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Foreword

Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the
end of the beginning.

Winston Churchill, 10 November, 1942

The history of the Rosetta system-level design language spans the last decade.
Indeed, the history of Rosetta mirrors the history of system-level design over that
decade as well. The seminal Dallas meeting in 1997, as discussed by Perry Alexan-
der in his Preface, crystallised the requirements for those system just emerging
at that time, which also marked the beginning of the system-on-chip (SoC) rev-
olution. The first generation of algorithmic system design tools were in active
use, and researchers were exploring the meaning of such concepts as ‘multiple
models of computation.’ The first commercial behavioural synthesis tools were
struggling to demonstrate a real value to designers. The first intellectual property
(IP) based SoC construction, simulation and analysis tools were trying to find an
audience. And tentative experiments with C/C++ and Java as system modelling
languages were a response to the perceived inadequacies of hardware design lan-
guages (HDLs).

The Dallas meeting and subsequent system-level design language (SLDL)
meetings in San Jose and Italy established a set of requirements that became fixed
beacons during the tumultuous system-level decade that followed. That decade
saw the first generation of commercial behavioural synthesis and SoC construc-
tion tools fail in the marketplace. It also saw the system-level design language
‘wars’ end with a relative truce, and an industry consensus emerge on using
SystemC as the imperative system design language for modelling complex hard-
ware and software components, and for building system-level simulation mod-
els. Throughout this tumult, the need for additional capabilities in system-level
design remained a constant.
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In particular, the need for a notation to capture declarative aspects of system
design — especially design constraints; to allow the composition of the speci-
fications for heterogeneous subsystems; and to facilitate more formal analysis
of both specification and implementation — were the subjects of many research
projects — including the Rosetta project.

But Rosetta did not start out as a research project. It started as an industry-
sponsored language development effort, later coming under the umbrella and
sponsorship of the Accellera language-based design standards group. Interest
within Accellera in Rosetta rose and fell as interest in the first phase of system-
level design waxed and waned. It was fortuitous indeed that, complementing the
inconsistent commitment of commercial EDA, systems and semiconductor com-
panies to the Rosetta concept, the academic community, especially in the persons
of Perry Alexander and Peter Ashenden, rose to provide a continuous level of
engagement, detailed technical work, and semantic integrity in pursuing the def-
inition of Rosetta further.

As Accellera continued to focus on the shorter term and arguably more prag-
matic agenda of the commercial EDA industry and large design companies, in
the form of languages such as SystemVerilog, now IEEE 1800-2005, and Property
Specification Language (PSL), now IEEE 1850, it became increasingly clear that
Accellera was no longer the most appropriate organisation to continue sponsor-
ing Rosetta. Thus the language was returned to the academic community for con-
tinued specification and evolution, under the leadership of Perry Alexander. This
has allowed the language to be fully specified, and has allowed the writing of this
book, System-Level Design with Rosetta. As every new language seems to require
at least one book to be written to promote understanding and further interest
and use, so this milestone has now been achieved with System-Level Design with
Rosetta.

How can we best summarise the status of Rosetta in 2006? As this book makes
clear, it is a well-defined research language. There are some early tools available,
and the prospect of more coming. It has a small pool of academic users, but cur-
rently very little industrial or designer usage. The availability of this book will play
a big part in increasing the pool of users, in heightening interest and in encourag-
ing more tools to emerge. What Rosetta needs above all is design use and feedback
based on that use, so that it can enter a virtuous cycle — a period of rapid devel-
opment and improvement based on real usage. As with any new design language,
use validates the concept of it.

To use Rosetta, readers need to understand it. Here Perry Alexander’s book
provides a comprehensive and well-written look at the language. After a gen-
eral introduction, in Section I, to system-level specification and the Rosetta con-
cept, the book is split up into four further sections that build up the Rosetta
language starting with the basic expression language, through the concepts of
facets, domains, and finally, several case studies illustrating Rosetta’s application.

In particular, Chapter 1 lays the groundwork for the Rosetta concept of a spec-
ification notation, illustrating this with a simple example of the basic modelling
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concepts, facets, and domains. It also discusses vertical and decomposition
concepts in specifications and models, and ways of usage. The final section in
Chapter 1 discusses how best to use the book to learn Rosetta. It will be worth-
while for the reader to read Chapter 1 carefully and to return to it for refreshing
the basic concepts whenever the details in the rest of the book begin to seem
overwhelming.

Section II has several chapters on the basic language constructs: value, types,
expressions, and functions. Although not a formal syntax definition, careful
explanation and copious examples make the base language clear. The concept of a
‘facet’ is the subject of Section III, and the section opens with a basic explanation
of the notion and use of what will strike many readers as a new idea through sim-
ple examples. Here the concept of declarative modelling as opposed to imperative
languages becomes much clearer.

In Section IV, the important notion of heterogeneous modelling domains and
the composition of domains into heterogeneous specifications is explained in
detail. Many examples illustrate what will be new ways of looking at modelling
for most readers.

Perhaps the most important section is Section V, containing three case studies.
The first line of Chapter 16 really encapsulates the idea of the whole book: “The
best way to understand system-level modelling is to model systems”. The first
study is for an RTL specification, drawing on any knowledge of traditional RTL
design that readers may have. The second study is of a TDMA wireless receiver,
specifying it first with models for function, power consumption and constraints,
and then illustrating refinement from specification to implementation in CMOS,
FPGA, and software. The last case study is for a system-level network and access
control. These three studies show the range and power of applying the Rosetta
concept.

With such an introduction to Rosetta, the most important next step for the
community of readers is to then start using it. This can be done even in the absence
of tools or a way to reuse the Rosetta specifications. Mapping the concept of a
new design and its natural language specification into the precision of a specifica-
tion language such as Rosetta will be useful even without carrying it further — to
clarify the specification, to clearly identify constraints, to bring out multiple het-
erogeneous design domains, and to demonstrate which requirements are most
important. Based on such experiments, feedback on the usefulness of the Rosetta
language, its constructs, and suggestions for its improvement will all be valuable
for further evolution. At some point the arrival of tools will assist early users in the
reuse of such specifications in formal analysis, in verification, and even possibly
in implementation flows.

The arrival of the first book on Rosetta is a major milestone in the long his-
tory of the evolution of this language. I congratulate Perry Alexander on his work
as demonstrated herein, and recommend this book to anyone curious about the
language and wishing to study it further and apply it.
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At the end of the first decade of system-level design exploration for complex
SoC and embedded systems, it seems clear, as in the opening quote, that we have
not arrived at the end of this topic nor even at the beginning of the end. This
book truly is a marker that we are at the “end of the beginning”. As Churchill
said (albeit in a very different context), “Let us go forward together” into the next
phase of system-level design.

Grant Martin
Pleasanton, California

April, 2006



Preface

The more I think about language, the more it amazes me that people ever under-
stand each other — KURT GÖDEL

The last thing this world needs is one more design language. This is an
odd statement to open a book about one more design language, but it is true
nonetheless. What the world does need are solutions to problems that help pro-
duce cheaper, more reliable engineering solutions. Although the introduction of
VHDL and Verilog revolutionized digital hardware design, today they represent
venerable, established solutions to RTL design problems. The time has come to
move ahead to new solutions to the new problems introduced by heterogeneity,
resource constraints, rapidly evolving implementation fabrics, safety and security
requirements, and system-level complexity. More of yesterday’s solutions will not
solve today’s system-level design problems.

Rosetta was inspired by a problem whose solution demanded a paradigm
shift — the design of “systems on chip,” or system-level design of electronic sys-
tems. In 1997, the Semiconductor Industry Council met in Dallas, Texas to discuss
potential solutions to the system-level design problem. Specifically, the industry
was beginning to see the edges of what its design methods and tools were capa-
ble of supporting. The ability to fabricate systems was growing exponentially,
outpacing even Moore’s Law. However, the ability to design systems was growing
only linearly; the causes were deemed to be lack of formal semantics in modeling
languages and processes, inability to account for performance requirements dur-
ing design, inability to predict emergent behaviors in heterogeneous systems; and
too much reliance on simulation, among others.

During two days in Dallas in 1997, the Industry Council defined a collec-
tion of requirements for a language to support system-level design. This consen-
sus of original motivating requirements still hangs on my wall — representation
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of performance requirements; precise, formal semantics; support for specifica-
tion heterogeneity; and reduced reliance on simulation. Although the name has
morphed from system-level design (SLD) to electronic system-level (ESL), the
problem remains the same.

Almost ten years and one technology boom-and-bust cycle later, we present
Rosetta. Through it all, we have tried to hold Rosetta to initial requirements while
responding to the unspoken, evolving needs of system-level designers. Rosetta is
formal as embodied in co-algebraic semantics supporting both simulation and
modern formal analysis techniques. Rosetta represents performance constraints
and supports complexity management using abstract, declarative specification.
However, above all other things, Rosetta supports heterogeneous specification.
This is the linchpin for effective support for system-level design decision making.

Rosetta’s most important contribution to system design is heterogeneity.
Heterogeneity means simply that not all elements of a specification are repre-
sented using the same semantic basis. It is embodied by the use of continuous-
time semantics for analog circuits, state-based semantics for digital systems, and
temporal logic for constraints all within the same design. What Rosetta provides
is a language and semantics for writing such specifications and integrating them
to predict system behavior. Support for heterogeneity is the enabling capability
for system-level design. Without it, we are wasting our time.

Heterogeneity was woven into Rosetta’s fabric from the first discussions of its
semantics. Rather than establish a specification model for all systems, we have
tried to establish a language framework for defining and integrating specification
models. The expression language and type system provide a computation-neutral
mechanism for declaring things and defining their properties. Being lazy and
largely non-strict, the expression language is a means for describing calculations,
rather than computations. The facet system provides means for choosing a mod-
eling semantics, defining models using the expression language to specify proper-
ties, and composing models to define complete systems. Finally, the domain and
interaction systems provide mechanisms for defining modeling semantics and
interactions between models in different semantics. Because models are homoge-
neous and nonorthogonal under composition, we can write models for different
system aspects and understand their mutual dependencies and interactions.

What this book attempts to do is provide a gentle introduction to Rosetta
and the modeling techniques it supports. After working through the text, I hope
that you will be able to begin writing Rosetta specifications in the base Rosetta
design domains. What this book does not do is provide deep insight into Rosetta’s
semantics or advanced usage. It is not an attempt to replace the Rosetta standard,
but instead to provide a path to understanding why the language is designed as it
is. It is best to walk before we run, both as a reader and an author!

In the grand scope of electronic system-level design, Rosetta is still a young
language. The standards process has started and early adopters are moving
forward. There is much left to discover and more work to be done. I hope that
ultimately this book will pique your interest in getting involved with the language
specification and tool development efforts.



1Introduction

System-level design is characterized by the need to understand the
system-level impacts of local design decisions. To achieve this, a system-level
designer must be able to write and compose specifications from multiple,
heterogeneous domains. They must also be able to take these specifications
and predict when and how they interact, effectively decreasing the intellec-
tual distance between specification. Rosetta is a language designed first and
foremost to support these activities.

Part I introduces the basic elements of a Rosetta specification by walking
through a simple system-level specification. Facets and domains are intro-
duced first as the basic building blocks of a Rosetta specification. Tech-
niques for composing models horizontally to define composite systems and
vertically to define different aspects of the same system are presented as
primary techniques for heterogeneous model composition. Interactions are
introduced in model composition as a mechanism for understanding how
information from one domain impacts another. Finally, techniques for
representing usage requirements as assumptions and correctness conditions
as implications are presented.

After completing Part I you will have an overview of a Rosetta specifi-
cation and an introduction to basic Rosetta specification concepts. Most
importantly, you will have a road map for learning Rosetta and a basic
understanding of how to read a Rosetta specification.
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1.1 What is System-Level Specification?

What is a system-level specification? In actuality, it is not a specification at
all — no complex system will ever be defined by a single, closed-form model. It
is unrealistic to believe that the designers of the Empire State Building or Saturn
V had a single, closed-form solution that showed their designs would result in
successful implementations. Given the relative complexity of today’s systems, it is
equally improbable that we will ever have single models for our next-generation
design artifacts.

The answer lies in what engineers, particularly systems engineers, actually
do. Cultural folklore would have us believe that engineers write and solve
mathematical equations to generate designs. All engineers learn the same basic
mathematics and science. A Fourier transform or set of differential equations is
solved the same way regardless of discipline. If engineers simply write and solve
equations, we really don’t need more than one engineering discipline. However,
experience teaches us that this just isn’t so. To engineer good solutions, we need
different disciplines with different perspectives on problems.

What a good engineer understands is when and how to apply models. After the
math and science, what an engineer learns are different modeling abstractions for
predicting system behavior. It isn’t enough to understand calculation of a Fourier
transform or solution of differential equations in isolation. What is important is
knowing when and how to use these techniques — specifically, knowing when a
model is applicable in addition to knowing how to solve its constituent equations.

Domain-specific models and design abstractions enable engineers to predict
system behavior prior to implementation. Unfortunately, their domain-specific
nature creates a veritable tower of Babel in system-level design. The design of
something as common as an automobile involves elements from countless design
domains — mechanical, electrical, ergonomic, economic — all with their own
abstractions and all interacting. Yet, none shares a common vocabulary, making
diagnosing and solving problems that involve multiple domains difficult.

3



4 Chapter 1 Introduction

The systems engineers are the general contractors for complex designs. They
understand where all the parts go and how to talk to the domain engineers. Just as
the general contractor must make certain a water line does not get routed through
the circuit box, the systems engineer must make sure a software change doesn’t
result in excessive changes in power consumption. Just as the general contrac-
tor must extract information from the plumbing plans and electrical diagrams,
the systems engineer must understand the software design, power consumption
profile, and constraints. The systems engineer’s task is characterized by the need
to understand the relationship between design decisions local to a domain and
system-level goals and requirements.

1.2 Rosetta’s Design Goals

Many systems are simply too complex for even the best systems engineer to man-
age without specialized support. It is impossible to model systems with thousands
of interrelated design facets manually or using general-purpose computer tools.
The systems engineer needs a way to predict how a change in one component
of the system affects the overall properties of the system. Having a way to express
relationships and interactions between components and disciplines is a major step
forward in doing this analysis.

Natural language and graphical descriptions are not reliably interpretable by
computers or human engineers. Such representations are inherently ambiguous
and subject to incorrect interpretation by both computers and humans. This
assumes, of course, that the chosen representations can be interpreted by com-
puters at all. Having a way to express requirements in an unambiguous, formally
defined manner is central to all engineering disciplines and should be central to
systems engineering.

The systems engineer also needs an unambiguous way to tell the domain spe-
cialists on the product team what needs to be designed. This is analogous to
the way an architect uses blueprints to control the systems designed by plumb-
ing, electrical, and heating, ventilation, and air conditioning specialists. Products
largely fail or have to be redesigned due to an engineer designing the wrong thing
because of misunderstood requirements, as opposed to designing the thing wrong
because of a design error.

We have seen these issues before in other engineering and business disciplines,
where they are addressed by specialized representation languages and analysis
tools — precisely the motivation for Rosetta. We need a language that supports
computer and human interpretation, unambiguous definition, and predictive
analysis similar to those available in other disciplines. Furthermore, we need that
language to address the specific needs of systems engineering. For this reason,
Rosetta was developed.

How do we define a language that supports systems engineering decision mak-
ing? What basic features must this language have? In answer to these questions, we
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established design goals leading to heterogeneous design, decomposition, abstract
modeling, and formal semantics. Specifically, Rosetta was designed to support the
following system-level design needs:

Multiple Domains and Multiple Semantics Modeling in multiple domains
using multiple semantics is the essence of what systems engineering and
system-level design are about. We must bring together information from across
engineering disciplines to understand the system-level effects of local design
decisions.

Rosetta defines specification vocabularies using domains. Each domain
defines units of semantics, a model of computation, and/or engineering
abstractions for a given engineering domain. Each specification facet extends
a domain, defining a new system specification in that domain.

Abstract Modeling Modeling abstract, incomplete, and sometimes inconsis-
tent requirements is key to making decisions at the system level. We cannot rely
on complete, simulatable models unless we want to defer analysis until design
decisions are complete. We must be able to detect and rectify inconsistencies
when they occur.

Rosetta uses a declarative specification model that allows representation
and analysis of abstract, incomplete information. Any specification, regardless
of completeness, can be analyzed in some fashion. Furthermore, some spec-
ifications, such as constraints and performance requirements, are more eas-
ily expressed using declarative techniques. Rosetta sacrifices executability to
provide these capabilities. At the system level, requirements and constraint
representation is higher priority than is executability.

Vertical Decomposition and Domain Interaction With the ability to model
different system facets using different semantic models, we can now model how
those system facets interact. This facilitates understanding how local changes
in one domain impact the overall system. Modeling domain interactions is key
to supporting true system-level design.

Rosetta defines relationships between specification domains using interac-
tions. An interaction specifies a pair-wise relationship between domains by
defining Functors that move specifications between domains. Functors are
explicitly written by designers and are implicitly generated when new domains
are written.

Horizontal Decomposition and Components Structural modeling assembles
components into systems and is central to virtually all engineering domains.
Vertical or structural decomposition encourages model reuse, coherence, and
decoupling. To support system-level design, we must model ad hoc interactions
as well as interactions that occur through formal interfaces.

Rosetta defines structural models by instantiating facet interfaces using
shared variables. Although simplistic, adding constraints to interconnections
supports a rich collection of communication models. Translators written as a
part of interactions define how information flows between facets written in
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different domains. Thus, components that may not share a common model of
computation can be interconnected within a system.

Sound Semantics Semantics formally define the precise meaning of specifica-
tions. We must know what our specifications mean to support analysis and
synthesis, as well as sharing specifications. Semantics must support analysis
techniques ranging from type checking and static analysis through simulation
and emulation.

Rosetta uses a co-algebraic model for facets and a set theoretic, dependent
type system. Designed with a formal semantics from the ground up, Rosetta
specifications support both static and dynamic analyses.

1.3 Anatomy of a Specification

Rosetta’s support for system design is best understood by examining the anatomy
of a specification. We will start by modeling several different aspects of a
simple register using Rosetta’s basic modeling primitives, facets and domains.
We will then assemble the different specifications to model a system using prod-
ucts and functors, critical elements of Rosetta’s interaction modeling system. We
will assemble components into systems to demonstrate structural modeling and
system-level requirements modeling. Finally, we will discuss how Rosetta sup-
ports recording usage assumptions and implications in models.

1.3.1 Facets and Domains

Corresponding to the need for modeling different system aspects are Rosetta’s
facet and domain constructs. The word facet is formally defined as “one side of
something many sided.” A Rosetta facet is exactly that — one model of a system
with many models. Each facet has an associated domain that defines vocabulary
and modeling conventions for a class of specifications, thus supporting heteroge-
neous specification.

To illustrate the role of Rosetta’s facets and domains in system-level design, we
will consider a simple register. Not much of a system to be sure, but enough to
allow us to illustrate the Rosetta methodology. We will start with a simple facet
that describes the component’s function as shown in Figure 1.1, along with a
graphical representation of the device interface.

Subsequent chapters will define in detail each element of the facet model, but
most elements should be familiar to anyone with software or hardware descrip-
tion language experience. Input and output parameters provide an interface,
internal declarations provide state, and the specification body describes proper-
ties of the model. Terms in the specification body describe properties declaratively
by describing constraints on parameters and internal declarations.

Figure 1.2 shows an alternative model of the same register, but viewed from
a power consumption perspective. In this model, data plays no role. The model
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facet regFcn
(x::input word(4); z::output word(4);
rst,le,clk::input bit)::discrete_time is

s :: word(4);
begin

sup: s’ = if reset=1 then b"0000" else
if clk=1 and event(clk) and le=1

then x
else s

end if;
end if;

zup: z = s;
end facet regFcn;

Figure 1.1 Facet description of the function of a register.

facet regPwr
(rst,le,clk::input bit;
switch,leakage::design real)::state_based is

export power;
power :: real;

begin
pup: power’=power+if clk=1 and event(clk)

then if le=1 then switch
else leakage

end if;
else leakage

end if;
end facet regPwr;

Figure 1.2 Power model.

observes the clock (clk) and load enable (le) inputs to determine if the device
switches and updates the consumed power value appropriately. Two design
parameters, leakage and switch, allow the specifier to update power calcula-
tion constants associated with power leakage and power used when the compo-
nent switches. The consumed power is observed by examining the exported value
regPwr.power at any time during system operation.

Finally, Figure 1.3 provides a simple cost model for using the register in a sys-
tem. This is a trivial model providing a constant cost value for each register. In a
fashion similar to that of the power facet, the exported regCost.cost value can
be used to observe register’s cost. More complex cost models taking into account
device width or implementation technology could easily be developed.

The three register models are quite similar in structure and appearance. Closer
examination reveals two fundamental differences among them — interfaces
differ from model to model, and each facet is defined with its own domain. Inter-
faces vary based on the interface of the model represented. The functional model
interface looks like one would expect with data inputs and outputs, control
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facet regCost :: static is
export cost;
cost :: real is 0.02;

begin
end facet regCost;

Figure 1.3 Cost model.

Figure 1.4 Register facets with domains exposed.

inputs, and a clock. The power model is written independently of data inputs and
outputs, but adds parameters for adjusting power calculation constants. The cost
model is completely independent of inputs and outputs and thus has no param-
eters. In both the power and the cost models, observable properties are not a part
of the interface, but are directly accessed as exported declarations. This distinction
is subtle, but important. Cost and power are not system inputs and outputs like
data and control, but rather are properties observed over the system as a whole.

Each register model is defined using a different domain. Figure 1.4 shows each
facet with its associated domain highlighted. A facet’s domain defines a vocabu-
lary and model-of-computation for the model, allowing each Rosetta facet to use
a different semantics. This is critical to system-level design because it allows us to
use a semantics appropriate to each model, rather than forcing models to a single
semantics. The systems engineer does not force all models into the same seman-
tics, but instead integrates models from different semantics. The key to Rosetta’s
system-level design support is this ability to use appropriate semantics for each
model and integrate the result into a system-level specification.

1.3.2 Vertical Decomposition

The actual register is not any one of the individually defined models, but rather is
a system described by those models concurrently. Additional models could easily
be written in a similar fashion modeling such characteristics as electromagnetic
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interference (EMI), analog behavior, setup and hold, and packaging properties.
To model the entire register, we must assemble the register facets into a composite
register model. To do this, we will use Rosetta’s product operator to assert that the
models all describe the same register.

The product operator is rather innocent looking, but is exceptionally pow-
erful in application. Quite simply, if F1 and F2 are both facets, then F1 ∗ F2

is a new facet that embodies both of the original facets. Thus, the Rosetta
declaration:

reg(x::input word(4); z::output word(4);
rst,le,clk::input bit;
switch,leakage::design real) :: static is

regFcn(x,z,rst,le,clk) * regPwr(rst,le,clk,switch,leakage) * regCost;

puts all the register models together into a single model, reg, that embodies each
of the original models. Whenever reg is used in a specification, all facets compris-
ing that model are present and must be consistent. Figure 1.5 graphically shows
the model resulting from the product as a collection of facets “stacked,” repre-
senting vertical decomposition of the single component.

The model in Figure 1.5 is somewhat different than the pure product model for
reg. The preceding reg product reduces each model to a least common semantics,
that being a model in the static domain. This defeats the purpose of using mul-
tiple domains. What we want is to move models to the most appropriate domain
for the kind of analysis needed. The following register model does this using func-
tors on facet models:

reg(x::input word(4); z::output word(4);
rst,le,clk::input bit;
switch,leakage::design real) :: discrete_time is

regFcn(x,z,rst,le,clk)
* state_based_discrete_time.gamma(regPwr(rst,le,clk,switch,leakage)
* static_discrete_time.gamma(regCost);

reg(x::input word(4); z::output word(4);
rst,le,clk::input bit;
switch,leakage::design real) :: discrete_time is

regFcn(x,z,rst,le,clk)
* state_based_discrete_time.gamma(regPwr(rst,le,clk,switch,leakage)
* static_discrete_time.gamma(regCost);

Figure 1.5 Register models composed using a product and functors.
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This new reg model creates a model in the discrete_time domain and the two
gamma functors move the regPwr and regCost models to the discrete_time
domain. The product is then formed in that domain without loss of design
abstractions used in the functional model. This is key to Rosetta design and
usage. Information is moved from one modeling domain to another to preserve
or introduce design abstractions useful for analysis. Together, functors and prod-
ucts define the central features of the Rosetta interaction system.

Another important aspect of the Rosetta interaction system is the facet combi-
nator. The product operation assembles individual facets into composite system
models. The facets still exist within the product as separate, orthogonal models.
In effect, the product packages up individual models into a single structure and
can still be referenced as individual models. Facet combinators take facet con-
structions like products and compose their properties into a single facet model,
allowing the systems engineer to express interactions.

If we want to write more sophisticated power consumption models that take
into account actual data processing and processor behavior, we can write a com-
binator between the functional and power models. Such a combinator would be
used in a specification as follows:

regFcnPwr(x::input word(4); z::output word(4);
rst,le,clk::input bit;
switch,leakage::design real) :: discrete_time is
fcnPwrComb(regFcn(x,z,rst,le,clk),

state_based_discrete_time.gamma(regPwr(rst,le,clk,switch,leakage)));

This definition uses the gamma functor to move the power model into the
discrete_time domain and then the fcnPwrComb to compose the resulting
model with the register’s functional model. In this new model, the power will
be an observed property in the same manner as the original model. Thus,
regFcnPwr.power will be a defined, observable value that accounts for the regis-
ter’s functional behavior. The result is a much more accurate model.

1.3.3 Horizontal Decomposition

Among the most commonly used engineering design techniques is structural
decomposition, where a system is represented or implemented as a collection of
subsystems. The impacts of decomposition in this manner are obvious when
considering the reduction in complexity of models and components. In addi-
tion to vertical decomposition, Rosetta’s facet modeling system supports struc-
tural decomposition, where a system is defined as a collection of interconnected
components.

Figure 1.6 shows a simple structural model using the reg model developed
previously. The form of this model should be familiar to those experienced with
hardware description languages. Shared declarations are used to communicate
between the various system components. All system components are modeled
similarly to the register, with various models representing different system facets.
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facet controller
(rst,clk,le::input bit;
leakage,switch::design real;
o::output bit) :: state_based is

export power;
power::real;
x,z::word(4);

begin
r0: reg(rst,clk);
c1: ns_logic(z,x);
c2: output_logic(z,o);
p1: power’ = power +

r0.regPwr.power +
c1.ns_logicPwr.power +
c2.ouput_logicPwr.power;

end facet controller;

switch

Figure 1.6 Using the register model as a system component.

A distinctive feature of this structural model is the calculation of system
power consumption from component power consumption values. Here, the
power models associated with each component are extracted, then power val-
ues extracted and added to the cumulative power consumption value. We are
mixing structural models with property models to calculate system-level per-
formance values. The power consumption of our system can be observed as
controller.power, allowing the systems engineer to observe changes in system
power consumption resulting from local design decisions.

1.3.4 Vertical Decomposition — Revisited

Of course, the hierarchy of Rosetta models is not strictly one level deep. New mod-
els may be defined and composed with the structural controller model in exactly
the same manner as for the original register model. It is quite common for a sys-
tem to be described using multiple architectures. One common example of this
occurs when an embedded system is described as a process diagram and simul-
taneously in terms of its implementation architecture. Figure 1.7 shows such a
situation for our controller example.

Figure 1.7 graphically shows two architectures for our controller system. One
is the controller architecture developed previously. The other is an implementa-
tion architecture involving a central processing unit (CPU) and a memory block.
The first Rosetta definition forms the product of these models to indicate that
they both describe the system we are constructing:

facet regImpProd :: discrete_time is reg * cpuArch;

The regImpProd model describes a system that functions like reg and whose
implementation is structured like cpuArch. However, the actual implementation
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facet regImpProd :: discrete_time is
reg * cpuArch;

facet regImp :: digital is
synthesize(regImpProd);

Figure 1.7 Implementing the register model.

is not yet known — only the fact that our final implementation exhibits both sets
of properties is.

The second Rosetta definition is a facet combinator that synthesizes an imple-
mentation from the two models:

facet regImp :: digital is synthesize(regImpProd);

The regImp fact is formed by synthesizing a model from the functional and struc-
tural models with the facet combinator synthesize. One should quickly recog-
nize that the synthesize combinator is not at all a trivial function to write, and
Rosetta provides no silver bullet for addressing this problem. However, it does
allow us to define relationships between models that support verification and
traceability in the systems design process.

1.3.5 Usage Requirements and Implications

Once a system has been designed and fielded, it is easy to lose track of design
assumptions that govern its use and testing. Such information is virtually impos-
sible to glean from an existing system, yet it is vital to the systems engineer. When a
system is initially fielded, the systems engineer must understand preconditions for
and implications of proper operation. After a system has been fielded and must be
updated or replaced, the same information is vital for understanding design con-
text. Knowing what operating conditions were anticipated for a system (as well
as what should be observed during operation) dramatically simplifies the system
design task.
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Rosetta provides a component construct for recording operating preconditions
and implications. The component construct is in all ways a facet and can be used
anywhere a facet is used. However, the component provides mechanisms for spec-
ifying preconditions and implications for using the represented system.

Figure 1.8 shows a component defined around the functional register model.
The definition of the register remains unchanged. In fact, the component model
references the regFcn model as its definition. The assumptions section places
usage requirements on the component. In this case, the only specified usage
requirement is that the frequency must be less than 5 GHz. This condition must
be satisfied by any system using the component before proper operation can be
assured. If we included this component in the previous structural model, we
would be obligated to assure this condition based on known facts about the oper-
ating environment. The implications section defines correctness conditions on
the component. The systems engineer must be able to infer these conditions from
the system requirements and usage assumptions.

The component structure provides a semantics for expressing and verify-
ing usage conditions and implications, but does not place strict requirements
on the verification mechanism. This is due to the wide variety of verification
mechanisms used in systems design, ranging from simple observations to formal
verification. Rosetta does provide a justification language for recording verifica-
tion support, but it is used only for recording support and is not a verification
language.

1.4 Learning Rosetta

Learning Rosetta is as much learning a methodology as learning a new model-
ing language. Although the register example is quite small, it demonstrates many
of Rosetta’s features that enable approaching design in new ways. From support

component
regComp(x::input word(4);

z::output word(4);
rst,le,clk::input bit)::discrete_time is

begin
assumptions

freq(clk)<5e9;
end assumptions
definitions = regFcn;
end definitions
implications

le=0 implies z’=z;
end implications

end component reg;

Figure 1.8 Register component defining a frequency limit and correctness condition.
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for heterogeneous modeling to using facet combinators to generate models, the
modeling process becomes a part of the model itself.

As we step through Rosetta modeling capabilities in detail, we will place them
in the larger context of supporting system-level design. The remainder of the text
builds Rosetta up from the bottom, starting with primitive specification capabil-
ities and working toward functors and specification composition.

Part II presents the Rosetta expression language, the underlying language
for writing all Rosetta specifications. The expression language provides a rich
type system and expression definition mechanisms for declaring and defining
properties over specification structures. The expression language is a lazy, non-
strict functional language with no side effects. It supports defining mathematical
properties as opposed to writing imperative programs.

Part III presents the Rosetta facet language, the language for defining basic
models. The facet language supports defining a collection of terms over parame-
ters and local variables, and identifying a modeling domain. All Rosetta models
are based on facet semantics, thus the facet language is the fundamental construct
for writing Rosetta specifications. Packages and components are specializations
on facets that provide standard means for structuring specifications.

Part IV presents the Rosetta domain and interaction language and the facet
algebra for defining modeling domains, composing specifications, and defin-
ing various interactions between models. The domain language defines models
of computation, modeling vocabularies and elaboration semantics for specifi-
cations. The interaction language packages functor, combinator, and translator
specifications into constructs that define domain interactions. The facet algebra
defines a collection of operations useful for combining specification models in
the presence of interactions.

Finally, Part V presents three case studies of Rosetta system specification.
The first case study examines a simple register-transfer level (RTL) system. It
serves as an introduction to system-level modeling concepts using an exam-
ple that is familiar to most designers. The second case study examines a time
division multiple access (TDMA)-based telecommunications system looking at
relationships between design alternatives and power consumption. It examines
the TDMA-based system first from a behavioral specification and then expands to
demonstrate structural modeling capabilities. The final case study examines sim-
ple security requirements in a networking environment, looking at moving a
mobile system from one network infrastructure to another. The three case stud-
ies involve different issues in different systems, but are all addressed through
heterogeneous modeling, model composition, and constructing interactions
between models.

By stepping through each part in sequence, basic Rosetta specification tech-
niques can be mastered. In Part II, the reader should concentrate on learning
how to express mathematical properties using the Rosetta expression language. In
Part III, the reader should concentrate on learning how to use facets and domains
to specify system properties around domain-specific vocabulary and computation
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modeling elements. The expression language is used to define properties, facets
are used to encapsulate properties, and domains are used to introduce compu-
tation models. In Part IV, the reader should concentrate on specifying different
modeling vocabularies, computation models, and relationships between models.
Domains are constructed to define basic computation models while interactions
are used to model how different specifications interact. In Part V the reader should
concentrate on learning how to define systems and specify analysis and synthesis
tasks related to multiple design facets. The case studies attempt to provide exam-
ples of classic Rosetta specification techniques and provide a departure point for
future specifications. Finally, the bibliography lists a number of works that have
influenced Rosetta’s design. They include work from formal methods, language
semantics and type theory, hardware specification languages, and programming
languages.

One thing this text does not try to do is define a complete, unambiguous syn-
tax for the full Rosetta language. Regardless, there is a need to describe syntactic
conventions throughout the book. Table 1.1 provides a list of syntax description
conventions used throughout the book. Where possible, traditional notations are
used.

Table 1.1 Table of syntax description directives

Syntax Meaning

e Expression meta-variable

e1 | e2 Choice between e1 and e2

keyword Rosetta keyword

[[e]] 0 or 1 e

[[e]]∗ 0 or many es

[[e]]+ 1 or many es
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Before writing specifications, we must define a language to describe
system properties. In Rosetta, system properties are describe with respect
to items that represent units of specification. All items have types and val-
ues. By describing relationships between different items through their types
and values, system properties can be defined.

Part II describes the Rosetta expression language used to declare items
comprising a specification and define properties over those items. The
expression language is used to declare items, assign types to items, and
define properties among items. It is declarative, allowing specifiers to define
properties. In contrast to writing programs that indirectly exhibit desired
properties, declarative techniques allow the specifier to state specific prop-
erties directly. Furthermore, these properties can be incomplete and need
not be executable.

After completing the chapters in Part II, you will understand how to
declare items, use elemental and composite types, define and use functions
and higher-order functions, and define new types.
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The heart of any Rosetta specification is a collection of items that
represent observable quantities associated with a system. They represent a
collection of things that, if properly described, provide a precise system model
that can be reasoned about to predict behaviors. By defining item properties and
relationships between items, a Rosetta specification defines expectations on their
collective behavior and the system they represent.

An item is defined by a declaration that associates it with a type and optional
value. The type represents the collection of values the item can legally assume.
Rosetta types are formed from sets using traditional set operations, comprehen-
sion and extension. The optional value makes an item a constant by associating a
specific value with it. Values are defined in the traditional sense as terms that are
in irreducible, normal form.

Like type systems in programming languages, the Rosetta type system speci-
fies constraints by associating a type, like integer or set(character), with an
item. Unlike traditional programming language type systems, Rosetta types may
be defined by comprehension using a property to filter an existing type. Thus, a
Rosetta type asserts properties on an item by restricting it to a set of values or
defining a property the item must have to be of a particular type. Using types to
specify properties in this way is a critical part of Rosetta specification. The first
step in this process is understanding item declaration and how types and values
are associated with an item.

2.1 Labels, Values, and Types

All Rosetta definition structures are represented semantically as items with a label,
type, and value properties. The item label provides a name for the item that is used
to reference it in the specification. In the Rosetta expression x=y+1, the labels x and
y refer to the declared items with those respective labels. The item value specifies
a value associated with the item. In the Rosetta expression x=y+pi, the value of
the item labeled x is constrained to be equal to the value of the item labeled y plus

19
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the value of the item labeled pi. The item type is a set that specifies a collection of
values the item can legally take. Given an item v whose type is the set T, the value
associated with v must always be an element of the set T.

2.1.1 Labels

A Rosetta label represents a legal name for a Rosetta item. The rules for writing
labels in Rosetta are similar to those of other languages. A label must start with a
letter, which may be followed by any number of letters and digits. Single under-
score characters (_) may be included to enhance readability, but they may not
occur at the beginning or end of a label. Examples of legal labels are:

a N timeout MaxTravel Min_Travel port1 port_2a

Examples of illegal labels are:

3a // starts with a digit
_id // starts with underscore
packet_ // ends with underscore
sequence__0 // two successive underscores

The case of characters in labels is not significant. The following labels are all
treated as the same:

pressure Pressure PRESSURE

While we have a great deal of flexibility in choosing item labels to aid readability
of specifications, there are some labels we cannot use, since they are reserved as
keywords. These keywords provide the syntactic structure of a Rosetta model and
are listed in Table 2.1. Note that, as in item labels, case is insignificant. In this
book, we follow the convention of setting keywords in boldface to distinguish
them from item labels.

2.1.2 Values

A Rosetta value is a structure or term in normal form that cannot be further
evaluated. Although not all normal forms are values, all values are normal forms.
The simplest Rosetta values represent numbers, characters, and booleans. Exam-
ples of such values include the numbers 1 and 3.1415, the characters ’a’ and
’@,’ and the boolean constants true and false. Such values are elemental val-
ues and cannot be decomposed. We form composite values from other values like
the constant sequence [1,2,3,4], the constant set {high,low,unknown}, and the
multiset constant {*1,2,3,1,2*}. The sequence of sets [{},{1},{2,3}] is also a
composite value because it is formed from other values.

All elements of a specification are items that have associated types and thus
potential values — a function item has an associated function value, a facet
item has an associated facet value, and an element of a constructed type has a
constructed value. A function value is an anonymous function that encapsulates
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Table 2.1 Rosetta keywords

and data facet let or then
array definitions false library output top
assumptions design forall of translators
as div from max true

dom functors min package type
be domain mod
begin if multiset ran use
between element implications rem
body else implies nand ret var
bottom elseif in nmax

end infinity nmin sel where
case enumeration input not sequence with
combinators exists interaction nor set
component export interface null sharing xnor
constant is sub xor

subtype

an expression with a collection of parameters. Rosetta function values are pure
functions in that they may only specify a functional relationship between their
parameters and output values. A facet value represents the basic unit of Rosetta
specification and is associated with facets, domains, components, and packages.
Finally, constructed values result from the application of constructors associ-
ated with constructed types. Rosetta constructed types provide mechanisms for
users to define completely new types by specifying type constructor functions and
observer functions for a collection of values.

2.1.3 Types

A Rosetta type defines a collection of values that constrains the value of an item.
Within the Rosetta language system, all types are values and appear as sets. Tech-
nically, not all types are sets, but set operations are always available on them. This
fact and its implications will be discussed extensively in subsequent chapters. For
now it is sufficient to understand that an item’s value must be an element of its
type.

If one Rosetta type is a subtype of another, then it follows that every element
of the subtype is a member of the supertype. This is precisely the definition of
subset. It follows that Rosetta subset relations also indicate subtype relationships.
The following relationships are examples of this principle:

integer =< real // integer is a subtype of real
integer < real // integer is a proper subtype of real
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real >= integer // real is a supertype of integer
real > integer // real is a proper supertype of integer

Rosetta item values must always be taken from their associated types. This
fact is the heart of Rosetta type and constraint checking. As we will see, using a
sophisticated and flexible type system allows assertion and verification of complex
properties in a compact and readable form.

2.2 Item Declarations and Type Assertions

Item declarations occur in declarative regions, parameter lists, functions, and
let forms where new variables and constants are required. Each item declara-
tion creates a new item with a label and must be annotated with a type assertion.
A Rosetta type assertion uses the assertion operator “::” to associate a type with
an item. Whenever we use the notation x::T, we are asserting that the value asso-
ciated with the item labeled x is a member of the type T. All declarations must
include a type assertion, but type assertions may be used to indicate types any-
where in a Rosetta specification. Thus, type assertions are used to assign types to
new items and to specify types for items in expressions.

2.2.1 Item Declarations

When the type assertion x::T appears in a declarative region such as a facet’s local
declarations, a let clause or parameter list, it represents an item declaration or
simply a declaration. A declaration of this form adds a new item labeled x to the
current lexical context with the assertion that x is a member of type T.

Each declaration achieves three results: (i) it creates and labels a new item in
the current scope; (ii) it assigns a type to the item, defining potential values for
the item; and; (iii) it may bind a value to the item. If a declaration does not bind
a value to an item, the item is considered a variable. If a declaration does bind a
value to an item, the item is considered a constant.

An example of a Rosetta declaration that defines an item named mean is:

mean :: real is 13.5;

In this declaration, mean is the label of the new item and provides a name used to
refer to the item. The type assertion operator assigns a type to the newly declared
item. In this example, the type specified is real, requiring that any value associ-
ated with the item must be a real number. The type specification is followed by an
optional value constraint specified by the is clause that binds the item’s value to
a constant. In this example, the value of mean is equal to the constant value 13.5.

The value specified by the is clause is not an initialization value. The is clause
asserts that the declared item’s value must always be equal to the specified value.
Thus, the value of mean will always be 13.5 in the scope of this declaration.
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Such declarations are referred to as constant items or simply constants and can be
identified by the presence of the is clause in the declaration.

We define a variable by excluding the is clause and value from an item
declaration. Without this constraint, the value of the item is allowed to vary
among all possible elements of its type. For example, the declaration:

variance :: real;

defines an item named variance whose type is real, but whose value is not con-
strained beyond the type in the declaration. When the label variance appears
in the scope of this declaration, it refers to the value associated with variance.
Unlike a constant declaration, the variable item’s value will be constrained
elsewhere in the specification, rather than the declaration. Such declarations
are referred to as variable items or simply variables and can be identified by the
absence of the is clause in the definition.

A variable or constant may also include a constraint in the form of a where
clause:

mode :: real where (mode > −5.0) and (mode < 5.0);

This declaration specifies that mode is an item of type real that must be between
the values −5.0 and 5.0. The item’s value may vary like a variable, but must
always satisfy the where clause predicate.

In general, all Rosetta item declarations take the following form:

items :: T [[ is e ]] [[ where p ]] ;

where items is a comma-separated list of one or more labels, e is an expression,
and p is a predicate.

In the item declaration, T constrains the potential values of the items to the
contents of a type. If the optional is clause is present, the new item is a constant
item whose value is defined by the expression e. Otherwise, the new item is a
variable item. If the optional where clause is present, then p must hold for all
values the item takes on. If the item is constant, the where clause defines additional
properties that must hold for the constant value. If the item is variable, the where
clause defines additional properties beyond those defined by the type.

For example, the function declaration:

triangulate(x,y :: position) :: position;

declares two parameters of type position that may be used in the function body
associated with triangulate. The declarations create the local parameters and the
appropriate type assertions. In parameter declarations, the is and where clauses
are not allowed.
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Similarly, the facet declaration:

facet parity(x::input bit; z::output bit)::state_based is
s::bit;

begin
s’ = x xor s;
z = s’;

end facet parity;

declares two parameters, x and z of type bit, representing component input and
output, respectively. Like function parameters, the is and where clauses are not
allowed in facet parameters. However, a parameter kind that specifies properties
is allowed. Here, the input and output kinds provide directional information for
parameters that will be used as ports. In the declarative region, s::bit defines
a variable item and asserts that it is of type bit. These declarations are visible
throughout the specification body along with the constraint that their values must
come from the bit type.

The function and facet definition forms used thus far are simply syntactic sugar
for a traditional declaration and can be expressed using the traditional declaration
syntax. The function definition specifies a type constraint using the type assertion
operator to define the function’s domain and range elements as type position.
The facet definition contains a type assertion operator asserting the facet is of type
state_based and identifying the domain that forms the basis for this specifica-
tion. This type assertion can be observed following the facet’s parameter list and
is no different than those defining parameters or variables. It asserts that the facet
parity is a member of the state_based facet type.

EXAMPLE 2.1
Basic declarations

package declaration_examples :: static is
w :: integer;
x :: real is 2.4;
y,z :: string;
a :: integer where a>5;
b :: real is 2.6 where b > 1.0;

end package declaration_examples;

This example package defines six new items and groups them together into
a reusable package structure. w defines a variable item of type integer while
x defines a constant of type real whose value is specified as 2.6. The next
declaration defines two variable items, y and z, both of type string. If an is clause
were used in the string declaration, the result would be two constant items with
the same value. Specifically:

y,x :: string is "Hello_World";

results in two items whose values are both the constant string "Hello_World".
The final two declarations use the where clause to define constraints on

possible values. The declaration of a is constrained to allow only values greater
than 5 while the declaration of b must be greater than 1.0. In the latter declara-
tion, the constraint can be verified immediately because b’s value is known. In the
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former, the constraint must be placed in the context of another expression to be
verified. �

2.2.2 Type Assertions

The type assertion operator may also be included in expressions when specifiers
need to attribute additional type information to an item. In the definition:

z = x::integer + y::integer;

the type assertion operator is used to add type information to an expression, not
to declare a new item. If type assertions are omitted:

z = x + y;

the Rosetta type system is used to determine the types of x and y. The type asser-
tions tell processing tools to add an assertion that x and y are of type integer rather
than invoking the type inference system. Such uses of the type assertion relation
are simply called type assertions and differ from declarations in that they do not
create new items.

Type assertions must be used with care, as nothing prevents assertions from
introducing inconsistencies in specifications. However, they are quite useful when
an item’s type cannot be inferred automatically, when a prior type inference
activity requires documenting, or when the type inference process needs a hint
to proceed.

2.3 Universal Operations

Table 2.2 defines defines operators defined over all Rosetta values and types. Type
assertion and subtype and supertype relations support forming type assertions
and declarations, and asserting subtype and supertype relationships. Because the
type of these relations is boolean, the use of top does not introduce problems.

Table 2.2 Operators defined over all Rosetta items

Operator Syntax Expression type

Type assertion x :: T T
Set membership x in T boolean
Subtype and proper subtype S =< T, S < T boolean
Supertype and proper supertype S >= T, S > T boolean
Equality and inequality A = B, A /= B boolean
Equivalence S == T boolean
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We have seen how the type assertion operator declares items and makes type
assertions. Note that the type of the type assertion operator is not boolean, but
is the asserted type. Although this may appear odd, it allows embedding of type
assertions in other expressions. For example:

1::integer − 1::real;

is not legal if the type assertion operation is boolean. Even if it were legal, it
does not mean what we intended to say. If the type of the type assertion oper-
ation 1::integer is integer, then traditional type checking works as expected.
Along the same lines, if 1::integer evaluates to 1, then evaluation also behaves
as expected. Specifically:

1. 1::integer + −1::real
2. == 1 + −1::real
3. == 1 + −1
4. == 0

The set membership operator, x in T, provides the canonical element operation
from set theory. The operator is true if its first argument is an element of its second
argument. From the user’s perspective, the set membership operation is equiva-
lent to the type assertion operation because types look like sets. In general, types
are not sets, but always look like sets to the specifier. Unlike type assertions, the
type of the set membership operator is boolean, allowing it to be used in terms
and other boolean statements.

The subtype and supertype relations define relationships among types, again
treating types like sets. We will see later that subtype relations correspond with
subset relations and supertype relations with superset relations.

Equality and inequality define traditional equality relations. If x=y is asserted,
then the value of x is the same as the value of y. This is not the same as assignment,
where x is assigned the value of y after executing the statement. In the C and C++
programming languages, the following notation would be used to increment the
value in variable a, assuming that a is an integer:

a = a + 1;

This expression is inconsistent in Rosetta, as it asserts that the integer value asso-
ciated with a is equal to its successor. In a traditional programming language,
the semantics of the statement are that the value of a following statement execu-
tion is equal to the value of a prior to execution plus 1. Rosetta allows a similar
concept when state and state change are a part of the computation model in use.
Specifically:

a’ = a + 1;

asserts that a in the next state is equal to a in the current state plus 1. Rosetta
simply makes the distinction between current and next state visible to the
specifier, rather than hiding it in the semantics of assignment. This allows Rosetta
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specifications to use different next-state definitions based on the computational
model being used.

When we make the assertions:

A = 1
(a^2 + 2∗a∗b + b^2) = (a+b)^2
sqrt(x)∗sqrt(x) = x
A/= 1

we are defining axioms over the values and items involved. Although this is true
for any Rosetta term, mistakes tend to be made when thinking of equality and
assignment as the same operation. Rosetta has no assignment operator and thus
equality must always be viewed as a relation between values instead of assignment.

Rosetta also provides an equivalence operator that is semantically identical to
equality. The distinction is that equivalence binds after virtually all other opera-
tions, avoiding confusing parentheses. As an example, consider the following two
equivalent terms:

(f(x) = b) = (g(y,z) = d)
f(x) = b == g(y,z) = d

Dropping the parentheses from the first term results in a semantics quite different
than intended. To see the distinction, we can make the left associativity of equality
explicit using parentheses:

(((f(x) = b) = g(y,z)) = d)

Making equality right associative or making equality bind later introduces
different problems. However, using equivalence solves the problem. Because
equivalence binds last, explicitly parenthesizing the second term above results
in exactly the desired semantics:

(f(x) = b) == (g(y,z) = d)

Parentheses can be eliminated because of the low precedence of equivalence.
The resulting specification is more intuitive and easy to write. The equivalence
relation is used extensively to provide definitions for functions and terms.
Throughout this and subsequent chapters, equivalence is used extensively to pro-
vide definitions. Rosetta specifications also use equivalence to provide definitions
where other mechanisms limit expressiveness.
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The Rosetta expression language is used to define properties involving
Rosetta items. The simplest Rosetta expression is an atomic expression consisting
of a literal or an item name and forms the leaves of the expression tree. Function
and operator applications define operations over other expressions by instantiating
function values with actual parameters. The if and case expressions define selection
operations using boolean conditions and set membership, respectively. The let
expression defines local variables over expressions. Because all expression types
other than atomic expressions are defined recursively over expressions, compound
expressions are formed by nesting expressions of all types.

All Rosetta expressions from atomic to compound have associated types.
Determining types is instrumental to analyzing specifications for type safety, a
critical aspect of system correctness. Due to the richness of the Rosetta type sys-
tem, typing and type checking are particularly critical to successful design activ-
ities. To determine the type of an expression, Rosetta uses a combination of
declared and asserted type information with rules for each expression type. The
types of atomic expressions can be learned from their declarations. Similarly, the
types of function and operator applications can be learned from their declara-
tions and parameter values. Special rules exist for inferring the types of if, case,
and let expressions from their sub-expressions.

3.1 Atomic Expressions

An atomic expression is the simplest expression consisting of a value or an item
label. Such expressions are called atomic because they cannot be reduced to a sim-
pler form and have no identifiable parts. Examples of atomic expressions include:

1 // Value of 1 in base 10
-16 // Value of -16 in base 10
2\1111\ // Value of 15 in base 2
123e2 // Value of 12300 in base 10
2\1111\e1 // 11110 in base 2

29
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’a’ // Character a
a // Item named a
"Hello" // String value
Hello // Item named Hello
true // Boolean true value

The examples shown demonstrate several mechanisms for specifying atomic
items ranging from number values and string literals to item names.

An item label used as an expression refers to the item it names. Thus, the type
associated with an item label is the type of its item’s declaration. Because each
item must be declared and each declaration includes a type, the type of a declared
item is always known.

The type associated with a literal value is discussed extensively in Chapter 4.
For now it is sufficient to understand that a literal’s type is its most restrictive
legal type. For example, the number 3 is an element of several types, includ-
ing complex, real, and posreal. When appearing in a specification, its type is
posint because no subtype of posint contains 3. However, when performing
type checking, 3 can be treated as posint or any of its supertypes.

3.2 Function Application

A function application is simply the instantiation of a function with a collection
of actual parameters. For example:

cos(x)

is the application of the cosine function to an item, x.
Function applications are specified using the following form:

f (e0,e1,e2,...,en)

where f is the name of an item whose type is a function and e0 through en
are expressions representing the function’s actual parameters; ek may be any
expression of the same type or a subtype of its associated formal parameter in the
definition of f . Thus, actual parameters may be function applications, sequence
references, literals, or any other expression satisfying type conditions. Examples
of function applications include:

inc(1) // Increment the value 1
add(1,2) // Add the values 1 and 1
inc(x) // Increment the value of x
add(1,inc(x)) // Add the value 1 to inc(x)

Functions of a single argument are frequently referred to as unary functions, and
unary functions whose return type is boolean are referred to as predicates. Func-
tions of two arguments are frequently referred to as binary functions, while binary
functions whose return type is boolean are referred to as relations.
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Rosetta function application is lazy and defined using curried function
semantics. Curried function semantics turns multi-parameter functions into a
sequence of unary function applications. For example:

add(1,inc(x)) == (add(1))(inc(x))

The application of the two-argument add function to its first argument results
in a unary function that adds 1 to its argument. When this result is applied to
inc(x), it adds one to the result of the function application. It is perfectly legal to
partially specify function arguments. Specifically, the following definition of inc
can be perfectly legal:

inc == add(1)

The inc function that increments its argument is equivalent to the add function
with one argument instantiated with one. Currying and function evaluation will
be explained later. For now one need only understand that function applications
are applications of function items to formal parameters and that curried functions
are allowed.

The type of a function application whose formal parameters are of the correct
type is the return type specified in its declaration. If the formal parameters are
not of the correct type, the function application’s type cannot be determined and
it is not soundly typed. Consider a simple function declaration for an increment
function:

inc(x::natural)::natural is x+1;

Legal applications of inc include:

inc(1)
inc(inc(1))
inc(2+3)

In each case, the formal parameter to inc can be determined to be a subtype of
natural. Thus, the type of each application is natural, the type specified by
inc’s declaration. In contrast, illegal applications of inc include:

inc(’a’)
inc(-1)
inc([1,2,3])

In each case, the formal parameter is not a subtype of natural, no type can be
inferred, and the application is not well-typed.

3.3 Operator Application

An operator application is a special syntax for function application. For example:

x + y // add x to y
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%x // convert x from boolean to bit
1,2,3 // form a set containing 1,2, and 3

are all operator applications and represent the following function applications:

__+__(x,y)
%__(a)
{__}{1,2,3}

where the function name is obtained by replacing arguments with underscores.
Operators come in four forms, infix, prefix, postfix, and mixfix. The most com-

mon operator form is the traditional infix notation used for traditional mathe-
matical operators. Infix operators use the syntax:

x ◦ y

where ◦ is the operator being applied and x and y are arguments to the operator.
Examples of infix operations include:

1 + sqrt(x) // add 1 to square root of x
x or y // boolean disjunction of x and y
x & "��error" // concatenate x with a literal string

Prefix operations are also quite common and include many mathematical
operators such as negation and size. The syntax for prefix operations is:

◦ x

where ◦ is the prefix operation and x is its argument. Examples of prefix operators
include:

-x // negate x
#x // size of x
%x // convert x to a boolean or bit

Mixfix operators are special operators, where the arguments are mixed within
the operation. There are several forms of mixfix operations, including formers and
if expressions. Formers are used to collect items and form new items representing
collections such as sequences and sets. The syntax of a former is generally:

< arglist >

where “<“ and ”>” represent the name of the former and arglist is a comma-
separated collection of arguments. Examples of formers include set formers,
sequence formers, and function formers:

{1,2,3} // set containing 1,2, and 3
{∗1,1,3∗} // multiset containing 1,1, and 3
[1,2,3] // sequence containing 1,2, and 3
<∗ (x::integer)::integer ∗> // function type or signature
<∗ (x::integer)::integer is x+1 ∗> // anonymous function
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The syntax of the function former differs from the set and sequence formers.
Operators are special syntactic forms of function calls. In the case of pre- and

postfix operations, the definition of the operation is provided by a unary function.
In the case of infix operations, the defining function is binary. Mixfix operations
differ based on the number of arguments, but still use a traditional function for
their semantic definition. Special function names derived from operator symbols
allow definition of operator functions. We take the operator and replace param-
eters with double underscores to form the name. For example, the names for the
% and + operators are defined as follows:

%__ // function name for % operation
__+__ // function name for + operation

The following equivalences define mapping from operators to function
applications:

%x def %__(x)

a+b+c def __+__(__+__(a,b),c)

Now operators and functions share a common semantics for evaluation. Such
equivalences, called derived forms, allow sharing of semantics across language con-
structs.

Because operators are special forms for functions, the types associated with
operator application are defined in the same manner. Specifically, if operator
arguments are of a type compatible with the operator, then the operator
application type is obtained from the function signature. Unfortunately, over-
loading of operators complicates this process substantially, with the number
operations introducing significant complexity. Chapter 4 discusses operators over
basic types extensively and describes operator type inference.

3.4 If Expressions

An if expression specifies choice between values based on a boolean expression.
The if expression:

if x>0.3 then 1 else 0 end if

equals 1 if x>0.3 and 0 if it does not. Thus the term:

x’ = if x>0.3 then 1 else 0 end if

asserts that the next value of x equals the result of evaluating the if expression.
Most traditional programming languages use an if statement rather than an

if expression. The distinction is that an if expression, like all expressions, has
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an associated value. An if statement simply orders the application of other
statements. This distinction appears in the previous example. It can be rewrit-
ten in a form similar to an if statement by lifting the if outside the equality:

if x>0.3 then x’=1 else x’=0 end if

The net result is the same — an assertion of a value for x in the next state. The
formal syntax of the if expression uses the traditional block style more typical of
if statements and includes an elseif option:

if c0 then e0

[[elseif ck then ek]]∗

else en
end if

In the if expression, all cj expressions must be of type booleanwhile all ej expres-
sions must be of the same type. This assures that the if expression will have a
single type. The if expression evaluates to the first ej associated with a true con-
dition. If no conditions are true, then evaluation results in en associated with the
else keyword. Although the if expression is block-oriented and reminiscent of
imperative languages, it is a true expression and not a statement. Like all expres-
sions, if expressions have values and types.

The most common form of the if expression is the simple if-then-else form:

if ec then et else ef end if;

The rule for evaluating this expression is a simplification of the general semantics.
When ec is true, the expression is equal to et. When ec is false, the expression is
equal to ef . Specifically:

if true then et else ef end if def et

if true then et else ef end if def ef

These two equivalences define two-thirds of the if semantics. The final rule states
that when et is an expression other than a boolean value, it must be evaluated first.

Understanding the elseif construct is a simple extension of the if expression
presented so far. The following expression:

x’ = if x>0 then 1
elseif x<0 then -1
else 0

end if

is equivalent to:

x’ = if x>0 then 1
else if x<0 then -1

else 0
end if;

end if;
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Applying the previous rules to this form results in the expected behavior. If x>0
the expression is equal to 1. If x<0 then the expression is equal to -1. Otherwise
the expression is equal to 0.

The if expression must be viewed like all other operators as a function with
an associated type and value. The value is determined by evaluating one of the
two expressions based on a boolean condition. Again, the if expression does not
define paths or sequences of instructions in a Rosetta specification.

Evaluating the following form:EXAMPLE 3.1
If Expressions

if x=1 then f(x) else g(x) end if;

results in f(1)when x=1 and g(x) otherwise. Note that the expression is replaced
by these results where it occurs in a specification.

Evaluating the following form:

if p(x) then f(x)
elseif q(x) then g(x)
else h(x)

end if;

results in f(x) when p(x) is true; g(x) when p(x) is false and q(x) is true; and
h(x) when both p(x) and q(x) are false.

Each expression, f(x), g(x), and h(x), must have the same type. �
The type of an if expression is derived from the sub-expressions defined in

the then and else clauses. The conditional expression must be of type boolean
and the then and else expressions must be of the same type. If these conditions
hold, the type of the if expression is the type of the then and else expressions.
When elseif clauses are present, they must share the type of the then and else
clauses. The following if expression defines a signumm, or sign, operation:

if x >= 0 then 1 else -1 end if;

x >= 0 is a boolean expression, thus the type of the if expression is the common
type of 1 and -1, or integer. It can be used wherever an integer is allowed. The
following forms are legal uses of this expression:

(if x >= 0 then 1 else -1 end if) + 1;

sgn(x::integer)::integer is if x>= 0 then 1 else -1 end if;

In contrast, the following forms are not legal uses:

s(if x >=0 then 1 else -1 end if)

(if x >=0 then 1 else -1 end if) and 1

In the first case, sequence access must use a natural value. Because the if expres-
sion is of type integer, there is no guarantee that when evaluated the result can be
used to access a sequence element. In the second case, and expects bit arguments.
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Although the if expression can produce a value 1::bit, it is not guaranteed to
produce a bit.

Among the most common uses of if statements in a traditional programmingEXAMPLE 3.2
If and Conditional
Equivalence

language is to provide a mechanism for conditional assignment. A simple case
of such a description from the digital design domain is the definition of a
multiplexer. A naive specification of a Rosetta multiplexer has the form:

facet mux(i0,i1,c::input bit; z::output bit)::state_based is
begin

if c=0 then z’=i0 else z’=i1 end if;
end facet mux;

In this case, the if expression evaluates to either z’=i0 or z’=i1, depending on
the value of c. To completely understand this specification, it is important to note
that z’ refers to the next value of z much like the (VHDL) after clause that spec-
ifies values for signals sometime in the future.

A more succinct method of writing the multiplexer if expression in Rosetta
takes advantage of the if expression feature that it is in essence a function. By
lifting the equivalence out of the if expression, the mux facet can be rewritten as:

facet mux(i0,i1,c::input bit; z::output
bit)::state_based is begin
z’=if c=0 then i0 else i1 end if;

end facet mux;

Semantically, the two definitions are identical. However, the second specification
more directly defines what the multiplexer does. If c=0 is true, then the if expres-
sion simplifies to i0. Otherwise, it simplifies to i1. �

It should be noted that if an if expression’s type is determined to be top, it
is virtually useless as a specification expression. If a system is to be well-typed,
the only place such an expression can be used is where a top is expected. Few
functions are general enough to operate on top typed arguments.

Some examples of if expressions and associated types are shown below.EXAMPLE 3.3
Type Inference for If
Expressions

Because we have not defined many of Rosetta’s basic types, some intuition must
be used to think about expression types. The negint type is the set of negative
integers and is a subtype of integer. The bit type is the set {0,1} and is a sub-
type of natural, which is in turn a subtype of integer. The imaginary and
real types are both subtypes of complex. These types will be defined later; for
now, intuition should be sufficient to understand these typing examples.

In the expression:

if true then -1 else 1 end if :: integer

the condition is boolean and the clauses are both elements of integer. Even
though the condition is always true and the expression reduces to -1, the inferred
type is integer, not negint. Evaluation of the conditional expression is not and
cannot be performed during type inference. If a static analysis tool can make this
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determinations, then a type assertion can be added to inform the type checking
system of this fact.

In the following expression, where j is the imaginary root:

if x<1 then j else -1 end if :: complex

the condition is boolean, one expression is imaginary, and the other is negint.
The common type for these types is complex and thus the expression type is
complex.

In the expression:

if x=y then j else -j end if :: imaginary

the condition is boolean and both expressions are imaginary, so the expression
type is imaginary.

In the expression:

if x>0 then 1
elseif x=0 then 0
else -1

end if :: integer

the condition is boolean and the expressions are typed bit, bit, and negint,
respectively. The common type isinteger, thus theif expression is typeinteger.

Finally, in the expression:

if x>0 then 1
elseif x=0 then ’a’
else -1

end if :: top

the condition is boolean and the expressions are bit, character, and negint,
respectively. The only common type is top, so the if expression is type top. �

3.5 Case Expressions

A case expression allows selection from among many alternatives based on set
membership. The case expression is much like the if expression, but checks to
determine if the result of evaluating an expression is contained in a set of items,
rather than checking a boolean value. For example:

case x is
{0,1,2} -> x+1 |
{3} -> 0

end case;

represents a state transition function for a modulo four counter. If the value of x
is in the set {0,1,2}, then the case expression evaluates to x+1. If the value of
x is in the set {3}, then the form evaluates to 0. Like the if expression, the case
expression evaluates to a value. Assuming that x is the current state and x’ is the
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next state, the following form defines a mechanism for calculating the next state
in a zero to three counter:

x’ = case x is
{0,1,2} -> x+1 |
{3} -> 0

end case;

The general syntax for a case expression is:

case e is
s0 -> e0

[[ | sn -> en ]]∗
end case;

The case expression evaluates to ek associated with the first sk containing the
result of evaluating e. If e is not contained in any sk , then the case expression
is bottom. No default case is provided; however, using the type top will result
in a default case. Specifically, the top type is defined as the set containing
all possible Rosetta values. Thus, any value of e will be an element of top.
Specifically:

case x is
{0,1,2} -> x+1 |
{3} -> 0 |
top -> bottom

end case;

will evaluate to bottom if x is not contained in either the set {0,1,2} or the set
{3}. The value bottom is an element of all sets and will commonly be used to
represent an error or default case when choices are specified. This case specifies
the same behavior as leaving the top case off. An alternate approach specifies a
kind of reset behavior when the selection expression is out of range:

case x is
{0,1,2} -> x+1 |
{3} -> 0 |
top -> 0

end case;

In this example, the expression will evaluate to 0 when the selection expression
is out of range. A counter using this definition will always reset to 0 when the
current state is illegal.

The previous example illustrates several common Rosetta specification
techniques that will be examined throughout the remainder of this text. The terms
are declarative constructs that must be simultaneously true. Thus, the output
value, the next state value, and the state type are constrained concurrently, not
sequentially. Both the case and if expressions have values and are not sequenc-
ing statements. Finally, the use of the decorated variable, current’, denotes the
value of current in the next state.
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Determining the type of a case expression is identical to determining the type
of an if expression. The most common of the possible result expressions is the
type of the case expression. Unlike the if expression, there is no requirement on
the selection expression. The presence of the top type again assures that a least
common supertype is available.

State-based specification is one of the most common mechanisms used forEXAMPLE 3.4
Case Expressions and State
Machines

abstract system design. In state-based systems, a set of states is specified along with
state transition and output functions defining next state and output respectively.
The following facet defines requirements for a modulo-4 counter that outputs its
state value.

facet counter(clk,reset::input bit;
value::output word(2))::state_based is

current::state;
begin

state_def: state = word(2);
next_state: current’ = if event(clk) and clk=1

then if reset=1 then b"00"
else case current is
b"00" -> b"01" |
b"01" -> b"10" |
b"10" -> b"11" |
b"11" -> b"00"

end case
end if

else current;
end if;

output_ val: value = current;
end facet counter;

In this definition, the case expression defines the next state function by listing all
possibilities of state and their associated values. The facet specification defines
a model with two binary inputs, clk representing the clock input, and reset
representing a synchronous reset operation. The variable current is the value
of the current state. The heart of the specification is three terms specifying the
state type, state value and output functions. These terms are labeled state_def,
next_state, and output_val respectively.

The state_def term defines the state type to be word(2), a 2-bit binary word.
This allows the remainder of the specification to use the state value in expres-
sions if necessary. The output_val term defines the values of the value output by
equating it with the current state. This term defines an invariant and makes the
machine a Moore machine because outputs are associated with state only.

The next_state term defines how state changes using if and case expres-
sions. The outer if determines if an event has occurred on the clock and whether
the resulting value is 1. This is a common mechanism for specifying the rising
edge of a clock. If this condition fails, the value of the if expression is current and
the system maintains its state. The inner if checks the status of the synchronous
reset signal. If it is high, the value of the if expression is b"00", the Rosetta
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representation for 2-bit, binary zero. If the reset value is not high, the case
expression specifies the value of the if expression. The value resulting from eval-
uating the if expressions constrains the value of current’ representing the value
of current in the next state. �

Assuming that x is a natural number, the type of the case statement previouslyEXAMPLE 3.5
Type Inference for Case
Expressions

defined is natural:

case x is
0,1,2 -> x+1 |
3 -> 0 |
top -> 0

end case :: natural �

3.6 Let Expressions

The let expression defines local items and their scopes. The expression:

let pi::real be 3.1415 in

pi∗radius∗radius

end let;

evaluates to the area of a circle. The value of pi is defined to be the real value
3.1415 in the scope of the let expression.

The syntax of a let expression is:

let v0 :: T0 be e0 [[; vn :: Tn be en ]]∗ in

e

end let;

The let keyword is followed by a declarative section where one or more local
items may be defined. The syntax of local item declarations is identical to the
syntax of a traditional item declaration except that the keyword is is replaced by
the keyword be for readability. Semantically, declarations are identical. Like tra-
ditional item declarations, let declarations are defined by specifying a name and
type using the type membership operator. The be clause is required and specifies
a value for the local item. Within the scope of the let expressions, these items
behave as traditional items. Like traditional declarations, multiple items of the
same type may be specified using a comma-separated collection of item names in
the declaration. Within e, any variable defined in the let declaration section is
visible. For example, given area::boolean:

let pi::real be 3.14159 in
if area then pi∗r^2 else 2∗pi∗r end if

end let;
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defines a let expression that either calculates the area or radius of a circle. The let
expression declares and defines a local value, pi, that is visible in the if expression
used to calculate the indicated value.

Like all Rosetta expressions, the let expression simplifies to a value and has a
type. In the previous example, the let expression’s value is the if expression in
the context of local variables. The let expression’s type is the type of its encapsu-
lated expression with the types of local variables added to the expression’s context.

Let expressions may be nested in the traditional fashion. In the following spec-
ification, the variable x of type T1 has the associated expression v1, while y of type
T2 has the expression v2. Both may be referenced in the expression e:

let x::T1 be v1 in
let y::T2 be v2 in

e
end let

end let;

This expression may also be written as:

let x::T1 be v1; y::T2 be v2 in e end let;

Semantically, the let expression is actually a letrec expression. Languages such as
Scheme and Common Lisp provide separate let and letrec constructs. A traditional
let construct is not recursive. The defined variable cannot be referenced in the
expression defining its value. A letrec, traditionally defined as a derived form of
the traditional let construct, is recursive and allows such references.

A key use for the let expression is adding abstraction to definitions. Using theEXAMPLE 3.6
Let Expressions and
Abstraction

let, new declarations specific to an expression define and name concepts. In the
following expression, a let expression defines quantities for use in a definition:

let newx::real be x+dx; newy::real be y+dy in
update_position(newx,newy)

end let

Here the local variables newx and newy provide names for new values of an x
and y position, respectively. Although this is a trivial use of the let expression, it
demonstrates an abstraction capability that will prove more useful when recursive
let applications and the fixed point operator, fix, are introduced.

The type of a let expression is the same as the type of its encapsulated
expression. If the expression is well-typed, so is the associated let expression.
For the previously defined let expression, the encapsulated expression is real,
thus the let expression is real:

let (pi::real be 3.14159) in
if area then pi∗r^2 else 2∗pi∗r end if

end let:: real
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3.7 Compound Expressions

Compound expressions are formed from atomic expressions, function
applications, operator applications, and if, case, and let expressions by replac-
ing formal parameters with expressions of an appropriate type. If ek and gk
are legal expressions, then the following forms are examples of legal compound
expressions:

e1 ◦ e2 // Infix operator application

◦ e1 // Prefix operator application

(e1) // Parenthesized expression

f(e1) // Application of function f to e1

[inc(e1),3] // Sequence of inc(e1) and 3

if e1 // If expression
then e2

else e3

end if

case e1 of // Case expression with 3 options
{e2} -> g2 |
{e3} -> g3 |
top -> gtop // Default case

end case

let v::T be e1 in // Let expression
e2

end let

Each of these compound expressions assumes that expressions are of a type
compatible with their associated formal parameter or position in the expres-
sion. For example, the if expression mandates that e1 be boolean and e2 and
e3 share a common supertype. If type conditions are met, then these represent
templates for legal compound expressions. Because ek can be compound
expressions, arbitrarily complex expressions can be formed through substitu-
tions.

All Rosetta operations fall into one of several classes that define operator
precedence, as illustrated in Table 3.1. Parenthesized expressions are of high-
est precedence followed by type assertions. Prefix, product, sum, and relational
operations follow in that order. Function applications and mixfix value and type
formers follow next, with equivalence having the lowest precedence. As other
operations are defined, they will attempt to assume canonical positions in the
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precedence table. Parentheses may always be used to specify precedence explicitly
rather than relying on precedence rules.

Table 3.1 Operator precedence table

Operation Syntax

Parenthesized expression (e)
Type assertions e::T
Prefix operations -e, #e, %e,...

Product operations e ∗ e, e / e,

e^e, e and e
Sum operations e + e, e - e,

e or e, e => e,

e <= e
Relational operations e=e, e/=e,

e<e, e=<e,

e>e, e>=e
Function applications f(e,e,e,...e)
Value and Type formers [e,e,e,...],

{e,e,e,...},

{∗e,e,e,...∗},

< ∗(v::T,v::T...)::T is e ∗ >
Equivalence e == e

When defined, all operation symbols are assigned to a class and remain in that
class regardless of their functional definition. For example, e1 + e2 could be rede-
fined to perform a multiplication operation. However, e1 + e2 will always have
lower precedence as compared to a multiplication operation defined by e1 ∗ e2.
All binary operations are left associative unless otherwise specified.

Currently Rosetta provides no mechanism for defining precedence of new
operations. If users introduce new operator syntax using domain structures,
they are required to disambiguate precedence explicitly using parentheses. This
is rarely an issue, as new operations are typically introduced using function
definitions.
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Rosetta defines several type categories that include elemental,
composite, function, constructed, and facet types. The first of these categories,
the elemental types, defines types as collections of atomic values. Element literals
provide a mechanism for specifying element values in a specification. All elemen-
tal types are subtypes of the element type and include numbers, boolean values
and characters, infinite values, and the the bottom value.

The number type is the supertype of all definable number values. Subtypes
of number include complex, real, integer, natural, and bit as well as specific
subtypes to aid in constraining number values further for specification pur-
poses. Number literals provide a mechanism for specifying number values in
specifications.

The boolean type defines the two literal Boolean values true and false along
with the traditional Boolean operations. Distinct from the bit type, the boolean
type provides an abstract means for specifying logical sentences and for specifying
conditional properties.

The character type defines a mechanism for specifying and manipulating
Unicode values. Unicode is used throughout Rosetta to promote readable spec-
ifications and use of international character sets. The character literals provide
a mechanism for defining Unicode values in a specification. The character type
provides operations similar to those used in ASCII and Unicode character sys-
tems, allowing characters to be used in traditional ways.

4.1 The Boolean Type

Rosetta provides a Boolean type consisting of the values true and false denoted
by the type boolean. The notation:

b::boolean;

45
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Table 4.1 Operations defined over the boolean type

Operator Syntax Result Type

Logical negation not A boolean
Logical conjunction and disjunction A and B, A or B boolean
Logical nand and nor A nand B,A nor B boolean
Logic al exclusive or and nor A xor B, A xnor B boolean
Logical implication A=>B,A implies B, boolean

B<=A
Boolean to bit %A

declares a new item, b, of type boolean. Operations provided over boolean
provide a mechanism for specifying propositional statements in a traditional
manner. Table 4.1 defines the collection of operations defined over all boolean
items.

The unary not and binary and and or operators provide basic logical opera-
tions over boolean items. Examples of their application include:

true and true == true
false or false == false
false or true == true
false and true == false
not false == true

The nand, nor, xor, and xnor operators provide compound logical functions and
are constructed from the basic logical operations. Although not semantically nec-
essary, they provide shorthand for more complex, standard operations. Some
examples of their application and definition include:

A nand B == not(A and B)
A nor B == not(A or B)
A xor B == ((not A) and B) or ((not B) and A)
A xnor B == (A and B) or ((not A) and (not B))

The various implication operators are also compound logical functions defined
over disjunction. The logical implication operators, => and implies, are equiv-
alent and define logical implication. The implied by operator, <=, is simply the
inverse of the implies operation. Some examples of the application and definition
of these operators are:

A implies B == not A or B
A => B == A implies B
B <= A == A implies B

The only operation on boolean that does not return a boolean is the
boolean-to-bit operation. This operation facilitates moving easily between the
two types. In Rosetta, the boolean and bit types are distinct, with boolean
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having no association with numbers and bit being a subtype of natural (defined
later). Examples of application of this operation include:

%true == 1
%false == 0
%1 == true
%0 == false

In these examples, the boolean-to-bit operation is used as a bit-to-boolean
operation. The same operator symbol is used for both conversions, allowing the
definition:

%(%A) == A

When dealing with bottom argument values, operators over boolean are non-
strict. If any argument to a boolean operator is the value bottom, but determin-
ing the value of the operator does not require evaluating bottom, then the result
is the prescribed value. Otherwise, the result is bottom. Consider the following
examples, where one argument is bottom, yet the value of the operator can be
determined:

false and bottom == false
true or bottom == true
false implies bottom == true

In other cases, both operands must be known to determine a value other than
bottom for the expression:

bottom and true == bottom
bottom or false == bottom
bottom xor false == bottom
bottom xor true == bottom

A good rule of thumb is that if the operator can be evaluated without evaluating
bottom, then it will evaluate to the appropriate value.

4.2 The Number Types

Rosetta provides a wide collection of numeric types specifying sets of val-
ues commonly used in system specification. Within the number types, sub-
types are arranged hierarchically, with each subtype inheriting operations from
its supertype. The number type is the supertype of all number types. Each
subtype adds new operations in addition to supporting operations from its
supertype.

The complex type is the most general of the traditional number types and is
formed from real and imaginary numbers in the classical fashion. The real type
is further refined to define posreal, negreal, and integer types. The integer
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type is further refined to define posint, negint, and natural. Finally, natural is
refined to define the bit types used in traditional digital design.

The only elements of the number type that are not also in complex are the infi-
nite values, infinity and -infinity. These values are used primarily for speci-
fying values for integrals, differential equations, and limits. However, they are in
all ways number values.

4.2.1 Numbers

The type number is the supertype of all Rosetta numbers and a subtype of element.
The number type is used heavily in the definition of other types, providing a col-
lection of all numeric scalars. Specifiers use the number type to indicate that an
item is simply a number. Given the declaration:

n :: number;

little can be inferred about the possible values of n except that they will be some
number type.

The number type is useful when working on abstract specifications where an
item type should be restricted to be a number, but with no other constraints.
Although the complex type contains virtually all useful numbers, using complex
can indicate that the specification in question must actually implement mecha-
nisms for handling complex numbers.

4.2.2 Complex Numbers

Complex numbers are a direct subtype of number and are the most general number
subtype. Denoted by the name complex, the set of complex numbers is con-
structed by adding real values to imaginary values in the same fashion as in
traditional mathematics. The imaginary constant, j, is provided for this purpose.
Expressions such as 3.124+4*j and inc(x)+sin(2x)*j result in complex values,
as their syntax would suggest. Other mechanisms, such as exponentiation, that
generate complex values are also allowed.

A structural specification describes a system by describing the componentsEXAMPLE 4.1
Using the Number Type and interconnections that implement it. More specifically, a structural specifica-

tion describes an architecture for a system. The following structural specification
shows high-level architecture implementing serial composition of facet defini-
tions:

facet comp[T::type](m::input T; n::output T)::state_based;

facet serial(x::input number;
z::output number)::state_based is

y::integer;
begin

a: comp(x,y);
b: comp(y,z);

end facet serial;
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This specification defines a simple system, where component a accepts an input
and communicates with component b, which generates an output. Note that
all inputs and outputs are type number, but the interconnection item, y, is an
integer. The facet comp is instantiated twice to represent the two components,
but little is specified about comp other than its interface. Its interface uses poly-
morphic typing to allow any type to be communicated through the component,
but the output type must be the same as the input type. When the components are
instantiated with y, the type of their inputs and outputs is integer. Because the
input to the component is specified as number, a more general type than integer,
the serial component accepts a set of inputs larger than the component instan-
tiating it. Thus, the specification will not type check properly. This problem is
easily fixed by changing the interconnect variable type to integer or by making
the serial architecture more general by allowing arbitrary types. �

Operators defined over complex values are shown in Table 4.2 and include
negation, sum and difference, multiplication and division, and exponentia-
tion. The unary negation operator changes the sign of its argument while the
unary identity operator returns its argument value. Examples of their application
include:

-(3.0+4.0*j) == -3.0-4.0*j

+(3.0+4.0*j) == 3.0+4.0*j

The binary sum and difference operators are defined as traditional addition
and subtraction of complex values. Examples of their application include:

(3.0+4.0*j) + (1.0-1.0*j) == 4.0+3.0*j

(3.0+4.0*j) - (1.0-1.0*j) == 2.0+5.0*j

Similarly, binary product and quotient operators are defined as traditional
multiplication and division of complex numbers. Examples of their application
include:

(2.0+2.0*j) * (1.0+4.0*j) == (2.0+10.0*j-8.0) == 6.0+10.0*j

(2.0+2.0*j) / (1.0+4.0*j) == (2.0+ 2.5*j-0.5) == 1.5+2.5*j

Because the sum and difference operators used in forming complex values
are the same sum and difference operators used elsewhere, care must be taken
to parenthesize complex values so that their formation takes higher precedence,
compared to the operations performed on them. Removing parentheses in the
previous examples has very different results.

The range of all operations defined on complex is also complex. This implies
that operations are closed over complex and that their ranges cannot be restricted
beyond complex. Functions, such as real projection or complex conjugate, can be
restricted beyond complex and are presented subsequently.

In addition to unary and binary operators, a collection of predefined functions
over complex are defined in Table 4.3. Unary functions for finding the real part,
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Table 4.2 Operators over the complex type

Operation Syntax Result Type

Negation and Identity -A, +A complex
Sum and Difference A+B, A-B complex
Product and Quotient A*B, A/B complex
Exponentiation A^B complex

Table 4.3 Functions over the complex type

Function Syntax Result Type

Real and Imaginary parts re(A), im(A) real
Absolute value or modulus abs(A) real
Argument or phase arg(A) real
Complex conjugate conj(A) complex
Trigonometric functions sin(x), cos(x), complex

tan(x), arcsin(x),

arccos(x), arctan(x)
Hyperbolic trig functions sinh(x), cosh(x), complex

tanh(x), arcsinh(x),

arccosh(x), arctanh(x)
Exponential (base e) exp(x) complex
Square root sqrt(x) complex
Logarithms log(x), log10(x), complex

log2(x)
Floor and ceiling floor(x), ceiling(x) complex
Truncation and rounding trunc(x), round(x) complex
Signum sng(x) complex

complex part, absolute value, argument, and complex conjugate all return real, a
subtype of complex. The argument function’s return value is in radians, as are all
Rosetta functions dealing with angles. Some examples of the application of these
functions include:

re(2.1-1.5*j) == 2.1

im(2.1-1.5*j) == -1.5

arg(2.1-1.5*j) == 0.9505

abs(2.1-1.5*j) == 2.587

conj(2.1-1.5*j) == 2.1+1.5*j
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Functions for finding the floor, ceiling, and rounding complex values all return
complex values determined in the traditional fashion. Examples of the application
of these functions include:

floor(2.1-1.5*j) == 2.0-1.0*j

ceiling(2.1-1.5*j) == 3.0-2.0*j

trunc(2.1-1.5*j) == 2.0-1.0*j

round(2.1-1.5*j) == 2.0-2.0*j

The signum function over complex values returns a unit vector in the direction
of the original value. In the following expression, sgn returns a vector of length 1
in the direction of the original vector:

sgn(2.1-1.5*j) == 0.8137-0.5812*j

A complete set of trigonometric operations is defined over complex numbers.
The operations include the basic trigonometric functions for sine, cosine, and
tangent as well as the hyperbolic trigonometric functions and inverse functions.
Example applications include:

sin(2.0+3.0*j)

arcsin(2.0+3.0*j)

sinh(2.0+3.0*j)

arcsinh(2.0+3.0*j)

The sqrt function is provided as a shorthand for x^(1/2). The language def-
inition constrains sqrt(x) value to one of the square roots of x. The function
should be constrained further when specific roots are desired. For example, the
following two equivalences both satisfy the base definition for sqrt:

sqrt(4.0) == 2.0

sqrt(4.0) == -2.0

The definition simply states that a square root function must return a legal root,
not a specific legal root.

Similarly, a collection of logarithmic and exponentiation functions is defined
that includes natural log, log base 10, log base 2, and exponentiation. Example
applications include:

exp(2.0+3.0*j)

log(2.0+3.0*j)

log10(3.0+2.0*j)

log2(3.0+2.0*j)
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Log base 2 is rarely, if ever, used for complex numbers, but is defined for com-
pleteness and will be useful for many subtypes of complex.

All trigonometric and logarithmic, functions are closed with respect to com-
plex, the only exception being situations where operator forms are not allowed
where their values are bottom, indicating an error. Such situations include divi-
sion by 0 and tangent of 1.0. Some examples of illegal expressions whose value is
bottom include:

3.0/0.0 == bottom

tan(0.0) == bottom

log(0.0) == bottom

Operators and functions defined for complex are strict. If any operand for a com-
plex operator or function is bottom, then the result of evaluating that function is
bottom. The implications of strictness are that if any operator is unknown or ille-
gal, then the result of applying an operator or function is also undefined or illegal.
This follows from the need to evaluate all arguments to mathematical operators
and functions. This is in contrast to boolean operators that can often be evaluated
without evaluating every argument.

4.2.3 Real and Imaginary Numbers

Both real and imaginary numbers are defined as subtypes of the complex num-
bers. Real numbers are the subtype of complex whose imaginary part is 0, while
imaginary numbers are the subtype whose real part is 0. Real items are denoted
using the type real, while imaginary numbers are denoted using the type imag-
inary and are typically formed by multiplying a real number by the imaginary
root, j. Table 4.4 lists predefined constants associated with real and imaginary
types. The imaginary root is used to construct imaginary values from real val-
ues. The standard mathematical constant, pi, has its canonical value, as does the
exponential, e. Specifiers are free to design and package their own mathematical
constants. However, these constants are provided by default in the base Rosetta
modeling system.

Table 4.5 defines operations available on real and imaginary numbers in addi-
tion to those provided for complex numbers. The min and max operations return
the minimum and maximum values from their arguments, respectively. Examples
of their application include:

2.14 min 3.75 == 2.14

4.57*j min 2.76*j = 2.76*j

2.14 max 3.75 == 3.75

4.57*j max 2.76*j = 4.57*j
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Table 4.4 Predefined numeric constants

Constant Syntax Type

Imaginary root j imaginary
Pi pi real
Exponential root e real

Table 4.5 Additional operations on real and imaginary types

Operator Syntax Result Type

Minimum and maximum A min B, A max B Argument type

Ordering relations A<B, A=<B, A>=B, boolean
A>B

Min and max return types are the same as their associated argument types. If the
arguments to either operation are imaginary, then the return type is imaginary,
and similarly for real. Neither operator is defined for mixed imaginary and real
values. For example, 4.75*j max 2.76 is forbidden.

Ordering relations provide traditional ordering relationships between values.
Examples of their application include:

2.14 < 3.75 == true
2.14 > 3.75 == false
2.14*j =< 2.14*j == true
2.14*j >= 3.75*j == false

All ordering relations are boolean and, like the min and max operations, are undefined
if their arguments are not both real or imaginary. For example, 2.14*j < 3.75 is not
allowed.

Subtype relationships imply that any real or imaginary value may be treated like a
complex value. Any operator defined over complex values may be applied to combina-
tions of real and imaginary operands, with the result treated as the same type defined
for complex arguments. However, for many operators and functions, the return type
is more restricted than is the entire complex type. By specifying those restricted types,
static analysis tools such as type checkers can infer more detailed information about
a specification. Thus, Rosetta defines the return types for operators and functions as
the most restricted type that covers all possibilities.

Sum and difference operators are closed with respect to both real and imaginary.
The sum or difference of two real or imaginary values is real or imaginary, respectively.
If operands are of mixed type, sum and difference both result in a complex type. This
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should not be surprising, as the sum and difference operations are used to construct
the complex type from real and imaginary. For example:

1.2::real + 2.4::real == 3.6::real

(1.2*j)::imaginary + (2.4*j)::imaginary == (1.2*j)::imaginary

(1.2*j)::imaginary + (2.4)::real == (2.4+(3.6*j))::complex

Product operations are closed over real, but result in real when applied to
imaginary and imaginary when applied to mixed arguments. Again, this should
not be surprising, as j*j is equal to -1. Examples include:

1.2::real * 2.0::real == 2.4::real

(1.2*j)::imaginary * (2.0*j)::imaginary == -2.4::real

1.2::real * (2.0*j)::imaginary == (2.4*j)::imaginary

All operators and functions inherited from complex remain strict. All operators
defined for real and imaginary are strict. If any of their operands or arguments are
bottom, then they evaluate to bottom. This again results from the need to evaluate
every argument to evaluate a mathematical operator.

4.2.4 Positive and Negative Numbers

The posreal and negreal types are subtypes of real that define the positive and neg-
ative real numbers, respectively. No additional operators are defined on either type,
but the range of many operations on real changes when considering positive or neg-
ative real numbers.

The negation operator becomes a conversion operator between the types. The
negation of a posreal results in a negreal and the negation of a negreal results
in a posreal. For example:

-2.354::negreal

-(-2.354) == 2.354::posreal

The min and max operators can be further restricted. If either argument to the max
operator is a posreal, then the result is a posreal, while if either argument to the
min operator is a negreal, the result is a negreal. For example:

1.0::posreal min 4.0::posreal == 1.0::posreal

-1.0::negreal min 4.0::posreal == -1.0::negreal

-1.0::negreal min -4.0::negreal == -4.0::negreal
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1.0::posreal max 4.0::posreal == 4.0::posreal

-1.0::negreal max 4.0::posreal == 4.0::real

-1.0::negreal max -4.0::negreal == -1.0::real

Sum and difference operators can both be thought of as sum operations by under-
standing the relation A-B == A+(-B). Both posreal and negreal are closed over
addition. However, if sum is applied to mixed type operators, the result cannot be
constrained beyond the real type. For example:

3.0::posreal + 2.0::posreal == 5.0::posreal

-3.0::negreal + -2.0::negreal == -5.0::negreal

-3.0::negreal + 2.0::posreal == -1.0::real

3.0::posreal + -2.0::negreal == 1.0::real

Product and quotient operations follow the same rules. Every division operation
can be expressed as a product operation, thus we can define the return type for prod-
uct and apply the result to quotient. Product is closed over posreal, while negreal
results in a posreal. When operators are of mixed types, the result is always negreal.
For example:

1.2::posreal * 2.0::posreal == 2.4::posreal

-1.2::negreal * 2.0::posreal == -2.4::negreal

-1.2::negreal * -2.0::negreal == 2.4::real

Operators over real inherited by posreal and negreal remain strict.

4.2.5 Integer Numbers

The integer type is the subtype of real that includes only integral values defined
in the classical fashion. All operations defined over real are defined over integer.
Three additional operations are listed in Table 4.6. The div operator provides an
integer division operation, while mod and rem provide a modulus and remainder
operation, respectively. The distinction between remainder and modulus is subtle,
frequently causing the operations to be confused. The modulus operator specifies the

Table 4.6 New operations over integer type

Operator Syntax Return Type

Integer division A div B integer
Modulus A mod B integer
Remainder A rem B integer
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integer modulus of its left operand divided by its right operand and assumes the sign
of its right operand. The remainder operator specifies the integer remainder of its left
operand divided by its right operand and assumes the sign of its left operand. For
example:

11 div 3 == 3

11 rem 3 == 2

11 mod -3 == -2

All new operators and functions defined over integer are strict.
Integer operations inherited from real obey similar closure rules. Negation,

sum, and product operators over integer are closed with the exception of division,
which results in a real. For example:

2::integer * 3::integer == 6::integer

2::integer / 3::integer == (2/3)::real

2::integer + 3::integer == 5::integer

2::integer - 3::integer == -1::integer

Rounding operations such as round and trunc, floor and ceiling produce
integer values for all real values and are thus closed over integer. How-
ever, with the exception of signum, such operators all reduce to the identity
function.

The exponent operator and logarithmic operators are real valued when applied
to integer. Although trigonometric functions are defined over integer as a subtype
of real, they make little sense for discrete values.

4.2.6 Natural Numbers

Natural is the subtype of integer that includes only positive numbers and zero.
The natural type inherits all operators and functions from the integer type, but
introduces no new operations. Addition, multiplication, and exponentiation are both
closed with respect to natural, as are div, mod, and rem. Subtraction and division are
of type integer and real, respectively. For example:

1::natural + 2::natural == 3::natural

2::natural * 2::natural == 4::natural

2::natural ^ 3::natural == 8::natural

7::natural div 2::natural == 3::natural

7::natural mod 2::natural == 1::natural
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1::natural - 2::natural == -1::integer

1::natural / 2::natural == (1/2)::real

Rounding and truncating functions are all closed over natural, as is the signum
function. However, such functions are of limited use. Trigonometric and exponential
functions are of type real.

4.2.7 Positive and Negative Integer Numbers

Posint and negint are subtypes of natural and integer, respectively. As their
names imply, posint is the set of natural numbers without 0 and negint is the set of
negative integers. Neither posint nor negint introduces new operations, but both
inherit all operations from integer. All operators and functions over natural that
are of natural type are of posint type when used over posint. Other operators and
functions are of the same type when applied to posint as when applied to integer.
Some examples include:

-(1)::posint == -1::negint

1::posint + 2::posint == 3::posint

1::posint - 2::posint == -1::integer

2::posint * 3::posint == 6::posint

2::posint / 3::posint == (2/3)::real

2::posint ^ 3::posint == 8::posint

2::posint max 3::posint == 3::posint

2::posint min 3::posint == 2::posint

Operators and functions from integer over negint present a more complicated
problem. Addition is the only operator closed with respect to negint. Some examples
include:

-(-1)::negint == 1::posint

-1::negint + -2::negint == -3::negint

-1::negint - -2::negint == 1::integer

-2::negint * -3::negint == 6::posint

-2::negint / -3::negint == (-2/-3)::real

-2::negint ^ -3::negint == -(1/8)::posint

-2::negint max -3::negint == -2::negint

-2::negint min -3::negint == -3::negint
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Table 4.7 New functions and operations defined over the bit type

Operator Syntax Return Type

Logical negation not A; bit
Conjunction and disjunction A and B, A or B bit
Negated operators A nand B, A nor B bit
Exclusive or operators A xor B, A xnor B bit
Implication operators A => B, A implies B, bit

B <= A

4.2.8 Bit Numbers

Bits are the subtype of natural numbers that includes only 1 and 0. Bit items
are declared using the bit type and are used heavily in the specification of digital
systems. Although all operators and functions defined on natural are also defined on
bit, most specifiers use the Boolean functions introduced with the bit type. Table 4.7
lists new operators defined over the bit type. These operators parallel those spec-
ified for boolean; however, bit and boolean are distinct types. The %A conversion
operator is provided to convert between these types. Examples of the bit operators
include:

not 1 == 0

1 and 0 == 0

1 or 0 == 1

1 xor 1 == 0

1 xnor 0 == 0

%1 == true

%(%1) == 1

Like operations on boolean, operations defined for the bit type are non-strict. If
arguments with values other than bottom are sufficient to determine the value of an
operator, then the operator evaluates to its value. Examples include:

0 and bottom == 0

1 or bottom == 1

0 implies bottom == 1

Other operations inherited from natural are not closed over bit. Thus, any opera-
tion on bit using these operators and functions is treated as an operation on natural.
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4.3 The Character Type

The character type is the collection of all UTF-32 values as defined in the
Unicode Standard, Version 3.2 along with operations defined in Table 4.8. The ord
and char functions move between the character values and the natural numbers.
The ord function accepts a character value and specifies its associated Unicode
value. The char function is its inverse, taking a Unicode value and specifying its asso-
ciated Unicode value. For example:

char(ord(c::character)) == c::character

ord(’a’) == 16\0061\

ord(’U+2132’) == 16\2132\

The uc and dc functions change a character’s case to upper or lower case, respectively,
when such a conversion is defined. When the upper and lower case distinction does
not exist, these operations are identity functions. For example:

uc(’a’) == ’A’

dc(’A’) == ’a’

uc(’1’) == ’1’

dc(’1’) == ’1’

Ordering functions defined over character are defined by mapping to their Uni-
code values and using ordering operators defined in natural. A character is less than
another if its associated Unicode value is less than the other’s Unicode value. For
example, assuming that x and y are characters, x<y and x=<y are defined:

x < y == ord(x) < ord(y)

x =< y == ord(x) =< ord(y)

Table 4.8 Operators defined over the character type

Operator Syntax Return Type

Ordinal ord(a) natural
Character char(n) character
Relational Operations a<b, a=<b, boolean

a>b, a>=b
Capitalization uc(a), dc(a) character
Unicode constant former ’U+XXXX’ character
Character constant former ’x’ character
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Examples using ordering operations over character include:

’a’ =< ’b’

’a’ < ’b’

’b’ >= ’b’

’b’ > ’a’

All operations over character types are strict. If any operand to a character function
is bottom, then it is equal to bottom.

It is important to note that the character and number types are distinct. No sub-
type relationship exists between these types and neither inherits operators or func-
tions from the other. Both inherit operators from the element type and its supertypes.
Thus, statements such as ’c’<5 are not well defined statically because there is no less
than function defined over character and natural. If an ordering relationship is
defined over top, that ordering relation will be used in the previous statement. No
such ordering is defined in the base language.

4.4 The Element Type

Rosetta provides a supertype of all elemental types denoted as element. The type
element consists of all values from boolean, number, and character and contains all
predefined, atomic Rosetta values. The element type is rarely used in specifications,
but plays an important role in the definition of other Rosetta types.

4.5 The Top and Bottom Types

Rosetta introduces two types, top and bottom, that represent the supertype and sub-
type of all other types, respectively. The type top consists of all Rosetta values and is
a supertype of all other types. Formally, for any Rosetta type T:

T =< top

Because Rosetta is reflective, this implies that top contains not only traditional values
such as numbers, characters, and sequences, but all possible types, functions, and
facets. The following declaration defines a new x that is of type top:

x :: top

The top type should rarely appear in specifications due to its generality. Nothing can
be said about x other than it must be a Rosetta value. Although this may seem advan-
tageous at times, top has the effect of removing all type information from anything it
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is associated with. What top does provide is a mechanism for defining operations that
apply to all Rosetta items, including Rosetta specifications themselves. If we define a
function:

f(x::top)::top;

it is defined over all Rosetta items. However, the declaration says nothing about
the function’s resultant type. Any expression can be a legal formal parameter to f,
but nothing is known about its return value. Anytime top is used in this way, all
type information associated with the result of applying the function is lost. Care
should be taken not to use top to try and define polymorphic functions.

The bottom type is a special type with a single value also called bottom; this
is used to indicate error results and divergent computations. It allows errors to be
specified without violating type conditions. bottom is the opposite of top in that
instead of being a supertype of all types, it is a subtype of all types. Formally, for
any Rosetta type T:

bottom =< T
bottom in T

bottom is inhabited by the single value bottom used to represent the value of a diver-
gent computation. Like top, bottom should rarely be used in specifications. However,
it does play an important role in defining Rosetta semantics. For example, the func-
tion example defines a function whose evaluation can result in bottom:

example(x::real)::real is
if not(x==0) then f(x) else bottom end if;

If the input parameter x is ever 0, then the function is defined to be bottom, indicating
an error condition. Because bottom is a subtype of every type, the bottom value always
results in a type correct result.

4.6 Element Literals

Literals allow the user to write specific values in a Rosetta definition. Each ele-
mental type has a mechanism for specifying literals. The number type provides a
simple syntax to support intuitive specification of integer, real, and complex val-
ues. In addition, a rich syntax is provided to specify numbers with arbitrary radix
and exponentiation capabilities. The character type provides a syntax for defin-
ing Unicode characters using character codes as well as simple literal characters
for keyboard characters. The boolean type provides the Boolean literals true and
false for specifying propositional statements. Finally, the bottom literal bottom
provides a mechanism for denoting an undefined or error value.
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4.6.1 Number Literals

Rosetta provides a mechanism for defining number literals in specifications that
supports specifying numerical values ranging from simple decimal literals to expo-
nential forms of numbers with arbitrary radix. The simplest number literals take the
form of decimal digit strings with optional signs and a single decimal point. The fol-
lowing examples are all legal number literals of this form:

123 // Integer literal
12.3 // Real literal
-123 // Negative integer literal
-1.23 // Negative real literal

An exponent can be added to the literal value to specify the position of the radix
point. The radix point position specifies the number of places the radix point should
be moved to the left (negative point position) or right (positive point position).
Expressing no radix position is the same as specifying the radix point as 0. The symbol
e is used to separate the radix position from the remainder of the number specifica-
tion. The following examples show this literal notation:

1.23e5 == 123,000 // 1.23*105

1.23E-5 == 0.0000123 // 1.23*10−5

1.23e0 == 1.23 // 1.23*100

The most general form for number literals adds a radix, allowing specification of
numbers in arbitrary bases up to 16. The radix is added to the front of a number literal
and separated from the value using a backslash ("\"). When a radix is added, the
radix point position must also be separated from the value using a backslash. Using
this notation, number literals are specified using the form:

radix \ mantissa \ e pointposition

When a radix is specified, the mantissa becomes a sequence of based digits rather
than decimal digits. To support bases up to base 16, the decimal digits are extended
to include A-F and a-f in the classical manner. The radix point position is always
specified in decimal regardless of the radix, and is optional. The backslash separating
the radix point position from the mantissa is never optional if a radix is specified. The
value 16\234C\e4 is read "234C base 16 times 16 to the 4th power." Some examples
include:

10\5.2\ // 5.2 in base 10
8\5.2\ // 5.2 in base 8
16\AABC\ // AABC in base 16
-10\5.2\e-10 // −5.2*10−10

10\5.2\e-10 // 5.2*10−10

16\5.2\e-10 // 5.2*16−A base 16
-2\1\ // −1 in binary
-2\1\e1 // −10 in binary
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The backslash characters in a number literal are a part of its lexical structure
and should not be viewed as operators: 10\5.2\e-10 is a number literal and
should be viewed in the same manner as 5.2e-10. Thus, when a negation opera-
tor appears before literals of this form, it negates the entire value, not the radix value:
-10\5.2\e-10 is a negative value in the same manner as -5.2e-10. The notation
10\-5.2\e-10 attempts to specify the negation as a part of the inner value, but is
illegal in the notation. Although negations may appear in the radix point specifica-
tion, the value must be unsigned.

In addition to values specified using the general form, three number constants are
defined that can be used directly in specifications:

e // Exponential

pi // Geometric pi

j // Imaginary root

A number literal may belong to several types. An extreme example of this is the literal
0 that belongs to every number subtype. When a number literal appears in a speci-
fication, it assumes the most specific type from those of which it is a member. For
example, the following literals are asserted to be of the specified type:

0::bit

1::bit

2::posint

-2::integer

2.1::posreal

-2.1::negreal

(2.1+3.2*j)::complex

As we shall see later, this ensures that the appropriate type results when an operator
is applied.

The literal infinity and its negation -infinity represent positive and
negative infinite values. Although they are number values, they are not subtypes of
any of the number subtypes. Any mathematical operation defined thus far applied to
infinite values will result in the number type. Specifically:

1.3 + infinity == infinity::number

2 - infinity == -infinity::number

The infinite values are rarely used in this manner. The primary reason for their inclu-
sion is with calculus functions such as limit and integral defined in the continuous
time domain. There may be reasons to use infinite values in other kinds of specifica-
tion, thus they are included in the number hierarchy.
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4.6.2 Character Literals

To support specification across multiple languages and cultures, Rosetta uses the
Unicode standard for character literals. The standard notation is ’U+XXXX’ or
’U-XXXX’, where XXXX is a hexadecimal constant specifying the associated Uni-
code character. The tick marks are a part of the specification syntax and are always
used when specifying character literals. Examples of Unicode character specification
include:

’U+00B1’ // Plus/minus sign
’u+274f’ // Lower right drop--shadowed white square
’U+10347’ // Gothic letter IGGWS
’U+00FFFF’ // Not a character
’U-0001040F’ // Deseret capital letter yee

When the + symbol delineates the Unicode value, the short character code is used.
When - is used, the full character code is specified.

Literal character values associated with keyboard symbols are specified using the
notation ’x’, where x is the literal character. For example, ’E’ is the literal E character,
’@’ is the “at” character, ’ ’ is the space character. These characters may be specified
using the Unicode notation. This specification form is provided for convenience and
readability.

Unlike number literals, character has no define subtypes. Thus, all character
literals are simply of type character:

’a’::character

’U+274f’::character

’U-0001040F’::character

4.6.3 Boolean Literals

The only two literals of type boolean are the values true and false. Like character,
boolean has no subtypes. Thus, all boolean literals are simply of type boolean:

true :: boolean

false :: boolean

4.6.4 The Undefined Literal

The undefined literal, called bottom and written as bottom, specifies a value that has
no definition and is illegal. In this chapter, whenever evaluating an expression results
in something that is undefined, its value is bottom. To facilitate using bottom as an
error specifier, we say that bottom is an element of every type. Specifically, evaluating
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any expression, no matter what its type, may result in bottom. The undefined literal
is rarely used by specifiers. However, the language definition uses it heavily to denote
undefined or illegal calculations.

4.7 Operator Result Types

Operations on number, boolean, and character are defined with respect to operands
and arguments of the same type. Addition, for example, is defined over types varying
from bit through complex. By understanding the subtype hierarchy it is possible to
determine specific operator instances for heterogeneous arguments.

Using the addition operator as an example, we can understand how Rosetta deter-
mines the specific operator instance to apply to any parameter pair. Knowing that,
a type checker can determine the specific type associated with the addition operator
application. Specifically, for any application (A::T0+B::T1)::T2, we can determine
the type T2 by treating the arguments A and B as the most specific type where a match-
ing operator instance exists. For example, the following applications of + demonstrate
the approach:

0::bit + 2::natural == (0::natural + 2::natural)::natural

-1::negint + 0::bit == (-1::integer + 0::integer)::integer

1.1::posreal + 2::posint == (1.1::posreal + 2::posreal)::posreal

-1.1::negreal + 2.2::posreal == (-1.1::real + 2.2::real)::real

In each case, operands are treated as the most specific type where an instance of the
addition operator exists. If such an instance cannot be found, then the expression is
not properly typed and a type checker will indicate an error. The following examples
show where an instance of addition cannot be found:

(0::bit + ’c’::character)

(false::boolean + true::boolean)

(true::boolean + 2.9::real)

In each case, no instance of the addition operator exists for the common supertypes
of operand types. Bit and character share top as their only common supertype and
no addition operator is defined there. The same holds for boolean and real as well
as for boolean and boolean.
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Rosetta’s composite types define homogeneous collections of data.
The composite type subsystem provides mechanisms for defining and manipu-
lating three primary data containers, sets, multisets, and sequences. All composite
types are homogeneous and are declared using type formers. Values from compos-
ite types are formed using associated value formers, whose syntax parallels type
formers.

The set type defines unordered, homogeneous collections of unique items. A
primary use for the set type is defining new types and subtypes. Additionally,
sets provide excellent mechanisms for defining collections of items in abstract
specifications. The multiset type defines an unordered, homogeneous collection
of items, where multiple instances of an element are allowed. A primary use for
multiset types is manipulating collections of values, where the number of values in
a collection is significant. The sequence type defines indexed, homogeneous col-
lections of data that resemble arrays and lists. A primary use for sequence types
is ordering or structuring data collections. The sequence type has associated sub-
types that represent strings and bit vectors as sequences of characters and bits,
respectively.

5.1 Type Formers

All Rosetta composite types are defined using type formers. A type former is a
function that takes one or more content types and generates a composite type with
appropriate properties from them. All type formers have the following format:

container(T )

where container is the composite type and T is the type associated with items in
the container. For example, in the definition:

bitset::set(bit);

67
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set is the type former while bit is the content type. This declaration creates a
new variable called bitset whose value is constrained to a set of values from the
bit type. A constant is defined similarly:

mask::sequence(bit) is b"1100";

In this case, sequence is the type former while bit is again the content type. This
declaration creates a new constant called mask whose type is a sequence of bit
and whose constant value is the bitvector "1100".

The type former itself also defines a type. Excluding the content type from the
previous declaration results in an item whose value is a set, but could be a set of
elements from any arbitrary type:

anything::set

The use of set without the content type is the same as using top as the content
type. Specifically, the preceding declaration is equivalent semantically to:

anything::set(top);

Type formers are simply Rosetta functions. Users can define their own type for-
mers using techniques that will be documented in Chapter 8.

5.2 Set Types

A set is a unordered collection of unique items. The type former for set types is
the keyword set and the form of a set declaration is:

s::set(T )

where s is the new item, and T is the type of elements contained in the set. Values
associated with s may be any collection of items from T , including collections
with zero elements. The distinction between this declaration and the declaration:

v::T ;

is that in the second definition v must be a single element from T . For example,
the definition:

x::set(integer)

defines a new item whose value can be any subset of integer. In contrast, the
declaration:

v::integer

defines an item whose value is a single integer.
Of note is the type formed by using top as the type argument to set. The dec-

laration set(top) defines a type that includes all possible sets of Rosetta values.
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If an item has type set(top) we know that it is a set and nothing more. The set
type former with no arguments denotes this type. Specifically, the following two
declarations are semantically equivalent:

s::set(top) // Any set

s::set // Any set

Table 5.1 provides a list of operators defined over all types formed using the set
type former. These operations include standard set theory operations as well as
special-purpose formers for commonly used set values.

Not to be confused with the set type former, the set former is used to package
expressions into sets. The set former uses the classical form for defining sets by
extension. The notation {a,b,c} forms a set from the result of evaluating a, b,
and c. For example:

{1,2,3} // The set containing 1,2,3

{inc(1),2,3} // The set containing 2,3

{’a’} // The singleton set containing ’a’

The set former is not a mechanism for defining set literals. It is syntactic
sugar for a function that forms sets from values specified by arguments. The
set former is strict, implying that if any of its arguments is bottom, then its
value is bottom. This implies that no set can be formed with bottom as an
element.

Table 5.1 Operators defined over sets

Operation Syntax Return Type

Set Former {a,b,c,d} set
Union, intersection, and A+B, A*B, A-B set

difference

Set element a in B boolean
Subset and Superset A=<B, B>=A boolean
Proper Subset and A<B, A>B boolean

Proper Superset

Cardinality #A natural
Contents ∼A set
Empty Set {} set
Integer Set {i,..j} set(integer)
Character Set {c,..d} set(character)
Powerset set(A) set(set(A))
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The type of a set former application is the least common supertype of the
elements specified as its arguments. For example:

{1,2,3}::set(posint)

{-1,0,1}::set(integer)

{inc(1.1)}::set(posreal)

{1,’1’}::set(top)

{{1,2},{2,3}}::set(set(posint))

The application of the set former with no arguments, {}, is defined as the set
containing no elements, or simply the empty set. The empty set is a subset of all
sets, no set is a subset of {}, and the size of {} is zero. Furthermore, {} unioned
with any set is the original set and {} intersected with any set is {}. The type of the
empty set presents interesting problems because it is a subset of all sets and thus
an element of every formed set type. By convention, the empty set can be inferred
to have any set type and this may be used as an operand to operators over sets
involving any set type.

The element operator indicates when an item is an element of a set. The in
operator is used to represent element and the notation a in S is read “a is an
element of S.” The relation is true when the item a is contained in the set S. For
example:

3 in {1,2,3} == true

4 in {1,2,3} == false

The subset relation is true when all elements of its first set argument are contained
in its second set argument. The =< and >= operators are used to represent subset
operations. A=<B is read “A is a subset of B” while B>=A is read “B is a superset of
A.” Proper subset relationships hold when one set is a subset of another but is not
equal to it. The the > and < operations provide proper containment. Thus, A<B is
true if A=<B is true and A/=B. Likewise, A>B is true if A>=B and A/=B. For example:

{2,3} =< {1,2,3} == true

{2,3} < {1,2,3} == true

{1,2,3} < {1,2,3} == false

{1,2,3} >= {2,3} == true

{1,2,3} > {2,3} == true

{1,2,3} > {1,2,3} == false

Special operations are provided to form sets that contain sequences of integer
and character values. The notation {i,..j} forms the set containing all integers
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between i and j inclusively if i and j are integer values. If i and j are character
values, then a set of characters is formed. For example:

{2,..5} == {2,3,4,5}

{’a’,..’f’} == {’a’,’b’,’c’,’d’,’e’,’f’}

This notation is useful for numerous mapping operations, where sets of integer
and character values must be generated.

Set union, intersection, and difference provide constructors for new sets from
existing sets. The operator, +, generates the set union. Thus, A+B contains all ele-
ments contained in either A or B. For example:

{1,2,3} + {1,2,3} == {1,2,3}

{1,2,3} + {2,3} == {1,2,3}

{1,2,3} + {3,4,5,6} == {1,2,3,4,5,6}

{1,2,3} + {} == {1,2,3}

Intersection generates a new set containing all elements shared in its argu-
ment set. The operator, ∗, generates the set intersection. Thus, A∗B generates a
new set containing elements contained simultaneously in both set A and set B. For
example:

{1,2,3} ∗ {1,2,3} == {1,2,3}

{1,2,3} ∗ {2,3} == {2,3}

{1,2,3} ∗ {3,4,5,6} == {3}

{1,2,3} ∗ {} == {}

Set difference generates a new set containing those elements in its first argument
set that are not in its second argument set. The operator, −, generates the set differ-
ence. Thus, A−B generates a new set containing elements from A that are not in B. For
example:

{1,2,3} − {1,2,3} == {}

{1,2,3} − {2,3} == {1}

{1,2,3} − {3,4,5,6} == {1,2}

{1,2,3} − {} == {1,2,3}

The cardinality operator, #, returns the size of a set. Thus, #A is the number of
elements contained in A. For example:

#{1,2,3} == 3

#{} == 0
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The contents operator, ~A, returns the contents of A as a set. For sets, the contents
operator is an identity operator, as the elements of a set are the set itself. The con-
tents operator is defined over all composite types and is included over set types for
completeness.

The powerset operator, set, is used to generate collections of all possible subsets
from a set. Thus, the notation set(A) generates the set of all possible subsets of A. For
example:

set({1,2}) == {{},{1},{2},{1,2}}

It should be noted that the powerset operator is most often used for defining
new types, because any Rosetta set can be used as a type. It is not a coincidence
that the former for set types is the same as the powerset operation. For example, the
declaration:

s :: set(integer);

asserts that s is an element of the powerset of integers. Because the elements of
the powerset include all subsets of integers, the value of s is constrained to be
one such subset. Thus, the set operator is used both to generate powersets and
to define new set types. Because sets can be used as types in Rosetta, it is possible
to construct user-defined types by providing functions that evaluate to sets. Exam-
ples of such usage can be found in Chapter 8.

The collection of functions defined over set types is defined in Table 5.2. The
choose operator selects an arbitrary element from a set. Choose is not deterministic
in that any element of its argument can be returned. For example:

choose({1,2,3}) == 1

choose({1,2,3}) == 2

The image function takes a unary function and a set and returns a new set
resulting from the application of the unary operator to each element of the original
set. For example, assuming that inc is defined as an increment function over
integer:

image(inc,{1,2,3}) == {2,3,4}

The filter function takes a boolean predicate and a set and returns a new
set that includes exactly those items from the original set that satisfy the predicate.

Table 5.2 Functions defined over sets

Function Syntax Return Type

Random choice choose(s::A) A
Function image image(f,s) ran(f)
Filter a set filter(p,s::set(A)) set(A)
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For example, assuming that gtz checks its argument to determine if it is greater
than zero:

filter(gtz,{-1,0,1}) == {1}

Filter can be used to define new subtypes from types by filtering out values. The
formal definition of the positive integer numbers is defined as the following set of
values:

filter(gtz,natural) == posint

5.3 Multiset Types

A multiset is a collection of items that allows duplication of elements. Sometimes
called bags, multisets differ from sets in that repeated elements are allowed and the
number of element occurrences can be measured. The type former for multisets is the
function multiset. The form of a multiset declaration is:

m::multiset(T)

where m is the new item and T is the type of elements contained in the multiset. Values
associated with m may be any collection of items from T , including collections with
zero elements. For example, the definition:

x::multiset(integer)

defines a new item whose value can be any multiset of integer values.
Of note is the type formed by using top as the type argument to multiset.

The declaration multiset(top) defines a type that includes all possible multisets
of Rosetta values. If an item has type multiset(top) we know that it is a multiset and
nothing more. The multiset type former with no arguments denotes this type. Specif-
ically, the following two declarations are semantically equivalent:

s::multiset(top) // Any multiset

s::multiset // Any multiset

Table 5.3 defines the collection of operations define over multisets.
The multiset former is used to package expressions into multisets and defines mul-

tisets by extension. The notation {∗a,b,c∗} forms a multiset from the result of
evaluating a, b, and c. For example:

{∗ 1,2,1,3 ∗} // The multiset containing 1,1,2,3

{∗ inc(1),2,1,3 ∗} // The multiset containing 1,2,2,3

{∗ ’a’ ∗} // The singleton multiset containing ’a’

The multiset former is not a mechanism for defining multiset literals. It is syntactic
sugar for functions that form multisets from values specified by arguments to the
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Table 5.3 Operations defined over multisets

Operator Syntax Return Type

Multiset former {∗a,b,a,d∗} multiset
Union, intersection and A+B, A∗B, A-B multiset

difference

Multiset element a in M boolean
Multisubset and A=<B, B>=A boolean

multisuperset

Proper multisubset and A<B, B>A boolean
proper multisuperset

Cardinality #B natural
Number in x # M natural
Contents ~A::multiset(A) {set}(A)
Empty multiset {∗∗} multiset
Integer multiset {∗i,..j∗} multiset(integer)
Character multiset {∗’c’,..’d’∗} multiset(character)
Power Multiset multiset(A) set(multiset(A))

former. The multiset former is strict, implying that if any of its arguments is bottom,
then its value is bottom. This implies that no multiset can be formed with bottom as
an element.

The type of a multiset former application is the least common supertype of the
elements specified as its arguments. For example:

{∗ 1,2,1,3 ∗}::multiset(posint)

{∗ −1,−1,0,1,1 ∗}::multiset(integer)

{∗ inc(1.1) ∗}::multiset(posreal)

{∗ 1,’1’ ∗}::multiset(top)

{∗{1,2,{1,2∗}::multiset(set(posint))

{∗{∗1,2∗},{∗1,2∗}∗}::multiset(multiset(posint))

The application of the multiset former with no arguments, {∗∗}, is defined as the
multiset containing no elements, or simply the empty multiset. The empty multiset
is a sub-multiset of all multisets, no multiset is a sub-multiset of {∗∗}, and the size
of {∗∗} is zero. Furthermore, {∗∗} unioned with any multiset is the original multi-
set and {∗∗} intersected with any multiset is {∗∗}. The type of the empty multiset
presents interesting problems because it is a sub-multiset of all multisets and thus
an element of every formed multiset type. By convention, the empty multiset can be
inferred to have any multiset type and may be used as an operand to operators over
multisets involving any multiset type.
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The element operator indicates when an item is an element of a multiset.
The in operator is used to represent element and the notation a in M is read “a is
an element of M.” The relation is true when the item a is contained in the multiset M.
For example:

3 in {∗1,2,3,3∗} == true

4 in {∗1,1,2,3∗} == false

The cardinality operator for multisets returns the number of elements in the mul-
tiset. The unary application of # to a multiset returns the cardinality of the multiset.
Specifically:

#{∗1,1,2,1∗} == 4

#{∗∗} == 0

The cardinality operator may also be used as a binary operation that returns the num-
ber of occurrences of an element in a multiset. Specifically:

1 #{∗1,1,2,1∗} == 4

2 #{∗1,1,2,1∗} == 1

4 #{∗1,1,2,1∗} == 0

Using cardinality in this fashion is not defined for sets. If it were, the number of occur-
rences of any element in the set would be 1.

The contents operator defined on multisets returns the elements of the multiset as
a set. The operation ~M takes an arbitrary multiset and returns its elements as a set,
removing duplicate entries. For example:

∼{∗1,1,2,1∗} == {1,2}

∼{∗1,2,3,2,1∗} == {1,2,3}

∼{∗∗} == {}

The sub-multiset relation is true when all elements of its first multiset
argument are contained in its second multiset argument in at least as many occur-
rences as the first. The =< and >= operators are used to represent sub-multiset
operations. A=<B is read “A is a sub-multiset of B,” while B>=A is read “B is a super-
multiset of A.” Proper sub-multiset relationships hold when one multiset is a subset
of another but is not equal to it. Two multisets are equal if they contain the same ele-
ments in the same quantities. The the > and < operations provide proper sub-multiset.
Thus, A<B is true if A=<B is true and A/=B. Likewise, A>B is true if A>=B and A/=B.
For example:

{∗2,3∗} =< {∗1,2,3,3∗} == true

{∗2,3,3∗} < {∗1,2,3∗} == false
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{∗2,3∗} < {∗y1,2,3∗} == true

{∗1,2,3∗} < {∗1,2,3∗} == false

{∗1,2,3,3∗} >= {∗2,3∗} == true

{∗1,2,3∗} > {∗2,3,3∗} == false

{∗1,2,3∗} > {∗2,3∗} == true

{∗1,2,3∗} > {∗1,2,3∗} == false

Special operations are provided to form multisets that contain sequences of
integer and character values. The notation {∗i,..j∗} forms the multiset contain-
ing one instance of all integers between i and j inclusively, if i and j are integer
values. If i and j are character values, then a multiset of characters is formed.
For example:

{∗2,..5∗} == {∗2,3,4,5∗}

{∗’a’,..’f’∗} == {∗’a’,’b’,’c’,’d’,’e’,’f’∗}

Multiset union, intersection, and difference provide constructors for new multi-
sets from existing multisets. The operator, +, generates the multiset union. Thus, A+B
contains all elements contained in either A or B. Further, the number of any element
in A+B is the sum of the numbers in A and B individually. If ’a’#A=1 and ’a’#B=2,
then ’a’#(A+B)=3. For example:

{∗1,2,3∗} + {∗1,2,3∗} == {∗1,1,2,2,3,3∗}

{∗1,2,3∗} + {∗2,3∗} == {∗1,2,2,3,3∗}

{∗1,2,3∗} + {∗3,4,5,6∗} == {∗1,2,3,3,4,5,6∗}

{∗1,2,3∗} + {∗∗} == {∗1,2,3∗}

Intersection generates a new multiset containing all elements shared in its argu-
ment multisets. The operator, ∗, generates the multiset intersection. Thus, A∗B gen-
erates a new multiset containing elements contained simultaneously in both multiset
A and multiset B. Further, the number of any element in the intersection is the mini-
mum number in A and B individually. If ’a’#A==1 and ’a’#B==2, then ’a’#(A∗B)=1.
For example:

{∗1,2,3∗} ∗ {∗1,2,3∗} == {∗1,2,3∗}

{∗1,2,2,3∗} ∗ {∗2,3∗} == {∗2,3∗}

{∗1,2,3∗} ∗ {∗3,3,4,5,6 ∗} == {∗3∗}

{∗1,2,3∗} ∗ {∗∗} == {∗∗}

Multiset difference generates a new multiset containing those elements
in its first argument multiset that are not in its second argument multiset.
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The operator, −, generates the multiset difference. Thus, A−B generates a new
multiset containing elements from A that are not in B. Further, the number of any
element in the difference is the difference between the number in the first multiset
and the second. If ’a’#A=3 and ’a’#B=1, then ’a’#(A−B)=2. For example:

{∗1,2,3∗} − {∗1,2,3∗} == {∗∗}

{∗1,2,3∗} − {∗2,3∗} == {∗1∗}

{∗1,2,3,3∗} − {∗3,4∗} == {∗1,2,3∗}

{∗1,2,3,3∗} − {∗2,3,3∗} = {∗1∗}

{∗1,2,3∗} − {∗∗} == {∗1,2,3∗}

The power multiset operation, multiset(A), forms the set of all possible multisets
formed from elements of its single set argument. It serves as the type former for
multiset types. Unlike set(A), which is finite for all finite A, the value of multiset(A)
is always infinite unless A is empty. This is due to multisets allowing arbitrary numbers
of the same element. For example:

multiset({1}) == {{∗∗},{∗1∗},{∗1,1∗},{∗1,1,1∗},...}

The definition of multiset(A) can also be defined as the set of multisets whose ele-
ments are taken from the set A. Formally, if a in multiset(A), then ~a =< A. The
multiset operator is used almost exclusively for defining new multiset types, as it
cannot be evaluated.

Functions defined over multisets are shown in Table 5.4. The choose operator
selects an arbitrary element from a multiset. Choose is not deterministic in that any
element of its argument can be returned. For example:

choose({∗1,2,2,3∗}) == 2

choose({∗1,2,2,3∗}) == 3

The image function takes a unary function and a multiset and returns a new mul-
tiset resulting from the application of the unary operator to each element of the origi-
nal multiset. For example, assuming that inc is defined as an increment function over
integer:

image(inc,{∗1,2,2,3,3∗}) == {∗2,3,3,4,4∗}

Table 5.4 Functions defined over multisets

Operator Syntax Return Type

Random choice choose(m::A) A
Image over multiset image(f,m) multiset(ran(f))
Filter over multiset filter(p,m::multiset(A)) multiset(A)
Convert set to multiset set2multiset(s::set(A)) multiset(A)
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The filter function takes a Boolean predicate and a multiset and returns a
new multiset that includes exactly those items from the original multiset that sat-
isfy the predicate. For example, assuming that gtz checks its argument to deter-
mine if it is greater than zero:

filter(gtz,{∗-1,-1,0,1,1,2,1∗}) == {∗1,1,2,1∗}

Keep in mind that, like sets, the ordering of multiset elements has no bearing on its
value. Two multisets are equivalent if they have the same contents. For example:

{∗1,1,1,2,3,4∗} == {∗4,1,3,1,2,1∗}

5.4 Sequence Types

A sequence is an indexed collection of items. Its fundamental use in the Rosetta system
is defining ordered collections or lists of items. Sequences support random access and
ordering of elements using their associated index, and in this regard behave much
like arrays. Sequences also support concatenation allowing arbitrary creation of new
sequences. The type former for sequences is the keyword sequence. The form of a
sequence declaration is:

s::sequence(T );

where s is the new item, and T is the type of elements contained in the sequence.
Legal elements of s are sequences of elements from T , including sequences with zero
elements. For example, the definition:

x::sequence(integer)

defines a new item whose value can be any sequence of values from integer.
The declaration sequence(top) defines a type that includes all possible

sequences of Rosetta values. If an item has type sequence(top) we know that
it is a sequence and nothing more. The sequence type former with no argu-
ments denotes this type. Specifically, the following two declarations are semantically
equivalent:

s::sequence(top) // Any sequence

s::sequence // Any sequence

Table 5.5 provides a list of operators defined over all types formed using the sequence
type former. Operators common to sequences as well as those defined for lists in other
languages are included. In addition, operators for creating useful multiset values are
defined.

The sequence former uses the classical form for defining sequences by extension.
The notation [a,b,c] forms a sequence from the result of evaluating a, b, and c. The
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Table 5.5 Operators defined over sequence types

Operator Syntax Return Type

Sequence Former [1,2,3,5] sequence
Concatenation s&t sequence(A)
Random access s::sequence(A)(n) A
Subscription s::sequence(A) sub i sequence(A)
Integer Sequence [i,..j] sequence(integer)
Character Sequence [’c’,..’d’] sequence(character)
Subsequence relations s<t, s=<t, t>=s,t>s boolean
Minimum and maximum s min t , s max t sequence
Cardinality #s natural
Sequence Contents ∼s::sequence(A) multiset(A)
Empty sequence [] sequence

order of elements in the sequence former defines the order in the resulting sequence.
The first element is associated with index 0 and other elements follow. For example:

[1,2,3] // The sequence containing 1,2,3 in order

[inc(1),2,3] // The sequence containing 2,2,3

[’a’] // The sequence containing ’a’

The sequence former is not a mechanism for defining sequence literals. Like set and
multiset formers, it is syntactic sugar for functions that form sequences from values
specified by arguments to the former. The sequence former is strict, implying that if
any of its arguments is bottom, then its value is bottom. This implies that no sequence
can be formed with bottom as an element.

The type of a sequence former application is a sequence of the least common super-
type of the elements specified as arguments. For example:

[1,2,3]::sequence(natural)

[-1,0,1]::sequence(integer)

[inc(1.1)]::sequence(posreal)

[1,’1’]::sequence(top)

[{1,2},{2,3}]::sequence(set(posint))

The application of the sequence former with no arguments, [], is defined as the
sequence containing no elements, or simply the empty sequence. The empty sequence
shares membership properties with the empty set and the empty multiset. The type
of the empty sequence can be inferred to have any sequence type and may be used as
an operand to operators over sets involving any set type.
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Individual elements of a sequence type are accessed using their associated
positional index. The sequence is used as a function name and the single argument
is used to access an element. The notation s(2) accesses the element associated with
index 2 in the sequence s; s(0) references the first element of the sequence. For exam-
ple, assuming that s is equal to the sequence [3,3,2,1]:

s(0) == 3

s(2) == 2

s(4) == bottom

As the example demonstrates, accessing a sequence element outside the known size
of the sequence results in bottom.

It is not necessary to name the sequence to access its elements. The label, s, can be
replaced by its value in the preceding example with equivalent results:

[3,3,2,1](0) == 3

[3,3,2,1](2) == 2

[3,3,2,1](4) == bottom

Sequences of sequences are allowed and referencing is achieved by multiple levels of
accessor functions. For example, s(0)(1) accesses the second element of the first
sequence in s; s(0) references the first element of s. If s is a sequence of sequences,
then s(0) is itself a sequence, thus s(0)(1) accesses an element in the sequence.
Sequences can be arbitrarily nested in this way to provide functionality similar to
a multidimensional array. For example, assume that we would like to define a two-
dimensional array of integer values. The declaration for an example of this structure
is:

intarray :: sequence(sequence(integer));

Assume that intarray=[[1,2,3],[4,5,6],[7,8]]:

intarray(0) == [1,2,3]

intarray(1) == [4,5,6]

intarray(1)(0) == [1,2,3](0) == 1

intarray(2)(2) == [7,8](2) == bottom

The contents function, ~s, returns the contents of a sequence as a multiset. Thus the
number of each element in the returned multiset is equal to the number of element
occurrences in the sequence.

~[1,2,3,2,1] == {∗1,1,2,2,3∗}

~[1,1,1] == {∗1,1,1∗}

~[] == {∗∗}
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Because all individual sequences are finite, the contents multiset can always be
formed.

The contents operator can be applied twice to obtain the set of values appearing in
a sequence. The first application results in a multiset and the second results in a set.
For example:

~(~[1,2,3,2,1]) == ~{∗1,1,2,2,3∗} == {1,2,3}

~(~[1,1,1]) == ~{∗1,1,1∗} == {1}

~(~[]) == ~{∗∗} == {}

As with set and multiset, the size of a sequence type can be found using the size
operator, #s; #s returns the natural number associated with the size of s. For example:

#[1,2,3,2,1] == 5

#[1,1,1] == 3

#[] == 0

The concatenation operator s&t is used to concatenate two sequences of the same
type. Sequences are homogeneous data structures, thus all elements contained within
them must be of a common type. The notation s&t produces a new sequence, with
the elements of s preceding the elements of t. For example:

[1,2,3]&[4,5] == [1,2,3,4,5]

[1,2,3]&[] == [1,2,3]

[]&[1,2,3] == [1,2,3]

Assume the following declarations:EXAMPLE 5.1
Sequence Forming and
Concatenation S::sequence(integer) is [1,2,3];

T::sequence(integer) is [1,2];

The following relationships hold:

S&T == [1,2,3,1,2];
T&S == [1,2,1,2,3];
S&S == [1,2,3,1,2,3];

S(0) == 1;
S(#S-1) == 3;
(S&T)(0) == S(0) == 1;
(S&T)(#S-1) == S(#S-1) == 3;
(S&T)(#S) == 1;
(S&T)(#(S&T)-1) == T(#T-1) == 2;

~S == {1,2,3};
~T == {1,2};
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Assume the following declaration of a multidimensional sequence:

S::sequence(sequence(integer)) is [[1,2,3],[4,5,6]];

The following relationships hold:

S(0) == [1,2,3];
S(0)(1) == 2

S(1) == [4,5,6];
S(1)(0) == 4;

~S =={∗[1,2,3],[4,5,6]∗};

Note that concatenating a sequence of integers with the sequence S is not legal. To
add a new sequence to the end of S requires concatenating with a sequence of integer
sequences of the form [[5,6]]. Note that length is not an issue. Bounded sequences
will be defined in a later section. �

It is possible to extract a collection of elements from a sequence using an operation
called subscription. If s is a sequence and i is a sequence of natural numbers, then sub
i extracts the elements of s associated with values from i, generating a new sequence
from those elements in the order specified by i. For example:

[1,2,3,4] sub [0,1] == [1,2]

[1,2,3,4] sub [1,0] == [2,1]

[1,2,3,4] sub [1,1,0,0,3,3,2,2] == [2,2,1,1,4,4,3,3]

Special operations are provided to form sequences of ordered integer and
character values. The notation [i,..j] forms the sequence containing all inte-
gers in order between i and j inclusively, if i and j are integer values. If i and j are
character values, then a sequence of characters is formed. For example:

[2,..5] == [2,3,4,5]

[’a’,..’f’] == [’a’,’b’,’c’,’d’,’e’,’f’]

The =< and >= operators are used to represent subsequence relations between
sequences. A=<B holds when A is a subsequence of B and A>=B when B is a subse-
quence of A. Similarly, the > and < operations provide strict lexicographical ordering
relationships. A<B is true if A=<B is true and A/=B. Likewise, A>B is true if A>=B and
A/=B. For example:

[1,2] =< [1,2,3,3] == true

[1,2,3] < [1,2,3] == false

[2,3] < [1,2,3] == true

[1,2,3] =< [1,2,3] == true
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Sequence max and min operations are based on the subsequence relationships just
defined. A max B returns A if A>B and B otherwise. Similarly, A min B returns A if A<B
and B otherwise. Both operators can be defined using the if expression:

a min b == if a < b then a else b

a max b == if a < b then b else a

whereaandbarebothsequences.Table5.6 lists functionsavailableforsequencetypes.
Assume the following declarations of integer sequences:EXAMPLE 5.2

Subsequences s1::sequence(integer) is [1,2,3];
s2::sequence(integer) is [1,2,3,4];

Subsequence definitions state that the following relationships must hold:
s1 < s2;
s1 =< s2;
s1 =< s1;

s1 = s2 sub [0,..2];
s1 max s2 == s2 == [1,2,3,4];
s1 min s2 == s1 == [1,2,3]; �
Three operations are defined that allow sequences to be treated as lists. The acces-

sors head and tail return the first element of a sequence and the remaining elements,
respectively. The constructor cons adds a single element to the front of a sequence.
Together, cons, head, and tail provide a list capability similar to that defined in tra-
ditional functional languages. The last function is also available to access the last
element of a sequence. The head, tail and last functions are defined only on non-
empty lists. Examples of their application include:

head([1,2,3]) == 1

tail([1,2,3]) == [2,3]

Table 5.6 Functions defined over sequence types

Function Syntax Return Type

Power Sequence sequence(T) set(sequence(T))
List accessors head(s), element,

tail(s), sequence,
last(s) element

Add to front cons(e,s) sequence
Reverse a sequence reverse(s) sequence
Image of function image(F,s) sequence
Comprehension filter(P,s) sequence
Reduce and Reduce tail reduce(F,i,s), element of the range of F

reduce_tail(F,i,s)
Element replacement replace(s,n,v) sequence
Zip zip(F,s1,s2) sequence
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cons(1,[1,2,3]) == [1,1,2,3]

tail(cons(1,[1,2,3])) == [1,2,3]

head(cons(1,[1,2,3])) == 1

last([1,2,3]) == 3

cons(1,[]) == [1]

head([]) == bottom

tail([]) == bottom

last([]) == bottom

The functions head, tail, and cons can be defined using subscription, integerEXAMPLE 5.3
Head, Tail, and Cons Using
Subscription and
Concatenation

sequence, and the sequence former. The head of a sequence can be obtained by using
the indexing operation to extract the first element. Formally, the head of a sequence
can be defined as:

head(s) == s(0)

The tail of a sequence can be obtained by extracting all but the first element. This
is a bit trickier, but the integer sequence operation can be used with subscription
to extract all but the first element. The integer sequence operation generates the
sequence 1 through length of S minus 1. Subscription is then used to extract all but
the first element of the sequence:

tail(S) == s sub [1,..(#s-1)];

The cons constructor can be defined using the sequence former and concatenation
to add an element to the beginning of a sequence:

cons(e,s) == [e]&s;

The sequence former creates a new sequence from e that is one element long. It is
then added to the front of the sequence using the concatenation operator. �

The reverse function is defined over all sequences and evaluates to a sequence
that contains the same elements as s, but in the reverse order. For example:

reverse([1,2,3]) == [3,2,1]

reverse([1]) == [1]

reverse([]) == []

The replace function generates a new sequence by replacing the element at
position i with v. If replace attempts to access a sequence position beyond the
length of s, the result is bottom. Unlike array operations in traditional languages,
the original sequence is not modified in any way. A new sequence is generated
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whose elements match those in s except for position i contains the new value. For
example:

replace([’a’,’b’,’c’],0,’b’) == [’b’,’b’,’c’]

replace([’a’,’b’,’c’],4,’b’) == bottom

Sequences, like all other items, can be used as variables rather than as constantEXAMPLE 5.4
Updating a Sequence values. Updating sequences is quite easy using the replacement operation, as in the

following statement:

seq’ = replace(seq,2,5)

The result of evaluating this expression is constraining the value of seq in the next
state, seq’, to be the updated sequence from the current state — specifically, seqwith
the element indexed by 2 replaced with 5. Using the tick notation in this fashion will
be fully explained in Chapter 12. For now, it is enough to simply realize that updating
sequences like arrays can be achieved using replacement. �

The image and filter functions map functions onto sequence elements. The
image function returns the sequence formed by applying function to each element
of a sequence. If any application results in bottom, then image results in bottom.
Specifically, if inc is a function that increments its argument by 1:

image(inc,[1,1,2,3]) == [inc(1),inc(1),inc(2),inc(3)] == [2,2,3,4]

image(inc,[]) == []

The filter function behaves much like the image function except that only the ele-
ments that a predicate holds true for are kept in the resultant list. Should any predicate
application result in bottom, then the application of filter results in bottom. Specif-
ically, if gtz is a function over integers that is true, if its argument is greater than zero:

filter(gtz,[-2,-1,0,1,2]) == [1,2]

filter(gtz,[]) == []

The reduce operator is a fold over sequences. It has two distinct forms that allow
both left (reduce) and right (reduce_tail) associativity. Both forms take a sequence,
a binary function whose domain is the same type as the sequence elements, and an
initial value of the same type as the function range. The function is first applied to
the initial value and the first sequence element. The function is then applied to each
sequence element using the result of the previous application as the other argument.

A simple application of reduce defines the standard summation operator:

summation(s::sequence(integer))::integer is
reduce(__+__,0,s);

The newly defined function will start with 0 and subsequently sum sequence
values from left to right.
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The reduce_tail function is similar except that the function is first applied to
the initial value and the last element of the sequence, working from right to left. For
operations like summation, where the applied function is commutative, the operators
generate the same result. For example:

reduce(__+__,0,[1,2,3]) == (((0+1)+2)+3)

reduce_tail(__+__,0,[1,2,3]) == (1+(2+(3+0)))

In this case, the results are the same. However, for non-commutative operators like
subtraction, the distinction is clear:

reduce(__-__,0,[1,2,3]) == (((0-1)-2)-3) == -6

reduce_tail(__-__,0,[1,2,3]) == (1-(2-(3-0))) == 2

Both forms are useful, but care must be taken when using them in definitions.
The zip is much like the image function except that it accepts two sequences an a

binary function. The zip returns a list of elements resulting from the pair-wise appli-
cation of the argument function to elements in the same position in the two lists.

If any function application results in bottom, then the application of zip also
results in bottom. For example:

zip(__+__,[1,2,3],[0,1,2]) == [1+0,2+1,3+2] == [1,3,5]

zip(__/__,[1,2,3],[0,1,2]) == [1/0,2/1,3/2] == bottom

The power sequence operation, sequence(A), forms the set of all possible
sequences formed from elements of its single set argument. It serves as the type
former for sequence types. Like multiset(A), sequence(A) evaluates to an infinite
set unless A is empty:

sequence(1) == {[],[1],[1,1],[1,1,1],...}

The definition of sequences(A) can also be defined as the set of sequences whose
elements are taken from the set A. Formally, if a in sequence(A) then ~(~a) =< A.
Like the multiset operator, the sequence operator is used almost exclusively for
defining sequence types.

5.4.1 The String Type

A special case of sequence is the string type. Formally, string is defined as:

string == sequence(character);

The following notation defines a variable of type string:

str :: string;

A shorthand for forming constant strings is the classical notation embedding a
sequence of characters in quotations. Specifically, "ABcdEF" is equivalent to the
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sequence [’A’,’B’,’c’,’d’,’E’,’F’]. Thus, a string constant such as "$" can be
defined as:

dollarString :: string is "$";

All operations that apply to sequences also apply to strings because strings are
simply character sequences. In particular, the notation "abc"&"def" is useful for
concatenation of strings. Ordering operations for sequences provide lexicographical
ordering for strings based on the ordering of Unicode characters. Relationships like
"ab"<"abc" are true as a result of subsequence operations.

Rosetta’s string type provides operations that are typical of other similar languages.EXAMPLE 5.5
String Usage By treating strings as sequences of characters, operations are provided with little

additional semantics. The following examples represent some useful operations over
strings:

allcaps(s::string)::string is map uc s;

firstn(s::string, n::natural)::string is
s sub [0..,n-1];

pal(s::string)::boolean is s == reverse(s);

contains(s::string, c::set(character))::boolean is

(filter <∗(x::character)::boolean is not(x in c)∗> s) == []; �

5.4.2 The Bitvector and Word Types

A second special case of sequence is the bitvector type used heavily in digital systems
design. Formally, bitvector is defined:

bitvector == sequence(bit);

Thus, a bitvector is an array that contains only elements 0 and 1.
Bitvector literals may be specified either as binary or hexadecimal strings preceded

by a the bitvector literal indicator b for binary or x for hexadecimal. The following
bitvector literals define the same value:

b"10001100"

x"8C"

Operations over bit are generalized to bitvectors by performing each operation on
similarly indexed bits from the two bitvectors using the zip operation. One such exam-
ple of this is the definition of bitvector and. Assuming that b0 and b1 are equally sized
bitvectors:

b0 and b1 = zip(__and__,b0,b1)

When applying bit operations to bitvectors, it is mandatory that the argu-
ments be of the same length. The padding operators can easily be used to assure
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Table 5.7 Operations defined on bitvectors in addition to traditional sequence operations

Operation Syntax Return Type

Binary operations A and B, A or B, A nand B, bitvector
A nor B, A xor B, A xnor B,

not A
Conversion to natural bv2nat(b) natural
Conversion from natural nat2bv(n) bitvector
Complement twos(A)
Shift operations lshr(A), lshl(A), bitvector

ashr(A), ashl(A) bitvector
Rotate operations rotr(A), rotl(A) bitvector
Pad operations padr(A,l,n), padl(A,l,n), bitvector

sext(A,l)

this requirement is satisfied. Assuming that b0 and b1 are bitvectors of unknown
length less than 16 bits, they can be treated as 16-bit values as follows:

padl(b0,16,0) and padl(b1,16,0)

This use of padding assures that both operands have 16 bits. As we shall see later,
Rosetta provides general padding and sign extension operators.

The operations bv2nat and nat2bv provide standard mechanisms for converting
between binary and natural numbers. The binary value is treated as an unsigned value
and converted in the canonical fashion. For example:

bv2nat(b"10") == 2

bv2nat(b"101") == 5

nat2bv(7) == "111"

nat2bv(0) == b"0"

It is always true that bv2n(n2bv(x)) == x.
The operation twos(bv) takes the two’s complement of a binary value by negating

and adding 1 to the result. This operator provides a negation function for fixed-length
binary values. For example:

twos(b"011") == b"101"

twos(b"101") == b"011"

It is always true that twos(twos(x)) == x.
Two’s complement operators operate on bitvectors with known lengths. To

accommodate this, the twos function assumes that the resulting bitvector and the
argument bitvector have the same length. The pad function can be used



5.4 Sequence Types 89

to appropriately size bitvectors prior to taking their complement, while the sign
extend operator can be used to size the bitvectors after taking their complement.

Shifting operations are provided for manipulation of bitvectors. The lshr and
lshl operations provide logical shift right and left, while ashr and ashl provide log-
ical and arithmetic shifts right and left, the distinction being that logical shift opera-
tions shift in 0s while arithmetic shift operations shift in 1. The rotr and rotl oper-
ations provide rotation or circular shift. Examples include:

lshr(b"1100") == b"0110"

ashl(b"0011") == b"0111"

rotr(b"0011") == b"1001"

rotl(b"1011") == b"0111"

The padr(A,l,n) and padl(A,l,n) operations pad or concatenate a bitvector.
Both functions take three arguments, a bitvector, a length value of type natural,
and a pad value of type bit. If the length value is less than the length of the input
bitvector, padr removes bits to the right and padl removes bits to the left, resulting in
a vector of the specified length. In this case, the pad value is ignored. If the length value
is greater than the length of the input bitvector, padr adds enough copies of the pad
value to the right of the vector so that the return value is of the specified length. The
padl operates similarly except that bits are added to the left of the bitvector argument.
Some examples include:

padr(b"1100",2,0) == b"11"

padl(b"1100",2,0) == b"00"

padr(b"1100",6,1) == b"110011"

padl(b"1100",6,0) == b"001100"

The sext operation is a special case of padl and performs a sign extension on its
argument. Sign extension is useful when padding a two’s complement value without
losing its sign. The operand is extended to the left using the value of its most significant
bit rather than an explicit parameter. Some examples include:

sext(b"1100",2) == b"00"

sext(b"1100",6) == b"111100"

sext(b"0011",6) == b"000011"

Digital systems rarely deal with arbitrary bitvectors, but instead process fixed-
length bitvectors. The type word is provided to define such fixed-length bitvector
types. To define a word, the function word(n) is used, where n is the word length.
For example:

w::word(8);
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defines a variable w that can take the value of any bitvector of length 8. Neither shorter
nor longer bitvectors belong to this type. Because word is a subtype of bitvector, all
bitvector operations are defined on words.

It should be noted that bitvector and word types are not the same as binary
numbers. Thus, the expression:

w = 2\10001001\;

is not legal because the argument types do not match. The type of w is word(8) while
the type of 2\10001001\ is posint. Thus, the equivalence cannot be defined. The
expressions:

w = nat2bv(2\10001001\);

w = nat2bv(16\89\);

are legal because in each case the number literal is converted to a bitvector prior to
equating it with w.

An excellent example of subscription use is decoding an instruction in a CPU.EXAMPLE 5.6
Slicing Bitvectors Assume that I is a sequence of bits representing a typical 16-bit instruction. It is possi-

ble to decode I by extracting sub-sequence associated with instruction fields. Assum-
ing that the instruction format is an instruction ID followed by three 4-bit register
IDs, the following functions decode the instruction into its constituent parts:

op = I sub [15,..12];

rs = I sub [11,..8];

rt = I sub [7,..4];

rd = I sub [3,..0];

The value of rd may be used as a two’s complement offset value using sign extend and
the pad operation:

offset = sext(padr(rd,5,0),16)

In this case, a word address is generated by padding with 0 to the right. The sign
extend function is then used to extend the 5-bit offset value to 16 bits without losing
sign information. �



6Functions

Rosetta’s function definition and evaluation capability provides function
definition and application capabilities and a collection of advanced capabilities
for more sophisticated and powerful specifications. Like functions in traditional
functional programming languages, Rosetta functions provide a mechanism for
defining abstractions of expressions over parameters. Unlike functions in tradi-
tional imperative programming languages, Rosetta functions are pure and side-
effect free.

A Rosetta function simply reduces to a value derived from its parameters and
items defined in its static scope. Actual parameters that Rosetta functions are
applied to cannot be altered by the function application, nor can other symbols
in the static scope be altered. Each Rosetta function is simply an encapsulated
expression defined over its parameters and items in scope. When evaluated, the
encapsulated expression simply reduces to a value that replaces the function appli-
cation. In this sense, Rosetta functions behave more like mathematical functions
than functions and procedures from programming languages.

Throughout this chapter, a simple increment function defined over an integer
type is used to demonstrate function properties. Its declaration:

inc(x::integer)::integer is x+1;

defines a parameter and its type, and range type, and a defining expression. For
any expression, a, when inc(a) appears in a specification, it can be reduced to
a+1.

Direct definition using this style is the simplest and most common mechanism
for defining functions, but it is not the only mechanism. Like other Rosetta items,
functions have labels, types, and values. While the direct definition mechanism
defines all three in one syntactic construct, it is possible to define values and types
for functions using more flexible techniques. Function variables, unknown con-
stant functions, anonymous functions, and function values are defined by speci-
fying selected aspects of a function item. This enables the system-level designer to
describe function properties without providing a complete implementation when
details are not known.

91
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Evaluating Rosetta functions is a two-step process of replacing actual
parameters with formal parameters and simplifying the resulting expression.
Function evaluation allows replacement of functions by their instantiated values
in expressions. Further, evaluation of Rosetta functions is lazy and uses a curried
function semantics. As will be discussed later in this chapter, evaluating inc(3)
involves replacing inc with its definition and instantiating that definition with 3.
Informally:

inc(3) == 3+1 == 4

6.1 Direct Function Definition

The direct definition approach provides a mechanism for succinctly specifying
a signature and optional body for a known function. The format for all direct
function definitions is:

f [[ [ variables ] ]]([[ parameters ]]) :: T [[ is e1 | constant ]]
[[ where e2 ]] ;

Functions defined directly must include a function name, followed by an optional
universally quantified parameter list, a parameter list, and a required type. The
parameter list defines formal parameters for the function while the type defines
its range. The universally quantified parameter list defines universally quantified
parameters whose values are determined by inference mechanisms rather than
direct instantiation.

To support defining functions at multiple levels of abstraction, Rosetta pro-
vides numerous definitional styles. The definition style used in any function dec-
laration is determined by combination of optional is and where clauses. The is
clause specifies that the function is constant and an optional expression defines
the function’s value. If the expression is excluded, the keyword constant declares
that the function’s value is constant although unknown. The where clause speci-
fies a property that must be satisfied by any value associated with the function, but
does not define a specific function. Both where and is clauses may be included in
the same function.

We say a function is a variable or constant based on whether its definition can
vary within a specification. Like all constants, a constant function is a function
whose function value does not change. This implies that, evaluated with the same
inputs, the resulting value will always be the same. Variable functions are func-
tions whose value may change, implying that, at different times, evaluation with
the same parameters may result in different values, depending on the function’s
current value.

For example, var_fun defines a variable function whose value must be evalu-
ated to a number greater than 5 for all inputs:

var_fun(x::integer)::integer where var_fun > 5;
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Table 6.1 Styles for direct function definition

Definition is Clause where Resulting Function Definition
Style Clause

Interpretable expression no Function whose type is known, value is

known and is constant

Uninterpretable constant no Function whose type is known, value is

unknown and is constant

Qualified expression yes Function whose type is known, value is

Interpretable a known constant, and satisfies the

where property

Qualified constant yes Function whose type is known, value is

Uninterpretable an unknown constant, and satisfies

the where property

Variable no no Function whose type is known, value is

unknown and is not constant

Qualified no yes Function whose type is known, value is

Variable unknown and is not constant, and

satisfies the specified where property

There are any number of definitions that satisfy var_fun:

const_5(x::integer)::integer is 5;
sqr_plus_5(x::integer)::integer is x∗x+5;

var_fun is a variable function because either const_5 or sqr_plus_5 could be
assigned to it and satisfy its constraints. In contrast, const_5 and sqr_plus_5 are
constant functions because their function values are fully specified.

Table 6.1 lists the various definitional styles, showing how to identify them and
their implications on the functions they define. The following sections define in
detail the definitional styles, when they are used, and what implications they have
on specifications.

6.1.1 Interpretable Functions

An interpretable Rosetta function is defined by providing a signature followed
by an is clause specifying an expression over parameters from the signature and
other functions and constants. The signature defines the function name, formal
parameters, and a result type. The is clause expression defines how to derive a
value for any application of the associated function.

A simple interpretable function is inc for incrementing integers:

inc(x::integer)::integer is x+1;

In this definition, the function signature, inc(x::integer)::integer, is
specified followed by an expression indicated by the is keyword, x+1, that defines
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the calculation performed by the function. The function signature defines a new
item that is a function mapping from integer to integer, while the expression
defines the actual mapping. Interpreted in the same manner as earlier item defini-
tions, this suggests that inc(x::integer) is an integer whose value is x+1. This
intuition is precisely correct — wherever inc(a) appears in a specification, it can
be replaced by a+1 with assurance that its evaluation will result in an integer
type.

A restriction placed on functions is that the expression following the is key-
word must only reference items that are declared in its static scope. For example,
the following are legal function declarations:

squared_sum(x,y::integer)::integer is (x+y)^2;

area(r::real)::real is pi∗r^2;

mod_four(i::integer)::integer is
if i>=3 then 0 else inc(i);

x::integer;
addx(y::integer)::integer is x+y;

The squared_sum definition is legal because it only references quantities defined
in its parameter list. The area function is legal because it references only quantities
defined in its parameter list and the constant pi. The mod_four function is legal
because it references only quantities defined in its parameter list and the function
definition inc provided earlier. The addx function is legal if x::integer occurs
in its static scope. If the declaration of x did not occur in the static scope, the
function declaration would be illegal.

Interpretable functions are the most commonly defined Rosetta functions and
are so named because they can be interpreted for any parameter values. Specif-
ically, given an interpretable function definition and actual parameters of the
appropriate type, the function can always be evaluated with respect to those
parameters.

Like any Rosetta definition, inc is an item with an associated type and value. In
this case, the type of inc is a function defining a mapping from one integer value
to another integer value. The encapsulated expression x+1 along with parameter
declarations is the function value associated with the function. Like any other
Rosetta declaration, the value of incmust be an element of its type. Because inc is
a mapping from integer to integer and the type of the expression x+1 is integer
in the context of the parameter declaration x::integer, the function value is of
the appropriate type.

Literally, what the inc function definition states is that anywhere in the defin-
ing scope inc(a) can be replaced by a+1 for any arbitrary integer values. When-
ever any function appears in an expression in a fully instantiated form, it can be
replaced by the result of substituting formal parameters with actual parameters
and evaluating the resulting expression. Specifically, if the function instantiation
inc(3) appears in an expression, it can be replaced by the expression 3+1 and
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simplified to 4. For this reason, Rosetta functions are frequently viewed simply as
encapsulations of expressions.

When a function’s value is constant, it is the function value, not the value
resulting from applying a function, that is constant: inc is a constant function
even though its return value varies. Wherever inc(a) appears in a specification,
it will always be replaced by a+1 and never by another expression over a.

An example of an interpretable function definition is the classical definition ofEXAMPLE 6.1
Interpretable Function
Definition and Evaluation

factorial:

fact(x::natural)::natural is
if x=0 then 1 else x∗fact(x-1) end if;

Because all interpretable functions can be evaluated over appropriate typed actual
parameters, fact(2), we can provide a naive but useful demonstration of func-
tion evaluation. Evaluating fact(2) involves replacing the formal parameter x
with the actual parameter 2 in the function expressing and simplifying:

1. fact(2)
2. == if 2=0 then 1 else 2∗factorial(2-1) end if
3. == 2∗factorial(1)
4. == 2∗if 1=0 then 1 else 1∗factorial(1-1) end if
5. == 2∗1∗factorial(0)
6. == 2∗1∗if 0=0 then 1 else 2∗factorial(0-1) end if
7. == 2∗1∗1
8. == 2

Other than using classical definitions for multiplication and subtraction to reduce
numerical expressions, the only operations used to perform this calculation are
substitution and instantiation.

A semantically precise definition of function evaluation will be provided later.
However, this simple heuristic approach of replacing formal parameters with
actual parameters and simplifying the result serves as an excellent starting point
for understanding function evaluation. �

The opcode function pulls the first 4 bits from an input word. Such a functionEXAMPLE 6.2
Interpretable Function
Definitions

might be used to specify part of a decode operation in a CPU model:

opcode(x::word(16))::word(4) is x sub [0..3];

opcode is legally defined because it only references its formal parameters.
The circumference function defines the circumference of a circle in the clas-

sical manner. One way to define this is to provide a local definition for the value
pi within the function definition:

circumference(r::real)::real is
let pi::real be 3.14159 in
pi∗r^2.0

end let;
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In this definition, the let expression defines a local value for pi that is constant
over its scope. This function is legal because it only refers to values defined locally
or its parameters.

An alternative definition uses the built-in definition of pi provided in the
Rosetta prelude:

circumference(r::real)::real is pi^2.0;

This definition is also legal because the definition of pi is known to be constant
due to the is clause used in its definition.

Finally, the definition of add for complex values might be specified as:

add(x,y::complex)::complex is
(rp(x)+rp(y))+(ip(x)+ip(y))∗j;

This definition is again legal because it refers to constant values (j) and constant
functions and operators (rp, ip, +, and ∗). �

6.1.2 Qualified Interpretable Functions

Adding a where clause to an interpretable function adds a constraint that must
be satisfied by the function definition. Such functions are qualified interpretable
functions because they are interpretable, but their definition is qualified by the
requirement that they must satisfy their associated where clause property.

The definition syntax for qualified interpretable functions is identical to inter-
pretable functions with the addition of a where clause following the function def-
inition. The keyword where defines a boolean valued expression that must be
true for any function definition. This boolean expression is defined over func-
tion parameters and constants defined in the scope of the definition. All param-
eter names are implicitly universally quantified in the where expression.

The increment function defined previously can be qualified using a where
clause as follows:

inc(x::integer)::integer is x+1
where x>=0 implies inc(x)>0;

In this case, the where clause defines a correctness condition for the function
definition specifying that whenever its actual parameter is greater than or equal
to zero, interpreting the function results in a value greater than zero. Because
all parameters are universally quantified, the where clause must be true for any
instantiation of the function. The following examples are correct function defini-
tions:

squared_sum(x,y::integer)::integer is (x+y)^2
where squared_sum(x,y)>=0;

area(r::real)::real is pi∗r^2
where r>0 implies area(r)>=0;
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mod_four(i::integer)::integer is
if i>=3 then 0 else inc(i)

where mod_four(i)>=0 and mod_four(i)=<3;

In each case, the where clause can be verified with respect to the interpretable
function. If the where clause cannot be satisfied by the function definition, then
the function is illegal. The following example is an incorrect function definition:

inc(x::integer)::integer is x+1
where inc(x)>0;

In this case, the definition of inc cannot be used to verify that all applications are
greater than zero. On the contrary, counterexamples are easily found when the
argument is negative.

Specifying assertions over a function definition using the where clause is
important for verification tools that use its definition. Whenever the inc defi-
nition is used in a specification, the where clause can be assumed true. This can
be used to assist verification tools by providing facts that need not be derived. Of
course, properties proved to be true can be used in this manner. This behavior
effectively caches verification results for use in later verification efforts.

The factorial function can be defined with an associated where clause thatEXAMPLE 6.3
Qualified Interpretable
Function Definitions

asserts its value must be greater than 0:

fact(x::natural)::natural is
if x=0 then 1 else x∗factorial(x-1) end if

where fact(x)>0;

This definition differs from the previous definition because the where clause must
be satisfied. During type checking and static analysis, the specifier can attempt to
verify the where clause using type checking, theorem proving, or model checking
techniques.

The where clause can also be used by functions referencing fact. Given a qual-
ified definition of inc:

inc(x::integer)::integer is x+1
where x>=0 implies inc(x)>0;

the where clause can be verified. When evaluated with a fact application as its
argument:

inc(fact(x));

the inc function’s where in combination with the fact function’s where clause
allows verification that the result is always greater than 0. By knowing fact(x)>0,
it follows quite simply that fact(x)+1 is also greater than zero because the argu-
ment is always greater than 0. Such uses of where clauses are exceptionally power-
ful mechanisms for specifying correctness conditions on functions, terms, facets,
and domains. �
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6.1.3 Uninterpretable Functions

The constant keyword in conjunction with a function declaration provides a
mechanism for defining a new function whose specific value is not known, but
is constant. Such functions are uninterpretable because, although constant, their
values are not known and cannot be evaluated in the general case. The signa-
ture of the function is defined in the same manner as for other directly defined
functions, followed by the is keyword, with the is expression replaced by the
constant keyword. For example:

addpolyglot(x,y::polyglot)::polyglot is constant;

defines a function, addpolyglot, that takes two items of type polyglot and
results in a new item of type polyglot without providing a specific definition
for the function. The constant keyword indicates that the value of addpolyglot
is a constant even though its actual value is not known. Other functions can
now use the addpolyglot function, knowing that addpolyglot(x,y) will always
perform the same function in the context of this definition. Any actual func-
tion associated with addpolyglot must obey the definitional rules specified
previously.

6.1.4 Qualified Uninterpretable Functions

The where keyword is used to add constraints to an uninterpretable function defi-
nition without defining the function itself. Used with the constant keyword, con-
straints can be defined on a constant function usable in other function and facet
definitions. Such declarations are referred to as qualified uninterpretable func-
tions. Functions defined in this manner cannot be interpreted in the traditional
fashion; however, any instance of the function must obey the constraints. This
allows them to be used in analyzing designs. Declaration of qualified uninter-
pretable functions is identical to uninterpretable functions with the addition of a
where clause. For example, the following definition makes the addpolyglot func-
tion commutative:

addpolyglot(x,y::polyglot)::polyglot is constant
where addpolyglot(x,y) == addpolyglot(y,x);

The defined constraint is simply a boolean valued Rosetta expression defined over
the parameters of the function. In this case, the constraint states that the order of
arguments to addpolyglot is not significant.

In the definition of an abstract architecture, it is frequently necessary to defineEXAMPLE 6.4
Defining Abstract
Structures

operations without defining the specific types operated on or the details of the
operation. The following definition provides a mechanism for specifying an oper-
ation without significant detail:

manipulate_data([T::Type] x::T)::T is constant
where manipulate_data(manipulate_data(x)) == x;
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This declaration defines a function, manipulate_data, that must be its own
inverse. In this case, we are not specifying the types involved in the operation.

Such functions do not lend themselves to simulation-based analysis, but can be
exceptionally useful when defining system requirements before implementation
directions are selected. When an implementation for manipulate_data is chosen,
design decisions based on the where constraints can be enforced on the function,
assuring that early decisions are reflected in the implementation. �

Using the constant and where keywords may appear unusual for those accus-
tomed to traditional simulation-style definition languages. The keywords are
exceptionally useful when working at high levels of abstraction, where only some
of the properties of a function are known. By defining a specific function, too much
information may be added to the definition. Using the constant and where key-
words allows specification of desired properties or simply the existence of a func-
tion without overspecifying its definition. Details can be added later or discovered
during the design process while maintaining the original function definition.

6.1.5 Variable Functions

When a function is defined with no is clause, no specific value is associated with
the function definition. Functions defined in this manner are called variable func-
tions or function variables. For example, the following definition defines a function
that maps sequences of integer to a single integer:

fold(s::sequence(integer)) :: integer;

We know that the fold function takes a sequence and generates an integer value,
but nothing more. Furthermore, fold is in every sense a traditional variable. Its
type is known and fixed while its value may change and cannot be determined
by the declaration. The implications of this are that evaluating fold on the same
arguments may result in different values as the function’s value changes. While the
function’s value may change, its signature cannot. Specifically, fold will always be
a function that maps an integer sequence onto an integer within the scope of this
definition.

6.1.6 Qualified Variable Functions

When a function is defined with no is clause and a where clause, no specific value
is associated with the function definition, but any value associated with the defi-
nition must satisfy the where clause definition. Functions defined in this manner
are called qualified variable functions. Like variable functions, qualified variable
functions are traditional variables. However, at any time the value associated with
a qualified variable function must satisfy the boolean expression specified by the
where clause. For example, the following definition defines a traditional cube root
function over real values:

cubert(x::real)::real
where cubert(x)^3 == x;
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From this definition we know that cubert is a function mapping one real value
to another real value. However, without an is clause we do not know what
the actual function is. The distinction between this declaration and a variable
function declaration is that we know that cubert(x)^3==x for any parameter
value. The properties of the qualified variable function are known even when
the function value is not. Specifically, we do not know how to calculate the
value associated with cubert, but we do know the properties of the evaluated
function.

Using a qualified variable function is useful in abstract specification situations,
where a function may not be completely defined but properties beyond param-
eter information and type are needed. The cubert example demonstrates this
effectively in that no type condition placed on parameters can provide the same
information as provided by the where clause.

Variable function definitions declare a function without defining its properties.EXAMPLE 6.5
Variable Functions This can be viewed as defining a function signature. Function signatures from the

previous examples include:

fact(x::natural)::natural;

opcode(x::word(16))::word(4);

add(x,y::complex)::complex;

Each signature definition is obtained by simply omitting the is clause from the
declaration. Each of these functions is declared, but the specifics of their defi-
nition is excluded. Defining function signatures in this manner is an excellent
tool for defining abstract system-level properties when only incomplete informa-
tion is available. Without more information, these variable functions cannot be
evaluated. �

It is possible to use a qualified variable function to provide the same semanticsEXAMPLE 6.6
Interpretable Functions as
Variable Functions

as provided by interpretable functions, by asserting that evaluating the function
is equal to the is clause expression. Using this technique, the inc function over
integer can be defined as:

inc(x::integer)::integer where inc(x) = x+1;

This definition asserts that any value associated with inc must define a func-
tion that, when applied, must result in its argument plus one. The equals sign
behaves much like the is keyword in that it provides a definition for the value
produced by applying inc. The expression x+1 can be used to define a function
value for inc. The distinction between this form of a qualified variable function
and an interpretable function is that an interpretable function can always be eval-
uated by virtue of its definition semantics. This form of a qualified variable func-
tion may also be evaluated, but that fact arises from the semantics of the where
clause property. Specifically, the property associates a unique value with each
instantiation of inc. Other syntactic forms can achieve the same result. Where
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interpretable functions may always be evaluated, semantic analysis is required if
qualified variable functions can be evaluated. This analysis is highly problem-
atic for automated tools and in most cases cannot be performed. Thus, the inter-
pretable function form is provided to define functions that tools can interpret
automatically. �

6.2 Function Values and Function Types

Like other Rosetta items, function items have types and values. The direct defi-
nition techniques discussed thus far combine the declaration of function items,
function types, and function values into a single syntactic construct. However,
it is possible to define functions in a manner identical to that for other items by
specifying a label, type, and optional value.

6.2.1 Function Values

Function values, also called anonymous functions, are the values associated with
function items and represent an abstract expression defined over a collection of
parameters. Function values correspond to abstractions or lambdas in the lambda
calculus and lambda expressions in Lisp dialects, ML, and Haskell. Defined by
excluding the function name and encapsulating the definition in the function for-
mer, function values provide values for functions without associating them with
items. The definition:

<∗ (x::natural)::natural is x+1 ∗>

defines the function value that serves as the value of inc. The parameter list, return
type, and expression are identical to the previous inc declaration, but are enclosed
in a function former with no function name. The function is identical to inc in
every way, but has no associated name. For example, function values and named
functions are evaluated in exactly the same manner:

1. <∗ (x::natural)::natural is x+1 ∗>(1)
2. == <∗ ()::natural is 1+1 ∗>
3. == 1+1 :: natural
4. == 2 :: natural

In the first evaluation step, x is replaced by 1, resulting in an empty parameter
list and an expression with no parameters. The function former delimiters can
now be dropped in the second step because the function is nullary. Furthermore,
we know that the expression must be the result type of the function. In the third
and final evaluation step, the resulting expression is then simplified until it is in
normal form, in this case resulting in a natural value.
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6.2.2 Function Types

Anonymous function signatures can also be defined in a similar manner. The
definition:

<∗ (x::natural)::natural ∗>

is the signature of the function defined previously, but does not associate the sig-
nature with a name. This definition is called a function type because it describes
a collection of functions all having the same parameter list and result type. The
definition:

inc :: <∗ (x::natural)::natural ∗>

declares a new item inc whose type is a mapping from two natural to natural.
This definition is semantically equivalent to the earlier inc signature definition
that used the direct definition style. Specifically:

inc(x::natural)::natural == inc::<∗(x::natural)::natural∗>

The definition says that inc is of type <∗(x::natural)::natural∗> or alter-
natively that inc is a function that maps a natural number to another natural
number.

6.2.3 Alternative Function Item Declaration

Using the is notation, it is possible to define a function using the standard
constant definition notation used for other types. By using a function type
and a function value in the standard definition syntax, the following definition
results:

inc :: <∗ (x::natural)::natural ∗> is
<∗ (x::natural)::natural is x+1∗>

This definition is equivalent to the preceding direct definition of inc and seman-
tically defines the direct function definition shorthand. Specifically:

inc(x::natural)::natural is x+1 defs

inc :: <∗ (x::natural)::natural ∗> is
<∗ (x::natural)::natural is x+1∗>

The inc item declaration defines it as a function mapping natural to natural.
The is clause associates a function value with the declared function item in the
same manner as for other item declarations. Specifically, the is clause asserts that
the inc function is equivalent to the function mapping a natural number to its
successor by adding one. Because this declaration uses an is clause, inc is a con-
stant function, just as in the earlier definition. Conversely, when the is clause is
not present, inc is a variable function.
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Although the constant function declaration is equivalent to direct definition, it
is highly recommended that direct definition be used for defining functions when
the function value does not change. The clumsiness of this definition makes it
difficult to read. Furthermore, the direct definition approach is easily recognized
as a constant function by language processing tools, making optimization and
interpretation simpler.

The formal syntax of the function former used to define anonymous functions
and function types is:

<∗ [[ [ variables ] ]]( [[ parameters ]] ) :: T [[ is e1 ]] [[ where e2 ]] ∗>

where variables is an optional list of universally quantified parameters,
parameters is a list of declarations that define formal parameters, T is the result
type, e1 is the expression associated with the optional is clause, and e2 is the
expression associated with the optional where clause. With the exception of not
specifying an item name, the form and semantics of the declaration are identical
to those of the direct declaration approach. The notation < ∗ fcn ∗ > is referred
to as a function former because it encapsulates expressions with a collection of
local symbols to define a function value.

6.3 Evaluating Functions

Although Rosetta is not an executable language, an operational semantics for
function evaluation is defined. Rosetta functions use curried function and call-
by-name semantics, and evaluate lazily. This evaluation style is used in lazy
languages such as Haskell, Miranda, and Gopher, allowing Rosetta evaluation
to treat equality the same way it is treated in mathematics. In Rosetta, = is
equality, not assignment. If two terms are equal, then it should be possible to
directly substitute one term for another. This is identical to mathematics and
quite natural for specifications. The lazy, call-by-name approach facilitates this
feature.

The function signatures specified previously all have equivalent forms usingEXAMPLE 6.7
Anonymous Functions and
Function Types

function types. The following definitions:

fact(x::natural)::natural where fact(x)>0;

opcode(x::word(16))::word(4) is constant;

add(x,y::complex)::complex;

are equivalent to:

fact::<∗(x::natural)::natural∗> where fact(x)>0;

opcode::<∗(x::word(16))::word(4)∗> is constant;

add::<∗(x,y::complex)::complex∗>;
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Like other variables, function variables defined in this manner can be constrained
by terms in their declaration context. The following facet declares local versions
of the previous functions:

facet demo(v::input complex)::continuous is
fact::<∗(x::natural)::natural∗>;
opcode::<∗(x::word(16))::word(4)∗> is constant;
add::<∗(x,y::complex)::complex∗>;

begin
t1: forall(x::integer | fact(x) > 0);
t2: opcode = <∗ (x::bitvector(16))::bitvector(4) is

x sub [0,..3] ∗>;
t3: add = <∗ (x,y::complex)::complex is

(rp(x)+rp(y)+rp(v)) + (ip(x)+ip(y)+ip(v))∗j ∗>
end facet demo;

The term t1 places the same assertion on fact as the where clause used in its orig-
inal definition. Specifically, it asserts that every application of fact to a value of
type integer is greater than 0. Although semantically equivalent, this syntactic
form makes it difficult for tools to recognize that the term asserts the same prop-
erty. The term t2 defines opcode to be a constant function value equivalent to its
earlier defined value. Specifically, the function value specified is the same function
used in its interpretable definition. Like the previous term, the semantics of this
term makes this definition equivalent to the earlier definition. Similarly, it is dif-
ficult for tools to recognize this form without some evaluation or static analysis.
Finally, the term t3 defines a new concept called a quantity. A non-constant item,
namely v, is referenced in its definition. Thus, the actual definition changes over
time and is not a constant function or a function value. Such definitions will be
explored later and provide an interesting mechanism for specifying simultaneous
equations that define a system. �

Currying refers to the process of treating any multi-parameter function like a
unary function. The Rosetta function f(q,r,s,t) is expanded to its curried form
f(q)(r)(s)(t) during evaluation. The curried semantics are quite common and
provide a definition that supports partial evaluation and partial instantiation of
functions. The technique is particularly powerful when dealing with higher-order
functions.

Lazy evaluation implies that expression evaluation occurs only when the
expression’s value is needed. In traditional imperative languages, parameters to
most operators and functions are evaluated before the operator or function. In
Rosetta, this is not the case. Terms are evaluated only when their values are needed.
An excellent example is the if expression, where only the expression associated
with the result of evaluating the condition is evaluated.

Call-by-name describes the parameter passing mechanism used to evalu-
ate function application. When passing actual parameters to a function, they
are not evaluated prior to resolving the function. The actual terms passed as
parameters are substituted directly for the parameters inthe function’s associated
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expression. When the instantiated expression is evaluated, terms that were param-
eters are evaluated only when their values are needed.

When a complete, interpretable definition exists, repeatedly applying evalua-
tion rules will result in a normal form that is also a value. When an incomplete
definition exists, the same process will result in a normal form that is not yet a
value. This is one major distinction between a specification language and a pro-
gramming language. Regardless of whether the result is a value or not, meaning-
ful information results. The normal form is typically simpler and can be used as a
partial evaluation result. More importantly, it can be treated as an abstract value
that describes a collection of values in abstract interpretation.

6.3.1 Interpretable Functions

Two types of Rosetta functions may always be evaluated — interpretable functions
and function values. Anonymous function values defined using an is clause pro-
vide an expression that defines the transformation implemented by a function.
Thus, an anonymous function value can be evaluated by instantiating its associ-
ated expression and simplifying the result. The subset of Rosetta functions defined
earlier as interpretable are named because they can always be interpreted. Like
anonymous function values, the is clause defines an expression that is instanti-
ated and evaluated. Closer examination reveals that the value associated with an
interpretable function is an anonymous function value. Thus, the ability to evalu-
ate function values applied to arguments gives us the ability to define interpretable
functions.

Unfortunately, it is not possible to determine if an arbitrary function can be
evaluated. Many technically uninterpretable functions defined using the where
clause or using facet terms may in fact be interpretable. Rosetta only guarantees
that anonymous function values and interpretable functions may be evaluated.
Both definitions are easily recognized by the presence of an is clause in their dec-
laration. Without an is clause, it is impossible in to determine if a function can
be evaluated.

Evaluating a Rosetta function is a matter of replacing formal parameters
with actual parameters in the function-expression and simplifying the resulting
expression. The simplest example of function evaluation applies to the add func-
tion fully instantiated over literal parameters. A definition of an interpretable add
function and an example interpretation result are shown here:

add(x,y::integer)::integer is x+y;

1. add(1,2)
2. == 1+2
3. == 3

In the evaluation, formal parameters are replaced by actual parameters in the add
definition and the resulting expression is evaluated.



106 Chapter 6 Functions

Closer examination of the instantiation and evaluation process reveals a
powerful capability for currying and lazy evaluation that is essential in system-
level design. Let us first re-examine the evaluation of the add function just per-
formed in simplified fashion, looking more carefully at the evaluation process:

1. add(1,2)
2. == <∗ (x,y::integer)::integer is x+y ∗>(1,2)
3. == <∗ (y::integer)::integer is 1+y ∗>(2)
4. == <∗ ()::integer is 1+2 ∗>
5. == 1+2 :: integer
6. == 3 :: integer

When evaluating a function, the function item is replaced by its value. In the pre-
vious section we showed that every interpretable function item has an associ-
ated function value. Here, in step 2, the add item is replaced by its function value
whose definition maps two integer parameters onto their sum. In step 3, the for-
mal parameter, x, is replaced by the actual parameter, 1. The formal parameter is
eliminated from the signature in this process and the result is a new function of
one integer parameter applied to the remaining actual parameter. In step 4, the
formal parameter, x, is replaced by the actual parameter, 2, again eliminating the
formal parameter.

The function resulting from step 4 is nullary — having no remaining param-
eters. Its associated expression is fully instantiated and can be removed from the
function value former. The empty parameter list is dropped and the function
result type is associated with the resulting expression. Generalizing, we have the
following rule for any nullary function:

<∗ ()::T is e ∗> defs e :: T

where T is a type and e is an expression. Note that the definition can be used
inversely to place an expression in a nullary function. This rule can be further
generalized to define an abstraction rule. Given a variable v not free in e, the
following rule can be defined:

<∗ (v::Tp)::T is e ∗> defs e :: T

The right side of the definition is the same, with the left side adding a parame-
ter that is not free in e. What this means is that v does not appear in e unless it
is declared somewhere in e. If that is the case, the value of v can have no effect
on the evaluation of e and can be dropped during evaluation or added during
abstraction.

The previous method for evaluating a multi-parameter function by succes-
sively applying the function to each parameter defines a curried function evalu-
ation process, a classical evaluation semantics. It is at the same time simple and
exceptionally powerful.

It is interesting to observe that the resulting process produces identical results
if the parameters are instantiated in reverse order:

1. add(1,2)
2. == <∗ (x,y::integer)::integer is x+y ∗>(1,2)
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3. == <∗ (x::integer)::integer is x+2 ∗>(1)
4. == <∗ ()::integer is 1+2 ∗>
5. == 1+2 :: integer
6. == 3 :: integer

or at the same time:

1. add(1,2)
2. == <∗ (x,y::integer)::integer is x+y ∗>(1,2)
3. == <∗ ()::integer is 1+2 ∗>
4. == 1+2 :: integer
5. == 3 :: integer

This process, called beta-reduction, allows great flexibility in dealing with function
evaluation. Not only is the instantiation process simple, it supports currying with-
out enhancement of the function or evaluation definitions. Simply substitute and
simplify — a process widely used in mathematics. Note that in subsequent eval-
uation examples, the nullary function and result type will frequently be dropped
for brevity.

Nested functions work identically by applying the replace and simplify
approach:

inc(add(4,5))

Rather than evaluating in the traditional style, expand the function definitions
first. Using the definitions of inc and add results in the following anonymous
function evaluation process:

1. <∗(z::integer)::integer is z+1∗>
(<∗(x,y::natural)::natural is x+y∗>(4,5))

2. == <∗ ()::integer is <∗ (x,y::natural)::natural is x+y ∗>(4,5) +1 ∗>
3. == <∗ (x,y::natural)::natural is x+y ∗>(4,5) + 1 :: integer
4. == <∗ (y::natural)::natural is 4+y ∗>(5) + 1 :: integer
5. == <∗ ()::natural is 4+5 ∗> + 1
6. == 4+5 :: natural + 1 :: integer
7. == 10 :: integer

In step 1, the function instantiations are replaced by their definitions. In step 2, the
formal parameter, to inc is replaced by the actual parameter, which in this case
happens to be an instantiated function. However, the process is unchanged —
replace formal parameters with actual parameters and eliminate them from the
signature in each step. In step 3, the function former associated with inc is elim-
inated, as there are no parameters to that function. Now evaluation turns to the
add function, where the process is identical to that performed in the previous
example.

The same result occurs regardless of the order of replacement and evaluation.
The following process shows a different order resulting in the same result:

1. <∗ (z::integer)::integer is z+1 ∗>(add(4,5))
2. == <∗ ()::integer is add(4)(5)+1 ∗>
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3. == <∗(x,y::natural)::natural is x+y ∗>(4)(5)+1 :: integer
4. == <∗ (y::natural)::natural is 4+y ∗>(5) + 1 :: integer
5. == <∗ ()::natural is 4+5 ∗> + 1 :: integer
6. == 4+5 :: natural + 1 :: integer
7. == 10 :: integer

Function evaluation becomes a simple matter of replacement of actual parameters
by formal parameters and simplifying. Because this process can be performed in
any order and can be stopped at any step, a wide range of function evaluation possi-
bilities become available. Thus far, examples of function evaluation have included
only fully instantiated, constant functions. The definition of function evaluation
does not preclude designers or tools to evaluate functions partially, either by leav-
ing parameters uninstantiated or by simply halting a simplification process before
it completes. As shall be seen, partial evaluation provides for definition and eval-
uation techniques that directly support high-level specification and analysis.

6.3.2 Curried Function Evaluation

As noted previously, Rosetta uses a curried function semantics to define evalua-
tion. Thus, every Rosetta function can be expressed as a single argument function.
This may seem odd, but it results in an exceptionally simple yet expressive mech-
anism for defining function evaluation. The addc function:

addc(x,y::integer)::integer is x+y;

can be expressed equivalently as:

addc(x::integer)::<∗(y::integer)::integer∗> is
<∗ (y::integer)::integer is x+y ∗>;

Looking carefully at this definition, what was a function of two arguments is now a
function of one argument that results in a function of one argument. Specifically,
the new function is a unary function over items of type integer that results in
another unary function that maps items of type integer to type integer. But
how is this equivalent to a two-argument function?

To understand the equivalence, examine the evaluation of addc(5)(4), the
equivalent of evaluating add(5,4) using our earlier definition. We start by evalu-
ating addc(5), remembering that Rosetta function evaluation is simply substitu-
tion of formal parameters for actual parameters:

1. addc(5)
2. == <∗ (x::integer)::<∗(y::integer)::integer∗> is

<∗ (y::integer)::integer is x+y ∗> ∗>(5)
3. == <∗ <∗ (y::integer)::integer is 5+y ∗> ∗>
4. == <∗ (y::integer)::integer is 5+y ∗>

The evaluation progresses by first replacing the addc function with its value in
step 2. Following this is the actual evaluation, replacing the formal parameter
x with the actual parameter 5. In step 4, the outer function former is dropped
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because no parameters remain. The result is a new function value that adds 5 to
its argument. Because this form cannot be evaluated further, it is called a normal
form. In this case the normal form is also a value, specifically a function value.
Not all normal forms will be values.

Now we can evaluate addc(5)(4) by applying the result of the previous evalu-
ation of addc(5) to the formal parameter 4:

1. addc(5)(4)
2. == <∗ (y::integer)::integer is 5+y ∗>(4)
3. == <∗ ():: integer 5+4 ∗>
4. == 9 :: integer

In step 2, addc(5) is replaced with the result obtained in the previous evaluation
and applied to 4. In step 3, y is replaced with 4, and finally the result is evaluated
and 9 results, as anticipated.

It is not necessary to evaluate the results of calling the single-argument add
function. Specifically, it is perfectly legitimate to call the function and treat the
result itself as a function. The evaluation of addc(1) has the following form:

1. addc(1)
2. == <∗(x::real)::<∗(y::real)::real is x+y∗> ∗>(1)
3. == <∗(y::real):real is 1+y∗>

This is exactly the definition of the function value previously associated with inc;
inc can be now defined using this evaluation of addc:

inc::<∗(x::integer)::integer∗> is addc(1);

addc(1) evaluates to a function value that is the same as the definition of an incre-
ment function. Thus, it is perfectly legal to use the result of applying add as the
value associated with the inc function definition.

Having discussed the evaluation of addc, it is important to remember that,
semantically, addc and add are the same function. The only difference is that
addc must be treated as a single parameter function while add can be treated as
a two-parameter function or as a curried function. For this reason, using the add
approach of specifying multiple parameters in the signature is more flexible and
highly encouraged. We can always substitute and simplify as in previous examples,
but the semantics of this process is defined by the curried approach discussed here.
The definition for inc can use add instead of addc with virtually no modification:

inc::<∗(x::integer)::integer∗> is add(1);

The inc function is thus defined as a mapping from integer to integer whose
value is the result of curried evaluation of the add function over the value 1.

6.3.3 Uninterpretable Functions

When thinking about evaluating uninterpretable functions of any kind, little can
be asserted. Evaluation cannot be guaranteed by syntactic analysis. Furthermore,
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no algorithm exists to determine whether a function can be evaluated for general
functions. As a rule, if evaluation is necessary, use an interpretable function defi-
nition or associate the function with a constant in its declaration.

Partial evaluation is the process of taking a function and instantiating only aEXAMPLE 6.8
Partial Evaluation subset of its parameters. Curried functions provide the primitive concepts behind

partial evaluation. Using Rosetta’s curried function semantics, it is possible to
define a form of partial evaluation where any variable may be instantiated.

Consider the following definition of f over real numbers:

f(x,y,z::real)::real is (x+y)/z;

Like any function, f is applied by replacing formal parameters with actual param-
eters in the definition and evaluating the result. Specifically, f(1,2,3) is evaluated
as follows:

1. f(1,2,3)
2. == <∗(x,y,z::real)::real is (x+y)/z∗>(1,2,3)
3. == <∗(1+2)/3∗>
4. == 1

We can make f an average function if the z parameter is instantiated with a con-
stant 2. This is accomplished using the following notation:

<∗ (x,y::real)::real is f(x,y,2) ∗>

The definition of average follows directly as:

average::<∗(x,y::real)::real is
<∗(x,y::real)::real is f(x,y,2)∗>

Specifically, average is defined as a function from two real values to a third real
value. The function value associated with average is the function f with its z
parameter instantiated with 2. Partial evaluation is an exceptionally useful tool
for defining and evaluating functions. The preceding example shows a simple case
where a new function definition is produced through partial evaluation. The same
technique can be used to make analysis simpler and faster as well as to perform
analysis of new definitions. �

Knowing this, function evaluation still occurs in a manner identical to that
for interpretable functions. The following facet definition declares and defines a
function, inc, in a highly general manner:

facet counter(x::output integer)::state_based is
inc::<∗(x::integer)::integer∗>

begin
t1: forall(x::integer | inc(x) == x+1);
t2: s’==inc(x);

end facet counter;

This facet declaration defines a variable function and uses a new concept (defined
in Chapter 7) called a quantifier in term t1 to provide a definition. The quantifier
asserts that for any value, x::integer, inc(x) is equal to x+1. This should be
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immediately recognized as equivalent to previous definitions of the increment
function. In term t2, inc(s) defines the value of the next state, s’.

Semantically, the value of inc(s) is known for any value of s. However, expect-
ing a tool to determine this and evaluate the function appropriately is not appro-
priate. When defining systems requirements, such general specifications can play
an important role when working at high levels of abstraction, as shall be seen in
subsequent discussions.

6.3.4 Qualified Functions

Addition of a where clause makes an assertion on function evaluation. Specifically,
the where clause specifies a boolean condition the function must always satisfy.
If the function does satisfy the where clause, then evaluation proceeds as if the
clause did not exist. If the function does not satisfy the clause, then evaluation
results in bottom. The where clause can be associated with both interpretable and
uninterpretable functions and plays an important role in evaluation and analysis.

Qualified interpretable functions are a form of interpretable function and thus
can be evaluated in the same manner, with a change to reflect the presence of the
where clause. Consider a definition of inc that includes a where clause:

inc(x::integer)::integer is x+1
where inc(x) > 0;

The where clause defines a condition on inc that asserts the result of incrementing
is greater than 0. If we instantiate the where clause in the same manner as the
function, the resulting evaluation informally looks as follows:

1. inc(2) where inc(2) > 0
2. == <∗ (x::integer)::integer is x+1 ∗>(2)

where <∗ (x::integer)::integer is x+1 ∗>(2) > 0
3. == <∗ ()::integer is 2+1 ∗> where <∗ ()::integer is 2+1 ∗> > 0
4. == 2+1 :: integer where 2+1 :: integer > 0
5. == 3 :: integer where 3 :: integer > 0
6. == 3 :: integer where true
7. == 3 :: integer

In this case, the where clause is clearly true and the result of the function evaluation
is the same as a simple interpretable function. If we evaluate the same function
on a different value, inclusion of the where clause plays a more substantial role:

1. inc(-2) where inc(-2) > 0
2. == <∗ (x::integer)::integer is x+1 ∗>(-2)

where <∗ (x::integer)::integer is x+1 ∗>(-2) > 0
3. == <∗ ()::integer is -2+1 ∗> where <∗ ()::integer is -2+1 ∗> > 0
4. == -2+1::integer where -2+1::integer > 0
5. == -1::integer where -1::integer > 0
6. == -1::integer where false
5. == bottom

In this case, the where clause is false and the result of the function evaluation is
bottom.
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The where clause plays a more important role in the definition of unin-
terpretable or variable functions by providing information about its even-
tual definition. The Rosetta prelude defines the square root function as
follows:

sqrt(x::complex)::complex where sqrt(x)^2 == x;

The function does not specify a mechanism for calculating the square root, but
asserts a condition on any implementation of it. Static analysis tools can use this
information to perform various types of analysis. More importantly, the where
clause provides implementation direction to a tool user or a specifier who might
require a specific function instance. If a function value is associated with sqrt,
the clause defines its requirements.

The where clause can be treated as a correctness condition on the function, or
as an assertion for use by tools interpreting the function. Treated as a correctness
condition, tools may either formally verify that an interpretable function satisfies
its requirements or, as a program assertion, that it is evaluated when the function
is evaluated. Type checkers will attempt to statically verify the where clause in an
attempt to predict and avoid evaluation errors. When static verification cannot
be performed, evaluation-time checking must be instituted.

Because function application is undefined whenever its associated where clause
is violated, static analysis tools, including type checking systems, may assume that
it is satisfied when analyzing surrounding specifications. This has many benefits,
including assertion of function properties in a manner similar to that for type
assertions. When a property is assumed or verified, the where clause can be added
to assist verification tools by asserting properties.

6.4 Universally Quantified Parameters

Universally quantified parameters in function definitions provide Rosetta func-
tions with a form of polymorphism by allowing type inference. When function
applications are evaluated or statically checked, parameter values are specified by
instantiating them with expressions. In contrast, universally quantified parameter
values can be inferred rather than explicitly specified.

A principle use for qualified function definition is defining requirements forEXAMPLE 6.9
Qualified, Uninterpretable
Functions

functions whose implementations need not be specified. Such functions are fre-
quently defined in the prelude, where the definitions of basic Rosetta functions
are defined without regard to specific implementations. One such function is the
choose operation over sets. Recall that choose(s) can evaluate to any element
from s. If we use interpretable functions to define choose, we are required to
specify a selection mechanism. Using the where clause, it is easy to define require-
ments without specifying mechanism:

choose[T::type](s::set(T))::T is constant
where choose(s) in s;
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This definition of choose provides a precise definition without specifying how the
operation is implemented. �

A polymorphic form of the inc function provides a motivating example. The
definition used thus far has the following form:

inc(x::integer)::integer is x+1;

We also know that inc is defined for subtypes of integer and for some super-
types such as real. Subtypes present little problem, as we can simply use the
traditional definition. However, supertypes cannot be handled by this definition.
Furthermore, when a subtype of integer is used, the result will always be of type
integer as specified by the function signature.

One solution to this is to make the operand type a parameter to inc:

inc(T::type; x::T)::T is x+1
where T =< number;

This new definition defines inc for any type that is a number, allowing the specifier
to indicate the specific type. We now have a polymorphic inc that can be used in
the following manner:

inc(natural,3) == 4::natural
inc(real,3.0) == 4.0::real

This new form requires the type to be explicitly specified in the function appli-
cation. Although this solves the original problem, it is still somewhat clumsy.
Imagine requiring the type contained in a sequence to be specified each time an
operation is applied.

The solution is provided by universally quantified parameters whose types are
inferred by evaluation and static analysis tools. In the following definition, T is a
universally quantified variable that represents a type:

inc[T::type](x::T)::T is x+1
where T =< number;

When this new inc is applied, the value of T is inferred rather than explicitly spec-
ified. For example, in the application inc(3), T will be inferred to have the value
posint implying:

inc(3)::posint == 4::posint

Based on the value 3, the Rosetta type system constrains T to be the most specific
type possible — in this case, posint. Similarly, in the application inc(3.4), T is
constrained to posreal as the most specific type:

inc(3.4)::posreal == 4.4::posreal

The type system can be forced down a specific constraint path by either directly
or indirectly constraining T. Directly constraining T simply involves providing an
actual parameter in the traditional manner:

inc[real](3.4)::real == 4.4::real
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Alternatively, type ascription can be used to specify the type of the actual param-
eter, indirectly constraining T:

inc(3.4::real)::real == 4.4::real

An interesting problem occurs when T is constrained to a type that is not closed
under addition, such as negreal. A problematic example would be:

inc(-0.5)::negreal == 0.5::negreal

This case is prevented because the type signature of the addition operator pre-
vents T from being constrained to negreal due to the presence of 1 in the addi-
tion expression. T can only be constrained to real. If the application attempts to
constrain the type indirectly or directly to negreal, the result is a type error.

In contrast, consider a definition of inc using top as its domain and range:

inc_top(x::top)::top is x+1;

Like the polymorphic inc using universally quantified parameters, inc_top can
be applied to any value. However, the similarities stop there. Because “+” is defined
for any number type, if the type value associated with T satisfied inc’s original
where clause, the addition could be performed. Additionally, nothing can be said
about inc_top’s result type. If it is used in the context of other numbers, it will not
satisfy typing rules. The lesson here is to use universally quantified parameters for
polymorphic functions. Using top results in functions that are far more difficult
to use. This lesson will hold wherever we see a need for polymorphism.

All of the examples thus far deal with using universally quantified parameters
with types to implement polymorphism. They can also be used for other purposes,
suchasspecifyingoperationsovervariable-lengthbitvectorsorusingtypeinference
to perform a kind of meta-specification. The key is that the Rosetta evaluation
system must be able to infer a value for universally quantified parameters statically.
Evaluation-time information cannot be used to resolve the parameter’s value.

We will see universally quantified parameters appear in the signatures of facets,
components, and other Rosetta structures. In every case they play the same role
as they do in function definition, providing a controlled form of parametric poly-
morphism. The same techniques will be used to determine their values either by
specific instantiation or from implied constraints.
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A higher-order function is simply a function that accepts other functions
as arguments. As presented in Chapter 6, Rosetta functions are first-class items
having labels, types, and values like any other declared item. Thus, it is possible to
define a higher-order function simply by including a parameter in with a function
type in a function’s signature. Consider the simple example of a selection function
for choosing between demodulation schemes in a receiver:

demod(dem1,dem2::<∗(s::real)::real∗>;
modType::boolean; x::real)::real is

if modType then dem1(x) else dem2(x) end if;

In this function, x is the input signal that will be demodulated and modType indi-
cates what modulation type to select. The parameters dem1 and dem2 are functions
that map real values to real values and represent the two alternative demodula-
tion schemes. When evaluated, the function uses its boolean input to select from
the two demodulation schemes. The advantage to this approach is that demodu-
lation types need not be known when the function is developed. The designer may
select a general architecture for the design while deferring specifics until a later
point in the design process process. The demodulation function can be instanti-
ated as follows:

demod(qpsk,vsb,true,v)

where v is the input signal and qpsk and vsb are functions that perform demod-
ulation.

The approach becomes more powerful when combined with curried function
evaluation. Using curried function evaluation, it is necessary to provide values for
only a subset of a function parameters. The following definition shows an example
of defining a specific demodulation paradigm using the functions defined above:

demod1::<∗(modType::boolean;x::real)::real∗> is
demod(qpsk,vsb);

When evaluated, demod(qpsk,vsb) results in a new function that evaluates an
input signal with either qpsk(x) or vsb(x), depending on the boolean select
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value, modType. This resulting function is used as the value for function demod1.
The demod function provides an architecture for demodulation functions that can
be instantiated for specific situations.

We can take the example one step farther and instantiate demod1 to be a qpsk
demodulator exclusively:

qpsk1::<∗(x::real)::real∗> is
demod1(true);

Most applications of higher-order functions are transparent to the Rosetta
user. Specification functions such as quantifiers, set operations, and map and filter
operations represent applications of higher-order functions that are used without
fanfare in the base language. However, the higher-order technique is available to
users and represents a powerful specification technique.

7.1 Domain, Range, and Return Functions

The core of Rosetta’s built-in higher-order functions includes functions for
extracting the domain, range, and return type from a function definition.
Described in Table 7.1, dom, ran, and ret provide capabilities for extracting
domain, range, and return type from a function, respectively. The dom function
accepts a function as its only argument and returns the domain of that func-
tion. For unary functions such as inc, this is simply a process of returning the
type associated with the input parameter. If inc is defined in the traditional
fashion:

inc(x::natural)::natural is x+1;

the domain of inc is found by using the dom function:

dom(inc) == natural;

ret is the return type of the function. Using inc again as an example, the return
type is found by evaluating ret on the function:

ret(inc) == natural;

Table 7.1 Higher-order functions for accessing properties of function definitions

Operation Format Meaning

Domain dom(F) Domain of a function

Range ran(F) Range of a function

Return Type ret(F) Return type of a function
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Like the domain function, the return type function is realized by simply examin-
ing the function definition.

The ran function accepts a single, arbitrary function as its only argument and
returns the actual range of the function. Unlike the return type function, the range
function evaluates to the function’s range by assembling the results of applying
the function to each element of its domain type. Determining the range of inc is
achieved by evaluating inc on every value of its domain. Thus, the range of inc
is the natural numbers without zero. Formally:

ran(inc) == {x::dom(inc) | inc(x)} == posint;

where posint is the name of the type containing all natural values except 0. It is
known that for any function, the range must be contained in the return type:

forall(f::function | ran(f) =< ret(f));

The domain and range functions present a greater challenge when dealing
with functions of arity other than 1. It is possible to define a function with no
arguments, often called a nullary function. During function evaluation, nullary
functions are always reduced to expressions by removing the function former.
Specifically:

<∗ ()::T is e ∗> == e

This is perfectly legal, as the purpose of the function former brackets is to define
the scope of function parameters. With no parameters, there is no need to define
scope. The domain of all nullary functions is the empty type containing no values.
The range of a nullary function is the result of evaluating its associated expression.
Thus:

dom(()::natural is <∗ 3+2 ∗>) == {}
ran(()::natural is <∗ 3+2 ∗>) == {5}

Using these identities, one can define evaluation of a fully instantiated function
as taking its range after instantiating and removing parameters. If all arguments
to a function are known, then the range of that instantiated function is the same
as evaluating the function.

Although seemingly quite innocent, the range function is the workhorse of theEXAMPLE 7.1
The Workhorse of
Higher-Order Functions

built-in higher-order functions. Virtually all the higher-order functions we will
see involve calculation of range in their definition. Although it is not necessary to
understand such definitions to use the functions, some understanding can pro-
vide valuable insight into the definition of other higher-order functions.

In reality, ran behaves like an image function. Recall that an image function
takes a collection of items such as an array or list and applies a function to each
element. The difference between this mapping function and the Rosetta range
function is that the initial set of values to be mapped is the domain of the specified
function, while the function mapped to each element is the function definition.
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Given that we would like to apply the function f(x::D)::R to the collection of
items d, we can use the image function as follows:

image(f,d);

The ran function is the same, except it takes each element of a function’s domain
and applies the function to it. Using image again and dom to obtain the range of
f, this function can be implemented as:

image(f,dom(f))

This application of image is semantically equivalent to:

ran(f)

Note that when actually defining Rosetta semantics, ran is the primitive function
and image is defined from it. �

The domain of functions with more than one parameter is defined as the type
of the first parameter. This follows directly from the curried semantics, where
every function can be reduced to a unary function. The range of functions with
more than one parameter is defined as the type of the function resulting from
curried evaluation with respect to the first parameter. Finally, the return type is
the type syntactically specified as the return type of the function.

Given a find function that determines if a value is in a sequence of values:

find(x::natural,y::sequence(natural))::boolean is
if y/=null then

if x=y(0) then true
else find(x,(y sub [1,..#y-1]))

end if
else false

end if;

domain, range, and return type are defined as:

dom(find) == natural
ran(find) == <∗(y::sequence(natural))::boolean∗>
ret(find) == boolean

The domain is the type of the first parameter and the return type is the type asso-
ciated with the function. If this function were partially evaluated specifying only
the first parameter, the resulting function type would be a mapping from an array
of naturals to a boolean value. Thus, the range of the find function is the function
type specified in the previous definition.

The primary reason for including the ran function in the Rosetta definitionEXAMPLE 7.2
Defining image Using ran is its usefulness in defining other functions. One such function is image, where a

function is applied to elements of a set. In this definition, we will first construct a a
function from image(f,S) and evaluate ran on the result. What we would like to
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apply ran to is a function that accepts the elements of S as its inputs and evaluates
to the same value as f. Such a function can be defined as:

<∗(x::S)::ret(f) is f(x)∗>

This function’s domain is the set S used as one parameter to image. Its value is f
evaluated on its input. To define image we simply call ran on the result:

image(f,S) == ran(<∗(x::S)::ret(f) is f(x)∗>) �

7.2 Alternate Higher-Order Function Notation

The functions dom, ran, and ret are defined to return elements of a function
definition. Thus, it is natural to call these functions using functions as parameters.
When thinking about image and mapping functions, Iminimum, maximum, and
quantifier functions, the common practice is to start with a set of items and per-
form a specified operation on that set. Mapping functions apply a transformation
to each element of a set, minimum and maximum return the appropriate value
from a set, and quantifiers check to see if a property holds for all or some values
from a set. Although each of these properties can be expressed using a higher-
order function, it can become difficult to read and understand.

Rosetta introduces a standard notation to allow a more natural expression of
higher-order properties involved in quantification associated with sets. The fol-
lowing notation is equivalent to finding the minimum value generated by inc in
the earlier example:

min(x::natural | x+1)

Using this notation, the domain and value expression of the function are sep-
arated in a manner consistent with traditional notations. The interpretation of
this notation is to take all elements of natural, apply the expression x+1, and
return the minimum resulting value. The mapping from this notation back to
the higher-order function is a simple syntactic manipulation. If S is a set and
e is an expression defined over elements of S, then the following relationship is
always true:

min(x::S | e) defs min(<∗(x::S)::T is e ∗>)

Here the elements of the set are pulled out and used as a type in the function
former. The notation:

min(x :: natural | x)

specifies the minimum value in the set of natural numbers.
What makes this notation powerful is that natural can be replaced by any set

and Rosetta forms the higher-order function. If the collection can be identified
and the expression defined, the preceding notation can be used to accomplish
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Table 7.2 Second-order quantifier functions

Operation Format Meaning

Minimum and Maximum min(F), max(F) Minimum or maximum value

from a function’s range

Comprehension sel(P) Elements from a predicate’s

sel(x::T|P(x)) domain that satisfy its

definition

Universal and forall(P), True if a predicate is true for

Existential Quantifiers forall(x::T|P(x)), all or one of its domain values,

exists(P), respectively

exists(x::T|P(x))

the higher-order specification task. If additional single-parameter higher-order
functions are defined, the same notation applies. Semantically, the notation adds
nothing, but it significantly enhances the readability of specifications.

7.3 Minimum and Maximum

The primary functions used to define quantifiers are the minimum and maximum
functions (Table 7.3). Each of these functions takes as its single argument an arbi-
trary function, finds the range of that function, and returns the minimum or
maximum value in the range, respectively. In other words, the minimum function
returns the smallest value a function can produce, while the maximum produces
the largest.

The min function takes a function and evaluates that function on every possible
domain value and selects the minimum value. This can be viewed as taking the
function’s range and returning the minimum of the range values. A simple func-
tion example is the identity function:

id(x::natural)::natural is x;

This function is equal to its single natural number argument. Applying the min
function returns its smallest possible value, or, in this case, the smallest possible
natural number:

1. min(id)
2. == min(<∗(x::natural)::natural is x∗>)
3. == 0

The domain of the argument function is the type natural. The range of
the argument function is the expression applied to each element of the



7.4 Quantifiers and Comprehension 121

Table 7.3 Applying built-in higher-order functions to the contents of sequences

Operation Syntax Meaning

Maximum and Minimum max(x::~S | F(x)) Maximum or minimum value

min(x::~S | F(x)) from the set resulting in F

applied to a sequence

Range ran(x::~S | F(x)) The set containing F applied

to all values in a sequence

Comprehension sel(x::~S | P(x)) Filtering contents of a

sequence

Universal and Existential forall(x::~S | P(x)) Universal and existential

quantification exists(x::~S | P(x)) quantification over contents

of sequences

domain — specifically, the natural numbers. The min function then returns the
minimum value associated with natural or 0.

Similarly, the min function can be applied to inc where the expression
associated with the function is x+1. Specifically:

1. min(inc)
2. == min(<∗(x::natural)::natural is x+1∗>)
3. == 1

The max function is defined similarly and operates in the same manner, except it
returns the maximum value associated with a function’s domain, rather than the
minimum value.

7.4 Quantifiers and Comprehension

The concept of a quantifier from traditional logic allows specifiers to make
statements about sets of items. The universal quantifier, called forall, allows
the specifier to claim that a property is true for every element of a collection.
Similarly, the existential quantifier, called exists, allows the specifier to claim
that a property is true for at least one element of a collection. Although myste-
rious in many languages, Rosetta quantifiers are simply higher-order functions
defined over predicates. In essence, we will take the range of a collection and use
that range to determine if a quantifier holds. If the range of a predicate does not
contain false, the predicate is true for all elements of its range. Similarly, if the
range of a predicate contains the true value, there exists a value from the range
for which the predicate holds.

Unfortunately, quantifiers and comprehension operators can be somewhat
mysterious in their application and definition. In Rosetta, these operators are
simply higher-order functions whose definitions do not differ substantially
from simple minimum and maximum functions. Quantifier and comprehension
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functions and the other predefined higher order functions have the same form.
The former can be instantiated with functions as their single argument:

forall(<∗(x::S)::T is P (x)∗>)
exists(<∗(x::S)::T is P (x)∗>)
sel(<∗(x::S)::T is P (x)∗>)

or using the equivalent, more readable mathematical notation:

forall(x::S | P (x))
exists(x::S | P (x))
sel(x::S | P (x))

where S is a set or type, T is a type, and P (x) is a boolean expression defined over
x. The forall and exists functions determine if P holds for all or some of the
values inS, respectively. Thesel function selects elements ofS for whichP holds.

Consider the following application of forall to determine if a particular set
contains only values greater than zero:

forall(x::{1,2,3,5} | x>0)

Applying the expression x>0 to each element of the input collection, the resulting
set becomes:

{true,true,true,true}

Thus, the expression is true for each element of the input collection, meaning that
the result of applying forall is also true. Assuming the input set is {1,2,3,0}
demonstrates the opposite effect. Here, the result of applying the expression to
each element of the collection is:

{true,true,true,false}

Because one value is false, the forall expression evaluates to false.
Rosetta interprets the original definition by forming a function argument to

forall. In this case, the function has the following form:

forall(<*(x::{1,2,3,5})::boolean is x>0 *>)

Here, the domain of the argument function is the set {1,2,3,5} and the result
expression x>0. To determine the range of the argument function, x>0 is applied
to each element of domain collection giving the result presented previously. The
exists function works identically, but is true when at least one of the evaluation
results is true, rather than all. For example:

exists(x::{1,2,3,-1} | x>0)

is true because the result of applying the expression is {true,true,true,false}
and one element of the input collection is greater than 0. In contrast:

exists(x::{1,2,3,0} | x<0)
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produces {false,false,false,false}. None of the input collection is less than
0 and the exists function evaluates to false.

One way to think of forall and exists is as general purpose and and orEXAMPLE 7.3
Using forall and exists
as and and or

functions. Given some set of number values S and a predicate p that determines if
a value is greater than 5, the following definitions hold:

p(x::integer)::boolean is p>5;

forall(x::image(p,S) | x)
exists(x::image(p,S) | x)

Because p is a boolean function, the set that x is selected from is boolean. Thus,
x can simply be checked without transformation. The forall function fails if it
encounters a single false value, while exists succeeds if it encounters a true
value.

These applications are semantically equivalent to:

forall(x::S | p(x))
exists(x::S | p(x)) �
The sel function provides a mechanism for selecting from a set values that

satisfy a property, and returns them as a set. In traditional logic, the selection
function is referred to as comprehension and is used as a primary method along
with extension for constructing sets. Consider the following example, where sel
is used to filter out all elements of a set that are not greater than 0:

sel(x::{1,2,3,0} | x>0)

In this case, the result of evaluating the sel function is the set {1,2,3}, or the
subset of the input set that is greater than zero. Like the previous higher-order func-
tions, this form of the sel function creates a function from the input arguments and
operates on the range of that function. For this example, the equivalent form using a
function argument is:

sel(<∗ (x::{1,2,3,0})::boolean is x>0 ∗>)

It is interesting to note here that forall and exists behave identically to min andEXAMPLE 7.4
Defining forall and
exists

max for boolean valued functions. The min and max functions applied in the same
way would result in the same outcome with the following axiom defined:

true > false

With this axiom:

exists(x::1,2,3,-1 | x>0) == max(x::1,2,3,-1 | x>0)
forall(x::1,2,3,-1 | x>0) == min(x::1,2,3,-1 | x>0)

In both cases, the result of applying x>0 to each element is {true,true,true,
false}. Interpreting these values under the assumption that true>false, true is the
maximum value in the result and false is the minimum. These values correspond to
the desired result of applying exists and forall, respectively. Thus, forall and
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exists simply provide more meaningful names for min and max. Furthermore, max
and min are referred to as quantifiers in addition to the traditional forall and exists
operators. �

Just as ran can be used to define image, sel; can be used to define filter:EXAMPLE 7.5
Using the sel Function

filter(p,S) = sel(x::S | p(x))

This application of sel takes every element of S, applies p, and keeps the value from
S if p is satisfied. �

Possibly the most common use of the sel function is to define new types. Chapter 8EXAMPLE 7.6
Using sel to Define Types discusses how any set can be used as a Rosetta type. All types defined in this and

previous chapters are in fact sets of items. The sel function is used extensively to
define subtypes of existing types. For example, natural is the subtype of integers
that includes zero and the positive values. The definition of natural type is achieved
using the following definition:

natural::subtype(integer) is sel(x::integer | x >= 0)

Note the use of the select function to filter integer to get values greater than or equal
to 0. Most number types are defined in this manner. �

7.5 Sequences and Higher-Order Functions

There are two fundamental types of higher-order functions that are useful with
respect to sequences. The first includes functions that simply treat the contents of
a sequence as a set. Recall from Chapter 5 that a contents function is defined that
extracts the contents of a sequence as a set. Given a sequence S, its contents can be
extracted as a set using the prefix operation ~S. Thus, it is possible to apply any of
the higher-order set functions to sequences. For example, given a sequence S and a
boolean expression P, the set of objects from S satisfying P is defined as:

{sel(x::~S | P(x))}

The contents operator extracts the elements of S as a set and the higher-order sel
function performs the comprehension. Table 7.3 shows how each of the defined
higher-order functions for sets can be applied to sequences using the extraction func-
tion. Like the previous expression, this function evaluates to the subset of items from
S that satisfy P(x).

The second kind of higher-order function treats sequences as sequences generating
new sequences from old sequences. Table 7.4 shows the definitions of these sequence
functions. Rather than using the set-based higher-order functions, these operations
are defined on sequences directly. The two built-in special operations on sequences
are image and filter. The image function takes a sequence and an arbitrary function
and applies that function to each element in the sequence. To increment the contents
of a sequence and maintain the result as a sequence, the map function is applied as:

image(inc,[1,2,3]) == [2,3,4];
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Table 7.4 Special higher-order functions defined over sequences

Operation Syntax Meaning

Filter filter(P,S) Filter all elements from S

that do not satisfy P

Map image(F,S) Apply F to all elements from S

and return the resulting sequence

Fold Left reduce(P,i,S) Fold left

Fold Right reduce_tail(P,i,S) Fold right

Similarly, the filter function takes a sequence and removes elements that do not
satisfy a predicate. Assuming that the predicate lt3 exists that is true if its argument
is less than three, filtering a sequence for values less than three is achieved by:

filter(lt3,[3,1,2,4]) == [1,2];

Anonymous functions and let forms are particularly useful in conjunction with the
image and filter operations. It is unlikely that the lt3 function just used will ever
exist in any library. Using anonymous functions, the filtering operation can be imple-
mented as:

filter(<∗(x::natural)::boolean is x<3∗>,[3,1,2,4]);

The use of filter is identical in this example, except that the filtering predicate
is defined locally and is discarded after the function is simplified and resolved. If a
filtering or image function is used repeatedly, the let form is useful for defining a
local function:

let filterFn::<∗(x::natural)::boolean∗> be
<∗(x::natural)::boolean is x<3∗>

filter(filterFn,[3,1,2,4])
end let;

Again the function is identical, but the local function filterFn is defined in the let
form and is used in the filtering activity. Like the anonymous function defined previ-
ously, filterFn is discarded following the closing of the let form’s scope. It should
be noted that using the let form for local function definition in this way can be some-
what cumbersome. If filterFn is used repeatedly within the let form, or allowing
the function to have a name increases readability, then the extra syntax is worthwhile.

One application of higher-order functions like exists and forall is a form ofEXAMPLE 7.7
Using Set-Based
Higher-Order Functions on
Sequences

comprehension over sequences. Using the contents extraction operation, one can
extract values from a sequence and perform comprehension. Assume that we have
sequence of integers, S, and we would like to determine if all sequence values are
positive:

allPos(s:sequence(integer))::boolean is
forall(y::(~S) | x>0)
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allPos extracts the contents of s to a set and applies the test x>0 to each element
returning true if all elements are greater than 0. �

7.6 Function Inclusion and Composition

Two operations on functions support comparison operations and composition
of multiple functions into a single function. Function inclusion defines several
relations that define when one function is, in effect, a sub-function of another.
Specifically, we will define f=<g, f<g, and f=g for any two functions. Function
composition defines new functions by composing existing functions. The operation
(f . g) is defined to represent the function equivalent to the application of g then
f to its argument. Specifically, we will define the composition operation so that
(f . g)(x)==f(g(x)).

image and filter are exceptionally useful for manipulating sequences. UsingEXAMPLE 7.8
Using image, filter, and
reduce

image, defining word functions from bit functions is a simple matter of applying
functions to all bits in a sequence. Two functions that perform xor and ∗ (and) of
one bit across an entire word are:

wordXor(b::bit; w::bitvector)::bitvector is
let helper :: <∗ (x::bit)::bit ∗> is

<∗ (x::bit)::bit is b xor x ∗>

wordAnd(b::bit; w::bitvector)::bitvector is image (__*__(b)) w

The two definitions represent two different approaches. The wordXor function
defines an internal helper function that applies xor to the bit input to wordXor
and the single input bit x. This function is then applied to each element of the input
bitvector. This approach is similar to that used in languages such as Scheme, where
currying is not directly supported. The wordAnd function uses currying to define
a new function from the binary operation + and the input bit b. This new unary
function is applied to each element of the input vector adding the b value with each
element. filter is equally useful for extracting values from a sequence or perform-
ing searches without resorting to primitive recursion. The following definition is for
a function that determines if there are exactly two elements in a bitvector with a
value 1:

twoOnes(b::bitvector)::boolean is
#(filter(<∗(x::bit)::boolean is x=1∗>,b))==2

Finally, we can define a parity checking function using reduce over bitvectors:

evenParity(b::bitvector)::boolean is %(reduce xor 0 b)

The evenParity function starts with 0 and applies xor to the accumulated value and
the current bit. As each 1 is visited, the accumulated value toggles. The % operation is
used to convert the resulting bit to a boolean value. �
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7.6.1 Function Inclusion

The function type former <∗(d::D)::R∗> defines the set of functions mapping D
to R. This set is in all ways a Rosetta type and can be manipulated as a set. Thus,
operations such as subset and proper subset are defined over functions. Subset applied
to functions is referred to as a function inclusion operation. Function containment,
f1=<f2, holds when one function is fully contained in another function or function
type. Assuming f1(x::d1)::r1 and f2(x::d2)::r2:

f1 =< f2 def d2=<d1 and forall(x::d1 | f1(x) == f2(x))

f1 is contained in f2 if and only if the domain of f2 is a subset of the domain of f1
and for every element of f2’s domain, f1(x) is equal to f2(x). Exploring function
inclusion’s several cases reveals where it applies.

The simplest case is when r1 and r2 are specified as sets, where the parameter x
is not involved in the definition. Examining the function inclusion law, the universal
quantifier falls out and the following relationship results:

f1 =< f2 def d2 =< d1 and r1 =< r2

In this case, f1 is included in f2 when (i) dom(f2) is contained in its domain and (ii)
its range is contained in ran(f2).

A second case occurs when r1 is an expression and r2 is a set. Instantiating the
function inclusion law results in the following statement:

f1 =< f2 def d2 =< d1 and forall(x::d1 | f1(x) in r2)

r2 is a constant value independent of x. Therefore, the law requires that applying
expression r1 to actual parameter x results in an element of r2. This is equivalent to
the previous result and can be simplified to:

f1 =< f2 def d1 =< d2 and ran(f1) =< r2

As an example, consider the increment function defined over natural numbers.
It should hold that:

inc :: <∗(x::natural)::natural∗>

Instantiating the function inclusion law gives:

1. inc :: <∗(x::natural)::natural∗>
2. == natural =< dom(inc) and

forall(x::natural | inc(x) in natural)
3. == natural =< natural and

forall(x::natural | x+1 in natural)
4. == true and true
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Thus, inc is of type <∗(x::natural)::natural∗>. It is interesting to note that
this is exactly the relationship that must be checked for every definition of the form:

f(x::Td)::Td is e;

as it indicates that the actual function is of the same type as the specified
signature.

The final case defines when one constant function is included in another constant
function. In this case, both d1 and d2 are expressions and the most general expression
of the function inclusion law must be applied.

First, consider determining if the increment function is included in itself.
Clearly, this should be the case and the function inclusion law supports the
assertion:

1. inc =< inc
2. == dom(inc) =< dom(inc) and

forall(x::natural | inc(x) = inc(x))
3. == natural =< natural and

forall(x::natural | x+1 = x+1)
4. == true and true

This holds because for any Rosetta item, i=i holds by definition. Consider the case of
determining if increment is contained in identity over natural numbers. In this case,
the law should not hold:

1. inc =< id
2. == <∗(x::natural)::natural is x+1∗> =<

<∗(x::natural)::natural is x∗>;
3. == dom(id) =< dom(inc) and

forall(x::natural | inc(x) = id(x))
4. == natural =< natural and

forall(x::natural | x+1 = x)
5. == true and false

false is obtained from the second expression by the counter example provided by
x=0 as 0+1 /= 0.

When f1(d::d1) is e1, the following relationship holds:

f1 =< <∗(x::d2)::r2∗> ==
d2=<d1 and forall(n::d2 | f1(n) =< r2∗>)

or

f1 :: <∗(x::d2)::r2∗> == d1=<d2 and ran(r1) =< r2

The function containment law gives the criteria by which one function may be said
to be included within a function type. Each function type defines a set of functions
consisting of all those functions included in it. This means that any function can
be used as a type, or set, and all the containment laws for sets apply to them. This
is particularly useful when using a function that returns a set rather than a single
value. Consider the function <∗(n::natural)::natural∗>. This function defines
the set of all functions that take a natural number as an argument and return a natural
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Table 7.5 Function equivalence and inclusion properties

Operation Format Definition

Equal and not equal f=g, f/=g f=<g and f>=g, -(f=<g) or -(f>=g)
Ordering relationships f>=g, f>g, g=<f, g=<f and f/=g,

f=<g, f<g f=<g, f=<g and f/=g
Composition f . g f(g(x))

number. Rosetta allows the user to ask if a given function is contained in that set and
is a member of that type. For example, consider:

succ(n::natural)::natural is n+1;

We wish to determine:

1. succ(n::natural)::natural is n+1 ::
succ(n::natural)::natural;

2. == (natural=<natural) and
forall(n::natural | succ(n) in natural)

3. == true and forall(n::natural | (n+1) in natural)
4. == true and true
5. == true

Assuming that f(x::df)::rf and g(x::dg)::rg, the operations defined in
Table 7.5 are defined over two functions. Functional equivalence checks to determine
if every application of f and g to elements from the union of their domains results
in the same value. Specifically, f(x) = g(x) for every x in either domain. Function
inequality is defined as the negation of function equality.

7.6.2 Function Composition

The function composition operator takes two functions and composes them to form
a third. The notation (f · g) represents the composition of functions f and g. The
semantics of “g then f” is defined as:

(f . g)(x) def f(g(x))

We define function composition because we can represent the composition without
referencing its input parameter or parameter type. This allows writing functions in
the point free style, a general style useful for writing abstract specifications.

A precondition on the application of function composition g . f is that every
value to which g can be reduced must be a legal input to f. This relationship can
be specified simply using the ran and ret functions:

ret(g) =< dom(f)
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A simple application of function composition can be used to define a function thatEXAMPLE 7.9
Using Function
Composition to Define a
Double Increment
Function

adds 2 to its input by composing the increment function with itself:

inc(x::integer)::integer is x+1;

plus2 :: <∗(x::integer)::integer∗> is (inc . inc);

The composition is legal because the range of inc is the same as its domain. Thus,
ran(inc)=<dom(inc) holds. A more interesting case deals with an increment func-
tion defined over naturals. Changing the definition slightly gives:

inc(x::natural)::natural is x+1;

plus2 :: <∗(x::natural)::posint∗> is (inc . inc);

In this case, the range of inc is posint rather than natural. However,
posint=<natural still holds and the composition is still valid. �
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Because any Rosetta item whose value is a set can be used to create a
type, creating new types is the same process as creating new sets. Rosetta pro-
vides three basic mechanisms for forming sets and types: (i) listing the elements
explicitly, (ii) filtering or composing existing sets, or (iii) defining functions for
constructing the elements of the set. Listing the elements of a set, referred to as
extension, is the simplest mechanism for defining new types. The new type is
formed by simply using the set former to list the elements of the type. Filter-
ing existing sets, referred to as comprehension, involves using the sel operation or
one of its derivatives to extract a set of items from an existing set. Finally, defin-
ing functions to construct type elements, referred to as constructive specification,
involves defining functions that generate all elements of a type.

Types are specified using the expression language to define sets making
Rosetta’s type system dependent. Specifically, the same language used to define
expressions that use declared items is used to define their types. Most pro-
gramming languages use a distinct language subset for defining types that does
not include anything requiring evaluation. Although this restriction makes type
checking far simpler, Rosetta uses a dependent type system due to its expressive
power.

An excellent example of Rosetta’s type system’s power is using comprehen-
sion to define item properties. Defining a set by comprehension is defining
a property that each member of the new set must have. Using Rosetta’s set
comprehension capabilities, we can define sets that assert a property over all
members of a type. This is a simple and powerful way of defining new prop-
erties for items that is difficult or impossible to achieve without dependent
types.

Because Rosetta types are essentially set values, they are first-class in the
language. Types can be passed as actual parameters to facets and functions,
and type items can be variable or constant. They can be created, compared,
observed, and transformed like any other Rosetta value using the same expres-
sion language.

131
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8.1 Defining New Types

When a new Rosetta type is defined, it must either be a subtype of an existing
type, or a new base type that has no supertype (Table 8.1). The standard notation
for Rosetta declarations applies equally to the definition of new types. Recall that
the notation for a item definition is:

names :: T [[ is e ]] ;

where names is a comma-separated list of type names, T is the set of values the
new type’s value is drawn from, and e is a Rosetta expression whose value deter-
mines the values associated with the new type. Using this notation, the Rosetta
type tri can be defined using extension as a subtype of the integer type:

tri :: set(integer) is {−1,0,1};

In this declaration, the label is tri, the type set(integer), and the value
{−1,0,1}. The set type former creates the powerset of its argument. Thus, tri
must be a subset of the integer set. The is clause defines the value of tri as the
set {−1,0,1}, an element of the powerset of integers and a legal value for this
type. Thus, we have defined a new item, tri, that can be used as a type to define
both variables and constants:

high :: tri is 1;
x :: tri;

To distinguish types from sets, Rosetta provides the keyword subtype to
indicate (i) that a new type is being defined and (ii) the supertype of the new
subtype. The subtype synonym is semantically the same as set, but indicates the
intent of a declaration. The previous definition of tri would appear as follows in
a definition:

tri :: subtype(integer) is {−1,0,1};

The most common mechanism for defining new types is using the subtype qual-
ifier to to specify the type expression. The notation:

x::subtype(integer) is sel(x::integer | x>=0);

declares that x is a set of items from integer. It is semantically equivalent to
the previous notation. Types defined in this manner are referred to as interpreted
subtypes because their supertype is known and the value of the new type is also
known. In general, new types are defined using the following notation:

name :: subtype(T ) [[ is e ]] ;

where name is the name of the new type and T is the associated supertype. The
optional expression, e, defines the value of the new type. It is mandatory that the
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range of e is a subset of T in the same manner as any other item declaration. In
declarations of this sort, name is considered subtype of T while T is the supertype
of name. Treated as sets, the relationship name=<T must hold for all values of
name.

Like traditional item declarations, the is clause is optional, allowing the
definition of a subtype whose specific value is not known. For example:

time::subtype(integer);

defines a new item called time that is a subtype of integer, whose specific value
is not known. The difference between this definition and previous definitions is
that the value of time is not known. It is known that the values associated with
time are found in integer, but those values are otherwise unconstrained. This
supports incomplete definitions of types. Specifically, some properties of the type
are known, but its specific contents are not. Types declared in this fashion are
called uninterpreted subtypes because their supertypes are known, but their values
are not.

At times it is useful to define a new type that is not a subtype of any existing
type. Rosetta does not allow type definitions that do not refer to some kind of
supertype in their declaration. To achieve the desired result, the type top is used
as the supertype. The definition:

tri ::subtype(top) is {−1,0,1};

defines a new type called tri whose values are −1, 0, and 1 and whose supertype
is top. In this definition, an item of type tri will not inherit operations from
number or element types.

Given the alternative definition:

tri ::subtype(integer) is {−1,0,1};

operations over integer values are inherited by the new type. The previous
definition breaks the inheritance chain forcing the user to define operations over
the new type. Types defined in this manner are referred to as interpreted types, as
their values are known but their supertypes are known to only be top.

In both cases existing values are used to populate a new type. When the
literal −1 is seen in a specification, some mechanism must be used to determine
its associated type. The most common approach is to simply use a type assertion
such as −1::tri or −-1::integer to specify the desired type. In some cases,
the appropriate type can be inferred. However, it cannot be inferred in the gen-
eral case.

At times it is desirable to define new types, where both value and supertype are
unknown. This definition style defers all properties of the new type to definition
using terms within the facet. Such types are defined using top as the supertype,
but omitting the is clause and the explicitly specified value. The definition:

tri ::subtype(top);



134 Chapter 8 User-Defined Types

defines a type whose supertype and value are not known. Such types are referred
to as uninterpreted types or sorts in definitions. They are particularly useful at high
levels of abstraction where some, but not all, properties are known.

The use of subtype(top) is quite common in Rosetta specifications and always
indicates the definition of a new type. For readability, the keyword type is intro-
duced as a synonym for this construct. The definitions:

tri ::type is {−1,0,1};
tri ::type;

are identical to the previous definitions, but are easier to read and interpret.
Types need not be defined starting only from elemental values, but can be

defined from any type. For example, consider the definition of a type whose values
are subsets of a set T:

s::subtype(set(T));

The notation set(T) defines the type containing all possible subsets created from
elements of T. The notation x::set(T) therefore states that x is a single subset of
T. Using the subtype form defines s to be an arbitrary collection of subsets of T.
The subtype form simply says that smay include many sets. This is fundamentally
different than the declaration:

s::set(set(T));

In this case, s is a single set of subsets from T, rather than a set of subsets from
T. The notation set(T) again defines a type that contains all subsets of T. In this
case, the outer set former evaluates to all possible subsets of all possible subsets
from T. These types can be further restricted, as in:

set4 :: subtype(set(T)) is
sel(x:: subtype(set(T)) | forall(t::x | #t=4));

where set4 is the set of subsets of T that contain exactly four elements. The nota-
tion z::set4 declares z to be a singleton element of type set4, or simply a subset
of T containing four elements.

One reminder about the distinction between the notations x::T and
x::subtype(T) as declarations: The first says that the value of x is a single ele-
ment of type T; the second says that the value of x is a set of values selected from T.
If the first definition is used as a type, then only single element types are allowed.

Table 8.1 Forms for defining types classified by interpretability and subtype

Constant Type Variable Type

Base Type T :: type is V; T :: type;
Subtype T :: subtype(S) is V; T :: subtype(S);
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The second explicitly allows sets. In contrast, if these statements are used as terms
in a specification, they are identical.

8.2 Defining Types By Extension

There are two mechanisms for defining new types by extension. Using set formers,
values for a type can be listed explicitly. However, those values must already exist
in the Rosetta value space. Using enumerations, sets of values are defined where
values must be fresh and cannot appear in Rosetta prior to the declaration.

8.2.1 Using Set Formation Operators

The simplest mechanism for defining a type is to simply list its elements or
combine existing items to form a set. In Rosetta, the items in a set can be listed
explicitly by using the set former. For example, the definition of type bit has the
following form:

bit ::subtype(natural) is {0,1};

Because {0,1} is an element of subtype(natural), this represents a legal type
definition. Further, the new bit type inherits operations from the natural num-
bers. Other set formation operations, such as intersection and difference, can be
used to form types in the same manner as for the set former. They are used far
less often, but still remain useful. For example, the type containing only positive
integers, posint, can be defined as:

posint :: subtype(natural) is sel(x::natural | x>0);

using the selection function to filter out all values greater than 0.
As noted earlier, there is some danger in defining new types whose values are

shared with other existing types. When processing specifications, Rosetta tools
must determine the type of −1, 0, and 1. If the new bit type is defined without
reference to integer, the only type that can be inferred is top. To assist tools, type
ascription can be used to indicate the type explicitly:

1::tri ;

identifies 1 as the value from tri, while:

1::integer;

identifies 1 as the value from integer. With two types associated with 1 and
no common supertype other than top, this annotation is required in virtually
all situations. Using an enumeration to define new types like this will avoid this
problem.
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8.2.2 Enumerated Types

Enumerations are types whose values can be specified by explicitly listing them.
Unlike definitions using set enumeration, the values of an enumerated type
cannot be defined previously and are subtypes of element only. Defining an
enumerated type is achieved by declaring the type and defining a collection of
values associated with it using the enumeration former:

colors::type is enumeration[red,yellow,blue];

The notation yellow defines a new item whose lexical representation is yellow
and whose value is also yellow. Thus, yellow becomes a new value in the current
value space. Enumerations in Rosetta differ from enumerations in traditional pro-
gramming languages, as the new type definition does not imply an ordering on its
elements. Ordering must be introduced separately if needed. Any variable whose
type is an enumerated type is an element and thus a scalar.

Because enumeration values are fresh and cannot exist in the Rosetta type space
prior to the enumeration declaration, the problem with ambiguous types for
values is avoided. Ascription can be used in the same manner as described
previously, but it need not be, as each enumeration value is associated with exactly
one type. It is possible to define subtypes consisting of enumeration values. This
reintroduces the need for ascription.

The semantics for enumerated types is defined by elaborating the type
declaration to a constructed type. Described later in this chapter, constructed
types define a type by specifying a collection of constructors for all elements of
that type. An enumeration is simply a shorthand for defining constructed types
with constant constructors.

Using enumerated types, we can define a three-valued logic that adds anEXAMPLE 8.1
Defining and Using a
Three-Valued Logic Using
Enumerations

unknown value to the normal logical high and low values. The declaration of
this type using enumerated types is:

tri :: type is enumeration[high,low,unknown];

We can now define standard operations over this type using high, low, and
unknown:

tri_and(x,y::tri ):: tri is
case x of

{high} -> y
| {low} -> low
| {unknown} -> if y=low then low else unknown end if

end case;

tri_or (x,y:: tri):: tri is
case x of

{high} -> high
| {low} -> y
| {unknown} -> if y=high then high else unknown end if

end case;
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tri_and and try_or define the logic of conjunction and disjunction for this three-
valued logic. Other functions can be defined similarly. Using these definitions, we
can define facet models for and and or gates, respectively:

facet tri_and_gate(x,y::input tri ; z::output tri)::state_based is
begin

update: z’ = tri_and(x,y)
end facet tri_and_gate;

facet tri_or_gate(x,y::input tri; z::output tri)::state_based is
begin

update: z’ = tri_or(x,y);
end facet tri_and_gate; �

8.3 Defining Types By Comprehension

Defining types by comprehension involves filtering or transforming existing types
to create new subtypes. Using the sel function or filter functions defines new
types by filtering values from old types. Using the ran or image functions defines
new types by transforming old types.

8.3.1 Using the Selection Function

An excellent example of defining types by comprehension is the definition of the
built-in type natural. Ideally, natural should include the integer values that are
greater than or equal to zero. Using this fact, the standard definition for natural
numbers is:

natural :: subtype(integer) is sel(x::integer | x >= 0);

In this type definition, the comprehension operator sel chooses all elements of
the type integer that satisfy the relationship x >= 0. Because natural is a sub-
type of integer, all operations defined on integer are also defined on natural.

Similarly, the sel operator can be used to form a type called byte consisting
of 8-bit bitvectors . Here the selection operator will be used again, with the length
of the bitvector being checked:

byte :: subtype(bitvector) is sel(b::bitvector | #b=8);

In this definition, the selection operator chooses elements from the bitvector
type that are of length 8.

8.3.2 Using the Range Function

While the selection operator chooses elements from a type, the range operation
transforms each element of a type. An example of using ran to define a new type
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is a potential definition of the even integers. Instead of using the comprehension
operator, here the ran operation is used as an image function:

even :: subtype(integer) is ran(x::integer | 2∗x);

Here the even numbers are generated by multiplying each integer value by 2.
As demonstrated here, the selection and range operations are excellent choices

for defining new types by comprehension. Other higher-order functions, such as
forall and exists, are far less useful, as they evaluate to single boolean values.

8.3.3 Sets as Types — A Caution

As noted earlier, any Rosetta set can be used as the value of a type. This has
numerous advantages, not the least of which is clarity. However, it quite easy to
misuse this capability to develop specifications that are exceptionally difficult to
analyze. Using operations such as set union, intersection, and difference to form
new types can introduce specification complexities that make analysis virtually
impossible. We have already seen the need to use type annotations to disam-
biguate literals shared between types. New types formed from arbitrary sets must
be used carefully, with full understanding of their purpose and how they impact
analysis.

8.4 Defining Constructed Types

The constructed type definition syntax provides a mechanism for defining
constructor, observer, and recognizer functions in a single definitional notation.
Constructor functions create values associated with the new type. These values
behave as any other values and are treated as normal forms that are not evaluated.
Together, the collection of constructor functions can create every value associated
with the type. The observer functions define properties associated with values of
the new type. Observer functions specify and calculate properties for constructed
type values. Finally, recognizer functions are special predicates that indicate the
constructor used to create a value. Summarizing: (i) constructor functions create
new values, (ii) observer functions define properties, and (iii) recognizer func-
tions indicate how the value was created.

As an example of constructed type definition, consider the following definition
for a binary tree of integers:

intTree :: type is data
nil::empty |
node(L::intTree,v:integer,R::intTree )::nonempty;

end data;

The item intTree is defined to be a new, fresh type using the type indicator.
This declaration simply says that the new type’s supertype is subtype(top).
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The is clause is used to give the type a value and the data keyword is used to
indicate that the value of this type will be given a value.

The constructed type definition provides two constructors for intTree: (i) the
constructor function nil and (ii) the constructor function node. The nil func-
tion creates an empty tree and is recognized by the boolean function empty. The
recognizer function is defined so that if its argument is the nil constructor func-
tion, it will return true, otherwise it returns false. The node constructor creates
a nonempty tree from a value and a left and right subtree. Note that the type is
recursive in that intTree is referenced in the definition of node. The nonempty
recognizer is true whenever its argument was created by a call to the node func-
tion. In addition, the observer functions L, v, and R observe parameters of the
node constructor.

A tree with one node whose value is 0 is defined using the node constructor:

node(nil,0,nil);

The recognizers empty and nonempty indicate the constructor used to generate a
tree. Specifically, empty is true if its argument is nil and nonempty is true if its
argument is an instantiation of the node constructor. The recognizers nonempty
and empty evaluate to:

nonempty(node(nil,0,nil)) == true
empty(node(nil,0,nil)) == false

A balanced tree with 0 as the root, and 1 and 2 as the left and right nodes,
respectively, is constructed as follows:

node(node(nil,1,nil),0,node(nil,2,nil ));

Here, the node constructor is used to create nonempty left and right subtrees.
Parameter names are used to generate observer functions that return actual

parameters from constructor functions. These functions return the actual param-
eter instantiation of their associated formal parameter. For example,
when evaluated on the node constructor, the observers L, R, and v
evaluate to:

L(node(nil,0,nil )) == nil
R(node(nil,0,nil )) == nil
v(node(nil,0,nil )) == 0

In this sense, the constructed value behaves much like a record— so much so that
Rosetta uses constructed types in lieu of traditional record structures.

The primary purposes for constructors, observers, and recognizers should be
clear from these examples. Constructors create values, observers make observa-
tions over values, and recognizers partition the value set. In if and other con-
ditional statements, the recognizers are used to guard the use of observers. For
example:

if nonempty(t) then L(t) else nil end if
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determines if t is empty and accesses the left subtree if it is not. If t were empty,
then L would be undefined.

Constructed type definitions have the form:

T :: type is data
c(parameters)::r
[[ | c(parameters)::r ]]∗

end data;

where T names the new type and each subsequent constructor definition specifies
a constructor name, a collection of typed parameters, and a recognizer name.
The format of each constructor declaration is identical to a function definition.
The parameters identify the names and types of observers, and the recognizer
names a predicate that is true when its argument is constructed with the associated
constructor.

Like any other function, constructor functions can be curried. If this is the
case, then the results of applying observer functions associated with uninstanti-
ated parameters are not defined. However, constructor functions are not evalu-
ated in the traditional fashion. When a constructor function is fully instantiated,
it becomes a value in the Rosetta value space. Thus, it cannot be further evaluated.

The ranges of constructor functions are disjoint, implying that each element of
the constructed type is created by exactly one constructor. This implies that each
value associated with a constructed type can have only one form. Furthermore,
each constructor name must be unique. This allows Rosetta tools to automatically
determine what type a constructed value is associated with.

In Rosetta, no special syntax for defining records is defined, as recordEXAMPLE 8.2
Defining Records using
constructed types

structures follow directly from constructed types. A record type is a constructed
type with a single constructor function that associates values with parameters
used as field names. A typical record type will be defined with the following con-
structive technique:

record::type is data
recordFormer(f0::T0 | f1::T1 | ... fn::Tn)::recordp;

end data;

where recordFormer is the single constructor, f0 through fn are the names of
the various fields, and T0 through Tn are the types associated with those fields.
The recognizer recordp is also defined, but is largely unused, as there is only one
constructor. Any constructed type definition providing only a single constructor
is referred to as a record. To define a specific record type that represents Cartesian
coordinates, the following notation is used:

cartesian::type is data
cartFormer(x::real, y::real, z::real)::cartp;

end data;

To define an item of this type, the standard Rosetta declaration syntax is used:

c :: cartesian;
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Values can be associated with record items using the canonical is form:

origin :: cartesian is cartFormer(0,0,0);

Accessing individual fields of the record is achieved by applying one of the
observer functions associated with a field name. To access field y in the record c,
the following notation is used:

y(c)

Defining a coordinate in Cartesian space using this definition is achieved by:

cartFormer(1,0,0);

Accessing elements of the constructed coordinate is achieved using observer
functions:

x(cartFormer(1,0,0))==1;
y(cartFormer(1,0,0))==0;
z(cartFormer(1,0,0))==0;

The following notation creates a Cartesian coordinate whose x and y values are
known, but whose z value is not specified:

cartFormer(1,0);

cartFormer(1,0) produces a function of one parameter that returns the com-
pleted Cartesian value. Should the function z(cartFormer(1,0)) be specified,
it should not pass type checking because cartFormer(1,0) is a function, not a
Cartesian value. �

Similar to records, it is quite easy to define enumerations using constructedEXAMPLE 8.3
Semantics of Enumerations types. The enumeration declaration:

colors :: type is [red,yellow,blue]

is semantically equivalent to:

colors :: type is data
red()::redp
| yellow()::yellowp
| blue()::bluep;

end data;

The constructed type defines three nullary constructors that are now values
in the value space. Further, three recognizers are provided that specify what con-
structor produces a value. In this case, the recognizers are not particularly useful
because the equals relationship performs the same function. Specifically:

redp(x) == x=red()

In a sense, an enumeration is the opposite of a record. A record is defined using
one constructor with parameters to indicate record elements. An enumeration
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is defined using many constructors with no parameters to define different
elements. �

8.5 Functions as Type Definition Tools

Using functions to define types allows the introduction of parameters in type
definitions. Because types are first-class items in Rosetta, any function returning
a set can be used to define a Rosetta parameterized type. Consider the following
function definition:

word(n::natural)::subtype(bitvector) is
sel(b::bitvector | #b = n);

The function signature defines a mapping from natural to a subtype of the
built-in bitvector type. The subtype is defined by the sel operation to be those
bitvectors whose lengths are equal to the parameter n. Thus, word evaluates to the
set of bitvectors of length equal to its parameter. We can now use word as a type
definition construct. The notation:

reg::word(8);

defines reg to be a bitvector of length 8. The notation:

bv8::subtype(bitvector) is word(8);

defines bv8 to be the type containing all bitvectors of length 8.
When using functions as type definition tools it is important to understand

that they, themselves, are not types. They generate types, but they are not usable as
types prior to evaluation. The word type is an excellent example. Altough word(8)
is a type, word is simply a function making the declaration w::word meaningless.

The intTree example demonstrates a capability for defining a tree contain-EXAMPLE 8.4
Defining Generic Trees ing integer values that can easily be modified to define a tree containing other

types. Simply replace the integer type with the item type to be contained in the
tree. Using functions and constructed types together, a general tree type defini-
tion function can be developed that allows definition of trees containing arbitrary
types.

The modified tree definition has the following form:

tree(T::type) :: type is data
nil ::empty |
node(L::tree(T),v:T,R::tree(T ))::nonempty;

end data;

This definition uses the standard function definition format, specifying a function
signature and an expression. In this case, tree is defined to take a single, arbitrary
type and return another type. The value of the returned type is obtained by evalu-
ating the function’s associated expression. In this case, the data keyword indicates
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a constructed type definition. If the tree definition is instantiated with a type, the
result is a tree data type that contains the instantiated type. For example:

intTree::type is tree(integer);

is semantically equal to the intTree provided earlier in this section. If the param-
eter T is replaced by integer in the expression, the same type definition results.
The advantage here is that the new tree function can easily and quickly be used to
define new tree types with new contents. The tree function is not a type, but sim-
ply a function whose result value is a type value. Unfortunately, it is not possible
to define a new item t::tree. The tree function must be fully instantiated.
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Thus far, our exploration of Rosetta has concentrated on the Rosetta
expression languageusedtodefineRosetta itemsandstatemathematicalproperties
over those items. Although the expression language is useful in its own right, it
does not provide a mechanism for defining models where multiple properties
hold simultaneously over multiple system observers. Nor does it provide mecha-
nisms for modeling how properties change over time.

Welooknowatthe facet language fordefiningthefundamentalRosettamodeling
construct used to define system and component models. A facet is a parameterized,
declarative structure that defines the properties of a system. Each facet definition
consistsoffourmajorelements:(i)adomain,(ii)parameters,(iii)localdeclarations,
and(iv)terms.Afacet’sdomainidentifiesthevocabularyandmodelofcomputation
usedasabasisforthefacetmodel.Facetparametersdefineamodel’svisibleinterface
and provide a mechanism for customization and instantiation. Facet declarations
provide local items defining state and local functions. Facet terms declaratively
define system properties by defining properties of parameters and local variables.
By defining facets, specifiers define system properties from a particular perspective.
By combining facets, specifiers define multiple perspectives for a given system.

Facets differ from constructs in traditional modeling and programming
languages in that they use declarative constructs, and the underlying model of
computation varies from model to model. Rather than defining a program or
executable model exhibiting system properties, facets define those properties
directly. This allows Rosetta to be far more expressive and general as compared to an
executable specification language or programming language. Abstract properties
areeasilydefinedwithoutoverspecifyingimplementationdetails. Incompletespec-
ifications are allowed and can be refined during the design process. Rather than
infer properties by observing system execution, properties are defined directly.

The domain identified by a facet specifies its vocabulary and computational
model. Where a state-based model may be appropriate for one facet, a continuous
time or frequency domain model may be appropriate for another. Rather than
force a single modeling semantics on every facet, Rosetta allows the user to choose
vocabulary and semantics for each model individually. Later we will see how these
heterogeneous models are composed to define complete systems.

147
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9.1 A First Model — An AM Modulator

The facet am_mod constructed in this section defines a simple model for an AM
modulator that exhibits the basic features of a facet model. The AM modu-
lator is a continuous time model that outputs an input baseband signal mul-
tiplied by a sinusoidal carrier whose amplitude and frequency are specified as
input parameters. This is a classical model of AM modulation, typically expressed
mathematically as:

s(t) = f(t) cos(ωct)

where s(t) is the output signal, f(t) is the signal, and the cos term is the carrier.
A facet embodying a modulator that implements a system exhibiting these

properties must define a signature, domain, and terms. The signature defines the
parameters and local items needed to define the system and consists of a facet
name, parameters, and declarations. The domain identifies the underlying com-
putation model used to describe the system. Terms define properties over the
items defined in the signature and domain. Defining a facet thus becomes instan-
tiating a standard syntactic template identifying its components:

facet F( [[ parameters ]] ) :: domain is
[[ declarations ]]
begin

[[ terms ]]
end facet F ;

Defining a facet begins with its interface. When defining an interface, we must
decide what quantities associated with the facet will be visible. Specifically, we
must identify inputs, outputs, and design parameters. Inputs and outputs repre-
sent quantities input and output through parameters at the facet interface. Design
parameters define static parameters used to configure a component. The am_mod
component will minimally input a baseband signal, f(t), and output a modulated
signal, s(t). To make this model customizable, we will also add a design parameter
specifying the carrier frequency. Because the modulator has no memory, no local
variables are needed.

The facet’s name, parameters, and declarations together define its signature.
The parameter list defines inputs, outputs, and design parameters while the
declarative region contains local declarations. Beginning the facet declaration
we have:

facet am_mod(f::input real; s::output real;
w::design real) :: domain is

begin
[[ terms ]]

end facet am_mod;

We have named our facet am_mod and defined three parameters corresponding
to quantities in the earlier equation. Dependent variables become outputs
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while independent variables become inputs. Each parameter is named with
an associated direction and type. Specifically, f is the input signal, s is the output
signal, and w is the carrier frequency. All are taken directly from the specifica-
tion equation. There are no local definitions, thus the declarative region contains
no declarations.

The selection of a domain dictates how and when observations of system state
are made. As presented thus far, a variable has a label, type, and potential value.
When observing a system over time, observable quantities, such as a system’s state
and parameters, have a trajectory. As they change, variable values can be traced
and sequences of values observed. This is the basis of most simulation and model-
checking analysis tools. The domain specifies when observations can be made and
how those observations are sequenced. Informally, if a variable’s value is graphed
using a Cartesian coordinate system, the variable value forms the Y axis while
the domain specifies the type of the X axis. For example, in the discrete_time
domain, quantities are observed at discrete time intervals and the X axis is a
discrete time line. In contrast, in the continuous_time domain, quantities are
observed continuously over time and the X axis is a continuous time line.

In the original equation, the quantities f and s are functions of a variable t. In
the signal processing domain, t typically represents continuous time. Specifically,
the quantities f(t) and s(t) can be observed with respect to any continuous time
value. To model this in the am_mod facet, we select the continuous_time domain.
In this domain, each variable is a mapping from the continuous time line to a
value. Thus, any parameter or variable can be observed with respect to a particular
instant in time by saying v@t, where v is an item name and t is a time value. If
v is specified without t, then the current time is assumed. We will explore this
concept further in subsequent chapters and define a general structure for defining
domains. For now, it is sufficient to understand that the selection of a domain
defines the temporal properties of observations. Continuing to define the am_mod
facet, the domain can now be specified:

facet am_mod(f::input real; s::output real;
w::design real) :: continuous_time is

begin
[[ terms ]]

end facet am_mod;

The remaining task is defining properties over quantities that describe the mod-
ulator. The modulation equation gives us precisely the information we need for
the definition. By choosing the continuous_time domain, the parameters f and s
correspond with the functions f(t) and s(t), respectively. The continuous_time
domain provides a variable t that corresponds to the current time value. The
single term labeled mixer in the completed facet below defines a single sys-
tem property specifying a relationship between input and output parameters.
Specifically, the output parameter, s, is equal to the input signal, f, times a
carrier:
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facet am_mod(f::input real; s::;output real;
w::design real) :: continuous_time is

begin
mixer: s=f∗cos(w∗t);

end facet am_mod;

The notation s=f∗cos(w∗t) specifies that s is equal to f∗cos(w∗t). The term
constrains the value of s by making it equal to a defined quantity. This is not an
assignment any more than the equality assertion in the mathematical equation is
assignment. The equality operator defines an equivalence relationship between the
variable and the quantity.

Other properties can be added to define constraints and additional functionality
within the facet. If we would like to specify that the output voltage of the device mod-
eled by the facet should not be greater than 5 volts, we simply add a term indicating
this constraint:

facet am_mod(f::input real; s::;output real;
w::design real) :: continuous_time is

begin
mixer: s=f∗cos(w∗t);
out_limit: abs(s) =< 5;
in_limit: abs(f) =< 10e-3;

end facet am_mod;

The term out_limit asserts that the absolute value of the output signal, s, must
always be between -5 and 5 volts. The term in_limit asserts that the input voltage
can never exceed 10 mV. With the addition of these terms, properties defining both
behavior and constraint information are present in the specifications.

This facet definition process demonstrates several important characteristics of
Rosetta definitions and facets. First, the specification is declarative. Each term defines
a property that must hold over a collection of items, not an executable statement.
Second, a domain is used to define how the system will be defined and observed.
Traditional specification and simulation languages use a single domain or a fixed
collection of domains. As we shall see later, Rosetta provides a variety of domains
and allows users to define their own. Finally, a system specification parallels the
style used in the application domain. The mixer equation is virtually identical to
the mathematical formula, making the Rosetta specification easy to read and write.
As we learn more about domains, we shall see how they contribute to this Rosetta
capability.

9.2 Composing Models — Adding Constraints

Other domains define computation differently, providing Rosetta with a heteroge-
neous definition capability. We can modify the AM modulator definition to separate
constraints and functional description into two specifications:
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facet am_mod_fn(f::input real; s::output real;
w::design real)::continuous_time is

begin
mixer: s=f∗cos(w∗t);

end facet am_mod;

facet am_mod_const(f::input real; s::output real)::static is

begin
out_limit : abs(s) =< 5;
in_limit : abs(s) =< 10e-3;

end facet am_mod;

am_mod(f::input real; s::output real; w::design real) :: static is
am_mod_fn(f,s,w) ∗ am_mod_const(f,s);

The am_mod_fn facet is identical to the original facet defining the AM modulator. The
am_mod_const facet contains only the constraints specified for the AM modulator in
the second mode. In this case, the domain is static, reflecting that the constraints are
invariant — specifically, that regardless of any concept of time, the magnitude of the
input and output voltages must never exceed 10 mV and 5 V, respectively. The final
definition specifies a new version of the am_mod specification that is the product of
the AM modulator’s functional specification and associated constraints. The result is
a new model that reflects properties specified in both original models. The domain of
this model is static, reflecting the fact that this is the only common domain available
for this composition.

This example reflects the compositional nature of Rosetta specifications. Func-
tional requirements and constraints are represented in separate facets using separate
semantic domains. The facet product defines a new model that must exhibit both the
specified functional behavior and operational constraints. The concept of facet prod-
uct is exceptionally useful when describing heterogeneous system aspects and will be
discussed in detail in Chapter 15.

9.3 Combinational Circuits — A Simple Adder

We have seen facets define continuous systems and static constraints. State-based
specifications, like digital components, are just as easily described using the
same techniques and constructs. The following equations define digital equations
for a full adder:

z = x⊕ y ⊕ cin

cout = (xy + xcin + ycin)

Using identical techniques, we can define a facet representing the function of the full
adder. As before, we start with the standard facet template:
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facet F ( [[ parameters ]] ) :: domain is
[[ declarations ]]

begin
[[ terms ]]

end facet F ;

We will call the model adder_fcn to reflect that it specifies the basic function
of an adder. From the preceding equations, we identify z and co as outputs,
with x, y, and ci as inputs. Instantiating the facet template with this information
results in:

facet adder_fcn(x,y,ci::input bit;
z,co::output bit) :: domain is

begin
[[ terms ]]

end facet adder_fcn;

We must now select an underlying computation model and instantiate the domain.
The continuous_time model used for the AM modulator can certainly be used here.
In exactly the same manner, the preceding equations can be used as terms in the model
definition:

facet adder_fcn(x,y,ci::input bit ;
z,co::output bit) :: continuous_time is

begin
sum: z = x xor y xor ci;
carry: co = (x and y) or (x and ci) or (y and ci);

end facet adder_fcn;

In this definition, values are specified for both the sum and carry values. The mathe-
matical expressions are translated into Rosetta syntax, but the semantics remains the
same. The terms state that at any time, the sum and carry outputs are equal to the
values specified by their respective terms.

The first specification of the adder’s function is ideal. The relationship between the
output parameters and their equations holds constantly for any time. We know that
such circuits do not exist — there is always some delay in the circuit. Ideally, we should
be able to say that the defined relationships hold between current values of inputs and
output values sometime in the future. Because the continuous_time domain makes
time explicit, defining such a specification is relatively simple:

facet adder_fcn(x,y,ci::input bit ;
z,co::output bit) :: continuous_time is

begin
sum: z@(t+5e-6) = x xor y xor ci ;
carry: co@(t+6e-6) = (x and y) or (x and ci) or (y and ci);

end facet adder_fcn;

The difference is the use of the @ operator to specify the value of a variable at some
time in the future or past. Understanding the new terms is a simple matter of reading
the specification as “z at time t+5e-6 is equal to . . . ”. What the term says is that at
some time 5 microseconds in the future, the value of z is specified by the equation.
Note that when the “@” operator is omitted, the current time or state is assumed.
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So, 5 microseconds in the future, the value of z will be equal to x xor y xor z for all
values in the current state. The delay through the circuit differs for the two outputs,
but is explicitly specified in the definition.

If desired, we can use a design parameter to allow reuse of the facet specification:

facet adder_fcn(x,y,ci::input bit ;
z,co::output bit)
delay :: continuous_time is

begin
sum: z@(t+delay) = x xor y xor ci;
carry: co@(t+delay) = (x and y) or (x and ci) or (y and ci);

end facet adder_fcn;

When the facet is instantiated, the actual parameter associated with delay specifies the
delay time through the circuit.

An alternate definition of the counter uses the state_based domain to allow for
non-ideal behavior without choosing a specific time model:

facet adder_fcn(x,y,ci::input bit ;
z,co::output bit) :: state_based is

begin
sum: z’ = x xor y xor ci;
carry: co’ = (x and y) or (x and ci) or (y and ci);

end facet adder_fcn;

The delay parameter is gone along with references to actual time values or increments
in the specification. The notations z’ and co’ reference values in the next state, but
do not indicate how the next state is obtained or how it is observed. The specification
simply states that there is a next state, acknowledging that instantaneous change does
not occur.

The advantage of this specification is its abstract nature. Time is held abstract,
allowing function to be specified before details of time are known. This is precisely
how most digital designers define initial system specifications.

9.4 Defining State — A 2-bit Counter

Thus far, each defined facet is a stateless mapping of inputs to outputs requiring no
representation of internal state. To demonstrate the use of internal state, we will now
define requirements for a simple 2-bit counter with a single reset input. The equations
for such a device are:

s′ = (s + 1) mod 4

o = s

Where s is the state, s′ is the next state, and o is the output.

Again, we start with the same facet template:
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facet F ( [[ parameters ]] ) :: domain is
[[ declarations ]]

begin
[[ terms ]]

end facet F ;

We select a name, counter, and define reset and clock inputs, and a value output. We
use the parameterized word type to define a 2-bit value:

facet counter(reset::input bit ;
value::output word(2);
clk::input bit) :: domain is

[[ declarations ]]
begin

[[ terms ]]
end facet counter;

The counter differs from previous definitions. First, it is stateful — the value of the
output is dependent on inputs and on the previous output value. Thus, we need
to define an internal state for the mode. Second, it is a finite state system — a 2-bit
counter has exactly four states. Based on these observations, we can select a domain
and define an internal state.

Remember that a domain defines the ordering of computations. Because state and
order are intimately tied, the domain and state definition are also dependent. Rosetta
provides a special domain called finite_state for finite state systems. This domain
takes a single parameter that defines the type of the state. If that type is finite, then the
state set is finite. For our counter, the state set is defined by all 2-bit values, precisely
the set provided by word(2). This observation allows us to define the facet’s domain:

facet counter(reset::input bit; value::output word(2);
clk::input bit) :: finite_state(word(2)) is

[[ declarations ]]
begin

[[ terms ]]
end facet counter;

In the same way that continuous_time provided a current time value, the
finite_state domain provides a current state value named s and a next state func-
tion that maps one state to another, next(s::state)::state. Our task is to provide
terms defining these quantities from the earlier equations.

The facet in Figure 9.1 defines the complete counter model. The next_state term
defines the next state function for the counter. In the state-based domains, the tick
decoration indicates the value of a symbol in the next state. Using this notation, the
next_state term declares that s’ is state 00 if reset is high, else it is s mod 4 if the
clock is rising. Two local functions are defined to calculate the next state in binary
and identify a rising edge. The next state function is a direct application of a case
statement defining the next state by extension. The function rising uses the built-in
predicate event(x) to detect a change in the value of its parameter and the equiva-
lence x=1 to determine if the parameter is high.
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facet counter(reset::input bit ; value::output word(2);
clk::input bit )::finite_state (word(2)) is

inc_mod4(x::word(2))::word(2) is
case x is

{b"00"} -> b"01" |
{b"01"} -> b"10" |
{b"10"} -> b"11" |
{b"11"} -> b"00"

end case;

rising(s::bit )::boolean is event(s) and s=1;

begin
next_state: s’ = if reset=1

then b"00"
else if rising(clk)

then inc_mod4(s)
else s

end if;
end if;

output: value = s;
end facet counter;

Figure 9.1 A 2-bit counter with reset.

9.5 Defining Structure — A 2-bit Adder

In addition to directly defining system behaviors, terms can describe the structure of
a system using facet instantiation and renaming. The following definition constructs
a 2-bit adder from the full adder defined previously:

facet adder2_fcn(x0,x1,y0,y1::input bit, co::output bit,
z0,z1::output bit)::continuous_time is

ci :: bit;
begin

b0: adder_fcn(x0,y0,0,z0,ci);
b1: adder_fcn(x1,y1,ci,z1,co);

end facet adder2_fcn

The 2-bit adder functional model is a structural model and differs substantially from
the monolithic, 1-bit adder model. Instead of defining facet properties directly, the
2-bit adder is defined structurally by instantiating and interconnecting facet models.
Two 1-bit adders are used in a notation that is quite similar to structural VHDL. In
this case, the terms b0 and b1 are facets representing 1-bit adders rather than boolean
values.

The 1-bit adder facets communicate and interact with their environment through
parameter instantiation. The internal variable ci defines the internal carry signal that
communicates carry out from the first adder to carry in from the second. The facets
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interact with the external environment by instantiating parameters with system inputs
and outputs. The adder is instantiated with the first bit of the 2-bit input while the
second adder is instantiated with the second.

It is important to note that the adder models within the 2-bit adder are unique
instances of the 1-bit adder. A technique called relabeling is used to create fresh copies
of the 1-bit adder component within the 2-bit adder. Reference to the 1-bit adder is
maintained to ensure that when the 1-bit adder model changes, the 2-bit adder will
change to reflect the new model.

9.6 Specification Reuse — Using Packages

The Rosetta use clause allows specifiers to include packaged definitions in a facet.
A package is a special facet that contains declarations. The syntax:

use name;

immediately preceding a facet declaration includes the items exported from name in
the scope of the facet. For example, the following facet uses two packages to define a
simple instruction interpreter model for a CPU:

use cpu_utils(8);
use clk_utils;
facet instruction_interpreter

(clk::input bit; datain:: input word(8);
address,dataout::output word(8))::state_based is

registers :: cpu_utils.regfile;
begin

if clk_utils.rising(clk)
then ...
else ...

end if;
end facet instruction_interpreter ;

The use clauses import definitions from cpu_utils and clk_utils, respectively.
Within the facet, package instances are included in the declarations and terms sec-
tion. The term fragment uses the definition of rising to monitor the clock input for
a rising edge. The dot notation, clk_utils.rising, is used to make certain the def-
inition from package clk_utils is used. If no other definition of rising is provided
in the scope of the term, the qualifier may safely be omitted.

The declaration of registers uses the type cpu_utils.regfile to define a regis-
ter file for the definition. Note that the use clause including cpu_utils has an actual
parameter that specifies the size of the structures defined in the package. In this case,
the parameter defines 8-bit devices. Packages are parameterized like facets except that
all parameters must be of kind design, implying that they do not change with respect
to state or time.
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Using package parameters, we can parameterize the word size of the entire instruc-
tion interpreter model:

package instruction_interpreter_pkg
(width::natural)::state_based

use cpu_utils(width);
use clk_utils;
facet instruction_interpreter

(clk::input bit; datain:: input word(width);
address,dataout::output word(width))::state_based is

registers :: cpu_utils.regfile;
begin

if clk_utils.rising(clk)
then ...
else ...

end if;
end facet instruction_interpreter;

end package instruction_interpreter_pkg;

The package instruction_interpreter_pkg defines a single parameter, width,
used to specify the word width of the model. The use clause:

use instruction_interpreter_pkg (8);

instantiates the package parameter so that we have the same model as the original
definition.

Packages, components, and other library constructs are discussed fully in
Chapter 11. Numerous standard packages are defined for Rosetta that allow func-
tions ranging from simple mathematical definitions through manipulating Rosetta
constructs using reflective operations.

9.7 Abstract Specification — Architecture Definition

One area where abstract specification is important is definition of general-purpose
architectures. Such architectures are defined using facets with facet-type parameters.
This advanced definition demonstrates numerous Rosetta capabilities that will be
defined in subsequent chapters. It can safely be skipped if desired. The following facet
defines a simple architecture that connects two models in sequence:

facet sequential[Ti,To,Ty::type]
(f1,f2::design state_based,
x::input Ti,
z::output To)::state_based is

y :: Ty;
begin

c1: f1(x,y);
c2: f2(y,z);

end facet sequential;
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The sequential facet uses a collection of higher-order facet features to define a
high-level architecture along with type constraints. Specifically, this is the first facet
presented in detail that uses (i) universally quantified parameters, (ii) facets as param-
eters, and (iii) type parameters.

Most of the interesting work goes on in the facet signature. At first
examination, sequential seems to have two parameter lists that differ only in their
delimiters — the first using square brackets and the second using parentheses. The
first defines universally quantified type parameters while the second defines tradi-
tional parameters. The first two parameters in the parameter list, f1 and f2, are
defined to be of type state_based, which is also the name of a Rosetta domain. The
domain of a facet is also known as its type. Thus, the parameter declaration defines
two parameters that must be facets whose domain is state_based.

The facet then uses structural techniques to define a configuration of the two facets
passed as parameters. Specifically, f1 consumes system inputs and produces output
values that are in turn consumed by f2 and transformed into system outputs. The
terms c1 and c2 structurally define the system using the two input facets. Component
c1 is instantiated with the system input and component c2 is instantiated with the
system output. They communicate via an internal variable, y.

What makes this definition interesting are the types associated with component
inputs and outputs as well as the item y that allows components to communicate.
When defining a general-purpose architecture, input and output types should not be
overspecified. Before facets are assigned to f1 and f2, the types of inputs, outputs, and
interconnections are not known. Because the components can exchange literally any
item type, our first tendency might be to make their types universal, the supertype of
all Rosetta items. However, using the type top provides no type information. Once
instantiated, we will not be able to check type properties or safely assert anything
about the result.

Universally quantified parameters provide a mechanism for achieving the desired
result. These parameters serve as place holders for information that will be specified
on inferred at a later time when the facet is instantiated. In sequential, three univer-
sally quantified parameters are defined to represent the system input type and output
type, and the information exchanged between components. None of these values is
known when defining the architecture. When the architecture is instantiated with a
facet, such information will be available. For the specification to be consistent, values
must be found, for each universally quantified parameter, that satisfy type correctness
conditions. Consider the following specification fragments:

facet absolute(x::input integer; y::output natural)::state_based is
begin

y’ = abs(x);
end facet absolute;

facet square_root(x::input integer; y::output integer)::state_based is
begin

y’ = sqrt(x);
end facet square_root;
posroot(x::input integer; y::output integer) :: state_based is
sequential(absolute,square_root,x,y);
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The facets absolute and square_root calculate the absolute value and square roots
of their arguments, respectively. The facet posroot uses the sequential architecture to
interconnect the two specifications to define a new facet that finds the square root of
its input after assuring that the value is positive. Note that in the definition of posroot,
only the traditional parameters are instantiated and then only the facet values are
instantiated. Universally quantified parameters cannot be instantiated directly — the
type-checking system must determine their values automatically.

Knowing the values for f1 and f2, we can now infer values for Ti, To, and Ty. Ti
and To are easy because they are constrained in only one place. Ti is the type associated
with the sequential facet input used to instantiate the first parameter of f1. Because
the type of fi’s first parameter is integer, Ti is also integer. The same logic applies
when determining To is also integer.

The interesting case is determining a value for Ty, the type of the interconnec-
tion between the facets. Both absolute’s second parameter and square_root’s first
parameter provide type constraints on this value. Specifically, y must be both a
natural and an integer. A unifying type must be found for Ty that accounts for all
outputs from absolute and can be handled by square_root. In this case, integer
is the desired type and inferring the type of Ty is trivial.

The process described informally here is known as unification. If no satisfying
value can be found for a universally quantified parameter following instantiation,
then an error results. Such a case occurs if the first component in the example were to
output a character value rather than a natural value. In this case, no type exists for Ty
that is compatible with both character and integer other than top. The ability to
discover such inconsistencies is vital to system level design, where many parameters
may not be known during early, abstract design stages.
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Facet definitions nearly always take one of two forms: (i) item
declarations or (ii) direct definitions. Item declarations use the same form as used
with other Rosetta items. Specifically, a label, type, and value are used to create
an item declaration of the form:

f :: T is v

where f names the new facet, T is the facet’s type, and v is the facet’s value. This
style is used frequently when the value of a facet is calculated from other facets
using the facet algebra or when defining a facet variable whose value is unknown.

Like functions, this definition style can be cumbersome and difficult to read in
many circumstances. Thus, a special syntax is provided to define facets directly.
Called direct definition, this syntax defines a template over facet declaration ele-
ments that results in the common facet definition style seen in previous examples.
This template takes the following general form:

facet f(parameters) :: T is
decls

begin
terms

end facet f;

Using the direct definition style makes defining components simple and readable.
The following definition for inc uses this style to define a simple state_based
model that increments its input and outputs the result:

facet inc(x::input integer; z::output integer) :: state_based is
begin
update: z’ = x+1;

end facet inc;

161
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10.1 Direct Facet Definition

In Chapter 9 we saw several examples of prototypical facet definitions. Each of
these definitions uses the most common mechanism for defining facets, the spe-
cial syntax for direct definition. Like function direct definition, facet direct def-
inition creates a new item and assigns a value to it in one syntactic expression.
Here, the item being defined is a facet and the value is a facet value.

The general syntax for a direct facet definition is:

[[ use P ; ]]∗

facet F [[ [ variables ] ]][[ ( parameters ) ]] :: domain is
[[ [[ export ( all | exports ) ]]

declarations ]]
begin

[[ terms ]]
end facet F ;

where F is the facet name, variables is an optional list of universally quanti-
fied parameters, parameters is a list of parameter declarations, declarations is an
optional set of declarations preceded by an optional export clause defining visi-
bility outside the facet, domain is the modeling domain, and terms is an optional
collection of terms. The facet definition is opened by the facet keyword and ter-
minated by end facet and F , where name must be the same in both locations.
The facet definition may be preceded by a collection of use clauses that specify
packages to be included in the definition. The scope of all declarations, parame-
ters, and imported packages is the region between the facet and end keywords.

10.1.1 Parameters

Facet parameter declarations have the following form:

names :: [[ kind ]] T

where names is a comma-separated list of one or more parameter names, T is the
parameter type, and the optional kind describes a constraint on the parameter.
A parameter list is a semicolon-separated list of declarations. The is clause is not
allowed in parameter declarations.

The kind qualifier has three built-in values, input, output, and design. The
input and output kinds are used to label system inputs and outputs, respectively.
The design kind identifies a parameter much like a generic parameter in tradi-
tional design languages. The distinction is that input and output parameters are
observed and driven by the system during its operation. Design parameters are
system settings that do not vary during operation. The specific semantics of each
kind varies with the domain in question.

It is possible to define a parameter without a kind. Such parameters are uncon-
strained and may be used as inputs, outputs, design parameters, or any other
system parameter. Such parameters are useful when direction is not meaningful
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in describing a parameter or the parameter may represent bi-directional flow.
Designers are encouraged to use kinds whenever possible to simplify both speci-
fication and analysis.

10.1.2 Universally Quantified Parameters

A universally quantified facet parameter declaration has the same syntax as a
parameter has, except no kind can be specified. Parameters and items defined
as universally quantified parameters differ in that the latter need not be instan-
tiated when the facet is used. Instead, their values can be determined using type
inference and unification techniques during facet instantiation and type check-
ing. Consider the following definition of a component that adds two values and
outputs the result:

facet adder
[a::subtype(number)]
(x,y::input a; z::output a)::state_based is

begin
z’ = x+y;

end facet adder;

In this definition, the type of the input and output parameters is the parameter, a,
defined to be a subtype of number. When the facet is instantiated in another facet
definition, the type of a must be determined. For example:

facet intAdder(x,y::integer; z::integer)::state_based is
begin
adderc : adder(x,y,z);

end facet intAdder;

In this declaration, type checking would determine that the value of a must be
integer through the unification process. Because integer is in fact a subtype of
number, it is a legal instantiation of a. Here, the type associated with a assures that
an addition operator exists for the actual value.

Although the following facet looks legal, we cannot establish its correctness:

facet wordAdder(x,y::word(8); z::word(8))::state_based is
begin
adderc : adder(x,y,z);

end facet wordAdder;

The inference process can determine that the value of a must be word(8).
However, word(8) is not a subtype of number and cannot be a value of a. In this
situation, the adder can be instantiated only with number types.

When directly instantiated, universally quantified parameters behave like
traditional facet parameters. If a specification frequently instantiates a universally
quantified parameter, making it a traditional parameter should be considered.
A universally quantified variable is needed only when the specifier needs the type
inference system to determine a type automatically.
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10.1.3 Declarations

Local items are defined within the declaration section along with an optional
export clause. Local item declarations follow the format described in Chapter 4.
A list of item names is followed by a declaration:

names :: T [[ is expression ]] ;

Any item type may be defined within the declarative section, including variables
and constants, functions, types, packages, and other facets.

Immediately following the domain and preceding the collection of declarations
is an optional export clause having the following format:

export [[ names | all ]]

The export clause defines what internal facet definitions can be seen from
outside the facet. The export keyword is followed either by a list of item names or
the keyword all. If the export clause appears with the all keyword, then all dec-
larations defined in the facet are visible. This includes declared items and labeled
terms. If the export keyword appears with an export list, then only items listed in
names are visible. Any item, parameter, or term defined in the specification, not
just those in the declarative region, is eligible for export, including term names.
If the export clause is omitted, then no items defined within the facet are visible
outside the definition.

The export definition is strict, with no mechanism for overriding the export
clause when the facet is instantiated. Specifically, if an item is not exported from
a facet, there is no mechanism for referencing the item in the including scope. If
a need exists to see an item declared in a facet, then it must be explicitly exported
or implicitly exported using the all keyword.

To access definitions within a facet, the common “dot” notation is used. Given
a facet name and an item name within the facet, the notation:

facet.item

is used to reference the internal item. Similarly:

facet0.facet1.facet2.item

refers to an item declared three levels deep within a definition. It is important
to note that at each level, the referenced item must be exported. If item is not
exported from facet2, then the reference chain breaks down, as the item cannot
be referenced.

10.1.4 Domain

The required domain identifier is used to identify the facet’s underlying semantics
by specifying units of semantics, model of computation, and vocabulary. The units
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of semantics define the basic constructs over which computation is defined. Two
units of semantics common in Rosetta specifications are state based and signal
based. The state based unit of semantics specifies that each facet using it must
define the concepts of state and next state. In contrast, the signal based unit of
semantics requires the specifier to define events and associated values. One way of
thinking about the units of semantics is as a domain of discourse for specifications
using the domain.

The model of computation uses the units of semantics to define how
computation is performed. Domains such asfinite_stateandcontinuous_time
specialize the state_based units of semantics to define finite, discrete state com-
putation, and infinite, continuous computation. Both domains achieve this by
assigning specific properties to the state type and next state functions provided
by the state_based unit of semantics domain.

The vocabulary provided by a domain provides definitions for common
quantities used in the domain. For example, the state_based domain provides a
definition for event(x) that specifies when an item changes value moving from
one state to the next. The continuous_time domain defines an item, t, that indi-
cates the current time. Where the units of semantics and model of computation
remain anonymous in most specifications, specifiers use definitions provided in
the vocabulary extensively.

The domain associated with a facet is also referred to as the facet’s type. Thus,
the declaration:

f :: state_based;

defines a new facet using the state_based domain. Like any other item declara-
tion, we will read this as “f of type state based.” The type associated with a domain
is defined as all possible facets written by extending the domain. Thus, any two
facets that use the same domain are of the same type. When one domain extends
another, that domain is a subtype of the original domain. Because finite_state
extends state_based, finite_state is a subtype of state_based.

The domains defined in the extended Rosetta domain set are shown in
Figure 10.1. Domains are shown in a semi-lattice structure that is called the
domain semi-lattice. The semi-lattice is arranged hierarchically, with arrows rep-
resenting extensions. For example, the discrete domain is defined by adding
definitions, or extending, the state_based domain. Extensions define subtypes,
thus discrete is a subtype of state_based and state_based is a supertype of
discrete. Relationships are transitive, thus finite_state is also a subtype of
state_based. Domains, their uses, and semantics are discussed extensively in
Chapter 12.

10.1.5 Terms

Terms specify facet behavior by either defining a facet’s properties or constituent
components. When defining properties directly, terms describe everything from
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Figure 10.1 Domains defined for the base Rosetta language.

high-level requirements and constraints to fully executable descriptions. When
defining components, terms instantiate, rename, and interconnect other facets to
form structural definitions. Because terms are declarative, they are not ordered
and define a set of properties. Also, terms are not necessarily executable; however,
in some restricted cases terms are executable. In the most general case, terms sim-
ply define true properties and components.

A facet may contain any number of terms having the following form:

[[ l : ]] e ;

where l is the term’s name and e is either a boolean valued expression or a facet
valued expression. If the term is a boolean property, the label may be omitted. If
the term is a facet, the label must be present. Like all Rosetta declarations, term
declarations define items. In this case, the item type is either boolean or facet, the
item value is defined by e, and the term can be referenced by l.

For example, the following term states that inc(3) is equal to 4:

l1: inc(3) == 4;

The term label is l1 and the expression is inc(3)==4. The semicolon terminates
the term definition; however, it does not indicate any type of sequencing of terms.
Term order in a facet is immaterial.

The label and semicolon define the term’s scope. The label opens the scope
while the semicolon terminates the labeled expression. Thus, the specification
fragment:

l1: inc(3) == 4;
l2: 1 in {1,2,3};
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defines two terms with labels l1 and l2 and term expressions inc(3)==4 and 1 in
{1,2,3}, respectively. It is equivalent to:

l2: 1 in {1,2,3};
l1: inc(3) == 4;

because terms are simply boolean declarations. The specification fragment:

l1: inc(3) == 3;
l2: 0 in {1,2,3};

is also a statically legal term list even though it is inconsistent. In contrast:

l1: inc(3) == 4
l2: 1 in {1,2,3};

is not legal because the first term is missing a terminating semicolon.
Semantically, the semicolon behaves as a conjunction. Terms delineated by

semicolons in the body of a specification are simultaneously true and form the set
of terms associated with the facet. A facet is consistent if and only if its domain,
terms, and declarations, including type conditions, are mutually consistent.

Facet definitions may seem quite similar, but with proper interpretation mean
quite different things. The following examples demonstrate this fact by show-
ing how similarly defined terms have different semantics based on the definition
domain used by the excluding face.

The following term l1 asserts that x is equal to f(x):

facet inconsistent::static is
x::integer;
f(i::integer)::integer = i+1;

begin
l1: x = f(x);

end facet inconsistent;

The domain for this term is static, referring to Rosetta’s basic mathematical
system. There is no concept of state, time, or change in this domain. Thus,
x=f(x) is an assertion about x that must always hold. This domain is fre-
quently termed the monotonic domain because change is not defined; f(x) is
never equal to x because no integer is equal its successor. Thus, this term is
inconsistent and the specification is in error.

In the following facet, the terms and declarations remain the same. However,
the domain is changed to state_based. This domain allows for values to change
by defining concepts of state and next state:

facet inconsistent::state_based is
x::integer;
f(i::integer)::integer = i+1;

begin
l1: x = f(x);

end facet inconsistent;
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Unfortunately, the inconsistency remains because x refers specifically to x in the
current state. l1 asserts that x in the current state is equal to f(x) in the current
state. The specification is semantically no different than the first.

The following facet fixes the problem by taking advantage of the state_based
domain:

facet consistent::state_based is
x::integer;
f(i::integer)::integer = i+1;

begin
l1: x’ = f(x);

end facet consistent;

The notation x’ is defined by the state_based domain to refer to x in the next
state. Term l1 now asserts that x in the next state is equal to x in the current state
plus 1. This is the semantics that x=f(x) has in a traditional imperative language
and the semantics we want here.

With some experience, inconsistencies such as those just described are
relatively easy to find by hand or with tool assistance. Finding inconsistencies
automatically is an exceptionally hard problem with no known solutions. Thus,
one must explore specifiations by hand or by guiding tools manually.

The following facet asserts that x at current time plus 5ms is equal to f(x) in
the current state:

facet sample::continuous_time is
x::integer;
f(i::integer)::integer = i+1;

begin
l1: x@(t+5e-3) = f(x);

end facet sample;

This specification is quite similar to the previous specification in that the value of x
in some future state is equal to f(x). It differs in that the specific state is referenced
using the @ operator and it uses the continuous_time domain. The notation x@t
refers to the value of x in some state t. Specifically, the term l1 asserts that in the
state associated with 5ms in the future, x will have the value associated with f(x)
where the argument to f is the value of x in the current state.

The definition of x’ from facet consistent is a shorthand for the definition
x@next(s). The relationship between x and x’ used across computer science
and engineering is that x refers to the current state while x’ refers to the next
state. The definition of x’using next provides a precise semantics for this com-
mon shorthand.

Using the continuous_time domain introduces a different semantics for
state. The state_based domain in the previous facet defines state and change
of state, but does not assign specific semantics to state. The continuous_time
domain goes farther, specifying that state is observed as a continuous value
associated with time.
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In addition to demonstrating what a domain is, these examples illustrate a fun-
damental feature of the Rosetta language. Where traditional programming and
design languages embed the semantics of the computation model in the language
definition, Rosetta exposes it to the user. Furthermore, the specifier may use dif-
ferent underlying computation semantics when developing system models. This
capability is a fundamental step toward true system-level modeling.

The standard definition syntax for constant items is actually a shorthand whoseEXAMPLE 10.1
Constant Definition
Shorthand

meaning is defined in terms of function declarations and terms. For example, the
following definition can be used to define a constant value for pi:

pi :: real is 3.1416;

The definition is a shorthand form of:

facet pi-definition::static is
export all;
pi::real;

begin
pi_def: pi = 3.1416;

end facet pi-definition;

Constant functions are defined similarly. The definition of inc is:

inc(x::integer)::integer is x+1;

An alternative, semantically equivalent definition assigns a specific function to a
function variable:

facet inc-definition::static is
export all;
inc(x::integer)::integer;

begin
incdef: inc =} <∗ (x::integer)::integer is x + 1 ∗>;

end facet inc-definition;

This definition is identical to the standard definition above. However, the short-
hand definition of constants and constant functions is more readable and eas-
ier for machines to recognize and process. Furthermore, it extends the definition
conservatively, assuring consistency of any resulting definition. Whenever pos-
sible, the shorthand notation should be used for defining constant values and
functions.

The universal quantifier can also be used to provide function definitions. The
following example defines a function variable and uses universal quantification
to define the function’s behavior:

facet comprehension::static is
export inc;
inc(x::integer)::integer;

begin
incdef: forall(x::integer | inc(x) = x + 1);

end facet comprehension;
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The definition states that for every x taken from integer, inc(x)=x+1. This is
semantically equivalent to previous definitions and provides significant flexibility.
However, it is exceptionally difficult for machine interpreters to determine when
functions defined this way are constant. �

In addition to the let expression, the facet term definition language provides
a let form for sharing declarations across multiple terms. Consider the following
definition:

let x::integer be g(a) in
l1: f(x,5);
l2: g(x)

end let;

Although syntactically similar to the let expression, the term let is semantically
quite different. It behaves more like a statement than an expression. When the
previous let term is evaluated, the following terms result:

l1: f(g(a),5);
l2: g(g(a));

The item declared in the let term is simply replaced by its value in the enclosed
terms. Like the let expression, multiple variable declarations and nested let
forms are allowed.

The let term used in the terms section defines items local to a collection of
terms not visible outside the let’s scope. In the previous example, the item x
defined in the let term cannot be referenced in any terms other than l1 and l2.
Furthermore, the required presence of the be clause implies that x is a constant
and cannot be used to define communication between components. For example,
the following definition of a 2-bit adder is not legal:

facet adder2_fcn(x0,x1,y0,y1::input bit, co::output bit,
z0,z1::output bit)::continuous_time is

begin
let ci::bit in

b0: adder_fcn(x0,y0,0,z0,ci);
b1: adder_fcn(x1,y1,ci,z1,co);

end let;
end facet adder2_fcn

The local definition, ci, is defined in the let term, but no be clause is provided
to define a value. If this problem is corrected by providing a value, c1 cannot be
used to communicate because its value will be constant.

Formally, the let term has the following syntax when used to define local vari-
ables for terms:

let name0 :: T0 be e0

[[ ; namek :: Tk be ek ]]∗ in
[[ term ]]∗

end let;
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Note that unlike the let expression, multiple names in a single declaration are not
allowed. The semantics of be is identical to is and the be clause must be included
in each declaration.

10.2 Separable Definitions

Rosetta provides a mechanism for separating the definition of any facet into its
interface and body. The interface defines parameters, a domain, and potentially
exported declarations. In addition, use clauses associated with the interface define
required packages for the specification. The body defines terms and declarations
that will not be exported. No new facet parameters, domains, declarations, or use
clauses may be defined with in a package body.

As an example, the following definition for a half-adder can be split into an
interface and body:

facet halfAdder
(x,y::input bit; z,cout::output bit)::state_based is

begin
sum: z’ = x or y;
carry: cout’ = x and y;

end facet halfAdder;

The interface of this definition allows the user to see a black box representation of
the device. Enough information must be provided to allow a user to include the
device in a design without reference to the body. The interface definition provides
usage information without reference to the complete specification:

facet interface halfAdder
(x,y::input bit; z,cout::output bit)::state_based is

end facet interface halfAdder;

The domain and parameters are declared, allowing the user to connect the adder
to other facet definitions.

The facet body provides terms to complete the facet definition. Only terms are
added by the body, making it dependent on the interface declaration for para-
meter and domain declarations:

facet halfAdder body is
begin

sum: z’ = x or y;
carry: cout’ = x and y;

end facet body halfAdder;

Together, the half-adder interface and body provide the same component as pro-
vided by the original facet. The distinction is that specifics of the definition
are isolated from the user. Furthermore, the half-adder interface can be defined
well before the body, allowing its inclusion in designs without requiring detailed
specification.
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The syntax of a facet interface declares the facet by specifying its signature and
associated use clauses. It borrows heavily from the traditional facet declaration
syntax:

[[ use P ; ]]∗

facet interface F [[ [[ variables ]] ]][[ ( parameters ) ]] :: domain is
[[ [[ export ( all | exports ) ]]

declarations ]]
end facet interface F ;

The only distinction between the interface definition and a full facet definition is
the exclusion of the begin keyword and associated terms. The interface keyword
is added to the declaration to assert that only the interface is being defined. Any
item visible in the interface, including those resulting from using packages and
including domains, is automatically visible in the facet body. There is no need to
re-use packages or domains, or redeclare parameters or local definitions.

The syntax of a facet body simply adds terms and other local definitions to the
interface:

[[ use P ; ]]∗

facet body F is
[[ declarations ]]

begin
[[ terms ]]

end facet body F ;

Definitions of parameters, domains, and exported declarations are excluded from
the body definition. However, use clauses can be included to use packages not
specified by the interface. Unlike use clauses associated with the interface, use
clauses associated with the body do not extend over the interface. This allows the
body to locally specify packages that need not be visible to the facet user.

A facet interface does not require the presence of a facet body. If no body is
visible when the facet is used, only information from the interface is available for
analysis. Effectively, it is like defining a facet with no terms. Because Rosetta is not
executable, this situation is perfectly acceptable. Many kinds of static analysis can
be performed knowing only information available in the interface.

The declaration of a facet body requires the presence of an associated inter-
face. Because the interface defines items and includes packages used in the body
definition, the interface must be present. Only one body can be defined in the
scope of any interface. Rosetta has no mechanism for distinguishing between body
definitions.

Among the most common tasks in systems design is designing block-diagram-EXAMPLE 10.2
Using Facet Interfaces to
Define a Black Box view of
a TDMA Signal Processing
Component

level specifications. Virtually every systems design begins with a block diagram
describing interactions such as information flow between system components.
Using facet interfaces is an excellent way to define such diagrams formally
without including too much detail.
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facet interface resampler
(i::input complex; o::output complex; clk::input bit)::discrete_time is

end facet interface resampler;

facet interface carrierRecovery
(i::input complex; o::output complex; clk::input bit)::discrete_time is

end facet interface carrierRecovery;

facet interface decimator
(i::input complex; o::output complex; clk::input bit)::discrete_time is

end facet interface decimator;

facet interface bitSynchronization
(i::input complex; o::output complex; clk::input bit)::discrete_time is

facet interface bitSynchronization;

facet interface errorCorrection
(i::input complex; o::output complex; clk::input bit)::discrete_time is

end facet interface errorCorrection;

facet interface messageProcessor
(i::input complex; o::output complex; clk::input bit)::discrete_time is

end facet interface messageProcessor;

The first collection of specifications defines the interfaces for each processor
component. The types of the interface ports are defined, and the facets are named
and given domains. However, specification details are omitted.

facet TDMAstruct
(i::input complex; o::output complex; clk::input bit)::discrete_time is
export power;
power :: real;
ec2mp,bs2ec,d2bs,cr2d,r2cr :: complex;

begin
c1: resampler(i,r2cr,clk);
c2: carrierRecovery(r2cr,cr2d,clk);
c3: decimator(cr2d,d2bs,clk);
c4: bitSynchronization(d2bs,bs2ec,clk);
c5: errorCorrection(bs2ec,ec2mp,clk);
c6: messageProcessor(ec2mp,o,clk);

end facet TDMAstruct;

The TDMAstruct facet defines interconnections between the previously defined
facet interface definitions. Information flow between components is defined with-
out committing to particular specifications. �

Details for elements of the structural TDMA definition can be added by asso-EXAMPLE 10.3
Using a Facet Body to
Define a Specification for a
TDMA Signal Processing
Component

ciating a body with any of the facets comprising the specification. The following
example is a trivial Rosetta facet body describing the decimator component:
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facet body decimator is
begin

o’ = if event(clk)
then decimate(i)
else o

end if;
end facet body decimator;

The decimator body is immediately associated with the decimator interface
defined previously. The specification body can be changed and further refined
without impact to the interface specification. As the design is refined, the
specification can be analyzed to determine if refinements violate system-level
specifications. �

10.3 Facets and Hardware Description Languages

Rosetta terms are unordered and declarative, meaning that there is no notion of
execution or execution order. Although this concept is strange to many designers,
its embodiment in traditional hardware description languages is quite comfort-
able. Consider the following signal assignments from VHDL:

s <= s+1 after 5ns;
r <= r+1 after 4ns;

Although these terms are evaluated in order, they affect their associated signals in
the order specified by their associated timing delays. The value of s in the simu-
lation is updated after the value of r as specified by their associated delays. Inter-
estingly, reversing the evaluation order has no affect on the signals. Specifically:

r <= r+1 after 4ns;
s <= s+1 after 5ns;

results in the same effect on the modified signals.
The equivalent Rosetta specification has the following form:

s_update: s@t+5e-6 = s+1;
r_update: r@t+4e-6 = r+1;

The distinction between these definitions is in the mechanism used to specify the
next state. In the VHDL model, a single time model is used implicitly. In Rosetta,
the timing model can be exposed and utilized. The code fragment above simply
makes the time value and its manipulation explicit. Like VHDL, this term pair
has the same effect regardless of ordering because of the explicit definition of the
next state.

Facet terms can be used to define structural representation of components
by including and instantiating other facets. Assuming that adder1 defines a full
adder, terms may be used structurally to define a 2-bit adder as follows:

bit0: adder1(x0,y0,0,z0,c);
bit1: adder1(x1,y1,c,z1,co);
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In this definition, bit0 and bit1 are names for two adder1 facets included in
the facet definition. In this case, facet parameters are instantiated to provide
external communication through external ports x0 and z0 or communication
between devices within the component through shared parameters such as c. The
2-bit adder will be explored extensively in the discussion of structural definition
that follows. For this discussion, it is enough to understand the basic concept of
structural definition.

Unlike traditional hardware specification languages, single models may exhibit
both structural and behavioral characteristics. It is possible to mix terms defined
by boolean expressions and terms defined by facet expressions. Remember that
both sets of terms must be simultaneously true. This capability unique to Rosetta
allows users to define both the structure and the properties of a system in the
same facet. It will become clear shortly that although powerful, this technique is
not always appropriate. This is particularly true when properties are defined in
distinct domains such as design constraints and functional definitions.

10.4 Facet Styles

When a facet contains only boolean-valued terms, the facet is defined by
defining properties directly. Such definitions are referred to as property-based
specifications and correspond to behavioral modeling in traditional specifica-
tion languages. When a facet contains only facet-valued terms, the facet is defin-
ing components and interconnections. Such definitions are referred to as structural
specifications and correspond to architecture or structural specification in tra-
ditional specification languages. When the facet contains both boolean-valued
and facet-valued terms, the definition is referred to as a mixed definition, where
both structural and property based definitions apply. Because Rosetta is not inter-
preted, asserting properties mixed with structural specifications does not present
the same kinds of issues as presented by operational specification languages.

10.4.1 Property-Based Facets

When facets contain terms that are labeled boolean expressions, the terms are
simply assertions of properties over items. For a facet to be consistent, the terms
defined in the facet and the terms defined in its domain must be mutually
consistent. Specifically, false should never be derivable from a term collection.

Consider the term defining a relational property over an item:

t1: x =< 5.0;

This definition simply asserts that the value of x is less than or equal to 5.0. It is
not conditional nor does it represent an assignment or executable statement. It
simply states that the value of x is less than or equal to 5.0 in the context of the
definition. In the facet definition:
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facet f(x::input real, z::output boolean,
d::real design)::state_based is

begin
t1: x =< 5.0;

end facet f;

the term states that the input parameter x must be less than or equal to 5.0, effec-
tively defining a usage assumption over x. If an input greater than 5.0 appears on
x, this term cannot be true. Thus, the composition of this facet with any facet that
causes a value greater than 5 to appear on input x is inconsistent. Even when both
original facets are consistent, the composition may be inconsistent.

A similar term uses equality to constrain the value of x in a different manner.
The term:

t2: x = 5.0;

states that x is equal to the value 5.0. This is not an assignment statement, but
simply asserts that x is mathematically equal to 5.0. Anywhere in the context of
this definition, x can be replaced by the value 5.0. Using this definition, the fol-
lowing pair of terms is inconsistent:

t2: x = 5.0;
bad: x = 6.0;

To determine why this pair of terms is inconsistent simply recall that (i) terms
are unordered in a facet and (ii) equals asserts equality and is not an assignment.
Borrowing from traditional programming languages, one might assert that these
two statements assign 5.0 and 6.0 to x, resulting in a final value of 6.0. However,
these two terms state that x is equal to 5.0 and 6.0, respectively. Simple substi-
tution then generates the equality 5.0=6.0, which is known to be false. Thus, the
term pair is inconsistent and cannot be used in a facet definition.

A similar problem is introduced with the term:

bad: x = x+1;

This common programming structure assigns the value x+1 to the variable
x following its execution. However, in Rosetta, equals is not assignment but an
assertion that two values are the same. In this case the term states that the value
of x is equivalent to x+1, a provably false statement. Unlike traditional program-
ming and hardware description languages, Rosetta forces the designer to indicate
when an equivalence must hold. The previous bad term interpreted in languages
such as C implicitly indicates that x is incremented in the next state. Rosetta simply
requires that specifiers explicitly indicate when symbols are interpreted as being
in the current or next state. The “tick” decoration used earlier is a shorthand nota-
tion for “in the next state.” Thus, the new and correct term can be expressed:

good: x’= x+1;

which is interpreted as “x in the next state is equal to x in the current state plus
1.” Using this simple notation, Rosetta terms can be used to define relationships
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between the current and next state within a facet. This extremely powerful capa-
bility allows consistent and convenient definitions of properties within a facet.
Whether working in discrete, continuous, or spatial domains, the concepts of the
current and next state are powerful and meaningful in the specification.

10.4.2 Structural Facets

Structural definition in Rosetta occurs when all terms are facets. In the following
definition, two adder components are composed within a facet to create a 2-bit
adder:

facet adder2(x0,x1,y0,y1,ci::input bit,
z0,z1,co::output bit)::static is

c::bit;
begin

b0: adder1(x0,y0,ci,z0,c);
b1: adder1(x1,y1,c,z1,co);

end facet adder2;

In this definition, b0 and b1 relabel adder1 facets that perform addition on two
bits. The first adder’s data inputs are instantiated with facet parameters x0 and y0
while its output is instantiated with facet parameter z0. Its carry-in value is instan-
tiated with facet parameter ci and its carry out is instantiated with the internal
variable c. The effect is defining interconnections between the internal compo-
nents and the enclosing facet’s interface.

The two terms include and rename two copies of the adder1 facet that
functionally represents the behavior of a 1-bit adder. The term:

b0:adder1(x0,y0,ci,z0,c);

creates a copy of the adder1 facet, renames it b0, and instantiates it with system
parameters and an internal variable. This process is called relabeling and allows
the inclusion of the same facet by giving each copy its own name. In this example,
two 1-bit adders are included in the definition, but each adder is distinct, as it is
a renamed copy of the original definition. Using the previously defined notation,
adder2.b1 refers to the adder named b1 inside adder2. Because the 1-bit adder is
renamed, the notation adder2.adder1 is not defined.

Figure 10.2 graphically shows the structure of the 2-bit adder defined in
the previous example. Parameters from the adder2 facet interface are used to
instantiate parameters of the two 1-bit adders. This instantiation causes the 1-bit
adders to share symbols with the interface. Thus, when x0 is instantiated when
adder2 is used in a definition, the parameter in b0 is instantiated with the same
item. Thus, inputs to b0 and b1 change when their associated parameters in the
adder2 interface change. Likewise, when the outputs of b0 and b1 change, adder2
outputs instantiated with the same item also change. In this way, facet input and
output values are communicated to internal facet interface parameters.

The internal variable, c, is used to facilitate communication of a carry value
from b0 to b1. It works in a manner similar to that of interface parameters, in that
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+ +

Figure 10.2 A structurally defined 2-bit adder.

when one facet constrains the port instantiated with c, the constraint information
is immediately available to the other facet. Specifically, when b0 sets the carry
value, b1 sees the result because it shares a the item, c.

10.4.3 Mixed Facets

As the name implies, mixed definitions contain both structural and property-
based terms. Where structural and behavioral definition with the same block
in VHDL is illegal, Rosetta takes an approach closer to Verilog, allowing struc-
tural and behavioral constructs in the same specicification. Combining struc-
tural and property-based specification within the same facet in Rosetta is
encouraged and useful for defining properties of facet assemblies. Specifically,
the properties specified by boolean terms are simply assertions over the same
items as used by the structural definition. Thus, the property-based assertions
can be thought of as defining conditions that must hold over the assembly of
facets. Consider the definition of a power constraint over a component assem-
bly using a mixed definition:

facet adder2_const::static is
export p;
p :: real;

begin
b0: adder1_const;
b1: adder1_const;
c: p = b0.p+b1.p;

end facet adder2_const;

In this facet definition, two instances of the adder1_const facet are included and
renamed to represent power constraints defined for the two 1-bit adders. The
structural terms b0 and b1 structurally define the power model of the 2-bit adder.
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The boolean term, c, defines the power of the structural component as the sum
of the component powers.

10.5 Scoping Rules

Rosetta is a statically scoped language, thus the scope of a definition and the item
referred to by an item reference can be determined by the syntax of a specifica-
tion. To understand scoping rules, one must understand the four sources of defi-
nition information. The local scope, domain scope, including scope, and use clauses
all provide declarations that can be referenced in a facet, package, or component
definition.

Defining the symbols available in a facet’s scope begins with the domain. Each
facet extends its domain with new declarations and terms. Thus, the declarations
and terms defined in a domain are there when the facet definition begins. For
example, the state_based domain defines a collection of items that are common
to all stateful systems:

domain state_based::static is
state :: type;
s :: state;
next(s::state)::state;

begin
...

end domain state_based;

Any facet defined using the state_based domain starts with definitions of the
state type (state), the current state (s), and the next state function (next). They
are part of the local scope and can be referenced within any state_based facet.
Thus, the following definition represents a correct model:

facet incrementer
(vi::input integer; vo::output integer)::state_based is

begin
vo@next(s) = vi+1;

end facet incrementer;

Although s and next are not defined directly in the facet, the declarations are
included from the state_based domain.

The inclusion of domains in this manner provides a primitive kind of inheri-
tance among domains and facets. The state_based domain defined here has an
associated domain, in this case the static domain. This implies that any declara-
tions in the static domain are also included in the state_based domain and any
facet that uses the state_based domain. The discrete and continuous domains
inherit from the state_based domain and thus include definitions of state, s,
and next. As the domain collection is formed in this way, the type associated
with each domain forms a subtype of its domain. For example, the state_based
domain type is a subtype of the static domain because the static domain is its
domain.
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The next addition to symbols in the facet’s scope is the local declarative region.
This includes the universally quantified parameter list, parameter list, and local
declarations between the is and begin keywords. Any declarations made in
this region are visible throughout the facet definition. A second declaration of
incrementer uses a local function to implement the increment action:

facet incrementer
(vi::input integer; vo::output integer)::state_based is
inc(x::integer)::integer is x+1;

begin
vo@next(s) = inc(vi);

end facet incrementer;

Within the facet term, the inc function is visible and is used to define the incre-
ment property. Also, items from the parameter list declaration are used in the
term to reference elements of the facet interface.

A common mistake with writing facets is attempting to redefine items declared
in the facet’s domain. Items in the domain are treated as part of the facet and
any attempt to redeclare the item in the local scope is treated as a second, illegal
definition. For example, in the previous facet definition, if s and next are defined
locally, an error results because the new declarations are repeated declarations in
the same scope:

facet incrementer
(vi::input integer; vo::output integer)::state_based is
inc(x::integer)::integer is x+1;
s :: state;
next(s::state)::state;

begin
vo@next(s) = inc(vi);

end facet incrementer;

The local definitions of s and next conflict with the definitions from the
state_based domain, resulting in a redeclaration error. It is still possible to con-
strain items defined in the domain using terms. The type state and the function
next are not interpretable in the current definition. They can be given values
using terms; however, this practice is discouraged in favor of using a more con-
crete domain definition. More will be said about this in Chapter 12.

As seen earlier in this chapter, the use clause provides a mechanism for includ-
ing definitions from packages. When a package is referenced in a use clause, all
declarations from the package are included in the succeeding declaration, quali-
fied with the package name. The definition of the increment function from the
previous example can be moved into a package and included using a use clause
as follows:

package inc_package is
inc(x::integer)::integer is x+1;

end package inc_package;

use inc_package;
facet incrementer
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(vi::input integer; vo::output integer)::state_based is
begin

vo@next(s) = inc_package.inc(vi);
end facet incrementer;

In this definition, the use clause includes the definition of inc in the facet
definition. The quantified name, inc_package.inc, specifies the definition of inc
from the included package. Because there is only one definition of inc in the facet
scope, the qualified name may be omitted and the simple name inc used instead.

If a local definition of inc appears in the facet definition, the local
definition hides the package definition unless the qualified name is used.
This example defines a local version of increment in addition to the definition
from inc_package:

use inc_package;
facet incrementer
(vi::input integer; vo::output integer)::state_based is
inc(x::integer)::integer is x+2;

begin
vo@next(s) = inc(vi);

end facet incrementer;

Because the term uses an unqualified name, the local definition of inc is used
and the facet model increments its input by 2 in each state. The definition from
inc_package is still present and may be referenced using its qualified name:

use inc_package;
facet incrementer
(vi::input integer; vo::output integer)::state_based is
inc(x::integer)::integer is x+2;

begin
vo@next(s) = inc_package.inc(vi);

end facet incrementer;

Note that if two or more used packages provide a declaration for the same item,
the qualified name must always be used unless a local definition is present. If a
local definition is present, then the unqualified name always refers to it.

An interesting example makes the local definition equivalent to the packaged
definition:

use inc_package;
facet incrementer
(vi::input integer; vo::output integer)::state_based is
inc::<*(x::integer)::integer*> is inc_package.inc;

begin
vo@next(s) = inc_package(vi);

end facet incrementer;

Here the value of the local definition is defined to be the value from the packaged
definition. Now the local, unqualified definition refers specifically to the defini-
tion from inc_package.
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It should be noted that the use clause appears before the facet declaration.
The reason for this is to make clear that declarations from a used package can
be referenced in the parameter list and universally quantified parameter list. This
is particularly useful when packages contain types that may be used parameter
declarations.

The final source of item declarations in a facet is the scope in which the facet
is defined. Declarations in the including scope may be referenced in the internal
facet’s definitions. For example, if the incrementer facet is defined locally within
another facet, definitions from the outer facet are visible:

facet outer::state_based is
inc(x::integer)::integer is x+2;

use inc_package;
facet incrementer
(vi::input integer; vo::output integer)::state_based is

begin
vo@next(s) = inc(vi);

end facet incrementer;

begin
...

end facet outer;

In this case, the definition of inc comes from the outer facet. If a packaged
declaration of the same name is available, then the unqualified name refers to
the declaration from the outer context. Thus, the use clause in the previous defi-
nition is not referenced in the facet declaration. If a local definition is included, it
overrides the definition from the outer context, much like a packaged definition.
However, there is no qualified name for the declaration from the outer context
and it cannot be referenced in the scope of the new declaration.

10.6 Basics of Facet Semantics

To this point, little has been said about the semantics underlying facet definitions.
The details of that discussion are beyond the scope of this book. However, a brief
discussion of how that semantics is defined is included here. The mapping of a
facet to its underlying co-algebra is presented followed by a discussion of type
semantics. This section may be safely skipped by those simply interested in learn-
ing about writing Rosetta specifications.

10.6.1 Facet Semantics

Facet semantics are denoted by mapping terms and item declarations to a
co-algebra. Co-algebraic semantics is chosen over the more popular algebraic
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semantics due to the reactive nature of Rosetta facets. Each facet observes its
inputs and defines a response to changes in those inputs, defining a kind of
stream transformer. Additionally, the abstract nature of the co-algebra’s state
makes defining many different state observations much easier.

A co-algebra is defined by an abstract state,χ , observations on the abstract
state, �ι, and types associated with each observation, �τ. The signature of a
co-algebra defines a collection of typed observations over an abstract state:

�ι :: χ -> �τ

where �ι defines a vector of observations, χ is the abstract state, and �τ is a vector
defining observer types.

Denoting a Rosetta facet as a co-algebra maps declared items to observations,
item types to observation types, and terms to co-algebra terms defining properties
of observations. If the abstract state is viewed as system state, each Rosetta facet
defines a different observation of the system.

Given the following facet defining a simple increment operation:EXAMPLE 10.4
Denotation of a Simple
Rosetta Facet as a
Co-algebra Structure

facet increment(o::output integer; clk::input bit)::state_based(integer) is
inc(x::integer)::integer is x+1;

begin
update: if rising(clk) then s’ = inc(s) else s’ = s end if;
out: o’ = s’;

end facet increment

the corresponding co-algebra signature is:

<o,o’,clk,inc,s,s’,next> ::
χ -> <integer,integer,bit,integer->integer,state,state,state->state>

The co-algebra defines a mapping χ to a vector of values associated with the spec-
ified type; o is an integer, inc is a mapping from integer to integer, and so
forth. Given the co-algebra signature, terms are defined over signature elements:

<o,o’,clk,inc,s,s’,next> ::
χ -> <integer,integer,bit,integer->integer,state,state,state->state>
if rising(clk) then s’ = inc(s) else s’ = s end if;
o’ = s’; �

All items, including the facet state and next state function, correspond to
observations of the abstract co-algebra state. Thus, the state Item, s, in a facet does
not correspond to the abstract state, χ , in the co-algebra. It is a simple observa-
tion identical in every way to any other observation. Thus, the system state can be
consistently observed in different ways by different facets. A digital system can be
observed as having both an analog and digital state by defining facets where s is
of type real and bitvector, respectively. Because these are simply observations
of the state and not the state itself, the observation types are not inconsistent.

An interaction between domains relates observations in different facets. If
the state in any facet is simply an observation of system state, it is possible to
define relationships between these observations. In Rosetta, such relationships
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are defined using interactions and they move information from one domain to
another. Because state is defined at the domain level, interactions can also be
defined at the domain level, supporting general interaction styles.

Many specification languages sharing the style used by Rosetta define their
semantics algebraically. The denotation of such languages is quite similar to
Rosetta mapping declarations in the language to structures in the semantic sys-
tem. However, algebraic specifications use concrete type for state representation
unless a hidden algebra is defined. When using algebraic semantics, the state has
a concrete type, making definition of multiple observation types more difficult.
The chosen concrete state type will always be biased to one particular state rep-
resentation. The co-algebraic semantics only defines observations of state, not a
concrete state type, avoiding bias caused by a concrete state type.

10.6.2 Facets and Type Semantics

All facets must well-typed, implying that the facet must be properly structured
and each declaration must be well-typed. Examining the facet’s structure reveals
the kinds of checks performed during static analysis. The counter facet defined
in Figure 10.3 exemplifies the kind of static analysis necessary to determine if a
facet is well-typed.

All declarations in counter must themselves be well-typed, starting with
the internal declaration of inc_mod4 and rising. Each declaration defines any
function that can be checked using rules defined in Chapter 6. The expression
associated with each function must be well-typed and have the same type as its
specified return type.

facet counter(reset::input bit;
value::output word(2);
clk::input bit):: finite_state(word(2)) is

inc_mod4(x::word(2))::word(2) is
case x is

{b"00"} -> b"01" |
{b"01"} -> b"10" |
{b"10"} -> b"11" |
{b"11"} -> b"00"

end case;
rising(s::bit)::boolean is event(s) and s=1;

begin
next_state: s’ = if reset=1

then b"00"
else if rising(clk)

then inc_mod4(s)
else s

end if
end if;

output: value = s;
end facet counter;

Figure 10.3 Specification of a 2-bit counter with reset.
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Terms are declarations and must also be well-typed. The expressions that
define each term must well-typed and must be of type boolean or a facet type. In
each case, counter terms define boolean expressions that are in fact well-typed.

Finally, the domain instance must be well typed and be of some domain type.
The conditions for a domain instance being well-typed are the same as for a facet
being well-typed. Specifically, the type of each actual parameter must be a subtype
of its associated formal parameter. In the counter example, the domain used is
finite_state, whose only argument is a type, or set of values. Because word(2)
defines the set of two-element bitvectors, the domain instance is well-typed.
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Rosetta provides a collection of capabilities for grouping declarations
into composite structures. A package is a parameterized Rosetta construct used
to group definitions together into reusable collections. Packages represent con-
tainers for various related declarations. A library defines a location for packages
by associating a universal resource indicator (URI) with a local name. A com-
ponent is a collection of definitions that allow inclusion of usage assumptions
and verification conditions along with a specification in a single construct. Com-
ponents allow information, including design rationale, correctness connections,
and assumptions for correct usage, to be encapsulated with a facet in a standard
manner.

11.1 Packages

Semantically, a package is basically a facet with no terms and whose items are
all exported. Every Rosetta definition that is not itself a package must be defined
within a package. Thus, packages are the basic element of specification organiza-
tion. They are used to represent entire projects, component libraries, abstract data
types, and collections of related functions and data types. While a facet represents
a model, a package represents a related collection of models and other items.

As an example, the following package represents an abstract data type for
binary trees:

package tree(T::type)::static is
TreeType(T::type) :: type is data
nil :: empty |
node(lt::TreeType,v::T,rt::TreeType) :: nonempty;

end data;

size(t::TreeType)::natural is
if nil(t) then 0 else 1+size(lt(t))+size(rt(t)) end if;

end package tree;

187
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This package defines a new constructed type called TreeType and a function
size that evaluates to the size of a tree. The package is parameterized over a type,
T, allowing the tree to contain any Rosetta type. To use this package, a use clause
would include and instantiate the package as follows:

use tree(integer);

This use clause includes the tree package and instantiates the tree element type
with integer. Thus, the package where the inclusion occurs now has access to a
new tree type that contains integers and whose size can be determined.

The use clause must appear immediately before the outermost declaration that
includes it. Typically, the use clauses associated with a construct appear immedi-
ately before its definition. For example:

use tree(integer);
facet multiplier
...

end facet multiplier;

includes package elements in the multiplier facet. However, the declarations in
tree are not visible beyond the end facet. The rationale behind this notation is
that frequently data structures and functions provided by a package will be used
in a construct’s parameter list. This is indicated implicitly by including the use
clause immediately prior to the construct.

This simple Rosetta specification defines a package containing two basic RTLEXAMPLE 11.1
Defining a Package
Providing RTL
Components and Using the
Package in a Simple
Definition

components. The package is defined in the static domain; however, the two
facets defined within are both state_based facets.

package rtl()::static is
facet mux2
(i0,i1::input bit; z::output bit;
c::input bit)::state_based is

mux1 : z’ = if c=0 then i0 else i1 end if;
end facet mux2;

facet demux2
(e::input bit; z0,z1::output bit;
c::input bit)::state_based is

demux0: z0’ = if c=0 then e else 0 end if;
demux1: z1’ = if c=1 then e else 0 end if;

end facet demux2;
end package rtl;

To access the package, the use clause specifies the package prior to the construct
where it is referenced:

use rtl();
facet mux4(i0,i1,i2,i3::input bit; z::output bit;

c0,c1::input bit)::state_based is
begin
m1: mux2(i0,i1,x1,c0);
m2: mux2(i2,i3,x2,c0);
m3: mux2(x1,x2,c1,z);

end facet mux4;
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The mux4 specification defines a 4-1 multiplexer structurally from three 2-1
multiplexers defined in the rtl package previously. �

11.1.1 Defining Packages

All package definitions have the following format:

[[ use P ; ]]∗

package P ([[ parameters ]]) :: D is
[[ export ]]
[[ declarations ]]

end package P ;

The package keyword identifies the declaration of a package, while P names the
package. The optional parameters is a collection of parameter definitions. These
definitions differ in that all parameters to a package are considered design param-
eters. Typically, such parameters are used to customize characteristics of items
provided by the package. The optional export allows visibility control over pack-
age declarations. By default, all package declarations are exported (unlike a facet,
where no declarations are exported).

Like facets, the domain, D, provides a vocabulary and language for package
specification. Most packages are defined in the static domain to provide max-
imum flexibility in their use. Note that other definitions within the package do
not need to use the same domain as a basis. The domain of the including con-
struct must be a subtype of the included package. This requirement assures that
all items defined in the included package domain have meaning in the including
domain. For example, it is not possible to include a package of continuous_time
functions in a discrete_time domain.

Packages differ from facets in that they have no terms, and all defined items are
exported by default. The package body appears between its signature and associ-
ated end keyword. The begin keyword does not appear because no terms will ever
follow it. If an export clause does not appear in a package definition, all decla-
rations are exported by default. Including an export clause results in only those
items specified being exported. Using the export all notation is the same as hav-
ing no export clause.

11.1.2 Separable Definitions

Any package definition may be separated into an interface and a body. Like other
structures, the interface specifies the visible portion of the package, while the body
adds specification detail. Package interfaces have the following syntax:

[[ use P ; ]]∗

package interface P [[ parameters ]] :: D [[ with body ]] is
[[ export ]]
[[ declarations ]]

end package interface P ;
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Use clauses specified with the package interface extend to the package body when
the body is present. The package name, parameter list, domain, and declarations
are identical to the unified declaration syntax. Items not appearing in the interface
cannot be exported and all items are exported by default.

The special syntactic element, with body, appearing before the is keyword
indicates that the interface being defined requires a body. Because packages only
provide declarations to other specification units, they do not have associated
terms. Thus, an interface that only contains declarations may represent the entire
package. If a body should be associated with the interface, the optional with body
keyword should be included. If an interface is complete without a body, then the
keyword should be omitted.

Package bodies have the following syntax:

[[ use P ]]∗

package body P is
[[ declarations ]]

end package body P ;

Like other structure bodies, no new parameters, domain elements, or exported
declarations can be added. Any packages used by the body are not visible in the
interface. Although an interface can be used without a body, a package body can-
not be used without its associated interface.

11.1.3 Using Packages

The format of the use clause is:

use packages;

where packages is a comma-separated list of instantiated packages.
All exported symbols from packages in packages are visible by default in the

scope of the use clause without the use of the name.label notation. If an exported
symbol conflicts with symbols defined in scope or by other included packages,
the dot notation is used to indicate the appropriate item. Specifically, if two used
packages provide the same symbol, the dot notation is used to resolve the actual
symbol used. If a symbol is defined in the construct using it or its associated
domain, then the local definition overrides any package definition. If the package
definition is required, then the dot notation may be used to reference the specific
definition.

It is also possible to include multiple copies of the same package with different
parameterization. In this case, dereferencing a name requires the parameters of
the package used to be included. For example:

use tree(integer);
use tree(float);
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requires each reference to any symbol in tree to include parameters when
dereferencing. Specifically:

tree(integer).nil

refers to the integer tree’s nil value, while:

tree(float).nil

refers to the float tree’s nil value. If package names are sufficient to determine
the instance associated with a name, then the parameters are unnecessary when
dereferencing.

The following package and facet declarations exemplify some name resolutionEXAMPLE 11.2
Package Inclusion and
Results of Name
Resolution

properties:

package example1()::static is
a,b,c::integer;

end package example1;

package example1()::static is
export c;
c,d::integer;

end package example;

use example1();
use example2();
facet exampleImport()::static is
a :: bit;

begin
a == 1; // local a
example1.a == 1; // a from example1
b == 2; // b from example1
c == 3; // cannot resolve
example1.c == 4; // c from example1
example2.c == 5; // c from example2
d == 6; // cannot resolve
example2.d == 7; // d from example2

end facet exampleImport; �

11.1.4 The Working Package

All Rosetta items must be declared in a package. However, the package is not
always explicitly referenced in the specification model. When Rosetta constructs
are defined without explicitly being included in a package, they are included
by default in the working package. There is no physical package associated
with the working package. Instead, the contents of the working package are
located in the current working directory. There is no need to export any-
thing from the working package, as it will always be the outermost defining
package.
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11.2 Libraries

Libraries define virtual locations for packages and other compilation units.
A library declaration defines a library name and may associate it with a physical
location using a standard universal resource indicator. The library itself is not a
location, but rather is a name or alias for a location that is used to reference a
collection of compilation units. By using URIs, library locations may be local to
the machine or distributed throughout the network.

11.2.1 Library Definition

Libraries are defined in the same manner as other top-level constructs are. The
library keyword declares a library name and the optional is clause provides a
value for the library:

library name [[ is string ]] end library name;

The string value provides a location for the library contents and takes the form of
a standard URI pointing to the base library. Some examples of library declarations
include:

library design_lib end library design_lib;

library local is
"file:///usr/local/rosetta/local"

end library local;

library rosetta.lang is
"http://www.rosetta.com/usr/lib/rosetta/lang"

end library rosetta.lang;

The library design_lib defines a library that is known to exist, but whose loca-
tion is not known. The local library defines a library on the local machine
located in:

/usr/local/rosetta/local

Finally, rosetta.lang defines a remote library located on www.rosetta.com in
the directory:

/usr/lib/rosetta/lang

Defining libraries in this manner allows distributed system definitions. This is
vital for large systems, where design teams are physically distributed over large
distances. Using URIs allows Rosetta to take advantage of standard location defi-
nition techniques and access methods.
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11.2.2 Referencing Library Elements

Library elements are referenced using the standard dot notation. For example:

use local.data_types;

Uses the package data_types located in the local library. If a package appears in
a use clause without a library qualifier, the working package is assumed with the
current location used as the library. For example:

use data_types;

looks for a package named data_types in the current working directory. This is
the equivalent of the definition:

use working.data_types;

Here, working is not a library, but rather is the name of the package containing
data_types.

11.2.3 Predefined Libraries

Several predefined libraries must exist for any Rosetta installation (Table 11.1).
The rosetta.lang library provides basic language definition packages. The
prelude package contains the Rosetta prelude, defining all constructs defined
in the static domain. If the null domain is extended with the prelude package,
the static domain results. The unicode package defines characters and oper-
ators for standard Unicode manipulation. Finally, the domains package contains
definitions for the base Rosetta domain set.

The rosetta.lang.reflect library provides reflection operators used to define
and manipulate Rosetta language constructs. The lexical and abstract_syntax
packages contain definitions for lexical constructs and data structures representing
abstract syntax, respectively. Thesemantics,simplification, andname_expansion

Table 11.1 Built-in Rosetta libraries and associated packages

Library Package Contents

rosetta.lang prelude Base language constructs

unicode Unicode definitions and functions

domains Base domain definitions

rosetta.lang.reflect lexical Lexical constructs

abstract_syntax Abstract syntax constructs

semantics Semantic definitions for abstract
syntax elements

simplification Derived form definitions

name_expansion Functions for expanding simple
names
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packages contain semantic definitions, derived forms, and rules for fully expanding
abbreviated names into their full forms.

11.3 Components

A component groups a traditional facet declaration with usage assumptions and cor-
rectness conditions. Each component specifies assumptions defining usage assump-
tions, definitions defining the component and playing the same role as facet terms,
and implications defining correctness conditions. Each of these elements is specified
as a collection of terms identical to a set of facet terms.

To illustrate component definition, the following specification defines a binary
search component, augmenting the normal functional specification with usage
assumptions and correctness conditions:

component bin_search(x::input sequence(integer);
k::input integer;
z::output boolean) :: state_based is

begin
assumptions

a1: ordered(x);
end assumptions;
definitions

d1: z’=binSearchFn(k,x);
end definitions;
implications

i1: z’=k in ~(x);
end implications;

end bin_search;

This component specifies that the output in the next state is equal to using the func-
tion binSearchFn to search the input sequence. Defined in the definitions section,
this requirement is the basic functional specification for the component. At the same
time, the component makes the assumption that its input is ordered using a term in
the assumptions section. This is an appropriate guard condition for using a binary
search function that requires its input to be ordered. Finally, the component implies
that the output in the next state be equivalent to determining if the key is included in
the elements of the input sequence. This term appearing in the implications section
defines a requirement for the binary search component that should be derivable from
the system definition. In this way, the definition serves as a correctness condition. It
could also serve as the systems’s functional requirement if a more abstract specifiation
were desired.

Before this component is used in a specification, implications must be supported
by assumptions and definitions to ensure correctness. When this component is used in
a system specification, the assumptions must be supported by the usage environment
while the definitions and implications define correct behavior. The implications can
be treated as definitions when usage assumptions are justified because they depend
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only on local definitions. In a sense, they annotate the component definition, adding
details that could be otherwise derived.

11.3.1 Defining Components

The syntax of component definitions has the following form:

component C [[ parameters ]]::D is
[[ export exports ]]
[[ declarations ]]

begin
assumptions

[[ assumptions ]]
end assumptions;
definitions

[[ definitions ]]
end definitions;
implications

[[ implications ]]
end implications;

end component C ;

where C names the component, parameters is a list of parameters, declarations is
a set of declarations, exports is an export clause, and D is the domain of the com-
ponent. Each of these declarations is identical to the declarations in a facet and plays
the same role in the component definition. Where a component differs from a facet
is term definition in the body of the specification. The assumptions, definitions, and
implications are all collections of terms exactly like those appearing in traditional
facet definitions.

The assumptions section defines a collection of terms that are assumed to be
true in the component definition. They are not asserted, but instead define usage
conditions for the component. Whenever the defined component is included in
a definition, its assumptions must hold true in the including system or correct
behavior cannot be guaranteed. Assumptions play a role very similar to that of
preconditions in an axiomatic specification and record usage conditions for the
component.

The definitions section plays the same role in a component as it does in a facet.
Specifically, the definitions section declares a collection of terms that define the facet
model. As such, they are true within the component and define the component’s
behavior when used in other systems.

The implications section defines a collection of correctness conditions for the
definitions and assumptions. They define terms that must follow from the union of
assumptions and definitions and are treated as definition terms by systems using the
component. Implications are used when desirable properties should be defined that
do not exhibit basic component definitions. Implications are quite useful when per-
forming verification, because they allow verified terms to be included without requir-
ing re-verification.
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The following relationship must hold between assumptions, definitions, and
implications for a component to be semantically correct:

assumptions ∧ definitions ⇒ implications

Implications define properties that must be supported by definitions and assump-
tions. Although ideally this relationship is formal proof, any form of support is accept-
able. This reflects the nature of systems engineering, where many reasons can be used
to justify a design decision or conclusion. Certainly formal proof is acceptable, but
Rosetta semantics does not demand this.

When usage assumptions, definitions, and implications cannot support a formal
proof, their inclusion in specifications adds clarity by recording design intent. Many
correctness conclusions are made through empirical analysis that are not captured
in formal proof. In many cases, conclusions are supported simply by the experi-
ences of the designer. When a design is revisited, understanding assumptions and
how they are supported proves vital to successful re-engineering and component
replacement.

A shorthand notation is provided for defining a component around an existing
facet. Assuming that the facet binSearch existed prior to writing the bin_search
component, it could be reused in the component definition as follows:

component bin_search(x::input sequence(integer);
k::input integer;
z::output boolean) :: state_based is

begin
assumptions

a1: ordered(x);
end assumptions;
definitions = binSearch(x,k,z);
end definitions;
implications

i1: z’=k in ran(x);
end implications;

end bin_search;

Rather than list terms in the definitions section, the binSearch facet is used by
associating it with definitions using the notation:

definitions = binSearch(x,k,z);
end definitions;

The binSearch facet is simply copied into the definitions section without modi-
fication. The assumptions and implications sections can be treated similarly.

11.3.2 Separable Definitions

Like facets, component interfaces may be specified separately from their associ-
ated bodies. The syntax for such specifications is virtually identical to that for
facet specifications. Specifically, the interface defines use clauses, parameters, the
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domain, and exported declarations. The body defines terms and local declarations
that cannot be exported. The syntax for component interface specification is:

[[ use P ; ]]∗

component interface C [[ parameters ]]::D is
[[ export exports ]]
[[ declarations ]]

end component interface C ;

Like the facet interface, the component interface parallels the full component spec-
ification, except that term specifications are omitted. Use clauses specified over the
interface are similarly specified over the body. Thus, all definitions visible in the inter-
face are visible in the body as well.

The component body specification uses the following syntax:

[[ use P ; ]]∗

component body C is
[[ declarations ]]

begin
assumptions

[[ assumptions ]]
end assumptions;
definitions

[[ definitions ]]
end definitions;
implications

[[ implications ]]
end implications;

end component body C ;

Like the facet body specification, the component body specification defines terms over
items declared in the component interface. Use clauses specified over the body only do
not extend over the interface. Thus, the user need not know about packages associated
with the body definition only.

11.3.3 Accessing Component Elements

There are times when it is desirable to reference a declaration or term in a component
that is a part of the assumptions or implications definitions. To support this kind of
access, the component definition can be thought of as shorthand for the following
facet definition:

facet C [[ parameters ]]::D is
[[ declarations ]]
export implications, assumptions, exports;

facet assumptions::D is
begin

[[ assumptions ]]
end assumptions;
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facet implications::D is
begin

[[ implications ]]
end implications;

begin
[[ definitions ]]

end facet C ;

Using this equivalence, it is possible to access the assumptions and impli-
cations associated with a component by using the notations C .assumptions and
C .implications. Because these collections of terms are treated as internal facets,
outside references can be treated as facet references. Specifically, their terms, param-
eters, and declarations can be accessed using meta-functions and they can be
manipulated using facet expressions and functions.

11.3.4 Using Components

Components are used exactly like facets in structural designs and in facet composi-
tion operations. When a component is instantiated, the instantiation is treated as a
facet formed from it’s definitions. Implications and assumptions are treated as local
declarations, but can be referenced using the dot notation as described previously.
The reason for allowing this is to support definitions that may include properties
from the component that are not explicitly defined as axioms. Because implications
are supported by proof or other evidence, they can be referenced and used in other
definitions.

The following Rosetta component uses the binSearch defined earlier and a secondEXAMPLE 11.3
Using the binSearch
Component to Define a
Larger Model

component, bubbleSort, to structurally model a simple component that finds an
integer in a sequence. The bubbleSort component accepts a sequence f integers, sorts
it, and outputs the sorted result. This component makes no assumptions about its
input, but asserts that its output will be ordered.

component bubbleSort(x::input sequence(integer);
y::output sequence(integer));

begin
assumptions

true;
end assumptions;
definitions

d1: y’=bubbleSortFn(x);
end definitions;
implications

i1: ordered(y’);
end implications;

end component bubbleSort;

When the bubbleSort component is connected in series with a binSearch compo-
nent, a search component that does not require sorted input results. Further, we can
be confident about the connection between components because the implication that
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the bubbleSort output will be sorted satisfies the assumption that the binSearch
input will be sorted.

component find(x::input sequence(integer); k::input integer;
z::output boolean)::state_based is

a :: sequence(integer);
begin

assumptions
true;

end assumptions;
definitions

sort: bubbleSort(x,a);
search: binSearch(a,k,z);

end definitions;
implications

i1: z’ = k in x;
end implications;

end facet find;

The find system can be defined as a facet if the assumptions and implications are left
out. However, the use of a component records further information about the resulting
system. Whether a component or facet is used is up to the user’s discretion and often
depends on the situation. �
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The essence of systems engineering is the need to compose and understand
specifications from multiple engineering domains. Because different engineering
activities use different modeling vocabularies, any language purporting to be a
system-level modeling language must support heterogeneous specification. More
specifically, a system-level modeling language must support and integrate multi-
ple modeling paradigms, models of computation, and communication models.

Rosetta’s support for heterogeneous specification is embodied in domains and
interactions. Domains provide a basic modeling vocabulary for a facet and define
its type. They allow the designer to choose or define a vocabulary for specification
that embodies an appropriate modeling paradigm for that specification. Domains
enable Rosetta users to write specifications using different modeling paradigms
in the same language system. Interactions describe how heterogeneous specifica-
tions interact when combined. Defined over domains, interactions move infor-
mation from one modeling paradigm to another and are further described in
Chapter 15.

We have already seen domains at work in facet definitions, where they are
used as common vocabulary for defining specifications. Syntactically, each facet’s
domain is specified using a type annotation following the facet signature. Pack-
ages, components, and other domains use the same definition technique. Seman-
tically, each facet extends its domain by including all definitions from the domain
and adding definitions local to the facet. How this extension is realized during
elaboration is specified as a part of the domain.

12.1 Elements of a Domain

The primary focus of domain definition is providing a specification vocabulary.
Where facets describe specific system models, domains define reusable, common
constructs for defining new models. Although domains are like facets in many
ways, they are not used as components and cannot be instantiated in structural
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specifications. They serve as definitional building blocks for facets and group
collections of similar facets into types.

Domains accomplish their task by defining units of semantics, models of compu-
tation, and engineering domain knowledge to varying degrees. Units of semantics
declare the basic modeling primitives shared by classes of specifications. State-
based specifications all reference the current state and the next state function,
regardless of their specific properties. Similarly, signal-based specifications all ref-
erence signals and processes. Models of computation constrain units of semantics
by providing increasingly concrete definitions for them. Finite state specifications
constrain the state type to be finite and discrete, but do not define new state vocab-
ulary. Similarly, infinite state specifications constrain the state type to be infinite
and say nothing of discreteness. Finally, engineering domains gather information
specific to a particular domain, such as digital design, hydraulics, analog design,
or power modeling.

Rosetta supports incrementally defining units of semantics, models of com-
putation, and engineering domain information through extension of basic
models. Starting with units of semantics, models of computation are defined and
extended. Using models of computation, basic engineering domains are defined
and extended to sub-domains. As we shall see in Chapter 15, sharing units of
semantics and models of computation provides explicit support for specification
composition, abstraction, and refinement.

12.1.1 Units of Semantics

The first objective of any domain specification is to provide units of semantics
declarations. The units of semantics comprise a basic collection of items that rep-
resent quantities shared among specifications in a domain. These items take the
form of variable, constant, and type definitions. For example, the concepts of
state, time, and state change are critical to all state-based specifications. Although
these quantities have different properties based on the specifics of a state-based
domain, they are always present. Thus, the state_based domain that serves as
a basis for all state-based specifications defines these as basic units of semantics.
Domains defined from the state_based domain provide different semantics for
these items to define different flavors of state_based specifications.

One of the most critical units of semantics definitions specifies the point-of-
reference for observation. Examples of such items include state and time as well
as position and order. We say that items like state specify the point-of-reference
because all observations are performed with respect to them. For example, we
specify the values of variables with respect to state in sequential systems or with
respect to time in analog systems. Such domain items are not restricted to speci-
fying to time. They may specify spatial position for representing measured values
on a surface or events for representing values associated with occurrences.

When a domain provides nothing other than declarations and is defined
directly from the static domain, it is informally referred to as a unit-of-semantics
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domain. Most Rosetta users will never define a new unit-of-semantics domain,
but will instead extend existing domains to provide new models of computa-
tion or engineering domains. The unit-of-semantics domains must be added with
great care. As we shall see in Chapter 15, carefully choosing common items among
specifications can profoundly influence the utility of a system specification.

12.1.2 Computation Models

Among the most important aspects of domain definition is providing models of
computation. The difficulty in heterogeneous specification is not understanding
how values are calculated, but rather how values change over time. When inter-
facing an analog component with a digital component, difficulties arise when
dealing with behaviors of interface items. Specifically, how does the analog view
of an input or output map to the digital view it may be interfaced with? The dif-
ficulty is not understanding the values that items take, but rather understanding
how those values change over time with respect to each other.

As an example, consider the definition of the time quantity in the state_based
and continuous_time domains. In the continuous_time domain, the time type
is most easily represented as a real number, and the current time as an element of
that type:

state_type :: type is real;
s :: state_type;

In contrast, in the abstract state_based domain, the state type is left largely
unspecified. We know that it is defined, but not what its characteristics are:

state_type :: type;
s :: state_type;

The distinction between state in continuous_time and state_based is only
that state is constrained to be real. Thus, continuous_time can be defined by
extending state_based to include this constraint.

Defining models of computation and communication in Rosetta is accom-
plished in domains by defining a point of reference and how that point of
reference changes. We have seen how time types, values, and functions can be
specified. The key is choosing types appropriately and defining operations over
those values. The essence of model-of-computation definition is how and when
items change value.

Rosetta provides a collection of built-in factions to assist developers in defining
models of computation. The most important are the infix operator @ and the next
function, present in all domains except static. Literally interpreted, the expres-
sion x@s means “the value of x with respect to s. ” Thus, @ is a mapping from an
item name and a point of reference to a value, and serves as a dereferencing func-
tion. Defining the type of s says much about the model-of-computation. If s is
real, then we are modeling a continuous system. In contrast, if s is natural, we
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are modeling a discrete system. More exotic points of references include surfaces
and events. If s is a Cartesian coordinate, we are modeling values along a two-
dimensional surface. Using this approach, Rosetta models for heat dissipation in
semiconductors can be defined. If s is an event, we can model processes and traces
in a manner similar to a constraint satisfaction problem (CSP) or the pi-calculus.

By sequencing states and examining their associated environments, the con-
cept of execution or computation is defined. Rosetta provides the next function
over the state type to define this sequencing: next maps a state to its next state
and can be constrained by referencing any aspect of the facet state. Thus, if x@s
defines the value of x in state s, then x@next(s) defines the value of x in the state
(or states) following s. Rosetta defines a standard shorthand x’ that is interpreted
as x@next(s), or “x in the next state.” Defining next appropriately supports defin-
ing various models of computation using the same common syntax. The catch is
that one must understand the current domain to understand how state changes.

The properties of next, together with the state type, define how states are
sequenced, providing a basis for a model of computation. For example, given an
arbitrary state type, the constraint next(s)>s forces the next state to always be
greater than the current state. This ensures that the state will always move forward
and forces the state type to be infinite. In contrast, if the constraint is removed
and the constraint #state in natural is added, the state space becomes finite and
states can be revisited. From a quite simple starting point, sophisticated models
of computation can be provided.

When a domain provides no new declarations, but adds constraints to units
of semantics, it is informally referred to as a model-of-computation domain.
Typically, model-of-computation domains are defined by extending a unit-of-
semantics domain or another model-of-computation domain. Where unit-of-
semantics domains provide a basic vocabulary, model-of-computation domains
constrain that vocabulary to define specific mechanism for computing and
sequencing values.

12.1.3 Engineering Domain Definitions

As any engineer knows, simply understanding mathematics is not sufficient for
solving real-world engineering problems. Mathematics is a prerequisite, but the
real work is done using domain-specific knowledge built from that mathematics.
When using Kirchoff ’s Laws, an electrical engineer rarely thinks of the continu-
ous time model used by those laws. The civil engineer does not think about the
dynamics equations underlying bridge design. An engineer works with domain
information that abstracts away the need to go all the way back to mathematics.
Because these abstractions are based on sound mathematical principles, they are
safely used in design.

Engineering design languages must provide this abstract, domain-specific layer
or they are not useful. Languages such as VHDL and Verilog specifically address
the needs of digital circuit designers. Matlab and Mathematica provide a basis
for defining systems that includes collections of libraries for specific engineering
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domains such as control and signal processing. The UML software specification
language provides a basic modeling paradigm with the ability to define profiles
for specializing to various software modeling domains.

For example, in digital design the concept of a clock is fundamental to system
design. The definitions of event, quiet, rising-edge, and falling-edge are common
when observing a clock and should be defined in any domain used for digital
system specification. Concrete functions are provided having the following form:

event(x::bit)::boolean where event(x’) == x/=x’
quiet(x::bit)::boolean where quiet(x’) == x=x’
rising(x::bit)::boolean is event(x) and x=1;
falling(x::bit)::boolean is event(x) and x=0;

These definitions differ from those provided by unit-of-semantics and model-of-
computation domains. First, they reference units of semantics, but unlike model-
of-computation domains they do not constrain them. The use of ticked names
implicitly references state, but the reference is only to examine values in that
state. Second, they declare, but unlike unit-of-semantics domains, they imme-
diately define new functions and variables. Of course, these characteristics are
heuristic — it is quite possible to define a new unit-of-semantics in an engineer-
ing domain. However, by avoiding this, specifications are easier to write and use.

When a domain adds to a model-of-computation domain new definitions that
reference, but do not constrain, units of semantics, it is informally referred to as
an engineering domain. Engineering domains are the workhorse of Rosetta spec-
ifications. Most specifications written by designers use an engineering domain
to define a specific model for a system or component. Unlike unit-of-semantics
and model-of-computation domains, engineering domains are easily written and
are commonly added to the domain set. Any time Rosetta is used in a new engi-
neering discipline, new component collections are required, or new abstractions
are needed for operations on models, engineering domains are the best modeling
approach.

12.2 The Standard Domains

Figure 12.1 shows the domain semi-lattice populated with a classical domain set.
The null, static, and descendants of the state_based domain are the most
heavily used domains and serve as examples in this section. The static and
null domains are the only two domains defined as required elements in the base
Rosetta system. Users may add new domains or completely replace the domain
lattice if necessary for their specification activities.

12.2.1 The Null Domain

The null domain refers to the empty domain containing no computation model
and no vocabulary. Using the null domain results in a system with only the base
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static

state_based(state_type::type)
state_based()

signal_based(event_type::type)
signal_based()

finite_state(state_type::type)
finite_state()

infinite_state(state_type::type)
finite_state()

continuous_temporal(state_type::type)

discrete_temporal(state_type::type; delta_val::state_type)

null

trace_based(event_type::type)
trace_based()

process_based(event_type::type)
process_based()

discrete_time() continuous_time()

frequency()

digital()
discrete_event()

tagged_event()
CSP()

pi_calculus()

Figure 12.1 Base definition domains in the domain semi-lattice. Two domain signatures in the
same node indicate different parameterizations of the same domain.

Rosetta semantics. It is included to provide a basis for defining domains that
inherit nothing from other domains and should only be used by designers who
want to start from scratch. The static domain that provides basic mathematics
will use null as its type. Unless you intend to define a complete Rosetta domain
semantics from scratch, there is little need to reference the null domain. There is
no mechanism for constructing null from other domain definitions.

12.2.2 The Static Domain

The static domain provides a basic collection of types and functions in a com-
putational model that has no built-in concept of state or time (Figure 12.2). The
static domain is defined by using the prelude and unicode packages provid-
ing access to basic Rosetta definitions. The original names for the static domain

use rosetta.lang.prelude;
use rosetta.lang.unicode;
domain static()::null is
begin
end domain static;

Figure 12.2 Skeletal specification of the static domain.
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were logic and math, reflecting the domain’s intent of providing basic mathemat-
ical definitions. All predefined domains inherit from static and thus share the
same mathematical basis. Symbols used to define computational models, @, next,
and the state type are not visible in the static domain and cannot be used.
Because static has no built-in state or time definitions, domains that inherit
from it are free to define their own computational models.

The static domain is most frequently used when defining utility pack-
ages where model-of-computation is immaterial or harmful. Operations such
as square root and function application, and data types such as integers and
sequences, are the same regardless of computation model. The static domain
provides common definitions used by all domains and thus all facets. The static
domain is also used when defining structural definitions or performance require-
ments where models of computation are not used. The most important use of the
static domain is as a basis for defining remaining domains. Because all domains
share the static domain, all domains share the same mathematical structures
and Rosetta support functions.

The powerLimit facet specifies a limit on the value of an observed item, power.EXAMPLE 12.1
Power Constraint
Specifying a Static Power
Limit

It simply states that the value of that parameter cannot exceed the statically
defined value limit. Such a facet would be used as a constraint in a system where
power is being consumed and should be limited. The static domain is used
because the limit does not change.

facet powerLimit(power::real; limit::design real) :: static is
begin

c: power =< limit;
end facet powerLimit;

When used in a system specification, the domain semi-lattice is typically used
to transform the static powerLimit facet to a domain appropriate for composi-
tion, with a specification changing power values. The constant nature of the power
limit is transformed into a constant limit using the target domain’s computation
model. By using the staticdomain, this specification can be moved virtually any-
where in the domain semi-lattice without sacrificing utility. However, the author
of the power facet need not know anything about the target specification. This
idea is fully explored in Chapter 15. �

The addFns specification defines a pair of utility functions for defining addi-EXAMPLE 12.2
Facet Containing Common
Function Definitions and
the Equivalent package
Specification

tion operations in digital systems. The static domain is used because there is no
concept of time when defining this type of pure mathematical function.

facet addFns() :: static is
export all;
bitSum(x,y,cin::bit) :: bit is x xor y xor cin;
bitCarry(x,y,cin::bit) :: bit is
(x and y) or (x and cin) or (y and cin);

begin
end facet digital;

This facet can be included in other facets and functions referenced using the dot
notation. However, such utility specifications are so common in Rosetta that the
package structure is included to define them. As a rule-of-thumb, whenever a
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facet is defined that includes declarations with no terms, a package should be
used instead. Following is the equivalent definition using a package:

package addFns()::static is
bitSum(x,y,cin::bit) :: bit is x xor y xor cin;
bitCarry(x,y,cin::bit) :: bit is
(x and y) or (x and cin) or (y and cin);

end package addFns; �

12.2.3 The State-Based Domain

The state_based domain is a unit-of-semantics domain used to define systems
that change state. The state_based domain extends the mathematical capabili-
ties provided by the static domain to include the concept of state and change
as traditionally defined. In the static domain, values associated with items can-
not change because there is no concept of state. The state_based domain pro-
vides the most basic concept of change by introducing the next function and the
state type described previously. Specifically, the state_based domain provides
the basis for modeling the concepts of state and change by defining (i) an abstract
state type, (ii) the current state, (iii) a next state function that derives the next state
from the current state; (iv) and an eventpredicate that is true when an items Value
changes from its Value in the previous state. Computations are defined by spec-
ifying preconditions on the current state and a relationship between the current
and next states that defines computation (Figure 12.3).

domain state_based()::null is
state :: type;
s::state;
next(s::state)::state;
event(X::top):: boolean;

begin
end domain state_based;

domain state_based(state_type::type)::null is
state :: type is state_type;
s::state;
next(s::state)::state;
event(X::top):: boolean;

begin
end domain state_based;

Figure 12.3 Partial specification of the parameterized and unparameterized state_based
domains, showing the declaration of the state type, the current state, and the next state
functions.

As a simple example, consider the following definition of a component that
sorts its input:

facet sort(i::input sequence(integer);
o::output sequence(integer))::state_based is

sorted(i::sequence(integer))::boolean is
forall(x::0,..((#i)-1) | i(x) =< i(x+1));

begin
pre: true
post: sorted(o’) and ~o’=~i

end facet counter;

This facet defines requirements for a component that sorts its input without
specifying a specific sorting algorithm. The state_based domain is used because
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we must define the output in the next state, but we do not know what the actual
state is. Requirements defined by this component can easily be met by either a
software or hardware component.

post: sorted(o’) and ~o’=~i

The post term defines a post-condition for the component by defining properties
on values in the next state. Specifically, o’ refers to the value of o in the next state;
post asserts that o’ must be sorted and must be a permutation of the current
input, i.

It is exceptionally important to recognize that the following term, similar to a
C-like programming statement, is not correct:

next_s: o = sortFn(i);

Terms simply state things that are true. They are not executed and there is no
notion of assignment. Although legal in C, where “=” is an assignment operator, in
Rosetta this statement asserts that o=sortFn(i) is true. Looking at “=” as equality
rather than assignment makes this statement inconsistent because we are asserting
that the output is sorted in the same state in which we observe the input. This
simply cannot hold. A good rule-of-thumb is to use the tick notation whenever
the semantics of assignment is desired.

The key to using state_based domains is recognizing that an un-ticked
label indicates the current state and that a ticked label indicates the next state.
The state_based tick notation is defined based on the more fundamental
state_based domain definitions of current state and the next state function. In
reality, the notation x’ is shorthand for the notation x@next(s), where (i) @ refers
to the value of a label in a state, (ii) next defines the state following a given state,
and (iii) s is the current state. Specifically:

x def x@s
x’ def x@next(s)

The previously defined sort specification is equivalent to the following expansion:

facet sort(i::input sequence(integer);
o::output sequence(integer))::state_based is

sorted(i::sequence(integer))::boolean is
forall(x::0,..((#i)-1) | i(x) =< i(x+1));

begin
pre: true
post: sorted(o@next(s)) and ~(o@next(s))=~(i@s)

end facet counter;

Here the tick notation is replaced by its definition using the next function, and
undecorated variables are referenced in the current state. In the state_based
domain, the dominant specification methodology is axiomatic specification. Thus,
the primary use of @ is to refer to variables in the next state.
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Statements of the form R(x,y@next(s)) or x◦y@next(s) are used to
constrain the value of y in the next state, based on the value of x in the
current state. This defines requirements for a computation without defining
implementation method. When using the state_based domain, defining a
relationship between the items in the current and next state should always
be the specification goal. Revisiting the sort specification, the term labeled
post defines the relationship between current and next state by defining a
relationship between variables in those states. One of the advantages of the
the state_based domain and Rosetta generally is that the next state need not
be completely defined. If only partial requirements are available or desired,
it is necessary only to specify what is known. At high levels of abstraction,
such capabilities help the designer avoid over-specification during design
exploration.

The state_based domain provides a special function, event, that com-
pares the value of an item in the current and next states to determine if it
has changed values. Specifically, event(clk) is true when clk changes val-
ues between the current and previous states. The event function supports
definition of reactive systems that are triggered by changes in their inputs. A
specific example of the event function in action is the definition of a rising
clock edge:

rising(clk::bit)::boolean is event(clk) and clk=1;

In this definition, rising is true if event indicates a change in the value of clk and
the resulting of the change is a value of 1.

What is happening in the state_based domain is that the model-of-computa-
tion is being exposed in the specification. Languages such as C, VHDL, and Lisp
have a built in computational model that pervades all definitions. In Rosetta, the
model is exposed, allowing integration of specifications in different domains. The
price paid for this freedom is the need to think about the model-of-computation
in the specification process. Rosetta tries to abstract away as much detail as pos-
sible, but some will always remain.

To summarize, the state_based domain should be used whenever a system-
level description of component or system is needed. At early design stages,
when working at high levels of abstraction, the state_based domain provides
a mechanism for describing state transformations without unnecessary details.
The state-based domain should not be used when details such as timing are
involved in the specification. Furthermore, the state_based domain provides
no automatic mechanism for composing component states when developing
structural models.

In the Introduction we explored the definition of a register using theEXAMPLE 12.3
Register Specification
Using the state_based
Domain

discrete_time domain, examining specification composition and the use of
heterogeneous domains. Here we examine a more robust specification in the
state_based domain that uses a universally quantified parameter to allow arbi-
trary register word width.
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facet reg
[size::natural](x::input word(size); z::output word(size);
rst,le,clk::input bit)::state_based is

v :: word(size);
init(s::natural)::bitvector is

if s=0 then [] else cons(0,init(s-1)) end if;
begin

sup: v’ = if reset=1 then init(size) else
if clk=1 and event(clk) and le=1

then x
else v

end if;
end if;

zup: z = v;
end facet reg;

Specification itself defines a state update term (sup) and an output update term
(zup). The state update term references the facet’s state variable, v, in the next
state using the tick notation, v’. If the clock is rising and load enable is set,
then the register loads the input value, x. If any of these conditions is false,
the register’s value remains unchanged. An outer condition checks for a reset
value. By using v’ to reference the next state value, the state_based specification
vocabulary is used.

The output update term asserts that the component output, z, is equal to v in
all states. Thus, the output is the value of the stored value, v. There is no condition
on this equivalence, so the condition must always be true.

The universally quantified parameter, size, represents the length of the word
being stored. It is specified as a universally quantified parameter to allow its value
to be inferred at elaboration time. Like VHDL, Rosetta can determine the width of
word type variables by propagating widths through component interconnections.
Rosetta differs because the universally quantified parameters need not be specified
and can be specified explicitly. If a universally quantified parameter’s value cannot
be determined, it may simply indicate early design stages, not an error. If the user
does not want tools to try and infer values, universally quantified parameters can
be explicitly instantiated in the same manner as traditional facet parameters. �

The powerConsumption facet is a state-based specification describing powerEXAMPLE 12.4
Modeling Activity-based
Power Consumption Using
the state_based Domain
in a Facet and in a New
Engineering Domain

consumption. The technique used in this model is a trivial form of activity-
based power modeling. When signals change state, the system consumes power. In
this model, leakage and switch are design parameters representing the nominal
power consumption and power consumed by a state change, respectively. Total
power consumed is measured by summing power consumed over sequences of
state changes.

facet powerConsumption(o::output top;
leakage,switch::design real)::state_based is

export power;
power::real;

begin
power’ = power + leakage + if event(o) then switch else 0 end if;

end facet powerConsumption;
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The model for this specification uses the state_based domain because it is the
most abstract domain where state change occurs. The specifics of state change
are not required by the activity-based model, thus the state_based domain is an
appropriate choice. The power value after each state change is the power value
before the state change plus leakage and switch if the value observed changes.

This model is naive, but can easily be expanded to cover larger systems with
additional inputs and outputs. Its abstract nature allows it to be specialized
for domains that extend state_based. However, knowing more about the state
change allows specifying more power consumption details. Defining a power
domain based on state_based would allow inheriting these basic power con-
sumption concepts. Such a domain would have the following form:

domain power_activity(leakage,switch::design real)::state_based is
powerUpdate(o::top)::real is
leakage + if event(o) then switch else 0 end if;

begin
end domain powerConsumption;

The following specification redefines the original power consumption spec-
ification using this powerConsumption domain. Again, the model is simple but
demonstrates the definition of one domain inheriting from another. Specifically,
the power_activity domain is an engineering domain that defines vocabulary
for activity-based power consumption modeling.

facet powerConsumption(o::output) :: power_activity(leak,switch) is
export power;
power :: real;

begin
power’ = power + powerUpdate(o);

end facet powerConsumption; �

12.2.4 The Finite State Domain

The finite_state domain is a model-of-computation domain that provides a
mechanism for defining systems whose state space is known to be finite and can
be listed or represented using a type. Systems such as RTL components, con-
trollers, and protocols are defined using the finite_state as a basis domain.
The finite_state domain extends the state_based domain, thus all definitions
from state_based remain valid in the new definition. Specifically, next, @, and
tick retain their original definitions. The only addition is the constraint that state
must be a finite type (Figure 12.4).

domain finite_state(state_type :: type)::state_based is
state :: type is state_type;

begin
#state_type in natural;

end domain finite_state;

Figure 12.4 Partial specification of the finite_state domain. Definition of the state type
and finite constraint.
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The finite_state domain extends the state_based domain by adding a
constraint on the size of the state_type value. The state_type parameter spec-
ifies the collection of items used to represent the state and must be a type. The
declaration of state gives it the value specified by state_type.

Unlike the state_based domain, the finite_state domain has constraints on
states. The new term defines the size of state_type to be a natural. Because all
individual naturals are finite, this assures that the state set must also be finite. This
constraint must be satisfied by any value specified for state_type. Care must be
taken to assure that the size of state_type can be calculated or, minimally, is not
known to be infinite.

Consider an example counter:

facet counter(clk::in bit; c::output natural)::finite_state(0..,3) is
rising(x::bit)::boolean is event(x) and x=1;
next(s::state)::state is
if rising(clk) then

if s =< 2 then s+1 else 0 end if
else s end if;

begin
next_s: s’ = next(s);
out: c = s;

end facet counter;

In this counter, the state space is explicitly defined as the set containing 0 through
3 by using the state_based domain’s parameter. The new definition of the state
type is the set {0..,3}. Because #state=4, the state space is finite, causing no
inconsistency with the requirement that the finite_state domain have a finite
state type. Instead of defining the next function in terms of properties of the next
state, it is explicitly defined as modulo 4 addition on the current state when the
clock is rising. This is quite different than previous state_based specifications
where the actual value of the next state was not defined.

The terms assert that the next state is calculated by next and the next output is
the next state. If the clock does not rise, the current state is maintained and thus
the current output. The term:

next_s: s’ = next(s);

performs the state update, while the term:

out: c = s;

performs output. If the state does not change, then neither will the output.
Like state_based specification, finite_state specification does not require

the next function to be completely defined, although it is more typical for
this to occur in the finite_state domain, as it is less abstract than the
state_based domain. It should be noted that the state type and the next state
function are defined in the finite_state domain definition and need not be
redeclared.
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The finite_state domain is only useful when defining systems known to
have finite state types. For example, whenever a sequential machine is desired, the
finite_state domain is the appropriate specification model. Typically, the ele-
ments of the state type are specified by extension or comprehension over another
bunch to assure that the state type is finite. Most RTL style specifications can be
expressed using the finite_state domain, if desired.

The finite_state domain should not be used when the state type is
not known to be finite or is not known at all. Of particular note is that
finite_state specifications should not be used when timing information is
specified as a part of function. In such circumstances, the set of possible states
is almost always infinite, because time has no upper bound. An interesting
challenge in heterogeneous specification is understanding when an infinite sys-
tem can be represented using a finite number of states by abstracting away the
specifics of time.

The following counter facet definition is an alternative for the earlier defi-EXAMPLE 12.5
Alternative Definition for
the counter Specification
Using a Term to Define the
next Function

nition. Rather than using the constant function syntax, a term defines the next
function’s value:

facet counter(clk::in bit; c::output real)::finite_state(top) is
rising(x::bit)::boolean is event(x) and x=1;

begin
next_state: forall(s::state | next(s)=if rising(clk)

then if s =< 2 then
s+1 else 0

end if
else s end if;

next_s: s’ = next(s);
out: c = s;

end facet counter;

Semantically, this definition is the same as the original definition. The special syn-
tax used for function definition in the original discussion is easier for tools to
recognize, thus the earlier syntax is preferred. �

The buffer specification represents a finite buffer that is updated when a newEXAMPLE 12.6
Synchronous, Finite Buffer
That Contains Data of
Some Arbitrary Type
Message

input arrives, and that outputs when it is not blocked and the clock rises. A pack-
age is used to define a type representing the contents of the buffer as a finite
sequence of some message. The finiteSequence function returns a type con-
sisting of all message sequences of length less than or equal to n. This is identical
to the word specification except that all elements of the word type have exactly
the specified length. This is not appropriate here because the buffer changes size
when messages arrive and are processed. The heart of the specification is the n1
term that constructs the next state.

Given some state s, the next state is constructed by knowing the status of the
in, block signal, and clk. If a new message is to be output, then the message is
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removed from the front of the list. At the same time, a message could be arriving.
If so, the new message is added to the end of the buffer.

package bufferType()::static is
message :: type;
finiteSequence(n::natural)::subtype(sequence(message)) is

s::sequence(message) | #s =< n ;
end package bufferType;

use bufferType();
facet buffer(in::input message;

out::output message;
block,clk::input bit)::finite_state(finiteSequence(8))) is

begin
n1: next(s) = if not(block) and event(clk) then cdr(s) else s end if

\& if event(in) and #s < n then [in] else [] end if;
o1: out’ = if not(block) and event(clk) then car(s) else out end if;

end facet buffer; �

12.2.5 The Infinite State Domain

Like the finite_state domain, infinite_state is a model-of-computation
domain that extends the state_based domain by restricting the state definition.
Instead of requiring that the state type be finite, the infinite_state domain
implicitly makes the state type infinite by enforcing a total ordering on states
(Figure 12.5). The term next(s)>s states that the next state is always greater than
the current state, effectively eliminating loops in the state transition
function. Mathematically, the definition of next makes the state type a chain.
If a state were to appear twice it would violate the ordering property. The
infinite_state domain is useful when defining systems where states are ordered
and potentially infinite numbers of states exist. Representing a discrete event sys-
tem is an appropriate application of the infinite_state domain.

The infinite_state domain exists principally to serve as a common domain
for defining systems with time. It should not be used when the specifics of tim-
ing and time measurement are known. The discrete_time or continuous_time
domains are chosen over the infinite_state domain in most modeling situ-
ations. Both domains inherit properties from the infinite_state domain but
provide additional details about the time type.

domain infinite_state(state_type :: type)::state_based is
state :: type is state_type;

begin
next(s)>s;

end domain infinite_state;

Figure 12.5 Partial definition of the infinite_state domain, showing definition of the state
type and the infinite state constraint.
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The dataLogger facet is an example of using an infinite state specification toEXAMPLE 12.7
An infinite_state
Specification Using a real
Pair for State
Representation

model potentially infinite input and output data sequences. The state of this spec-
ification is a pair of real values, thus a more concrete temporal domain is not
appropriate. Each time the clock rises, dataLogger samples its inputs and adds
these values to the existing x and y values maintained by the state. A reset signal
may be used to reset the state.

package pairData()::static is
pair :: type is data

pair(x::real,y::real)::ispair;
end data;

end package pairData;

use pairData;
facet dataLogger(dx,dy::input real;

clk,rst::input bit;
o::output pair)::infinite_state(pair) is

begin
xupd: x(s’) = if rst = 1

then 0.0
else x + if rising(clk) then dx else 0.0 end if

end if;
yupd: y(s’) = if rst = 1

then 0.0
else x + if rising(clk) then dy else 0.0 end if

end if;
out: o=s;

end facet dataLogger;

This specification is also interesting because the update of the state value is not
directly defined. Specifically, there is no point where s’ is equated with any new
value. Instead, the x and y values for the next state are constrained. We are defin-
ing the values of observations in the next state rather than the next state directly.
This is an exceptionally common specification technique that is particularly useful
when the implementation of state is not completely known or the characteristics
of a state cannot be fully specified. �

12.2.6 Discrete Time Domain

The discrete_temporal and discrete_timedomains are model-of-computation
domains that define models where time is observed in discrete time intervals.
Both domains inherit definitions from the infinite_state domain, including
the total order on the state type. The discrete_temporal domain is parameter-
ized over the time type and time increment, defining only discrete time restric-
tions. The discrete_time domain specifies the time type as natural and the time
increment as 1.

The discrete_temporal domain adds restrictions to the infinite_state
domain to ensure that the state type is discrete and time values increase uni-
formly from one state to the next. The discrete_temporal domain is parame-
terized over both the time type and increment. The next state function is defined
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domain discrete_temporal(state_type :: type;
delta_val :: state_type)::infinite_state is

state :: type is state_type;
delta :: state is delta_val;
next(t::state)::state is t+delta;

begin
#state_type = #natural;

end domain discrete_temporal;

domain discrete_time()::infinite_state is discrete_temporal(natural,1);

Figure 12.6 Partial specification of the discrete_temporal and discrete_time domains.

as next(t)=t+delta and, following from previous domain definitions, x@t is the
value of x at time t and x’ is equivalent to x@next(t) (Figure 12.6).

Discreteness of state_type is enforced by requiring its cardinality to be the
same as natural. The only restrictions on delta are made indirectly by the defi-
nition of next. The next function defines the next state as the current state plus
delta. The infinite_state restriction on next(t) ensures that delta cannot be
zero and next must increase the state value.

The discrete_time domain is a specific instantiation of the discrete_
temporal domain. It specifies the time type as natural, the delta value as 1.
Specifically, in the discrete_time domain, time is a natural number denoted by
t and discrete time increment is 1. This domain provides a convenient standard
definition for discrete time Rosetta specifications.

Specifications are written in the discrete time domain in the same fashion as
the infinite and finite state domains. The additional semantic information is the
association of each state with a specific time value. Thus, the term:

t1: x’ = f(x)

constrains the value of x at time t+delta to be the value of f(x) in the cur-
rent state. This specification style is common and reflects the general syntax and
semantics of a VHDL signal assignment. Specifically, if delta were specified in
femptoseconds, the discrete time model would be an excellent low-level model
of VHDL signal assignment. As such, the discrete time domain is frequently used
when looking at systems where periodic clocks are appropriate. The notation:

x@(t+(n∗delta)) = f(x)

provides a mechanism for looking several discrete time units into the future. Such
mechanisms are useful when defining delays in digital circuits.

The discrete_time domain should be used when modeling requires a tim-
ing model that utilizes fixed, discrete time units. This domain provides model-
ing capabilities that map nicely onto digital logic and communications systems,
where timing issues are well understood. The discrete_time domain should
not be used when no fixed timing constraints are known. In such situations, the
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infinite_state or state_based domains may be more appropriate and will help
avoid over-specification.

An interesting application of discrete time modeling is the development ofEXAMPLE 12.8
Digital Systems
Specifications

digital system specifications. Traditionally, digital designs specify a clock and
then monitor that clock for events (rising and falling edges). The discrete_time
domain can be used to model such systems without complicating the definition
with clock management. For example, a VHDL process that is rising-edge trig-
gered might specify a wait condition as:

wait on clk;

followed by a check to see if the clock is high. Rosetta abstracts this detail out
in the discrete time domain by associating a clock period with the discrete time
interval. Specifically, by specifying system values with respect to state, values are
implicitly specified with respect to clock cycles. A specification of a simple register
has the following form:

facet register(x::in bitvector; z::output bitvector;
e::in bit; r::in bit)::discrete_time is

s::bitvector;
choose(b0,b1::bitvector; e,r::bit)::bitvector is

if r=1 then 0
else if e=1 then b1 else b0 end if

end if;
begin

t1: s’=choose(s,x,e,r);
t2: z’=choose(z,s,e,r);

end facet register;

This specification defines a cycle-based model of the register. The function choose
is defined to select a value based on enable and reset inputs. This function is not
necessary, but simplifies the specification by abstracting out the selection proper-
ties of the enable and reset signals. The terms specify the next value of the stored
value and the output value. Because the specification assumes that all changes
occur on the initiation of a new clock cycle, the clock can be left out of the speci-
fication.

It is important to note that the reset signal for this register is synchronous.
Because changes that do not occur with respect to a clock signal cannot be mod-
eled, including an asynchronous clock is not possible. Although the abstract
specification is more useful for many purposes, the trade-off is information
content. �

12.2.7 The Continuous Time Domain

The continuous_time domain is a model-of-computation domain that pro-
vides a mechanism for defining temporal specifications using a real-valued
representation of time. Unlike discrete time specifications, continuous time spec-
ifications allow reference to any specific time value by treating time as a real
value.
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The continuous_time domain provides a state type representing time that is
uncountably infinite (Figure 12.7). This differs from the discrete_time domain,
where time values are restricted to a countably infinite set. In virtually all specifi-
cations, this time type will simply be real.

domain continuous_temporal(state_type :: type)::infinite_state is
state :: type is state_type;
delta :: state;
next(s::state)::state is lim(s+delta,delta,0);
tderiv(x::label) = deriv(x,s);
tantideriv(x::label) = antideriv(x,s);
tinteg(x::label,u::real,l::real,c::real) = integ(x,s,u,l,c);

begin
end domain continuous_temporal;

domain continuous_time::infinite_state is continuous_temporal(real);

Figure 12.7 Partial specification of the continuous time domain.

The next function is more difficult, as it refers to the instantaneous next state.
Specifically, what does x@next(t) or x’ mean when time is continuous? In dis-
crete time, we defined next(t) = t+delta, where delta is a discrete time incre-
ment. In continuous_time, we want delta to approach zero. Specifically:

next(t::state) = limt→0 t+delta

defines the next state to be the instantaneous next state. Using the Rosetta built-in
limit function, the formal definition becomes:

next(t::state) = lim(t,delta)

Thus, x@next(t) and x’ define the the value of x in the next instantaneous state.
Using this definition of next, we can define transfer functions and provide time
derivative, antiderivative, and integral functions for general use.

The time derivative, or rate of instantaneous change associated with an item x,
is defined as x’deriv(t) or by viewing x as a function of time. An nth order time
derivative can be referenced by recursive application of deriv. The second deriva-
tive is defined as x’deriv(t)’deriv(t), the third derivative as x’deriv(t)’
deriv(t)’deriv(t), and so forth.

Remember that in any state-based specification system, an item x is defined
with respect to some observation reference. Specifically, x expands to x@t,
where “@” is making an observation with respect to time. We can express this
using a more traditional functional notation as x(t) and treat the variable x
as a traditional function over time. With this, we can define a traditional time
derivative as:

dx

dt
=

d

dt
x(t)
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Using Rosetta syntax and the derivative function this becomes:

x’dot = x’deriv(t)

The time derivative of x is simply the derivative of x with respect to t. The dot
ticked expression is provided as a shorthand, making time implicit in the deriva-
tive.

The indefinite integral with respect to s is defined similarly as x’tantideriv
and behaves similarly when x is an item in the continuous_time domain. Note
that the antiderivative with respect to time assumes an integration constant of
zero. Making the integration constant different is a simple matter of adding or
subtracting a real value from the indefinite integral.

The definite integral with respect to time is provided as x’tinteg(l,u) and is
defined in the canonical fashion as:

x’tinteg(l,u) def x’tantideriv(u) - x’tantideriv(l)

The continuous_time domain should be used when dealing with analog elec-
tronic systems or any other system referencing continuous time. Such systems
include mechanical, optical, biological, and chemical systems in which discrete
time has no real meaning; continuous_time should not be used when the time
reference is known to be discrete. Although such systems can be modeled in the
continuous_time domain, the various discrete time domains capture the discrete
nature of time. Using the continuous_time domain, this must be inferred during
verification.

The following specification for a simple analog-to-digital converter seems toEXAMPLE 12.9
Two Facets Alternative
models of an
Analog-to-Digital
Converter in the
continuous_time Domain

be quite correct. The terms specify cases for the two possible current output val-
ues. The first case checks if the clock is rising and the output is high, while the
second checks if the output is low. If either case is met then the output is driven
appropriately, based on the input. If neither case is met, the else clauses for both
terms assert the output should remain the same.

Unfortunately, if the condition for one term is met, the condition for the other
cannot be met. This is due to the type associated with the output value. In this
case, one term may constrain the output to be high while the other is low. This
is an excellent example of an inconsistent specification. Cases like this, where the
same item can be constrained inconsistently, must be avoided and are difficult to
automatically detect.

facet a2d(i::input real; o::output bit; clk::input bit)::continuous_time is
begin

outh: if rising(clk) and o=1
then o’= if i<0.3 then 0 else 1 end if
else o’=o

end if;
outl: if rising(clk) and o=0

then o’= if i>0.7 then 1 else 0 end if
else o’=o

end if;
end facet a2d;
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The next specification avoids the problem in the first specification by using a
single if expression that ensures only one assertion is made about the output.
Here, if the clock is rising, the input and current output are checked to deter-
mine the next output value. The if expression guarantees mutual exclusivity of
assertions on the output, avoiding the inconsistency in the previous specification.

facet a2d(i::input real; o::output bit; clk::input bit)::continuous_time is
begin

out: o’=if rising(clk)
then if o=1 and i<0.3 then 0

elseif o=0 and i>0.7 then 1
else o end if;

else o
end if;

end facet a2d;

The continuous_time domain is used for this specification because its input is
an analog signal. Its output is binary valued, but it is continuous as well. It is
the responsibility of the component using the a2d output to lift it into the digital
domain using translator functions. �

The lowpass and highpass facets are time domain definitions of simple RCEXAMPLE 12.10
Passive Lowpass, Highpass,
and Bandpass Filters
Defined Using the
continuous_time Domain

filter circuits. Parameterized over r and c, they represent the structure of classi-
cal, first-order passive filters. In both cases the next output is determined by the
current input voltage, r and c. Recall that in the continuous_time domain, the
next output is the instantaneous next output. Thus, we are defining the transfer
functions for these simple circuits.

facet lowpass(in::input real; out::output real;
r,c::design real)::continuous_time is

begin
filter: out’ = in∗(1/sqrt(1+(r∗c∗in’deriv(t))^2))

end facet lowpass;

facet highpass(in::input real; out::output real;
r,c::design real)::continuous_time is

begin
filter: out’ = in∗(r∗c∗in’deriv(t)/sqrt(1+(r∗c∗in’deriv(t))^2)

end facet highpass;

Virtually any time domain system can be written in the same manner and com-
posed to define more complex devices. For example, the following structural code
uses lowpass and highpass filters to define a bandpass filter:

facet bandpass(in::input real; out::output real;
rlow,clow,rhigh,chigh::design real)::continuous_time is

x::real;
begin

lpf: lowpass(in,x,rlow,clow);
hpf: highpass(x,out,rhigh,chigh);

end facet bandpass;

By placing the lowpass and highpass filters in sequence, a passive RC bandpass
filter is defined. �
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12.2.8 The Frequency Domain

Another continuous domain used pervasively in systems design is the frequency
domain. We define the frequency domain using the continuous_temporal as a
kind of template. We define the frequency domain as:

frequency :: infinite_state is continuous_temporal(real);

One should notice quickly that the frequency domain and the continuous_time
domain are identical, with the exception that the continuous reference value is
viewed as frequency rather than as time. This is to be expected, as all opera-
tions performed over time domain objects can also be performed in the frequency
domain. They frequently have completely different interpretations, but their basic
definitions are the same.

Another aspect worth mentioning is the existence of a functor between the
frequency and continuous time domains. It is possible to move specifications
between the time and frequency domains in mathematics using the Fourier
transform. Similarly, the Fourier transform and its inverse define functors
between the frequency and time domains. Functors and their uses are defined
fully in Chapter 15, however, the utility of the Fourier transfer illustrates the
value of having functors and interactions.

The lowpass and highpass facets defined below are frequency domain defini-EXAMPLE 12.11
Passive RC Filter
Specifications Defined in
the frequency Domain

tions for the RC filter circuits from the previous example.

facet lowpass(in::input real; out::output real;
r,c::design real)::frequency is

begin
filter: out’ = in/(1+r∗c∗w)

end facet lowpass;

facet highpass(in::input real; out::output real;
r,c::design real)::frequency is

begin
filter: out’ = in∗r∗c∗w/(1+r∗c∗w)

end facet highpass;

The domain for these facets is frequency, not an abstraction of time. Variables are
referenced to frequency, referred to as w. The result is that in and out are functions
of w. The same is true for r and c, but they are of kind design requiring that they
do not change with respect to frequency.

facet bandpass(in::input real; out::output real;
rlow,clow,rhigh,chigh::design real)::frequency is

x::real;
begin

lpf: lowpass(in,x,rlow,clow);
hpf: highpass(x,out,rhigh,chigh);

end facet bandpass;

By placing the lowpass and highpass filters in sequence, a passive RC bandpass
filter is defined in the same manner as before. �
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12.3 Domains and Facet Types

It is no coincidence that when a new facet is defined, its domain is identified using
the Rosetta type indicator, “::”. Every facet is considered to be an element of a
type identified by its domain and a subtype of every domain its domain inherits
from. Using this concept, we define how a facet type is identified by a domain and
how domains form a lattice of specifications.

12.3.1 Domains as Types

Each time a facet is defined, it must be associated with a modeling domain. The
facet identifies its domain by including it immediately following its parameter list,
in a manner similar to defining a function’s range:

facet interface adder(x,y,ci :: input bit; z :: output bit) :: digital is
end facet interface adder;

As we have seen, the specified domain provides a basis for building the facet and
the type the facet is associated with. Each facet definition extends the domain
it includes by adding declarations and terms to the domain definition. Thus,
the domain provides a base for facet specification while additional definitions
provided by the facet extend the domain to include system-specific properties.
The term extension is used because the properties expressed in the basic domain
definition cannot be eliminated, only enhanced. For example, if working in the
discrete_time domain, one cannot change the properties of the next com-
mand other than by adding new properties. The basic definition of next must be
maintained.

In addition to providing a modeling vocabulary, the domain associated with a
facet defines the facet’s type. A domain’s associated type is defined as every con-
sistent extension of that domain. This specifically includes all facets and domains
created by consistently extending the domain. In this way, the domain serves as a
specification of all elements of its associated type. When we say:

facet adder(x,y,ci :: input bit; z,co :: output bit)::digital is ...

the “::” operator plays the same role it always has by identifying the facet type.
adder is of type digital and can be treated like a value in the same way as num-
bers, strings, sequences, or any other Rosetta value. This allows definitions of
functions over facets that enable defining architectures and facet composition
among other useful constructions.

We can also say:

halfadder(x,y :: input bit; z,co :: output bit)::digital is adder (x,y,0,z,co);

in a manner quite similar to function definition. Here we are saying that a
halfadder is of type digital and is an adder with the carry-in value set to 0. The
type is used to assure that the newly created facet value associated with halfadder
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is the same type as the type of halfadder. The key is that facet types are no dif-
ferent than other types. They play the same role when defining new variables and
values associated with a given domain.

As an extreme example, one can define facets or functions using facet type
parameters. An excellent example is the Fourier transform functor that is simply
a function with a domain of continuous_time facets and range of frequency
facets:

fourier(f::continuous_time) :: frequency is
make_anonymous_facet(

make_facet_signature(parameters(facet_signature(f)),‘frequency‘),
exports(f),
declarations(f),
<< infix_binary_operation

z =
‘right_argument((terms(f)(0)))‘ ∗
exp(-j∗w∗t)’tinteg(-infinity,infinity)/sqrt(2∗pi)‘
>>);

where f is a facet defining a time domain transfer function that defines an equiv-
alence between a dependent time domain parameter z representing the facet out-
put and an independent time domain variable x.

Facets can be similarly parameterized, providing a way for writing general-
purpose architectures. The signature for an architecture that connects digital
components in sequence would be:

facet digital_sequential(f1,f2 :: static digital;
i::input bit; o::output bit) :: digital

x::bit;
begin

f1(i,x);
f2(x,o);

end facet digital_sequential;

The sequential facet accepts two digital components and passes data through f1
and on to f2. This facet can be used to instantiate components in an architecture:

neg_neg(i::input bit,o::output bit) :: digital is
digital_sequential(inverter,inverter,i,o);

The architecture facet can utilize universally quantified parameters to provide an
even more general architecture. Specifically, the types of the inner and outer com-
ponents need not be specified directly, but could be inferred from the compo-
nent’s usage:
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facet sequential
[facet_T :: subtype(static);
T :: type]
(f1,f2 :: static facet_T;
i::input T; o::output T) :: facet_T is

x::T;
begin

f1(i,x);
f2(x,o);

end facet sequential;

The instantiation with inverter components is identical:

neg_neg(i::input bit,o::ouput bit) :: digital is
sequential(inverter,inverter,i,o);

Type inference is used to determine facet_T and T. In this example, the inference
is quite simple. The type of neg_neg is digital, thus facet_T must also be digital.
This value satisfies the subtype constraint from declaration of facet_T and is also
the type of inverter. Inferring T is equally simple. The parameters of neg_neg, i
and o, are both of type bit, implying that T is bit and thus x is of type bit.

We will see further examples of such advanced abstraction techniques as our
specifications become more general and reusable. For now, it is enough to under-
stand that facets are Rosetta values and that, like any other value, they have associ-
ated types. We can define facet variables, parameterize functions over facets, and
parameterize facets over other facets. Anything that can be done with any other
item can also be done with facets and facet types.

12.3.2 The Domain Semi-Lattice

Domains are themselves facet structures and, like other facets, must identify the
domain they extend. The only exception to this rule is the null domain that by
definition is the initial domain containing nothing. Thus, domains themselves
are elements of types and identify a type in their definition. For example, the
finite_state domain is defined from the state_based domain as follows:

domain finite_state(state_type :: type)::state_based(state_type) is
begin

#state_type in posint;
end domain finite_state;

The finite_state domain, is simply a state_based domain, where the cardi-
nality of the state_type is a positive integer. As all positive integers are finite and
non-zero, the size of state_type must be finite and non-zero.

It may seem odd that types themselves seem to have types, but it is quite com-
mon in object-oriented languages, where a class extends another class. Both can
be used as types for new objects and one clearly extends the other. It also follows
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from the definition of a domain type. A domain’s type is all possible consistent
extensions of that domain. Any domain extending another domain satisfies this
condition.

Using this extension or inheritance relationship, Rosetta defines the domain
semi-lattice as a lattice structure of domain definitions. The structure is a
semi-lattice, where the homomorphism defined by domain extension is the par-
tial order. Specifically:

G ⇒ F def F � G

If F :: G then G⇒ F and F � G. Using this definition, the domain semi-lattice is
a join semi-lattice whose top is null. If the inconsistent facet is introduced as the
bottom value, the the semi-lattice becomes a full lattice.

Although the mathematics of the semi-lattice is important for Rosetta’s seman-
tics, the critical issue for specification is the relationship between domains. From
this relationship, abstraction and concretization functions are defined that allow
moving specification information up and down the semi-lattice. The existence of
a Galois Connection in association with the semi-lattice assures the soundness of
the transformations. When new domains are added to the semi-lattice, abstrac-
tion and concretization are defined, allowing facets written in the new domain to
interact with all existing facets. As we shall see, this makes Rosetta’s domain sys-
tem exceptionally powerful for performing system-level design abstractions and
transformations.



13Reflection

Reflection, the ability to treat language constructs as data, is
implemented in Rosetta using abstract syntax structures, template expressions, and
interpretation functions. Abstract syntax structures, or simply AST structures, are
Rosetta data types that internally represent the abstract syntax of Rosetta expres-
sions. These structures are defined as Rosetta data types and can be manipulated
like any other data type. Specifically, constructors, recognizers, and observers are
defined for each AST structure to support creating and observing Rosetta speci-
fications. AST structures are in every wadomainy Rosetta data structures and are
defined in the standard rosetta.lang.reflect library.

Template expressions define syntactic structures that are parsed into their
equivalent Rosetta AST structure during elaboration. Template expressions
include concrete syntax that is parsed, as well as escaped functions that are called
to directly generate AST structures. Although template expressions are not a
semantic necessity, they simplify creating new AST structures by providing a rep-
resentation syntax that resembles the AST construct being created.

Interpretation functions perform type inference, evaluation, and denotation of
AST structures. The value function evaluates an AST structure in an environment
attempting to reduce it to its simplest form. The typeof function infers the type
of an AST structure given its declaration context. The function phi maps an AST
structure to its semantic value. Finally, the denotes function denotes the value of
an AST construct in Rosetta’s co-algebraic semantics.

13.1 Template Expressions and AST Structures

Using AST structures, Rosetta specifications can refer to and create new specifi-
cation elements. The basic syntax for Rosetta template expressions is:

<< ast arg >>

where ast identifies the type of AST structure created by the template and
arg is the actual template. Such expressions create abstract syntax elements by
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identifying the type of an AST element and a template that is parsed into a struc-
ture of that type. The first element of a template expression, ast, identifies the
data type for the resulting AST structure. For example, expression is the type
representing a general Rosetta expression, while ticked_operation is the type
representing a ticked expression. Thus, a template of the form:

<< expression e >>

will be parsed into an instance of the expression AST representing e. If e cannot
be parsed into an expression, then an error results.

The second element of the template, arg, is the syntactic element to be parsed.
For example:

<< expression x + 2 >>

creates the abstract syntax for an expression abstract syntax element represent-
ing x+2. The Rosetta elaboration system converts the template into a series of calls
to abstract syntax data constructors. When evaluated, these constructors form the
actual AST structure. For <<expression x+2>>, the resulting constructors have
the following form:

make_infix_binary_operation (
rosetta.lang.reflect.make_label ( "x" ), plus_token, 2 )

The constructor make_label creates a label named x, and plus_token is the
parse token associated with the + operation. Finally, the constant 2 is the sec-
ond order of the binary expression. The function make_infix_binary_operation
creates the abstract syntax element from the individual abstract syntax ele-
ments.

Interpretation of template expressions can be escaped by enclosing syntac-
tic elements in back quotes. Specifically, ’signature(n)’ indicates that the
function instance signature(n) should be included without expansion. For
example:

<< function_type <∗’signature(n)’∗> >>

expands to:

make_function_type ( ( signature(n) ) :: function_signature )

The function signature(n) is not evaluated until after the elaboration occurs,
allowing n to be instantiated with an evaluation-time item. The label n
may refer to a function declaration AST or other construct from which a
function signature can be formed. When make_function_type is evaluated,
the signature of n becomes the signature of the function type. One use
for this function is extracting the function type from a constant function
declaration.
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The following example uses Rosetta reflective AST functions to create aEXAMPLE 13.1
Combining a Facet
Interface AST and Facet
Body AST to Create a
Complete Facet
Declaration

complete facet declaration from an interface and body. The function first checks
to assure that the interface and body have the same names. If they do, the
make_complete_facet_declaration constructor is used to assemble complete
declaration. All elements of the declaration come from either the interface or
body, except declarations. Both interface and body can have declarations, thus
they are appended and used as the declarations value.

combine_elements(fi::facet_interface_declaration;
fb::facet_body_declaration)::complete_facet_declaration is

if facet_label(fi) = facet_label(fb) then
make_complete_facet_declaration(

facet_label(fi),
facet_signature(fi),
exports(fi),
declarations(fi)&declarations(fb),
terms(fb))

else bottom
end if;

A template expression can be used to accomplish the same declaration. However,
because there is no real concrete syntax involved in new declaration, there is little
benefit from doing so. To illustrate this option, the same function using template
expressions has the form:

combine_elements(fi::facet_interface_declaration;
fb::facet_body_declaration)::complete_facet_declaration is

if facet_label(fi) = facet_label(fb) then
<< complete_facet_declaration

facet ‘facet_label(fi)‘ ‘facet_signature(fi)‘ is
‘exports(fi)‘
‘declarations(fi)&declarations(fb)‘

begin
‘terms(fb)‘

end facet ‘facet_label(fi)‘ >>
else bottom

end if; �

13.2 Interpreting AST Structures

Interpretation is the process of determining the meaning of a Rosetta
specification. To support interpretation, the Rosetta reflection system provides
functions that reduce AST structures and map AST structures to mathemati-
cal structures called co-algebras (Table 13.1). Three functions are defined that
perform basic evaluation. The value function reduces an AST structure to its
simplest equivalent AST structure, or normal form. Similarly, the typeof func-
tion reduces an AST structure to the simplest AST structure representing its
type. Finally, the denotes function reduces an AST structure to its normal form
and attempts to denote that normal form in Rosetta’s co-algebraic semantics.
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Table 13.1 Interpretation functions associated with all Rosetta constructs

Function Format Meaning

Type typeof(x,c) References the type of item x in the context of c

AST Value value(x,e) References the AST value of item x in context of
environment e

Semantic Value denotes(x,e) References the semantic value of item x in the context
of environment e

String to AST parse(x) Transforms item x into its associated AST structure

AST to String string(x) Transforms item x into a string representation

AST
Structures

Semantic
Values

phi

value

typeof

Figure 13.1 Relationships between evaluation functions, AST structures, and semantic values.

Figure 13.1 shows the relationship between the value, typeof, and denotes func-
tions. The value and typeof functions reduce AST structures and the denotes
function maps them to co-algebraic values.

13.2.1 The value Function

The objective of the value function is to find the AST representation of an AST
structure’s value given an environment e. It defines the transformation of a syn-
tactic element into another, reduced syntactic element. For example:

value(<< expression 1+2 >>,e) == << expression 3 >>
value(<< expression inc(2) >>,e) == << expression 3 >>
value(<< expression 1+x >>,e) == << expression 1+x >>

The AST representing adding 1+2 is the AST for 3. The AST representing the value
of 3 is itself, because 3 cannot be reduced. The AST structure representing the
value of x+1 is also itself, unless the environment provides value for x.

An AST structure is in normal form when value does not reduce it further. In
the previous examples, 1+2 is not in normal form because it can be reduced to 3;
3 is in normal form because it represents a literal value; and 1+x is in normal form
because more information is required, specifically a value for x, before it can be
reduced further.

An AST value is an AST structure in normal form that represents a Rosetta
value. In the previous examples, 3 is a value because 3 cannot be reduced, regard-
less of information provided by the environment. Conversely, 1+x is not a value
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because 1+x can be reduced if the value of x is known. Like most languages, the
set of values for Rosetta is identified prescriptively as a part of the language spec-
ification. In contrast, most languages define normal forms that are not values as
errors representing an incomplete evaluation. As a specification language, Rosetta
does not. Such normal forms are treated as descriptors of resulting value sets and
reveal significant information about a specification.

13.2.2 The typeof Function

The typeof function accepts an AST structure and context and determines the
AST structure’s type. In many cases, typeof simply looks up declared types and
calculates new types for expressions. However, the introduction of universally
quantified parameters in function and facet signatures requires typeof to per-
form type inferencing. For example:

typeof(<< expression 1+2 >>,c) == << expression posint >>
typeof(<< expression 1+2.1 >>,c) == << expression real >>
typeof(<< expression inc(2) >>,c) == << expression natural >>
typeof(<< expression inc >>,c) == << expression <∗ (x::natural)::natural ∗> >>

Rosetta guarantees preservation of type with respect to value. Specifically:

typeof(x, c) == typeof(value(x, e),c)

where x is an expression, e is the evaluation environment and c is the context of x.
The result of evaluating an expression has the same type as the original expression.
This leads to a single axiom that expresses type correctness by asserting that any
item’s value must be contained in its type. Specifically:

forall(x::expression | typeof(value(x,e),c) =< typeof(x,c))

For declared items with constant types and values, the following two axioms link
the AST defining the declared type and declared value to the type and value,
respectively:

forall(x::expression | typeof(x) == (value(declared_type(x))))

forall(x::expression | value(x,e) == (value(declared_value(x,e))))

In both cases, finding the value of the AST structure defining the type or value
provides the actual type or value.

Unlike a traditional evaluation function, value need not reduce to a value for
all expressions. As a result, Rosetta cannot guarantee evaluation progress. This is
to be expected, as few programming languages guarantee progress. Furthermore,
specification languages are by definition not fully executable.

13.2.3 The denotes Function

In Rosetta, semantic values are co-algebra constructs used to provide defini-
tions for AST structures. Rosetta uses a denotational approach for defining
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semantics, mapping each AST structure with its co-algebraic semantics. This is
achieved using the the denotes function. Specifically, denotes transforms an
AST structure representing a value into its co-algebraic meaning. Because type
values are ordinary values, the AST structure may represent either a type or
value. Thus, denotes(value(t,c),e) and denotes(type of(t,c),e) both map
an AST structure to a structure in the co-algebraic domain.

All AST values map to semantic values. However, not all AST structures map
to semantic values, because not all AST structures reduce to AST values. When
an AST structure reduces to a normal form that is not a value, it can be thought
of as representing a collection of AST values and thus semantic values that sat-
isfy its properties. Although this is a problem for programming languages, it is
necessary for specification languages, where a class of systems may satisfy a set of
requirements.

Some simple examples of using the denotes function include:

denotes(<< expression 2 >>,e) == 2
denotes(<< expression 2e2 >>,e) == 200
denotes(<< expression [1,2,3] >>,e) == [1,2,3]
denotes(<< expression z+1 >>,e) == denotes(__+__(X),e)(denotes(z(X),e),1)

where X is the co-algebraic abstract state and a(X) is the value of observe a in
that state.

AST values and semantic values differ because of the nature of specifica-
tion languages. The value function must be able to reduce a structure to
something that is not a value. Thus, its signature must be a mapping from
AST structure to AST structure. AST values must be of type AST structure to
properly define value. However, as syntactic structures, they are still without
semantic meaning. Semantic values are mathematical structures that provide
meaning for AST values. This is why evaluating an AST value results in a
semantic value.

13.2.4 The parse and string Functions

There are two additional functions defined for AST structures that merit some
discussion. The parse function maps a string representation to its Rosetta abstract
syntax representation. This construct is used to define how template expressions
translate into their respected AST structures. The result of value (parse(x),e) is
the Rosetta equivalent of evaluation. Specifically, it will parse a Rosetta expression
to an AST structure and find its associated AST value.

The string function takes an AST structure and returns its associated text
representation. This function is the inverse of parse and provides pretty-printing
function for Rosetta expressions. The string function is rarely used in
specifications and is included primarily for verification. The following example
defines the correctness of the parse and string functions:

forall(x::expression | parse(string(parse(x))) == parse(x))



13.2 Interpreting AST Structures 235

Table 13.2 Accessor functions associated with facet definitions

Function Format Meaning

Facet constructor make_complete_facet_declaration Construct a facet AST

Facet signature signature(f) Signature of facet f

Facet declarations declarations(f) Set of items declared in f

Facet terms terms(f) Set of terms declared in f

Export list exports(f) Set of labels exported by f

Parameters parameters(signature(f)) Set of f ’s parameters

Domain facet_domain(signature(f)) Domain of facet f

Functions for manipulating facets provide an excellent example of writingEXAMPLE 13.2
Rosetta Reflection
Functions for Manipulating
Facet Structures

and using reflective functions. A facet is simply an item of type facet whose
value is a facet value. Like any Rosetta structure, functions associated with
data types are used to access elements of a facet definition. These functions
are described in Table 13.2 and are defined in rosetta.lang.reflect. The
signature, declarations, terms, and exports functions access their respected
AST structures in the facet declaration. To access parameter and type AST struc-
tures, parameters and facet_domain are called on the facet’s signature.

Using these AST functions, we can make assertions about facet semantics,
define functions over facet constructs and define the semantics of analysis tech-
niques. First, define a facet’s type as its domain. This following constraint asserts
that for all facets the type of a facet is its domain:

forall(f::facet | typeof(f) = value(facet_domain(signature(f))))

Next, define a function to extend a facet’s parameter list by adding a single new
parameter to the end of the original list. The function simply appends a new
parameter to the end of the sequence representing existing parameters. The func-
tion uses a universally quantified parameter to represent the type of the facet
allowing the function to be applied to any facet of any type:

extend_facet_plist[d::domain](f::d,n::label,p::facet_parameter) :: d is
<< facet ‘n‘

<< facet_signature ‘facet(parameters)^&[p]‘ ‘facet_domain(f)‘>>
‘exports(f)‘ ‘declarations(f)‘ ‘terms(f)‘ >>;

Finally, add a new form of static evaluation that checks to see if a declared value
or parameter is constrained in a future state by some term in a facet:

potential_mod(f::complete_facet_declaration)::set(declaration) is
filter(d::~(~declarations(f)) | ticked_or_dereferenced(d,terms(f))) +
filter(d::~(~signature(f)) | ticked_or_dereferenced(d,terms(f)));

The ticked_or_dereferenced function determines if a declared item, d, appears
in the context of a tick or dereference function in the terms of f. The filter
application generates a set of declarations that satisfy the constraint. �
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13.3 Domain Declarations

Defining new abstract model-of-computation and unit-of-semantics domains
is not for the weak of heart. Fortunately, neither extension of the Rosetta base
domain semi-lattice is often required. Defining new engineering domains is a
common specification task that can easily be mastered. Writing new domains to
express common abstractions in an engineering design domain involves adding
declarations for those new abstractions. Defining new domains to serve as shared
declarations between two specifications is similarly done by adding new declara-
tions to existing domains.

Rosetta provides a mechanism within the base language for defining new
domains. The syntax for a domain declaration is defined as:

[[ use P ; ]]∗

domain D [[ parameters ]] :: T [[ with F ]] is
[[ export exports [[ with facetExports ]]]]
[[ declarations [[ with facetDeclarations ]]]]

begin
[[ terms [[ facetTerms ]]]]

end domain D ;

In this syntactic structure, D is the label naming the new domain, parameters
is an optional collection of design parameters, exports list the exported names,
declarations are items defined in the domain, T is the domain type, and terms are
terms that define new axioms within the domain. T is the type of the domain
being defined and the supertype of all domains and facets that extend D. As with
facet definition, exports, declarations, and terms are all optional.

Throughout the domain definition are a number of optional with clauses that
define how a facet extends a domain. The with clauses define how elements of
the extending facet are elaborated to elements in the elaboration result. The with
clause following the facet signature provides a name, F , used for the extending
facet. This is necessary because the domain cannot know statically what facet is
being extended. The remaining with clauses use elements from F to define new
elements in the elaboration result.

The with clause associated with the export clause defines how to generate
additional exported symbols from F . Typically, this with clause will simply spec-
ify the names exported from the extending facet. For example, if the domain
exports p and F exports power, the result of elaboration will export p and power.
If the with clause is not present, the default is to append the exports from D and
the exports from F .

The with clauses associated with declarations and terms specify how to elabo-
rate declarations and terms from F in the elaborated facet. This is where defini-
tions for ticked expressions x’, x@s, and x’dot are elaborated. The where clause
specifies a function that is applied to F , accesses elements of F , and generates new
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clauses for the elaboration result. For example, the functions for transforming x’
and x@s have the following form:

transform_tick(tick_expr::tick_operation)::tick_operator is
<< tick_operator ‘operand(tick_expr)‘ ’at(next(s)) >>;

transform_tick_at(at_expr::infix_binary_operation)::tick_operator is
<< tick_operator ‘left_operand(at_expr)‘ ’at

(’right_operand(at_expr)’ ) >>;

Here, transform_tick and transform_tick_at define the transformation of
expressions of the form x’ and x@s into expressions that use the at ticked
expression. Both functions examine an argument expression, extract operands,
and form an appropriate use of at. In the first case, x’ is transformed to
x’at(next(s)) by appending the next state function ticked expression. In the
second case, x@s is transformed to x’at(s) by pulling the operation apart and
assembling the operands into a ticked expression.

The function transforming the at ticked expression has the following form:

transform_at(at_tick::tick_operation)::expression is
<< function_application

denotes(‘operand(at_expr)‘,
‘tick_argument_list((operators(at_expr))(0))(0)‘) >>

Transform_at defines the transformation of x’at(s) into denotes(x,s) where
denotes defines the dereferencing operation; function_application is the
abstract syntax structure being created. The denotes function is a special Rosetta
function that provides link from specifications to the underlying co-algebraic
semantics. In effect, denotes defines how a fully expanded symbol in a Rosetta
specification is mapped to an observer over the co-algebra. By defining denotes,
any domain can specify how a symbol is dereferenced with respect to its
environment. Understanding the underlying mathematical semantics is not
critical here.

If the with clauses are not present for declarations, then declarations from
F are appended to those provided by the domain. Similarly, terms from F are
appended if the with clause is not present. For the vast majority of domains
written by users, with clauses are not required. Most engineering domains and
even model-of-computation domains do not need to expand ticked expressions
beyond what is provided by their associated unit of semantic domains. However,
the definition mechanism is there, should it be needed.

The semantics of domain definition elements is identical to that of their
analogous facet definition elements, with a few important exceptions. The with
clauses that occur in domains are never present in facet definitions. All domain
parameters are treated as kind design and cannot represent system inputs and
outputs. Because of this, there are no kind annotations for domain parameters.
The new domain’s type, T , must be another domain. Because facets cannot serve
as facet types, this restriction is easily enforced. Finally, introducing the new
domain cannot introduce cycles in the domain semi-lattice. Each domain extends
precisely one domain and cannot be its own supertype.
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13.4 Defining Engineering Domains

Defining a new domain can be as simple as adding declarations to an existing
domain. Many engineering domains are defined in precisely this fashion. In the
digital domain from Example 13.3, the original domain is extended by adding
new declarations and axioms over those declarations. Items declared in the orig-
inal domain are not refined or constrained further. When such refinements are
made, the new domain is considered a new model of computation domain.

One excellent example of an engineering domain is the definition of a digitalEXAMPLE 13.3
Engineering Domain for
Digital Design Defined by
Extending the
state_based Domain

domain for digital design extending the state_based domain. The digital
domain defines a collection of utility functions that would be useful for defining
RTL operations and integrating RTL components. The example here shows rising
and falling clock predicates as well as a sampling of word-oriented operations.

domain digital()::state_based is
rising(x::bit)::boolean is (x=1) and event(x);
falling(x::bit)::boolean is (x=0) and event(x);
wordAnd[l::natural](x,y::word(l))::word(l) is
zip(__and__,x,y);

wordOr[l::natural](x,y::word(l))::word(l) is
zip(__or__,x,y);

wordNot[l::natural](x::word(l))::word(l) is
map(not,x);

...
begin
end domain digital;

None of the extensions to state_based reference its basic definitions directly.
Each declaration defines a new function that references only parameters defined
for that function. Thus, the extension is conservative and we can be certain that
the digital domain as written is consistent.

The new digital domain is used to define facet models, like any other domain.
Here, we use the digital domain to define a new component that accumulates its
inputs using a conjunction on each rising clock edge. Clock and reset signals are
used to synchronize and initialize the circuit, respectively. The digital functions
rising and wordAnd are used to define the behavior of this component:

facet andAccum[l::natural](x::word(8); clk::bit; rst::bit)::digital is
state :: word(8);

begin
state’ = if rst then x"FF" else

if rising(clk) then wordAnd(state,x) else state end if;
end if;

o = state;
end facet andGate;

�
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13.5 Defining New Model-of-Computation Domains

Defining new model-of-computation domains is not substantially more difficult
than defining engineering domains. The difference is that items declared in unit-
of-semantics domains are refined by model-of-computation domains. New items
may also be added, but if they represent the only additions, the new domain is con-
sidered an engineering domain. If new basic computational elements are defined,
then the new domain may be considered a new unit-of-semantics domain. This
will rarely occur in typical specification situations.

Examples of defining new model-of-computation domains occur repeatedlyEXAMPLE 13.4
The finite_state
Model-of-Computation
Domain Formed by
Extending the
state_based
Unit-of-Semantics Domain

in the early sections of this chapter. One such example is the definition of
finite_state from state_based. The only extensions performed in this domain
declaration constrain state. First, state is constrained to the value instantiat-
ing the state_type parameter. Additionally, a constraint that the cardinality of
state_type must be a natural forces the number of states to be finite.

No additional declarations are added to the original domain. Thus, this cannot
be an engineering domain or a unit-of-semantics domain. Both such domains
require addition of new declarations. The new domain simply places constraints
on the state type, making it a model-of-computation domain.

domain finite_state(state_type :: type)::state_based is
state :: type is state_type;

begin
#state_type in natural;

end domain finite_state; �

13.6 Defining New Unit-of-Semantics Domains

Writing new unit-of-semantics domains is achieved by starting with the null
or static domain and adding declarations that define points of reference for
observation. Specifically, unit-of-semantics domains define some type represent-
ing observation points, an operator that dereferences a label with respect to
an observation point, and a function for changing the observation point. The
state_based and signal_based domains provided by the base Rosetta system
define state or event, @, and next to serve these roles.

Because @ and next are exceptionally common, built-in unit-of-semantics def-
initions, Rosetta provides special syntax for making their use concise. They are
actually defined using the at ticked expression defining dereferencing. Specifi-
cally, these special syntactic forms have the following elaborations:

x@s def x’at(s)

x@next(s) def x’at(next(s))
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Recall that a ticked expression is a special form that is defined by providing an
elaboration rule in its associated domain. For example, x’at(s) is transformed
into denotes(x,s) during elaboration prior to evaluation.

If a new unit-of-semantics domains can be specified by providing appropri-
ate definitions for at and next, then the syntactic forms provided by Rosetta are
immediately reusable in the new domain. Of course, a new domain can be defined
from scratch using its own operators. In such cases, the new unit-of-semantics
definitions must be used directly without additional syntactic sugar.

New unit-of-semantic definitions should be written only on the rare occasion
when a fundamentally new vocabulary for describing computation is required.
Remember that unit-of-semantics domains provide only vocabulary and must
be accompanied by significant infrastructure to be useful. Most Rosetta users
will never write new model-of-computation domains, much less new unit-of-
semantics domains.

Among the most fundamental domains is the state_based unit-of-semanticsEXAMPLE 13.5
Defining the state_based
Unit-of-Semantics Domain
with Elaboration Functions

domain. It defines the concept of state, the next state, and dereferencing symbols
in a state. The following domain provides definitions for each of these quantities
and defines the transformation needed to extend the domain with a facet defini-
tion:

domain state_based()::static with F is

transform_tick(tick_expr::expression)::expression is
<< tick_operation ‘left_operand(tick_expr)‘ ’at(next(s)) >>;

transform_tick_at(at_expr::expression)::expression is
<< tick_operation

‘left_operand(at_expr)‘ ’at( ‘right_operand(at_expr)‘ ) >>;
transform_at(at_tick::expression)::expression is
<< function_instance

denotes(‘left_operand(at_expr)‘,‘head(right_operand(at_expr))‘)
>>;

transform_deref(expr::expression)::expression is
if is_tick_operator(expr) then

if is_tick_operators(expr) == []
then transform_tick(expr)
else transform_tick_at(expr)

end if
elseif (is_infix_binary_operation(expr) and

operator(expr) == commercial_at_token)
then transform_at(expr)

else expr
end if;

state_type :: type;
next(state_type)::state_type;
s :: state_type;

with image(transform_deref,declarations(F));
begin

with image(transform_deref,terms(F));
end domain state_based; �
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13.7 Defining Ticked and Dereferencing Expressions

A ticked expression is a special Rosetta form used to specify an item to be elabo-
rated by a domain. Elaboration differs from evaluation in that it is a replacement
of one form for another, prior to evaluation. What ticked expressions allow is the
creation and manipulation of abstract syntax before evaluation. In effect, they
manipulate Rosetta specifications as data using AST creation and access routines.
All ticked expressions have one of the following forms:

e’t[[(params)]]

where e is an expression and t[(params)] is a label followed by optional parameters.
During elaboration, the domain providing context for a ticked expres-

sion controls its elaboration. The ticked expression syntax is literally replaced
with a syntax generated from it. The process is similar to macro expansion
in assembly language — the expression is not evaluated, but rather is simply
replaced by a newly generated expression prior to evaluation. A ticked expres-
sion does not represent a function call, but rather a new syntax element whose
definition depends on its associated domain.

One example where ticked expressions are used extensively is when defining
calculus equations. The time derivative of a variable is specified as:

x’dot

During elaboration, x’dot is literally replaced by:

x’deriv(t)

representing the time derivative of x. In turn, x’deriv(t) is defined using limit
and can be elaborated to:

x’lim((x’at(t+delta)-x’at(t))/delta,delta,0)

The key characteristic of this process is that x is never evaluated. Thus, when we
say something like:

x’dot = 1 / x

We are defining a differential equation rather than defining the application of a
function. The distinction is subtle, but important.

13.7.1 Calculus Functions

A special class of ticked expressions for defining limits, derivatives, and integrals
are provided for use with real valued functions. These expressions exist primar-
ily to allow specification of ordinary and partial differential equations over real
valued variables. Table 13.3 describes built-in Rosetta expression for finding lim-
its, derivatives, and integrals with respect to functions and real variables. It is
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Table 13.3 Calculus operations over functions

Operation Syntax Meaning

Limit f’lim(x,n) Limit of f as x approaches n
Derivative f’deriv(x) First derivative of f with respect to x
Time Derivative f’dot First derivative of f with respect to time

Antiderivative f’antideriv(x) Antiderivative of f with respect to x
Time Antiderivative f’antidot Antiderivative of f with respect to time

Integral f’integ(x,l,u) The integral of f with respect to x ranging
from l to u

Time Integral f’tinteg(l,u) Time integral of f with respect to t ranging
from u to l

important to note that Rosetta provides no standard mechanism for solving such
equations, only a mechanism for specification. Individual Rosetta tool sets must
provide solvers when analyzing specifications.

The limit of an expression is specified using the notation f’lim(x,c), where
f is an expression over x and c is the limit. Specifically, f’lim(x,c) is interpreted
as:

f’lim(x,c) def limx→c f(x)

The derivative of an expression is defined using limit in the canonical fashion.
The following definition is provided for all real valued expressions and real valued
non-zero delta:

f’deriv(x) def f’lim((x+delta)-f(x))/delta),delta

In the derivative expression, f is the expression and x is the parameter subject to
the derivative. For the above definition, the following holds:

f’deriv(x) def d
dx f(x)

The derivative expression is generalizable to partial derivatives. Assuming that g
is defined over multiple parameters, such as g(x::real;y::real;z::real):: real,
then:

g’deriv(x) = δ
δx g(x, y, z)

Antiderivative, or indefinite integral, is the inverse of derivative. The antideriva-
tive of f with respect to x is expressed as:

f’antideriv(x) def ∫
f(x)dx

f being the target function, x being the variable integrated over, and c being the
constant of integration.
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An antiderivative is the dual of derivative. The following definition is provided
for all real valued functions:

(f’deriv(x))’antideriv(x) == f

The definite integral of f with respect to x over the range l to u is expressed as:

f’integ(x,l,u) def ∫ u
l
f(x)dx

The definite integral is defined as the difference of the indefinite integral applied
at the upper and lower bounds:

f’integ(x,l,u) def (f’antideriv(x))(u) - (f’antideriv(x))(l)

It is possible to express a definite integral over an infinite range using the
notation:

f’integ(x,infinity,-infinity) def ∫∞
−∞ f(x)dx

It should be noted that limit, derivative, antiderivative, and integral expressions
are defined over real valued functions and values in domains with continuous
temporal references. Further, the functions provide a mechanism for expressing
these operations and some semantic basis for them. Solution mechanisms are not
provided as a part of the language definition.

Performing higher-order derivatives is a matter of simply applying the deriva-EXAMPLE 13.6
Defining Simple Calculus
Equations

tive multiple times. For example:

f’deriv(x)’deriv(x)

is the second derivative of f with respect to x.
Differential equations are defined by creating terms that equate derivatives

with expressions:

f’deriv(x) = 1/x

defines the single differential equation:

df(x)

dx
=

1

x

The classical calculus expression for calculating the x position of an object at time
t starting from position 0 is:

x(t) = (t^2∗x’deriv(t)’deriv(t))/2 + t∗x’deriv(t) + 0 �
To simplify definitions, Rosetta provides a collection of calculus expressionsEXAMPLE 13.7

Defining Time Derivatives
and Integrals

that use the temporal reference by default on variables. In the same manner that·
x represents the first derivative of x with respect to t, x’dot represents x with
respect to the current domain’s temporal reference. In continuous time, this is t.
In state_base, this is s.
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x = (t^2∗(x’dot’dot))/2 + t∗x’dot + 0

Similarly, the antiderivative with respect to time is x’antideriv and the definite
integral is x’tinteg(l,u). �

13.7.2 Dereferencing

Name dereferencing is an exceptionally common Rosetta definition activity
that is entirely domain specific. For this reason, we elaborate dereferencing
expressions to ticked expressions that can be defined at the domain level.
There are two forms used for explicit name dereferencing. The notation
x’ refers to an item in the next state, and x@s refers to an item in some
arbitrary state s.Thus, x’ is equivalent to x@next(s). In these expressions,
the dereferencing operator @, the next state function next, and the state s are
domain specific and cannot be defined across the entire Rosetta language. To
define their meanings, Rosetta elaborates the dereferencing expression x@s to
x’at(s). Rosetta defines the meaning of x@next(s) and x@s using a ticked
expression elaboration in state_based domain. Specifically, the definitions
for dereferencing expressions are:

e@s def e’at(s)
e’ def e’at(next(s))
e’at(s) def denotes(e,s)

The at expression provides the actual definition of dereferencing and is
declared in several unit-of-semantics domains. Thus, by specializing the def-
inition for at in a domain, dereferencing is defined on that domain. (The
function denotes represents the dereferencing operation, but its specific defi-
nition is beyond the scope of this text.) For example, at and next are declared
in the state_based domain and given abstract definitions. By specializing at,
subsequent domains such as finite_state or discrete_time can define spe-
cific dereferencing operations by providing a new definition for at. Special-
izing next allows a domain to specify properties for state change resulting in
different models of computation. However, the syntax presented to the user
remains the same.

Outside the context of the state_based domain and domains extending it,
the notation x’ has no meaning unless at and next are declared and defined. For
example, in the static domain, x’ and x@s have no meaning because at and next
are not declared in that domain. However, in a signal_based or spatial domain
that defines a fundamentally different semantics, at and next can be defined in
a completely different manner. For example, in a spatial domain, the state type
could be a Cartesian coordinate, at would dereference with respect to the coor-
dinate, and next would have no definition.
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13.8 Consistent Domain Extension

Ensuring consistency in newly defined domains and facets is a constant issue
when defining specifications, because checking consistency is exceptionally dif-
ficult. Some steps can be taken to help ensure consistency. One in particular is
following some simple rules to ensure that the extensions provided are conserva-
tive. If these techniques are followed and the original domain is consistent, the
resulting domain will also be consistent.

The simplest way to assure a conservative extension is to avoid using existing
items in new declarations. If the original domain is consistent and none of the
original items is referenced in new declarations, then no new properties can be
asserted over existing items. Thus, no properties making the original specification
inconsistent can be added. Although this restriction may seem overly conserva-
tive, engineering domains, such as the digital example where new definitions
include only functions, are easily defined. As most user-defined extensions are
for engineering domains, a conservative extension is frequently possible.

If it is simply not possible to avoid referencing declarations from the original
domain, the extension can still be conservative. If new definitions do not redefine
or add to existing definitions, the extension will be conservative. Consider the
definition of a domain that defines a Stack type by defining the empty item and
push, pop, and next operations:

domain hasStack(elem::type)::static is
Stack :: type;
push :: <*(e::elem; s::Stack)::Stack*>
next :: <*(s::Stack)::elem*>
pop :: <*(s::Stack)::Stack*>

begin
pop(push(e,s)) == s;
next(push(e,s)) == e;

end domain hasStack;

The easiest way to define the behavior of pop is to provide a definition of its behav-
ior over push. This is done in the two terms defined in hasStack.

Now define a new domain that extends our original domain to include a size
operation. This cannot be defined without referencing push. However, it need
not contradict existing properties if it avoids the use of other existing functions.
Specifically, the definition of size is added to the original domain in the following
manner:

domain hasStackSize(elem::type)::hasStack(elem) is
size :: <*(s::Stack)::natural*>

begin
ax1: size(empty) == 0;
ax2: size(push(e,s)) == size(s)+1;

end domain hasStackSize;
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Although ax2 references the pre-existing operation push, it does not reference
pop or next. Because the terms from the original specification only define pop
and next directly, it is impossible to creat a contradiction if we do not constrain
pop and next further.

Ultimately, caution must be taken when extending domains. Although facet
definitions have similar issues, when a facet is inconsistent, one model is incon-
sistent. When a domain is inconsistent, every facet and domain of that type and its
subtypes is inconsistent. One should not avoid writing new domains, but simply
approach the process carefully.
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The facet algebra is a collection of operations for composing facets from
one or more domains. The facet product and sum operations define classical
conjunctive and disjunctive composition operations. Taking the product of two
facets defines a new facet that satisfies both of the original specifications. Similarly,
taking the sum of two facets defines a new facet that satisfies either of the origi-
nal specifications. Using facet product and sum provides direct language support
for concurrent engineering where multiple specifications must be simultaneously
valid.

The if, case and let forms define the mechanisms for selecting between mod-
els and defining local models respectively. Facet-typed applications of if and case
allow selection of behavior based on boolean conditions. Facet typed applications
of let allow definition of local symbols over facet-typed expressions. The only
distinction between facet algebra instances and traditional instances of these con-
structs is that facet algebra instances will have facet types.

Unlike product and sum, Homomorphism and isomorphism do not form new
facets, but define relationships between facets. A homomorphism exists between
two facets when the properties of one are implied by the other. Homomorphisms
in the domain semi-lattice are critical for moving information between domains.
An isomorphism exists between two facets when a homomorphism exists both
ways. When facets are isomorphic, they are considered equivalent.

14.1 Facet Products and Sums

Products and sums originate from category theory and are widely accepted
mechanisms for specification composition. It is not necessary to understand these
concepts deeply to understand their utility in Rosetta. It is sufficient to under-
stand initially that products and sums combine two specifications into a single
specification that comprises both original specifications. The product defines a

247
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new specification that is simultaneously both of the original specifications, while
the sum defines a new specification that is either of the orignal specifications.

An excellent example of a product from programming languages is a record,
class, or tuple structure. A tuple type is literally the Cartesian product of its
constituent types. The tuple(1,’’a’’,2.1) is an element of the type:

integer × string × real

The best way to distinguish a product is to note that a tuple is not a tuple without
one of its elements. In other words, (1,’’a’’), (1), and (‘‘a’’,2.1) are not
elements of the product type. All three values must be present.

In contrast, a sum composes specifications into a single specification that is
either of the original specifications. An excellent example of a sum from program-
ming languages is a union type or a constructed type. A union is the tagged union
of the original specifications. The sum type:

integer + string + real

contains values from the original three types. To assure value distinctness,
programming languages will tag values to indicate the source type of the orig-
inal value.Thus, (left 1), (middle ‘‘a’’), and (right 2.1) are all members
of the sum type. In this case the tag indicates the source type of the value by
indicating the position of the type in the sum type declaration.

Syntax for facet product and sum operations specifies two facets, the operator
and an optional sharing list:

F ∗ G [[ sharing { symbols } ]]
F + G [[ sharing { symbols } ]]

The facet product, F ∗G, states that both specifications F and G simultaneously
define a system and must simultaneously hold. The facet sum, F + G, states that
both specifications F and G separately define a system. The optional sharing
keyword defines the vocabulary that both specifications share. In both cases, the
sharing clause identifies items that are shared among the specifications and must
satisfy properties from both specifications.

14.1.1 The Shared Domain

Any two facets defined from domains in the same domain semi-lattice must share
at least one common domain. Even if that domain is static or null, the common
domain will always exist. Graphically, the common domains are easily found by
tracing the lattice structure upward from the domains of two facets, until a com-
mon domain is discovered. This relationship is defined mathematically by identi-
fying a partial ordering relationship over the domains in the semi-lattice and the
existence of a minimum element resulting in a join semi-lattice.



14.1 Facet Products and Sums 249

When a domain is defined, a superdomain must be identified as the supertype
of the new domain. In this specification fragment:

domain Dsub(...) :: Dsuper is
...

Dsub is a new domain, with Dsuper as the domain it inherits from;Dsub is a subtype
of Dsuper .

When one domain extends another in this manner, a partial ordering
relationship exists. Specifically, the partial ordering is defined such that when
Dsub::Dsuper , the ordering relationship Dsuper �Dsub holds. Because all domains
extend null, null �D is true for all domains and D � null is never true for any
domain. Thus, null defines the minimum domain, or bottom of the semi-lattice.

Using � we define the meet, or greatest common supertype (D1 � D2), of
domains D1 and D2 as an element of the set:

{D |D �D1 ∧D �D2}

such that every other member of the set satisfies:

D � (D1 �D2)

Thus, D1�D2 must be the maximum value on the set with respect to the � partial
order. Because all domains extend null, D1 �D2 exists for any two domains in
the semi-lattice, even when D1 �D2 is null.

We care about the greatest common supertype because it defines the maxi-
mal set of specification objects shared by two domains. This shared specification
defines the common items that both specifications observe. If two facets are writ-
ten that extend the discrete_time domain, discrete_time becomes the greatest
shared supertype and they both share the same definition of time. Most impor-
tantly, it is the same definition of time. Thus, any property asserted over the time
value in one facet must be consistent with the other under composition. Any item
that appears in the greatest common supertype is shared in the same manner. In
this way, specifications under composition can share the same type.

If two specifications do not share the same type, then by definition they share
their greatest common supertype. If a specification written in the state_based
domain is composed with a specification in the infinite_state domain, the
shared items are state and next. The infinite, discrete nature of state is not
known to the specification written in the state_based domain. As a result, the
type of any composition of these two specifications must be state_based, losing
more detailed information about the infinite_state specification.

A simple example demonstrates the role of the shared specification in facetEXAMPLE 14.1
Impact of Two Facet
Specifications Sharing a
Common Supertype

composition. The following two facets define parity checkers that differ only in
when state is updated. The first, parity1, updates its state on the rising clock
edge, while the second, parity2, updates on the falling edge. As defined, there is
nothing wrong with either facet.
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facet parity1 (clk::input bit; o::output boolean)::infinite_state (natural) is
next(s::integer)::integer is s+1;

begin
up: s’ = if rising(clk)then next(s) else s end if;
out: o’ = odd(s);

end facet parity1;

facet parity2(clk::input bit; o::output boolean)::infinite_state (natural) is

next(s::integer)::integer is s+1;
begin

up: s’ = if falling(clk) then next(s) else s end if;
out: o’ = odd(s);

end facet parity2;

It bears repeating that there is nothing wrong with either of these specifications in
isolation. They simply provide two definitions for what parity checking is. What
if we compose these facets using a product to specify a single system that must
satisfy both requirements:

facet parity(clk::input bit; o::output boolean)::infinite_state(natural)is
parity1(clk,o) + parity2(clk,o);

The parity facet composes the original facets using the product operation. The
greatest shared supertype is:

infinite_state (natural)

All definitions including next, state, and s are shared among the two specifi-
cations. This implies that definitions over those items must be consistent across
facet specifications. Simply changing the triggering event for state update causes
an inconsistency in the composition. Specifically, the value of the current state
will be out of sync in the two models due to differing update times. Discovering
this inconsistency is exactly the desired result, as it allows us to see a system-level
problem caused by a local specification decision. �

The distance between specifications in the semi-lattice is referred to informally
as the intellectual distance between the specifications. As the name implies, the
greater the intellectual distance between specifications, the more difficult it is
to compose specifications. Although any two domains must share some greatest
common superdomain, the intellectual distance between them may make their
composition virtually useless. If two specifications share only the null or static
domain, the intellectual distance is maximized. In essence, they share no common
items other than basic mathematical definitions. Such problems can be avoided
by defining functions that move specifications from domain to domain in the
semi-lattice.

The following table illustrates the calculation of shared specifications fromEXAMPLE 14.2
Facet Composition
Identifying the Shared
Domain of the Original
Facets

several domains in the domain semi-lattice. In general, determining the great-
est common supertype simply involves following the tree upward from the two
domains and stopping at the first point where the two paths intersect.
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Domain A Domain B Shared Specification

state_based state_based state_based
state_based finite_state state_based
finite_state state_based state_based
finite_state infinite_state state_based
finite_state signal_based static

�

Products and sums are calculated using the greatest common supertype of
the composed facets. The product defines two facets that together define the
composite specification. The facet definitions are linked by their shared parts.
Specifically, both facets define properties over items from the greatest common
supertype that must be satisfied under composition. Similarly, the sum defines
two facets that define cases in the composite specification. Again, the facet defini-
tions are linked by properties defined over their shared parts. Semantically, prod-
ucts and co-products are constructed using pullbacks and pushouts, respectively.
Detailed knowledge of these constructions is not required to compose Rosetta
specifications.

14.1.2 The Sharing Clause

In many cases, it is desirable for facets to share more than just those items defined
in a standard domain. Types, functions, and elements of system state are all exam-
ples of items useful for sharing. There are two approaches to adding something
to the shared specification for use in a product or sum. The first is to write a new,
specialized domain that adds shared items to the domain involved in the prod-
uct or sum. The second is to use a sharing clause to implicitly add items to the
shared part. Both have their advantages; however, the sharing clause tends to be
preferred due its general nature and simplicity of use.

Composing specifications using the product operation defines a newEXAMPLE 14.3
Facet Composition Using
Facet Product

specification that satisfies both original specifications. The following facets define
a simple component and a constraint that the component must satisfy. For this
system to be correct, both specifications must be satisfied, indicating the use of a
product for composition.

facet component(i::input integer; o::output integer)::state_based is
begin
end facet component;

facet constraint(v::design real)::static is
begin
end facet constraint;

The facet system defines the product of component and constraint. For system
to be consistent, both component and constraint must be satisfied over the same
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shared specification. In this case, the shared part is static and consistency is triv-
ial to assert as long as elements of static are not redefined.

facet system i::input integer; o::output integer)::static is
component(i::input integer; o::output integer) ∗ constraint(2.3);

The specification is much more interesting if a functor is used to generate a
state_based specification from the constraint. The concretization function
gamma takes an abstract specification and makes it more concrete. In this case,
it takes the static constraint specification and asserts the constraint in every
state. The result is a new system facet in the state_based domain. This new
specification does not sacrifice details of the component specification to achieve
composition.

facet system(i::input integer; o::output integer)::state_based is
component(i::input integer; o::output integer)
∗ gamma(constraint(2.3))::state_based;

The specifics of defining gamma and how it is used will be discussed in detail later
in this chapter. �

The sharing clause is used with facet sum and product operations to extend
the shared domain by introducing new items that are shared among the two facets
involved in the composition operation. The sharing clause does not declare new
items, but simply adds existing items to the shared specification from facets under
composition. Specifically:

F + G sharing S

forms the sum of facet’s F and G, with S extending the greatest common domain
of F and G. Elements of S must be defined in both F and G, but need not have a
common type. The format of S is a set of names shared between the specifications.
Thus:

F + G sharing {H ,I ,J}

defines the sum F+G, where {H,I,J} name the new shared items in both specifi-
cations that are added to the shared specification. Similarly:

F ∗ G sharing {H ,I ,J}

defines the product F∗G, where {H,I,J} names shared items in both specifications
that do not exist in the greatest common supertype. In both cases an error exists
if the shared items are not declared in both specifications. Items from the domain
can be listed in the sharing clause. However, both F and G inherit those definitions
from the shared domain without the sharing clause.

The semantic definition of the sharing clause pushes shared definitions from
the facets being composed into the domain. For example, in the following spec-
ification, the product of test1 and test2 is formed sharing the state variable
x. Thus, x refers to the same object in both specifications under the product.
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Conversely, y is not shared, causing both specifications to maintain their local,
independent definitions.

facet interface test1(a::input bit; b::output bit)::state_based(bit) is
x::integer;
y::real;

end facet interface test1;

facet interface test2(a::input bit; b::output bit)::state_based(bit)is
x::integer;
y::real;

end facet interface test2;

test3 :: state_based(bit) is test1∗test2 sharing {x};

An alternative approach is to write a new domain to accomplish the same
task by extending the greatest common supertype domain. Rather than use the
sharing clause to push items into the domain implicitly, a new domain explicitly
defines those items:

domain test_domain()::state_based(bit) is
x::integer
begin
end domain test_domain;

facet interface test1(a::input bit; b::output bit)::test_domain is
y::real;
end facet interface test1;

facet interface test2(a::input bit; b::output bit)::test_domain is
y::real;
end facet interface test2;

test3 :: state_based(bit) is test1*test2;

The new domain test_domain defines a domain specific to this specification
task where x is added to the state_based specification. The product no longer
requires the sharing clause because x now appears in the domain and is shared
by default. Although there is nothing wrong with this approach, using the
sharing clause avoids writing specialized domains and defeating the idea of
domain reuse. Semantically, the second definition is identical to the first.

In contrast to the product operation for facets, then sum operation combinesEXAMPLE 14.4
Facet Composition Using
Facet Sum

specifications disjunctively. Specifically, the result of a sum is a new specification
that exhibits properties of one or the other specification. In the following defini-
tions, componentA and componentB define alternate component behaviors.

facet component A(i::inputinteger;o::output integer)::state_based is
begin end facet componentA;

facet componentB(i::input integer;o::output integer)::state_based is
begin end facet componentB;

The component facet, formed from the sum of facets componentA and componentB,
can be observed as either of the original components.
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facet component (i::input integer; o::output integer)::state_based is
componentA (i::input integer; o::output integer)
+ componentB (i::inputinteger; o::output integer)

When a facet resulting from a sum appears in a specification, it may exhibit behav-
iors from either of its constituent facets. Thus, the environment of the specifica-
tion must deal with both possibilities. The environment cannot assume that either
behavior set will occur, and must be prepared for both. The facet sum does not
allow refinement of behavior, but actually expands a definition by allowing mul-
tiple, correct behaviors. �

14.1.3 Implicit Sharing

Parameters appearing in facet interfaces are implicitly shared if they have the same
name. This simply asserts that unique parameters have unique names. From a
physical design perspective, this makes sense. For example, the clock signal should
be the clock signal in every model where it is applicable, regardless of modeling
domain.

For example, the following models define intersecting parameter lists. Under
composition, either sum or product, parameters with the same name are treated
as a part of the shared domain. There is an implicit sharing clause indicating the
parameters across specifications.

facet interface devFunction
(x::input integer; y::output integer)::state_based is

end facet interface devFunction;

facet interface devPower
(x::input real; leakage,deltaP::design real)::continuous is

end facet interface devPower;

dev(x::input number; y::output number; leakage,deltaP::design number) ::
state_based is devFunction(x,y)and devPower(x,leakage,deltaP);

The input parameter x appears in both specifications and is a part of the shared
domain associated with the product. The output y only appears in the functional
model and is thus not shared. Likewise, the design parameters leakage and delta
do not appear in the functional model and are thus not shared. However, all
parameters appear in the parameter list associated with dev.

The parameter list associated with the product specification, dev, uses the
type number to constrain values in its input and output. Another type could be
chosen, but the number type expresses only the desired requirement. Specifically,
the values of connected parameters must be number, but need not specifically be
integer or real. The parameters represent distinct observations of the prod-
uct’s abstract state. However, those observations must be mutually consistent
with any translation functions that may be defined. For example, the integer
and real values associated with x must satisfy the translator defined between



14.1 Facet Products and Sums 255

the state_based and continuous domains. If no such translator is defined,
then any assignment is legal, thus it is important to consider translators during
specification.

The following Rosetta interface specifications define two composite specifi-
cations that will be interconnected. The first, fandc0, defines a model that is
the product of f0 and c0. The models for this component, c0 and f0,implicitly
share the parameters x and y. Because c0 is static and f0 is state_based, the
interaction between parameters in the two models is governed by the active
interaction between static and state_based.

facet interface c0(x::input integer; y::output integer)::static is
end facet interface c;

facet interface f0(x::input real;y::output::real)::state_based is
end facet interface f;

fandc0(x::integer; y::integer) :: static is f0(x,y) and c0(x,y);

The fandc1 facet is analogous to fandc0 except that the models are defined in
the discrete_time and state_based domains. Again, the interaction between
models is governed by the active interaction between state_based and
discrete_time.

facet interface c1(x::input integer; y::output integer)::discrete_time is
end facet interface c1;

facet interface f1(x::input real; y::output::real)::state_based is
end facet interface f1;

fandc1(x::integer; y::integer) :: static is f1(x,y) and c1(x,y);

The interconnect facet simply connects the two previously defined components
in sequence, with the output of fandc0 used as the input to fandc1.

facet interconnect(x::input integer;y::output integer):: static is
z :: integer;

begin
cmp0: fandc0(x,z);
cmp1: fandc1(z,y);

end facet interconnect;

Because both fandc0 and fandc1 have models in the state_based domain, any
constraints on parameters in that domain must be mutually consistent. How-
ever, fandc0 does not have a discrete_time model, and fandc1 does not have
a static model. Because an interaction is defined between state_based and the
other two domains, information is implicitly shared across the parameter. Specif-
ically, all the assertions made by all models must be mutually consistent in the
presence of the interactions. Because an interaction exists between state_based
and static in fandc0 and between state_based and discrete_time in fandc1,
an implicit transitive interaction exists between static and discrete_time.
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Revisiting our activity-based power modeling example, we would like to addEXAMPLE 14.5
Use of the sharing Clause
to Push More Shared Items
into the Domain When
Applying a Facet
Composition Operator

the capability of including internal switching in the power calculation. The model
presented in Chapter 12 only monitored the output signal for value changes. The
system facet is a structural model of a simple system that sequences multiplication
and division operations. Because the internal signal changes values as well as the
external signal, there will be an associated power drain.

facet system(i::input integer; o::output integer)::state_based is
x::integer;

begin
c1: mult(i,3,x);
c2: div(x,4,o);

end facet system;

The new systemPower model defines a local variable, x, that parallels the local
definition in system. However, this is a local variable and is not the same item
that is defined in system.

facet systemPower[Ti,To::type](i::input Ti; o::output To;
leak,switch::static real)::state_based is

export power::real;
x::top;
powerUpdate[T::type](o::T)::real is

leakage + if event(o) then switch else 0 end if;
begin

power’ = power
+ powerUpdate(x,leak,switch)
+ powerUpdate(o,leak,switch);

end facet systemPower

To compose the specifications and make systemPower aware of changes in x from
facet system, we use a sharing clause to push x into the shared part.

powerAware[Ti,To::type](i::input Ti;o::output To)::state_based is
system(i,o) ∗ systemPower(i,o) sharing {x};

Now x in powerAware and x in system refer to the same item. When system
changes the value of x, that change will be observed by systemPower and power
consumption updated as appropriate. �

14.2 Facet Homomorphism and Isomorphism

A homomorphism exists between two facets f1 and f2 when all the properties of
f2 are also properties of f1. This is denoted using the facet homomorphism or
facet implication relation:

f1 => f2

f2 <= f1
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An isomorphism exists between two facets f1 and f2 when they exhibit exactly
the same properties or when f1=>f2 and f1<=f2 hold simultaneously. This is
denoted using the facet isomorphism or facet equality relation:

f1 <=> f2

Homomorphism and isom orphism are used primarily to express desired
relationships between facets rather than to construct new facets. For example,
these relationships can be used to express correctness conditions in the implica-
tions section of a component structure.

Facet homomorphism plays a critical role in the formation of the domain semi-
lattice. Whenever one domain is extended to form another domain, a homomor-
phism exits between the new domain and the original domain. It follows that
everything expressed in the original domain can be expressed in the new domain.
When functors are defined between domains, the existance of a homomorphism
assures that information from the source domain is not lost in the destina-
tion domain when facets are transformed. When an isomorphism exists between
two domains, fact can be moved back and forth between them without losing
information.

14.3 Conditional Expressions

The if expression can be used with facet values in the same manner as they are
used with any other value. In the following equation, the test value determines
the value of the if expression:

if t then F else G end if;

If t is true, the expression evaluates to F . Otherwise, the expression evaluates to
G. Like any Rosetta expression, if can have only one type requiring F and G to
share a common type. The type of the if expression is this shared type. If the type
cannot be inferred, ascription can be used to assist in the analysis process. How-
ever, if a facet’s type is abstracted away, it is gone and may not be reconstructible
at a later point. Remember that ascription is not casting — if the assertion f::D
cannot be verified, it is not considered correct.

Some interesting relationship can be defined using isomorphisms and homo-EXAMPLE 14.6
Uses of Homomorphism
and Isomorphism
Relationships

morphisms. The simplest is that any facet is isomorphic to itself. The forall
quantifier is used to state that the self-isomorphism relationship holds for all
facets:

forall(f::static | f <=> f)

Similarly, a homomorphism exists between a facet and its domain. Because the
facet extends the domain, we know that any property present in the domain is also
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present in the facet. The notation may seem odd because the domain is used as
both a type and a facet. This is perfectly acceptable:

forall(f::D | f => D)

This relationship is important, as it defines the domain semi-lattice. Specifically,
it serves as the partial order giving the semi-lattice its structure an defining the
greatest element. Correctness conditions can be expressed using both homomor-
phisms and isomorphisms. Assume that R is a facet defining the requirements of
a component and S is a structural facet defining an implementation architecture.
The following relationship states that the architecture must exhibit all properties
of the requirements specification:

S => R

Alternatively, we can use an isomorphism in conjunction with an abstraction
functor to define a similar requirements relationship:

alpha(S) <=> R

Here the abstraction functor alpha removes detail from the S facet. This less
detailed facet is then equated with the requirements facet. The idea is that extrane-
ous properties that are not germane to correctness are removed by the abstraction
function. �

The case expression works identically to the if expression. The case argument
selects one case and the associated facet expression is returned. Again, the facets
in the case statement must share a common type and the case statement is of
that type.

14.4 Let Expressions

The let expression defines local items over expressions or collections of terms.
These local items may have any type including a facet type. Thus, the let expres-
sion may declare new facets for use in definitions. This is technically not a facet
algebra operation, but is worth mentioning, as it can have utility in complex spec-
ification definition.

The system facet below is a partial specification of a system where one ofEXAMPLE 14.7
Conditional Specifications
Using both if and case
Expressions

two system models may be selected using the parameter lowPower. The intent
is to allow a user to select between low and normal power configurations of the
same system. By instantiating lowPower with true, the specification includes a
low-power CPU model. Alternatively, instantiating lowPower with false selects
a normal, higher-power CPU.
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facetsystem(lowPower::design boolean)::discretetime is
begin

c1: component1(...);
cpu: if lowPower

then lp_arm(...)
else cots_arm(...)

end if;
c2: component2(...);
...
cn: componentN(...);

end facet system;

Such conditional specifications are also useful for selecting between different ven-
dor models of a component. The following specification allows this by using a
case statement to select a model based on a single input parameter.

package multiVendor()::static is
vendor :: type is data

Mot() :: Motp
|TI() :: TIp
|ibm() :: ibmp

end data;
end package multiVendor;

use multiVendor();
facet system(cpuModel::design vendor)::discrete_time is
begin

c1: component1(...);
cpu:case cpuModelof

{Mot()} −> mot−arm(...)
{TI()} −> ti−arm(...)
{ibm()} −> ibm−arm(...)

end case;
c2: component2(...);
...
cN: componentN(...);
end facet system;

The multiVendor package defines a single type used to specify the CPU vendor
in the specification. The case statement then uses the defined vendor values to
select from three different cpu implementations. �

The facet adder2 defines a structural 2-bit adder using a half-adder to sum theEXAMPLE 14.8
Local Facet Definition
Using a let Expression to
Define a Half-adder

first bit and a full adder to sum the second. The let clause is used to define a local
half-adder by instantiating a full adder with a carry in of 0.

facet adder2(x0,y0,x1,y1,z0,z1,z2)::static is
c0 :: bit;

begin
let halfAdder(x,y::input bit; z,cout::output bit)

be adder(x,y,0,z,cout) in
a0: halfAdder(x0,y0,z0,c0);
a1: adder(x1,y1,c0,z1,z2);

end let;
end facet adder2;
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There are numerous mechanisms for writing this adder, including using two full
adders rather than creating a half-adder. This mechanism is a perfectly reasonable
alternative. �

14.5 Higher-Order Facets

Higher-order facets are facets having facet type parameters, in the same spirit as
higher-orderfunctionshavingfunctiontypeparameters.Suchfacetsareexception-
allyusefulfordefininghigh-levelarchitecturesandothercommonsystemstructures.

An exceptionally common structural architecture is sequential ordering of
two or more operations. We will refer to this as the batch sequential architecture
defined by facet batchSequential.

facet batchSequential[T0,T1,T2::type]
(f1(x::T0; y::T1)::state_based;
f2(y::T1; z::T2)::state_based;
i::input T0; o::output T2)::state_based is

x::T1;
begin

c1: f1(i,x);
c2: f2(x,o);

end facet batchSequential;

The batchSequential facet signature defines three universally quantified
parameters, two facet types and an input and output. The universally quantified
parameters, T0, T1, and T2 define the input, exchange, and output types associ-
ated with the facet. These types are not restricted in any way and can take any
type value desired. Making them universally quantified allows discovery or direct
specification of the desired type.

The two sequentially connected components are f1 and f2. Facet f1 takes
component input, performs a transformation, and generates output for f2. Facet
f2 takes output from f1 and generates component output. The universally quan-
tified parameters must be instantiated to satisfy type conditions.

Now that we have a batch sequential architecture, we can put it to workEXAMPLE 14.9
Using the Batch Sequential
Architecture

by instantiating it in other systems or defining new components. The partial
facet, system, uses sequenced negate facets to implement a delay buffer. The
buffer component instantiates batchSequential with two negation operations
and specifies inputs and outputs to the new device.

facet negate(i::input bit; o::output bit)::state_based is
begin

o’=not(i);
end facet negate;

facet system(...)::state_based is
begin

...
buffer: batchSequential(negate,negate,in,out);
...

end facet system;
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Alternatively, we define a buffer facet that can be reused throughout a system
specification. Here a new facet, buffer, is defined by specifying its value instan-
tiating batchSequential.

buffer(i::input bit,o::output bit)::state_based is
batchSequential(negate,negate,i,o);

The new buffer facet is defined over two parameters that serve as input and
output for the batchSequential instantiation. The component parameters to
batchSequential are again instantiated with copies of negate. �
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The motivation for domain interactions is that decisions made locally in
one domain can have impacts on system-level requirements and other domain-
specific requirements. For example, heat dissipation is typically not thought of as
a constraint that is impacted by the choice of a software algorithm. Unfortunately,
software execution can dramatically impact heat dissipation through its interac-
tion with the CPU it runs on, and indirectly through interfaces to other system
components. Other examples include impacts of local power consumption on
system-level power constraints, impacts of component function on system secu-
rity, and impacts of electromagnetic interference among chips on a board. In each
case, local decisions impact the overall system.

Rosetta defines an interaction as a collection of mechanisms for describing how
information flows between modeling domains. Each interaction defines three
kinds of information transfer. Translators define how information is transformed
as it flows through a parameter shared by two facets. Translators handle both
information translation and coordination of the communication process. Func-
tors define transformations of facets from one domain to another. Because facets
are simply Rosetta values, these transformations take the form of functions whose
domain and range include facet types. Algebra combinators, or simply combina-
tors, define mechanisms for combining two facets to produce a new facet. Com-
binators are like functors, except that the domain of a combinator must include
two facets that will be composed into a single facet.

15.1 Projection Functions, Functors, and Combinators

Projection functions, functors, and combinators are the Rosetta constructs used
to define interactions. Projection functions transform a facet into another
form, such as a calculated value. They are used to project values from one
domain to another. Functors are specialized projection functions that transform
a facet into a new facet in a potentially different domain. They are used to
move models between domains to facilitate composition, analysis, and reuse.

263



264 Chapter 15 Domain Interactions

Finally, combinators take multiple facets and transform them into new facets.
They are used specifically for facet composition and frequently involve product
and sum operations.

Projection functions, functors, and combinators all treat Rosetta specification
elements as data. They must examine the structure of facets and in most cases gen-
erate new facets. To facilitate this, Rosetta provides the special-purpose construc-
tors, observers, and templates to observe and construct Rosetta abstract syntax
elements (described in Chapter 12). Projection functions, functors, and combi-
nators all examine the structure of a facet using observers and create new facet
abstract syntax elements using constructors and template expressions. Thus, the
same syntactic and semantic structures used for domain specification are used for
facet manipulation.

15.1.1 Defining Projection Functions

A projection function moves information from one domain to another. All projec-
tion functions transform a source facet and a destination facet into a collection of
terms in the domain of the destination facet. Effectively, the projection function
moves information from the source domain into the destination domain specific
to the two facets involved. Specifically, the signature of a projection function has
the following form:

P (S::DS ,D::DD)::term_list;

where P names the projection function. Here S is the source facet from domain
DS and D is the destination facet from domain DD ; both must be facets, but the
associated parameter type may be a subtype of the general facet type. A projection
function is in all ways a traditional Rosetta function and is defined using the same
techniques. What distinguishes a project function is the presence of a facet type
in the argument list.

The transform_terms projection function takes a facet from the static dom-EXAMPLE 15.1
A Projection Function ain and transforms its terms into terms appropriate for use in the state_based

domain by asserting that each is true in any state. The helper function trans-
form term takes a single term and asserts that it is true for all states using a uni-
versal quantifier and the ticked expression at:

transform_term(x::term)::term is
<< term forall(st::state |‘x‘ ’at(st)) >>

The transform_terms projection function uses the transform_term function to
transform its collection of terms into terms for the state_based domain:

transform_terms(F::static)::set(term) is
image(transform_term,terms(F)); �
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15.1.2 Defining Morphisms and Functors

While a projection function usually moves information from one facet to another,
a morphism is a function that generates an entirely new facet. In addition to
generating new terms, a morphism is responsible for generating parameter lists,
variable sets, and export lists, and for selecting a domain for the new facet. Where
a projection function moves information from one facet to another, a morphism
generates one facet from another.

A functor is a special morphism that can operate on any facet in a domain.
While morphisms may be specific to a particular facet, a functor maps every facet
from one type into a facet from another. In essence, a functor generalizes a col-
lection of morphisms to operate over a collection of facets. Functors are heavily
used when moving specifications up and down the domain semi-lattice as well as
when moving them between arbitrary domains.

One definition mechanism for morphisms is to define functions that con-
struct new facets using template expressions. Using this approach, a traditional
function is written that fills in a template expression, much like a constructed
type to generate the new facet. The template expression would have the
following form:

<< complete_facet_declaration facet ‘name‘ ‘signature‘ is
‘exports‘
‘declarations‘
begin

‘terms‘
end facet ‘name‘

>>

where name, signature, exports, declarations, and terms are replaced by func-
tions that generate the new abstract syntax or will be processed as a part of the
template expression.

The second mechanism for constructing a new facet calls the facet constructor
directly. The previous facet can be defined directly as:

make_complete_facet_declaration(name,signature,exports,declarations,terms)

The result is exactly the same AST structure as is generated by the template.
The template example uses the template expression to take advantage of con-
crete syntax, with the advantage being a definition that is frequently easier to
read. The function example uses the facet constructor to avoid the template
expression completely, preferring to construct each AST structure. The choice
is purely stylistic. When most of the elements of a construct are generated with
functions, using the constructor is most appropriate. Otherwise, the template
approach is preferred.

The gamma functor defined below uses the translate_terms function to trans-EXAMPLE 15.2
Functor for Moving
static Facets into the
state_based Domain

late a static facet into a state_based facet. The template for creating facets is
instantiated for this specific case. Declarations and exports remain the same in
the new facet. Terms are generated from the original terms using the previously
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defined translator function. Finally, a new name and signature must be defined
for the new facet.

gamma(F::static)::state_based is
let new_name :: facet_name be mangle(name(F));

new_sig :: facet_signature be convert_sig(signature(F)) in
<< complete_facet_declaration facet ‘new_name‘ ‘new_sig‘ is

‘exports(F)‘
‘declarations(F)‘

begin
‘translate_terms(F)‘

end facet ‘new_name‘
>>
end let;

The utility functions mangle and convert_sig are defined to create a new facet
name and a new signature, replacing static with state_based as the facet type.
Their complete definitions are omitted for brevity. �

15.1.3 Defining Combinators

A combinator is a functor that takes two facets and transforms them into a third
facet. The purpose of any combinator is to compose specifications for analysis
or further refinement. Combinators are defined much like morphisms, with the
exception that they take two facet arguments. Like morphisms, combinators can
be defined using template expressions and direct calls to facet constructor func-
tions. Using sums and products of facets provides a third mechanism in addition
to templates and constructors.

The primary use for combinator is to provide a capability for composing and
refining or abstracting two facets in a single step. For example, a combinator could
be used to take a power consumption specification and a functional specification
for a digital component and generate a single simulation model that examines
both. This can be done by using one or more functors and a facet product, but
these operations are so common in Rosetta specifications that using the combi-
nator to encapsulate the operations into a functor can simplify and improve the
specification.

A simple example of a combinator is the concretization combinator that com-EXAMPLE 15.3
Combinator for
Composing
discrete_time
Specifications into
Simulatable Models

poses two discrete_time facets into a single discrete event simulation (des) facet.
The operation simply uses the concretization function, gamma, from the interac-
tion between discrete_time and des to move each model to the des domain.
Then a product operation composes them into a single model:

gammaC(x::discrete_time y::discrete time)::des ;is
discrete_time_des.gamma(x) ∗ discrete_time_des.gamma(y);

The effect of this combinator is to compose two discrete_time models into a
single simulatable model. This combinator is useful for composing requirements
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models and functional models to determine if requirements are met by an
implementation. �

15.2 Defining Interactions

Rosetta interactions are less monolithic “things” than they are collections of
information that define moving information between domains. Interactions
are defined using a syntactic form that packages the various mechanisms for
domain interaction. As such, each interaction defines translators, functors, and
combinators between two domains. The syntax for defining an interaction is
as follows:

interaction name(parameters) between D1 and D2 [[ as D3 ]] is
[[ export exportList | all ]];
localDecls

begin
begin translators

[[ translatorDecls ]]
end translators;
begin functors

[[ functorDecls ]]
end functors
begin combinators

[[ combinatorDecls ]]
end combinators;

end interaction name;

In this definition, D1 and D2 are the source domains for models. The optional
D3 value is the common supertype of D1 and D2 for forming products and sums
using the ∗ and + operation. The default value for D3 is the greatest common
supertype of D1 and D2. It is possible that D1 = D2 in situations where transla-
tors must lift values from included facets into facets of the same type. Functors
may also be written in such interactions, but the identity functor will suffice in
most cases. Parameters defined for an interaction are of kind design similar to
package parameters. Interaction parameters are used like generics to configure a
general-purpose interaction for a specific use. However, interaction parameters
are rarely used in practice.

All items defined an interaction’s translators, functors, and combina-
tors blocks are implicitly exported, the only exception being locally defined
items appearing in the declarative region of each block. Such declarations must
be constants and cannot be exported. Items declared in the interaction’s
declarative region are exported. The similarity between interaction definitions
and package definitions is not accidental: both encapsulate related definitions.
Where declarations in packages may be related for any number of reasons, dec-
larations in interactions always define information flow between their associated
domains.
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15.2.1 Translators

name(parameters) from x::Tsrc in Dsrc to Tdest in Ddest

[[ is expression ]]
[[ where expression ]];

Dsrc is the source domain and Ddest is the destination domain; both must be
either D1 or D2 defined in the interaction header. Tsrc and Tdest are the source
and destination types; they will frequently be the same. The x parameter is for
use in the translator definition, and expression is an expression of type Tdest that
transforms x into a new value defined in Ddest. The value of an translator is not
a function value, but defines a transformation to perform on parameters as a tick
operator.

The is and where classes behave as they would in traditional function defini-
tions. Both can be excluded to define a variable translator or translator signature.
Thus, the signature of a translator can be defined without providing additional
details.

15.2.2 Functor Definitions

name(parameters) from x::Dsrc to Ddest

[[ is expression ]]
[[ where expression ]] ;

Functor definition is nearly identical to translator definition, except that the x
parameter is a facet of type Dsrc rather than a value defined in that domain. The
functor is in all ways a function, with syntactic sugar added to the definition to
enhance readability and to help correct functor definition.

15.2.3 Combinator Definition

name(parameters) from x::Dsrc1 and y::Dsrc2 to Ddest

[[ is expression ]]
[[ where expression ]] ;

Combinator definition is nearly identical to functor definition, except the x and
y parameters represent facets from the two source domains rather than from a
single source domain. The combinator is in all ways a function, with syntactic
sugar added to the definition to enhance readability and to correct combinator
specification.

It should be noted that functors and combinators can be defined outside the
structure of an interaction definition. They are simply functions that operate on
language elements rather than on traditional data. It is perfectly reasonable to
have a function with the signature:

morph(f::state_based)::finite_state;
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defining a function of type:

<∗ (f::state_based)::finite_state ∗>

All operations on functions apply equally to functors and combinators, includ-
ing currying and composition. Because translators are not traditional functions,
such operations cannot be legally applied to them. For the same reason, trans-
lators are not easily defined outside the scope of an interaction. They can be
defined as a part of functors and combinators as well as with clauses in domain
definitions.

15.3 Including and Using Interactions

It is unwieldy to specify interaction elements whenever they are used in a spec-
ification. This is particularly true of translators that can clutter interfaces and
reduce readability. Thus, the use clause defines default interactions for a given
specification. An interaction is specified in a use clause in the same manner
as a package is. The interaction is named and parameters are specified when
required:

use name(p0,p1,...,pn);

The use clause identifies specific interaction definitions in the same manner as
for packages, using the dot notation to identify the library where the interaction
exists:

use p0.p1...name(v0,v1,...,vn);

where pk are package or library names and vk are values for interaction
parameters.

A specific element of an interaction can be used by identifying it in the use
clause:

use p0.p1...name(v0,v1,...,vn).n;

where n is the name of a functor, translator, or combinator function defined in
the interaction.

When an interaction is used by a package, the export clause defined in the
interaction controls visibility in the same manner as for a package. The only
distinction is that for translators, the translator domains are used to select a
translator when none is explicitly defined. Specifically, if a facet Fsrc::Dsrc is
included in a facet Fdest::Ddest and translators are not specified for param-
eters of Fsrc, the domains Dsrc and Ddest select the translator. If a single
translator is visible that translates from Dsrc to Ddest, then that translator is
used. If multiple translators are visible, then the user must disambiguate in the
specifications.
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Default interactions are specified by use clauses at the package level. If a use
clause appears prior to a package definition and references an interaction, then the
interaction becomes the default for all facets, packages, domains, and components
defined in the package. The default is overridden by using a specific interaction
in conjunction with definitions in the package. Defaults for all declarations are
defined at the outermost working package level.

15.3.1 Translator Usage

Translators are applied to facet parameters when one facet instantiates another
using the attribute notation. The translator decorates the actual parameter. The
specific notation is:

label : name(p’t,...);

where name is the instantiated facet name, p is an actual parameter instantiating
the associated formal parameter, and t is the translator function used to move
information from the included facet domain to the including facet domain. It is
possible for t to have parameters, but all parameters must be specified when the
translator is used.

Whether the formal parameter associated with p is an input or output param-
eter, instantiating it with p’t asserts that the application of t to p must result in a
value compatible with constraints on the formal parameter.

15.3.2 Functor and Combinator Usage

Functors are simply functions whose domain and range include facets. Thus,
functor application is function application. Specifically:

name(p0,p1,...,F )

evaluates to the application of functor name to a facet F . The facet is a required
parameter. Other specified parameters, p0, ..., pk , precede the facet parameter in
the argument list. This is done to allow currying to specialize functors.

Combinators are also functions whose domain and range include facets. The
only distinction from functors is that the combinator must include two facets.
Like functor application, combinator application is identical to function applica-
tion. Specifically:

name(p0,p1,...,F1,F2)

elaborates to the application of the combinator name to facets F1 and F2. The
facets are required parameters. Other specified parameters, p0,..., pk , precede the
facets parameters in the parameter list. Again, this is done to allow currying to
specialize combinators.
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15.4 Existing Rosetta Interactions

Two types of interactions exist in the base Rosetta system. Semi-lattice interactions
are defined between interconnected domains in the domain semi-lattice. They
define the abstraction and concretization functions alpha and gamma that allow
moving a specification in the semi-lattice. In addition, semi-lattice interactions
are created whenever a new domain is added.

Ad hoc interactions are defined by hand when an interaction between domains
is desired. These interactions provide mechanisms for moving directly between
domains when it is more natural to be moving up and down the semi-lattice.
User-defined ad hoc interactions may also define interactions between domains
when default interactions do not suffice.

15.4.1 Semi-Lattice Interactions

Whenever a domain is included in the domain semi-lattice, an interaction exists
between it and its supertype and subtypes. The interaction between a domain and
its supertype is given the name alpha and represents an abstraction of the domain
into its supertype. Specifically, alpha(f) moves f from its current domain to its
immediate supertype domain. The interaction between a domain and its subtypes
is given the name gamma and represents a concretization of the domain into one
of its subtypes. Specifically, gamma(f) moves f from its current domain to one of
its subtypes, as determined by ascription or context.

Instances of both alpha and gamma are calculated from the extension that
refines a domain into its subtype. In Chapter 12, the where clause is defined in
domains to specify how a facet in a domain is elaborated. Specifically, given f::D,
the where clauses define how D is extended with elements from f to define a facet.
Because a domain extends its supertype like a facet extends its type, the where clauses
also define the instance of gamma needed to concretize a specification, moving it from
its type to one of its subtypes.

The inverse of the transformation defined by with clauses defines the instance of
alpha used to abstract a specification, moving it from its type to its supertype. If a
specification is concretized using gamma and abstracted using the related alpha, the
result is the original facet in the abstract domain:

alpha(gamma(f)) == f

Unfortunately, the same relationship does not hold when abstracting a specification.
If the original specification uses items defined in the concrete domain, those defini-
tions will be lost in the abstraction and cannot be regenerated. When applying gamma,
we know exactly what information is added to a specification. When defining a spec-
ification in the concrete domain, we cannot make the same claim. A specific case of
this occurs when applying alpha and gamma to move between discrete_time and
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infinite_state. If specific time values are used in a discrete_time specification,
such as:

x@(t+1) = f(x)

there is no way to preserve the time value in the infinite_state specification. The
information is necessarily lost. However, if the discrete_time specification uses
next rather than a specific time reference, applying alpha results in a specification
than can be concretized:

x@next(t) = f(x)

The next function exists in infinite_state, but simply at a more abstract level.
The implication is that while gamma can always be applied to make a specification

more concrete, alpha is restricted. Specifically, if a specification uses items defined in
the concrete domain, alpha may not produce the desired abstraction. If specification
reuse composition is a goal, such relationships must be taken into consideration.

15.4.2 Ad Hoc Interactions

Ad hoc interactions exist between many domains that are not related by a subtype
relationship. For example, moving between the frequency and continuous_ time
domains or the finite_state and discrete_time domains requires information
beyond that defined by semi-lattice extensions. Unlike those generated automatically
by adding domains to the semi-lattice, ad hoc interactions are always written by hand.

Using alpha and gamma interactions to move between domains has great util-EXAMPLE 15.4
Using alpha and gamma
for Moving within the
Semi-lattice

ity when composing specifications. For example, in activity-based power modeling,
power consumption is defined over state change. When a system’s state changes,
power consumption is estimated based on the type of state change. Thus, it makes
good sense to define power models in the state_based domain:

facet power
[Ti,To::type]
(x::input Ti; y::output To;
leakage::design real;
change::design real)::state_based is
export p;
p::real;

begin
p’ = p + leakage + if event(y) then change else 0 end if;

end facet power;

As a system specification involving the power facet is refined, the specifics of state
may change substantially. Ideally, the power model should be refined along with the
system model by default. Thus, if we write a model in the discrete_time domain,
then we could refine the power model to exist in the discrete_time domain:

power_dt[Ti,To::type](x::input Ti; z::output To;
l,c::design real) :: state_based is

gamma(gamma(power(x,z,l,c)));
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Similarly, alpha can move a specification up in the domain semi-lattice. Looking at
power aware modeling again, it may be more desirable to abstract the system model
to the state_based domain for evaluation. In the same manner that power moved
down, system can move up:

system_sb(x::input bit; z::output bit) :: state_based is
alpha(alpha(system(x,z))); �

An excellent example of an ad hoc interaction occurs between the
continuous_time and frequency domains. Mathematically, this interaction defines
the Fourier transform and inverse Fourier transform moving between frequency and
time. This interaction is predefined; named fourier_transform, it defines fourier
and inverse_fourier morphisms. The signature of this interaction has the follow-
ing form:

interaction fourier() between continuous_time and frequency is
export all;

begin
begin translators
end translators;
begin functors

fourier() from continuous_time to frequency;
inverse_fourier() from frequency to continuous_time;

end functors;
begin combinators
end combinators;

end interaction fourier;

Only functors are defined in this interaction, allowing a user to specify the Fourier and
inverse Fourier equivalents of a facet. However, it is not possible to interconnect or
compose continuous_time and frequency domains using pre-existing functions.
Specifiers are of course allowed to write their own translators and combinators if
desired.

Although an interaction between state_based and static domains is generated
automatically by the semi-lattice construction, defining the interaction by hand pro-
vides useful insight. The ad hoc definition in Figure 15.1 defines the translators, func-
tors, and combinators necessary to combine state_based and static facets.

Two translators facilitate moving information through parameters between
domains. The alphaT translator moves information from state_based to static
whilegammaTmoves information fromstatic tostate_based. Moving fromstatic
tostate_based adds the’at(s)notation, to add dereferencing to thestaticparam-
eter. Moving from state_based to static simply replicates the actual parameter.

Two combinators compose specifications by moving one to a higher or lower
abstraction level. The alphaC combinator moves its state_based argument into
the static domain and performs composition. Conversely, the gammaC combi-
nator moves its static argument into the state_based domain and performs
composition.

Finally, the two functors alpha and gamma move specifications between domains.
Specifically, alpha moves a specification from the more concrete domain,
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interaction static_state_based() between static and state_based is
export all;

begin
begin translators

alphaT[T::type]() from x::T in state_based to T in static is
if is_tick_operation(x) then operand(x) else x end if;

gammaT[T::type]() from x::T in static to T in state_based is
<< tick_operation ‘x‘ ’at(s) >>;

end translators;
begin functors

alpha() from state_based to static;
gamma() from static to state_based;

end functors
begin combinators

alphaC() from x::state_based and y::static to static is
alpha(x) + y;

gammaC() from x::static and y::state_based to state_based is
gamma(x) + y;

end combinators;
end interaction static_state_based;

Figure 15.1 An interaction defining the relationship between the state_based and domains.

state_based, to the more abstract domain, static. The functor gamma performs
the inverse, moving specifications from static to state_based. The details of these
functors are omitted, as they will be generated automatically by the construction of
the semi-lattice.

15.4.3 Composite Interactions

A common mechanism for defining new interactions is to compose elements from
existing interactions. Because functors and combinators are simply functions, it is
easy to define new interactions by composing interaction elements using function
composition. Figure 15.2 defines such an interaction between finite_state and
discrete_time domains. Such an interaction would be useful when taking a finite
state machine and moving to discrete time for simulation or integration with a larger
system.

Moving between finite_state and discrete_time is a simple matter of apply-
ing multiple alpha and gamma functors. Defining the interaction simply institutional-
izes the interaction and increases readability. Each functor and combinator is defined
by composing existing functions using the function composition operator.

The finite_state_discrete_time interaction defines two functors and three
combinators (Figure 15.3). The functors are defined by composing alpha and gamma
functions from interactions defining paths between domains in the semi-lattice.
Both functors move a specification from one domain to the other defined in the
interaction.

The first two combinators are similar to the functors in that they define moving
one specification to the other’s domain and performing a facet product. The functors
defined in the interaction are used to define the combinator. The third combinator
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static

state_based event_based

finite_state infinite_state

continuous_timediscrete time

null

alpha gamma

gamma

Figure 15.2 The domain semi-lattice before and after creation of a finite_state to
discrete_time interaction.

use state_based_finite_state(),
state_based_infinite_state(),
infinite_state_discrete_time();

interaction finite_state_discrete_time() between
finite_state and discrete_time is
begin

begin translators
end translators;
begin functors

finite_state_to_discrete_time() from finite_state to discrete_time is
infinite_state_discrete_time.gamma.
state_based_infinite_state.gamma.
state_based_finite_state.alpha;

discrete_time_to_finite_state() from discrete_time to finite_state is
state_based_finite_state.gamma.
state_based_infinite_state.alpha.
infinite_state_discrete_time.alpha;

end functors;
begin combinators

finite_stateC() from x::finite_state and y::discrete_time to
finite_state is
x ∗ discrete_time_to_finite_state(y);

discrete_timeC() from x::finite_state and y::discrete_time to
discrete_time is
finite_state_to_discrete_time(x) ∗ y;

state_basedC() from x::finite_state and y::discrete_time to
state_based is
state_based_finite_state.alpha(x) ∗
(state_based_infinite_state.alpha . infinite_state_discrete_time)(y)

end combinators;
end interaction finite_state_discrete_time;

Figure 15.3 Interaction between finite_state and discrete_time, constructed by com-
posing interaction components.
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is more interesting, as it moves both specifications into the state_based domain
and performs composition there. In effect, both specifications are moved to a com-
mon abstract domain and are composed. This combinator might be used to per-
form analysis or to lift results from a concrete specification into a more abstract
context.



16Case Studies

The best way to understand system-level modeling is to model systems.
Thus, several case studies are presented in Chapters 17–20 to help illustrate some
of the concepts seen thus far and integrate smaller examples into larger systems.
The first case study looks at traditional RTL design in Rosetta. It is more a primer
than a true case study, showing how to structure designs and providing a jumping-
off point from a traditional domain. The RTL case study looks at the design of a
traditional digital system from both a structural and a behavioral level. It shows
a methodology for packaging designs and for specifying correctness properties.

The second and third case studies examine power-aware modeling in digital
systems design. In this classic example, models are developed for function, power
consumption, and power constraints. They are then composed to define a con-
strained system-level model. Finally, the power consumption model is refined
three ways to represent power consumption in CMOS, field programmable gate
array (FPGA), and software implementations.

The final case study examines system-level requirements of access control
across communications networks. It models how a portable system accesses
protected services as it moves through different network infrastructures. One
infrastructure represents a protected, local network where controlled resources
reside. Another infrastructure represents a public network with no protections
or assurances. Access control requirements are invariant, yet the mobile system
would like to access requirements regardless of the network infrastructure being
used.

16.1 Methodology

Although the case studies examine different domains, the methodologies used
in their development share a common pattern. First, modeling goals are estab-
lished and modeling domains selected. This provides a structure or anatomy
for the specification. Next, models are written for basic system elements in
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selected domains. Functors, products, and co-products are then used to construct
composite specifications. Finally, combinators are used to generate analysis and
synthesis models.

16.1.1 Identify System-Level Modeling Goals

One of the greatest myths of system-level design is the belief that analysis goals
can be identified after models are constructed. This is akin to asserting that you’ll
know what you need when you see it. This post hoc approach has never and will
never result in successful design activities where complex systems are involved.
System-Level analyses goals must be reflected in the specification.

System-level modeling goals must reflect the overall system design goals. Our
case studies involve three different domains that require three different model-
ing architectures. Our first system’s primary requirement is correctness. Thus,
models will concentrate on representing functional requirements similar to exist-
ing hardware description language (HDL)-based design processes. Our second
system’s primary requirement is again functional correctness, but in the context
of a power constraint. Thus, the models not only reflect correctness conditions,
but account for interactions between functional requirements and performance
constraints. The final system also involves performance constraints in the form
of access control requirements. Here the objective is not defining a system, but
exploring implications of a system design.

In each case study, the models developed reflect design goals as necessitated
by the complexity of system-level design. Rosetta provides modeling support for
each activity as reflected by the case studies. In each case, heterogeneity and model
composition play a dominant role in the modeling activity.

16.1.2 Identify Basic Models and Domains

Knowing what the analysis goals are leads to identifying the necessary system
models and their associated domains. The key is identifying the best domain
for each model. Two equally important observations play key roles here: (i) the
most natural domain for each model and (ii) relationships between domains in
the domain semi-lattice. Using the most natural domain is the ideal approach.
However, if interactions do not exist between domains, or if existing interactions
are weak, analysis can be made less difficult by choosing strongly interrelated
domains.

Full system-level models will virtually always contain models representing
functions, effects on system resources, and constraints on system resources. Func-
tional models typically represent requirements, or “what” the system is to do, and
implementations, or “how” the system achieves its goals. Models of effects on sys-
tem resources map functional behavior to impacts on constraints. For example,
a power model would map functional behavior to power consumption, a secu-
rity model would map functional behavior to resource access and usage, and a
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synthesis model would map functional behavior to utilization of computing
resources. Finally, constraint models represent the resources available to the sys-
tem. They represent the conditions the system must operate under. For example,
a power constraint indicates how much power a system may consume, a secu-
rity constraint indicates access control requirements on system resources, and a
synthesis constraint indicates available computing resources.

In some cases, the most appropriate modeling domains will not exist in the
domain semi-lattice. When this occurs, new domains and interactions must be
constructed. This should always be done by extending an existing domain, even
if the only domain applicable is the static domain. The easiest mechanism
is defining an engineering domain. Adding new specification vocabulary to an
existing engineering domain or to a model-of-computation domain is a rea-
sonably straightforward process, typically involving writing new functions and
defining types. If an engineering domain cannot be defined directly, then a
model-of-computation domain may be defined by either extending an existing
model-of-computation domain or refining a unit-of-semantics domain. Defin-
ing a new unit-of-semantics domain should be a last resort and only considered
when dramatically new domains are required.

16.1.3 Define Basic Models

Now the modeling task begins. The systems designer must construct each of
the basic models. Most of these models can be constructed in some degree of
isolation. However, it is critical that points of interaction between models be
considered. These include interfaces and visible quantities exported from each
model. For example, when modeling power consumption, it is important to think
about how power will be referenced from each appropriate model. Although the
functional model will have no observable power property, the power constraint
and power consumption models must. Furthermore, the observations must be
represented to facilitate information exchange between models.

16.1.4 Construct Composite Models

With the basic models in place, interactions are used to compose them and
perform the desired analysis. By choosing domains early in the design process
with well-defined interactions between them, functors, translators, and combi-
nators are available to compose models. If this is not possible, interactions must
be defined for the specific design problem.

Choose the domain most appropriate for performing analysis. This may be
the domain common to the majority of models or a domain for which excellent
analysis tools are available. In most cases, this choice is made when the modeling
domains are chosen and impacts the structure of the entire modeling process.

Use functors to move models to the analysis domains. If interactions between
domains exist, then they are easily used individually and in composition to move
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move models. If interactions between domains do not exist, then following this
path requires the user to write their own interactions.

Use products to combine models whenever two or more models must be
concurrently satisfied. Models should be composed when and where most appro-
priate. The composition does not need to wait until all models are in their final
domains. Remember, this does not generate analysis models nor does it fully
implement interactions between domains. It bundles models together, indicat-
ing they must be satisfied concurrently or in other combinations, as indicated by
composition operators.

Use combinators to generate analysis models from product and co-product
models. These combinators move composite models from modeling domains to
domains associated with analysis tools. At this point, analysis is performed to
begin understanding system-level effects of local design decisions. If the processes
of model transformation are fully automated, then different design options and
analysis criteria can be selected.

16.2 Before Proceeding

Before approaching the case studies, it is important to realize that each example
has been developed over time. The power-aware modeling case study has been a
standard in the Rosetta community since the earliest days of language require-
ments design. System-level designs do not happen the first or second time
through. They involve significant planning, re-planning, modeling, and
re-modeling. The original power-aware case study bears virtually no resemblance
to the version presented here.

The natural question must now be, “if it’s so resource interactive and difficult,
then why do this?” The answer is quite simple. One can either discover prob-
lems with system-level decisions during system-level design, or later in the design
process, when they are immensely more expensive to correct. What Rosetta
enables is this process of making trade-off decisions and exploring design alter-
natives with predictive analysis early in the design process.
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The register-transfer-level design case study examines defining requirements
and an architecture for a simple alarm clock controller. This is an appropriate case
study because it uses common abstractions from electronic systems design and
extends those abstractions to include elements of system-level design. The first
model is exclusively behavioral and uses a single behavioral specification to define
systems requirements. The second model uses a collection of behavioral spec-
ifications to define an architecture for the controller. Finally, some correctness
conditions are defined using Rosetta’s special-purpose component constructs.

Figure 17.1 graphically defines both the system-level view and the architecture
to be defined. Defined in terms of signals from Figure 17.1, the requirements for
the clock controller are:

� When the setTime bit is set, (timeInHr∗60 + timeInMin) is stored as the
clockTime while timeInHr and timeInMin are output to the time display.

� When the setAlarm bit is set, (timeInHr60 + timeInMin) is stored as the
new value of alarmTime while timeInHr and timeInMin are output to the time
display.

� When the alarmToggle bit is set, the alarmOn bit is toggled.

� When clockTime and alarmTime are equivalent and alarmOn is asserted, the
alarm should be sounded. Otherwise it should not.

� When setTime is clear and setAlarm is clear, clockTime is output as the display
time.

� The clock increments its time value when clk is asserted.

The models defining this case study are organized into three collections. The
timeTypes package defines basic types and functions used throughout both the
behavioral and structural models. The alarmClockBehav model defines func-
tional requirements for the clock system. Each of the previous requirements maps
into one or more requirements in the alarmClockBehav model. Several RT level
specifications define the components of the implementation architecture defined
by alarmClockStruct. These include a data store, multiplexer, comparator, and
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Figure 17.1 System-level architecture of a simple alarm clock controller.

counter defined as individual models. Finally, alarmClock defines relationships
between the behavioral and structural alarm clock models that define correctness
of the architecture.

Each model in this case study prototypical of models useful when designing
using RTL components. The requirements model provides a behavioral descrip-
tion of the entire system of interest. The component models provide excellent
examples of RTL specifications in Rosetta, while the structural model exempli-
fies structural assembly. Finally, the requirements model shows how correctness
conditions can be expressed as a part of the system model.

17.1 Requirements-Level Design

Two specifications define the requirements-level models for the alarm clock
controller. The first is a package of types and functions used across all models.
The timeTypes package represents common definitions that are shared or appear
in the interfaces of specifications. The second is a model defining the system-
level requirements. The alarmClockBehav model translates the English descrip-
tion from the introduction into a formal Rosetta specification.

Figure 17.2 shows the timeTypes package specification. The only element of
this package is a function for incrementing time values that is used frequently
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package timeTypes::static is
increment_time ( minutes :: integer ) :: integer is

if minutes < 12 ∗ 60
then minutes + 1
else 0

end if;
end package timeTypes;

Figure 17.2 Time types shared among specifications.

use timeTypes;
facet interface alarmClockBehav

( timeInHr, timeInMin :: input integer;
setAlarm, setTime, alarmToggle, clk :: input bit;
displayTimeHr, displayTimeMin :: output integer;
alarm :: output bit ) :: state_based is

end facet interface alarmClockBehav;

Figure 17.3 The interface of the system-level requirements model.

throughout the case study. Frequently, a package like this will contain definitions
of types as well as functions. This is particularly useful for shared types used in
interfaces that cannot be defined within facets. Because interface types are stan-
dard Rosetta base types, this is not necessary here.

Figures 17.3 and 17.4 show the basic requirements specification, similar to
what would be called a behavioral specification in VHDL or Verilog. This specifi-
cation is separated into interface and body to simplify the presentation. The inter-
face specification defines the signals that appear at the system interface described
in Figure 17.1. The association between model parameters and signals from the
figure is readily visible.

The specification body takes the requirements specified in the introduction
and formalizes them as specification terms. Each term label describes the action
specified by that label. In each case, if expressions or implications define the rela-
tionship between inputs and current state, and the values to be stored or output
in the next state. Remember that terms are simultaneously true and their order
within the model is immaterial.

A deeper explanation of several terms will help to understand the specification
and its style. setClock_label is the name of the term specifying how and when
the clock time gets set. There are three possible cases defined in this term. When
setTime is asserted, the internal clock time is set to the time inputs and the input
time is displayed. This corresponds to behavior when setting a digital clock. If
the clock is not being set and there is a rising edge on clk, then the internal state
is updated by incrementing the current state. Finally, if nothing has happened,
then the internal clock state does not change. The setAlarmLabel_term is similar,
without the need to update the internal clock.
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use timeTypes;
facet body alarmClockBehav is
alarmTime, clockTime :: integer alarmOn :: bit;
begin

setClock_label:
if %setTime

then(clockTime’ = timeInHr ∗ 60 + timeInMin)
and(displayTimeHr’ = timeInHr)
and(displayTimeMin’ = timeInMin)

elseif event(clk) and clk=1
then clockTime’ = increment_time(clockTime)

else clockTime’ = clockTime
end if;

setAlarm_label:
if %setAlarm

then(alarmTime’ = timeInHr ∗ 60 + timeInMin)
and(displayTimeHr’ = timeInHr)
and(displayTimeMin’ = timeInMin)

else alarmTime’ = alarmTime
end if;

displayClock_label:
((setTime = 0 )and(setAlarm = 0)) =>
(displayTimeHr’ = clockTime div 60)
and(displayTimeMin’ = clockTime mod;60);

armAlarm_label:
if event(alarmToggle) and alarmToggle = 1

then (alarmOn’ = not alarmOn)
else (alarmOn’ = alarmOn)

end if;
sound_label:

alarm’ == if (alarmOn = 1)and(alarmTime = clockTime)
then 1;
else 0

end if;
end facet Body alarmClockBehav;

Figure 17.4 System requirements specification.

The clock’s display is managed by the displayClock_label term. If the clock
is not being set and the alarm is not being set, this term specifies that the clock
display should be the current time. Note that this term is not dependent on the
clock and does not reference any variables in the next state. Thus, the term must
always hold for the clock to function properly. If nothing is being set, the clock
must always display the current time.

The armAlarm_label and sound_labelmanage the arming and sounding of an
alarm. armAlarm_label states that the alarm state is toggled when a rising edge
occurs on the alarmToggle signal. Note that this is an asynchronous signal, as
the term does not reference the clock. sound_label indicates that the alarm is
sounded whenever the stored alarm time is equal to the stored clock time. Like the
display requirement, this requirement does not depend on the clock or reference
variables in the next state. Thus, the term is invariant across all states.

As usual, symbols decorated with ticks represent values in the next state. In
most cases, the use of ticked symbols is limited to the left side of equalities. This
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is in no way required by Rosetta. However, it reflects a common HDL style, where
the next value to be assigned to a signal is calculated and a signal assignment
operator used to schedule an update. Specifications written in this form are easier
to synthesize and simulate. However, when writing specifications of incomplete
systems, this style may not be appropriate or even feasible.

17.2 Basic Components

The basic component set defines a collection of custom RTL components that will
be used to define a structural architecture for the controller. One facet is defined
to implement each of the basic functional blocks from Figure 17.1. These facets
will be assembled later to define the complete architecture.

17.2.1 Multiplexer

The mux component in Figure 17.5 is a specialized multiplexer that selects from
three different times to display. Two control signals, setAlarm and setTime, are
used to choose whether to display the new alarm time or clock time being entered,
or the time maintained by the clock. Where as the store component will use
these signals to control when data is replaced in the internal clock store, the mux
component uses them to determine what value should be displayed.

use timeTypes;
component mux ( timeInHr, timeInMin :: input integer;

clockTime :: input integer;
setAlarm, setTime :: input bit;
displayTimeHr, displayTimeMin :: output integer

) :: state_based is
begin

assumptions
ambiguous_select: not(%setTime and %setAlarm)

end assumptions;
definitions

l1: %setAlarm or %setTime =>
(displayTimeHr’ = timeInHr)and(displayTimeMin’ = timeInMin);

l3: not (%setTime or %setAlarm) =>
(displayTimeHr’ = clockTime div 60)
and (displayTimeMin’ = clockTime mod 60);

end definitions;
implications
end implications;

end component mux;

Figure 17.5 The clock multiplexer component.

A component is used for this model, rather than a facet, because of the desire
to specify a usage condition. The ambiguous_select term in the assumptions
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section asserts that this component requires that these two inputs must not be
simultaneously asserted. If so, the function of the device cannot be uniquely deter-
mined. Using the assumption in this way simplifies the component specification
by eliminating the need to specify behavior for this case. It is simply deemed a
bad input state that cannot be managed.

17.2.2 Data Store

The store component in Figure 17.6 defines a simple register specialized for
storing time values used in this system. The device is rising-edge triggered on any
one of three signals. The state_based predicate event checks to see if a value
has changed during the state change. When conjuncted with a check to see if
the new value is 1, the result is a rising-edge check. In effect, store behaves like
three registers packaged in the same component.

Possibly the most interesting thing about store is that it uses no internal
variables to store values. Because each value is associated with its own update
signal and the stored value is the same as the output value, the output parameter
is effectively the store. The model could have as easily represented the internal
store explicitly.

A facet model is used for the store component because there are no cor-
rectness conditions or usage assumptions associated with the device. A compo-
nent could easily be used, but the assumptions and implications blocks would be
empty. The only reason to use a component would be in anticipation of additional
information or back annotation during analysis.

use timeTypes;
facet store ( timeInHr, timeInMin, nextClockTime :: input integer;

setAlarm, setTime, alarmToggle :: input bit;
clockTime, alarmTime :: output integer;
alarmOn :: output bit ) :: state_based is

begin
l1: if event(setAlarm) and %setAlarm

then alarmTime’ = timeInHr ∗ 60 + timeInMin
else alarmTime’ = alarmTime

end if;
l2: if event(setTime) and %setTime

then clockTime’ = timeInHr ∗ 60 + timeInMin
else clockTime’ = clockTime

end if;
l3: if event(alarmToggle) and %alarmToggle

then alarmOn’ = not alarmOn
else alarmOn’ = alarmOn

end if;
end facet store;

Figure 17.6 The alarm clock store component.
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17.2.3 Counter and Comparator

The counter specification (Figure 17.7) is somewhat misnamed, as it defines the
next state function for the internal timer, but does not store it. Instead, the value
is output to the store component, where it is saved. In effect, the counter out-
puts a new value each time the clk signal rises and outputs the current input
otherwise.

The comparator specification (Figure 17.8) implements an equality compari-
son on time values and outputs the result if the clock’s alarm is engaged. In effect,
it is a comparator whose output is conjuncted with the setAlarm input.

17.2.4 Clock

The clock facet in Figure 17.9 defines a signal that simply changes state. The clock
is defined in the state_based domain, implying that nothing can be said about
its period. It is modeled simply as a component that inverts its output in each state

use timeTypes;
facet counter ( clockTime :: input integer;

clk :: input bit;
nextClockTime :: output integer ) :: state_based is

begin
l4: nextClockTime’ = if event(clk) and %clk

then increment_time(clockTime)
else clockTime

end if;
end facet counter;

Figure 17.7 Alarm clock counter component.

facet comparator ( setAlarm :: input bit;
alarmTime, clockTime:: input integer;
alarm :: output bit ) :: state_based is

begin
l1: alarm = alarmOn and %(alarmTime = clockTime);

end facet comparator;

Figure 17.8 Alarm clock comparator.

facet clock(x::output bit)::state_based is
begin

update: x’ = if x=0 then 1 else 0 end if;
end facet clock;

Figure 17.9 A state_based clock component.
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change. Note that in this case the model is a facet rather than a component, due
to the simplicity of the device. There is no need to understand usage assumptions
or specify correctness conditions for the clock.

17.3 Structural Design

With the component models defined, the structural design merely provides
interconnections between components. Like the behavioral specification, the
structural specification is split into interface and body. The interface, shown in
Figure 17.10, is uninteresting, with the exception of being identical to the behav-
ioral interface (excluding the name of the model). Rosetta does not currently
support multiple implementations for the same interface, thus the structural and
behavioral interfaces must both exist.

The specification body, shown in Figure 17.11, provides interconnection
details. Each internal component has a unique design and is thus instantiated
only once within the structural design. A local declaration defines internal signals
using the same naming conventions used in Figure 17.1.

use TimeTypes;
facet interface alarmClockStruct

( timeInHr, timeInMin :: input integer;
setAlarm, setTime, alarmToggle, clk :: input bit;
displayTimeHr, displayTimeMin :: output integer;
alarm :: output bit

) :: state_based is
end facet interface alarmClockStruct;

Figure 17.10 Alarm clock structural implementation interface.

facet body alarmClockStruct is
clockTime, nextClockTime, alarmTime :: integer; alarmOn :: bit;

begin
store_1 : store ( timeInHr, timeInMin, nextClockTime, setAlarm,

setTime, alarmToggle, clockTime, alarmTime, alarmOn );
counter_1 : counter ( clockTime, clk, nextClockTime );
comparator_1 : comparator ( setAlarm, alarmTime, clockTime, alarm );
mux_1 : mux ( timeInHr, timeInMin, clockTime,

setAlarm, setTime, displayTimeHr, displayTimeMin);
end facet alarmClockStruct;

Figure 17.11 Alarm clock structural implementation body.
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17.4 Design Specification

At this point in the alarm clock design, requirements exist in the form of a
behavioral specification, and architectural requirements exist in the form of a
structural specification. However, there is no correctness condition explicitly stat-
ing the relationship that should exist for them. An implied correctness condition
can be read into the system description. However, this is not sufficient for achiev-
ing true system-level design.

The component alarmClock shown in Figure 17.12 defines correctness between
the structural and behavioral models in a component that can be used in
other models. The alarmClock component instantiates a single copy of
alarmClockBehav in its definitions section. By instantiating the behavioral
specification with parameters from the component interface, the component now
has the behavior specified by the behavioral specification.

The component’s correctness condition is expressed in the implications
section using the term:

correctness: alarmClockStruct(timeInHr,timeInMin,setAlarm,setTime,
alarmToggle,displayTimeHr,displayTimeMin,
alarm) =>

alarmClockBehav(timeInHr,timeInMin,setAlarm,setTime,
alarmToggle,displayTimeHr,displayTimeMin,
alarm);

component alarmClock
( timeInHr, timeInMin :: input integer;
setAlarm, setTime, alarmToggle, clk :: input bit;
displayTimeHr, displayTimeMin :: output integer;
alarm :: output bit

) :: state_based is
begin

Assumptions
end Assumptions
definitions

def: alarmClockBehav(timeInHr,timeInMin,setAlarm,setTime,
alarmToggle,clk,displayTimeHr,
displayTimeMin,alarm);

end definitions;
implications

correctness: alarmClockStruct(timeInHr,timeInMin,setAlarm,setTime,
alarmToggle,clk,displayTimeHr,
displayTimeMin,alarm) =>

alarmClockBehav(timeInHr,timeInMin,setAlarm,setTime,
alarmToggle,clk,displayTimeHr,
displayTimeMin,alarm);

end implications;
end component alarmClock;

Figure 17.12 Specification of design requirements and correctness conditions.
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The => operation on facets and components is defined as homomorphism. Thus,
the correctness condition asserts that all properties of the alarmClockStruct
component must be derivable from the alarmClockBehav component. This is the
same instantiation of the component specified in the definitions block.

The correctness condition accomplishes two important things. First, it explic-
itly states that all behaviors of the behavioral specification must be exhibited by
the structural specification. This is a rather strong correctness condition, but for
such a small component this is quite manageable. The second, and less obvious,
result is that the behavioral specification is tied to the structural specification. If
the structural specification is altered in a way that causes it to not satisfy the behav-
ioral specification, the correctness condition is violated and one of the specifica-
tions must be modified. Thus, the behavioral specification tracks the structural
specification with the component defining correctness wherever it is used.

An alternate definition of correctness is shown in Figure 17.13 as a compo-
nent defining testing conditions. The alarmClockTest component instantiates
one copy of the behavioral and structural specifications. It then drives inputs of
each internal component with external signals from the interface.

Each component’s outputs are gathered by a collection of internal vari-
ables. Instead of generating outputs, the alarmClockTest component compares
like outputs from the behavioral and structural models using these variables.
These assertions are made in the implications section and are invariant over
state change. This is a weaker correctness condition than that defined earlier
because it specifies only three properties that must be maintained. The name
alarmClockTest is chosen because the component defines a testing architecture
in addition to correctness conditions.

17.5 Wrap Up

The alarm clock controller is included as an example of how Rosetta extends clas-
sical RTL design. At the functional design level, Rosetta adds little over VHDL
or Verilog. Components are defined using a largely operational subset of the
expression language, similar in nature to behavioral VHDL or Verilog specifica-
tion. Components are then integrated using structural constructs, again similar
to structural VHDL or Verilog.

Where Rosetta introduces new capabilities is in the inclusion of usage assump-
tions and correctness conditions. In the components alarmClock and
alarmClockTest, the implications and definitions sections are used to define
usage assumptions and correctness conditions. Thus, design intent is memorial-
ized as a part of the system specification in an interpretable fashion.

Recording usage assumptions formally as requirements and implications has
two advantages. First, design intent is not lost and moves through design stages
with component requirements. Design intent becomes a part of the living speci-
fication. Second, design intent is usable by tools in the design flow. Representing
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component alarmClockTest
( timeInHr, timeInMin :: input integer;
setAlarm, setTime, alarmToggle, clk :: input bit;

) :: state_based is
displayTimeHrS, displayTimeMinS :: integer;
displayTimeHrB, displayTimeMinB :: integer;
alarmS :: output bit
alarmB :: output bit

begin
Assumptions
end Assumptions
definitions

beh: alarmClockBehav(timeInHr,timeInMin,setAlarm,setTime,
alarmToggle,clk,displayTimeHrB,
displayTimeMinB,alarmB);

struct: alarmClockStruct(timeInHr,timeInMin,setAlarm,setTime,
alarmToggle,clk,displayTimeHrS,
displayTimeMinS,alarmS);

end definitions;
implications

c1: displayTimeHrS == displayTimeHrB;
c2: displayTimeMinS == displayTimeMinB;;
c3: alarmS == alarmB;

end implications;
end component alarmClockTest;

Figure 17.13 Specification of correctness conditions in a testing component.

intent formally in Rosetta enables input and analysis using tools in the design
flow. For example, both requirements and implications can frequently be used as
assertions in simulators and model checkers. The designer is thus rewarded for
maintaining this information as part of the specification.



18Power-Aware Design

The first power-aware design study examines Rosetta’s capabilities for
transforming and composing models to examine power trade-offs with respect
to implementation technologies. The challenge is to determine whether it is best
for a component from a TDMA receiver to be implemented in software, an FPGA,
or an application-specific integrated circuit (ASIC) before prototyping the com-
ponent. The approach chosen uses an activity-based power estimation model and
simulation to determine activity in the component. The power model is special-
ized for each implementation technology using a refinement on a basic, abstract
power model. The functional model is specialized similarly, changing the activ-
ity estimation based on the implementation technology. The power model and
the functional model are composed using a product and a combinator applied
to the result to generate a simulation model. The model can then be evaluated
to determine the best implementation strategy. A graphical representation of
this construction for FPGA, CMOS, and software implementations is shown in
Figure 18.4.

The modeling process begins by determining the modeling goals. In the power-
aware domain, the modeling process must support making trade-off decisions
between implementation technologies. To achieve this, the relationship between
the function being performed and how that function consumes power in each
implementation technology must be understood. The specification anatomy must
lead to a model that examines function and power consumption simultaneously.

To accomplish the trade-off analysis task, functional, power consumption,
and power constraint models are required. The interaction between function
and power consumption will give a system-level perspective on how power is
consumed. The power constraint will indicate what limitations exist on avail-
able power. The interaction between power consumption, power constraints, and
function will play a role in how the specifications are developed.

For the power-aware modeling activity, the basic Rosetta domain semi-lattice
provides appropriate modeling domains for each model type. The power con-
sumption model used is activity-based where power is consumed when a sys-
tem changes state. The basic model makes no reference to any specific time
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representation, so the state_based domain is the most appropriate. The
functional model is typically given as a discrete time model and best fits in the
discrete_time domain. Finally, the power constraint is a simple constant value
that cannot be exceeded. The fact that it is constant implies that the static
domain is the most appropriate domain.

A discrete event simulation tool that can simulate state_based specifications
is also assumed to exist. This is not a part of the standard Rosetta system, but
could be provided by an external tool environment. The des domain in the semi-
lattice defines requirements for the simulator, allowing functors and combina-
tors to generate models for simulation. It is important to note that one could also
explore these specifications using model checking, theorem proving, static analy-
sis, or any number of formal and semi-formal techniques. This is simply a matter
of defining a domain and functor for each technique, similar to the des domain.

The relationships between domains in the semi-lattice and the connections
between models and domains are depicted in Section 18.2. A segment of the
domain semi-lattice is shown with the three models of the component’s function,
an activity-based power consumption model, and a power constraint model. Also
shown is the combinator that generates simulatable models.

18.1 The Basic Models

The first modeling task is writing basic models for power constraints, power con-
sumption, and device function. By keeping the models separate and in their own
domains, each model remains focused and reasonably simple. Although some
forethought must be given to how they will be composed, for practical purposes
they can be written separately.

18.1.1 Power Constraints Model

The power constraint (Figure 18.1) is constant across all time. Thus, the static
domain is used to represent the static construct. The facet model simply defines a
power variable and asserts that it must be less than the specified limit parameter.
The power value is then exported to allow other models to reference it and assert
constraints on it. By itself, the powerConstraint model does very little. Remem-
ber that it models the constraint on power consumption, not power consumption
itself. It can easily be instantiated with a specific constraint. Without any other
constraints on the exported power value, analysis tools cannot determine if the
power constraint is or is not met.

18.1.2 Power Consumption Model

When modeling power consumption using an activity-based model, power is
consumed whenever the device changes state. Thus, the power consumption
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facet powerConstraint(limit::design real)::static is
export power;
power::real;

begin
power <= limit;

end facet powerConstraint;

Figure 18.1 Power constraint model for the TDMA component.

facet powerConsumption(o::output top;
leakage,switch::design real)::state_based is

export power;
power::real;

begin
power’ = power + leakage + if event(o) then switch else 0 end if;

end facet powerConsumption;

Figure 18.2 Power consumption model for the TDMA component.

model (Figure 18.2) is defined in the state_based domain. By choosing the
state_based domain rather than the more specific discrete_time domain, we
define a common activity-based model that can be specialized for each individ-
ual model. The actual value used for state can be refined when the model is actu-
ally used. If a discrete_time model were used, the time value would need to be
abstracted away if the model were applied in a domain without explicit represen-
tation of time.

Unlike the power constraint model, the powerConsumption facet directly
describes power consumption in a system. If an event occurs on the output, then
the device is assumed to have changed state. In this situation, the device con-
sumes power at a rate specified by the design parameter switch. If not, then only
the power specified by leakage is consumed. Total power consumption is accu-
mulated over time to determine the total device power consumption. This is a
very naive power model, but it does reflect what is needed — a rough measure of
how much power is consumed during the operation of the system.

Before moving forward, let’s examine what the product of powerConsumption
and powerConstraint models means. The product is simple to specify:

limitedPower :: state_based is
powerConsumption() ∗ state_state_based.gamma(powerConstraint(5e-6))
sharing {power};

The limitedPower model states that both powerConsumption and
powerConstraint must be simultaneously satisfied. Alone, each model is sat-
isfied by virtually any legal assignment. What is interesting in the composition is
the role of the power variable. Because it is a visible part of both facet states, it is
shared in the definitions. In other words, both models reference the same power
item. Any value or property asserted on power must satisfy constraints from both
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facets. If either specification did not export the power item, this interaction would
not occur.

In practical terms, the shared power variable means that if the power consump-
tion model causes power to assume a value that is greater than 5e-6, then a con-
tradiction occurs and the engineer knows a problem exists. All that is necessary
now is to know when the device changes state.

18.1.3 Functional Model

The TDMA model is a discrete time model that defines functional requirements
and takes into account delays through the circuit. Because the device is a time
division multiplexer, it is necessary to include an explicit time value to capture the
full functionality of the device. Thus, this model is defined in the discrete_time
domain to allow this timing information.

The functional model (Figure 18.3) searches for a unique word in a bit stream
and passes subsequent bits through until a specified number of bits has been seen.
In effect, when the unique ID is detected, one packet of bits is passed through the
TDMA receiver.

The specification is not atypical of many discrete_time specifications. When
the clock rises, the next state is calculated and the next output is generated. The
first three specification blocks determine the next state by watching for a rising
edge and then specifying values for variables hit, uniqueID, and bitCounter in
the next state. The final specification block observes the state and determines what
the next output should be.

Remember that our objective is determining how much power this particular
device consumes over time to determine the best implementation choice. How-
ever, there is no mention of power or time anywhere in the functional model. This
is exactly how it should be. The functional model should reflect the device’s func-
tion and should not be extended to include power and power constraints. That
would defeat the entire purpose of Rosetta and domain-specific modeling. Tim-
ing information is present in the model and can be observed by analysis tools.
However, using the abstract next function makes moving the model to differ-
ent domains simpler. The functional model could be written in the state_based
domain and moved to the discrete_time domain using a functor.

What will be done to understand the power consumption of this device is to
compose the functional model and the power consumption model with the prod-
uct operator:

TDMAPower(i::input real; o::output real)::state_based is
TDMA(i,o,x"F0F0",1064) * gamma(powerConsumption(i,o,1e-9,2e-8));

Like power in the previous product construction, i and o are shared by these
models. When o changes based on some input to the TDMA device, the power
consumption model will observe that change and will update its power value.
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facet TDMA(i::input real; o::output real; clk :: in bit
uniqueID::design word(16);
pktSize::design natural)::discrete_time is

uniqueID :: word(16);
hit :: boolean;
bitCounter :: natural;

begin

// Check to see if the unique ID has been seen and whether
// a full packet has been transmitted.
hit’ =

risingEdge(clk)
and ((uniqueID = ID) or hit)
and not(bitCounter >= pktSize);

// If not transmitting bits, gather bits for unique ID
uniqueID’ =

if risingEdge(clk)
then if hit then x"0000" else sl(uniqueID,...) end if;
else uniqueID

end if;

// If transmitting bits, update the bit counter.
// Else set the bit counter to 0
bitCounter’ =

if risingEdge(clk)
then if hit then bitCounter+1 else 0 end if;
else bitCounter

end if;

// If the unique ID has been seen, output the current bit.
// Else continue to output the current bit.
o’ =

if risingEdge(clk)
then if hit and bitCounter =< pktSize then i else o end if;
else o

end if;

end facet TDMA;

Figure 18.3 Function model for the TDMA component.

Actually constructing this model takes some additional work, but the basic idea
of composing models begins to become more obvious here.

18.2 Composing System Models

One key concept in the case study thus far is that each model is written using
a different semantics, independently of other models. Although examples show
how the models can be composed, thus far the models are independent and
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Figure 18.4 Full diagram, showing refinement and composition of device, power, and
constraint models.

have no obvious connection other than names of parameters and variables.
As shall be seen, the choice of names for items is critical when composing
specifications.

The basic models involved in Figure 18.4 have been defined in the previous sec-
tions. The remainder of the figure involves defining transformations and compo-
sitions of models. Specifically, three things will be accomplished. First, the power
constraints model will be refined to the state_based domain for composition
with the power consumption model. Then the power consumption model will
be specialized three times to reflect the different models of power consumption
associated with CMOS, FPGA, and software implementations. Second, the func-
tional model will be abstracted into the state_based domain, again to be com-
posed with the various power consumption models. Finally, a combinator will be
applied to create analyzable models from the specification products.

18.2.1 The Composition Approach

The naive approach to composing models is to simply construct a product
directly without any model transformations. Unfortunately, this would eliminate
all abstractions in our models and make analysis virtually impossible. Specifically,
the common domain of these specifications is static, where no concept of time
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or state change is defined. The result would be a mass of equations that directly
encode time and state change. This is not at all desirable.

The solution is choosing a domain where the desired analysis is best performed
and constructing a model there. For this analysis, the state_based domain is
selected, but other domains could be just as appropriate. The power consump-
tion and power constraint models will be transformed so that they share this less
abstract domain with the functional model (Figure 18.5). Although the functional
model will lose the concept of time, the most important concept of state change
vital to the activity-based power model remains. The specifics of time semantics
are not needed.

18.2.2 Refining the Power Model

The process begins with the simplest activity — refining the power constraint
model to include state. The refinement of the power constraint model that appears
on the right side of Figure 18.4 is shown separately in Figure 18.6. Several functors
are composed to construct the morphism that transforms the static power con-
straint model into a discrete_time model. This collection of transformations is
actually quite trivial, as we simply assert that if a property is constant, it must hold
at any time step.

In refining the power constraint model we are relying on a default interaction
defined between the static and state_based domains. This interaction defines
the functor static_state_based.gamma that transforms a specification from the
static domain into a specification in the state_based domain. This functor and

state_basedpower

infinite_state

discrete_time

TDMA

power_constraint

static

desF

Figure 18.5 Refinement of domains to a functional model.
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Figure 18.6 Refinement of the power constraint to a state-based model.

functors like it, i.e., that move down the domain semi-lattice, are simple to con-
struct by simply constructing the extension that generates the more concrete
domain from the more abstract domain. Whenever one domain is below another
in the semi-lattice, the lower domain is created by extending the upper domain.
In Chapter 15 these functors are given the name gamma and are defined between
each pair of related domains.

In this case the functor used is defined in the interaction static_state_based
and has the following signature:

gammaS[State::type]() from x::static to state_based(State);

gamma() from x::static to state_based;

There are two forms of this functor. Both assert that in the new specification,
all terms from the old specification are true in every state. Thus, power must be
less than the power limit in every state. The parameter in gammaS is used to pro-
vide a set of states to define the state type. In this case, a universally quantified
parameter is used to allow the type to be inferred. If the state is held abstract, an
identical functor, gamma, is available without the parameter. In this case, the state
is unknown. Thus, gamma is initially chosen.
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The functor can be used by including the following declaration in the
specification:

powerConstraint_sb(x::design real) :: state_based is
static_state_based.gamma(powerConstraint(x));

A new facet now exists called powerConstraint_sb, parameterized over the power
limit. This facet can now be used like any other. Of course, the declaration is not
required. The functor may be used directly as a term anywhere in the specification
where a facet of type state_based is expected.

18.2.3 Transforming the Power Consumption Model

With a state-based model of the power constraint constructed, the technology-
specific power consumption models can now be constructed. To achieve this,
the original power consumption model is transformed to represent power con-
sumption in multiple different implementation technologies. The “refinement”
performed here is achieved simply by instantiating parameters in the power
consumption model with appropriate values. Of course, a more sophisticated
transformation could be performed when more detail is known. However, an
informed implementation decision can be made even in the presence of incom-
plete information using this model.

The technology-specific power consumption models are defined as follows:

CMOSpowerConsumption(i::input real; o::output real) :: state_based
is powerConsumption(i,o,1e-9,2e-8);

FPGApowerConsumption(i::input real; o::output real) :: state_based
is powerConsumption(i,o,1e-9,2e-8);

SWpowerConsumption(i::input real; o::output real) :: state_based
is powerConsumption(i,o,1e-9,2e-8);

One does not typically look at parameter instantiation as refinement, but that is
exactly what it is in this case. Instantiating the design parameters is literally the
equivalent of substituting values for variables. Thus, the resulting specifications
are in fact refinements of the original. Both the input and output parameters are
retained to allow the facets to be composed structurally and combined with other
specifications.

Now the new technology-specific power models can be composed with the
power constraint. All exist in thestate_baseddomain, so there is no need to trans-
form specifications to other domains. The new facet models are easily defined as:

CMOSpowerLimited(i::input real o::output real) :: state_based;
is CMOSpowerConsumption(i,o) ∗ powerConstraint_sb(5e-6);

FPGApowerLimited(i::input real o::output real) :: state_based;
is FPGApowerConsumption(i,o) ∗ powerConstraint_sb(5e-6);

SWpowerLimited(i::input real o::output real) :: state_based
is SWpowerConsumption(i,o) ∗ powerConstraint_sb(5e-6);
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These specifications all share a similar form and construct a product of a
technology-specific power consumption model and a power constraint. Because
the power constraint and the power consumption model export the power item,
this value is considered shared between the specifications, and any constraints
on it must be mutually consistent. This is precisely what is desired — a power
consumption model limited by a specified power constraint. When we drive the
values of i and o, the power consumption model will increase consumed power
and the constraint model will compare with its constraint value.

What remains now is composition with the functional model. There are two
equally valid approaches. The first refines the state_based power consumption
models into the discrete_time domain and constructs a product with the func-
tional model. The second abstracts the functional model to the state_based
domain and constructs the product there. Both approaches are examined in the
following sections.

18.2.4 Refining the Power Models

The refinement of constrained power consumption models into the discrete_
time domain is shown in Figure 18.7. The figure shows one of three constructions
that generate the FPGA, CMOS, and software power consumption models on the
left side of Figure 18.4. The approach mimics the approach used to move the power
constraint into the state_based domain. Specifically, a functor is applied to the
constrained power models that moves them fromstate_based todiscrete_time.

In this case, the functor is actually the composition of two functors for moving
from state_based to infinite_state and infinite_state to discrete_time.
Defining the new functor is simply defining a function whose domain and range
are facet types. Specifically:

gammaSBDT(f::state_based)::discrete_time is
state_based_infinite_state.gamma.infinite_state_discrete_time.gamma

Functors in the built-in interaction libraries accomplish the refinement between
individual domains. Getting the power models to the discrete_time domain is
now a matter of applying the new functor:

let gammaSBDT(f::state_based)::discrete_time be
state_based_infinite_state.gamma.infinite_state_discrete_time.gamma
in

CMOSpowerLimit_dt(i::input real; o::output real) :: discrete_time is
gammaSBDT(CMOSpowerLimit(i,o));

FPGApowerLimit_dt(i::input real; o::output real) :: discrete_time is
gammaSBDT(FPGApowerLimit(i,o));

SWpowerLimit_dt(i::input real; o::output real) :: discrete_time is
gammaSBDT(SWpowerLimit(i,o));

end let;
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Figure 18.7 Refinement of a basic state-based power model to a CMOS power consumption
model.

The product can now be directly formed with the functional model and a
discrete_time specification that accounts for power consumption results:

CMOS_TDMA(i::input real; o::output real) :: discrete_time is
CMOSpowerLimit_dt(i,o) ∗
TDMA(i,o,x"F0F0",1064);

FPGA_TDMA(i::input real; o::output real) :: discrete_time is
FPGApowerLimit_dt(i::input real; o:output real) ∗
TDMA(i,o,x"F0F0",1064);

SW_TDMA(i::input real; o::output real) :: discrete_time is
SWpowerLimit_dt(i::input real; o:output real) ∗
TDMA(i,o,x"F0F0",1064);

18.2.5 Abstracting the Functional Model

The alternative is moving the functional model to state_based and performing
the composition there. The advantage is that the resulting model is simpler and
more abstract. What we want here is the opposite of refinement — abstraction
of the discrete_time model to the state_based domain. This is done using
the alpha functors defined in the state_based_infinite_state and
infinite_state_discrete_time interactions. Specifically, the alpha instance
needed here is:
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alphaDTSB(f::discrete_time)::state_based is
(state_based_infinite_state.alpha.infinite_state_discrete_time.alpha)

Unfortunately, applying this instance of alpha may not always result in a suc-
cessful abstraction. In addition to defining next concretely, the discrete_time
domain defines time concretely as natural value. Thus, it is quite legal to have the
following term in a discrete_time facet:

v@(t+5) = v+1;

Here, the time value is referenced directly rather than indirectly using next.
Making its type abstract may cause problems if the addition operator is not
defined on that abstract type. All is not lost. Remember that the state_based
domain can be parameterized over the state type, making it possible to specify
a state type that does have an addition operator. However, this does not truly
result in an abstraction, but simply moving a complete definition to a new
frame of reference.

Looking back at the functional definition, the time value, t, is never directly
observed in the specification. Only the next function is used to specify movement
from state to state. In this case it is possible to simply replace the discrete_time
domain with the state_based domain. Thus, the functor from the built-in inter-
actions can safely perform this operation.

With the abstract functional model in the state_based domain along
with the power consumption model, the product can be formed in the
state_based domain or a combinator can be used to generate a new model.
This process is identical to that used when the power consumption models
are made concrete, and thus will not be repeated here. The point of empha-
sis here is that if abstractions like this are to be used, care must be taken
when writing specifications. When the intent is to abstract a model to a new
domain, writing the model using vocabulary from the abstract domain has
advantages. If this cannot be done, then writing a new alpha specifically for
the situation is the most appropriate approach.

18.3 Constructing the Simulations

Following the transformation of the constraint models into the discrete_time
domain where the functional model exists, products are used to construct a sys-
tems model. The functional model is used to generate activity information for
the FPGA, CMOS, and software power consumption models while the power
constraint model simply asserts a condition that must hold continuously in each
model.

In both cases, an algebra combinator is used to construct a composite model
from the product models. Details of the combinator are specific to the tool set
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used for performing the analysis. However, the interaction necessary for the
composition and transformation has the form:

interaction discrete_time_des() between discrete_time and des is
begin

begin translators;
end translators;
begin functors

alpha() from des to discrete_time;
gamma() from discrete_time to des;

end functors;
begin combinators

alphaC() from x::des and y::des to discrete_time is
alpha(x) ∗ alpha(y);

gammaC() from x::discrete_time and y::discrete_time to des is
gamma(x) ∗ gamma(y);

end combinators;
end interaction discrete_time_des;

The necessary algebra combinator’s signature is is defined in the combinators
section and has the signature:

gammaC(f::discrete_time,g::discrete_time)::des;

The final analysis models are:

CMOSsim(i::input real; o::output real)::des is
gammaC(CMOSpowerLimit_dt(i,o),TDMA(i,o,x"F0F0",1064));

FPGAsim(i::input real; o::output real)::des is
gammaC(FPGApowerLimit_dt(i,o),TDMA(i,o,x"F0F0",1064));

SWsim(i::input real; o::output real)::des is
gammaC(SWpowerLimit_dt(i,o),TDMA(i,o,x"F0F0",1064));

Figure 18.8 shows the combinator applied to construct simulation models from
the product models. Like functors, combinators move models from one domain
to another. The distinction is that combinators operate on pairs of models to
generate a single model. Where products and sums cannot model the effects
of interactions between domains, combinators can, because they generate new
models.

18.4 Wrap Up

This power-aware design example is among the oldest Rosetta specifications and
has been used as an analysis example through many language revisions and tool
instances. The structure of the specification is classic Rosetta. A collection of
models is defined and composed to support cross-domain analysis. Although
tool-specific analysis results are not germane to this presentation, we can speak
to many of the emergent issues and common analysis results.
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Figure 18.8 A combinator used to generate simulation models from discrete time models.

18.4.1 Analysis Results

Now that we have the models, what do we do with them? These models have been
analyzed in one form or another in Matlab, a custom Java analysis environment,
and in the specialized Raskell Rosetta analysis environment. Across the board,
analysis results depend more on the quality of data provided to models written,
than on the tool or models used. However, we were able to learn things about
interacting specifications in all tools that were beyond what simple simulation
would show us.

Analysis results reveal that the software solution was the least power effi-
cient. Our goal was demonstrating Rosetta modeling, not developing accurate
power models, meaning the actual results should not be taken too seriously.
However, we were able to observe changes in the power profile of the system
with respect to changes in the execution profile. Ultimately this was our objec-
tive — understanding the impacts of local design decisions on global system-level
properties. With more accurate models and a more realistic process, there is little
question that analysis results would provide useful information.

In the most detailed analysis activity using Raskell, we were able to use an alge-
bra combinator to move results from a functional analysis to the power analysis
domain. This allowed us to estimate the power utilization based on the actual
function being performed. The largest impact observed was in estimating the
power cost of the software implementation. Because we were modeling software
running on a CPU and the impacts of software state change on hardware state
change, estimates were better than simply estimating power consumption on the
CPU in general. However, this gain is not without cost. The actual models for
power consumption are far more difficult to generate than are models for hard-
ware implementations. This is a reflection of the intellectual distance between the
software models and hardware realizations that actually consume power.
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package powerAwareComponentModels() is
export all;
facet powerConstraint(limit::design real)::static is
export power;
power::real;

begin
power <= limit;

end facet powerConstraint;

facet powerConsumption(o::output top;
leakage,switch::design real)::state_based is

export power;
power::real;

begin
power’ = power + leakage + if event(o) then switch else 0 end if;

end facet powerConsumption;

facet TDMA(i::input real; o::output real; clk :: in bit
uniqueID::design word(16);

pktSize::design natural)::discrete_time is
uniqueID :: word(16);
hit :: boolean;
bitCounter :: natural;

begin

hit’ = risingEdge(clk)
and ((uniqueID = ID) or hit)
and not(bitCounter >= pktSize);

uniqueID’ = if risingEdge(clk)
then if hit then x"0000" else sl(uniqueID,...) end if;
else uniqueID

end if;

bitCounter’ = if risingEdge(clk)
then if hit then bitCounter+1 else 0 end if;
else bitCounter

end if;

o’ = if risingEdge(clk)
then if hit and bitCounter =< pktSize then i else o end if;
else o

end if;
end facet TDMA;

end package powerAwareComponentModels;

Figure 18.9 Component models.

In addition to simulation analysis, formal techniques were used to perform
some type analysis and some functional analysis. We used a theorem prover for
these assessments. For power analysis, particularly using activity-based models,
simulation is the best approach even though it is only semi-formal. Do not under-
estimate the value of formal semantics in simulation. Because the specification
has a precise meaning, the correctness of simulation tools can be addressed.
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In this example, simulators were synthesized using formal techniques that
guarantee their correctness. Such synthesis is not possible without Rosetta’s
formal underpinnings.

18.4.2 Modeling Overview

Looking back at Figure 18.4, it should now be clear how the diagram is formed.
Although morphisms in the diagram create some clutter, the shapes of dif-
ferent activities emerge, now that each activity has been identified. The orig-
inal constraint models were refined as necessary to generate state_based or
discrete_time models. These models were composed and models were gener-
ated using an algebra combinator. The resulting simulation models in the discrete
event (des) domain were simulated and analyzed. Although Figure 18.4 is busy,
it does represent the constructions necessary to construct the simulation models.

The models are presented as a complete system in Figures 18.9 through 18.11.
The final power-aware case study model is split up between several packages
for presentation. Figure 18.9 shows a package containing the several compo-
nent models. Figure 18.10 uses the components package and defines power
consumption models for each component. Finally, Figure 18.11 imports the pack-
ages containing component and power models, composing the models to define
the final analysis models.

use powerAwareComponentModels;
package powerAwarePowerModels() is
export all;

powerConstraint_sb(x::design real) :: state_based is
static_state_based.gamma(powerConstraint(x));

CMOSpowerConsumption(i::input real; o::output real) :: state_based
is powerConsumption(i,o,1e-9,2e-8);

FPGApowerConsumption(i::input real; o::output real) :: state_based
is powerConsumption(i,o,1e-9,2e-8);

SWpowerConsumption(i::input real; o::output real) :: state_based
is powerConsumption(i,o,1e-9,2e-8);

CMOSpowerLimited(i::input real; o::output real) :: state_based
is COMSpowerConsumption(i,o) * powerConstraint_sb(5e-6);

FPGApowerLimited(i::input real; o::output real) :: state_based
is powerConsumption(i,o) * powerConstraint_sb(5e-6);

SWpowerLimited(i::input real; o::output real) :: state_based
is powerConsumption(i,o) * powerConstraint_sb(5e-6);

end package powerAwarePowerModels;

Figure 18.10 Power consumption models.
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use powerAwareComponentModels;
use powerAwarePowerModels;
package powerAwareCaseStudy() is
export all;

sb2dt(f::state_based)::discrete_time is
infinite_state_discrete_time.gamma.state_based_infinite_state.gamma;

CMOSpowerLimit_dt(i::input real; o::output real) :: discrete_time is
sb2dt(CMOSpowerLimit(i,o));

FPGApowerLimit_dt(i::input real; o::output real) :: discrete_time is
sb2dt(FPGApowerLimit(i,o));

SWpowerLimit_dt(i::input real; o::output real) :: discrete_time is
sb2dt(SWpowerLimit(i,o));

CMOSsim(i::input real; o::output real)::des is
gammaC(CMOSpowerLimit_dt(i,o),TDMA(i,o,x"F0F0",1064));

FPGAsim(i::input real; o::output real)::des is
gammaC(FPGApowerLimit_dt(i,o),TDMA(i,o,x"F0F0",1064));

SWsim(i::input real; o::output real)::des is
gammaC(SWpowerLimit_dt(i,o),TDMA(i,o,x"F0F0",1064));

end package powerAwareCaseStudy;

Figure 18.11 Final model for the power-aware case study.
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Although the power-aware model for the TDMA system developed in
Chapter 18 supports some predictive analysis in the absence of virtually all design
detail, the power model is quite naive and the values discovered will not remain
accurate as design decisions are made. The power-aware model is revisited here
in several different ways to explore new analysis possibilities.

Technology-specific functional models allow representation of the TDMA
algorithm in a manner most appropriate for a specific technology. Although the
function of the TDMA remains the same, moving from hardware to software cer-
tainly changes the algorithm and implementation. New models for TDMA func-
tions represent technology-specific implementations for functions in a manner
similar to that for technology-specific power consumption models.

Using decomposition to represent the TDMA model structurally adds design
detail and allows refinement of the power consumption model. By modeling
power consumption in individual components, power consumption is more pre-
cisely modeled. Using facets to structurally model constraints as well as functions
results in clean, focused structural specifications.

Finally, combining decomposition with technology-specific functional
and power models adds yet more detail to the power model. Implementation
technology for each component is included, as well as system architecture.
Again, structural modeling of constraints as well as function supports highly
decoupled models.

19.1 Technology-Specific Functional Models

The first technique explores the use of different functional models for dif-
ferent technologies. In the original model, the CMOS, FPGA, and software
models all used the same functional model. At the requirements level, this is
appropriate. However, as the design is refined it becomes quite apparent that the

315
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functional implementations differ from technology to technology. Thus, power
consumption will vary in ways that cannot be accounted for in the original model.

To construct this new model, three new functional models must be developed.
These new models need not be written in the same domain as the original model,
but care must be taken to use domains that can be linked back to analysis tools. For
the purposes of this example, CMOS, FPGA, and software models are developed
in the discrete_time domain. Following are interfaces for these models:

facet interface CMOS_TDMA(i::input real; o::output real)::discrete_time is
end facet interface CMOS_TDMA;

facet interface FPGA_TDMA(i::input real; o::output real)::discrete_time is
end facet interface FPGA_TDMA;

facet interface SW_TDMA(i::input real; o::output real)::discrete_time is
end facet interface SW_TDMA;

These models are composed with the technology-specific power models using
combinators in the same manner used in Chapter 18. When the combinator gen-
erating simulation models is applied to these models, the result is an analysis
model with more detail, due to the inclusion of technology-specific information.

CMOS_TDMA(i::input real; o::output real) :: discrete_time is
CMOSpowerLimit_dt(i::input real; o:output real) *
CMOS_TDMA(i::input real;o::output real);

FPGA_TDMA(i::input real; o::output real) :: discrete_time is
FPGApowerLimit_dt(i::input real; o:output real) *
FPGA_TDMA(i::input real;o::output real);

SW_TDMA(i::input real; o::output real) :: discrete_time is
SWpowerLimit_dt(i::input real; o:output real) *
SW_TDMA(i::input real;o::output real);

19.2 Configurable Components

An interesting variant on the technology-specific model uses a case expression
to allow a single, parameterized model to be configured as any of the technology-
specific models. Using a constructed type to indicate the technology type and
case expression to choose the model is the approach taken here.

First, the technology data type is defined, allowing selection of the technology
type. The data type defines an enumerated type with three values associated with
one technology:

technology :: type is data
cmos :: cmosp |
fpga :: fpgap |
sw :: swp

end data;
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Remember that this data type must be visible outside the new TDMA facet. Thus,
it cannot be defined locally to the TDMA facet. Using a package to define a module
including both definitions is the most appropriate approach.

Next, the model is defined by adding a new parameter, t, of type technology.
This parameter of kind design allows configuration of the component and serves
as the selection variable in the case expression:

TDMA(t::design technology i::input real; o::output real;
clk :: in bit; uniqueID::design word(16);
pktSize::design natural) :: discrete_time is

case t of
{cmos()} -> CMOS_TDMA(i,o,clk,uniqueID,pktSize) |
{fpga()} -> FPGA_TDMA(i,o,clk,uniqueID,pktSize) |
{sw()} -> SW_TDMA(i,o,clk,uniqueID,pktSize)
end case;

The technology selection parameter is of kind design because it cannot change
during evaluation. If a reason existed to change technologies at run-time, the
parameter restriction could be removed. Such a model would be useful for analyz-
ing the process of moving an operational system from one technology to another
to understand run-time risks.

This new TDMA model can be included in a design and the technology type
parameter can be used to indicate the type of component to include. The value of
this approach is being able to quickly reconfigure a model to check properties for
different technology types. For example, the following term represents the FPGA
implementation of the TDMA component:

tdma_comp: TDMA(fpga,i,o,clk,x"F0F0",1064);

This definition assumes that i, o, and clk are items visible in its scope.

19.3 Decomposition

The second technique explores decomposing the functional model into a struc-
tural model. This technique increases accuracy by looking at finer grained state
changes and thus finer grained power consumption. Figure 19.1 shows an abstract
block diagram of the TDMA receiver. Six interconnected components are defined,
driven by a single clock. As the TDMA receiver is a single processing block, its
architecture is largely dataflow in nature. Data flowing into and out of compo-
nents is complex, representing the in phase and quadrature components of the
signal.

The definitions in Figure 19.2 are for the individual components comprising
the structural block diagram from Figure 19.1 defining interfaces and functional
elements. These definitions are no different than the functional models written
for the original model. What is happening is that the functional definition is being
pushed deeper into the design representation. This will always result when making
design decisions.
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Figure 19.1 TDMA block diagram.

facet interface resampler
(i::input complex; o::output complex; clk::input bit)::discrete_time is

end facet interface resampler;

facet interface carrierRecovery
(i::input complex; o::output complex; clk::input bit)::discrete_time is

end facet interface carrierRecovery;

facet interface decimator
(i::input complex; o::output complex ,clk::input bit)::discrete_time is

end facet interface decimator;

facet interface bitSynchronization
(i::input complex; o::output complex ,clk::input bit)::discrete_time is

facet interface bitSynchronization;

facet interface errorCorrection
(i::input complex; o::output complex ,clk::input bit)::discrete_time is

end facet interface errorCorrection;

facet interface messageProcessor
(i::input complex; o::output complex ,clk::input bit)::discrete_time is

end facet interface messageProcessor;

Figure 19.2 Model interfaces for TDMA components.

The structural design in Figure 19.3 accomplishes three modeling tasks. First,
each component model is composed with the CMOS power consumption model
and instantiated within the component. The result is a collection of specifica-
tion products representing each component’s function and power consumption
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facet TDMAstruct
(i::input complex; o::output complex; clk::input bit)::discrete_time is
export power;
power :: real;
ec2mp,bs2ec,d2bs,cr2d,r2cr :: complex;
gammaSBDT(f:state_based)::discrete_time is
(state_based_infinite_state.gamma . infinite_state_discrete_time.gamma);

begin
c1: resampler(i,r2cr,clk)

* gammaSBDT(CMOSpowerConsumption(i,r2cr));
c2: carrierRecovery(r2cr,cr2d,clk)

* gammaSBDT(CMOSpowerConsumption(r2cr,cr2d));
c3: decimator(cr2d,d2bs,clk)

* gammaSBDT(CMOSpowerConsumption(cr2d,d2bs));
c4: bitSynchronization(d2bs,bs2ec,clk)

* gammaSBDT(CMOSpowerConsumption(d2bs,bs2ec));
c5: errorCorrection(bs2ec,ec2mp,clk)

* gammaSBDT(CMOSpowerConsumption(bs2ec,ec2mp));
c6: messageProcessor(ec2mp,o,clk)

* gammaSBDT(CMOSpowerConsumption(ec2mp,o));
power’ = power + c1.power + c2.power + c3.power

+ c4.power + c5.power + c6.power;
end facet TDMAstruct;

Figure 19.3 TDMA with power calculation.

model. Next, interconnections are made between individual components and
from components to the TDMA receiver interface. Finally, the power associated
with the TDMA receiver is calculated by summing the powers from the individual
components.

The result of this construction is somewhat different than earlier models in
that it does not include the power constraint. The power value exported from the
model is the consumed power, not a power limit. There are two ways to include
the power constraint. One is to simply compose the TDMA model with the power
constraint at the component level. This is achieved using the state_based power
constraint model and constructing the product with the structural TDMA after
moving the state_based model to discrete_time:

TDMA(i::input complex; o::output complex; clk::input bit)::discrete_time is
TDMAstruct(i,o,clk) *
state_based_infinite_state.gamma(

infinite_state_discrete_time.gamma(powerConstraint_sb(i,o)));

An alternative approach is to budget power across components and add the
power constraint model to each instantiated component. The distinction is that
when composing the structural model with the the system power constraint,
analysis will only reveal a problem at the systems level. It will not indicate
the component or components causing the problem. By budgeting the power
constraint across components, analysis will reveal problems at the component
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facet TDMAstruct
(i::input complex; o::output complex; clk::input bit)::discrete_time is
export power;
power :: real;
ec2mp,bs2ec,d2bs,cr2d,r2cr :: complex;
gammaSBDT(f:state_based)::discrete_time is
(state_based_infinite_state.gamma . infinite_state_discrete_time.gamma);

begin
c1: resampler(i,r2cr,clk)

* (gammaSBDT(CMOSpowerConsumption(i,r2cr)
* static_state_based.gamma(powerConstraint(1e-6))));

c2: carrierRecovery(r2cr,cr2d,clk)
* (gammaSBDT(CMOSpowerConsumption(r2cr,cr2d)

* static_state_based.gamma(powerConstraint(2e-6))));
c3: decimator(cr2d,d2bs,clk)

* (gammaSBDT(CMOSpowerConsumption(cr2d,d2bs)
* static_state_based.gamma(powerConstraint(1e-6))));

c4: bitSynchronization(d2bs,bs2ec,clk)
* (gammaSBDT(CMOSpowerConsumption(d2bs,bs2ec)

* static_state_based.gamma(powerConstraint(3e-6))));
c5: errorCorrection(bs2ec,ec2mp,clk)

* (gammaSBDT(CMOSpowerConsumption(bs2ec,ec2mp)
* static_state_based.gamma(powerConstraint(1e-6))));

c6: messageProcessor(ec2mp,o,clk)
* (gammaSBDT(CMOSpowerConsumption(ec2mp,o)

* static_state_based.gamma(powerConstraint(1e-6))));
end facet TDMAstruct;

Figure 19.4 Structural TDMA receiver model with power budgeted to individual components.

facet TDMAfunction
(i::input complex; o::output complex; clk::input bit)::discrete_time is
export power;
power :: real;
ec2mp,bs2ec,d2bs,cr2d,r2cr :: complex;

begin
c1: resampler(i,r2cr,clk);
c2: carrierRecovery(r2cr,cr2d,clk);
c3: decimator(cr2d,d2bs,clk);
c4: bitSynchronization(d2bs,bs2ec,clk);
c5: errorCorrection(bs2ec,ec2mp,clk);
c6: messageProcessor(ec2mp,o,clk);

end facet TDMAfunction;

Figure 19.5 Structural TDMA receiver model.

level. Unfortunately, the model from Figure 19.4 is unwieldy and defeats the
separation-of-concerns goals that Rosetta promotes. An alternative mechanism
exists to form the product model using a products of structural facets.

Figures 19.5 through 19.7 structurally model function, power constraints,
and power consumption for the TDMA receiver model. These models are sep-
arate in the same sense that the original TDMA models were separate. Using the
product, they are easily composed in the same manner as the individual models:
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facet TDMApowerBudget()::discrete_time is
export power;
power :: real;

begin
c1: static_state_based.gamma(powerConstraint(1e-6)));
c2: static_state_based.gamma(powerConstraint(2e-6)));
c3: static_state_based.gamma(powerConstraint(1e-6)));
c4: static_state_based.gamma(powerConstraint(3e-6)));
c5: static_state_based.gamma(powerConstraint(1e-6)));
c6: static_state_based.gamma(powerConstraint(1e-6)));
power = c1.power + c2.power + c3.power

+ c4.power + c5.power + c6.power;
end facet TDMApowerBudget;

Figure 19.6 Structural model of power budgets for TDMA components.

facet TDMAconsumption
(i::input complex; o::output complex)::discrete_time is
export power;
power :: real;
ec2mp,bs2ec,d2bs,cr2d,r2cr :: complex;
gammaSBDT(f:state_based)::discrete_time is
(state_based_infinite_state.gamma . infinite_state_discrete_time.gamma);

begin
c1: gammaSBDT(CMOSpowerConsumption(i,r2cr));
c2: gammaSBDT(CMOSpowerConsumption(r2cr,cr2d));
c3: gammaSBDT(CMOSpowerConsumption(cr2d,d2bs));
c4: gammaSBDT(CMOSpowerConsumption(d2bs,bs2ec));
c5: gammaSBDT(CMOSpowerConsumption(bs2ec,ec2mp));
c6: gammaSBDT(CMOSpowerConsumption(ec2mp,o));
power’ = power + c1.power + c2.power + c3.power

+ c4.power + c5.power + c6.power;
end facet TDMAconsumption;

Figure 19.7 Structural model of power consumption for TDMA components.

TDMA(i::input complex; o::output complex; clk::input bit)::discrete_time is
TDMAfunction(i,o,clk)

* gammaSBDT(TDMAconsumption(i,o,clk)
* static_state_based.gamma(TDMApowerBudget()));

This model is semantically identical to the previous model. The product operation
is applied to each of the terms comprising the original structural models. Term
labels are used to determine how the operations are applied. The product opera-
tions are distributed across like-named terms. For example, the c1 term resulting
from the product is defined as:

TDMAfunction.c1
* gammaSBDT(TDMAconsumption.c1

* static_state_based.gamma(TDMApowerBudget.c1));

Other terms are handled similarly, resulting in exactly the model defined earlier.
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19.4 Mixed Technology Systems

The final model combines the use of separate technology models and structural
modeling. Figures 19.8 and 19.9 show functional and power decomposition
of the receiver, respectively. Note the use of different models for different
implementation technologies. Formation of the product model is identical to
that in the previous example and results in a yet more accurate model.

facet TDMAconsumption
(i::input complex; o::output complex)::discrete_time is
export power;
power :: real;
ec2mp,bs2ec,d2bs,cr2d,r2cr :: complex;
gammaSBDT(f:state_based)::discrete_time is
(state_based_infinite_state.gamma . infinite_state_discrete_time.gamma);

begin
c1: gammaSBDT(FPGApowerConsumption(i,r2cr));
c2: gammaSBDT(CMOSpowerConsumption(r2cr,cr2d));
c3: gammaSBDT(SWpowerConsumption(cr2d,d2bs));
c4: gammaSBDT(FPGApowerConsumption(d2bs,bs2ec));
c5: gammaSBDT(SWpowerConsumption(bs2ec,ec2mp));
c6: gammaSBDT(SWpowerConsumption(ec2mp,o));
power’ = power + c1.power + c2.power + c3.power

+ c4.power + c5.power + c6.power;
end facet TDMAconsumption;

Figure 19.8 Structural model of power consumption for TDMA components using mixed
implementation technology.

Mixed technology models are particularly useful when performing hardware/
software co-design. Such models may be automatically produced by synthe-
sis tools and analysis results may be used to select the best implementation
approach. Synthesis combinators also take advantage of these models by applying
technology-specific synthesis techniques to individual functional components.

19.5 Wrap Up

The objective of this case study is to explore alternatives to the initial power-aware
case study and discuss refinement of system-level models. In this chapter, het-
erogeneous design is truly explored for the first time by allowing for different
functional models for components using different implementation technologies.
Additionally, the option of implementing different system functions simultane-
ously using different implementation technologies can be explored.
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facet TDMAfunction
(i::input complex; o::output complex; clk::input bit)::discrete_time is
export power;
power :: real;
ec2mp,bs2ec,d2bs,cr2d,r2cr :: complex;

begin
c1: FPGAresampler(i,r2cr,clk);
c2: CMOScarrierRecovery(r2cr,cr2d,clk);
c3: SWdecimator(cr2d,d2bs,clk);
c4: FPGAbitSynchronization(d2bs,bs2ec,clk);
c5: SWerrorCorrection(bs2ec,ec2mp,clk);
c6: SWmessageProcessor(ec2mp,o,clk);

end facet TDMAfunction;

Figure 19.9 Structural TDMA receiver model using mixed technology components.

The introduction of technology-specific functional models has the greatest
potential for increased modeling detail. As noted in Chapter 18, software uses
a different underlying computational model and changes states in very dif-
ferent ways, as compared to hardware implementations of the same function.
Technology-specific function models make it possible to define and analyze such
systems. Using configurable models to select from among alternative technologies
makes it simpler to configure and analyze models.

Structural decomposition is an important refinement step in any system design
process. As design detail is added to functional models, it also propagates to con-
straint models. In effect, the constraint models follow design decisions, allowing
more detailed and precise analysis. This evolution is vital as requirements flow
through the design process or performance requirements become stale artifacts
of initial design decisions.

When system components can be implemented using different technologies,
we begin to explore the benefits of heterogeneity. Allowing models for com-
ponents to be configurable over several implementation fabrics dramatically
improves understanding of trade-offs among performance requirements and
implementation fabrics. Using simulation, the system impacts of design fabrics
and their interactions can be explored. If significant resources are brought to bear,
one can imagine finding optimum or near-optimum implementations.
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The system-level network case study models the behavior of changing
network infrastructure with respect to a constant set of access control require-
ments. The example is motivated by the problem of moving a portable computer
from one network to another, seamlessly maintaining functionality without
violating security constraints. Figure 20.1 illustrates the problem where in a
portable computer is carried between an office environment that is closed and
secure, a home environment that is somewhat controlled, and a completely open
environment such as a coffee shop, where the environment is not known or
controllable. The user of the portable computer would like to work on the
same task while satisfying security requirements. In effect, a trade-off between
accessibility and access control is continually being made.

This case study differs substantially from the RTL and power-aware studies in
that the system implementation is not a part of the modeling process. Certainly
architectural issues are addressed, but the biggest issue is developing a reasonable
requirements model. Thus, we will not develop models of firewalls and routers,
but models of working environments and resource access restrictions.

Although models may differ, the methodology followed by the networking
case study is virtually identical to that in the previous case studies. First, decide
what information must be known. Second, select domains for the basic models
that are as abstract as possible. Then define basic models for components and
compose models to define systems. Finally, generate analysis models from
composite models by moving them to different domains.

20.1 The Basic Models

There are three types of models involved in this example, responsible for rep-
resenting function, performance requirements, and operational infrastructure.
The functional requirements model defines what services the network must
provide to the user and what services are available. The security model defines
access control requirements on various system resources and specifies constraints

325



326 Chapter 20 System-Level Networking

Figure 20.1 System-level networking requirements.

on how functions are provided. Finally, the infrastructure models define support
provided by the various network infrastructures. If the infrastructure can provide
required services while meeting system requirements, then we have an ideal sys-
tem. However, modeling what the system can provide is as important as providing
a binary correctness result.

Access requirements can be viewed as invariants on system state. Specifically,
no network entity that is not trusted should be allowed to access private resources.
Because requirements define invariants, the static domain is the most appropri-
ate domain for an abstract specification. Functionality and infrastructure models
differ from access requirements in that a need exists to specify temporal require-
ments. When a request is processed by the infrastructure, it must respond to that
request by changing what it knows about its resources. Likewise, a requesting
entity changes state when its requests are met or denied.

Because there are no timing requirements specified, the most appropriate
domain here is the state_based domain, where change can be represented, but
the details of that change can be avoided. The finite_state and infinite_state
domains may also be appropriate, but nothing is known about the cardinality of
the state set. Therefore, infrastructure and functional requirements models are
written in the state_based domain.

20.1.1 Types, Constants, and Predicates

The network_entities package defined in Figure 20.2 defines a collection of
shared types, functions, and constants that are shared across specifications. Vir-
tually any large specification will define a package like network_entities that
provides shared constructs to all models. A similar package can be found in the
RTL case study in Chapter 17.
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package network_entities()::static is
id :: type is constant;
resource :: type is constant;

secure_server :: resource is constant;
public_server :: resource is constant;
internal :: id is constant;
external :: id is constant;
public :: id is constant;
private :: id is constant;
firewall :: id is constant;

message :: type is data
request(a,b::id;r::resource)::request?
| grant(a,b::id;r::resource)::grant?
| revoke(a,b::id;r::resource)::revoke?
| trust(a,b::id)::trust?
| distrust(a,b::id)::distrust?

end data;

trusts_with(a,b::id;r::resource)::boolean;

trusts(a,b::id)::boolean;

grants(a,b::id; r::resource)::boolean;

transitive_trust(a,b,c::id)::boolean is
trusts(a,b) and trusts(b,c) => trusts(a,c);

transitive_trusts_with(a,b::id; r::resource)::boolean is
trusts(a,b) and trusts_with(b,c,r) => trusts_with(a,c,r)

will_grant(a,b::id; r::resource)::boolean is
trusts_with(a,b,r) and requests(a,b,r) => grants(a,b,r)

end package network_entities;

Figure 20.2 Basic resource and credential entities.

The id and resource types define uninterpreted types for entities in the net-
work and resources they may request. These types are uninterpreted because their
internal representation is not germane to what is being specified. It is sufficient
to define properties for entities and resources in the specification.

Several constants are defined of type resource and id that are visible to all
specifications using the package. The two server declarations represent resources
that may be requested and are controlled by the secure infrastructure. The two id
declarations define entities that are known in all specifications. Again, the details
of entities and resources are not important, thus they are declared as constants
without specific values.

The message data type defines messages that are exchanged between network
entities. It is critical that these definitions exist in a shared package, because all
component specifications must be able to send and receive messages for requests
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and updates to trust relationships. Specific message instances exist for requesting,
granting, and revoking access as well as for establishing and removing trust
relationships.

The final element of the network_entities package defines a collection of
predicates that define properties of components that grant access to resources.
The declarations of trusts_with, trusts, and grants define relations between
entities and resources: trusts_with is true if one entity trusts another with spe-
cific resource; trusts is true if one entity trusts the assertions of another.

The transitive_trusts, transitive_trust, and will_grant predicates
define how trust is established and the conditions for granting access to a resource.
First, transitive_trust simply defines and names a transitive property for trust
relationships; transitive_trusts_with defines a relation such that if a trusts b
and b trusts c with r, then a trusts c with r. Finally, will_grant defines a property
asserting when one entity will grant access to a resource.

The way these predicates establish trust and grant resource access is relatively
simple. If a resource r is requested from m by n, and m trusts n with that resource,
access is granted. Establishing that m trusts n with the resource may result from
first-hand knowledge. However, if m trusts an entity p that trusts n with r, then m
also trusts n with r. Trust is transitive, allowing the formation of chains from an
initial trusted source. This is an exceptionally naive trust model, but will suffice
for this case study.

Note that none of the defined properties is asserted in the package. The proper-
ties give names to relationships, but do not assert those relationships for any
particular entities. For the properties to hold, they must be asserted as terms in
models that use the network_entities package.

20.1.2 Access Control Requirements Model

The access control requirements model defines a collection of security constraints
that the network infrastructure must satisfy while providing services. It defines
system-level constraints on the function of every infrastructure element in the
network. While the functional requirements define what the network must do,
access control requirements define what the network must not do. In this sense,
access control requirements define safety conditions.

Figure 20.3 defines the access control requirements model. A component rep-
resentation is chosen over a facet representation to allow inclusion of usage
assumptions and correctness conditions. Usage assumptions explicitly document
assumptions made when defining requirements. In effect, they define conditions
that the user must accept or satisfy to use this system. Implications define cor-
rectness conditions over definitions. Thus, they support specification of theorems
that should hold as a result of assumptions and definitions. If the theorems do not
hold, then something about the specified requirements is incorrect.

The only assumption made is that every entity trusts trusted_id. This trusted
entity forms the root of all trust relationships in this system. It also serves as a
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use network_entities();
component networkSecurity()::static is
begin

assumptions
forall(a::id | trusts(a,trusted_id));

end assumptions;
definitions
end definitions;
implications

// if a grants b r, then a must trust b with r
(forall a::id |
(forall b::id |

(forall r::resource | grants(a,b,r) => trusts_with(a,b,r))));
end implications;

end component networkSecurity;

Figure 20.3 Basic access control requirements model.

potential single point of failure. If trusted_id is compromised, then the entire
network may fail. Making the assumption that all entities trust trusted_id pre-
vents this case from occurring in this analysis. In essence, the assumption is that
trusted_id will never be untrusted.

The requirements model is quite simple and asserts only that if a resource
is granted to an entity, then the granter must continue to trust the grantee
with the resource as long as the grant is valid. If grants(a,b,r) holds, then
trusts_with(a,b,r) must also hold or requirements are violated. If
grants(a,b,r) does not hold, then the implication is immediately true. The
static domain is used because there is no need to represent change, as require-
ments will be defined as an invariant that must hold in all states. Note that if
trusts_with(a,b,r) holds, it is not necessary for a to grant r to b.

Note that the requirements model uses an implication to assert its correctness
condition, rather than making it a requirement. This is a stylistic choice concern-
ing the way errors will discovered. Making the condition an implication asserts
that the condition must be provable from requirements. Thus, if requirements
violate the condition, the inconsistency will be detected when the condition is
checked. If the condition were asserted as a requirement, the inconsistency exists
in the specification immediately and can be detected without checking the impli-
cation. Unfortunately, this implies that the inconsistency could be used to verify
other conditions if it is not recognized. For this reason, an implication is used
rather than a definition term.

20.1.3 Functional Requirements Model

Modeling constraints outside the context of required functionality is not useful.
For example, it is quite possible to define a secure network by simply not pro-
viding connectivity. If no resources are accessed and no resources are available,
the network meets ideal security requirements. Of course, this is not desirable — a
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network without connectivity does not meet even its basic functional
requirements. Thus the functional requirements model defines a minimal set of
system requirements, that must be achieved in the content of constraints.

The functional requirements model defines desired functionality from the per-
spective of the user. It is parameterized over the identity of the sender, allowing the
analysis of requirements from the perspective of a sender, behind the firewall or
outside the firewall. Specifically, the send_as design parameter can be internal,
external, or another id that indicates where the requester is. Thus, correctness
analysis can be performed from several perspectives. Figure 20.4 defines resources
that the portable computer user would ideally like to have available.

use network_entities();
component networkFunction

(send_as::design id;
i::input message;
o::output message)::state_based is

eventually(f::boolean)::boolean is
not(f) implies eventually(f’);

begin
assumptions
end assumptions;
definitions

eventually(o=request(send_as,private,private_server));
eventually(o=request(send_as,private,public_server));

end definitions;
implications

case send_as of
{internal} -> eventually(i=grant(private))

and eventually(i=grant(public))
{external} -> eventually(i=grant(public))

end case;
end implications;

end facet networkFunction;

Figure 20.4 Basic functional requirements.

20.1.4 Infrastructure Models

Having declarations of entities and resources, and a requirements model
defining system requirements, network infrastructure models must be defined.
Specifically, an internal infrastructure representing the work environment, an
external infrastructure representing the home and public infrastructure, and a
firewall environment represent the firewall behavior will now be defined.

Each infrastructure model defines various implementations of functionality
that must satisfy system-level constraints. Thus, infrastructure models must sat-
isfy access control requirements while defining their own requirements. This will
be modeled by defining trust properties for each network environment and then
conjuncting system-level requirements with each environment model.
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The private infrastructure defined in Figure 20.5 represents the network
environment within the organization that controls computing resources
private_server, and public_server, defined earlier. It represents the world
behind the organization’s firewall. All infrastructure models use the state_based
domain because trust relationships must change. The static domain is more
appropriate for requirements because they cannot change. In effect, they define
invariants on the state of network infrastructure elements.

The private infrastructure makes three trust assumptions: (i) it trusts the fire-
wall and it trusts who the firewall trusts with the private server, (ii) it trusts

use network_entities();
component networkPrivateInfrastructure

(i::input message; o::output message;
self::design id)::state_based is

begin
assumptions

trusted_firewall: trusts(self,firewall)
and forall(x:id | trusts(firewall,x) =>

trusts_with(firewall,x,private_server));
trusted_internal: trusts_with(self,internal,private_server)

and trusts_with(self,internal,public_server);
trusted_external: trusts_with(self,external,public_server);

end assumptions;
definitions

// incoming request
request_incoming: request?(i) and a(i)=self =>

if trusts_with(self,b(i),r(i))
then o’=grant(self,b(i),r(i))

and grants(self,b(i),r(i))’
else o’=revoke(self,b(i),r(i))

and not(grants(self,b(i),r(i)))’
end if;

// incoming trust and distrust.
trust_incoming: trust?(i) => trusts(a(i),b(i))’=true;
distrust_incoming: distrust?(i) and trusts(a(i),b(i)) =>

trusts(a(i),b(i))’=false;
trust_maintenance: trusts(a,b) and not(i=distrust(a,b)) =>

trusts(a,b)’=true;

// maintain grants
grant_maintenance: if grants(self,b,r)

and not(trusts_with(self,b,r))
then o’=revoke(self,b,r) and not(grants(self,b,r))’
else grants(self,b,r)’

end if;
end definitions;
implications
end implications;

end component networkPrivateInfrastructure;

Figure 20.5 Private network infrastructure.



332 Chapter 20 System-Level Networking

internal entities with both servers, and (iii) it trusts external entities with only
the public server. These three assumptions allow it to grant access to both servers
to internal requesters and only the public server to external requesters. The fire-
wall is trusted, thus the firewall can act as an arbiter for establishing trust.

The requirements model consists of five terms that represent processing
incoming requests, processing incoming trust assertions and de-assertions, and
maintaining trust and existing resource grants over state change. The first,
request_incoming, processes an incoming resource request. If the node trusts the
requester with the resource, a grant message is issued and the grant is maintained
locally. If the node does not trust the requester, the grant is revoked and the local
record of the grant is negated. It is here that we first see the use of state_based
to move from one system state to the next, based on grants and revocations.

The trust_incoming and distrust_incoming terms are similar to the
request_incoming term. They react to a specific input message and revise trust
relations in the next state. The trust_maintenance term defines when trust is
maintained over state change. When an entity is trusted in the current state, it is
trusted in the next state unless a message has arrived that revokes that trust.

Finally, the grant_maintenance term maintains valid resource grants from
one state to the next. It states that if the trust chain is broken and cannot be
re-established, then the grant is revoked. Otherwise, the grant is kept in place in
the next state. The system is thus required to recheck trust and grant relationships
each time the system changes state.

As an example of how the infrastructure models operate, we can examine theEXAMPLE 20.1
Internal Request for the
Private Server

scenario where an internal agent requests the private server. To initiate the request,
the following message arrives at the private infrastructure’s input:

request(private,internal,private_server)

Assuming that self=private, the message will cause the request_incoming term
to be instantiated as follows:

request_incoming: true and self=self =>
if trusts_with(self,internal,private_server)

then o’=grant(self,internal,private_server)
and grants(self,internal,private_server)’

else o’=revoke(self,internal,private_server)
and not(grants(self,internal,private_server))’

end if;

The implication condition is true and the assumption trusted_internal makes
the if condition true. Therefore the private infrastructure sends the message:

grant(private,internal,private_server)

and asserts:

grants(self,internal,private_server)

in the next state. �



20.1 The Basic Models 333

As an example of how the infrastructure models operate, we can examineEXAMPLE 20.2
External Request for the
Private Server

the scenario where an external agent requests the private server. To initiate the
request, the following message arrives at the private infrastructure’s input:

request(private,external,private_server)

Assuming that self=private, the message will cause the request_incoming term
to be instantiated as follows:

request_incoming: true and self=self =>
if trusts_with(self,external,private_server)

then o’=grant(self,external,private_server)
and grants(self,external,private_server)’

else o’=revoke(self,external,private_server)
and not(grants(self,external,private_server))’

end if;

The implication condition is true. However, the if condition cannot be veri-
fied — it is neither true nor false. Therefore, no message is sent and nothing is
asserted in the next state. The request is ignored. If the internal infrastructure
knew it did not trust the external requester, then a revoke message would have
been sent. �

As a final example of the infrastructure at work, assume that an external requestEXAMPLE 20.3
Establishing Trust with an
External Requester

for the private server is made and the firewall trusts the external requester. This
scenario is modeled by the following two messages:

trust(firewall,external)
request(private,external,private_server)

The first message is processed by process_trust and establishes that firewall
trusts external. Combined with the assumption that private trusts firewall,
it can be established that private trusts external. This would represent a
situation where a VPN link is established between the firewall and the external
requester.

Now the request message is processed as in the previous example. The distinc-
tion is that now it can be established that the external requester can be trusted with
the private server: private trusts firewall and trusts anyone firewall trusts
with private_server. The if condition is thus satisfied and the grant is pro-
cessed as it was in the first example. �

The firewall component in Figure 20.6 is nearly identical to the
networkPrivateInfrastructure model, with the exception that it assumes ini-
tial trust only in the private infrastructure. It does not trust the external infras-
tructure in any way initially. Incoming requests are handled in exactly the same
manner, except that initially the firewall controls no resources. Thus, requests for
resources to the firewall will go unanswered. The firewall is perfectly capable of
establishing trust with other agents — its primary function.
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use network_entities();
component firewall

(i::input message; o::output message;
self::design id)::state_based is

begin
assumptions

trusted_firewall: trusts(self,private);
end assumptions;
requirements

// incoming request
request_incoming: request?(i) and a(i)=self =>

if trusts_with(self,b(i),r(i))
then o’=grant(self,b(i),r(i))

and grants(self,b(i),r(i))’
else o’=revoke(self,b(i),r(i))

and not(grants(self,b(i),r(i)))’
end if;

// incoming trust and distrust. Can assert trust between
// any nodes
trust_incoming: trust?(i) => trusts(a(i),b(i))’=true;
distrust_incoming: distrust?(i) and trusts(a(i),b(i)) =>

trusts(a(i),b(i))’=false;
trust_maintenance: trusts(a,b) and not(i=distrust(a,b)) =>

trusts(a,b)’=true;

// maintain grants
grant_maintenance: if grants(self,b,r)

and not(trusts_with(self,b,r))
then o’=revoke(self,b,r) and not(grants(self,b,r))’
else grants(self,b,r)’

end if;
end requirements;
implications
end implications;

end component firewall;

Figure 20.6 Firewall infrastructure.

The public infrastructure defined in Figure 20.7 differs from the private infras-
tructure in that it trusts everyone, but it has no resources to grant. Thus, the trust
relationships are not particularly useful.

20.2 Composing System Models

Figure 20.8 defines the composition of the functional requirements model, the
access control requirements model, and either the public or private infras-
tructure models. The parameter public selects the infrastructure model. Here
inInfrastructure(true) composes the network functionality and security con-
straintswiththepublicinfrastructuremodel.Incontrast,inInfrastructure(false)
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use network_entities();
component networkPublicInfrastructure

(i::input message; o::output message;
self::design id)::state_based is

begin
assumptions

trusts_all: forall(x::id | trusts(self,x));
end assumptions;
definitions

// incoming request
request_incoming: request?(i) and a(i)=self =>

if trusts_with(self,b(i),r(i))
then o’=grant(self,b(i),r(i))

and grants(self,b(i),r(i))’
else o’=revoke(self,b(i),r(i))

and not(grants(self,b(i),r(i)))’
end if;

// incoming trust and distrust.
trust_incoming: trust?(i) => trusts(a(i),b(i))’=true;
distrust_incoming: distrust?(i) and trusts(a(i),b(i)) =>

trusts(a(i),b(i))’=false;
trust_maintenance: trusts(a,b) and not(i=distrust(a,b)) =>

trusts(a,b)’=true;

// maintain grants
grant_maintenance: if grants(self,b,r)

and not(trusts_with(self,b,r))
then o’=revoke(self,b,r) and not(grants(self,b,r))’
else grants(self,b,r)’

end if;
end definitions;
implications
end implications;

end component networkPublicInfrastructure;

Figure 20.7 Public network infrastructure.

use network_entities();
use static_state_based();
facet inInfrastructure(public::design boolean) :: state_based is
m::message;

begin
infra: if public=true

then networkFunction(external,m,m)
else networkFunction(internal,m,m)

end if;
public: networkPublicInfrastructure(m,m,public);
firewall: firewall(m,m,firewall);
private: networkPrivateInfrastructure(m,m,private)

* static_state_based.gamma(networkSecurity());
end facet inInfrastructure;

Figure 20.8 Composite system model.
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composes the network functionality and security constraints with the pri-
vate infrastructure model. Recall that the requirements model defines different
requirements based on the location of the requesting entity.

The default interaction between state_based and static domains moves
the requirements specification to the state_based domain. It is then composed
with the private infrastructure model to define constraints on how resources are
accessed. In effect, the requirements model defines a state invariant over all states.
These requirements behave like assertions, monitoring the behavior of the infras-
tructure.

What this specification does not concern itself with is just as important —
potentially more important than what is specified. No attempt is made to coor-
dinate messages on m, as this is outside the scope of the analysis being performed.
No attempt is made to model timing issues or to model how authentication is per-
formed. This model deals quite simply with the establishment and maintenance
of trust relationships and their effects on resource access. No attempt is made to
deal with implementation issues. As such, this is purely a requirements model.

20.3 Constructing the Analysis Models

The inInfrastructure model defines a configurable model that defines and
composes functional models, constraints, and implementation infrastructure.
Analysis of these models can be achieved using a number of techniques by
moving the inInfrastructure model to a domain that supports analysis. The
state_based model can be moved to a simulation domain, much like previous
examples. However, this would require refinement to the discrete_time domain.
More appropriate here is analysis involving model checking or theorem proving,
due to the logical nature of the specifications.

Constructing the analysis model uses the same type of functor as for the
power-aware example. Here, a state_based model is moved to a model-checking
domain for analysis:

state_based_mc.gamma(inInfrastructure(true));

The resulting model can be analyzed using model-checking techniques to
assure that the invariant is met in each state and to ensure that functional require-
ments involving sequences of states are satisfied.

20.4 Wrap Up

This case study represents a significant departure from digital system design and
looks exclusively at requirements analysis. Previous studies examine the impacts
of local design decisions on system-level behavior. Here, exploring system require-
ments without consideration for implementation technologies is the objective.
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Regardless, the impacts of local design decisions are explored in the context of
system requirements.

The local design decisions explored in this case study are requirements placed
on different network environments and components. Access control require-
ments can be varied, trust models can be altered or changed, and even models
for establishing trust in the system can be changed. Here the local decisions are
not implementation related but are instead requirements related.

What this case study demonstrates is a capability for modeling requirements
sets before an implementation direction is chosen. System design folklore sug-
gests that the cost of fixing an error increases by an order of magnitude for each
design cycle entered prior to discovery of the error. The only thing questionable
about this approximation is whether the cost should increase by only a single
order of magnitude. Thus, the value of exploring requirements to detect errors
and optimize requirements prior to system implementation cannot be overstated.
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