equation the estimation of the

TABLE 27.3
Dispersion Energy Contributions from the C6, C8, and C10 Terms Compared
with Values from High Level Calculations from the Literature

Complexa Edisp(C6) Edisp(C8) Edisp(C10) Edisp(C6þC8þC10) HLev

ac ac 0.26 (63) 0.11 (27) 0.04 (10) 0.41 0.35

met met 0.56 (71) 0.17 (22) 0.06 (7) 0.79 0.56
met et 0.32 (68) 0.11 (23) 0.04 (9) 0.47 0.42
met Ne 0.16 (64) 0.07 (28) 0.02 (8) 0.25 0.23

benz Ne 0.34 (62) 0.15 (27) 0.06 (11) 0.55 0.44
met benz 0.76 (63) 0.31 (26) 0.13 (11) 1.20 1.00
CO2 CO2 0.41 (60) 0.19 (28) 0.08 (12) 0.68 0.53
t benz 1.12 (60) 0.51 (27) 0.25 (13) 1.88 1.90

p benz 0.98 (69) 0.33 (24) 0.10 (7) 1.41 2.93

Note: Percentage contribution of the individual terms as compared to their sum, C6þC8þC10, is quoted
in parenthesis. All Data in kcal=mol.

a ac, acetylene; met, methane; et, ethylene; benz, benzene; T, T shaped benzene dimer; p, parallel face to
face benzene dimer; HLev, High level.
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dispersion energy within 8%. Finally the importance of the C8 and C10 coefficients
should be noticed as can be judged from their percentage contributions: C6 roughly
accounts for 65%, C8 for 25%, and C10 for 10% of the dispersion energy. The
simplicity of our ansatz easily permits to take these higher order terms into account.

As a further step currently under investigation, the relationship between local
polarizability and local softness is studied with the aim to substitute atom-in-molecule
polarizabilities by atom-condensed softness values. In this way, conceptual DFT
could be exploited in a computational strategy, an ansatz rarely used until now, the
best known example being the electronegativity equalization method [101].

27.4 CONCLUSIONS

The case studies presented in this chapter highlight the possibilities of transferring
the use of conceptual DFT descriptors from reactivity studies, leading to alterations
in the covalent bonding pattern, toward the much less exploited, but extremely
important field of noncovalent intermolecular interactions. Properties like local
softness and local hardness turned out to provide useful information on and insight
in noncovalent intermolecular interactions of the H-bond, electrostatic, and disper-
sion types. The covalent character of strong hydrogen bonds is remarkably well
described through the local softness and the electrostatic compound of p stacking by
local hardness. The dispersion component of this interaction can be quantified
starting from the idea of the additivity of the polarizability and the use of aromatic
ring-in-molecules polarizability values. The idea ultimately leads to an atom-in-
molecule approach for dispersion interactions in Van der Waals complexes, using
intrinsic atoms-in-molecules values. On the basis of the well known polarizability
global softness relationship, the success of the method is an incentive to further work
on the possibility of the use of condensed atomic softness values in the evaluation of
dispersion interactions.
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FIGURE 27.9 Dispersion energy calculated using Equation 27.10 vs. high level values from
the literature (all values in kcal=mol). (Reprinted from Olasz, A., J. Chem. Phys., 127, 224105,
2007. With permission.)
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28.1 INTRODUCTION

Michael Faraday’s seminal 1825 paper, reporting the isolation of benzene (dicarburet
of hydrogen) by distillation, noted that it was much less reactive than ‘‘monocarburet
of hydrogen’’ (trans-2-butene) [1]. Such decreased reactivity has been taken as
an experimental characteristic of aromaticity ever since. Kekulé applied the term
‘‘aromatic,’’ originally denoting a characteristic odor or fragrance, to classify deriva-
tives of benzene generally.

Despite nearly two centuries of intense scrutiny, aromaticity remains a unique
research stimulus in chemistry. The concept of aromaticity is elusive; it is not directly
observable. Numerous indirect measures have been devised, based on the manifest-
ations and ramifications of aromaticity. One of the most recent and widely accepted
definitions [2] described aromaticity as ‘‘a manifestation of electron delocalization in
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closed circuits, either in two or three dimensions. This results in energy lowering,
often quite substantial, and a variety of unusual chemical and physical properties.
These include a tendency toward bond equalization, unusual reactivity, and charac-
teristic spectroscopic features. Since aromaticity is related to induced ring currents,
magnetic properties are particularly important for its detection and evaluation.’’

Given that aromaticity is not a directly measurable property, it cannot be defined
in an unambiguously quantitative manner. The evaluation of the aromaticity of a
whole molecule or its parts (e.g., individual rings in a polycyclic arene) is usually
done indirectly by measuring some physicochemical property that reflects some
manifestation of its aromatic character [3 5]. This leads to the myriad of classical
structural [6], magnetic [2,7], energetic [8], and electronic-based [9] measures of
aromaticity. All currently available descriptors of aromaticity represent approxima-
tions (sometimes arbitrary) to the problem of measuring this phenomenon and no
single property that could be taken as a direct measure of aromaticity exists.
Consequently, it is widely accepted that the concept of aromaticity should be
analyzed by employing a multiplicity of measures [2,10].

Surprisingly, given the fuzzy character of this concept [11], there exist very simple
chemical models that can account for many aspects related to the aromaticity of organic
molecules. One of these extremely straightforward and powerful models is the Clar’s
p-sextet rule [12,13]. Since we will refer to this model several times throughout this
chapter, it is convenient to describe it now briefly. According to Clar, the Kekulé
resonance structure with the largest number of disjoint aromatic p-sextets, i.e.,
benzene-like moieties, is the most important for the characterization of properties of
polycyclic aromatic hydrocarbons (PAHs). Aromatic p-sextets are defined as six
p-electrons localized in a single benzene-like ring separated from adjacent rings by
formal C C single bonds. For instance, application of this rule to phenanthrene indicates
that the resonance structure 2 is more important than resonance structure 1 (Scheme
28.1). Therefore, outer rings in phenanthrene are expected to have a larger local
aromaticity than the central ring. This result has been confirmed by several measures
of local aromaticity [14 17]. It is also generally recognized [18], with some exceptions
[19,20], that the known 5 kcal �mol 1 greater thermochemical stability of phenanthrene
over anthracene is related to differences in their aromaticity. Phenanthrene has two Clar
p-sextets (Scheme 28.1) but anthracene has only one (Scheme 28.2).

1

2 Clar structure

SCHEME 28.1 Phenanthrene.
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Like phenanthrene, some PAHs have a unique Clar structure, whereas several
alternative Clar structures are possible for other PAHs [21]. Thus, Clar’s rule does not
designate the resonance structure mainly responsible for the aromaticity of anthracene.
Clar’s model cannot differentiate between its outer and inner ring (Scheme 28.2).

Benzene is the archetype of a two-dimensional aromatic molecule that exhibits
all typical structural and chemical manifestations of aromaticity as, for instance,
substantial energy stabilization, bond length equalization, and characteristic spectro-
scopic features as well as distinctive magnetic properties related to strong induced
ring currents. Benzene also presents the traditional (but unusual for unsaturated
organic compounds) reactivity of aromatic compounds. Thus, benzene reacts
through electrophilic aromatic substitutions rather than additions [3]. However, this
kind of reactivity behavior traditionally related to aromatic compounds has many
important exceptions. For instance, phenanthrene and anthracene add bromine like
olefins [3,22], the reaction rate being faster for anthracene than phenanthrene [23].
And 3-D aromatic compounds such as fullerenes (e.g., C60 or C70) have a rich and
extensive addition chemistry but no substitution reactions at all [24,25]. Thus, it is
clear that the reactivity of aromatic species is relatively complex and, for this reason,
to our knowledge, no index of aromaticity has been defined based on chemical
reactivity properties.

Aromaticity and reactivity are two deeply connected concepts, although their
relationship is complex. Obviously, not all reactions are affected by aromaticity (e.g.,
SN2, E2 . . .), but taking into account that among the approximately 20 million
compounds known, two-thirds are fully or partially aromatic [26], it is clear that
many chemical reactions will be influenced by the increase or decrease in aromaticity
all over the reaction. The most important group of this kind of reactions are the
pericyclic ones, which were categorized by Woodward and Hoffmann into five
groups: sigmatropic shifts, cycloaddition, electrocyclic, cheletropic, and group trans-
fer reactions [27,28]. Chemical structures (reactants, intermediates, and products)
and transition states (TSs) are often influenced by aromatic stabilization or antiaro-
matic destabilization. For an elementary reaction, it may happen that all chemical
structures and TSs or just one or two of them are aromatic or antiaromatic. In
pericyclic reactions, it is found that most thermally allowed reactions take place
through aromatic TSs, while TSs of thermally forbidden reactions are usually less
aromatic or antiaromatic (vide infra). On the other hand, reactions can also be driven
by deantiaromatization of the reactants. The dimerization of cyclobutadiene is a good
example; it takes place spontaneously even at very low temperature to give the syn-
dimer, in which only two new C C bonds form in a [4þ 2] cycloaddition reaction
[29]. The reaction starts from two antiaromatic molecules (cyclobutadiene), proceeds
through a quite stable aromatic TS, and gives a nonaromatic product.

SCHEME 28.2
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In addition to pericyclic processes, many other reactions are influenced by
aromaticity. In electrophilic substitution reactions [30], for instance, formation of
the Wheland intermediate reduces but may not annihilate the aromaticity of the
initial reactants completely [31]. In fact, protonated benzene has significant aroma-
ticity due to hyperconjugation [32]. Aromaticity loss also occurs in the dearomatiza-
tion of ortho- and para-substituted phenols to form cyclohexadienones under
oxidizing conditions [33]. Last but not least, the presence of (anti)aromatic rings
and metallacycles in many organometallic and biochemical processes is also ubiqui-
tous (consider, for example, the large number of existing transition-metal-mediated
cycloaddition reactions such as the catalyzed trimerization of alkynes [34,35],
reactions concerning porphyrines [36], the Dötz benzannulation reaction and the
haptotropic rearrangements [37,38], or the reactivity of metallocarbohedrenes [39]
among many others).

The aim of this chapter is to illustrate with some representative examples the
relationship between the two deeply connected phenomena of aromaticity and
chemical reactivity. The coverage of the considerable theoretical work done on the
relationship between aromaticity and chemical reactivity is extensive, but is not
exhaustive. Rather, we confine our discussion to the most relevant chemical reac-
tions. Section 28.2 is devoted to the current and most widely used descriptors of
aromaticity. The complex relation between aromaticity and stability is analyzed in
Section 28.3. Section 28.4 discusses the most relevant chemical reactions for which
one of the main driving forces is aromaticity. And finally, in Section 28.5, the most
important findings are briefly summarized.

Let us conclude this section with two comments. Firstly, many of the studies (but
not all) that are discussed along this chapter have been carried out in the framework
of the density functional theory (DFT) using different functionals. Although the DFT
has become increasingly popular in the last decade, especially for calculating large-
and medium-size organometallic and bioinorganic transition metal (TM) compounds
[38], there are several recent reports that warn about the use of this methodology in
organic reactions, because it fails to describe accurately the energies of saturated and
unsaturated hydrocarbons [40,41]. The authors of these works discourage the uncrit-
ical use of older density functionals for computing the energies of organic molecules.
Secondly, it has long been recognized that main group inorganic compounds, like the
carboranes, are aromatic. They undergo electrophilic substitution, just like benzene
and are thermally much more stable. In 2001, Boldyrev et al. [42] noted aromaticity
in an all-metal compound, Al24 , for the first time. Many newly observed inorganic
clusters have aromatic characteristics [43]. It is now recognized that the aromaticity
concept can be applied to the entire periodic table. However, the reactivities are too
diverse to relate to aromaticity meaningfully. Hence, this chapter focuses mostly on
‘‘classical’’ organic aromatic compounds.

28.2 MEASURES OF AROMATICITY

The numerous aromaticity measures proposed in recent decades have widened the
number of descriptors in the literature considerably [2,8,9,44,45]. Aromaticity
descriptors can be classified as magnetic, energetic, electronic, and structural [46].
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Some indices aim to measure the ‘‘local’’ aromaticity of an individual ring in
a polycyclic system, while others measure the ‘‘global’’ aromaticity of the whole
molecule.

Nucleus-independent chemical shift (NICS) [47] is the most popular magnetic
index of aromaticity [2]. NICS is a local aromaticity measure defined originally as
the negative value of the absolute shielding computed at the ring center [NICS(0)] or
at some other point of interest in the system [47]. For instance, it is desirable to
calculate the index at a point 1 Å above a ring center [NICS(1)] in order to minimize
the s-electron effects [48]. Judging from comparisons with energetic, geometric, and
other magnetic aromaticity measures, rings with appreciably negative NICS values
are aromatic; the more negative the NICS values, the more aromatic the rings. But
such NICS values are isotropic, whereas the aromatic p-electron ring currents
induced by the applied external magnetic field influence the zz NICS tensor com-
ponent perpendicular to the ring selectively. Hence, NICS(1)zz and especially NICS
(0)p,zz (based on only the zz contributions of the p molecular orbitals [MOs]) are
recommended as the best NICS-based indicators of aromaticity [2,49,50].

Accounting for aromaticity of a given molecule from its geometry is computa-
tionally a nondemanding task, usually carried out by means of harmonic oscillator
model of aromaticity (HOMA) [6], which is the most widely used geometrical index
of aromaticity. HOMA is based both on the degree of bond length alternation in a
ring as well as the divergence of the average bond length from a value characterizing
aromatic molecules. Because HOMA has the shortcoming of relying on arbitrary
references, it has been shown recently, not to be suitable for the study of chemical
reactions (involving unusual geometries) [51]. More details are given in the next
section.

Lately the electronic indices of aromaticity have gained a prominent role
to account for the aromaticity of organic molecules. In 2000, Giambiagi and
coworkers [52], based on the MO multicenter index [53] that gives the electronic
population shared by a given set of atoms, proposed Iring as an electronic aroma-
ticity measure. Three years later, Poater et al. [54] introduced the para-delocaliza-
tion index (PDI), obtained from the delocalization index as defined in the
framework of the atoms in molecules (AIM) theory, which is calculated by double
integration of the exchange-correlation density over the basins of atoms A and B,
thus giving a measure of the number of electrons delocalized or shared between
these two atoms. PDI has proven to be a measure of aromaticity for six-membered
rings, based on the independent findings of Fulton [55] and Bader [56] that benzene
possesses larger electron sharing for para- than for meta-disposed atoms despite the
larger distance. In 2005, Matito et al. [57] introduced the FLU index, which is
constructed considering the amount of electron sharing between contiguous atoms,
which should be substantial in aromatic molecules, and also taking into account the
similarity of electron sharing between adjacent atoms. Thus, FLU was inspired in
the HOMA structural index, in order to provide an electronic index that could
measure aromaticity in rings of arbitrary size. Since FLU depends on reference
values, it suffers from the same drawbacks as HOMA, and it is not suitable for the
study of chemical reactivity. Bultinck and coworkers [58] proposed the multicenter
index (MCI), which is calculated by the summation of Iring contributions from all
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permutations of the atoms in the ring. Recently some of works [59] showed that
neither Iring nor MCI are size-consistent. Consequently normalized versions of MCI
and Iring were proposed, namely, INB and ING. In addition, ING was shown to
closely match the topological resonance energy per p-electron (TREPE) [60] at
the Hückel molecular orbital (HMO) level of theory (topological resonance energy
[TRE] values only depend on topology of a conjugated system, and do not contain
additional parameters outside the MO method used). Similar arguments were used
to propose a normalized version of FLU index [61]. Note that all these electronic
descriptors are local aromaticity measures.

In contrast to the previous criteria, energy-based indices are usually measures of
global aromaticity. The energetic criteria may well be the most important because of
their close relationship to reactivity trends and the chemical behavior of molecules.
Historically, the concept of resonance energy (RE) was conceived to estimate the
stability of aromatic species with respect to its acyclic, cyclic olefinic, or conjugated
unsaturated analogues. Improving the concept of RE, TREPE was proposed by
Gutman and coworkers [60], and it was further improved by the definition of the
aromatic stabilization energy (ASE). ASE was defined as the reaction energy of
homodesmotic and isodesmic reactions involving the species in question [8,62].
In particular, isodesmic reaction schemes demand only equal numbers of formal
single and double bonds in products and reactants, while homodesmotic schemes
require that there must the same number of bonds between given atoms in each state
of hybridization both in products and reactants. It is important to note here that
the widely diverging literature evaluations of the RE and ASE of benzene (ASE
values reported for benzene range by over 50 kcal �mol 1) [8] can be adjusted to
ca. 65 and 26 kcal �mol 1, respectively, after considering the necessary corrections
for conjugation, hyperconjugation, and protobranching [63]. In a very recent work
[64], enthalpies of hydrogenation reactions have been used to define a new global
aromaticity scale.

28.3 AROMATICITY AND STABILITY

One of the important features of cyclic aromatic compounds is their enhanced
energetic (thermodynamic) and chemical (kinetic) stability as compared to their
linear counterparts. In connection with the thermodynamic stability (kinetic stability
will be discussed in next sections), Chattaraj et al. [65,66] have shown that aromatic
compounds exhibit negative changes in energy and polarizability but positive
changes in hardness in agreement with the principles of minimum energy, minimum
polarizability, and maximum hardness [67]. In many cases, among different isomers,
the most aromatic compound is the most stable both thermodynamically and
kinetically. Anthracene and phenantrene (and, in general, acenes and phenacenes)
represent a paradigmatic example of this property. Although some authors have
attributed the higher thermodynamic stability of phenantrene to H� � �H attraction
between the bay H atoms in phenantrene [68], a more likely reason for the lower
energy of phenanthrene is its higher aromaticity [18,69,70]. Not only phenanthrene
but also, in general, all kinked benzenoids are more stable and more aromatic than
their linear polyacene isomers [18].
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It is wrong, however, to conclude that among a series of isomers the most stable
is always the most aromatic. Aromaticity is one of the many factors that affect
the relative energies of isomers. Other aspects such as strain energy, hyperconjuga-
tion, topological charge localization, the presence of hydrogen bonds, long-range
interactions, etc. may have, in some case, greater influence than aromaticity in
determining the final relative energies of isomers. Many literature examples confirm
this point. For instance, in a series of cyclopentafused pyrene congeners, Havenith
et al. [71,72] found that the least stable isomer had the highest aromatic character and
that the relative order of stability does not follow the trend given by the resonance
energies. Similarly, Subramanian and coworkers [73] showed that there is no direct
relationship between the thermodynamic stability of heterobicyclic isomers and
their aromaticity. From aromaticity analyses based on experimental endohedral
shieldings, Bühl and Hirsch [74,75] also concluded that there is no relation between
relative stabilities of fullerenes and their aromatic character. Another interesting
example concerns the ortho-, meta-, and para-benzyne species, the three possible
biradicals generated by removing two H atoms from benzene. For these systems, the
order of stability is o-benzyne>m-benzyne> p-benzyne while the aromaticity order
of these biradicals is exactly opposite: p-benzyne>m-benzyne> o-benzyne [76,77].
A recent paper shows that aromaticity and stability of aminomethylbenzoic acids
[78] can have opposite trends. The authors of this study found that the more
extensive conjugation between substituents in the isomers increases the stability
but decreases the ring aromaticity.

28.4 CHEMICAL REACTIONS INFLUENCED BY CHANGES
IN AROMATICITY

28.4.1 CONJUGATED HYDROCARBONS

The present section is organized as follows. Firstly, the reactivity and aromaticity of
the different rings that compose an acene system as a reactant is analyzed, and
secondly, the aromaticity of the TS structures of pericyclic and pseudopericyclic
reactions is discussed.

28.4.1.1 Acenes

Acenes are PAHs consisting of linearly fused benzene rings. Electrophilic substi-
tution on these molecules is the most common reaction, whereas nucleophilic
substitution onto acenes is much more rare and occurs only in extreme cases of
strongly activated acenes [79]. As the number of rings increases, the members of the
acene family become increasingly reactive, so that the higher members cannot be
characterized experimentally [80]. Therefore, the acene series constitutes a good
example that aromatic compounds are not necessarily kinetically stable. Indeed, the
higher members of the acene series are extremely reactive despite being aromatic
[81]. Although benzene and naphthalene are quite unreactive toward addition reac-
tions [82], the central ring of anthracene is protonated, brominated and put through
Diels Alder reactions readily. Tetracene and pentacene participate in even more
remarkable 1,4-cycloadditions [80,83]. Despite the large strides in the sophistication
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of the theoretical studies, the HOMO LUMO gap, electronic structure, stability or
reactivity, and aromaticity of acenes are still controversial [79,84]. The successive
reduction in the band gap and reduction of the ionization potentials, as well as the
increasing proton electron affinities, are also examples of the monotonic behavior
in the acene series. Such progressions in acene properties appear to coincide with
the sequential loss of benzenoid character (aromaticity) predicted by several MO
treatments and Clar’s qualitative sextet concept [12,85].

Schleyer et al. [80] studied the aromaticity and the Diels Alder reactions
of acenes with acetylene and found that the aromaticity correlates with the
overall reaction energy. There is no significant decrease in relative aromatic stabi-
lization along the acene series based on NICS and RE calculations (see Figure 28.1).
Moreover, the more reactive inner rings are actually more aromatic than the less
reactive outer rings. At the same time, the HOMO coefficients are consistent with the
regioselectivity of Diels Alder reactions that prefer the middle rings, despite the
greater aromaticity [82,86,87]. A more recent study by Portella et al. [17] also
confirms that the more reactive inner rings are more aromatic than the outer rings
by means of PDI, HOMA, and NICS measures of aromaticity. This trend is opposite
to that found for the equivalent phenacenes, known experimentally to be more stable
energetically than the isomeric acenes and also the helicenes, in which the outer rings
have the largest aromaticities [17].

Addition reactions to acenes provide a clear example that the local aromaticity of
various rings in a PAH does not control the regioselectivity of the reactions: more
aromatic rings can be more reactive [80]. The ground state energy of the PAH is just
the same, whatever site reacts. The differences in TS energies (which parallel the
product energies closely) decide the preferential position of attack. In anthracene, for
instance, the central ring is the most reactive, even though many methods show this
ring to be the most aromatic. The reason for the higher reactivity of the inner ring is
readily explained by using the Clar’s p-sextet rule. As shown in Scheme 28.3, the
product of the addition to the central is more aromatic (two Clar p-sextet rings) than
the product resulting from the addition to the outer ring (only one Clar ring) [88,89].

Recent quantum chemical studies of addition reactions to acenes and other PAHs
involve the Diels Alder reactions of ethene [86] and of 1Dg oxygen [87] as well as
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FIGURE 28.1 Correlations (R2¼ 0.998) of stabilization energies (SE) of acenes versus the
total NICS(0) and NICS(1) sums.
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the uncatalyzed 1,4-hydrogenation reaction [90]. The regiochemistry for all these
reactions may be broadly predicted based on the extent of disruption to aromaticity
resulting from addition via various possible pathways. The meso-carbon atoms are
the most reactive position of linear acenes, since addition at a multiple ring junction
disrupts the aromaticity of several rings and results in a greater reduction in aromatic
stabilization and higher reaction barriers.

28.4.1.2 Pericyclic Reactions

Already in 1938, Evans and Warhurst [91] noted the analogy between the
p-electrons of benzene and the six delocalized electrons in the cyclic TS of the
Diels Alder reaction of butadiene and ethylene. Taking into account the relationship
between stability and reactivity, they concluded that conjugated molecules are
thermochemically more stable and, in some cases, they behave more reactive than
nonconjugated molecules [92]. In addition, the higher the mobility of the p-electrons
in the TS, the greater the lowering of the activation energy. Generalized through the
Woodward Hoffmann rules [27] and the Hückel Möbius concept by Zimmerman
[93], thermally allowed pericyclic reactions are considered to take place preferen-
tially through concerted aromatic TSs [94]. The aromaticity of pericyclic TSs was
first analyzed systematically by Schleyer et al. [95 100] on the basis of geometric-,
energetic-, and magnetic-based criteria, in all cases proving the electronic delocal-
ization of these structures. Ponec [101,102] explored pericyclic reactions with
molecular similarity measures and, more recently, Mandado and coworkers [103]
analyzed pericyclic reactions by means of multicenter electron indices, namely a
quantity closely resembling Iring. Research characterizing the aromaticity of several
pericyclic TSs is discussed below.

28.4.1.2.1 Diels–Alder Reactions
The well-known Diels Alder reaction [95,104 106] is a standard method for form-
ing substituted cyclohexenes through the thermally allowed 4sþ 2s cycloaddition of
alkenes and dienes. In particular, the reaction between ethene and 1,3-butadiene to
yield cyclohexene is the prototype of a Diels Alder reaction (Scheme 28.4). It is now
well recognized that this reaction takes place via a synchronous and concerted
mechanism through an aromatic boatlike TS [105].

SCHEME 28.3

SCHEME 28.4 Diels Alder Reaction
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The aromatic nature of this TS has been confirmed theoretically using magnetic-
based indices such as NICS and the magnetic susceptibility exaltations [100], as well
as geometry-based indices like HOMA, or electronic-based indices like PDI
[51,107]. The performance of a series of aromatic measures has been analyzed by
applying them to the simplest Diels Alder between ethene and 1,3-butadiene. The
evolution of electronic indices (PDI, FLU, MCI, Iring, ING, and INB) along the
reaction path is depicted in Figure 28.2, whereas Figure 28.3 shows the evolution
of the different NICS measures and the geometric HOMA.
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It is seen how all indicators of aromaticity correctly predict that a structure close
to the TS is the most aromatic species along the reaction path, except HOMA and
FLU indices, that are unsuccessful to account for the aromaticity of the TS. The
reason for the failure of HOMA and FLU is that both values measure variances of the
structural and electronic patterns, respectively, with respect to a reference value.
Therefore, HOMA and FLU might fail if they are not applied to stable species
because, while reactions are occurring, structural and electronic parameters suffer
major changes. It is worth noting that the isotropic NICS(0) and NICS(1) values of
the TSs are larger than those of benzene, but this is not the case with the more
sophisticated NICS indices.

The synthetic utility of the Diels Alder reaction has been significantly expanded
by the development and use of a wide variety of dienes and dienophiles that contain
masked functionalities. For instance, o-quinodimethanes are exceedingly reactive
because cycloaddition establishes a benzenoid ring and results in aromatic stabiliza-
tion [108]. Therefore, aromatization determines the energetically most favorable
reaction path. In this case, DFT 13C, 1H NMR, NICS, and MO-NICS (single MO
contributions to NICS) calculations indicate that the increase of aromatic character of
the developing benzenoid ring along the reaction path is especially pronounced after
the TS is reached.

28.4.1.2.2 1,3-Dipolar Cycloadditions
The 1,3-dipolar cycloaddition was defined as a general type of reaction by Huisgen
[109,110], who developed an impressive research program to explore the preparative
possibilities of this reaction, as well as its mechanistic aspects. 1,3-Dipolar cycload-
dition reactions are one of the best and more general methods for the construction of
five-membered rings in a convergent and stereo-controlled manner. Among the
1,3-dipoles involving second-period elements, nitrile oxides and nitrones have
proved to be among the most useful and versatile reagents [111]. The wide range
of dipolarophiles has allowed the chemical synthesis of a considerable number
of nitrogen and oxygen-containing heterocycles in both inter- and intramolecular
processes [111].

Different experiments allowed the elucidation of the mechanism of 1,3-dipolar
cycloaddition reactions, which go through a six-electron supra supra concerted
mechanism in accordance with the Woodward Hoffmann rules. As expected for
such a thermally allowed pericyclic reaction, this [3þ 2] cycloaddition takes place
through an aromatic TS. The NICS values confirm the high aromatic character
of the corresponding TSs, thus validating that the 1,3-dipolar reaction between
carbon carbon multiple bonds and nitrile oxides or nitrones takes place via an
in-plane aromatic TS. The large values of the NICS computed at the (3,þ1) critical
points of electron density (extremum in the electron density, a point where the
gradient of the electron density is zero) are compatible with a ring current circu-
lating along the molecular plane. In addition, the regiochemistry of the reaction
between nitrile oxides and substituted alkenes is not determined by the aromaticity
of the possible TSs. Instead, favorable electrostatic interactions between atoms or
groups can stabilize the more asynchronous and less aromatic TSs [111].
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28.4.1.2.3 [2þ 2þ 2] Cycloadditions
Although the energetic advantages of aromatic delocalization in cyclic TSs
are well known, even thermally allowed and strongly exothermic reactions
may have substantial activation barriers. One example is the Woodward Hoffmann
thermally allowed [2þ 2þ 2] trimerization of acetylene to yield benzene
(see Scheme 28.5). In the course of this reaction, three acetylenic p-bonds are
converted into C�C s-bonds to form benzene. This reaction is highly exothermic
(exp. DH0

r ¼ �142:8 kcal �mol 1) [112], but has an unexpectedly large enthalpy
barrier of about 50 kcal �mol 1 for a thermally allowed process [113]. Although
there is a lack of consensus of how aromaticity changes during the transformation
from reactants to product [100,112,114,115], it is widely accepted that this thermally
allowed reaction has an aromatic TS. Most authors found that the system evolves
from localized s- and p-electrons in the reactants to the well known p-delocalization
in benzene through a TS, which has mainly in-plane s-electron delocalization with
only minor p-electron delocalization. So, it seems reasonable to think that the
aromaticity of the six-membered ring being formed increases from reactants to
the TS and it decreases slightly before reaching the aromatic benzene product.
This was found in a recent study [107] by means of a series of electronic-based
aromaticity criteria. NICS [100] gives a maximum of aromaticity at the TS, although,
more importantly, when NICS is separated between the NICS(p) and NICS(s)
components, it is observed how the p component increases from the reactant to
the product, whereas the s component is highly diamagnetic at the TS but strongly
paramagnetic for benzene. This confirms that at the TS the in-plane contribution is
larger, although the p delocalization is also important [100].

28.4.1.2.4 Other Examples
In addition to the numerous pericyclic aromatic TSs, other reactions deserve atten-
tion. These include the Cope and Claisen rearrangements, the pericyclic reactions
with Möbius TSs, the Bergman cyclizations [77,116], and the TSs for 1,5-H shifts
[100,117].

28.4.1.3 Pseudopericyclic Reactions

Woodward and Hoffmann provided an understanding of pericyclic reaction mech-
anisms based on conservation of orbital symmetry. A few years later, Ross et al.
[118] coined the term pseudopericyclic for a set of reactions they discovered, which
were not explained by the Woodward Hoffmann rules (like the oxidation of tricyclic
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thiirane to a rearranged sulfoxide). Birney’s group has carried out the most extensive
work on pseudopericyclic reactions [119]. Birney [120] describes a pseudopericyclic
reaction as a reaction with a low or a nonexistent barrier, planar TS and cyclic
overlap disconnections. Unlike pericyclic reactions, pseudopericyclic reactions do
not occur through aromatic TS. These criteria provide guidance to discern between
pericyclic and pseudopericyclic reactions, but unfortunately they are not clear cut.
Ambiguities are apparent. Aromatic compounds are usually planar but aromatic
pericyclic reaction TSs usually are not. In contrast, pseudopericyclic reactions
occur through planar, but nonaromatic TSs.

In a pericyclic reaction, the electron density is spread among the bonds involved
in the rearrangement (the reason for aromatic TSs). On the other hand, pseudo-
pericyclic reactions are characterized by electron accumulations and depletions on
different atoms. Hence, the electron distributions in the TSs are not uniform for the
bonds involved in the rearrangement. Recently some of us [121,122] showed that
since the electron localization function (ELF), which measures the excess of kinetic
energy density due to the Pauli repulsion, accounts for the electron distribution, we
could expect connected (delocalized) pictures of bonds in pericyclic reactions, while
pseudopericyclic reactions would give rise to disconnected (localized) pictures.
Thus, ELF proves to be a valuable tool to differentiate between both reaction
mechanisms.

A set of electrocyclic ring closures is the subject of recent controversy
because their mechanism lies in the borderline between pericyclic and pseudo-
pericyclic reactions [123 127]. The mechanisms were clarified by means of
ELF analyses [121,122]. As shown in Figure 28.4, connected patterns (C) are
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characteristic of aromatic TSs, and thus pericyclic reactions, while disconnected
patterns (A, B, and D) are typical of the nonaromatic TSs involved in pseudoper-
icyclic reactions.

28.4.2 INORGANIC AND ORGANOMETALLIC COMPOUNDS

28.4.2.1 Reactivity of All-Metal Aromatic Species

All-metal aromatic clusters are among the most appealing species discovered [43]
since the turn of the century. Li and coworkers [42,128] were the first to observe and
analyze the Al4Li , Al4Na , and Al4Cu series in the gas phase. Their main
structural unit, Al24 , was shown to exhibit both p and s aromaticity. Since then,
many other aromatic species like XAl3 (X¼ Si, Ge, Sn, Pb) [129] or Al3 [130],
among others, have received extensive attention.

All-metal clusters present several common features with p-conjugated
analogues. They exhibit exalted linear and nonlinear optical properties such as higher
polarizability or higher second hyperpolarizability [131]. They are also stabilized by
complexation with transition metals [132] such as (h4-Al4M4)-Fe(CO)3 systems
(M¼Li, Na, K). Such complexes exhibit very small bond length alternations
supporting the interpretation that the Al4M4 units are actually six p-electrons
Al4M4

2 species. Some of these metal clusters also show stabilization upon sand-
wich complexation by metals [133 137], for example, in the (Al4M4)2Ni (M¼Li,
Na, and K) series. All-metal clusters can also substitute their complexed organic
counterparts, as, for instance, in (Al4M4)-Fe(CO)3, which is obtained upon substitu-
tion on (C4H4)-Fe(CO)3 [132]. Moreover, all-metal clusters are stabilized by forming
superclusters, such as Al26 or (Al24 Ca

2þ
) [138].

Like D3h C6H
þ
3 , the first species exhibiting double aromaticity (p and in plane

s aromaticity) [139], but unlike classical conjugated organic compounds, which
present only p-(anti)aromaticity, all-metal clusters and, in general, inorganic com-
pounds might present not only the p-(anti)aromaticity, but also s- or d-(anti)aroma-
ticity. Therefore, quantification of aromaticity in all-metal clusters is much more
complex than in organic compounds. Recently some of us [140] have demonstrated
that NICS profiles calculated in the perpendicular direction of the ring served the
purpose of classifying a series of monocyclic inorganic compounds as aromatic,
nonaromatic, or antiaromatic. The profiles give much more information than
the single-point NICS calculation, enabling a clear classification of inorganic
compounds.

Such NICS profiles were used to show that while the cyclo-[M3]
2 (M¼Be,

Mg, Ca) possesses s-aromaticity the complex formed by the stabilization of an
alkalimetal cation enhances its p-aromaticity, leading to an unprecedented change
from s-aromaticity to p-aromaticity. Furthermore, some clusters of these series
M3X2 (M¼Be, Mg, Ca; X¼Li, Na, K) undergo dramatic alterations by changing
the distance from X to the center of M3 ring (Na2Mg3, Li2Mg3, and X2Ca3) while
others keep its aromaticity along this process (X2Be3 and K2Mg3). This finding may
open the way to reactivity control processes based on this aromaticity tuning [141].
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28.4.2.2 Reactions Involving Metallabenzenes

Transition metal (TM) compounds exhibiting aromaticity were first considered in
Hoffmann’s pioneering work [142]. Metallabenzenes or metallacyclohexatrienes are
derived from benzene, where one C H moiety has been replaced by a fragment
containing a TM. The first example, osmabenzene (osmium as the TM), was
reported by Elliot and coworkers in 1982 [143]. Since then a plethora of metalla-
benzenes have been synthesized, including metallabenzenes with two substitutions
of a C H fragment by a TM moiety [144]. Metallacyclic molecules differ from
regular aromatic compounds in that the p-bonding requires the involvement of the
metal d(p) orbitals instead of p(p) orbitals of main group elements. So far there
have been three interpretations given for bonding in metallabenzenes. Thorn
and Hoffmann [142] suggested that metallabenzenes possess 6 p-electrons, four
of which come from the occupied orbitals in C5H5 and two from the occupied dxz
orbital of the metal. On the other hand, one of us (PvR.S.) [145] suggested that
the occupied dyz metal orbital also significantly contributes to the p-orbital inter-
actions in metallabenzenes, thus there are actually 8p-electrons in metallabenzenes,
which become stabilized by a Möbius type of aromaticity. Finally, Frenking’s
group [146] analyzed the chemical bonding in these species from an energy
decomposition analysis perspective. As indicated by their findings, the 16- and
18-electron metallabenzene complexes are 10p-electron systems. According to
their p-bonding strength, metallabenzenes should be considered as being aromatic,
but less than benzene. However, some of these compounds exhibit ASE values
close to benzene.

28.4.2.3 Haptotropic Changes

A characteristic of p-coordinated metal complexes is their ability to undergo hapto-
tropic rearrangements, which involve the movement of a metal ligand, such as
chromium tricarbonyl, between two different p-coordinating sites. These rearrange-
ments are appealing for their potential applications as molecular switches, especially
when the rearrangements can be thermally or photochemically reversed. One of
us (M.S.) [147] has recently reviewed the h6,h6-interring haptotropic rearrangement
of tricarbonylchronium (Cr(CO)3) in several PAHs, where p-coordinated Cr(CO)3
migrates between different six-membered rings. Upon coordination of Cr(CO)3, the
PAHs experience a loss of aromaticity in both the coordinated ring and its neighbors.
NICS(0), which indicates enhanced aromaticity of the coordinated ring upon com-
plexation, gives misleading result, while NICS(1)zz yields the correct trend. The
failure of NICS(0) to show a decreased aromaticity of the aromatic ring after
coordination of the Cr(CO)3 moiety is due to the extra ring current generated by
the electron pairs responsible for coordination of Cr(CO)3 in the organic substrate
[148]. On the other hand, the haptotropic migration occurs in a single step or
stepwise depending on the orbital interaction between Cr(CO)3 and the PAH
fragment. Migration of Cr(CO)3 is favored by PAHs size whereas it is slowed
down by the effect of its curvature.
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28.4.2.4 Guanine–Cytosine Base-Pair Interacting with Metal Cations

Physicochemical properties of DNA are affected by the addition of metal cations.
The double helix is stabilized through the interaction with metal cations, which
neutralize the negatively charged backbone phosphate groups. The metal cations also
interact specifically with the nitrogenous bases. This modifies the hydrogen bonds
and the aromatic stacking interactions. It is now well established that the N7 position
of the guanine is the preferred binding site (see Scheme 28.6).

Recently some of us [149] analyzed the influence of somemetal cations (M¼Cuþ,
Cu2þ, and Ca2þ) coordinated to the N7 of guanine on hydrogen bonding and
aromaticity of the guanine cytosine base pair. The analysis showed that the strength-
ening of the N1� � �N3 and N2� � �O2 hydrogen bonds and the weakening of the
O6� � �N4 hydrogen bond is essentially caused by the modification of donor acceptor
interactions rather than to electrostatic interactions. The interaction of Cuþ and Ca2þ

results into strengthening of hydrogen bonding in the guanine cytosine pair, which
increases the aromaticity of the pyrimidinic ring in cytosine and the purinic ring in
guanine. On the other hand, interaction with Cu2þ or ionization removes a p-electron,
breaking the p-electron distribution and thus triggering a reduction of aromaticity in
both the rings of guanine.

28.5 CONCLUSIONS

Aromaticity remains a concept of central importance in chemistry. It is very useful
to rationalize important aspects of many chemical compounds such as the structure,
stability, spectroscopy, magnetic properties, and last but not the least, their chem-
ical reactivity. In this chapter, we have discussed just a few examples in which the
presence of chemical structures (reactants, intermediates, and products) and
TSs with aromatic or antiaromatic properties along the reaction coordinate have a
profound effect on the reaction. It is clear that many more exciting insights
in this area, especially from the newly developed aromatic inorganic clusters,
can be expected in the near future from both experimental and theoretical investi-
gations.
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29.1 INTRODUCTION

Despite its unsaturated nature, benzene with its sweet aroma, isolated by Michael
Faraday in 1825 [1], demonstrates low chemical reactivity. This feature gave rise to
the entire class of unsaturated organic substances called aromatic compounds. Thus,
the aromaticity and low reactivity were connected from the very beginning. The
aromaticity and reactivity in organic chemistry is thoroughly reviewed in the book by
Matito et al. [2]. The concepts of aromaticity and antiaromaticity have been recently
extended into main group and transition metal clusters [3 10]. The current chapter will
discuss relationship among aromaticity, stability, and reactivity in clusters.

Aromaticity=antiaromaticity in cluster systems has certain peculiarities when
compared with organic compounds. The striking feature of chemical bonding in
cluster systems is the multifold nature of aromaticity, antiaromaticity, and conflicting
aromaticity [3 10]. Double aromaticity (the simultaneous presence of s- and
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p-aromaticity) was introduced in chemistry by Schleyer and coworkers [11] in the
late 1970s to explain properties of 3,5-dehydrophenyl cation. Double aromaticity and
antiaromaticity was first used by Martin-Santamaria and Rzepa [12] to explain
chemical bonding in small carbon rings. Berndt and coworkers [13] have shown
that small carborane molecules containing three- and four-membered rings also
exhibit both s- and p-aromaticity. The amount of possible combinations of aroma-
ticity and antiaromaticity is even greater in clusters [9]. When only s-atomic
orbitals (AOs) are involved in chemical bonding, one may expect only s-aromaticity
or s-antiaromaticity. If p-AOs are involved, s-tangential (st), s-radial (sr), and
p-aromaticity=antiaromaticity could coexist [5]. In this case, multiple (s- and p-)
aromaticity, multiple (s- and p-) antiaromaticity, and conflicting aromaticity (simul-
taneous s-aromaticity and p-antiaromaticity or s-antiaromaticity and p-aromaticity)
can be encountered. If d-AOs are involved in chemical bonding, st-, sr-, p-tangential
(pt-), p-radial (pr-), and d-aromaticity=antiaromaticity can occur. In this case, there
can be multiple (s-, p-, and d-) aromaticity, multiple (s-, p-, and d-) antiaromaticity,
and conflicting aromaticity (simultaneous aromaticity and antiaromaticity among the
three types ofs,p, and d bonds) [9,14,15]. The next challenge is to findf-aromaticity,
which may occur in multinuclear and cyclic f-metal systems. Involvement of f-AOs
in chemical bonding might result in multiple (s-, p-, d-, and f-) aromaticity, multiple
(s-, p-, d-, and f-) antiaromaticity, and conflicting aromaticity (simultaneous aroma-
ticity and antiaromaticity among the four types of s, p, d, and f bonds).

From the definitive point of view, both aromaticity and antiaromaticity are
very vague concepts. The most recent discussion of aromaticity and antiaromaticity
can be found in Refs. [16 18]. Various aromaticity indices are used to probe
aromaticity such as para-delocalization index (PDI) [19], the aromatic fluctuation
index (FLU) [20], MO multicenter bond index (MCI) [21,22], etc. Ponec and
coworkers [23,24] proposed six-center bond index as a measure of aromaticity.
Ponec et al. [25] further demonstrated that the MCI can be used for the quantitative
characterization of homoaromaticity, nonhomoaromatic, and antihomoaromatic sys-
tems. Cioslowski et al. [26] developed normalized variants of MCI. Chattaraj and
coworkers [27] studied efficiency of the multicenter indices in providing insights
into the bonding, reactivity, and aromaticity in all-metal aromatic and antiaromatic
compounds. Chattaraj and coworkers [28] used maximum hardness principle and the
minimum polarizability principle to describe the stability and reactivity of aromatic
and antiaromatic compounds. There are probes for aromaticity=antiaromaticity based
on the response to the presence of external magnetic field such as nuclear-independent
chemical shifts (NICS) pioneered by Schleyer and coworkers [29,30], the aromatic
ring-current shieldings (ARCS) [31], and the gauge-including magnetically induced
current (GIMIC) [32] proposed by Juselius and Sundholm, as well as maps of current
density induced by a perpendicular magnetic field developed by Steiner and Fowler
[33]. The comparison of a given system with prototypical one within MO theory is
often enough to assign some certain type of the delocalized bonding, as it is done in
the case of main-group elements or transition-metal clusters [5,9].

Boron clusters are the best understood clusters of the main group elements [7,8].
Today we are capable of explaining and predicting their geometric structures and

440 Chemical Reactivity Theory: A Density Functional View



other molecular and spectroscopic properties, because of the recent advances in
developing chemical bonding model for these systems [34 58]. There is a consid-
erable amount of experimental data on the stability and reactivity of boron cations
reported in the pioneering works by Anderson and coworkers [59 66]. These two
factors are the reason for us to focus on the relationship between aromaticity or
antiaromaticity and reactivity and stability of the family of cationic boron clusters in
the present chapter.

Anderson and coworkers [59 66] produced boron cluster cations Bþ
2 Bþ

13 in
molecular beams using laser vaporization and studied their chemical reactivity and
fragmentation properties. The structures of Bþ

3 Bþ
13 cations have been established

computationally (see review [7] for details) represented in Figure 29.1. In this
chapter, we are discussing stability and reactivity of Bþ

3 �Bþ
13 cations on the basis

of their multifold aromaticity, multifold antiaromaticity, and conflicting aromaticity.

29.2 THEORETICAL METHODS

The structures of Bþ
3 Bþ

13 cations shown in Figure 29.1 were taken from the Ref. [7],
in which they were considered as the most stable structures previously reported in the
literature. They were reoptimized using hybrid density functional method known in
the literature as B3LYP [67 69] with the 6-311þG* basis set [70 72] as imple-
mented in Gaussian 03 program [73]. There is no guarantee that all the considered
structures here are indeed global minimum structures.

B3
+(D3h, 1A1�) B5

+(D5h, 1A1�)B4
+(D2h, 2Ag) B6

+(D2h, 2B1u)

B7
+(C6v, 1A1) B9

+(Cs, 1A�)B8
+(Cs, 2A�)

B+
11(Cs, 1A�) B+

13(C2v, 1A1)B+
12(C1, 2A)

B+
10(C2v, 2B1)

FIGURE 29.1 Geometric structures of Bþ
3 Bþ

13 clusters optimized at B3LYP=6 311þG*.
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Chemical bonding in Bþ
3 Bþ

13 cations was elucidated using the recently devel-
oped adaptive natural density partitioning (AdNDP) method [74], which is an
extension of the popular natural bond orbital (NBO) analysis. The AdNDP method
allows one to partition the charge density into elements with the highest possible
degree of localization of electron pairs. If some part of the density cannot be
localized in this manner, it is left ‘‘delocalized’’ and is represented by the objects
closely reminding canonical molecular orbitals. Thus, chemical bonding is described
in terms of n-center two electron (nc-2e) bonds. These bonds are characterized by the
occupation numbers (ON), which should be equal to 2.0 jej in the limiting case.
Thus, AdNDP incorporates naturally the idea of delocalized (globally aromatic)
bonds and achieves seamless description of chemical bonding in the most general
sense. The nc-2e bonds obtained through AdNDP analysis were visualized using the
MOLEKEL 4.3 program [75].

29.3 STABILITY AND REACTIVITY OF Bþ
3 –B

þ
13 CATIONS

Anderson and coworkers [61] conducted measurements of absolute collision-
induced dissociation (CID) cross sections, fragment appearance potentials (AP),
and fragmentation branching ratios. They interpreted obtained data to evaluate
stabilities and ionization potentials (IP). If the lowest AP is taken as close upper
bound on the stability of the cluster ion (Figure 29.2a) then the following clusters
Bþ
5 , Bþ

7 , and Bþ
13 should be considered as particularly stable and Bþ

6 and Bþ
9

as particularly unstable. At the lower collision energy (10 eV), the only significant
fragmentation channel for parent clusters from Bþ

3 to Bþ
5 is the loss of Bþ and

production of Bn 1 neutral species. For larger clusters, the charge usually remains on
the Bþ

n 1 cluster fragment. We calculated dissociation energy at the B3LYP=
6-311þG* level of theory along the Bþ

n ! Bþ
n 1 þB and Bþ

n ! Bn 1þBþ

channels (Figure 29.2b). According to our calculations, Bþ
5 , Bþ

7 , Bþ
10, and Bþ

13
clusters have high dissociation energies relative to their neighbors. Bþ

6 , B
þ
9 , and

Bþ
12 clusters have relatively low dissociation energies. We relate high dissociation

energy to high stability and low dissociation energy to low stability of clusters. It
should be kept in mind that this relationship should not be considered as precise and
well defined. Our results on relative dissociation energy of cationic boron clusters
generally agree with the experimental data on lowest fragmentation AP [61]. The
question now is whether we can establish connection between the assignment of
stability and chemical bonding in Bþ

3 Bþ
13. This question is positively resolved in

Section 29.4.

29.4 CHEMICAL BONDING ANALYSIS OF Bþ
3 –B

þ
13 CATIONS

In Table 29.1, we summarized our results of electronic structure calculations for
Bþ
3 Bþ

13. We reported symmetry, spectroscopic state, valence electronic
configuration, number of 2c-2e peripheral B B s-bonds, number of delocalized
s- and p-bonds, and assignment of global aromaticity=antiaromaticity. The
description of chemical bonding in terms of 2c-2e peripheral B B s-bonds
and nc-2e delocalized s- and p-bonds was obtained via AdNDP method at
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B3LYP=3-21G==B3LYP=6-311þG*. From our experience, we know that the pattern
of nc-2e bonding remains qualitatively the same, when we use STO-3G, 3-21G, or
6-31G* basis sets. The only difference is the variation of the values in the ON, which
does not exceed 0.1 jej [74]. For open shell systems, this analysis was performed for
the closest closed shell species with doubly occupied HOMO at the geometry of the
initial cation. The bonding patterns for Bþ

3 Bþ
13 are presented in Figures 29.3 through

29.13. The 2c-2e peripheral B B s-bonds are all placed on the single cluster
framework.
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FIGURE 29.2 (a) Experimental APs for Bþ
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(triangles) fragmentation channels at B3LYP=6 311þG*.
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3 � 2c-2e ON = 1.72 lel 3c-2e ON = 2.00 lel

FIGURE 29.3 Localization pattern for Bþ
3 obtained via AdNDP procedure. Here and

hereafter 2c 2e peripheral s bonds are placed at the cluster framework.

4 � 2c-2e ON=1.99 lel 4c-2e ON=2.00 lel 4c-2e ON=2.00 lel

FIGURE 29.4 Localization pattern for Bþ
4 obtained via AdNDP procedure.

5 � 2c-2e ON=1.98 lel 5c-2e ON=2.00 lel 5c-2e ON=2.00 lel

FIGURE 29.5 Localization pattern for Bþ
5 obtained via AdNDP procedure.

6 � 2c-2e
ON=1.99 – 1.97 lel

3c-2e ON=1.84 lel 6c-2e ON=2.00 lel

FIGURE 29.6 Localization pattern for Bþ
6 obtained via AdNDP procedure.
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6 � 2c-2e ON=1.94 7c-2e ON=2.00 lel 7c-2e ON=2.00 lel

FIGURE 29.7 Localization pattern for Bþ
7 obtained via AdNDP procedure.

7 � 2c-2e 
ON=1.95 – 1.94 lel

4c-2e ON=1.80 lel

4c-2e
ON=1.88 lel

4c-2e
ON=1.88 lel

4c-2e
ON=1.90 lel

4c-2e
ON=1.90 lel

FIGURE 29.8 Localization pattern for Bþ
8 obtained via AdNDP procedure.

7 � 2c-2e 
ON = 1.92 – 1.89 lel

6c-2e ON = 1.97 lel3c-2e ON = 1.78 lel

7c-2e ON = 1.91 lel3c-2e ON = 1.78 lel

FIGURE 29.9 Localization pattern for Bþ
9 obtained via AdNDP procedure.
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10c-2e ON = 2.00 lel

3c-2e ON = 1.85 lel

4c-2e ON = 1.90 lel8 � 2c-2e
ON = 1.93 – 1.78 lel

FIGURE 29.10 Localization pattern for Bþ
10 obtained via AdNDP procedure.

11c-2e ON = 2.00 lel

3c-2e ON = 1.82 lel

4c-2e
ON = 1.90 lel

5c-2e
ON = 1.95 lel

9 � 2c-2e
ON = 1.94 – 1.80 lel

FIGURE 29.11 Localization pattern for Bþ
11 obtained via AdNDP procedure.

3c-2e
ON = 1.91 lel

12c-2e ON = 2.00 lel 12c-2e ON = 2.00 lel9 � 2c-2e
ON = 1.94 – 1.87 lel

FIGURE 29.12 Localization pattern for Bþ
12 obtained via AdNDP procedure.
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According to our analysis, Bþ
3 is a p-aromatic system with three 2c-2e peripheral

B B s-bonds (Figure 29.3). Bþ
4 is p-aromatic and ‘‘1=2’’ s-aromatic (‘‘1=2’’ is used

as a label and means the s-system with singly occupied delocalized 2ag-HOMO is
half way down to being s-aromatic in the neutral B4 cluster) with four 2c-2e
peripheral B B s-bonds (Figure 29.4). Bþ

5 is doubly p- and s-aromatic with five
2c-2e B B s-bonds (Figure 29.5). The global minimum structure of Bþ

5 has actually
C2v symmetry, but after zero-point energy (ZPE) correction, it is effectively a perfect
pentagon D5h considered in the present study. Bþ

6 is p-aromatic and ‘‘1=2’’
s-antiaromatic (‘‘1=2’’ is used as a label and means the s-system with singly
occupied delocalized 2b1u-HOMO is half way down to being s-antiaromatic in the
neutral B6 cluster) with six 2c-2e peripheral B B s-bonds (Figure 29.6). Strictly
speaking, the pyramidal C6v (

1A1) structure of B
þ
7 should not be discussed in terms of

s-=p-aromaticity, but the deviation from planarity is rather small (Figure 29.1), and
one can see in Figure 29.7 that delocalized bonds still can be approximately
recognized as ‘‘s-’’ and ‘‘p-’’ bonds. The same reasoning is used for the assignment
of bonds in other (Bþ

9 , B
þ
10, B

þ
11, and B

þ
12) nonplanar cations. So, B

þ
7 is doubly p- and

s-aromatic with six 2c-2e B B s-bonds. Bþ
8 is ‘‘1=2’’ p-antiaromatic (‘‘1=2’’ is used

as as a label and means that the p-system with singly occupied delocalized
2a-HOMO is half way down to being p-antiaromatic in the neutral B8 cluster)
and s-aromatic with seven 2c-2e peripheral B B s-bonds (Figure 29.8). Bþ

9 is
doubly p- and s-antiaromatic with seven 2c-2e B B s-bonds (Figure 29.9). Bþ

10
is ‘‘1=2’’ p-aromatic (‘‘1=2’’ is used as a label and means the p-system with singly
occupied delocalized 4b1-HOMO is half way down to being p-aromatic in the
neutral B10 cluster) and s-antiaromatic with eight 2c-2e peripheral B B s-bonds
(Figure 29.10). Bþ

11 is p-aromatic and s-antiaromatic with nine 2c-2e B B
s-bonds (Figure 29.11). Bþ

12 is p-aromatic and ‘‘1=2’’ s-aromatic (‘‘1=2’’ is used
as a label and means the s-system with singly occupied delocalized 11a0-HOMO is

3c-2e
ON = 1.94 lel

3c-2e
ON = 1.75 lel

3c-2e ON = 1.73 lel

5c-2e ON = 1.84 lel5c-2e ON = 1.80 lel

3c-2e ON = 1.66 lel

10 � 2c-2e
ON = 1.97 – 1.89 lel

FIGURE 29.13 Localization pattern for Bþ
13 obtained via AdNDP procedure.
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halfway down to being s-aromatic in the neutral B12 cluster) with nine 2c-2e B B
s-bonds (Figure 29.12). There are totally six delocalized 3c-2e s-bonds. One 3c-2e
s-bond is responsible for delocalized s-bonding in the internal three-atomic cycle
and five 3c-2e s-bonds are responsible for delocalized s-bonding between
the external and internal cycles. Thus, we count the mentioned two sets of delocal-
ized s-bonds separately with the Huckel’s rule holding for five 3c-2e s-bonds
(4nþ 2 with n¼ 2) and for one 3c-2e s-bond (4nþ 2 with n¼ 0). Bþ

13 is doubly
p- and s-aromatic with 10 2c-2e B B s-bonds (Figure 29.13). Like in the case of
Bþ
!2, six 3c-2e s-bonds of Bþ

13 are split into two sets with five bonds responsible for
bonding between external and internal cycles and one bond responsible for bonding
within the internal cycle.

Summarizing the assignment of aromaticity=antiaromaticity in cationic
boron clusters, we consider Bþ

3 as p-aromatic, Bþ
4 and Bþ

12 as partially doubly
(‘‘1=2’’ s- and p-) aromatic, Bþ

5 , B
þ
7 , and Bþ

13 as doubly (s- and p-) aromatic, Bþ
9

as doubly (s- and p-) antiaromatic, and Bþ
6 , B

þ
8 , and Bþ

10 as partially conflicting
aromatic, and Bþ

11 as conflicting aromatic.
With patterns of localized bonding in hand, we now can establish the relationship

between stability and aromaticity in a straightforward manner. Indeed, exceptional
stability of Bþ

5 , B
þ
7 , and Bþ

13 found in our calculations and experimental data is
consistent with their double (s- and p-) aromatic nature. The low reactivity of Bþ

13
towards water, D2, and oxygen found by Anderson and coworkers [60,62,63] is also
consistent with its remarkable stability due to double aromaticity. They also stated that
Bþ
9 appears unusually reactive toward oxygen with respect to its nearest neighbors

[60]. This observation is consistent with the double antiaromatic nature of Bþ
9 . Low

stability of Bþ
6 and Bþ

9 found in our calculations and experimental data should be seen
as a result of their double (s- and p-) antiaromatic nature. Apparently, there are three
clusters, Bþ

10, B
þ
11 and Bþ

12, which do not follow these trends. The Bþ
10 cation exhibits

relatively high stability, both in theoretical calculations and experimental data, despite
its partially conflicting aromatic nature. This can be attributed to the increase of the
number of 2c-2e peripheral s-bonds (from seven inBþ

9 to eight inBþ
10) and increase of

p-aromatic character (from p-antiaromaticity in Bþ
9 to ‘‘1=2’’ p-aromaticity in Bþ

10).
The pattern of chemical bonding in Bþ

11 and B
þ
12 (they both have nine peripheral 2c-2e

s-bonds, they are both p-aromatic, and their s-aromatic character increases from
s-anti aromaticity in Bþ

11 to ‘‘1=2’’ s-aromaticity in Bþ
12) is consistent (they both have

nine peripheral 2c-2e s-bonds, with the their stability evaluated on the basis of
experimentally observed APs. The disagreement with computational results might
be due to the deficiency of the estimated dissociation energies as ameasure of stability.

The presented consideration of the family of cationic boron clusters exemplifies
that the assessment of stability and reactivity of clusters can be performed at the
qualitative level using multifold aromaticity, multifold antiaromaticity, and variety of
conflicting aromaticities.
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30.1 INTRODUCTION

Note: The atomic units are used throughout the paper; in the adopted notation P
denotes the square or rectangular matrix, P stands for the row vector, and P
represents the scalar quantity.

The internal degrees-of-freedom of molecular systems are of either electronic or
nuclear (geometric) origins. In the Born Oppenheimer (BO) approximation, the
equilibrium (ground) state of the externally closed molecule is specified by the
overall number of electrons N (integer) in the system and the external potential v(r; Q)
due to the nuclei located in the parametrically specified locations corresponding to
the internal geometric coordinates Q. Alternatively, the state-parameters N and Q
uniquely identify the system (Coulombic) Hamiltonian Ĥ(N, v)¼ Ĥ(N,Q), its ground
state �[N, v]¼�(N, Q), the electronic energy E[N, v]¼h�[N, v]jĤ(N, v)j�[N, v]i¼
E(N,Q), and the BO potential W(N, Q)¼E(N, Q)þVnn(Q), where Vnn(Q) stands for
the nuclear repulsion energy. One similarly specifies the equilibrium state of an
externally open-system characterized by the fractional average number of electrons,
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which is coupled to an external electron reservoir controlling the system chemical
potential m¼ @E(N, Q)=@N. In the geometrically rigid molecule this equilibrium
state is identified by m and Q. The corresponding equilibrium (relaxed) geometries
are identified by the vanishing forces F¼�[@W(N, Q)=@Q]T¼ 0, giving rise to the
alternative sets of state-parameters, (N, F) and (m, F), in the electronically closed and
open (relaxed) systems, respectively (e.g., Chattaraj and Parr, 1993; Cohen, 1996;
Geerlings et al., 2003; Nalewajski, 1993, 1995, 1997, 2002a, 2003, 2006a;
Nalewajski and Korchowiec, 1997; Nalewajski et al., 1996; Parr and Yang, 1989).

Each molecular process involves the mutually coupled displacements in the
distribution of the system electrons and positions of its nuclei. In chemistry, the
mutual interaction between the electronic and geometric structures of molecules or
reactive systems plays a vital role in diagnosing their behavior in different environ-
ments. Therefore, designing the adequate descriptors of this coupling and establishing
principles for a qualitative prediction of its structural and reactivity manifestations
constitute a challenging problem in theoretical chemistry (e.g., Baekelandt et al.,
1995; Cohen, 1996; Nalewajski, 1993, 1995, 1997, 1999, 2000, 2002a,b, 2003,
2006a,b; Nalewajski and Korchowiec, 1997; Nalewajski and Michalak, 1995,
1996, 1998; Nalewajski and Sikora, 2000; Nalewajski et al., 1996, 2008). Indeed,
the rules governing this subtle interplay between the electronic and geometric
degrees-of-freedom in molecular systems constitute an important part of the struc-
tural chemistry and reactivity theory (e.g., Ayers and Parr, 2000, 2001; Fujimoto and
Fukui, 1974; Fukui, 1975, 1987; Gutmann, 1978; Klopman, 1968, 1974; Nalewajski,
1984). They reflect effects of the mutual interaction between an internal polarization
(P) and=or external charge transfer (CT) on one side and the concomitant geometrical
relaxation on the other side, e.g., in molecular subsystems of the donor acceptor
(DA) complexes. The Gutmann rules of structural chemistry (Gutmann, 1978) and
their extension provided by the so-called mapping relations formulated within the
charge sensitivity analysis (CSA) of molecular systems (Bakelandt et al., 1995;
Nalewajski, 1995, 2006b; Nalewajski and Korchowiec, 1997; Nalewajski and
Michalak, 1995, 1996, 1998; Nalewajski and Sikora, 2000; Nalewajski et al.,
1996), allow for a qualitative and semiquantitative predictions, respectively, of
such relaxational effects.

Another example is provided by the minimum energy coordinates (MECs) of the
compliant approach in CSA (Nalewajski, 1995; Nalewajski and Korchowiec, 1997;
Nalewajski andMichalak, 1995, 1996, 1998; Nalewajski et al., 1996), in the spirit of the
related treatment of nuclear vibrations (Decius, 1963; Jones and Ryan, 1970; Swanson,
1976; Swanson and Satija, 1977). They all allow one to diagnose the molecular
electronic and geometrical responses to hypothetical electronic or nuclear displacements
(perturbations). The ‘‘thermodynamical’’ Legendre-transformed approach (Nalewajski,
1995, 1999, 2000, 2002b, 2006a,b; Nalewajski and Korchowiec, 1997; Nalewajski
and Sikora, 2000; Nalewajski et al., 1996, 2008) provides a versatile theoretical
framework for describing diverse equilibrium states of molecules in different chemical
environments.

The essence of such a combined linear response treatment of the electronic and
geometric state-variables is that all their mutual interactions are explicitly taken into
account in the generalized electronic nuclear Hessian. The relevant coupling terms
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are represented by the off-diagonal elements in such generalized ‘‘force constant’’ or
‘‘compliance’’ tensors, for the admissible selections of the system state-parameters,
which specify the equilibria in the externally closed or open molecules, for their
rigid or relaxed geometries. In such an approach, the overall number of electrons,
N, and its energy-conjugate, the chemical potential m, determine the electronic
state-variables in the externally closed and open molecular systems, respectively.
Accordingly, the internal coordinates Q or their energy-conjugates, the vanishing
forces F¼ 0, describe the rigid or relaxed molecular geometries.

This theoretical framework thus unites the so called electron-following (EF) and
electron-preceding (EP) perspectives (Nakatsuji, 1973, 1974a,b) on molecular
changes, in the spirit of the BO approximation and the Hellmann Feynman theorem,
respectively. In the former the electron distribution responds to the geometrical
(nuclear) perturbation, a displacement in nuclear positions, while the latter implies
the system geometrical relaxation following a test displacement in the system
electronic state-parameters. Such generalized ‘‘polarizabilities’’ of molecules are
generated within CSA of molecular systems. They provide reliable criteria in the
reactivity theories (e.g., Chattaraj and Parr, 1993; Cohen, 1996; Geerlings et al.,
2003; Nalewajski, 1993, 1995, 1997, 2002a, 2003, 2006a; Nalewajski and Korchowiec,
1997; Nalewajski et al., 1996; Parr and Yang, 1989) based upon the modern density
functional theory (DFT) (Dreizler and Gross, 1990; Hohenberg and Kohn, 1964;
Kohn and Sham, 1965; Nalewajski, 1996; Parr and Yang, 1989). In the EF outlook
the adjustment Dr in the electron distribution represents the unconstrained (depen-
dent) local state-variable of the molecular system in question: Dr¼Dr[N, Dv]¼
Dr(N, DQ) or Dr¼Dr[m, Dv]¼Dr(m, DQ). In other words, the electron density
responds (‘‘follows’’) the displacements DQ of the system nuclei. This selection of
the dependent (r) and independent (v) local state-variables generates the chemical
softness kernel s(r, r0) of the reactivity theory and has been classified as the chemical
softness representation of molecular states (Nalewajski, 2006a,b).

These roles are reversed in the EP perspective of DFT, which can also be referred
to as the chemical hardness representation (Nalewajski, 2006a,b), since it defines
another key concept of the electronic structure and reactivity theories the chemical
hardness kernel h(r, r0), the inverse of s(r, r0). In the EP approach, the displacement
in the system electron density, Dr, effected either by the controlled change in the
system number of electrons DN¼ Ð

Dr dr or a displacement in the chemical potential
of the external reservoir, Dr¼Dr(DN, F¼ 0) or Dr¼Dr(Dm, F¼ 0), respectively,
is now regarded as the controlling, independent parameter of state, while the external
potential responds to the specified redistribution of electrons, thus representing a
dependent (unconstrained) state-variable Dv¼Dv[Dr]. The shifts in the electron
distribution thus ‘‘precede’’ the movements of nuclei, DQ¼DQ(DN, F¼ 0) or
DQ¼DQ(Dm, F¼ 0), in the spirit of the familiar Hellmann Feynman (force)
theorem. This way of approaching molecular displacements is quite common in
the chemical reactivity theory. Indeed, chemists often envisage the key manipulation
of the system electronic structure as the primary cause of the desired reconstruction
of the molecular geometry, e.g., the breaking=forming of bonds in the molecule.

One requires both these perspectives to tackle all issues in the theory of elec-
tronic structure of molecules and their chemical reactivity. The wave function and
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density functional formulations of the quantum theory of electronic structure
in molecular systems, thus emerge as the complementary descriptions, which
‘‘together’’ provide theoretical framework of the ‘‘complete’’ theory of chemical
reactivity. The emergence of the modern DFT has provided the EP perspective and
generated new approaches to many classical problems in chemistry. It offers an
alternative point of view, from which one can approach the diverse physical=
chemical properties and processes involving atomic, molecular, and reactive sys-
tems. This novel perspective is in the spirit of the Sanderson’s electronegativity
equalization description of the equilibrium distribution of electrons in molecular
systems (Sanderson, 1951, 1976). Examples of the reactivity indices quantifying
the electronic geometric coupling are provided by the electronic Fukui function
(Korchowiec and Uchimaru, 1998; Michalak et al., 1999; Nalewajski et al., 1996;
Parr and Yang, 1984; Yang and Parr, 1985; Yang et al., 1984) and its nuclear analog
(Cohen, 1996; Cohen et al., 1994, 1995).

In this chapter, the diverse coupling constants and MEC components identified in
the combined electronic nuclear approach to equilibrium states in molecules and
reactants are explored. The reactivity implications of these derivative descriptors of
the interaction between the electronic and geometric aspects of the molecular structure
will be commented upon within both the EP and EF perspectives. We begin this
analysis with a brief survey of the basic concepts and relations of the generalized
compliant description of molecular systems, which simultaneously involves the
electronic and nuclear degrees-of-freedom. Illustrative numerical data of these deriva-
tive properties for selected polyatomicmolecules, taken from the recent computational
analysis (Nalewajski et al., 2008), will also be discussed from the point of view of
their possible applications as reactivity criteria and interpreted as manifestations of
the LeChâtelier Braun principle of thermodynamics (Callen, 1962).

30.2 PERTURBATION–RESPONSE RELATIONS

We first examine the coupling relations within the canonical geometric representa-
tion, which corresponds to the BO potential eW[N, v(Q)]¼ eE[N, v(Q)]þVnn(Q),
combining the molecular electronic energy eE[N, v(Q)] and the nuclear repulsion
term Vnn(Q), in which the implicit dependence on the internal nuclear coordinates
Q¼ {Qs} consisting of bond lengths and angles through the external potential v(r; Q)
has been replaced by the explicit dependence on molecular geometry: eW[N, v(Q)] �
W(N, Q)¼E(N, Q)þVnn(Q).

The purely geometrical derivatives ofW(N,Q) include the forces acting on nuclei
along the internal geometric coordinates

F(N,Q) ¼ �[@W(N,Q)=@Q]T ¼ {Fs}, (30:1)

and the geometric Hessian:

H ¼ @2W(N,Q)
@Q@Q

¼ � @F(N,Q)
@Q

: (30:2)
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The purely electronic derivatives, calculated for the rigid molecular geometry,
determine the system electronic chemical potential

m ¼ @E(N,Q)=@N ¼ @W(N,Q)=@N (30:3)

and the electronic hardness

h ¼ @2E(N,Q)
@N2

¼ @2W(N,Q)
@N2

¼ @m(N,Q)
@N

: (30:4a)

It should be recalled that h stands for the rigid geometry measure of the electronic
global hardness, the inverse of the system global softness S¼ (@N=@m)Q:

h ¼ @m

@N

� �
Q

¼ S 1: (30:4b)

Finally, the mixed second derivatives define the nuclear Fukui function (NFF)
indices:

w(N,Q) ¼ � @2W(N,Q)]
@N @Q

� �T
¼ @F(N,Q)

@N

� �
Q

¼ � @m(N,Q)
@Q

� �T
N

, (30:5)

coupling the electronic state-parameter N with the geometric coordinates Q.
The independent displacements (DN, DQ) (perturbations) in this canonical

geometric representation give rise to the first differential of its ‘‘thermodynamic’’
potential W(N, Q):

dW(N,Q) ¼ (@W=@N)QdN þ dQ(@W=@Q)N ¼ mdN � FdQT

� mdN �
X
s

FsdQs: (30:6)

The generalized Hessian H transforming these perturbations into the linear responses
of the corresponding energy conjugate quantities, representing the unconstrained
electronic and geometric state-variables grouped in the generalized gradient
g¼ (m, �F),

(Dm� DF) � Dg ¼ (DN,DQ)H, (30:7)

includes the following blocks defined by the generalized ‘‘force constants’’ of
Equations 30.2, 30.4, and 30.5:

H ¼
@m
@N

� �
Q

� @F
@N

� �
Q

@m
@Q

� �
N

� @F
@Q

� �
N

2
64

3
75 � HN,N HN,Q

HQ,N HQ,Q

� 	
¼ h �w

�wT H

� 	
: (30:8)

Probing the Coupling between Electronic and Geometric Structures 457



The overall transformation (30.7) thus combines the following partial electronic and
geometric ground-state relations:

�m ¼ �Nh��QwT and ��F ¼ �Nwþ�QH: (30:9)

The inverse of H determines the geometric compliance matrix (Nalewajski,
1993, 1995, 1997, 1999, 2000, 2002b, 2006a,b; Nalewajski and Korchowiec,
1997; Nalewajski et al., 1996, 2008) describing the open system in the (m,F)-
representation. The relevant thermodynamic potential is defined by the total
Legendre transform of the system BO potential, which replaces the state-parameters
(N, Q) with their energy conjugates (m, F), respectively:

S(m,F) ¼ W � N(@W=@N)Q � Q(@W=@Q)N ¼ W � Nmþ QFT, (30:10)

dS ¼ �Ndmþ QdFT or �N ¼ (@S=@m)F and Q ¼ (@S=@F)Tm: (30:11)

Setting F¼ 0 then identifies the properties for the equilibrium (relaxed) molecular
geometry.

The generalized compliance matrix, combining the system electronic and
geometric degrees-of-freedom,

S ¼ H 1 ¼
� @N

@m

� �
F

@Q
@m

� �
F

� @N
@F

� �
m

@Q
@F

� �
m

2
64

3
75 � Sm,m Sm,F

SF,m SF,F

� 	
, (30:12)

relates the displacements (perturbations) of the representation independent variables
(Dm, DF) with the conjugate responses in the unconstrained conjugate quantities
(�DN, DQ):

(�DN,DQ) ¼ (Dm,DF) S: (30:13)

It summarizes the responses in the system average number of electrons and its
geometry:

�DN ¼ DmSm,m þ DQSF,m, DQ ¼ DmSm,F þ DFSF,F: (30:14)

A reference to Equation 30.12 shows that the diagonal element Sm,m represents the
relaxed geometry analog of the negative global softness of Equation 30.4b, with the
latter being defined for the rigid molecular geometry. It follows from the second of
Equation 30.14 that a change in the chemical potential of an open system induces an
extra relaxation of the molecular frame. This geometric ‘‘softness’’ effect is described
by the derivatives of the row vector Sm,F ¼ Sm,s


 � ¼ ST
F,m � S ¼ Ssf g.

One can explicitly express the compliance matrix in terms of the elements of the
principal charge sensitivities defining the generalized electronic nuclear ‘‘hardness’’
matrix H of Equation 30.8, by eliminating DN and DQ from Equation 30.9:
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�DN ¼ �Dm(h� B) 1 þ DFH 1wT(h� B) 1, B ¼ wH 1wT;

DQ ¼ DmwH 1C� DFH 1Ch, C ¼ hI� wTwH 1
� � 1

: (30:15)

or in the combined matrix form:

S ¼
� @N

@m

� �
F
¼ �(h� B) 1 � �Srel @Q

@m

� �
F
¼ wH 1 C � S

� @N
@F

� �
m
¼ H 1wT(h� B) 1 ¼ ST @Q

@F

� �
m
¼ �H 1Ch � Grel

2
64

3
75, (30:16)

where Srel¼ (hrel) 1 stands for the geometrically relaxed softness, inverse of the
relaxed hardness, and Grel denotes the electronically relaxed geometrical compliant
matrix, which differs from its closed system analog G¼�H 1¼ (@Q=@F)N.

Let us now turn to the mixed, partly inverted (N,F)-representation describing the
geometrically relaxed, but externally closed molecular system. The relevant thermo-
dynamic potential is now defined by the partial Legendre transformation of W(N, Q)
which replaces Q by F in the list of the system parameters of state:

Q(N,F) ¼ W � Q(@W=@Q)N ¼ W þ QFT; (30:17)

dQ ¼ mdN þ QdFT or m ¼ (@Q=@N)F and Q ¼ (@Q=@F)TN : (30:18)

Eliminating Dm from the first Equation 30.14 and inserting it into the second
Equation 30.14 then gives the following transformation of the representation inde-
pendent displacements (DN, DF) into the linear responses of their energy conjugates
(Dm, DQ),

(Dm,DQ) ¼ (DN,DF)V, (30:19)

where the relevant Hessian V expressed in terms of the principal compliance
coefficients of Equation 30.12 reads

V ¼
@m
@N

� �
F

@Q
@N

� �
F

@m
@F

� �
N

@Q
@F

� �
N

2
64

3
75 � VN,N VN,F

VF,N VF,F

� 	
¼

�S 1
m,m �Sm,FS

1
m,m

�SF,mS
1

m,m SF,F � SF,mSm,FS
1

m,m

" #
:

(30:20)

Again, the diagonal element VN,N represents the molecular hardness estimated for the
relaxed geometry of the molecule, a companion parameter of the rigid geometry
hardness of Equations 30.4a,b. The two partial relations for the electronic and
geometric responses in Equation 30.19

Dm ¼ DNVN,N þ DFVF,N and DQ ¼ DNVN,F þ DFVF,F, (30:21)

again imply that there is an additional geometry relaxation due to a finite external CT
between the externally open molecule and its electron reservoir, besides the usual
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term for constant N, due to the forces acting on the system nuclei. This extra
relaxation of the molecular frame is described by the vectors VN,F ¼ VT

F,N of
coupling derivatives.

The four blocks of V can be alternatively expressed in terms of the principal
geometric derivatives defining the generalized Hessian of Equation 30.8. This can be
accomplished first by expressing DQ as function of DN and DF, using the second
Equation 30.9, and then by inserting the result into the first Equation 30.9:

Dm ¼ DN(h� B)þ DFH 1wT and DQ ¼ DNwH 1 � DFH 1: (30:22)

A comparison between Equations 30.21 and 30.22 then gives

V ¼
@m
@N

� �
F
¼ (h� B) ¼ hrel @Q

@N

� �
F
¼ wH 1 � f

@m
@F

� �
N
¼ H 1wT � fT @Q

@F

� �
N
¼ �H 1 � G

2
4

3
5, (30:23)

where the row vector f¼ {fs¼ (@Qs=@N)F¼ (@m=@Fs)N} groups the so-called geo-
metric Fukui function (GFF) indices (Nalewajski, 2006b).

Finally, the remaining (m,Q) representation describing the equilibrium state of
an externally open molecular system with the ‘‘frozen’’ nuclear framework is exam-
ined. The relevant partial Legendre transform of the total electronic energy, which
replaces N by m in the list of independent state-parameters, defines the BO grand-
potential:

J(m,Q) ¼ W � N(@W=@N)Q ¼ W � Nm, (30:24)

dJ¼�Ndm�FdQT or �N ¼ (@J=@m)Q and �F¼ (@J=@Q)Tm: (30:25)

Eliminating DF from the second Equation 30.14 and inserting the result into the first
of these two equations give the following transformation of the representation
independent perturbations (Dm, DQ) into the linear responses of their conjugates
(�DN, �DF), expressed in terms of the matrix elements of the compliance matrix S
of Equation 30.12:

�(DN,DF) ¼ (Dm,DQ)G, (30:26)

G¼
� @N

@m

� �
Q

� @F
@m

� �
Q

� @N
@Q

� �
m

� @F
@Q

� �
m

2
64

3
75� Gm,m Gm,Q

GQ,m GQ,Q

� 	
¼ Sm,m�Sm,FS

1
F,FSF,m Sm,FS

1
F,F

S 1
F,FSF,m �S 1

F,F

" #
:

(30:27)

The above matrix transformation combines the following electronic and geometric
relations:

�DN ¼ DmGm,m þ DQGQ,m and � DF ¼ DmGm,Q þ DQGQ,Q: (30:28)
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The elements of G can be alternatively expressed in terms of the generalized
hardness matrix of Equation 30.8, by eliminating DN from the first Equation 30.9
and by subsequent insertion of the result into the second of these equations:

� DN ¼ �Dmh 1 � DQwTh 1 � �DmS� DQsT,

� DF ¼ �Dmsþ DQ H� wTSw
� � ¼ �Dmsþ DQ H� wTs

� �
: (30:29)

where S is the electronic rigid geometry measure of the system global softness of
Equation 30.4b, and the row vector s of the geometric softnesses (Nalewajski,
2006b) is defined as the product of the global softness and NFF vector:

s¼Sw¼ (@F=@m)Q¼ (@N=@Q)Tm¼ (@F=@N)Q=(@m=@N)Q¼ ss� Fsð Þm
n o

:

(30:30)

A reference to the second Equation 30.29 shows that the effective geometrical Hessian
of an open molecular system differs from that of the closed system (Equation 30.8)
by the extra CT contribution involving the geometrical softnesses and NFF. One
finally identifies the corresponding blocks of G by comparing the general relations
of Equation 30.28 with the explicit transformations of Equation 30.29,

G ¼
� @N

@m

� �
Q
¼ �S � @F

@m

� �
Q
¼ �s

� @N
@Q

� �
m
¼ �sT � @F

@Q

� �
m
¼ H� wTs � Hrel

2
64

3
75, (30:31)

where Hrel denotes the electronically relaxed geometrical Hessian, which differs
from its closed system analog H¼�(@F=@Q)N. The G-matrix thus involves the
negative, rigid geometry electronic softness as diagonal element associated with the
electronic state-variable m, the off-diagonal blocks representing the geometric soft-
nesses, and the open-system (electronically relaxed) geometrical Hessian as the
nuclear diagonal block; the latter differs from the closed-system (electronically
rigid) Hessian H by the LeChâtelier Braun (Callen, 1962) softening contribution:

wTs ¼ wTSw ¼ (@m=@Q)N(@F=@m)Q ¼ (@N=@Q)m(@F=@N)Q
� T

¼ (@F=@Q)N � (@F=@Q)m: (30:32)

Several geometrical quantities introduced in this section provide natural descrip-
tors measuring a strength of the mutual coupling between the molecular electronic
and geometrical structures. In the canonical geometrical representation W(N, Q) the
diagonal blocks of the generalized Hessian H, measuring the system rigid geometry
hardness h and force constants H, describe the decoupled aspects of the electronic
and geometric structures, respectively. Thus, the NFF vector w, defining the off-
diagonal blocks in H, reflects the coupling between the electronic and nuclear
aspects of the molecular structure. These derivatives describe the influence of
geometrical displacements in the closed system on the molecular chemical potential,
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or alternatively, the effect of an external CT on geometrical forces. The two sets of
geometric softnesses, S¼ {Ss} (Equation 30.16) and s¼ {sa} (Equation 30.30),
reflect similar couplings in the externally open molecular systems. It should be
stressed, however, that in the geometric compliance matrix S the interaction between
these two facets of molecular structure enters the diagonal blocks as well, as
explicitly indicated in Equations 30.15 and 30.16.

A similar effect of the system electronic or nuclear ‘‘softnening,’’ due to its
opening relative to a reservoir or a relaxation of its geometry, is seen in the diagonal
blocks of the partial-compliant matrices V and G. This spontaneous relaxation of the
system electronic nuclear structure reflects the LeChâtelier Braun principle of
‘‘moderation’’ in the ordinary thermodynamics (Callen, 1962). Indeed, the extra
electronic relaxation dN(DQ) induced by the the primary nuclear perturbation DQ
in the externally open system, in which a spontaneous CT between the molecule and
its electron reservoir is allowed, effectively lowers the increase in the magnitude
of forces on the system nuclei, compared to those in the externally closed system:
jDF(DQ)jN> jDF(DQ)jm (see Equation 30.32). The induced effect of the spontan-
eous geometry relaxation dQ(DN) induced by the primary electronic perturbation
DN similarly lowers the increase in the system chemical potential, compared to that
in the rigid system: Dm(DN)Q>Dm(DN)F 0.

It should also be realized that the generalized softness matrix of Equations 30.12
and 30.16 represents the compliant description of the electronic ‘‘coordinate’’ N
coupled to the system geometric relaxations (see Section 30.3). Indeed, the relaxed
geometry global softness of the geometrical representation,

�Sm,m ¼ (@N=@m)F ¼ (h� B) 1 ¼ h� wH 1wT
� � 1� Srel � hrel

� � 1
> h 1

¼ S ¼ (@N=@m)Q > 0, (30:33)

where the last inequality states the familiar LeChâtelier stability requirement (Callen,
1962; Nalewajski, 1993, 1995, 2006b; Nalewajski and Korchowiec, 1997; Nale-
wajski et al., 1996), differs from the conventional definition of the electronic global
softness S, which invokes the rigid geometry constraint (Equation 30.4b). The
geometric hardness contribution B in Equation 30.33 effectively softens the elec-
tronic distribution via the relaxation of nuclei, reflected by the negative purely
geometric compliant H 1, and the ‘‘weighting’’ factors provided by the NFF w
reflecting the relative geometric softness of the molecule. The other diagonal block
of the generalized geometrical compliants, which contains the electron nuclear
couplings,

SF,F ¼ (@Q=@F)m ¼ �H 1Ch ¼ �H 1 hI� wTwH 1
� � 1

h 6¼ �H 1 ¼ VF,F

(30:34)

is also seen to differ from the purely geometrical compliant VF,F by the additional
factor exhibiting both the electronic and nuclear origins. The mixture of the elec-
tronic and nuclear inputs is also seen to determine the off-diagonal blocks Sm,F and
SF,m of the geometric compliant matrix, respectively measuring the effect of the
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chemical potential on the relaxed nuclear positions (Sm,F) or the influence of the
forces on the effective charge of an open molecule (SF,m).

Let us now examine the compliance descriptors of the externally closed system
in the Q(N,F) representation, defined by the corresponding blocks of the geometric
charge sensitivities V (Equation 30.20). Again, the first diagonal derivative in this
matrix, VN,N ¼ (@m=@N)F¼h�B, allows the geometry of the system to relax,
after an addition or removal of an electron, until the forces on nuclei exactly vanish.
The electronic geometric interaction is also detected in the coupling blocks
VN,F¼ (@Q=@N)F and VF,N¼ (@m=@F)N. A reference to Equation 30.23 indicates
that they are determined by the purely nuclear compliants VF,F¼�H 1 and NFF.

The electronic nuclear coupling in molecules is also detected in the other partial
Legendre-transformed representation J(m,Q), which defines the combined Hessian
G of Equation 30.27. Its first diagonal derivative,

Gm,m ¼ �(@N=@m)Q ¼ �(@N=@m)v ¼ �S, (30:35)

represents the purely electronic, global compliant reflecting the negative softness
of the rigid system. The off-diagonal blocks Gm,Q¼�(@F=@m)Q and GQ,m¼
�(@N=@Q)m represent the geometric softnesses of Equation 30.30. They thus meas-
ure the effect of the system chemical potential on forces on nuclei (Gm,Q) or the
influence of nuclear displacements on the effective molecular charge, for the rigid
nuclear frame. Since in this representation the molecular system is externally open
one detects in the geometrical Hessian of this representation the contribution due to
external CT triggered by nuclear displacements:

GQ,Q ¼ �(@F=@Q)m ¼ H� wTs ¼ H� wTSw 6¼ H ¼ �(@F=@Q)N : (30:36)

This block thus contains the electronically relaxed force constants along the system
internal coordinates.

30.3 COMPLIANCE CONSTANTS AND MINIMUM ENERGY
COORDINATES

This section begins with a brief summary of the compliance approach to nuclear
motions (Decius, 1963; Jones and Ryan, 1970; Swanson, 1976; Swanson and Satija,
1977). The inverse of the nuclear force constant matrix H of Equation 30.2, defined
in the purely geometric Q-representation,

H ¼ Hs,s0 ¼ @2W(N,Q)
@Qs @Qs0

¼ � @Fs0

@Qs

� �
Qt 6 s

( )
, (30:37)

determines the geometric compliance matrix of the ‘‘reverse’’ F-representation:

G ¼ @2Q(N,F)
@F @F

¼ �H 1 ¼ Gs,s0 ¼ @2Q(N,F)
@Fs @Fs0

� �
¼ @Qs0

@Fs

� �
Ft 6 s

( )
: (30:38)
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Here Q(N, F) (see Equation 30.17) stands for the Legendre transform of the BO
potential energy surface W(N, Q), in which the nuclear-position coordinates Q are
replaced by the corresponding forces F in the list of the parameters of state. Indeed,
for the fixed number of electrons N,

[dQ(N,F)]N ¼ QdFT and @2Q(N,F)=@FsFs0
� 

N ¼ @Qs0=@Fsð ÞN,F0 � (30:39)

The constraint of F0 ¼ {Ft 6 s}¼ 00 in these derivatives implies that the remaining
internal coordinates of the nuclear frame are free to relax the atomic positions until
the forces associated with these geometrical degrees-of-freedom vanish, thus mark-
ing the minimum of the system energy with respect to {Qt 6 s}.

The ratio of the matrix elements in sth row ofG, Gs¼ {Gs,s0, s0 ¼ 1, 2, . . . }, to the
diagonal element Gs,s determines kth vector of nuclear (geometric) interaction
constants (Decius, 1963; Jones and Ryan, 1970):

(s0)s ¼ Gs,s0=Gs,s ¼ @Qs0

@Fs

� �
Ft 6 s

@Qs

@Fs

� � 1

Ft 6 s

¼ @Qs0

@Qs

� �
Ft 6 s

, s0 ¼ 1, 2, . . . (30:40)

These indices describe the minimum-energy responses, determined for F0
s ¼

Ft 6¼s ¼ 0

 �

, of the remaining nuclear-position variables {Qs0 6 s} per unit displace-
ment of sth nuclear coordinate. Thus they determine the sth geometric MEC (Decius,
1963; Jones and Ryan, 1970; Swanson, 1976; Swanson and Satija, 1977). This
compliant concept can be used to predict the equilibrium responses of the system
geometric structure to a given displacement (perturbation) DQs of the selected
nuclear coordinate from the initial, equilibrium geometry of the molecule, which
accounts for all couplings between geometric coordinates:

dQ DQsð Þ��
F0
s¼0

¼ (s0)sDQsf g: (30:41)

In this section, several concepts of the compliant desciption of the combined
electronic nuclear treatment of molecular systems (Nalewajski, 1993, 1995, 2006b;
Nalewajski and Korchowiec, 1997; Nalewajski et al., 1996, 2008) will be discussed.
As remarked before, there are two types of geometrical constraints, which can be
imposed on the molecule: (i) the rigid geometry Q and (ii) the condition of
the vanishing forces F¼ 0 giving rise to the system equlibrium (relaxed) geometry.
The latter description amounts to the compliant formalism of nuclear motions, in
which one allows the system to relax all its remaining (electronic and=or nuclear)
degrees-of-freedom in response to the probing displacements in the number of
electrons in the system or positions of its constituent atoms. The Q(N, F) and
S(m, F) representations correspond to such a nuclear-compliant treatment of the
molecular geometrical structure, while the W(N, Q) and J(m, Q) representations
adopt the rigid geometry approach. The Legendre-transformed approach to geomet-
ric representations of molecular states provides the complete set of quantities, which
can be used to monitor (or index) the electronic geometric couplings in molecular
systems, covering both the externally open and externally closed molecular systems.
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The MEC can also be introduced in the combined electron nuclear treatment of
the geometric representations of the molecular structure (Nalewajski, 1993, 1995,
2006b; Nalewajski and Korchowiec, 1997; Nalewajski et al., 1996, 2008). Consider,
for example, the generalized interaction constants defined by the electronic nuclear
softness matrix S. The ratios of the matrix elements in Sm,F¼ {Sm,s0} to Sm,m define
the following interaction constants between the nuclear coordinates and the system
average number of electrons:

(s0)N ¼ Sm,s0=Sm,m ¼ @Qs0=@mð ÞF¼0=(@N=@m)F¼0 ¼ @Qs0=@Nð ÞF¼0 � VN,s0 :

(30:42)

Therefore, they reflect the minimum energy responses of the system geometrical
coordinates per unit displacement in the system number of electrons. The GFF vector
of Equation 30.23

f ¼ (s0)Nf g ¼ (@Q=@N)F¼0 ¼ VN,F ¼ (@m=@F)TN ¼ VT
F,N

¼ (@Q=@m)F¼0=(@N=@m)F¼0 ¼ S=Srel (30:43)

can be interpreted as an alternative set the NFF indices, which diagnose the normal-
ized effect of changing the oxidation state of the molecular system as a whole on its
geometry. These indices define the following MEC grouping responses in nuclear
coordinates due to a finite inflow or outflow of electrons DN 6¼ 0:

dQ(DN)jm,F¼0 ¼ DNf: (30:44)

It should be realized at this point (see Equations 30.5 and 30.30) that NFF can
also be interpreted as the MEC reflecting the rigid geometry response in forces per
unit displacement in the system number of electrons:

w ¼ Fsð ÞN

 � ¼ (@F=@N)Q ¼ HN,Q ¼ (@m=@Q)TN ¼ HT

Q,N

¼ (@F=@m)Q=(@N=@m)Q ¼ s=S: (30:45)

The geometric softnesses s also represent the rigid geometry interaction between
forces F and the system chemical potential. The remaining interaction constants
defined in this representation are given by the ratios

(N)s,m ¼ Sm,s=Ss,s ¼ @N=@Qsð Þm,F0
s¼0 and (s0)s,m ¼ Ss,s0=Ss,s ¼ @Qs0=@Qsð Þm,F0

s¼0:

(30:46)

In the open molecule coupled to an external electron reservoir, which fixes the
system chemical potential, they combine theminimum-energy responses in the system
number of electrons and the remaining nuclear coordinates to a unit displacement of
Qs. The associated MECs,

dN DQsð Þ��
F0
s¼0

¼ (N)s,mDQs


 �
and dQ DQsð Þ��

m,F0
s¼0

¼ (s0)s,mDQs


 �
, (30:47)

Probing the Coupling between Electronic and Geometric Structures 465



add to a variety of descriptors of the electronic and geometric structures of molecular
systems. The (N)s,m coupling constants can be used to probe trends in the chemical
oxidation or reduction of the open molecule, which follows a given geometrical
deformation of the molecule. These probing displacements allow one to identify
nuclear changes, which are most effective in bringing about this electronic transfor-
mation of the molecule. The other set {(s0)s,m} tests the geometrical consequences of a
hypothetical nuclear position perturbation of the open molecule, thus facilitating
a search for the most effective geometric manipulation of the molecular system in
question, which is required to bring about the desired overall change in the system
nuclear framework.

The partial-compliant matrix V of the Q(N,F)-representation defines analogous
interaction constants for the N-controlled (externally closed) molecules:

(s0)m ¼ VN,s0=VN,N ¼ (@Qs0=@N)F¼0=(@m=@N)F¼0 ¼ (@Qs0=@m)F¼0 ¼ Sm,s0 ¼ Ss0 ,

(30:48)

where {VN,s0}¼VN,F, and

(m)s,N ¼Vs,N=Vs,s¼ @m=@Fsð ÞN= @Qs=@Fsð ÞN¼ @m=@Qsð ÞN,F0
s¼0,

(s0)s,N ¼Vs0 ,s=Vs,s¼ @Qs0=@Fsð ÞN,F0
s¼0= @Qs=@Fsð ÞN,F0

s¼0¼ @Qs0=@Qsð ÞN,F0
s¼0,

(30:49)

with {Vs,N} 2 VF,N. The corresponding MECs

dQ(Dm)jN,F¼0 ¼ (s0)mDm

 �

,

dm DQsð Þ��
N,F0

s¼0
¼ (m)s,NDQs


 �
, dQ DQsð Þ��

N,F0
s¼0

¼ (s0)s,NDQs


 �
,

(30:50)

reflect the equilibrium responses in the system chemical potential and geometrical
coordinates due to finite shifts in the system chemical potential or selected geomet-
rical coordinates.

Finally, in theJ(m,Q) representation, in which the generalized partial-compliant
matrix G is defined, one obtains the following coupling constants:

Fsð ÞN ¼ Gm,s0=Gm,m ¼ @Fs0=@mð ÞQ=(@N=@m)Q ¼ @Fs=@Nð ÞQ ¼ ws; (30:51)

(N)Fs,m ¼ Gs,m=Gs,s ¼ @N=@Qsð Þm= @Fs=@Qsð Þm ¼ @N=@Fsð Þm,Q0
s
,

Fs0ð ÞFs,m
¼ Gs0 ,s=Gs,s ¼ @Fs0=@Qsð Þm,Q0

s
= @Fs=@Qsð Þm,Q0

s
¼ @Fs0=@Fsð Þm,Q0

s
: (30:52)

These interaction constants determine the following MEC:

dF(DN) m,Q ¼ Fsð ÞNDN

 �

, dF DFsð Þ�� ��
m,Q0

s
¼ Fs0ð ÞFs,m

DFs

n o
,

dN DFsð Þjm,Q0
s
¼ (N)Fs,mDFs


 �
: (30:53)
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They can be used to predict responses in forces due to an electron inflow or outflow
to or from the open molecule or a displacement of selected force component, or the
effect of such a force perturbation on the system average number of electrons.

30.4 ILLUSTRATIVE EXAMPLES

The recent extensive numerical analysis (Nalewajski et al., 2008) of the joint
electronic nuclear compliants in selected polyatomics including H2O, NO2, H2O2,
ClF3, and NH2CHO, has generated representative coupling quantities and the MEC
data. These molecules exhibit a variety of internal geometric degrees-of-freedom,
bond lengths, and angles, which are specified in the Figure 30.1. In what follows
we discuss some of these results, generated using the simplest Hartree Fock (HF)
theory [GAUSSIAN software (Frisch et al., 2004)] in the extended 6-31þþG**

basis set of the Gaussian orbitals, including the split-valence and polarization
functions. In all derivative properties the angles are measured in radians; all these
quantities correspond to the ground-state equilibrium geometries in the adopted
basis set.

This compliant analysis has used the analytical forces and Hessians, and the
finite difference estimates of the corresponding N-derivatives. The NFF have been
calculated for both the electron-accepting (DN¼þ1) and electron-donating
(DN¼�1) processes, when the system acts as a Lewis acid and base, respectively,
relative to the attacking nucleophilic (N) and electrophilic (E) agents. The Mulliken
scheme for the neutral system approached by the radical agent (R), of the unbiased
N-derivative given by the arithmetic average of these two estimates, has also been
examined. These R-estimates are reported in Tables 30.1 through 30.4. The global
hardness, which measures the curvature of the ground-state BO potential energy

O
H+0.36H

R
a

R�
−0.72

N

O−0.145O
R

a
R�

+0.29 OO

H

F

F−0.28

F
Cl+1.32R2

R1
R2

R�2

R�2

R1

H+0.36

a a�

a�

a
d

d

−0.36

O

R3

R1

R4

R5

R2

a2a4

a3
a1

−0.60

−0.64 CN

Hf

+0.49

+0.085

Hc
+0.345

Ht
+0.32

N

C

O

HtHc

d1

d2 d3
Hf

−0.52

FIGURE 30.1 The internal coordinates in five representative molecular systems and the
Mulliken net charges of bonded atoms (from HF calculations). The last diagram defines the
dihedral angles in formamide, relative to the NCO plane, determining the out of plane
displacements of the cis (Hc), trans (Ht) and formyl (Hf) hydrogens, respectively.
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surface along the N-coordinate, has been similarly estimated by interpolating the
energies for the set of hypothetical electronic displacements DN¼ (�1, 0, þ1).

In Table 30.1, we have compared the electronically relaxed hardness and soft-
ness descriptors for the geometrically rigid and relaxed molecules, respectively. As
intuitively expected, relaxing the nuclear positions decreases the electronic hardness
(increases softness) of the molecular system under consideration. This electronic

TABLE 30.1
Comparison of the Molecular Hardness and Softness Quantities
for the Rigid and Relaxed Geometries

Molecule h hrel S Srel

H2O 0.448 0.446 2.231 2.240
NO2 0.422 0.319 2.369 3.133

H2O2 0.468 0.394 2.139 2.541
ClF3 0.471 0.395 2.125 2.533
NH2CHO 0.360 0.355 2.779 2.815

Source: Adapted from Nalewajski, R. F., Bła _zewicz, D., and Mrozek, J., J. Math. Chem.,
2008, 44: 325 364.

Note: The reported relaxed (rel.) quantities are averages of predictions using the DN þ1
and DN 1 estimates of NFF; the same convention applies to the molecular
compliant data reported in the remaining tables.

TABLE 30.2
Comparison of Selected Molecular Fukui Function and Softness Compliants

Compliant Constant H2O NO2 H2O2 ClF3 NH2CHO

(FR)N wR or wR1
(FR1

)N 0.018 0.112 0.060 0.147 0.024

wR2
(FR2

)N 0.015 0.063 0.035
(Fa)N wa or wa2

(Fa2
)N 0.012 0.171 0.000 0.022 0.019

(FR)m sR or sR1
(FR1

)m 0.040 0.265 0.128 0.312 0.067

sR2
(FR2

)m 0.031 0.134 0.099
(Fa)m sa or sa1

(Fa1
)m 0.028 0.405 0.000 0.046 0.005

(R)m SR or SR1
(R1)m 0.058 0.368 0.251 0.884 0.169

SR2
(R2)m 0.039 0.489 0.134

(a)m Sa or Sa1
(a1)m 0.144 1.407 0.153 0.019 0.044

(R)N fR or fR1
(R1)N 0.026 0.117 0.099 0.349 0.060

fR2
(R2)N 0.015 0.193 0.048

(a)N fa or fa2
(a2)N 0.064 0.449 0.060 0.008 0.076

(d)N fd or fd1 (d1)N 2.672 0.717 0.000

Source: Adapted from Nalewajski, R. F., Bła _zewicz, D., and Mrozek, J., J. Math. Chem., 2008, 44:
325 364.
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softening effect reflects the LeChâtelier Braun moderation of the chemical potential
response to the primary (electronic) perturbation defining the derivative, by the
indirectly induced adjustments in the system geometry. A similar ‘‘softening’’
influence due to the system ‘‘opening’’ is observed in the electronically relaxed
(diagonal) force constants (Nalewajski et al., 2008).

Let us now examine these electronic nuclear coupling effects in more detail. The
moderating exchange of electrons between the molecule and its hypothetical electron
reservoir determines the effects of the electronic nuclear coupling in the open
molecular systems. Let us assume the initial electronic and geometric equilibria in
such an initially open system: m0¼mres. and F0¼ 0. The LeChâtelier stability
criteria of these two (decoupled) facets of the molecular structure requires that the
conjugate ‘‘forces’’ Dm(DN) or {DFs(DQs)} created by the primary electronic
(DN> 0) or nuclear {DQs> 0} displacements,

Dm(DN) ¼ hDN and DFs(DQs) ¼ Hs,sDQs,

will subsequently trigger the directly coupled, spontaneous responses of the system,
dN(DN) and dQs(DQs), which act in the direction to restore the initial equilibria.
Therefore the latter must diminish the forces created by the primary displacement,
when the hypothetical internal and external barriers effecting the displacements are
lifted:

dm[dN(DN)] ¼ h dN(DN) ¼ �Dm(DN) ¼ �hDN

TABLE 30.3
Selected Interaction Constants for the Closed or Open H2O and NO2

(R0)R (a)R (R)a (R0)R,m (a)R,m (R)a,m (m)R (m)a,N (N)R,m (N)a,m
(R0)R,N (a)R,N (R)a,N

H2O 0.017 0.168 0.044 0.018 0.165 0.044 0.016 0.011 0.037 0.024
NO2 0.243 0.112 0.051 0.198 0.248 0.094 0.104 0.182 0.313 0.455

Source: Adapted from Nalewajski, R. F., Bła _zewicz, D., and Mrozek, J., J. Math. Chem., 2008, 44:
325 364.

TABLE 30.4
Electronic–Nuclear Coupling Constants for H2O2 and ClF3

(m)R1,N (m)R2,N (m)a,N (m)d,N (N)R1,m (N)R2,m (N)a,m (N)d,m

H2O2 0.039 0.009 0.014 0.024 0.098 0.024 0.037 0.053
ClF3 0.133 0.044 0.004 0.148 0.301 0.109 0.010 0.423

Source: Adapted from Nalewajski, R. F., Bła _zewicz, D., and Mrozek, J., J. Math. Chem., 2008, 44:
325 364.
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and

dFs dQs DQsð Þ½ � ¼ Hs,sdQs DQsð Þ ¼ �DFs DQsð Þ ¼ �Hs,sDQs,

or

dN(DN) ¼ �DN and dQs(DQs) ¼ �DQs:

This is assured by the positive character of the electronic hardness and the
diagonal nuclear force constants, h> 0 and Hs,s> 0, since then Dm(DN)> 0 implies
dN(DN)< 0, while DFs(DQs)> 0 gives rise to dQs(DQs)< 0.

However, due to the electron nuclear coupling in molecules a given displace-
ment in one aspect of the molecular structure creates forces in the complementary
aspect:

Dm DQsð Þ ¼ wsDQs and DFs(DN) ¼ wsDN:

They trigger the indirectly coupled, spontaneous relaxations dN(DQs) and dQs(DN),
which also act toward diminishing the directly coupled forces Dm(DN)> 0 and
DFs(DQs)> 0, in accordance with the LeChâtelier Braun principle (Callen, 1962):

dm dN dQsð Þ½ � ¼ wsdQs < 0 and dFs dQs(dN)½ � ¼ wsdN < 0:

Hence, these indirectly induced electronic and=or nuclear relaxations must exhibit
the opposite signs with respect to the corresponding NFF indices.

In Table 30.2, we have compared the geometric softnesses s [of (m,Q)-
representation] and S [of (m,F)-representation], as well as the alternative Fukui
function indices: NFF (w) [of (N,Q)-representation] and GFF (f) [of (N,F)-
representation]. They measure the electronic nuclear interaction in the externally
open or closed molecules. It follows from the table that the signs of the given NFF
index and the corresponding softness component are the same. Indeed, the former
represents the scaled version of the latter, with the relevant global hardness (positive)
providing the scaling factor, so that these two sets of coupling quantities carry the
same physical description of molecular responses. As explicitly indicated in Table
30.2, the reported quantities represent the relevant compliant constants. The s and w
vectors collect the force compliants in the open and closed molecular systems,
respectively, while S and f data constitute the related coordinate compliants.

The selected MEC data for the two triatomic molecules are listed in Table 30.3.
In the decoupled treatment, the interaction constant (R0)R¼ (R0)R,N reflects the
equilibrium linear response in R0 per unit displacement in R, (a)R¼ (a)R,N measures
a similar response in the bond angle created by such ‘‘normalized’’ bond elongation,
while (R)a¼ (R)a,N stands for the linear bond length readjustment per unit (1 radian)
change in the bond angle. It follows from these purely geometric entries that, e.g., in
the ground state of the water molecule an increase in one bond length generates a
small elongation of the other bond and a decrease in the bond angle. The latter
coupling effect is also reflected by the negative character of the (R)a index, which
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implies a bond shortening following the primary increase in the bond angle. The
opposite sign of the coupling constants between two bond lengths is detected in NO2.

Consider next the effects of the electronic opening on these equilibrium
responses of geometric parameters to such geometric displacements. The corre-
sponding electronically relaxed compliants, of the open molecule, are listed in the
data columns 4 to 6 of Table 30.3. It follows from this comparison of the HF results
for water molecule that (s0)s,m> (s0)s,N, for Qs 6¼ Qs’¼ {R, R0, a}. Therefore, in this
approximation an elongation of one bond in response to lengthening of the other bond
becomes more emphasized in the open molecule. Indeed, a reference to Table 30.2
indicates that wR< 0 and wa< 0 imply an inflow of electrons dN(DQs> 0)> 0 from
the reservoir, for Qs¼ (R, a), which starts populating the antibonding MO, thus
giving an extra weakening of the other bond R0 and hence its larger elongation.

The final four columns in Table 30.3 measure the effect of the specified
geometrical displacement on the electronic state-parameters. The {(N)s,m} indices
show that in H2O a hypothetical bond elongation or increase in the bond angle both
create an outflow of electrons from the system to the reservoir, in accordance with
the signs of the previously reported NFF indices. The (m)s,N indices reflect a direct
effect of a hypothetical shift in the coordinate Qs of the closed system on its chemical
potential, when the remaining geometrical degrees-of-freedom are fully relaxed. As
shown in Table 30.3 both these indices, for Qs¼ (R, a), are positive in water
molecule. In other words, both longer bonds and larger angle in this system imply
an increase in the system chemical potential. In NO2 the opposite bond-elongation
effect is predicted. One also detects changes in the signs of (N)R,m and (R0)R,m indices
of the open NO2, compared to H2O. It thus follows from these interaction constants
that elongating one bond in NO2 results in an inflow of electrons to this molecule and
shortening the other bond.

Selected electronic compliants for H2O2 and ClF3, due to geometric perturba-
tions, are reported in Table 30.4. In the closed molecules, increases in bond lengths
and angles are predicted to lower the system electronic chemical potential, while the
opposite effects due to the dihedral angle is detected. In the externally open (elec-
tronically relaxed) ClF3 the same perturbations generate an electron inflow to the
molecular system from the reservoir, while in H2O2 increases in the R2¼R(O H)
and the dihedral angle trigger an electron outflow from the molecule.

30.5 USE OF COMPLIANT CONSTANTS AS REACTIVITY INDICES

The four geometric representations introduced in Section 30.2 describe alternative
scenarios encountered in the theory of chemical reactivity. For example, the closed
reactants in the opening stage of a reaction in the gas phase, geometry-rigid or
geometry-relaxed, can be indexed by the derivative properties defined in the (N, Q)
and (N, F) approaches, while the properties of the chemisorbed (externally open)
reactants of the heterogeneous catalysis can be characterized using descriptors
generated within the (m, Q) and (m, F) theoretical frameworks.

Both the EP and EF perspectives are respectively covered by the canonical
(N,Q) representation and its inverse, the generalized softness representation (m, F).
Therefore, the speculative considerations about either the electronic and nuclear
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primary causes of chemical reactions can be enhanced and indeed quantified using
the derivative quantities generated in the present development. This information can
be applied indirectly, by using the respective sets of differential charge sensitivities,
or directly, in terms of the relevant geometric MEC. For example, the fully relaxed
MEC components defined in the totally inverted (m, F) representation provide
information about the equilibrium responses of the effective oxidation state and
geometry of the chemisorbed reactants per unit displacement Dm in the electronic
chemical potential of the catalyst or the probing molecular deformations. This should
facilitate an ultimate identification of the crucial electronic=geometrical requirements
for the desired reaction pathway, thus aiding a search for the most effective catalyst
of the surface reaction.

Clearly, the molecular compliants can be used directly as the one-reactant
reactivity criteria, which allow one to diagnose the preferred sites of an attack by
the approaching agents when this molecule becomes a part of the reactive system.
However, combinations of these molecular descriptors can also be applied in the
decoupled inter-reactant approach, e.g., in the DA complexes B---A, when the acidic
or basic characters of the two subsystems are known beforehand. Indeed,
the DNA> 0 and DNB< 0 displacements of the two reactants are predetermined by
their electronegativity differences, and so are the associated responses in the chem-
ical potentials to these primary perturbations: DmA> 0 and DmB< 0. These displace-
ments can be subsequently applied to predict the geometrical changes of the two
mutually open reactants, at the CT stage of the reaction, using the relevant (s)N
or (s)m compliants, which fully account for the relaxation of the remaining,
unconstrained molecular degrees-of-freedom.

The two-reactant coupled approach (Nalewajski and Korchowiec, 1997;
Nalewajski et al., 1996, 2008; Nalewajski, 1993, 1995, 1997, 2002a, 2003, 2006a,b)
can also be envisaged, but the relevant compliant and MEC data would require
extra calculations on the reactive system A---B as a whole, with the internal coor-
dinates Q now including those specifying the internal geometries of two subsystems
and their mutual orientation in the reactive system. The two-reactant Hessian would
then combine the respective blocks of the molecular tensors introduced in Section
30.2. The supersystem relations between perturbations and responses in the canon-
ical geometric representation then read:

(DmA,DmB,�DF)� (Dm,�DF)¼ (DNA,DNB,DQ)H(A---B)� (DN,DQ)H(A---B),

(30:54)

where the principal electronic nuclear Hessian of the whole reactive system includes
the hardnesses of the separate reactants as diagonal blocks and the geometric Hessian
of the whole system. The off-diagonal hardnesses hA,B¼hB,A measure the (rigid
geometry) response in the chemical potential of one reactant per unit shift in the
number of electrons on the other reactant, while the rectangular NFF matrix

w ¼ wA

wB

� 	
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determines the coupling between the electronic and geometric degrees-of-freedom:

H(A---B) ¼

@mA
@NA

� �
Q

@mB
@NA

� �
Q

� @F
@NA

� �
Q

@mA
@NB
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Q
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@NB
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Q

� @F
@NB

� �
Q
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@Q

� �
N

@mB
@Q

� �
N

� @F
@Q

� �
N

2
66664

3
77775 ¼

hA hA,B �wA

hB,A hB �wB

�wT
A �wT

B H

2
4

3
5

¼ h �w
�wT H

� 	
: (30:55)

In a practical implementation of this combined treatment of the electronic and
nuclear state-variables one could use as much of the intrareactant data generated in
calculations on single reactants as possible.

The fully inverted compliance matrix, S(A---B)¼H(A---B) 1, which determines
the inverse transformation

�DNA,� DNB,DQð Þ � (�DN,DQ) ¼ DmA,DmB,DFð ÞS(A---B)
� (Dm,DF)S(A---B), (30:56)

exhibits the following block structure:

S(A---B) ¼
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ST
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: (30:57)

Here, the relaxed softness matrix Srel groups the equilibrium, fully relaxed responses in
the subsystem numbers of electrons, following the displacements in the chemical
potentials of their (separate) electron reservoirs, the relaxed geometric softness matrix

S ¼ SA

SB

� 	

group the related adjustments in the geometry of the reactive system, while the
(relaxed) geometric compliant matrix Grel collects the responses in the internal
geometric coordinates to displacements in forces, of the externally open reactants
coupled to their (separate) electron reservoirs.

Obviously, the partly inverted Legendre-transformed representations for reactive
systems would similarly generate descriptors of the partially relaxed (electronically
or geometrically) reactive systems.
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30.6 CONCLUSION

All chemical or conformational changes involve both nuclear displacements and the
concomitant electron redistributions. At a given stage of a general ‘‘displacement’’ of
a molecular or reactive system, depending on what is considered as ‘‘perturbation’’
and what as the equilibrium ‘‘response’’ to it, the EF or the EP approaches can be
adopted. In this chapter, we have presented a theoretical framework which covers
both these perspectives of the reactivity theory. We have also reported illustrative
numerical values of alternative derivative quantities describing molecular responses
to both the electronic and nuclear perturbations, within the geometric Legendre-
transformed representations defining the EP and EF perspectives on the molecular
structure, in which the geometric coordinates Q replace the external potential v(r;Q)
in the list of the system state-parameters. A brief survey of the derivative descriptors
of the externally closed and externally open molecular systems has been given and
the basic relations between displacements of the representation state-parameters
(perturbations) and responses in the conjugate (unconstrained) variables have been
summarized for both the rigid and relaxed system geometries. Specific quantities
reflecting the interaction between the geometrical and electronic structures of
molecular systems and the MEC components have been identified and their physical
content has been commented upon.

The relaxed (compliance) quantities of both the electronic and nuclear origin
measure the generalized ‘‘softnesses’’ of molecules, which complement the corre-
sponding hardness data. Indeed, the electronic softness (electronically relaxed
quantity defined for the rigid geometry Q) and the purely nuclear compliants (geo-
metrically relaxed, defined for the closed system at constant N) are examples of such
complementary quantities to the more familiar electronic hardness and the nuclear
force constant descriptors, respectively. This decoupled treatment neglects the mutual
interaction between the electronic (N) and nuclear (Q) degrees-of-freedom or their
energy conjugates, the electronic chemical potential m, attributed to an external
electron reservoir, and the forces F acting on the system nuclei, respectively.

The coupling between the electronic and geometrical structures of molecular
systems is embodied in the potential energy surface of the adiabatic approximation.
In the present development, both the molecular compliants, reflecting the electronic
and=or nuclear adjustments, have been determined in the coupled treatment of the
generalized linear responses of molecular systems, which admits the simultaneous
electronic and nuclear relaxation of a molecule. In the principal (N, Q) representation
this interaction is measured by the NFF. Together with the electronic hardness and
geometric Hessian, it defines the generalized matrix of the system electronic nuclear
‘‘force’’ constants. By its partial or total inversions, all relevant compliance data have
been determined. Such a coupled description of the complementary aspects of
the molecular structure provides the complete treatment of the (adiabatic) linear
responses in molecules, which addresses alternative scenarios encountered in the
theory of chemical reactivity. For example, the MEC reflecting the electronic
nuclear interaction provide a semiquantitative measure of responses in quantities
describing one aspect of the molecular structure per unit displacement in quantities
describing the other aspect.
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The HF results generated for representative polyatomic molecules have used the
N-derivatives estimated by finite differences, while the Q-derivatives have been
calculated analytically, by standard methods of quantum chemistry. We have exam-
ined the effects of the electronic and nuclear relaxations on specific charge sensitiv-
ities used in the theory of chemical reactivity, e.g., the hardness, softness, and Fukui
function descriptors. New concepts of the GFFs and related softnesses, which
include the effects of molecular electronic and=or nuclear relaxations, have also
been introduced.

The electronic nuclear interaction has been examined by comparing the corre-
sponding rigid and relaxed hardness or softness and FF data. These compliants
reflect the influence of the nuclear relaxation on the system electronic hardnesses
and softnesses, and the effect of the electronic relaxation on the nuclear force
constants and vibration compliants. Of particular importance are the MEC compo-
nents, which provide the ground-state ‘‘matching’’ relations between the hypothetical
perturbations of molecular systems and their conjugated equilibrium responses. This
should allow one to diagnose the effects of the electronic and nuclear perturbation,
which is the most efficient in facilitating the chemical reaction or conformational
change of interest. Such applications of this coupled electronic nuclear treatment of
reactants will be the subject of future investigations.

Finally, a possible use of these coupling constants as reactivity indices has been
commented upon in both the one- and two-reactant approaches. In the interreactant
decoupled applications the molecular compliants, obtained from calculations on
separate reactants, can be used directly to qualitatively predict the intrareactant
effects resulting from the interreactant CT. The building blocks of the combined
electronic nuclear Hessian for the two-reactant system have been discussed. The
corresponding blocks of the generalized compliance matrix have also been identified.
In such a complete, two-reactant treatment of reactants in the combined system, the
additional calculations on the reactive system as a whole would be required.
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31.1 INTRODUCTION

Understanding the pattern of reactivity between chemicals and their biological targets
is important not only from the viewpoint of fundamental chemistry and biochemistry,
but also from the practical, day-to-day activities of regulatory agencies and for
pharmaceutical drug design. Living processes, both in sickness and health, are to a
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large extent guided by the interaction of various small molecular ligands with the
biocatalysts and receptors within the cell that determine the manifold aspects of
physiological and pathological states. The chemicals not formed in our body, e.g.,
drugs and xenobiotics, affect their target organs by virtue of being recognized by
critical macromolecules.

The basic paradigm underlying the field of research broadly referred to as
quantitative structure activity relationship (QSAR) modeling is that the structure
of the chemical determines its activity:

P ¼ f (S) (31:1)

where P represents a physicochemical, biochemical, or toxicological prop-
erty and S symbolizes the salient aspects of molecular structure related to
property=activity=toxicity.

There are many subfields of QSAR. One of the prominent areas of QSAR, often
called Hansch analysis [1], is derived from physical organic chemistry following the
leading work of Hammett [2]. Hammett derived a way of attaching ‘‘electronic’’ factors
to various molecular substituents. Following a similar reasoning, Taft developed the
‘‘steric’’ index, which attempts to associate the extent to which a substituent around a
reaction center hinders the reactivity of attaching groups [3]. Subsequently, in 1964,
Hansch and Fujita came up with a multiparameter approach to QSAR in which they
suggested the simultaneous use of electronic, steric, and hydrophobic parameters
derived from physical organic model systems [4]. The basic assumption behind the
so-called Hansch approach is as follows: The most important aspects of interactions
between the ligand and the biotarget can be quantified in terms of steric, electronic, and
hydrophobic factors associated with the ligand. The solvatochromic approach of Taft
and coworkers [5] emphasized the use of such factors as molecular volume, dipolarity,
hydrogen bond donor acidity, and hydrogen bond acceptor basicity as the fundamental
molecular factors underlying bioactivity and toxicity of chemicals. It is worth mention-
ing that in many QSARs, Hansch et al. also used calculated electronic descriptors, e.g.,
energy of the highest occupied molecular orbital (EHOMO) and energy of the lowest
unoccupied molecular orbital (ELUMO), instead of Hammett sigma-type descriptors [6].

QSARs based on physical organic models are actually property property
correlations, where independent variables (steric, electronic, hydrophobic, and
hydrogen bonding descriptors) derived from one set of experimental data are used
to predict another group of more complex properties such as pharmacological action
or toxicity. Such correlations hardly give us any structural basis of the property under
investigation. Another problem is that these so-called substituent constants are
derived from physical organic model systems which are applicable to specific
situations where the chemical reacts with the biotargets using the same or very
similar mechanisms. It is noteworthy that, in the majority of practical cases, we are
interested to develop predictive QSARs for large and structurally diverse sets of
chemical substances. Some of these substances could be very unstable or even not
yet synthesized. In such cases, experimentally based physical organic models will be
of limited utility, if any. A QSAR approach based directly on molecular structure
would be desirable in such cases.
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31.2 THEORETICAL MOLECULAR DESCRIPTORS FOR QSAR

From the viewpoint of biology, the ligands can be broadly divided into two classes:
(a) nonspecific and (b) specific. Chemicals which are called nonspecific, e.g., general
anesthetics or narcotic environmental pollutants, interact with cellular protoplasmic
structures reversibly [1,7]. By their mere presence in the cellular milieu, such
substances cause a low-grade action for which a specific structural feature is difficult
to find. Such action of chemicals has been found to be broadly correlated with their
hydrophobicity, e.g., octanol:water partition coefficient. Specific chemical sub-
stances such as drugs or xenobiotics possess specific structural features, which
perturb biological systems in specific targets and bring about strong action. The
QSAR literature shows that the prediction of such specific effects requires not only
hydrophobic, but also steric and electronic indices.

Three classes of calculated molecular descriptors, viz., topological and substruc-
tural descriptors, geometrical (3-D) indices, and quantum chemical (QC) indices,
have been extensively used in QSAR studies pertaining to drug discovery and
environmental toxicology [8 12].

31.2.1 GRAPH THEORETICAL OR TOPOLOGICAL INDICES

Topological indices (TIs) are derived from the representation and characterization of
molecules by properly weighted molecular graphs and the various invariants derived
from them. The list of TIs used in QSARs reported in this chapter and their
definitions are given in Table 31.1. They include topostructural (TS) and topochemi-
cal (TC) descriptors. Specifically, the descriptors used in our recent studies include
connectivity [13,14], Triplet [15], neighborhood complexity [16], hydrogen bond-
ing, and electrotopological indices [17], which are calculated with the software
programs POLLY v. 2.3 [18], Triplet [15], and Molconn-Z v. 3.5 [19]. For more
information on these descriptors, please refer to our previous publications [8,20,21].

31.2.2 THREE-DIMENSIONAL AND QUANTUM CHEMICAL DESCRIPTORS

Three-dimensional (3-D) descriptors of molecules quantify their shape, size, and
other structural characteristics which arise out of the 3-D disposition and orientation
of atoms and functional groups of molecules in space. A special class of 3-D indices
is quantitative descriptors of chirality. If a molecule has one or more chiral centers,
the spatial disposition of atoms can produce enantiomers, many of which will have
the same magnitude of calculated and experimental physicochemical properties
having, at the same time, distinct bioactivity profiles. Basak and coworkers [22]
have developed quantitative chirality indices to discriminate such isomers according
to their structural invariants which are based on the Cahn Ingold Prelog (CIP) rules.

A review of literature would show that a suite of QC descriptors have also been
used in QSARs for biological and toxicological correlations. Such indices have
been derived both from semiempirical and ab initio (Hartree Fock and density
functional theory) methods. In particular, in our QSAR studies, we have used the
following levels of QC indices: local and global electrophilicity indices [11],
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TABLE 31.1
Symbols, Definitions and Classification of Calculated Molecular Descriptors

TS

IWD Information index for the magnitudes of distances between all possible pairs of vertices of a
graph

�IwD Mean information index for the magnitude of distance
W Wiener index half sum of the off diagonal elements of the distance matrix of a graph
ID Degree complexity

HV Graph vertex complexity
HD Graph distance complexity
IC Information content of the distance matrix partitioned by frequency of occurrences of

distance h
M1 A Zagreb group parameter sum of square of degrees over all vertices
M2 A Zagreb group parameter sum of cross product of degrees over all neighboring

(connected) vertices
hx Path connectivity index of order h 0 10
hxC Cluster connectivity index of order h 3 6
hxPC Path cluster connectivity index of order h 4 6
hxCh Chain connectivity index of order h 3 10
Ph Number of paths of length h 0 10
J Balaban’s J index based on topological distance

nrings Number of rings in a graph
ncirc Number of circuits in a graph
DN2Sy Triplet index from distance matrix, square of graph order (# of nonhydrogen atoms), and

distance sum; operation y 1 5
DN21y Triplet index from distance matrix, square of graph order, and number 1; operation y 1 5
AS1y Triplet index from adjacency matrix, distance sum, and number 1; operation y 1 5
DS1y Triplet index from distance matrix, distance sum, and number 1; operation y 1 5

ASNy Triplet index from adjacency matrix, distance sum, and graph order; operation y 1 5
DSNy Triplet index from distance matrix, distance sum, and graph order; operation y 1 5
DN2Ny Triplet index from distance matrix, square of graph order, and graph order; operation y 1 5

ANSy Triplet index from adjacency matrix, graph order, and distance sum; operation y 1 5
AN1y Triplet index from adjacency matrix, graph order, and number 1; operation y 1 5
ANNy Triplet index from adjacency matrix, graph order, and graph order again; operation y 1 5

ASVy Triplet index from adjacency matrix, distance sum, and vertex degree; operation y 1 5
DSVy Triplet index from distance matrix, distance sum, and vertex degree; operation y 1 5
ANVy Triplet index from adjacency matrix, graph order, and vertex degree; operation y 1 5

TC

O Order of neighborhood when ICr reaches its maximum value for the hydrogen filled graph
Oorb Order of neighborhood when ICr reaches its maximum value for the hydrogen suppressed graph
Iorb Information content or complexity of the hydrogen suppressed graph at its maximum

neighborhood of vertices
ICr Mean information content or complexity of a graph based on the rth (r 0 6) order

neighborhood of vertices in a hydrogen filled graph

SICr Structural information content for rth (r 0 6) order neighborhood of vertices in a
hydrogen filled graph
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TABLE 31.1 (continued)
Symbols, Definitions and Classification of Calculated Molecular Descriptors

CICr Complementary information content for rth (r 0 6) order neighborhood of vertices in a
hydrogen filled graph

hxb Bond path connectivity index of order h 0 6
hxb

C Bond cluster connectivity index of order h 3 6
hxb

Ch Bond chain connectivity index of order h 3 6
hxb

PC Bond path cluster connectivity index of order h 4 6
hxv Valence path connectivity index of order h 0 10
hxv

C Valence cluster connectivity index of order h 3 6
hxv

Ch Valence chain connectivity index of order h 3 10
hxv

PC Valence path cluster connectivity index of order h 4 6
JB Balaban’s J index based on bond types
JX Balaban’s J index based on relative electronegativities

JY Balaban’s J index based on relative covalent radii
AZVy Triplet index from adjacency matrix, atomic number, and vertex degree; operation y 1 5
AZSy Triplet index from adjacency matrix, atomic number, and distance sum; operation y 1 5

ASZy Triplet index from adjacency matrix, distance sum, and atomic number; operation y 1 5
AZNy Triplet index from adjacency matrix, atomic number, and graph order; operation y 1 5
ANZy Triplet index from adjacency matrix, graph order, and atomic number; operation y 1 5
DSZy Triplet index from distance matrix, distance sum, and atomic number; operation y 1 5

DN2Zy Triplet index from distance matrix, square of graph order, and atomic number; operation
y 1 5

nvx Number of nonhydrogen atoms in a molecule

nelem Number of elements in a molecule
fw Molecular weight
si Shannon information index

totop Total TI t
sumI Sum of the intrinsic state values I
sumdelI Sum of delta I values
tets2 Total topological state index based on electrotopological state indices

phia Flexibility index (kp1* kp2=nvx)
IdCbar Bonchev Trinajsti�c information index
IdC Bonchev Trinajsti�c information index

Wp Wienerp
Pf Plattf
Wt Total Wiener number

knotp Difference of chi cluster 3 and path=cluster 4
knotpv Valence difference of chi cluster 3 and path=cluster 4
nclass Number of classes of topologically (symmetry) equivalent graph vertices

numHBd Number of hydrogen bond donors
numwHBd Number of weak hydrogen bond donors
numHBa Number of hydrogen bond acceptors
SHCsats E state of C sp3 bonded to other saturated C atoms

SHCsatu E state of C sp3 bonded to unsaturated C atoms
SHvin E state of C atoms in the vinyl group, CH
SHtvin E state of C atoms in the terminal vinyl group, CH2

(continued)
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energy of the highest occupied molecular orbital (EHOMO) and energy of the lowest
unoccupied molecular orbital (ELUMO) calculated at semiempirical AM1 and vari-
ous ab initio basis sets: STO-3G; 6-31G (d); 6-311G; 6-311G*; aug-cc-pVTZ;
MP2; CCSD; and CCSD (T) levels.

TABLE 31.1 (continued)
Symbols, Definitions and Classification of Calculated Molecular Descriptors

SHavin E state of C atoms in the vinyl group, CH , bonded to an aromatic C
SHarom E state of C sp2 which are part of an aromatic system

SHHBd Hydrogen bond donor index, sum of hydrogen E state values for OH, NH, NH2,
NH , SH, and #CH

SHwHBd Weak hydrogen bond donor index, sum of C H hydrogen E state values for hydrogen
atoms on a C to which a F and=or Cl are also bonded

SHHBa Hydrogen bond acceptor index, sum of the E state values for OH, NH, NH2, NH ,>N ,
O , S , along with F and Cl

Qv General polarity descriptor

NHBinty Count of potential internal hydrogen bonders (y 2 10)
SHBinty E state descriptors of potential internal hydrogen bond strength (y 2 10)

Electrotopological State index values for atoms types:

SHsOH, SHdNH, SHsSH, SHsNH2, SHssNH, SHtCH, SHother, SHCHnX, Hmax Gmax,
Hmin, Gmin, Hmaxpos, Hminneg, SsLi, SssBe, Sssss, Bem, SssBH, SsssB, SssssBm,
SsCH3, SdCH2, SssCH2, StCH, SdsCH, SaaCH, SsssCH, SddC, StsC, SdssC, SaasC,

SaaaC, SssssC, SsNH3p, SsNH2, SssNH2p, SdNH, SssNH, SaaNH, StN, SsssNHp, SdsN,
SaaN, SsssN, SddsN, SaasN, SssssNp, SsOH, SdO, SssO, SaaO, SsF, SsSiH3, SssSiH2,
SsssSiH, SssssSi, SsPH2, SssPH, SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS,
SddssS, SssssssS, SsCl, SsGeH3, SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs,

SdsssAs, SsssssAs, SsSeH, SdSe, SssSe, SaaSe, SdssSe, SddssSe, SsBr, SsSnH3,
SssSnH2, SsssSnH, SssssSn, SsI, SsPbH3, SssPbH2, SsssPbH, SssssPb

Geometrical=Shape (3-D)a

kp0 Kappa zero
kp1 kp3 Kappa simple indices
ka1 ka3 Kappa alpha indices

QC

EHOMO Energy of the highest occupied molecular orbital
EHOMO 1 Energy of the second highest occupied molecular orbital

ELUMO Energy of the lowest unoccupied molecular orbital
ELUMOþ1 Energy of the second lowest unoccupied molecular orbital
DHf Heat of formation
m Dipole moment

Source: Reprinted from Basak, S.C., Mills, D., SAR QSAR Environ. Res., 12, 481, 2001. With
permission.

a Since the time that these studies were performed, we have reclassified the kappa shape indices as TS and
TC descriptors because, although they do represent molecular shape, they are calculated topologically.
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31.3 HIERARCHICAL QSAR

Theoretical molecular descriptors may be classified into four hierarchical subsets
based on the level of complexity and demand for computational resources:

TS < TC < 3-D < QC

At the low end of the hierarchy are the TS descriptors. This is the simplest of the four
classes molecular structure is viewed only in terms of atom connectivity, not as a
chemical entity, and thus no chemical information is encoded. Examples include
path length descriptors [13], path or cluster connectivity indices [13,14], and number
of circuits. The TC descriptors are more complex in that they encode chemical
information, such as atom and bond type, in addition to encoding information
about how the atoms are connected within the molecule. Examples of TC descriptors
include neighborhood complexity indices [23], valence path connectivity indices
[13], and electrotopological state indices [17]. The TS and TC are two-dimensional
descriptors which are collectively referred to as TIs (Section 31.2.1). They are
straightforward in their derivation, uncomplicated by conformational assumptions,
and can be calculated very quickly and inexpensively. The 3-D descriptors encode
3-D aspects of molecular structure. At the upper end of the hierarchy are the QC
descriptors, which encode electronic aspects of chemical structure. As was men-
tioned previously, QC descriptors may be obtained using either semiempirical or
ab initio calculation methods. The latter can be prohibitive in terms of the time
required for calculation, especially for large molecules.

The approach in hierarchical QSAR (HiQSAR) is to include the more complex
and resource intensive descriptors only if they result in significant improvement in
the predictive quality of the model. We begin by building a model using only the TS
descriptors, followed by the creation of additional models based on the successive
inclusion of the hierarchical descriptor classes. In comparing the resulting models,
the contribution of each descriptor class is elucidated. In addition, the hierarchical
approach enables us to determine whether or not the higher level descriptors are
necessary to predict the property or activity under consideration. In situations where
these complex descriptors are not useful, we can avoid spending the time required for
their calculation.

In most cases, we have found that the TIs which can be calculated quickly and
inexpensively, are sufficient for the prediction of various chemical properties, toxici-
ties, and activities; the inclusion of 3-D and QC descriptors does not result in
significant improvement in model quality [24 30].

31.4 STATISTICAL METHODS

Most of our recent QSAR modeling has been accomplished using three compar-
ative regression methodologies, namely, ridge regression (RR) [31,32], principal
component regression (PCR), [33] and partial least squares (PLS) [34]. Each of
these methodologies makes use of all available descriptors, as opposed to subset
regression, and is useful when the number of descriptors is large with respect to the
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number of chemicals available for modeling and when the descriptors are highly
intercorrelated. Formal comparisons have consistently shown that using a small
subset of available descriptors is less effective than using alternative regression
methods that retain all available descriptors, such as RR, PCR, and PLS [35,36].

RR is similar to PCR in that the independent variables are transformed to their
principal components (PCs). However, while PCR utilizes only a subset of the PCs,
RR retains them all but downweighs them based on their eigenvalues. With PLS, a
subset of the PCs is also used, but the PCs are selected by considering both the
independent and dependent variables. Statistical theory suggests that RR is the best
of the three methods, and this has been generally borne out in multiple comparative
studies [30,36 38]. Thus, some of our published studies report RR results only.

The predictive quality of the models is judged according to the cross-validated
R2, known as q2, obtained using the leave-one-out (LOO) approach, which is
calculated as follows:

q2 ¼ 1-(PRESS=SSTotal) (31:2)

where
PRESS is the prediction sum of squares
SSTotal is the total sum of squares

Unlike R2 which tends to increase upon the addition of any descriptor, q2 tends to
decrease upon the addition of irrelevant descriptors and is a reliable measure of
model predictability [39]. Also unlike R2, q2 may be negative, which is indicative of
an extremely poor model.

RR, PCR, and PLS are appropriate methodologies when the number of descriptors
exceeds the number of observations, and they are designed to utilize all available
descriptors in order to produce an unbiased model whose predictive ability is accur-
ately reflected by q2, regardless of the number of independent variables in the model.

It is important to note that theoretic argument and empiric study have shown that
the LOO cross-validation approach is preferred to the use of an ‘‘external test set’’ for
small to moderate sized chemical databases [39]. The problems with holding out an
external test set include: (1) structural features of the held out chemicals are not
included in the modeling process, resulting in a loss of information, (2) predictions
are made only on a subset of the available compounds, whereas LOO predicts the
activity value for all compounds, and (3) personal bias can easily be introduced in
selection of the external test set. The reader is referred to Hawkins et al. [39] and
Kraker et al. [40] in addition to Section 31.6 for further discussion of proper model
validation techniques.

The t value associated with each model descriptor, defined as the descriptor
coefficient divided by its standard error, is a useful statistical metric. Descriptors
with large jtj values are important in the predictive model and, as such, can be
examined in order to gain some understanding of the nature of the property or
activity of interest. It should be stated, however, that the converse is not
necessarily true, and thus no conclusions can be drawn with respect to descriptors
with small jtj values.
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31.5 QSARS FOR PHYSICOCHEMICAL, ENVIRONMENTAL,
PHARMACOLOGICAL, AND TOXICOLOGICAL PROPERTIES

This section provides specific examples of our QSAR studies involving the
prediction of physicochemical, environmental, pharmacological, and toxicological
properties. We have used software programs including POLLY v. 2.3, [18] Triplet,
[15] Molconn-Z, [19] and Gaussian 03W [41] for the calculation of more than
350 molecular descriptors, each of which is derived solely from chemical structure
without the need for any additional experimental data. Table 31.1 provides a list of
the descriptors typically used by our research group for QSAR model development,
along with brief descriptions and hierarchical classification. It should be noted that
some of our HiQSAR studies have not included the QC descriptor class due to the
amount of time required for the calculation of those indices. Where feasible, analyses
of these data sets will continue with the addition of the QC descriptors. In addition to
the examples described below, we have found our HiQSAR approach to be success-
ful in predicting properties, activities, and toxicities including:

. Mutagenicity of aromatic and heteroaromatic amines [25]

. Complement-inhibitory activity of benzamidines [42]

. Partitioning of environmental pollutants [43]

. Boiling point of structurally heterogeneous chemicals [44]

. Acute toxicity of benzene derivatives [45]

. Biological partition coefficients [29,38,46]

. Dermal penetration of polycyclic aromatic hydrocarbons [24]

. Receptor binding affinity of dibenzofurans [30]

. Allergic contact dermatitis [47]

31.5.1 VAPOR PRESSURE

The assessment of rate and distribution of environmental pollutants in various
phases including air, water, and soil is important for the risk assessment of chemicals
[48]. The partitioning of chemicals among different phases is usually assessed
using a critical list of physical properties including vapor pressure (VP), aqueous
solubility, air:water partition coefficient, and octanol water partition coefficient.

Pollutants with high VP tend to concentrate more in the vapor phase as compared
to soil or water. Therefore, VP is a key physicochemical property essential for the
assessment of chemical distribution in the environment. This property is also used in
the design of various chemical engineering processes [49]. Additionally, VP can be
used for the estimation of other important physicochemical properties. For example,
one can calculate Henry’s law constant, soil sorption coefficient, and partition
coefficient from VP and aqueous solubility. We were therefore interested to model
this important physicochemical property using quantitative structure property rela-
tionships (QSPRs) based on calculated molecular descriptors [27].

The set of 469 chemicals used in this study was obtained from the Assessment
Tools for the Evaluation of Risk (ASTER) database [50] and it represents a subset
of the Toxic Substances Control Act (TSCA) Inventory [51] for which VP was
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measured at 258C with a pressure range of approximately 3 10,000 mmHg. The
molecular weights of the compounds in this data set range from 40 to 338, and the
chemical diversity is described in Table 31.2. It should be noted that the six QC
descriptors included in the study, namely, EHOMO, EHOMO 1, ELUMO, ELUMOþ1,
DHf, and m, were calculated for the AM1 semiempirical Hamiltonian using MOPAC
v. 6.0 [52] in the Sybl interface [53].

Results in Table 31.3 indicate that the combination of TS and TC descriptors
resulted in a highly predictive RR model (q2¼ 0.895); the addition of three-
dimensional and QC indices to the set of independent variables did not result in
significant improvement in model quality. It may be noted that we have observed
such results for various other physicochemical and biological properties including
mutagenicity [25,54], boiling point [55], blood:air partition coefficient [37],
tissue:air partition coefficient [46], etc. [24,30,45,56]. Only in limited cases, e.g.,
halocarbon toxicity [12], the addition of QC indices after TS and TC parameters
resulted in significant improvement in QSAR model quality.

It is interesting to note that of the three linear regression methods used, viz., RR,
PCS, and PLS, RR outperformed the other two methods significantly. This is in line
with our earlier observations with HiQSARs using the three methods [30,37,38,46].

TABLE 31.2
Chemical Class Composition of the VP Data Set

Compound
Classification

No. of
Compounds Pure Substituted

Total data set 469
Hydrocarbons 253
Nonhydrocarbons 216

Nitrocompounds 4 3 1
Amines 20 17 3
Nitriles 5 4 1

Ketones 7 7 0
Halogens 97 92 5
Anhydrides 1 1 0

Esters 18 16 2
Carboxylic acids 2 2 0
Alcohols 10 6 4

Sulfides 38 37 1
Thiols 4 4 0
Imines 2 2 0
Epoxides 1 1 0

Aromatic compoundsa 15 10 4
Fused ring compoundsb 1 1 0

Source: Reproduced from Basak, S.C. and Mills, D. J. Chem. Inf.

Comput. Sci., 41, 692, 2001. With permission.
a The 15 aromatic compounds are a mixture of 11 aromatic hydrocarbons

and four aromatic halides.
b The only fused ring compound was a polycyclic aromatic hydrocarbon.
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It is instructive to look at the top 10 molecular descriptors, based on t value, in
the RR VP model derived from TSþTC indices (Table 31.4). They can be looked
upon as representing the following features: (a) size (totop, DN2Z1), (b) hydrogen
bonding (HB1, SHHBa), (c) polarity (Qv), (d) heterogeneity of atom types (IC0), and
(e) presence of various types of heteroatoms and functional groups (SssO, SsF,
SsNH2, SaaO).

TABLE 31.3
RR, PCR and PLS Regression VP Model Metrics

RR PCR PLS

Model Type q2 PRESS q2 PRESS q2 PRESS

TS 0.444 135 0.451 133 0.445 134
TSþTC 0.895 25.3 0.479 126 0.480 126
TSþTCþ 3D 0.902 23.7 0.481 125 0.468 129

TSþTCþ 3DþAM1 0.906 22.8 0.488 124 0.465 129
TS 0.444 135 0.451 133 0.445 134
TC 0.851 35.9 0.473 127 0.524 115

3D 0.552 108 0.453 132 0.556 107
AM1 0.201 193 0.189 196 0.203 193

Source: From Basak, S.C. and Mills, D., ARKIVOC, 2005(x), 308, 2005. With permission.

TABLE 31.4
Important Topological Descriptors for the Prediction
of VP, Based on t Value, from the TSþ TC RR Model

Descriptor Label Description j t j
SssO Sum of the E States for O 10.07

SsF Sum of the E States for F 8.58
HB1 General hydrogen bonding descriptor 7.76
SsNH2 Sum of the E states for NH2 6.83

IC0 Mean information content or complexity of a
hydrogen filled graph based on the
0 order neighborhood of vertices

6.57

SaaO Sum of the E states for O: 6.56
SHHBa Hydrogen bond acceptor index 6.21
DN2Z1 Triplet index from distance matrix, square

of graph order (number of vertices),

and atomic number

6.13

Qv General polarity descriptor 6.06
totop Total TI 5.87

Source: From Basak, S. C. and Mills, D., ARKIVOC, 2005(x), 308, 2005.
With permission.
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In the LSER approach, a combination of molecular size, hydrogen bonding, and
polarity are used to estimate partitioning behavior of chemicals [5,57]. The presence
of specific heteroatoms, functional groups, and different atom types, as encoded by
information theoretic, triplet, and electrotopological indices, will probably be related
to dipole dipole interactions among the molecules and also specific regional inter-
actions such as hydrogen bonding. Such factors have been found to be useful in
predicting VP by Liang and Gallagher [58], Katritzky et al. [48], Engelhardt et al.
[59], and Staikova et al. [60].

31.5.2 ESTROGEN RECEPTOR BINDING AFFINITY

An endocrine disrupting chemical is an exogenous substance that causes an
adverse health effect in an intact organism, or its progeny, consequent to changes
in endocrine function. The adverse effect can be produced through a variety of
mechanisms including direct receptor binding with or without subsequent activation,
change in the number of hormone receptors in a cell, and modified production or
metabolism of natural hormones. Many of these substances have been associated
with developmental, reproductive, and other health problems in wildlife and labora-
tory animals, and there is evidence to suggest that certain chemicals are producing
endocrine disrupting effects on humans [61].

The most well-studied biological mechanism for producing endocrine disruption
is the estrogenic response, examined through estrogen receptor binding. As such, we
modeled calf estrogen receptor binding affinity using the HiQSAR approach for a set
of 35 hydroxy-substituted 2-phenylindoles (Figure 31.1) [62]. Results indicated that
RR generally outperforms PLS and PCR, and a very good predictive model is
obtained using the TC descriptors alone, with a q2 of 0.920 (Table 31.5) [8].
While good results are obtained using the TS and TC descriptors, addition of the
3-D descriptors does not result in improvement in model quality, and the model
obtained using 3-D descriptors alone, is quite poor.

31.5.3 CELLULAR TOXICITY OF HALOCARBONS

Halocarbons are important industrial chemicals used worldwide as solvents and
synthetic intermediates. Crebelli et al. [63 65] developed data for chromosomal

N

OH

HO

R1

R2

FIGURE 31.1 Chemical structure of hydroxy substituted 2 phenylindoles.
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malsegregation, lethality, and mitotic growth arrest in Aspergillus nidulans diploid
strain P1. Crebelli’s group conducted experimental analysis of these chemicals, as
well as developed predictive QSAR models using a combination of physicochemical
properties and QC indices calculated using the STO-3G basis set.

We have carried out HiQSAR development using TS, TC, and 3-D descriptors,
in addition to AM1 semiempirical QC descriptors obtained using MOPAC 6.00 [52]
and ab initio QC descriptors calculated with Gaussian 98W [66] using the STO-3G,
6-311G, and aug-cc-pVTZ basis sets, with results provided in Table 31.6.

The results show that, for the set of 55 halocarbons, a very high level of
ab initio calculation was required before there was any significant improvement in
model quality over and above the models derived from easily calculable TS and
TC descriptors. When ranking the TSþTCþ 3-Dþ cc-pVTZ model descriptors

TABLE 31.5
Summary Statistics for Predictive Estrogen Receptor Binding Affinity Models

Independent RR PCR PLS

Variables q2 PRESS q2 PRESS q2 PRESS

TS 0.880 17.9 0.363 95.1 0.822 26.6
TSþTC 0.877 18.3 2.67 548 2.01 450
TSþTCþ 3 D 0.878 18.3 2.69 551 1.99 446

TS 0.880 17.9 0.363 95.1 0.822 26.6
TC 0.920 11.9 1.32 346 0.749 261
3 D 0.499 74.8 0.311 103 0.346 97.6

Source: Reprinted from Basak, S.C., Mills, D., and Gute, B.D., in Advances in Quantum Chemistry,
Elsevier, in press. With permission.

TABLE 31.6
HiQSAR Model Results for Toxicity of the 55 Halocarbons to A. nidulans

RR PCR PLS

Model q2 PRESS q2 PRESS q2 PRESS

TS 0.290 90.00 0.240 96.38 0.285 90.64

TSþTC 0.770 29.13 0.426 72.84 0.644 45.13
TSþTCþ 3 D 0.780 27.87 0.438 71.23 0.645 44.98
TSþTCþ 3 DþAM1 0.775 28.49 0.492 64.37 0.753 21.29
TSþTCþ 3 DþSTO 3G 0.772 28.95 0.489 64.78 0.613 49.02

TSþTCþ 3 Dþ 6 311G 0.777 28.26 0.510 62.14 0.631 46.75
TSþTCþ 3 Dþ cc pVTZ 0.838 20.59 0.507 62.49 0.821 22.67

Source: Reprinted from Basak, S.C., Mills, D., and Gute, B.D. in Biological Concepts and Techniques in
Toxicology: An Integrated Approach, Taylor & Francis, New York, 2006, 61 82. With
permission.
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according to t values, it was found that indices related to reactivity make an impor-
tant contribution, with vertical electron affinity (VEA) and energy of the lowest
unoccupied molecular orbital (ELUMO) possessing the highest values.

VEA was obtained from the energy differences between the optimized structures
of neutral and charged species. The optimized geometry of neutral forms was used to
compute the energy of the corresponding anions to obtain the vertical EA values.

We have also formulated HiQSARs for toxicity of hepatocytes tested in vitro for
a subset of 20 of these chemicals [67].

31.6 PROPER VALIDATION OF QSARS IS CRITICAL

The literature of the past three decades has witnessed a tremendous explosion in the
use of computed descriptors in QSAR. But it is noteworthy that this has exacerbated
another problem: rank deficiency. This occurs when the number of independent
variables is larger than the number of observations. Stepwise regression and other
similar approaches, which are popularly used when there is a rank deficiency, often
result in overly optimistic and statistically incorrect predictive models. Such models
would fail in predicting the properties of future, untested cases similar to those used
to develop the model. It is essential that subset selection, if performed, be done
within the model validation step as opposed to outside of the model validation step,
thus providing an honest measure of the predictive ability of the model, i.e., the ‘‘true
q2’’ [39,40,68,69]. Unfortunately, many published QSAR studies involve subset
selection followed by model validation, thus yielding a ‘‘naïve q2,’’ which inflates
the predictive ability of the model. The following steps outline the proper sequence
of events for descriptor thinning and LOO cross-validation, e.g.,

1. Leave out compound #1.
2. Use cross-validation to select the optimal descriptors without compound #1.
3. Fit the model to the selected descriptors and the remaining n 1 compounds.
4. Apply this model to compound #1 and obtain the prediction.
5. Repeat steps 1 4 for each of the remaining n� 1 compounds.
6. Use predictors to calculate the q2 value.

In order to show the inflation of q2, which results from the use of improper
statistical methods, we have performed comparative studies involving stepwise
regression and RR [68,70]. In these studies, comparative models were developed
for the prediction of rat fat:air and human blood:air partitioning of chemicals.
For the former, proper statistical methods yielded a model with a q2 value of
0.841, while the stepwise approach was associated with an inflated q2 of 0.934.
Likewise, the rat fat:air model derived using proper methods had a q2 value of 0.854,
while the stepwise approach yielded a model with an inflated q2 of 0.955.

31.7 CHIRALITY INDICES AND MOLECULAR OVERLAY

Biological activities such as enzyme reactions and metabolic changes are highly
stereospecific, hence enantiomers and diastereomers may have entirely different
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pharmacological activities and the extent to which they differ in their activities
depends on the extent of interaction with the receptors. Ariens [71] pointed out
that enantiomers might have positive activity, negative activity (inhibitory), or even
synergistic biological activities. After critical reviews by Ariens [72,73] and the
thalidomide episode, the U.S. Food and Drug Administration (FDA) changed
its policy on stereoisomeric drugs and requires the pharmacological and toxico-
logical profiling of both the enantiomers of a racemate before marketing a racemate
[74]. Pharmaceutical companies have switched to single enantiomer (enantiopure)
chiral drugs. This trend is indicated by the fact that in 2006, 80% of the small
molecule drugs approved by FDA were chiral and 75% were single enantiomers. It is
expected that 200 chiral compounds could enter the development process every year
[75]. The use of enantiopure chemicals is not only increasing in the pharmaceutical
industry but also in agricultural chemicals in order to avoid the unnecessary loading
of the environment with the less active or inactive isomer. Hence, biological and
toxicological profiling of enantiomers and diastereomers is becoming essential to
market a racemic or chiral pure chemical compound as a drug or agrochemical.
Moreover, successful QSAR models that include diastereomers and enantiomers are
expected to play a significant role in computer assisted chiral synthesis.

QSAR modeling using simple computed molecular descriptors or physicochem-
ical properties fails in handling compounds that exhibit polychiral diastereomerism.
The reason for the limitation of the molecular descriptors derived from adjacency
and distance matrices of molecular graphs in differentiating enantiomers is their
identical scalar properties. In other words, enantiomers are isometric, i.e., for
each distance between two given atoms in one isomer, there is a corresponding
identical distance between a pair of atoms in the other. Thus, distance matrices for
the enantiomers have identical entries and consequently the various TIs derived
from the distance matrices cannot differentiate enantiomers. The same is true for
3-D distance matrices of enantiomers. There have been several attempts [76 82]
to develop molecular descriptors for diastereomers using the graph theoretical
approach. Continuous chirality measures (CCM) and continuous symmetry measure
(CSM) were introduced by Zabrodsky et al. [83,84]. Many of the topology-based
approaches tried to apply a correction to the commonly used TIs such as the
connectivity indices. Hence, they are not stand-alone indices in the sense that
they need the calculation of the corresponding TI before applying the chiral
correction. Quantum chemistry based methods have limitations with respect to
large molecules and larger data sets containing thousands of molecules. Natarajan
et al. [22] developed a simple approach to develop a new series of chirality indices
called relative chirality indices (RCI). The new chirality indices are able to dis-
criminate 3-D structural differences from 2-D oriented embedded graphs. A similar
approach based on physicochemical properties was simultaneously reported by
Zhang and Aires-de-Sousa [85].

31.7.1 CALCULATION OF RELATIVE CHIRALITY INDICES

According to the CIP rule, different degrees of priorities are assigned to the four
chemical groups attached to the chiral carbon, ‘‘a’’ being given the highest priority,
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then ‘‘b,’’ etc. Differences in the disposition of the groups a, b, c, and d around the
asymmetric carbon is given below:

a

R-isomer

cb d

a

S-isomer

bc d

The least important chemical group (d) is placed at the rear, and the clockwise or
the anticlockwise arrangement of the other three groups (a, b, c) is considered to
assign the configuration as R or S.

The three groups of highest priority attached to a chiral center were viewed from
a reference point to calculate the new chirality metric. The groups=atoms a, b, c and
d are then assigned valence delta-values of atoms (dv) according to the method of
Kier and Hall [13]. When the group has more than one atom, dv for the group a, b,
or c is calculated considering the relative proximities of the atoms to the chiral center,
and decreasing importance with increasing topological distance (through bond) was
assigned while calculating the contribution of atoms other than hydrogen in a group.
The group delta value for any group (dvi ) attached to a chiral carbon is calculated as:

dvi ¼ dvn1 þ dvn2=2
� �

þ dvn3=4
� �

þ dvn4=8
� �

þ � � � (31:3)

where
n1 is the atom attached directly to the chiral center (nearest neighbor)
n2 is separated by one atom
n3 by two atoms, etc.

Relative chirality indices (VRCI) for a pair of enantiomers are calculated as

VRCIR ¼ dva þ dva þ dvad
v
b

� �þ dva þ dvad
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To obtain VRCI for molecules containing more than one chiral center, the root mean
square of VRCI for all the chiral centers is taken.

VRCI ¼ 1
N

XN
i¼1

VRCIið Þ2
vuut (31:6)

Information regarding the fourth group is encoded in the new index by the fourth
term dadbdcdd. When ‘‘d’’ is hydrogen, dadbdcdd becomes zero; otherwise it contrib-
utes to the RCI for the chiral center.
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In addition to the valence connectivity, the formula weights of the groups and
the electrotopological state of the various atoms and groups in a, b, c, and d were
also used to calculate WRCI and IRCI, respectively. In order to calculate IRCI,
one has to replace dv of the groups a, b, c, and d by their dI (electrotopological
state) in the formula to calculate VRCI. In the same way, WRCI for enantiomers and
diastereomers can be calculated using the formula weights of a, b, c, and d. It is to be
noted that simple connectivity and bond order connectivity of vertices (atoms) were
not useful in generating RCI due to their inability to differentiate atom types, and this
consequently gave degenerate values for several structures.

RCI were calculated for the chiral a-amino acids and were found to discriminate
diastereomers and enantiomers very well. Singularity of meso compounds is also
addressed and was illustrated using tartaric acid. All three scales of RCI have the
same set of values for the meso isomers. Cysteine is the sulfur analog of serine and
had the same set of VRCI values (R-isomer 194.25 and S-isomer 164.25). This shows
that bioisosterism is addressed by the valence connectivity scale used for calculating
VRCI values. Hence, we have gone from the qualitative two-way discrimination
provided solely by the CIP rule to quantitative measures of chirality capable of
ordering a set of diastereomers. We have introduced three different scales for RCI
and any other new scale can be introduced based on a physicochemical property,
electronic parameters, etc. Thus, a series of chirality measures that encode the
distribution of groups based on different properties around the chiral center can be
computed for modeling activities of diastereomeric compounds. The scale that gives
the best correlation will help in interpreting the ‘‘handedness’’ (chirality) that the
receptor is looking for.

We tried to use RCI to model the insect repellency of two diastereomeric
repellants namely, 1-methylisopropyl 2-(2-hydroxyethyl)piperidine-1-carboxylate
(Picaridin) and cyclohex-3-enyl 2-methylpiperidin-1-yl ketone (AI3-37220). The
mosquito repellency (proportion not biting) of diastereomers of AI3-37220 was
modeled well by VRCI but it failed in the case of Picaridin diastereomers. One
can expect a correlation between the calculated indices and the biological activity
if the proper ordering of a set of chiral molecules by calculated indices parallels
the ordering of them by the receptor. Otherwise, the indices will only discriminate
the structures without any necessary correlation with biological function. Hence,
in the case of Picaridin, we were unsuccessful in selecting the proper measure of
chirality that parallels what the receptor is looking for. Recently, we found that the
VRCI is able to model the dopamine D2 receptor affinity for 3-(3-hydroxyphenyl)
piperidine (unpublished results).

31.7.2 HIERARCHICAL MOLECULAR OVERLAY

It is important to emphasize that the degree of biological specificity varies widely
across biological systems. Certain systems show a wide range of specificity and
others show a very narrow range of selectivity. Modeling biological activities that
have a wider range of specificity is easier, and calculated indices or properties might
yield reasonable results. In the case of highly specific systems that do not allow even
a small structural change such as a methyl ( CH3) or a methylene (CH2) group, it is
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very difficult to model biological responses by the conventional QSAR approach.
The concept ‘‘structurally similar chemicals have similar biological activity’’ fails,
and the reductionistic approach of using computed molecular descriptors might be
unsuccessful. Moreover, if the biological receptor or binding mode is not known,
indices based QSAR models will not work. For situations of this sort, we suggest the
molecular overlay approach because it is holistic and 3-D geometries are considered.
In the molecular overlay method, optimized geometries of each diastereomer is
overlaid on the most active diastereomer and the root mean square distances
(RMSD) between the specified pairs of atoms are measured to assess the degree of
similarity (match). As the most active analog is taken as a template to rank the
similarity of the other compounds, some information about the binding site is
indirectly considered. However, the molecular overlay approach has two limitations
namely, it is computer intensive and it cannot identify a chemical that is more active
than the one used as the template. The geometry optimization routine can be selected
based on the number of compounds to be screened.

Initial study [86] on molecular overlay was done for AI3-37220 and Picaridin
using MM2 optimized geometries. In order to find the level of theory necessary
to get reasonable predictions, the QC methods were used [87] in a graduated manner
from semiempirical AM1, to Hartree Fock (STO3G, 3-21G, 6-31G, and 6-311G) to
density functional theory (B3LYP=6-31G, B3LYP=6-311G). The output of a lower
level geometry was used as the input for the next higher level of theory. Thus, a
hierarchical geometry optimization scheme was followed for each diastereomer from
AM1 to HF=STO3G to HF=3-21G to HF=6-31G to HF=6-311G to B3LYP=6-31G to
B3LYP=6-311G. The freeware visual molecular dynamics (VMD) [88] was used
to overlay the structures and compute RMSD between the pairs of atoms. We used
this method to order the mosquito repellency of the diastereomers of AI3-37220 and
Picaridin. The results obtained by using the hierarchical approach were far better
than those obtained using the MM2 method where we could only differentiate the
most active and the least active diastereomers clearly, but failed to rank the repel-
lency with the degree of match=mismatch of structures. With the hierarchical overlay
method, we were able to rank the repellency of the diastereomers using the RMSD
and thus provided a novel structure-to-structure comparison tool. Unlike several
of the commercially available modeling tools, we were able to use geometries
optimized by any level of theory. The hierarchical approach indicated that in the
case of molecules such as AI3-37220, which have relatively rigid cyclic groups,
optimization at the HF 3-21G basis set level seems to be sufficient to give good
results. For more flexible molecules such as Picaridin, however, HF 6-31G was
found be the method of choice. In the case of both AI3-37220 and Picaridin, the
advanced DFT methodology did not significantly improve the predictions made with
lower levels of DFT theory (B3LYP=6-31G). We would also like to mention some of
the advantages of the molecular overlay method over other 3-D QSAR approaches
such as comparative molecular field analysis (CoMFA) [89]. CoMFA requires a
prior knowledge of binding site, and a binding hypothesis proposed is based on the
ligand receptor complex. In the molecular overlay method, no prior knowledge of
binding site is required and moreover molecular geometry optimized at any level
of theory can be used.
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31.8 CONCLUSION

In this chapter, we have shown how calculated molecular descriptors, viz.,
topological, geometrical, and QC indices, can be used in the development of
predictive models for the estimation of physicochemical, environmental, biochem-
ical, and toxicological properties of different congeneric as well as diverse groups of
molecules. In the majority of cases, a combination of TS and topochemical descrip-
tors gave the best models. But in the case of halocarbon toxicity, the addition of QC
descriptors (aug cc-pVTZ level) made some significant improvement in model
quality. Chirality descriptors have been developed and used in models involving
stereoisomeric compounds. It is noteworthy that no matter what the number, class or
quality of descriptors are, the use of proper statistical methods is critical for the
assurance of predictive quality. We have particularly exemplified this point with
blood:air and fat:air partition coefficient data [68,70] The three basic needs of
successful QSARs are (a) good quality data, (b) a set of descriptors which capture
the essence of the property, bioactivity, or toxicity to be modeled, and (c) proper
statistical procedures which can develop robust models.
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The aim of this chapter is to discuss chemical reactivity and its application in the real
world. Chemical reactivity is an established methodology within the realm of density
functional theory (DFT). It is an activity index to propose intra- and intermolecular
reactivities in materials using DFT within the domain of hard soft acid base (HSAB)
principle. This chapter will address the key features of reactivity index, the defin-
ition, a short background followed by the aspects, which were developed within
the reactivity domain. Finally, some examples mainly to design new materials related
to key industrial issues using chemical reactivity index will be described. I wish to
show that a simple theory can be state of the art to design new futuristic materials of
interest to satisfy industrial needs.

32.1 INTRODUCTION

Rapid advances are taking place in the application of DFT to describe complex
chemical reactions. Researchers in different fields working in the domain of quantum
chemistry tend to have different perspectives and to use different computational
approaches. DFT owes its popularity to recent developments in predictive powers for
physical and chemical properties and its ability to accurately treat large systems.
Both theoretical content and computational methodology are developing at a pace,
which offers scientists working in diverse fields of quantum chemistry, cluster
science, and solid state physics.

The HSAB principle classifies the interaction between acids and bases in terms
of global softness. Pearson proposed the global HSAB principle [1,2]. The HSAB
principles classify the interaction between acids and bases in terms of global softness

503



and this has been validated further [3 11]. The global hardness was defined as the
second derivative of energy with respect to the number of electrons at constant
temperature and external potential, which includes the nuclear field. The global
softness is the inverse of global hardness. Pearson also suggested a principle of
maximum hardness (PMH) [12,13], which states that for a constant external poten-
tial the system with the maximum global hardness is most stable. PMH has also
been studied extensively to further probe into both inter- and intramolecular
interactions [14 19]. In recent days, DFT has gained widespread use in quantum
chemistry [20 23]. For example, some DFT-based local properties, e.g., Fukui
functions and local softness have already been successfully used for the reliable
predictions in various types of electrophilic and nucleophilic reactions. On the other
hand, the reactivity index finds its application in material designing. We proposed a
reactivity index scale for heteroatomic interaction with zeolite framework [24]. The
scale holds well for unisite interaction or in other way with one active site preset in
the molecule, but does not offer any impressive results for the system with two or
more active sites. The choice of template is an important criterion for the synthesis of
zeolite. Reactivity index offers an important tool to derive the suitable template for
the synthesis of zeolite like ZSM-5 via the investigation of a range of reactivity index
using DFT of different representative template molecules along with zeolite frame-
work. As a result, a priori rule was formulated to choose the best template for a
particular zeolite synthesis. Moreover, the role of water during nucleation process
can also be monitored efficiently in terms of solvation energy to rationalize the
fundamental mechanism of crystal growth [25]. A range of reactivity index along
with DFT was fruitful to determine the activity of nitrogen heterocyclics present in
biomacromolecules and their suitable sorbent from the dioctahedral smectite family
[26]. In another approach, a novel function l [27] was introduced for quantitative
description of weak adsorption cases, which was so far qualitative inside the domain
of DFT. In addition to that, several calculations were performed to derive group
softness [28] for inter- and intramolecular reactivities for nitroaromatics and their
adsorption over clay matrices and contributed to the development of the method-
ology and its application in various systems [29 31].

There are different ways to describe the reactivity index, where the idea is to find
donor=acceptor capability of an atom present in a molecule interacting with another
molecule or the interaction is within itself. This is the main concept, and depending
on the interaction that is taking place, one can look into local softness of the atom,
which is approaching the other interacting species or the group of atoms together
approaching the active site. It has also been mentioned that if one wishes, one can
describe the interaction between atoms for an intermolecular interaction through the
concept of an equilibrium using the idea of reactivity index. Hence the concept
reactivity index tells you the activity of atom center and its capability to interact with
other species in its localized=nonlocalized neighbor.

The aim here is to show the application of the simple theory of reactivity index
along with some useful derivation of the theory in terms of resolving key issues.
Some examples are provided to have an understanding of the applicability of this to
industrial issues. Finally, a newest example of the application of reactivity index will
performed to show the use of single-wall nanotube (SWNT) for gas sensing, and a
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rule was prescribed with a graphical representation of electrophilic and nucleophilc
reactivity index.

32.2 THEORY

In DFT, hardness (h) is defined as [13]

h ¼ 1=2 d2E=dN2
� �

v(r) ¼ 1=2(dm=dN)v (32:1)

where
E is the total energy
N is the number of electrons of the chemical species
m is the chemical potential

The global softness, S, is defined as the inverse of the global hardness, h:

S ¼ 1=2h ¼ (dN=dm)v (32:2)

Using the finite difference approximation, S can be approximated as

S ¼ 1=(IE� EA) (32:3)

where IE and EA are the first ionization energy and electron affinity of the molecule,
respectively.

The Fukui function f(r) is defined by Ref. [14]

f (r) ¼ [dm=dv(r)]N ¼ [dr(r)=dN]v (32:4)

The function ‘‘f ’’ is thus a local quantity, which has different values at different
points in the species, N is the total number of electrons, m is the chemical potential,
and v is the potential acting on an electron due to all nuclei present. Since r(r) as a
function of N has slope discontinuities and Equation 32.1 provides the following
three reaction indices [14]:

f (r) ¼ [dr(r)=dN]v (governing electrophilic attack)

fþ(r) ¼ [dr(r)=dN]þv (governing nucleophilic attack)

f 0(r) ¼ 1=2[ fþ(r)þ f (r)] (for radial attack)

In a finite difference approximation, the condensed Fukui function [14] of an atom,
say x, in a molecule with N electrons is defined as

fþx ¼ [qx(N þ 1)� qx(N)] (for nucleophilic attack)

fx ¼ [qx(N)� qx(N � 1)] (for electrophilic attack) (32:5)

f 0x ¼ [qx(N þ 1)� qx(N � 1)]=2 (for radical attack)

where qx is the electronic population of atom x in a molecule.
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The local softness s(r) can be defined as

s(r) ¼ (dr(r)=dm)v (32:6)

Equation 32.3 can also be written as

s(r) ¼ [dr(r)=dN]v[dN=dm]v ¼ f (r)S (32:7)

Thus, local softness contains the same information as the Fukui function f(r) plus
additional information about the total molecular softness, which is related to the
global reactivity with respect to a reaction partner, as stated in HSAB principle.
Thus, the Fukui function may be thought of as a normalized local softness. Atomic
softness values can easily be calculated by using Equation 32.4, namely

sþx ¼ [qx(N þ 1)� qx(N)]S

sx ¼ [qx(N)� qx(N � 1)]S (32:8)

s0x ¼ S[qx(N þ 1)� qx(N � 1)]=2

We have further explained the interaction energy scheme as follows. Let us consider
a process where AB is the final product formed at equilibrium after combination of
isolated A and B species present. With the existing knowledge, this is recognized
that A and B interacts in two steps: (1) interaction will take place through the
equalization of chemical potential at constant external potential and (2) A and B
approach the equilibrium state through changes in the electron density of global
system generated by making changes in the external potential at constant chemical
potential. Thus, within DFT we can write

DEinter ¼ E[rAB]� E[rA]� E[rB] (32:9)

where rAB, rA, rB are the electron densities of the system AB at equilibrium and of
the isolated systems A and B, respectively

For the application of the reactivity index to propose intra- and intermolecular
reactivities, Equation 32.9 can be used.

In terms of the potentials, we can write

DEinter ¼ DEv þ DEm (32:10)

where DEv ¼ �1=2[ mA � mBð Þ2= SA þ SBð Þ] SASBð Þ

DEm ¼ �1=2N2
ABk[1= SA þ SBð Þ] (32:11)

where NAB is the total number of electrons, k is the proportionality constant between
SAB and SAþ SB, product of N

2 and K is l:

DEm ¼ (�1=2)l= SA þ SBð Þ (32:12)
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If the interaction takes place through j site of A in AB complex

lAj ¼ qeqAj � q0Aj (32:13)

where
qeqAj is the density of jth atom of A in complex AB

q0Aj is the density in isolated system

In our all studies, all calculations with molecular clusters have been carried out with
DFT [32] using DMol3 code of Accelrys. A gradient corrected functional BLYP [33]
and DNP basis set [34] was used throughout the calculation. Single-point calcula-
tions of the clusters in their cationic and anionic forms, at the optimized geometry of
the original neutral clusters were also carried out to evaluate Fukui functions and
global and local softness. The condensed Fukui function and atomic softness were
evaluated using electrostatic potential (ESP) driven charges.

32.3 DISCUSSION WITH EXISTING EXAMPLES

The above mentioned theory has indicated that the application domain of the theory
will be related to chemical activity. We are mainly dealing with charge density for
the purpose of prescribing a reaction followed by a process and eventually the way of
designing a material. Various applications of reactivity index theory and its detailed
description was recently published [35] in recent past. According to the literature,
two main 5 issues are dealt with chemical reactivity index: (1) the chemical reactivity
theory approach and its application for resolving chemical concern of importance
within the helm of DFT and (2) application of DFT on resolving structure property
relationship in catalysis, reactions, and small molecules. With that background, this
is time again to show how this theory can be applicable to address issues in industry,
and our main concerned industries are chemical, pharmaceutical, drug, semicon-
ductor, and also polymers where people want to design molecule or material for a
specific inter- or intramolecular interaction. Following are the few examples where
chemical reactivity index can efficiently apply to solve the industrial problems.

1. Scaling the activity of fluorophore molecules: Anthracenes bearing aliphatic
or aromatic amino substituents, which behave as molecular sensors, have
shown their potential to act as photon-induced electron transfer (PET)
systems. In this PET, the fluorophore moieties are responsible for electron
release during protonation and deprotonation. The principle of HSAB deals
with both intra- and intermolecular electron migrations. It is possible to
calculate the localized properties in terms of Fukui functions in the realm
of DFT and thus calculate and establish a numerical matchmaking proce-
dure that will generate a priori rule for choosing the fluorophore in terms
of its activity. We calculated the localized properties for neutral, anionic,
and cationic systems to trace the course of the efficiency. A qualitative scale
is proposed in terms of the feasibility of intramolecular hydrogen bonding.
To investigate the effect of the environment of the nitrogen atom on
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protonation going from mono- to diprotonated systems, the partial density
of states has been calculated and the activity sequence has been with
reactivity indices. The results show that location of the nitrogen atom in
an aromatic ring does not influence the PET, but for aliphatic chains the
effect is prominent. Furthermore, the protonation=deprotonation scenario
has been explained. The results show that the reactivity indices can be used
as a suitable property for scaling the activity of fluorophore molecules for
the PET process [28].

2. Adsorption of ozone-depleting chlorofluorocarbons (CFC): Adsorption of
ozone-depleting CFC over zeolite is of major global environmental con-
cern. To investigate the nature of CFCs including fluoro, chlorofluoro, and
hydrofluoro=chloro carbons (CF4, CF3Cl, CF2Cl2, CFCl3, CHF3, CHCl3)
adsorption first-principle to calculation were performed on faujasite models
[36,37]. Experimentally, it is observed that separation of halocarbons is
possible using Na Y, though the cause is unknown. Reactivity index within
the realm of HSAB principle was used to monitor the activity of the
interacting CFCs using DFT, to propose a qualitative order. The importance
of both H-bonding and cation F=Cl interactions in determining the low-
energy sorption sites were monitored and rationalized. The host guest
interactions show a distinctive difference between the adsorption phenom-
enon between H Y and Na Y and as well for Cl and F. It is observed that
Cl has more favorable interaction with hydrogen of H Y compared to
Na Y and for F, the situation is reversed. To validate this trend, periodic
optimization calculations were performed. The interaction energy as
obtained matches well with the reactivity index order resulted from cluster
calculations. This study is a combination of DFT and periodic calculation to
rationalize the electronic phenomenon of the interaction process.

3. Designing of stable clay nanocomposite: Resorcinol forms a novel nano-
composite in the interlayer of montmorillonite. This resorcinol oligomer is
stable inside the clay matrixes even above the boiling point of the monomer.
A periodic ab initio calculation was performed with hydrated and nonhy-
drated montmorillonite, before and after intercalation of resorcinol [38]. For
the most feasible dimer- and tetramer-shaped oligomers of resorcinol, the
intramolecular and intermolecular hydrogen bonding feasibility has been
tested using the DFT-BLYP approach and the DNP basis set, in the gas
phase and in the presence of aqueous solvent. After locating the active site
through Fukui functions within the realm of the HSAB principle, the
relative nucleophilicity of the active cation sites in their hydrated state has
been calculated. A novel quantitative scale in terms of the relative nucleo-
philicity and electrophilicity of the interacting resorcinol oligomers before
and after solvation, is proposed. Besides that, a comparison with a hydra-
tion situation and also the evaluation of the strength of the hydrogen bridges
have been performed using mainly the dimer- and cyclic tetramer-type
oligomers of resorcinol. Using periodic ab initio calculations, the formation
mechanisms were traced: (1) resorcinol molecules combine without any
interaction with water, (2) resorcinol oligomerizes through water. Both the
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mechanisms are compared and the effect of water on the process is eluci-
dated. The results show that resorcinol molecules combine after hydration
only and hence they are stable at higher temperature. The fittings of the
oligomers were also tested as well by periodic calculation to compare the
stability of the oligomers inside the newly formed clay nanocomposite.

4. Effect of dopants on Brönsted and Lewis acid site: The influence of both
bivalent and trivalent metal substituents from a range of metal cation (Co,
Mn, Mg, Fe, and Cr) on the acidic property (both Brönsted and Lewis)
of metal substituted aluminum phosphate MeAlPOs is monitored [39].
The influence of the environment of the acid site is studied both by
localized cluster and periodic calculations to propose that the acidity of
AlPOs can be predictable with accuracy so that AlPO material with desired
acidity can be designed. A semiquantitative reactivity scale within the
domain of HSAB principle is proposed in terms of the metal substitutions
using DFT. It is observed that for the bivalent metal cations, Lewis
acidity linearly increases with ionic size, where as the Brönsted acidity is
solely dependent on the nearest oxygen environment. Intramolecular
and intermolecular interactions show that once the active site of the inter-
acting species is identified, the influence of the environment can be pre-
scribed. Mg(II)-doped AlPO-34 shows highest Brönsted acidity, whereas
Cr(III)-doped species shows lowest acidity. Fe(II)=Fe(III)-doped AlPO-34
show highest Lewis acidity, whereas Mn(III)-doped, Mg(II)-doped species
show lowest acidity.

5. Effect of divalent cations on the swelling of clay: We used both localized
and periodic calculations on a series of monovalent (Liþ, Naþ, Kþ, Rbþ,
Csþ) and divalent (Mg2þ, Ca2þ, Sr2þ, Ba2þ) cations to monitor their effect
on the swelling of clays [40,41]. The activity order obtained for the
exchangeable cations among all the monovalent and divalent series studied:
Ca2þ > Sr2þ >Mg2þ > Rbþ > Ba2þ > Naþ > Liþ > Csþ > Kþ. We have
shown that, in case of dioctahedral smectite, the hydroxyl groups play a
major role in their interaction with water and other polar molecules in the
presence of an interlayer cation. We studied both types of clays, with a
different surface structure and with=without water using a periodic calcula-
tion. Interlayer cations and charged 2:1 clay surfaces interact strongly with
polar solvents; when it is in an aqueous medium, the clay expands and the
phenomenon is known as crystalline swelling. The extent of swelling is
controlled by a balance between relatively strong swelling forces and
electrostatic forces of attraction between the negatively charged phyllosili-
cate layer and the positively charged interlayer cation. We have calculated
the solvation energy at the first hydration shell of an exchangeable cation,
but the results do not correspond directly to the experimental d-spacing
values. A novel quantitative scale is proposed with the numbers generated
by the relative nucleophilicity of the active cation sites in their hydrated
state through Fukui functions within the realm of the HSAB principle. The
solvation effect thus measured shows a perfect match with experiment,
which proposes that the reactivity index calculation with a first hydration
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shell could rationalize the swelling mechanism for exchangeable cations.
The conformers after electron donation or acceptance propose the swelling
mechanism for monovalent and divalent cations.

6. Effect of solvation on the interaction of chromophore: Amino-functional
silanol surface is mostly used for the immobilization of inorganic ions,
molecules, organic, or biochemical molecules onto the mesopore surface.
In analytical chemistry, the metal ion uptake was visualized through
colorimetric sensors using chromophore molecules. One needs to know
the structure property correlation between the chromophore and silylating
agent while choosing a chromophore, which is very important to design
the sensors. We have used two chromophores representative of hydropho-
bic and hydrophilic type and used density functional calculation on all the
interacting molecules in both the unsolvated phase and solvated medium
within the domain of HSAB principle to look at the localized activity of
the interacting atoms of these reacting molecules to formulate a rule to
choose the best chromophore. The mechanism of interaction between
chromophore and the silylating agent has also been postulated. The results
were compared with experiment, and it is observed that solvation plays a
detrimental role in the binding of chromophore with silylating agent. The
results also show that the range of reactivity index can be used as a
suitable property to scale the activity of chromophore molecules suitable
for the sensing process. It is observed that the hydrophobic chromophore
binds stronger with both the metal and the silylating agent whereas for the
hydrophilic one, it binds only with the silylating agent when solvated, and
in all cases the metal ion binding is weaker compared to that of the
hydrophobic one [42].

7. Prediction of interaction between metal clusters with oxide surface: The
HSAB principle classifies the interaction between acids and bases in terms
of global softness. In the last few years, the reactivity index methodology
was well established and had found its application in a wide variety of
systems. This study deals with the viability of the reactivity index to
monitor metal cluster interaction with oxide. Pure gold cluster of a size
between 2 and 12 was chosen to interact with clean alumina (100) surface.
A scale was derived in terms of intra- and intermolecular interactions of
gold cluster with alumina surface to rationalize the role of reactivity index
in material designing [43].

8. Recent exemplary studies with reactivity indices for silica nanowires:
Structural and dynamic properties of the building block of silica nanowires,
(SiO2)6, are investigated by quantum molecular dynamics simulations [44].
The energy component analysis shows that the lower electrostatic inter-
action differentiates the global minimum from the other structures. With
the dominant electrostatic interaction, we further observe that the PMH can
be employed to justify the molecular stability of this system. Time profiles
of a few density functional reactivity indices exhibit correlations of
dynamic fluctuations between HOMO and LUMO and between chemical
potential and hardness. Electrophilicity, nucleaofugality, and electrofugality
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indices [44] are found to change concurrently and significantly, indicating
that the nanostructures sampled during the dynamic process are exceedingly
reactive and rich in chemistry.

9. A comparison of porphyrin and pincer activity rationalized through
reactivity index: Porphyrin and pincer complexes are both important cat-
egories of compounds in biological and catalytic systems. Structure, spec-
troscopy, and reactivity properties of porphyrin pincers are systematically
studied for selection of divalent metal ions. It is reported that the porphyrin
pincers are structurally and spectroscopically different from their precursors
and are more reactive in electrophilic and nucleophilic reactions. These
results are implicative in chemical modification of hemoproteins and under-
standing the chemical reactivity in heme-containing and other biologically
important complexes and cofactors [45].

10. Study on CDK2 Inhibitors Using Global Softness: The reactivity index is
well popular in pharmaceutical and drug applications. In particular, one
problem of drug design is that one has to synthesize and screen thousands,
sometimes, millions of candidate chemicals in developing one successful
drug. There was a very successful study with reactivity index, long back, on
human immunodeficiency virus (HIV) [46]. The cyclin-dependent kinases
(CDKs) are a class of enzymes involved in the eukaryotic cell-cycle
regulation. A recent theoretical study was on a series of CDK2 inhibitors
using a set of global reactivity indices defined in terms of the density of
states [47]. The related series were classified on the basis of the correlations
obtained for the complete set of compounds and the sites targeted within the
active site of CDK2. The comparison between the biological activity and
the electronic chemical potential obtained through Fermi level yields
poor results, thereby suggesting that the interaction between the hinge
region of CDK2 and the ligands may have a marginal contribution from
the charge transfer component. The comparison between the biological
activity and global softness shows a better correlation, suggesting that
polarization effects dominate over the CT contribution in the interaction
between the so-called hinge region and the ligand. This result is very
encouraging to show that the role of reactivity index in the intermolecular
interaction, can be further extrapolated to the intermolecular region to study
the occupied states.

11. An exemplary application of reactivity in gas sensor with single-wall carbon
nanotube (CWT ): In this part, we wish to explore interatomic interaction as
well as intramolecular interation through the center of activity. Since the
discovery of the structure of CNTs or SWNT, much effort has been devoted
to finding the uses of these structures in applications ranging from field-
emission devices to other nanodevices [48,49]. Kong et al. [50] proposed
for the first time the use of CNTs as gas sensors. Experimental data
have shown that transport properties of SWNT change dramatically upon
exposure to gas molecules at ambient temperature [51]. Main advantage
of the open SWNT bundles is that they provide a larger number of adsorp-
tion sites. As a result, the adsorption capacity is significantly increased and
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several new structures and phase transitions were observed [52]. A recent
study of Andzelm et al. [53] indicates that the semiconducting SWNTs can
serve as gas sensors for several gases like CO, NH3, H2, etc. However, NH3

shows an intriguing behavior compared to the other gases. NH3 molecule
binds weakly with CNTs, yet can change the conductance significantly.
This discrepancy was explained by assuming that the NH3 binds at defects.
For a semiconducting SWNT exposed to 200 ppm of NO2, it was found that
the electrical conductance can increase by three orders of magnitude in a
few seconds. On the other hand, exposure to 2% NH3 caused the conduct-
ance to decrease up to two orders of magnitude [54]. Sensors made from
SWNT have high sensitivity and a fast response time at room temperature,
which are important advantages for sensing applications.

We have studied the interaction of CNT with different gas molecules such as O2, N2,
H2, CO2, and NO2 to have an understanding of the adsorption behavior of the
selected gases in defect-free CNT. We will as well focus on to figure out the effect
of variation in the conductance with gas sorption, by applying external electric field.
It is very difficult to obtain conductance by quantum mechanical calculation as it
will be very much CPU intensive, but measurement of conductance is an utmost
important parameter to prove the efficiency of the nanotubes as gas sensors, which is
the experimental way of measuring sensors. Thus, a method was developed by
calculating the change in the reactivity index before and after the application of
the electric field. The reactivity index provides information about the activity of the
gas molecules over SWNT, and if the activity changes then the sensing behavior will
change. This is a simplistic approach, which is cost-effective to new material design
for the sensor industry.

Here, we have first optimized all the molecules and half of the CNT using the
same level of theory with DFT as mentioned earlier. We have then calculated the
Fukui function for the individual molecules. The results for the global softness,
Fukui function, and the local softness values were calculated for the nucleophilic and
electrophilic behavior and are shown in Table 32.1. Figure 32.1a and b and Figure
32.2a and b represent the plot of electrophilic and nucleophilic Fukui function for the
H2 and CO2 molecules, respectively. We have also calculated the same Fukui
function and plotted the electrophilic function only for the CNT. A drastic change
in the Fukui function values was observed for H2 and CO2. Hydrogen shows a lower
softness values compared to that of CO2. The order of activity for all the interacting
molecules after adsorption over CNT is CO2>NO2>N2>O2>H2. To validate
this order, we have optimized half of the nanotube first and monitored the electro-
philic Fukui function (Figure 32.3). This is followed by the adsorption of H2 and
CO2 through a grand canonical Monte Carlo (GCMC) simulation methodology using
the Sorption tools of Accelrys [55]. The configurations are sampled from a grand
canonical ensemble. In the grand canonical ensemble, the fugacity of all compon-
ents, as well as the temperature, are fixed as if the framework was in open contact
with an infinite sorbate reservoir with a fixed temperature. The reservoir is com-
pletely described by the temperature plus the fugacity of all components and does not
have to be simulated explicitly. The adsorption isotherm for the gas molecule has
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TABLE 32.1
Global Softness, Fukui Function, and Local Softness
of the Interacting Molecules

System Global Softness fþx sþx f�x s�x

N2 (free) 1.956 0.5 0.98 0.5 0.98
N2 (adsorbed) 1.956 0.22 0.43 0.22 0.43

O2 (free) 1.589 0.22 0.34 0.22 0.34
O2 (adsorbed) 1.589 0.24 0.38 0.24 0.38
H2 (free) 2.150 0.36 0.77 0.36 0.77

H2 (adsorbed) 2.150 0.07 0.15 0.07 0.15
C of CO2 (free) 2.666 0.22 0.59 0.45 1.20
C of CO2 (adsorbed) 2.666 0.30 0.78 0.50 1.30

O of CO2 (free) 2.666 0.27 0.72 0.39 1.04
O of CO2 (adsorbed) 2.666 0.01 0.03 0.04 0.11
N of NO2 (free) 2.680 0.21 0.56 0.21 0.56
N of NO2 (adsorbed) 2.680 0.36 0.96 0.26 0.69

O of NO2 (free) 2.680 0.14 0.37 0.14 0.37
O of NO2 (adsorbed) 2.680 0.03 0.08 0.12 0.32

(a) (b)

Y
XZ

Y
XZ

FIGURE 32.1 (a) The electrophilic Fukui function of hydrogen is plotted as an isosurface
with a grid of 0.2 Å. (b) The nucleophilic Fukui function of hydrogen is plotted as an
isosurface with a grid of 0.2 Å.

(a) (b)

Y
XZ

Y
XZ

FIGURE 32.2 (a) The electrophilic Fukui function of carbon dioxide is plotted as an
isosurface with a grid of 0.2 Å. (b) The nucleophilic Fukui function of carbon dioxide is
plotted as an isosurface with a grid of 0.2 Å.
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also been calculated to compare with the experiment. A Langmuir-type isotherm for
a fixed pressure of gas was observed. The minimum energy adsorption configuration
is shown in Figures 32.4 and 32.5, respectively, for carbon dioxide and hydrogen.
We have as well plotted the electrophilic Fukui function for the adsorption complex
of carbon dioxide and hydrogen as oriented over the CNT, as shown in Figures 32.6
and 32.7, respectively. We have then taken the geometry of the local minima and
optimized the geometry with DFT by using the same level of theory in which we
have optimized the whole complex molecule. The next step is the calculation of
binding energy in the presence and absence of the electric field. We have calculated
the binding energy in presence of an electric field of 0.05 a.u. in the same direction
with the CNT length. The results of binding energy are shown in Table 32.2. There
is a variation in the order of energy, but the trend remains the same. The energy
gap looks very narrow for the adsorption complex. Finally, we have performed

Z
Y

FIGURE 32.3 The electrophilic Fukui function of single wall CNT is plotted as an isosur
face with a grid of 0.2 Å.

A

FIGURE 32.4 (See color insert following page 302.) The localized minima as obtained
after the GCMS simulation with carbon dioxide adsorption over single wall CNT with a fixed
fugacity of 100 kPa.
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A

FIGURE 32.5 The localized minima as obtained after the GCMS simulation with hydrogen
adsorption over single wall CNT with a fixed fugacity of 100 kPa.

FIGURE 32.6 (See color insert following page 302.) The electrophilic Fukui function of
carbon dioxide adsorbed over single wall CNT is plotted as an isosurface with a grid of 0.2 Å.

Y
Z

FIGURE 32.7 The electrophilic Fukui function of hydrogen adsorbed over single wall CNT
is plotted as an isosurface with a grid of 0.2 Å.
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only the interaction energy calculation using l. No change in the order of activity
was found, but the numbers are more robust than the binding energy. The order
obtained by binding energy calculations follow the same trend as obtained from
Fukui function calculation. This shows that the method is robust and can be
dependable for localized interactions. This is an example to design new material
for an application with a recent need where experimentation is hard and designing
is difficult.

32.4 CONCLUSION

In this chapter, we have presented an overview of the reactivity index theory from
concept to industrial application. We have demonstrated that a theory within the DFT
domain based on the theory of electronegativity and explored in the realm of electron
affinity and ionization potential, is capable to deliver a simple correlation to predict
the intermolecular and intramolecular interactions. If one can predict the localized
interaction between interacting species carefully, then it will be possible to rational-
ize many chemical phenomena. The main issue of the industry is to reduce cost
and to design novel material for a specific application, which is time consuming
due to the trial and error process involved in this and as well expensive. They need
a reliable as well as a faster way to screen the reactants and propose the products,
which can be handled well by computer simulation technology with current
reactivity index. We have tried to share with you its capability through the various
application examples from the research of our group and as well some recent
applications to show that reactivity is an emerging area for material designing
from nanocluster through nanowire, nanotube to biomaterial applications. The effort
will only be successful if one believes in this and tries to explore around to make it
more robust and develop the way to apply this unique theory to all possible materials
of choice and interest.

TABLE 32.2
Binding Energy and the Interaction Energy
for the Interacting Molecule with SWNT

Binding Energy (eV)

Molecule Normal

Presence of Electric
Field 0.05 a.u. in the

Tube Direction l (eV)

N2 0.42 0.46 1.56

O2 0.37 0.54 1.07
H2 0.15 0.65 0.86
CO2 0.78 0.18 2.91

NO2 0.56 0.32 1.81
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33.1 PARTICLE-IN-A-BOX AS AN EXAMPLE OF A CONFINED
PARTICLE

Recently, there has been a renewed interest in studying the electronic structure and
reactivity of the spatially confined atoms and molecules among the community of
chemists and physicists. This is mainly due to the possible application of such studies
in the development of new materials, specifically in the nanotechnology field.
Though simple in appearance, the one-electron systems under confined potential
exhibit several surprising characteristics not generally encountered in the free atoms
and molecules. On purely theoretical grounds, understanding the behavior of the
spatially confined systems is computationally challenging and conceptually enticing
at the same time. In this chapter, we shall be concerned with the spatially confined
atoms i.e., N-electronic system with the nuclear charge Z located at the center and
spherically confined by potential walls located at a finite radius, Rc. Here, the wave
function describing the N-electrons of the confined atom must be found through the
Schrödinger equation including the new boundary conditions.

Before starting the discussion on confined atoms, we shall briefly describe the
simplest standard confined quantum mechanical system in three dimensions (3-D),
namely the particle-in-a-(spherical)-box (PIAB) model [1]. The analysis of this
system is useful in order to understand the main characteristics of a confined
system. Let us note that all other spherically confined systems with impenetrable
walls located at a certain radius, Rc, transform into the PIAB model in the limit of
Rc! 0. For the sake of simplicity, we present the model in one-dimension (1-D). In
atomic units (a.u.) (me¼ 1, qe¼ 1, and h ¼ 1), the Schrödinger equation for an
electron confined in one-dimensional box is
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� 1
2

d2

dx2
þ V(x)

� �
wn(x) ¼ «nwn(x) (33:1)

with

V(x) ¼ 0 0 < x < Rc

1 x � 0 and x � Rc

�
(33:2)

In this case, the box length is represented by Rc. The solution of the Equation 33.1, in
atomic units, is

«n ¼ n2p2

2R2
c

(33:3)

and

wn(x) ¼
2
Rc

� �1=2

sin
npx

Rc

� �
(33:4)

with n¼ 1, 2, . . . ,1. We note that this system satisfies the Dirichlet boundary
conditions, wn(0)¼wn(Rc)¼ 0. For the 3-D box, Equations 33.3 and 33.4 remain
unchanged except that the variable x is to be replaced by r, the variable of radial
distance from the origin.

From Equation 33.3 we obtain the behavior of the energy of each state as a
function of the confinement length, Rc. It follows that if Rc is decreased (compres-
sion) then the energy will be increased, and vice versa. The wave function displays a
similar behavior, i.e., its amplitude increases when the confinement length is
decreased. We would like to draw attention to an important characteristic of these
wave functions. In the Figure 33.1, we have plotted the ground state function for
three values of Rc: 0.5, 1.0, and 2.0 a.u. It is clear that the three functions satisfy the
boundary conditions, but the derivatives of these functions evaluated on the bound-
aries are different from 0.

From Equation 33.4 we can evaluate these derivatives at the boundaries,

dwn

dx

����
x¼0

¼ np

Rc

2
Rc

� �1=2

, (33:5)

dwn

dx

����
x¼Rc

¼ (�1)n
dwn

dx

����
x¼0

: (33:6)

These equations suggest that a reduction in the confinement ‘‘length’’ results in the
identical increase in the magnitude of the derivatives at the two conjugate boundar-
ies. Clearly, we can associate these derivatives with the derivatives of the energy
with respect of the confinement length as
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@«n
@Rc

¼ � 1
2

�
dwn

dx

����
x¼0

�2

¼ � 1
2

�
dwn

dx

����
x¼Rc

�2

: (33:7)

This is an important result because the pressure p on the walls of a container induced
by the electron cloud, may be estimated as

p ¼ � @E

@V

� �
T

(33:8)

for the systems obeying the Dirichlet boundary conditions.
In this equation, E represents the electronic system energy, V the container

volume, and T the temperature. In our case we have T¼ 0, E¼ «n, and the pressure
is given by

p ¼ � @«n
@Rc

¼ n2p2

R3
c

: (33:9)

Thus, for the PIAB, the pressure is directly related to the slope of the wave function
evaluated at the boundaries defining the length of confinement. As noted earlier,
when the confinement length is reduced the pressure will be increased. However,
depending on the quantum state (different principal quantum number, n), the pressure
will be different, even if Rc is the same. From Equations 33.3 and 33.9 a relationship
between the energy and the pressure can be established to obtain a plot similar to that
presented in Figure 33.2.
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FIGURE 33.1 Ground state wave function for three values of Rc: 0.5, 1.0, and 2.0 a.u. See
how the derivatives of the wave function, on the boundaries, are increased when Rc is reduced.
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In this plot, we can see that if we increase the pressure, the energy also will be
increased but the rate of this increment will be different for each state. The results
discussed for the PIAB model are particular situations of generalizations reported for
systems confined with Dirichlet boundary conditions [2]. We must remember these
results for further discussion through this chapter. Let us conclude this section with
the remark that the state dependence of the effective pressure at the given value of Rc

can be analogously understood in terms of the different electron densities and their
derivatives at the boundaries. In most general case of atoms and molecules, scaled
densities may have to be employed in order to include the excited states. In the next
section, we present some basic results on such connections between wave function
and electron density.

33.2 DERIVATIVES OF ELECTRON DENSITY
AND THE WAVE FUNCTION

Consider a general one-dimensional system with Schrödinger equation

� 1
2
c00 ¼ [E � V(x)]c: (33:10)

For this case, the electron density r¼C2. For simplicity we assume that C is real,
such that the first derivative

r0 ¼ 2cc0 (33:11)
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FIGURE 33.2 Energy as a function of the pressure for n¼ 1, 2, 3, and 4 of the PIAB.
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and the second derivative

r00 ¼ 2CC00 þ 2(C0)2: (33:12)

Three distinct possibilities of the position variable are obtained from Equation 33.12,
depending upon the sign of the first term CC00.

1. Over the classically allowed region where E V(x)> 0, according to
Equation 33.10, C00 has the opposite sign of C, i.e., CC00 � 0. So in this
region, from Equation 33.12, r00 could also be negative.

2. In the classically forbidden region, on the other hand, C00 has the same sign
as C and it follows from Equation 33.12 that r00 is positive.

3. At the classical turning point, C00 ¼ 0, which turns r00 positive.

Let us consider the locations of position space (values of x) where r has either a
maximum [r00 < 0], minimum [r00 > 0], or a point of inflexion [r00 ¼ 0].

At its maxima, r must satisfy r00 < 0, which suggests that such locations must lie
within the classically allowed region. The same applies for the existence of inflection
points in r. At the nodes of C, Equation 33.12 implies that r00 > 0. At such points, r
in fact has a minimum. Finally, when the potential is reflection symmetric then at the
origin (x¼ 0), either C0 ¼ 0 (even function) or C¼ 0 (odd function). For even
functions, r00 < 0 if the origin is within the classically allowed region and r00 > 0 if
the potential is such that the origin is within the classically forbidden region. For odd
functions, it is always true that r00 ¼ 0 at the origin. These results are strictly valid for
the one-dimensional case.

33.3 CONFINED HYDROGEN ATOM

Just 10 years after the free hydrogen atom problem was solved in quantummechanics,
Michels and coworkers [3] proposed the model of the spherically confined hydrogen
atom and obtained the approximate solutions of the corresponding Schrödinger
equation with impenetrable boundary. The idea was originally conceived in order
to simulate the effect of pressure on the polarizability of hydrogen atom. In this
model, the hydrogen atom is centrally confined inside a spherical cavity surrounded
by impenetrable wall. The Schrödinger equation for a hydrogen-like atom (in a.u.)
is written as

� 1
2
r2 � Z

r

� �
w(r) ¼ «w(r): (33:13)

In this the three-dimensional can be transformed to work just with the radial
coordinate, r. For this purpose, the wave function is written as a product of
two functions. The first one depends only on the radial coordinate and the other
on the angular coordinates denoted by R(r) and Y(u,f), respectively. In the
solution of the hydrogen atom, it is found that R(r) depends on the quantum number
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n¼ 1, 2, . . . and Y depends on two quantum numbers, l¼ 0, 1, 2, . . . , n� 1 and
m¼�l, �lþ 1, . . . , 0, . . . , l�1, l [1]. In this way, the wave function will depend on
three quantum numbers

wnlm(r, u,f) ¼ Rnl(r)Ylm(u,f): (33:14)

In addition to these new two functions, the Laplacian operator r2 is written in
spherical coordinates as

r2 ¼ @2

@r2
þ 2

r

@

@r
� 1
r2
L̂2: (33:15)

This is a convenient way to express the Laplacian operator because the Y function is
an eigenfunction of the angular momentum operator L̂2

L̂2Ylm(u,w) ¼ l(lþ 1)Ylm(u,w): (33:16)

By using Equations 33.15 and 33.16 within Equation 33.13 and eliminating the Ylm
function, an equation for the radial function is obtained as

� 1
2

d2

dr2
� 1

r

d

dr
þ l(lþ 1)

2r2
� Z

r

� �
Rnl(r) ¼ « Rnl(r): (33:17)

In the solution of this equation, the energy is a function just of the quantum number
n. Thus, states with the same n but different l have the same energy. This is the
so-called accidental degeneracy which implies that while the effective potential

l(lþ 1)
2r2

� Z

r

which yields the radial wave function changes as quantum number l changes for a
given n, leading to different total wave functions, and their energy remains the same
as it depends only on n. For the confined hydrogen-like system, we will define the
potential energy operator as

V(r) ¼ � Z
r r < Rc

1 r � Rc

�
: (33:18)

With this form of the operator, we preserve the spherical symmetry. In the solution of
this equation, a new function is defined as

cnl(r) ¼ rRnl(r): (33:19)

Substitution of this equation in Equation 33.17 conduces to

� 1
2

d2

dr2
þ l(lþ 1)

2r2
þ V(r)

� �
cnl(r) ¼ «cnl(r): (33:20)
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The boundary conditions on cnl(r) are determined by the boundary conditions of
Rnl(r). Because Rnl(r) is finite in the origin, then cnl(0)¼ 0. Furthermore, as we have
a potential wall of infinite height, similar to that found in the PIAB, the resulting
wave function on the surface of this wall must vanish. Thus, we have the Dirichlet
boundary conditions for this problem

cnl(0) ¼ cnl Rcð Þ ¼ 0: (33:21)

This problem does not admit an analytic solution, but it has been solved with several
techniques to obtain very accurate values [4 6]. In our case, we will use a simple
technique to obtain many of the characteristics exhibited by the confined atoms.

In the first stage of our approach, the wave function will be represented by a set
of functions. In order to decide which basis set we will use, the radial coordinate will
be changed by the scaled variable x defined as

x ¼ p

Rc

r: (33:22)

With this scaled variable, the Equation 33.20 becomes

� 1
2

d2

dx2
þ l(lþ 1)

2x2
þ V(x)

� �
cnl(x) ¼ lcnl(x) (33:23)

with l¼ (Rc=p)
2«, and

V(x) ¼ � Rc

p
Z
x x < p

1 x � p

�
: (33:24)

With x, the boundary conditions are

cnl(0) ¼ cnl(p) ¼ 0: (33:25)

Here we will use K functions from the solution of the PIAB, to represent cnl(x) as

c(x) ¼
XK
j¼1

cjfj(x) (33:26)

with

fj(x) ¼ 2
p

� �1=2

sin( jx): (33:27)

In proceeding procedure, we must determine {cj}; for this purpose, Equation
33.26 is substituted into Equation 33.23. If the resulting equation is multiplied on
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the left side by the fk function and then integrated over x, one obtains the matrix
equation for the set {cj},

HC ¼ lSC: (33:28)

In this equation, C represents a vector with the {cj} set as its components. H is a
matrix with K�K elements, with Hkj given by

Hkj ¼
ðp

0

dxfk(x) � 1
2

d2

dx2

� �
fj(x)þ

ðp

0

dxfk(x)
l(lþ 1)
2x2

� �
fj(x)þ

ðp

0

dxfk(x) �Rc

p

Z

x

� �
fj(x):

(33:29)

S represents the overlap matrix, with elements

Skj ¼
ðp

0

dxfk(x)fj(x): (33:30)

The advantage of these functions is their orthogonality property, giving a diagonal
matrix for S with 0 or 1 as elements. With this form of S, we have a standard
eigenvalue algebraic problem where C and l must be determined.

The integrals involved in the matrix elements of Equation 33.29 can be evaluated
by several techniques; in our case we will use Mathematica to compute the integrals
and to solve the eigenvalue algebraic problem. The Mathematica instructions (for
any release) to use are

(* Equation (27) *)

f[j_,x_]:¼Sqrt[2=Pi]Sin[j*x];
(* First integral of the equation (29) *)

firsterm[k_,j_]:¼Integrate[f[k,x]*j*j*Sin[j*x],

{x,0,Pi}]=Sqrt[2*Pi];
(* Second integral of the equation (29) *)

secondterm[k_,j_]:¼NIntegrate[f[k,x]*f[j,x]=(x*x),
{x,0,Pi}];

(* Third integral of the equation (29) *)

thirdterm[k_,j_]:¼NIntegrate[f[k,x]*f[j,x]=x,{x,0,Pi}];
(* Matrix H as a function of the angular momentum, l, the

confinement radius, Rc, and the number of functions, func *)

matrixh[l_,Rc_,func_]:¼Table[firsterm[k,j]þl*(lþ1)

*secondterm[k,j]=2 Rc*thirdterm[k,j]=Pi,{j,1,func},
{k,1,func}];
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With these five instructions, we can solve the confined hydrogen atom, Z¼ 1.
For example, if we want to obtain the orbitals with l¼ 0 for Rc¼ 1.0 and K¼ 25,
then the following instruction will give the answer

Rc¼1.0;

MatrixForm[Pi*Pi*Sort[Eigenvalues[math[0,Rc,25]]]=
(Rc*Rc)]

By using this procedure, we have calculated the energies for the confined
hydrogen atom for l¼ 0, 1, 2, 3 and n¼ 1, 2, 3, 4, corresponding to two confinement
radii, Rc¼ 1.0 and 7.0 a.u. These results are presented in Table 33.1, where it is
found that the energy depends on two quantum numbers n and l. Thus, there is a
breaking of the degeneracy in l. For example, the 2s orbital has different energy than
the 2p orbital. In addition to this effect, we observe the following energy ordering for
Rc¼ 7.0 a.u.: «1s< «2p< «2s< «3d< «3p< «4f< «3s< «4s< «4d< «4p. Interestingly,
the ordering presented by the shell M (n¼ 3), where the 3d orbital has the lowest
energy, 3p the next, and 3s has the highest energy. The magnitude of this effect is
more pronounced when the confinement radius is decreased. For example, when
Rc¼ 1.0 a.u. the energy ordering is «1s< «2p< «3d< «2s< «4f< «3p< «4d< «3s< «4p
< «4s. From these examples, we conclude that there are many crossings between the
orbital energies depending on the confinement radii [7,8]. From the PIAB problem, it
was concluded that the energy rate as a function of the confinement depends on the
confinement radius and consequently on the pressure. From the confined hydrogen
atom, a more subtle dependence on its parameters is observed; for a given value of
n, there are crossings of the orbital energies with different angular momentum as Rc
is varied.

TABLE 33.1
Energy Values for the Confined Hydrogen Atom

Principal
Angular Momentum (l)

Quantum 0 1 2 3

Rc Number (n) s p d f

7.0 1 0.4988
2 0.0509 0.0874
3 0.3928 0.2580 0.0966
4 1.0582 1.8311 1.2397 0.2776

1.0 1 2.3740
2 16.5704 8.2234
3 40.8633 27.4760 14.9675

4 75.1308 56.7653 39.3153 22.8958

Note: Energies are in atomic units.
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The dependence of the energy with respect to the pressure for the orbitals with
n¼ 1, 2, 3, and 4 is displayed in Figure 33.3. This plot was generated by numerical
evaluation of Equation 33.8 which, for the confined hydrogen atom, is given by

p ¼ � 1
4pR2

c

@«nl
@Rc

� �
: (33:31)

We evaluate numerically this derivative by using 3 values of Rc, each value is spaced
in 0.05 a.u., beginning with Rc¼ 1.0 a.u. and extending up to Rc¼ 7 a.u., and the
energy was computed for each l on these points.

This plot reveals the main characteristics of the confined atoms; depending on
the angular momentum, each orbital behaves in a different way, because the energy
is increased rapidly when the wave function contains several nodes. This behavior is
related to the kinetic energy of each state; this quantity is increased when the orbital
present several nodes and the atom is submitted to small confinement radii. We
conclude this section with two observations. Firstly, the notation of (nl) defining the
states of the confined hydrogen is retained although the integral values of n only
refer to the free hydrogen atom. This is due to the fact that the nodal characteristics of
the wave functions of the confined system remain the same as in free state with
changed locations. Secondly, the fact that the higher l orbitals are relatively less
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FIGURE 33.3 Energy as a function of the pressure n¼ 1, 2, 3, and 4 of the confined
hydrogen atom. For different values of l, there are labels for the orbitals: s for l¼ 0, p for
l¼ 1, d for l¼ 2, f for l¼ 3.
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destabilized under confinement, can be qualitatively understood from the relative
sizes of the orbitals of the free hydrogen atom. The average radius hri of the (nl) state
of the free hydrogen atom is given by (in a.u.) 1=2[3n2 �l(lþ 1)]. Considering the
example of 3s, 3p, and 3d orbitals, the average radius decreases with increasing l. If
we choose Rc corresponding to the average size of 3d orbital, then in order to confine
3p and 3s orbitals to the same size, one has to compress both of them. However, 3s
orbital must be compressed (confined) more than 3p orbital and no compression is
needed for 3d orbital, which is already at Rc. This is why the relative destabilization
under confinement is inversely proportional to l for a fixed n.

33.4 CONFINED MANY-ELECTRON ATOMS

We have discussed in the previous section the simplest confined atom, the hydrogen
atom. Due to the different possibilities of the orbital energy level ordering under
confinement, the electron configuration of a confined many-electron atom will have
the possibility of obeying different Aufbau principle, which depends on the nature of
confinement. Let us think in the potassium atom, when this atom is free (not
confined) the electron configuration is 1s22s22p63s23p64s1 (1S). In the hypothetical
case of noninteracting electrons in an atom, the electron configuration could be
determined by the hydrogen atom. Thus, for the confined K atom we could obtain
crossings between the orbital energies and consequently, the electron configuration
will be different depending on the confinement imposed on the atom. However, we
know that the electrons in an atom are interacting particles; consequently, we need a
theory to describe the electron structure of a confined atom. In this chapter, we will
use the Kohn Sham model [9] to obtain the electron structure of the confined many-
electron atoms.

The radial Kohn Sham equations to solve are

� 1
2

d2

dr2
þ l(lþ 1)

2r2
þ yJ(r)þ ysxc(r)þ V(r)

� �
cs
nl(r) ¼ «cs

nl(r), (33:32)

where s denotes the spin associated to each electron, a or b, and V(r) is the same
than that defined in Equation 33.18. In Equation 33.32, yJ(r) represents the spherical
Coulomb potential obtained from

yJ(r) ¼ 1
4p

ð
dV

dJ

drs(r)
¼ 1

4p

ð
dV

ð
dr0

r(r0)
r� r0j j : (33:33)

In this equation rs(r) is the electron density with s spin, defined as

rs(r) ¼
XNs

i¼1

ws
i (r)

�� ��2 (33:34)

with Ns as the number of electrons with s spin, the sum of these components give
the total electron density
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r(r) ¼
XNs

i¼1

rs(r): (33:35)

The exchange-correlation potential, ysxc(r), is given by

ysxc(r) ¼
1
4p

ð
dV

dExc

drs(r0)
: (33:36)

In this chapter, we will use just the exchange contribution in the local density
approximation,

ysxc(r) ¼ � 4
3
cx rs(r)f g1=3 (33:37)

with

cx ¼ 3
4

3
p

� �1=3

:

Equation 33.32 can be solved by numerical techniques. For numerical details, we
refer the reader to Refs. [10,11]. In the remaining part of this section, we present
theoretical predictions derived from such calculations which can be compared with
experimental findings. According to the Figure 33.3, we expect the 3d orbital energy
to stay below the 4s orbital energy for small confinements.

We will now consider the orbital energies of the electrons with a spin, for the K
atom confined inside a cavity with rigid walls. In Figure 33.4, we have focused on
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FIGURE 33.4 Orbital energies for the confined K atom. See how the ordering is changing
when the confinement radius is changing.
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the highest orbitals, occupied and unoccupied. We note that for Rc> 5 a.u., the 4s
orbital energy is lower than the 3d orbital, and consequently the electron configur-
ation corresponds to the 1S state. However, for small Rc values, the 3d orbital energy
is more stable than the 4s orbital energy. We can see, from the Figure 33.4, the
crossing between «4s and «3d, around Rc¼ 4.5 a.u. This result suggests that the
electron configuration 1s22s22p63s23p63d1 can be more stable than that correspond-
ing to the free atom. To verify this hypothesis, we must compute the total energy of
the confined atom for the two-electron configurations and find the most stable
configuration, depending on the total energy.

In Figure 33.5, we presented the energy for the two-electron configurations as a
function of the confinement radius. It is clear from this figure that there is a crossing
between the energies with different electron configuration. In fact, we see the
crossing between the total energies in a similar Rc than that presented by the orbital
energies (see Figure 33.4). Here is an important prediction of experimental signifi-
cance coming from the confined atom model; the confinement induces changes on
the electron configuration in an atom. Most interesting question is about the pressure
at which such a transition in electron configuration actually takes place. From the
confined hydrogen atom we found the difference between a energy versus Rc

plot and a energy versus pressure plot. In the same way we numerically built the
energy versus pressure plot in the hydrogen atom, we can apply such an approach for
any atom. In the Figure 33.6, the energy versus pressure plot for the confined K atom
is depicted for low pressure values. It is clear from this plot that the electron
configuration transition is presented for small pressures.

We know that for same Rc, each orbital exhibits a different pressure. Thus,
for the point where the pressure and the total energy coincide in both electron
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FIGURE 33.5 Total energy as a function of the confinement radius for the configurations 1S
(solid line) and 1D (dotted line).
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configurations, the Rc must be different. In Table 33.2 we are reporting some
values for Rc, total energy and pressure for the two-electron configurations consid-
ered in our discussion. The numbers with bold font are those where there is an
intersection between the total energy and the pressure for both configurations. These
values are useful if we want to apply an interpolation method and find the intersec-
tion point to predict the pressure where the transition is presented. We want to
remark that for the transition pressure, the Rc and consequently the volume, are not
the same for both electron configurations. From the Table 33.2, it is clear that the 1S
configuration presents bigger volumes than the configuration 1D for similar pressure

−595.0
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FIGURE 33.6 Total energy as a function of the pressure for the configurations 1S (solid line)
and 1D (dotted line).

TABLE 33.2
Rc, Total Energy and Pressure for Two Electron Configurations
of the Confined K Atom

Electron Configuration

1s22s22p63s23p64s1 1s22s22p63s23p63d1

Rc Energy Pressure Rc Energy Pressure

3.952630 596.161422 0.003051 3.573680 596.156887 0.003108
3.973680 596.173850 0.002933 3.594740 596.167195 0.002962
3.994740 596.185930 0.002821 3.615790 596.177137 0.002823
4.015790 596.197672 0.002714 3.636840 596.186722 0.002691
4.036840 596.209084 0.002611 3.657900 596.195972 0.002567
4.057900 596.220189 0.002514 3.678950 596.204896 0.002449

4.078950 596.230987 0.002419 3.700000 596.213513 0.002338

Note: All quantities are in atomic units.
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values. In a process where an atom is under pressure, the electron configuration
transition and also a volume change will be presented. In this way, these electron
configuration transitions can be visualized as first-order transitions.

From an experimental point of view, the electron configuration transitions are
observed principally in alkali metals when they are submitted under high pressures
[12]. When the atom is confined in relatively small confinement radii, we have noted
for the K atom that its electron configuration is similar to that observed in transition
metals as the d-shell is available now. Experimentally, K shows a transition metal
behavior when it is under high pressures, and in these conditions this metal forms
alloys with nickel [13]. Most of the alkali metals exhibit this interesting transition
named s d transition. It is impressive how a disarmingly simple model of the
confined atom within rigid walls, can give a good understanding of such transitions.

As we have seen, an atom under pressure changes its electron structure drastic-
ally and consequently, its chemical reactivity is also modified. In this direction we
can use the significant chemical concepts such as the electronegativity and hardness,
which have foundations in the density functional theory [9]. The intuition tells us that
the polarizability of an atom must be reduced when it is confined, because the
electron density has less possibility to be extended. Furthermore, it is known that
the polarizability is related directly with the softness of a system [14]. Thus, we
expect atoms to be harder than usual when they are confined by rigid walls.
Estimates of the electronegativity, x, and the hardness, h, can be obtained from [9]

x � I þ A

2
(33:38)

and

h � I � A: (33:39)

In these equations, I represents the ionization potential and A denotes the electron
affinity. It is important to mention that I and A are referred to the vertical process, and
this means the evaluation of the cation and anion must be at the Rc of the neutral
atom. In the Figure 33.7, we present the h behavior as a function of the confinement
radius, for the Kr atom. It follows from this figure that our intuition gave us a good
idea about the hardness behavior in a confined atom. However, we must take into
account the transitions discussed above, in particular, when the atom is confined
within smaller radii. Because the most stable orbitals exhibit smaller number of
nodes than that corresponding to the free atom, they are less hard and consequently,
the hardness of the system is reduced. Thus, a confined atom cannot be infinitely
hard due to the electron transitions [15]. In terms of the chemical reactivity, the
confined atoms are less electronegative than the free atoms and then the bonding is
not preferred. For this reason, an atom can give the main characteristics of the
electron structure of solids when they are under high pressure, as in the case of the
s d transition in alkaline metals.

In this chapter, we dealt with rigid walls, but there are reports where soft walls
are used. However, the solution of the equations related to these models is more

Electronic Structure of Confined Atoms 535



complicated than that presented here. It is worthwhile to note that such models are
essential in order to include the interactions with the environment of the central atom,
a necessary requirement to simulate the experimental conditions. This is currently an
open field of research [16]. Finally, the same model can be applied to other model
system such as the D-dimensional isotropic harmonic oscillator with new and
interesting effects on the energy level ordering [17].
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34.1 INTRODUCTION

Density functional theory (DFT) uses the electron density r(r) as the basic source of
information of an atomic or molecular system instead of the many-electron wave
function � [1 7]. The theory is based on the Hohenberg Kohn theorems, which
establish the one-to-one correspondence between the ground state electron density of
the system and the external potential v(r) (for an isolated system, this is the potential
due to the nuclei) [6]. The electron density uniquely determines the number of
electrons N of the system [6]. These theorems also provide a variational principle,
stating that the exact ground state electron density minimizes the exact energy
functional E[r(r)].

When a molecule A is attacked by another molecule B, it will be perturbed in
either its number of electrons NA or its external potential vA(r). At the very early
stages of the reaction, the total electronic energy of A, EA can be expressed as a
Taylor series expansion around the isolated system values N0

A and v0A(r)

539



EA N0
A þ DNA, v

0
A(r)þ DvA(r)

� � ¼ EA N0
A, v

0
A(r)

� �

þ @EA

@NA

� �
vA

DNA

þ
ð

dEA

dvA(r)

� �
NA

DvA(r)dr

þ 1
2

@2EA

@N2
A

� �
vA

DNAð Þ2

þ
ð

d@EA

dvA(r)@NA

� �
DNADvA(r)dr

þ 1
2

ðð
d2EA

dvA(r)dvA(r0)

� �
NA

DvA(r)DvA(r
0)drdr0

þ � � � (34:1)

This equation is central in the so-called perturbational perspective to chemical
reactivity [8] and introduces a number of response functions (also called charge
sensitivities [9]). In conceptual DFT [3,4,8,10 12], it was realized that many chemi-
cal concepts, which were earlier often vaguely defined but readily used by chemists,
can be identified with these derivatives. As can be seen, some involve the differen-
tiation of the energy with respect to the number of electrons, and these will be mainly
discussed in this chapter. The first order derivative of the energy EA with respect to
the number of electrons NA at constant external potential was proven to be equal to the
chemical potentialm, the Lagrange multiplier that is associated with the constraint that
the electron density, at all times, should integrate to the total number of electrons when
minimizing the energy functional E[r(r)] with respect to the density [13]. Moreover,
this quantity can be identified with the negative of the electronegativity x

mA ¼ �xA ¼ @EA

@NA

� �
vA

(34:2)

This is a central quantity in chemistry [14], which was introduced by Pauling as the
‘‘power of an atom in a molecule to attract electrons to itself’’ and was quantified
originally by thermochemical data [15]. The density functional definition of this
quantity can be viewed as a generalization of the Mulliken definition [16] and is in
accordance with earlier work of Iczkowski and Margrave [17].

Parr and Pearson have introduced the absolute hardness as the second derivative
of the energy EA with respect to the number of electrons NA at constant external
potential [18]

hA ¼ 1
2

@2EA

@N2
A

� �
vA

(34:3)
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This concept was introduced qualitatively in the late 1950s and early 1960s by
Pearson, in the framework of his classification of Lewis acids and bases, leading to
the introduction of the hard and soft acids and bases (HSAB) principle [19 21]. This
principle states that hard acids prefer to bond to hard bases and soft acids to soft
bases. In many contributions, the factor of 1=2 is omitted. The inverse of the hardness
was introduced as the softness S¼ 1=h [22]. A third quantity, which can be
expressed as a derivative with respect to the number of electrons is the Fukui
function, was introduced by Parr and Yang [23,24]:

fA(r) ¼ d@EA

@NAdvA(r)

� �
¼ dmA

dvA(r)

� �
NA

¼ @rA(r)

@NA

� �
vA

(34:4)

This quantity can be viewed as a generalization of Fukui’s frontier molecular orbital
(MO) concept [25] and plays a key role in linking Frontier MO theory and the HSAB
principle. It can be interpreted either as the sensitivity of a system’s chemical
potential to an external perturbation at a particular point r, or as the change of the
electron density r(r) at each point r when the total number of electrons is changed.
The former definition has recently been implemented to evaluate this function
[26,27] but the derivative of the density with respect to the number of electrons
remains by far the most widely used definition.

This chapter will be concerned with computing the three response functions
discussed above the chemical potential, the chemical hardness, and the Fukui
function as reliably as possible for a neutral molecule in the gas phase. This
involves the evaluation of the derivative of the energy and electron density with
respect to the number of electrons.

34.2 THEORETICAL BACKGROUND—QUANTITIES
FOR FRACTIONAL NUMBER OF ELECTRONS

The dependence of the total electronic energy E on the number of electrons was
established in a hallmark paper by Perdew et al. [28]. Using an ensemble treatment,
these authors demonstrated that a plot of E versus the number of electrons comprises
a series of straight line segments, with derivative discontinuities at the integer
values of N. These manifest themselves as integer discontinuities in the exact
exchange-correlation potential, and as a result, the exchange-correlation potentials
on the electron-deficient and electron-abundant sides of the integer, denoted as vXC
and vþXC, respectively, will differ by some system-dependent positive constant DXC at
all points in space [28 30]:

vþXC � vXC ¼ DXC (34:5)

Using the fact that the energy is linear with respect to the number of electrons and
Janak’s theorem [31], the orbital energies of the N� n and Nþ n electron system
become equal to the exact ground state vertical ionization energy and electron
affinity, respectively:
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m ¼ @E

@N

����
N n

¼ «N(N � n) ¼ �I0 (34:6)

mþ ¼ @E

@N

����
Nþn

¼ «Nþ1(N þ n) ¼ �A0 (34:7)

where 0< n< 1. In these equations, m represents the chemical potential of the
N-electron system evaluated from the electron deficient side; mþ is the same quantity
from the electron-abundant side. The fact that derivative discontinuity occurs at the
integers, implies that the derivative in Equation 34.2 does not exist formally for
integer N, as the left and right side derivatives m and mþ are different. In practical
applications, one uses the average of both quantities as the estimate of the chemical
potential of the system (we will now denote this quantity as m0):

m0 ¼ m þ mþ

2
¼ � I0 þ A0

2
(34:8)

Since m¼�x, this approximation for m reduces to the Mulliken definition for the
electronegativity [16]. Within the ensemble approach, the hardness h as defined in
Equation 34.3 would be zero for noninteger N and undefined for integer values of the
electron number. One obtains quantitative values for this concept for integer N, using
a finite difference approximation of the chemical potentials mþ and m , i.e.,

h0 � 1
2

mþ � mð Þ ¼ 1
2

�A0 þ I0
	 
 ¼ I0 � A0

2
(34:9)

which is the original Parr and Pearson definition of the absolute hardness [18]. It is
interesting to note that the estimates obtained in Equations 34.8 and 34.9 from the
concepts defined in Equations 34.2 and 34.3 can also be obtained by assuming a
quadratic relationship between E and N, for which certain qualitative arguments can
be given [8].

Consider again Equations 34.6 and 34.7. When n ! 0, the orbital energies can
be identified with the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) energies of the N-electron system, deter-
mined using vXC and vþXC respectively. The exact HOMO energy of the N-electron
system determined with vXC is thus exactly equal to the vertical ionization energy of
the N-electron system.

«HOMO ¼ �I0 (34:10)

whereas the exact LUMO energy determined with vþXC is exactly equal to the vertical
electron affinity of the N electron system:

«þLUMO ¼ �A0 (34:11)
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Finally, the expressions for m0 and h0 become

m0 ¼ «HOMO þ «þLUMO

2
(34:12)

h0 ¼ «þLUMO � «HOMO

2
(34:13)

Not only the derivative of the energy shows integer discontinuities, the same is true
for the derivative of the electron density with respect to particle number. This implies
that the change in the electron density rA due to an infinitesimal increase in the
number of electrons NA is different from the density change due to an infinitesimal
decrease of NA. The derivative associated with the first process is fþA , which is
defined as

fþA (r) � @rA(r)

@NA

� �þ

vA

(34:14)

where the superscript ‘‘þ ’’ on the derivative indicates that the derivative is taken on
the electron-abundant side of the integer NA. It can be anticipated that the molecule A
will readily accept electrons into regions where this function is large and thus this
function constitutes a reactivity index to probe the attack of a model nucleophile
[23,24]. Next, consider the change in rA upon loss of electrons NA:

fA (r) � @rA(r)

@NA

� �
vA

(34:15)

In this case, the superscript ‘‘�’’ on the derivative indicates that the derivative is
taken on the electron-deficient side of the integer NA; one can expect that the
molecule will readily donate electrons from regions where fA (r) will be large and
the derivative can thus be used to probe an electrophilic attack [23,24]. The average
of these quantities was introduced as the Fukui function for a neutral (radical) attack
[23,24]

f 0A (r) �
fþA (r)þ fA (r)

2
(34:16)

Perdew et al. also showed that the electron density entering the definition of the
energy functional for a non-integer number of electrons is also an ensemble sum [28]:

rNþn ¼ (1� n)rN þ nrNþ1 (34:17)

again with 0< n< 1. When using this equation, i.e., in the grand canonical ensem-
ble, zero temperature limit, it can be shown that the finite difference approximations
to these equations are exact [24]:
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fþA (r) ¼ rA,Nþ1(r)� rA,N(r) (34:18)

and

fA (r) ¼ rA,N(r)� rA,N 1(r) (34:19)

where rA,Nþ 1(r), rA,N(r), and rA,N 1(r) are all evaluated at the external potential of
the N-electron system. These equations are traditionally used to evaluate this reactiv-
ity index, which can then be combined with the global softness of the system to yield
the local softness [22], the descriptor of choice when evaluating orbital-controlled
reactions [32 34].

The natural way to approximate the chemical potential and chemical hardness in
DFT is to evaluate them directly from the calculated ionization energy and electron
affinity

m ¼ � I þ A

2
(34:20)

and

h ¼ I � A

2
(34:21)

where I and A are obtained from total electronic energy calculations on the N� 1,
N, and Nþ 1 electron systems, at the geometry of the neutral molecule:

I ¼ EN 1 � EN (34:22)

A ¼ EN � ENþ1 (34:23)

The experimental ionization energy can typically be reproduced within a few tenths
of an electronvolt by standard DFT functionals (see, e.g., Ref. [5]). The same is
true for positive electron affinities [5,35,36]; a positive experimental electron affinity
indicates that the anion is stable with respect to electron loss. In such cases, the
chemical potential and hardness can be calculated to a similar accuracy [35].
However, in many cases, the experimental electron affinity is negative rather than
positive, as measured experimentally by the technique of electron transmission
spectroscopy [37,38]. These anions pose a fundamental problem: they are unstable
with respect to electron loss and so cannot be described by a standard DFT ground
state total energy calculation. In practice, medium-sized basis set calculations on the
anion do give energies above that of the neutral, and so reasonable estimates for
the negative affinity can be obtained. However, this simply reflects an artificial
binding of the electron by the finite basis set. The addition of diffuse functions
allows the electron to leave the system, and so the electron affinity becomes near-
zero. Consequently, the chemical potential and hardness become � I=2 and � I=2,
respectively. This basis set dependence makes Equations 34.20 and 34.21 a less
attractive approach for calculating the chemical potential or hardness of a system
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with a significant negative experimental electron affinity. The same problems of
course arise when one wishes to compute the electron densities associated with these
metastable anions. In the gas phase, this is always necessary for the computation of
fþA and f 0A . In the following sections, an approximate solution to these problems will
be presented, enabling the qualitative estimate of chemical potentials, hardness
values, and Fukui functions of systems with metastable anions.

34.3 APPROXIMATE EXPRESSIONS FOR LOCAL FUNCTIONALS

Local exchange-correlation functionals such as generalized gradient approximations
(GGA) are continuum approximations, which can, at best, average over the discon-
tinuity. In regions where the HOMO and LUMO are significant, they provide an
approximate average description [39 41]:

vXC � vþXC þ vXC
2

(34:24)

From this, it follows that the eigenvalues of the LUMO and HOMO orbitals obtained
by a local functional are approximately shifted from the exact values by

«LUMO � «þLUMO � DXC

2
¼ mþ � DXC

2
(34:25)

and

«HOMO � «HOMO þ DXC

2
¼ m þ DXC

2
(34:26)

Numerical examples of this are available in Ref. [42]. Rearranging Equations 34.25
and 34.26 and substituting into Equations 34.12 and 34.13, gives

m0 � «HOMO þ «LUMO

2
(34:27)

and

h0 � «LUMO � «HOMO

2
þ DXC

2
(34:28)

It therefore follows that a Koopmans-type expression [43] for the chemical potential
in terms of GGA HOMO and LUMO energies:

m � «HOMO þ «LUMO

2
(34:29)

will be reasonably accurate. However, the analogous expression for the hardness
[43,44]
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h � «LUMO � «HOMO

2
(34:30)

underestimates the exact hardness by approximately half the integer discontinuity.
We could gain an improved approximation to the hardness if DXC was known. This
quantity can be determined from high-quality electron densities, but a more appeal-
ing and more easily applicable route is to use the fact that DXC=2 is the exact
asymptotic potential for a functional that averages over vþXC and vXC. It is therefore
approximately equal to the exact asymptotic potential yXC(1) of a local functional,
which in turn can be well approximated by the generalized Koopmans’ theorem

vXC(1) � «HOMO þ I (34:31)

where «HOMO is the local functional HOMO orbital energy and I is an approximate
ionization energy determined from the neutral and cation total energies. Hence [45,46]

DXC

2
� «HOMO þ I (34:32)

which can be combined with Equation 34.28 to give an unconventional hardness
expression

h ¼ «LUMO � «HOMO

2
þ «HOMO þ I (34:33)

Hence, the hardness can be approximated as half the HOMO LUMO gap plus the
near-exact asymptotic potential [47].

Equation 34.33 has a simple interpretation in terms of the chemical potential.
One can rewrite it as

h ¼ «LUMO þ «HOMO

2
þ I ¼ mþ I (34:34)

corresponding to the addition of an approximate ionization energy to the chemical
potential in Equation 34.29. The key point is that the chemical potential can be
approximated using Equation 34.29, because taking the sum approximately cancels
the contributions from DXC in Equations 34.25 and 34.26. Finally, it can also be seen
that the hardness expression can be rewritten as

h ¼ I � �«LUMO � «HOMO � Ið Þ
2

(34:35)

which corresponds to evaluating Equation 34.21 with the conventional ionization
energy but the unconventional electron affinity

A ¼ �«LUMO � «HOMO � I (34:36)
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This expression enables the computation of the electron affinity without the explicit
computation of the energy of the anion, which will prove to be beneficial for the
calculation of negative affinities [47].

34.4 COMPUTATION OF CHEMICAL POTENTIAL
AND HARDNESS

We now assess the quality of the various chemical potential and hardness approxi-
mations [47]. We consider a series of representative, neutral closed-shell molecules
containing first and second row atoms: F2, Cl2, H2CO, C2H4, CO, PH3, H2S, HCN,
HCl, CO2, NH3, HF, H2O, and CH4. The experimental electron affinity is positive
for the first two molecules, but becomes increasingly negative across the series.
Where possible, calculations were performed at near-experimental reference geo-
metries taken from Ref. [30]; for the molecules without sufficiently accurate refer-
ence geometry, MP2=aug-cc-pVTZ geometries were used instead. All chemical
potential and hardness calculations were performed using the aug-cc-pVTZ basis
set [48] using the CADPAC [49] program. Experimental values for the chemical
potentials and absolute hardness were determined using Equations 34.8 and 34.9,
with vertical ionization energies and electron affinities from Ref. [50]. We confirmed
that variations in the results due to the choice of functional were minimal and were
significantly smaller than the variations due to the different chemical potential and
hardness expressions; we use the Perdew Burke Ernzerhof (PBE) functional [51]
throughout.

Table 34.1 presents the chemical potential and hardness values relative to the
experiment. Mean and mean absolute errors, relative to the experiment, are denoted d
and jdj, respectively. First consider the results from Equations 34.20 and 34.21, which
use the calculated I and A values. The chemical potential and hardness values are fairly
accurately reproduced for both F2 and Cl2, both of which have positive electron
affinities. However, the results degrade as the table is descended, reflecting the
increasingly negative experimental electron affinity. As you descend the table, the
computed affinities degrade and they are not sufficiently negative. The chemical
potential and hardness values in Table 34.1 significantly underestimate the experi-
ment, with a mean absolute error of about 1.4 eV. The third and fourth columns of
values in Table 34.1 list the chemical potential and hardness values determined using
the HOMO LUMOorbital energies (Equations 34.29 and 34.30). (For all systems, the
HOMO and LUMO energies are negative.) In the case of the chemical potential, as
anticipated, a significant improvement is encountered due to the cancellation of DXC;
themean absolute error is just 0.6 eV. By contrast, the hardness values are significantly
and uniformly underestimated, reflecting the absence of the discontinuity term in
Equation 34.28. The mean absolute error is 4.7 eV. The values in the fifth column of
Table 34.1 are determined from Equation 34.33, through simple correction of the
HOMO LUMO gap values. The uniform underestimation is eliminated (the mean
error is near zero) and themean absolute error is significantly reduced to 0.5 eV, which
is now comparable to the error in the chemical potentials. Admittedly, this error is
larger than that can be obtained from direct evaluation using Equation 34.21, on
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systems with positive electron affinities, and this can be traced to the inherent
approximations used in the derivation of Equation 34.33. However, hardness values
determined using this expression do not degrade as you descend the table; it is as
accurate for systems near the bottom of the table as it is for F2 and Cl2.

In applications, the chemical potentials and hardness are used to discuss trends in
chemical reactivity. It is thus important that calculated values exhibit a good
correlation with experimental values. To investigate this, Table 34.1 also presents
the line parameters m (slope), c (intercept), and R2 (square of the correlation
coefficient), describing the correlation of the two chemical potentials and the three
hardness expressions with the experimental values. The correlation plots are given in
Figures 34.1 and 34.2. In the case of chemical potential, the correlation between the
experimental values and the calculated values using computed I and A values is
nonexistent. As can be seen, estimating this quantity using the frontier orbital
energies largely improves the correlation, the R2 value now increasing to 0.73 and
the slope is somewhat higher than unity. When dropping the entry for the CH4

molecule, the R2 value improves to 0.87, which is comparable to the slope for the
correlation with the new expression for chemical hardness. In the case of hardness,
calculations using the conventional approaches (Equations 34.21 and 34.30)
have similar slopes (m¼þ1.41 to þ1.48) and correlation parameters (R2¼ 0.64)
which are far from unity. The intercept is particulary large (c¼þ3.21 eV) when
Equation 34.30 is used. The correlation is much better for the third approach,
Equation 34.33, with improved slope (m¼þ1.16) comparable to the slope of
the correlation curve for the chemical potential, and correlation parameter
(R2¼ 0.87).

The focus until now has been on the evaluation of the chemical potential and
the hardness, without explicit computation of the electron affinity. This has been
achieved by implicitly approximating the affinity in terms of the Kohn Sham
eigenvalues and the ionization energy (Equation 34.36). Table 34.2 presents elec-
tron affinities determined using this expression, with the aug-cc-pVTZ basis set.
For systems with significant negative experimental affinities, the results are a
notable improvement over both the aug-cc-pVTZ and cc-pVTZ results from the
conventional evaluation (Equation 34.23). The new results exhibit a correlation
parameter of R2¼ 0.76, compared to values of 0.30 and 0.48 from the standard
expression with the large and small basis sets, respectively. Next, we have inves-
tigated a much more elaborate set of molecules with known experimental negative
electron affinities, as considered previously in Ref. [52], limiting ourselves to
neutral closed-shell systems [53]. It should be remarked that the experimental
ETS values are in a rather narrow range, i.e., from �0.07 to �3.80 eV. All
geometries of the neutral molecules are now optimized at the B3LYP [54]=
6-311þ G** [55] level. Table 34.3 compares the results from Equation 34.36
determined using the aug-cc-pVTZ basis set with conventional results from Equa-
tion 34.23, determined using both aug-cc-pVTZ and cc-pVTZ. Once again, the best
results are obtained using Equation 34.36, with a mean absolute error of just
0.49 eV and a correlation coefficient of 0.92. Figure 34.3 presents the correlation
plot for the latter expression for the affinity.
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34.5 COMPUTATION OF THE FUKUI FUNCTION
FOR A NUCLEOPHILIC ATTACK F

þ(r)

Until now, we have been concerned with the computation of global properties. We
now consider the Fukui function for nucleophilic attack (Equation 34.18), which is a
local property that requires the calculation of the electron density of the anion, which
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FIGURE 34.1 Correlation of the chemical potential, calculated using (a) Equation 34.20; (b)
Equation 34.29 with experimental values. Data are taken from Table 34.1.
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in many cases will be metastable. How can the findings we gathered in the previous
section allow us to calculate electron densities of these systems? The key issue is to
bind the excess electron, and we shall consider two approaches to do this [56]. The
first is simply to choose an artificially compact basis set; the second is to apply a
potential wall. The key feature of the calculations is that the degree of binding will be
controlled by a knowledge of the negative affinity, estimated using the unconven-
tional expression in Equation 34.36.

First, we summarize our potential wall approach which uses ideas from Ref.
[45]. A sphere of radius RX is constructed around each constituent atom X

RX ¼ lBX (34:37)
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FIGURE 34.2 Correlation of the hardness, calculated using (a) Equation 34.21; (b) Equation
34.30; and (c) Equation 34.33, with experimental values. Data are taken from Table 34.1.
(Reprinted from Tozer, D.J. and De Proft, F., J. Phys. Chem. A, 109, 8923, 2005. With
permission.)
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TABLE 34.2
Electron Affinities Calculated Using Equation 34.23, with the aug-cc-pVTZ
and cc-pVTZ Basis Sets, and Equation 34.36, with the aug-cc-pVTZ Basis,
Compared to the Experimental Affinity, A0

Molecule A (Equation 34.23)a A (Equation 34.23)b A (Equation 34.36)a A0

F2 þ0.63 0.43 0.10 þ1.24
Cl2 þ0.87 þ0.47 þ0.34 þ1.02

H2CO 0.58 1.51 1.84 1.5
C2H4 0.50 2.46 2.82 1.8
CO 1.02 2.34 2.82 1.8

PH3 0.37 2.59 3.16 1.9
H2S 0.37 2.30 3.24 2.1
HCN 0.38 3.47 3.81 2.3

HCl 0.39 2.21 3.58 3.3
CO2 0.72 3.31 3.70 3.8
NH3 0.44 2.65 4.06 5.6

HF 0.47 2.91 5.70 6.0
H2O 0.42 2.71 4.62 6.4
CH4 0.47 2.75 4.15 7.8

Source: Reprinted from Tozer, D.J. and De Proft, F., J. Phys. Chem. A, 109, 8923, 2005. With
permission.

Note: All calculated quantities were obtained using the PBE functional. All quantities are in eV.
a Calculated using the aug cc pVTZ basis set.
b Calculated using the cc pVTZ basis set.

TABLE 34.3
Electron Affinities Calculated Using Equation 34.23, with the aug-cc-pVTZ
and cc-pVTZ Basis Sets (Equation 34.36), with the aug-cc-pVTZ Basis,
Compared to the Experimental Affinity, A0

Molecule A Equation 34.23a A Equation 34.23b A Equation 34.36b A0

1,1 Dichloroethylene 1.53 0.36 1.39 0.75
1,3 Cyclohexadiene 1.13 1.67 1.14 0.80
Acetaldehyde 1.84 2.82 2.04 1.19

Adenine 1.08 0.09 0.96 0.64
Bromobenzene 1.16 0.22 1.05 0.70
Chlorobenzene 1.23 0.28 1.15 0.75

Chloroethylene 1.98 0.44 1.98 1.29
Chloromethane 2.26 0.38 3.13 3.45
cis Dichloroethylene 1.63 0.35 1.52 1.12

Cytosine 1.01 0.03 0.84 0.36
Ethylene 2.52 0.51 2.82 1.78

(continued)
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TABLE 34.3
Electron Affinities Calculated Using Equation 34.23, with the aug-cc-pVTZ
and cc-pVTZ Basis Sets (Equation 34.36), with the aug-cc-pVTZ Basis,
Compared to the Experimental Affinity, A0

Molecule A Equation 34.23a A Equation 34.23b A Equation 34.36b A0

Fluorobenzene 1.39 0.33 1.41 0.87
Naphthalene 0.37 0.21 0.34 0.20

Norbornadiene 1.40 0.35 1.54 1.04
Pyrazine 1.29 0.20 0.55 0.07
Pyridazinec 0.56 0.87 0.32

Pyrimidine 0.76 0.45 0.88 0.25
Styrenec 0.52 0.51 0.25
Thiophene 1.60 0.39 1.64 1.17

trans Dichloroethylene 1.49 2.28 1.35 0.82
Trichloroethylene 1.19 0.36 1.01 0.58
Uracil 0.68 0.31 0.63 0.21

1,2,4 Trimethylbenzenec 1.62 1.55 1.07
Acetone 1.79 0.29 2.14 1.51
Anilinec 0.25 1.71 1.13
Anisole 1.61 0.28 1.55 1.09

cis Butene 2.51 0.38 2.70 2.22
Cyclohexene 2.07 0.34 2.45 2.07
Furan 2.41 0.41 2.37 1.76

m Xylene 1.60 0.32 1.57 1.06
o Xylene 1.66 0.32 1.65 1.12
Phenol 1.63 0.25 1.59 1.01

Propene 2.62 0.45 2.74 1.99
Pyrrole 2.29 0.29 2.50 2.38
trans Butene 2.71 0.43 2.77 2.10
Trimethylethylene 2.56 0.36 2.51 2.24

CO2 3.48 0.76 3.71 3.80
Guanine 1.60 0.12 1.17 0.46
d (eV) 0.44 0.77 0.47

jdj (eV) 0.53 1.02 0.49
m 1.13 0.09d 1.03
c (eV) 0.65 1.22d 0.51

R2 0.80 0.00d 0.92

Source: Reprinted partially from De Proft, F., Sablon, N., Tozer, D.J., and Geerlings, P., Faraday

Discuss., 135, 151, 2007. With permission.
Note: All calculated quantities were obtained using the PBE functional. All quantities are in eV.
a Calculated using the cc pVTZ basis set.
b Calculated using the aug cc pVTZ basis set.
c Calculation of the electron affinity using Equation 34.23 could not be performed because the energy

calculation did not converge.
d These values are not representative because of the low value of R2.
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where
l is a dimensionless parameter to be determined
BX is the Bragg Slater radius of atom X

Within any sphere, the exchange-correlation potential in the Kohn Sham equation is
defined to be the conventional functional derivative of EXC:

vsXC(r) ¼
dEXC ra, rb½ �

drs(r)
(34:38)

where s denotes a or b spin. However, for points that lie outside all the spheres, the
conventional potential is replaced by a constant, spin-dependent potential, in order to
bind the excess electron

vsXC(r) ¼ ms (34:39)

A Kohn Sham calculation is then performed on the anion using the potential defined
according to Equations 34.38 and 34.39. The electronic energy of the anion is
determined using the conventional Kohn Sham energy expression with the regular
EXC term.

The constants ma and mb determine the height of the potential wall and so
control the asymptotic decay of the a and b anion orbitals. A natural choice is
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FIGURE 34.3 Correlation of the vertical electron affinity, calculated using Equation 34.36 at
the PBE=aug cc pVTZ level, with experimental values. All values are in eV; data are taken
from Table 34.3. (Reprinted from De Proft, F., Sablon, N., Tozer, D.J., and Geerlings, P.,
Faraday Discuss., 135, 151, 2007. With permission.)
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to demand that, in the limit of a complete basis set, the a HOMO of the anion decays
as the LUMO of the neutral and the b HOMO of the anion decays as the HOMO of
the neutral. Mathematically, this requires

ma ¼ «aHOMO,Nþ1 � «LUMO,N

mb ¼ «bHOMO,Nþ1 � «HOMO,N

(34:40)

where
«aHOMO,Nþ1 and «bHOMO,Nþ1 are the a and b HOMO eigenvalues of the anion in
the self-consistent-field procedure

«LUMO,N and «HOMO,N are the LUMO and HOMO eigenvalues of the neutral,
obtained from a separate calculation

Next, we consider the only remaining quantity to be defined, l, introduced in
Equation 34.37. When l is large, the effect of the wall will be negligible and the
calculations will revert to standard Kohn Sham calculations; if a diffuse basis set is
used, the anion energy will be close to that of the neutral, yielding a near-zero
electron affinity. As l becomes smaller, however, the potential wall will artificially
bind the excess electron, causing the anion energy to increase and the affinity to
become increasingly negative. The wall therefore has the same effect as a compact
basis set, without the loss of mathematical flexibility. In our approach, we now
choose l to be of value for which the electron affinity determined using Equation
34.23 equals that given by Equation 34.36. The Fukui function is then evaluated
using the corresponding electron density. It should be noted that we do not apply the
potential wall in the calculation of the electronic energy, eigenvalues, and ionization
energy of the neutral, as it would break the spin symmetry.

We will consider the molecules H2CO, C2H4, NH3, and H2O, which have
increasingly negative electron affinities. Again, all calculations reported were per-
formed using the PBE GGA functional [51], with the CADPAC program [49].
Affinities determined using Equation 34.36 with the aug-cc-pVTZ basis set [48]
(as obtained in Section 34.4) are �1.84, �2.84, �4.06, and �4.62 eV, respectively.
In order to maintain a fully theoretical analysis, we shall use the values from
Equation 34.36 as our reference values, denoting them as Aref. All molecules were
oriented as to have their highest order axis coinciding with the z-axis; planar
molecules were in the yz plane. The Fukui function was then plotted in the
z-direction, 0.5 a.u. above this axis in the x-direction.

We first consider conventional Kohn Sham calculations. Table 34.4 presents
electron affinities determined using Equation 34.23 for a series of basis sets,
compared with the Aref values. The first row of numbers was determined using the
extensive, diffuse aug-cc-pVTZ basis set. The affinities are significantly less nega-
tive than Aref, reflecting the tendency for the excess electron to leave the system. The
density of the anion is therefore rather close to the density of the neutral, and so the
Fukui functions fþ(r) which are presented with long-dashed lines in Figure 34.4a
through d, have a relatively small magnitude. We regard these Fukui functions
as unreliable. The remainder of Table 34.4 highlights the significant effect that the
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TABLE 34.4
Electron affinities, A, Determined Using Equation 34.23 with
Conventional DFT Calculations (No Potential Wall), for a Series
of Basis Sets, Compared with Reference Values, Aref, Determined
Using Equation 34.36 with the aug-cc-pVTZ Basis Set

Basis set H2CO C2H4 NH3 H2O

A EN ENþ1 (Equation 34.23)
aug cc pVTZ 0.58 0.50 0.44 0.42

3 21G 2.75 3.63 5.87 5.99
6 31G 2.15 3.40 4.58 4.46
6 31G* 2.28 3.38 4.67 4:58

6 311G 1.78 2.86 3.09 2.97
6 311G* 1:88 2:83 3.15 3.06
cc pVDZ 2.10 2.98 3:90 3.97

cc pVTZ 1.51 2.46 2.65 2.71
Aref («LUMOþ «HOMO) I (Equation 34.36)
aug cc pVTZ 1.84 2.82 4.06 4.62

Source: Reprinted from Tozer, D.J. and De Proft, F., J. Chem. Phys., 127, 034108, 2007.
With permission.

Note: All values are in eV. Underlined values are those for which A is in closest agreement
with Aref.
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FIGURE 34.4 Fukui functions determined using Equation 34.18. Long dashed lines are deter
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from Tozer, D.J. and De Proft, F., J. Chem. Phys., 127, 034108, 2007. With permission.)
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compact basis sets artificially have on the affinities determined using Equation 34.23.
For each molecule, the affinity underlined is the value that best agrees with Aref.
For H2CO and C2H4, which have relatively small magnitude negative affinities,
the 6-311G and the 6-311G* basis sets give the best agreement. For NH3 and H2O,
which have much more negative affinities, the more compact cc-pVDZ and 6-31G*
basis sets are necessary. The dotted lines in Figure 34.4a through d present the Fukui
functions determined using the optimal basis set identified in Table 34.4. As can be
seen, the Fukui functions now exhibit significantly more features; they represent the
best that can be obtained with the conventional approach. The solid lines in Figure
34.4a through d are the Fukui functions calculated by the potential wall approach,
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FIGURE 34.5 Fukui function in H2CO, in the plane perpendicular to the molecular plane.
The carbon atom is at z¼ 0, x¼ 0; the oxygen atom is at z¼ 2.27 a.u., x¼ 0. The increment
between contour lines isþ 0.001 a.u.; the lowest contour line is at 0.0 a.u. See text for details.
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computed for each system using the optimal values of l. They are very similar to
those obtained using the optimally compact basis sets. In a later contribution [57], it
was shown, for the large number of molecules discussed in Section 34.4, that the
optimal value of l is fairly constant over a whole range of molecules. It was also
shown that this approach provides an interesting method to study the molecular
orbitals and spin densities of metastable anions.

Finally, Figure 34.5 presents contour plots of fþ(r) for H2CO. Figure 34.5a
uses the conventional DFT calculation with the diffuse, aug-cc-pVTZ basis set.
The features around the C atom (located at z¼ 0, x¼ 0) are exaggerated; the excess
electron, which is tending to leave the molecule, occupies an orbital with significant
contributions from diffuse basis functions centered around this atom. Figure 34.5b
uses conventional calculations with the optimally compact 6-311G* basis set;
the tendency for the electron to leave has been removed. Figure 34.5c uses the
approach of this section with the aug-cc-pVTZ basis; the plot is very similar to
that in Figure 34.5b. As can be seen, all three figures clearly identify the C atom
as the site of nucleophilic attack, as evidenced by the more extended contours around
this atom.

34.6 CONCLUSIONS

In this chapter, we have focussed on the calculation of three important reactivity
indices: the chemical potential, the chemical hardness, and the Fukui function fþ(r)
for a nucleophilic attack on neutral molecules in the gas phase. For the first two
global molecular properties, it is shown that the conventional approach, based on
which these quantities are evaluated directly from computed DFT ionization energies
and electron affinities, works reasonably well for molecules with positive electron
affinities. However, this direct approach is less appropriate for systems with a
significant negative experimental electron affinity. Next, based on an analysis used
in earlier studies [28,39 41], we have reiterated why an alternative approximation,
based on Koopmans’ theorem [43] using local functional eigenvalues, is a good
approximation for the chemical potential but significantly underestimates the hard-
ness. We have used this analysis to design a hardness approximation [47] that can be
interpreted as a simple correction to the Koopmans’ expression (see Equation 34.33);
the correction eliminates the uniform underestimation. Based on the study on a set of
typical systems, it was established that the inherent approximations in the derivation
lead to relatively large errors of 0.5 eV on an average, but the results do not degrade
as the electron affinity becomes more negative and the correlation with experiment
is good. For systems with large negative experimental electron affinities, the results
are an improvement over those of the conventional approaches. An interesting
interpretation of these schemes is that they correspond to a regular evaluation
using a conventional approximate ionization energy from Equation 34.22, but an
unconventional electron affinity from Equation 34.36. This latter expression was
subsequently proven to be useful in studies of negative affinities, overcoming the
fundamental basis set breakdown of the standard approach [47,53]. Clearly, this is
still a relatively open field of research and further work is needed in establishing a
deeper understanding of the good performance of this equation.
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Next, we investigated two approaches for modeling electron densities of tem-
porary anions in DFT [56], among others used in the evaluation of the Fukui
function. The calculations rely on an artificial binding of the excess electron in the
anion, in one case by a compact basis set and in the other by a potential wall. The key
feature of the calculations is that the degree of binding is controlled in both cases by
a knowledge of the negative electron affinity of the corresponding neutral, approxi-
mated using the unconventional expression for the electron affinity in Equation
34.36. In the former case, the affinity is used to identify an optimally compact
basis set. In the latter, it is used to choose the Bragg Slater radius scaling parameter
l which determines the position of the potential wall; the height of the wall is
independently obtained from a consideration of the asymptotic decay of the anion
HOMO and LUMO. As an illustration, Fukui functions for nucleophilic attack have
been determined for four molecules with increasingly negative affinities. They yield
very similar results, which are notably different from those determined without
artificial electron binding. Contour plots for H2CO exhibit the same features. It
turns out from a study on the large set of molecules possessing negative affinities
used previously [57], that the optimal value of the parameter l does not vary
significantly for different molecular systems.
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Index
A
Adaptive natural density partitioning

(AdNDP) method
electronic structure calculation, 442, 444
localization pattern, 445 448
zero point energy (ZPE) correction, 448

Aromatic fluctuation index (FLU), 440
Aromaticity

acenes
Clar’s p sextet rule, 426
Diels Alder reactions, 425 426
tetracene and pentacene, 426 427

benzene, 421
Clar’s p sextet rule, 420 421
guanine cytosine base pair, 434
haptotropic changes, 433
measures

descriptors, 422
multicenter index (MCI) and TREPE,

423 424
NICS and HOMA, 423
para delocalization index (PDI), 423
RE and ASE, 424

metal aromatic species reactivity, 432
metallabenzenes, 433
pericyclic reactions

[2þ2þ2] cycloadditions, 430
Diels Alder reaction, 427 429
1,3 dipolar cycloaddition, 429

pseudopericyclic reactions
electron localization function (ELF),

431 432
TS structures, 431
Woodward Hoffmann rule, 430 431

stability
anthracene and phenantrene, 424
heterobicyclic isomers, 425

Assessment tools for evaluation of risk (ASTER)
database, 487

Atomic basins, physical space analysis, 309
Atomic momentum density

ground state, 57 58
helium, 58
Kato’s cusp condition, 57
neon, 58

Atomic shell approximation (ASA), 234
Atoms in molecules (AIM), 260, 277

Bader approach
atomic basin, 223

electron density, 222
gradient paths, 223 224
gradient vector field, 222 223
Hessian eigenvalues, 222
interatomic surfaces, 223 224
water dimer, 223

basic requirements of, 217 218
Dirac’s remark, 216
Hirshfeld approach

conceptual density functional theory
(DFT), 220

covalent bonded system, 221
fuzzy atoms, 221
information entropy, 220
Kullback Liebler formula, 221 222
Li density, 221
promolecular density, 220
self consistency, 222
stockholder scheme, 220
X ray crystallography, 220

intuitive and physically rigorous path, 216
Mulliken approach

basis functions, 218 219
diffuse functions, electron density, 220
Dirac’s bra ket notation, 219
Hilbert space, 219
linear combination of atomic orbitals

(LCAO), 220
molecular ab initio calculations, 218
Mulliken operator, 218
overlap matrix, 219
singlet wave function, 218
three dimensional Cartesian space, 219

properties and comparison of, 224 225
quantum mechanics, 215 216
vs. population analysis

electrostatic potential (ESP), 216
intermolecular interactions, multipole

moments, 217
molecular recognition, 216
point charges, 217

Aufbau principle, 531

B
Bader’s atoms, 238
Bare and screened response functions

numerical application, 342 344
theory, 341 342
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B3þ B13þcations
aromaticity=antiaromaticity

double aromaticity, 430 440
s atomic orbitals (AOs) and probes, 440

chemical bonding analysis
electronic structure calculation, 442, 444
localization pattern, 445 448
zero point energy (ZPE) correction, 448

geometric structures, 441
stability and reactivity, 442

Benzenes and cytosine, P P stacking
electrostatic interaction energy

(DEelex), 406
geometry of, 404
n(r) role, 407
properties, 405

Biscyclopentadienyl titanium (Cp2Ti), 194;
see also Organometallic complexes,
Cp2Ti, Cp2Zr

Biscyclopentadienyl zirconium (Cp2Zr), 194;
see also Organometallic complexes,
Cp2Ti, Cp2Zr

Bloch theory, 72
Bohmian mechanics, TD DFT

many body system
equation of motion, 115
Maxwell Boltzmann statistics, 116
N body dynamics, 114 115
quantum potential, 115 116

reduced quantum trajectory approach,
116 117

single particle trajectory
Newton’s second law, 114
quantum potential, 113 114
standard quantum formalism, 112 113
TD Schrödinger equation, 113

Bond energy bond order (BEBO), 313, 320
Bond strength bond length (BSBL), 313
Born Oppenheimer (BO) approximation, 107,

244, 364, 453

C
Cahn Ingold Prelog (CIP) rules, 481, 493, 495
Carbó index, 237
Charge sensitivity analysis (CSA), 454
Chemical bonding

Born Oppenheimer approximation, 24
hydrogen molecule

molecular orbital, 27
true wave function, 25
valence bond potential energy, 26

LCAO formalism, 27
molecular orbital (MO) diagram, 28
resonance stabilization energy, 26
Slater determinant, 27, 29

valence bond and molecular orbital
theory, 24

wave function, 24 26
Chemical hardness, 9, 12
Chemical potential, 9
Chemical reaction changes, bond order and

valence indices
atom motion, 303
bimolecular reaction, potential energy, 304
bond order and length, correlation, 319 320
calculation

atomic orbitals, 307
degree of bonding, 306
diffuse orbitals, 307
physical space analysis, 309 310
prototype hydrocarbon molecules, 308

multibond reactions
bond transformation or formation, 316
C1 H to C2 H transfer, 317
isomerization reactions, 318 319

reactant and product limit, 304
reaction series, behavior modeling

barrier height, 315
bond order conservation principle, 313
potential profiles, 314
reactivity selectivity principle, 315

simple reactions
atom transfer reaction, 312
bond order conservation principle,

312 313
ethane, C C rupture, 311
Hartree Fock wave function, 310
H2 molecule, dissociation, 310

transition state, 305
Chemical reactivity index, DFT

Brönsted and Lewis acid site, dopants
effect, 509

CDK2 inhibitors, 511
chromophore interaction, solvation

effect, 510
clay nanocomposite designing, 508 509
clay swelling, divalent cation effect,

509 510
fluorophore activity scaling, 507 508
interaction prediction, 509
ozone depleting chlorofluorocarbons (CFC)

adsorption, 508
porphyrin and pincer activity, 511
silica nanowire, 510 511
single wall carbon nanotube (CWT)

advantages, 511 512
binding and interaction energy, 514, 516
electrophilic Fukui function, 512 515
localized minima, 514 515

Chemical reactivity
density functional theory (DFT), 503 509,

512, 514, 516
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Fukui functions
carbon dioxide and hydrogen adsorbption,

single wall CNT, 515
hydrogen and carbon dioxide,

electrophilic, 513
single wall CNT, electrophilic, 514

global hardness and softness, 504
interacting molecules

binding and interaction energy, 516
fukui function, global and local

softness, 513
reactivity index, 504

Brönsted and Lewis acid site,
dopant effect, 509

CDK2 inhibitors, 511
chlorofluorocarbons (CFC), 508
chromophore interaction, solvation

effect, 510
clay swelling, divalent cation effect,

509 510
fluorophore molecules, activity scaling,

507 508
gas sensor, 511 512
metal clusters, oxide surface, 510
minimum energy adsorption configuration,

514 515
porphyrin and pincer activity

comparison, 511
silica nanowires, 510 511
stable clay nanocomposite, designing,

508 509
theory, 505 507

SP DFT
chemical potential response, 146
energy function, 142
Euler Lagrange equations, 142 143
Fukui function, 145
local reactivity index, 145 146
schematic plot, energy function,

143 144
spin hardness, 144 145
spin potential, 143

Chlorinated dibenzo p dioxins, 249
Closed chemical system hardness

definition, 155
electronegativity, 158
electronic chemical potential, 155 156
energy change, 156
energy correction, 161
Hartree Fock energy, 159
Hylleraas coordinate, 160
kinetic energy, 156 157, 160
Koopmans’ theorem, 158
local hardness, 158 159
local orbital energy, 157
two electron ions, 159
weighting factor, 156

Comparative molecular field analysis
(CoMFA), 496

Complete active space self consistent field
(CASSCF), 31

Conceptual density functional theory (DFT)
aromatic rings, 403
benzenes and cytosine, P P stacking

electrostatic interaction energy
(DEelex), 406

geometry of, 404
n(r) role, 407
properties, 405

chemical reactivity, 396
dispersion interaction

aromatic ring polarizabilities, 408 410
C6, C8, and C10 coefficients, 410 411
dispersion energy, 412 413
molecular polarizability, 411
Unsold approximation, 408
wave function theory, 407

hydrogen bonding
classification, 400
covalent nature, 399 400
hydrogen bond energy (EHB) vs. MEP, 401
heteronuclear and homonuclear bond, 400
local softness, 402 403
softness matching, 401 402
spectrum, 399

interaction descriptors source
molecular electrostatic potential

(MEP), 398
response functions, 397

Condensed Fukui function (CFF), 366, 370 371
Conductor like screening model (COSMO),

385 386
Confined atoms, electronic structure

confined many electron atoms
electron configuration, energies, 533
energy and pressure, 534 535
Kr atom, hardness, 536
orbital energies, 532
potassium, 531

confined particle, particle in a box
Dirichlet boundary conditions, 522
energy and pressure relationship, 523 524
ground state wave function, 523

electron density and wave function,
derivatives, 524 525

hydrogen atom
energy dependence to pressure, 530 531
energy values, 529
pressure on polarizability, 525 528

Conjugated hydrocarbons, aromaticity
acenes

Clar’s p sextet rule, 426
Diels Alder reactions, 425 426
tetracene and pentacene, 426 427
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pericyclic reactions
[2þ2þ2] cycloadditions, 430
Diels Alder reaction, 427 429
1,3 dipolar cycloaddition, 429

pseudopericyclic reactions
electron localization function (ELF),

431 432
TS structures, 431
Woodward Hoffmann rule, 430 431

Continuous chirality measure (CCM), 493
Continuous symmetry measure (CSM), 493
Conventional transition state theory (TST), 305
Coulomb operator, 232
Coulomb’s law, electrostatic potential

Born Oppenheimer approximation, 244
electrostatic force, 243
interaction energy, 244 245
stationary point charges, 244

Coupled cluster (CC) theory
basic equation, 32
correlation energy, 33
particle excitation operator, 32

Critical point (CP), 63
Cyclin dependent kinases (CDKs), 511

D
Degree of chirality, 239
Dendrograms construction, 233
Density functional theory (DFT), 270 276,

503 504, 539
asymptotic density, 85
Bloch theory, 72
chemical, 270 274
chemical potential and hardness, 544
chemical reactivity index

Brönsted and Lewis acid site, dopants
effects, 509

CDK2 inhibitors, 511
chromophore interaction, solvation

effect, 510
clay nanocomposite designing, 508 509
clay swelling, divalent cation effect,

509 510
fluorophore activity scaling, 507 508
interaction prediction, 509
ozone depleting chlorofluorocarbons

(CFC) adsorption, 508
porphyrin and pincer activity, 511
silica nanowire, 510 511
single wall carbon nanotube (CWT),

511 516
descriptive theory, 265
electron affinities, 556
electron density, 2

electronic density
dual descriptor, 14, 16 17
Fukui function, 14 16
response function, 13 14
Taylor series expansion, 16

electron, noninteger number
chemical hardness and electronegativity, 9
ground state energy, 8 10
Hohenberg Kohn functional, 8
open system, 10

energy derivatives, electron number
chemical potential, 12
electron affinity, 11
hardness, 12
ionization potential, 11
Taylor series expansion, 12

EP perspective, 455
Euler equation, 84
exchange correlation potential, 85
first order density matrix, 2 3
fractional electron number, 257
Fukui function, 505
global softness and hardness, 505
ground state density, 83
Hamiltonian expectation value, 83 84
hardness and softness, 505
HSAB

principle, 503 504
principle of maximum hardness

(PMH), 504
reactivity index, 504 505

inspired restatement, 258
ionization potential theorem, 85
Kohn Sham orbitals, 84
Legendre transform structure, 256
local and atomic softness, 506
local softness, 506
N body ground state, 3
orbital language

exchange correlation potential and
fractional occupation, 18

Fukui function, 19
spin orbitals, 17 18

Schrödinger’s equation, 2
shape function, 270
Slater Xa method, 3
Thomas Fermi theory, 4
time dependent electric and magnetic fields

current density, 75
many electron wavefunction, 74
scalar and vector potential, 75 76
single particle electron density, 75

time dependent potentials
effective potential, 73 74
Hohenberg Kohn Sham version, 73

wave function, 84
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Differential virial theorem
Hartree Fock theory, 100 101
kinetic energy tensor, 99
Levy Perdew relationship, 100

Dipole hardness
electric field in, 337 338
linear and nonlinear

E( p) function, 339 340
electronegativity scale, 339
He atoms, 340 341

Dirac delta function, 232
Dirac equation, 138
Donor acceptor (DA) complexes, 454
Dyson equations, 351

E
Electron correlation

configuration interaction, 30
correlation energy, 29
Slater determinant, 30

Electron density
fundamental and interpretative properties

asymptotic behavior, 42
atomic subspace, 43
atoms, monotonic variation and shell

structure, 42
electrostatic potential (ESP), 43
Hellmann Feynman (H F) theorem, 42
property density function (PDF), 3D

space, 43 44
quantum fluid dynamics, 52 53

Euler type equation of motion, 52
Madelung transformation, 52

single particle density
Kato’s cusp condition, 41
RDM, 40 41
spin averaged, 40 41

Thomas Fermi statistical model
electrostatic potential (ESP), 46
energy, 44 45
Euler Lagrange deterministic equation, 46
Fermi Dirac statistics, 45
LDA, 46
main assumptions, 41
Wigner correlation energy functional, 47

time independent density functional theory
exchange correlation hole, 51 52
Hohenberg Kohn Sham equations, 48 51
Hohenberg Kohn theorems, 48

Electronegativity, 9
Electron following (EF) perspectives, 455
Electron localization function

dissociation energy, HOMO LUMO gap,
289 291

electron pair concept, 281

Lewis electron pair model, 282 283
ELI and ELF, 287 289
molecules dimensions, 286 287
noninteracting fermions, 283 284
one particle density, 285
orbitals couples, 284
pair density vs. one particle density,

285 286
Pauli exclusion principle, 281 282
Schrödinger equation, 282

Electron localization function (ELF), 287
molecules, 290
topological analysis, 288 289
triplet isosurfaces, 291

Electron localization indicator (ELI), 287
Electron momentum density (EMD) topography,

62 63; see also Molecular electron
momentum density

Electron momentum spectroscopy (EMS), 66
Electron preceding (EP) perspectives,

455, 474
Electronic chemical potential, 155 156
Electronic density

DFT
dual descriptor, 14, 16 17
Fukui function, 14 16
response function, 13 14
Taylor series expansion, 16

orbital language, 17
Electrophilicity

applications, 189
charge transfer process, 182
chemical hardness, 181
electrofugality, 188 189
electron affinity (EA) vs. electrophilicity

index, 184
electrophilicity index, 182
electrophilicity scale, 179 180
energy change, 181
experimental vs. theoretical electrophilicity,

182 183
intermolecular stretching force constant, 180
Lewis acidity, 179
local extension, 187 188
minimum electrophilicity principle

(MEP), 188
nucleophilicity

chemical and external potential, 185
electrostatic potential, 186
first order static density response function,

186 187
local hardness, 184
nucleophilicity index, 185
vs. experimental efficiency, 185 186
vs. experimental gas phase, 187

zero temperature free electron sea,
180 181
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Electrostatic potential, molecular interactive
behavior

atomic and molecular features, 245 246
Coulomb’s law

Born Oppenheimer approximation, 244
electronic density function, 244
electrostatic force, 243
interaction energy, 244 245
stationary point charges, 244

noncovalent interactions
analytical expression, 252
behavioral analysis and prediction, 249
chlorinated dibenzo p dioxins, 249
condensed phase physical properties, 252
drug receptor and enzyme substrate

interaction, 249
halogen bonding, 250
hydrogen bond acceptor, 249
internal charge separation, 251
multivariable statistical analysis, 252
SBr2 molecular surface, 250
s hole bonding, 250 251
solid!gas and liquid!gas transitions, 252

reactivity
anisole molecular surface, 248 249
1 butanol molecular surface, 247 248
electronic charge distributions, 247
electrophilic and nucleophilic

reactants, 248
perturbing effect, 247
two dimensional contour plots

computation, 247
van der Waals radii, atoms, 247

Energy of highest occupied molecular orbital
(EHOMO), 480

Energy of lowest unoccupied molecular orbital
(ELUMO), 480

Euler equation, 77
Euler Lagrange equations, 9, 111 112, 142 143
Exchange correlation energy and hole

Coulomb energy, 89
exchange energy and hole

Fermi hole, 89 90
permutation, 90
Slater determinant, 89

probability density, 87 88
Exchange correlation potential

differential virial theorem
Hartree Fock theory, 100 101
kinetic energy tensor, 99
Levy Perdew relationship, 100

exchange potential
Fermi hole, 91 92
Slater potential, 91

excited states
density and energy, 94
eigen energy, 97

excitation energy, 95
negative ions, 95 96

neon, 85, 92 93
self consistent solutions, ground state, 93 94
virial theorem, 93

External field effects and chemical reactivity
electric field effect

C2v molecules, 373 374
dipole moment variation, 369, 371
finite field approximation, 367
formaldehyde and acetaldehyde, 369
higher order derivatives, 367
hydrogen bond stability, 368
interaction energy, 372
reactivity descriptors response, 369 371
stabilization energy response, 371 373
theory, 366 368

energy and electron density, 363
perturbation parameters effect, 374
theory

Hamiltonian and Taylor series, 364 365
HSAB principle, 366
reactivity descriptors, 365 366

F
Fermion four current density, 138
Food and Drug Administration (FDA), 493
Fourier transform (FT), 55 56
Frontier molecular orbital (FMO) theory,

258, 264
Frozen orbital approximation (FOA), 167
Fukui function (FF), 236

BF3 and propylene, 261 262
chemical potential and hardness, 257
chemical reactivity, 145
computing methods, 262 263
Coulomb interaction, 263
electron density, 255
electron transfer effects, 264
electrophilic attack, 256
enzyme ligand docking, 264 265
finite difference method, 323 324
FMO reactivity indicators, 259
ground state density, 257
isolated system

Born approximations, 352
finite difference approximations, 350
hardness, 348 349
Kohn Sham potential, 348
theorems, 351 353

Kohn Sham DFT calculations, 262
local reactivity index, 150 151
local reactivity profiles

endothermic reaction, 329
gas phase exothermic reaction, 328 329
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H2O2 internal rotation, 327
minimum energy path (MEP), 324
NH3 and H2O2 optimized structures,

324 325
stretching and bending modes, 324 326
thermoneutral reaction, 327
transition states (TSs), 328 329

Maxwell relation, 256 257
polarization and chemical hardness, 346 347
propylene, 259
reactivity descriptor

condensed to atom, 166 167
density function, 165
frozen orbital approximation (FOA), 167
hardness, 168
Hirshfelder population analysis (HPA),

167 168
one electron orbital picture, 166 167
types, 166

reactivity descriptors, 365 366
regioselectivity indicators, 258
response function, 344 345
tools, 265
zero electron affinity, 263

G
Gauss’ law, 246
Gaussian function, 55 57
Generalized gradient approximations (GGA),

545, 555
Geometric Fukui function (GFF), 460, 475
Ground state atoms, 246

H
Halocarbons, cellular toxicity

HiQSAR model results, 491
structure, 490
vertical electron affinity, 491 492

Hamilton Jacobi equation, 113
Hansch analysis, 480
Hardness kernel, 159
Hard soft acid base (HSAB), 366, 371, 398,

401 402, 503, 506 510, 541
Hartree Fock (HF) theory, 100 101, 159, 467

interaction energy, 404
solvent effects and chemical reactivity,

387, 391
Hellmann Feynman (H F) theorem, 42, 334,

357, 455
Henry’s law, 487
Hessian eigenvalues, 222
Hessian matrix, 63
Hierarchical QSAR, 485

estrogen receptor binding affinity, 485

halocarbons, cellular toxicity, 491
vapor pressure (VP), risk assessment

applications, 487
ASTER database, 487 488
linear regression methods, 488 489
LSER approach, 490

Highest occupied molecular orbital (HOMO), 160,
258, 289, 345, 542

Hilbert space, 219, 307, 309
Hirshfeld partitioning method, 238
Hirshfelder population analysis (HPA), 167 168
Hodgkin Richards index, 237
Hohenberg Kohn properties, 257
Hohenberg Kohn Sham equations

density and kinetic energy, 49
electronegativity, 50
electronic energy, 48
Hamiltonian, 49

Hohenberg Kohn Sham formalism,
138, 140 141

Hohenberg Kohn theorems, 48, 67, 108 109,
122, 231, 275, 539

s Hole bonding, 250 251
Holographic electron density theorem, 239
Hydrogen bonding

classification, 400
covalent nature, 399 400
hydrogen bond energy (EHB) vs. MEP, 401
heteronuclear and homonuclear bond, 400
local softness, 402 403
softness matching, 401 402
spectrum, 399

Hydrogen molecule
molecular orbital, 27
true wave function, 25
valence bond potential energy, 26

Hydroxy substituted 2 phenylindoles, chemical
structure, 490

Hylleraas coordinates, 160

I
Integer discontinuity and temporary anions

charge sensitivities, 540
chemical potential and hardness, computation

aug cc pVTZ and cc pVTZ, 549
correlation plots, 550
electron affinity and, 547
mean and mean absolute errors, 547
values, Perdew Burke Ernzerhof (PBE)

functional approach, 548
density functional theory (DFT), 539
fractional electron number, quantities

electron density, 543
electron transmission spectroscopy,

544 545
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integer discontinuities, 541
left and right side derivatives, 542
orbital energies and, 542

Fukui functions, 556 557
ground state electron density, 539
HSAB principle, 541
local functionals, approximate expressions

hardness expression, 546 547
Koopmans type expression, 545 546
LUMO and HOMO orbitals, 545

nucleophilic attack, fukui function
computation, 550

electron affinities, calculation, 552 553
excess electron,binding, 551
hardness correlation, 551
H2CO contour plots, 558
Kohn Sham equation, 552
LUMO and HOMO eigenvalues, 555
vertical electron affinity, correlation, 554

Intermolecular interactions
argon and benzene dimers, 33
electrostatic interaction energy, 34
hydrophobic interaction, 35
ion ion interactions, 34
van der Waals (vdW) force, 33 34
water dimer, 33

Intramolecular reactivity, 170
Intermolecular reactivity descriptors

[2þ1] addition, 171 172
cycloaddition reaction, 172 174
electrophilic=nucleophilic reactants, 170 171
radical abstraction reaction, 175 176
radical reaction, 174 175
study procedure, 170

Intrinsic reaction coordinate (IRC), 324 325, 328
Ionization potential theorem, 85

K
Kato’s theorem, 122 123
Knieger Li Iafrate (KLI) approximation, 125, 131
Kohn Sham (KS) equation, 73, 109 110, 531
Kohn Sham Fukui functions, 348 349, 351
Koopmans’ theorem, 158, 181
Kullback Liebler formula, 221 222

L
Leave one out (LOO) cross validation

approach, 486
LeChatelier Braun principle, 456, 462, 470
Levy Perdew relationship, 100
Lewis electron pair model, 282 283

ELI and ELF, 287 289
noninteracting fermions, 283 284
one particle density, 285

orbitals couples, 284
pair density and one particle density electon

comparison, 285 286
different spin, 285
probability, 286 287
same spin, 286

Pauli exclusion principle
electrons probabilities, 283
second order density matrix, 282

Schrödinger equation, 282
Linear combination of atomic orbital (LCAO), 27
Linear combination of atomic orbital molecular

orbital (LCAO MO) approach,
308 309

Local density approximation (LDA), 46
Local spin density (LSD), 131
Lorentz invariant, 140 141
Lowest unoccupied molecular orbital

(LUMO), 157, 258, 289, 542 543,
545 548, 555, 559

M
Madelung transformation, 52
Many body perturbation theory (MBPT), 31
Maximum hardness principle (MHP), 188
Maxwell Boltzmann statistics, 116
Metallacyclocumulene, Cp2Ti, Cp2Zr

C C and M C bond, 200
geometrical parameters, 200
hydrogenation energies, 202 203
interaction, 201 202
isomeric forms, 196
isomers, 203
LUMO and HOMO, 200 201
synthesis, 199

Minimum energy coordinates (MECs), 454
components, 472
electronic nuclear interaction, 474
grouping responses, 465
interaction constants, 466

Minimum energy path (MEP), 305 306,
312 315, 317 320, 324 325, 328

Molecular descriptors, QSAR
definition and classification, 482 484
ligands, 481
three dimensional (3 D) descriptors, 481, 485
topological indices (TIs), 481

Molecular electron momentum density
Compton profile, 60 61
hydrogen molecule

diffraction factor, 59
momentum and coordinate space charge

densities, 59 60
VB and MO wave functions, 59

qualitative and semiquantitative principles, 61
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Molecular electrostatic potential (MEP), 398
Molecular orbital (MO) wave functions, 59
Molecular quantum similarity (MQS)

Carbó index, C class descriptors, 237
computational measurement

ab initio calculation, 235
atomic electron density, s type Gaussians,

234 235
atomic shell approximation (ASA),

234 235
basis functions, 234
electron density, quantum chemical

methods, 234
Fukui function, 236
promolecular density, 234 235
valence region, 235

Euclidean distance, 231
fragment similarity, 238 239
Hodgkin Richards index, 237
matrix, 233
molecular alignment role

degree of similarity, 236
MaxiSim and QSSA algorithms,

236 237
structural alignment, 236 237
topogeometrical superposition approach

(TGSA), 236
molecular descriptors

Hohenberg Kohn theorem, 231
quantitative structure property=activity

relationships (QSP(A)R), 230
quantum chemical calculations, 230
Schrödinger’s equation, 231

operators, 232
periodic system, 229

Molecular quantum similarity measure (MQSM),
231 232

Molecules structure, QSAR modeling
chirality indices and molecular overlay,

492 496
hierarchical, 485
molecular descriptors, 481 484
physicochemical, environmental,

pharmacological, and toxicological
properties, 487 492

statistical methods, 485 486
validation, 492

Momentum space
bent banana bond model, 65
Carbó index, 66
chemical reactions, 64
Compton profile, 67
cyclopropane, 65
Hohenberg Kohn theorem, 67
LiF, 66
momentum and coordinate space charge

densities, 64, 67

quantitative structure activity relationships
(QSAR), 65 66

ring strain effect, 65
Schrödinger equation, 67
Shannon information entropy, 67 68
symmetry

first order reduced density matrix, 61
inversion property, 61 62
water molecule, 62

tetrahedrane, 65
valence region, 64

Monoatomic ions, 246
Mulliken approach, 238
Multicenter bond index (MCI), 440
Multiconfiguration self consistent field

(MCSCF), 31

N
Natural population analysis (NPA), 167
Navier Stokes equation, 110
Newton’s second law, 114
Nonlinear differential equation, 110
Nucleophilicity

chemical and external potential, 185
electrostatic potential, 186
first order static density response function,

186 187
local hardness, 184
nucleophilicity index, 185
vs. experimental efficiency, 185 186
vs. experimental gas phase, 187

O
Open and closed molecular systems, electronic

and geometric structures
charge sensitivity analysis (CSA) of, 454
chemical reactivity theory, 455
compliance constants and minimum energy

coordinates
electronic nuclear treatment, 464 465
force perturbation, 467
minimum energy responses, 464
nuclear motions, 463
probing displacements, 466

compliant constants as reactivity
indices, uses

decoupled inter reactant approach, 472
heterogeneous catalysis, 471
single reactants, 473

decoupled treatment, 470
degrees of freedom of, 453
electron reservoir controlling, 454
electronic nuclear coupling constants, 469
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electronic state parameters, 471
electronic structure theory, 455 456
equilibrium distribution, 456
linear response treatment, 454 455
Mulliken net charges, 467
perturbation response relations

compliance coefficients, 459
coupling relations, 456
electron nuclear couplings, 462 463
electronic global hardness, 457
electronic softness, 461 462
ground state, 458
independent state parameters, 460
nuclear displacements, 463
principal charge sensitivities, 458 459

rigid and relaxed geometries, 468
Optimized potential methods, 131 133
Orbital language, DFT

electronic density, 17
exchange correlation potential and fractional

occupation, 18
Fukui function, 19
spin orbitals, 17 18

Organometallic complexes, Cp2Ti, Cp2Zr
bent metallocenes

carbene, 198 199
and ferrocene, 197 198
frontier orbitals, 198

B3LYP method, 196 197
C C coupling and decoupling reactions

bond lengths of, 208
bonding interaction, 206
cyclopentadienyl ligand, 203 204
energetics of, 210
homo and heterobinuclear transition

metal complexes, 205
mechanistic pathways, 205
potential energy diagram,

207 208, 210
reaction energies, 205 206
relative energies comparison, 204
thermodynamic stability, 209
transition state structure, 210 211

dinitrogen complex, 194
mechanism for, 195
metallacyclocumulene

C C and M C bond, 200
geometrical parameters, 200
hydrogenation energies, 202 203
interaction, 201 202
isomeric forms, 196
isomers, 203
LUMO and HOMO, 200 201
synthesis of, 199

paramagnetic complex, 196
structural variations, schematic representation,

194 195

P
Partial least squares (PLS), 485
Particle in a (spherical) box (PIAB) model

Dirichlet boundary conditions, 522 523
energy and pressure relationship, 524
ground state wave function, 523
Schrödinger equation, 521 522

Pauli exclusion principle, 281 282, 286
Perturbation theory, elementary models

bare and screened response functions
numerical application, 342 344
theory, 341 342

electric field
dipole hardnesses, 337 338
polarizabilities, 335 337

linear and nonlinear dipole hardness
E(p) function, 339 340
electronegativity scale, 339
He atoms, 340 341

Photon induced electron transfer (PET),
507 508

Polarizable continuum method (PCM), 385
Potential energy plot, See Reaction force,

chemical and physical process
Potential energy surface (PES), 303 304,

314, 318
Potential response function (PRF), 344,

351, 358
Principal component regression (PCR), 485
Principle of maximum hardness (PMH),

504, 510
Property density function (PDF), 43 44

Q
Quantitative structure activity relationship

(QSAR)
diastereomers and enantiomers, 493
estrogen receptor binding affinity, 490
halocarbons, cellular toxicity

HiQSAR model results, 491
structure, 490
vertical electron affinity, 491 492

Hansch analysis, 480
hierarchical molecular overlay

AI3 37220 and Picaridin, 496
geometry optimization, 495 496

hierarchical QSAR, 485
molecular descriptors

definition and classification, 482 484
ligands, 481
three dimensional (3 D) descriptors,

481, 485
topological indices (TIs), 481

physical organic models, 480
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relative chirality indices (VRCI)
a amino acids, 495
CIP rule, 493 494
diastereomeric repellants, 495
group delta value, 494

statistical methods, 485 486
validation, 492
vapor pressure (VP), risk assessment

applications, 487
ASTER database, 487 488
linear regression methods, 488 489
LSER approach, 490

Quantitative structure activity relationship (QSAR)
modeling, 485

chirality indices and molecular overlay
calculation, 493 495
enantiomers and diastereomers, activities,

492 493
hierarchical, 495 496

molecular descriptors
graph theoretical or topological

indices, 481
symbols, definitions and classification,

482 484
three dimensional and quantum chemical,

481, 484
physicochemical, environmental,

pharmacological, and toxicological
properties

estrogen receptor binding affinity, 490
halocarbons, cellular toxicity, 490 492
vapor pressure, 487 490

statistical methods, 485 486
validation, 492

Quantum chemical topology (QCT), 218
Quantum theory, 281

R
Reaction force, chemical and physical process

activation energy, 296
DEact,f and DEact,r analysis, 299
force minimum, 298 299
kcal=mol, 300
SN2 substitution, 299

electronic properties, 297 298
minimum and maximum, 295 296
potential energy curves

potential energy plot, 293
variation, 294 295

reaction force constant
maximum and minimum, 300 301
potential energy, 299
proton transfer, 301

Reactivity and polarizability response
approaches, 333 334

bare and screened response functions
numerical application, 342 344
theory, 341 342

chemical electronic responses, 335
coarse grained (CG) model, 335, 341, 351
DFT reactivity theory, 332
elementary models

dipole hardness, 337 338
linear and nonlinear dipole hardness,

338 341
polarizabilities, 335 337

Hellmann Feynman theorem, 334
isolated system

Born approximations, 352
finite difference approximations, 350
fukui functions and hardness, 348 349
Kohn Sham hardness, 349
Kohn Sham potential, 348
theorems, 351 353

linear and nonlinear response
chemical electronic responses, 358 359
nonlocal polarizabilities, 356 358

nonlocal polarizability and chemical
reactivity

chemical hardness Fukui function,
346 347

response function and Fukui functions,
344 345

potential response function (PRF),
344, 351, 358

softness, coulomb hole, and molecular
fragments

condensed reactivity indices, 353
global molecular softness, 355 356
local softness, 353 354
regional softness, 355

Reactivity descriptors
applicabilities

Fukui function, 169 170
grand canonical potential, 169
local reactivity parameter, 168 169

electron density, 163
Fukui function

condensed to atom, 166 167
density function, 165
frozen orbital approximation (FOA), 167
hardness, 168
Hirshfelder population analysis (HPA),

167 168
one electron orbital picture, 166 167
types, 166

global parameters, 164 165
intermolecular reactivity

[2þ1] addition, 171 172
cycloaddition reaction, 172 174
electrophilic=nucleophilic reactants,

170 171
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radical abstraction reaction, 175 176
radical reaction, 174 175
study procedure, 170

intramolecular reactivity, 170
local softness

condensed to atom softness, 167
global reactivity, 165 166

Redox induced electron rearrangements
(RIER), 258

Reduced density matrix (RDM), 40 41
Relative chirality indices (RCI), 493

chiral a amino acids, 495
enantiomers pairs, 494 495

Relative chirality indices (VRCI)
a amino acids, 495
CIP rule, 493 494
diastereomeric repellants, 495
group delta value, 494

Resonance stabilization energy, 26
Ridge regression (RR), 485
Root mean square distance (RMSD), 496
Runge Gross theorem, 109

S
Schrödinger equation, 127 128, 231, 282

electron density and wave function, 524 525
hydrogen like atom, 525
one dimensional box, 521

Schrödinger formulation, 138
Self consistent field (SCF), 307, 316
Self consistent isodensity polarized continuum

model (SCI PCM), 390
Self consistent reaction field (SCRF) models

conductor like screening model (COSMO),
385 386

Onsager reaction field model, 384 385
polarizable continuum method (PCM), 385

Shape function
atomic and molecular similarity, 276 277
electron density, 269
Fukui function, 277 278
fundamental descriptor, 274

Coulombic external potential, 275
cusps steepness, 275
shape functionals, 276

origin
chemical reactivity, 270
electron density, variations, 271

resurgence, 271
canonical and isomorphic

representation, 272
grand isomorphic ensemble, 274
Legendre transform representations,

272 273
Shared electron pair density index (SEDI), 307

Single wall nanotube (SWNT)
adsorption capacity, 511 512
gas sensing, 504

Single zeta function, 159, 161
Singlet wave function, 218
Solvent accessible surface area (SASA), 386
Solvent effects and chemical reactivity

conceptual DFT based reactivity
descriptors, 389

continuum models
Born model, 383 384
dielectric continuum model, 382
Fock matrix, 383
Hamiltonian approach, 383
Kirkwood Westheimer model, 384

electron correlation, 387
electronegativity, hardness, and softness,

389 390
electrophilicity index, 390 391
equilibrium, 388
Fukui functions, 391
Hartree Fock (HF) method, 387, 391
mechanisms, 388
models

applications, 387 388
classification, 381

nonelectrostatic factors, 386 387
QM=MM methods, 387
self consistent reaction field

(SCRF) models
conductor like screening model

(COSMO), 385 386
Onsager reaction field model, 384 385
polarizable continuum method

(PCM), 385
solvation free energy, 380 381
solvation models, 386
solvent molecules treatment, 380
spectra, 388 389

Spin donicity, 149
Spin polarized density functional theory

(SP DFT)
chemical reactivity

chemical potential response, 146
energy function, 142
Euler Lagrange equations, 142 143
Fukui function, 145
local reactivity index, 145 146
schematic plot, energy function,

143 144
spin hardness, 144 145
spin potential, 143

nonrelativistic limit, 141 142
reactivity index

energy changes, 146 147
fixed molecular geometry, 147
local reactivity index, 150 151
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spin number and external potential,
147 148

spin philicity and spin donicity, 149 150
Taylor series, 146
vertical energy changes, 148 149

relativistic version
energy term, 139
ground state energy, 138 139
iterative process, 140
Lorentz invariant, 140 141
orbital current density, 140

Slater determinant, 138
STO 3G basis set, chemical reaction, 307 311

T
Taylor series, 146
Thomas Fermi statistical model

electrostatic potential (ESP), 46
energy, 44 45
Euler Lagrange deterministic equation, 46
Fermi Dirac statistics, 45
LDA, 46
main assumptions, 41
Wigner correlation energy functional, 47

Thomas Fermi theory, 270
Three dimensional Cartesian space, 219
Time dependent density functional theory

(TD DFT)
Bohmian mechanics

many body system, 114 116
reduced quantum trajectory approach,

116 117
single particle trajectory, 112 114

density matrix theory, 105
density variables

continuity equation, 77
effective scalar and vector potentials, 78
Euler equation, 77
hydrodynamical scheme, 78
magnetic and electric fields, 77

Euler Lagrange equation, 111 112
hydrodynamical equation, 106 107
kinetic energy, 111
linear response

effective potential, 79
kernel, 80
N electron system, 79

many body problem
electron electron correlation function, 108
N electron system energy, 107 108
nonrelativistic N electron wave

function, 107
one electron density function, 108 109

Navier Stokes equation, 110
nonlinear differential equation, 109

probability density, 107
quantum fluid dynamics (QFD), 106
TD Kohn Sham (KS) equation, 109 110
TD Schrödinger equation, 109

Time independent Schrödinger equation,
106 107, 109

Time independent theories, single excited state
atom and molecule application

exchange correlation potential, 131
excitation energies, 131 132
Kohn Sham equation, 132
OPM excited state energies, 133

degenerate case, variational theory
density matrix, 128 129
noninteracting kinetic energy, 129 131
noninteracting Kohn Sham

Hamiltonian, 129
radial Kohn Sham equation, 131
Schrödinger equation, 127 128
subspace density, 128 129
weighting factor, 128

density functional theory, 121 122
Kohn Sham potential, 122
nondegenerate case, variational theory

Kohn Sham equation, 126 127
minimization process, 125 126
noninteracting kinetic energy, 126
total excited state energy, 127
variational principle, 125

nonvariational theory
Coulomb system Hamiltonian, 122 123
cusp relations, 123 124
eigenvalue problem, 123
eigenvalues=eigenvectors, 125
Kohn Sham like equation, 124
noninteracting system, 124 125

Topogeometrical superposition approach
(TGSA), 236

Topological indices (TIs), 481
Toxic Substances Control Act (TSCA), 487
Transition structure (TS), 305, 312 314, 316 320

V
Valence bond (VB) wave functions, 59
van der Waals interactions, 35
Vapor pressure (VP)

chemical class composition, 488
Henry’s law constant, 487
LSER approach, 490
RR, PCR and PLS regression, 488 489
topological descriptors, 489

Variational theory
degenerate single excited state

density matrix, 128 129
noninteracting kinetic energy, 129 131
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noninteracting Kohn Sham Hamiltonian,
129

radial Kohn Sham equation, 131
Schrödinger equation, 127 128
subspace density, 128 129
weighting factor, 128

nondegenerate single excited state
Kohn Sham equation, 126 127
minimization process, 125 126
noninteracting kinetic

energy, 126

total excited state energy, 127
variational principle, 125

Vibrational circular dichroism
spectroscopy, 239

Virial theorem, 156, 161
Visual molecular dynamics (VMD), 496

W
Weizsäcker’s kinetic energy, 110
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(a) (b) (c)

FIGURE 3.4 The prototypical noncovalent interactions between (a) water dimer, (b) Ar
dimer, and (c) benzene dimer.

Z

Px

Pz

(a) (b)

FIGURE 5.4 Coordinate and momentum space charge densities of H2 molecule illustrating
the bond directionality principle. Isosurfaces from 0.04 to 0.01 a.u. are plotted for the coordinate
space charge density (a). Isosurfaces from 1.0 to 0.01 a.u. are plotted for the momentum space
charge density (b).
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FIGURE 5.6 Momentum and coordinate space charge density profiles for the reaction path
from HNC to HCN.

Cp2M
M = Ti, Zr

CH2
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FIGURE 14.1 Frontier molecular orbitals of (a) bent metallocenes (Cp2M; M¼Ti, Zr) and
(b) carbene.



Metallacyclocumulene (5)

HOMO HOMO-1

HOMO-3HOMO-2

(a)

(b) (c)

M = Ti, Zr
H

H

Cp2M
3

4
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1
2 145.1�

(146.6�)
2.259
(2.373)

(2.353)

2.242

1.344
(1.342)

(1 316)1 302

FIGURE 14.2 (a) Structure and important geometrical parameters of metallacyclocumulene
(5). (b) molecular orbitals of metallacyclocumulene (5). The values in normal font correspond
to M¼Ti and the values in parenthesis correspond to M¼Zr. (c) A contour diagram of
the HOMO of metallacyclocumulene (5) showing the in plane interaction of metal and the
ligand. (Reproduced from Bach, M.A., Parameswaran, P., Jemmis, E.D., Rosenthal, U.,
Organametallics, 26, 2149, 2007; Jemmis, E.D., Phukan, A.K., Jiao, H., and Rosenthal, U.,
Organometallics, 22, 4958, 2003. With permission.)



M = Ti, Zr
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FIGURE 14.5 (a) The structure and important geometrical parameters of the bimetallic
complex 8. The values in the normal font correspond to M¼Ti and the values in paren
thesis correspond to M¼Zr. (b) Molecular orbitals of the complex 8 showing the in plane
delocalization.

FIGURE 15.1 Examples of the QCT partitioning of the electron density. (left) All atoms in
cyclopropane (except for the front methylene group); (middle) acrolein; and (right) a water
dimer (global minimum).



FIGURE 17.1 Electrostatic potential on the r(r)¼ 0.001 au molecular surface of 1 butanol,
computed at the B3PW91=6 31G(d,p) level. Color ranges, in kcal=mole, are: red, more
positive than 30; yellow, between 15 and 30; green, between 0 and 15; blue, between 20
and 0; purple, more negative than 20. The hydroxyl hydrogen is at the far right (red and
yellow), and the oxygen is below it (purple and blue).

FIGURE 17.2 Electrostatic potential on the r(r)¼ 0.001 au molecular surface of anisole, 1,
computed at the B3PW91=6 31G(d,p) level. Color ranges, in kcal=mole, are: yellow, between
10 and 20; green, between 0 and 10; blue, between 15 and 0; purple, more negative than
15. The methoxy group is at the upper left. The most negative regions (purple) are by the

oxygen and above and below the ring.



FIGURE 17.3 Electrostatic potential on the r(r)¼ 0.001 au molecular surface of SBr2,
computed at the B3PW91=6 31G(d,p) level. Color ranges, in kcal=mole, are: red, more
positive than 15; yellow, between 10 and 15; green, between 0 and 10; blue, between 9
and 0. One of the two bromines is at the bottom, while the sulfur is at the upper right. The red
regions are the positive s holes, on the extensions of the S Br and Br S bonds.

(a) (b)

FIGURE 18.1 Propylene is susceptible to electrophilic attack on the double bond. This can
be deduced by plotting (a) the Fukui function from below, f �(r), or (b) the HOMO density,
rHOMO(r), on the van der Waals’ surface of the molecule.



(a) (b)

FIGURE 18.2 BF3 is susceptible to nucleophilic attack at the boron site. This can be
deduced by plotting (a) the Fukui function from above, fþ(r), or (b) the LUMO density,
rLUMO(r), on the van der Waals’ surface of the molecule.
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FIGURE 20.1 Plot of Csj j2, s ¼ a, b for four independent fermions in a box.
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FIGURE 20.4 P2,det(x1, x2) for fermions in a box, for s1¼a and s2¼b.
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FIGURE 20.5 P2,det(x1, x2) for fermions in a box, for s1¼s2¼a.
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FIGURE 20.7 ELF isosurfaces for triplet (left) and singlet (right) of the different molecules.
The values of the isosurfaces are indicated below each picture.
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FIGURE 23.2 Profiles of (a) energy and FF values for nucleophilic attack and (b) for
electrophilic attack for distortion in the N H bond distance of ammonia.
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FIGURE 23.3 Profiles of (a) energy and FF for nucleophilic attack and (b) electrophilic
attack for distortion in the H N H bond angle of ammonia.
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FIGURE 27.6 h(r) can be used for the estimation of the electrostatic interaction and
the hydrogen bonding ability. (Reprinted from Mignon, P., Loverix, S., Steyaert, J., and
Geerlings, P., Nucl. Acids Res., 33, 1779, 2005. With permission.)
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FIGURE 28.4 Scheme of TS structures together with relative electron fluctuation magni
tudes and ELF¼ 0.60 pictures for reactions A D.
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FIGURE 32.4 The localized minima as obtained after the GCMS simulation with carbon
dioxide adsorption over single wall CNT with a fixed fugacity of 100 kPa.



FIGURE 32.6 The electrophilic Fukui function of carbon dioxide adsorbed over single wall
CNT is plotted as an isosurface with a grid of 0.2 Å.




