

Grid Resource
Management

Toward Virtual and Services
Compliant Grid Computing

C7404_FM.indd 1 8/8/08 10:24:09 AM

CHAPMAN & HALL/CRC
Numerical Analysis and Scientific Computing

Aims and scope:
Scientific computing and numerical analysis provide invaluable tools for the sciences and engineering.
This series aims to capture new developments and summarize state-of-the-art methods over the whole
spectrum of these fields. It will include a broad range of textbooks, monographs and handbooks.
Volumes in theory, including discretisation techniques, numerical algorithms, multiscale techniques,
parallel and distributed algorithms, as well as applications of these methods in multi-disciplinary fields,
are welcome. The inclusion of concrete real-world examples is highly encouraged. This series is meant
to appeal to students and researchers in mathematics, engineering and computational science.

Editors

Choi-Hong Lai
School of Computing and
Mathematical Sciences

University of Greenwich

Frédéric Magoulès
Applied Mathematics and

Systems Laboratory
Ecole Centrale Paris

Editorial Advisory Board

Mark Ainsworth
Mathematics Department

Strathclyde University

Todd Arbogast
Institute for Computational
Engineering and Sciences

The University of Texas at Austin

Craig C. Douglas
Computer Science Department

University of Kentucky

Ivan Graham
Department of Mathematical Sciences

University of Bath

Peter Jimack
School of Computing
University of Leeds

Takashi Kako
Department of Computer Science

The University of Electro-Communications

Peter Monk
Department of Mathematical Sciences

University of Delaware

Francois-Xavier Roux
ONERA

Arthur E.P. Veldman
Institute of Mathematics and Computing Science

University of Groningen

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
4th, Floor, Albert House
1-4 Singer Street
London EC2A 4BQ
UK

C7404_FM.indd 2 8/8/08 10:24:09 AM

Published Titles

Grid Resource Management: Toward Virtual and Services Compliant
Grid Computing
Frédéric Magoulès, Thi-Mai-Huong Nguyen, and Lei Yu

Numerical Linear Approximation in C
Nabih N. Abdelmalek and William A. Malek

Parallel Algorithms
Henri Casanova, Arnaud Legrand, and Yves Robert

Parallel Iterative Algorithms
Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphael Couturier

C7404_FM.indd 3 8/8/08 10:24:09 AM

C7404_FM.indd 4 8/8/08 10:24:09 AM

Grid Resource
Management

Toward Virtual and Services
Compliant Grid Computing

Frédéric Magoulès

Thi-Mai-Huong Nguyen

Lei Yu

C7404_FM.indd 5 8/8/08 10:24:09 AM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-7404-8 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can-
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

C7404_FM.indd 6 8/8/08 10:24:09 AM

Warranty

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty of fitness is implied. The information is provided on
an as-is basis. The authors, editor and publisher shall have neither liability
nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book or from the use of the
code published in it.

Preface

Grid technologies have created an explosion of interest in both commercial
and academic domains in recent years. The development of the World Wide
Web, which started as a technology for scientific collaboration but was later
adopted for use by a multitude of industries and businesses, has illustrated
the development path of grid computing. Grid computing has emerged as
an important research area to address the problem of efficiently using multi-
institutional pools of resources. Grid computing systems aim to allow coordi-
nated and collaborative resource sharing and problem solving across several
institutions to solve large scientific problems that could not be easily solved
within the boundaries of a single institution. Although the concept behind
grid computing is not new as the idea of harnessing unused Central Processing
Unit (CPU) cycles to make better use of distributed resources is known from
the new age of distributed computing, grid technology offers the potential for
providing secure access to remote services promoting scientific collaborations
in an unprecedented scale.

As there are always applications (e.g., climate model computations, biolog-
ical applications) whose computational demands exceed even the fastest tech-
nologies available, it is desirable to efficiently aggregate distributed resources
owned by collaborating parties to enable processing of a single application in
a reasonable time scale. The simultaneous advances in hardware technologies
and increase in wide area network speeds have made the primary purpose of
the grid more feasible, which is to bring together a given amount of distributed
computing and storage resources to function as a single, virtual computer. In
addition to inter-operability and to security concerns, the goal of grid systems
is also to achieve performance levels that are greater than any single resource
could deliver alone.

The notion of computational grids first appeared in the early 1990s, pro-
posed as infrastructures for advanced science and engineering. This notion
was inspired by the analogy to power grids, which give people access to elec-
tricity, where the location of the electric power source is far away and usually
completely unimportant to the consumer. The power sources can be of differ-
ent types, burning coal or gas or using nuclear fuel, and of different capacity.
All of these characteristics are completely hidden to the consumers, who ex-
perience only the electric power, which they can make use of for commodity
equipment like plugs and cables. In the future, computational power is ex-
pected to become a purchasable commodity, such as electrical power. This
book attempts to give a comprehensive view of architectural issues of grid

ix

x

technology (e.g., security, data management, logging, and aggregation of ser-
vices) and related technologies.

Chapter 1 gives a general introduction to grid computing that takes its name
from an analogy with the electrical power grid. Although brief, this chapter
offers a classification of grid usages, grid systems and the evolution of grid
computing. The first generation of grid systems which introduced metacom-
puting environments, such as I-WAY supporting wide-area high-performance
computing, have paved the path for the evolution of grid computing to the
next generation. The second generation focused on the development of mid-
dleware, such as Globus Toolkit, which introduced more inter-operable so-
lutions. The current trend of grid developments is moving towards a more
service-oriented approach that exposes the grid protocols using Web services
standards (e.g., WSDL, SOAP). This continuing evolution allows grid systems
to be built in an inter-operable and flexible way and to be capable of running
a wide range of applications.

Chapter 2 presents the concepts and operational issues associated with the
concepts of Web services and Service Oriented Architecture (SOA). This chap-
ter provides information on the Web services standards and the underlying
technologies used in Web services, including Simple Open Access Protocol
(SOAP), Web Service Description Language (WSDL), and Universal Descrip-
tion, Discovery, and Integration (UDDI). We describe the emergence of a
family of specifications, such as OGSA/OGSI, WSRF, and WS-Notification,
which enforces traditional Web services with features such as state and life-
cycle, making them more suitable for managing and sharing resources on the
grid environments.

Chapter 3 presents technical and business topics relevant to data manage-
ment in grid environments. We begin by identifying the challenges that have
arisen from scientific applications as the data requirements for these appli-
cations increase in both volume and scale, and we follow by discussing data
management needs in grid environments. We then overview main grid activi-
ties today in data-intensive grid computing including major data grid projects
on a worldwide scale. We also present a classification for existing solutions
for managing data in grid environments.

Grid and peer-to-peer systems share a common goal: sharing and harnessing
resources across various administrative domains. The peer-to-peer paradigm
is a successful model that has been proved to achieve scalability in large-scale
distributed systems. Chapter 4 presents a general introduction to peer-to-peer
(P2P) computing including an overview of the evolution and characteristics
of P2P systems. Then, routing algorithms for data lookup in unstructured,
structured, and hybrid P2P systems are reviewed. Finally, we present the
shortcomings and improvements for data lookup in these systems.

Chapter 5 presents a grid-enabled virtual file system named GRAVY, which
enables the inter-operability between heterogeneous file systems in grid envi-
ronments. GRAVY integrates underlying heterogeneous file systems into a
unified location-transparent file system of the grid. This virtual file system

xi

provides to applications and users a uniform global view and a uniform access
through standard application programming interfaces (API) and interfaces.

Chapter 6 first introduces several scheduling algorithms and strategies for
heterogeneous computing systems. There are eleven static heuristics and two
types of dynamic heuristics which are presented. Then scheduling problems
in a grid environment are discussed. We emphasize that new scheduling al-
gorithms and strategies must be researched to take the characteristic issues
of grids into account. Concurrently, grid scheduling algorithms, grid schedul-
ing architectures and several meta-scheduler projects are presented. Service-
Oriented Architecture (SOA) is adopted more and more in industry and busi-
ness domains as a common and effective solution to resolve the grid computing
problem and the efficient discovery of grid services is essential for the success
of grid computing. Thus the service discovery, resource information and grid
scheduling architecture are also presented in details. As a specific case of ap-
plication scheduling, data-intensive applications scheduling is then introduced
in order to achieve efficient scheduling of data-intensive applications on grids.
Finally, fault-tolerant technologies are discussed to deal properly with system
failures and to ensure the functionality of grid systems.

Chapter 7 first presents workflow management systems and workflow spec-
ification languages. Then the concept of grid workflow is defined and two
approaches to create grid workflows are explained. Next, we underline that
the workflow scheduling and rescheduling problem is the key factor to improve
the performance of workflow applications and workflow scheduling algorithms.
In order to hide low-level grid access mechanisms and to make even nonexpert
users of grids capable of defining and executing workflow applications, some
portal technologies are also presented at the end of this chapter.

Chapter 8 introduces notions of semantic technologies such as semantic web,
ontologies and semantic grid. Semantic grid is considered as the convergence
of semantic web and grid and this integration of semantic technologies can
improve the performance of grids in two main aspects: the discovery of avail-
able resources and the data integration. Semantic web service enhances the
description level of web services such as their capabilities and task achieving
character. Thus this integration provides the support in service recognition,
service configuration, service comparison and automated composition. Several
models of service composition are discussed and automatic service composition
is presented to demonstrate a brilliant prospect for the automatic workflow
generation.

Chapter 9 presents a framework for dynamic deployment of scientific appli-
cations into grid environment. The framework addresses dynamic applications
deployment. The local administrator can dynamically make some applications
available or unavailable on the grid resource without stopping the execution of
the Globus Toolkit Java Web Services container. An application scheduler has
been integrated in this framework, which can realize simple job scheduling,
selecting the best grid resource to submit jobs for the users. The perfor-
mance of the framework has been evaluated by several experiments. All the

xii

components in the framework are realized in the standard of Web service, so
the other meta-schedulers or clients can interact with the components in a
standard way.

Chapter 10 first introduces some of the main concepts of grid engineering.
We emphasize that the research of grid applications should focus on the com-
puting model and system structure design because of the existing numerous
grid middlewares which deal with the security, resource management, infor-
mation handling and data transfer issues in a grid environment. Then several
large scale grid projects are presented to show the generic architecture of large
scale grid systems and development experiences. At the end, the concept of
grid service programming is introduced. The Java WS core programming and
GT4 Security are two important aspects mentioned in this chapter.

Chapter 11 draws some conclusions. First this chapter concludes the major
contributions of this book which consist of two main aspects: data manage-
ment and execution management. For each aspect, a summary is provided to
outline the brief works in the book. Then the possible future of the grid is
introduced. We believe that grid computing will continue to evolve in both
data management and execution management of the grid community. Fi-
nally many interesting questions and issues, that deserve further research are
pointed out.

List of Tables

2.1 XML-RPC primitive types . 33
2.2 Summary of base PortTypes defined in OGSI specification . . 42
2.3 WS-Resource Framework specifications summary 44
2.4 WS-Notification Specifications summary 45
2.5 OGSI to WS-Resource Framework and WS-Notification map 50
2.6 WS-Resource-qualified Endpoint Reference 51
2.7 Mapping from OGSI to WSRF lifetime management constructs 52

3.1 List of data grid projects . 67

4.1 Comparison of different unstructured systems 101
4.2 Notation definition for algorithm 117
4.3 State of a Pastry node with node ID 23002, b = 2 118
4.4 Neighbor map held by Tapestry node with ID 67493 119
4.5 Comparison of various unstructured P2P systems 123
4.6 Comparison of various structured P2P systems 124

5.1 Supported methods of GridFile interface 147
5.2 Andrew benchmark results . 155

9.1 PortType of Services . 244

xiii

List of Figures

1.1 General technological evolution 5
1.2 Layered grid architecture . 10
1.3 Condor in conjunction with Globus technologies 11
1.4 UNICORE architecture . 16

2.1 Web services components . 24
2.2 Meta model of Web services architecture 27
2.3 Web services architecture stack 29
2.4 WSDL document structure 31
2.5 XML-RPC request structure 34
2.6 Structure of a SOAP document 35
2.7 Convergence of Web services and grid services 39
2.8 WSRF, OGSI and Web services technologies 43
2.9 Implied resource pattern . 44

3.1 Example of the network of one experiment computing model 63
3.2 Architecture of the Virtual Data Toolkit 68
3.3 European DataGrid Data Management architecture 72
3.4 The Network Storage Stack 81

4.1 Typical hybrid decentralized P2P system 103
4.2 Example of data lookup in flooding algorithm 104
4.3 Peers and super-peers in partially centralized system 107
4.4 Example of Chord ring . 110
4.5 Example of a 2-d space with 5 nodes 114

5.1 Conceptual design of GRAVY 140
5.2 Multiple access protocol in both server side and remote side . 142
5.3 Integration of new protocol at the remote side in GRAVY . . 143
5.4 Class diagram of the wrapper interfaces 144
5.5 Example of a logical view and its mapping to physical data

locations . 145
5.6 Example of using GridFile’s methods 146
5.7 Sequence diagram for AccessManager 148
5.8 Sequence diagram for the execution of a transfer request in

synchronous mode . 148

xv

xvi

5.9 Sequence diagram for the execution of a transfer request in
asynchronous mode . 149

5.10 Server side results . 152
5.11 Remote side results . 153
5.12 Processing performance of GRAVY 154

6.1 High machine heterogeneity 165
6.2 Low machine heterogeneity 166

7.1 Grid workflow system architecture 204
7.2 P-GRADE portal system functions 209
7.3 Pipeline workflow creation . 212

8.1 Convergence of semantic web and grid 222
8.2 Dynamic workflow composition 231
8.3 Architecture of the framework 232

9.1 Proposed model architecture 243
9.2 Grid resource architecture . 245
9.3 Resource creation diagram . 246
9.4 Application execution diagram 247
9.5 User job submission diagram 248
9.6 AdminTool interface . 249
9.7 Dialog to add a job description 249
9.8 Submission performance . 252
9.9 Submission comparison . 253

10.1 GridLab Architecture . 264
10.2 EU DataGrid architecture . 266
10.3 Web services . 267
10.4 Multiple resource factory pattern 268

Contents

1 An overview of grid computing 1
1.1 Introduction . 1
1.2 Classifying grid usages . 1
1.3 Classifying grid systems . 2
1.4 Definitions . 3
1.5 Evolution of grid computing 5

1.5.1 First generation: early metacomputing environments . 6
1.5.2 Second generation: core grid technologies 8
1.5.3 Third generation: service oriented approach 17

1.6 Concluding remarks . 17
References . 18

2 Grid computing and Web services 23
2.1 Introduction . 23
2.2 Web services . 24

2.2.1 Web services characteristics 25
2.2.2 Web services architecture 26

2.3 Web services protocols and technology 28
2.3.1 WSDL, UDDI . 29
2.3.2 Web services encoding and transport 32
2.3.3 Emerging standards 36

2.4 Grid services . 38
2.4.1 Open Grid Services Infrastructure (OGSI) 39
2.4.2 Web Services Resource Framework (WSRF) 43
2.4.3 OSGI vs. WSRF . 49

2.5 Concluding remarks . 54
References . 55

3 Data management in grid environments 61
3.1 Introduction . 61
3.2 The scientific challenges . 61
3.3 Major data grid efforts today 65

3.3.1 Data grid . 65
3.3.2 American data grid projects 66
3.3.3 European data grid projects 71

3.4 Data management challenges in grid environments 76
3.5 Overview of existing solutions 79

xvii

xviii

3.5.1 Data transport mechanism 79
3.5.2 Logical file system interface 83
3.5.3 Data replication and storage 85
3.5.4 Data allocation and scheduling 88

3.6 Concluding remarks . 89
References . 90

4 Peer-to-peer data management 97
4.1 Introduction . 97
4.2 Defining peer-to-peer . 98

4.2.1 History . 98
4.2.2 Terminology . 98
4.2.3 Characteristics . 99

4.3 Data location and routing algorithms 100
4.3.1 P2P evolution . 101
4.3.2 Unstructured P2P systems 101
4.3.3 Structured P2P systems 108
4.3.4 Hybrid P2P systems 115

4.4 Shortcomings and improvements of P2P systems 120
4.4.1 Unstructured P2P systems 120
4.4.2 Structured and hybrid P2P systems 122

4.5 Concluding remarks . 125
References . 126

5 Grid enabled virtual file systems 131
5.1 Introduction . 131
5.2 Background . 132

5.2.1 Overview of file system 132
5.2.2 Requirements for grid virtual file systems 133
5.2.3 Overview of file transfer protocols 134

5.3 Data access problems in the grid 136
5.4 Related work . 137
5.5 GRAVY: GRid-enAbled Virtual file sYstem 139

5.5.1 Design overview . 139
5.5.2 Component description 139
5.5.3 An example of user interaction 141

5.6 Architectural issues . 141
5.6.1 Protocol resolution . 141
5.6.2 Naming management 144
5.6.3 GridFile - virtual file interface 145
5.6.4 Data access . 146
5.6.5 Data transfer . 149

5.7 Use cases . 150
5.7.1 Interaction with heterogeneous resources 150
5.7.2 Handling file transfers for grid jobs 151

xix

5.8 Experimental results . 152
5.8.1 Support for multiple protocols 152
5.8.2 Performance . 154

5.9 Concluding remarks . 155
References . 157

6 Scheduling grid services 161
6.1 Introduction . 161
6.2 Scheduling algorithms and strategies 162

6.2.1 Static heuristics . 162
6.2.2 Dynamic heuristics 165
6.2.3 Grid scheduling algorithms and strategies 168

6.3 Architecture . 170
6.3.1 Meta-schedulers . 171
6.3.2 Grid scheduling scenarios 173
6.3.3 Metascheduling schemes 173

6.4 Service discovery . 174
6.4.1 Service directories . 174
6.4.2 Techniques syntactic and semantic 176

6.5 Resource information . 178
6.5.1 Globus Toolkit information service 179
6.5.2 Other information services and providers 180

6.6 Data-intensive service scheduling 181
6.6.1 Algorithms . 181
6.6.2 Architecture of data grid 184

6.7 Fault tolerant . 185
6.7.1 Fault-tolerant algorithms 185
6.7.2 Fault-tolerant techniques 186
6.7.3 Grid fault tolerance 187

6.8 Concluding remarks . 188
References . 189

7 Workflow design and portal 195
7.1 Overview . 195
7.2 Management systems . 196

7.2.1 The Triana system . 197
7.2.2 Condor DAGMan . 197
7.2.3 Scientific Workflow management and the Kepler system 197
7.2.4 Taverna in life science applications 198
7.2.5 Karajan . 198
7.2.6 Workflow management in GrADS 199
7.2.7 Petri net model . 200

7.3 Workflow specification languages 200
7.3.1 Web Services Flow Language (WSFL) 201
7.3.2 Grid services flow languages 201

xx

7.3.3 XLANG: Web services for business process design . . 202
7.3.4 Business Process Execution Language for Web Services

(BPEL4WS) . 202
7.3.5 DAML-S . 203

7.4 Scheduling and rescheduling 203
7.4.1 Scheduling architecture 203
7.4.2 Scheduling algorithms 205
7.4.3 Decision making . 206
7.4.4 Scheduling strategies 207
7.4.5 Rescheduling . 207

7.5 Portal integration . 208
7.5.1 P-GRADE portal . 209
7.5.2 Other portal systems 210

7.6 A case study on the use of workflow technologies for scientific
analysis . 211
7.6.1 Motivation . 211
7.6.2 The LIGO data grid infrastructure 211
7.6.3 LIGO workflows . 211

7.7 Concluding remarks . 212
References . 214

8 Semantic web 217
8.1 Introduction . 217

8.1.1 Web and semantic web 217
8.1.2 Ontologies . 218

8.2 Semantic grid . 220
8.2.1 The grid and the semantic web 220
8.2.2 Current status of the semantic grid 222
8.2.3 Challenges to be overcome 223

8.3 Semantic web services . 224
8.3.1 Service description . 224
8.3.2 WS-Resources description and shortcomings 225
8.3.3 Semantic WS-Resource description proposals 227

8.4 Semantic matching of web services 227
8.4.1 Matchmaking Systems 227
8.4.2 Matching engine . 228
8.4.3 Semantic matching algorithms 229

8.5 Semantic workflow . 230
8.5.1 Model for composing workflows 230
8.5.2 Abstract semantic Web service and semantic template 232
8.5.3 Automatic Web service composition 233

8.6 Concluding remarks . 234
References . 235

xxi

9 Integration of scientific applications 237
9.1 Introduction . 237
9.2 Framework . 239

9.2.1 Java wrapping . 239
9.2.2 Grid service wrapping 239
9.2.3 WSRF resources . 241

9.3 Implementation . 241
9.3.1 Globus Toolkit and GRAM 241
9.3.2 Architecture and interface 242
9.3.3 Job scheduling and submission 244
9.3.4 Code deployment . 248

9.4 Security . 250
9.5 Evaluation . 250

9.5.1 Dynamic deployment experiments 250
9.5.2 Grid resource experiments 251

9.6 Concluding remarks . 252
References . 254

10 Potential for engineering and scientific computations 259
10.1 Introduction . 259
10.2 Grid applications . 259

10.2.1 Multi-objective optimization problems solving 260
10.2.2 Air quality predicting in a grid environment 261
10.2.3 Peer-to-peer media streaming systems 262

10.3 Grid projects . 263
10.3.1 GridLab project . 263
10.3.2 EU DataGrid . 264
10.3.3 ShanghaiGrid . 265

10.4 Grid service programming 266
10.4.1 A short introduction to Web services and WSRF . . . 267
10.4.2 Java WS core programming 267
10.4.3 GT4 Security . 269

10.5 Concluding remarks . 270
References . 271

11 Conclusions 273
11.1 Summary . 273

11.1.1 Data management . 273
11.1.2 Execution management 274

11.2 Future for grid computing 276

Glossary 279

Index 295

Chapter 1

An overview of grid computing

1.1 Introduction

Grid computing has emerged as an important field, distinguished from con-
ventional distributed computing by its focus on large-scale resource sharing,
innovative applications, and, in some cases, high-performance orientation [24].
The fundamental objective of grid computing is to unify distributed computer
resources independent of scale, hardware, and software in order to achieve a
processing power in unprecedented ways. In the early 1990s, scientific commu-
nity realized that high-speed networks presented an opportunity for resource
sharing. This would allow interpersonal collaboration, distributed data anal-
ysis, or access to specialized scientific instrumentation.

The term “grid” was inspired by the analogy to power grids, which give
people access to electricity, where the location of the electric power source is
far away and usually completely unimportant to the consumer. The power
sources can be of different type, burning coal or gas or using nuclear fuel, and
of different capacity. All of these characteristics are completely hidden to the
consumers, who experience only the electric power, which they can make use
of for commodity equipment like plugs and cables.

1.2 Classifying grid usages

Grid technology aims to combine distributed and diverse resources through
a set of service interfaces based on common protocols in order to offer com-
puting support for applications. The different types of computing support for
applications can be classified into five major groups [22]:

• Distributed computing: applications can use grid to aggregate compu-
tational resources in order to tackle problems that cannot be solved on
a single system. Therefore, the completion time for the execution of
an application is significantly reduced. This type of computing sup-
port requires the effective scheduling of resource using, the scalability of

1

2 Grid Resource Management

protocols and algorithms to a large number of nodes, latency-tolerant
algorithms as well as a high level of performance. Typical applications
that require distributed computing are very large problems, such as sim-
ulation of complex physical processes, which need lots of resources like
CPU and memory.

• High-throughput computing : the grids can be used to harness unused
processor cycles in order to perform independent tasks [22]. In that way,
a complicated application can be divided into multiple tasks scheduled
and managed by the grids. Applications that need to be performed with
different parameter configurations are well suited for high-throughput
computing. For example, Monte Carlo simulations, molecular simu-
lations of liquid crystal, bio-statistical problems solved with inductive
logic programming, etc.

• On-demand computing: the grids can provide access to resources that
cannot be cost-effectively or conveniently located locally. On-demand
computing support raises some challenging issues, including resource
location, scheduling, code management, configuration, fault tolerance,
security, and payment mechanisms. A meteorological application that
can use a dynamically acquired supercomputer to perform a cloud de-
tection algorithm is a representative example of an application requiring
on-demand computing.

• Data intensive computing: the grids are able to synthesize new informa-
tion from distributed data repositories, digital libraries and databases to
meet short-term requirements for resources of applications. Challenges
for data intensive computing support include the scheduling and con-
figuration of complex, high-volume data flows. The experiments in the
high energy physics (HEP) field are typical applications that need data
intensive computing support.

• Collaborative computing: the grids allow applications to enable and en-
hance human-to-human interactions. This type of application imposes
strict requirements on real-time capabilities and implies a wide range
of many different interactions that can take place [33]. An example
application that may use a collaborative computing infrastructure is
multi-conferencing.

1.3 Classifying grid systems

Typically, grid computing systems are classified into computational and
data grids. In the computational grid, the focus lies on optimizing execution

An overview of grid computing 3

time of applications that require a great number of computing processing
cycles. On the other hand, the data grid provides the solution for large scale
data management problems. In [32], a similar taxonomy for grid systems is
presented, which proposes a third category, the service grid.

• Computational grid : refers to systems that harness machines of an ad-
ministrative domain in a “cycle-stealing” mode to have higher compu-
tational capacity than the capacity of any constituent machine in the
system.

• Data grid : denotes systems that provide a hardware and software in-
frastructure for synthesizing new information from data repositories that
are distributed in a wide area network.

• Service grid : refers to systems that provide services that are not pro-
vided by any single local machine. This category is further divided as
on demand (aggregate resources to provide new services), collaborative
(connect users and applications via a virtual workspace), and multime-
dia (infrastructure for real-time multimedia applications).

1.4 Definitions

While grid technology has caused an explosion of interest in both the com-
mercial and academic domain, no exact definition of “the grid” has been given.
The definition of the grid changes along with the evolution of grid technol-
ogy. There exists multiple definitions of the grid. The lack of a complete
grid definition has already been mentioned in the literature [17], [57], [24],
[27]. We examine in this section some main definitions extracted from the
grid literature sources to find the most exhaustive definition of the grid.

• As a hardware or software infrastructure [22] : This early definition (i.e.,
in 1998) of the grid reveals the similarities to the power grid analogy:
“A computational grid is a hardware or software infrastructure that
provides dependable, consistent, pervasive and inexpensive access to
high-end computational capabilities”.

• As distributed resources with networked interface [57], [29] : The above
definition has been refined in [57] by dropping the “high-end” attribute
and promoting grids for every hardware level and type: “The computing
resources transparently available to the user via this networked environ-
ment have been called a metacomputer” or in [29]: “A metasystem is a
system composed of heterogeneous hosts (both parallel processors and
conventional architectures), possibly controlled by separate organiza-
tional entities, and connected by an irregular interconnection network”.

4 Grid Resource Management

• As a unique and very powerful supercomputer [27] : “Users will be pre-
sented the illusion of a single, very powerful computer, rather than a
collection of disparate machines. [...] Further, boundaries between com-
puters will be invisible, as will the location of data and the failure of
processors”.

• As a system of coordinated resources delivering qualities of service [57] :
A grid is a system that “coordinates resources that are not subject to
centralized control using standard, open, general-purpose protocols and
interfaces to deliver non-trivial qualities of service (QoS)”.

• As a hardware or software infrastructure among virtual organizations
[26] : The author complements the above definition by defining the grid
as “A hardware and software infrastructure that provides dependable,
consistent, and pervasive access to resources to enable sharing of com-
putational resources, utility computing, autonomic computing, collab-
oration among virtual organizations, and distributed data processing,
among others”.

• As a virtual organization [24] : The focus lies in the notion of virtual
organization (VO) because the resource sharing involves not only the
data file exchange but also direct access to computers, softwares, data
and other resources. In the context of large projects, companies and
scientific institutes have to collaborate from different sites in order to
pool their databases, knowledge bases, simulation or modeling tools,
etc. These resources need to be controlled with the agreement on the
sharing conditions, security constraints, etc. between the providers and
the consumers of resources. The agreement on these conditions among
different institutions forms a virtual organization. Its goal is to share
data resources, material means, scientific tools, etc. in order to reduce
significantly the conception costs. Specifically, the author emphasizes in
[24] that: “The real and specific problem that underlies the grid concept
is coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations”.

• As a virtual computer formed by a networked set of heterogeneous ma-
chines [32] : “A distributed network computing (NC) system is a vir-
tual computer formed by a networked set of heterogeneous machines
that agree to share their local resources with each other. A grid is a
very large scale, generalized distributed NC system that can scale to
Internet-size environments with machines distributed across multiple
organizations and administrative domains”.

• As an infrastructure composed of diverse resources in dynamic and dis-
tributed VO [23] : The author invokes that “Grid technologies and infras-
tructure support the sharing and coordinated use of diverse resources
in dynamic, distributed virtual organizations - that is, the creation,

An overview of grid computing 5

from geographically distributed components operated by distinct orga-
nizations with differing policies, of virtual computing systems that are
sufficiently integrated to deliver the desired QoS”.

• As an approach enabling a shared infrastructure including knowledge re-
sources [37] : The author observes that grid computing promotes an ap-
proach to conducting collaborations between the scientific and business
community: “We define the grid approach, or paradigm, that repre-
sents a general concept and idea to promote a vision for sophisticated
international scientific and business-oriented collaborations”.

As time goes by, the definition of the grid becomes more and more general
in order to include multiple capabilities expected from this technology. Ac-
cording to the list of definitions extracted from literature that are identified
previously, a grid can be defined as:

DEFINITION 1.1 A hardware and software infrastructure that provides
transparent, dependable, pervasive and consistent access to large-scale dis-
tributed resources owned and shared by multiple administrative organizations
in order to deliver support for a wide range of applications with the desired
qualities of service. These applications can perform either high throughput
computing, on-demand computing, data intensive computing, or collaborative
computing.

1.5 Evolution of grid computing

The notion of grid computing had already been explored in the very early
days of computer science as shown in the Figure 1.1. In 1969, the vision of

1995 2000 200519901969

Metacomputing GridGrid
Vision

OGSI

WSRF

FAFNER
I−WAY

Globus
Toolkit

FIGURE 1.1: General technological evolution.

6 Grid Resource Management

a grid infrastructure was introduced in [31]: “We will probably see the spread
of computer utilities, which, like present electric and telephone utilities, will
service individual homes and offices across the country”.

This vision of wide area distributed computing has become more realistic
with the creation of the Internet in the early days of 1990s. The popularity of
the wide area network and the availability of inexpensive commodity compo-
nents have changed the way in which applications are designed. For example,
a climatologist may develop his codes, initially on a vector computer to be
performed on parallel Multiple Instruction Multiple Data (MIMD) machines.
Although these different codes could be run on different machines, they are
still considered as a part of the same application. The emergence of a new
wave of applications requiring a variety of heterogeneous resources that are
not available on a single machine has led to the development of what is know as
metacomputing. In [34], the authors describe the concept of metacomputing
as: “The metacomputer is, simply put, a collection of computers held together
by state-of-the-art technology and “balanced” so that, to the individual user,
it looks and acts like a single computer. The constituent parts of the resulting
metacomputer could be housed locally, or distributed between buildings, even
continents”. These early metacomputing systems initiated the evolution of
grid technology. In [33], the authors summarize the evolution of the grid into
three different generations:

• First generation: was marked by early metacomputing environments,
such as FAFNER [3] and I-WAY [20].

• Second generation: was represented by the development of core grid
technologies: grid resource management (e.g., Globus, Legion); resource
brokers and schedulers (e.g., Condor, PBS); grid portals (e.g., Grid-
Sphere); and complete integrated systems (e.g., UNICORE, Cactus).

• Third generation: saw the convergence between grid computing and
Web services technologies (e.g., OGSI, WSRF).

The next three sections present a brief summary of the key technologies in
each stage of grid evolution.

1.5.1 First generation: early metacomputing environments

In the early of 1990s, the first generation efforts were marked by the emer-
gence of metacomputing projects, which aimed to link supercomputing sites
to provide access to computational resources. Two representative projects of
the first generation are FAFNER [3] and I-WAY [20], which can be considered
as the pioneers of grid computing. FAFNER (Factoring via Network-Enabled
Recursion) was created through a consortium to factor RSA 130 using a nu-
merical technique called Number Field Sieve. I-WAY (The Information Wide
Area Year) was an experimental high performance network that connected

An overview of grid computing 7

several high performance computers spread over seventeen universities and
research centers using mainly ATM technology.

Some differences between these projects are: (i) while FAFNER focused
on one specific application (i.e., RSA 130 factorization), I-WAY could exe-
cute different applications, mainly high performance applications; (ii) while
FAFNER was able to use almost any kind of machine with more than 4MB
of memory, I-WAY was supposed to run on high-performance computers with
a high bandwidth and low latency network.

Despite these differences, both had to overcome a number of similar obsta-
cles, including communications, resource management, and the manipulation
of remote data, to be able to work efficiently and effectively. Both projects also
inspire the development of some grid systems. FAFNER was the precursor
of projects such as SETI@home (The Search for Extraterrestrial Intelligence
at Home) [13] and Distributed.Net [12]. I-WAY was the predecessor of the
Globus [209] and the Legion [28] projects.

1.5.1.1 FAFNER

The RSA public key encryption algorithm, which is widely used in security
technologies, such as Secure Sockets Layer (SSL) is based on the premise that
large numbers are extremely difficult to factorize, particularly those with hun-
dreds of digits. In 1991, RSA Data Security Inc. initiated the RSA Factoring
Challenge with the aim to provide a test-bed for factoring implementations
and create the largest collection of factoring results from many different ex-
perts worldwide. In 1995, FAFNER project was set up by Bellcore Labs.,
Syracuse University and Co-Operating Systems to allow any computer with
more than 4MB of memory to contribute to the experiment via the Web.

Concretely, FAFNER used a new factoring method called Number Field
Sieve (NFS) for RSA 130 factorization via computational web servers. A web
interface form in HTML for NFS was created. Contributors could invoke CGI
(Common Gateway Interface) scripts written in Perl on the web server to
perform the factoring through this form. FAFNER is basically a collection
of server-side factoring efforts, including Perl scripts, HTML pages, project
documentation, software distribution, user registration, distribution of sieving
tasks, etc. The CGI scripts do not perform the factoring task themselves; they
provide interactive registration, task assignment and information services to
clients that perform the actual work. The FAFNER project initiated the de-
velopment of a wave of web based metacomputing projects (e.g., SETI@home
[13] and Distributed.Net [12]).

1.5.1.2 I-WAY

I-WAY, which was developed as an experimental demonstration project for
Supercomputing 19951 in San Diago is generally considered as the first modern

1http://www.supercomp.org

8 Grid Resource Management

grid because this project strongly influenced the subsequent grid computing
activities. In fact, one of the researchers leading the I-WAY project was Ian
Foster who described later in [21] the close link between Globus Toolkit, which
is currently the heart of many grid projects, with metacomputing.

The I-WAY experiment was conceived in early 1995 with the aim to link var-
ious supercomputing centers through high performance networks in order to
provide a metacomputing environment for high computational scientific appli-
cations. The I-WAY’s initial objective was to integrate distributed resources
using existing high bandwidth networks. Specifically, the resources, includ-
ing virtual environments, datasets, computers, and scientific instruments that
resided across seventeen different U.S. sites, were interconnected by ten ATM
networks of varying bandwidths and protocols, using different routing and
switching technologies.

The I-WAY consisted of a number of point-of-presence (I-POP) servers,
which act as gateways to I-WAY. These I-POP servers were connected by the
Internet or ATM networks and accessed through a standard software envi-
ronment called I-Soft. The I-Soft software was designed as an infrastructure
comprising of a number of services, including scheduling, security (authen-
tication and auditing), parallel programming support (process creation and
communication) and a distributed file system (using AFS, the Andrew File
System). It should be noted that the software developed as part of the I-WAY
project (i.e., I-Soft toolkit) formed the basis of the Globus toolkit, which pro-
vides a foundation for today’s grid software.

1.5.2 Second generation: core grid technologies

The I-WAY project paved the path for the evolution of the grid to the second
generation, which focused on the development of middleware to support large
scale data access and computation.

DEFINITION 1.2 Middleware is the layer of software residing between
the operating system and applications, providing a variety of services required
by an application to function correctly.

The function of middleware in distributed environments is to mediate inter-
action between the application and the distributed resources. In a grid envi-
ronment, middleware continues its role as a means for achieving the primary
objective of the grid, which is to provide resources in a simple and transpar-
ent way. Grid middleware is designed to hide the heterogeneous nature of
resources in order to provide users and applications with a homogeneous and
seamless environment.

Some of the technologies that are focused on the second generation grid
technologies are the development of grid resource management, resource bro-
kers and schedulers, grid portals, and complete integrated systems. In the
next sections, we focus on the evolution of these grid software systems.

An overview of grid computing 9

1.5.2.1 Grid resource management

The two most representative projects that focus on the development of a
grid resource management system are Globus and Legion.

Globus [21] The Globus project is a U.S. research effort initiated by the
Argone National Laboratory, University of Southern California’s Information
Sciences Institute, and University of Chicago with the goal to provide a soft-
ware infrastructure that enables applications to handle distributed heteroge-
neous computing resources as a single virtual machine. The most important
result of the Globus project is the Globus toolkit (GT) [4]. The GT, a de-
facto standard in grid computing, is an open source software that focuses on
libraries and high-level services rather than end-user applications. It is de-
signed in a modular way with a collection of basic components and services
required for building computational grids, such as security, resource location,
resource management, and communications. As the components and services
are distinct and have well-defined interfaces (APIs), developers of specific
tools or applications can exploit them to meet their own particular needs.
Specifically, the GT supports the following:

• Grid Security Infrastructure (GSI)

• GridFTP

• Globus Resource Allocation Manager (GRAM)

• Metacomputing Directory Service (MDS-2)

• Global Access to Secondary Storage (GASS)

• Data catalogue and replica management

• Advanced Resource Reservation and Allocation (GARA)

Globus is constructed as a layered architecture in which high-level global
services are built upon essential low-level core local services. This architecture
is composed of four layers under the application layer [24]. The Figure 1.2 de-
picts this architecture together with its relationship with the Internet protocol
architecture.

Resource and Connectivity are the central layers that are responsible for
the sharing of individual resources. The protocols of these layers are designed
to be implemented on top of the Fabric layer, and to be used to build several
global services and specific application behavior in the Collective layer. The
Fabric layer is composed of a set of protocols, application interfaces and toolk-
its to enable the development of services and components to access resources,
such as computers, storage resources, and network. The Collective layer deals
with the coordinated use of multiple resources.

10 Grid Resource Management

Application

Collective

Resource

Connectivity

Fabric Link

Internet

Transport

Application

Grid Protocol Architecture Internet Protocol Architecture

FIGURE 1.2: The layered grid architecture and its relationship to the Internet
protocol architecture [24].

Globus arose from the I-WAY project and has evolved a lot from its initial
version (GT1) toward a grid architecture based on service-oriented approach
(GT4).

Legion [30] The Legion project developed at the University of Virginia aims
to provide a grid global operating system, which provides a virtual machine
interface layered over the grid. The main objective of the project is to build
a global virtual computer, which transparently handles all the complexity
of the interaction with the resources of underlying distributed systems (e.g.,
scheduling on processors, data transfer, communication and synchronization).
The focus is to give the users the illusion that they are working on a single
computer, with access to all kinds of data and physical resources. Users
can create shared virtual work spaces to collaborate research and exchange
information and they can authenticate from any machine which has installed
Legion middleware to have access on these work spaces as well as secure data
transmission when required. Architecturally, Legion is an open system, which
aims to encourage third party development of new or updated applications,
runtime library implementations, and core components.

The Legion middleware design is based on an object-oriented approach:
all of its components (e.g., data resources, hardware, software, computation)
are represented as Legion objects . It is possible for users to run applications
written in multiple languages since Legion supports inter-operability between
objects written in multiple languages.

The Legion project began in late 1993 and released its first software version
in November 1997. In August 1998, Applied Metacomputing was founded to
commercialize the technology derived from Legion. In June 2001, Applied
Metacomputing was reformed as Avaki Corporation [1].

An overview of grid computing 11

Processing, Communication, ...

Application

Condor (Condor−G)

Globus toolkit

Fabric

Grid

User

Condor

FIGURE 1.3: Condor in conjunction with Globus technologies in grid mid-
dleware, which lies between the user’s environment and the actual fabric (re-
sources) [36].

1.5.2.2 Grid resource brokers and schedulers

During the second generation, we saw the tremendous growth of grid re-
source brokers and scheduler systems. The primary objective of these systems
is to couple commodity machines in order to achieve the equivalent power of
supercomputers with a significantly less expensive cost. A wide variety of
powerful grid resource brokers and scheduler systems, such as Condor, PBS,
Maui scheduler, LSF, and SGE, spread throughout academia and business.

Condor [2] The Condor project, developed at the University of Wisconsin-
Madison, introduces the Condor High Throughput Computing System, which
is often referred to simply as Condor and Condor-G.

• The Condor High Throughput Computing System [35] is a specialized
workload management system for executing compute intensive jobs on
a variety of platform environments (i.e., Unix and Windows). Con-
dor provides a job management mechanism, scheduling policy, priority
scheme, resource monitoring, and resource management. The key fea-
ture of Condor is the ability to scavenge and manage wasted CPU power
from idle desktop workstations across an entire organization. Worksta-
tions are dynamically placed in a resource pool whenever they become
idle and removed from the resource pool when they get busy. Condor
is responsible for allocating a machine from the resource pool for the
execution of jobs and monitoring the activity on all the participating
computing resources.

• Condor-G [25] is the technological combination of the Globus and Con-
dor projects, which aims to enable the utilization of large collections of
resources spanning across multiple domains. The Globus contribution is
the use of protocols for secure inter-domain communications and stan-
dardized access to a variety of remote batch systems. Condor contributes

12 Grid Resource Management

the user concerns of job submission, job allocation, error recovery and
creation of a user-friendly environment. Condor technology provides so-
lutions for both the frontend and backend of a middleware as shown in
the Figure 1.3. Condor-G offers an interface for reliable job submission
and management for the whole system. The Condor High Throughput
Computing system can be used as the fabric management service for one
or more sites. The Globus toolkit can be used as the bridge interfacing
between them.

Portable Batch System (PBS) [9] The PBS project is a flexible batch
queuing and workload management system originally developed by Veridian
Systems for NASA. The primary purpose of PBS is to provide controls for
initiating and scheduling the execution of batch jobs. PBS operates on a va-
riety of networked, multi-platform UNIX environments, from heterogeneous
clusters of workstations to massive parallel systems. PBS supports both in-
teractive and batch mode, and provides a friendly graphical interface for job
submission, tracking, and administrative purposes.

PBS is based on the client-server model. The main components are
pbs server server process, which manages high-level batch objects such as
queues and jobs, and pbs mom server process, which is responsible for job
execution. The pbs server receives submitted jobs from users in the form of
a script and schedules the job for later execution by a pbs mom process.

PBS consists of several built-in schedulers, each of which can be customized
for specific requirements. The default scheduler in PBS maximizes the CPU
utilization by applying the first-in-first-out (FIFO) method. It loops through
the queued job list and starts any job that fits in the available resources.
However, this effectively prevents large jobs from ever starting since the re-
quired resources are unlikely ever to be available. To allow large jobs to start,
this scheduler implements a “starving jobs” mechanism, which defines circum-
stances under which starving jobs can be launched (e.g., first in the job queue,
waiting time is longer than some predefined time). However, this method may
not work under certain circumstances (e.g., the scheduler would halt starting
of new jobs until starving jobs can be started). In this context, the Maui
scheduler was adopted as a plug-in scheduler for the PBS system.

Maui scheduler [16] The Maui scheduler, developed principally by David
Jackson for the Maui High Performance Computer Center, is an advanced
batch job scheduler with a large feature set, well suited for high performance
computing (HPC) platforms. The key to the Maui scheduling design is its
wall-time based reservation system, which allows sites to control exactly when,
how, and by whom resources are used. The jobs are queued and managed
based upon their priority, which is specified from several configurable param-
eters.

An overview of grid computing 13

Maui uses a two-phase scheduling algorithm. During the first phase, the
scheduler starts jobs with highest priority and then makes a reservation in
the future for the next high priority job. In the second phase, the Maui
scheduler uses the backfill mechanism to ensure that large jobs (i.e., starving
jobs) will be executed at a certain moment. It attempts to find lower priority
jobs that will fit into time gaps in the reservation system. This gives large
jobs a guaranteed start time, while providing a quick turn around for small
jobs. In this way, the resource utilization is optimized and job response time
is minimized. Maui uses the fair-share technique when making scheduling
decisions based on job history.

Load Sharing Facility (LSF) [8] LSF is a commercial resource manager
for clusters from Platform Computing Corporation2. It is currently the most
widely used commercial job management system. LSF focuses on the man-
agement of a broad range of job types such as batch, parallel, distributed,
and interactive. The key features of LSF include system supports for auto-
matic and manual checkpoints, migrations, automatic job dependencies and
job re-schedulings.

LSF supports numerous scheduling algorithms, such as first-come-first-
served, fair-share, backfill. It can also interface with external schedulers (e.g.,
Maui) that complement features of the resource manager and enable sophis-
ticated scheduling.

Sun Grid Engine (SGE) [10] SGE is a popular job management system
supported by Sun Microsystems. It supports distributed resource manage-
ment and software/hardware optimization in heterogeneous networked envi-
ronments.

A user submits a job to the SGE, together with the requirement profile,
user identification, and a priority number for the job. The requirement profile
contains attributes associated with the job, such as memory requirements,
operating system required, available software licenses, etc. Then, jobs are
kept waiting in a holding area until resources become available for execution.
Based on the requirement profile, SGE assigns the job to an appropriate
queue associated with a server node on which the job will be executed. SGE
maintains load balancing by starting new jobs on the least loaded queue to
spread workload among available servers.

1.5.2.3 Grid portals

One of the areas of grid application that is focused on at this time is the
development of gateways and grid portals, which are a web-based single point

2http://www.platform.com

14 Grid Resource Management

of entry to a grid and its implemented services. With the widespread develop-
ment of the Internet, scientists expect to expose their data and applications
through portals. The grid portal provides a user-friendly web page interface
allowing grid applications users to perform operations on the grid and access
grid resources specific to a particular domain of interest.

Currently, there are various technologies and toolkits that can be used for
grid portal development. According to [38], grid portals can be classified into
non portlet-based and portlet-based.

• Non portlet-based portal : is a grid portal that is based on a typical
three-layers architecture. The first layer is the user layer, which aims to
provide the user-friendly interface for users. The user layer is responsi-
ble for displaying the portal content; it can be a web browser or other
desktop tools. The second layer is the grid service layer, including au-
thentication service, job management service, information service, file
service, security service. The authentication service allows the portal
to authenticate users. Once authenticated, users can use other services
to access resources of the system (e.g., job management service for sub-
mitting jobs on a remote machine, information service for monitoring
jobs submitted, and viewing results). The second layer receives HTTP
requests from the first layer and interacts with the third layer for per-
forming the grid operations on relevant grid resources and retrieving
the executed result from grid resources. The third layer is a backend
resource layer, which consists of computation, data and application re-
sources.

• Portlet-based portal : includes a collection of portlets. A portlet is a web
component that generates fragments - pieces of markup (e.g., HTML,
XML) adhering to certain specifications (e.g., JSR-168 [7], WSRP [11]).
Portlets improve the modular flexibility of developing grid portals as
they are pluggable and can be aggregated to form a complete web page
conforming to user needs.

In this section, we briefly describe two typical grid portals for each type:
Grid Portal Development Kit (GPDK) and GridSphere.

Grid Portal Development Kit (GPDK) The GPDK is a widely used
toolkit for building non portlet-based portals. The GPDK is a collaboration
between NCSA, SDSC and NASA IPG, which aims to provide generic user and
application portal capabilities. It facilitates the development of grid portals
and allows various portals to inter-operate by supporting a common set of
components and utilities for accessing various grid services using the Globus
infrastructure. A GPDK provides a portal development framework for the
development and deployment of application-specific portals and a collection
of grid service beans for remote job submission, file staging, and querying of
information services from a single, secure gateway.

An overview of grid computing 15

The portal architecture is based on a three-tier model, where a client
browser securely communicates to a web server over a secure connection (via
https). The web server is capable of accessing various grid services using the
Globus infrastructure. The Globus toolkit provides mechanisms for securely
submitting jobs to a Globus gatekeeper, querying for hardware/software in-
formation using LDAP, and a secure PKI infrastructure using GSI.

The GPDK is based on the Model-View-Controller paradigm and makes
use of commodity technologies including the open source servlet container
Tomcat, Java Server Pages (JSP), Java Beans, the web server Apache and
the Java Commodity Grid (CoG) toolkit.

GridSphere [6] GridSphere is a typical portlet-based portal. The Grid-
Sphere portal framework is developed as a key part of the European project
GridLab [98]. It provides an open-source portlet-based web portal and enables
developers to quickly develop and package third-party portlet web applications
that can be run and administered within the GridSphere portlet container.
Two key features of the GridSphere framework are: (i) allowing administra-
tors and individual users to dynamically configure the content based on their
requirements, and (ii) supporting grid-specific portlets and APIs for grid-
enabled portal development. However, the main disadvantage of the current
version of GridSphere (i.e., GridSphere 2.1) is that it does not support WSRP
specification.

1.5.2.4 Integrated systems

The widespread emergence of grid middleware has motivated the develop-
ment of various international projects that integrate these components into
coherent systems.

Cactus [14] Cactus is an open source problem-solving environment de-
signed for scientists and engineers. It supports multiple platforms and has
a modular structure, which easily enables the parallel computation across
different architectures and collaborative code development between different
groups. Cactus originated in the academic research community, where it was
developed and used over many years by a large international collaboration of
physicists and computational scientists.

Cactus’ architecture consists of modules (thorns) which plug into core code
(flesh) containing the APIs and infrastructure to adhere the thorns together.
The Cactus Computational Toolkit is a group of thorns providing general
computational infrastructure for many different applications.

UNiform Interface to COmputing REsources (UNICORE) [15]
UNICORE was originally conceived in 1997 by a consortium of German uni-
versities, research laboratories, and software companies. It is funded in part

16 Grid Resource Management

User tier

UNICORE client

Job Preparation Agent
 X.509
User Interface

Gateway

Network Job Supervisor (NJS)

 User
Validation

Incarnation DB

Server tier

AJO

Abstract Job Object (AJO) Authentication

Target System Interface (TSI)

Batch subsystem
Target subsystem

Target system tier

Batch job, data

FIGURE 1.4: The UNICORE architecture.

by the German Ministry for Education and Research (BMBF). UNICORE at-
tempts to enable supercomputer centers to provide their users with a seamless,
secure, and Internet-based access to the heterogeneous computing resources
at the geographically distributed centers.

The UNICORE architecture is based on the three-tier model including user,
server and target system tiers as shown in the Figure 1.4. The user tier consists
of the graphical user interface - UNICORE client.

A UNICORE job is created using the Job Preparation Agent (JPA), which
allows the user to specify the actions to be performed, the resources needed
and the system on which the job will be executed. The UNICORE client gen-
erates an Abstract Job Object (AJO) from this job description and connects
to a Gateway, which authenticates the client before managing the submitted
UNICORE jobs. The Gateway transfers the AJO to the Network Job Super-
visor (NJS), which translates the abstract job represented by the AJO into a
target system specific batch job using the Incarnation Database (IDB).

UNICORE’s communication endpoint is the Target System Interface (TSI),
which is a daemon executing on the target system. Its role is to interface with
the local operating system and the local native batch subsystem.

An overview of grid computing 17

1.5.3 Third generation: service oriented approach

The core middleware for the grid developed in the second generation pro-
vides the basic inter-operability that was crucial to enable large-scale compu-
tation and resource sharing. The emergence of service oriented architecture
promotes the reusability of existing components and information resources to
assemble these components in a flexible manner. The third generation fo-
cuses on the adoption of this service oriented model in development of grid
applications. The key idea of this solution is to allow the flexible assembly of
grid resources by exposing the functionality through standard interfaces with
agreed interpretation. This facilitates the easy deployment of grid systems on
all scales. Extending Web services to enable transient and stateful behaviors,
the Global Grid Forum defined the Open Grid Services Architecture (OGSA)
based on Web services protocols, such as WSDL, UDDI and SOAP, described
in Chapter 2. OGSA was then combined with grid protocols to define the
Open Grid Service Infrastructure (OGSI), which provides a uniform architec-
ture for the development and deployment of grids and grid applications. The
creation of Web Services Resource Framework (WSRF), which evolves and
refactors OGSI to enable the inter-operability between grid resources using
new Web services standards, completes the convergence between web and grid
service architecture.

1.6 Concluding remarks

This chapter has presented the concepts of grid computing, which is analo-
gous to the power grid in the way that computing resources will be provided in
the same way as gas and electricity are provided to us now. Grid computing
has moved from metacomputing environments, such as I-WAY which sup-
ports wide-area high-performance computing to grid middlewares and Globus
toolkit, which introduces more inter-operable solutions. The current trend
of grid development is moving toward a more service oriented approach that
exposes the grid protocols using Web services standards (e.g., WSDL, SOAP).
This continuing evolution allows grid systems to be built in an inter-operable
and flexible way, capable of running a wide range of applications.

18 Grid Resource Management

References

[1] Avaki. Available online at: http://www.avaki.com (Accessed August
31st, 2007).

[2] Condor. Available online at: http://www.cs.wisc.edu/condor (Accessed
August 31st, 2007).

[3] FAFNER. Available online at: http://www.npac.syr.edu/factoring.

html (Accessed August 31st, 2007).

[4] Globus toolkit. Available online at: http://www.globus.org/toolkit

(Accessed August 31st, 2007).

[5] GridLab. Available online at: http://www.gridlab.org (Accessed Au-
gust 31st, 2007).

[6] GridSphere. Available online at: http://www.gridsphere.org (Accessed
August 31st, 2007).

[7] Introduction to JSR-168. Available online at: http://developers.sun.

com/prodtech/portalserver/reference/techart/jsr168/ (Accessed Au-
gust 31st, 2007).

[8] Platform Computing Inc. Platform LSF. Available online at: http:

//www.platform.com/Products/Platform.LSF.Family/ (Accessed August
31st, 2007).

[9] Portable Batch System. Available online at: http://www.openpbs.org

(Accessed August 31st, 2007).

[10] Sun Grid Engine. Available online at: http://gridengine.sunsource.net
(Accessed August 31st, 2007).

[11] WSRP: Web services for remote portlets. Available online at: http://

www.oasisopen.org/committees/tc_home.php?wg_abbrev=wsrp (Accessed
August 31st, 2007).

[12] Distributed.Net, 2004. Available online at: http://www.distributed.net

(Accessed August 31st, 2007).

[13] SETI@home: The search for extraterrestrial intelligence at home, 2004.
Available online at: http://setiathome.ssl.berkeley.edu (Accessed
August 31st, 2007).

[14] G. Allen, T. Dramlitsch, I. Foster, N. T. Karonis, M. Ripeanu, E. Sei-
del, and B. Toonen. Supporting efficient execution in heterogeneous

An overview of grid computing 19

distributed computing environments with Cactus and Globus. In Su-
percomputing ’01: Proceedings of the 2001 ACM/IEEE conference on
Supercomputing (CDROM), pages 52–52, New York, NY, USA, 2001.
ACM Press.

[15] J. Almond and D. Snelling. UNICORE: Uniform access to supercomput-
ing as an element of electronic commerce. Future Generation Computer
Systems, 15(5–6):539–548, 1999.

[16] B. Bode, D. M. Halstead, R. Kendall, Z. Lei, and D. Jackson. The
portable batch scheduler and the Maui scheduler on linux clusters. In
ALS’00: Proceedings of the 4th conference on 4th Annual Linux Show-
case and Conference, pages 27–27, Berkeley, CA, USA, 2000. USENIX
Association.

[17] M. L. Bote-Lorenzo, Y. A. Dimitriadis, and E. Gómez-Sánchez. Grid
characteristics and uses: A grid definition. In Proceedings of the First
European Across Grids Conference, volume 2970 of Lecture Notes in
Computer Science, pages 291–298, Santiago de Compostela, Spain,
February 2003. Springer.

[18] I. Foster. What is the grid? A three point checklist. Grid Today, 1(6),
2002.

[19] I. Foster. Globus Toolkit version 4: Software for service-oriented sys-
tems. In IFIP International Conference on Network and Parallel Com-
puting, volume 3779 of Lecture Notes in Computer Science, pages 2–13.
Springer-Verlag, 2005.

[20] I. Foster, J. Geisler, B. Nickless, W. Smith, and S. Tuecke. Software
infrastructure for the I-WAY high-performance distributed computing
experiment. In HPDC ’96: Proceedings of the 5th IEEE International
Symposium on High Performance Distributed Computing, page 562,
Washington, DC, USA, 1996. IEEE Computer Society.

[21] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure
toolkit. The International Journal of Supercomputer Applications and
High Performance Computing, 11(2):115–128, 1997.

[22] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, San Francisco, CA, USA,
July 1998.

[23] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for
distributed system integration. Computer, 35(6):37–46, 2002.

[24] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: En-
abling scalable virtual organizations. International Journal High Per-
formance Supercomputer Applications, 15(3):200–222, August 2001.

20 Grid Resource Management

[25] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G:
A computation management agent for multi-institutional grids. Cluster
Computing, 5(3):237–246, July 2002.

[26] W. Gentzsch. Response to Ian Foster’s: What is the grid? Grid Today,
1(8), 2002.

[27] A. Grimshaw. What is a grid? Grid Today, 1(26), 2002.

[28] A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey. Wide-area com-
puting: Resource sharing on a large scale. IEEE Computer, 32(5):29–37,
may 1999.

[29] A. S. Grimshaw, J. B. Weissman, E. A. West, and E. C. Loyot, Jr.
Metasystems: An approach combining parallel processing and hetero-
geneous distributed computing systems. Journal of Parallel and Dis-
tributed Computing, 21(3):257–270, 1994.

[30] A. S. Grimshaw, W. A. Wulf, and C. T. L. Team. The legion vision of a
worldwide virtual computer. Communications of the ACM, 40(1):39–45,
jan 1997.

[31] L. Kleinrock. UCLA to build the first station in nationwide computer
network, July 1969. Available online at: http://www.lk.cs.ucla.edu/

LK/Bib/REPORT/press.html (Accessed August 31st, 2007).

[32] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey
of grid resource management systems for distributed computing. Inter-
national Journal of Software Practice and Experience, 32(2):135–164,
2002.

[33] D. D. Roure, M. A. Baker, N. R. Jennings, and N. R. Shadbolt. Grid
Computing: Making the Global Infrastructure a Reality, chapter The
Evolution of the Grid, pages 65–100. John Wiley and Sons Ltd. Pub-
lishing, New York, 2003.

[34] L. Smarr and C. E. Catlett. Metacomputing. Communications of the
ACM, 35(6):44–52, 1992.

[35] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor: A dis-
tributed job scheduler. In T. Sterling, editor, Beowulf Cluster Comput-
ing with Linux. MIT Press, Oct. 2001.

[36] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in
practice: The Condor experience. Concurrency - Practice and Experi-
ence, 17(2-4):323–356, 2005.

An overview of grid computing 21

[37] G. von Laszewski and K. Amin. Grid Middleware, chapter
Middleware for Communications, pages 109–130. John Wiley,
2004. Available online at: http://www.mcs.anl.gov/~gregor/papers/

vonLaszewski--grid-middleware.pdf (Accessed August 31st, 2007).

[38] X. Yang, M. T. Dove, M. Hayes, M. Calleja, L. He, and P. Murray-
Rust. Survey of major tools and technologies for grid-enabled portal
development. In Proceedings of the UK e-Science All Hands Meeting
2006, Nottingham, UK, September 2006.

Chapter 2

Grid computing and Web services

2.1 Introduction

Today scientific collaborations require more resources (e.g., CPU, storage,
networking) than what can be provided by any single institution. Grid com-
puting is a form of distributed computing that aims to harness computational
and data resources at geographically dispersed institutions into a larger dis-
tributed system that can be utilized by the entire collaboration. Such a global
distributed system, which is dedicated to solving common problems, is known
as a virtual organization (VO). Each institution in the VO has its own set
of usage policies that it would like to enforce on its resources and services.
At the same, it has its local requirements about hardware configuration, op-
erating systems, software toolkits, and communication mechanisms. These
differing requirements can result in a very heterogeneous character of grid
environments. In this context, Services Oriented Architecture (SOA) emerges
as a well suited concept to address some of the issues that arise from such
a heterogeneous, locally controlled but globally shared system and the inter-
operability of applications. Moreover, SOA is considered as the key technology
to ease the costs of deployment and maintenance of distributed applications
that deliver functionality as services with the additional emphasis on loose
coupling between integrating services. It provides solutions for business-to-
business (B2B) integration, business process integration and management,
content management, and design collaboration for computer engineering.

By leveraging Web services - an implementation of SOA, grid computing
aims to define standard interfaces for business services and generic reusable
grid resources. This convergence effort between grid computing and Web ser-
vices has lead to the new “service paradigm” to support resource integration
and management. In this paradigm, all resources on the grid are treated in
a uniform way by being provided a common interface for access and man-
agement. From this perspective, a workstation cluster is seen as a “compute
service”, a database containing scientific data as a “data service”, a scientific
instrument used to measure seismic data (for instance) as a “data capture
service”, etc. Each service may be remotely configured and interrogated by a
user to identify its interface.

23

24 Grid Resource Management

Service Broker

Service ConsumerService Provider
Bind

Publish Find

FIGURE 2.1: Web services components can be classified into service
providers , service consumers , and service brokers .

2.2 Web services

SOA represents an abstract architectural concept for software development
based on loosely coupled components (services) that have been described in
a uniform way and that can be discovered and composed. Web services rep-
resents one important approach of realizing SOA.

The core idea of a Web service design is simple: a Web service is decoupled
from the underlying hardware and software and available to the other ser-
vices through a well-defined interface. This service can be published, located
and invoked by other services over the Internet/intranet. Their functionali-
ties are based on strict standards to enable communication and interactions
among services in a simple, easy and seamless manner. Web services model
typically involves loosely coupled entities including: service providers , service
consumers , and service brokers (see Figure 2.1).

• Service provider : is an application that has the ability to perform cer-
tain functionality. It makes resources available to service consumers as
independent services. A service provider is a self-contained, stateless
business function that accepts one or more requests and returns one or
more responses through a well-defined, standard interface.

• Service consumer : is an application that wants to use the functionality
provided by a service. The service consumer sends a message to the
provider and requests a certain service.

• Service broker : maintains a repository that stores information on the
available services and their locations. It is contacted by the service
provider, who announces its services and contact information. The ser-
vice broker is queried by service consumers to obtain the location of a
service.

Grid computing and Web services 25

Service providers implement a service and publish it in a service broker or a
registry; service consumers locate services in a service registry and then invoke
the service. The connection between these entities is loosely coupled offering
the maximum decoupling between any two entities. A service consumer does
not have to be aware of the implementation of the service provider. This
abstraction of the service from the actual implementation offers a variety of
advantages to both service providers and service consumers. Service providers
can upgrade their internal implementation without impact on their clients.
Similarly, service consumers are not forced to adapt the same IT configuration
as their service providers. They may choose from several service providers that
provide the identical functionality.

2.2.1 Web services characteristics

A typical service exhibits the following defining characteristics [72]:

• Functional and non-functional : Services are described in a description
language that provides functional and non-functional characteristics.
The functional characteristics represent the operational characteristics
that define the overall behavior of the service. The non-functional char-
acteristics specify the quality attributes of services, such as authenti-
cation, authorization, cost, performance, accuracy, integrity, reliability,
scalability, availability, response time, etc.

• State: Services could be stateless or stateful. Stateless services can be
invoked repeatedly without having to maintain context or state; i.e., an
instance of service is stateless if it cannot retain prior events. For ex-
ample, a travel information service does not keep any memory of what
happens to it between requests. In the case of stateful service, it main-
tains some state between different operation invocations issued by the
same or different clients or applications; i.e., it can retain its prior ac-
tions. For example, a typical e-commerce service consists of a sequence
of stateful interactions involving exchange of messages between partners.
The state of a business process needs to be retained in order to under-
take a series of interrelated tasks to finish the business process: purchase
order, bank transfer, taxation, acknowledgement, shipping notices, etc.

• Transient-ness : Services can be transient or non-transient. A transient
service instance is one that can be created and destroyed, usually created
for specific clients and does not outlive its clients. In contrast to a
transient service, a non-transient service or persistent service is designed
without the concept of service creation and destruction and outlives its
clients.

• Granularity: Granularity refers to the scope of functionality provided by
a service. The concept of granularity can be applied in two ways: coarse-
grained and fine-grained services. Services are called coarse-grained if

26 Grid Resource Management

they provide significant blocks of functionality with a simple invocation.
For example, a coarse-grained service might handle the processing of a
complete purchase order. By comparison, fine-grained service might
handle only one operation in the purchase order process. A fine-grained
interface is meant to provide high flexibility for construction of coarse-
grained services.

• Complexity: Services can vary in function from simple requests to com-
plex systems where the system accesses and combines information from
multiple sources. Simple service requests may have complicated real-
izations. For example, travel plan services are the actual front-end to
the complex physical organizational business processes. Typically, a
complex service is a coarse-grained service, which involves interactive
fine-grained services.

• Synchronicity: Services can be distinguished between two programming
styles for services: synchronous or Remote Procedure Call (RPC)-style
versus asynchronous or message (document)-style. Synchronous services
or method-driven services require a tightly coupled model of communi-
cation between the client and service provider to maintain the bilateral
communication between them. Clients of synchronous services express
their request as a method call with an appropriate set of arguments and
expect a prompt response containing a return value before continuing
execution. On the other hand, asynchronous services or message-driven
services allow clients to send an entire document, such as purchase order,
rather than a discrete set of parameters. The service accepts the entire
document, processes it and may or may not return a result message.
Asynchronous services promote a loose coupling between the clients and
server because the client that invokes an asynchronous service does not
need to wait for a response before it continues with the remainder of its
execution. Message driven services are useful where the client does not
require (or expect) an immediate response and process-oriented service.

2.2.2 Web services architecture

Web services address the fundamental challenges that distributed comput-
ing has provided: providing a uniform way of describing components or ser-
vices within a network, locating them, and accessing them. The difference be-
tween the Web services approach and traditional approaches (e.g., distributed
object technologies such as the Object Management Group - Common Object
Request Broker Architecture (CORBA), or Microsoft Distributed Component
Object Model (DCOM)) lies in the loose coupling aspects of architecture. In-
stead of building applications that result in tightly integrated collections of
objects or components, which are well known and understood at development
time, it is more flexible and dynamic to conceive and develop the applications

Grid computing and Web services 27

Oriented
Model

Service

Action

Policy

ModelPolicy

Resource
Oriented
Model

Resource

Message
Oriented
Model

Message

Partially layered on

FIGURE 2.2: Meta model of Web services architecture [84].

from loosely coupled services. Another key difference is that Web services
architecture is based on standards and technology that are the foundation of
the Internet.

There exist various kinds of realizations of SOA proposed by different
enterprise-software vendors. Each vendor is trying to define Web services in a
slightly different way according to their business and Web services strategies.
Therefore, it is a fundamental requirement for inter-operability of higher-level
infrastructure services to define a generic Web services architecture in terms
of framework and methodology.

2.2.2.1 Generic Web services architecture

A generic Web services architecture aims to provide a consistent way for
development of scalable, reliable Web services. There are many architectures
and programming models proposed from different vendors like BEA system’s
WebLogic, IBM’s Websphere, Microsoft’s .NET Platform, CORBA, Enter-
prise Edition (J2EE) Enterprise Java Beans which aim to fulfill the goal of a
Web services standard. However, these architectures bring with them different
assumptions about infrastructure services that are required. Consequently, it
is difficult to construct applications from components that are built using
different architectures and programming models.

Significant work to address the inter-operability issue has been done through
a generic Web services architectural model proposed by the standardization
organization World Wide Web Consortium (W3C) [42]. This architecture
describes the key concepts and relationships between four models (see Fig-
ure 2.2).

• Message Oriented Model (MOM): focuses on messages, message struc-

28 Grid Resource Management

ture (i.e., headers and bodies), message transport (i.e., mechanisms used
to deliver messages). There are also additional details to consider, such
as the role of policies and how they govern the message level model.

• Service Oriented Model (SOM): builds on the MOM with focusing on
aspects of service and action rather than message. The SOM explains
the interaction between agent services in using messages in the MOM. It
also uses the metadata from the SOA model to document many aspects
of services.

• Resource Oriented Model (ROM): focuses on the resource aspects that
are relevant to the architecture. Concretely, it focuses on the issues of
ownership of resources, policies related to these resources and so on.

• Policy Oriented Model (POM): focuses on constraints on the behavior
of agents and services. This model describes the policies imposing con-
straints to the behavior of agents, people or organizations that attempt
to access the resources. Policies may be modeled to represent security
concerns, quality of service concerns, management concerns and appli-
cation concerns.

2.2.2.2 Web services architecture stack

The fact that Web services architecture is composed of several interrelated
technologies implies implementation of a stack of specific, complementary
standards [84]. The conceptual levels of the architectural stacks provided
by [84], [72], [67] are similar in many aspects. Figure 2.3 shows a typical Web
services architecture stack. It can be seen that the upper layers build upon
the capabilities provided by the lower layers. Likewise, the vertical towers
represent requirements that must be addressed at every level of the stack.
The text on the left represents standard technologies that apply at that layer
of the stack [67].

The core technologies that play a critical role in this architecture stack
are XML, SOAP, WSDL and UDDI. These technologies which are widely
accepted and implemented uniformly as open standards will be presented in
Section 2.3.

2.3 Web services protocols and technology

The World Wide Web Consortium (W3C), which has managed the evo-
lution of the technologies related to Web services (i.e., SOAP, WSDL), de-
fines Web services as: “A software system designed to support inter-operable
machine-to-machine interaction over a network. It has an interface described

Grid computing and Web services 29

Service Flow

Service Discovery

Service Publication

XML−Based Messaging

Network Protocols

Service Description

HTTP, FTP, email, IIOP, etc.

SOAP

WSDL

Direct−UDDI

Static −> UDDI

WSFL

Security

Q
uality O

f Service

M
anagem

ent

FIGURE 2.3: Web services architecture stack [67].

in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with XML serialization in conjunc-
tion with other web-related standards.” [84].

The Web services approach is based on a maturing set of widely accepted
standards. This widespread acceptance enforces the inter-operability between
clients and services. Therefore WSDL, XML, SOAP, and UDDI that provide
a mechanism for clients to dynamically find other Web services across the
network are known as core Web services technology. This section describes
these technologies that constitute the Web services standards.

2.3.1 WSDL, UDDI

2.3.1.1 Web Service Discovery Language (WSDL)

WSDL [48] was initially proposed by IBM and Microsoft by merging Mi-
crosoft’s SOAP Contract Language (SCL) and Service Description Language
(SDL), together with IBM’s Network Accessible Service Specification Lan-
guage (NASSL). The first version 1.0 of WSDL was released in September
2000. It has been submitted to the W3C for consideration as a recommenda-
tion [85].

WSDL is an XML-based language, which defines the interface of a service.
WSDL is similar to “Interactive Data Language” (IDL), which is used to
characterize CORBA interfaces. WSDL allows services to be defined in terms
of functional characteristics, what actions or functions the service performs,
message structures, sequences of message exchanges. In other words, a WSDL
document describes what the service can do, where it resides, and how the
service can be invoked. It provides a standard view of services provided to
clients. Hence, it enforces inter-operability across the various programming

30 Grid Resource Management

paradigms, such as CORBA, J2EE, and .NET.
A WSDL document contains two parts: abstract definitions and concrete

descriptions . The Figure 2.4 outlines the structure and the major parts of
a WSDL document, together with their relationships. The abstract section
defines operations of a service and its SOAP messages in a language and
platform-independent way. In contrast, the concrete descriptions define the
bindings of the abstract interface to concrete message formats, protocols (e.g.,
SOAP, HTTP, and MIME) and endpoint addresses through which the service
can be invoked [51].

A WSDL document describes a service as a set of abstract items called
ports or endpoints . A WSDL document also defines abstractly the actions
performed by a Web service as operations and the data transmitted to these
actions as messages . A collection of related operations is known as a Port-
Type. A PortType constitutes the collection of actions offered by the service.
The operations and messages are described abstractly and then tied to a con-
crete transport protocol and data encoding scheme through a binding. A
binding specifies the transport protocol and message format specifications for
a particular PortType. A port is defined by associating a network address
with a binding. If a client locates a WSDL document and finds the binding
and network address for each port, it can call the service’s operations accord-
ing to the specified protocol and message format. The following paragraph
summarizes WSDL document elements from [48], [77].

• Message Parts : are a flexible mechanism for describing the logical ab-
stract content of a message. A binding may reference the name of a part
in order to specify binding-specific information about the part.

• Message: defines an abstract message that can serve as the input or
output of an operation. Messages consist of one or more part elements,
which can be of different types. For example, each message part can
be associated with either an element (when using document style) or a
type (when using RPC style).

• Operation: is an abstract description of an action supported by the
service.

• PortType: defines a set of operations performed by the Web services,
also known as interface. Each operation contains a set of input, output,
and fault messages. The order of these elements defines the message
exchange pattern supported by the given operation.

• Binding: defines message format (i.e., data encoding) and protocol de-
tails (i.e., messaging protocol, underlying communication protocol) for
operations and messages defined by a particular PortType. The number
of bindings for a particular PortType can be extensible.

Grid computing and Web services 31

0...N

0...N

0...N

1...N

1

1

A
bs

tr
ac

t D
es

cr
ip

tio
n

C
on

cr
et

e
D

es
cr

ip
tio

n

Operation

Port Types

Binding

Port

Service

Message Parts

Messages

FIGURE 2.4: A WSDL document structure [51].

• Port : specifies a single address for a binding, also known as endpoint. In
other words, a port element contains endpoint data, including physical
address and protocol information.

• Service: defines a collection of ports or endpoints by grouping a set of
related ports together.

With WSDL, a service can be defined, described and discovered irrespective
of its implementation details. In other words, the implementation for a Web
service can be done in any language, platform, object model, or messaging
system. The application needs to provide a common format to encode and
decode messages to and from any number of proprietary integration solutions
such as CORBA, COM, EJB, JMS, COBOL [84].

2.3.1.2 Universal Detection and Discovery Interface (UDDI)

UDDI [40] is a widely acknowledged specification for definition of the way in
which Web services are published and discovered across the network. The first
version of UDDI 1.0 specification was developed by Ariba, IBM, and Microsoft
in September 2000. The current version of the UDDI 3.0.2 specification was
released in October 2004 [39].

32 Grid Resource Management

If WSDL describes the service, UDDI stores the description of services itself.
UDDI allows a service provider to register information about the services
they offer so that other clients can find them. It provides an inter-operable,
foundational infrastructure based on a common set of industry standards,
including HTTP, XML, XML Schema, and SOAP, UDDI for a Web services-
based software environment for both publicly available services and services
exposed only internally within an organization [39].

The core component of UDDI is a XML based business registration, which
consists of white pages including address and contact identifiers, yellow pages
including categorization based on standards and green pages containing tech-
nical information about the service.

2.3.2 Web services encoding and transport

Data flow exchanged between programs needs to be converted into a format
that is understood by sender and receiver. Common formats for Web services
are based on XML encoding methods, including SOAP and XML-RPC, which
is an early implementation of the SOAP standard. The process of creating
an XML representation of application internal data is called serialization.
The inverse process of generating application internal structures from XML
is called de-serialization.

Serialized data is transferred over the network by a specific transport pro-
tocol. It should be noted that data transport is independent of the encoding.
Web services may be built on top of nearly any transport protocol. The most
popular transport protocols of Web services are network protocols, such as
Hypertext Transfer Protocol (HTTP) [206], Simple Mail Transfer Protocol
(SMTP) [75], or File Transfer Protocol (FTP) [225]. The Web services mes-
sage exchange is independent of the chosen transport layer. This “transport-
neutral” property makes Web services an inter-operable messaging architec-
ture.

2.3.2.1 Extended Markup Languages - Remote Procedure Call
(XML-RPC)

XML-RPC is an XML-based standard for making simple remote calls across
the network [86] using HTTP as transport and XML as encoding. It emerged
in early 1998 as the ancestor of the SOAP protocol. XML-RPC is an ex-
tremely lightweight mechanism that can be used as a part of a Web service
architecture. It provides the necessary functionality to specify data types and
parameters, and to invoke remote procedures in a platform-neutral way.

Data structures XML-RPC defines eight data types, including six primi-
tive types (see Table 2.1) and two complex types (i.e., Structures and Arrays).

• Structures : identify a value with a string-typed key. Structures can be
nested: the value tags can enclose sub-substructures or arrays.

Grid computing and Web services 33

Table 2.1: XML-RPC primitive types.
Type Value Examples
int or i4 32-bit integers be-

tween 2.147.483.648 and
2.147.483.647

<int>42</int>

<i4>42</i4>

double 64-bit floating-point numbers <double>3.1415</double>

<double>-1.4165</double>
boolean true (1) or false (0) <boolean>0</boolean>

<boolean>1</boolean>
string ASCII text, though many

implementations support Uni-
code

<string>Paris</string>

<string>hello!</string>

dataTime.iso8601 Dates in ISO8601 format:
CCYYMMDDTHH:MM:SS

<dateTime.iso8601>

19040101T05:24:54

</dateTime.iso8601>
base64 Binary information encoded as

Base 64, as defined in RFC
2045

<base64>

SGVsbG8sIFdvcmxkIQ==

</base64>

<struct>

<member>

<name>Key</name>

<value>Value</value>

</member>

<member>

<name>Key</name>

<value>Value</value>

</member>

</struct>

• Arrays : contain a list of value. The values do not need to be of ho-
mogeneous type. Within the value tags, any of the primitive types are
allowed. Arrays can also contain sub-arrays and structures.

<array>

<data>

<value>...</value>

<value>...</value>

</data>

</array>

Request/response structure XML-RPC defines the format of method
calls and responses. The XML message body contains a tag to indicate the
method name to be invoked and the parameter list. The server returns a value
back to the client when a successful call is completed. The sequence diagram
of a XML-RPC request/response cycle is shown in Figure 2.5. Here’s an
example of an XML-RPC request [86]:

34 Grid Resource Management

: XML-RPC Client : XML-RPC Server

<methodCall>
- receives <methodCall> XML
- parses XML and extracts method name
and parameter list for method
- invokes method using parameter values
- packages method result into a
<methodResponse> XML

<methodResponse>

- packages call as
XML document as
<methodCall>

- gets response as
<methodResponse>
- parses XML to get
return value

FIGURE 2.5: XML-RPC request structure.

POST /RPC2 HTTP/1.0

User-Agent: Frontier/5.1.2 (WinNT)

Host: betty.userland.com

Content-Type: text/xml

Content-length: 181

<?xml version="1.0"?>

<methodCall>

<methodName>examples.getStateName</methodName>

<params>

<param>

<value><i4>41</i4></value>

</param>

</params>

</methodCall>

An XML-RPC message is sent through an HTTP POST request. The body
of the message is in XML. The message causes a procedure to be executed
on the server. Parameters for this procedure are included in the XML mes-
sage body. The value returned by the procedure is also encoded in XML.
In this example, the message request containing methodCall is sent to the
server to retrieve the state name of a region. The string value 41 is sup-
plied as the argument for the examples.getStateName method, which is in-
voked on the server side. The XML-RPC response returned by the server
contains the methodResponse and a state name reply of type string, e.g.,
<string>Paris</string>.

2.3.2.2 Simple Object Access Protocol (SOAP)

SOAP was initially created by DevelopMentor, Microsoft, and Userland
Software. Microsoft solicited industry feedback on the SOAP 0.9 specification
in September 1999. The most recent version of SOAP 1.2 [83] was standard-
ized by W3C.

Grid computing and Web services 35

Header (optional)

Body (required)

Envelope (required)

SOAP

FIGURE 2.6: The structure of a SOAP document.

SOAP is also an XML-based, platform-independent protocol providing a
simple and relatively lightweight mechanism for exchanging structured and
typed information between services over the network. The lightweight feature
of SOAP protocol is explained by two fundamental properties: (i) sending
and receiving HTTP (or other) transport protocol packets, and (ii) process-
ing XML messages. SOAP is designed with the aim to reduce the cost and
complexity of integrating applications that are built on different operating sys-
tems, programming environments, or object model frameworks. For example,
applications developed using distributed communication technologies such as
CORBA, DCOM, Java/RMI or any other application-to-application commu-
nication protocols have a symmetrical requirement for the communication be-
tween them. In other words, both ends of the communication link would need
to be implemented under the same distributed object model and would require
the deployment of libraries developed in common [72]. SOAP offers a stan-
dard, extensible, composable framework for packaging and exchanging XML
messages [84] within heterogeneous platforms over the network. SOAP may
use different protocols such as HTTP, SMTP, FTP, JMS, etc. to transport
messages, locate the remote system and initiate communications. However,
SOAP’s natural transport protocol is HTTP.

SOAP defines an extensible enveloping mechanism for structuring the mes-
sage exchange between services. A SOAP message is an XML document that
consists of three distinct elements: an envelope, a header , and a body (see
Figure 2.6).

• SOAP envelope: is the root of SOAP message, which wraps the entire
message containing an optional header element and a mandatory body
element. It defines a framework for describing what is in a message and
how to process it. All elements of the SOAP envelope are defined by a
W3C XML Schema (XSD) [72].

• SOAP header : is a generic mechanism for adding extensible features to
SOAP, such as security and routing information.

36 Grid Resource Management

• SOAP body: contains the payload (i.e., application-specific XML data)
intended for the receiver who will process it, in addition to the optional
fault element for reporting errors occurred during the messages process-
ing. The body must be contained within the envelope, and must follow
any headers defined for the message.

Apart from defining an envelope for describing the content of a message
and details for how to process it, three other parts are specified within SOAP
protocol: a set of data encoding rules, a usage convention, and SOAP binding
framework. Data encoding rules define how instances of data types, which are
defined by an application, are expressed in a SOAP message, such as float,
integer, arrays, etc. Usage conventions define how a SOAP message can exe-
cute across the network by specifying a SOAP communication model: Remote
Procedure Call (RPC) or document-style communication. The SOAP binding
framework specifies the transport protocol through which SOAP messages are
exchanged to an application.

2.3.2.3 SOAP versus XML-RPC

While XML-RPC performs remote procedure calls at only a simple level,
SOAP reaches for more complex features and has more capabilities. SOAP
overcomes the limitations of XML-RPC about the limited type system by
providing more robust data typing mechanisms based upon XML Schema [66]
(even allowing the creation of custom data types). Since the most remarkable
feature of XML-RPC is its simplicity, it is easier to use XML-RPC compared
to SOAP despite its limited capabilities, while SOAP provides more utilities
and it is less natural to use [76].

SOAP involves significantly more overhead but adds much more information
about what is being sent. If complex user-defined data types and the ability
to have each message defined how it should be processed are needed, then
SOAP is a better solution. In contrast, if standard data types and simple
method calls are enough then XML-RPC makes applications faster and easier
to develop and maintain.

2.3.3 Emerging standards

The primary standards on which Web services are built are XML, SOAP,
UDDI, and WSDL. They constitute a basic building block for Web services
architecture and address the inter-operability between services across the net-
work. They ensure that a consumer and a provider of service can communicate
to each other irrespective of the location and implementation details of ser-
vice. However, for a Web services-based SOA to become a mainstream IT
practice, other standards may be considered: “higher-level” standards need
to be developed and adopted. This is especially true in the areas of Web
services security and Web services management. Various standards organi-
zations, such as the World Wide Web Consortium (W3C) and OASIS, have

Grid computing and Web services 37

drafted standards in these areas that promise to gain universal acceptance.
Two emerging standards of special interest are WS-Security and WS-BPEL
[71].

2.3.3.1 Web Services Security (WS-Security)

The WS-Security specification was originally published in April 2002 by
IBM, Microsoft, and VeriSign. In March 2004, WS-Security [70] was released
as OASIS standard, which proposes a standard set of SOAP extensions that
provides message integrity and confidentiality for building secure Web ser-
vices.

WS-Security uses XML Signature [46] to ensure message integrity, which
means that a SOAP message is not modified while traveling from a client
to its final destination. Similarly, WS-Security uses XML Encryption [68] to
provide message confidentiality, which means that a SOAP message is seen
only by intended recipients. Specifically, WS-Security defines how to use
different types of security tokens, which are a collection of claims made by the
sender of a SOAP message, for authentication and authorization purposes. For
example, a sender is authenticated by combining a security token with a digital
signature, which is used as proof that the sender is indeed associated with the
security token. Additionally, WS-Security also provides a general-purpose
mechanism for associating security tokens with messages, and describes how
to encode binary security tokens.

The specification is designed to be extensible (i.e., support multiple security
token formats) and no specific type of security token is required. For exam-
ple, a client might define one security token for sender identities and provide
another security token for their particular business certifications.

WS-Security is flexible and is designed to be used with a wide variety of se-
curity models and encryption technologies, such as Public Key Infrastructure
(PKI), Kerberos, and Secure Socket Layer (SSL)/Transport Layer Security
(TLS).

2.3.3.2 Web Services Business Process Execution Language (WS-
BPEL)

Web services provide an evolutionary approach for building distributed ap-
plications that facilitate loosely coupled integration and resilience to change.
As services are designed to be loosely coupled and to exist independently from
each other, they can be combined (i.e., composed) and reused with maximum
flexibility. Complex business processes, such as handling of a purchase or-
der, require involving multiple steps performed in a specific sequence that
lead to the invocation and interaction of multiple services. For this business
process to work properly, the service invocations and interactions need to be
coordinated (i.e., service coordination is also known as “orchestration”).

Service coordination allows creating a new and more complex service in-
stance that other applications can use. A complex application can be com-

38 Grid Resource Management

posed from various granular services coordinated in different manners, such
as correlated asynchronous service invocation, long running processes or or-
chestrating autonomous services. WS-BPEL 2.0 [45], which is also identified
as BPELWS, BPEL4WS, or simply BPEL, was approved as an official OASIS
standard in 2007 for composition and coordination of Web services. WS-
BPEL uses WSDL to describe the Web services that participate in a process
and how the services interact with each other.

2.4 Grid services

Web services and grid computing are key technologies in distributed systems
that attracted a lot of interest in recent years. Web services, which emerged
in the year 2000, address the problem of application integration by proposing
an architecture based on loosely coupled distributed components and widely
accepted protocols and data formats, such as HTTP, WSDL, SOAP.

The concept of grid computing was introduced in 1995 and aims to pro-
vide the computational power and data management infrastructure necessary
to support the collaboration of people, together with data, tools and com-
putational resources [56]. The primary goal of grid computing is to address
computationally hard and data-intensive problems in science and engineer-
ing. Different from Web services, which are based on strict standards to
enable communication and interaction among applications, the majority of
grid systems have been built based on either ad-hoc public components or
proprietary technologies [78]. The fact that the interfaces for individual grids
were not standardized has led to inter-operability problems of grid systems in
large-scale since the communication between grids is usually based on vendor-
specific protocols. In current practice, there exist various public and commer-
cial grid middlewares, which have been successful in their niche areas (e.g.,
Globus). However, due to the lack of a dominant standard among them, these
solutions have limited potential as the basis for future-generation grids, which
will need to be highly scalable and inter-operable to meet the needs of global
enterprises.

Even though starting from different perspectives, there is considerable over-
lay between the goals of Web services and grid computing initiatives. In fact,
both Web services and grid computing deal with service concepts and both
architectures have the same underlying design principles provided by SOA.
The rapid advances in Web services technology and standards have provided
an evolutionary path from the ad-hoc architecture of current grids to the
standardized and service-oriented grid of the future [78].

Significant progress has been made in converging these two initiatives in
key areas where the efforts overlap with each other. The Globus alliance
[41], a broad, open development group for grid computing, offers mechanisms

Grid computing and Web services 39

applications & technology

Started far apart in Have been

CMM

converging

RPC
CORBA

GWSDL
OGSI

WSRF
WSDL 2.0

WSDM
WS
SOAP 1.2

Web Services

Grid

SOAP 1.0

WSDL 1.1
SOAP 1.1

FIGURE 2.7: Convergence of Web services and grid services [69].

for developing grids through Web services. Open Grid Services Architecture
(OGSA) [53] is introduced in version 3.0 of Globus Toolkit as an implemen-
tation of Open Grid Services Infrastructure (OGSI) proposed by Global Grid
Forum (GGF). OGSA refines the architecture of grid computing to address
SOA principles and adopts the Web services approach to enhance the capabili-
ties of the grid environment. The technologies used to implement the required
services and their specific characteristics are not specified in OGSA. The tech-
nical details of how to build the services are defined in OGSI through a set
of extensions and specializations to the Web services technology for grid de-
ployment, as required by OGSA. OGSI defines the mechanisms for creating,
managing and exchanging information among entities called grid services ,
which are “a Web service that provides a set of well-defined interfaces and
that follows specific conventions. The interfaces address discovery, dynamic,
service creation, lifetime management, notification, and manageability” [57].
The details about the grid services specification can be found in [81]. The
relationship between grid services and Web services is given in detail in [65].

Lately, the collaboration between Web services and the grid computing
community [49] has resulted in the important specification Web Services Re-
source Framework (WSRF) [44], which essentially retains all the functional
capabilities present in OGSI, and at the same time builds on broadly adopted
Web services concepts. The Figure 2.7 shows the convergence between Web
services and grid computing. In the sections that follow we will describe OGSI
and WSRF specification.

2.4.1 Open Grid Services Infrastructure (OGSI)

Typically, Web services implementations are stateless. However, for a lot
of applications, it is desirable to be able to maintain a state. Especially in
grid computing, the state of a resource or service is often important and may
need to persist across transactions. For example, an online reservation system
must maintain a state about previous reservations made, availability of seats,

40 Grid Resource Management

etc. It is possible by using standard Web services to manage and manipulate
stateful (i.e. maintain state information between message calls) services using
ad hoc methods (e.g., extra characters placed in URLs or extra arguments to
functions) across multiple interactions. In other words, the message exchanges
that Web services implement are usually intended to enable access to stateful
resources.

However, the management of stateful resources acted upon by the Web ser-
vice implementation is not explicit in the interface definition. This approach
requires client applications being aware of the existence of an associated state-
ful resource type for Web services and it does not address the core issue of state
management in general. The lack of standard conventions, which is critical
for inter-operability within loosely coupled service-oriented platforms, leads
to increased integration cost between Web services that deal with stateful
resources in different ways. Therefore, it is desirable to define Web services
conventions to solve the fundamental problem of state management in the
Web services architecture. A general solution is needed to enable the discov-
ery of, introspection on, and interaction with stateful resources in standard
and inter-operable ways. Most important, such an approach improves the ro-
bustness of design time selection of services during application assembly and
runtime binding to specific resource instances [54].

In this context, OGSI specification version 1.0 [82], released in July 2003 by
GGF OGSI Working Group as a base infrastructure on which OGSA is built,
specifies a set of extensions of Web services technology to enable stateful Web
services. It defines the standard interfaces, behaviors, and core semantics of
a grid service. In this specification, the grid service is referred to as a service
that conforms to a set of conventions of WSDL [48] and XML Schema [66]
relating to its interface definitions and behaviors.

OGSI enhances Web services technology by introducing the concept of
stateful and transient services with standard mechanisms for declaring and
inspecting state data of a service instance; asynchronous notification of ser-
vice state change; representing and managing collections of service instances
through referenceable handles; lifecycle management of service instances; and
common handling of service invocation faults [54].

• Stateful and transient services : The fact that grid services can be cre-
ated as stateful and transient service is considered as one of the most
important improvements with regard to Web services.

Service Data is the OGSI approach to stateful Web services and provides
a standard way for service consumers to query and access the state data
from a service instance. Since plain Web services allow operations to be
included only in the WSDL interface, Service Data can be considered
as an extension to the WSDL that allows not only operations but also
attributes to be included in the WSDL interface. It is important to note
that Service Data is much more than simple attributes; it can be any
type of data (e.g., fundamental types, classes, arrays). In general, the

Grid computing and Web services 41

Service Data included in a service will fall into one of two categories:
(i) state information, which provides information on the current state
of the service, such as operation results, intermediate results, runtime
information, and (ii) service metadata, which is information on the ser-
vice itself, such as system data, supported interfaces, cost of using the
service.

Factory/instance is the OGSI approach to overcome the non-transient
limitations of Web services. Since plain Web services are non-transient
(i.e., persistent) their lifetime is bound to the Web services container.
The fact that all clients work on the same instance of a Web service
implies that the information the Web service is maintaining (e.g., com-
putation results) for a specific client may be accessed (and potentially
messed up) by any other client. Factories may create transient instances
with limited lifetime, which will be destroyed when the client has any use
for them. It should be noted that a grid service could be persistent, just
like a normal Web service. Choosing between persistent grid services or
factory/instance grid services depends entirely on the requirements of
the client application.

• Asynchronous notification: OGSI provides a mechanism for asyn-
chronous notification of state change. A grid service can be configured to
be a notification source by implementing NotificationSource PortType,
and certain clients to be notification sinks (or subscribers) by implement-
ing NotificationSink PortType. This allows subscribed clients (sinks) to
be notified of changes that occur in a service (source).

• Collection of service instances: OGSI enables a number of services to
be aggregated together to act as a service group for easier maintenance
and management. A grid service can define its relationship with other
member services in the group. Services can join or leave a service group.

• References : OGSI uses Grid Service Handles (GSH) to name and man-
age grid service instances. The GSH is returned when a new grid service
instance is created as a unique identity. GSH is a global standard URI
name for a service instance, which must be registered with the Han-
dleResolver for appropriate invocation. In fact, GSH does not contain
sufficient information to allow a client to communicate directly with the
service instance, but it may resolve to a Grid Service Reference (GSR).
GSR provides the means for communicating with the service instance
(e.g., what methods it has, what kind of messages it accepts/receives).
The GSR can be a WSDL document for the service instance, which spec-
ifies the handle-specific bindings to facilitate service invocation. The
client has to hold at least one GSR for interactions with the identi-
fied service instance. The grid service instance needs to implement the
HandleResolver PortType, that maps a GSH to one or more GSRs, to
manage and translate between GSH into GSRs.

42 Grid Resource Management

Table 2.2: Summary of base PortTypes defined in OGSI specification [82].
PortType Name Description
GridService encapsulates the root behavior of the service

model, must be implemented by all grid ser-
vices

HandleResolver creating an instance of a Grid service returns
a Grid Service Handle (GSH). This GSH is
mapped to a reference Grid Service Reference
(GSR), which then has enough information
to enable client communication with the ac-
tual instance of a grid resource via a grid ser-
vice. This interface provides the functionality
to map a GSH to a GSR.

NotificationSource allows clients to subscribe to notification mes-
sages

NotificationSubscription defines the relationship between a single Noti-
ficationSource and NotificationSink pair

NotificationSink defines a single operation for delivering a no-
tification message to the service instance that
implements the operation

Factory is standard operation for creation of grid ser-
vice instances

ServiceGroup allows clients to maintain groups of services
ServiceGroupEntry defines the relationship between a grid service

instance and its membership within a Service-
Group

ServiceGroupRegistration allows grid services to be added and removed
from a ServiceGroup

• Lifecycle management : gives a client the ability to create and destroy a
service instance according to its requirements.

The OGSI 1.0 specification defines the following PortType (i.e., interfaces)
that should be implemented by a grid service. Table 2.2 provides the name
of OGSI PortType, its operation and description of such interfaces.

In order to be qualified as a grid service instance, a Web service instance
must implement a port whose type is, or is derived from GridService PortType,
which specifies the functions that can be called on the service. The service
may optionally implement other PortType from the standard OGSI family as
listed in the previous table along with any application-specific PortTypes, as
required. The GridService PortType has the following operations [82]:

• findServiceData: allows a client to discover more information about the
service’s state, execution environment and additional semantic details
that are not available in the GSR. In general, this type of reflection is
an important property for services. It can be used to allow the clients
a standard way to learn more about the service they will use. The
exact way this information is conveyed is through ServiceData elements
associated with the service.

Grid computing and Web services 43

WSRF

XML, SOAP, WSDL

WS−AddressingOGSI

FIGURE 2.8: The relationship between WSRF, OGSI and Web services tech-
nologies.

• setServiceData: allows the client to modify the value of the Service Data
element. This modification implies changing the corresponding state in
the underlying service instance.

• requestTerminationAfter : allows the client to specify the termination
time after which the service instance has to terminate itself.

• requestTerminationBefore: allows the client to specify the termination
time before which the service instance has to terminate itself.

• destroy: explicitly instructs the destruction of the service instance.

In summary, the OGSI specification is an attempt to provide an environ-
ment where users can access grid resources through grid services, which are
defined as an extension of Web services.

The importance of a concept that addresses the stateful Web services has
been recognized by major Web services communities. However, OGSI was
not widely accepted by these communities, and concerns were raised about
the relationship between this specification and existing Web services specifica-
tions as: “too much stuff in one specification”, “not working well with existing
Web services and XML tooling”, “too object-oriented”, and “introduction of
forthcoming WSDL 2.0 capability as unsupported extensions to WSDL 1.1”
[54]. As a result, there has been collaboration among Globus alliance [41],
IBM, and HP, towards aligning OGSI functions with emerging advances on
Web services technology. This effort produced the concept of Web Services
Resources Framework (WSRF) [44] in January 2004. This specification su-
persedes OGSI and completes Grid and Web services convergence. Figure 2.8
shows the relationship between the Web services technologies and the OGSI
and WSRF specifications.

2.4.2 Web Services Resource Framework (WSRF)

The WSRF specification is an evolution of OGSI 1.0, which aims to address
the needs of grid services in conjunction with the evolution of Web services.

44 Grid Resource Management

Table 2.3: WS-Resource Framework specifications summary [50].
Specification Name Description
WS-ResourceLifetime Mechanisms for WS-Resource destruction, in-

cluding message exchanges that allow a re-
questor to destroy a WS-Resource, either im-
mediately or by using a time-based scheduled
resource termination mechanism.

WS-ResourceProperties Definition of a WS-Resource, and mechanisms
for retrieving, changing, and deleting WS-
Resource properties.

WS-RenewableReferences A conventional decoration of a WS-Addressing
endpoint reference with policy information
needed to retrieve an updated version of an
endpoint reference when it becomes invalid.

WS-ServiceGroup An interface to heterogeneous by-reference col-
lections of Web services.

WS-BaseFaults A base fault XML type for use when returning
faults in a Web service message exchange.

Instance Service

Factory Service

Client

Creating Resource
Create Resource

Operations

Endpoint Reference
(Address + Reference Properties)

Resource

Managing Resource
by Reference Properties

FIGURE 2.9: The implied resource pattern.

WSRF defines a family of five composable specifications (see Table 2.3) that
together with the WS-Notification (see Table 2.4), which addresses event no-
tification subscription and delivery and the WS-Addressing specifications [47]
provide similar functionality to that of OGSI.

The fundamental conceptual difference between WSRF and OGSI resides in
the way of modeling resources using Web services. OGSI treats a resource as a
Web service itself (i.e., by supporting the GridService PortType). WSRF, on
the other hand, makes explicit distinction between the “service” and the “re-
sources” acted upon by that service by using the implied resource pattern [50]
to describe views on state and to support its management through associated
properties.

2.4.2.1 The implied resource pattern

The implied resource pattern for stateful resources refers to the mecha-
nisms used to describe the relationship between Web services and stateful

Grid computing and Web services 45

Table 2.4: WS-Notification Specifications summary.
Specification Name Description
WS-BaseNotification Defines Web services operations to define the

roles of notification producers and notification
consumers.

WS-BrokeredNotification Defines Web services operations for a notifi-
cation broker. A notification broker is an in-
termediary which, among other things, allows
publication of messages from entities that are
not themselves service providers.
It includes standard message exchanges to
be implemented by notification broker service
providers along with operational requirements
expected of service providers and requestors
that participate in brokered notifications.

WS-Topics Defines a mechanism to organize and catego-
rize topics. It defines three topic expression di-
alects that can be used as subscription expres-
sions in subscribe request messages and other
parts of the WS-Notification system.
It further specifics an XML model for describ-
ing meta data associated with topics.

resources through a set of conventions on existing Web services technologies,
particularly XML, WSDL, and WS-Addressing [47]. The term implied is used
because the identity of the stateful resource is not specified explicitly in the
request message, but rather is treated as implicit input for the execution of
the message request using the reference properties feature of WS-Addressing.
The endpoint reference (EPR) provides the means to point to both the Web
service and the stateful resource in one convenient XML element. This means
that the requestor does not provide the stateful resource identifier as an ex-
plicit parameter in the body of the request message. Instead, the stateful
resource is implicitly associated with the execution of the message exchange
[55].

In the implied resource pattern, a stateful resource is modeled in terms
of WS-Resource and is uniquely identified through the EPR as illustrated in
Figure 2.9. The Factory Service is capable of creating new instance services
and is responsible for creating the resource, assigning it an identity, and cre-
ating a WS-Resource qualified endpoint reference to point to it. An Instance
Service is required to access and manipulate the information contained in the
resources associated with this service. The EPR contains, in addition to the
endpoint address of the Web services, other metadata associated with the
Web services such as service description information and reference properties ,
which help to define a contextual use of the endpoint reference. The reference
properties of the endpoint reference play an important role in the implied
resource pattern.

The framework defines how to declare, create, access, monitor for change,

46 Grid Resource Management

and destroy the WS-Resource through conventional Web services mechanisms.
It describes how to make the properties of a WS-Resource accessible through
a Web service interface and to manage a WS-Resources lifetime.

In the following section, we present the key management features of WSRF.

2.4.2.2 Resource representation: WS-Resource

The core WSRF specification is WS-Resource [55], which is defined as the
composition of a resource and a Web service through which clients can ac-
cess the state of this resource and manage its lifetime. The WS-Resource is
not very restrictive with respect to what can be considered a resource. A
resource has to satisfy at least two requirements: it needs to be uniquely
identifiable and it must have properties. A WS-Resource uses a network-wide
pointer EPR with WS-Addressing reference properties and Resource Prop-
erties to meet these requirements. The EPR with a set of WS-Addressing
reference properties refers to the unique identity of the resource and the URL
of the managing Web services. Resource Properties reflect the state data
of the stateful resources. It should be noted that these Resource Proper-
ties could vary from simple to complex data types and even reference other
WS-Resources. Referencing other Resources through Resource Properties is
a powerful concept, which defines and elaborates interdependency of the WS-
Resources at a lower level. A set of Resource Properties are aggregated into a
resource property document: an XML document that can be available to the
service requestors so that they can query it using XPath or any other query
languages.

The lifetime of resource instances can be renewed before expiration as spec-
ified by the WS-ResourceLifetime specification. They can also be destroyed
prematurely as required by the application. The lifetime of an instance of a
resource is managed by the client itself or any other process interacting as
a client, independent of the Web service and its container. It is possible for
multiple Web services to manage and monitor the same WS-Resource instance
with different business logic and from a different perspective. Similarly, WS-
Resources are not confined to a single organization and multiple organizations
may work together with the same managing Web services.

2.4.2.3 Service addressing: WS-Addressing

WSRF uses the WS-Addressing specification [47] endpoint reference con-
struct for addressing of a WS-Resource. An endpoint reference is used to
represent the address of a Web service deployed at a given network endpoint.
The fact that an endpoint reference may also contain metadata associated
with the Web services makes it appropriate to be used in the implied resource
pattern in which a stateful resource is treated as an implied input for the pro-
cessing of a message sent to a Web service. The endpoint reference construct
is used to uniquely identify the stateful resource to be used in the execution
of all message exchanges performed by this Web service. A WS-Resource

Grid computing and Web services 47

endpoint reference may be returned as a result of operations such as a Web
service message request to a factory service which instantiates and returns a
reference to a new WS-Resource, from the evaluation of a search query on a
service registry or as a result of some application-specific Web services request.

2.4.2.4 Resource lifetime management: WS-ResourceLifetime

The WS-ResourceLifetime specification [58] proposes mechanisms for nego-
tiating and controlling the lifetime of WS-Resource. The specification defines
a set of standard message exchange patterns for destroying, establishing, and
renewing a resource, either immediately or by using a time-based scheduled
mechanism. The specification also supports extension of the scheduled ter-
mination time of a WS-Resource at runtime. This feature offers explicit de-
struction capabilities to a service requestor. Once the resource is destroyed,
the resource EPR is no longer valid and the service requestor will not be able
to connect to the resource using the same EPR.

A set of service properties and two types of service destruction message
patterns are defined. The service properties that are used to manage the
lifetime of service are: InitialTerminationTime, CurrentTime, and Termina-
tionTime. The identified service destruction message exchange patterns for
lifetime management capabilities are immediate and scheduled destruction.

• Immediate destruction: allows the service requestor to explicitly request
the immediate termination of a resource instance by sending an appro-
priate request (DestroyRequest message) to the Web services, together
with the WS-Resource qualified endpoint reference. The Web service
managing the WS-Resource takes the endpoint reference and identifies
the specific resource to be destroyed. Upon the destruction of the re-
source the Web service sends a reply to the requestor with a message
that acknowledges the completion of the request. Any further message
exchanges with this WS-Resource will return a fault message.

• Scheduled destruction: allows the service requestor to define a specified
period of time in the future by sending an appropriate request (SetTer-
minationTimeRequest message) to the Web service, together with the
WS-Resource qualified endpoint reference. Using this endpoint refer-
ence, the service requestor may first establish and subsequently renew
the scheduled termination time of the WS-Resource. When that time
expires, the WS-Resource may be self-destroyed without the need for a
synchronous destroy request from the service requestor. The requestor
may periodically update the scheduled termination time to adjust the
lifetime of the WS-Resource.

In addition to the above capabilities, the specification supports the notifica-
tion to interested parties when the resource is destroyed through notification
topics. As defined in the WS-Notification specification, the Web services asso-
ciated with the WS-Resource could be a notification producer, which proposes

48 Grid Resource Management

the notification topics to allow service requestors to subscribe to notification
about the destruction of a specific resource.

2.4.2.5 Resource properties: WS-ResourceProperties

The definition of the properties of a WS-Resource is standardized in the WS-
ResourceProperties specification [59] as a part of the Web services interface
in terms of a resource properties document. The WS-Resources properties
represent a view of the resource’s state in XML format.

The WS-ResourceProperties standardizes the set of message exchanges for
the retrieval, modification, update and deletion of the contents of resource
properties and supporting subscription for notification when the value of a
resource property changes. The set of properties defined in the resource prop-
erties document associated with the service interface defines the constraints
on the valid contents of these message exchanges.

2.4.2.6 Service collection: WS-ServiceGroup

It is possible to represent and manage heterogeneous collections of Web
services, in order to provide a domain-specific solution, or a simple collection
of services, for indexing and other discovery scenarios. The WS-ServiceGroup
specification [61] defines the mechanisms for organizing a “by-reference” col-
lection of Web services, and provides key manageability interfaces to better
manage entries in the group (e.g., add, delete, and modify). Although any
Web services can become a part of this collection, the service group can be
used to form a wide variety of collections of Web services or WS-Resources,
for example to build registries, or to build services that can perform collective
operations on a set of WS-Resources.

The resource property model from WS-ResourceProperties is used to ex-
press membership rules, membership constraints, and classifications. De-
tails of each member in the service collection are expressed through WS-
ResourceProperties, which wraps the EndpointReference and the contents of
the member. WS-ServiceGroup also defines interfaces for managing the mem-
bership of a ServiceGroup.

2.4.2.7 Fault management: WS-BaseFaults

Fault management is a difficult issue in Web services applications since each
application uses a different convention for representing common information
in fault messages. In this context, the WS-BaseFaults specification [80] de-
fines a base fault type, which is used to return faults in a Web service message
exchange. Web services fault messages declared in a common way improve
support for problem identification and fault management. It enforces also
the development of common tooling to assist in the handling of faults de-
scribed uniformly. WS-BaseFaults defines an XML Schema type for a base
fault, along with rules for how this fault type is used and extended by Web

Grid computing and Web services 49

services. It standardizes the way in which errors are reported by defining a
standard base fault type and procedure for use of this fault type inside WSDL.
WS-BaseFault defines different standard elements corresponding to the time
when the fault occurred (Timestamp), the endpoint of the Web service that
generated the fault (OriginatorReference), error code (ErrorCode), error de-
scription (Description), the cause for the fault (FaultCause) and any arbitrary
information required to rectify the fault.

2.4.2.8 Notification: WS-Notification

WSRF exploits the family of WS-Notification specifications, including
WS-BaseNotification [62], WS-BrokeredNotification [63] and WS-Topics [64],
which define a standard approach to notification using a topic-based publish
and subscribe pattern. More specifically, the goal of WS-BaseNotification is
to standardize exchanges and interfaces for producers and consumers of noti-
fications. WS-BrokeredNotification aims to facilitate the deployment of Mes-
sage Oriented Middleware (MOM) to enable brokered notifications between
producers and consumers of the notifications. WS-Topics deals with the or-
ganization of subscriptions and defines dialects associated with subscription
expressions, which are used in conjunction with exchanges that take place in
WS-BaseNotification and WS-Brokered Notification.

WS-Notification currently also makes use of two other specifications in
WSRF context: WS-ResourceProperties to describe data associated with re-
sources, and WS-ResourceLifetime to manage lifetimes associated with sub-
scriptions and publisher registrations (in WS-BrokeredNotifications).

2.4.3 OSGI vs. WSRF

As discussed previously, OGSI and WSRF are two approaches developed
to enable the management of stateful resources through Web services inter-
faces. However, there exist some fundamental differences between these two
approaches that will be described in this section. Table 2.7 outlines the map-
pings from OGSI concepts and constructs to equivalent WSRF concepts and
constructs.

2.4.3.1 Resource modeling

OGSI differs from WSRF in the modeling of resources. While OGSI treats
a stateful resource as a Web service (i.e., a grid service), WSRF makes clearer
the distinction between the Web service interface and the underlying stateful
resource they manage. In other words, OGSI encapsulates the state informa-
tion in the grid service interface. WSRF, in the other hand, defines a separate
interface containing the state information and the operations to modify it.

In OGSI, a grid service interface must declare a PortType whose type is, or
is extended from GridService PortType. OGSI declares Service Data elements
as part of an interface definition, which provides a standard way for querying

50 Grid Resource Management

Table 2.5: OGSI to WS-Resource Framework and WS-Notification map [54].
OGSI WS-Resource Framework
Grid Service Reference WS-Addressing Endpoint Reference.
Grid Service Handle WS-Addressing Endpoint Reference and WS-

RenewableReferences.
HandleResolver PortType WS-RenewableReferences.
Service Data Definition Resource properties definition.
GridService PortType service
data access

WS-Resource Properties.

GridService PortType lifetime
management

WS-ResourceLifetime.

Notification PortTypes WS-Notification.
Factory PortType Now treated as a WS-Resource Factory con-

cept.
ServiceGroup PortTypes WS-ServiceGroup.
Base fault type WS-BaseFault.
GWSDL Copy-and-paste. Uses existing WSDL 1.1 in-

terface composition approaches (that is, copy
and paste) rather than using WSDL 2.0 con-
structs.

and accessing the state data. However, the WSDL specification version 1.1
does not allow a PortType to be extended and it is not possible to have
additional information to a PortType. OGSI proposes a GWSDL PortType
to overcome this limit. The fact that OGSI extends WSDL makes OGSI not
compatible with existing Web services tools.

In WSRF, the term “grid services” was deprecated. Therefore, it is inap-
propriate to consider grid services an extension of basic Web services. The
key idea separates the grid service concept of OGSI into “normal” Web ser-
vices and the stateful resources that the Web services manage. The state
of resources is specified through Resource Property elements, which are con-
ceptually identical to Service Data elements and defined by standard XML
Schema elements. These Resource Property elements are collected in a Re-
source Properties document, which is then associated with the interface of
the service by using an XML attribute on the WSDL 1.1 PortType. This way
of definition of services and its associated resources makes WSRF compatible
with WSDL 1.1.

2.4.3.2 State information

OGSI differs from WSRF in the way the data associated with state-
ful resources is presented to clients. As Service Data elements define the
state of the resources, OGSI proposes a set of functions for retrieving and
manipulating these elements. For example, within the GridService inter-
face, findServiceData is defined for returning the Service Data upon client
queries, and setServiceData is defined for modifying or deleting a certain
Service Data element.

Grid computing and Web services 51

Table 2.6: A WS-Resource-qualified Endpoint Reference.

<EndpointReference>

<Address>http://host/wsrf/Service</Address>

<ReferenceProperties>

<ResourceKey>8807d620</ResourceKey>

</ReferenceProperties>

</EndpointReference>

In WSRF, the state of resources is reflected by Resource Property elements,
which are defined in a Resource Properties document. Resource Property el-
ements can be retrieved and modified through a set of specific operations
defined in the WS-ResourceProperties interface, such as GetResourceProp-
erty, GetMultipleResourceProperties, SetResourceProperties, QueryResour-
ceProperties.

2.4.3.3 State addressing

Since resources are created dynamically and their state may change during
their lifetime, a mechanism to access the state of resources across a Web
service infrastructure in an inter-operable and reliable way is needed. OGSI
and WSRF take different approaches to address the state of the resources.

OGSI defines Grid Service Handle (GSH) and Grid Service Reference (GSR)
as the standardized representation of grid service address. A GSH is a persis-
tent handle assigned to the service instance, but it does not contain sufficient
addressing information for a client to connect to the service instance. The
GSR plays the role of a transient network pointer with associated metadata
related to the grid services, such as service description information and refer-
ence properties associated with a contextual use of the targeted grid services,
which can be used to locate and invoke the grid services. The GSH can be re-
solved to a GSR using a “Handle Resolver” mechanism. The Handle Resolver
PortType defines a standard operation findByHandle, which returns one or
more GSRs corresponding to a GSH. A service instance that implements the
Handle Resolver PortType is referred to as a handle resolver.

In contrast, WSRF uses WS-Addressing to provide Web services endpoints
and contextual identifiers for stateful resources known as WS-Resources. The
Endpoint References construct defined in the WS-addressing specification is
adopted as an XML structure for identifying Web services endpoints. These
EndpointReferences may be returned by the factory that creates a new WS-
Resource and contains other metadata such as reference properties . These
reference properties encapsulate the stateful resource identifier that allows
identifying a specific WS-Resource associated with the service. Table 2.6
shows a WS-Addressing endpoint reference as used within the conventions

52 Grid Resource Management

Table 2.7: Mapping from OGSI to WSRF lifetime management constructs
[54].

Function OGSI WSRF
Create new en-
tity

Factory PortType op-
eration “createService”

Factory pattern definition

Address the en-
tity

Grid Service Handle
and Grid Service Refer-
ence

WS-Addressing Endpoint Reference
with reference properties

Immediate de-
struction

GridService PortType
operation “destroy”

ResourceLifetime PortType operation
“Destroy”. However, this operation is
synchronous in WSRF

Scheduled de-
struction

GridService PortType
operations, “request-
TerminationAfter” and
“requestTermination-
Before”

ResourceLifetime PortType operation
“SetTerminationTime” is equivalent to
“After”. “Before” was determined to
be superfluous in the absence of real-
time scheduling

Determine cur-
rent time

GridService PortType
service data element
“CurrentTime”

Resource property “CurrentTime”

Determine life-
time

GridService PortType
service data element
“TerminationTime”

Resource property “Termination-
Time”

Notify of de-
struction

Not available Subscribe to topic “ResourceDestruc-
tion”

of WS-Resource. The endpoint reference contains two components: (i) the
Address component encapsulates the network transport-specific address of the
Web service, and (ii) the ReferenceProperties component contains a stateful
resource identifier.

The fact that WSRF exploits existing XML standards, as well emerging
Web services standards such as WS-Addressing, makes it easier to imple-
ment within existing and emerging Web services toolkits, and easier to exploit
within the myriad of Web services interfaces in definition.

2.4.3.4 Lifetime management

In OGSI and WSRF context, Web services are stateful and dynamic (i.e.,
transient); the lifetime within the services is non-trivial. Lifetime management
is a crucial aspect in both OGSI and WSRF models. OGSI and WSRF manage
the lifetime of their stateful resources in a slightly different way.

• Creation: OGSI addresses the service creation via the Factory PortType,
which provides an operation “createService”, that takes as optional ar-
guments a proposed termination time and execution parameters. This
operation returns a service locator for the newly created service, an
initial termination time, and optional additional data.

WSRF defines the factory pattern, a term used to refer to a Web service
that supports an operation that creates and returns endpoint references

Grid computing and Web services 53

for one or more newly created WS-Resources. In that way, the creation
of a stateful Web service (i.e., grid service) in OGSI really corresponds
to the creation of a WS-Resource in WSRF.

• Destruction: OGSI addresses destruction via operations supported in its
GridService PortType, which allows the service requestor to explicitly
request destruction of a grid service. OGSI proposes two operations
for managing grid service lifetime including requestTerminationAfter
and requestTerminationBefore.

WSRF standardizes two approaches for the destruction of a WS-Resour-
ce: immediate and scheduled destruction. A WS-Resource can be de-
stroyed immediately using the appropriate WS-Resource-qualified end-
point reference for the destroy request message. The service requestor
may also establish and later renew a scheduled termination time of the
WS-Resource. When the time expires the WS-Resource may self de-
struct.

2.4.3.5 Service grouping

Service grouping is a particularly important aspect when dealing with state-
ful entities. Both OGSI and WSRF propose a standard mechanism for cre-
ating a heterogeneous by-reference collection of services or resources. OGSI
and WSRF allow grouping of service instances in essentially the same way.
OGSI addresses this feature via three interfaces: the ServiceGroup interface
which represents the group of grid services, the ServiceGroupEntry interface
which allows management of the individual entries in a group, and the Service-
GroupRegistration interface which defines the operations to add or remove an
entry to or from a group. In WSRF, the equivalent interfaces are defined in
the WS-ServiceGroup specification.

The only difference between the two approaches is that the “remove” oper-
ation on the ServiceGroupRegistration interface, which allows the removal of
a set of matching services, is not included in WS-ServiceGroup. This oper-
ation was removed mainly because of its redundancy with removing services
from a group by doing lifetime management on the service group entry re-
source (i.e., the ServiceGroupEntry can be destroyed using the normal WS-
ResourceLifetime operations).

2.4.3.6 Notification

In an environment in which stateful resources may change their state dy-
namically, it becomes important to provide support for asynchronous notifi-
cation of changes.

OGSI meets this requirement via its notification interfaces, which allow a
client to define a subscription (i.e., a persistent query) against one or more ser-
vice data values. However, subscription and notification are broad concepts,
since not all events relate to changes in the state of a service or resource.

54 Grid Resource Management

WSRF extends the original OGSI notification model by exploiting WS-
Notification. The WS-Notification family of specifications introduces a more
feature-complete, generic, hierarchical topic-based approach for publish/sub-
scribe-based notification, which is a common model followed in large scale,
distributed event management systems.

2.4.3.7 Faults

WSDL defines a message exchange fault model, but not a base format for
fault messages. A common base fault mechanism is a crucial requirement for
common interpretation of fault messages generated by different distributed
services.

OGSI addresses this issue by defining a base XML schema definition (i.e., a
base XSD type, ogsi:FaultType) and associated semantics for fault messages,
together with a convention for extending this base definition for various types
of faults. By defining a common base set of information that all fault messages
must contain, the identification of faults between services is simplified.

WSRF adopts the same constructs, defining them in the WS-BaseFault
specification. The only difference is the removal of the open extensibility
from WS-BaseFault, because it is redundant with the required approach of
extending the base fault type using an XML schema extension for extended
faults and because that extensibility element placed an additional burden on
the capabilities of broadly available Web services tooling [49].

2.5 Concluding remarks

Initially, grid computing was defined as a hardware and software infrastruc-
ture that provides dependable, consistent, pervasive, and inexpensive access
to high-end computational capabilities. The next phase of the evolution of
grid systems would involve the “service paradigm” to achieve more common
usage, and to provide incentives for users to wrap their existing applications
as grid services. The trend toward the modeling resources as services has led
to the emergence of a family of specifications, such as OGSA/OGSI, WSRF,
and WS-Notification, which describes a set of services and interactions en-
abling implementation of a grid. These specifications enforce traditional Web
services with features such as state and lifecycle, making them more suitable
for managing and sharing resources on the grid.

Grid computing and Web services 55

References

[39] UDDI version 3.0.2: UDDI spec technical committee draft. Available
online at: http://uddi.org/pubs/uddi_v3.htm (Accessed August 31st,
2007).

[40] Universal Description, Discovery and Integration (UDDI). Available
online at: http://www.uddi.org (Accessed August 31st, 2007).

[41] The Globus alliance, Nov. 2004. Available online at: http://www.globus.
org (Accessed August 31st, 2007).

[42] World wide web consortium (W3C): leading the web to its full potential,
2004. Available online at: http://www.w3c.org (Accessed August 31st,
2007).

[43] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, C. Kesselman,
S. Meder, V. Nefedova, D. Quesnel, S. Tuecke, and I. Foster. Secure,
efficient data transport and replica management for high-performance
data-intensive computing. In Proceedings of the 18th IEEE Symposium
on Mass Storage Systems (MSS 2001), Large Scale Storage in the Web,
page 13, Washington, DC, USA, 2001. IEEE Computer Society.

[44] T. Banks. Web Services Resource Framework (WSRF) - Primer v1.2,
May 2006. Available online at: http://www.oasis-open.org/committees/
wsrf (Accessed August 31st, 2007).

[45] C. Barreto, V. Bullard, T. Erl, J. Evdemon, D. Jordan, K. Kand,
D. Knig, S. Moser, R. Stout, R. Ten-Hove, I. Trickovic, D. van der
Rijn, and A. Yiu. Web Services Business Process Execution Language
Version 2.0 - Primer, May 2007.

[46] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon. XML-
Signature syntax and processing, Aug. 2001. Available online at:
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/ (Accessed Au-
gust 31st, 2007).

[47] D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, C. Kaler,
D. Langworthy, F. Leymann, B. Lovering, S. Lucco, S. Millet,
N. Mukhi, M. Nottingham, D. Orchard, J. Shewchuk, E. Sindambiwe,
T. Storey, S. Weerawarana, and S. Winkler. Web Services Address-
ing (WS-Addressing), Aug. 2004. Available online at: http://www.w3.

org/Submission/2004/SUBM-ws-Addressing-20040810/ (Accessed August
31st, 2007).

56 Grid Resource Management

[48] E. Christensen, F. Curbera, G. Meredith, and S. Weerarawana. Web Ser-
vice Description Language (WSDL). W3C note 15, Mar. 2001. Available
online at: http://www.w3.org/TR/wsdl (Accessed August 31st, 2007).

[49] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire,
D. Snelling, and S. Tuecke. From Open Grid Services Infrastructure to
WS-Resource Framework: refactoring & evolution, version 1.1, 2004.

[50] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin,
D. Snelling, S. Tuecke, and W. Vambenepe. The WS-Resource Frame-
work. version 1.0, May 2004.

[51] A. Djaoui, S. Parastatidis, and A. Mani. Open grid service infrastruc-
ture primer. Technical report, Global Grid Forum, Aug. 2004. Avail-
able online at: http://www.ggf.org/documents/GWD-I-E/GFD-I.031.pdf

(Accessed August 31st, 2007).

[52] R. Fielding, U. Irvine, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-
Lee. RFC-2068: Hypertext Transfer Protocol - HTTP/1.1, Jan.
1997. Available online at: http://www.w3.org/Protocols/rfc2068/

rfc2068 (Accessed August 31st, 2007).

[53] I. Foster, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, H. Kishimoto,
F. Maciel, A. Savva, F. Siebenlist, R. Subramaniam, J. Treadwell, and
J. V. Reich. The Open Grid Services Architecture. version 1.0, July
2004.

[54] I. Foster, K. Czajkowski, D. F. Ferguson, J. Frey, S. Graham,
T. Maguire, D. Snelling, and S. Tuecke. Modeling and managing state
in distributed systems: the role of OGSI and WSRF. Proceedings of the
IEEE, 93(3):604–612, 2005.

[55] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski,
D. Ferguson, F. Leymann, M. Nally, I. Sedukhin, D. Snelling,
T. Storey, W. Vambenepe, and S. Weerawarana. Modeling
stateful resources with Web services), Mar. 2004. Available
online at: http://www.ibm.com/developerworks/library/ws-resource/

ws-modelingresources.pdf (Accessed August 31st, 2007).

[56] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1999.

[57] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for
distributed system integration. Computer, 35(6):37–46, 2002.

[58] J. Frey, S. Graham, K. Crajkowski, D. Ferguson, I. Foster, F. Ley-
mann, T. Maguire, N. Nagaratnam, M. Nally, T. Storey, I. Se-
dukhin, D. Snelling, S. Tuecke, W. Vambenepe, and S. Weerawarana.

Grid computing and Web services 57

Web Services Resource Lifetime (WS-ResourceLifetime). version 1.1,
May 2004. Available online at: http://www.ibm.com/developerworks/

library/ws-resource/ws-resourcelifetime.pdf (Accessed August 31st,
2007).

[59] S. Graham, K. Crajkowski, D. Ferguson, I. Foster, J. Frey, F. Ley-
mann, T. Maguire, N. Nagaratnam, M. Nally, T. Storey, I. Se-
dukhin, D. Snelling, S. Tuecke, W. Vambenepe, and S. Weer-
awarana. Web Services Resource Properties (WS-ResourceProperties).
version 1.1, May 2003. Available online at: http://www.ibm.com/

developerworks/library/ws-resource/ws-resourceproperties.pdf (Ac-
cessed August 31st, 2007).

[60] S. Graham, D. Hull, and B. Muray. Web Services Base Notification
1.3 (WS-BaseNotification), Oct. 2006. Available online at: http://www.

oasis-open.org/committees/wsn (Accessed August 31st, 2007).

[61] S. Graham, T. Maguire, J. Frey, N. Nagaratnam, I. Se-
dukhin, D. Snelling, K. Crajkowski, S. Tuecke, and W. Vam-
benepe. Web Services Resource Service Group - Specifica-
tion (WS-ServiceGroup). version 1.0, Mar. 2004. Available
online at: http://www.ibm.com/developerworks/library/ws-resource/

ws-servicegroup.pdf (Accessed August 31st, 2007).

[62] S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagarat-
nam, J. Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D. Snelling,
S. Tuecke, W. Vambenepe, and B. Weihl. Web Services Base No-
tification (WS-Base Notification). version 1.0, May 2004. Available
online at: ftp://www6.software.ibm.com/software/developer/library/

ws-notification/WS-BaseN.pdf (Accessed August 31st, 2007).

[63] S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagaratnam,
J. Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D. Snelling, S. Tuecke,
W. Vambenepe, and B. Weihl. Web Services Brokered Notifica-
tion (WS-BrokeredNotification). version 1.0, May 2004. Available
online at: ftp://www6.software.ibm.com/software/developer/library/

ws-notification/WS-BrokeredN.pdf (Accessed August 31st, 2007).

[64] S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagaratnam,
J. Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D. Snelling, S. Tuecke,
W. Vambenepe, and B. Weihl. Web Services Topics (WS-Topics). ver-
sion 1.0, May 2004. Available online at: ftp://www6.software.ibm.com/

software/developer/library/ws-notification/WS-Topics.pdf (Accessed
August 31st, 2007).

[65] A. Grimshaw and S. Tuecke. Grid services extend web services. Web
Services Journal, 3(8):22–26, 2003.

58 Grid Resource Management

[66] X. S. W. Group. XML Schema: Primer, 2001. Available online at:
http://www.w3.org/TR/xmlschema-0/ (Accessed August 31st, 2007).

[67] I. S. G. Heather Kreger. Web Services Conceptual Architecture (WSCA
1.0), May 2001. Available online at: http://www.cs.uoi.gr/~zarras/

mdw-ws/WebServicesConceptualArchitectu2.pdf (Accessed August 31st,
2007).

[68] T. Imamura, B. Dillaway, and E. Simon. Xml encryption syntax and
processing, Dec. 2002. Available online at: http://www.w3.org/TR/

xmlenc-core/ (Accessed August 31st, 2007).

[69] J. Joseph, M. Ernest, and C. Fellenstein. Evolution of grid computing ar-
chitecture and grid adoption models. IBM Systems Journal, 43(4):624–
645, 2004.

[70] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo. Web Ser-
vices Security: SOAP Message Security 1.0 (WS-Security 2004), Mar.
2004. Available online at: http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-soap-message-security-1.0.pdf (Accessed August
31st, 2007).

[71] E. Ort. Service-Oriented Architecture and Web services: Concepts,
technologies, and tools, Apr. 2005.

[72] M. P. Papazoglou and J.-J. Dubray. A survey of web service technolo-
gies. Technical report, Department of Information and Communication
Technology, University of Trento, 38050 Povo - Trento, Italy, Via Som-
marive 14, June 2004.

[73] J. Pathak. Should we compare web and grid services? Available on-
line at: http://wscc.info/p51561/files/paper63.pdf (Accessed August
31st, 2007).

[74] J. Postel and J. Reynolds. RFC-959: File Transfer Protocol (FTP),
Oct. 1985. Available online at: http://www.w3.org/Protocols/rfc959/

(Accessed August 31st, 2007).

[75] J. B. Postel. RFC-821: Simple Mail Transfer Protocol (SMTP), Aug.
1982. Available online at: http://rfc.sunsite.dk/rfc/rfc821.html (Ac-
cessed August 31st, 2007).

[76] K. Rhodes. XML-RPC vs. SOAP. Available online at: http://

weblog.masukomi.org/writings/xml-rpc_vs_soap.htm (Accessed August
31st, 2007).

[77] A. Skonnard. Understanding WSDL. Available online at: http://

msdn2.microsoft.com/en-us/library/ms996486.aspx (Accessed August
31st, 2007).

Grid computing and Web services 59

[78] L. Srinivasan and J. Treadwell. An overview of Service-Oriented Archi-
tecture, Web services and grid computing, Nov. 2005.

[79] A. TAN. Understanding the SOAP protocol and the methods of trans-
ferring binary data.

[80] S. Tuecke, K. Crajkowski, J. Frey, I. Foster, S. Graham, T. Maguire,
I. Sedukhin, D. Snelling, and W. Vambenepe. Web Services
Base Faults (WS-BaseFaults). version 1.0, Mar. 2004. Available
online at: http://www.ibm.com/developerworks/library/ws-resource/

ws-basefaults.pdf (Accessed August 31st, 2007).

[81] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kessel-
man. Grid service specification, 2002.

[82] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman,
T. Maguire, T. Sandholm, D. Snelling, and P. Vanderbilt. Open Grid
Services Infrastructure (OGSI). version 1.0, July 2003.

[83] W3C. SOAP version 1.2 part 0: Primer. W3C recommendation, June
2003. Available online at: http://www.w3.org/TR/soap/ (Accessed Au-
gust 31st, 2007).

[84] W. W. W. C. (W3C). Web services architecture. W3C working group
note 11, Feb. 2004. Available online at: http://www.w3.org/TR/ws-arch

(Accessed August 31st, 2007).

[85] W. W. W. C. (W3C). Web Service Description Language (WSDL) ver-
sion 2.0 part 1: Core language. W3C working draft, May 2007. Available
online at: http://www.w3.org/TR/wsdl20/ (Accessed August 31st, 2007).

[86] D. Winer. XML-RPC Specification, June 1999. Available online at:
http://www.xmlrpc.com/spec (Accessed August 31st, 2007).

Chapter 3

Data management in grid
environments

3.1 Introduction

Grid technology enables access and sharing of computing and data resources
across distributed sites. However, the grid is also a complex environment
which is composed of various and heterogeneous machines. The goal of grid
computing is to provide transparent access to resources in such a way that the
impact on applications is minimized from internal management mechanism of
the grid.

This transparency feature must be applied to access and to manage data for
the execution of data-intensive applications in the grid. The emphasis lies on
providing common interfaces between existing data storage systems in order
to make them work seamlessly. This will not only liberate novice grid users
(e.g., scientists) from data access-related issues so they may concentrate on
the problems in their fields but also limit the change of interfaces between
existing applications. A uniform Application Programming Interface (API)
for managing and accessing data in distributed systems is needed. As a result,
it is necessary to develop middleware that automates the management of data
located in distributed data sources in grid environments.

3.2 The scientific challenges

In recent years, the data requirements for scientific applications have been
growing dramatically in both volume and scale. Much scientific research is
now data intensive. Today, information technology must cope with an ever-
increasing amount of data. In the past the amount of data generated by com-
puter simulations was usually limited by the available computational tech-
nology. The increase in archival storage was comparable to the increase in
computational capability. In 1999 this view is no longer correct. What has
changed is the fact that we will have to deal increasingly with experimental

61

62 Grid Resource Management

data, which are generated from new technologies such as high-energy physics,
climate modeling, earthquake engineering, bioinformatics, and astronomy. In
these domains, the volume of data for an average scientific application which
was measured in terabytes has been rising to petabytes in just a couple of
years. These data requirements continue to increase rapidly each year and
they are expected to reach to the exabyte scale within the next decade. There
are many examples that illustrate the spectacular growth of data requirements
for scientific applications.

High energy physics The most cited example of massive data genera-
tion in the field of high-energy physics is the Large Hadron Collider (LHC)
- the world’s most powerful particle accelerator at CERN, the European Or-
ganization for Nuclear Research. Four High Energy Physics (HEP) experi-
ments, which consist of ALICE, ATLAS, CMS and LHCb, will produce sev-
eral petabytes (PB) of raw and derived data per year over a lifetime of 15 to
20 years. For example, the CMS will produce 109 events per seconds (1GHz).
It will require fast access to approximately 1 exabyte of data, which is accu-
mulated after the first 5 to 8 years of detector operation. These data will be
accessed from different centers around the world through very heterogeneous
computational resources.

The raw data are generated at a single location (CERN) where the accel-
erator and experiments are hosted, but the computational capacity required
to analyze them implies that the analysis must be performed at geographi-
cally distributed centers. In practice, CERN’s experiments are collaborations
among thousands of physicists from about 300 universities and institutes in 50
countries, so the experiment’s data are not only stored centrally and locally
at CERN but located at worldwide distributed sites, called Regional Centers
(RCs). It means that generated data need to be shared among the different
user communities distributed at many sites world-wide. The computing model
of a typical experiment is shown in Figure 3.1. These resources are organized
into a hierarchical multi-tier grid structure. Users should have transparent
and efficient access to the data, irrespective of their location. Hence, special
efforts for data management and data storage are required.

These RCs are part of the distributed computing model and should com-
plement the functionality of the CERN center. The aim is to decentralize the
computing power and data storage in these RCs in order to allow physicists
to do their analysis work outside of CERN with a reasonable response time
rather than accessing all the data at CERN. This should also help scientists
spread around the world to collaboratively work on the same data. RCs will
be set up in different places around the globe.

In the HEP community, the produced data can be distinguished as raw data
generated by the detector, reconstructed physics data and tag summary data.
The amount of raw data produced per year will be about 1 PB. The amount of
reconstructed data will be around 500 terabyte (TB) per year. The experiment

Data management in grid environments 63

CERN

data store

computing
 facilities

data store

computing
 facilities

data store

computing
 facilities

data store

computing
 facilities

data store

computing
 facilities

data store

computing
 facilities

data store

computing
 facilities

Regional
Centre (RC) 1 RC 2 RC 3

University

University
University

FIGURE 3.1: Example of the network of one experiment computing model.

will run for about 100 days per year, therefore roughly 5 TB of reconstructed
data will be produced per day. The amount of reconstructed data to be
transferred to a single RC is 200 TB per year. This mass of data will be stored
and managed across multiple RCs through the LHC Computing Grid (LCG)
project. Since the consumers of raw data and reconstructed physics data are
distributed at many RCs worldwide, data need to be transferred efficiently
between CERN and RCs. Hence, it is essential for the success of the HEP
grid to have the high performance networks that should be able to transfer
a massive amount of data on demand. It is also desirable to make copies or
replicas of the data being analyzed to minimize access time and network load.
Future particle accelerators like the proposed International Linear Collider
(ILC) are likely to have even more intensive data requirements.

Climate modeling Another example of the growth of data requirements
for scientific applications is climate model computations [120]. Climate mod-
eling requires long-duration simulations and generates very large files that
are needed to analyze the simulated climate. The goal is to take a statis-
tical ensemble mean of the simulation results in suppressing the growth of
errors included in the initial observational data and those generated during
the simulation. The computations execute hundreds to thousands of sample
simulations while introducing perturbation for each simulation. The result of
each sample simulation is gathered and included in an average to generate the
final statistical result.

As the complexity and size of the simulations grow, the volume of generated
model output threatens to outpace the storage capacity of current archival

64 Grid Resource Management

systems and transfering it across distributed sites faces challenges. As an
example, a high-resolution computational ocean model running on computers
with peak speeds in the 100-gigaflop range can generate a dozen multi-gigabyte
files in a few hours at an average rate of about 2 MB/second. Computing a
century of simulated time takes more than a month to complete and produces
about 10 TB of archival output. Archival systems capable of storing hundreds
of terabytes are required to support calculations of this scale. Moving to one-
teraflop systems and beyond requires petabyte archival systems.

Earth observation An example in the field of earth science, the Earth
Observing System (EOS) is a program of NASA including a series of ar-
tificial satellite missions and scientific instruments in Earth orbit designed
for long-term global observations of the land surface, biosphere, atmosphere,
and oceans of the Earth. Sensed data about the Earth captured by various
NASA and non-NASA satellites are transferred to various archives. Then,
the archives extract calibrated and validated geophysical parameters from the
raw data. For this purpose, NASA developed eight Distributed Active Archive
Centers (DAACs), which are intended to hold and distribute long-term Earth
observation data from the EOS. The DAACs are a significant component of
the Earth Observing System Data and Information System (EOSDIS). Since
raw data in the EOSDIS DAACs contain little scientific interest, they are
carefully transformed into calibrated and validated data.

Calibration, validation and production of customized data require signif-
icant resources. The DAACs currently have about 3 to 4 PB of data and
provide data to more than 100,000 customers per year. They distribute many
TB per week spread around the world according to user orders through a
website (more than two million distinct IP addresses accessed the web in-
terfaces of the EOSDIS data centers in 2004). Currently, the ordered data
products from DAACs are delivered via an FTP (file transfer protocol) site
or via media. FTP is chosen for transfer if the order is small (less than a
few gigabytes). Tape or CD-ROM delivered via the postal service is used for
larger data orders.

Bioinformatic Genomics require programs such as genome sequencing
projects, which are producing huge amounts of data. The analysis of these
raw biological data requires very large computing resources. Bioinformatics
involves the integration of computers, software tools, and databases in an
effort to address these biological applications. Genome sequences provide co-
pious information about species from microorganisms to human beings. The
analysis and comparison of genome sequences are necessary for the inves-
tigation of genome structures which is useful for the predictions about the
functions and activities of organisms.

As an example, in applications such as design of new drugs, large databases
are required for extensive comparison and analyses of genome sequences. As

Data management in grid environments 65

the rate of complete genome sequencing is continually increasing, genome
comparison and analysis have become data intensive tasks. There is a growing
need for capacity storage and effective transfer of genome data.

Astronomy Another example of data intensive applications in the astron-
omy field is the Sloan Digital Sky Survey (SDSS) [106], which aims to map
in detail one quarter of the entire sky and determines positions and absolute
brightness of more than 100 million celestial objects. It will also measure the
distances to more than a million galaxies.

Astronomical applications are performed in several regions of the electro-
magnetic spectrum and produce an enormous amount of data. Usually, the
map of a particular region of the sky is obtained by several groups using
different techniques to generate a two-dimensional image. These images are
manipulated so that they can be compared and overlapped. Furthermore, it is
necessary to compare images obtained in different wave-lengths. All this ma-
nipulation is made pixel by pixel and requires a considerable computational
power to construct this atlas of the firmament and to implement an online
database with the collected material. The data volume produced nowadays is
about 500TB per year in images that should be stored and made available for
all the researchers in the field. Starting in 2008, the Large Synoptic Survey
Telescope should produce more than 10PB per year.

3.3 Major data grid efforts today

3.3.1 Data grid

The “data grid” has been considered a unifying concept to describe the
new technologies offering a comprehensive solution to data intensive applica-
tions. Data grid services encapsulate the underlying network storage systems
and provide a uniform interface to applications. With these services, users
can discover, transfer, and manipulate shared datasets stored in distributed
repositories and also create and manage copies of these datasets. At least, a
data grid provides two basic functionalities: a high performance, reliable data
transfer mechanism, and a scalable replica discovery and management mech-
anism [203]. Depending on application requirements, various other services
need to be provided, such as consistency management for replicas, metadata
management. All operations in a data grid are mediated by a security layer
that handles authentication of entities and ensures conduct of only authorized
operations. Data grids are typically characterized by:

• Large-scale: They consist of many resources and users across distributed
sites.

66 Grid Resource Management

• Service oriented environment : They propose new services on top of
existing local mechanisms and interfaces in order to facilitate the coor-
dinated sharing of remote resources.

• Uniform and transparent access : They provide user applications with
transparent access to computing and data resources: computer plat-
forms, file systems, databases, collections, data types and formats, as
well as computational services. This transparency is vitally important
for sharing heterogeneous distributed resources in a manageable way.

• Single point of authentication/authorization: They provide users with
a single point of authentication/authorization to access data holdings
from distributed sites, based on user access rights, and authorize shared
access to data holdings across sites, while maintaining strict levels of
privacy and security, auditing mechanisms may be also available.

• Consistency of replicas: They can seamlessly create data replicas and
maintain their consistency, to ensure quality of service, including fault
tolerance, disaster recovery and load balancing.

The world of grid computing is continuously growing, more concretely many
new data grid projects are founded in an increasing rate. These projects have
been initiated by the near-term needs of scientific experiments in various dif-
ferent fields and have led to collaborations between scientific communities
and computer communities. This collaboration allows scientists from var-
ious disciplines partnering with computer scientists to develop and exploit
production-scale data grids. Table 3.1 contains a list of some of the major
data grid projects, which are described in this section. This list is not ex-
haustive. The projects have been chosen based on several attributes that
are relevant to the development of the projects, such as domains, application
environment and tools, project status, etc.

3.3.2 American data grid projects

3.3.2.1 GriPhyN

The Grid Physics Network (GriPhyN) project [99] funded by the National
Science Foundation (NSF) develops one of the most advanced concepts for
data management in various physics experiments. While the short term goal
is to combine the data from the CMS and ATLAS experiments at the LHC
(Large Hadron Collider), LIGO (Laser Interferometer Gravitational Observa-
tory) and SDSS (Sloan Digital Sky Survey), the long-term goal of this project
is to deploy petabyte-scale computational environments based on technologies
and experience from developing GriPhyN to meet the data intensive needs of
a community of thousands of scientists spread across the globe.

Data management in grid environments 67

Table 3.1: List of data grid projects summarized in this section.
Name Domains Country Remarks
GriPhyN [NSF,
2000-2005]

High energy
physics

United
States

To deploy PB-scale computa-
tional environments to meet the
data-intensive needs of a com-
munity of thousands of scientists
spread across the globe.

PPDG [DOE,
1999]

High energy
physics

United
States

Having close collaboration with
the GriPhyN and the CERN
DataGrid with the long-term
goal of forming a Petascale
Virtual-Data Grid.

iVDGL [NSF,
2001-2006]

High energy
physics

United
States

To construct computational and
storage infrastructure based on
heterogeneous computing and
storage resources from the US,
Europe, Asia, Australia and
South America via high-speed
networks.

TeraGrid [NSF,
2001]

High energy
physics,
biology

United
States

To create the grid infrastructure
that interconnects some of the
US’s fastest supercomputers.

DataGrid [Eu-
ropean Union,
2001-2004]

High energy
physics,
earth
science and
biology

Europe To create a grid infrastructure to
provide online access to data on
a petabyte scale.

DataTAG
[European
Commission,
2002-2004]

Network Europe and
the United
States

To provide a global high per-
formance intercontinental grid
testbed based on a high speed
transatlantic link connecting ex-
isting high-speed GRID testbeds
in Europe and the US.

CrossGrid [Eu-
ropean Union,
2002]

High-energy
physics,
biomedical
and earth
science

Europe To extend a grid environment
across European countries and
to new application areas.

GridPP
[PPARC, 2002]

High energy
physics

United
Kingdom

To create computational and
storage infrastructure for parti-
cle physics in the UK.

Network
GÉANT
[European
Commission,
2000]

Network Europe To develop the GÉANT network
- a multi-gigabit pan-European
data communications network,
reserved specifically for research
and education use.

EGEE [Euro-
pean Union,
2004-2005]

High energy
physics,
biomedical
sciences

Europe To create a seamless common
grid infrastructure to support
scientific research.

LHC Comput-
ing Grid project
[Industry and
CERN, 2005]

High energy
physics

Europe To create and maintain data
movement and analysis infras-
tructure for the users of LHC.

68 Grid Resource Management

ATLAS, CMS, LIGO, SDSS, etc.,
Petascale Virtual Data Grids

other resources
Computer, network, storage, and

Use to implement specific
application−level capabilities

Provides client access to, integrates
to enhance application−level capabilities

Encapsulates, discovers/publishes/
enhances capability of, manages

Tools

Fabric

Services

Applications

monitoring, curation, etc.,
Planning, estimation, execution,

Archive, cache, transport, agent,
catalog, security, policy, etc.,

FIGURE 3.2: Architecture of the Virtual Data Toolkit.

Clients and domains GriPhyN is a collaboration of both experimental
physicists and information technology researchers.

Application environment and tools GriPhyN focuses on realizing the
concepts of Virtual Data, which involve in developing new methods to cat-
alog, characterize, validate, and archive software components to implement
virtual data manipulations. Moreover, Virtual Data aims to provide a virtual
space of data products derived from experimental data, in which requests
for data products are transparently mapped into computation and/or data
access operations across multiple grid computing and data locations. To ad-
dress this challenge, GriPhyN implements a grid software distribution Virtual
Data Toolkit (VDT), which consists of a set of virtual data services and tools
to support a wide range of virtual data grid applications.

Figure 3.2 presents the multi-tier architecture of VDT. Applications and
data grids are built based on virtual data tools, which rely on a variety of
virtual data services. These services encapsulate the low-level details of hard-
ware fabric used by the data grid. The virtual tools and virtual services can
integrate components developed in existing grid middlewares (e.g., Condor,
MCAT/SRB, Globus toolkit, etc.) to fulfill a specific functionality such as
parallel I/O, high-speed data movement, authentication and authorization.

3.3.2.2 Particle Physics Data Grid (PPDG)

The Particle Physics Data Grid (PPDG) created in 1999 [104] is a collabora-
tion between computer scientists and physicists among universities to develop,
evaluate and deliver distributed data access and management infrastructures
for large particle and nuclear physics experiments.

Data management in grid environments 69

Clients and domains The PPDG project [104] takes a major role in the
international coordination of grid projects relevant to high-energy and nuclear
physics fields. Especially, it has very close collaboration with the GriPhyN
and the CERN DataGrid with the long-term goal of combining these efforts to
form a Petascale Virtual-Data Grid. PPDG proposes novel mechanisms and
policies including the vertical integration of grid middleware with experiment-
specific applications and computing resources to form effective end-to-end
capabilities.

Application environment and tools The PPDG has adopted the Virtual
Data Toolkit (VDT), which was initially developed by GriPhyN and supported
by iVDGL-like software packaging and distribution mechanism of the common
grid middleware. The VDT is also used as the underlying middleware for
the European physics-focused grid projects including the Enabling Grids for
EsciencE (EGEE) and Worldwide LHC Computing Grid.

The PPDG aims to provide a data transfer solution with additional func-
tionalities for file replication, file caching, pre-staging, and status checking
of file transfer requests. These capabilities are constructed on the existing
functionalities of the SRB, Globus, and the US LBNL HPSS Resource Man-
ager (HRM). Security is provided through existing grid technologies such as
GridFTP and Grid Security Infrastructure (used by SRB).

Project status The project is currently ongoing with funds approved by
SciDAC. In 2005, PPDG joined with the NSF-funded iVDGL, US LHC Com-
puting Grid project, DOE Laboratory facility and other groups to build, oper-
ate and extend their systems and applications on the production Open Science
Grid.

3.3.2.3 International Virtual Data Grid Laboratory (iVDGL)

The International Virtual Data Grid Laboratory (iVDGL), which was for-
med in 2001 is constructed on heterogeneous computing and storage resources
from the U.S., Europe, Asia, Australia and South America via high-speed
networks. The iVDGL enables the international collaborations for interdisci-
plinary experimentation in grid-enabled data intensive scientific computing.
More concretely, laboratory users will be able to realize scientific experiments
from various projects such as gravitational wave searches projects (e.g., Laser
Interferometer Gravitational-wave Observatory - LIGO), high energy physics
projects (e.g., the ATLAS and CMS detectors at the Large Hardon Collider -
LHC at CERN), digital astronomy projects (e.g., the Sloan Digital Sky Survey
- SDSS), and the U.S. National Virtual Observatory (NVO).

3.3.2.4 TeraGrid

The TeraGrid [108] is a large project launched by NSF in August 2001. Ter-
aGrid refers to the infrastructure that interconnects some of the US’s fastest

70 Grid Resource Management

supercomputers with high-speed storage systems and visualization equipment
at geographically dispersed locations.

Clients and domains The primary goal of the TeraGrid project is to pro-
vide a grid infrastructure with an unprecedented increase in the computa-
tional capabilities both in terms of capacity and functionality dedicated to
open scientific research. TeraGrid aims to deploy a distributed “system” using
grid technologies allowing users to map applications across the computational,
storage, visualization, and other resources as an integrated environment.

TeraGrid envisions the following projects to use their grid computing re-
sources:

• The MIMD Lattice Computation (MILC) collaboration

• NAMD - simulation of large biomolecular systems

Application environment and tools TeraGrid utilizes the middleware of
the NSF Middleware Initiative (NMI), which is based on the Globus toolkit.
TeraGrid has support for MPI, BLAS and VTK.

Job submission and scheduling TeraGrid uses GT’s GRAM for job sub-
mission and scheduling.

Security GSI is used for authentication.

Resource management TeraGrid utilizes Condor for job queuing, schedul-
ing, and for resource monitoring.

Data management TeraGrid employs SRM for storage allocation, Globus’
Global Access to Secondary Storage (GASS) for simplification of data access
and GridFTP for data transfer.

Fabric The project is constructed through a combination of several stages
within the NSF TeraScale initiative. In 2000, NSF funded the TeraScale Com-
puting System (TCS-1) at the Pittsburgh Supercomputer Center, resulting in
a six teraflop computational resource. Then, in 2001, NSF funded the Dis-
tributed Terascale Facility (DTF), which is in the process of creating a fifteen
teraflop computational grid composed of major resources at Argonne National
Laboratory (ANL, managed by the University of Chicago), the California In-
stitute of Technology (Caltech), the National Center for Supercomputing Ap-
plications (NCSA), and the San Diego Supercomputer Center (SDSC). The
DTF grid deployed exclusively Intel’s Itanium processor-based clusters dis-
tributed across the four sites. In 2002, NSF initiated the Extensible Terascale

Data management in grid environments 71

Facility (ETF) that combines TSC-1 and DTF resources into a single 21-
teraflops grid and supports heterogeneity among computational resources.

Beginning initially with four large-scale, Itanium-based Linux clusters at
ANL, Caltech, NCSA, and SDSC, the TeraGrid achieved its first full-scale
deployment in 2004. There are currently eight sites providing services to the
network: SDSC, NCSA, ANL, PSC, Indiana University, Perdue University,
Oakridge National Laboratory, and the Texas Advanced Computing Center
(TACC). Among these sites, there are 16 computational systems providing
more than 42 teraflops of computing power, and online storage systems offer-
ing over a petabyte of disk space via a wide area implementation of IBM’s
General Parallel File System (GPFS). There are also 12 PB of archival stor-
age and a number of databases, such as the Nexrad Precipitation database at
TACC, as well as science instruments and visualization facilities, such as the
Quadrics Linux cluster at PSC.

3.3.3 European data grid projects

3.3.3.1 European Data Grid

The European Data Grid (EDG) project [95] funded by the European Com-
mission was started in 2001 to join several national initiatives across the con-
tinent and in US.

Clients and domains The principal objectives of the project are to develop
the software to provide basic grid functionality and associated management
tools for a large scale testbed for demonstration projects in three specific areas
of science including high-energy physics (HEP), earth observation and biology.

The DataGrid project focuses initially on the needs for capability of sim-
ulation and analysis of a large volume of data for each of the Large Hadron
Collider experiments (ATLAS, CMS and LHCb). Recently, Earth observa-
tion science (e.g., satellite images) and the biosciences, principally genome
data access and analysis, began receiving attention somewhat after HEP.

The DataGrid project is led by CERN together with five other main part-
ners and fifteen associated partners. Apart from CERN, the main partners in
the HEP part of the project are Italy’s Istituto Nazionale di Fisica Nucleare
(INFN), France’s Centre National de la Recherche Scientifique (CNRS), UK’s
Particle Physics and Astronomy Research Council (PPARC), and the Dutch
National Institute for Nuclear Physics and High Energy Physics (NIKHEF).
The European Space Agency has taken the lead in the Earth Observation
task and KNMI (Netherlands) is leading the biology and medicine tasks. In
addition to the major partners, there are associated partners from the Czech
Republic, Finland, Germany, Hungary, Spain and Sweden. A relatively re-
cent important development is the establishment of formal collaboration with
some of the US grid projects (e.g., GriPhyN and PPDG projects).

72 Grid Resource Management

Medium Level Services

High Level Services

Core Services

Replica Manager Access Pattern Manager

Data Mover

Data LocatorData Accessor

Storage Manager Meta Data Manager

Management System
Other Mass StorageLocal File SystemHPSS

Secure Region

Query Optimization &

FIGURE 3.3: European DataGrid Data Management architecture.

Application environment and tools Figure 3.3 shows the Data Manage-
ment architecture proposed for the European DataGrid. The Replica Man-
ager manages files and meta data copies in a distributed and hierarchical
cache with a specific replication policy. It further uses the Data Mover to
accomplish its tasks. The Data Mover takes care of transferring files from
one storage system to another one. To implement its functionality, it uses the
Data Accessor and the Data Locator , which map location-independent iden-
tifiers to location-dependent identifiers. The Data Accessor is an interface
encapsulating the details of the local file system and mass storage systems
such as Castor, HPSS and others. The Data Locator makes use of the generic
Meta Data Manager , which is responsible for efficient publishing and manage-
ment of a distributed and hierarchical set of associations between meta data
and its data. Query Optimization and Access Pattern Management ensure
that for a given query an optimal migration and replication execution plan
is produced. Such plans are generated on the basis of published meta data
including dynamic logging information. All components provide appropriate
security mechanisms that transparently span worldwide independent organi-
zational institutions. The granularity of access is both on the file level as well
as on the data set level. A data set is seen as a set of logically related files.

Fabric The work is divided into twelve work packages: Grid Workload
Management (WP1), Grid Data Management (WP2), Grid Monitoring Ser-
vices (WP3), Fabric Management (WP4), Mass Storage Management (WP5),
Integration Testbed (WP6), Network Services (WP7), HEP Applications
(WP8), Earth Observation Science Applications (WP9), Biology Applications
(WP10), Dissemination (WP11), Project Management (WP12).

The first five of these packages will each develop specific well-defined parts
of the grid middleware. The Testbed & Network (WP6, WP7) activities will

Data management in grid environments 73

integrate the middleware into a production quality infrastructure linking sev-
eral major laboratories spread across Europe, providing a large scale testbed
for scientific applications. The others are related to applications in earth
science, satellite remote sensing and biology.

3.3.3.2 DataTAG

The DataTAG project [92] complements EDG by providing a global high
performance intercontinental grid testbed based on a high speed transatlantic
link connecting existing high-speed GRID testbeds in Europe and USA. The
DataTAG established new records in long-distance data transfers via interna-
tional networks. Then, this project was superseded by the Enabling Grids for
E-science project (Section 3.3.3.4), which has constructed production-quality
infrastructure and built the largest multi-science grid in the world, with over
200 sites.

Clients and domains The DataTAG testbed focuses upon advanced net-
working issues and inter-operability between the intercontinental grid do-
mains, hence extending the capabilities of each and enhancing the worldwide
program of grid development.

Application environment and tools The DataTAG project has many
innovative components in the area of high performance transport, Quality of
Service (QoS), advance bandwidth reservation, EU-US Grid inter-operability
and new tools for easing the management of Virtual Organizations such as
the Virtual Organization Membership Server (VOMS) and grid monitoring
(GridICE). Together with DataGrid and the LHC Computing Grid (LCG)
project, the software of the CERN LHC experiments ALICE, ATLAS CMS
and LHCb has been adapted to the grid environment.

3.3.3.3 European Research Network GÉANT

The GÉANT project [97] launched in November 2000 was a collaboration
between 26 National Research and Education Networks (NRENs) representing
30 countries across Europe, the European Commission, and DANTE. DANTE
is the project’s coordinating partner.

Clients and domains The project’s principal purpose was to develop the
GÉANT network - a multi-gigabit pan-European data communications net-
work, reserved specifically for research and education use. This network is
based on the previous TEN-155 pan-European research network. The project
also covered a number of other activities relating to research networking.
These included network testing, development of new technologies and sup-
port for some research projects with specific networking requirements.

74 Grid Resource Management

Application environment and tools In addition to the development of
the GÉANT network, the project also covers a number of other activities
relating to research networking. These include network testing, development
of new technologies and support for other related projects.

Fabric Currently, GÉANT network has 12Gbps connectivity to North
America, and 2.5Gbps to Japan. Additional connections to GÉANT have
been established to the Southern Mediterranean through the EUMEDCON-
NECT project. Work is also underway to establish additional connections
to GÉANT for NRENs from other world regions, including Latin America
(through ALICE) and the Asia-Pacific region (through TEIN2).

3.3.3.4 Enabling Grids for E-science in Europe

The Enabling Grids for E-science in Europe (EGEE) project [94] launched
in April 2004 is a European Grid project that aims to provide computing
resources to European academia and industries. Working areas include the
implementation of a European grid infrastructure, development and mainte-
nance of grid middleware and training and support of grid users. Many of its
activities are based on experiences from the EDG project (Section 3.3.3.1).

Clients and domains EGEE aims to provide researchers in both academia
and industries with access to major computing resources, independent of their
geographic location. The main applications for EGEE are the LHC experi-
ments. EGEE has chosen as pilot projects LCG and Biomedical Grids.

Application environment and tools The middleware integrates middle-
ware from the VDT, the EDG and the AliEN project.

Fabric The infrastructure of the EGEE computation grid is built on the
EU Research Network GÉANT and national research and education networks
across Europe. The amount of CPUs has grown from 3000 CPUs at the
beginning of the project to over 8000 by the end of the second year.

3.3.3.5 LHC Computing Grid project

The LHC Computing Grid (LCG) project [101] is building and maintaining
a grid infrastructure for the high energy physics community in Europe, USA
and Asia. The main purpose of the LCG is to handle the massive amounts of
data produced from the LHC (Large Hadron Collider) experiments at CERN.

Clients and domains The main applications for LCG are high energy
physics, biotechnology and other applications that EGEE brings in. The
main application is the gathering of data from the LHC experiments ATLAS,
CMS, Alice and LHCb.

Data management in grid environments 75

Fabric The amount of computers the centers participating in the LCG
project have to manage is so massive that manual maintenance of the in-
stalled software of these computers is too labor intensive. Also, with such
a number of components, the failure of one component should automatically
be overridden and not affect the overall operability of the system. The LCG
project has designed fabric management software, which automates some of
these tasks.

3.3.3.6 CrossGrid

The CrossGrid project [88] formed in 2002 aims to extend a grid environ-
ment across European countries and to new application areas.

Clients and domains The CrossGrid project aims to develop, implement
and exploit new grid components for interactive compute-intensive and data-
intensive applications, including simulation and visualization of surgical pro-
cedures, flooding simulations, team decision support systems, distributed data
analysis in high-energy physics, air pollution and weather forecasting. The
project, with partners from eleven European countries, will also install grid
testbeds in a user-friendly environment to evaluate and validate the elaborated
methodology, generic application architecture, programming environment and
new grid services. The Cross Grid is closely working with the Grid Forum
and the EU DataGrid project to profit from their results and experience, and
to obtain full inter-operability. This collaboration intends to extend the grid
across eleven European countries.

Application environment and tools The CrossGrid project plans to
build a software grid toolkit, which will include tools for scheduling and mon-
itoring resources.

3.3.3.7 GridPP

The GridPP project is developing a computing grid for particle physics, in
a collaboration with particle physicists and computer scientists from the UK
and CERN.

Clients and domains GridPP grid is intended for applications in particle
physics. More concretely, it focuses on creating a prototype grid involving
four main areas: (i) support for the CERN LHC Computing Grid (LCG), (ii)
middleware development as part of the European DataGrid (EDG), (iii) the
development of particle physics applications for the LHC and US experiments,
and (iv) the construction of grid infrastructure in the UK.

Application environment and tools GridPP contributes to middleware
development in a number of areas, mainly through the EGEE project [119].

76 Grid Resource Management

An interface to the APEL accounting system (Accounting Processor for Event
Logs: an implementation of grid accounting which parses log files to extract
and then publish job information) has also been provided and is being tested.
The development of the R-GMA monitoring system has continued, with im-
provements to the stability of the code and robustness of the system deployed
on the production grid. A major re-factored release of R-GMA was made for
gLite-1.5. Similarly, GridSite was updated where it provides containerized
services for hosting VO (Virtual Organization) boxes (machines specific to in-
dividual virtual organizations that run VO-specific services such as data man-
agement: an approach which, in principle, is a security concern) and support
for hybrid HTTPS/HTTP file transfers (referred to as “GridHTTP”) to the
htcp tool used by EGEE. GridSiteWiki has been developed, which allows Grid
Certificate access to a wiki, preventing unauthorized access, and which is in
regular use by GridPP. The cornerstone of establishing a grid is a well-defined
security policy and its implementation: GridPP leads the development of that
security policy within EGEE, having identified 63 vulnerability issues at the
end of 2005. Monitoring and enhancements of the networking, workload man-
agement system (WMS) and data management systems have been performed
in response to deployment requirements, with various tools developed (e.g.,
GridMon for network performance monitoring), Sun Grid Engine integration
for the WMS, and MonAMI, a low-level monitoring daemon integrated with
various data management systems.

3.4 Data management challenges in grid environments

While the challenges on the computing side are already quite tremendous,
supercomputer centers must also cope with an ever-increasing amount of data
with the emergence of data intensive applications. This engenders access and
movement of very large data collections among geographically distributed
sites. These collections consist of raw and refined data ranging in size from
terabytes to petabytes or more. While standard grid infrastructures provide
users with the ability to collaborate and share resources, special efforts con-
cerning data management and data storage are needed to respond to the
specific challenges raised by data intensive activities.

In this section we point out the main requirements that pose challenges for
data management in grid environments.

Data namespace organization A problem for data sharing in a hetero-
geneous storage system is data namespace organization. The reason is that
each storage system has its own mechanism for naming the resources. Re-
source naming affects other resource management functions such as resource

Data management in grid environments 77

discovery. The data management system needs to define a logical namespace
in which every data element has a unique logical filename. The logical file-
name is mapped to one or more physical filenames on various storage resources
across distributed storage systems in the grids.

Transparent access to heterogeneous data repositories One of the
fundamental problems that any data management system needs to address is
the heterogeneity of repositories where data are stored. This aspect becomes
even more challenging when data management has to be targeted in grid
environments, which spread over multivirtual organizations in a wide area
network environment. The main reason is the variety of possible storage
systems, which can be multiple disk storage systems like DPSS, distributed
file systems like AFS, NFS, or even databases. This diversity imposes the
way in which the data sets are named and accessed. For example, data are
identified through a file name in distributed file systems, or through an object
identifier in databases.

The high level applications should not need to be aware of the specific low-
level mechanisms required to access data in a particular storage system. They
should be presented with a uniform view of data and with uniform mechanisms
for accessing that data. Hence, data management systems should provide a
component service, which defines a single interface for higher level applications
to access data located in different underlying repositories. The role of this
component is to make the appropriate conversions for grid data access requests
to be executed in the underlying storage system. This component service hides
from higher layers the complexities and specific mechanisms for data access,
which are particular to each storage system.

Efficient data transfer In scientific applications, data are normally stored
at a central place. Scientists who would like to work with the data need to
make local copies of parts of the data. The job of data management systems
is to deal with large amounts of data (terabytes or petabytes) that have to be
transferred over the wide area networks. Hence, there is an essential require-
ment for efficient data transfer between sites. At present, there are already
emerging some enhanced FTP variants, such as Globus GridFTP and CERN
RFIO (Remote File I/O) for data transfers in the grids.

RFIO is developed as a component of the CERN Advanced Storage Manager
(Castor), which implements remote versions of most POSIX calls like open,
read , write, lseek and close, and several Unix commands like cp, rm, and
mkdir . RFIO provides libraries to access files on remote disks or in the Castor
namespace. GridFTP is a high-performance, secure protocol using GSI (Grid
Security Infrastructure) for authentication, and having useful features such as
TCP buffer sizing and multiple parallel streams. It is enhanced with a variety
of features to be used as a tool for higher-level application data access on the
grid.

78 Grid Resource Management

Data replication Replication can be considered as the process of managing
identical copies of data at different places in a grid environment. It is desirable
for data to be replicated at different sites to minimize access time and network
load by allowing user applications access to local cached data stores rather
than to transfer each single requested file over the wide area network to the
application. Replication is also needed for fault tolerance and this requirement
effects the “efficient data transfer” requirement above.

One of the main issues in data replication is the consistency of replicas.
Since a replica is not just a simple copy of an original but still has a logical
connection to it, it is important to maintain the consistency between repli-
cas. Data consistency depends on how frequently the data is updated and the
amount of data items covered by the update, so the consistency problem is
more complicated when updates are possible on replicas. However, the key
problem of data replication is not only the update mechanisms in order to
guarantee the consistency among the different replicas, but also related to
policies or strategies that should be applied for replica creation. The reason
is that in a grid environment it is impossible to impose a single replication
policy for every participating site. For example, system administrators can de-
cide for production requirements to distribute data according to some specific
strategies, and job schedulers may require specific data replication policies
to speed up execution of jobs. Hence, data management systems need to
provide appropriate services for various types of users (e.g., grid administra-
tors, job schedulers) to be able to replicate, maintain consistency and obtain
information about replicas.

Data security In a distributed grid environment, access to data should
obviously be controlled. The security of data being transferred over wide
area networks should be ensured. Allowing data to be exchanged without
some form of encryption makes it possible for secure data to be read as it is
transferred over public networks. Equally, data storage should be handled in
such a way that ensures that the data cannot be read by unauthorized people
or applications.

Moreover, encryption of stored data with public/private keys, using the se-
curity of the operating system, and using authentication to prevent malicious
data from being introduced must be implemented in the data management
systems for the grid environment, but should be monitored by the grid man-
ager to ensure that the data is secure at all times. Encryption keys should be
regularly updated, and solutions should be regularly tested and verified for
correct data, especially in a distributed grid environment.

Another key security issue of data management in wide area networks is
related to data caches. It is necessary to maintain the same level of security
between the participating sites. For example, the site that owns the original
data needs to ensure that the remote sites holding replicas of its data provide
the same level of security as the owner requires for their data. This becomes

Data management in grid environments 79

a critical issue when it is about sensitive data where human or intellectual
rights exist. The fact that each site may use different security architecture
makes this task more complicated.

3.5 Overview of existing solutions

Current data management solutions for the grid environment are largely
based on four approaches. In this section, we summarize the major data
management solutions in each approach.

3.5.1 Data transport mechanism

Data transport in grids can be modeled as a three-tier structure [147]:
transfer protocol as the bottom layer, overlay network as the second layer and
application-specific as the top layer. The first layer specifies the transport
protocols for data movement between two nodes in a network, such as FTP,
GridFTP. The second layer aims to provide the routing mechanism for the
data and services such as storage in the network, caching of data transfers for
better reliability, and the ability for applications to manage transfer of large
datasets. An overlay network provides a specific semantic over the transport
protocols to satisfy a particular purpose. The topmost layer provides appli-
cations with transparent access to remote data through APIs that hide the
complexity and the unreliability of the networks.

Initial efforts to manage data on the grid are based primarily on explicit
data movement methods. These methods concentrate to develop file transfer
protocols, which actually move data between machines in a grid environment,
and overlay mechanisms for distributing data resource across Data Grids.

3.5.1.1 Transfer protocols

There exist a number of protocols such as FTP, HTTP for transferring
files between different machines. However, they are not adapted for the grid.
Therefore, the lack of standard protocols for transfer and access of data in
the grid has led to a fragmented grid storage community. Users who wish to
access different storage systems are forced to use multiple protocols and/or
APIs, and it is difficult to efficiently transfer data among these different stor-
age systems. In the context of the Globus project, a common data transfer
and access protocol called GridFTP [111] that provides secure, efficient data
movement in grid environments is proposed. This protocol, which extends
the standard FTP (File Transfer Protocol) protocol, provides the extended
features in order to support data transfers in the grid. GridFTP allows using
parallel data transfer through multiple TCP streams to improve bandwidth

80 Grid Resource Management

over using a single TCP stream. It supports third-party control of transfers
between storage servers, striped data transfer, partial file transfer, etc. More-
over, GridFTP is based on Grid Security Infrastructure (GSI), which provides
a robust and flexible authentication, integrity, and confidentiality mechanism
for transferring files. UberFTP [110] is the first interactive, GridFTP client.
GSI-OpenSSH is a modified version of OpenSSH that adds support for GSI
authentication and credential forwarding (delegation), providing a single sign-
on remote login and file transfer service in the grid. Reliable File Transfer
Service (RFT) is an OGSA-based service that provides interfaces for con-
trolling and monitoring third party file transfers between FTP and GridFTP
servers.

Apart from FTP, HTTP, and GridFTP, there exist various protocols for
data transfer such as Chirp [87], Data Link Client Access Protocol (DCAP)
[124], DiskRouter [132], etc. It should be noted that some middleware, such
as [228] and [229], propose to use BitTorrent [125] as a protocol for large file
transfer in the context of desktop grids.

3.5.1.2 Overlay mechanism

The overlay mechanism approach [114], [115] for data management focuses
on optimization of data transfer and storage operations for a globally scalable,
maximally inter-operable storage network environment. This storage-enabled
network environment allows data to be placed not only in computer-center
storage systems but also within a network fabric enhanced with temporary
storage. Data transfers between two nodes can be optimized by controlling
data transfer explicitly by storing the data in a temporary buffer at intermedi-
ate nodes. Applications can manipulate these buffers so that data is moved to
locations close to where it is required. The key point to notice in this network
is that services of various kinds can be provided to data stored in transit at
the intermediate nodes. This infrastructure defines a framework with basic
storage services upon which higher level services can be created to meet user
needs. In this network, some scheduling models for data transfers can be con-
sidered to be applied in conjunction with scheduling models of computational
jobs, such as [143].

Based on an overlay mechanism approach, the IBP project [136], [113] pro-
vides a general store-and-forward overlay networking infrastructure. IBP is
modeled after the Internet Protocol. It defines a networking stack that is sim-
ilar to the OSI reference model for large-scale data management in distributed
networks. We present in the following section the networking stacks proposed
by IBP (Fig 3.4).

Internet Backplane Protocol (IBP). IBP storage servers are machines
installed with IBP server software, called depots . IBP depots allows clients
to perform remote storage operations, such as storage management, data
transfer and depot management. The lowest layer of the storage net-

Data management in grid environments 81

LoRS: The Logistical Runtime System
Aggregation tools and mothodologies

The L−bone The exNode

Resource Discovery
& Proximity queries

A data structure
for aggregation

Allocating and managing networkIBP
 storage (like a network malloc)

Physical

Local Access

Logistical File System

Applications

FIGURE 3.4: The Network Storage Stack.

working stack is the Internet Backplane Protocol (IBP), which defines a
mechanism to share storage resources across networks ranging from LAN
to WAN, and it allows applications to control the storage, data, and the
data transmission between IBP depots. From the view of clients, a de-
pot’s storage resources are a collection of append-only byte arrays. A
chief design feature of IBP is the use of capability, which is cryptograph-
ically secure byte strings generated by the IBP depot. The capabilities
are assigned by depots and they can be viewed as the handles of the byte
arrays. Capabilities provide a notion of security as the client has to use
the same capabilities to perform the subsequent operations.

Logistical Backbone (L-Bone). The L-Bone layer allows clients access
to a collection of IBP depots deployed in the Internet. The L-Bone server
maintains a directory of registered depots in the Internet. The basic
L-Bone service is to discover IBP depots, where clients can query the L-
Bone for depots that meet certain requirements (e.g., available storage,
time limits, proximity to desired hosts, and so on), and the L-Bone returns
lists of candidate depots. The L-Bone uses information such as IP address,
country code, and zip code to determine proximity for the depots.

external Nodes (exNodes). Following the example of the inode concept
in the Unix file-system, the exNode is designed to manage aggregate al-
locations on network storage. In a IBP network, a large data file can be
aggregated from multiple IBP byte arrays stored on different IBP servers.
An exNode is the collection of capabilities of allocated IBP byte-arrays.
The exNode library handles IBP capabilities and allows the user to as-

82 Grid Resource Management

sociate metadata with the capabilities. The exNode library has a set of
functions that allow an application to create and destroy an exNode, to
add or delete a mapping from it, to query it with a set of criteria, and to
produce an XML serialization. When a user wants to store the exNode to
disk or to pass it to another user, he can use the exNode library to serial-
ize it to an XML file. With this file, users can manage the corresponding
allocated storage in IBP.

Logistical Runtime System (LoRS). Although the L-Bone makes it eas-
ier for the user to find depots and the exNode handles IBP capabilities for
the user, the user still has to manually request allocations, store the data,
create the exNode, attach mappings to the exNode and insert the IBP
allocations and metadata into the mappings. The LoRS layer consists of
a C-API and a command line interface tool set, which can automatically
find IBP depots via the L-Bone, operate IBP capabilities, and create exN-
odes. The LoRS facilitates the operations on network files in IBP.
IBP follows an approach that relies on explicit data management, which
provides no interface for transparent access to data. Besides, guarantee
of data persistence and consistency is at the user’s charge. The objective
of IBP is to provide a low-level storage solution that functions just above
the networking layer upon which higher level services can be built to pro-
vide transparent access to data. As an example, IBP has been used for
data management in Grid-RPC Netsolve [112] to create an infrastructure
that enables the efficient and robust servicing of distributed computa-
tional requests with large data requirements. Other projects that follow
the similar approach to IBP are presented briefly in the following section.

Globus Access to Secondary Storage (GASS) [117] is provided within
the Globus Toolkit and implements a variety of data access strategies,
enabling programs running at various locations to read and write remote
data through a uniform remote I/O interface. GASS uses special Uniform
Resource Locators (URLs) to identify data stored in remote file systems
on the grid. These URLs may be in the form of an HTTP URL (if the file
is accessible via an HTTP server) or an x-gass URL (in other cases). From
the users’ point of view, using GASS does not differ very much from using
files from the local file system. The only difference is that GASS provides
new functions to open and close files (i.e., gass fopen and gass fclose) but
after that GASS files behave exactly like any other file: they can be read
and written using the standard file I/O operations. When an application
requests a remote file for reading, GASS fetches the remote file into a
cache from where it is opened for reading. The cache is maintained as
long as applications are accessing it. When an application wants to write
to a remote file, the file is created or opened within the cache where
GASS keeps track of all the applications writing to it via reference count.

Data management in grid environments 83

When the reference count is zero, the file is transferred to the remote
machine. In that way, all operations on the remote file are conducted
locally in the cache, which reduces demand on bandwidth. GASS behaves
like a distributed file system but the naming mechanism, which is based
on URLs, enables it to provide efficient replica and caching mechanisms.
In addition, GASS takes care of secure data transfer and authentication
as well.

Kangaroo [145] proposes also a storage network of identical servers, each
providing temporary storage space for a data movement service. Kan-
garoo improves the throughput and reliability for large data transfers
within the grid. Kangaroo removes the burden of data movement from
the application by handling the data transfer as a background process
so that failures due to server crashes and network partitions are handled
transparently by the process. In that way, the transfer of data can be
performed concurrently with the execution of an application. The design
of Kangaroo is similar to that of IBP even though their aims are different.
Both of them use a store-and-forward method as a means of transporting
data. However, while IBP allows applications to explicitly control data
movement through a network, Kangaroo aims to keep the data transfer
hidden through the usage of background processes. Also, IBP uses byte
arrays, whereas Kangaroo uses the default TCP/IP datagrams for data
transmission.

NeST [116] addresses the storage resource management by providing a
mechanism for ensuring allocation of storage space in a similar way to IBP.
NeST provides a generic data transfer architecture that supports multiple
data transfer protocols: HTTP, FTP, GridFTP, NFS, and Chirp. The
original point in NeST design is that it can negotiate with data servers
to choose the most appropriate protocol for any particular transfer (e.g.,
NFS locally and GridFTP remotely) and optimize transfer parameters
(e.g., number of parallel data flows, TCP parameters).

3.5.2 Logical file system interface

Another approach for data management in grid environments is to build
a logical file-system interface based on distributed underlying file systems.
Typically, this approach involves constructing the data management services
providing a file-system interface offering a common view of storage resources
distributed over several administrative domains, which is similar to the inter-
face of NFS [140] for distributed file system in local network. These systems
emphasize the necessary mechanisms for locating a data file in response to
requests of applicative processes, such as copyTo(). The goal is to allow ex-
isting applications to access data in heterogeneous file systems without any

84 Grid Resource Management

modification in their code by providing a file access interface. A variety of
techniques have been used to achieve this goal, such as interception of a sys-
tem call in a C library, modifying the kernel. In this section we present a
case study of GFarm, which is an existing distributed file system for grid
environments.

GFarm [144] is an implementation of the Grid Datafarm architecture de-
signed to handle hundreds of terabytes to petabytes of data using a global
distributed file system. Gfarm focuses on a grid file system that provides
scalable I/O bandwidth and scalable parallel processing by integrating
many local file systems and clusters of thousands of nodes. It uses a
metadata management system to manage the file distribution, file system
metadata and parallel process information. The nodes in GFarm archi-
tecture are connected via a high speed network. In GFarm, a file is stored
throughout the file system as fragments on multiple nodes. Each fragment
has arbitrary length and can be stored on any node. Individual fragments
can be replicated, and the replicas are managed through Gfarm metadata
and replica catalog. Metadata is updated at the end of each operation on
a file. A GFarm file is write-once, that is, if a file is modified and saved,
then internally it is versioned and a new file is created. The core idea of
GFarm is to move computation to the data. Gfarm targets data-intensive
applications, which consist of independent multitasks. In these applica-
tions, the same program is executed over different data files and where
the primary task is reading a large body of data. The data is split up and
stored as fragments on the nodes. While executing a program, the process
scheduler dispatches it to the node that has the segment of data that the
program wants to access. If the nodes that contain the data and its repli-
cas are under heavy CPU load, then the file system creates a replica of the
requested fragment on another node and assigns the process to it. In this
way, I/O bandwidth is gained by exploiting the access locality of data.
Gfarm targets applications such as high-energy physics where the data
is write-once read-many. For applications where the data is constantly
updated, there could be problems with managing the consistency of the
replicas and the metadata though an upcoming version aims to fix them.

GridNFS [130] is a similar middleware solution as GFarm that extends
distributed file system technology and flexible identity management tech-
niques to meet the needs of grid-based virtual organizations. The foun-
dation for data sharing in GridNFS is NFS version 4 [141], the IETF
standard for distributed file systems that is designed for security, exten-
sibility, and high performance. NFSv4 offers new functionalities such as
enhanced security, migration support, etc. The primary goal of GridNFS
is to provide transparent data access in a secure way based on a global
namespace offered by NFS.

Data management in grid environments 85

LegionFS [150] is designed as file system infrastructure for grid environ-
ments. Its design is based on Legion, an object-based, user-level infras-
tructure for local-area and wide-area heterogeneous computation. File
resources organized as Legion objects are copied into Legion space in or-
der to support global data access.

Google File System (GFS) [128] is a scalable storage solution as it has
been successfully implemented in a very large cluster. GFS is designed to
provide fixed block size support for concurrent operations, and focuses on
providing support for large blocks of data being read and written contin-
uously on a distributed network of commodity hardware.

FreeLoader framework [146] The overall architecture of Freeloader
shares many similarities with GFS. Freeloader aims to aggregate unused
desktop storage space and I/O bandwidth into a shared cache/scratch
space, for hosting large, immutable datasets and exploiting data access
locality. It is designed for large data sets, e.g., outputs of scientific simu-
lation results.

SRBfs SRBfs is based on the FUSE project [96] to provide a user-space file
system interface. FUSE allows redirecting system calls of standard kernel-
level file systems to a user-level library. The advantage of this technique
is that developing new file systems with FUSE is relatively simple without
any modification at the kernel level, providing transparency to applica-
tions. FUSE is integrated in Linux version 2.6.14. As a result, FUSE
is not dedicated to file systems in grid environment. However, it allows
building file systems, which provides applications transparent access to
data in the grid.

3.5.3 Data replication and storage

Attempting to move large volumes of scientific data leads to a highly loaded
network. When data are moved over wide-area networks, the difficulty is not
only in having sufficient bandwidth but also in dealing with transient errors
in the networks and the source and destination storage systems. A technique
for avoiding repetitive data movement is replication of selected subsets of the
data in multiple sites. Therefore, replica management is an important issue
that needs to be addressed for data management in grid environments. GT
provides a suite of services for replica management: MetaData Catalog Service
(MCS), Replica Location Service (RLS), and Data Replication Service (DRS)
[122]. These services are implemented using the Lightweight Directory Access
Protocol (LDAP) [129] or databases such as MySQL.

86 Grid Resource Management

MetaData Catalog Service (MCS) is an OGSA-based service that pro-
vides a mechanism for storing and accessing descriptive metadata and
allows users to query for data items based on desired attributes. Meta-
data, which is information that describes data, exists in various types.
Some metadata relate to the physical characteristics of data objects, such
as their size, access permissions, owners and modification information.
Replication metadata information describes the relationship between log-
ical data identifiers and one or more physical instances of the data. Other
metadata attributes describe the contents of data items, allowing the data
to be interpreted.

Replica Location Service (RLS) Giggle [123] is an architectural frame-
work for a RLS that exclusively contains metadata information related
to data replication by keeping track of one or more copies, or replicas, of
files in the grid environment. Data location on physical storage systems
can be found through its logical name. The main goal of RLS is to reduce
access latencies for applications obtaining data from remote sources and
to improve the data availability thanks to their replications.

Data Replication Service (DRS) [122] is constructed based on lower-
level grid data services, including RFT and RLS services. The main func-
tion of DRS is to replicate a specified set of files onto a local storage
system and register the new files in appropriate catalogs. The operations
of the DRS include discovery, identifying where desired data files exist on
the grid by querying the RLS. Then, the desired data files are transferred
to the local storage system efficiently using the RLS service. Finally, data
location mappings are registered to the RLS so that other sites may dis-
cover newly-created replicas. Throughout DRS replication operations, the
service maintains state about each file, including which operations on the
file have succeeded or failed.

These catalog-based services can be used to build other higher level data
management services depending on user needs. For example, the Grid Data
Management Pilot (GDMP) project [139], which is a collaboration between
the EDG [95], [131] (in particular the Data Management work package [90])
and PPDG [104], has developed its services for data management based on
Globus’s catalog-based services. The project proposes a generic file replication
tool that replicates files securely and efficiently from one site to another in
a data grid environment. In addition, it manages replica catalog entries for
file replicas and thus maintains a consistent view on names and locations
of replicated files. The GDMP package has been used in the EU data grid
project as well as in some high energy physics experiments in Europe and
the U.S. The successor of GDMP is Reptor [134] which defines services for
management of data copies. The most recent development in the EU data grid

Data management in grid environments 87

has been the edg-replica-manager [93] which makes partial use of the Globus
replica management libraries for file replication. The edg-replica-manager can
be regarded as a prototype for Reptor. Lightweight Data Replicator (LDR)
[102] is a data management system built on top of Globus’s standard data
services such as GridFTP, RLS and MCS.

Another example of a high level data management system is Don Qui-
jote [118], which is developed as a proxy service that provides management
of data replicas across three heterogeneous grid environments used by AT-
LAS scientists: the US Grid3, the NorduGrid and the LCG-2 Grid. Each
grid uses different middleware, including different underlying replica catalogs.
Don Quijote provides capabilities for replica discovery, replica creation and
registration, and replica renaming after data validation. Other examples of
scientific grid projects that have developed customized, high-level data man-
agement services based on replica catalogs are Optor [135] and GridLab [98].

Many initiatives to build another type of high level data management sys-
tem, in which the replica management services are tightly coupled with the
underlying storage architecture to provide uniform access to different storage
systems, such as relational databases, XML databases, file systems, etc. were
undertaken by different groups of reseachers from different institutions. SRB
and OGSA-DAI are typical examples of such systems.

Storage Resource Broker (SRB) [105] is a data management system for
grids using a client-server architecture including three components: the
Metadata Catalog (MCAT) service, SRB servers and SRB clients. SRB
provides a uniform and transparent interface to access data stored in het-
erogeneous data storage over a network including mass storage system
(e.g., High Performance Storage System [100], Data Migration Facility
[91]), file systems (e.g., Unix FS, Windows FS) and databases (e.g., Ora-
cle, DB2, Sysbase). The SRB provides an application program interface
(API) which enables applications to access data stored at any of the dis-
tributed storage sites. The SRB API provides the capability to discover
information, identify data collections, and select and retrieve data items
that may be distributed across a Wide Area Network (WAN).
The combination of all SRB servers, clients and storage systems is called
a federation. Every federation must have a central master server con-
nected to a Metadata Catalog (MCAT). SRB uses MCAT service to store
metadata information for the stored datasets, which allows access to data
sets and resources based on their attributes rather than their names or
physical locations. The SRB server consists of one or more SRB Mas-
ter daemon processes with SRB Agent processes that are associated with
each Master. The clients authenticate to the SRB Master, which starts an
Agent process that processes the client requests. An SRB agent interfaces
with the MCAT and the storage resources to execute a particular request.
The fact that client requests are handed over to the appropriate server de-

88 Grid Resource Management

pending on the location determined by the MCAT service improves both
availability of data and access performance. SRB organizes data items as
collections implemented using logical storage resources (LSRs) to ensure
transparency for data access and transfer. LSRs own and manage all of
the information required to describe the data independent of the under-
lying storage system.
SRB is one of the most widely used data management systems in vari-
ous data grid projects around the world, such as UK eScience Data Grid,
NASA Information Power Grid, and NPACI Grid Portal Project [137].

OGSA-DAI (Data Access and Integration) [109] is the implementa-
tion of the DAIS (Data Access and Integration Services) specification [89]
proposed by GGF working group. It focuses on specifying an interface,
which provides location transparency to data distributed in heterogeneous
storage systems in grids including relational databases, XML databases,
and file systems.

3.5.4 Data allocation and scheduling

The last approach for data management in grid environments relies on the
creation of systems that focus on data allocation and scheduling jobs in order
to minimize the movement of data and hence the total execution time of jobs.
Some typical works in this direction are listed in the following.

Stork [133] is a data placement scheduler which aims to make data place-
ment activities first class citizens in the grid just like the computational
jobs. Stork allows data placement jobs to be scheduled, monitored, man-
aged, and even check-pointed while providing multiple transfer mecha-
nisms (e.g., FTP, GridFTP, HTTP, DiskRouter, and NeST) and retries
in the event of transient failures. As Stork is now integrated into the
Condor system, Stork jobs can be managed with Condor’s workflow man-
agement software (DAGMan).

Grid Application Development Software (GrADS) [126] introduces
a three-phase scheduling strategy, which involves an initial matching of ap-
plication requirements and available resources (launch-time scheduling),
making modifications to that initial matching to take into account dy-
namic changes in the system availability or application changes (reschedul-
ing), and finally coordinating all schedules for multiple applications run-
ning on the same grid at once (metascheduling).

Decoupled scheduling architecture [138] is proposed for data-intensive
applications and considers data allocation and job scheduling together.
The system consists of three components: the External Scheduler (ES),

Data management in grid environments 89

the Local Scheduler (LS), and the Dataset Scheduler (DS). The ES is mod-
eled to distribute jobs to specific remote computing sites, the LS is used
to decide the priority of the jobs arriving at the local node, and the DS
dynamically creates replicas for popular data files. Various combinations
of scheduling and replication strategies are evaluated with simulations.
The simulation results show that the data locality is an important factor
when scheduling the jobs. The best performance is achieved when the jobs
are assigned to the sites containing the required data files and the popular
datasets are replicated dynamically. Otherwise, the worst performance is
given by same job scheduling strategy but without data replication. This
is predictable since a few sites which host the data were overloaded in this
case.

3.6 Concluding remarks

The complexity of scientific computing problems leads to an explosive de-
mand for grid computing. This chapter first presents the challenges in terms
of support for data-intensive applications as the volume and scale of data re-
quirements for these applications increase. As a result, grid technology has
evolved to meet these data requirements, which is vital for projects on the
frontiers of science and engineering, such as high energy physics, climate mod-
eling, earth observation, bioinformatics, and astronomy. We present the main
grid activities today in data-intensive computing including major data grid
projects on a worldwide scale. In order to effectively provide solutions for
data management in grid environments, various issues need to be considered,
such as data namespace organization, a mechanism for transparent access to
data resources, and efficient data transfer. Finally, an overview of existing
solutions for managing data in grid environments is provided.

90 Grid Resource Management

References

[87] Chirp protocol specification. Available online at: http://www.cs.wisc.

edu/condor/chirp/PROTOCOL (Accessed August 31st, 2007).

[88] The CrossGrid project website. Available online at: http://www.

eu-crossgrid.org/ (Accessed August 31st, 2007).

[89] DAIS working group. Available online at: http://forge.gridforum.org/

projects/dais-wg (Accessed August 31st, 2007).

[90] Data management work package in EDG website. Available online at:
http://edg-wp2.web.cern.ch/edg-wp2/ (Accessed August 31st, 2007).

[91] Data Migration Facility (DMF). Available online at: http://www.sgi.

com/products/storage/tech/dmf.html (Accessed August 31st, 2007).

[92] The DataTAG project website. Available online at: http://datatag.

web.cern.ch/datatag/ (Accessed August 31st, 2007).

[93] edg-replica-manager 1.0. Available online at: http://www.gridpp.ac.uk/

wiki/EDG_Replica_Manager (Accessed August 31st, 2007).

[94] The EGEE project website. Available online at: http://public.

eu-egee.org/ (Accessed August 31st, 2007).

[95] European DataGrid project website. Available online at: http://www.

eu-datagrid.org (Accessed August 31st, 2007).

[96] Filesystem in Userspace (FUSE). Available online at: http://fuse.

sourceforge.net (Accessed August 31st, 2007).

[97] The GEANT project website. Available online at: http://www.geant.

net/ (Accessed August 31st, 2007).

[98] GridLab: A grid application toolkit and testbed. Available online at:
http://www.gridlab.org (Accessed August 31st, 2007).

[99] GriPhyN - grid physics network website. Available online at: http:

//www.griphyn.org/ (Accessed August 31st, 2007).

[100] High Performance System Storage (HPSS). Available online at: http:

//www.hpss-collaboration.org (Accessed August 31st, 2007).

[101] The LCG project website. Available online at: http://lcg.web.cern.

ch/LCG/ (Accessed August 31st, 2007).

[102] Lightweight data replicator. Available online at: http://www.lsc-group.

phys.uwm.edu/LDR/ (Accessed August 31st, 2007).

Data management in grid environments 91

[103] MySQL website. Available online at: http://www.mysql.com (Accessed
August 31st, 2007).

[104] Particle Physics Data Grid collaboration website. Available online at:
http://www.ppdg.net/ (Accessed August 31st, 2007).

[105] SDSC Storage Resource Broker website. Available online at: http:

//www.npaci.edu/DICE/SRB/ (Accessed August 31st, 2007).

[106] Sloan digital sky survey website. Available online at: http://www.sdss.

org/ (Accessed August 31st, 2007).

[107] Storage Resource Management working group. Available online at:
http://sdm.lbl.gov/srm-wg (Accessed August 31st, 2007).

[108] TeraGrid website. Available online at: http://www.teragrid.org/ (Ac-
cessed August 31st, 2007).

[109] The OGSA-DAI Project website. Available online at: http://www.

ogsadai.org.uk (Accessed August 31st, 2007).

[110] UberFTP website. Available online at: http://dims.ncsa.uiuc.edu/set/
uberftp/ (Accessed August 31st, 2007).

[111] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, C. Kesselman,
S. Meder, V. Nefedova, D. Quesnel, S. Tuecke, and I. Foster. Secure,
efficient data transport and replica management for high-performance
data-intensive computing. In Proceedings of the 18th IEEE Symposium
on Mass Storage Systems (MSS 2001), Large Scale Storage in the Web,
page 13, Washington, DC, USA, 2001. IEEE Computer Society.

[112] D. C. Arnold, S. S. Vah, and J. Dongarra. On the convergence of
computational and data grids. Parallel Processing Letters, 11(2–3):187–
202, June 2001.

[113] A. Bassi, M. Beck, G. Fagg, T. Moore, J. Plank, M. Swany, and R. Wol-
ski. The Internet Backplane Protocol: A study in resource sharing. In
Cluster Computing and the Grid 2nd IEEE/ACM International Sympo-
sium CCGRID2002, pages 180–187, 2002.

[114] M. Beck, Y. Ding, T. Moore, and J. S. Plank. Transnet architecture and
logistical networking for distributed storage. In Workshop on Scalable
File Systems and Storage Technologies (SFSST), San Francisco, CA,
USA, Sept. 2004. Held in conjunction with the 17th International Con-
ference on Parallel and Distributed Computing Systems (PDCS-2004).

[115] M. Beck and T. Moore. Logistical networking: a global storage network.
Journal of Physics: Conference Series, 16(1):531–535, 2005.

92 Grid Resource Management

[116] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. Arpaci-
Dusseau, R. Arpaci-Dusseau, and M. Livny. Flexibility, manageability,
and performance in a grid storage appliance. In Proceedings of the 11th
IEEE Symposium on High Performance Distributed Computing (HPDC
11), pages 3–12, Edinburgh, Scotland, UK, July 2002. IEEE Computer
Society.

[117] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS:
A data movement and access service for wide area computing systems.
In Proceedings of the 6th workshop on I/O in parallel and distributed
systems (IOPADS ’99), pages 77–88, Atlanta, GA, USA, 1999. ACM
Press.

[118] M. Branco. Don Quijote - data management for the ATLAS automatic
production system. In Proceedings of Computing in High Energy and
Nuclear Physics (CHEP), Interlaken, Switzerland, Sept. 2004.

[119] D. Britton, A. Cass, P. Clarke, J. Coles, A. Doyle, N. Geddes, J. Gordon,
R. Jones, D. Kelsey, S. Lloyd, R. Middleton, D. Newbold, and S. Pearce.
Performance of the UK Grid for particle physics. In Proceedings of
IEEE06 Conference, Amsterdam, Dec. 2006. IEEE Computer Society.
on behalf of the GridPP collaboration.

[120] A. Chervenak, E. Deelman, C. Kesselman, B. Allcock, I. Foster, V. Nefe-
dova, J. Lee, A. Sim, A. Shoshani, B. Drach, D. Williams, and D. Mid-
dleton. High-performance remote access to climate simulation data:
A challenge problem for data grid technologies. Parallel Computing,
29(10):1335–1356, 2003.

[121] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The
data grid: Towards an architecture for the distributed management and
analysis of large scientific datasets. Journal of Network and Computer
Applications, 23(3):187–200, 2000.

[122] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and B. Moe. Wide
area data replication for scientific collaborations. In GRID ’05: Proceed-
ings of the 6th IEEE/ACM International Workshop on Grid Computing,
pages 1–8, Washington, DC, USA, 2005. IEEE Computer Society.

[123] A. L. Chervenak, E. Deelman, I. T. Foster, L. Guy, W. Hoschek,
A. Iamnitchi, C. Kesselman, P. Z. Kunszt, M. Ripeanu, R. Schwartzkopf,
H. Stockinger, K. Stockinger, and BrianTierney. Giggle: a framework
for constructing scalable replica location services. In Proceedings of the
2002 ACM/IEEE conference on Supercomputing, pages 1–17, Baltimore,
Maryland, USA, Nov. 2002.

[124] S. T. Chiang, J. S. Lee, and H. Yasuda. Data link switching client access
protocol. IETF Request For Comment 2114, NetworkWorking Group.

Data management in grid environments 93

[125] B. Cohen. Incentives build robustness in BitTorrent. In Proceedings of
the 1st Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA,
USA, June 2003.

[126] H. Dail, H. Casanova, and F. Berman. A decoupled scheduling approach
for the grads environment. In Proceedings of the IEEE/ACM SC2002
Conference (SC’02), Baltimore, Maryland, November 2002. IEEE.

[127] C. Ernemann and R. Yahyapour. Grid Resource Management - State
of the Art and Future Trends, chapter Applying Economic Scheduling
Methods to Grid Environments, pages 491–506. Kluwer Academic Pub-
lishers, 2003.

[128] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system.
SIGOPS Operating Systems Review, 37(5):29–43, 2003.

[129] J. Hodges and R. Morgan. Lightweight Directory Access protocol (v3):
Technical specification. IETF Request For Comment 3377, Network-
Working Group.

[130] P. Honeyman, W. A. Adamson, and S. McKee. GridNFS: global stor-
age for global collaborations. In Proceedings of the IEEE International
Symposium Global Data Interoperability - Challenges and Technologies,
Sardinia, Italy, June 2005. IEEE Computer Society.

[131] W. Hoschek, J. Jean-Martinez, A. Samar, H. Stockinger, and
K. Stockinger. Data management in an international data grid project.
In Proceedings of the 1st IEEE/ACM International Workshop on Grid
Computing (Grid ’00), volume 1971, pages 77–90, Bangalore, India,
Dec. 2000. Springer.

[132] G. Kola and M. Livny. Diskrouter: A flexible infrastructure for high
performance large scale data transfers. Technical report cs-tr-2003-1484,
University of Wisconsin-Madison Computer Science Department, Madi-
son, WI, USA, 2003.

[133] T. Kosar and M. Livny. Stork: Making data placement a first class
citizen in the Grid. In ICDCS ’04: Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS’04), pages 342–
349, Washington, DC, USA, 2004. IEEE Computer Society.

[134] P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. Advanced replica
management with Reptor. In Proceedings of the 5th International Con-
ference on Parallel Processing and Applied Mathematics, Czestochowa,
Poland, Sept. 2003.

[135] P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. File-based
replica management. Future Generation Computing Systems, 21(1):115–
123, 2005.

94 Grid Resource Management

[136] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and R. Wolski.
The Internet Backplane Protocol: Storage in the network. In Network
Storage Symposium (NetStore ’99), pages 59–59, Seattle, USA, Oct.
1999. ACM Press.

[137] A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G. Kremenek, A. Ja-
gatheesan, C. Cowart, B. Zhu, S.-Y. Chen, and R. Olschanowsky. Stor-
age resource broker - managing distributed data in a grid. Computer
Society of India Journal, Special Issue on SAN, 33(4):42–54, Oct. 2003.

[138] K. Ranganathan and I. T. Foster. Simulation studies of computation and
data scheduling algorithms for data grids. Journal of Grid Computing,
1(1):53–62, 2003.

[139] A. Samar and H. Stockinger. Grid Data Management Pilot (GDMP):
A tool for wide area replication in high-energy physics. In Proceedings
of the 19th IASTED International Conference on Applied Informatics
(AI ’01), Innsbruck, Austria, Feb. 2001.

[140] R. Sandberg, D. Goldberg, S. Kleiman, DanWalsh, and B. Lyon. Design
and implementation of the Sun Network file system. In Proceedings of
the USENIX Summer Technical Conference, pages 119–130, Portland,
OR, USA, June 1985.

[141] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck. Network File System (NFS) version 4 proto-
col, 2003. RFC 3530.

[142] A. Shoshani, A. Sim, and J. Gu. Storage resource managers: Middle-
ware components for grid storage. In Proceedings of the 10th NASA
Goddard Conference on Mass Storage Systems and Technologies, 19th
IEEE Symposium on Mass Storage Systems (MSST ’02), pages 209–223,
College Park, MA, USA, Apr. 2002. IEEE Computer Society.

[143] M. Swany. Improving throughput for grid applications with network
logistics. In SC ’04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 23, Washington, DC, USA, 2004. IEEE Computer
Society.

[144] O. Tatebe, N. Soda, Y. Morita, S. Matsuoka, and S. Sekiguchi. Gfarm
v2: A grid file system that supports high-performance distributed and
parallel data computing. In Proceedings of the 2004 Computing in High
Energy and Nuclear Physics (CHEP04), Interlaken, Switzerland, Sept.
2004.

[145] D. Thain, J. Basney, S.-C. Son, and M. Livny. The Kangaroo approach
to data movement on the grid. In Proceedings of the 10th IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC

Data management in grid environments 95

10), pages 325–333, Francisco, CA, USA, Aug. 2001. IEEE Computer
Society.

[146] S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland, N. Tammineedi,
and S. L. Scott. FreeLoader: Scavenging desktop storage resources for
scientific data. In SC ’05: Proceedings of the 2005 ACM/IEEE confer-
ence on Supercomputing, page 56, Washington, DC, USA, 2005. IEEE
Computer Society.

[147] S. Venugopal, R. Buyya, and K. Ramamohanarao. A taxonomy of data
grids for distributed data sharing, management, and processing. ACM
Computing Surveys, 38(1):3, 2006.

[148] B. Wei, G. Fedak, and F. Cappello. Collaborative data distribution
with BitTorrent for computational desktop Grids. In ISPDC ’05: Pro-
ceedings of the 4th International Symposium on Parallel and Distributed
Computing (ISPDC’05), pages 250–257, Washington, DC, USA, 2005.
IEEE Computer Society.

[149] B. Wei, G. Fedak, and F. Cappello. Scheduling independent tasks shar-
ing large data distributed with BitTorrent. In GRID ’05: Proceedings of
the 6th IEEE/ACM International Workshop on Grid Computing, pages
219–226. IEEE Computer Society, 2005.

[150] B. S. White, M. Walker, M. Humphrey, and A. S. Grimshaw. Le-
gionFS: a secure and scalable file system supporting cross-domain high-
performance applications. In Proceedings of the 2001 ACM/IEEE Con-
ference on Supercomputing (SC ’01), pages 59–59, New York, USA, Nov.
2001. ACM Press.

[151] C.-E. Wulz. CMS - concept and physics potential. In Proceedings II-
SILAFAE, San Juan, Puerto Rico, 1998.

Chapter 4

Peer-to-peer data management

4.1 Introduction

In recent years, peer-to-peer (hereafter P2P) networks and systems have
attracted increasing attention from both the academy and industry. P2P sys-
tems are distributed systems that operate without centralized global control
in the form of a global registry, global services, global resource management,
global schema or data repository. In the P2P model, all participant nodes
(i.e, peers) have identical responsibilities and are organized into an overlay
network which is a virtual topology created on top of - and independently
from - the underlying physical (typically IP) network. Each peer takes both
the role of client and server. As a client, it can consume resources offered
from other peers, and as a server it can provide its services for others.

Most of the time, there exists confusion between P2P systems and grid
computing [211]. Although there is significant similarity between these two
systems, they have some fundamental differences on their working environ-
ments. Grid systems are composed of powerful dedicated computers and CPU
farms that coordinate in a large-scale network with high bandwidth based on
persistent, standards-based service infrastructures. Unlike grid systems, P2P
systems consist of regular user computers with slow network connections.
Therefore, P2P systems suffer more failures than grid systems. As a result,
P2P systems focus on dealing with instability, volatile populations, fault toler-
ance, and self-adaptation. Moreover, getting P2P applications to inter-operate
is impossible due to a lack of common protocols and standardized infrastruc-
ture. In [161], authors claim “Grid computing addresses infrastructure, but
not yet failure, while P2P addresses failure, but not yet infrastructure”.

Most popular P2P systems are file or content sharing applications such as
Napster, Gnutella, Chord, and CAN. They can be classified into two types
of overlays: unstructured and structured. Most of the unstructured overlay
networks have two characteristics. First, the distribution of resources is not
based on any kind of knowledge of the network topology. There is no precise
control over the network topology and the resource’s location. Second, queries
to find a resource are flooded across the overlay network with limited scope.
Upon receiving a query, each peer queries its neighbors, which themselves
query their own neighbors and so on, for a specific number of steps. Hence,

97

98 Grid Resource Management

an unstructured system seems to not scale well as resource location requires
an exhaustive search over the network. In contrast to unstructured systems,
the primary focus of structured overlay networks is on precisely locating a
given resource. In other words, resources are placed at specified locations and
not at random nodes. This tightly controlled structure enables the system to
satisfy queries in an efficient manner.

4.2 Defining peer-to-peer

4.2.1 History

The Internet was originally conceived in the late 1960s as a P2P system.
The goal of the original ARPANET was to share computing resources around
the US. The challenge for this effort was to integrate different kinds of dis-
tributed resources, existing in different networks, within one common network
architecture that would allow every host to be equal in terms of the function-
ality and tasks they perform. The first few hosts on the ARPANET includ-
ing several US universities (e.g., UCLA, SRI and USCB, and the University
of Utah) were already independent computing sites with equal status. The
ARPANET connected them together not in a master-slave or client-server
relationship but rather as equal computing peers.

As the Internet exploded in the mid 1990s, more and more computers that
lack resources and bandwidth, such as desktop PCs, became clients of this
network. They could not be resource providers of the system. In this context,
the client-server model became more prevalent because servers provided the
effective means of supporting large numbers of clients with limited resources.
Most early distributed applications, such as FTP or Telnet, can be considered
client-server.

In the network environment dominated by PC clients, the first wide use of
P2P seems to have been in instant messaging systems such as AOL Instant
Messenger and Yahoo Messenger. At the end of 1998, a 19-year-old student
at Boston University, Shawn Fanning, wrote a program that allowed exchange
of audio files in mp3 format across the Internet. Fanning, whose pseudonym
is Napster, assigned this name to his application [160]. The originality of
Napster is based on the fact that the file sharing is decentralized. The actual
transfer of files is done directly between the peers. The introduction of Napster
has driven the current phase of interest and activity in P2P. In fact, this peer-
to-peer principle followed earlier approaches of the Internet whose goal was
to create a symmetric system for sharing information.

4.2.2 Terminology

Throughout the P2P literature, there are a considerable number of different
definitions of P2P systems. In fact, P2P systems are often determined more

Peer-to-peer data management 99

by the external perception of the end-user than their internal architecture. As
a result, different definitions of P2P systems are proposed to accommodate
different types of such systems. According to a widely accepted definition for
P2P in the late 1990s, “P2P is a class of applications that takes advantage of
resources - storage, cycles, content, human presence - available at the edges
of the Internet” [190]. Munindar P. Singh attempts to describe P2P systems
more extensively, rather than in just an application-specific way, and defines
P2P simply as the opposite of client-server architectures [191]. The Intel P2P
working group defines P2P as “the sharing of computer resources and services
by direct exchange between systems” [152]. According to HP laboratory, “P2P
is about sharing: giving to and obtaining from the peer community. A peer
gives some resources and obtains other resources in return” [179].

In its purest form, P2P is a totally distributed system in which all nodes
are completely equivalent in terms of functionality and tasks they perform.
This definition is not generalized enough to embrace systems that employ the
notion of “supernodes” (e.g., Kazaa) or systems that completely rely upon
centralized servers for some functional operations (e.g., instant messaging sys-
tems, Napster). These systems are, however, widely accepted as P2P systems.
Therefore, we propose the following definition [189]:

DEFINITION 4.1 P2P systems are distributed systems where its partic-
ipants share a part of their own hardware resources such as processing power,
storage capacity, content, network link capacity. Such systems are capable of
self-adapting to failures and transient status of the participants without the
intermediation or support of a global centralized server or authority.

4.2.3 Characteristics

There exist a great number of P2P systems where goals may be incompat-
ible. However, some common characteristics that a system should possess in
order for it to be termed as P2P systems are:

• Scalability: In client-server architecture, it is difficult to improve the
scalability of the system with a considerably small cost. An immediate
benefit of decentralization is better scalability. It is crucial that the sys-
tem can expand rapidly from a few hundred peers to several thousand
or even millions without deterioration of performance. In P2P systems,
all peer machines provide a part of the service. Algorithms for resource
discovery and search have to be capable of supporting the system’s ex-
tensibility in taking into account resources shared by all participants in
order to increase available resources.

• Dynamism: P2P systems must face intermittent participation of its
nodes. Resources such as compute nodes and files, can join and leave
the system frequently and unpredictably. In addition, the number of

100 Grid Resource Management

participant nodes is always in constant evolution. The P2P approach
must be designed to adapt to such a highly volatile and dynamic envi-
ronment.

• Heterogeneity: In P2P systems, supporting heterogeneity is needed be-
cause these systems are to be used by a great number of peers that do
not belong to a common structure. Hence, it is impossible that these
peers have an identical material architecture.

• Fault resilience: One of the primary design goals of a P2P system is to
avoid a central point of failure. Although most pure P2P systems al-
ready achieve this goal, they have to face failures commonly associated
with distributed systems spanning multiple hosts and networks, such as
disconnection, unavailability, partitions, and node failures. It is neces-
sary for the system to continue to operate with the still active peers in
the presence of such failures.

• Security: It is crucial to protect the peer machines and the applications
from malicious behavior that attempts to corrupt the operation of the
system by taking control of the application.

4.3 Data location and routing algorithms

In P2P file sharing systems, each client shares some files and is interested in
downloading some files from other peers. The location mechanisms and rout-
ing algorithms are crucial to the searching operations for a resource that the
client wants. Queries to locate data items may be file identifiers or keywords
with regular expressions. Peers are expected to process queries and produce
results individually, and the total result set for a query is the bag union of
results from every node that processes the query.

A P2P overlay network can be considered an undirected graph, where the
nodes correspond to P2P nodes in the network, and the edges correspond to
open connections maintained between the nodes. Two nodes maintaining an
open connection between themselves are known as neighbors. Messages are
transferred along the edges. For a message to travel from a source node to a
destination node, it must travel along a path in the graph. The length of this
traveled path is known as the number of hops taken by the message.

To search for a file, the user initiates a request message to other nodes; its
node becomes the source of the message. The routing algorithm determines to
how many neighbors, and to which neighbors, the message will be forwarded.
Once the request message is received, the node will process the query over its
local store. If the query is satisfied at that node, the node will send a response
message back to the source of the message. In unstructured P2P networks,

Peer-to-peer data management 101

Table 4.1: A comparison of different unstructured systems.
P2P system Network structure
Napster Hybrid decentralized system with central cluster of ap-

proximately 160 servers for all peers.
Gnutella Purely decentralized system.
Freenet Purely decentralized system. A loose DHT structure.
FastTrack/KaZaA Partially centralized system.
eDonkey2000 Hybrid decentralized system with tens of servers

around the world. Peers can host their own server.
BitTorrent Hybrid decentralized system with central servers

called tracker . Each file can be managed by a different
tracker.

the address of the query source is unknown to the replying node. In this case,
the replying node sends the response message along the reverse path traveled
by the query message. In structured P2P networks, the replying node may
know the address of the query source, and will transfer the response message
to the source directly. In this section, we present several typical P2P routing
algorithms in both unstructured and structured systems.

4.3.1 P2P evolution

First generation P2P systems consist of unstructured P2P systems such
as Napster and Gnutella, which are basically easy to implement and do not
contain much optimization. The broadcasting method used by unstructured
systems for data lookup may have large routing costs or fail to find available
content. Hence, more sophisticated systems based on Distributed Hash Table
(DHT) routing algorithms are proposed and they are considered second gen-
eration P2P systems. Their purpose is when given a query to efficiently route
a message to the destination. They create a form of virtual topology and
are generally named structured P2P systems. Third generation P2P systems
are also variants of structured P2P systems. However, they put more effort
on security to close the gap between working implementations, security and
anonymity.

4.3.2 Unstructured P2P systems

In unstructured systems, the overlay network is created in an ad-hoc fashion
as nodes and content are added. The data location is not controlled by the
system and no guarantees for the success of a search are offered to the users.
In order to increase the probability of data lookup success, replicated copies
of popular files are shared among peers. The core feature of widely deployed
systems is file-sharing. Search techniques such as flooding, random walks,
expanding-ring Time-To-Live (TTL) have been investigated in order to inquire
at each peer in the system about the placement of the file. In [194], a list of
algorithms used in unstructured P2P overlay networks is provided.

102 Grid Resource Management

The main advantage of unstructured systems compared to the traditional
client-server architecture is the high availability of files and network capacity
among peers. Instead of downloading from the centralized server, peers can
download the files directly from other peers in the network. Hence, the total
network bandwidth for file transfers is far greater than any possible centralized
server can provide.

We classify unstructured systems into three groups according to how the
files and peer indexes are organized: hybrid decentralized , purely decentralized
and partially centralized . The indexes which map files to peers are used to
perform data lookup queries. In hybrid decentralized systems, peer indexes
are stored on the centralized server. In purely decentralized systems, each peer
stores its file indexes locally and all peers are treated equally. In partially cen-
tralized systems, different peers store their indexes at different super-peers.
Figure 4.1 shows the classification of unstructured systems. In this section,
we focus on data location issues and routing algorithms in unstructured P2P
systems. We present some of the most popular unstructured systems: Nap-
ster/OpenNap, Gnutella, Freenet, FastTrack/KaZaA, eDonkey2000, BitTor-
rent.

4.3.2.1 Napster/OpenNap

Overview Napster is one of the most popular examples of file-sharing hy-
brid decentralized systems. Its protocol was not published but it was analyzed
and there exists the OpenNap open source project1 that follows the same spec-
ification [188]. Napster is considered the first unstructured P2P system that
achieved global-scale deployment and was characterized as “the fastest grow-
ing Internet application ever” [180], reaching 50 millions users in just one
year.

Routing algorithm for getting data Napster made popular the cen-
tralized directory model as the algorithm used for searching operations. An
OpenNap server allows peers to connect to it and offers the same file lookup,
browse capabilities offered by Napster. In order to make his files accessible
to other users, a client has to send a list of files that he wants to share to a
central directory server. The server updates its database and files are indexed
by their name. In order to retrieve a file, a client sends requests for the file to
the server about the list of peers storing the file. The user then chooses one
or more of the peers in the list that hold the requested file and opens a direct
communication with these peers to download it (see Figure 4.1).

Although only part of the protocol is based on client-server architecture,
the system is considered P2P because only the file index is accessed in client-
server mode and the digital objects are transferred directly between peers.

1http://opennap.sourceforge.net/

Peer-to-peer data management 103

Search

Download

index

A

B

FIGURE 4.1: Typical hybrid decentralized P2P system. A central directory
server maintains an index of files in the network.

Such systems with a central server are not easy to scale and the central index
server used in Napster is a single point of failure.

4.3.2.2 Gnutella

Overview Gnutella2 is a purely decentralized system with a flat topology of
peers. A purely decentralized system is one that does not contain any central
point of control or focus. Each node within the system is considered being of
equal standing (i.e., servents).

To join the system, a new peer initially connects to other active peers
that are already members of the system. There is a number of hosts well-
known to the Gnutella community (e.g., list of hosts available from http:

//gnutellahosts.com) that can serve as an initial connection point. Once
connected to the system, peers send messages to interact with each other.
The Gnutella protocol supports following messages.

• Group membership (PING and PONG): a group membership message
is either a Ping or a Pong. A peer joining the system broadcasts a Ping
message to declare its own presence in the network. A Pong message,
which contains information about the peer (e.g., IP address, number
and size of the data item that it shares in the system) will be routed
back along the opposite path through which the original Ping message
arrived. In a dynamic environment like Gnutella where nodes often
join and leave the network unpredictably, a node periodically pings its
neighbors to discover other participating nodes. Using information from
received pong messages, a disconnected node can always reconnect to
the network.

2http://gnutella.wego.com

104 Grid Resource Management

n3

a

a

a

a a

a

n1n4

n2

t1

n4

n2

a ?

t0

n3

a

a

n1n4

n2

t2

an3

a n1n4

n2

t3

n3 a

a

a

a

at the propagation t
Peer connected

connected
Peer already Peer non

connected ordinary link
link used for flooding

n1

FIGURE 4.2: An example of data lookup in a flooding algorithm.

• Search (QUERY and QUERY HIT): a query message contains a spec-
ified search string and the minimum speed requirements of the re-
sponding peer. A peer possessing the requested resource replies with a
QUERY HIT message that contains the information necessary to down-
load a file (e.g., IP, port and speed of the responding host, the number
of matching files found and their indexed result set).

• File transfer (GET and PUSH): file downloads are done directly be-
tween two peers using these types of messages.

Each peer in a Gnutella system maintains a small number of permanent
links to neighbors (typically 4 or 5). In order to cope with the unreliabil-
ity after joining the system, a peer periodically sends a Ping message to its
neighbors to discover other participating peers.

Routing algorithm for getting data The Gnutella algorithm uses the
flooded requests model [183] for discovery and retrieval of data. In this model,
to locate a data item peer n sends requests to its neighbors. Then, the requests
will be flooded to their directly connected peers until the data item is found
or a maximum number of flooding steps occur b, in the original protocol b =
7. Each peer, which receives the request, performs the following operations:
(i) check for matches against their local data set; (ii) if yes, a notification is
sent to n; (iii) otherwise if b > 0, the request is flooded to its neighbors in
decrementing b.

Peer-to-peer data management 105

Figure 4.2 illustrates an example of data lookup in the Gnutella network
with b = 2 for the flooding step. Note that we use the directed graph not the
undirected one to represent the overlay network in this example.
- At t0: peer n1 n searches for peers holding data item a.
- At t1: n1 sends a request to its neighbors, with b = 2. The request will be
flooded two times. None of n1’s neighbors has data matching the request.
- At t2: n1’s neighbors retransmit the request to its neighbors with b = 1.
The peer n2 holding the requested data a sends a notification to n1.
- At t3: last propagation of the request is performed with b = 0. Peer n4
notifies n1 about its possession of data item a.

Once b reaches zero, the request is dropped. However, this algorithm does
not ensure success of data lookup queries even if requested data items exist
somewhere in the network, particularly when b is low (e.g., in the above ex-
ample, peer n3 holding the requested data item a is not contacted). If b is set
higher in order to increase chance of finding data items, there will be many
messages propagated even for only one query, particularly in high connectiv-
ity networks. Another problem of flooding is that it introduces duplicative
messages, which are multiple copies of a query sent to a node by its multiple
neighbors. These duplicative messages incur considerable extra load at the
node receiving them and unnecessarily burden the network. Various solutions
have been proposed to address the above issues (see Section 4.4.1).

4.3.2.3 Freenet

Overview Freenet is an example of a loosely structured decentralized sys-
tem with the support of anonymity. Data items are identified by binary file
keys, named Globally Unique Identifiers (GUID), obtained by applying the
hash function (SHA-1) to the file name. The Freenet employs three kinds of
GUIDs: Keyword-Signed Key (KSK) intended for human use, Signed-Subspace
Key (SSK) like KSK but preventing namespace collisions, and Content Hash
Keys (CHK) used for primary data storage.

KSK is the simplest type of GUIDs, which is derived from a descriptive text
string chosen by the user. This descriptive text string is used to generate a
public/private key pair whose public half is hashed to create the file key. The
private half can be used to verify the integrity of the retrieved file. The file
itself is encrypted using the user-defined descriptor as key. For finding the
file, the user must know the descriptive text.

SSK prevents users from independently choosing the same descriptive string
for different files. It also enables constructing personal namespaces, i.e., sub-
space, for example /text/poems/romantic/. SSK is composed of two parts.
The first part is the public namespace key and the second part is the descrip-
tive string chosen by the user. These two parts are hashed independently and
concatenated together to be used as a search key. To retrieve a file from a
subspace, the user needs only the subspace’s public key and the descriptive
string. Adding or updating a file requires the private key of subspace. There-

106 Grid Resource Management

fore, SSK facilitates trust by guaranteeing that updates of subspace are done
only by its owner.

CHK is the low-level data-storage key, which is generated by computing
the hash value of file content. CHK is useful for implementing updating and
splitting of contents. A content-file hash guarantees that each file has a unique
absolute identifier (SHA-1 collisions are considered nearly impossible). Since
CHK keys are binary, they are not appropriate for user interaction. Hence,
CHK keys usually are used in conjunction with SSK keys. A CHK key can
be contained in an indirect file stored in user subspace. Given the SSK the
original file is retrieved in 2 steps. First, the key value of actual filename is
retrieved as the CHK key. Then, this CHK key can be used for a search in
Freenet.

Routing algorithm for getting data Freenet uses the “Steepest Ascent
Hill-Climbing Search” algorithm. When a node receives a query, it first checks
its own store. If the request is not satisfied, the node forwards the request to
the node with the closest key to the one requested. If the chosen node cannot
find the destination, it will return to the originator with a failed message.
Otherwise, the node will try some other node. When the request is successful,
each node which passed the request sends now the file back and creates an
entry in its routing table binding the file holder with the requested key. On
the way back the nodes might cache the file at their stores to improve search
time for subsequent searches. However, to limit searches and resource usage,
queries are forwarded within certain TTL values. Therefore, a node holding
the requested data item will not be reachable if it is at the far end of the
network.

4.3.2.4 FastTrack/KaZaA

Overview FastTrack [155] is a partially centralized system that uses the
concept of super-peers: peers with high bandwidth, disk space and processing
power that are dynamically elected to facilitate searches by indexing shared
files of a subpart of the peer network. KaZaA is a typical and widely used
FastTrack application.

Routing algorithm for getting data In a FastTrack network, a super-
peer maintains an index of the files shared by peers connected to it. For exam-
ple, in Figure 4.3 the peer n3 conserves information about data that its leaves
n1 and n2 possess. All the queries initiated by ordinary peers are forwarded
to the super-peer. Then, the search is performed using the flooded requests
model in a highly pruned overlay network of super-peers. In comparison with
purely decentralized systems, this approach has two major advantages: (i) the
discovery time of files is reduced considerably, and (ii) the super-peers improve
the network efficiency of the system by assuming a large portion of the entire

Peer-to-peer data management 107

a b c

e

e n4f n5a a f n6

f g

hn9 h

nx ...
.. ...

n3 e

n1 a,b
n2 c

n5 a
n6 a,f

n4 e,f

n7 f,g

n2n1

n3

n9

n8 n7

link used for flooding

ordinary link
ordinary peersuper−peer

FIGURE 4.3: Peers and super-peers in partially centralized system.

network load. However, this approach still consumes bandwidth to maintain
the index at the super-peers on behalf of the peers that are connected.

Typically, the number of leaves per super-peer is about sixty in FastTrack
and about twenty in Gnutella v0,6. The number of peers assuming the data
lookup is lower compared with Gnutella v0.4. The probability of finding data
conforming to a query by flooding is higher, even though obtaining the data
item is still not guaranteed more than with Gnutella v0.4.

4.3.2.5 eDonkey2000

Overview Overnet/eDonkey2000 [154], [153] is a hybrid two-layer decen-
tralized system composed of client and server. There are loosely connected,
separate index servers, but there is no single centralized server. These index
servers are distributed over the world, unlike Napster which runs its central
server in Silicon Valley. Although there are millions of clients, the number
of servers is only several hundred. Moreover, the reliable servers that accept
joining connections from new client nodes are only several dozen.

Routing algorithm for getting data With its protocol MFTP (Mul-
tisource File Transfer Protocol), eDonkey2000 allows download time to be
optimized because the client peer can download concurrently parts of the file
from multiple peers and during downloading it can share downloaded parts.
File hashes are used to identify files on the network. This architecture uses
ed2k link to store the metadata for clients who want to download a particular
file. The link contains information about the file such as its name, size and
the file hash or hash set (part hashes). The complete hash set ensures that
blocks of the file are always correct and helps spreading new and rare files.

To join the network, a new peer needs to know the IP address and port
of a bootstrapping peer (server) in the network. It then connects to this

108 Grid Resource Management

server and sends a list of all its shared files with the metadata describing
these object files. Servers maintain a database with file object IDs mapped
to server-generated client IDs. When a client wishes to download a file, it
sends queries for this file to the directly connected server. The server looks
at its database and returns a list of known sources. After having this list, it
contacts the sources and asks to download the file.

4.3.2.6 BitTorrent

Overview BitTorrent is a hybrid decentralized system that uses a central-
ized location to manage users’ downloads. The BitTorrent protocol consists
of five major components: (i) .torrent files , (ii) a website, (iii) tracker server ,
(iv) client seeders , and (v) client leechers .

Routing algorithm for getting data A .torrent file is composed of a
header and a number of SHA-1 block hashes of the original file. The header
contains information about the file, its length, name and the IP address or
URL of a tracker for this .torrent file. The .torrent file is stored on a public
accessible website. The original content owner starts a BitTorrent client that
possesses a complete copy of the file along with a copy of the .torrent file.
Once the .torrent file is read, the BitTorrent client registers with the tracker
as a seeder since it has a complete copy of the file. When a downloader gets
the .torrent file from the public available website, the BitTorrent client then
parses the header information as well as the SHA-1 hash blocks. Nevertheless,
because it does not have a copy of the file, it registers itself with the tracker as
a leecher . The tracker randomly generates a list of contact information about
the peers that are downloading the same file and sends this list to the leecher.
Leechers then use this information to connect to each other for downloading
the file.

BitTorrent cuts files into pieces of fixed size (256 KB chunks) to track
the content of each peer. The seeder and leechers transfer pieces of the file
among each other using a tit-for-tat algorithm. This algorithm is designed to
guarantee a high level of data exchange while discouraging free-riders: peers
that do not contribute should not be able to achieve high download rates.
When a peer finishes downloading a piece, the BitTorrent client matches that
piece against the SHA-1 hash for that piece, which is included in the .torrent
file. After data integrity of the piece is validated, that peer can announce
to all of other peers that it has that piece for sharing. When a leecher has
obtained all pieces of the file, it then becomes a pure seeder of the content.
During the piece exchange process, a peer may join or leave the network. In
order to avoid file exchange interruption, a peer re-requests an updated list
of peers from the tracker periodically.

4.3.3 Structured P2P systems

In structured systems, the overlay network topology is tightly controlled
and files are placed at precisely specified locations. These systems use a

Peer-to-peer data management 109

Distributed Hash Table (DHT) to provide a mapping between the file identifier
and location, so that queries can be efficiently routed to the node with the
desired file.

Structured systems employ different DHT for routing messages and locat-
ing data. Some of the most interesting and representative DHT and their
corresponding systems are examined in the following sections.

4.3.3.1 Overview of Distributed Hash Table

The goal of DHTs is to provide the efficient location of data items in a
very large and dynamic distributed system without relying on any centralized
infrastructure. A DHT applies the principle of a hash table: a data item has
an identifier (e.g., in file system, the absolute path /home/toto/book.pdf).
This identifier is sent to a hash function. Most of the time, the hash function
is either SHA-1 [159] or MD5 [185], which generates with high probability a
unique key in the same virtual space by hashing key = hash(identifier). This
pair of values (identifier,key) is completely one way, which means that having
a similar hash value does not assume that the items are similar. Each peer in
the system handles a portion of the hash space and is responsible for storing a
certain range of keys. After a lookup for a certain key, the system will return
the identity (e.g., the IP address) of the peer storing the data item with that
key.

It is crucial that the hash function should balance the distribution of keys
throughout the space. Peers should receive a random identifier in the DHT
that evenly spreads in the space where each peer stores a similar number of
data items. This ensures load balance of the system. The size of the hash
function’s output space must be large enough so that the probability of key
collision between two different data items is minimized. The division of key
address space varies between systems. Some organize into some shapes like
rings, trees and hypercube. A guarantee, which is usually logarithmic, is given
that the final destination will finally be reached in several steps.

Next, we review some of the most important DHTs.

4.3.3.2 Chord

Overview In Chord [193], peers are uniformly distributed in a logical ring
ordered by increasing order of identifier, which is called an identifier circle
or Chord ring. The identifiers are determined by means of a deterministic
function, a variant of consistent hashing [172]. Consistent hashing is designed
to balance the load on the system, since each peer receives roughly the same
number of keys and there is a minimal impact on the movement of keys when
peers join or leave the system. A peer’s identifier is chosen by hashing the
peer’s IP address, while a key identifier is produced by hashing the data key.
Identifiers are ordered in the ring according to the modulo of the key with the
number 2m. Suppose that the key consists of m bits. Key k is assigned to

110 Grid Resource Management

K10

K54

lookup(K54)

+1

+2

N1

N8

N21

N32

N38

N42

N48

N51

N56

N14

+4

+8+16
+32

K24

K30

K38

lookup(K54)

Finger table

N8+2 N14

N8+1 N14

N8+4 N14

N8+8 N21

N8+16 N32

N8+32 N42

N1

N8

N14

N21

N32

N38

N42

N48

N51

N56

FIGURE 4.4: Chord ring with identifier circle consisting of ten peers and five
data keys. It shows the path followed by a query originated at peer N8 for
the lookup of key 54. Finger table entries for peer N8.

the first peer whose identifier is equal to, or follows k in the identifier space.
This node is called the successor node of key k .

Routing algorithm for getting data Each peer in the Chord ring needs
to know how to contact its successor peer on the circle for routing messages.
Queries for a given identifier k are passed around the circle via the successor
pointers until they first encounter a node that includes the desired identifier.
This is the node the query maps to. This simple key lookup is shown in
Algorithm 4.3.1.

Algorithm 4.3.1 Simple key lookup using the finger table.
Function find successor(k)

1: if id ∈ (n,successor] then
2: return successor;
3: else
4: // forward the query around the circle;
5: return successor.find successor(k);
6: end if

However, in the worst case, queries need to traverse all peers to find a certain
key. In order to improve routing performance, each Chord peer maintains a
routing table with up to m entries, called finger tables , where 2m is the number
of possible identifiers. The first entry points to its immediate successor on
the circle. The ith entry in the table at peer n contains the identity of the

Peer-to-peer data management 111

first peer s that succeeds n by at least 2i−1 on the identifier circle (i.e., s =
successor(n+2i−1), where 1<i<m).

The algorithm for scalable key lookup is presented in Algorithm 4.3.2. For
a node n to perform a lookup for key k , the finger table is consulted to
identify the first largest peer n’ whose identifier is between n and k . If such
a peer exists, find successor is done and node n returns its successor n’ and
the lookup is repeated starting from n’ . The procedure continues until the
peer that stores the key is found. Otherwise, n searches its finger table for
the node n’ whose identifier most immediately precedes k , and then invokes
find successor at n’ . The reason behind this choice of n’ is that the closer
n’ is to k , the more it will know about the identifer circle in the region of k .
In a system with N peers, when a peer executes a lookup operation, O(logN)
messages are transmitted to other peers.

An example of a Chord ring and the finger table entries of the peer N8 is
shown in Figure 4.4. The rows of the first column result from the compu-
tation n+2i−1; the second column is the successor of this identifier. In the
example, peer N8 executes a lookup operation for the data key 54, and it has
to visit all peers between peer N8 and peer N56 before the data key 54 is
found. The lookup complexity is O(N). With the finger table, the sequence
of hops is reduced considerably (e.g., N42/N51/N56). The lookup complexity
is O(logN).

Algorithm 4.3.2 Scalable key lookup using the finger table.
Function find successor(k)

1: if id ∈ (n,successor] then
2: return successor;
3: else
4: n’ = closest preceding node(k);
5: return n’.find successor(k);
6: end if

Function closest preceding node(k)

1: for i = m downto 1 do
2: if finger[i] ∈ (n,k) then
3: return finger[i];
4: end if
5: end for
6: return n;

Handling when nodes enter and leave When a peer n enters the system,
it uses the information from the predecessor and successor of itself to initialize,
store keys and configure pointers. The joining peer begins by hashing its IP
address (or takes a key randomly) to have a key determine its position in the
Chord ring. Then, n sends a message to the peer n’ holding this key. This
peer initializes the finger table of node n by delegating to n keys previously
assigned to it. The peer n’ becomes also the successor of n. The predecessors

112 Grid Resource Management

of n’ are notified about its new successor n to update its fingers to reflect
the change in the network topology caused by addition of n. Finally, all keys
for which n has become successor are transferred to n. The node joining
algorithm is presented in Algorithm 4.3.3 [192].

Similarly, when peer n leaves the Chord system, all of its assigned keys
are reassigned to n’s successor to maintain consistent hashing mapping. No
other changes of keys assignment to peers need to take place. It is crucial for
the correctness of the Chord protocol that each peer is aware of its successors.
When peers fail, it is possible that a peer does not know its new successor and
it has no chance to learn about it. To avoid this situation, a peer maintains a
successor list of size r . A peer simply contacts the next peer on its successor
list when its immediate successor peer does not respond. The probability that
all r peers in the successor list fail is pr where p is the probability for a peer
failure.

Chord has been widely used in research and it gives certain guarantees on
finding a data item. In Chord, the number of hops traversed for accessing
node A from node B might be different from traversing from node B to node
A. This leads to the link asymmetry problem. The other drawback of Chord
is node joining cost. The distribution neighbors and number of entries in the
routing table depend mostly on the location of the node on the circle. A new
joining node needs to contact its immediate successor, which can be at the
other side of the network to initiate first connection. This is expensive in
terms of maintaining consistency and network bandwidth.

4.3.3.3 Content-Addressable Network (CAN)

Overview CAN is a distributed hash-based architecture that maps file
names to their location in the network. In this work, authors are seeking
an Internet-scale naming system, which is location-independent and fault-
tolerant. Each node of the CAN network stores a chunk (referred to as a
“zone”) of the entire hash table, as well as information about its neighbors.
Requests to insert, lookup or delete a particular key are routed to those nodes
whose zone have the corresponding keys.

Routing algorithm for getting data The CAN [182] design centers
around a virtual d-dimensional Cartesian coordinate space to store (key k,
value v) pairs. This coordinated space is partitioned into segments corre-
sponding with zones in the hash table. These zones are distributed to all the
nodes of the system. In that way, each node takes responsibility of a zone of
the hash table. For example, Figure 4.5 shows a 2-dimensional [0,1] x [0,1]
coordinate space partitioned among 5 nodes. Any key k is mapped onto a
point p using a hash function on the address space. Then, the corresponding
(k,v) pair is stored to the node whose zone includes point p. For example,
in the case of Figure 4.5, a key that maps to coordinate (0.1,0.2) would be
stored at the node responsible for zone A.

Peer-to-peer data management 113

Algorithm 4.3.3 Node joining algorithm in Chord.
Function join(n’)

1: // Node n join the Chord network, node n’ is an arbitrary node in the network
2: if n’ then
3: init finger table(n’);
4: notify();
5: s = successor; // get successor
6: s.move keys(n);
7: else
8: // no other node in the network to n itself
9: for i = 1 to m do

10: finger[i].node = n;
11: end for
12: predecessor = successor = n;
13: end if

Function init finger table(n’)

1: // initialize finger table of local node, n’ is an arbitrary node already in the network
2: finger[i].node = n’.find successor(finger[1].start);
3: successor = finger[1].node;
4: for i = 1 to (m - 1) do
5: if finger[i+1].start ∈ [n,finger[i].node) then
6: finger[i+1].node = finger[i].node;
7: else
8: finger[i+1].node = n’.find successor(finger[i+1].start);
9: end if

10: end for

Function notify()

1: // update finger tables of all nodes for which local node, n, has became their finger
2: for i = 1 to m do
3: // find closest node p whose ith finger can be n
4: p = find predecessor(n - 2i−1);
5: p.update finger table(n,i);
6: end for

Function update finger table(s,i)

1: // if s is ith finger of n, update n’s finger table with s
2: if s ∈ [n,finger[i].node) then
3: finger[i].node = s;
4: p = predecessor; // get first node preceding n
5: p.update finger table(s,i);
6: end if
7: finger[next] = find successor(n + 2next−1);

Function move keys(p)

1: // if p is new successor of local stored key k, move k (and its value) to p
2: for each key k stored locally do
3: if p ∈ [d,n) then
4: move k to p;
5: end if
6: end for

114 Grid Resource Management

(0−0.5,0−0.5)

(0.75−1.0,0.5−1)
(0−0.5,0.5−1)

(0.5−0.75,0.5−1)

DC E

BA

1.0

0.0

0.0

1.0

(0.5−1,0−0.5)

peer B’s virtual coordinate zone

Es neighbor set: {B,D}

p
.

FIGURE 4.5: Example of a 2-d space with 5 nodes.

To retrieve the key k and the corresponding data, a node executes the same
hash function to find point p and then retrieve the corresponding value v from
the node covering p. For the routing operation, each node maintains the IP
address of its neighbors having zones adjoining to its own and constructs a
coordinate routing table. The request is routed from node-to-node until it
reaches the node covering p. CAN uses a greedy algorithm to route messages
(see the Algorithm 4.3.4), where each node sends the message to the neighbor
that is closest to destination. Figure 4.5 depicts an example that illustrates a
routing process; a request from node C for a key mapping to point p would
be routed through node A to point p along the straight line represented by
the arrow. A node tries to reach a destination using the best candidate from
the routing table. However, in case it fails, the routing table will backtrack
and choose another candidate. If connections to all neighbors are lost, the
Expanding Ring Search (ERS) algorithm will be used to discover any node
that is connected to the network.

Algorithm 4.3.4 Greedy algorithm for routing messages in CAN.
Function search(from node, to node, count)

1: if from node = to node then
2: // search successful
3: return from node;
4: end if
5: if count = network size then
6: // search failed
7: return null;
8: end if
9: visited[from node] := true

10: for each neighbor of from node do
11: Find the distance of neighbors from from node
12: end for
13: next node := closest neighbor of from node;
14: search(next node, to node, count+1)

Peer-to-peer data management 115

Handling when nodes enter and leave Algorithm 4.3.5 is used to handle
node joining in CAN. When a new node joins the system, it is allocated a
portion of the coordinate space by splitting the zone of an existing node in
half. Concretely, this operation is performed in three steps. Firstly, the new
node discovers a bootstrapping node in the CAN network which maintains a
list of active CAN nodes. Secondly, the node connects to the bootstrapping
node and the new joining node randomly chooses a point p in the coordinate
space and sends a JOIN request to the node covering p. The zone is split and
a half is assigned to the new node. Finally, keys that belong to the partitioned
zone will be transferred to the new node. Additionally, the neighbors of the
split zone are notified to update their routing table to include the new node.

Algorithm 4.3.5 Node joining algorithm in CAN.
1: Add first node to the graph.
2: Choose a random position in the virtual coordinate space for new node.
3: Add new node to the graph.
4: Find the old node that owns that position.
5: Split the region occupied by old node along the longer axis and assign one half to the

new node.
6: Fix the edges in the graph for both the old node and new node.
7: nodes added = nodes added + 1.
8: Repeat Step 2 if nodes added < desired network size.

When a node leaves the system, its zone and its hash table entries are
assigned to one of its neighbors. Periodically, a node sends update messages
to each of its neighbors about its zone coordinates, its neighbor list. A node
detects failure of other nodes if it does not receive such update messages
within a certain amount of time and initiates a controlled takeover mechanism.
However, it will be listening for takeover messages from the surroundings. If
any other node finishes the takeover before the current node, takeover process
is canceled. The takeover is done to recombine address space.

The major advantage of CAN is in the fact that it performs better in terms
of node states. A CAN node only keeps 2d states with d , dimensional space,
while a node in other systems usually has around logN states. However, some
drawbacks of CAN are mainly present in the CAN routing algorithm, which
is not as efficient as the others. To increase routing performance, authors
propose to use Round Trip Timer (RTT)-weighted routing, replication of en-
tries and increasing dimensions. Though increasing dimensions leads to the
cost of increased per-node state, it reduces considerably application-level hop
count. Since each node will have multiple neighbors connected to each other,
contacting a next hop will take smaller paths.

4.3.4 Hybrid P2P systems

Both unstructured and structured systems have advantages and disadvan-
tages. Unstructured systems have low cost for maintenance of network struc-

116 Grid Resource Management

ture. However, query processing in these systems is not very efficient and does
not scale well. These drawbacks arise because they create a random graph
that represents the network topology, where queries are propagated from node
to node in a blind manner. On the other hand, data files in structured sys-
tems are placed not at random nodes but at specified locations using hash
functions. Such systems have good performance for point queries, but they
are not efficient for text or range queries.

Several hybrid systems have been proposed to overcome the drawbacks
of each while retaining their benefits. In these systems, a peer’s neighbor
connections are defined more flexibly than those in structured systems.

4.3.4.1 Pastry

Overview Pastry [186] is generic peer-to-peer content location very simi-
lar to Tapestry, proposed by Rice university in cooperation with Microsoft
Research Center. Pastry differs from other P2P routing substrates such as
Chord and CAN mainly in its approach for achieving network locality and
object replication.

In Pastry, messages are routed to nodes based on the provided keys. A Java
version of Pastry has been implemented: FreePastry. Based on this routing
layer, other applications such as Scribe [187], PAST [158] and Squirrel [169]
have been developed.

Routing algorithm for getting data Each Pastry node has a unique,
128-bit identifier called the nodeID that is produced from computing a cryp-
tographic hash of the node’s public key or its IP address. This procedure
guarantees unique nodeIDs. The uniform distribution of NodeIDs ensures an
even population of the nodeID space. Each data also has a 128-bit key. This
key is generated by a hash function. The data is stored in the node whose
nodeID is numerically closest to its key.

Each node divides its routing table in three parts: routing table, neighbor-
hood set and leaf set. The first part is the “routing table”, which includes
information on peers needed to route messages according to the description
made before. Assuming a network consisting of N nodes, a node’s routing
table is organized into logN rows with 2b-1 entries each row. Note that
b is a configuration parameter of the Pastry system with typical value 4.
The nth row of the routing table contains the nodeIDs and IP addresses of
those nodes, whose nodeID shares the present node’s nodeID in the first n
digits but different in the n+1 digit. If there are more than 2b-1 qualified
nodes, the closest 2b-1 nodes will be selected, according to a proximity metric
such as the delay or the number of IP routing hops. The “leaf set” allows
nodes to know exactly which key belongs to them and which keys belong to
their neighbors. It contains the nodeIDs and IP addresses of the half nodes
with numerically closest larger nodeIDs, and half nodes with numerically
closest smaller nodeIDs, relative to the present node’s nodeID. Finally, the

Peer-to-peer data management 117

Table 4.2: Notation definition for Algorithm 4.3.6.
Notation Comment
Ri

l The entry in the routing table R at column i , 0 ≤ i <
2b and row l , 0 ≤ l < 128/b

Li The i-th closest nodeID in the leaf set L, -�|L|/2� ≤
i ≤ �|L|/2�, where negative/positive indexes indicate
nodeIDs smaller/larger than the present nodeID, re-
spectively.

Dl The value of the l ’s digit in the key D
shl(A,B) The length of the prefix shared among A and B , in

digits

“neighborhood set” is a list of nodes that contains the nodeIDs and IP ad-
dresses that are physically closest to the present node.

Algorithm 4.3.6 Routing algorithm in Pastry.
1: if L−�|L|/2� � D � L�|L|/2� then
2: // D is within range of our leaf set
3: forward to Li, so that |D - Li| is minimal;
4: else
5: // use the routing table
6: Let l = shl(D, A);
7: if R �= null then

8: forward to R
Dl
l ;

9: else
10: // rare case
11: forward to T ∈ L ∪ R ∪ M, so that
12: shl(T, D) ≥ l,
13: |T - D| < |A - D|
14: end if
15: end if

For message routing, the node tries to route client messages to the node
with a nodeId that is numerically closest to the key, among all live Pastry
nodes. In each routing step, the message reaches a node sharing a prefix
(with the target object) of one digit longer, thus reaching the destination in
O(logN) hops [186] where N is the number of nodes in the system.

Algorithm 4.3.6 which uses notations in Table 4.2 is applied to route mes-
sages in Pastry. If the node finds that the key falls within the range of nodeIDs
covered by its leaf set (line 1), it directly forwards the message to the node
in the leaf set whose nodeID is closest to the key (line 3). If the key is not
covered by the leaf set, then the routing table is used and the message is
forwarded to a node that shares a common prefix with the key by at least
one more digit (line 6-8). In certain cases, it is possible that the appropriate
entry in the routing table is empty or the associated node is not reachable
(line 11-14), in which case the message is forwarded to a node that shares a

118 Grid Resource Management

Table 4.3: State of a Pastry node with node ID 23002, b = 2. The top row of
the routing table represents level zero. The neighborhood set is not used in
routing, but is needed during node addition/recovery.

NodeID 23002
Leaf Set

Smaller Greater
23001 22333 23022 23033
22321 22312 23100 23101

Routing Table
-0-1023 -1-2131 2 -3-0231
2-0-021 2-2-032 3
0 23-2-33
0 230-2-2

2
Neighborhood Set

02132 32100 00213 10023
31102 22311 02310 01213

prefix with the key at least as long as the present node, and is numerically
closer to the key than the present node’s nodeId. Such a node must be in the
leaf set unless the message has already arrived at the node with numerically
closest nodeID.

Handling when nodes enter and leave Table 4.3 [186] shows the state
of a Pastry node with the nodeID 23002, b = 2 in a system that uses 5 digits
for the node identifier. Node identifiers are split in three parts: equal prefix,
current digit and different suffix. The first row keeps addresses of nodes that
have no common prefix with current node. The second row keeps addresses
of nodes that share the first digit with the current node and so on. At each
row, the cell whose digit matches the node’s digit has a gray background.

The authors claim that Pastry is efficient in terms of routing table size
with a configuration parameter b of 4 and a node number of 106; a routing
table contains about 75 entries and the expected number of hops to reach a
destination is around 5. As each node maintains in its routing table state
information of the network, there is a need to keep consistency. The authors
propose exchanging periodical messages between nodes in the close address
space. If a node does not respond for a certain amount of time, all the nodes
update their routing table. Nevertheless, such exchanging of update messages
wastes the network bandwidth.

4.3.4.2 Tapestry

Overview Tapestry [197] is designed as a routing and location layer in
OceanStore [173]. If Chord and CAN rely simply on hop count, which can
sometimes take the lookup to the other side of the network, Tapestry considers
the network distance when looking up keys. Tapestry provides an environ-

Peer-to-peer data management 119

Table 4.4: The neighbor map held by Tapestry node with ID 67493.
Level 5 Level 4 Level 3 Level 2 Level 1

Entry 0 07493 x0493 xx093 xxx03 xxxx0
Entry 1 17493 x1493 xx193 xxx13 xxxx1
Entry 2 27493 x2493 xx293 xxx23 xxxx2
Entry 3 37493 x3493 xx393 xxx33 xxxx3
Entry 4 47493 x4493 xx493 xxx43 xxxx4
Entry 5 57493 x5493 xx593 xxx53 xxxx5
Entry 6 67493 x6493 xx693 xxx63 xxxx6
Entry 7 77493 x7493 xx793 xxx73 xxxx7
Entry 8 87493 x8493 xx893 xxx83 xxxx8
Entry 9 97493 x9493 xx993 xxx93 xxxx9

ment that offers system-wide stability, transparently masking faulty compo-
nents, bypassing failed routes, removing nodes under attack from service and
rapidly adapting communication topologies to circumstances. Location in-
formation is used for incrementally forwarding messages from point to point
until they reach their destination. The consistency of location information is
reparable on the fly, and if lost due to failures or destroyed, it is easily rebuilt
or refreshed.

Routing algorithm for getting data Tapestry mechanisms are modeled
after the Plaxton mesh [181]. The Plaxton data structure allows messages
to locate objects and route to them across an arbitrarily-sized network, while
using a small constant-sized routing map at each hop. In Plaxton, each node
or machine can take on the roles of servers (where objects are stored), routers
(which forward messages), and clients (origins of requests).

In the Plaxton mesh, each node has a neighbor map with constant size as
shown in the example in Table 4.4. In a system with N -sized namespace using
identifiers of base b, the neighbor map size is b logb(N). The neighbor map
is organized into routing levels, and each level l contains a number of entries
that point to a set of nodes matching the suffix for that level with l digits.
The ith entry in the j th level is the identifier and location of the closest node
which ends in “i” + suffix(N,j-1). For example, the 5th entry for the 3rd level
for node 67493 points to the node closest to 67493 in network distance whose
ID ends in 593.

Tapestry performs message routing as follow. Consider that some node S
= 67493 sends a message to node D = 34567. To succeed, S has to discover
some node that ends with a 7. Consider it to be R1 = 98747. Now, R1 must
know about some node that ends with a 7 and has 6 in its former position, say
R2 = 64267. This reasoning goes on for nodes R3 = 45567, R4 = 64567 and
finally D = 34567. So the digits are resolved right to left as follows: xxxx7
→ xxx67 → xx567 → x4567 → 34567.

Handling when nodes enter and leave The Plaxton mesh does not sup-
port dynamic node insertion and deletion, and does not handle node failure.

120 Grid Resource Management

In other words, it supposes to be a static data structure. Tapestry extends
its design to adapt it to the transient populations of peer-to-peer networks.
It employs an incremental algorithm for node insertion, populating neighbor
maps and notifying neighbors of new node insertions. Firstly, the joining node
N requests a new identifier new id . Then, it contacts the gateway node G,
a Tapestry node known to N that acts as a bridge to the network. Starting
with node G, node N attempts to route to new id , and copies an approximate
neighbor map from the ith hop Hi, G = H0. Then, the relevant nodes are
informed to take into account the joining node in their neighbor maps.

In order to leave the network, a node broadcasts its intention of leaving
and transmits the replacement node for each level in the routing tables of
the other nodes. Objects at the leaving node are redistributed or replenished
from redundant copies.

4.4 Shortcomings and improvements of P2P systems

4.4.1 Unstructured P2P systems

The main characteristic of unstructured systems is that the peers are orga-
nized into a random graph and the placement of data is completely unrelated
to the overlay network. As a result, a peer has no idea about which peers
hold the relevant files that it desires. Data lookup in such systems is essen-
tially based on the flooding method. Therefore, peers are placed under a high
load handling distributed searches. Flooding is not scalable since it produces
a large volume of unnecessary traffic in the network. However, according to
[178], apart from scalability concerns unstructured systems might be the pre-
ferred choice for file-sharing and other applications as they offer the following
advantages:

• Keyword searching is the common operation.

• Most content is typically replicated at a fair fraction of participating
sites.

• The node population is highly transient.

• Users will accept a best-effort content retrieval approach.

A number of initiatives to address the scalability issue in unstructured sys-
tems have been initiated in recent years. Several solutions have been proposed
to improve the scalability for unstructured systems.

The random walk method [176] has been proposed to replace the original
flooding approach. In this method, each peer chooses an equal number of
neighbors at random, and propagates its requests only to them. In this case,

Peer-to-peer data management 121

the TTL parameter designates the number of hops the walker should propa-
gate. The use of random walks is found to significantly improve the perfor-
mance of the system as the messages are reduced considerably. However, the
drawback of this algorithm is its highly variable performance. Choice made
of random peers has a great impact on success rates of data lookup. Another
disadvantage of this method is its inability to adapt to different query loads.
Queries for popular and unpopular objects are treated in the exact same man-
ner without previous successes or failures are analyzing. As an alternative,
multiple parallel random walks is proposed in [177]. Although compared to
the single random walk this method has better behavior, it still suffers from
low network coverage and slow response time. Hybrid methods that combine
flooding and random walks have been proposed in [164].

In [196], authors suggest the use of a more sophisticated technique called
directed breadth first search (direct BFS). The choice of peers to propagate
messages is based on their past history and local indexes, which are data
structured where each node maintains very simple and small indexes over
other nodes’ data. Direct BFS makes use of local indexes by forwarding
requests only to those peers that have often provided results to past requests,
under the assumption that they will continue to do so. Then, the requests
are iteratively forwarded to more nodes at increasing depths until the query
is answered (i.e., iterative deepening technique).

In [171], a localized search mechanism is proposed where each node main-
tains an index or a profile of its neighbors’ content that is used to rank its
neighbors. Queries are forwarded selectively to the most appropriate profiles
only and search is then restricted to what are believed to be neighbors with
relevant results.

In [157], the use of routing indexes were introduced to address the searching
and scalability issues where various types of indexes were proposed based on
the way each index takes into account the information about the number of
hops required for locating a matching peer.

In another family of algorithms, [195] and [156] take into account the dif-
ferent connectivity and forwarding capacities of peers in unstructured P2P
systems to improve their scalability and search efficiency. Experiments demon-
strated that peers with low bandwidth connections (i.e., nodes connected over
dial-up modems) are easily saturated by flooding requests and thus slow down
resource discovery in unstructured P2P systems. Hence, in order to improve
system performance, low bandwidth peers need to be isolated from query
routing. In these systems, peers with different bandwidth connections are dis-
tinguished into a two-level hierarchy of peers. High bandwidth peers, known
as super-peers , form an unstructured overlay network, while peers with low
bandwidth, the leaves , are connected only to super-peers. Each super-peer
has an index of all the files contained in its leaves. Any request originating
at a leaf peer is forwarded through the super-peers it is connected to, while
flooding is performed only at the super-peer overlay network. This modifica-
tion allows the system to retain the simplicity of unstructured systems while
offering improved scalability.

122 Grid Resource Management

In [184], the connectivity and reliability of unstructured networks (and in
particular Gnutella) is studied. P2P networks such as Gnutella exhibit the
properties of so-called power-law networks, in which the number of nodes with
L links is proportional to L−k, where k is a network-dependent constant. In
other words, most nodes have few links, thus a large fraction of them can be
taken away without seriously damaging the network connectivity, while there
are a few highly connected nodes, which, if taken away, will cause the whole
network to be broken down in pieces. One implication of this is that such
networks are robust when facing random node attacks, however vulnerable to
well-planned attacks.

4.4.2 Structured and hybrid P2P systems

Flooding search methods seem to be inherently scalable. As a result, search
methods using distributed routing tables are proposed in structured systems.
Concretely, these search methods are based on distributed hash tables (DHT),
which provide a hash table interface with primitive methods put(key,value)
and get(key). We have introduced in this chapter four typical structured sys-
tems: Chord, CAN, Pastry, and Tapestry. In these systems, each peer is
responsible for storing the values (file contents) corresponding to a certain
range of keys. Most of the routing algorithms used for data lookup are equiv-
alent in terms of routing table space cost which is O(logN) where N is the
number of peers in the network. Similarly, the performance of structured sys-
tems is mostly O(logN), with the exception of CAN, where the performance
is given by O(d

4N
1
d), d being the number of employed dimensions.

The advantage of DHT-based searches is that queries can be efficiently
routed to the nodes possessing the desired files. Since overlay network struc-
ture is strictly controlled, node joining or leaving operations in structured
systems are mostly costly, in particularly for Chord, as node joining or leav-
ing induces change to all other nodes.

However, one of the major limitations of structured P2P systems is that
queries are typically limited to “exact-match” keyword search (as opposed
to keyword queries). An exact identifier (key) of a data item should be ap-
pointed in order to locate the nodes that store that item. In practice, P2P
users tend to submit queries with partial information for searching data items
(e.g., all the songs by “Bryan Adams”). The support of searching based on
multiple keywords is hence desirable. Active research is ongoing to extend
the capabilities of structured systems to deal with more general queries such
as range queries and join queries [168]. Nevertheless, it is arguable whether
these capabilities can be efficiently implemented in a large-scale network.

In [170], a hybrid structured network is proposed where nodes organized
in a structured network form its backbone. Each node in the backbone is
also the leader of a cluster formed by non-backbone nodes. Within a cluster,
nodes form an unstructured network and cooperate to store data and answer

Peer-to-peer data management 123

Table 4.5: A comparison of various unstructured P2P systems.
Unstructured P2P system

Algorithm
Taxonomy

Napster Gnutella Freenet FastTrack/
KaZaA

eDonkey2000 BitTorrent

Decentralization No explicit
central server,
peers are
connected to
central index
server to locate
data

Topology
is flat with
equal peers

Loosely
DHT
function-
ality

No explicit
central
server,
peers are
connected
to super-
peers

Hybrid two-
layer network
composed of
clients and
servers

Centralized
model
with a
Tracker
keeping
track of
peers

Architecture Two-level
hierarchical
network of
central index
servers and
peers

Flat and ad-
hoc network
of servants
(peers).
Flooding
request
and peers
download
directly

Keywords
and de-
scriptive
text
strings
to iden-
tify data
objects

Two-level
hierar-
chical
network
of super-
peers and
peers

Servers pro-
vide the
locations
of files to
requesting
clients for
download
directly

Peers
request
informa-
tion from
a central
Tracker

Lookup proto-
col

Central index
server

Query
flooding

Keys,
Descrip-
tive Text
String
search
from peer
to peer

Super-
peers

Client-Server
peers

Tracker

System Pa-
rameters

None None None None None .torrent file

Routing Per-
formance

Guarantee to
locate data
using central
index servers

No guar-
antee to
locate data.
Improve-
ments made
in adapting
Ultrapeer-
client
topologies.
Good per-
formance
for popular
content

Guarantee
to locate
data us-
ing Key
search
until the
requests
exceeded
the Hops-
To-Live
(HTL)limits

Some de-
gree of
guarantee
to locate
data, since
queries
are rooted
to super-
peers
which has
a better
scaling.
Good
perfor-
mance for
popular
content

Guarantee
to locate
data and
guarantee
performance
for popular
content

Guarantee
to locate
data and
guarantee
perfor-
mance for
popular
content

Routing State Constant Constant Constant Constant Constant Constant
but chok-
ing (tem-
porary
refusal to
upload)
may occur

Peer
Join/Leave

Constant Constant Constant Constant Constant
with boot-
strapping
from other
peers and
connect to
server to
register files
being shared

Constant

Security Low. Threats:
vulnerable to
censorship,
legal action,
surveillance,
malicious at-
tack, and
technical fail-
ure

Low.
Threats:
flooding,
malicious
content,
virus
spread-
ing, attack
on queries,
and denial
of service
attacks

Low. Suf-
fers from
man-in-
middle
and
Trojan
attacks

Low.
Threats:
flooding,
malicious
or fake
content,
viruses,
etc. Spy-
wares
monitor
the ac-
tivities of
peers in
the back-
ground

Moderate.
Similar
threats as
the Fast-
Track and
BitTorrent

Moderate.
Cen-
tralized
Tracker
manage
file trans-
fer and
allows
more con-
trol which
makes
it much
harder
faking IP
addresses,
port num-
bers,
etc.

Reliability/Fault
Resiliency

Degradation
of the perfor-
mance as there
are bound to be
limitations to
the size of the
server database
and its capacity
to respond to
queries. Cen-
tral point of
failure

Degradation
of the per-
formance.
Peers re-
ceive mul-
tiple copies
of replies
from peers
that have
the data.
Requester
peer can
retry

No hier-
archy or
central
point of
failure
exists

The or-
dinary
peers are
reassigned
to other
super-
peers

Reconnecting
to another
server. Will
not receive
multiple
replies from
peers with
available
data

The
Tracker
keeps
track of
the peers
and avail-
ability of
the pieces
of files.

124 Grid Resource Management

Table 4.6: A comparison of various structured P2P systems.

Structured P2P system
Algorithm
Taxonomy

Chord CAN Pastry Tapestry

Decentralization DHT functionality on Internet-like scale
Architecture Ini-directional

and circular
NodeID space

Multi-
dimensional
ID coordinate
space

Plaxton-style
global mesh
network

Plaxton-style
global mesh
network

Lookup proto-
col

Matching Key
and NodeID

key,value pairs
to map a point
P in the co-
ordinate space
using uniform
hash function

Matching Key
and prefix in
NodeID

Matching suffix
in NodeID

System Param-
eters

N -number
of peers in
network

N -number of
peers in net-
work d-number
of dimensions

N -number
of peers in
network, b-
number of bits,
(B=2b) used
for the base
of the chosen
identifier

N -number of
peers in net-
work, B-base
of the chosen
identifier

Routing Per-
formance

O(logN) O(d.N 1
d
) O(logBN) O(logBN)

Routing State logN 2d BlogBN +
BlogBN

logBN

Peer
Join/Leave

(logN)2 2d logBN logBN

Security Low level. Suffers from man-in-middle and Trojan attacks
Reliability/Fault
Resiliency

Failure of peers
will not cause
network-wide
failure. Repli-
cate data on
multiple con-
secutive peers.
On failures,
application
retries

Failure of peers
will not cause
network-wide
failure. Mul-
tiple peers
responsible for
each data item.
On failures,
application
retries

Failure of
peers will not
cause network-
wide failure.
Replicate data
across multiple
peers. Keep
track of mul-
tiple paths to
each peer

Failure of
peers will not
cause network-
wide failure.
Replicate data
across multiple
peers. Keep
track of mul-
tiple paths to
each peer

queries. When inserting a data item, multiple copies of its index are stored
in a few different clusters. A query is also mapped to multiple clusters, and a
flooding search within these clusters is performed. The union of all the search
results are returned to users as the final result.

In [163], authors propose an approach that relies on multiple indexes, or-
ganized hierarchically, which permit users to locate data even using scarce
information, although at the price of a higher lookup cost. The data itself is
stored on only one (or a few) of the nodes.

Peer-to-peer data management 125

In [165], an approach based on an underlying peer-to-peer system for both
indexing and routing, and implementing a parallel query processing layer on
top of it, is proposed.

It is argued in [167] that by creating keys for accessing data items (i.e.,
“virtualizing” the names of the data items) two main problems arise:

• Locality is destroyed Data items (i.e., files) from a single site are not
usually co-located, meaning that opportunities for enhanced browsing,
pre-fetching and efficient searching are lost.

• Useful application level information is lost The data used by many ap-
plications is naturally described using hierarchies, which expose rela-
tionships between items near to each other. The virtualization of the
file namespace by generating keys discards this information.

How to maintain the overlay structure for routing algorithms to function
efficiently in a very transient environment where nodes are joining and leaving
at a high rate is an open research issue. The resilience of structured P2P
systems in the face of a very transient user population is considered in [174].

4.5 Concluding remarks

This chapter presents an overview of P2P systems and the underlying char-
acteristics of them. We discuss then certain unstructured, structured, and
hybrid systems including routing algorithms for data lookup in each type of
system. A table of characteristics, which summarizes the shortcomings and
improvements of these systems is also provided.

126 Grid Resource Management

References

[152] Peer-to-peer working group.

[153] Overnet/eDonkey2000, 2000. Available online at: http://www.

edonkey2000.com (Accessed August 31st, 2007).

[154] The overnet file-sharing network, 2002. Available online at: http://

www.overnet.com (Accessed August 31st, 2007).

[155] The FastTrack web site, 2003. Available online at: http://www.

fasttrack.nu (Accessed August 31st, 2007).

[156] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker.
Making gnutella-like P2P systems scalable. In Proceedings of the 2003
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM ’03), pages 407–418, New
York, NY, 2003. ACM Press.

[157] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer sys-
tems. In Proceedings of the 22nd International Conference on Dis-
tributed Computing Systems (ICDCS’02), 2002.

[158] P. Druschel and A. I. T. Rowstron. PAST: A large-scale, persistent
peer-to-peer storage utility. In HotOS, pages 75–80, 2001.

[159] D. Eastlake and P. Jones. US secure hash algorithm 1 (SHA1), 2001.

[160] S. Fanning. Napster home page, 2001. Available online at: http://www.

napster.com (Accessed August 31st, 2007).

[161] I. Foster and A. Iamnitchi. On death, taxes, and the convergence of peer-
to-peer and grid computing. In Proceedings of 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS’03), Berkeley, CA, Feb. 2003.

[162] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: En-
abling scalable virtual organizations. The International Journal of High
Performance Computing Applications, 15(3):200–222, 2001.

[163] L. Garces-Erice, P. Felber, E. W. Biersack, G. Urvoy-Keller, and K. W.
Ross. Data indexing in peer-to-peer DHT networks. In Proceedings
of the 24th IEEE International Conference on Distributed Computing
Systems (ICDCS), pages 200–208, Tokyo, Japan, 2004.

[164] C. Gkantsidis, M. Mihail, and A. Saberi. Hybrid search schemes for un-
structured peer-to-peer networks. In Proceedings of INFOCOM 2005,
24th Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, volume 3, pages 1526–1537, Miami, FL, March 2005.

Peer-to-peer data management 127

[165] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica.
Complex queries in DHT-based peer-to-peer networks. In Proceedings of
the 1st International Workshop on Peer-to-Peer Systems (IPTPS’02),
MIT Faculty Club, Cambridge, MA, 2002.

[166] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman.
SkipNet: A scalable overlay network with practical locality properties.
In Proceedings of the 4th USENIX Symposium on Internet Technologies
and Systems (USITS’03), Mar. 2003.

[167] P. Heleher, B. Bhattacharjee, and B. Silaghi. Are vitrualized overlay
networks too much of a good thing? In Proceedings of the 1st Inter-
national Workshop on Peer-to-Peer Systems (IPTPS’02), MIT Faculty
Club, Cambridge, MA, Mar. 2002.

[168] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and
I. Stoica. Querying the Internet with PIER. In VLDB, pages 321–332,
2003.

[169] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized peer-
to-peer web cache. In Proceedings of 21th ACM Symposium on Princi-
ples of Distributed Computing (PODC 2002), pages 213–222, Monterey,
California, 2002.

[170] X. Jin, W.-P. K. Yiu, and S.-H. G. Chan. Supporting multiple-keyword
search in a hybrid structured peer-to-peer network. In Proceedings of
IEEE International Conference on Communications (ICC), Istanbul,
Turkey, June 2006.

[171] V. Kalogeraki, D. Gunopulos, and D. Yazti-Zeinalipour. A local search
mechanism for peer-to-peer networks. In Proceedings of the eleventh
international conference on Information and knowledge management,
pages 300–307. ACM Press, 2002.

[172] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web. In STOC ’97:
Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, pages 654–663, New York, NY, 1997. ACM Press.

[173] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An architecture for global-scale persistent storage. In Pro-
ceedings of the Ninth international Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2000).
ACM, November 2000.

128 Grid Resource Management

[174] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Observations on the
dynamic evolution of peer-to-peer networks. In Proceedings of the 1st In-
ternational Workshop on Peer-to-Peer Systems (IPTPS02), Cambridge,
MA, Mar. 2002.

[175] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and
comparison of peer-to-peer overlay network schemes. Communications
Surveys and Tutorials, IEEE, pages 72–93, 2005.

[176] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication
in unstructured peer-to-peer networks. In Proceedings of the 16th ACM
International Conference on Supercomputing (ICS’02), New York, NY,
2002.

[177] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication
in unstructured peer-to-peer networks. In Proceedings of the 16th in-
ternational conference on Supercomputing (ICS’02), pages 84–95, New
York, NY, 2002. ACM Press.

[178] Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogeneity make Gnutella
scalable? In Proceedings of the First International Workshop on Peer-
to-Peer Systems (IPTPS’02), pages 94–103, Cambridge, MA, March
2002.

[179] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu. Peer-to-peer computing, Mar. 2002.

[180] C. NEWS. Napster among fastest-growing net technologies, Oct. 2000.

[181] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies
of replicated objects in a distributed environment. In ACM Symposium
on Parallel Algorithms and Architectures, pages 311–320, 1997.

[182] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A
scalable content-addressable network. In SIGCOMM ’01: Proceedings
of the 2001 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 161–172. ACM Press, Oc-
tober 2001.

[183] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network.
In Proceedings of PDP’02, Aug. 2001.

[184] M. Ripeanu and I. Foster. Mapping the Gnutella network: Macro-
scopic properties of large-scale peer-to-peer systems. In F. Kaashoek
and A. Rowstron, editors, Proceedings of the 1st International Work-
shop on Peer-to-Peer Systems (IPTPS’02), March 2002.

Peer-to-peer data management 129

[185] R. L. Rivest. The MD5 message-digest algorithm, 1992. Available
online at: http://theory.lcs.mit.edu/~rivest/rfc1321.txt (Accessed
July 24th, 2008).

[186] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. Lecture Notes
in Computer Science, 2218:329–350, 2001.

[187] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
SCRIBE: The design of a large-scale event notification infrastructure. In
Proceedings of Networked Group Communication, pages 30–43, London,
UK, Nov. 2001.

[188] D. Scholl. Nap protocol specification, 2000. Available online at: http:

//opennap.sourceforge.net/napster.txt (Accessed August 31st, 2007).

[189] R. Schollmeier. A definition of peer-to-peer networking for the classifica-
tion of peer-to-peer architectures and applications. In P2P ’01: Proceed-
ings of the First International Conference on Peer-to-Peer Computing
(P2P’01), pages 101–102, Washington, DC, USA, 2001. IEEE Computer
Society.

[190] C. Shirky. What is P2P... and what isnt’t, 2000. Available online
at: http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.

html (Accessed August 31st, 2007).

[191] M. P. Singh. Peering at peer-to-peer computing. IEEE Internet Com-
puting, 1(5):4–5, 2001.

[192] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the ACM SIGCOMM’01 Conference, Aug. 2001.

[193] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup
protocol for internet applications. IEEE/ACM Transactions on Net-
working, 11(1):17–32, Feb. 2003.

[194] D. Tsoumakos and N. Roussopoulos. A comparison of peer-to-peer
search methods. In Proceedings of the 6th International Workshop on
the Web and Databases (WebDB 2003), pages 61–66, Mar. 2003.

[195] Z. Xu, M. Mahalingam, and M. Karlsson. Turning heterogeneity into
an advantage in overlay routing. In Proceedings of the Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications
Societies, INFOCOM 2003, volume 2, pages 1499–1509, San Francisco,
CA, March-April 2003.

130 Grid Resource Management

[196] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer net-
works. In Proceedings of the 22th International Conference on Dis-
tributed Computing Systems (ICDCS’02), Vienna, Austria, 2002.

[197] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing. Technical
Report UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

Chapter 5

Grid enabled virtual file systems

5.1 Introduction

The grid is rapidly emerging as the dominant paradigm for wide-area dis-
tributed computing [202]. Its goal is to provide an environment for coordi-
nated resource sharing and problem solving in dynamic, multi-institutional
virtual organizations [211]. Most of the current grid deployments have fo-
cused on data intensive applications where significant processing was done
on very large amounts of data [198]. The data required by such applications
is largely distributed in various storage systems. The need to access remote
data with “near-local” performance is crucial for scheduling and managing of
application execution.

One of the grid’s purposes is to provide users the ability to share and to use
data stored on heterogeneous storage systems as easily as if they were located
on a single computer. Unfortunately, this vision is still far from being achieved
due to the difficulty to deploy, use and maintain such environments. One of
the fundamental problems is the existence of many different administrative
domains, different storage systems, different data transfer middleware and
protocols in grid environments. This heterogeneity presents an important
barrier for data sharing in the grid. Novice grid users, principally scientists
who need the power of the grid to solve problems in their own fields, have
difficulties in browsing and transferring data. They may find it difficult and
cumbersome to write scripts or programs to perform the data transfer between
different systems. Data management appears to be a big challenge; it is a time-
consuming activity and requires the help of experts with significant expertise
in data access related issues.

It is our belief that the widespread uptake of the grid by a wider user com-
munity depends on easy-to-use, transparent environments in which users may
share and use data collaboratively being unaware of the underlying infras-
tructure. At the time of this writing, there is a vast volume of projects (e.g.,
see [209], [199], [220], [212], [203], [230], [207]) that have concentrated their
efforts in the development of such environments.

In this chapter, we describe a novel architecture GRid-enAbled Virtual file
sYstem (GRAVY) [223] [222], which facilitates the collaborative sharing of
data in the grid. GRAVY has the following features:

131

132 Grid Resource Management

• Location transparency: GRAVY allows users to access data that is geo-
graphically distributed in multiple domains in the grid without the users
having any idea where the data is located.

• Protocol transparency: GRAVY provides a generic data transfer archi-
tecture that shields users from the complexity of the underlying infras-
tructures including the system’s internal organization and data transfer
protocols. As a result, data in heterogeneous file systems can be accessed
in a uniform way.

• Extensibility: GRAVY allows new protocols to be added as the grid
evolves through a set of wrapper interfaces.

The next section of the chapter presents the background for our work in-
cluding a description of the grid file system, its requirements and an overview
of file transfer protocols. Data access problems in grid environments are de-
scribed in section 5.3, which led to the motivation of our work. Then, we
present an overview of related work in section 5.4. Following this, we describe
in section 5.5 GRAVY’s design and in section 5.6 the architectural issues of
the prototype that we have implemented in Java. This prototype allows users
to have the view of a unified location-transparent file system of the grid and to
access this system without being familiar with the protocol’s technical details.
Next, in section 5.7 we show the advantages of using GRAVY for data access
in a grid environment by two use cases, followed by the experimental results
in section 5.8. Finally, section 5.9 concludes the chapter.

5.2 Background

5.2.1 Overview of file system

In computing, the file system is a fundamental data structure that offers
data permanent storage. As its name implies, a file system treats different sets
of information as directories and files. Each file separates from others in con-
tent stored within it and attributes (e.g., file’s name, file’s access permissions,
time and date of the file’s creation, access, and modification).

Local file systems are ones that reside entirely on one computer and are
accessed from that computer. The local file system provides a namespace,
typically represented as a tree. Normally, they form basic blocks of a grid
virtual file system.

Grid virtual file systems (GVFS), which store files on one or several het-
erogeneous storage systems manage resources spread over several autonomous
administrative domains. They have to deal with unpredictable performance

Grid enabled virtual file systems 133

variations and with changeable system architecture. The GVFS offers a log-
ical resource namespace that allows integrating heterogeneous data storage
resources and inter-organizational data.

5.2.2 Requirements for grid virtual file systems

Due to the heterogeneity of the grid, users need a mediating system that
serves to abstract the native interfaces of the available resources and provide
a common interface. This intermediate system lies below a distributed local
file system and is composed of software components that together create an
environment where all the resources in the grid are available to the application.
This system needs to provide transparent access to data distributed in the
grid environment and user interface for users to find files. For example, a user
should not have to know where resources are located in order to use them.
The system must be able to recover automatically and complete the desired
task (i.e., failure transparency). This is the traditional way to mask various
aspects of the underlying system.

We present in the following section the set of services that constitutes the
fundamental requirements for a GVFS.

Independent multi-institutional data namespace and replication
The dynamic and multi-institutional nature of the grid environment intro-
duces new challenging issues for GVFS in terms of file naming within the
grid. GVFS needs a uniform, global, and hierarchical namespace. Uniform
and global path names mean that it has transparency of position and loca-
tion. Transparency of position allows the data consumers (i.e., users and their
applications) to be mobile or have multiple positions. Similarly, location inde-
pendence allows the data file to physically move or migrate from one storage
system to others. Providing these capabilities requires an abstraction between
the name and location of the data, which allows this mapping to be done dy-
namically. This separation between the logical name and physical location of
the data allows them to be managed separately and there exists no centralized
data storage.

Management of global namespaces is fundamental for data location trans-
parency. This global namespace would allow uniform and global path names
to persistently address file data within the grid wherever it is located. So that,
an application can access data through a logical domain, or global namespace
independently with physical data location.

Users can affect the logical view of the data by means of namespace op-
erations such as creation, deletion, and renaming. Infrastructure managers
are responsible for deploying and retiring data storage resources, adding and
removing data nodes, and configuring networks to optimize a system’s ability
to handle the demand for data services.

Availability of a requested data item is an important performance parame-

134 Grid Resource Management

ter. A well-known technique for improving availability in distributed systems
is replication. If multiple copies of data exist on independent nodes, then the
chances of at least one copy being accessible are increased. Aggregate data
access performance will also tend to increase, and total network load will tend
to decrease, if replicas and requests are reasonably distributed.

Secure access GVFS should provide access to distributed files hosted on
heterogeneous storage systems with different security domains and support
sharing of data for processing and large-scale collaboration. Moreover, it
must allow users and applications to gain secure access to remote data re-
sources. For example, two collaborators at sites A and B need to share the
results of a computation performed at site A, or perhaps design data for a new
part needs to be accessible by multiple users at different sites. In this case,
it’s necessary to have a mechanism to authenticate and identify users (i.e.,
the processes acting on their behalf). Concretely, GVFS must address local
security integration, secure identity mapping, secure access/authentication,
secure federation, and trust management.

GVFS must support global authentication (i.e., single sign-on) with iden-
tities that span administrative domains and organizations, support the es-
tablishment of virtual organizations (i.e., groups that span organizations),
enforce access control policies, and protect data on storage systems. And it
should guarantee that the sites retain full control over their resources. The
data transfers must be protected using secure communication channels.

Interfacing to mass storage management systems The ability to ac-
cess data at a wide variety of heterogeneous storage systems, which are differ-
ent in architecture and administration policy, in a standard way will facilitate
inter-operability in data management and access. A uniform access inter-
face allows a uniform and coordinated access to multiple data resources. The
underlying file system resources could have their own transport, access, au-
thentication/authorization protocols that lead to proprietary protocol clients.
As a result, a common access interface is needed for decoupling users from
data access protocols.

5.2.3 Overview of file transfer protocols

HyperText Transfer Protocol - HTTP The HTTP protocol has rapidly
become one of the major protocols used for inter-computer communications
on the Internet. It is designed with the lightness and speed necessary for dis-
tributed, collaborative, hypermedia information systems. HTTP is a generic,
stateless, object-oriented protocol which can be used for many tasks, such as
name servers and distributed object management systems, through extension
of its request methods (commands). With HTTP protocol, a client makes
a TCP connection to a server, sends it a simple-to-parse string containing a

Grid enabled virtual file systems 135

command along with a few parameters, and receives the response over the
same connection.

File Transfer Protocol - FTP The classic File Transfer Protocol (FTP) is
the most commonly used protocol for data transfer on the Internet. It defines a
capability for machines to send and receive data using the underlying TCP/IP
protocol of the public Internet. FTP, which is an open standard and widely
deployed in almost every operating system, is well documented and broadly
accepted as the de-facto data movement mechanism in large-scale networks.

The FTP protocol is inherently vulnerable to snooping attacks since pass-
words are transmitted in the clear, as is data. Since FTP requires making
a copy of the data at a remote machine, if the original file is ever changed,
the new version of the file needs to be updated on the remote machine. This
process is fraught with the potential for inconsistencies. Also, FTP is an all-
or-nothing protocol - if even one bit of a large file changes, the entire file must
be copied over. Finally, FTP is not conducive to programmatic access. There-
fore, applications cannot take advantage of remote files using FTP without
significant change.

GridFTP GridFTP extends the existing FTP protocol with new features
required for large volume, fast data transfer in the grid with the grid se-
curity model. GridFTP supports parallel data transfer by using multiple
parallel TCP streams, which can improve aggregate bandwidth over using a
single TCP stream. However, this functionality limited the available trans-
fer bandwidth to the maximum network bandwidth between the sender and
the receiver of the transfer in the grid. Moreover, many applications require
transfer of only a portion of a file because transferring the entire file could be
too expensive.

GridFTP offers a useful feature called striping to enable the high-
performance data transfer using multiple hosts to move a single file. With
striping, it is possible for multiple nodes to work together as a single GridFTP
server. Each node can read and write only the pieces of the file that it is re-
sponsible for. In that way, transfers are divided over all available back end
data nodes, thus allowing the combined bandwidth of all data nodes to be
used.

In order to manage large data sets it is necessary to provide third-party
(direct server-to-server) control of transfers between storage servers. GridFTP
provides this capability by adding GSSAPI security to the existing third-party
transfer capability defined in the FTP standard.

GridFTP solves the privacy and integrity problems with FTP by encrypt-
ing passwords and data. Moreover, GridFTP provides for high-performance,
concurrent accesses by design. An API enables accessing files programmat-
ically, although applications must be re-written to use new calls. Data can
be accessed in a variety of ways, for example blocked and striped. Part or all

136 Grid Resource Management

of a data file may be accessed, thus removing the all-or-nothing disadvantage
with FTP.

SSH/SCP SSH, the Secure Shell, is a very common protocol to create a
channel for running a shell on a remote computer, with end-to-end encryp-
tion between the two systems. As a result, data is automatically encrypted
whenever it is sent over the network. When the data reaches its recipient,
it is automatically decrypted. This transparent encryption enables users to
work normally, unaware that their communications are safely encrypted on
the network.

SCP, Secure Copy, which belongs to the SSH protocol, allows files to be
transferred securely between remote sites. For example, a user wishes to
transfer a file across two remote sites. The file contains business secret in-
formation that must be kept from prying eyes. A traditional file-transfer
program, such as FTP, doesn’t provide a secure solution. A third party can
intercept and read the packets as they travel over the network. Using SSH,
the file can be transferred securely between machines with a single secure copy
command. When transmitted by SCP, the file is automatically encrypted as
it leaves the sender site and decrypted as it arrives on the receiver site.

5.3 Data access problems in the grid

A grid is a heterogeneous environment

A frequent obstacle for data-intensive applications to operate effectively
in grid environments is access to remote data. This problem is challeng-
ing because the grid is a heterogeneous environment. Data at each site is
accessed through different mechanisms including how the data is organized,
which transfer protocols are supported, and how the authentication is carried
out. Users are forced to deal with such aspects whenever they want to access
data at different storage systems and it is difficult to efficiently share data
between these systems.

We considered that data resides in different forms, ranging from structured
data organized in relational database systems to unstructured data organized
in file systems. Some works are currently ongoing to integrate structured data
on the grid [199], [231]. Here we propose the GRAVY architecture that allows
the inter-operability of unstructured data on the grid. In other words, dis-
tributed file systems will be inter-operable irrespective of their heterogeneity.

Grid jobs need distributed data to run

In order to run grid data-intensive jobs, the input data need to be trans-
ferred to the appropriate location at the time the computation needs it. This
task is commonly referred to as file stage-ins . The output data is moved back

Grid enabled virtual file systems 137

to its home storage systems as the computation is completed. This task is
commonly referred to as file stage-outs .

In the grid, and on the Internet, files are accessible through a variety of
different protocols supported by storage systems, such as HTTP [206], FTP
[225], SCP/SSH [233], and GridFTP [198]; each has its own data interaction
styles. For example, a lot of tools supporting the protocol FTP provide an
easy-to-use graphical interface such as SmartFTP [227], FileZilla [208], Se-
cureFTP [226]. Usually, due to security problems, the protocol SCP/SSH is
preferred instead of FTP. SCP is the protocol that allows files to be trans-
mitted with the encryption benefits of protocol SSH. Most SSH client tools
include SCP capability through a command-line utility. GridFTP provides
secure and efficient data movement in the grid environment. This protocol,
which extends FTP, is developed as part of the Globus Project [216]. Un-
fortunately, there are few tools available supporting this protocol. In current
practice, the popular choice for data access in GridFTP is using APIs sup-
ported by GT4 [209].

The diversity of data interaction styles (e.g., GUI, command-line, APIs)
forces users to switch from one interaction style to another for file staging
between heterogeneous systems. Hence, it prevents the automation of data
transfers. Some interaction styles, such as GUI and command-line, are only
intended for manual use or simple scripts. Others, such as APIs or Web
services, allow file staging to be performed in programs. Due to this diversity,
users are obliged to manually transfer files between heterogeneous systems by
using different tools or writing scripts and programs to perform file staging.
Manual file staging is not suitable for applications in grid environments as
it supposes users to know in advance which files will be needed during the
computation. Generally, users don’t have the knowledge of the server that
will be chosen for the computations. The choice of computational server is
done by the job scheduler. So, it is important for job scheduler to have a
mediating system that is able to control the placement of data needed for the
computation. The automation of data transfers becomes a crucial factor for
data management system in the grid.

5.4 Related work

A number of initiatives to address data management in grid environments
have been initiated in recent years. We describe below some of these initia-
tives.

Based on the basic Globus services [216], the DataGrid [203] is a large and
complex project that defines a layered architecture of service components for

138 Grid Resource Management

transferring large datasets in heterogeneous environments. This architecture
is similar to ours (i.e. GRAVY) in the sense that both try to separate the
physical location of data from its logical view, which is called metadata.

GT4 [209] provides a number of components for data management. These
components fall into two basic categories: data movement, which is com-
posed of GridFTP tools and Reliable File Transfer (RFT) service, and data
replication, which consists of Replica Location Service (RLS). An important
related component, OGSA-DAI [199], provides data access and integration
capabilities to data resources, such as databases, within a WebService-based
framework.

LegionFS [230] proposes a virtual file system based on NFS protocol. The
core of LegionFS functionality is based on an object-based system that em-
ploys a basic object providing access methods similar to UNIX system calls
(e.g., read, write, seek). NFS requests from the client will be interpreted to
appropriate methods of this basic object.

Within the EGEE project [205], the data management system (DMS) [220]
is composed of several components. The first is storage elements (SEs) which
are the real element doing the storage of files. In the framework of the DMS,
files are available through two namespaces: logical (Logical File Name - LFN)
and physical (Storage File Name - SFN). The DMS is responsible for mapping
an LFN to one or more SFNs. Other components of DMS are data catalogs
that offer access to file replicas using LFN and a data scheduler, which assures
the availability of data at the chosen site for computation.

A standardization effort of the Global Grid Forum Grid File System working
group (GFS-WG) [213] is to provide a service-oriented architecture for a Grid
File System (GFS) [214] that provides standard interfaces to facilitate the
federation and sharing of virtualized data. It should be noted that GFS is a
specification, not an implementation.

Adapting Peer-to-Peer data transfer methods, [228] and [229] propose to
use BitTorrent as a protocol for large file transfers in the context of desktop
grids. It is shown that BitTorrent is efficient, scalable when the number of
nodes increase, but suffers from a high overhead when transmitting small files.
The papers investigate the approaches to overcome these limitations.

Compared with GRAVY, these solutions are designed to work primarily
with their own self-contained middleware, (e.g., LegionFS in Legion middle-
ware, DMS in gLite, RFT in GT4) or suppose to use a principal protocol for
data transfers in the grid (e.g., BitTorrent). On the other hand, GRAVY is
designed to integrate into any global scheduling systems and an important
feature of GRAVY is that it supports multiple protocols at both the server
side and remote side.

Grid enabled virtual file systems 139

5.5 GRAVY: GRid-enAbled Virtual file sYstem

5.5.1 Design overview

As indicated previously, the heterogeneity of storage systems presents an
important brake on the collaborative use of data by a wider community in
the grid. Currently, data access is restricted to expert communities who have
a deep knowledge of file organization and data access protocols on individual
storage systems. However, the primary users of grids are domain scientists and
engineers who have little expertise in coping with these issues. These users
need to access data in an easy way despite the distributed and heterogeneous
nature of storage systems. They should not be forced to know a storage
system’s internal organization or the transfer protocols’ technical details.

In order to mask the heterogeneity of storage systems, our approach is to
build a virtual file system GRAVY on top of underlying file systems. This
virtual file system allows data to be transferred on-demand between hetero-
geneous file systems in a uniform fashion irrespective of its access protocol.
Figure 5.1 shows the conceptual overview of GRAVY. In the next section, we
describe these components separately and how they work together through
an example of user interaction.

We refer to users who are expert on data access protocols as file-system-
providers . Their role is to make their file system accessible to users through
GRAVY. GRAVY appears as a general data broker that negotiates with the
underlying file systems the availability and exploitation of data. Concretely,
all interactions of GRAVY with the underlying file systems are mediated
through wrapper interfaces.

5.5.2 Component description

The core services of GRAVY are composed of a virtual layer and core layer
which consist of four major components: virtual interfaces, TransferManager ,
AccessManager and wrapper interfaces . Their role is to provide the user layer
with uniform and seamless access and management of data transfers between
remote file systems on the physical layer.

The virtual interfaces, which consist of GridFileSystem and GridFile are
designed to simplify and unify the way in which users handle data from het-
erogeneous data sources. The user layer is able to remotely interact with the
virtual interfaces through a variety of supported access protocols, including
HTTP, FTP, and Web services. Local access to virtual interfaces is possible
through a set of APIs that allow applications or job schedulers to control data
placement.

The core layer is composed of four components: the FileActionQueue, the
TransferManager , the AccessManager and the wrapper interfaces . User re-

140 Grid Resource Management

Physical Layer

Virtual interfaces

Virtual Layer
Access protocol (FTP, HTTP, APIs, Web-Services)

GridFileSystem GridFile

Browser

User Layer

Browser Application Scheduler

Core Layer

Wrapper interfaces

AccessManager TransferManager

FileActionQueue

FIGURE 5.1: Conceptual design of GRAVY. The dashed rectangle is the core
services of GRAVY.

quests received from the virtual interface are queued in FileActionQueue,
which examines each request in order to route each correctly to the Transfer-
Manager or the AccessManager .

We classify the user requests in two categories: transfer requests and access
requests. Transfer requests need to be treated differently from access requests,
since transfer requests generally have long execution time and they can fail
for a variety of reasons at anytime during the execution. They need to be
monitored and rescheduled for restart in case of failure. Hence, the Transfer-
Manager is designed to execute transfer requests asynchronously. The Trans-
ferManager performs the movement of files from one remote file system to the
other. In case of transfer failure due to dropped connections, machine reboots
or temporary network outages, the TransferManager will restart the transfers
at another time in order to assure the successful completion of transfers. In
contrast, the access requests (e.g., directory creation, file rename) have a short
execution time, so the AccessManager is designed to execute access requests
synchronously. It performs access operations on the remote file systems and
returns immediately to users the result of execution.

The TransferManager and the AccessManager interact with the remote file
systems through wrapper interfaces . These interfaces are implemented by the
file-system-provider in an appropriate protocol that is specific for each file
system.

Grid enabled virtual file systems 141

5.5.3 An example of user interaction

We now describe how these components work together through an example
interaction scenario. We consider a sequence of two user requests: a directory
creation (i.e., an access request) and then a file copy (i.e., a transfer request)
into this directory. Firstly, the user connects to GRAVY with a request to
create a new directory. This request in a specific access protocol (e.g., MKD
in FTP) will be translated into a common access request (e.g., mkdir method)
for the virtual interface GridFile. This request, after being queued in the File-
ActionQueue, is routed to the AccessManager . The AccessManager demands
the wrapper interfaces to create a connection with the appropriate remote file
system. After authenticating to the remote file system, the AccessManager
creates the new directory synchronously and sends the result of execution
back to the user through the virtual interface.

After knowing that the directory is created successfully, the user sends
a request to transfer a file into this directory. Similarly, this transfer re-
quest (e.g., STOR in FTP) is translated into a common transfer request (e.g.,
copyTo method) for the virtual interface GridFile and then queued in FileAc-
tionQueue before being sent to the TransferManager . Firstly, the Transfer-
Manager connects to the remote file system through the wrapper interfaces
and asks for the transfer permission. Then, it performs the transfer asyn-
chronously and informs the transfer status to the user if needed. In case of
transfer failure, the TransferManager assumes the responsibility of restarting
the failed transfer to assure that the transfer is successfully completed.

5.6 Architectural issues

5.6.1 Protocol resolution

GRAVY supports multiple access protocols on both the server side and re-
mote side (see Figure 5.2). This is a crucial requirement of a virtual file system
used in a heterogeneous grid environment. Although GridFTP is promoted
as a basic grid protocol for transferring data between grid nodes, there exist a
large number of existing file systems supporting other protocols. For example,
wide-area file access is still likely to be dominated by FTP, SSH protocols.

Server side

At the server side, supporting multiple protocols not only allows users to
use their preferred file transfer protocol to interact with GRAVY but also
allows GRAVY to be easily and flexibly deployed according to user needs. For
example, HTTP access allows GRAVY to integrate easily into web portals of
the grid. Local access via APIs and Web services access allow GRAVY to

142 Grid Resource Management

Server Side Remote Side

Local
FTP
HTTP
WebServices

Local
FTP
SSH/SCP
GridFTP

CLIENT

Remote
 FS B

Remote
 FS A

 Wrapper
interfaces

GRAVY

FIGURE 5.2: Multiple access protocol in both server side and remote side.

integrate into applications and the job scheduler for data placement control.
Besides local access, GRAVY currently supports three protocols: FTP [225],
HTTP [206], and Web services. The implementation of FTP access is based
on [201]. The Web services protocol is deployed using WSRF framework
implemented in GT4 [209].

Remote side

At the remote side, supporting a variety of access protocols allows GRAVY
to support a large number of existing file systems. Although GridFTP has
been promoted as the standard protocol for data movement in the grid, there
is a large number of existing file systems supporting other protocols.

From the file-system-provider’s point of view, the remote file system is
simply a storage system abstracted into directories and files and supported by
an access protocol (e.g., FTP, GridFTP, HTTP) or a file server in other words.
In order to make a file system inter-operable with others, the user needs to
develop connectors between protocols supported by this system to all existent
protocols in the grid (see Figure 5.3a). This practice is not suitable for the
continually evolving grid architecture as it requires adding a new protocol
connector if a file system-support new protocol is integrated to the grid. In
GRAVY, this task is simplified by the wrapper interfaces that are in charge
of creation and management of connections between GRAVY and remote file
systems. Wrapper interfaces play the role of a bridge between GRAVY and
remote file systems. They make GRAVY completely modular; it is easy to
add support to GRAVY for a new protocol (see Figure 5.3b).

The wrapper interfaces are composed of the four interfaces: RemoteFile, Re-
moteFileSystemDriver, RemoteFileSystemConnection and FileTransfer. Fig-
ure 5.4 shows the structure of wrapper interfaces with a list of methods for
each interface.

• RemoteFile: as its name implies, contains methods for retrieving in-
formation about the remote file object on the remote file system (e.g.,
name, size, latest modified time, control permission).

Grid enabled virtual file systems 143

GRAVY

Wrapper interfaces
FTP SSH

GridFTP
GridFTP

FTP SSH

New protocol

New protocol

(a) (b)

FIGURE 5.3: Integration of new protocol at the remote side in GRAVY.

• RemoteFileSystemDriver : contains access information of the remote file
system (e.g., supported protocol name, protocol port number, file sys-
tem’s address) and returns a RemoteFileSystemConnection’s instance
for the virtual layer to interact with the remote file system.

• RemoteFileSystemConnection: contains control methods (e.g., open,
close, ping) of GRAVY’s connection to the remote file system and imple-
ments methods of access operations to files that reside on that remote
file system (e.g., creating a new directory, listing the files present in a
directory, deleting files and directories).

• FileTransfer : contains file transfer implementation in a specific proto-
col. Two types of connections specified are needed for transfer opera-
tions: two-party transfer represented as DefaultFileTransfer class and
third-party transfer represented as ThirdPartyFileTransfer class. These
classes must be threads; they must implement the Runnable interface
because users will not deal with details in the time dimension with the
file after they have decided to transfer a file. Since DefaultFileTransfer
and ThirdPartyFileTransfer have many common properties structurally
and behaviorally, they are extended from the FileTransfer class and
override necessary methods.

Besides the implementation of wrapper interfaces for local file systems, we
have used client-side libraries provided in GT4 [209] to implement wrapper
interfaces for FTP and GridFTP protocol, and JSch[218] for SSH protocol.
It is the role of the file-system-provider to implement the wrapper interfaces
in order to integrate a new protocol in GRAVY.

Security

Security is an important issue on the grid due to different administrative
domains and policies. Since each protocol has its own authentication mech-

144 Grid Resource Management

FileTransfer

+getTransferredSize(): long

+getProgress(): double

+reset()

+getSourceAddress(): InetAddress

+getDestinationAddress(): InetAddress

+getSize(): long

+getSourceFile(): RemoteFile

+getDestinationFile(): RemoteFileLocation

RemoteFile

+getSize(): long

+getLastModified(): long

+isDirectory(): boolean

+canRead()

+canWrite()

+copyTo(user:Principal,destinationFile:RemoteFileLocation):
 FileTransfer

RemoteFileSystemConnection

+getRemoteFileSystemLocation(): RemoteFileSystemLocation

+listFiles(directory:RemoteFile): RemoteFile[]

+mkdir(directory:RemoteFile,name:String)

+delete(file:RemoteFile)

+rename(remoteFile:RemoteFile,name:String)

+close()

+ping()

+isValid(): boolean

+getInputStream(file:RemoteFile,offset:long): InputStream

+getOutputStream(fileLocation:RemoteFileLocation,
 offset:long): OutputStream

RemoteFileSystemDriver

+getProtocol(): String

+isVirtual(): boolean

+createConnection(location:RemoteFileSystemLocation): RemoteFileSystemConnection

createConnection

copyTo

DefaultFileTransfer ThirdPartyFileTransfer

FIGURE 5.4: Class diagram of the wrapper interfaces.

anism, it enforces its own access control policy. This results in difficulty in
establishing confidence across different protocols. Our solution is to adopt
the Grid Security Infrastructure (GSI) provided by Globus [210] because it
avoids a centrally-managed security system and supports single sign-on for
users of the grid. For other protocols, authentication is performed through
anonymous access.

GSI is based on public key encryption, X.509 certificates, and the Secure
Sockets Layer (SSL) communication protocol. Each grid user is provided a
unique identity within the virtual organization that he/she belongs to. Access
control of local resources is done by the mapping between the user’s unique
identity and local user identity in a global configuration file called gridmap-
file. We have implemented security by wrapping GRAVY calls with GSI. GSI
maps a user global identity to a local user and GRAVY checks the permissions
of files to see whether a user has enough privileges to access the file.

5.6.2 Naming management

In a grid environment, management of data across multiple virtual organi-
zations presents challenging problems for data naming. The Resource Names-
pace Service (RNS), a specification of the Grid File System working group
of the Global Grid Forum [224], is proposed to provide a naming mechanism
to link existing data sources. RNS proposes a three-tier naming architecture

Grid enabled virtual file systems 145

Physical data locations
root

projectA

projectB

experiments

docs

job1

job2

Virtual file system

GridFTP:2811@cactus.mas.ecp.fr/grid/export

[mai@cactus grid/export] ls

job1 job2

<?xml version=’1.0’ encoding=’utf-8’?>

<doc>

<filesystem>

 <protocol>gridftp</protocol>

 <address>cactus.mas.ecp.fr</address>

 <port>2811</port>

 <username>mai</username>

 <home>/grid/export</home>

 <vpath>/projectA/experiments</vpath>

</filesystem>

</doc>

FIGURE 5.5: Example of a logical view and its mapping to physical data
locations.

that consists of human interface names, logical reference names, and end-point
references. Mapping from a human readable name to an actual data location
can be realized in two levels of indirection. The first level is mapping human
interface names directly to end-point references. The second level is realized
by mapping human interface names to logical reference names (that may not
be very readable by humans), which in turn map to end-point references.

In GRAVY, we applied the first level of indirection for the naming manage-
ment. The GridFileSystem interface is responsible for decoupling the logical
view of the data from its physical location. This interface represents the
virtual global file system with hierarchical organization of virtual directories
where leaves in this tree correspond to physical data locations on a remote file
system. Users can create their own logical view of grid data where a logical
directory may not necessarily correspond to the physical directory. Differ-
ent users have a different logical view if they have different rights on data
resources.

The GridFileSystem instance is specified using a configuration file written
in XML and is initialized at runtime. Figure 5.5 shows an example of a
logical view of grid data and its mapping to physical data locations with an
example configuration file. In this example, the export directory on server
cactus is mounted to the experiments directory of the virtual file system. The
files under the experiments directory (e.g., job1 and job2) are assumed to
be under the corresponding physical directory. The resolution of experiments
directory’s content is performed only at the runtime.

5.6.3 GridFile - virtual file interface

The fundamental requirement for virtual file systems used in the grid is
that all these file operations in different protocols must be made completely
transparent to users. Accessing the local file system for listing files, changing

146 Grid Resource Management

1: GridFile root = GridFileSystem.getRoot();

2: RemoteFileSystemLocation remoteFileSystem =

3: GridFtpRemoteFileSystemDriver.getLocation(InetAddress.getByName("cactus.mas.ecp.fr",

 2811,"mai","/grid/export");

4: GridFile theDir = root.mkdirs("/projectA/experiments");

5: theDir.mount(remoteFileSystem);

6: theDir.listFiles();

7: GridFile destination = root.resolve("/projectB");

8: theDir.copyTo(destination);

FIGURE 5.6: Example of using GridFile’s methods.

directories, etc. should be no different than accessing any remote file system
with any access protocol. Transfer operations (e.g., copy, move) must be as
applicable to local files as they are to data hosted on remote file systems.
With these concerns in mind, we design the GridFile as a virtual file object
that provides the single consistent protocol-independent interface for access
and transfer operations in the virtual file system. This uniform interface,
which provides a set of generic file operations, should keep the user shielded
from protocol peculiarities. GridFile contains also the basic properties such
as size, name, modification date, access permissions, etc. of the remote file.
A non-exhaustive list of GridFile’s operations is shown in Table 5.1. These
generic operations correspond easily to popular file operations in different
protocols since most file operations across protocols are very similar (e.g., all
have directory operations such as create, delete as well as file operations such
as read , write). Administrative methods allow users to interact on the logical
structure of the virtual file system. Access methods and transfer methods, as
their names indicate, allow users to send access or transfer requests to remote
file systems. Figure 5.6 presents an example of using GridFile’s methods.

As can be seen from Table 5.1, some operations such as copyTo(), moveTo()
and delete() can be managed asynchronously because they may take a long
time to complete. Their goal is to prevent users from being locked while
waiting for the operations to finish.

5.6.4 Data access

The AccessManager is responsible for carrying out the access requests and
returns the result to the virtual layer. The AccessManager translates these
requests into the specific protocol supported by the remote file system and ac-
complishes it by interacting through the wrapper interfaces . Figure 5.7 shows
how the AccessManager handles an access request of the GridFile interface.

1. Suppose that the user calls the listFiles() operation of the GridFile
interface to get a list of files of this virtual directory.

2. The GridFile adds the request to the request queue of the AccessMan-
ager.

Grid enabled virtual file systems 147

Table 5.1: Supported methods of GridFile interface.
Administrative-related methods

mount Mounts a logical name with a physical data location
resolve Resolves a grid path to a grid file object
refresh Refreshes current logical view

Access-related methods
listDirectories & list-
Files

Retrieves and lists all the subdirectories and files in
human readable format

delete & asynchDelete Deletes a file or a directory. This operation can be
performed in asynchronous mode

mkdir(s) Creates a directory or directories
renameTo Renames a directory or a file
getName Returns name of current directory or file
getLastModified Returns the last modified time of current directory or

file
getSize Returns size of current directory or file

Transfer-related methods
copyTo & async-
CopyTo

Transfers directories or files to another specified grid
destination. When performed in asynchronous mode,
it returns an instance of GridFileTransfer contain-
ing control methods (e.g., start , cancel , pause, get-
Progress, getStatus) for a file transfer

moveTo & async-
MoveTo

Moves directories or files to another specified grid des-
tination. When performed in asynchronous mode, it
returns an instance of GridFileTransfer

getInputStream Gets input stream of a file
getOutputStream Gets output stream of a file

3. The AccessManager invokes the getConnection() operation on Remote-
FileSystemDriver to get a connection between GRAVY and the remote
file system.

4. The AccessManager receives the RemoteFileSystemConnection object.

5. The AccessManager performs the listFiles() operation on Remote-
FileSystemConnection in a specific protocol.

6. Once the listFiles() operation finishes, the result is sent back to the
AccessManager.

7. The AccessManager forwards the result to the GridFile interface.

8. The GridFile informs the user of the execution results or sends appro-
priate error messages if there are errors.

9. Once the request execution finishes, the AccessManager releases the
connection.

10. Finally, the RemoteFileSystemConnection is closed.

148 Grid Resource Management

GridFile AccessManager RemoteFileSystemDriver RemoteFileSystemConnectionUser

1: listFiles(): GridFile[]

3: getConnection():
RemoteFileSystemConnection

5: listFiles(): RemoteFile[]

9: releaseConnection()

2: addRequest()

6: Send results

7: Return results

8: Return results

4: Return
RemoteFileSystemConnection object

10: close()

FIGURE 5.7: The sequence diagram for AccessManager.

GridFile RemoteFile FileTransferTransferManagerUser

1: copyTo()

4: addRequest()

2: copyTo(): FileTransfer()

6: startTransfer()

5: schedules()

8: Return results
7: Send results9: Return results

3: Return FileTransfer object

FIGURE 5.8: The sequence diagram for the execution of a transfer request
in synchronous mode.

Grid enabled virtual file systems 149

GridFile FileTransferUser

1: asyncCopyTo(): FileTransfer

3: startTransfer()

4: getStatus()

5: Return results

2: Return FileTransfer object

FIGURE 5.9: The sequence diagram for the execution of a transfer request
in asynchronous mode.

5.6.5 Data transfer

The TransferManager takes care of transferring files between remote file
systems. It manages file transfers in different protocol connections to allow
transparent two- and three-party transfers. In order to support multiple con-
current file transfers, each transfer is launched as a thread, which can be
performed in synchronous or asynchronous mode. Figure 5.8 illustrates the
sequence diagram for the execution of a transfer request in synchronous mode
(e.g, copyTo()).

1. Suppose that the user calls the copyTo() operation of GridFile interface
to perform a file transfer to another virtual file reference.

2. As a GridFile points to a RemoteFile which is a physical file on the
remote file system, the GridFile invokes the copyTo() operation of Re-
moteFile. This returns a FileTransfer object that contains the informa-
tion required for performing file transfers (e.g., protocol name, source
and destination address, file name).

3. The GridFile receives the FileTransfer object.

4. The GridFile adds the FileTransfer object to the request queue of the
TransferManager.

5. The TransferManager schedules the transfer requests, for now it uses a
“the first-come, first-served” strategy to execute these requests.

150 Grid Resource Management

6. Then, the TransferManager performs the transfer by invoking the start-
Transfer() method of FileTransfer. Then, this object initiates a third-
party transfer using ThirdPartyFileTransfer class or opens two connec-
tions, one from the source and one to the destination file system for file
transfers using DefaultFileTransfer class.

7. The result of file transfer is sent back to the TransferManager.

8. The result is then forwarded to the GridFile interface.

9. Finally, the GridFile informs the user of the execution results or sends
appropriate error messages if there are errors.

The Figure 5.9 presents the sequence diagram for the execution of a transfer
request in asynchronous mode (e.g, asyncCopyTo()). In this case, it is not
the role of TransferManager but of the user to control the transfer process.

1. The user calls the asyncCopyTo() operation of GridFile interface to get
a FileTransfer object, which implements the Runable interface to be a
thread.

2. The user receives the FileTransfer object.

3. The user invokes the file transfer on FileTransfer object. GRAVY
launches a new thread to execute the file transfer, so the user is not
locked waiting for completion.

4. In order to know the status of the file transfer, the user can call the
getStatus() method to get the current status of the transfer.

5.7 Use cases

5.7.1 Interaction with heterogeneous resources

We consider a simple use case when a user wishes to access files in two
different file servers (cactus and tulip) as shown in right part of Figure 5.5.
Firstly, he/she can choose his/her preferred protocol to connect to GRAVY.
In this use case, we suppose he/she uses local access to communicate with
GRAVY. After he/she obtains a reference of root GridFile object: refRoot ,
he/she can perform a refRoot.listFile() operation to get the list of directo-
ries: projectA and projectB . It should be noticed that these directories are
completely virtual; there are no physical locations corresponding to these di-
rectories. projectA.listFile() will list child virtual directories: experiments and
docs . Since the experiments directory is mapped to a physical data location

Grid enabled virtual file systems 151

on the cactus server, the experiments.listFile() operation will ask the Access-
Manager to connect to the cactus server in GridFTP protocol and to convert
the virtual path (/projectA/experiments) to a physical path (/grid/export) to
obtain the list of children of that path: job1 and job2 . In this simple use case,
the advantage is the simplicity: users can use any protocol client to commu-
nicate with the virtual grid file system, and data interaction on underlying
heterogeneous file systems (e.g., cactus and tulip) is completely transparent
to users.

5.7.2 Handling file transfers for grid jobs

We will show in this use case the contributions of GRAVY in handling file
transfers for grid jobs. We suppose a case when a user wants to submit a
staging job that uses files on his/her computer.

Without-GRAVY scenario: the user has to use a job description language
(e.g., RSL [215] for Globus) to specify information related to job submission
(e.g., jobType, fileStageIn, fileStageOut). Then, he/she sends this RSL file to
the compute node. All the job arguments contained in the RSL file (stage-in
files, parameters, etc.) will be transferred to the compute node in advance
of the job execution. The files that are created or modified by the job will
be returned to the user if they are specified as stage-out files in RSL file.
In this scenario, the user has to perform discovery and choice of compute
node in order to transfer to it the stage-in files that are necessary for job
execution.

With-GRAVY scenario: supposing that GRAVY is integrated into a high-
level scheduler, the user needs to specify only the input files for the job exe-
cution, which are located on his/her computer. It is the role of the high-level
scheduler to discover and choose the compute node for the user’s job. Thanks
to GRAVY, the scheduler can perform file transfers from the user machine to
the chosen compute node irrespective of protocols they support. Since a job
can have its own view of the file system, file-path references of stage-in files in
the user local namespace (e.g., /grid/export/job1) can be passed to the job as
arguments. GRAVY will create the same virtual file-path and map a physical
file location to this file-path. When a job performs a file action (e.g., read,
write, copy) to this virtual file-path, GRAVY will perform corresponding file
actions on physical files.

This use case shows the advantages of using GRAVY in handling file trans-
fers for grid jobs. Firstly, a job with staging files can be separated into trans-
fer jobs and computational jobs. In that way, transfer jobs can be queued,
scheduled, monitored and managed asynchronously from computational jobs.
Secondly, GRAVY allows the user’s file system view to be the same regardless
of the file locations. This feature enables transparent grid file access for any
middleware (i.e., applications, schedulers) that uses GRAVY.

152 Grid Resource Management

 0

 2

 4

 6

 8

 10

 12

ApacheGRAVYProftpdGRAVYGRAVY

Ban
dwi

dt
h

(M
B/s)

Server Side

WebServices

FTP

HTTPWebServices

FTP

HTTPWebServices

FTP

HTTP

GRAVY
Native implementation

FIGURE 5.10: Server side results.

5.8 Experimental results

GRAVY’s latest version runs on any platform that supports the Java VM
5.0. Firstly, we perform a series of data transfers to test GRAVY’s feature of
supporting multiple protocols. Secondly, in order to evaluate the processing
efficiency and performance of our prototype, we perform a set of concurrent
file transfers and use the modified Andrew benchmark [217] that is the well-
known benchmark to test the performance of a distributed file system. The
benchmark consists of five phases: (i) create directories, (ii) copy files into the
directories, (iii) list file attributes, (iv) scan the files and (v) compile the files.

The experiments are performed on four Pentium 4 3.2 GHz machines with
512 MB of RAM, each running Linux with kernel 2.4.x. They are directly
connected to 100 Mbps network adapter.

5.8.1 Support for multiple protocols

We perform file transfers at both the server side and remote side in different
protocols. The experimental setup is shown in Figure 5.2. “Server side” means
that the transfers occurred between the client and GRAVY. “Remote side”
means that the transfers are launched by GRAVY to move data between
remote file systems. At the server side, we compare the bandwidth delivered
to the client by GRAVY to that delivered by native implementation of each
protocol. At the remote side, we observe the bandwidth obtained for each
change of protocol at remote file systems.

Grid enabled virtual file systems 153

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

SSH/SCPGridFTPFTP

Ban
dwi

dt
h

(KB/s
)

Remote Side

FTP
GridFTP

SSH/SCP

FIGURE 5.11: Remote side results.

Server side

In the first sets of experiments, our goal is to illustrate that the bandwidth
delivered by GRAVY at the server side is very similar to that of the native
server. The client asks GRAVY to transfer a file of 50MB in FTP, HTTP and
Web services respectively. Then we repeat the above transfer using a native
protocol server (i.e., ProFTP for FTP and Apache for HTTP) to evaluate
the bandwidth delivered by GRAVY. The results in Figure 5.10 show that
the bandwidth delivered by GRAVY is just a little lower than the one of the
native servers.

Remote side

We perform file transfers of of 10MBs from file server A to file server B
(see Figure 5.2) using different protocols. The transfers in GridFTP and
FTP are repeated with globus-url-copy command-line utility supplied with
Globus Toolkit to compare with the bandwidth delivered by GRAVY. The
results in Figure 5.11 are the average of 10 file transfers. We observe that
the bandwidth varies a lot across each change of protocol at the remote file
system. We get better bandwidths for the transfers using the same protocol.
The only exception is the transfers in SSH protocol; the reason is that this
protocol doesn’t support third-party transfers like FTP or GridFTP. We note
that the bandwidth of GRAVY for transfers in FTP and GridFTP is very
similar to that of the globus-url-copy tool.

154 Grid Resource Management

 0

 200

 400

 600

 800

 1000

504030201050

Ban
dwi

dt
h

(KB/s
)

Concurrent client number

FIGURE 5.12: Processing performance of GRAVY depending on the number
of clients concurrently transferring files.

5.8.2 Performance

5.8.2.1 Many concurrent file transfers

In order to test the stability and processing efficiency of GRAVY, we write
a client program using GRAVY to launch several concurrent processes read-
ing a remote file into a buffer and writing the data out to a local file. The
tests were done with files of 10MB. The result as the transferred KB per
second depending on the number of concurrently connecting clients is shown
in Figure 5.12. Each value is an average of 5 tests. It shows that GRAVY
has a problem with many concurrent requests. It is predictable that GRAVY
achieves high performance for low numbers of connecting clients. For increas-
ing number of concurrent clients, its performance decreases smoothly but it
remains relatively stable.

5.8.2.2 Andrew benchmark results

We use the modified Andrew benchmark to compare GRAVY’s performance
to the Linux 2.4.x local file system and NFS v3. For the NFS measurements,
we run the benchmark on a NFS client accessing a single NFS server. For
the GRAVY measurements, we implemented a Java program that performs a
pattern of file system accesses equivalent to the one of the Andrew benchmark
because the current prototype implementation of GRAVY provides only Java
interfaces to the file system. We repeat the execution of our Andrew-like
Java program on GRAVY with three different configurations. Concretely, the
directory on which we run the benchmark is mounted to a different remote file
system for each execution. The remote file system is accessible in GridFTP,
FTP and SSH protocol respectively. Files used during the compilation phase

Grid enabled virtual file systems 155

Table 5.2: The Andrew benchmark results on Linux 2.4.x local file system,
NFS and GRAVY. Each table entry is average elapsed time in milliseconds of
five runs of the benchmark. The rightmost column shows the average elapsed
time of the benchmark runs on GRAVY with three different configurations.

GRAVY
Phase Local NFS

GridFTP
FTP SSH Av-

erage

1 8.04 361.66 96128.00 4172.20 17277.60 39192.60
2 93.32 3293.31 194150.60 18635.40 100861.80 104549.27
3 237.48 2856.21 50848.00 4397.00 39008.20 31417.73
4 298.43 3466.46 17142428.80 15837.40 165160.80 117475.67
5 3773.75 4552.05 4015.20 3985.60 4038.60 4013.13
Total 4411.03 14529.68 516570.60 47027.60 326347.00 296648.40

are stored locally for remote access on these remote file systems. The directory
that we use as input to the benchmark contains 15 directories and 96 C source
and header files for a total size of 511KBs. Table 5.2 shows the results of
running the Andrew benchmark on the Linux 2.4.x local file system, NFS and
GRAVY.

As expected, the local file system has the best performance on all five phases
because it performs no network communication. The benchmark results on
GRAVY have a high variance for each configuration. We achieve better perfor-
mance with FTP configuration, followed by SSH and GridFTP configurations
respectively. In the compilation phase, all file systems achieve a very similar
performance because the performance of this phase is primarily limited by
the speed of the CPU. For the other phases, GRAVY is slower than NFS due
to the time needed for the authentication and the resolution between logical
names and physical data locations.

5.9 Concluding remarks

In this chapter, we have introduced GRAVY, a grid-enabled virtual file sys-
tem, which enables the inter-operability between heterogeneous file systems
in the grid. We have pointed out the current challenges for data access in
the grid and how GRAVY can provide solutions to them. GRAVY integrates
underlying heterogeneous file systems into a unified location-transparent file
system of the grid. This virtual file system provides applications and users a
uniform global view and a uniform access through standard APIs and inter-
faces.

With two use cases, we have shown the contributions of GRAVY in solving
data access problems in a grid environment. Our approach is validated by

156 Grid Resource Management

a prototype implemented in Java. This prototype shows that the way users
access data is simplified and that data transfers between heterogeneous file
systems can be automated. This feature allows GRAVY to integrate with a
high-level scheduler for handling data transfer jobs.

Grid enabled virtual file systems 157

References

[198] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke. Data
Management and Transfer in High Performance Computational Grid
Environments. Parallel Computing Journal, 28(5):749–771, May 2002.

[199] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N. P. C. Hong,
B. Collins, N. Hardman, A. Hume, A. Knox, M. Jackson, A. Krause,
S. Laws, J. Magowan, N. W. Paton, D. Pearson, T. Sugden, P. Watson,
and M. Westhead. The Design and Implementation of Grid Database
Services in OGSA-DAI. Concurrency and Computation: Practice and
Experience, 17(2–4):357–376, Feb. 2005.

[200] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A
Data Movement and Access Service for Wide Area Computing Systems.
In Proceedings of the 6th Workshop on I/O in Parallel and Distributed
Systems, pages 78–88, Atlanta, Georgia, May 1999. ACM Press.

[201] R. Bhattacharyya. Java FTP server. Available online at: http://www.

myjavaserver.com/~ranab/ftp (Accessed August 31st, 2007).

[202] F. Cappello, S. Djilali, G. Fedak, T. Hérault, F. Magniette, V. Néri,
and O. Lodygensky. Computing on large-scale distributed systems:
Xtremweb architecture, programming models, security, tests and con-
vergence with grid. Future Generation Computer System, 21(3):417–437,
2005.

[203] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke.
The Data Grid: Towards an Architecture for the Distributed Manage-
ment and Analysis of Large Scientific Datasets. Journal of Network and
Computer Applications, 23:187–200, 1999.

[204] G. Fedak, C. Germain, V. Neri, and F. Cappello. XtremWeb: A Generic
Global Computing System. In CCGRID ’01: Proceedings of the 1st
International Symposium on Cluster Computing and the Grid, pages
582–588. IEEE Computer Society, May 2001.

[205] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee.
Enabling Grids for E-sciencE (EGEE), 2006. Available online at:
http://www.eu-egee.org (Accessed August 31st, 2007).

[206] R. Fielding, U. Irvine, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-
Lee. RFC-2068: Hypertext Transfer Protocol - HTTP/1.1, 1997. Avail-
able online at: http://www.w3.org/Protocols/rfc2068/rfc2068 (Ac-
cessed August 31st, 2007).

158 Grid Resource Management

[207] R. J. O. Figueiredo, N. H. Kapadia, and J. A. B. Fortes. The PUNCH
Virtual File System: Seamless Access to Decentralized Storage Services
in a Computational Grid. In Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing (HPDC’01),
pages 334–344, San Francisco, CA, Aug. 2001. IEEE, IEEE Press.

[208] FileZilla. Available online at: http://filezilla.sourceforge.net (Ac-
cessed August 31st, 2007).

[209] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Sys-
tems. In IFIP International Conference on Network and Parallel Com-
puting, volume 3779 of Lecture NOTEs in Computer Science, pages
2–13. Springer-Verlag, 2005.

[210] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Ar-
chitecture for Computational Grids. In Proceedings of the 5th ACM
Conference on Computer and Communications Security, pages 83–92,
San Francisco, California, Nov. 2-5 1998. ACM Press.

[211] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. The International Journal of
High Performance Computing Applications, 15(3):200–222, 2001.

[212] F. Garcia-Carballeira, J. Carretero, A. Calderón, J. D. Garcia, and
L. M. Sanchez. A Global and Parallel File System for Grids. Future
Generation Computer Systems, 23(1):116–122, Jan. 2007.

[213] GGF Grid File System working group (gfs-wg). Available online at:
https://forge.gridforum.org/projects/gfs-wg (Accessed August 31st,
2007).

[214] GGF Grid File System working group (gfs-wg). The GGF Grid File
System architecture workbook, Jan. 2006. Available online at: http:

//www.ggf.org/documents/GFD.61.pdf (Accessed August 31st, 2007).

[215] Globus. The Globus Resource Specification Language RSL v1.0,
2000. Available online at: http://www.globus.org/toolkit/docs/2.4/

gram/rsl_spec1.html (Accessed August 31st, 2007).

[216] Globus project. Available online at: http://www.globus.org (Accessed
August 31st, 2007).

[217] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West. Scale and Performance in a Distributed
File System. ACM Transactions on Computer Systems, 6(1):51–81, Feb.
1998.

[218] JSCH - Java Secure Channel. Available online at: http://www.jcraft.

com/jsch (Accessed August 31st, 2007).

Grid enabled virtual file systems 159

[219] T. Kosar and M. Livny. A framework for reliable and efficient data
placement in distributed computing systems. Journal of Parallel and
Distributed Computing, 65(10):1146–1157, 2005.

[220] P. Kunszt and P. Badino. EGEE gLite User’s Guide - Overview of gLite
Data Management. Technical report egee-tech-570643-v1.0, CERN,
Geneva, Switzerland, 2005.

[221] R. K. Madduri, C. S. Hood, and W. E. Allcock. Reliable File Transfer in
Grid Environments. In LCN ’02: Proceedings of the 27th Annual IEEE
Conference on Local Computer Networks, pages 737–738, Washington,
DC, 2002. IEEE Computer Society.

[222] T.-M.-H. Nguyen and F. Magoulès. A framework for data management
in the grid. In Proceedings of International Conference on Distributed
Computing and Applications for Business, Engineering and Sciences,
pages 629–633, YiChang, Hubei, China, Aug. 2007. Hubei Science and
Technology Press.

[223] T.-M.-H. Nguyen, F. Magoulès, and C. Révillon. GRAVY: Towards
virtual file system for the grid. In Proceedings of Advances in Grid and
Pervasive Computing, pages 567–578, Paris, France, May 2007. Springer
Verlag.

[224] M. Pereira, O. Tatebe, L. Luan, and T. Anderson. Re-
source Namespace Service specification, May 2006. Available on-
line at: http://www.ggf.org/GGF17/materials/272/Resource_Namespace_

Service_Refactored.pdf (Accessed August 31st, 2007).

[225] J. Postel and J. Reynolds. RFC-959: File Transfer Protocol. Avail-
able online at: http://www.w3.org/Protocols/rfc959/ (Accessed August
31st, 2007).

[226] SecureFTP. Available online at: http://www.glub.com/products/

secureftp (Accessed August 31st, 2007).

[227] SmartFTP. Available online at: http://www.smartftp.com (Accessed
August 31st, 2007).

[228] B. Wei, G. Fedak, and F. Cappello. Collaborative Data Distribution
with BitTorrent for Computational Desktop Grids. In ISPDC ’05: Pro-
ceedings of the The 4th International Symposium on Parallel and Dis-
tributed Computing (ISPDC’05), pages 250–257, Washington, DC, 2005.
IEEE Computer Society.

[229] B. Wei, G. Fedak, and F. Cappello. Scheduling Independent Tasks
Sharing Large Data Distributed with BitTorrent. In Proceedings of
Grid Computing, 2005. The 6th IEEE/ACM International Workshop
on, 2005.

160 Grid Resource Management

[230] B. S. White, M. Walker, M. Humphrey, and A. Grimshaw. LegionFS:
A Secure and Scalable File System Supporting Cross-Domain High-
Performance Applications. In Proceedings of the IEEE/ACM Super-
computing Conference (SC2001), pages 59–59, Denver, Colorado, Nov.
2001.

[231] A. Woehrer, P. Brezany, and I. Janciak. Virtualization of Heterogeneous
Data Sources for Grid Information Systems. In Proceedings of MIPRO
2004, Opatija, Croatia, 24–28 may 2004.

[232] G. F. R. D. A. working group. GridFTP: Protocol extensions to FTP
for the Grid, 2000. Available online at: http://www.ggf.org/documents/

GFD.47.pdf (Accessed August 31st, 2007).

[233] T. Ylonen and C. Lonvick. RFC-4251: The Secure Shell (SSH) Pro-
tocol. Available online at: http://www.ietf.org/rfc/rfc4251.txt (Ac-
cessed August 31st, 2007).

Chapter 6

Scheduling grid services

6.1 Introduction

In the past twenty years, the parallel and distributed computing have been
widely researched and utilized in the industry and scientific research. The dra-
matic growth in the number of powerful, easy-to-use, portable, and affordable
computers, combined with globally accessible communication networks, has
resulted in a large and growing user community which demands the sophisti-
cated computing and services. In order to provide reliable and fast distributed
services and to reduce the turn-around time of user jobs, the scheduling al-
gorithms and strategies have been heavily studied. In the same time, a lot
of systems (e.g. Condor , PBS) which provide the job queuing mechanism,
scheduling policy and local resource management are developed to facilitate
the creation and utilization of powerful clusters.

Along with the deployment of more and more heterogeneous clusters, the
problem of requiring middleware to leverage existing IT infrastructure to op-
timize compute resources and manage data and computing workloads has
emerged. Grid computing has become an increasingly popular solution to
optimize resource allocation and integrate variable computing resources in
highly charged IT environments.

Grid technologies and infrastructures support the integration and coordi-
nated use of diverse resources in dynamic, distributed virtual organizations.
According to the definition of Ian Foster [257], the characteristics of the Grid
can be concluded in three points:

• coordinates resources that live within different control domains (e.g.
different administrative units of the same or different companies). Thus
the administration of each resource is independent and distributed.

• uses multi-purpose protocols and interfaces that address such funda-
mental issues as authentication, authorization, resource discovery, and
resource access. But it is important that these protocols and interfaces
be standard and open.

• allows its integral resources to be used in a coordinated fashion to deliver
various qualities of service.

161

162 Grid Resource Management

Thus new scheduling algorithms and strategies must be researched to take
into account the characteristic issues of grids. In a grid environment, the
scheduling problem is to schedule a stream of applications from different users
to a set of computing resources to maximize system utilization. In the same
time, SOA(Service-Oriented Architecture) is more and more adopted in in-
dustry and business domains as a common and effective solution to resolve
the grid computing problem. Service-orientation describes an architecture
that uses loosely coupled services to support the requirements of business
processes and users. Resources in a SOA environment are made available as
independent services that can be accessed without knowledge of their under-
lying platform implementation. Therefore efficient discovery of grid services
is essential for the success of grid computing. In this chapter, the principal
components of the grid scheduling will be presented, such as the service discov-
ery, resource information and grid scheduling architecture. Fault-tolerance,
the most important component to assure the qualities of service in a grid, is
described at the end of this chapter.

6.2 Scheduling algorithms and strategies

A schedule of tasks (or schedule) is the assignment of tasks to specific time
intervals of resources, such that no two tasks are on any resource at the same
time, or such that the capacity of the resource is not exceeded by the tasks
[255]. In general, heterogeneous computing (HC) is the coordinated use of
different types of machines, networks, and interfaces to maximize their com-
bined performance and/or cost-effectiveness [253, 260]. HC is an important
technique for efficiently solving collections of computationally intensive prob-
lems [258]. Thus scheduling algorithms on heterogeneous computing systems
have been widely studied.

Two types of scheduling algorithms are intensively researched: static and
dynamic. In a general HC system, schemes are necessary to assign tasks to
machines (matching) and to compute the execution order of the tasks assigned
to each machine (scheduling) [242]. The process of matching and scheduling
tasks is referred to as mapping. Dynamic methods perform the mapping as
tasks arrive. This is in contrast to static techniques, where the complete
set of tasks to be mapped is known a priori, the mapping is done prior to
the execution of any of the tasks, and more time is available to compute the
mapping.

6.2.1 Static heuristics

In order to clearly describe the heuristics, some preliminary terms must be
defined. Machine Availability Time, mat(j), is the earliest time a machine j

Scheduling grid services 163

can complete the execution of all the tasks that have previously been assigned
to it. Let ETC(i, j) be defined as the estimated time to compute for task i on
machine j. Completion Time, ct(i, j), is the machine availability time plus the
execution time of task i on machine j,ct(i, j) = mat(j) + ETC(i, j). Let t as
the number of tasks to be executed and m as the number of machines in the HC
system. The maximum value of ct(i, j), for 0 ≤ i < t and 0 ≤ j < m is known
as the makespan. Each heuristic is attempting to minimize the makespan
[241]. According to the description of papers [237, 241, 288, 279],we conclude
heuristics as follows:

Opportunistic Load Balancing (OLB): assigns each task, in arbitrary
order, to the next available machine, regardless of the task’s estimated
execution time on that machine.

User-Directed Assignment (UDA): in contrast to OLB, UDA assigns
each task, in arbitrary order, to the machine with the best estimated
execution time for that task, regardless of that machine’s availability.

Fast Greedy: assigns each task, in arbitrary order, to the machine with the
minimum completion time for that task.

Min-min: begins with the set U of all unmapped tasks. Then the set of
minimum completion times,

M = {mi : mi = min0≤j<m(ct(i, j)), for each i ∈ U} ,

is found. Next, the task with the overall minimum completion time from
M is selected and assigned to the corresponding machine. Lastly, the
newly mapped task is removed from U and the process repeats until all
tasks are mapped.

Max-min: is very similar to Min-min. The Max-min also begins with the set
U of all unmapped tasks. Then the set of minimum completion times,

M = {mi : mi = min0≤j<m(ct(i, j)), for each i ∈ U} ,

is found. Next, the task with the overall maximum completion time
from M is selected and assigned to the corresponding machine. Lastly,
the newly mapped task is removed from U and the process repeats until
all tasks are mapped.

Greedy: is literally a combination of the Min-min and Max-min heuris-
tics. The Greedy heuristic performs both of the Min-min and Max-min
heuristics, and uses the better solution.

Genetic Algorithm (GA): is a promising heuristic approach to find near-
optimal solutions in large search spaces. The first step necessary to

164 Grid Resource Management

employ a GA is to initiate a population of chromosomes (possible map-
pings). A random set of chromosomes is often used as the initial pop-
ulation. This initial population is the first generation from which the
evolution starts. Then all of chromosomes in the population are eval-
uated based on their fitness value (i.e., makespan). Thus, in this re-
search a smaller fitness value represents a better solution. The selection
process is the next step. In this step, each chromosome is eliminated
or duplicated (one or more times) based on its relative quality. The
population size is typically kept constant. Selection is followed by the
crossover step. With some probability, some pairs of chromosomes are
selected from the current population and some of their corresponding
components are exchanged to form two valid chromosomes, which may
or may not already be in the current population. After crossover, each
chromosome in the population may be mutated with some probability.
The mutation process transforms a chromosome into another valid one
that may or may not already be in the current population. The new
population is then evaluated. If the stopping criteria have not been met,
the new population goes through another cycle (iteration) of selection,
crossover, mutation, and evaluation. These cycles continue until one of
the stopping criteria is met.

Simulated Annealing (SA): uses a procedure that probabilistically allows
poorer solutions to be accepted to obtain a better result. This probabil-
ity is based on a system temperature that decreases for each iteration.
The initial system temperature is the makespan of the initial mapping
and the initial mapping is generated and mutated in the same manner
as the GA. Then the makespan is evaluated. If the new makespan is
better, the new mapping replaces the old one. If the new makespan is
worse, a function, P (makespannew, makespanold, temperature), will be
used to decide to accept or reject the new makespan.

Genetic Simulated Annealing (GSA): is a combination of the GA and
SA techniques. In general, GSA follows procedures similar to the GA
outlined above. However, for the selection process, GSA uses the SA
cooling schedule and system temperature, and a simplified SA decision
process for accepting or rejecting new chromosomes.

Tabu: The Tabu search keeps track of the regions of the solution space which
have already been searched so as not to repeat a search near these
‘Tabu’ areas. A solution (mapping) uses the same representation as
a chromosome in the GA approach. Heuristic searches are conducted
within a region, and the best solution for that region is stored. Then, a
new region, not on the tabu list, is searched. When a stopping criterion
is reached, the best solution among regions is selected.

A∗: is a tree-based search that has been applied to many task allocation prob-
lems. As the tree grows, intermediate nodes represent partial solutions

Scheduling grid services 165

FIGURE 6.1: Inconsistent, high task, high machine heterogeneity.

(a subset of tasks are assigned to machines), and leaf nodes represent
final solutions (all tasks are assigned to machines). The partial solu-
tion of a child node has one more task a mapped than the parent node.
Each parent node can be replaced by its m children, one for each possi-
ble mapping of a. The number of nodes allowed in the tree is bounded
to limit mapper execution time. For each node, n, we can associate a
cost function, f(n), with it. f(n) represents the makespan of the partial
solution of node n plus a lower-bound estimate of the time to execute
the unmapped tasks in the meta-task. Thus the node with the mini-
mum f(n) is replaced by its m children and the tree is expanded. If
the number of created nodes reaches the maximum number of allowed
nodes, the node with the largest f(n) is deleted. The process continues
until a leaf node (complete mapping) is reached.

Figures 6.1 and 6.2 show comparisons of the 11 static heuristics using
makespan as the criterion in two dierent heterogeneity environments. For each
heuristic, there are 512 tasks which are submitted to 16 machines and 100 tri-
als are executed. The bars in the figures show the averages of makespan. It
can be seen that, for the parameters used in this study, GA gives the smallest
makespan for inconsistent heterogeneities [279].

6.2.2 Dynamic heuristics

In an HC system where the tasks to be executed are not known a priori,
dynamic schemes are necessary to match tasks to machines, and to compute
the execution order of the tasks assigned to each machine [279]. The mapping
heuristics can be grouped into two categories: on-line mode and batch-mode
heuristics. In the on-line mode, a task is mapped onto a machine as soon as
it arrives at the mapper. In the batch mode, tasks are not mapped onto the
machines as they arrive; instead they are collected into a set that is examined

166 Grid Resource Management

FIGURE 6.2: Inconsistent, high task, low machine heterogeneity.

for mapping at prescheduled times called mapping events.

6.2.2.1 On-line mode heuristics

The Minimum Completion Time (MCT) heuristic assigns each task to the
machine that results in that task’s earliest completion time. This causes some
tasks to be assigned to machines that do not have the minimum execution time
for them. As a task arrives, all the machines in the HC suite are examined
to determine the machine that gives the earliest completion time for the task
[273].

The Minimum Execution Time (MET) heuristic assigns each task to the
machine that performs that task’s computation in the least amount of execu-
tion time. This heuristic, in contrast to the MCT, does not consider machine
ready times, and can cause a severe imbalance in load across the machines.
The main advantage of this method is its simplicity [279].

The Switching Algorithm (SA) heuristic is motivated by the following ob-
servation. The MET heuristic can potentially create load imbalance across
machines by assigning many more tasks to some machines than to others,
whereas the MCT heuristic tries to balance the load by assigning tasks for
earliest completion time. The SA heuristic uses the MCT and MET heuris-
tics in a cyclic fashion depending on the load distribution across the machines.
The purpose is to have a heuristic with the desirable properties of both the
MCT and the MET [279].

The KPB (K-Percent Best) heuristic considers only a subset of machines
while mapping a task. The subset is formed by picking the (k × m/100) best
machines based on the execution times for the task, where 100/m ≤ k ≤ 100.
The task is assigned to a machine that provides the earliest completion time
in the subset. If k = 100, then the KPB heuristic is reduced to the MCT
heuristic. If k = 100/m, then the KPB heuristic is reduced to the MET
heuristic. A ‘good’ value of k maps a task to a machine only within a subset

Scheduling grid services 167

formed from machines computationally superior for that particular task [273].
The Opportunistic Load Balancing (OLB) heuristic assigns a task to the

machine that becomes ready next, without considering the execution time of
the task on that machine. If multiple machines become ready at the same time,
then one machine is arbitrarily chosen. The complexity of the OLB heuristic
is dependent on the implementation. In the implementation considered here,
the mapper may need to examine all m machines to find the machine that
becomes ready next. Therefore, it takes O(m) to find the assignment. Other
implementations may require idle machines to assign tasks to themselves by
accessing a shared global queue of tasks [282].

6.2.2.2 Batch mode heuristics

In the batch mode heuristics, meta-tasks are mapped after predefined in-
tervals. These intervals are defined using one of the two strategies proposed
below [273].

1. The regular time interval strategy maps the meta-tasks at regular inter-
vals of time (e.g., every 10 sec).

2. The fixed count strategy. In this strategy, the length of the mapping
intervals will depend on the arrival rate and the completion rate.

The Min-min heuristic is shown in Algorithm 6.2.1. It calculates the earli-
est completion time for each task, tj in the meta-task M and the machine, mi,
that obtains it. Then it finds the task, tk, with the minimum earliest com-
pletion time in M . Next, the task, tk is assigned to the machine that gives
the earliest completion time of the task, and that machine’s ready time is up-
dated. This assigned task is removed from the meta-task and the procedure
is repeated [273].

The Max-min heuristic is similar to the Min-min heuristic. Once it finds all
the earliest completion time of each task in the meta-task, the task tk that has
the maximum earliest completion time is determined and then assigned to the
corresponding machine. Then this assigned task is removed from the meta-
task and this procedure is repeated until all of the tasks have been mapped.
[273].

The Sufferage heuristic (shown in Algorithm 6.2.2) finds the earliest com-
pletion time of each task in the meta-task and calculates the sufferage value
of a task tk. The sufferage value of tasks is the difference between its second
earliest completion time (on some machine my) and its earliest completion
time (on some machine mx). For the task tk, if the machine mj that gives the
earliest completion time is unassigned, the task tk is assigned to that machine
and is removed from the meta-task. Otherwise, the heuristic compares the
sufferage value of the task ti assigned in the machine with the sufferage value
of task tk. If the sufferage value of tk is bigger than the value of task ti, the
task ti is unassigned and added to the meta-task. The task tk is assigned to

168 Grid Resource Management

Algorithm 6.2.1 The Min-min heuristic
for Each Task tj in meta-task M do

for Each machine mi do
Calculate ct(i,j) = mat(j) + ETC(i,j)

end for
end for
while Unmapped tasks remaining do

for Each task in M do
find its earliest completion time and the machine that obtains it
find the task tk with the minimum earliest completion time
assign the task tk to the machine that gives the earliest completion
time
delete the task tk from M
update

end for
end while

that machine and is removed from the meta-task. Each task in the meta-task
is considered only once [279].

For many heuristics, there are control parameter values and/or control func-
tion specifications that can be selected for a given implementation and such
values and specifications are selected based on experimentation and/or infor-
mation in the literature. Normally, the KPB provides the minimum makespan
in the on-line mode heuristics and the Sufferage heuristic gives the smallest
makespan in the batch mode heuristics [279].

6.2.3 Grid scheduling algorithms and strategies

The traditional parallel scheduling problem is to schedule the subtasks of an
application to the parallel machines in order to reduce the turn-around time .
In a grid environment, the scheduling problem is to schedule a stream of appli-
cations from different users to a set of computing resources to maximize system
utilization. Both static and dynamic heuristics are widely adopted in grid
computing. Dynamic scheduling is more appropriate than static scheduling in
a grid environment because of the multiplicities of machines (e.g., processor
speed).

In the dynamic scheduling, if a resource is assigned many tasks, it may
invoke a balancing strategy to decide which task should be execute first. Ac-
cording to how the dynamic task assignment is achieved, there are two basic
approaches [280]:

• First-Come-First-Served (FCFS) policy. The task is executed according
to the assigned time. The task which has the earliest assigned time is
executed first.

Scheduling grid services 169

Algorithm 6.2.2 The Sufferage heuristic
for Each Task tj in meta-task M do

for Each machine mi do
Calculate ct(i,j) = mat(j) + ETC(i,j)

end for
end for
while Unmapped tasks remaining do

mark all machines as unassigned
for each task tk in M do

find machine mj that gives the earliest completion time
sufferage value = second earliest completion time - earliest completion
time
if machine mj is unassigned then

assign tk to machine mj

delete tk from M
mark mj as assigned

else
if the sufferage value of ti < the sufferage value of tk then {the task
is assigned to machine mj is ti}

unassign ti, add to M
assign tk to machine mj , remove from M

end if
end if

end for
update

end while

170 Grid Resource Management

• Backfilling policy. Backfilling works by identifying “holes” in the local
job queue and moving forward smaller jobs that fit those holes. There
are two common variations to backfilling - conservative and aggressive.
In conservative backfill, every job is given a reservation when it enters
the system. A smaller job is moved forward in the queue as long as
it does not delay any previously queued job. In aggressive backfilling,
only the job at the head of the queue has a reservation. A smaller job is
allowed to leap forward as long as it does not delay the job at the head
of the queue.

The economic approach for managing resource allocation in grid computing
environments provides a fair basis in successfully managing decentralization
and heterogeneity that is present in human economies [245]. There are two key
players in the economic model: Grid service providers (GSPs) providing the
traditional role of producers and Grid resource brokers (GRBs) representing
consumers. Consumers interact with their own brokers for managing and
scheduling their computations on the grid. The GSPs make their resources
grid enabled by running software systems along with grid trading services to
enable resource trading and execution of consumer requests directed through
GRBs. GRBs may invite bids from a number of GSPs and select those that
offer the lowest service costs and meet their deadline and budget requirements.
Alternatively, GSPs may invite bids in an auction and offer services to the
highest bidder as long as its objectives are met. Both GSPs and GRBs have
their own utility functions that must be satisfied and maximized.

In [264], a QoS Guided Min-min heuristic is presented which can guarantee
the QoS requirements of particular tasks and minimize the makespan at the
same time. It divides all the tasks in the meta-task into two parts: tasks with
high QoS request and tasks with low QoS request. The tasks with high QoS
request will be mapped first to satisfy the QoS requirement. In each part, the
Min-min heuristic is used to assign a task to the corresponding machine.

6.3 Architecture

The management of batch jobs within a single distributed system or do-
main has been addressed by many research and commercial systems, notably
Condor [271], LSF [290], and PBS [266]. In a grid environment, the man-
agement of jobs on a set of heterogeneous, dynamically changing resources
is a more complex problem. A meta-scheduler is a manager or supervisor of
local resource managers, which control the use of individual resources such as
clusters, computing farms, servers or supercomputers. The meta-scheduler is
therefore a key component of a computational grid as it is responsible for op-
timizing the use of grid resources. A number of schedulers for grid computing

Scheduling grid services 171

systems have been developed.

6.3.1 Meta-schedulers

Condor-G [261] is an innovative distributed computing framework that ad-
dresses the management of computation and harnessing of resources, creden-
tial management, resource discovery and fault-tolerance. In brief, Condor-
G combines the inter-domain resource management protocols of the Globus
Toolkit [259] and the intra-domain resource management methods of Condor
[271] to allow the user to harness multi-domain resources as if they all belong
to one personal domain. The advantages of Condor-G are shown below.

• It allows the user to treat the grid as an entirely local resource, with
an API and command line tools that allow the user to submit jobs, to
query a job’s status, to be informed of job terminations or problems and
to obtain access to detailed logs.

• Condor-G is built to tolerate four types of failure: crash of the Globus
JobManager, crash of the machine that manages the remote resource,
crash of the machine on which the GridManager is executing, and fail-
ures in the network connecting the two machines.

• A user-supplied list of GRAM servers or a personal resource broker are
used to achieve the resource discovery and scheduling. The information
from resources is gathered and then the Matchmaker is used to make
brokering decisions.

• Credential management. Condor-G deals with credential expiration by
periodically analyzing the credentials for all users with currently queued
jobs. Credentials may have been forwarded to a remote location, in
which case the remote credentials need to be refreshed as well.

Nimrod-G [244] is a grid resource broker that uses a computational economy
driven architecture for managing resources and scheduling task farming ap-
plications on large-scale distributed resources. Its key components are: Client
or User Station, Parametric Engine, Scheduler, Dispatcher and Job-Wrapper.
The client or user station acts as a user-interface for controlling and super-
vising a job under consideration. The parametric engine is responsible for
managing the execution of parametrized application jobs. It takes care of the
actual creation of jobs, the maintenance of job status, and providing a means
for interaction between the clients, the schedule advisor, and the dispatcher.
The scheduler is responsible for resource discovery, resource trading, resource
selection, and job assignment. The scheduler can use the information gathered
by a resource discoverer and also negotiate with resource owners to establish
service price. The resource that offers the best price and meets resource re-
quirements can eventually be selected. The dispatcher primarily initiates the

172 Grid Resource Management

execution of a task on the selected resource as per the scheduler’s instruction.
The job-wrapper is responsible for staging application tasks and data; start-
ing execution of the task on the assigned resource and sending results back to
the parametric engine via dispatcher.

GrADS [250] aims to produce a software execution environment for code
to be run on a computational grid and is designed specifically for Param-
eter Sweep Application. Two improvements of the GrADS Project can be
mentioned:

• Rescheduling by stop/migration/restart and by single-processor swap-
ping are both feasible, flexible and require little additional programming.

• A new GrADS workflow scheduler that resolves the application depen-
dence and schedules the components, including parallel components,
onto available resources is developed. For each application component,
the GrADS workflow scheduler ranks each eligible resource, reflecting
the fit between the component and the resource. Then the scheduler
collates this information into a performance matrix. Finally, it runs
heuristics on the performance matrix to schedule components onto re-
sources.

gLite [243] is born from the collaborative efforts of academic and indus-
trial research centers as part of the EGEE [252] Project. gLite consists of six
principal components: Computing Element, Workload Management, Storage
Element, Catalog, Information and Monitoring and Security. It achieves ef-
ficiently and reliably the scheduling of computational tasks on the available
infrastructure, the data storage and movement on the infrastructure, the pro-
vision of grid information and application monitoring data. The workload
management system in gLite supports more advanced job types: Normal,
DAG, MPI, Checkpointable and Interactive. The LB (Logging and Book-
keeping) service is used to keep track of a job’s status. A system called
VOMS (Virtual Organization Membership Service) is used to manage infor-
mation about the roles and privileges of users within a VO. This information
is presented to services via an extension to the proxy.

GridWay [263] is an open source meta-scheduling technology that performs
job execution management and resource brokering on heterogeneous and dy-
namic grids based on Globus Toolkit services. GridWay allows unattended,
reliable, and efficient execution of single, array, or complex jobs on hetero-
geneous and dynamic grids. GridWay performs all the job scheduling and
submission steps transparently to the end user and adapts job execution to
changing grid conditions by providing fault recovery mechanisms, dynamic
scheduling, migration on-request and opportunistic migration. GridWay on
Globus provides decoupling between applications and the underlying local
management systems. It provides full support for C and JAVA DRMAA (Dis-
tributed Resource Management API) GGF standard for the development of
distributed applications and a command line interface similar to that found in

Scheduling grid services 173

local resource managers, and its modular design allows an easy incorporation
of new grid services and so inter-operability between different grid infrastruc-
tures (Globus WS, Globus pre-WS and EGEE).

6.3.2 Grid scheduling scenarios

In the past years, many grids have been developed and implemented in
scientific research and industry domains. However, these grid systems provide
only domain-specific solutions to the problem of scheduling resources in a grid
and no common and generic grid scheduling system has emerged yet. Thus
some generic features of the grid must be identified in order to define the
prototype of a genetic grid scheduling system. Tonellotto, N., Yahyapour, R.
and Wieder, P. [286] present three common grid scheduling scenarios in the
grid.

Enterprise Grids Enterprise Grids represent a scenario of commercial in-
terest in which the available IT resources within a company are better
exploited and the administrative overhead is lowered by the employment
of grid technologies. The resources are typically not owned by different
providers and are therefore not part of different administrative domains.
In this scenario a centralized scheduling architecture (i.e. a central bro-
ker) is the single access point to the whole infrastructure and interacts
directly with the local resource managers. Every user must submit jobs
to this centralized entity.

High Performance Computing Grids High Performance Computing
Grids represent a scenario in which different computing sites (e.g. scien-
tific research labs) collaborate for joint research. Computing resources
that execute compute- and/or data-intensive applications are usually
large parallel computers or cluster systems. In this case the resources
are part of several administrative domains, with their own policies and
rules. A user can submit jobs to the broker at institute or VO level.
The brokers can split a scheduling problem into several sub-problems,
or forward the whole problem to different brokers in the same VO.

Global Grids Global Grids might comprise all kinds of resources, from sin-
gle desktop machines to large-scale HPC machines, which are connected
through a global grid network. This scenario is the most general one,
covering both cases illustrated above and introducing a fully decentral-
ized architecture.

6.3.3 Metascheduling schemes

The hierarchy of the metascheduler and computing resources and the role
which the metascheduler plays in the job scheduling can be defined as the

174 Grid Resource Management

metascheduling schemes. Three metascheduling schemes are discussed in
[281].

Centralized Scheme In the centralized model, the metascheduler maintains
information about all sites. All jobs are submitted to the metascheduler.
Based on the queue of jobs submitted, and the information about all the
constituent sites, the metascheduler makes scheduling decisions. With
this model, the local sites are responsible only for dispatching the jobs
that are supplied by the metascheduler, and providing information to
the metascheduler.

Hierarchical Scheme With the hierarchical scheme, all jobs are still sub-
mitted to the metascheduler. But unlike the centralized scheme, jobs are
not maintained in the metascheduler queue until dispatch time. Each
site maintains a local queue from which it schedules jobs for execution.
It is possible for different sites to use different scheduling policies. Once
submitted to a local scheduler, the metascheduler has no further direct
influence on the scheduling of the job, and the job cannot be moved to
another site even if the load at the other site becomes lower at some
time in the future.

Distributed Scheme This scheme is similar to the hierarchical scheme ex-
cept that there is a metascheduler at every site and jobs are submitted
to the local metascheduler where the job originates. The metaschedulers
query each other periodically to collect instantaneous load information.
If any of the other schedulers has a lower load, the job is transferred to
the site with the lowest load. Since all jobs are submitted locally, the
distributed scheme is more scalable than the hierarchical scheme.

6.4 Service discovery

Efficient discovery of grid services is essential for the success of grid comput-
ing. The standardization of grids based on Web services has resulted in the
need for scalable Web service discovery mechanisms to be deployed in grids
[239]. There are two techniques to perform the process of services discovery:
syntactic and semantic [274]. Such processes must rely on the storage of arbi-
trary metadata about services that originate from both service providers and
service user. Several standards of service directory are studied to support the
storage and the organization of the metadata.

6.4.1 Service directories

Early distributed systems comprise collections of components that are im-
plicitly linked through function names, or linked through TCP/IP-based hosts

Scheduling grid services 175

and port addresses. Domain Name Servers and Jini [238] simplify and abstract
the use of these implicit links by providing a registering mechanism for local
components [274]. Grid computing is based on standards which use Web ser-
vices technology. In the grid environment, the service discovery function is
assigned to a specialized grid service called registry. The service directories
that support the registry and the discovery of the grid services are known as:

6.4.1.1 UDDI

UDDI (Universal Description, Discovery, and Integration) is an XML-based
registry for businesses worldwide to list themselves on the Internet. Its ul-
timate goal is to streamline online transactions by enabling companies to
find one another on the Web and make their systems inter-operable for e-
commerce. The project allows businesses to list themselves by name, product,
location, or the Web services they offer. A UDDI registry enables a business
to enter three types of information in a UDDI registry: white pages, yellow
pages and green pages. UDDI’s intent is to function as a registry for services
just like in Yellow pages; companies register themselves and their services un-
der different categories. In UDDI, White Pages are a listing of the business
entities. Green pages represent the technical information that is necessary to
invoke a given service. And Yellow pages give more details about the business
entities in the White pages. Thus, by browsing a UDDI registry, a developer
should be able to locate a service and a company and find out how to invoke
the service.

However, today UDDI has not been widely deployed in the Internet because
of its shortcomings. For example it does not provide the ability to query high-
level service information such as identifying services within a particular price
range. In fact, the only known uses of UDDI are what are known as private
UDDI registries within an enterprise’s boundaries. Improvement of the UDDI
standard is continuing in full force and UDDI version 3 (V3) was recently
approved as an OASIS Standard. However, UDDI today has issues that have
not been addressed, such as scalability and autonomy of individual registries.

6.4.1.2 MDS

The Monitoring and Discovery System (MDS) [262] is a suite of Web ser-
vices to monitor and discover resources and services on Grids. This sys-
tem allows users to discover what resources are considered part of a Virtual
Organization (VO) and to monitor those resources. MDS services provide
query and subscription interfaces to arbitrarily detailed resource data and a
trigger interface that can be configured to take action when pre-configured
trouble conditions are met. The services included in the WS MDS implemen-
tation (MDS4), provided with the Globus Toolkit 4, acquire their information
through an extensible interface which can be used to:

• query WSRF services for resource property information,

176 Grid Resource Management

• execute a program to acquire data,

• interface with third-party monitoring systems.

MDS4 includes two WSRF-based services: an Index Service, which collects
data from various sources and provides a query/subscription interface to that
data, and a Trigger Service, which collects data from various sources and can
be configured to take action based on that data. An Archive Service, which
will provide access to historic data, is planned for a future release.

The Index Service is a registry similar to UDDI, but much more flexible. In-
dexes collect information and publish that information as resource properties.
Clients use the standard WSRF resource property query and subscription/no-
tification interfaces to retrieve information from an Index. Indexes can register
to each other in a hierarchical fashion in order to aggregate data at several
levels. Indexes are “self-cleaning”; each Index entry has a lifetime and will be
removed from the Index if it is not refreshed before it expires.

Each Globus container that has MDS4 installed will automatically have a
default Index Service instance. By default, any GRAM, RFT, or CAS service
running in that container will register itself to the container’s default Index
Service.

6.4.1.3 ICENI

ICENI (Imperial College e-Science Networked Infrastructure), developed
by the London e-Science Center, supports the concept of a computational
community based on Jini technology [238] . The participants in the compu-
tational community publish their services through Jini lookup service, which
serves as a registry in a Jini environment. Services can be identified through
lookup services by matching data members of their entry object with requests.
Compared to Web services based registry, Jini facilitates dynamic service dis-
covery but restricts end-points in a pure Java environment [289].

6.4.2 Techniques syntactic and semantic

6.4.2.1 Syntactic service discovery

Syntactic service discovery mainly focuses on the abstract part of a WSDL
description: operation and input/output messages. Service discovery is per-
formed by querying the name or the type of a service. The service is advertised
by its service information (i.e. name, type) in the registry. By retrieving this
service information, the user can discover services.

The paper [239] presents a distributed Web-service discovery architecture,
called DUDE (Distributed UDDI Deployment Engine). DUDE leverages DHT
(Distributed Hash Tables) as a rendezvous mechanism between multiple UDDI
registries. DUDE enables consumers to query multiple registries, still at the
same time allowing organizations to have autonomous control over their reg-
istries. The DUDE architecture can support effective distribution of UDDI

Scheduling grid services 177

registries thereby making UDDI more robust and also addressing its scaling
issues. Furthermore, the DUDE architecture for scalable distribution can be
applied beyond UDDI to any grid service discovery mechanism.

A Grid Market Directory (GMD) system is proposed in [289]. The GMD
is developed as a VO marketplace registry, which serves as a registry for
publication and discovery of grid service providers and their services. The
GMD consists of two key components: the portal manager and the query Web-
service. The GMD portal manager is responsible for provider registration,
service publication and management, and service browsing. All these tasks
are accomplished by using a standard web browser. The GMD query Web-
service provides services so that clients such as resource brokers can query the
GMD and obtain the information of resources to discover those that satisfy
the user QoS requirements.

The Web Service Discovery Architecture (WSDA), proposed by Hoschek
[267], specifies communication primitives useful for discovery, service identifi-
cation, service description retrieval, data publication as well as query support.
The individual primitives can be combined and plugged together by specific
clients and services to yield a wide range of behaviors. A hyper registry is
also introduced which is a centralized database node for discovery of dynamic
distributed content. This registry supports XQueries over a tuple set from a
dynamic XML data model. The architecture includes a Unified Peer-to-Peer
Database Framework (UPDF) and a corresponding Peer Database Protocol
(PDP) [236].

6.4.2.2 Semantic service discovery

Semantic service discovery takes into account the semantic meaning of a
parameter in addition to syntactic matching. The interface description is
transformed into an ontology which is a knowledge schema especially for ser-
vices. Semantic information of services consists of their extensive descriptions
including, but not limited to, capabilities, functionality, portability and sys-
tem requirements. Semantic service matching introduces the possibilities of
fuzziness and inexactness of the response to a service discovery request.

The paper [270] proposes a flexible ontology management approach for dis-
covery and description of grid service capabilities supporting ontology evolu-
tion whose goal is to enhance the inter-operability among grid services. In a
domain, a concept may have changed or have emerged. The ability to be able
to reflect this change in a ontology is called ontology evolution. In this ap-
proach, concepts and descriptions in an ontology are defined independently,
and they are connected by relationships. In addition, the relationships are
updated based on real-time evaluations of ontology users in order to flexibly
support ontology evolution. A bottom-up ontology evolution means such an
environment that allows ontology users to evaluate impact factors of concepts
in an ontology and that results of the evaluation are reflected in the mod-
ification of the ontology. The contribution of this paper is to suggest the

178 Grid Resource Management

ontology management framework that not only enables semantic discovery
and description of a grid service capability but also supports a bottom-up
ontology evolution based on the users’ evaluations.

A framework for ontology-based flexible discovery of Semantic Web services
is described in [276]. The proposed approach relies on user-supplied, context-
specific mappings from a user ontology to relevant domain ontologies used
to specify Web services. The mechanism that transforms a user’s query for a
Web service into queries and the process of matchmaking engine are presented.
The framework also describes how user-specified preferences for Web services
in terms of non-functional requirements (e.g., QoS) can be incorporated into
the Web service discovery mechanism to generate a partially ordered list of
services that meet user-specified functional requirements.

S. A. Ludwig and P. van Santen [272] propose a service discovery match-
making framework based on a well-defined ontology. The matching mechanism
comprises three filter stages. These are context, syntactic and semantic match-
ing, whereas the service ontology database provides the knowledge-base. To
allow matching engines to perform flexible matches, service requesters are al-
lowed to decide the degree of flexibility that they grant to the system. Seman-
tic matching is based on DAML ontologies. The advertisements and requests
refer to DAML concepts and the associated semantic. Using this matchmak-
ing framework allows for a better service discovery and close matches in a
flexible way based on the defined ontology.

The project DReggie [248] presents a dynamic service discovery infrastruc-
ture that uses DAML to describe services and a Prolog reasoning engine to
perform matching using the semantic content of service descriptions. At the
heart of DReggie is an enhanced Jini Lookup Service (JLS) that enables smart
discovery of Jini-enabled services. This infrastructure should be a necessary
component of mobile devices and wireless networks.

6.5 Resource information

High-performance execution in distributed computing environments often
requires careful selection and configuration not only of computers, networks,
and other resources but also of the protocols and algorithms used by applica-
tions. Selection and configuration in turn require access to accurate, up-to-
date information on the structure and state of available resources [256]. In the
grid, information services which can perform the discovery, characterization,
and monitoring of resources, services, and computations are a vital part of
any grid software infrastructure.

Scheduling grid services 179

6.5.1 Globus Toolkit information service

Globus Monitoring and Data Service (MDS2) has been used in many grid
systems. It is now deprecated by Globus Alliance. The initial implementa-
tion used the GRIS (Grid Resource Information Service) and the GIIS (Grid
Index Information Service). This was a distributed service with one GRIS per
resource and one GIIS per site. In all its various implementations it suffered
from scalability and stability problems [285].

Globus MDS4 [262] includes an Aggregator Framework, which provides a
unified mechanism used by Services (such as the Index and Trigger services)
built on it. Services built on the Aggregator Framework collect information
via Aggregator Sources, a Java class that implements an interface (defined as
part of the Aggregator Framework) to collect XML-formatted data. MDS4
includes the following three Aggregator Sources:

• the Query Aggregator Source, which polls a WSRF service for resource
property information,

• the Subscription Aggregator Source, which collects data from a WSRF
service via WSRF subscription/notification,

• the Execution Aggregator Source, which executes an administrator-
supplied program to collect information.

Depending on the implementation, an Aggregator Source may use an exter-
nal software component or a WSRF service may use an external component
to create and update its resource properties. This set of components is called
Information Providers. MDS4 supports the following information providers:

• Hawkeye Information Provider: An Information Provider that gathers
Hawkeye data about Condor pool resources using the XML mapping
of the GLUE schema and reports it to a WS GRAM service, which
publishes it as resource properties.

• Ganglia Information Provider: An Information Provider that gathers
cluster data from resources running Ganglia using the XML mapping
of the GLUE schema and reports it to a WS GRAM service, which
publishes it as resource properties.

• WS GRAM: The job submission service component of GT4. This WSRF
service publishes information about the local scheduler.

• Reliable File Transfer Service (RFT): The file transfer service compo-
nent of GT4.

• Community Authorization Service (CAS): This WSRF service publishes
information identifying the virtual organization (VO) that it serves.

• Any other WSRF service that publishes resource properties.

180 Grid Resource Management

6.5.2 Other information services and providers

The requirements of grid-based information systems are described in [251].
First, we require that a grid information service should focus only on efficient
delivery of state information from a single source. If applications require accu-
rate local state or consistent global state, this functionality can be achieved via
other control functions that provide necessary atomic operations at a higher
cost. Second, in distributed environments, both individual entities and the
networks that provide access to those entities may fail. We hence require
that information services behave robustly in the face of failure of any of the
components on which the service is built. Finally, a new VO may involve
many entities and have unique requirements for discovery and monitoring.
We would like to be able to define once, ahead of time, the discovery and
enquiry mechanisms that must be supported by any grid entity.

R-GMA [246] is part of gLite/EGEE and it is a monitoring and information
management service for distributed resources. It exposes a relational model
with SQL support to provide static as well as dynamic information about grid
resources. The R-GMA architecture is based on that of the Grid Monitor-
ing Architecture (GMA) [284] of the Global Grid Forum (GGF). The GMA
consists of three components: consumers, producers and a directory service,
which we refer to as a registry as it avoids any implied structure. In the GMA
producers of information register themselves with the registry when they are
instantiated. The registry, which may be distributed, describes the type and
structure of information the producers want to make available to the grid.
Potential consumers of information can query the registry to find out what
type of information is available and locate producers that provide such infor-
mation. Once a consumer has this information it can contact the producer
directly to obtain the relevant data.

R-GMA can be used as a replacement for MDS. A small tool (GIN) has
been written to invoke the MDS-like EDG info-providers and publish the
information via R-GMA. R-GMA is also being used for network monitoring
and to locate replica catalogs.

Grimoires (Grid RegIstry with Metadata Oriented Interface) [287] is a
registry for the myGrid project [234] and the OMII Grid software release
(www.omii.ac.uk). In Grimoires, a protocol for attaching metadata to regis-
tered service description, and for querying over service descriptions and their
metadata is developed. The service registry is based on the UDDI (Universal
Description Discovery and Integration) framework but extends the framework
to allow metadata to be attached to various parts of the service description.
An extensible programmatic interface is also provided for clients with an easy
way to access the information, whether it is held in a remote Web service or
locally. The result is an extremely flexible service registry that can be the
basis of a semantically-enhanced service discovery engine [275].

NAREGI (National Research Grid Initiative) uses CIMOM, the CIM Ob-
ject Manager,which distributes information about compute elements based on

Scheduling grid services 181

the Common Information Model, an emerging industry standard. This is then
aggregated to a relational database and implemented as a grid service by use
of Globus service OGSA DAI (Open Grid Services Architecture Data Access
and Integration). Each site is referred to as a Cell Domain [285].

6.6 Data-intensive service scheduling

Data-intensive applications executing over a computational grid demand
large data transfers which are normally costly operations. Therefore, tak-
ing them into account is mandatory to achieve efficient scheduling of data-
intensive applications on grids.

6.6.1 Algorithms

As we have discussed in 6.2, there are many heuristics which are used to
perform the scheduling of the grid. Although there are schedulers that attain
good performance with these heuristics, they were not designed to take data
transfer into account. The data-intensive application is the scientific or enter-
prise application that deals with a huge amount of data. Currently, there exist
some algorithms that are able to take data transfer into account when schedul-
ing data-intensive applications on grid environments [240][247][254][278].

• The paper [240] considers the problem of allocating a large number of
independent, equal-sized tasks to a heterogeneous grid computing plat-
form. Since the data transfer tasks can be split into subtasks and each
subtask can often be processed independently, the solution presented
in this paper can be used to deal with the data-intensive applications
scheduling problem.
A tree structure is used to model a grid, where resources can have dif-
ferent speeds of computation and communication, as well as different
capabilities. The paper makes the assumption that the data for the
computation initially resides at a single node of the tree, and the re-
sults of the computation will be returned to that same node. The node
that serves as the source of the data is the root of the tree. In order to
determine the allocation of tasks to nodes in the tree that maximizes
the number of tasks executed per unit time in steady-state, the solution
proposed is bandwidth-centric: tasks should be allocated to nodes in
order of fastest communication time. If enough bandwidth is available,
then all nodes are kept busy; if bandwidth is limited, then tasks should
be allocated only to the children which have sufficiently small commu-
nication times, regardless of their computation power. The simulation
results show that the bandwidth-centric method obtains better results
than allocating tasks to all processors on a first-come, first served basis.

182 Grid Resource Management

• The paper [254] presents a method, Adaptive Regression Method
(AdRM), for predicting the performance of data transfer operations in
network-bound distributed data-intensive applications. The Network
Weather Service (NWS) is employed as network bandwidth probes to
make short-term prediction of transfer time for a range of file sizes.
AdRM combines NWS measurements with instrumentation data taken
from actual application runs to predict the future performance of the
application. The result is an accurate performance model that can be
parameterized by “live” NWS measurements to make time-sensitive pre-
dictions.

The scheduler incorporates both application-specific system require-
ments and dynamic resource performance information to schedule dis-
tributed applications in multi-user distributed environments. It uses
a performance model based on the application’s communication and
computational needs. Performance models can be represented by math-
ematical equations, in which numeric values for resource performance
forecasts are variables. The scheduler can evaluate the value of the per-
formance equation for different resource mixes and choose the resource
combination that maximizes application performance.

• An adaptive scheduling algorithm for data-intensive applications, XSuf-
ferage, is proposed in [247]. As we present in section 6.2, Sufferage can
be used for scheduling independent tasks for a uniform single-user en-
vironment. This heuristic calculates the Minimum Completion Time
(MCT) and a sufferage value which is defined as the difference between
its best MCT and its second-best MCT for each task. Tasks with high
sufferage value take precedence. However, the Sufferage heuristic does
not lead to best makespans in some situations. Assume that a task, say
T0, requires a large input file that is already stored on a remote clus-
ter. If that cluster contains two hosts with nearly identical performance,
then both those hosts can achieve nearly the same MCT for that task.
If the file is of significant size compared to network bandwidth available,
then it is likely that those two hosts lead to the best and second-best
MCTs for T0. This means that the sufferage value will be close to zero,
giving the task low priority. Other tasks may be scheduled in its place
and force T0 to be scheduled on some other clusters, thereby requiring
an additional file transfer. This problem is solved in XSufferage by using
a modified sufferage value definition. For each task and each cluster, we
compute the task’s MCT only for hosts in the given cluster and that
value the cluster-level MCT. The cluster-level sufferage value is com-
puted as the difference between the best and second-best cluster-level
MCT. The task with the highest cluster-level sufferage value is given
priority and is scheduled to the host that achieves the earliest MCT
within the cluster.

Scheduling grid services 183

• Ranganathan, K. and Foster, I. [277] describe a framework to address the
large-scale data-intensive problems. Within this framework, data move-
ment operations may be either tightly bound to job scheduling decisions
or, alternatively, performed by a decoupled, asynchronous process on the
basis of observed data access patterns and load. The scheduling logic is
encapsulated in three modules:

External Scheduler (ES): Users submit jobs to the External Sched-
uler they are associated with.

Local Scheduler (LS): Once a job is assigned to run at a particular
site (and sent to an incoming job queue) it is then managed by the
Local Scheduler.

Dataset Scheduler (DS): The DS at each site keeps track of the pop-
ularity of each dataset locally available. It then replicates popular
datasets to remote sites depending on some algorithm.

Most interestingly, they find that the framework can achieve particularly
good performance with an approach in which jobs are always scheduled
where data is located, and a separate replication process at each site
periodically generates new replicas of popular datasets.

• The paper [278] presents Storage Affinity, a novel scheduling heuristic for
bag-of-tasks data-intensive applications running on grid environments.
Storage Affinity exploits a data reuse pattern, common on many data-
intensive applications, that allows it to take data transfer delays into
account and reduce the makespan of the application. Further, it uses a
replication strategy that yields efficient schedules without relying upon
dynamic information that is difficult to obtain.

Storage Affinity was conceived to exploit data re-utilization to improve
the performance of the application. Data re-utilization appears in two
basic flavors: inter-job and inter-task. The former arises when a job
uses the data already used by (or produced by) a job that executed
previously, while the latter appears in applications whose tasks share the
same input data. Thus, storage affinity of a task to a site is defined as
the number of bytes within the task input dataset that are already stored
in the site. The algorithm calculates the highest storage affinity value
for each task. After this calculation, the task with the largest storage
affinity value is chosen and scheduled. Since the information about data
size and data location can be obtained a priori without difficulty and loss
of accuracy, Storage Affinity does not use dynamic information about
the grid and the application which is difficult to obtain. Storage Affinity
applies also to task replication. Replicas have a chance to be submitted
to faster processors than those processors assigned to the original task,
thus increasing the chance of decreasing the task completion time.

184 Grid Resource Management

6.6.2 Architecture of data grid

In domains as diverse as global climate change, high energy physics, and
computational genomics, the volume of interesting data is already measured
in terabytes and will soon total petabytes. The communities of researchers
that need to access and analyze this data are often large and are almost always
geographically distributed. But no integrating architecture exists that allows
us to identify requirements and components common to different systems and
hence apply different technologies in a coordinated fashion to a range of data-
intensive petabyte-scale application domains. This integrating architecture is
called data grid [249]. Facing this challenge, some researches have defined the
requirements that a data grid must satisfy and the components and APIs that
will be required in its implementation.

The paper [249] defines four principles for a data grid architecture.

• Mechanism neutrality. The data grid architecture is designed to be as
independent as possible of the low-level mechanisms used to store data,
store metadata, transfer data, and so forth.

• Policy neutrality. Within the data grid architecture, data movement
and replica cataloging are provided as basic operations, but replica-
tion policies are implemented via higher-level procedures. Although
default policies are provided, users can easily substitute these policies
with application-specific code.

• Compatibility with grid infrastructure. The data grid tools should be
compatible with lower-level grid mechanisms. This approach also simpli-
fies the implementation of strategies that integrate, for example, storage
and computation.

• Uniformity of information infrastructure. This means that we use the
same data model and interface to access the data grid’s metadata,
replica, and instance catalogs as are used in the underlying grid in-
formation infrastructure.

These four principles led us to develop a two layer architecture: core services
and high level components. In the core services layer, we have Storage Systems
and the Grid Storage API, Metadata Service and other basic services (e.g.
authorization and authentication service, resource information service). The
replica manager service and the replica selection service are two components
in the high level layer. The replica manager service is needed to create (or
delete) copies of file instances, or replicas, within specified storage systems.
The replica selection service is the process of choosing a replica that will
provide an application with data access characteristics.

Scheduling grid services 185

6.7 Fault tolerant

With the development of grid technology, more and more resources and
users join into the community of grid computing. Increasing the number of
components in a distributed system means increasing the probability that
some of these components will be subject to failure during the execution of a
distributed algorithm. To avoid the necessity of restarting an algorithm each
time a failure occurs, algorithms should be designed so as to deal properly
with such failures [283].

6.7.1 Fault-tolerant algorithms

The distributed system has the partial failure property. Because of the
dispersion of processing resources in the distributed system, no matter what
kind of failure occurs, it usually affects only a part of the entire system.
Therefore it is possible that the tasks of failing processes can be taken over
by the remaining components, leading to a graceful degradation rather than
an overall malfunctioning.

There are two main types of fault-tolerant algorithms, namely robust algo-
rithm and stabilizing algorithm.

Robust algorithm: Robust algorithms are designed to guarantee the cor-
rect behavior of the processes which function correctly in spite of faults
occurring in other processes during their execution. These algorithms
are based on strategies such as the vote or the replication, which main-
tains the correct behavior of a failure process by other backup processes.
These algorithms will never be blocked by the failure of processes, be-
cause of the strategies of the vote and the replication. Usually, a robust
algorithm is used to deal with permanent faults.

Stabilizing algorithms: Stabilizing algorithms permit the failure of correct
processes. Correct processes might be affected by failure, but the algo-
rithm will eventually repair the failure after certain times. The system
with these algorithms can be started in any state (possibly faulty), and
stabilizing algorithms should finally resume the correct behavior.

In order to determine how a correct process can be affected by the failure,
the failure model must be studied. We suppose that only the processes can
fail, and the communications between two processes are reliable.

• Initially dead processes. A subset of the processors never ever start.

• Crash model. A process functions properly according to its local algo-
rithm until a certain point where it stops indefinitely.

186 Grid Resource Management

• Byzantine behavior. The process may execute local algorithms, but the
execution sequence of each algorithm is arbitrary. The process may send
and receive arbitrary messages.

In the failure model, a dead process is the special case of the crash model,
when the crashed process crashes before it starts executing. Similarly, when
the Byzantine process crashes, and then stays in that state, the byzantine
behavior transforms into the crash model.

6.7.2 Fault-tolerant techniques

In order to ensure the performance of the entire system, some techniques
must be achieved to recover or replace the process failed. Several fault-tolerant
techniques are intensively studied.

Stable memory: With this technique, processes save some recovery points
regularly. When a process fails, it is recovered from the last recovery
point. This technique is simple to implement, but the problem of coher-
ing globally the entire distributed system is delicate. There are three
strategies of saving the recovery points:

1. The process saves recovery points in an asynchronous way, without
the dependence of the other processes. In the case of failure, we
need a set of recovery points which represent a coherent global state
of the system to restart the computing.

2. The recording of the recovery points is preset in order to represent
correspondingly a coherent global state. There should be many
messages exchanged between processes.

3. Dynamic coordination between the actions of recording of recovery
points.

Replication processes: The replication is a technique achieving fault toler-
ance in a distributed system. The replication is considered an effective
means to increase the reliability of a distributed system. Moreover, the
replication can improve the performance of the system by using the
backup servers. However, the problem of cohering these backup servers
constrains these advantages. In other words it is a question of guaran-
teeing the coherence of servers within acceptable times. Strategies of
replication aim at guaranteeing a strong coherence (strong consistency)
between the backups of a distributed resource. Formally these strategies
ensure that the state of each backup is identical. The passive replication
and the active replication are two strategies of replication.

1. The passive replication distinguishes two behaviors from a dis-
tributed component: the primary copy and backups. The primary

Scheduling grid services 187

copy is the only one to carry out all the treatments. The backups
supervise passively the primary copy. In the case of failure of the
primary copy, a backup becomes the new primary copy.

2. The active replication treats equally each backup of a distributed
component. All the backups receive the same sequence, and all the
backups process the request independently. After the treatment of
the request, the backups send the result to the client autonomously.

3. The semi-active replication is located between the active replication
and the passive replication. Contrary to the passive replication, the
backups are not passive. All the backups receive the same sequence,
and all the backups process the request independently. But after
the treatment of the request, the primary copy is the only one to
send the result.

6.7.3 Grid fault tolerance

The grid can share numerous distributed resources and provide lots of ser-
vices for the use of science researchers or e-business. Such services may require
several or more days of computation, and execute in a heterogeneous environ-
ment. It is therefore necessary to investigate the application of fault-tolerant
techniques for grid computing.

Hwang, S. and Kesselman, C. [268] present a failure detection service (FDS)
and a flexible failure handling framework (Grid-WFS) as a fault tolerance
mechanism on the grid. The FDS enables the detection of both task crashes
and user-defined exceptions. By using a notification mechanism which is based
on the interpretation of notification messages being delivered from the under-
lying grid resources, a generic failure detection service can detect failures
without requiring any modification to both the grid protocol and the local
policy of each grid node. The Grid-WFS built on top of FDS allows users to
achieve failure recovery in a variety of ways depending on the requirements
and constraints of their applications. Central to the framework is flexibility
in handling failures. This section describes how to achieve flexibility by the
use of workflow structure as a high-level recovery policy specification, which
enables support for multiple failure recovery techniques, the separation of fail-
ure handling strategies from the application code, and user-defined exception
handlings.

Phoenix [269] is a transparent middleware-level fault-tolerance layer that
transparently makes data-intensive grid applications fault tolerant. It detects
failures early, classifies failures into transient and permanent, and appropri-
ately handles the transient failures. It also handles information-loss problems
associated with building error handling in lower layers by persistently logging
failures to the grid knowledge base and allowing sophisticated applications to
use this information to tune it. Phoenix is applied to a prototype of the NCSA
image processing pipeline and it considerably improves the failure handling

188 Grid Resource Management

and reports on the insights gained in the process.

6.8 Concluding remarks

This chapter first introduces some scheduling algorithms and strategies for
heterogeneous computing system. There are 11 static heuristics and two types
of dynamic heuristics that are described. Then the scheduling problems in a
grid environment are discussed. Concurrently, the grid scheduling algorithms,
grid scheduling architecture and some meta-scheduler projects are presented.
The convergence of Web service and grid makes the grid service more and more
utilized in the business domain. Thus the key components for the grid service
scheduling are also introduced. As a specific case of applications schedul-
ing, data-intensive applications scheduling is then presented. Finally, fault-
tolerant technologies are discussed to deal properly with system failures and
to assure the functionality of the entire grid system.

Scheduling grid services 189

References

[234] mygrid-directly supporting the e-scientists, 2001. Available online at:
http://www.mygrid.org.uk (Accessed 30th September, 2007).

[235] G. Aloisio, M. Cafaro, I. Epicoco, and S. Fiore. Analysis of the globus
toolkit grid information service. Technical report, HPCC, University of
Lecce, Italy, 2002.

[236] G. Aloisio, M. Cafaro, I. Epicoco, S. Fiore, D. Lezzi, M. Mirto, and
S. Mocavero. Computational Science and Its Applications ICCSA 2005,
chapter Resource and Service Discovery in the iGrid Information Ser-
vice. Lecture Notes in Computer Science. Springer Berlin/Heidelberg,
2005.

[237] R. Armstrong, D. Hensgen, and T. Kidd. The relative performance of
various mapping algorithms is independent of sizable variances in run-
time predictions. In Proceedings of the Seventh Heterogeneous Comput-
ing Workshop, page 79. IEEE Computer Society, 1998.

[238] K. Arnold, B. Osullivan, R. W. Scheifler, J. Waldo, A. Wollrath,
B. O’Sullivan, and R. Scheifler. The Jini(TM) Specification (The
Jini(TM) Technology Series). Addison-Wesley, 1999.

[239] S. Banerjee, S. Basu, S. Garg, S. Garg, S.-J. Lee, P. Mullan, and
P. Sharma. Scalable grid service discovery based on uddi. In MGC’05:
Proceedings of the 3rd international workshop on Middleware for grid
computing, pages 1–6, New York, NY, 2005. ACM Press.

[240] O. Beaumont, L. Carter, J. Ferrante, and Y. Robert. Bandwidth-centric
allocation of independent task on heterogeneous plataforms. In Proceed-
ings of the Internetional Parallel and Distributed Processing Symposium,
Fort Lauderdale, FL, 2002.

[241] T. D. Braun, H. J. Siegel, N. Beck, L. Bni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. A. Hensgen, and
R. F. Freund. A comparison study of static mapping heuristics for a class
of meta-tasks on heterogeneous computing systems. In Heterogeneous
Computing Workshop, pages 15–29, 1999.

[242] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, and B. Yao. A taxonomy for
describing matching and scheduling heuristics for mixed-machine het-
erogeneous computing systems. In 1998 IEEE Symposium on Reliable
Distributed Systems, pages 330–335, 1998.

190 Grid Resource Management

[243] S. Burke, S. Campana, A. D. Peris, F. Donno, P. M. Lorenzo, R. San-
tinelli, and A. Sciaba. GLITE 3 User Guide Manuals Series, January
2007.

[244] R. Buyya, D. Abramson, and J. Giddy. Nimrod/g: An architecture for a
resource management and scheduling system in a global computational
grid. In Proceedings of the HPC ASIA’2000, China, 2000. IEEE CS
Press.

[245] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic models
for resource management and scheduling in grid computing. Concur-
rency and Computation: Practice and Experience, 14:1507–1542, 2002.

[246] R. Byrom and all. R-gma: A relational grid information and monitoring
system. In Proceedings of the Cracow’02 Grid Workshop, 2003.

[247] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics
for scheduling parameter sweep applications in grid environments. In
Proceedings of the 9th Heterogeneous Computing Workshop, pages 349–
363, Cancun, Mexico, 2000. IEEE Computer Society Press.

[248] D. Chakraborty, F. Perich, S. Avancha, and A. Joshi. Dreggie: Semantic
service discovery for m-commerce applications. In Workshop on Reliable
and Secure Applications in Mobile Environment, In Conjunction with
20th Symposium on Reliable Distributed Systems (SRDS), 2001.

[249] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The
data grid: Towards an architecture for the distributed management and
analysis of large scientific datasets. Network and Computer Applications,
23:187–200, 2001.

[250] K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G. Marin,
M. Mazina, J. Mellor-Crummey, F. Berman, H. Casanova, A. Chien,
H. Dail, X. Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu,
M. Patel, D. Reed, W. Deng, C. Mendes, Z. Shi, A. YarKhan, and
J. Dongarra. New grid scheduling and rescheduling methods in the
grads project. In Proceedings of Parallel and Distributed Processing
Symposium, 2004., 2004.

[251] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid infor-
mation services for distributed resource sharing. In Proc. 10th IEEE
Symp. On High Performance Distributed Computing, 2001., 2001.

[252] EGEE Community. EGEE (enabling grids for E-science). Available
online at: http://www.eu-egee.org/ (Accessed 30th September, 2007).

[253] M. M. Eshaghian, editor. Heterogeneous Computing. Artech House
Publishers, 1996.

Scheduling grid services 191

[254] M. Faerman, R. W. A. Su, and F. Berman. Adaptive performance
prediction for distributed data-intensive applications. In Proceedings
of the ACM/IEEE SC99 Conference on High Performance Networking
and Computing, Portland, OH, 1999. ACM Press.

[255] P. Fibich, L. k Matyska, and H. Rudová. Model of grid scheduling
problem. In Exploring Planning and Scheduling for Web Services, Grid
and Autonomic Computing, pages 17–24. AAAI Press, 2005.

[256] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith,
and S. Tuecke. A directory service for configuring high-performance
distributed computations. In Proc. 6th IEEE Symp. on High Perfor-
mance Distributed Computing, pages 365–375. IEEE Computer Society
Press, 1997.

[257] I. Foster. What is the Grid? A three point checklist. GridToday, 1(6),
2002.

[258] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, San Fran-
cisco.

[259] I. Foster and C. Kesselman. Globus: A toolkit-based grid architec-
ture. In I. Foster and C. Kesselman, editors, The Grid: Blueprint for a
New Computing Infrastructure, pages 259–278. Morgan Kaufmann, San
Francisco, 1999.

[260] R. F. Freund and H. J. Siegel. Heterogeneous processing. In Computer,
volume 26, pages 13–17. IEEE Computer Society Press, 1993.

[261] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-g:
A computation management agent for multi-institutional grids. Cluster
Computing, 5(3):237–246, 2002.

[262] Globus Team. Information services (mds): Key concepts. Available on-
line at: http://www.globus.org/toolkit/docs/4.0/info/key-index.html

(Accessed 30th September, 2007).

[263] GridWay Team. Metascheduling technologies for the grid. Available
online at: http://www.gridway.org/about/visionaim.php (Accessed 30th
September, 2007).

[264] X. He, X. Sun, and G. Laszewski. A qos guided min-min heuristic for
grid task scheduling. Computer Science and Technology, 18(4):442–451,
2003.

[265] X. He, X.-H. Sun, and G. V. Laszewski. A qos guided scheduling algo-
rithm for grid computing. In Proceedings of the International Workshop
on Grid and Cooperative Computing, 2002.

192 Grid Resource Management

[266] R. Henderson and D. Tweten. Portable batch system: External reference
specification, 1996.

[267] W. Hoschek. Peer-to-peer grid databases for web service discovery. Con-
currency: Pract. Exper., pages 1–7, 2002.

[268] S. Hwang and C. Kesselman. A flexible framework for fault tolerance
in the grid. Journal of Grid Computing, pages 251–272, 2004.

[269] G. Kola, T. Kosar, and M. Livny. Phoenix: Making data-intensive grid
applications fault-tolerant. In Proceedings of 5th IEEE/ACM Interna-
tional Workshop on Grid Computing, 2004.

[270] S. Lee, W. Seo, D. Kang, K. Kim, and J. Y. Lee. A framework for
supporting bottom-up ontology evolution for discovery and description
of grid services. Expert Systems with Applications, 32:376–385, 2007.

[271] M. Litzkow, M. Livny, and M. Mutka. Condor-a hunter of idle worksta-
tions. In 8th Intl Conference on Distributed Computing Systems, pages
104–111, 1988.

[272] S. A. Ludwig and P. van Santen. A grid service discovery matchmaker
based on ontology description. In EuroWeb 2002. British Computer
Society, 2002.

[273] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund.
Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems. Journal of Parallel and Distributed Computing,
59(2):107–131, 1999.

[274] S. Miles, J. Papay, V. Dialani, M. Luck, K. Decker, T. Payne, and
L. Moreau. Personalised grid service discovery. In Performance En-
gineering. 19th Annual UK Performance Engineering Workshop, pages
131–140, 2003.

[275] S. Miles, J. Papay, T. Payne, K. Decker, and L. Moreau. Towards a
protocol for the attachment of semantic descriptions to grid services. In
The Second European across Grids Conference, Nicosia, Cyprus, 2004.

[276] J. Pathak, N. Koul, D. Caragea, and V. G. Honavar. A framework
for semantic web services discovery. In Proceedings of the 7th annual
ACM international workshop on Web information and data manage-
ment, pages 45–50. ACM Press, 2005.

[277] K. Ranganathan and I. Foster. Decoupling computation and data
scheduling in distributed data-intensive applications. In Proceedings of
11th IEEE International Symposium on High Performance Distributed
Computing, 2002. HPDC-11 2002., pages 352–358, 2002.

Scheduling grid services 193

[278] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima. Exploiting repli-
cation and data reuse to efficiently schedule data-intensive applications
on grids. In Proceedings of 10th Job Scheduling Strategies for Parallel
Processing, 2004.

[279] H. J. Siegel and S. Ali. Techniques for mapping tasks to machines
in heterogeneous computing systems. Journal of Systems Architecture,
46:627–639, 2000.

[280] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Selec-
tive reservation strategies for backfill job scheduling. In Workshop on
Job Scheduling Strategies for Parallel Processing, volume 2537, pages
55–71. Springer Lecture Notes in Computer Science, 2002.

[281] V. Subramani, R. Kettimuthu, S. Srinivasan, and S. Sadayappan. Dis-
tributed job scheduling on computational grids using multiple simulta-
neous requests. In Proceedings of High Performance Distributed Com-
puting, 2002 (HPDC-11 2002), pages 359–366, 2002.

[282] P. Tang, P. C. Yew, and C. Zhu. Impact of self-scheduling order on
performance on multiprocessor systems. In ICS’88: Proceedings of the
2nd international conference on Supercomputing, pages 593–603. ACM
Press, 1988.

[283] G. Tel. Introduction To Distributed Algorithms. Cambridge University
Press, 2 edition, January 2004.

[284] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski, and
M. Swany. A grid monitoring architecture. Technical Report GWD-
Perf-16-1, GGF, 2001.

[285] S. C. Timm. Grid service information discovery. In Joint Workshop:
EGEE/OSG/NorduGrid, 2006.

[286] N. Tonellotto, R. Yahyapour, and P. Wieder. A proposal for a generic
grid scheduling architecture. Technical Report TR-0015, Institute on
Resource Management and Scheduling, CoreGRID - Network of Excel-
lence, January 2006.

[287] University of Southampton. Grid registry with metadata oriented inter-
face: Robustness, efficiency, security. Available online at: http://twiki.

grimoires.org/bin/view/Grimoires/ (Accessed 30th September, 2007).

[288] L. Wang, H. J. Siegel, V. R. Roychowdhury, and A. A. Maciejewski. Task
matching and scheduling in heterogeneous computing environments us-
ing a genetic-algorithm-based approach. Journal of Parallel and Dis-
tributed Computing, 47(1):8–22, 1997.

194 Grid Resource Management

[289] J. Yu, S. Venugopal, and R. Buyya. A market-oriented grid directory
service for publication and discovery of grid service providers and their
services. J. Supercomput., 36(1):17–31, 2006.

[290] S. Zhou. Lsf: Load sharing in large-scale heterogeneous distributed
systems. In Workshop on Cluster Computing, 1992.

Chapter 7

Workflow design and portal

7.1 Overview

The Workflow Management Coalition WfMC defines workflow as “The au-
tomation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action,
according to a set of procedural rules”. In the context of grid computing, a
grid workflow is defined as a workflow within a grid computing environment.
The grid world has evolved from simple toolkits to authenticate users on re-
mote supercomputers, to a service-based architecture intended for activities
ranging from supporting large, distributed virtual organizations for e-science
to autonomic and on-demand computing for commercial enterprises. Accord-
ing to the definition in the article [300], a grid workflow is “The automation
of the processes, which involves the orchestration of a set of Grid services,
agents and actors that must be combined together to solve a problem or to
define a new service”.

Two approaches are proposed to create a grid workflow: manual and au-
tomatic. For the manual approach, the workflow management system (e.g.
Triana and Kepler) normally provides a user graphic interface or a user por-
tal to compose application workflows. Users can compose workflows by drag-
ging programming components from toolboxes, and dropping them onto a
workspace to create workflows. The created workflow is described by a work-
flow specification language, such as WSFL or BPEL. In this approach, the
template technology can used to facilitate the workflow composition. Lots of
workflow templates are predefined and saved in a database. Users can query
the database to find a template that satisfies their needed functions. Then
users modify this template to compose their own workflow which reduces the
composition time. The other approach is automatic. Given a description
of the desired applications, a valid workflow can be created from individual
application components that provide full-fledged automatic programming ca-
pabilities. In order to achieve automatic workflow generation, application
components must be clearly encapsulated and described with semantic de-
scriptions. This approach is fully presented in Chapter 8, Semantic web.

Scheduling is an important factor for the efficient execution of computa-
tional workflows on grid environments. Three major categories of workflow

195

196 Grid Resource Management

scheduling architecture are centralized, hierarchical and decentralized schedul-
ing schemes. Two different scheduling algorithms are adopted by the existing
workflow systems. Static approaches are used to make global decisions in
favor of entire workflow performance, in addition dynamic approaches make
decisions for each individual job only when it becomes ready to execute.

At the end of this chapter, the rescheduling mechanism is discussed to
achieve fault tolerance and improve the performance of scheduling. In order
to hide low-level grid access mechanisms and to make even non-grid-expert
users capable of defining and executing workflow applications, some portal
technologies are also presented.

7.2 Management systems

Workflows can be distinguished by the method mathematics which describes
a workflow. There are three principal representations to present a workflow
[300].

Linear Workflow: It is the most basic and most common workflow. A lin-
ear workflow can be considered as a sequence of tasks which must be
performed in a specified linear order. The task’s “output” data can
be the “input” of the next task in the workflow and the most common
workflow programming tool is a simple script written in Python, Perl,
or even Matlab.

Acyclic Graph Workflow: Workflows can be described by an acyclic
graph, where nodes of the graph represent a task to be performed and
edges represent dependencies between tasks. In an acyclic graph work-
flow, tasks are partly sequential and concurrent. Some tasks depend
upon the completion of several other tasks which may be executed si-
multaneously. An additional framework is needed to describe such a
workflow with a scripting language.

Cyclic Graphs Workflow: Many grid workflow tools correspond to this
model where the cycles represent some loop or iteration of control mech-
anisms. In this case the nodes in the graph are either services or some
form of software component instances or represent more abstract control
objects and the graph edges represent messages or data streams or pipes
that channel work or information between services and components.

Many workflow management systems support the “cyclic graph model” and
represent a workflow as “Cyclic Graphs Workflow”. Compositional tools based
on graphical layout system allow users to move “components”, which represent
tasks or services, from a palette to an assembly panel. Using typed input and

Workflow design and portal 197

output ports, the programmer connects together the graph and then executes
it.

7.2.1 The Triana system

Triana [297] is a graphical Problem Solving Environment (PSE), providing
a user portal to enable the composition of scientific applications. Users can
compose applications by dragging programming components from toolboxes,
and dropping them onto a scratch pad, or workspace. Triana can be used as
a grid computing environment and can dynamically discover and choreograph
distributed resources, such as Web services, to greater extend its range of
functionality. Triana has a highly decoupled modularized architecture and
each component can be used individually or collectively by both applications
or end-users.

An independent virtual layer, called the GAP, abstracts the underlying
middleware or transport bindings from the Triana programmer. GAP allows
the advertisement, discovery and communication of Web and P2P Triana
Services by the GAP interface.

7.2.2 Condor DAGMan

DAGMan (Directed Acyclic Graph Manager) [298] is a meta-scheduler for
Condor. A directed acyclic graph (DAG) can be used to represent a set of
programs where the input, output, or execution of one or more programs is
dependent on one or more other programs. The programs are nodes in the
graph, and the edges identify the dependencies. Condor finds machines for
the execution of programs, but it does not schedule programs (jobs) based on
dependencies. The Directed Acyclic Graph Manager (DAGMan) is a meta-
scheduler for Condor jobs. It manages dependencies between jobs at a higher
level than the Condor Scheduler

DAGMan submits jobs to Condor in an order represented by a DAG and
processes the results. An input file defined prior to submission describes the
DAG, and a Condor submit description file for each program in the DAG is
used by Condor. Each node (program) in the DAG needs its own Condor
submit description file. DAGMan is responsible for scheduling, recovery, and
reporting for the set of programs submitted to Condor.

DAGMan can help with the resubmission of uncompleted portions of a DAG
when one or more nodes resulted in failure. If any node in the DAG fails, the
remainder of the DAG is continued until no more forward progress can be
made based on the DAG’s dependencies.

7.2.3 Scientific Workflow management and the Kepler sys-
tem

Kepler [293] is based on the Ptolemy II system for heterogeneous, concur-

198 Grid Resource Management

rent modeling and design. Ptolemy II was developed by the members of the
Ptolemy project at UC Berkeley, which provides a mature platform for build-
ing and executing workflows, and supports multiple models of computation.
With Kepler’s intuitive GUI, Kepler can be used by workflow engineers and
end users to design, model, execute, and reuse scientific workflows.

Kepler currently provides the following features:

Distributed Execution (Web and Grid services): Kepler provides an
interface to seamlessly plug in and execute any WSDL-defined web ser-
vice. Thus it allows to utilize computational resources distributed in a
grid environment.

Database Access and Querying: An interface which can be used to inter-
act with databases is provided.

Other Execution Environments: Kepler supports foreign language inter-
faces via the Java Native Interface (JNI). It gives the user flexibility to
reuse existing analysis components and to target appropriate computa-
tional tools.

7.2.4 Taverna in life science applications

Taverna [310] was developed by the myGrid project: a UK e-Science pilot
project building middleware to support exploratory, data-intensive, in silico
experiments in molecular biology. The Taverna workflow workbench environ-
ment enables the scientific user to create and run workflows written in the
Simplified conceptual workflow language (Scufl). Taverna provides a three-
tiered data model for describing resources and their inter-operation: the appli-
cation data flow layer, the execution flow layer, and the processor invocation
layer.

The Taverna workbench provides the main user interface to enable the con-
struction and editing of Scufl workflows, and loading and saving these in an
XML serialization (known as XScufl). In order to perform the discovery of
distributed services, Taverna supports several service directories and mecha-
nisms, such as UDDI, GRIMOIRES, URL submission, workflow introspection,
processor-specific mechanisms and scavenging. Thus it can perform both the
syntactic and semantic service discovery. Once the appropriate service com-
ponents have been located, the user requires an interface allowing them to
manually compose these services into a workflow.

7.2.5 Karajan

Karajan [304] is a workflow system which provides a workflow specifica-
tion language and an execution engine, being developed within the Java CoG
Kit. The execution engine is based on the Globus Toolkit , while the language

Workflow design and portal 199

is a common purpose XML-based language which can express complicated
workflows including conditional control flows and loops.

The execution model includes execution elements of the running tasks, and
the events generated during the workflow execution. Execution elements can
be in different states depending on the current status of the execution. Events
can be generated by the elements or the environment, and cause different
actions. Dynamic scheduling of the elements is done in a simple way (list of
available resources). Basic checkpointing has also been implemented on the
workflow level (the workflow can be checkpointed, when all its elements are
in consistent states).

7.2.6 Workflow management in GrADS

The Grid Application Development Software (GrADS) project [314] at-
tempts to provide programming tools and execution environments for ordinary
scientific users to develop, execute, and tune applications on the grid. Being
a collaboration between several American universities, GrADS supports ap-
plication development either by assembling domain-specific components from
a high-level toolkit or by creating a module by relatively low-level (e.g., MPI)
code.

New grid scheduling and rescheduling methods [305] are introduced in
GrADS. The scheduler obtains resource information by using information
services and locates necessary software on the scheduled node by querying
GrADS Information Service (GIS). The scheduler also uses performance mod-
els to estimate the performance of the application. With this information, The
workflow scheduler ranks each qualified resource for each application compo-
nent. Lower rank values indicate a better match for the component. After
ranking, a performance matrix is constructed and used by the scheduling
heuristics to obtain a mapping of components onto resources. Three heuris-
tics have been applied in GrADS; those are Min-Min, Max-Min, and Sufferage
heuristics.

The framework of application development has two key concepts. First,
applications are encapsulated as configurable object programs (COPs), which
include code for the application (e.g. an MPI program), a mapper that de-
termines how to map an application’s tasks to a set of resources, and an
executable performance model that estimates the application’s performance
on a set of resources. Second, the system relies upon performance contracts
that specify the expected performance of modules as a function of available
resources.

GrADS utilizes Autopilot to monitor performance of the agreement be-
tween the application demands and resource capabilities. Once the contract
is violated, a simple stop/migrate/restart approach and a process-swapping
approach are applied to rescheduling grid applications, improving the perfor-
mance of the system.

200 Grid Resource Management

7.2.7 Petri net model

A Petri net consists of places, transitions, and directed arcs. Arcs run
between places and transitions and connections between two nodes of the same
type are not allowed. Places may contain any number of tokens. Transitions
act on input tokens by a process known as firing. A transition is enabled if it
can fire. When a transition fires, it consumes the tokens from its input places,
performs some processing task, and places a specified number of tokens into
each of its output places.

Petri nets allow for the design of complex workflows using advanced routing
constructs. In the same time, powerful analysis techniques can be used to
verify the correctness of a workflow process definition. Unfortunately, most
workflow management systems are not based on Petri nets. There are just a
few products which use Petri nets as a design language [292].

• Grid-Flow [301] is an infrastructure which supports the design and pro-
totype implementation of a scientific workflow and assists researchers
in specifying scientific experiments using a Petri Net-based interface.
The Grid-Flow infrastructure is designed as a Service Oriented Archi-
tecture (SOA) with multi-layer component models. In order to create
a workflow, Grid-Flow provides a new, light-weight, programmable grid
workflow language, Grid Flow Description Language (GFDL). A Petri
Net-based user interface helps the user design the workflow process with
a Petri Net model and a program integration component of the Grid-
Flow system is presented to integrate all possible programs into the
system.

• Andreas Hoheisel [302] describes an infrastructure developed in the
Fraunhofer Resource Grid (FhRG). The FhRG workflow is built on the
more expressive formalism of Petri nets. Dynamic workflow graph re-
finement is introduced as a powerful technique to transform abstract
workflow graphs into the concrete ones needed for execution and to au-
tomatically add fault tolerance to complex workflows.

The Fraunhofer Resource Grid is a grid initiative funded by the German
federal ministry of education and research. The objective of this project
is to develop and to implement a stable and robust grid infrastructure
and to provide an easy-to-use interface for controlling distributed appli-
cations and services in the grid environment.

7.3 Workflow specification languages

The convergence of grid technologies and Web services promote the emer-
gence of grid services which provide standard mechanisms to solve problems

Workflow design and portal 201

of description, discovery and communication of distributed resources. How-
ever, grid services can realize their full potential only if there is a mechanism
to dynamically compose new services with existing ones. Thus the workflow
languages are needed to describe the various interactions between the services
and to define the protocols and the processes of the new services compositions
[308].

7.3.1 Web Services Flow Language (WSFL)

WSFL [312], which is proposed by IBM, is an XML language for the de-
scription of Web services compositions. WSFL describes the composition of
Web services using a flow model and a global model. The flow model defines
a series of operations of the composite Web service, and specifies the order
in which these operations execute. The global model specifies the interaction
pattern of a collection of Web Services and defines how the composite Web
service is mapped into the operations of the individual Web services. Using a
locator element, the following services can be identified by WSFL:

• services which provide its WSDL definition

• the service implementation is local

• services which have registered in UDDI (Universal Description, Discov-
ery, and Integration)

• the service provider is referenced in a message generated by an activity
within the flow

• The service provider is not restricted in any way by the flow model (any)

7.3.2 Grid services flow languages

The grid services flow language (GSFL) [308] is an XML-based language
that allows to create grid services workflow in the OGSA framework. It has
been defined using XML schemas. GSFL has the following important features.

• Service Providers, which are the list of services taking part in the work-
flow. Service providers can be located using the locator element, which
allows looking up service providers in a number of ways. Services can
be located statically and they can also be started up using factories.

• Activity Model, which describes the list of important activities in the
workflow.

• Composition Model, which describes the interactions between the indi-
vidual services. It describes the control and data flow between various
operations of the services, and also the direct communication between
them in a peer-to-peer fashion.

202 Grid Resource Management

• Lifecycle Model, which describes the lifecycle for the various activities
and the services which are part of the workflow.

7.3.3 XLANG: Web services for business process design

XLANG [308], a proposal by Microsoft Corporation, is a language that
is used to model business processes as autonomous agents. XLANG is an
XML business process language which provides a way to orchestrate appli-
cations and XML Web services into larger-scale, federated applications by
enabling developers to aggregate even the largest applications as components
in a long-lived business process. An XLANG service description is a WSDL
service description with an extension element that describes the behavior of
the service as a part of a business process. XLANG service behavior may also
rely on simple WSDL services as providers of basic functionality for the im-
plementation of the business process. However, in August of 2002, Microsoft
stated that XLang would be superceded by BPEL4WS .

7.3.4 Business Process Execution Language for Web Ser-
vices (BPEL4WS)

During the summer of 2002, IBM, Microsoft and BEA released a new work-
flow specification language named BPEL4WS [295]. BPEL4WS represents
the merger of two other workflow specification languages, IBM’s Web Ser-
vices Flow Language (WSFL) and Microsoft’s XLANG.

BPEL4WS [294] defines a model and a grammar for describing the behavior
of a business process and interactions between the process and its partners.
Through Web service interfaces, the partners interact with each other and
the structure of the relationship at the interface level is encapsulated in what
we call a partner link. The coordination of service interactions, states and
logics is defined by BPEL4WS to achieve a business goal. BPEL4WS also
introduces systematic mechanisms for dealing with business exceptions and
processing faults. Finally, a mechanism is introduced to define the treatment
of individual or composite activities within a process in cases where exceptions
occur or a partner requests reversal.

BPEL4WS is based on several XML specifications: WSDL 1.1, XML
Schema 1.0, and XPath1.0. WSDL messages and XML schema type defi-
nitions are the data model used by BPEL4WS processes. XPath provides
support for data manipulation. All external resources and partners are repre-
sented as WSDL services. BPEL4WS provides extensibility to accommodate
future versions of these standards, specifically the XPath and related stan-
dards used in XML computation.

Workflow design and portal 203

7.3.5 DAML-S

DAML-S [291] is a DAML+OIL ontology for describing the properties and
capabilities of Web Services. DAML+OIL is a semantic Web markup language
which enables the creation of arbitrary domain ontologies that support the
unambiguous description of Web content. With DAML-S, Web services can
be computer-interpretable and the following tasks are achieved:

Discovery: locate a Web service through a registry service

Invocation: execute an identified service by an agent or other service

Inter-operation: add semantic description into the Web service to break
down inter-operability barriers

Composition: through automatic selection, compose and inter-operate ex-
isting services

Verification: verify service properties

Execution Monitoring: track the execution of complex or composite tasks

In DAML-S, a workflow is a set of Web services that are related to one
another via control constructs. These control constructs are block-structured
and therefore lack the ordering flexibility provided by BPEL4WS links. Thus a
combination of BPEL4WS and DAML-S to create a composite and semantic
process is suggested. BPEL4WS exposes a single WSDL interface for the
composite process it contains and could therefore be marked-up in DAML-S
as an atomic process. This results in the composite process itself, rather than
its internal processing being described in DAML-S.

7.4 Scheduling and rescheduling

Scheduling is an important factor for the efficient execution of computa-
tional workflows on grid environments. In general, a scientific workflow appli-
cation can be represented as a direct acyclic graph (DAG), where the node is
the individual job and edge represents the inter-job dependence. Both nodes
and edges are weighed for computation cost and communication cost respec-
tively. The makespan, which is the total time needed to finish the entire
workflow, is used to measure the performance of workflow applications [315].

7.4.1 Scheduling architecture

Based on the workflow reference model [303] proposed by the Workflow
Management Coalition (WfMC), Figure 7.1 shows the architecture and func-
tionalities supported by various components of the grid workflow system.

204 Grid Resource Management

Grid users

Grid workflow design tool & portal

Grid workflow specification

Fault tolerant

Scheduling

Grdi workflow scheduler

Data management

Grid middleware & resources

G
rid inform

ation service

Build time

Run time

FIGURE 7.1: Grid workflow system architecture.

At the highest level, the grid workflow system may be characterized in three
functional areas:

• the Build-time functions define and model the workflow process and its
constituent activities. During this phase, a business process is translated
from the real world into a formal, computer processable definition by
the use of modelling and system definition techniques.

• the Run-time control functions are concerned with managing the work-
flow processes in an operational environment and mapping each subtask
of the workflow into resources. The various activities must be handled
such as the data management and fault tolerance.

• the Run-time interactions with human users and IT application tools
for processing the various activity steps. Interaction with the process
control software is necessary to transfer control between activities, to
ascertain the operational status of processes, to invoke application tools
and pass the appropriate data, etc.

The architecture of the scheduling infrastructure is very important for scal-
ability, autonomy, quality and performance of the system. Three major cat-
egories of workflow scheduling architecture are centralized, hierarchical and
decentralized scheduling schemes [314].

Workflow design and portal 205

In a centralized workflow scheduling environment, one central workflow
scheduler makes scheduling decisions for all subtasks in the workflow. The
scheduler has the information about the entire workflow and collects informa-
tion of all available processing resources. The centralized scheme can produce
efficient schedules but it is not scalable with respect to the number of tasks and
number of grid resources. It is thus only suitable for a small scale workflow.

Unlike centralized scheduling, both hierarchical and decentralized schedul-
ing allow tasks to be scheduled by multiple schedulers. Therefore, one sched-
uler only maintains the information related to a sub-workflow. Compared
to centralized scheduling, the decentralized scheduling is more scalable since
they limit the number of tasks managed by one scheduler. However, the best
decision made for a partial workflow may lead to sub-optimal performance for
the overall workflow execution and there are also some conflict problems. For
hierarchical scheduling, there is a central manager and multiple lower-level
sub-workflow schedulers. This central manager is responsible for controlling
the workflow execution and assigning the sub-workflows to the low-level sched-
ulers. The scheme has more advantages such as scalability and scheduling
policies’ independence. However, the failure of the central manager will result
in entire system failure.

7.4.2 Scheduling algorithms

The existing workflow systems are going into two different scheduling algo-
rithms. Some systems use static approaches by which the scheduler makes the
global decisions in favor of entire workflow performance relying on knowledge
of the entire DAG and execution environment. Others depend on dynamic
approaches by which the scheduler makes decisions for each individual job
only when it becomes ready to execute. This type of decision is also referred
to as local just-in-time decision [315].

A large number of static scheduling heuristics has been presented in the
literature such as min-min, max-min, sufferage and HEFT (Heterogeneous
Earliest Finish Time). However, in a grid environment static strategies may
perform poorly because of the grid dynamics: a resource can join and leave at
any time; individual resource capability varies over time because of internal
or external factors. To overcome these limitations of static approach, an
HEFT-based adaptive rescheduling algorithm is presented in [315]. With this
algorithm, the executor will notify the planner of any run-time event which
interests the planner, for example, resource unavailability or discovery of a new
resource. In turn, the planner responds to the event by means of evaluating
the event and rescheduling the remaining jobs in the workflow if necessary.
Planning is now an iterative (event-driven) activity instead of one-time task.

In the GrADS infrastructure, workflow scheduling is based on static heuris-
tic scheduling strategies that use application component performance models
[309]. In order to map workflows onto resources, a two-stage approach is pre-
sented. In the first stage, a specific rank value is assigned for each resource

206 Grid Resource Management

on which the component can be mapped. Rank values reflect the expected
performance of a particular component on a particular resource. In the sec-
ond stage, a performance matrix is built for each component. Then certain
known heuristics are used to obtain a mapping of components to resources.
To estimate the execution cost of an application on arbitrary grid configura-
tions, the behavior of applications is analyzed by modeling its characteristics
in isolation of any architectural details. Then the application’s execution cost
is estimated on a target platform.

While sizable work supports the claim that the static scheduling performs
better for workflow applications than the dynamic one, the dynamic approach
is needed in environments where high inaccuracies are observed. Yu, J. and
Buyya, R. [313] propose a workflow enactment engine (WFEE) with a just-in-
time scheduling system using tuple spaces. It allows the decision of resources
allocation to be made dynamically at the time of the execution of tasks in
the workflow. A decentralized event-driven scheduling architecture provides
a flexible and loosely-coupled control. In this system, every task has its own
scheduler called task manager (TM) which implements a scheduling algorithm
and handles the processing of the task, including resource selection, resource
negotiation, task dispatcher and failure processing. The lifetimes of TMs
and the whole workflow execution are controlled by a workflow coordinator
(WCO). Dedicated TMs are created by WCO for each task. Each TM has
its own monitor which is responsible for monitoring the health of the task
execution on the remote node. Every TM maintains a resource group which
is a set of resources that provide services required for the execution of an
assigned task. TMs and WCO communicate through an event service server
(ESS).

7.4.3 Decision making

There is no single best solution for mapping workflows onto resources for all
workflow applications, since the applications can have very different character-
istics. In general, decisions about mapping tasks in a workflow onto resources
can be based on the information of the current task or of the entire workflow
and can be of two types, namely local decision and global decision [314].

Local decision-based scheduling only takes one task or sub-workflow into
account, so it may produce the best schedule for the current task or sub-
workflow but could also reduce the entire workflow performance. We can
assume that there is a data-intensive application where the overall run-time
is driven by data transfer costs. In the case where the output of a task is very
large, the initial selection may be found to be a poor choice if latency between
the nodes is very high, because the selection of a resource for a task is based
only on a local decision without consideration of data transfer between other
resources. This would lead to higher data transfer costs for child tasks and
hence the entire workflow.

Scheduling workflow tasks using global decision improves the performance

Workflow design and portal 207

of the entire workflow. It is believed that global decision-based scheduling
can provide a better overall result. However, it may take much more time in
scheduling decision making. Thus, the overhead produced by global schedul-
ing could reduce the overall benefit and may even exceed the benefits it will
produce. Therefore, the choice of decision making for workflow scheduling
should not be made without considering balance between the overall execu-
tion time and scheduling time. However, for some applications such as a data
analysis application where the outputs of tasks in the workflow are always
smaller than the inputs, using local decision-based scheduling is sufficient.

7.4.4 Scheduling strategies

There are three major strategies of scheduling: performance-driven, market-
driven and trust-driven [314].

• Performance-driven strategies try to find a mapping of workflow tasks
onto resources that achieves optimal execution performance such as min-
imized makespan. Most grid workflow scheduling systems fall in this
category.

• Market models are employed in market-driven strategies to manage re-
source allocation for processing workflow tasks. Workflow schedulers
act as consumers buying services from the resource providers and pay
some notion of electronic currency for executing tasks in the workflow.
The tasks in the workflow are dynamically scheduled at run-time de-
pending on resource cost, quality and availability, to achieve the desired
level of quality for deadline and budget. Unlike the performance-driven
strategy, market-driven schedulers may choose a resource with a later
deadline if its usage price is cheaper.

• Trust-driven schedulers select resources based on their trust levels. The
trust model of resources is based on attributes such as security pol-
icy, accumulated reputation, self-defense capability, attack history, and
site vulnerability. By using trust-driven approaches, workflow manage-
ment systems can reduce the chance of selecting malicious hosts and
non-reputable resources. Therefore, overall accuracy and reliability of
workflow execution will be increased.

7.4.5 Rescheduling

The rescheduling mechanism is an essential component in the workflow
system to achieve fault tolerance and improve the performance of scheduling.
Two rescheduling mechanisms are described in [305]: Rescheduling by Stop
and Restart and Rescheduling by Processor Swapping.

7.4.5.1 Rescheduling by Stop and Restart

In the stop/restart approach, the application is suspended and migrated
only when better resources are found for application execution. When a run-

208 Grid Resource Management

ning application is signaled to migrate, all application processes checkpoint
user-specified data and terminate. The rescheduled execution is then launched
by restarting the application on the new set of resources, which then read the
checkpoints and continue the execution.

A user-level checkpointing library must be employed to provide application
migration support. Via this library, the application can checkpoint data,
be stopped at a particular execution point, be restarted later on a different
processor configuration and be continued from the previous point of execution.
The information service system is also needed to evaluate the performance of
the resource on which the application is migrated. The rescheduler operates
in two modes: migration on request and opportunistic migration. When the
monitor detects unacceptable performance loss for an application, it contacts
the rescheduler to request application migration. This is called migration on
request. Additionally, the rescheduler periodically checks for an application
that has recently completed. If it finds one, the rescheduler determines if
another application can obtain performance benefits if it is migrated to the
newly freed resources. This is called opportunistic rescheduling.

7.4.5.2 Rescheduling by Processor Swapping

The stop/restart approach is very flexible but it can be expensive: each
migration event can involve large data transfers. The processor swapping
approach provides an alternative that is lightweight and easy to use, but less
flexible than the stop/restart migration approach.

To enable swapping, the application is launched with more machines than
will actually be used for the computation; some of these machines become
part of the computation (the active set) while some do nothing initially (the
inactive set). During execution, the monitor periodically checks the perfor-
mance of the machines and swaps slower machines in the active set with faster
machines in the inactive set. This approach requires little application modi-
fication and provides an inexpensive fix for many performance problems.

7.5 Portal integration

The subtasks of workflow can be mapped onto different grids in order to
provide more parallelism than inside one grid. Moreover high-level graph-
ical interfaces must be supplied to hide low-level grid access mechanisms,
making even users not expert in grids capable of defining and executing dis-
tributed applications on multi-institutional computing infrastructures. The
portal technology provides a suitable solution to overcome these questions. It
solves the problems of inter-operability between different grids in the work-
flow level and it offers the workflow GUI as the interface that enables the

Workflow design and portal 209

User

Workflow

Editor

Certificate servers

Portal server

Remote Grid resources

FIGURE 7.2: P-GRADE portal system functions.

development, submission and steering of workflows and the visualization of
results.

7.5.1 P-GRADE portal

P-GRADE grid portal [306] is the first grid portal that tries to solve the
inter-operability problem at the workflow level with great success. It is a
workflow-oriented grid portal with the main goal to support all stages of grid
workflow development and execution processes.

The P-GRADE Portal provides the following functions (see Figure 7.2):
communicating with the portal server, users can achieve the functions of defin-
ing grid environments, managing grid certificates, controlling the execution of
workflow applications and visualizing the progress of workflows; Workflow ed-
itor can perform the creation and modification of workflow applications [307].

During workflow editing the user has the possibility to select a grid resource
for each job, or let a broker choose one. Currently there are two brokers used
by the portal: the LCG-2 Broker and GTbroker. The GTbroker interacts with
the Globus resources to perform job submission. The static and dynamic in-
formation of grid resources are collected by GTbroker to achieve scheduling
activities. The LCG-2 broking solution is used to reach LCG-2 based grids.
The mission of the LHC Computing Project (LCG) is to build and maintain
a data storage and analysis infrastructure for the entire high energy physics
community that will use the LHC. The Large Hadron Collider (LHC), cur-
rently being built at CERN near Geneva, is the largest scientific instrument
on the planet and it begins operations in 2007. With exploiting the broking
functions of GTbroker and LCG-2 Broker, users can develop and execute
multi-grid workflows in a convenient environment.

The integration of P-GRADE into GEMLCA shows the use of portal in a
grid environment [306]. GEMLCA (Grid Execution Management for Legacy
Code Applications) represents a general architecture for deploying legacy ap-
plications as grid services without re-engineering the code or even requiring
access to the source files. GEMLCA adds an additional layer to wrap the

210 Grid Resource Management

legacy application on top of a service-oriented grid middleware, like Globus
Toolkit version 4 (GT4). GEMLCA communicates with the client through
SOAP-XML messages, gets input parameter values, submits the legacy exe-
cutable to a local job manager like Condor or PBS (Portable Batch System),
and returns the results to the client in SOAP-XML format. GEMLCA pro-
vides the capability to convert legacy code into grid services. However, an
end-user without specialist computing skills still requires a user-friendly Web
interface (portal) to access the GEMLCA functionalities. In order to solve
the third problem, GEMLCA is integrated with the P-GRADE grid portal.
Following this integration, legacy code services can be included in end-user
workflows, running on different GEMLCA grid resources. The workflow man-
ager of the portal contacts the selected GEMLCA resource and passes the
actual parameter values of the legacy code to it. Then the GEMLCA resource
executes the legacy code with these actual parameter values and delivers the
results back to the portal.

7.5.2 Other portal systems

The Pegasus [311] Portal provides an HTTP(S)-based interface that can be
accessed using a standard web browser. The portal architecture is composed
of three layers. The top layer consists of the user machines and web browsers.
The second layer consists of the web application server hosting the portal.
The server is multi-threaded and can handle multiple user requests at the
same time. The third layer consists of the grid components and services used
by the portal.

In order to use the Pegasus grid portal the user needs to have a valid grid
credential in a MyProxy server. The portal does not provide access to a
predetermined set of resources. Instead, the user can specify the resources
to be used. From the web browser, the users specify the parameters of the
application and Pegasus does the mapping of tasks in the workflow to resources
specified in the resource configuration. The submitted workflow may take a
long time to complete. The user may logout from the portal and login later to
check its status. The portal also allows users to view the status of the workflow
(submitted, active, done, failed), the number of tasks already completed, the
tasks currently executing, and other information.

The Pegasus grid portal is very useful in scenarios where a virtual organi-
zation (VO) wants to provide an easy-to-use application submission interface
to its members. It is able to map abstract workflow onto physical resources,
thus users are shielded from the complexity of installing and using the various
components in order to access the grid resources.

Grid-Flow [296] is a grid workflow management system developed at the
University of Warwick. Rather than focusing on workflow specification and
the communication protocol, Grid-Flow is more concerned about service-level
scheduling and workflow management. The Grid-Flow portal performs two
level managements: global grid workflow management and local grid sub-

Workflow design and portal 211

workflow scheduling. The execution and monitoring functionalities are pro-
vided at the global grid level, which work on top of an existing agent-based
grid resource management system. At each local grid, sub-workflow schedul-
ing and conflict management are processed on top of an existing performance
prediction-based task scheduling system. A fuzzy timing technique is applied
to address new challenges of workflow management in a cross-domain and
highly dynamic grid environment.

7.6 A case study on the use of workflow technologies for
scientific analysis

7.6.1 Motivation

The Laser Interferometer Gravitational Wave Observatory (LIGO) [299] is
an ambitious effort to detect gravitational waves produced by violent events
in the universe, such as the collision of two black holes, or the explosion of
a supernova. The experiment records approximately 1 TB of data per day
which is analyzed by scientists in a collaboration which spans four continents.
These large data sets need to be accessed by various elements of the analysis
workflows. In order to transparently execute jobs at remote locations, it is
important to have seamless management of jobs and data transfer.

7.6.2 The LIGO data grid infrastructure

To fully leverage the distributed resources in an integrated and seamless
way, infrastructure and middleware have been deployed to structure the re-
sources as a grid. The LIGO data grid infrastructure includes the Linux
clusters, the networks that interconnect them to each other, grid services
running on the LSC Linux clusters, a system for replicating LIGO data to
computing centers, grids certificate authority authentication, and a package
of client tools and libraries that allow scientists to leverage the LIGO data
grid services.

7.6.3 LIGO workflows

Although huge quantities of data must be analyzed over a vast parameter
space, analysis does not require interprocess communication. Analysis can be
broken down into units that perform specific tasks which are implemented as
individual programs, usually written in the C programming language or the
Matlab processing environment. Workflows may be parallelized by splitting
the full parameter space into smaller blocks, or parallelizing over the time
intervals being analyzed. The individual units are chained together to form a

212 Grid Resource Management

Raw Data Analysis Parameters

Pipeline Generation Engine

Glue Pipeline Modules

DAGMan Peagsus

FIGURE 7.3: The creation of pipeline workflow.

data analysis pipeline. The pipeline starts with raw data from the detectors,
executes all stages of the analysis and returns the results to the scientist.

Figure 7.3 shows the creation of pipeline workflow. The data analysis
pipeline is implemented as a directed acyclic graph (DAG) and several work-
flow management systems are supported, such as Condor DAGMan and Pega-
sus. In order to facilitate the workflow design and to abstract the representa-
tion of the workflow, Glue was developed especially for scientists to help build
workflows. In this way, the components of the workflow are abstracted, and it
is straightforward to write pipeline scripts that construct complex workflows.
The Glue method of constructing data analysis pipelines has been used in the
binary inspiral analysis, the search for gravitational wave bursts from cosmic
strings, excess power burst analysis, and in the stochastic gravitational wave
background analysis.

7.7 Concluding remarks

Grid workflow is increasingly used to compose complex applications in a
grid environment. In this chapter, we first introduce workflow management
systems. Then workflow specification languages which are used to describe

Workflow design and portal 213

the operations and dependencies of the workflow components are presented.
Next, we discussed the workflow scheduling and rescheduling which are key
factors to improve the performance of workflow applications. Then portal
projects are introduced and we point out that the portal is an important
component to reduce the workflow composition time for the non-expert users.
Finally, a use case, LIGO data grid infrastructure, is presented to illustrate
the utilization of grid workflow.

214 Grid Resource Management

References

[291] A. Ankolekar et al. Daml-s: Web service description for the semantic
web. In Proc. 1st Int. Semantic Web Conf. (ISWC 02), 2002.

[292] W. Aalst. The application of petri nets to workflow management. The
Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[293] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock.
Kepler: An extensible system for design and execution of scientific work-
flows. In 16th Intl. Conf. on Scientific and Statistical Database Man-
agement (SSDBM’04), 2004.

[294] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.
Business process execution language for web services (version 1.1),
2003. Available online at: http://www-106.ibm.com/developerworks/

webservices/library/ws-bpel/ (Accessed 30th September, 2007).

[295] P. A. Buhler and J. Vidal. Towards adaptive workflow enactment using
multiagent systems. Information Technology and Management, 6:61–87,
2005.

[296] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. Gridflow: Workflow
management for grid computing. In Proceedings of the 3st International
Symposium on Cluster Computing and the Grid, CCGRID ’03, page
198. IEEE Computer Society, 2003.

[297] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson,
M. Shields, I. Taylor, and I. Wang. Programming scientific and dis-
tributed workflow with triana services: Research articles. Concurr.
Comput. : Pract. Exper., 18(10):1021–1037, 2006.

[298] Condor Team. Dagman applications. Available online at: http:

//www.cs.wisc.edu/condor/manual/v6.4/2_11DAGMan_Applications.html

(Accessed 30th September, 2007).

[299] Duncan A. Brown et al. A case study on the use of workflow technologies
for scientific analysis: Gravitational wave data analysis. In Workflows
for e-Science: Scientific Workflows for Grids. Springer-Verlag, 2006.

[300] G. C. Fox and D. Gannon. Workflow in grid systems. Concurrency and
Computation: Practice & Experience, 18(10):1009–1019, 2006.

[301] Z. Guan, F. Hernandez, P. Bangalore, J. Gray, A. Skjellum,
V. Velusamy, and Y. Liu. Grid-flow: a grid-enabled scientific workflow
system with a petri-net-based interface. Concurrency and Computation:
Practice & Experience, 18:1115–1140, 2006.

Workflow design and portal 215

[302] A. Hoheisel. User tools and languages for graph-based grid workflows.
In Proceedings of Workflow in Grid Systems Workshop in GGF10, 2004.

[303] D. Hollingsworth. Workflow management coalition, the workflow ref-
erence model, 1994. Document Number TC00-1003, Available online
at: http://www.wfmc.org/standards/docs/tc003v11.pdf (Accessed 30th
September, 2007).

[304] Java CoG Kit Team. Java cog kit karajan workflow reference man-
ual, 2007. Available online at: http://www.gridworkflow.org/snips/

gridworkflow/space/Karajan (Accessed 30th September, 2007).

[305] K. Cooper et al. New grid scheduling and rescheduling methods in the
grads project. In Proc. IPDPS 2004, 2004.

[306] P. Kacsuk, T. Kiss, and G. Sipos. Solving the grid interoperability
problem by p-grade portal at workflow level. In Proc. of the 15th IEEE
International Symposium on High Performance Distributed Computing
(HPDC-15), Paris, France, 2006.

[307] A. Kertesz, Z. Farkas, P. Kacsuk, and T. Kiss. Multiple broker support
by grid portals. In CoreGRID Workshop on Grid Middleware, Tools
and Environments in conjunction with GRIDS@Work, Sophia Antipolis,
France, 2006.

[308] S. Krishnan, P. Wagstrom, and G. von Laszewski. GSFL: A Work-
flow Framework for Grid Services. Technical report, Argonne National
Laboratory, 9700 S. Cass Avenue, Argonne, 1L 60439, U.S.A., 2002.

[309] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey,
B. Liu, and L. Johnsson. Scheduling strategies for mapping application
workflows onto the grid. In Proceedings of 14th IEEE International
Symposium on High Performance Distributed Computing, 2005. HPDC-
14, pages 125–134, 2005.

[310] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. . Pocock,
M. Senger, R. Stevens, A. Wipat, and C. Wroe. Taverna: Lessons in
creating a workflow environment for the life sciences. Concurrency and
Computation: Practice and Experience, 18:1067–1100, 2005.

[311] G. Singh, E. Deelman, G. Mehta, K. Vahi, M. Su, B. Berriman, J. Good,
J. Jacob, D. Katz, A. Lazzarini, K. Blackburn, and S. Koranda. The
pegasus portal: Web based grid computing. In The 20th Annual ACM
Symposium on Applied Computing, Santa Fe, New Mexico, 2005.

[312] A. Wesley. WSFL in action, Part 1, 2002. Available online at: http://

www-128.ibm.com/developerworks/webservices/library/ws-wsfl1/ (Ac-
cessed 30th September, 2007).

216 Grid Resource Management

[313] J. Yu and R. Buyya. A novel architecture for realizing grid workflow
using tuple spaces. In Proceedings of the Fifth IEEE/ACM Interna-
tional Workshop on Grid Computing (GRID’04), pages 119–128. IEEE
Computer Society, 2004.

[314] J. Yu and R. Buyya. A taxonomy of workflow management systems
for grid computing. Technical Report GRIDS-TR-2005-1, Grid Com-
puting and Distributed Systems Laboratory, University of Melbourne,
Australia, 2005.

[315] Z. Yu and W. Shi. An adaptive rescheduling strategy for grid workflow
applications. In Proceedings of the 21st IPDPS 2007, Long Beach, CA,
2007.

Chapter 8

Semantic web

8.1 Introduction

More than twenty years ago, the World Wide Web was still a blueprint.
Nowadays millions of people around the world could not imagine their lives
without it. The WWW has quite rapidly evolved into a vast information,
communication and transaction space. Unfortunately this growth runs into
a problem: lack of a global system which can be used to easily publish and
process data in a way standard by anyone. It can sometimes be difficult to
find, access, present and maintain the information required by a wide variety
of users. One of the main obstacles is that most information on the Web
is made for human interpretation and is not evident for agents browsing the
Web. The Semantic Web is an effort to improve the current Web by making
Web resources “machine-understandable”, because the current Web resources
do not respect machine-understandable semantics.

8.1.1 Web and semantic web

The World Wide Web (or the “Web”) was created around 1990 by the
Briton Tim Berners-Lee and the Belgian Robert Cailliau working at CERN
in Geneva, Switzerland. The Web is a system of interlinked, hypertext doc-
uments that runs over the Internet. With a Web browser, a user views Web
pages that may contain text, images, and other multimedia and navigates
between them using hyperlinks. Since the creation of the Web, Berners-Lee
has played an active role in guiding the development of Web standards (such
as the markup languages in which Web pages are composed), and in recent
years has advocated his vision of a Semantic Web.

According to Tim Berners-Lee’s definition, a Semantic Web is “an exten-
sion of the current web in which information is given well-defined meaning,
better enabling computers and people to work in co-operation. It is the idea
of having data on the Web defined and linked in a way that it can be used
for more effective discovery, automation, integration and reuse across various
applications... data can be shared and processed by automated tools as well as
by people”. At its core, the semantic web comprises a set of elements which
include Resource Description Framework (RDF), a variety of data interchange

217

218 Grid Resource Management

formats (e.g RDF/XML, N3, Turtle, N-Triples), and notations such as RDF
Schema (RDFS) and the Web Ontology Language (OWL). All of which are in-
tended to formally describe concepts, terms, and relationships within a given
knowledge domain.

The Semantic Web is an extension of the current Web. Normally, there are
two conceptual differences between the Semantic Web and the Web:

• The Semantic Web is an information space in which the information
is expressed in a special machine-targeted language, while the Web is
an information space that contains information which aims at human
consumption expressed in a wide range of natural languages.

• The Semantic Web is a web of formally and semantically interlinked
data, whereas the Web is a set of informally interlinked information.

8.1.2 Ontologies

Thomas R. Gruber [323] provides a definition of ontology as “A specifi-
cation of a representational vocabulary for a shared domain of discourse –
definitions of classes, relations, functions, and other objects”. An ontology is
a description (like a formal specification of a program) of the concepts and
relationships that can exist for an agent or a community of agents.

The term of ontology is borrowed from philosophy, where an ontology is a
systematic account of existence. When the knowledge of a domain is repre-
sented in a declarative formalism, the set of objects that can be represented
is called the universe of discourse. This set of objects, and the describable
relationships among them, are reflected in the representational vocabulary
with which a knowledge-based program represents knowledge. Thus, in this
context, we can describe the ontology of a program by defining a set of rep-
resentational terms. In such an ontology, definitions associate the names of
entities in the universe of discourse (e.g., classes, relations, functions, or other
objects) with human-readable text describing what the names mean, and for-
mal axioms that constrain the interpretation and well-formed use of these
terms. Formally, an ontology is the statement of a logical theory [323].

An ontology language is a formal language used to encode the ontology.
There are a number of such languages for ontologies, both proprietary and
standards-based:

• OWL is a language for making ontological statements, developed as
a follow-on from RDF and RDFS, as well as earlier ontology language
projects including OIL, DAML and DAML+OIL. OWL is intended to be
used over the World Wide Web, and all its elements (classes, properties
and individuals) are defined as RDF resources, and identified by URIs.

• KIF is a syntax for first-order logic that is based on S-expressions.

Semantic web 219

• The Cyc project has its own ontology language called CycL, based on
first-order predicate calculus with some higher-order extensions.

8.1.2.1 RDF

Resource Description Framework (RDF) is a family of World Wide Web
Consortium (W3C) specifications originally designed as a metadata model
but which has come to be used as a general method of modeling information,
through a variety of syntax formats. In RDF the information maps directly
and unambiguously to a decentralized model, for which there are many generic
parsers already available. Thus for an RDF application, you know which bits
of data are the semantics of the application, and which bits are just syntactic,
in turn enabling users to deal with the information with greater efficiency and
certainty [331].

The RDF metadata model is based upon triples in RDF terminology. The
subject denotes the resource, and the predicate denotes traits or aspects of
the resource and expresses a relationship between the subject and the object.
For example, one way to represent the notion ”The sky has the color blue”
in RDF is as a triple of specially formatted strings: a subject denoting ”the
sky”, a predicate denoting ”has the color”, and an object denoting ”blue”.

8.1.2.2 OWL

The Web Ontology Language (OWL) is a language for defining and instan-
tiating Web ontologies and is designed for use by applications that need to
process the content of information instead of just presenting information to
humans. An OWL ontology may include descriptions of classes, along with
their related properties and instances and it is developed to augment the facil-
ities for expressing semantics (meaning) provided by XML, RDF, and RDF-S.
OWL is based on earlier languages OIL and DAML+OIL, and is now a W3C
recommendation.

OWL is seen as a major technology for the future implementation of a Se-
mantic Web. It is playing an important role in an increasing number and range
of applications, and is the focus of research into tools, reasoning techniques,
formal foundations and language extensions.

OWL is designed to provide a common way to process the semantic content
of web information. It may be considered an evolution of these web languages
in terms of its ability to represent machine-interpretable semantic content
on the web. Since OWL is based on XML, OWL information can be eas-
ily exchanged between different types of computers using different operating
systems, and application languages. Because the language is intended to be
read by computer applications, it is sometimes not considered to be human-
readable. OWL is being used to create standards that provide a framework for
resource management, enterprise integration, and data sharing on the Web.

An extended version of OWL (sometimes called OWL 1.1, but with no
official status) has been proposed which includes increased expressiveness, a

220 Grid Resource Management

simpler data model and serialization, and a collection of well-defined sub-
languages each with known computational properties. OWL 1.1 has a well-
defined model-theoretic semantics, and is motivated by application require-
ments. The major builders of the Semantic Web, namely, RACER, FaCT++,
Pellet and Cerebra expressed a commitment to support OWL 1.1 in the near
future.

8.1.2.3 DAML+OIL

DAML+OIL is a more recent proposal for an ontology representation lan-
guage that has emerged from work under DARPA’s Agent Markup Language
(DAML) initiative along with input from leading members of the OIL consor-
tium. DAML+OIL is the basis of the W3C Web Ontology Language OWL,
and its predecessor. DAML+OIL is an ontology language which is specif-
ically designed for use on the Web, exploits existing Web standards (XML
and RDF) and adds the formal description logic. DAML+OIL is designed
on top of the object oriented approach, describing the structure in terms of
classes and properties. The ontology of DAML+OIL consists of a set of ax-
ioms (e.g., asserting class subsumption/equivalence), and DAML+OIL classes
can be names (URIs) or expressions. A variety of constructors are provided
for building class expressions. The expressive power of the language is deter-
mined by the class (and property) constructors supported, and by the kinds
of axiom supported [324].

As a delivery platform for ontologies, DAML+OIL is quite satisfactory and
indeed, in the opinions of the authors, is a great improvement over alterna-
tive representations such as simple RDF schema or topic maps. However, as
an exchange and modeling format, DAML+OIL is lacking the mechanism of
ensuring the suitability and intelligibility of knowledge for the users through
transformations [320].

8.2 Semantic grid

8.2.1 The grid and the semantic web

The concept of the grid emerged in the early 1990s as a distributed infras-
tructure for advanced science and engineering. With the development of grid
technologies, three generations of the grid can be identified: first generation
systems focus on solutions for sharing high performance computing resources,
second generation systems introduce middleware to deal with the scale and
heterogeneity of large-scale computational power and large volumes of data
and third generation systems are adopting a service-oriented approach which
can achieve the standardization for the grid and allow a secure and robust

Semantic web 221

infrastructure to be built.
Although grid computing is gaining a lot of attention within the IT in-

dustry, grid computing is not yet a standard product on the ICT (Informa-
tion and Communications Technology) market. Presently there are only a
few real production grids and current grid middleware is extremely hard to
use for non-specialist users and incomplete. It has provided computational
inter-operability, but semantic inter-operability is now required. To overcome
present architectural and design limitations which prevent the use and wider
deployment of computing and knowledge grids and to enrich its capabilities by
including new functionalities required for complex problem solving, the larger
uptake of grid-type architectures is needed and the concept from computation
grids to knowledge grids must be extended, eventually leading to a “semantic
grid”.

The integration of semantic technology increases the inter-operability of the
Web and grid, and the Semantic grid is the convergence of the Semantic Web
and the grid, as shown in Figure 8.1. The Semantic grid refers to an approach
to grid computing in which information, computing resources and services are
described in standard ways that can be processed by computer. This makes it
easier for resources to be discovered and joined up automatically, which helps
bring resources together to create virtual organizations. The descriptions
constitute metadata and are typically represented using the technologies of
the Semantic Web, such as the Resource Description Framework (RDF). The
use of Semantic Web and other knowledge technologies in grid applications is
sometimes described as the Knowledge Grid. Semantic Grid extends this by
also applying these technologies within the grid middleware.

The semantic ability can be applied in two aspects of the Semantic Grid:
the discovery of available resources and the data integration [317].

Discovery and reuse of resources The discovery of available resources
helps grid users reuse existing resources and technology for their grid
requirements, instead of new grids and applications being built for pro-
cessing new data. Rather than developing a single-use application for a
grid environment, the existing grid infrastructure and grid application
could be made available to other people. In a Semantic Grid, a user or
application must provide a more detailed definition of the capabilities
required to find and make use of the grid. The semantic technologies,
such as RDF and OWL, will be employed to make it easier to determine
what facilities a specific grid can provide.

Data integration The semantic technology can be used to provide links and
connectivity between information stored and available within a data
grid. Thus it provides an efficient way of storing and retrieving infor-
mation. In addition, the definition of the data stored and processed
by a grid will enable users to string together multiple grids to provide
complex calculations.

222 Grid Resource Management

scale of data and computation

sc
al

e
of

 in
te

ro
pe

ra
bi

lit
y

semantic web semantic grid

web grid

FIGURE 8.1: Convergence of the semantic web and the grid technologies.

8.2.2 Current status of the semantic grid

At present Semantic Web technologies such as the Resource Description
Framework (RDF) for metadata representation are increasingly being ap-
plied to grid computing infrastructures and applications, facilitating inter-
operability and reuse of services, data and tools. Some research and projects
have been done to try to integrate semantic technologies into the grid, in order
to achieve automatically the resource discovery and data mining. However it
is agreed that the Semantic Grid still has a long way to go to become a reality.

Yolanda Gil and her colleagues describe AI techniques that automatically
generate complex, detailed workflows that can execute on a grid [322]. Cur-
rently, high-level services such as workflow generation and management sys-
tems lack expressive descriptions of grid entities and their relationships. The
workflow generation and mapping system which is presented by Yolanda Gil
and her colleagues integrates an AI planning system into a grid environment.
A user submits an application-level description of the desired data product.
Thus for the AI planning system, the goals are the desired data products and
the operators are the application components. The AI planning system then
receives as input a representation of the current state, a declarative represen-
tation of a goal state, and a library of operators that the planner can use to
change the state. The goal of the planning system is to search for a valid,
partially ordered set of operators that will transform the current state into
one that satisfies the goal. The plan returned corresponds to an executable
workflow, which includes the assignment of components to specific resources
that can be executed to provide the requested data product.

In the industry, scientists normally need a deep understanding of the mi-
croscopic structure of components, detailed analytical information about how

Semantic web 223

the various components interact, and the ability to predict how the compo-
nents will perform under load conditions. To solve these problems, scientists
are turning to knowledge management techniques, particularly Semantic Web
technologies, to make sense of and assimilate the vast amounts of microstruc-
tural, performance, and manufacturing data that they acquire during their
research for mining and discovery of novel relations, and for advanced man-
agement techniques. Jane Hunter, John Drennan, and Suzanne Little’s article
[325] exemplifies the need for image analysis and visualization techniques to
support scientific and engineering advances. It describes a project that uses
Semantic Web technology to develop novel hydrogen-based energy sources.

Chris Wroe and his colleagues describe how they use Semantic Web lan-
guages to integrate services and data on grid computing. Their work sup-
ports interactive bioinformatics experimentation by pulling information from
distributed heterogeneous services and integrating it through expressive se-
mantic representations of their content and the operations they support. They
introduce the notion of scientific workflows. These workflows consist of indi-
vidual processing steps whose results are consumed by others and that overall
generate the desired data products of scientific analysis.

Mario Cannataro and Domenico Talia [318] believe the grid is moving from
computation and data management to a pervasive, worldwide knowledge man-
agement infrastructure. A comprehensive software architecture for the next-
generation grid which integrates currently available services and components
in Semantic Web, Semantic Grid, P2P, and ubiquitous systems is proposed.
Knowledge discovery and data mining, ontology-driven organization of grid-
related knowledge, and intelligent data exploration and visualization will be
part of future advanced applications of grid-computing infrastructure for sci-
ence.

8.2.3 Challenges to be overcome

Achieving the full richness of the Semantic Grid vision brings with it many
significant research challenges. Some of the technical ones have been high-
lighted. However others arise from the need to bring together the research
communities to achieve the Semantic Grid ambitions. Communities must be
grouped together to create the Semantic Grid, which can then be used for
flexible collaborations and computations on a global scale for the creation of
new scientific results, new business and even new research disciplines.

David De Roure and his colleagues describe ten research challenges in the
Semantic Grid which need to be targeted in the future [334] such as Auto-
mated Virtual Organization Formation and Management, Service Negotia-
tion and Contracts, Metadata and Annotation and Pervasive Computing, etc.
Moreover, we want to highlight some of the technical ones. In Semantic Grid,
we use ontologies to express inter-operability between systems. Tools are now
appearing that facilitate the construction of a verification of ontologies. The
Semantic Web effort is also producing tools to support annotation, linking,

224 Grid Resource Management

search and browsing of content. But a pressing need is to develop standards
and methods to describe the knowledge services themselves, and to facilitate
the composition of services into larger aggregates and negotiate workflows.
Now the research of pervasive computing (which is about devices everywhere;
e.g. in everyday artefacts, in our clothes and surroundings, and in the external
environment) is more and more in vogue. Pervasive computing provides the
manifestation of the grid in the physical world. With the sensor networks as
sensors and sensor arrays evolve, we can acquire data with higher temporal or
spatial resolution, and this increasing bulk of (often realtime) data demands
the computational power of the grid. We need service description, discovery
and composition to be applied both to grid and to pervasive computing.

8.3 Semantic web services

Currently technology around UDDI, WSDL, and SOAP provides only lim-
ited support in service recognition, service configuration and combination,
service comparison and automated negotiation. Thus the ambition for Se-
mantic Web services is to raise the level of description such that services are
detailed in a way that indicates their capabilities and task achieving character.

8.3.1 Service description

At present, the Web Services Description Language (WSDL) is already an
essential building block in the Web service technologies, and is being developed
and standardized in the W3C’s Web Services Description Working Group.
WSDL, in essence, allows for the specification of the syntax of the input and
output messages of a basic service, as well as other details needed for the
invocation of the service.

However WSDL lacks semantic descriptions of the meaning of inputs and
outputs that makes it impossible to develop software clients that can, without
human assistance, dynamically find and successfully invoke a service. More-
over WSDL does not support the specification of workflows composed of basic
services. Thus richer semantic descriptions must be added to support greater
automation of service selection and invocation, automated translation of mes-
sage content between heterogeneous inter-operating services, automated or
semi-automated approaches to service composition, and more comprehensive
approaches to service monitoring and recovery from failure [319].

For the service discovery, we require a semantic language that can be used to
encode Web service capabilities for advertisement and for requests. There are
two ways to represent functionalities. The first approach provides an extensive
ontology of functions where each class in the ontology corresponds to a class

Semantic web 225

of homogeneous functionalities. The second way to represent capabilities is to
provide a generic description of function in terms of the state transformation
that it produces. Both ways use ontologies to provide the connection between
what the Web service does and the general description of the environment in
which the Web service operates.

In order to perform automated WS composition, a rich semantic represen-
tation of Web service inputs, outputs, preconditions and effects (IOPEs) is
needed to resolve constraints between IOPEs. The constraints between these
inputs, outputs, preconditions and effects dictate the composition of Web ser-
vices. For example, we may want to achieve an object (some desired outputs
and effects), and match it to the outputs and effects of a Web service (modeled
as a process). The result is an instantiation of the process, plus descriptions
of new goals to be satisfied based on the inputs and preconditions of that pro-
cess. The new goals (inputs and preconditions) then naturally match other
processes (outputs and effects), so that composition arises naturally. WS
preconditions and (conditional) effects are not encoded in any existing indus-
trial standard [319], thus we need a semantic description to encode them in
unambiguous computer-interpretable form.

Throughout the presentation of D. Martin and his colleagues [319], most
of the work on discovery of Web services using the semantic technologies has
been based on OWL-S (Ontology Web Language for Services) which seeks to
provide the building blocks for encoding rich semantic service descriptions,
in a way that builds naturally upon OWL. OWL-S can help to enable fuller
automation and dynamism in many aspects of Web service provision and use,
support the construction of powerful tools and methodologies, and promote
the use of semantically well-founded reasoning about services.

WSMO handles functional descriptions (WSMO capabilities) to the whole
service. It makes an explicit distinction between requester goals and provider
capabilities: while capabilities are composed of Preconditions, Postconditions,
Assumptions and Effects (plus non-functional properties), goals comprise only
Postconditions and Effects. Semantics of Preconditions and Postconditions
could be assimilated to IOPE restrictions over Inputs and Outputs. Assump-
tions and Effects describe the change of service state before and after the
service execution, and could be assimilated to IOPR Preconditions and Re-
sults [333].

8.3.2 WS-Resources description and shortcomings

Building on concepts and technologies from both the grid and Web services
communities, OGSA (Open Grid Services Architecture) defines a uniform
exposed service semantics (the grid service); defines standard mechanisms for
creating, naming, and discovering transient grid service instances; provides
location transparency and multiple protocol bindings for service instances;
and supports integration with underlying native platform facilities [321]. The
release of WSRF showed that an OGSA infrastructure with stateful WS-

226 Grid Resource Management

Resources could be built on top of plain WSDL by retaining Web services as
stateless entities [333]. The WSRF decouples a Web service (WSDL interface)
from its stateful resource (an XML ResourceProperties Document, therefore
RPD). Hence, grid researchers can focus on achieving better descriptions,
discovering and matching of standard Web services.

As we have said in section 8.3.1, the semantic technologies are adopted in
the Web service descriptions to facilitate the service discovery and to construct
automatically some complex applications. WSRF deals with application data
(resource properties) in the form of XML. WSRF mandates that such appli-
cation data be described using XML schema and it proposes languages like
XPath for querying the data. XML schema together with XPath 2 can express
type hierarchies but they lack any semantic reasoning abilities. Research in
extending XML schemas with semantics and using some semantic query lan-
guage (or extending XPath with semantics) can potentially have far-reaching
applicability, and the results would be reusable in WSRF as well, because
WSRF does not constrain the XML schemas used to describe the data and it
allows any dialect of query language. Moreover, by reusing the same results in
semantic annotation, understanding and querying of XML data as mentioned
above, notification subscription based on semantic matching appears to be
a natural combination. Finally, it might be very useful to include resource
property availability matching in Web service discovery, i.e. looking for ser-
vices based on what data they make available as their resource properties, as
opposed or in addition to the capabilities of the application-specific service
interfaces [326].

Both OWL-S and WSMO have some limitations in describing the WS-
Resource [333]. First, OWL-S links IOPE properties solely to WSDL opera-
tions, so it is unable to express statements over the service itself. In order to
well describe a service, constraints, semantic rules or matchable statements at
various levels within an interface are needed. Thus the current descriptions
of OWL-S is a limiting factor. Some research suggests allowing WSDL-S pre-
and post-elements to appear outside operations; however, these modifications
are far from being a general solution. Then, we can emphasize a semantic
annotation problem. Currently the final outcome of a semantic annotation
process will be a hardwired-at-design-time set of semantic statements as part
of the service’s profile. But considering the dynamic changes of WSRP value,
this is not sufficient to describe well capabilities of WS-Resource. Finally, the
point is related with a possible matching and discovery mechanism involving
WS-Resources. As we know, a requestor could find a service able to fulfill
its requirements by querying a UDDI registry, and then invoking one of the
matched endpoint addresses in order to retrieve its WSDL description. Sev-
eral works have reused this model to advertise semantic service descriptions,
enhancing registries with semantic matchmaking algorithms. Again, in or-
der to discover WS-Resource descriptions, the model of UDDI would require
a continuous polling of capabilities because of the state changes which can
occur at any time.

Semantic web 227

8.3.3 Semantic WS-Resource description proposals

Currently, some research [333, 316] in semantic-enabled WSRF (WSRF-S)
has started and seeks to benefit from adding semantics to the stateful services.

A three-layered Semantic WS-Resource description model is described in
[333]. The features of the model are as follows. Firstly, the hereafter Property
Layer manages resource properties related to both static characteristics and
dynamic changes in the state of the service, conveying the WS-Resource RPD.
In turn, WSDL I/O parameters are annotated with semantics as WSDL-S
does. Secondly, a Policy Layer is used to transform parameters and properties
into explicit capabilities or requirements by attaching policies to each WSDL
or RPD element (hence controlling their degree of modality and the type
as being functional or non-functional). Finally, the Semantic Topics Layer
envelops a concrete set of capabilities/requirements with its policy informa-
tion, forming a collection of semantic topics (which is the effective profile of
the service). However, the current WS-Topics standard covers only syntactic,
tree-based matching by means of XPath-like expressions (simple, concrete and
full dialects). In order to achieve a distributed sharing of semantic capabili-
ties regarding WS-Resource state changes, WS-Topics should be extended to
support semantic topics expressing both statements and Resource Properties.

In the paper [316], the design and development of the semantic grid services
for flood forecasting simulations are presented. The authors describe an archi-
tecture of the system components of the workflow orchestration and execution
environment, and introduce the process of service annotation, discovery and
composition in the project K-Wf Grid. The design of the flood-forecasting ap-
plication services is based on the Web Service Resource Framework (WSRF).
A simple ontology is designed to describe resource properties and the associ-
ation with the instance service and service factory. A WSRFServiceProfile is
defined, extending the already existing OWL-S Profile. In order to describe
the resource properties, an additional object property is introduced called
hasResourceProperty, which points to one or many instances of the class Re-
sourceProperty. Since resource properties are already defined as an XML
schema, the ontological description can be created semi-automatically.

8.4 Semantic matching of web services

8.4.1 Matchmaking Systems

InfoSleuth [330] is an agent-based information discovery and retrieval sys-
tem which adopts “broker agents” to perform the syntactic and semantic
matchmaking. The broker agent matches agents that require services with
other agents that can provide those services. By saving all the up-to-date

228 Grid Resource Management

information about the operational agents and their services in a repository,
the broker enables the querying agent to discover all available agents that
provide appropriate services. In InfoSleuth, syntactic brokering is the process
of matching requests to agents on the basis of the syntax of the incoming mes-
sages; semantic brokering is the process of mapping requests to agents on the
basis of the requested agent’s capabilities or services, with the agent’s capabil-
ities and services being described in a common shared ontology of attributes
and constraints. This single domain-specific ontology is a shared vocabulary
that all agents can use to specify advertisements and requests to the broker.
LDL++, a logical deduction language, is used to describe the service capa-
bility information in InfoSleuth. Agents use a set of LDL++ deductive rules
to support inferences about whether an expression of requirements matches a
set of advertised capabilities.

A multiagent infrastructure, RETSINA (Reusable Task Structure-based In-
telligent Network Agents), has been developed by Sycara and his colleagues
[335]. They distinguished three general agent categories in Cyberspace: ser-
vice provider, service requester, and middle agent. They define Matchmaking
as the process of finding an appropriate provider for a requester through
a middle agent. To describe these agents’ capabilities in the matchmaking
process, they have defined and implemented an ACDL (Agent Capability De-
scription Language), called Larks (Language for Advertisement and Request
for Knowledge Sharing). Larks offers the option to use application domain
knowledge in any advertisement or request by using a local ontology, written
in a specific concept language ITL, to describing the meaning in a Larks spec-
ification. The matching process uses five different filters: context matching,
profile comparison, similarity matching, signature matching and constraint
matching. Different degrees of partial matching can result from utilizing dif-
ferent combinations of these filters. The selection of filters to apply is under
the control of the user or the requester agent.

8.4.2 Matching engine

The matching process is achieved in the component named Matching engine.
The core problem is the matching algorithms which will be discussed in 8.4.3.
Another problem is how a sufficiently similar service can be found to match a
request. The problem is the definition which specifies what sufficiently simi-
lar means. To accommodate a softer definition of sufficiently similar we need
to allow matching engines to perform flexible matches [332]. Matches recog-
nize the degree of similarity between advertisements and requests. Service
requesters should also be allowed to decide the degree of flexibility that they
grant to the system.

The matching engine must satisfy the following characteristics [332]:

• The matching engine should support flexible semantic matching between
advertisements and requests on the basis of the ontologies available to

Semantic web 229

the services and the matching engine

• The requesting service should have some control on the amount of
matching flexibility it allows to the system

• The matching engine should encourage advertisers and requesters to be
honest with their descriptions

• The matching process should be efficient: long delay for the requester
is not tolerated

8.4.3 Semantic matching algorithms

Normally, when all the outputs of the request are matched by the outputs
of the advertisement, and all the inputs of the advertisement are matched by
the inputs of the request, we define that an advertisement matches a request.
This criteria guarantees that the matched service satisfies the need of the
requester.

Some matching algorithms are presented in [332, 328]. The main control
loop of the matching algorithm is shown in algorithm 8.4.1. When a request
arrives, it is matched with all the advertisements recorded by the registry.
Whenever a match between the request and any of the advertisements is
found, the match is recorded and sorted at the end of this loop.

Algorithm 8.4.1 The main control loop
recordMatch = empty list
for Each advertisement in register do

if advertisement matches request then
recordMatch.append(request, advertisement)

end if
end for
sort(recordMatch)

A match between an advertisement and a request consists of the match of
all the outputs of the request against the outputs of the advertisement and
the match of all the inputs of of the advertisement against the inputs of the
request. The algorithm for output matching is presented in algorithm 8.4.2.
A match is recognized if and only if for each output of the request, there is a
matching output in the advertisement. The degree of success will be returned
when the match loop is finished. If one of the request’s outputs is not matched
by any of the advertisement’s output, the match fails. The matching between
inputs is similar, but with the order of the request and the advertisement
reversed.

230 Grid Resource Management

Algorithm 8.4.2 The Algorithm for output matching
globalMatchDegree = exact
for Each outR ∈ outputRequest do

matchDegree = maxMatchDegree(outR, outA ∈ outputAdvertisement)
if matchDegree = fail then

return fail
end if
if matchDegree <globalMatchDegree then

globalMatchDegree = matchDegree
end if

end for
return globalMatchDegree

There are four degrees of matching according to [332]. The description of
these matching degrees is presented below.

exact If advertisement A and request R are equivalent concepts, we call the
match exact; formally, A ≡ R.

plug in If request R is a sub-concept of advertisement A, we call the match
plugIn; formally, R � A.

subsume If request R is a super-concept of advertisement A, we call the
match subsume; formally, A � R.

fail Failure occurs when no subsumption relation between advertisement and
request is identified.

8.5 Semantic workflow

In order to satisfy client requirements, Web services will be composed as
part of workflows to build complex applications. As we have described in
Chapter 7, several workflow specification languages have been developed to
achieve the workflow composition. But the workflow composition techniques
require the user to deal with low-level details and the process of composition
is normally manual or semi-manual. Automated composition techniques can
be used to automate the entire composition process by using AI planning or
similar technology.

8.5.1 Model for composing workflows

Mikko Laukkanen and Heikki Helin [327] describe a model for composing
web service workflows by utilizing semantic Web service ontologies. Figure

Semantic web 231

FIGURE 8.2: Architecture of model for dynamic workflow composition.

8.2 depicts the general entities of the web service composition model and the
information flow between them. The capacity of Web services is described by
a semantic description language, such as DAML-S. When a new web service
instance is created, it is advertised by registering the WSDL and DAML-S
description to the directory, which can be for instance UDDI. The workflows
are defined in a workflow specification language and are stored in the workflow
repository which can be used by the workflow composer agent. Each workflow
is composed of one or more Web services, which can be situated anywhere
on the web. Then the workflow composer agent can query the DAML-S
and WSDL descriptions of the web services from the service directory, and
the semantic matching is applied. The executable workflow is composed by
the workflow composer agent and is fed into the workflow execution engine.
Finally, the execution engine executes the workflow using the web service
instances.

The paper [329] presents an architecture to facilitate automated discovery,
selection, and composition of semantically described heterogeneous services
using Semantic Web technologies. Three main features distinguish the frame-
work from other work in this area. First, a dynamic, adaptive, and highly
fault-tolerant service discovery and composition algorithm is proposed. Sec-
ond, a distinction between abstract and concrete workflows is made. This
facilitates the workflow share in the system. Finally, the framework allows
the user to specify and refine a high-level objective.

The framework architecture is shown in Figure 8.3. The WFMS is the co-
ordinator of the entire process and manages the flow of messages between the
components. The AWFC service generates an abstract workflow according to
the incoming request. The AWFC will typically query the AWFR to ascertain

232 Grid Resource Management

FIGURE 8.3: Architecture of the framework.

if the same request has been processed previously. If so, the abstract work-
flow will be returned to the Manager Service. If not, a request will be made
to the ME to retrieve a process template from the RB which can satisfy the
request. If a process template is not available, an attempt will be made to
retrieve a combination of tasks that provide the same functionality based on
the inputs, outputs, preconditions and effects. Then an abstract workflow is
generated and returned to the Manager Service. The CWFC service achieves
the mapping of an abstract workflow with available instances of actually de-
ployed services on the network at that time. Here the problem is that a service
implementation may not be available. If the matching process is successful,
an executable graph is generated and returned to the Manager Service. If not,
the AWFC is invoked through the WFMS, and asked to provide an alternative
abstract workflow. This provides a high degree of fault tolerance.

8.5.2 Abstract semantic Web service and semantic template

For the purpose of service composition, we normally focus on the abstract
representation of Web services, i.e. operations and messages, but do not con-
sider the binding detail. A definition of abstract semantic Web service is
presented in [337]. An abstract semantic Web service, SWS, can be repre-
sented as a vector:

SWS = (sop1, sop2, ..., sopn)

Semantic web 233

Each sop is a semantic operation defined as a 6-tuple:

sop =< op, in, out, pre, eff, fault >

Each tuple is a semantic description of a Web service’s property. op repre-
sents the operation, in is the input message, out is the output message, pre
represents the precondition, eff is the effect and fault is the exceptions of the
operation represented using classes in an ontology.

For a service provider, we use an abstract semantic Web service definition
to represent the operations and messages of a service. In the same way, a
semantic template is used to model the requirement of the service requester.
It is the way a service requester models the data, functional and non-functional
specifications of a task.

A semantic template (ST) can also be represented as a vector:

ST = (sopt1, sopt2, ..., soptn)

Each sopt is a semantic operation template, which is defined as a 6-tuple:

sopt =< op, in, out, ssf0, gl, fault >

• op is the semantic description of the operation template.

• in is the semantic description of the initial message.

• out is the semantic description of the output message.

• ssf0 is the semantic description of the initial status flags.

• gl is the semantic description of the goal.

8.5.3 Automatic Web service composition

Two types of automatic Web service composition are described in [336],
complete automation and full automation.

Complete automation can be achieved when the execution requirements
of the workflow components are specified, and the system can query the ex-
ecution environment to find what resources are available for execution. In
this case, optimizing the completion time of any given workflow, considering
resource assignment trade-offs across many workflows, and designing appro-
priate failure handling and recovery mechanisms could be important chal-
lenges. The complete automation can also be applied to complete underspec-
ified workflow templates. Workflow templates are underspecified when they
include abstract computation descriptions to be specialized during workflow
instance creation. The binding of abstract description with an instance of
service may depend on the nature of the workflow’s processes. Workflow
templates can also be underspecified in that they may be missing workflow

234 Grid Resource Management

components that perform no critical and standard processing in the workflow.
Automatically adding these steps is possible when the component library in-
cludes appropriate components for doing the kinds of processing required. The
kinds of processing needed may not be known until the workflow instance is
created and therefore would not typically be included in a workflow template.
Once initial status is specified, new processing steps which haven’t been speci-
fied in the workflow template can be added during workflow instance creation.

Full automation of the workflow composition process may be desirable for
some kinds of workflows and application domains. Given a description of
the desired data products, a valid workflow can be created from individual
application components that provide full-fledged automatic programming ca-
pabilities. In order to achieve automatic workflow generation, application
components must be clearly encapsulated and described with detailed spec-
ifications of the component’s outputs based on the properties of their input
data. These specifications must include criteria for component selection and
data selection when several alternatives are appropriate. As an alternative
to creating new workflows from scratch, fully automatic workflow generation
can also be achieved by reusing workflow templates. This approach requires
a library of workflow templates that satisfies the common requirement in the
domain and can be queried according to the key characters of workflow tem-
plate, such as the initial message or the goal.

8.6 Concluding remarks

The convergence of semantic technologies and grid computing provides lots
of advantages. The integration of semantic technologies into Web service
raises the level of description such as their capabilities and task achieving
character. Thus this integration provides the support in service recognition,
service configuration, service comparison and automated composition. The
key technologies for semantic service description have been heavily studied.
But a pressing need is to develop standards and methods to describe the
knowledge services themselves, and to facilitate the composition of services
into larger aggregates and negotiate workflows.

Semantic web 235

References

[316] M. Babik and M. Maliska. Semantic grid services in k-wf grid. In Pro-
ceeding of the 2nd International Conference on Semantics, Knowledge
and Grid. IEEE Press, 2006.

[317] M. C. Brown. What is the semantic grid, September 2005. Avail-
able online at: http://www-128.ibm.com/developerworks/grid/library/

gr-semgrid/ (Accessed 30th September, 2007).

[318] M. Cannataro and D. Talia. Semantics and knowledge grids: Building
the next-generation grid. IEEE Intelligent Systems, 19(1):56–63, 2004.

[319] D. Martin et al. Bringing Semantics to Web Services: The OWL-S
Approach. In First International Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004), 2004.

[320] J. Euzenat. Towards formal knowledge intelligibility at the semiotic
level. In ECAI 2000 Workshop Applied Semiotics: Control Problems,
pages 59–61, 2000.

[321] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid services for dis-
tributed system integration. Computer IEEE, 35:37–46, 2002.

[322] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, and H. Tangmunarunkit.
Artificial intelligence and grids: Workflow planning and beyond. IEEE
Intelligent Systems, 19(1):26–33, 2004.

[323] T. R. Gruber. A translation approach to portable ontology specifica-
tions. Knowledge Acquisition, 5(2):199–220, 1993.

[324] I. Horrocks. DAML+OIL: a description logic for the semantic web.
IEEE Data Engineering Bulletin, 25(1):4–9, 2002.

[325] J. Hunter, J. Drennan, and S. Little. Realizing the hydrogen economy
through semantic web technologies. IEEE Intelligent Systems, 19(1):40–
47, 2004.

[326] J. Kopeck. Semantic web services resource framework (wsrf-s) report.
Technical report, DERI, 2005. WSMO Working Draft 8 August 2005.

[327] M. Laukkanen and H. Helin. Composing workflows of semantic web
services. In Proceedings of the Workshop on Web-Services and Agent-
based Engineering, 2003.

[328] L. Li and I. Horrocks. A software framework for matchmaking based on
semantic web technology. In Proceedings of the Twelfth International
World Wide Web Conference (WWW 2003), 2003.

236 Grid Resource Management

[329] S. Majithia, D. W. Walker, and W. A. Gray. Automated web service
composition using semantic web technologies. In First International
Conference on Autonomic Computing (ICAC’04), 2004.

[330] M. H. Nodine, J. Fowler, T. Ksiezyk, B. Perry, M. Taylor, and A. Unruh.
Active information gathering in InfoSleuth. International Journal of
Cooperative Information Systems, 9(1–2):3–28, 2000.

[331] S. B. Palmer. The semantic web: An introduction, September 2001.
Available online at: http://infomesh.net/2001/swintro/ (Accessed 30th
September, 2007).

[332] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic
matching of web services capabilities. In ISWC ’02: Proceedings of the
First International Semantic Web Conference on The Semantic Web,
pages 333–347, London, UK, 2002. Springer-Verlag.

[333] R. Rodriguez, C. Costilla, and A. Calleja. A Topic-based approach to
express dynamic capabilities of Semantic WS-Resources. In AICT-ICIW
’06: Proceedings of the Advanced Int’l Conference on Telecommunica-
tions and Int’l Conference on Internet and Web Applications and Ser-
vices, page 181, Washington, DC, USA, 2006. IEEE Computer Society.

[334] D. D. Roure, N. R. Jennings, and N. R. Shadbolt. The semantic grid:
Past, present, and future. In Proceedings of the IEEE, volume 93, pages
669–681, March 2005.

[335] K. Sycara, J. Lu, M. Klusch, and S. Widoff. Dynamic service matchmak-
ing among agents in open information environments. ACM SIGMOD
Record (Special Issue on Semantic Interoperability in Global Information
Systems), 28(1):47–53, 1999.

[336] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, editors. Work-
flows in e-Science, chapter Workflow Composition: Semantic Represen-
tations for Flexible Automation. Springer Verlag, 2006.

[337] Z. Wu, A. Ranabahu, K. Gomadam, A. P. Sheth, and J. A. Miller. Au-
tomatic composition of semantic web services using process and data
mediation. Technical report, LSDIS Lab, University of Georgia, Febru-
ary 2007.

Chapter 9

Integration of scientific applications

9.1 Introduction

A perennial problem with grid applications is making them flexible enough
to be used across a range of potential platforms and environments. However,
minor differences between platforms can cause significant problems. For ex-
ample, changes between Windows versions, even Windows NT and Windows
2000, can cause problems for such rigidly designed and optimized applications
as are usually employed in a grid environment. An obvious solution is to re-
move the highly platform-specific elements and move to a more generalized
environment. By making the grid application run on a wider range of plat-
forms, this generalized environment enables easy expansion of the scope and
power of the grid simply by adding more machines [340].

The SOA (service-oriented architecture) is a component-based model for
building applications that divides applications into a number of discrete ser-
vices that, individually, perform a specific function, but when put together
make up the components of a larger application. By making Web services
easier to find and identify, SOA makes it easier to deploy and distribute an
SOA-based application. Because Web services are based on open standards
and are, by definition, architecture- and platform-neutral, SOA-based appli-
cations can be deployed across a wide range of platforms.

In short, SOA is a method for exposing services and allowing computers to
talk to each other and share power and functionality. Grids have slowly been
moving toward a Web services architecture, first with the move by Globus to
the Open Grid Standards Infrastructure (OGSI) and, further, with the Globus
Toolkit 4.0 (GT4) release. SOA and grid technology are moving toward the
Web Standards Inter-operability technology, based on solutions such as the
Web Services Resource Framework (WSRF) and others.

Many scientific communities are feeling a growing need to convert their
legacy applications into Web services. Unfortunately, most of the applications
developed and used by scientific communities are command-line applications
written in FORTRAN, C and a host of scripting languages. They are fast,
efficient and easy to use. However, they are usually platform dependent and
are difficult to integrate with applications from other communities. There
is no standard way of registering these applications so that they can be dis-

237

238 Grid Resource Management

covered by interested clients and end-users. Also, there is no standard way
to describe their input parameters and output results and to monitor their
progress as they run for extended periods of time on the grid. By convert-
ing these command-line applications into grid services, most of the aforesaid
limitations can be overcome [357, 371].

The primary goal of this chapter is to implement a framework for dynamic
deployment of scientific applications where the end-users can:

• Apply any legacy code as a WSRF-compliant service when they create
grid applications.

• Deploy dynamically any scientific application into the grid environment.

• Utilize a uniform interface to interact with any deployed application.

In the framework, the scientific applications are described as job description
files in XML format [365]. We utilize the WSRF resource [366] to contact a
local job manager through Globus [349] to submit the legacy computational
job. The factory service manages all these job descriptions and creates the
resource according to the client request. The instance service supplies a uni-
form interface for all applications. This interface is used to submit and to
monitor the applications. Our framework has four primary components:

• Factory service that manages all the application descriptions and returns
a list of applications to the client interested. It also has a mechanism
to monitor the creation, deletion, and modification of the application
description. Thus we can dynamically make some applications available
or unavailable on the grid. According to the selected application by the
client, the Factory service creates a resource and returns an endpoint
reference composed of the Application service and the recently created
resource to the client.

• Application service that provides a uniform interface for the client to
invoke the applications in the computing resource and to monitor the
status of application executions.

• AdminTool which can interact with the Factory service in a secure way.
The AdminTool has a graphic interface and can be used to add, delete
and modify the application descriptions by the local administrator.

• Application Scheduler is a meta-scheduler in our framework. The Ap-
plication Scheduler manages and monitors all available computing re-
sources in a VO [345]. According to the request of the client, it interacts
with the Factory service in each computing resource to get the appli-
cations list, collects the dynamic and static information of computing
resources to make a scheduling decision, invokes the Factory service in
the computing resource to create a WSRF resource for the user, submits
applications, and monitors the execution status.

Integration of scientific applications 239

In each available computing resource, only one Factory service and one
Application service run persistently. No other instance service is created. So
the creation and the management of an application instance are standard and
simple.

The rest of this chapter is as follows. In Section 2 we discuss some frame-
works which can be used to achieve the application integration into the grid.
Then in Section 3 the model architecture and the implementation are de-
scribed. In Section 4 we provide more details about the application descrip-
tion and the service creation. The security issue is discussed in section 5. At
last, we conclude with a brief discussion of future research.

9.2 Framework

There are several research efforts aiming at automating the transformation
of legacy code into a grid service. Most of these solutions are based on the
general framework to transform legacy applications into Web services outlined
in [359], and use the standard method of Web service to discover these services,
submit jobs, and monitor the execution status. The other solution is Java
wrapping which can generate stubs automatically for legacy applications. One
example can be found in [355], where the authors describe a semi-automatic
conversion of legacy C code into Java using JNI (Java Native Interface) [356].
A solution based on WSRF is also described in this section.

9.2.1 Java wrapping

The paper [355] describes a process for the semi-automatic conversion of
numerical and scientific routines written in the C programming language into
Triana-based computational services that can be used within a distributed
service-oriented architecture of grid computing. This process involves two
separate but related tools, JACAW and MEDLI. JACAW is a wrapper tool
based on the Java Native Interface (JNI) that can automatically generate the
Java interface and related files for any C routine, or library of C routines. The
MEDLI tool can then be used to assist the user in describing the mapping
between the Triana and C data types involved in calling a particular routine.

9.2.2 Grid service wrapping

Compared to Java wrapping GEMLCA [356] is based on a different prin-
ciple. It offers a front-end grid service layer that communicates with the
client in order to pass input and output parameters, and contacts a local job
manager through Globus MMJFS (Master Managed Job Factory Service) to
submit the legacy computational job. There is no need for the source code

240 Grid Resource Management

and not even for the C header files to deploy a legacy application as a grid
service. The legacy code can be written in any programming language and can
be a sequential or a parallel PVM or MPI code that uses a job manager like
Condor. The current implementation of GEMLCA is based on GT (Globus
Toolkit) but the architecture itself is more generic and can be easily adapted
to other service-oriented approaches like WSRF or a pure Web services-based
solution. To wrap the legacy applications, the user only has to describe the
legacy parameters in a pre-defined XML format that in the current GEMLCA
version has to be done manually. However, the next release of the architecture
will automate this process.

The paper [357] presents a framework that allows scientists to wrap their
applications as services, deploy them on the grid, securely interact with these
services, compose scientific workflows using these services and monitor the
status of their workflows on the Grid. The framework has four primary com-
ponents:

• A grid portal, which is a Web server and a gateway for users to access
services, compose workflows and manage data.

• A generic Factory Service that is invoked from the Portal by application
providers to wrap applications as services and create new instances of
these services on the grid.

• A workflow composer tool that allows users to compose complex and
interesting workflows from application services.

• A Notification Service that allows application services to send messages
that are logged by the Portal and monitored by the workflow instance.

The services created by this framework generate their own graphical user
interface, which allows end-users to interact with them using thin and generic
Web service clients. This framework takes care of authentication and au-
thorization during all client-service interactions in a manner transparent to
application developers and end-users.

An implementation of an Application Factory Service is described in [346].
The Factory Service is designed to create instances of distributed applications
that are composed of well-tested and deployed components each executing in
a well-understood and predictable hosting environment. The basic technology
used to build such a factory service is based on XCAT, which is a grid-level
implementation of the Common Component Architecture developed for the
U.S. Department of Energy. XCAT can be thought of as a tool to build
distributed-application-oriented web-services. The application factory service
(AFS) is a stateless component that can be used to launch many types of
applications. This Factory Service accepts requests from a client that consists
of static and dynamic application information. The AFS authenticates the
request and verifies that the user is authorized to make the request. Once au-
thentication and authorization are complete, the AFS launches an application

Integration of scientific applications 241

coordinator. Then AFS passes the static and dynamic application informa-
tion to the application coordinator to create the application component. Once
the application component instances have been created, connected and initial-
ized, the application coordinator builds a WSDL document of the ensemble
application and returns that to the AFS, which returns it to the client. The
factory service maintains no state information about any of the application
instances it launches.

9.2.3 WSRF resources

In the grid services wrapping, the interface by which we can interact with
the deployed applications is not uniform. Because the Factory needs a descrip-
tion of the service to create an instance of application, the different description
providers could define various service port-types in the descriptions. There-
fore the interface of application instances varies according to different service
port-types. The other problem is the quantity of service instances. The appli-
cation is created and deployed as a service instance. In this case, if we deploy
a large quantity of needed applications in a computing resource, there will be
too many service instances to be created. The management of these instances
is truly a delicate job.

The framework WSRF provides a solution to solve these problems. WSRF
separates service status from grid service and maintains the status in WSRF
resources. Thus, we can use WSRF resources to wrap legacy applications and
make grid services the interface which is used to submit the computational
applications and to monitor the execution status. With this solution, we
normally deploy one factory service to create WSRF resources and one grid
service to interact with users in each computing resource. The management
of services is straightforward and the interface to be used by users could be
unique and standard.

9.3 Implementation

The framework presented in this chapter adopts the model of SOA and each
component in the framework is wrapped into Web service and is developed
on top of GT 4 (Globus Toolkit). So before discussing the implementation of
the framework, we will introduce some basic concepts of the Globus Toolkit.

9.3.1 Globus Toolkit and GRAM

The Globus Toolkit (GT) was developed in the late 1990s to support the
development of service-oriented distributed computing applications and in-
frastructures. The Web services-based GT4 is the latest release of GT, which

242 Grid Resource Management

provides significant improvements over previous releases in terms of robust-
ness, performance, usability, documentation, standards compliance, and func-
tionality [342].

The GT4 Grid Resource Allocation and Management (GRAM) service ad-
dresses the issues of running a task on a computer, providing a Web services
interface for initiating, monitoring, and managing the execution of arbitrary
computations on remote computers [342]. The Globus Toolkit provides both
a suite of web services and a “pre-web services” Unix server suite to submit,
monitor, and cancel jobs on grid computing resources. Both systems are called
“GRAM”, while “WS GRAM” refers only to the web service implementation.
In GT4, jobs are computational tasks that may perform input/output opera-
tions and the execution of jobs affects the state of the computational resource
and its associated file systems. In practice, such jobs may require coordinated
staging of data into the resource prior to job execution and out of the resource
following execution.

Grid computing resources are typically operated under the control of a
scheduler which implements allocation and prioritization policies while op-
timizing the execution of all submitted jobs for efficiency and performance.
GRAM is not a resource scheduler, but rather a protocol engine for commu-
nicating with a range of different local resource schedulers using a standard
message format [348].

Other services and systems can be needed when we submit a task to GRAM.
The Globus Toolkit’s Monitoring and Discovery System (MDS) defines and
implements mechanisms for service and resource discovery and monitoring in
distributed environments [364]. The Grid Security Infrastructure (GSI) [350]
is the portion of the Globus Toolkit that provides the fundamental security
services needed to support grids. It also provides a number of components for
data management such as the Globus GridFTP tools and the Globus Reliable
File Transfer (RFT) service [347].

9.3.2 Architecture and interface

Figure 9.1 illustrates the architecture of the model. A Grid Resource is
a computing resource on which GT4 has been installed and on which the
Factory service and Application service have been run persistently. We have
one Application Scheduler running as a meta-scheduler of the VO. The meta-
scheduler is the grid portal for clients and it manages all the Grid Resources
in the VO. It interacts with the Factory service and Application service to
create resources, submit computational jobs and monitor the jobs status for
clients.

MDS can be configured in a hierarchical fashion with upper levels of the
hierarchy aggregating information from the lower-level MDS (Index Services).
The upper levels are identified as upstream resources in the hierarchy, and
the lower levels are identified as downstream resources [362]. Thus from
the local MDS, the Application Scheduler can gather the dynamic and static

Integration of scientific applications 243

MDS GRAM ...GT4

Application Scheduler

Factory Service Application Service

Client

Meta−scheduler

Grid Resource

WSRF Resource

MDS GRAM ...GT4

Computing Resource

Factory Service

WSRF Resource

MDS GRAM ...GT4

Computing Resource

Application Service

FIGURE 9.1: The architecture of the proposed model.

information from each Grid Resource in the VO.
The architecture of the Grid Resource is shown in Figure 9.2. An appli-

cation storehouse stores the application descriptions which support the Job
Description Schema [351]. An AdminTool interacts with the Factory service
to add, delete and modify application descriptions. According to the request
of the Application Scheduler, the Factory service can create a resource and
submit a computational job for the user. The resources use GRAM to actu-
ally submit a job to the computing resource and subscribe to the notification
of job status [352] to monitor the job execution [366]. The information of
application execution is stored inside the resource and, more specifically, in
resource properties.

But how can the user set the arguments and stage files of the applica-
tion? In the Job Description Schema, we have three elements: Argument,
FileStageIn and FileStageOut [351]. After a Grid Resource has been selected
by the Application Scheduler, the user specifies all the input parameter values
(including Argument, FileStageIn and FileStageOut) and sends a submission
request to the Application Scheduler. Then the Application Scheduler sets
these elements in the Job Description and invokes the operation createRe-
source of Factory service with the Job Description as the parameter. The
Factory service uses the Job Description to initialize the resource.

244 Grid Resource Management

Table 9.1: The PortType of Services
The PortType of Application Scheduler

PortType Description
1 openSession open a session for user
2 closeSession close the user session

search the application in the Grid Resource.
3 findApplication If there is more than one available Grid Resource,

we use MDS information to select the best
resource for user

4 scheduler submit the application to Grid Factory
5 getJobStatus return the job execution status

The PortType of Factory Service
PortType Description

1 getApplicationList return a list to client
2 createResource create resource for client
3 addApplication add Job Description
4 modifyApplication modify Job Description
5 deleteApplication delete Job Description

The PortType of Application Service
PortType Description

1 submit invoke operation submit of resource to submit the job to
GRAM

2 stop stop the job execution
3 getJobStatus get job status from resource

Based on the GT4 and WSRF, we realize our Grid Scheduler, Factory ser-
vice and Grid service. The PortType [369] of each service is illustrated in
Table 9.1.

9.3.3 Job scheduling and submission

In the Application Scheduler, we implement a simple scheduling algorithm.
When the Application Scheduler finds that there are more than one available
Grid Resource for the user, it compares the number of available CPUs of
each Grid Resource. The Application Scheduler selects the resource which
has the most available CPUs. If the number of available CPUs is similar, the
Application Scheduler calculates the value of Waitingjobs/TotalCPUs for
each Grid Resource. Waitingjobs is the number of jobs waiting in the local job
queue, and TotalCPUs is the number of CPUs on each Grid Resource. The
resource which has the smallest value is selected. A more complex scheduling
algorithm will be considered in the future.

In the framework, it is the resource that contacts a local job manager
through Globus to submit the computational job. Figure 9.3 shows how the
resource is created.

Integration of scientific applications 245

Performs operation

AdminTool

Application

Factory Service

Storehouse

GT4GRAM MD4

Creates a resource

Resource

R1 R2 R3

Security

Computing Resource

Application Service

FIGURE 9.2: The Architecture of Grid Resource.

1. Application Scheduler needs to know only the URI (Uniform Resource
Identifiers) of the Factory service. With this URI, it can invoke the
getApplicationList operation. This will return a String containing the
list of all available applications.

2. Application Scheduler selects the application needed for the user. After
the user has provided the arguments and stage files of the application,
the Application Scheduler fills the fields in the Job Description and
invokes the createResource operation with the Job Description as the
parameter. This will return an endpoint reference containing the URI
of the Grid Service, along with the key of the recently created resource.

3. The Factory service uses a class ResourceContext to get the
GridResourceHome.

4. The resource home can be used to create the new resource. The cre-
ation method returns an object of type ResourceKey. This is the re-
source identifier which is needed to create the endpoint reference that
is returned to the Application Scheduler.

5. The resource home takes care of actually creating a new resource in-
stance and initializes the resource with the Job Description.

6. The resource home adds the new resource instance to its internal list of
resources. This list allows us to access any resource with the resource
identifier.

246 Grid Resource Management

4: create()

1: getApplicationList()

2: createResource()

: SchedulerService : FactoryService

: ResourceContext

3:getResourceHome()

: GridResourceHome

6: add()

: GridResource

5: initialize()

FIGURE 9.3: The sequence diagram for resource creation.

Once the createResource call has finished, the Application Scheduler will
have the WS-Resource’s endpoint reference for the user. In all future calls, this
endpoint reference will be passed along transparently in all the invocations.
So, let’s take a close look at what happens when the Application Scheduler
invokes the submit operation, as shown in Figure 9.4.

1. The Application Scheduler invokes the submit operation in the Applica-
tion Service.

2. The Application Service uses ResourceContext to retrieve a resource. It
will be in charge of reading the EPR and finding the resource.

3. The Application service invokes submitInternal operation in the
GridResource.

4. The GridResource uses GRAMClient [365] that is a Custom GRAM
Client for GT4 to actually submit the application.

5. After the submission of the application, the GridResource subscribes
to the Notification of job status, and then it can receive a notification
when the job status changes and it keeps the job status in the form of
a resource property.

6. If the Application Scheduler wants to consult the status of a running
job, it invokes the getJobStatus operation of the Application service.

Integration of scientific applications 247

1: submit()

6: getJobStatus()

: ApplicationService: SchedulerService

2: getResource()

: ResourceContext

: GridResource

3: submitInternal()

7: getJobStatus()

: GRAMClient

4: submit()

5: Notification

FIGURE 9.4: The sequence diagram for the execution of an application.

7. The Application service invokes the getJobStatus operation in the
GridResource to retrieve the job status.

Figure 9.5 illustrates the sequence of a user job submission.

1. The user invokes the openSession operation of the Application Scheduler
to get a client number.

2. The user invokes the findApplication operation with client number and
the requested application as parameters.

3. The Application Scheduler searches in all the application lists. If it finds
the requested application, a Boolean “true” is returned to the user.

4. The user gets “true”, so it can invoke the scheduler operation in order
to submit the application.

5. The Application Scheduler invokes createResource of the Factory Service
to create a resource for the user.

6. After having created the resource, the Application Scheduler submits
the job to Application Service.

7. The user uses getJobStatus to query the job status.

248 Grid Resource Management

2: findApplication()

1: openSession()

4: scheduler()

7: getJobStatus()

8: closeSession()

5:createResource()

3:getApplicationList()

6: submit()

: User : SchedulerService : FactoryService

: ApplicationService

FIGURE 9.5: The sequence diagram for an user job submission.

8. If the execution of the application is finished, the user invokes closeSes-
sion to destroy the session.

In the Grid Scheduler and Factory Service, a mechanism is integrated to de-
tect the modification of application descriptions. When the local administra-
tor uses the AdminTool to add, delete and modify the application descriptions,
the operations (addApplication, modifyApplication and deleteApplication) of
the Factory Service are invoked. The Factory Service then updates the appli-
cation list and modifies the job description files in the application storehouse.
It also sets a signal to notify the Grid Scheduler of modification of the appli-
cation list. The Grid Scheduler monitors the signal status. When it detects
the change of signal status, it updates its application lists within a reasonable
delay.

9.3.4 Code deployment

The AdminTool is used to create the application description by the local
administrator of each Grid Resource. Figure 9.6 shows the graphic interface
of AdminTool. There are already two applications which are deployed in
this Grid Resource and the administrator can use buttons in the toolbar to
add, modify and delete applications. If the administrator wants to deploy an
application, he clicks on the button in the most left of the toolbar. Then an

Integration of scientific applications 249

FIGURE 9.6: The graphic interface of AdminTool.

FIGURE 9.7: The dialog to add a job description.

Add Job Description dialog (Figure 9.7) appears and the administrator can fill
some or all of these fields in the dialog to create the application description.
Then an application description file of this application is transferred to the
Factory Service and the Factory Service saves this file to the local application
storehouse.

250 Grid Resource Management

9.4 Security

In any networked environment, security is of paramount concern. GSI is the
GT4 component that addresses all security requirements and allows privacy,
integrity, and replay protection for grid communication [367]. The framework
deals with the two basic concepts of security: authentication (verifying that
users are who they say they are) and authorization (assigning privileges to
users once their identity has been firmly established).

To enforce security on the client-side, applications which interact with Ap-
plication Scheduler, Application Service and Factory Service must be con-
figured to use host authorization and to enforce both privacy and integrity
of authentication. On the server-side, authentication and authorization are
specified by creating a security descriptor file before services (e.g., Application
Scheduler) are compiled into GAR files [367]. The Gridmap authorization is
adopted instead of host authorization on the server-side [372].

User Applications which have the authorization of Application Scheduler
can interact with the Application Scheduler service. If a User Application
submits a job via the Application Scheduler, the Application Scheduler uses
a user account which has all the authorizations of each Resource Service to
actually submit the job. This mutual authentication mechanism enforces the
security of the framework and reduces the complexity of configuration.

9.5 Evaluation

The most important aspect for the job submission is the turn-around time.
Turn-around time is the time from a job being accepted by the Application
Scheduler or Factory Service until the completion (i.e., the job has reached
the done state). The turn-around time is measured in 2 cases:

• An application is added dynamically in a Grid Resource

• The Factory Service and Application Service are used directly to submit
a job without the Application Scheduler

9.5.1 Dynamic deployment experiments

As discussed in Section 3, the application can be added dynamically in the
system. Thus at first the performance of dynamic deployment is measured.
The experimental setup is as follows. The Factory Service and Application
Service are deployed and tested at two Condor clusters: a cluster named C1
with three servers, another cluster named C2 with two servers. Each server

Integration of scientific applications 251

has 2 Pentium 4 3.20GHz with 1 GB RAM. The Application Scheduler is
installed in a PC powered by Pentium 4 3.00GHz with 512 MB RAM. All the
machines are connected by 100 Mb Ethernet. GT 4 is installed in the central
manager of Condor pool, and Scheduler Adapters are configured to support
the job submission into the Condor pool.

From a laptop, the user submits 30 jobs to the Application Scheduler and
the interval of submission is 30 seconds. In the user’s opinion, a job is a
sequence of openSession, findApplication, scheduler, getJobStatus and clos-
eSession. At the beginning, the application which the user needs is deployed
on C1. The application is a simple C program. It waits 5 minutes and
then returns. In order to execute the application in the standard universe,
condor compile must be used to relink the application with the Condor li-
braries [341]. After the user has submitted 8 jobs, the local administrator of
C2 runs AdminTool to add the application in C2. For comparison, the user
submits 30 jobs once again. The difference from the first time is that there is
not a dynamic deployment.

Figure 9.8 shows that the turn-around time of followed jobs dropped down
when the application is added in C2 (after the eighth job). Because the Appli-
cation Scheduler detects the modification of applications list in C2 and it can
submit the user job to C2. Thus the ninth job does not wait to be submit-
ted to C1; instead it is submitted to C2 and is executed immediately. Since
the system MDS takes time to gather resource information, the Application
Scheduler uses the information a little delayed to schedule the jobs. When
the fifteenth job is submitted, the Application Scheduler submits continually
the job to C2, because the Application Scheduler thinks that there are still
some free CPUs in C2. This is the reason why the turn-around time of the
fifteenth job is a little longer. After the submission of the fifteenth job, the
turn-around time of the following jobs in the case of dynamic deployment is
much less than in the case of the absence of dynamic deployment because of
the distribution of jobs on two clusters.

9.5.2 Grid resource experiments

The Grid Resource is the Computing Resource where the Factory Service
and Application Service, called User Service, are deployed. Globus provides a
standard interface for communicating with Condor using a standard message
format. Similarly the User Service is deployed on Globus to provide a uniform
interface for the job submission. Jobs are submitted separately to the User
Service and Globus in order to evaluate the performance of the User Service.

In these experiments, the application used is a simple MPI program (in
C). It calculates parallel the value of Pi using numerical integration in two
machines. In order to execute the application in the MPI universe in Condor,
the program to be submitted for execution under Condor will be compiled
using mpicc [341].

All the experiments are done on C2. In order to execute parallel applica-

252 Grid Resource Management

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 0 200 400 600 800 1000 1200

T
ur

n-a
ro

un
d

T
im

e
(S

ec
on

d)

Interval (Second)

30 Jobs with dynamic deployment
30 Jobs without dynamic deployment

FIGURE 9.8: The performance of submission with meta-scheduler.

tions, MPICH (version 1.2.4) [338] is installed on each server of C2. From a
laptop, a program submits separately 10, 30 and 50 jobs to local User Ser-
vice with an interval of submission of 5 seconds. Then the Globus command
“globusrun− ws” is used to submit jobs. The command submits also 10, 30
and 50 jobs with the same interval.

Figure 9.9 shows the result. It is shown that the average turn-around time
of User Service is a little longer than the time of “globusrun − ws”, except
in the case of 30 jobs. The performances of the two infrastructures are very
close.

9.6 Concluding remarks

The framework for dynamic deployment of scientific applications into a
grid environment has been described. The framework addresses dynamic ap-
plications deployment. The local administrator can dynamically make some
applications available or unavailable on the Grid Resource without stopping
the execution of the Globus Toolkit Java Web Services container. An Ap-
plication Scheduler has been integrated in the framework, which can realize
simple job scheduling and select the best Grid Resource to submit jobs for
the users. The performance of the framework has been evaluated by some ex-
periments. All the components in the framework are realized in the standard
of Web Service, so the other meta-schedulers or clients can interact with the
components in a standard way.

We plan to complete the Application Scheduler to realize a more complex

Integration of scientific applications 253

 15

 20

 25

 30

 35

 40

 45

 50

 55

 5 10 15 20 25 30 35 40 45 50 55

T
ur

n-a
ro

un
d

T
im

e
(S

ec
on

d)

Jobs Number

Jobs with User Service
Jobs with Globus

FIGURE 9.9: The comparison of submission among the User Service (Factory
Service and Application Service) and Globus.

scheduling algorithm and to integrate the workflow. The Application Sched-
uler is a Web Service. The interaction between the Application Scheduler or
between an Application Scheduler and the other meta-scheduler can be real-
ized in the standard of Web service. So we would like to create a hierarchy of
meta-schedulers to realize a distributed scheduling.

The rescheduling mechanism in the Application Scheduler should be imple-
mented in future work. The mechanism ensures the execution of jobs, even
if requested applications in some containers are removed dynamically or a
container in the grid breaks down.

254 Grid Resource Management

References

[338] Argonne National Laboratory. Getting the MPICH implementa-
tion. Available online at: http://www-unix.mcs.anl.gov/mpi/mpich1/

download.html (Accessed September 30th, 2007).

[339] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi,
B. Temko, and M. Yechuri. A component based services architecture
for building distributed applications. In Proceedings of HPDC, 2000,
page 51, 2000.

[340] M. C. Brown. Build grid applications based on SOA. Technical report,
MCslp, 2005. Available online at: http://www.ibm.com/developerworks/

grid/library/gr-soa/ (Accessed 30th September, 2007).

[341] Condor Team. Condor user’s manual. Available online at: http:

//www.cs.wisc.edu/condor/manual/v6.8/2_4Road_map_Running.html (Ac-
cessed 30th September, 2007).

[342] I. Foster. Globus toolkit version 4: Software for service-oriented systems.
In International Conference on Network and Parallel Computing (IFIP),
volume 3779, pages 2–13. LNCS Springer-Verlag, 2005.

[343] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid services for dis-
tributed system integration. IEEE Computer, 35:37–46, 2002.

[344] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of
the grid: An open grid services architecture for distributed systems
integration, 2002.

[345] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: En-
abling scalable virtual organizations. International Journal of High Per-
formance Computing Applications, 15(3):200–222, 2001.

[346] D. Gannon, R. Ananthakrishnan, S. Krishnan, M. Govindaraju, L. Ra-
makrishnan, and A. Slominski. Grid web services and application fac-
tories. Computing: Making the Global Infrastructure a Reality. Fox,
Berman and Hey, eds.Wiley, 2003.

[347] Globus Team. Data Management: Key Concepts. Available online
at: http://www.globus.org/toolkit/docs/4.0/data/key/ (Accessed 30th
September, 2007).

[348] Globus Team. Execution Management: Key Concepts. Avail-
able online at: http://www.globus.org/toolkit/docs/4.0/execution/

key/index.html (Accessed 30th September, 2007).

Integration of scientific applications 255

[349] Globus Team. Globus toolkit. Available online at: http://www.globus.

org (Accessed 30th September, 2007).

[350] Globus Team. GT 4.0 Security: Key Concepts. Available online
at: http://www.globus.org/toolkit/docs/4.0/security/key-index.html

(Accessed 30th September, 2007).

[351] Globus Team. Gt 4.0 ws gram: Job description schema doc. Available
online at: http://www.globus.org/toolkit/docs/4.0/execution/wsgram/

schemas/gram_job_description.html (Accessed 30th September, 2007).

[352] Globus Team. Submitting a job in java using WS GRAM. Available
online at: http://www.globus.org/toolkit/docs/4.0/execution/wsgram/

WS_GRAM_Java_Scenarios.html (Accessed 30th September, 2007).

[353] Gridlab. Grid(lab) grid application toolkit, 2004. Available online at:
http://www.gridlab.org/WorkPackages/wp-1 (Accessed 30th September,
2007).

[354] Gridlab. Gridlab products and technologies, 2005. Available online at:
http://www.gridlab.org/about.html (Accessed 30th September, 2007).

[355] Y. Huang, I. Taylor, D. Walker, and R. Davies. Wrapping legacy codes
for grid-based applications. In Parallel and Distributed Processing Sym-
posium, 2003. Proceedings. International, 22–26 April 2003.

[356] P. Kacsuk, A. Goyeneche, T. Delaitre, T. Kiss, Z. Farkas, and T. Boczko.
High-level grid application environment to use legacy codes as ogsa grid
services. In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM In-
ternational Workshop, pages 428–435, 2004.

[357] G. Kandaswamy, L. Fang, Y. Huang, S. Shirasuna, and D. Gannon. A
generic framework for building services and scientific workflows for the
grid. In The 2005 ACM/IEEE Conference on SuperComputing, 2005.

[358] S. Krishnan, R. Bramley, M. Govindaraju, R. Indurkar, A. Slominski,
D. Gannon, J. Alameda, and D. Alkaire. The xcat science portal. In
Proceedings SC2001, page 49, New York, NY, USA, 2001. ACM Press.

[359] D. Kuebler and W. Eibach. Adapting legacy applications as web
services. IBM DeveloperWorks, 2002. Available online at: http:

//www-128.ibm.com/developerworks/library/ws-legacy/ (Accessed 30th
September, 2007).

[360] C. Letondal. Pise: A tool to generate web interfaces for molecular
biology programs, 2004. Available online at: http://www.pasteur.fr/

recherche/unites/sis/Pise (Accessed 30th September, 2007).

256 Grid Resource Management

[361] O. Lodygensky, G. Fedak, F. Cappello, V. Neri, M. Livny, and D. Thain.
XtremWeb & Condor: sharing resources between Internet connected
Condor pool. In Cluster Computing and the Grid, 2003. Proceedings.
CCGrid 2003. 3rd IEEE/ACM International Symposium, pages 382–
389, 12–15 May 2003.

[362] J. Mausolf. Grid in action: Monitor and discover grid ser-
vices in an SOA/Web services environment, 2005. Available online
at: http://www-128.ibm.com/developerworks/grid/library/gr-gt4mds/

index.html (Accessed 30th September, 2007).

[363] L. Qi, H. Jin, I. Foster, and J. Gawor. HAND: Highly Available Dynamic
Deployment Infrastructure for Globus Toolkit 4. 2006.

[364] J. M. Schopf, M. D’Arcy, N. Miller, L. Pearlman, I. Foster, and
C. Kesselman. Monitoring and discovery in a Web services framework:
Functionality and performance of the Globus Toolkit’s MDS4. Technical
report, Preprint ANL/MCS-P1248-0405, Argonne National Laboratory,
Argonne, IL, 2005.

[365] V. Silva. Quick start to a GT4 remote execution client, 2006. Avail-
able online at: http://www-128.ibm.com/developerworks/grid/library/

gr-wsgram/ (Accessed 30th September, 2007).

[366] B. Sotomayor. The globus toolkit 4 programmer’s tutorial.
Available online at: http://gdp.globus.org/gt4-tutorial/download/

progtutorial-pdf_0.2.1.tar.gz (Accessed 30th September, 2007).

[367] B. Sundaram. Introducing gt4 security, 2005. Available online at:
http://www-128.ibm.com/developerworks/grid/library/gr-gsi4intro/

(Accessed 30th September, 2007).

[368] B. Sundaram. WS-Notification and the Globus Toolkit 4 WS-Java Core,
2005. Available online at: http://www-128.ibm.com/developerworks/

grid/library/gr-wsngt4/ (Accessed 30th September, 2007).

[369] W3C. Web Services Description Language (WSDL) 1.1. Available online
at: http://www.w3.org/TR/wsdl (Accessed 30th September, 2007).

[370] W3C. Xml path language (Xpath) version 1.0, 1999. Available online
at: http://www.w3.org/TR/xpath (Accessed 30th September, 2007).

[371] L. Yu and F. Magoulès. A Framework for Dynamic Deployment of
Scientific Applications based on WSRF. In C. Cérin and K.-C. Li,
editors, Advances in grid and pervasive computing, Second International
Conference, GPC 2007, LNCS 4459, pages 579–589, Paris, France, May
2007. Springer-Verlag, Berlin, Heidelberg.

Integration of scientific applications 257

[372] L. Yu and F. Magoulès. Towards dynamic integration and scheduling
of scientific applications. In Proceedings of International Conference
on Distributed Computing and Applications for Business, Engineering
and Sciences, pages 449–454, YiChang, Hubei, China, Aug. 2007. Hubei
Science and Technology Press.

Chapter 10

Potential for engineering and
scientific computations

10.1 Introduction

In the past ten years, grid computing has been heavily researched and
developed. At the present, grid technology has matured enough to enable
the realization of workable and commercial infrastructures, platforms and
tools, ready to be used in production environments ranging from scientific to
commercial application domains. Technology research has gained a dramatic
development, involving major advances in areas such as resource management,
mapping, scheduling, fault tolerance, I/O, visualization, performance analysis,
programming languages and environments, resource discovery and semantic
aspects.

This chapter aims at providing a comprehensive description of most recent
research achievements in grid engineering. Three aspects are especially intro-
duced to illustrate the progress of grid engineering: grid applications, some
of the most important large scale projects, and grid services programming.
In the grid applications section, first we introduce the common features of
grid applications. Then several grid applications which are developed to solve
some technical problems in industry and science research domains are intro-
duced. In the grid projects section, several important large scale projects are
presented. These projects hide the complexity of the grid and facilitate the
use of grid for the non-expert users. Grid service programming is introduced
at the end of this chapter. We want to emphasize that the knowledge of pro-
gramming stateful Web services using GT4 is very important. This knowledge
will allow you to understand the higher-level services of the toolkit and the
functionality of grid components.

10.2 Grid applications

Grid technology enables integrating independent computational resources
and information resources that are distributed in a wide area. Using these

259

260 Grid Resource Management

integrated resources, we can perform distributed/parallel computing with
large-scale and distributed computing powers. Therefore, the problem of de-
mand of large-scale computation can be solved with grid technologies.

There are some common features in applications that can use the grid envi-
ronment effectively [379]. The application that is satisfied with those features
is called GOCA (Grid Oriented Computing Application) and defined as fol-
lows.

• The task can be divided into several subtasks.

• The subtasks are independent of each other or have few dependencies
for other subtasks.

• The subtasks can be executed in parallel.

• There is no or little communication between subtasks.

• Low cost for continuing the job when some nodes are removed.

• New nodes added to the system can be used by the job.

In order to facilitate the development of grid applications, a lot of grid
middleware have been developed, such as Globus Toolkit . The Globus project
has implemented and freely distributed grid middleware tools for security, re-
source management, information handling and data transfer. Therefore, the
research of grid applications aims at the design of computing models and sys-
tem structures which integrate the new technologies of the grid middleware
and focus on the communication problem between each computing compo-
nent. In this section, several grid applications are presented to illustrate the
application model design and to analyze some technical issues concerning the
use of grid-enabled technologies.

10.2.1 Multi-objective optimization problems solving

A multi-objective optimization problem (MOP) can be defined as the prob-
lem of finding a vector of decision variables which satisfies constraints and
optimizes a vector function whose elements represent a set of objective func-
tions [378]. MOPs are characterized by distinct measures of performance
(the objectives) that may be (in)dependent. The multiple objectives being
optimized almost always conflict. Thus “perfect” MOP solutions, where all
decision variables satisfy associated constraints and the objective functions at-
tain a global minimum, may not even exist [380]. Hence, the term “optimize”
means finding a solution that hopefully contains values for all the objective
functions that are acceptable to the designer [378].

The techniques that can be used to compute a set of solutions can be classi-
fied into heuristic methods and enumerative search. In recent years, heuristic

Potential for engineering and scientific computations 261

methods have been widely studied. These methods do not guarantee obtain-
ing the optimal solution, but they do provide near optimal solutions to a wide
range of optimization problems. In contrast to heuristic methods, enumer-
ative searching is a conceptually simple search strategy based on evaluating
each possible solution in a finite search space, and thus it is able to find opti-
mal solutions. By using some grid-enabled technology, enumerative methods
can be practical to obtain optimal solutions for some MOPs.

The paper [378] uses the Globus Toolkit to implement a distributed enu-
merative search algorithm for solving multi-objective problems. The Globus
Toolkit has been used to implement a distributed enumerative search algo-
rithm for solving multi-objective problems. The goal is to gain experience with
grid technologies to face more complex algorithms in the future. A benchmark
composed of both constrained and unconstrained multi-objective problems has
been developed. For unconstrained problems that are computationally expen-
sive, promising results are worked out; in the case of constrained problems,
a more parallel scheme is required to devote more resources for subranges of
the constrained variables.

On the other hand, the algorithm, named gPAES, has been presented which
is an approximation of grid-enabled technologies based on Globus to numeri-
cally improve an evolutionary algorithm. The algorithm uses Globus to exe-
cute a number of sequential PAES algorithms in parallel. Then, with respect
to some given metric, the fronts are ranked and the best one is presented as
a result.

10.2.2 Air quality predicting in a grid environment

Air Quality Forecasting (AQF) [374] is a recent discipline that addresses
important air pollution problems and attempts to provide a basis for dealing
with them. With the increasing maturity of air quality models, air quality
forecasting services are beginning to be established. Some efforts have been
made to build services, with the goal of providing timely, reliable forecasts
of air quality for several regions in the US. An AQF application is created,
tested and deployed and a suitable development and deployment environment
is established. The AQF application makes intensive use of sophisticated
numerical tools, requires high compute power for the numerical simulation of
meteorological and chemical processes, and entails the transfer, storage and
analysis of a huge amount of observational and simulation data.

EZ-Grid is an ongoing project that aims at making it easier and more ef-
ficient for application scientists to use grids. EZ-Grid is a lightweight, freely
available implementation of a Web-based portal which provides easy access to
grid functionalities. The software is very small and exhibits minimal external
software dependencies, while providing a convenient interface to all function-
alities of the Globus toolkit, including security, resource information, data
management and job submission services.

In order to support the goal of producing reliable, timely and accurate air

262 Grid Resource Management

quality results using resources across the EZ-Grid, more work is needed. A
computational grid environment must enable the specification of the complete
job including the interactions between its various components; it must allow
for the automated retrieval of global weather data and subsequent initiation
of preprocessing; it must start the weather model once the initial data set is
ready; and it must be able to launch other executables when the corresponding
input data has been produced, according to the application cycle previously
described. Thus, the requirements for a grid-enabled AQF are summarized in
three points: workflow requirements, grid metascheduling requirements and
grid security requirements.

1. In the case of workflow requirements, the Karajan software is integrated
to provide workflow support in the grid environment [374]. Karajan is
open source and can easily be modified to suit AQF needs. Karajan
supports sequential and parallel execution containers that allow sub-
tasks to be executed in sequence or concurrently, as desired. Yet, one
major weakness of Karajan in supporting AQF is the lack of support
for metascheduling and it submits the tasks of a workflow job only one
by one. Thus some of the Karajan workflow components are extended
to integrate with the metascheduler.

2. For the requirements of grid scheduling, first, Karajan is integrated into
the metascheduler and Karajan’s workflow descriptions are extended
to support the global scheduling. Second, time constraints are taken
into account. The local scheduler’s ability is used to perform advance
reservation and backfilling in order to reduce or avoid waiting time in
local queues. Third, large file transfers are considered separate tasks
in the workflow and the file transfer’s responsibility is devolved to the
metascheduler.

3. In the case of grid security requirements, a centralized CoSign authen-
tication server is used for portal authentication. CoSign is an open
source project at the University of Michigan to provide a Web-based
authentication system.

10.2.3 Peer-to-peer media streaming systems

In the past few years, two new approaches to distributed computing have
emerged, both claiming to address the problem of organizing large scale com-
putational societies: peer-to-peer (P2P) and grid computing. At the present,
the grid and P2P communities have more in common and peer resources ac-
cessed through P2P applications could be an important resource within the
grid computing infrastructure.

Peer-to-Peer (P2P) networking technology has gained tremendous attention
from both the academy and industry. In a P2P system, peers communicate
directly with each other for the sharing and exchange of data as well as other

Potential for engineering and scientific computations 263

resources such as storage and CPU capacity. Each peer acts both as a client
who consumes resources from other peers, and also as a server who provides
service for others. P2P systems can benefit from their following characteris-
tics: adaptation, self-organization, load-balancing, fault-tolerance, availability
through massive replication, and the ability to pool together and harness large
amounts of resources [376].

A simple and straightforward way of P2P streaming implementation is to
use the technique of application-layer multicast (ALM). With ALM, all peer
nodes are self-organized into a logical overlay tree over the existing IP network
and the streaming data are distributed along the overlay tree. From the view
of network topology, current systems can be classified into three categories
approximately: tree-based topology, forest-based (multi-tree) topology, and
mesh topology. Various P2P media streaming systems have been proposed
and developed recently. Even in China, now there are more than a dozen P2P
streaming applications deployed in the Internet.

10.3 Grid projects

Computational grids promise to facilitate the sharing and integration of
global resources; however, there are very few real users of grid technologies.
This is partly due to the newness of grid concepts, but also because the existing
infrastructure software and services are not yet mature, varied or extensive
enough to provide a fully functional environment. In this context, several grid
projects have been developed to provide the ability of integrating computing
resources, scheduling user jobs, achieving user interfaces (grid portals) and
facilitating user application developments. These projects hide the complexity
of the grid and make it easy to use for non-expert users.

10.3.1 GridLab project

The GridLab is a Pan-European distributed infrastructure which consists
of heterogeneous machines from various academic and research institutions.
It has been established as a result of collaboration of all GridLab participants
and partners in order to provide a real robust grid environment.

All GridLab technologies fit into the GridLab architecture (Figure10.1)
which defines a cleanly layered environment. On the highest layer there
is GAT (application oriented high level API to complex and dynamic grid
environments) and GridSphere (Grid-Portal development framework). The
middleware layer covers the whole range of grid capabilities as required by
applications, users and administrators, such as: GRMS (Grid Resource Man-
agement and Brokering Service), Data Access and Management (Grid Ser-

264 Grid Resource Management

Astrophysics Bioinformatics Other life science

GLOBUS

Gridsphere Portal Application Layer

GAT API GAT Layer

Service Layer

Core Layer

FIGURE 10.1: The GridLab architecture.

vices for data management and access), GAS (Grid Authorization Service),
iGrid (GridLab Information Services), Delphoi (Grid Network Monitoring &
Performance Prediction Service), Mercury (Grid Monitoring Infrastructure),
Visualization (Grid Data and Visualization Services), Mobile Services (Grid
Services supporting wireless technologies). GridLab technologies help real
end-users to develop and run their grid-enabled applications.

The principle objective of the GridLab project is to allow the easy inte-
gration of applications with emerging grid technologies. GridLab aims to
provide an environment that allows application developers to use the grid
without having to understand, or even being aware of, the underlying tech-
nologies. The GAT effectively shields the application developers from the
current, ever-changing grid world by providing an application-friendly inter-
face that contains the functionality required by applications [373].

10.3.2 EU DataGrid

The EU DataGrid project (EDG) has as its aim to develop a large-scale
research testbed for grid computing. The project is in its final phase and
a large-scale testbed has been up and running continuously since the begin-
ning of 2002. Three application domains are using this testbed to explore
the potential grid computing has for their production environments: particle
physics, earth observation, and biomedics. The EDG testbed, spanning some
20 major sites all over Europe as well as sites in the US and Asia, offers over
10,000 CPUs and 15 TB of storage to its more than 350 users; it is one of the

Potential for engineering and scientific computations 265

largest grid infrastructures in the world.
The EDG Grid has a multi-layered architecture and the architecture schema

is shown in Figure 10.2. The different layers from bottom to top are: the fab-
ric layer, the underlying grid services, the data grid services and the grid
application layer. At the top of the whole system, the application (e.g., Bi-
ology Application) executes an application request, submitting a grid job or
requesting a file through the interfaces to the Workload Management Sys-
tem. The Workload Management System implements an architecture for
distributed scheduling and resource management in a grid environment. It
provides to the grid users a set of tools to submit their jobs, have them ex-
ecuted on the distributed Computing Elements, get information about their
status, retrieve their output, and allow them to access grid resources in an
optimal way. The Data Management System will make it possible to securely
access massive amounts of data in a universal global namespace, to move
and replicate data at high speed from one geographical site to another, and
to manage synchronization of distributed replicas of files or databases. The
Monitoring Services implement a complete infrastructure to enable end-user
and administrator access to status and error information in the grid envi-
ronment. The EDG collaboration has developed a complete set of tools for
the management of PC farms (fabrics), in order to make the installation and
configuration of the various nodes automatic and easy for the site managers
managing a testbed site, and for the control of jobs on the Worker Nodes in
the fabric.

10.3.3 ShanghaiGrid

As a quick response to this worldwide technical tide, a city grid project
to enhance the digitalizing of a city, going by the name of ShanghaiGrid, is
kicked off at the end of 2003 by the Science and Technology Commission of
Shanghai municipality. The nearest goal of ShanghaiGrid is going to connect
all supercomputers in this metropolis together to form a sharing environment
for massive storage and grid computing [377].

The architecture of ShanghaiGrid comprises four layers, including: infras-
tructure layer, system software layer, supporting services layer and application
layer. The infrastructure layer owns two sub-layers: hardware infrastructure
sub-layer and network infrastructure sub-layer. The system software layer
also owns two sub-layers: operating system sub-layer and supporting services
sub-layer. In fact, all infrastructures could be regarded as the carriers of both
fabric standards and connectivity protocols; system software must provide
the functionalities of both the connectivity layer and resources layer (e.g., de-
vice driver, etc.); supporting services could be regarded as wrappers of local
resource services and global collective services. Finally, ShanghaiGrid is a net-
work production produced by orchestrating all these components smoothly,
transparently and in a hierarchical way.

266 Grid Resource Management

Workload Management

Data Management Monitoring Services

Globus

Fabric Management Networking Management
Mass Storage

Physics Appl Biology Appl

Application Areas

Data Grid Services

Core Middleware

Physical Fabric

Earth Observation
Appl

FIGURE 10.2: The EU DataGrid architecture.

10.4 Grid service programming

Currently, grid applications increasingly extend from scientific computing
to commercial fields, and the Globus Toolkit (GT) has become the de facto
standard of grid technologies. The latest release, the Web services-based
GT4, provides significant improvements over previous releases in terms of ro-
bustness, performance, usability, documentation, standards compliance, and
functionality [375]. A wide range of enabling software is included in GT4 to
support the development of components that implement Web services inter-
faces. GT4 deals with message handling, resource management, and security,
thus allowing developers to focus their attention on implementing application
logic. GT4 also packages additional GT4-specific components to provide GT4
Web services containers for deploying and managing services written in Java,
C, and Python. The services implemented can be divided into two types:
WSRF services and non-WS services. Most of these services are implemented
on top of WSRF; some services which are not implemented on top of WSRF
are called the non-WS services. In fact, the WSRF implementation is a very
important part of the toolkit since nearly everything else is built on top of
it [366]. At this point, the knowledge of programming stateful Web services
using GT4 is very important as it will allow you to progress toward using the

Potential for engineering and scientific computations 267

Client

Server

Web Service
Here is the response

I want some things

FIGURE 10.3: Web services.

higher-level services of the toolkit and to understand the functionality of grid
components.

10.4.1 A short introduction to Web services and WSRF

According to the definition of W3C, a Web service is a software system de-
signed to support inter-operable machine-to-machine interaction over a net-
work. Even though Web services rely heavily on existing Web technologies
(such as HTTP), don’t mistake this with publishing something on a website.
Information on a website is intended for humans. Information that is available
through a Web service will always be accessed by software, never directly by
a human. The clients (programs that want to access the information) contact
the Web service and send a service request asking for the information. The
server would return a service response. Figure 10.3 shows how a Web service
works.

Web services are usually stateless. This means that the Web service can’t
keep state from one invocation to another. The fact that Web services don’t
keep state information is not necessarily a bad thing. There are plenty of
applications that have no need whatsoever for statefulness. However, grid
applications do generally require statefulness. So, the WSRF approach is in-
tegrated in the GT4 to enable Web services to keep state information. Giving
Web services the ability to keep state information while still keeping them
stateless seems like a complex problem. WSRF provides a very simple so-
lution: simply keep the Web service and the state information completely
separate. Instead of putting the state in the Web service, the state is kept in
a separate entity called a resource, which will store all the state information.
Each resource will have a unique key, so whenever we want a stateful interac-
tion with a Web service we simply have to instruct the Web service to use a
particular resource.

10.4.2 Java WS core programming

We can write our first stateful Web service in five simple steps.

1. Define the service’s interface. This is done with WSDL.

268 Grid Resource Management

Client

Factory
Service

Instance
Service

Resource 1

Resource 2

Resource 3

Resource 4

Resources

requests

resource creation

creates

requests
operations

performes
operations

FIGURE 10.4: Multiple resource factory pattern.

2. Implement the service. This is done with Java.

3. Define the deployment parameters. This is done with WSDD and JNDI.

4. Compile everything and generate a GAR file. This is done with Ant.

5. Deploy service. This is also done with a GT4 tool.

According to the implementation of resources, we can divide these Web
services into three types: single-resource, singleton resources and multiple re-
sources. The single-resource is the simplest way to implement a stateful Web
service. The service and the resource are implemented in the same class. The
singleton resource splits up the implementation to resource, home and service,
using a separate class for the service and the resource. When dealing with
multiple resources, the WSRF specs recommend that we follow the factory/in-
stance pattern, having one service in charge of creating the resources (“the
factory service”) and another one to actually access the information contained
in the resources (“the instance service”). Figure 10.4 illustrates the multiple
resource factory pattern.

The state information in the service is stored inside a resource and,
more specifically, in resource properties. The WSRF specification, WS-
ResourceProperties, has defined a set of standard PortTypes we can use to
interact with a service’s resource properties.

GetResourceProperty This PortType allows us to access the value of any
resource property given its QName. This PortType provides a general
way of accessing resource properties without the need of an individual
get operation for each resource property.

Potential for engineering and scientific computations 269

GetMultipleResourceProperties This PortType allows us to access the
value of several resource properties at once, given each of their QNames.

SetResourceProperties This PortType allows us to request one or several
modifications on a service’s resource properties.

QueryResourceProperties This PortType allows us to perform complex
queries on the resource property document. Currently, the query lan-
guage used is XPath.

For the issue of resource lifecycle management, two solutions are offered by
the WS-ResourceLifetime specification: Immediate destruction and Scheduled
destruction. Immediate destruction is the simplest type of lifecycle manage-
ment. It allows us to request that a resource be destroyed immediately by
invoking a destroy operation in the instance service. Scheduled destruction
is a more elaborate form of resource lifecycle management, as it allows us to
specify exactly when we want the resource to be destroyed.

GT4 currently supports some notification mechanisms. It allows us to ef-
fortlessly expose a resource property as a topic, triggering a notification each
time the value of the resource property changes.

10.4.3 GT4 Security

In the industry and business domains, security issues must be taken into
account. Adding security to a service does not affect the service interface.
The Globus Toolkit 4 allows us to overcome the security challenges posed by
grid applications through the Grid Security Infrastructure (or GSI). GSI is
composed of a set of command-line tools to manage certificates, and a set
of Java classes to easily integrate security into our web services. GSI offers
programmers the following features:

• Transport-level and message-level security

• Authentication through X.509 digital certificates

• Several authorization schemes

• Credential delegation and single sign-on

• Different levels of security: container, service, and resource

GSI allows us to enable security at two levels: the transport level or the
message level. If transport-level security is used, then the complete commu-
nication (all the information exchanged between the client and the server)
would be encrypted. If we use message-level security, then only the content
of the SOAP message is encrypted, while the rest of the SOAP message is
left unencrypted. GSI supports three authentication methods: X.509 certifi-
cates, username and password, and anonymous authentication. GSI supports

270 Grid Resource Management

authorization in both the server-side and the client-side. Several authoriza-
tion mechanisms are already included with the toolkit. In the server side,
the server has six possible authorization modes: None, Self, Gridmap, Iden-
tity authorization, Host authorization and SAML Callout authorization. For
the Client-side authorization, we have four authorization modes: None, Self,
Identity authorization and Host. This allows the client to figure out when it
will allow a service to be invoked.

10.5 Concluding remarks

Grid technologies have been widely used in industry and business domains.
In this context, some of the main conceptions of grid engineering are presented.
For the grid applications, we emphasize that the research of grid application
should focus on the computing model and system structure design because
of the development of much grid middleware which deals with security, re-
source management, information handling and data transfer issues in a grid
environment. Then the GridLab project, EU DataGrid and ShanghaiGrid
are presented as large-scale grid projects that show the generic architecture
of large-scale grid system and development experiences. At the end, grid ser-
vice programming is introduced. The Java WS core programming and GT4
security are two aspects presented in this section.

Potential for engineering and scientific computations 271

References

[373] G. Allen, K. Davis, K. Dolkas, N. Doulamis, T. Goodale, T. Kielmann,
A. Merzky, J. Nabrzyski, J. Pukacki, T. Radke, M. Russell, E. Seidel,
J. Shalf, and I. Taylor. Enabling applications on the grid-a GridLab
overview. High Performance Computing Applications, 2003.

[374] B. M. Chapman, P. Raghunath, B. Sundaram, and Y. Yan. Predicting
air quality in a production-quality grid environment. Technical report,
Department of Computer Science, University of Houston, 2005.

[375] I. Foster. Globus toolkit version 4: Software for service-oriented systems.
In IFIP International Conference on Network and Parallel Computing,
LNCS 3779, pages 2–13. Springer-Verlag, 2005.

[376] W. Gao, L. Huo, and Q. Fu. Recent advances in peer-to-peer media
streaming systems. China Comminications, 3(5):52–57, 2006.

[377] M. Li, H. Liu, F. Tang, F. Hong, C. Jiang, W. Tong, A. Zhou, Y. Gui,
H. Zhu, and S. Jiang. Shanghaigrid in action: the first stage projects
towards digital city and city grid. International Journal of Grid and
Utility Computing, 1(1):22–31, 2005.

[378] F. Luna, A. Nebro, and E. Alba. Observations in using grid-enabled
technologies for solving multi-objective optimization problems. Parallel
Computing, 32:377–393, 2006.

[379] Y. Tanimura, T. Hiroyasu, M. Miki, and K. Aoi. The system for evo-
lutionary computing on the computational grid. In Parallel and Dis-
tributed Computing and Systems (PDCS 2002), pages 56–65, 2002.

[380] D. A. van Veldhuizen and G. B. Lamont. Multiobjective evolutionary
algorithms: Analyzing the state-of-the-art. Evolutionary Computation,
8(2):125–147, 2000.

Chapter 11

Conclusions

Grid computing is analogous to the power grid in the way that computing
resources will be provided in the same way as gas and electricity are provided
to us now. Grid computing has evolved from metacomputing environments,
such as I-WAY, that support wide-area high-performance computing to grid
middleware, such as Globus toolkit, which introduces more inter-operable
solutions. The current trend of grid developments is moving toward a more
service oriented approach that exposes the grid protocols using Web services
standards (e.g., WSDL, SOAP). This continuing evolution allows grid systems
to be built in an inter-operable and flexible way and to be capable of running
a wide range of applications.

11.1 Summary

11.1.1 Data management

Scientific research is now data intensive and continues to grow in size and
complexity resulting in large collaborations between experimental sites and
laboratories world-wide. Today information technology must cope with an
increasing amount of data, which continues to increase rapidly each year.
Data grids are emerging as a rather new research area, which aim to provide
various services for the sharing and collaborative use of data. While the grid
concepts of job scheduling and resource allocation have been widely studied,
for example a variety of job scheduler and resource manager (e.g., Condor,
PBS) have been developed for job and resource management in the mid-
1980’s, data management still has not been sufficiently addressed to fulfill the
increasing data requirements of the scientific community.

Data management on grids is a challenging task due to several factors in-
cluding heterogeneity at all system levels, and performance requirements as-
sociated with access, manipulation, and analysis of large amounts of data.
To be efficient, data movement needs to be carefully managed between stor-
age resources. However, the fact that in existing systems operations on data
resources are embedded in the computation introduces new optimization prob-
lems. This coupling of computation with data movement causes the compu-

273

274 Grid Resource Management

tation execution to delay and becomes critical for system performance as data
requirements grow in size.

Grid technology has evolved to meet the challenges in terms of support for
data-intensive applications as the volume and scale of data requirements for
these applications increase. As a result, the main grid activities today in data-
intensive computing, including major data grid projects on a worldwide scale,
enforce the research for resolving the problem of large data requirements,
which is vital for projects on the frontiers of science and engineering, such as
high energy physics, climate modeling, earth observation, bioinformatics, and
astronomy. In order to effectively provide solutions for data management in
grid environments, various issues need to be considered, such as data names-
pace organization, a mechanism for transparent access to data resources, and
efficient data transfer. Finally, an overview of existing solutions for managing
data in grid environments is provided.

An overview of P2P systems is presented, underlying the characteristics of
them. This overview includes certain unstructured, structured, and hybrid
systems including routing algorithms for data lookup in each type of system.
A table of characteristics, which summarizes the shortcomings and improve-
ments of these systems, is also provided.

GRAVY is a grid-enabled virtual file system that enables the inter-
operability between heterogeneous file systems in the grid. This virtual
file system integrates underlying heterogeneous file systems into a unified
location-transparent file system of the grid, and provides to applications and
users a uniform global view and a uniform access through standard APIs and
interfaces. This approach is thus validated by a prototype implemented in
Java which shows that the way users access data is simplified and that data
transfers between heterogeneous file systems can be automated. This fea-
ture allows GRAVY to integrate with high-level schedulers for handling data
transfer jobs.

11.1.2 Execution management

Along with the deployment of more and more heterogeneous clusters, the
problem of requiring middleware to leverage existing IT infrastructure to op-
timize compute resources and manage data and computing workloads has
emerged. Grid computing has become an increasingly popular solution to
optimize resource allocation and to integrate variable computing resources in
highly charged IT environments. Thus new scheduling algorithms and strate-
gies must be researched to take into account the characteristic issues of grid.
In a grid environment, the scheduling problem is to schedule a stream of ap-
plications from different users to a set of computing resources to maximize
system utilization.

Eleven static heuristics and two types of dynamic heuristics are described.
Then the key components of grid scheduling are presented, such as the service
discovery, resource information, and grid scheduling architecture. As a specific

Conclusions 275

case of application scheduling, data-intensive application scheduling is then
presented. Finally, fault-tolerant technologies are discussed to deal properly
with system failures and to assure the functionality of the entire grid system.

Grid workflow is increasingly used to compose complex applications in a
grid environment. Workflows can be distinguished by the method mathemat-
ics which describes a workflow. There are three principal representations to
present a workflow: Linear Workflow, Acyclic Graph Workflow and Cyclic
Graphs Workflow. Then workflow management systems and workflow speci-
fication languages which are used to define and describe the operations and
dependencies of the Workflow components are presented. As the key factors
to improve the performance of workflow applications, the workflow scheduling
and rescheduling theories are described and researched. Then portal projects
are introduced and we point out that the portal is an important component to
reduce the workflow composition time for the non-expert users. Finally, a use
case, LIGO data grid infrastructure, is presented to illustrate the utilization
of grid workflow.

The convergence of semantic technologies and grid computing provides
many advantages. The integration of semantic technologies into Web service
raises the level of description such as their capabilities and task achieving
character. Thus this integration provides support in service recognition, ser-
vice configuration, service comparison and automated composition. The key
technologies for semantic service description have been heavily studied. But a
pressing need is to develop standards and methods to describe the knowledge
services themselves, and to facilitate the composition of services into larger
aggregates and to negotiate workflows.

A framework that achieves the dynamic deployment of scientific applica-
tions into grid environment has been described. This framework addresses
dynamic applications deployment. An Application Scheduler has been inte-
grated in the framework, which can realize simple job scheduling and select
the best grid resource to submit jobs for the users. The local administrator
can dynamically make some applications available or unavailable on the grid
resource without stopping the execution of the Globus Toolkit Java Web Ser-
vices container. The performance of the framework has been evaluated by
some experiments. All the components in the framework are realized in the
standard of Web Service, so the other meta-schedulers or clients can interact
with the components in a standard way.

Grid technologies have been widely used in industry and business domains.
In this context, some of the main concepts of grid engineering are presented.
For grid applications, we emphasize that the research should focus on the
computing model and system structure design because of the development
of a lot of grid middleware that deals with security, resource management,
information handling and data transfer issues in a grid environment. Then
the GridLab project, EU DataGrid and ShanghaiGrid are presented as large-
scale grid projects which show the generic architecture of large-scale grid
system and development experiences. At the end, grid service programming

276 Grid Resource Management

is introduced. The Java WS core programming and GT4 Security are two
aspects to be presented.

11.2 Future for grid computing

Grid computing continues to evolve in both data management and execu-
tion management of the grid community. In the data management, we address
the problem of data management in the Data Grid environment by proposing
a service-oriented framework that supports explicit control of data movement
scheduling and replication via file system interface. And for execution man-
agement, scheduling algorithms and strategies are presented and a framework
for dynamic deployment of scientific applications is formulated. Besides these
contributions, this research has raised many interesting questions and issues,
that deserve further research.

Scheduling policies for data movement. Traditionally, grid workload
schedulers have not taken into account data location when deciding
grid site for job execution. There still remains much improvement in
scheduling policies for transfers to achieve the best data-access and per-
formance characteristics. Different scheduling policies can be studied
in associating with other services, such as networking service, replica-
tion management service, job scheduler. In order to achieve the best
performance, these services should work together collaboratively and in
harmony. Better scheduling policies can be achieved in considering the
possible ways of interaction for co-allocation of computational, storage,
and network resources.

Network profiling. The properties of networks play an important role in
data movement scheduling decisions. In our current implementation,
the data movement scheduler does not take the changing network qual-
ity into account at execution time. A network-aware scheduler for data
movement is a promising research direction in which the scheduler is
aware of network conditions and able to adapt to the varying environ-
ment to achieve acceptable and predictable performance.

Integrating grid services. An important research direction is to integrate
our data management service into a global grid service environment, i.e.,
WSRF service container. The fact that our service has been developed
based on concepts and technologies from OGSA, i.e., using WSRF spec-
ification, would facilitate its integration with other WSRF-based grid
services to form more sophisticated services. By following a service-
oriented approach, we have put emphasis on virtualization as every

Conclusions 277

resources in the system including computation resources, storages re-
sources, networks, databases are modeled as service.

One possible solution is to integrate grid service in the portlets and
using a portlet-based portal. A portlet is a web component that gener-
ates fragments-pieces of markup (e.g., HTML, XML) adhering to cer-
tain specifications (e.g., JSR-168, WSRP). Each portlet service is com-
pounded by one or more grid service. The GridSphere portal framework
is one of the candidates for service integration as it is an open-source
portlet based web portal.

Deploying the middleware in a larger environment. Due to security
issues, we are not able to deploy the middleware across different in-
stitutes in large scale. A natural continuation of our work would be to
deploy the middleware in a larger environment in order to evaluate our
approach in more realistic settings.

Implementing data-intensive scheduling. In a computational grid envi-
ronment, data-intensive applications normally demand large data trans-
fers which are costly operations in general. Therefore, taking them into
account is mandatory to achieve efficient scheduling of data-intensive
applications on grids. The framework for dynamic deployment of sci-
entific applications does not take into account the bandwidth influence
for scheduling and fault tolerance. Since computing resources in the
grid are normally connected by wide area network links (WAN), the
bandwidth limitation is an issue that must be considered when running
data-intensive applications on such environments.

Several approaches have been proposed for data-intensive applications
scheduling. The “bandwidth-centric” approach uses a tree structure to
model a grid system, and considers the optimal solution: tasks should
be allocated to nodes in order of fastest communication time. M. Faer-
man and his colleagues proposed a mathematical equation to evaluate
the performance based on the application’s communication and compu-
tational needs. The task is assigned to the resource with the best perfor-
mance. Xsufferage, a modification of the Sufferage scheduling algorithm,
is also a nice solution which uses the best and second-best cluster-level
MCT to calculate a task’s sufferage value, and assigns the task with the
highest cluster-level sufferage value to the host that achieves the earliest
MCT within the cluster.

Integrating semantic technologies. The convergence of semantic tech-
nologies and grid computing provides lots of advantages. The inte-
gration of semantic technologies into Web service raises the level of
description such as their capabilities and task-achieving character. In
the proposed framework and scheduling model, all the components are

278 Grid Resource Management

grid services which are extensions of Web services. Thus semantic tech-
nologies should be integrated to provide support in service recognition,
service configuration, service comparison and automated composition.

Managing grid workflow. Grid Workflow is increasingly used to compose
complex applications in a grid environment. The integration of semantic
technologies into grid services provides standards and methods to de-
scribe the services knowledge, and thus facilitates the automated com-
position of services into larger aggregates and negotiate workflows. In
order to support these future tendencies, portal technologies should be
researched and integrated to discover available grid services, extract ser-
vices semantic descriptions and reduce the workflow composition time
for the non-expert users.

Glossary

A

Authentication The verification and validation process of the identity of a
user, device, or some other computing entity, in order to allow
access to resources in a system. Authentication merely ensures
that the individual is who he or she claims to be, but says nothing
about the access rights of the individual.

Authorization The process of granting or denying access to a resource in a
system.

B

Batch job Shell scripts with control attributes.

BPEL4WS The merger of two other workflow specification languages, IBM’s
Web Services Flow Language (WSFL) and Microsoft’s XLANG.
BPEL4WS defines a model and a grammar for describing the
behavior of a business process and the interactions between the
process and its partners.

Business-to-Business (B2B) A type of integration technology performing
business processes between trading partners.

C

Common Gateway Interface (CGI) The original technique by which a web
server runs a program to dynamically create the HTML pages
and to return it to the visitor’s web browser.

Common Object Request Broker Architecture (CORBA) Set of industry
standards published by OMG that define a distributed model
for object application systems.

279

280 Grid Resource Management

Component A software object encapsulating certain functionality or a set
of functionalities. A component is accessed through one or more
clearly defined interfaces.

Condor The goal of the Condor project is to develop, implement, de-
ploy, and evaluate mechanisms and policies that support high
throughput computing (HTC) on large collections of distribu-
tively owned computing resources.

Condor-G is the job management part of Condor. Condor-G lets the user
submit the jobs into a queue, to get detailed log files of the life
cycle of the jobs, to manage the input and output files, along
with everything else expected from a job queuing system.

Conseil Européen pour la Recherche Nucléaire (CERN) A research labo-
ratory with headquarters located in Geneva (Switzerland), and
funded by many different countries. While most work deals with
nuclear physics, CERN is known for Tim Berners-Lee’s pioneer-
ing work in developing the World Wide Web portion of the In-
ternet.

D

DAGMan A set of C libraries which allow for the user to schedule programs
based on dependencies. DAGMan is part of the Condor project
and extends the Condor Job Scheduler to handle intra-job de-
pendencies.

DAML-S A DAML+OIL ontology for describing the properties and capa-
bilities of Web services.

DAML+OIL A more recent proposal for an ontology representation lan-
guage that has emerged under DARPA’s Agent Markup Lan-
guage (DAML) initiative along with input from leading members
of the OIL consortium.

Data grid A grid infrastructure providing transparent data access to all
nodes in the system through a single virtual namespace, without
requiring any modifications to the client’s applications. Data
grid provides applications and users with a uniform interface to
access data resources located across multiple locations, hetero-
geneous platforms and file systems, and under multiple adminis-
trative domains.

Data-intensive applications Applications that execute over a computational
grid and demand large data transfers.

Glossary 281

Distributed Component Object Model (DCOM) Microsoft’s technology
for distributed objects. DCOM is based on Component Ob-
ject Model (COM), Microsoft’s component software architecture,
which defines the object interfaces. DCOM defines the remote
procedure call that allows the objects to be run remotely over
the network.

Distributed hash table (DHT) Class of decentralized, distributed systems
and algorithms developed to provide the efficient location of data
items in a very large and dynamic distributed system without
relying on any centralized infrastructure. A DHT applies the
principle of a hash table. A data item has an identifier. This
identifier is sent to a hash function, which generates with high
probability a unique key in the same virtual space. This pair of
values (identifier,key) is completely one way, in the sense that
having a similar hash value does not guarantee that the items
are similar.

E

Enabling Grids and EScience in Europe (EGEE) A project integrating na-
tional, regional and thematic grid efforts to create a seamless
European grid infrastructure devoted to the support of Euro-
pean research.

Endpoint reference (EPR) A WS-addressing construct that identifies a
message destination. It consists of a Uniform Resource Identifier
(URI), message reference parameters and information concerning
the resource to be used.

Enterprise grids A scenario of commercial interest in which the available IT
resources within a company are better exploited and the admin-
istrative overhead is lowered by the employment of grid technolo-
gies.

Exabyte (EB) Unit of storage. 1 exabyte = 1060 bytes.

F

Fault-tolerant algorithms Algorithms designed to deal properly with fail-
ures during the execution of a distributed algorithm.

Fault-tolerant techniques Techniques achieved to recover or to replace the
failed process, in order to ensure the performance of the entire
system.

282 Grid Resource Management

File Transfer Protocol (FTP) File exchange method that uses the Internet
TCP/IP protocols to upload and download files across the Inter-
net.

G

gLite Next-generation middleware for grid computing. Issued from
the EGEE project, gLite provides a bleeding-edge, best-of-breed
framework for building grid applications tapping into the power
of distributed computing and storage resources across the Inter-
net.

Global Grid Forum (GGF) A community-initiated forum of thousands of in-
dividuals from industries and universities of users, developers,
and vendors leading the global standardization efforts of grid
computing. GGF’s primary objectives are to promote and to
support the development, deployment, and implementation of
grid technologies and applications via the creation and docu-
mentation of “best practices”-technical specifications, user expe-
riences, and implementation guidelines.

Global grids All kinds of resources, from single desktop machines to large-
scale HPC machines, which are connected through a global grid
network.

Globus alliance A research and development project focused on enabling the
application of grid concepts to develop fundamental technologies
needed for building grid systems. Read more at http://www.

globus.org.

Globus toolkit An open source software toolkit used for building grids. It is
being developed by the Globus alliance and many others all over
the world. Read more at http://www.globus.org/toolkit.

GrADS(Grid Analysis and Display System) An interactive desktop tool
that is used for easy access, manipulation, and visualization of
earth science data.

Graphical user interface (GUI) A mechanism for interacting directly with
a computing device using graphical display capabilities (such as
menus, widgets, icons, and controls) to make computer applica-
tions easier to use.

Grid computing The virtualization of distributed computing and data re-
sources such as processing, network bandwidth and storage ca-
pacity to create a single system image, granting users and ap-
plications seamless access to vast IT capabilities. Just as an

Glossary 283

Internet user views a unified instance of content via the Web, a
grid user essentially sees a single, large virtual computer.

Grid Resource Allocation and Management (GRAM) A Globus project
that produces technologies that enable users to locate, submit,
monitor and cancel remote jobs on grid-based compute resources.
GRAM enables remote execution management in contexts for
which reliable operation, stateful monitoring, credential man-
agement and file staging are important.

Grid resource brokers (GRBs) Consumers in the economic model. Con-
sumers interact with their own brokers for managing and schedul-
ing their computations on the grid.

Grid scheduling In a grid environment, scheduling a stream of applications
from different users to a set of computing resources to maximize
system utilization.

Grid service 1. (deprecated) In OGSI, a service that implements the Grid-
Service PortType. 2. (informal) In its more general use, a grid
service is a Web service that is designed to operate in a grid en-
vironment, and meets the requirements of the grid(s) in which it
participates.

Grid service providers (GSPs) Producers in the economic model for man-
aging resource allocation in grid computing environments.

GridFlow A grid workflow management system developed at the University
of Warwick.

GridFTP Grid version of the File Transport Protocol for moving large
datasets between storage elements within a grid environment.
Globus toolkit provides an implementation of GridFTP.

GridWay A light-weight meta-scheduler that performs job execution man-
agement and resource brokering. It allows unattended, reliable,
and efficient execution of jobs, array jobs, or complex jobs on
heterogeneous, dynamic and loosely-coupled grids.

Grimoires (Grid RegIstry with Metadata Oriented Interface) A registry
for the myGrid project and the OMII grid software release
(www.omii.ac.uk).

GSFL An XML-based language that allows grid services workflow cre-
ation in the OGSA framework.

284 Grid Resource Management

H

Heterogeneous computing (HC) The coordinated use of different types of
machines, networks, and interfaces to maximize their combined
performance and/or cost-effectiveness.

High performance computing grids A scenario in which different comput-
ing sites (e.g., scientific research labs) collaborate for joint re-
search.

Hypertext Markup Language (HTML) A markup language designed for
the creation of Web pages and other information viewable in
a browser.

Hypertext Transfer Protocol (HTTP) The underlying communication pro-
tocol used by the World Wide Web. The protocol defines how
messages are formatted and transmitted and what actions Web
servers and clients (e.g., browsers) should take in response to
various commands.

I

ICENI (Imperial College e-Science Networked Infrastructure) An
integrated grid middleware designed to support a variety of e-
science activities. These range from the exposure of resources as
services, a component programming model, a scheduling frame-
work, and the ability to visualise data from and steer applications
during execution.

Information service Service that provides the accurate, up-to-date informa-
tion on the structure and state of available resources in a grid
environment.

J

Job A user-defined task that is scheduled to be carried out by an
execution subsystem.

K

Karajan A workflow system which provides a workflow specification lan-
guage and an execution engine, being developed within the Java
CoG Kit.

Kepler Based on the Ptolemy II system for heterogeneous, concurrent
modeling and design. With Kepler’s intuitive GUI, Kepler can

Glossary 285

be used by workflow engineers and end users to design, model,
execute, and reuse scientific workflows.

L

LIGO (Laser Interferometer Gravitational Wave Observatory) An ambi-
tious effort to detect gravitational waves produced by violent
events in the universe, such as the collision of two black holes,
or the explosion of supernovae.

LSF Software for managing and accelerating batch workload process-
ing for compute- and data-intensive applications. With Platform
LSF, you can intelligently schedule and guarantee completion of
batch workloads across a distributed, virtualized IT environment
regardless of operating system.

M

Makespan Assume a set of jobs to be mapped into a set of machines. Com-
pletion Time can be defined as the machine availability time
plus the execution time of each task on a machine in the ma-
chine set. The maximum value of Completion Time is known as
the makespan.

Meta-scheduler Enables large-scale, reliable and efficient sharing of com-
puting resources (clusters, computing farms, servers, supercom-
puters, ...), managed by different LRM (Local Resource Man-
agement) systems, such as PBS, SGE, LSF, Condor, ..., within
a single organization (enterprise grid) or scattered across several
administrative domains (partner or supply-chain grid).

Metascheduling schemes The hierarchy of the meta-scheduler and comput-
ing resources and the role which the meta-scheduler plays in the
job scheduling.

Monitoring and Discovery System (MDS) The information services com-
ponent of the Globus toolkit providing information about the
available resources on the grid and their status.

MPI A library specification for message-passing, proposed as a stan-
dard by a broadly based committee of vendors, implementors,
and users.

N

NAREGI Started as a five-year project in 2003 as one of the major
Japanese national IT projects currently being conducted. The

286 Grid Resource Management

primary objective of NAREGI is the development of the
grid middleware for seamless federation of heterogeneous re-
sources.

National science foundation (NSF) An independent agency of the US gov-
ernment created in 1950 to promote the progress of science; to
advance national health, prosperity, and welfare; and to secure
the national defense.

Network weather service (NWS) A distributed system that periodically
monitors and dynamically forecasts the performance various net-
work and computational resources over a given time interval.

Nimrod-G A grid aware version of Nimrod. It takes advantage of features
supported in the Globus toolkit such as automatic discovery of
allowed resources.

Non-transient (persistent) sevices A service that outlives its clients. A
Web service is non-transient. It does not have the concept of
service creation and destruction.

O

Object Management Group (OMG) A consortium founded in 1989 by
eleven companies (including Hewlett-Packard, IBM, Sun Mi-
crosystems, Apple Computer, American Airlines and Data Gen-
eral) originally aimed at setting standards for distributed object-
oriented systems, and now focused on setting standards in object
oriented programming as well as system modeling.

Open Grid Service Architecture (OGSA) Standards published by Globus
alliance that represent an evolution toward grid services archi-
tecture based on Web services concepts and technologies.

Open Grid Service Infrastructure (OGSI) A GGF specification that de-
fines the common interfaces and behaviors of a grid service.
OGSI is deprecated in favor of WSRF and WS-N.

Organization for the Advancement of Structured Information Standards
(OASIS) An open international consortium that drives the de-
velopment, convergence, and adoption of e-business standards.
OASIS released Web services standards in different disciplines
such as Web Services Resources Framework (WSRF), Web Ser-
vices Notification (WS-Notification), and Web Services Security
(WS-Security).

Overlay network A virtual topology created on top of - and independently
from - the underlying physical (typically IP) network.

Glossary 287

P

P-GRADE portal The first grid portal that tries to solve the interoperability
problem at the workflow level with great success.

PBS A flexible batch queueing system developed for NASA in the
early to mid-1990s. It operates on networked, multi-platform
UNIX environments.

Peer-to-peer (P2P) A network model where all participant nodes (i.e,
peers) have identical responsibilities and are organized into an
overlay network. Each peer takes both the role of client and
server. As a client, it can consume resources offered from other
peers, and, also as a server it can provide its services for others.

Pegasus A grid portal which provides an HTTP(S)-based interface that
can be accessed using a standard web browser. The Pegasus
grid portal is very useful in scenarios where a virtual organiza-
tion (VO) wants to provide easy-to-use application submission
interface to its members.

Petabyte (PB) Unit of storage. 1 petabyte = 1050 bytes.

PortType An interface that defines a set of operations performed by a ser-
vice. Each operation contains a set of input, output, and fault
messages. The order of these elements defines the message ex-
change pattern supported by the given operation.

Public key infrastructure (PKI) A system of digital certificates, certificate
authorities (CA), and other registration authorities that verify
and authenticate the validity of each party involved in a trans-
action.

Q

Quality of service (QoS) The QoS requirements for web services here
mainly refer to the quality aspect of a web service. These may
include performance, reliability, scalability, capacity, robustness,
exception handling, accuracy, integrity, accessibility, availability,
interoperability, security, and network-related QoS requirements.

R

R-GMA Part of gLite/EGEE, a monitoring and information-management
service for distributed resources.

Remote procedure call (RPC) A request for a software event sent over a
network. An application issues an RPC when it wants to use a

288 Grid Resource Management

function running on another system in the same network. An
RPC request is synchronous, which means it requires an imme-
diate response before the application can continue with its work,
and it assumes software compatibility at each end of the commu-
nication. This tight coupling makes it best suited for use within
a centrally-managed private network, rather than between sepa-
rate organizations over the distributed Internet.

Resource Description Framework (RDF) A family of World Wide Web
Consortium (W3C) specifications originally designed as a meta-
data model but which has come to be used as a general method
of modeling information, through a variety of syntax formats.

S

Scheduling heuristics There are two type of scheduling heuristics: static
and dynamic. These heuristics define schemes to assign tasks to
machines (matching) and to compute the execution order of the
tasks assigned to each machine (scheduling).

Semantic grid The convergence of the semantic Web and the grid. The se-
mantic grid refers to an approach to grid computing in which
information, computing resources and services are described us-
ing the semantic data model that can be processed by computer.

Semantic match engine The component that holds the advertisements,
performs the core matching service, evaluates queries, and dy-
namically configures and selects matching advertisements.

Semantic web An extension of the current web in which information is given
well-defined meaning, better enabling computers and people to
work in cooperation.

Semantic web services Web services in which the level of description is
raised and detailed in a way that indicates their capabilities and
task-achieving character.

Semantic workflow Workflow in which automated composition techniques
are used to automate the entire composition process by using AI
planning or semantic technology.

Service An application component deployed on network-accessible plat-
forms hosted by the service provider. Its interface is defined by
a service-description language, such as WSDL, to be invoked by
or to interact with a service consumer.

Service broker A repository that stores information on the available services
and their locations. It is contacted by the service provider, which

Glossary 289

announces its services and contact information. The service bro-
ker is queried by service consumers to obtain the location of a
service.

Service consumer An application that wants to use the functionality pro-
vided by a service. The service consumer sends a message to the
provider and requests a certain service.

Service directories Called Registry in a grid environment. It implements
the storage of arbitrary metadata about services that originate
from both service providers and service users, and provides sim-
ple search APIs or web-based GUI to help requesters find Web
services.

Service discovery The action of the service users or consumers to search
Web services manually or automatically, after Web services are
created and published in Web services registries such as UDDI.

Service oriented architecture (SOA) A framework for integrating business
processes and supporting IT infrastructure as secure, standard-
ized components - service - that can be reused and combined to
address changing business priorities.

Service provider An application that has the ability to perform a certain
functionality. It makes resources available to service consumers
as independent services. A service provider is a self-contained,
stateless business function that accepts one or more requests and
returns one or more responses through a well-defined, standard
interface.

Simple Mail Transfer Protocol (SMTP) Communications protocol used to
transfer electronic mail messages efficiently from one server to
another.

Simple Object Access Protocol (SOAP) An XML-based, platform inde-
pendent protocol maintained by W3C that provides a simple and
relatively lightweight mechanism for exchanging structured and
typed information between services over the network. SOAP
messages are independent of any operating system or protocol
and can be transported using a variety of protocols, such as
HTTP, SMTP, FTP, JMS, etc.

Single sign-on (SSO) A user or session authentication process that allows
a user to provide one name and password and have credentials
propagated to access multiple systems and applications.

Stateful sevices A service that can remember prior actions.

Stateless sevices A service that cannot remember prior actions.

290 Grid Resource Management

T

Taverna Developed by myGrid project, a UK e-Science pilot project
building middleware to support exploratory, data-intensive, in
silico experiments in molecular biology.

Terabyte (TB) Unit of storage. 1 terabyte = 1040 bytes.

Transient sevices A service that can be created and destroyed. Usually, they
are created for specific clients and do not outlive their clients.

Triana A graphical Problem Solving Environment (PSE), providing a
user portal to enable the composition of scientific applications.

U

Uniform resource identifier (URI) A generic term for all types of names
and addresses that refer to objects on the World Wide Web. A
URL is a type of URI.

Uniform resource locator (URL) The address for a resource or site (usually
a directory or file) on the Web and the convention that web
browsers use for locating files and other remote services.

Universal Detection and Discovery Interface (UDDI) A OASIS specifica-
tion for definition of the way in which services are published and
discovered across the network based on a platform independent,
XML-based registry.

V

Virtual organization (VO) A collaboration between multiple institutes. In
grid computing, a VO is a community that shares resources.

Virtualization A set of technologies and tools that enable the aggregation of
resources to achieve a consolidated view throughtout an IT en-
vironment. Virtualization technologies provide a logical - rather
than physical - view of data, computer power, storage capacity,
and other resources.

W

Web Ontology Language (OWL) is a language for defining and instantiat-
ing Web ontologies and is designed for use by applications that
need to process the content of information instead of just pre-
senting information to humans.

Glossary 291

Web Service Discovery Language (WSDL) A standard language for defin-
ing a Web services description. It uses XML and XSD to describe
the operations, the message formats, and protocol binding of the
service.

Web services A family of technologies that consist of specifications, proto-
cols, and industry-based standards that are used by heteroge-
neous applications to communicate, collaborate, and exchange
information among themselves in a secure, reliable, and inter-
operable manner. It is the primary technology for enabling and
realizing SOA concepts.

Web Services Addressing (WS-Addressing) A specification that defines
XML elements to identify Web services endpoints and to pro-
vide end-to-end endpoint identification in messages. This enables
messaging systems to support message transmission through net-
works that include processing nodes such as endpoint managers,
firewalls, and gateways in a transport-neutral manner.

Web Services Base Faults (WS-BaseFaults) A specification that defines a
base fault type which is used to return faults in a Web services
message exchange.

Web Services Business Process Execution Language (WS-BPEL) An of-
ficial OASIS standard for composition and coordination of Web
services. WS-BPEL uses WSDL to describe the Web services
that participate in a process and how the services interact with
each other.

Web Services Resource Framework (WSRF) A family of specifications for
accessing stateful resources using Web services. Since Web ser-
vice implementations typically do not maintain state information
during their interactions, their interfaces must allow for the ma-
nipulation of state - that is, data values that persist across and
evolve as a result of Web service interactions.

Web Services Resource Lifetime (WS-ResourceLifetime) Mechanisms for
WS-Resource destruction, including message exchanges that al-
low a requestor to destroy a WS-Resource, either immediately
or by using a time-based scheduled resource termination mecha-
nism.

Web Services Resource Properties (WS-ResourceProperties) Definition
of a WS-Resource, and mechanisms for retrieving, changing, and
deleting WS-Resource properties.

Web Services Resource Service Group (WS-ServiceGroup) An interface
to heterogeneous by-reference collections of Web services.

292 Grid Resource Management

Web Services Resource (WS-Resource) The core of WSRF specification.
WS-Resource is defined as the composition of a resource and a
Web service through which clients can access the state of this
resource and manage its lifetime.

Web Services Security (WS-Security) A Web service specification that de-
scribes security enhancements to SOAP messaging, including
message integrity, message confidentiality, and single message
authentication.

Workflow management system A system that allows organizations to de-
fine and control the various activities (workflow) associated with
a business process.

World Wide Web Consortium (W3C) An international consortium of com-
panies involved with the Internet and the Web. The W3C was
founded in 1994 by Tim Berners-Lee, the original architect of the
World Wide Web. W3C’s primary purpose is to develop open
standards and protocols, such as HTML, HTTP, XML to ensure
the universality of the Web. W3C is now heavily involved in the
development of Web services standards, most notably SOAP and
WSDL.

WS-Notification (WS-N) A family of specifications that defines a standard
Web services approach to notification using a topic-based pub-
lish/subscribe pattern. It includes standard message exchanges
to be implemented by notification broker service providers along
with operational requirements expected of service providers and
requestors that participate in brokered notifications. It defines
also operations for a notification broker allowing publication of
messages from entities that are not themselves service providers,
and an XML model that describes topics.

WS-RenewableReferences A conventional decoration of a WS-Addressing
endpoint reference with policy information needed to retrieve
an updated version of an endpoint reference when it becomes
invalid.

WSFL An XML language for the description of Web services composi-
tions. WSFL was proposed by IBM.

X

XLANG A proposal by Microsoft Corporation for a language that is used
to model business processes as autonomous agents.

XML A interoperable, self-describing data/content, in combination
with XML schema definition language. Read more at http:

Glossary 293

//www.w3c.org/XML/. The development of XML came because
of perceived limitations in HTML when used as a tool for pub-
lishing complex documents on the Web.

XML-RPC An XML-based standard for making simple remote calls across
the networks using HTTP as transport and XML as encoding.
It emerged in early 1998 as the ancestor of the SOAP protocol.

XML schema XML documents defining the data types, content, structure,
and allowed elements for an associated XML document.

Index

INDEX A
access problems.136
addressing . 46
Air Quality Forecasting (AQF)261
application integration 237
astronomy . 65
automatic Web service composi-

tion 233

B
batch mode heuristics

max-min heuristic 167
min-min heuristic 167
sufferage heuristic 167

bioinformatic 64
biomedics. .265
Business Process Execution Lan-

guage for Web Services
(BPEL4WS) 37, 202

C
catalog-based services 86
centralized directory model . . . 102
client-server 99
climate modeling 63
clusters . 171
CoG Kit . 198
collaborative computing.2
completion time 163
computational grid.3
compute intensive.11
computing resources 162
Condor 11, 197, 210, 251
Condor-G 12, 171
Content-Addressable Network (CAN)

112

CoSign . 262
CrossGrid . 75

D
DAG . 172
DAML . 178
DAML+OIL.220
DAML-S.203, 231
DARPA’s Agent Markup Lan-

guage (DAML) 220
data access 146
data grid . 3, 65

American projects 66
European projects71

data-intensive 61, 136, 181
applications61, 65, 75, 76, 84,

89
computing 2, 69, 89
needs . 66
problems 38

data management 79, 137
challenges 76

data namespace 133
data replication 78
Data Replication Service (DRS)86
data security.78
data transfer 77, 148
data transport 79
DataTAG. 73
decision making 206
definitions

grid . 3
P2P. 98

Directed Acyclic Graph Manager
(DAGMan) 197

distributed computing1, 161

295

296 Grid Resource Management

distributed hash table (DHT) 101,
109, 122

Distributed Resource Management
API (DRMAA) 173

Distributed UDDI Deployment En-
gine (DUDE) 177

E
earth observation 64, 265
economic model 170
EGEE . 172
EU DataGrid project (EDG) . 264
European Data Grid (EDG) . . . 71
extensibility 132
EZ-Grid . 261

F
FAFNER . 7
failure detection service (FDS)187
fault tolerant . . 162, 171, 185, 196,

200
fault-tolerant algorithms

robust 185
stabilizing185

faults . 54
file staging.137
file system 83, 132
File Transfer Protocol . . . see FTP
flooded requests model . . . 104, 122
Fraunhofer Resource Grid (FhRG)

200
FTP. .135

G
Ganglia Information Provider .179
GASS . 9, 82
GEANT . 73
GEMLCA . 239
GEMLCA (Grid Execution Man-

agement for Legacy Code
Applications) 210

Genetic Algorithm
chromosomes164
population 164

GFarm . 84

gLite . 172
Global Access to Secondary Stor-

age see
GASS

Globus . . . 171, 172, 176, 198, 237,
241, 260, 261

architecture 9
project . 9
toolkit 8, 9, 82

Globus Resource Allocation Man-
ager.see
GRAM

GPDK. .14
GrADS 88, 172
GRAM. .9, 242
GRAVY . 139

architecture 141
components 139
design.139
use cases 150

Grid Application Development Soft-
ware project (GrADS)199

grid applications 260
grid characteristics.161
grid computing . . 1, 6, 23, 38, 161,

162
definitions 3
evolution 6
usages . 1

grid engineering 259
Grid Market Directory (GMD)177
Grid Oriented Computing Appli-

cation (GOCA) 260
grid portal 6, 9, 14
Grid Portal Development Kit . .see

GPDK
grid resource broker 171
grid resource brokers (GRBs) . 170
grid scheduling algorithms 168
grid scheduling architecture . . 162,

170
grid scheduling scenarios 173
grid scheduling strategies 168

Backfilling 170
FCFS . 168

Index 297

Grid Security Infrastructure (GSI)
9, 269

Grid Service Handles (GSH) . . . 41
grid service providers (GSPs) . 170
Grid Service Reference (GSR). .41
grid services 38
Grid Services Flow Language (GSFL)

201
grid systems . 2
grid workflow 195
Grid-Flow 200, 210
GridFTP.9, 135
GridLab . 263
GridNFS . 84
GridPP . 75
GridSphere 15, 264
GridWay . 172
Grimoires (Grid RegIstry with

Metadata Oriented Inter-
face) 180

GriPhyN . 66
GSI 9, 144, 242, 250

H
Hawkeye Information Provider 179
HEP. .62
heterogeneity 100, 136
heterogeneous computing (HC)162
high energy physicssee HEP
high-throughput computing 2
HTTP . 134
HyperText Transfer Protocol . . see

HTTP

I
I-WAY. 8
ICENI (Imperial College e-Science

Networked Infrastructure)
176

implied resource pattern . . . 44, 47
InfoSleuth . 227
integrated systems 15
Internet Backplane Protocol (IBP)

81
iVDGL . 69

J
Jini . 175, 176

K
Karajan 198, 262
Kepler . 197

L
Large Hadron Collider (LHC) . . 62
Laser Interferometer Gravitational

Wave Observatory (LIGO)
211

legacy applications.237
Legion . 10
LegionFS . 85
LHC Computing Grid (LCG) . . 74
lifetime management 52
Load Sharing Facility see LSF
LSF . 13

M
machine availability time 163
makespan 163–165
matchmaking 227
Matlab . 212
MDS 9, 175, 242, 243
meta-scheduler 170, 197, 238
metacomputing 6
Metacomputing Directory Service

see MDS
MetaData Catalog Service (MCS)

86
metascheduling schemes 174
middleware . 8
molecular biology 198
MPI . 172, 251
multi-objective optimization prob-

lem (MOP) 260
MyProxy server.210

N
namespace . 133
namespace organization 77
naming management144
NAREGI (National Research Grid

Initiative) 181

298 Grid Resource Management

network computing 4
Network Weather Service (NWS)

182
Nimrod-G . 171
notification . 53

O
OGSA . 39, 225
OGSA-DAI (Data Access and In-

tegration) 88
OGSI 39, 49, 237
on-demand computing 2
on-line mode heuristics

KPB(K-Percent Best) 166
MCT(Minimum Completion Time)

166
MET(Minimum Execution Time)

166
OLB(Opportunistic Load Bal-

ancing) 167
SA(Switching Algorithm) 166

ontology 177, 203, 218
Ontology Web Language for Ser-

vices (OWL-S) 225
Open Grid Service Infrastructure

see OGSI
Open Grid Services Architecture

see OGSA
overlay network 97, 100, 101

P
P2P . 97, 263

characteristics 99
definitions98
evolution101
structured systems 109
unstructured systems.101

parallel computing 161
Parameter Sweep Application .172
Particle Physics 265
PBS . 12, 210
Peer-to-Peer see P2P
pervasive computing 224
Petri net . 200
Phoenix . 188

Portable Batch System. . .see PBS
portal 6, 9, 14, 195, 208

P-GRADE 209
portlet . 14
power grid . 1
PPDG . 68
project DReggie 178
protocols 80, 83, 152
Ptolemy II system 197
public key infrastructure (PKI) 37

Q
QoS 4, 170, 177, 178
quality of service see QoS

R
R-GMA . 180
registry . 175
Reliable File Transfer (RFT) . 242
replica catalogs 85
Replica Location Service (RLS) 86
replication 85, 133
rescheduling 172, 196, 199, 207
resource broker 11
Resource Description Framework

(RDF) 217, 219
resource discovery 40, 77, 171
resources 1, 17, 44

implied resource pattern. . .44
information 162, 178
lifetime management 47
management 9
modeling 49
properties 48
representation 46

routing algorithms 100, 101

S
scheduler11, 12
scheduling . 88
scheduling algorithms . . . 161, 162,

244
dynamic heuristics . . 165, 168

batch mode heuristics . .167
on-line mode heuristics.166

Index 299

static heuristics.163, 168, 205
A∗ . 165
Fast Greedy 163
GA see Gnetic

Algorithm164
Greedy 163
GSA. 164
Max-min.163
Min-min 163
OLB. 163
SA. .164
Tabu 164
UDA 163

scheduling strategies 207
scientific challenges 61
secure access 134
Secure Copy (SCP) 136
Secure Shell (SSH).136
security 78, 143, 250
semantic grid 221
Semantic Template (ST) 233
semantic Web 217
semantic Web services 224
semantic workflow 230
semantic-enabled WSRF. 227
service broker 24
service consumer 24
service directories175
service discovery.29, 162, 174, 198

Semantic 177
Syntactic.176

service grouping 53
service oriented approach 17
Service Oriented Architecture . see

SOA
service provider 24
SGE . 13
ShanghaiGrid265
Simple Object Access Protocol see

SOAP
Simplified conceptual workflow lan-

guage (Scufl) 198
single sign-on 134
SOA 17, 23, 24, 162, 200, 237
SOAP. .34, 36

SQL . 180
SRB (Storage Resource Broker) 87
SRBfs . 85
stage-ins . 137
stage-outs . 137
state addressing 51
state information 50
stateful 25, 40, 44, 46, 49
stateless.25, 39
storage network 83
Stork . 88
Sun Grid Engine.see SGE
supercomputer 4

T
Taverna . 198
TeraGrid . 70
transfer protocols 134
transparency 132
transparent access 77
Triana . 197
turn-around time 168

U
UDDI . 31, 175, 177, 180, 201, 226,

231
UNICORE. .16
Uniform Resource Identifiers (URI)

245
Universal Detection and Discovery

Interface see UDDI

V
virtual computer 4
virtual file . 146
virtual organization see VO
VO 4, 23, 173, 175, 210, 238
VOMS (Virtual Organization Mem-

bership Service) 172

W
W3C. .28, 36
Web . 217
Web Ontology Language (OWL)

218, 219

300 Grid Resource Management

Web service 267
Web Service Discovery Architec-

ture (WSDA).177
Web Service Discovery Language

see WSDL
Web services 6, 17, 23, 24, 197

architecture 26
characteristics 25
encoding and transport32
protocols and technology . . 28

Web Services Flow Language (WSFL)
201

Web Services Resource Framework
see WSRF

workflow 172, 222, 262
composition 195
management system.195
scheduling 196

workload management 11
World Wide Web Consortium . see

W3C
WS-Addressing 46
WS-BaseFaults 48
WS-Notification 49
WS-Resource 46
WS-ResourceLifetime 47
WS-ResourceProperties 48
WS-Security 37
WS-ServiceGroup 48
WSDL 29, 176, 201, 224, 231
WSRF . . 39, 44, 49, 176, 225, 237,

241, 267

X
XLANG . 202
XML-RPC 32, 36

	Cover
	Title
	Copyright
	Preface
	List of Tables
	List of Figures
	Contents
	Chapter 1: An overview of grid computing
	Chapter 2: Grid computing and Web services
	Chapter 3: Data management in grid environments
	Chapter 4: Peer-to-peer data management
	Chapter 5: Grid enabled virtual file systems
	Chapter 6: Scheduling grid services
	Chapter 7: Workflow design and portal
	Chapter 8: Semantic web
	Chapter 9: Integration of scientific applications
	Chapter 10: Potential for engineering and scientific computations
	Chapter 11: Conclusions
	Glossary
	Index

