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Abstract

A dynamic model is a model that describes how a system changes in time. In some cases, time is the
only independent variable, and in others, there are additional variables such as those of spatial frames.
Even though the concept of creating a dynamic model, capturing the dynamics of a system, is ubiquitous,
the topic tends to be splintered across numerous disciplines, from mathematical modeling and computer
simulation to more qualitative models for software design and science. Moreover, models have a variety
of representations from the traditional notations of mathematics to diagrammatic, and even immersive
representations. The purpose of this volume is to provide a text that brings together all of these expressions
for dynamic models.

This book emphasizes presenting a “computer science slant” toward the problems of model design,
representation, and analysis. As such, each chapter will be of a tutorial or survey nature, including
mathematical descriptions, pseudocode, and diagrams wherever possible. The idea is to inform the reader
as to how to use the model(s). A Web page with chapter author links will be provided on the CRC Web
site.

The book is novel for the following key reasons:

• Most comprehensive books available on the topic of dynamic modeling—there have been many
books on modeling—tend to be particular to a specific community, rather than cutting across
interdisciplinary lines. This book spans numerous disciplines to educate the reader about the wide
variety of modeling methods available for dynamic systems.

• It provides the readers with pseudocode, diagrams, and methods for representing, simulating, and
analyzing models.

• It brings together theory, foundations, a catalog of model types, as well as applications that use
them. In this sense, the book can be used as a reference guide or in the classroom as a primary text
or as a secondary reference.
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Intended Audience

This book is meant to be a comprehensive and complete reference guide for dynamic modeling. As such,
we expect a very large audience from core disciplines (mathematics, computer science, and physics) to all
science and engineering disciplines. The applications section will inform readers how to apply modeling
methods to several areas.
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Preface

Dynamic system modeling is defined as creating time-dependent models for physical systems. In particular,
we are concerned with digital computer models rather than scale or analog models for dynamic phenom-
ena. This subject matter can be placed, more broadly, within the overall topic of modeling. When we study
a system, we build many sorts of models to describe it, including capturing salient system characteristics
of geometry, information, knowledge, and dynamics. Therefore, dynamics is only one type of a model,
but a vital one if we are to represent how a system behaves and changes state over time. Dynamic system
modeling tends to be highly interdisciplinary. So, one is likely to see practitioners belonging to different
areas from computer science and engineering to philosophy and the life sciences. The topic does not fit
into a singular mold.

Another interesting aspect of dynamic modeling is the range of coverage from the very general to the
very specific. One may build models that capture the dynamics over a wide set of domains. Other models
are more targeted toward one specific domain. For example, a model defining the topological character of
a digital circuit is classified within the domain of electrical engineering; however, a bond graph can also
capture the dynamics of the digital circuit using a more general energy-based specification. The reader
may wonder if it is better to be general or specific when modeling. An underlying thesis of this book is
that one must maintain a balanced approach by understanding specific models on the one hand, while
appreciating generalized dynamic knowledge on the other. This approach naturally results in variety in
modeling in which handbooks excel. Model types have different presentations: some are text-based using
symbols while others have associated diagrams. Also, all models have issues involving connectivity—how
to connect components within models at the same level of abstraction, or how to capture multiple levels
of abstraction or aggregation using varying scales.

This handbook is meant to be an aid to readers interested in dynamic models for the purpose of a
quick “lookup” reference or a more in-depth study in the area of dynamic modeling as a discipline. The
book can also be used within the classroom if the goal is to educate students on variety within model
types and the practice of dynamic modeling. The handbook is organized through an introduction to
dynamic models by way of general issues, representations, and philosophy. This introduction is followed
by modeling methodologies defined as approaches to the modeling process. Modeling methodologies
also contain the topic of how to execute models on a computer once those models have been designed.
The “multiobject and system” section addresses the issues of scale, heterogeneity, and composition. The
next section covers specific model types often characterized by specific visual or text-based grammars.
The section on application domains is primarily concerned with models that tend to be tied to a specific
discipline or a set of closely related subdisciplines. The handbook concludes with case studies using two
well-known commercial packages that support dynamic model construction, simulation, and analysis.

I hope that the reader will obtain useful dynamic model types for an application of interest and will
find that the handbook serves in the capacity of a useful reference whenever it is necessary to consider how
systems function, and are represented, over time and space.

Paul A. Fishwick
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1.1 Introduction

Just as we use natural language to communicate verbally or in writing, we use models as a form of scientific
language to communicate about the world. Models are more compact than natural languages, and tend
to be more structured using mathematical expressions, diagrams, or analog machinery. Morgan and
Morrison (1999) underscore the relevance of models in theory construction as being vital to science:
models mediate between humans and phenomena. We begin the study of dynamic models with a brief
historical review of the word “model” and then we continue with an overview of “dynamic model” as a
subtype. Hodges (2005) provides a concise description of how the word originated as well as different uses
for the word:

In late Latin a modellus was a measuring device, for example to measure water or milk. By the vagaries
of language, the word generated three different words in English: mould, module, model. Often a
device that measures out a quantity of a substance also imposes a form on the substance. We see this
with a cheese mould, and also with the metal letters (called moduli in the early 17th century) that
carry ink to paper in printing. So model comes to mean an object in hand that expresses the design
of some other objects in the world: the artist’s model carries the form that the artist depicts, and
Christopher Wren’s module of St Paul’s Cathedral serves to guide the builders.

Later on, models began to include mathematical forms, in addition to the relatively recent computa-
tional forms (i.e., computer-based text and graphics). All models serve as a convenient substitute for a
phenomenon, but the type of substitution differs slightly depending on the context. For example, a model
house captures the mould legacy since one can imagine a machine that stamps out real houses based on the
model house “mould.” This is an example of using model as an archetype or prototype: the model precedes
the phenomenon. Contrast this use of “model”with the artifact that interests us: the dynamic system model.
This kind of model captures only the behavioral, or dynamic, aspects of the phenomenon, which precedes
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the model. It is possible to see this difference in precedence as the duality of synthesis (i.e., model as proto-
type) and analysis (i.e., model as theory). The idea of dynamic system models as theories might be debated,
but they act in this way, as hypotheses that remain to be proven within the context of real-world phenomena.
This process is known as verification and validation, with verification being assumed to test truth against
requirements and validation to test system behavior against empirical observation. The mathematical
topic of model theory adds to the literature on models, by introducing models of logical formulae.

We will introduce three distinct ways of categorizing models:

• Synthesis: Model X is a model for Y , with X being the prototype and Y being the instance model. The
model house X is a model for a specific house Y . The mapping between X and Y is achieved through
property inheritance, much as derived classes from base classes in object-oriented languages.

• Analysis: Model X is a model of Y , with X and Y being instance objects. For example, the wave tank
is a model of the ocean, or the Petri net is a model of an asynchronous communication network.
The mapping involves a transformation of objects in X to those in Y .

• Theory: The mapping is a model of X , with Y generated as a logical consequence. For example,
for X being the formula ∀x, y(P(x, y) ∧ Q(x) ∧ R(y)), the mapping (P ≡ bigger, Q ≡ whale,
R ≡ human) is a model for X since whales are bigger than humans. Model theory captures this
approach since a model is the mapping itself, rather than an object specified as a model. The model
is the interpretation that makes specific logical formulae true.

1.2 Dynamic System Modeling Examples

Within the prior discussion of model types, dynamic models fall under analysis; however, other model types
(i.e., synthesis and theory) may play subsidiary roles. We may have a set of equations that dynamically
models the population dynamics within an ecosystem, or a diagram that is translated into this set. Our
dynamic models are also “digital” since they are executed on a digital computer. Models can take many
forms as indicated in the examples shown in Figure 1.1.

t1 t2

p2

p1 p3

s0
set_time

Mode_pressed�1

Mode_pressed�1 Mode_pressed�1

s2
set_timer

s1
set_stop

watch

x � � 1 � ax

x � x�

�
�a

1

(a) (b)

(c) (d)

FIGURE 1.1 Four types of dynamic system models. (a) Petri net. (b) Finite state machine. (c) Ordinary differential
equation. (d) Functional block model.
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We observe the following from this illustration:

• Except for Figure 1.1(c), all the models are graphical, which suggests that models can take
many forms. Not only can models look different but they might be made of different media,
in different styles according to metaphor, and using different forms of human–computer
interaction (HCI).

• Figure 1.1(c) and Figure 1.1(d) have almost equivalent semantics, although their syntax is different.
This difference is surfaced through the use of different metaphors that form the structural bases.

• Some models are static in appearance, whereas others have natural dynamics during model execution
as in Figure 1.1(a). This is not apparent from a static figure, but the solid circle moves through the
network.

• Models operate in different scales over spacetime. So, models in Figure 1.1(a) and Figure 1.1(b) have
discrete events and those in Figure 1.1(c) and Figure 1.1(d) operate over a temporal continuum
offering no recognizable events separate from the initial and final conditions necessary for unique
solution.

1.3 Taxonomic Approaches

The field of dynamic system modeling is vast and there has been research in creating theories and
approaches for studying and classifying systems. The initial work in cybernetics (Wiener, 1948; Ashby,
1963) and, subsequently, systems theory (Kalman et al., 1962; Padulo and Arbib, 1974; Bertalanffy, 1968)
provided the context for viewing dynamic systems as control systems with feedback. More recent work has
identified a systems theoretical approach to specific types of systems, such as discrete event (Zeigler et al.,
2000). Other taxonomic approaches are based on a systems philosophy (Klir, 1985; Ören, 1984, 1987) or
a language-based approach (Fishwick, 1995, 1996; Nance, 1995). The latter approach is one that we stress
in this chapter as a way to understand the nature of dynamic models as language components. By treating
the models in Figure 1.1 as “statements” within a language (i.e., the type or category of the model), we are
able to surface a comprehensive approach to the study of dynamic system modeling.

Taxonomies have always played a key role in the way a group perceives what they do. By thinking of a
task in terms of the metaphor of “agent,” one cannot but help envision agents acting in a way similar to
human agents. The metaphor (Lakoff and Johnson, 2003; Lakoff and Nunez, 2000) provides an important
mechanism for reasoning how the model is presented to the user as well as how it operates when executed.
Here are three different ways of viewing models:

• Models as mathematical constructs: Models are mathematical structures, encoded in traditional
textually based mathematical notation.

• Models as physical constructs: Models are physical objects made of organic or engineered materials.
• Models are language constructs: Models are formal languages with syntax, semantics, and pragmatics.

These views are not complete and views may easily be combined; however, the key observation is that
the view taken by someone determines their philosophy about modeling. The adopted views also provide
different emphases: a view of modeling as mathematical construct de-emphasizes human presentation
and interaction, whereas a language view emphasizes presentation and semantics equally, along with how
the human interacts with the symbols. Fortunately, a combination of views fosters a more pluralistic view
of modeling, and allows for mathematical rigor to be combined with human interaction.

1.4 Language

Pinker (1994) begins his manuscript with “As you are reading these words, you are taking part in one
of the wonders of the natural world.” It is amazing that language exists and works as well as it does.
Language provides us with the ability to communicate, and it is pervasive within human societies. The
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interesting thing is that language operates over many levels and layers. The oldest and most prominent
type of language is natural language. However, there are regional dialects, colloquialisms, codes, signs, and
formal languages that grew from mathematics. It is somewhat ironic that while we think of mathematics
as rigorously defined, the semantics of mathematics are fundamentally based on natural language, which
includes the gesticulations of numerous parents and teachers. For example, to know the meaning of
integral, one must know the meaning of summation, and that is ultimately gleaned through examples,
gesture, analogy, and metaphor, all of which are delivered with the assistance of natural language. Still,
natural language is notoriously ambiguous and so if science is to progress, we need other more rule-based
approaches to model building. The consensual agreement in a scientific community of signs and rules is
termed formalism. Formalisms, such as logic-based systems with axioms and rules, tend to minimize the
number of components in an attempt to reduce potential semantic ambiguity.

Semiotics (Noth, 1990) is the theory of language (i.e., or more atomistically of signs) first discussed
in depth by de Saussure (1916). Along with de Saussure, Pierce (Hartshorne and Cambridge, 1997) is
considered to be the theory’s cofounder. de Saussure’s definition of a “sign” is a dyadic structure containing
a signifier and a signified. The signifier, for de Saussure, was primarily phonetic, although one can easily
broaden this perspective to more materialistic interpretations. Pierce invented a triadic view of the sign
with these components: the representamen (i.e., the sign), the object, and the interpretant. He proceeded
to create a somewhat complex taxonomy, but we will focus on what Morris (1925) defined, since his
taxonomy of language has since permeated computing: syntax, semantics, and pragmatics. We will define
these, and place them into the context of dynamic system models:

• Syntax: relation of signifiers to each other—structure of models.
• Semantics: relation of the signifier to the signified—meaning of models.
• Pragmatics: relation of the signifier and signified to the human—interaction of humans with models.

In computing, one normally uses these three terms within the context of computational linguistics for
natural-language processing, or programming languages for formal languages. Figure 1.2 is based on
Morris’ taxonomy with slight simplifications.

The “sign vehicle” represents the complete process where syntax, semantics, and pragmatics can take
place. Let us consider dynamic system models from this perspective.

Semantics

Pragmatics

Syntax

Sign
vehicle

Object
(signified)

Human
interaction

(interpreter)

Sign
(signifier)

FIGURE 1.2 Triangular relationship in sign formation (After Morris, C.W. Symbolism and Reality: A Study in the
Nature of Mind, Benjamin Pub. Co., Philadelphia, PA, 1993.)
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Syntax, semantics, and pragmatics interact in several ways, and looking at these topics from a math-
ematical perspective is enlightening. Since the language of set theory underpins most formalisms, let us
consider syntax as the mathematical structure defined by elements such as variables, tuples, graphs, and
trees. Semantics captures the concept of the relation, or its restriction in the form of function. Pragmatics is
difficult to define mathematically except to note that it involves the human context of doing mathematical
modeling. The syntax/semantics duality exists elsewhere as in architecture: syntax is form and semantics
is function. Syntax, therefore, is concerned not only with structure, but also what the structure looks
and sounds like–its presentation. The essence of semantics is in the act of representation. In the chain of
meaning, we translate from one form to another, and still yet, to another in a seemingly endless set of
transformations. Meaning is generated or induced through these transformations, where an increasing
knowledge level provides the human with understanding. This is true of dynamic system models as well
since we translate from one model to another model, and eventually to behavior. Whether a specific model
is viewed as syntax or semantics is relative to the goal of the modeling exercise. A mathematical equation
may be viewed as the semantic specification for a diagrammatic model, or it may be viewed as the syntax
where the semantics are defined in a programming language such as C++ or Java.

The leading edge for language development in computing has evolved from programming languages, and
currently manifests itself in the area of the semantic Web (Berners Lee et al., 2001), which is an extension
and evolution of the World Wide Web (WWW). The Web provides a comprehensive infrastructure for
discussing the three categories of language for both natural and formal languages. The original Web focused
on markup for human consumption with regard to the underlying semantic content. The semantic Web,
by contrast, is concerned with the development of ontologies (Maedche, 2002), which can be defined
as an evolutionary structure beginning with the concept of a glossary, proceeding to a taxonomy, and
gradually maturing into a semantic network complete with logical axioms and formulae that can be used
for reasoning. The semantic Web begins with the extensible markup language (XML) and contains a slew
of additional languages for transformation using extensible stylesheet transformation (XSLT). XML is
described as being used for communication among machines, whereas one may present XML using a
variety of methods to humans using XSLT, for example. It may seem odd that XML is humanly readable
for a language meant for consumption by machines; however, humans must still cooperate with each other
first in standardizing the structure. Also, while the Web maintains its early vestiges of “document markup,”
the documents have become full-fledged objects in their own right and the metaphor of “documentation”
seems outdated. For ontology specification, there is the resource description language (RDF) and the
ontology Web language (OWL). The semantic Web represents a new way of thinking about system models
using the three categories.

1.5 Syntax

Syntax is concerned with notation: the way a system model looks; however, we might expand this to the
other senses. For example, parts of the model may be associated with a sound or a tactile sense. For
the graph-based models in Figure 1.1, we realize that the icons are positioned in certain ways, and with
regularly specified connections. This is part of the syntax of the model: how we sense and organize the
signs that comprise the model structure. The semantic Web has dramatic consequences for the way in
which we think about dynamic system models. In the original Web, as in most traditional media, the
artifact in Figure 1.1(c) would have been considered to represent the raw mathematical expression. Within
the parlance of the semantic Web (i.e., hereafter referred to as the “Web”), however, this figure is one
presentation of the underlying content. There are multiple presentations for the same content. The content
of Figure 1.1(c) is expressed in the mathematics markup language (MathML) defined in Figure 1.3.

From the Web’s perspective, this represents the “real” mathematics, and model artifacts such as
Figures 1.1(c) and Figure 1.1(d) are viewed as alternate presentations of this machine-readable content.
There are equally as expressive XML languages for other dynamic system models (Kim et al., 2002), and
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<math>
<apply>

<eq/>
<apply>

<diff/>
<bvar>

<ci>t</ci>
</bvar>
<ci>x</ci>

</apply>

<apply>
<minus/>
<cn>1</cn>
<apply>

<times/>
<ci>a</ci>
<ci>x</ci>

</apply>
</apply>

</apply>
</math>

FIGURE 1.3 Content MathML for dx
dt = 1 − ax.

0 1 2 3

STATE D 0 1 2

STATE C 0 1 2

STATE B 0 1 2

STATE A 0 1 2

L U

RD

0 0

0 0 1

1

1 1

2

2
2

2

State: left Input: 2

aa b

cd

0 0

00
1

1

1 1
2

2

d

(a) (b)

(c) (d)

FIGURE 1.4 Four interpretations of the same state machine. (a) Christina Sirois. (b) Tim Winfree. (c) Brett Baskovich.
(d) Emily Welles.

for most model types one generally finds researchers on the Web who are pioneering their own XML
applications.

Figure 1.1 shows example presentations of dynamic models; however, we are not limited to two dimen-
sions, the use of a single color, or a digital medium (i.e., as long as the interaction can be communicated
digitally) (Fishwick, 2006). For example, Figure 1.4 demonstrates the creative application of students in a
computer simulation class being given a canonical iconographic representation of a finite state machine
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(FSM) and then being allowed to create different representations for both the model itself (left-hand side)
and the behavior of the model (right-hand side). This concept mirrors Minsky’s (1988) adage of knowing
something “in more than one way.” It also captures the importance of multiple representations discussed
in mathematics education (Kaput, 1989).

In viewing these models, we are ultimately led to think about which presentations would be used under
which circumstances. This modeling aspect is covered in Section 1.7. Besides capturing the syntax of signs
such as d

dt , the other key area of syntax is in specifying rules for which icons can appear next to each other,
and in what order, or using which types of connectors. For example, given the Petri net in Figure 1.1(a),
where is the rule which states that Petri net transitions (i.e., the “t” identifiers) must be connected to places
(i.e., the “p” identifiers)? For this, as in natural language, we need a grammar. In semiotics, the difference
between the raw syntactic connections and grammar is captured, respectively, by the terms syntagmatic
and paradigmatic (Chandler, 2002). For English, we have paradigms such as “noun” and “verb,” and for
Petri nets, we have “place” and “transition.” Grammars can be expressed in XML, but simpler notations
based on the Backus-Naur Form (BNF) capture the grammar. For example,

<eqn> ::= <diff> = <expr>
<num> ::= 0 | 1 | ... | 9
<var> ::= x | y | z
<diff> ::= D( <var> )
<expr> ::= <expr> + <term> | <expr> - <term> | <term>
<term> ::= <term> * <factor> | <factor>
<factor> ::= ( <expr> ) | <var> | <diff> | <num>

represents a grammar that can parse the equation in Figure 1.1(c) along with many other equations. This is
not a particularly robust grammar since it is limited to restricted equational forms; there are no functions
aside from “D,” and only single digit numbers. However, it serves the purpose of exemplifying the BNF. The
tokens in angle brackets are nonterminals and the other tokens are terminals. Only nonterminals appear
on the left-hand side of a rule. “|” is logical disjunction. The most powerful aspect of this grammar is its
use of recursion in defining expressions. “D” is the differential operator, presumed to be defined relative
to “t” so that D(x) ≡ dx

dt .
The study of grammars obtains significant headway in computing as a result of Chomsky’s (1956)

hierarchy, which defines different types of grammars according to their relative power (regular, context-
free, context-sensitive, and unrestricted). The unrestricted grammars generate recursive languages. In
practice, the context-free type of language is the most common and easily implemented.

Nontext models in Figure 1.1 can be formalized with graph grammars that follow the same approach
as the expression grammar. However, instead of terminal separators such as whitespace and newline, one
uses spatial relations such as “connected to.” It is not particularly common for newly introduced system
model structures to come with formally specified grammars. This may seem odd, although this condi-
tion may be partially due to the different historical paths taken by systems modeling and programming
languages.

1.6 Semantics

If syntax is form and structure, not only of content and the presentation of the content, then semantics is
about function and meaning. Semantics and syntax are intertwined in that functional semantic mappings
involve taking one form of syntax and manifesting another. In this sense, semantics is syntax that is
presumed to be more uniformly understood. To understand what X means, define X in terms of Y where Y
is better understood by a given population. The essence of this translation lies with the mapping processes
inherent within sign formation. Thus, the mapping of XML content to presentation is a semantic act
in itself even though the source and target structures have their own syntax. The topic of behavior in
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language can be considered to be part of semantics. The argument for this view begins with the core
notion of computability: input to a machine, system, or model that undergoes state and event changes
resulting in output. From the standpoint of a program, it makes no difference whether the input and
output are different models or signals since this is a matter of encoding and decoding. In the semiotic
sense, the “box” separating input and output is the sign vehicle and so one may view the output from the
box, whether structural or signal in nature, as being part of semantics.

Meaning is often associated, at least in informal languages, with two concepts: denotation and con-
notation. Denotation is what a sign formally represents: the relation of signifier to signified. However,
connotation is a kind of secondary meaning attributed to signs. When one looks at a Petri net (Peterson,
1981), there may be the thought of biological cells splitting and joining. This “meaning” is secondary to
the formal semantics, and yet through metaphor allows the modeler to better understand the modeling
mechanism. Finer threads of meaning could result from someone seeing a blue-colored square icon and
thinking of a blue sky or a familiar road intersection reminiscent of a square shape. In semiotics, these
kinds of associations are discussed at length by Barthes (1977). Perhaps, a more uniform way of viewing
semantics is that a model may have multiple threads or connections to other concepts, as well as models,
and that some of these connections are more pronounced depending on the human interpreter. Thus, the
denotation is the primary, or the most used, reference.

The way that meaning is defined varies substantially based on community and discipline. Possibilities
for defining meaning include

1. Natural language: while informal and sometimes ambiguous, natural languages such as English are
widely used in textbooks and journals where computational models are being defined.

2. Pseudocode: a more constrained form of natural language frequently used to define semantics.
3. Computer language: a language such as assembly language, Java, C++, or FORTRAN may serve

well to define what an artifact means.
4. Mathematics: this is a textual language that, while undergoing change, tends to have standard

notations (Cajori, 1993), which reduce the risk of ambiguity.

Frequently, natural language is interspersed with diagrams and textual mathematics to clarify what a
modeling component “means” and how the coupled components can be legally connected together. For
example, a Petri net model can be defined as a four-tuple NET = <P, T , I , O>, but then natural language
is necessary to define how these symbols are supposed to be understood. Without the natural language,
the symbols and their corresponding functions would literally make no sense. It is possible to have a purely
mathematical explanation, and yet very little is learned unless the explanation is described or related to
an example. Even though the Petri net might be seen as a purely algebraic construct without any further
attributed meaning, the visual presentation of Petri nets has come to be associated with what the Petri net
actually means, and as a guide to its operational characteristics. The Petri net is composed of places and
tokens. The tokens move around the network. So far, this is a fairly straightforward metaphor that relies
on a mathematical map involving the functions I and O. I and O are visually associated with object (i.e.,
token) motion. There is another biologically inspired metaphor of joining or splitting that is required to
complete the modeler’s understanding of what it means to execute the net. In the case of the Petri net,
these metaphors are naturally associated with generating meaning.

In the fields of programming languages and software engineering, semantics are associated with formal
methods (Winskel, 1993), where one uses languages that are based on either lambda calculus or first-order
logic, with set theory underlying both. For system dynamics models, we can use systems theory which
similarly relies on set theory but is more tuned to defining temporal change. System models are viewed
semantically in terms of changes in states, events, and flow among interconnected functions, possibly
involving feedback. Consider the formal semantics for Figure 1.1(d):

x(t) =
∫

x′(t)dt

x′(t) = 1 − ax(t)
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It represents the original model using another syntactical form that has a more standardized, and more
widely accepted, meaning and so we term it the semantics of Figure 1.1(d).

For dynamic models involving discrete events, one may use a variety of semantic specifications.
For example, the discrete-event system specification (DEVS) (Zeigler et al., 2000) is defined as a
tuple <I , S, O, δint , δext , λ, ta>, where

• I and O represent the set of input and output values, respectively.
• S is the set of system states
• δint : S → S is the internal transition function
• δext : Q × I → S is the external transition function, where Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total

state set, and e the time elapsed since the last transition.
• λ : S → O is the output function
• ta : S → R+

0,∞ defines the time advance function.

DEVS extends traditional systems theory with the semantics of event transition, with key differences being
the addition of an internal transition function δint and events associated with elapsed time dictated by the
ta function. Another event-based semantic language is based on the event graph model (Schruben, 1983;
Buss and Sanchez, 2002) where the time advance function of DEVS, for example, is constructed at a layer
beneath the definition of event causality (i.e., specific events and their times are behavioral artifacts of
event causality).

A concern for formal methods is how they are actually implemented. The degree of meaning ascribed to
a formalism is based on shared consensus for its notation, and even shared consensus is problematic since
there are layers of machine implementation that form the “real meaning.” One approach to address this
is to define semantics at a lower machine level where the semantics of the formalism are one step closer to
hardware implementation. For example, consider the necessary circuit for an FSM of the Moore variety
depicted in Figure 1.5. This “next state” logic for this machine is termed “FSM synthesis” in digital design,
and can be manually accomplished through a Karnaugh map, which leads to an expression in Boolean
algebra suitable for translation to a combinational circuit. The clocked register stores the state, which is
then fed back into the combinational box. Other types of dynamic system models have direct correlations
at the hardware design level, facilitating a rigorous and formal understanding of their behavior. If there is
a shared understanding of the nature of digital circuits, this can lead to a clearer understanding of system
semantics.

The realization that model meaning and sign chains are accomplished through transformation leads
us to the study of the nature of the transformations themselves, which can be seen as either intra-
or intermodel. As discussed, the set-theoretic concepts of relation and function lie at the heart of the
transformation process. We have the following possibilities, among others: (1) linear chains forming a
graph and (2) encapsulation forming a hierarchy. Making models work at both levels is challenging (Zeigler,

Input Output

Current state

CLK

Sequential logic
(state register)

Combinational
logic

(next state)

Combinational
logic

(output)

FIGURE 1.5 FSM Moore machine semantics.
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1990; Mosterman and Vangheluwe, 2004; Fishwick and Zeigler, 1992) and there are several higher-level
approaches to mapping. It is possible to create a mathematical morphism linking structures or use a
method such as graph transformation, or a production system containing rules. The mapping itself may
preserve structure, behavior, or neither. While it may be convenient to consider complete preservation
when dealing with semantic mappings, each representation may have slightly different connotations,
complicating the notion of identical levels of meaning. A classic example of this is in models that have a
diagrammatic presentation. These models are laden with spatial metaphors that may be missing from a
text-based model from which a transformation is occurring.

The semantic Web plays a key role in the definition of semantics and how semantics may be practically
encoded. In particular, the construction of an ontology (Maedche, 2002; Fishwick and Miller, 2004; Lacy
and Gerber, 2004) can span everything from a simple index or taxonomy to a semantic network that also
defines a series of simple and complex logical constraints. The application of ontologies to modeling will
gradually result in model taxonomies that are capable of being queried or processed. Models can then be
more easily related to one another, possibly through morphism and transformation. With regard to the
latter, XSLT offers one approach to generating one model from another using a pattern-based language.

1.7 Pragmatics

Pragmatics introduces the human into the mixture of model structure, transformation, and execution.
Broadly speaking, pragmatics makes itself apparent in any computer-based task through topics found in
areas such as HCI, pervasive computing, tangible computing, and virtual environments. By reviewing the
methods in these areas of study and asking how these methods can be used in the practice of modeling,
we find an abundance of approaches to how humans can interact with models.

When seeking answers as to how pragmatics affects modeling, we need to address the following:

• Purpose: What is the goal of creating the model? In what larger context is the model being
designed, tested, and evaluated? Is the model to be used for science, engineering, education, or
for entertainment? Are there multiple goals to be achieved?

• Context: Is the model part of a larger model that includes the human? This kind of situation is
associated with experiments where the experimental apparatus can be simultaneously viewed as
being yet another higher-level model or a form of pragmatics.

• Decision making: How does one build a model to facilitate human planning and decision mak-
ing (Sage, 1977)? What support tools are available to assist the human in choosing the right model
for the goals of a project?

• Analysis: To what extent is there an adequate set of tools and methodologies to support
analyzing the model either via the process of verification or validation (Overstreet and Nance,
1985; Balci et al., 1990)?

• Interaction: What modalities are employed to allow the human to interact with the model? Is the
model to be purely digital, or rather a hybrid analog/digital artifact? How will the human experience
the model: can they touch it, move it around, or hear it (Singhal and Zyda, 1999; Burdea and Coiffet,
2003)? Is the model interacted with over the Web (Page et al., 2000) or using other more exotic
interfaces? Is the model construction process collaborative or accomplished in phases?

• Culture: Are there modeling modes that encourage customization or personalization of a model
structure depending on the individual or group that needs to model? Is a balance between form and
function evident in the modeling practice?

1.8 Summary

We have presented the concept of dynamic system models as languages. As seen through this particular lens,
models have structure (syntax), meaning and behavior (semantics), and a relationship with the human
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(pragmatics). As with any taxonomy, we are promoting a different way or world-view for viewing the
modeling practice. As such, using language we are naturally led to linkages that other taxonomies might
not stress. For example, the language focus suggests a concrete connection to media, communication, and
human interaction. With language, there is a requirement to formalize not only the model semantics but
also the textual or graphical syntax that defines legal model structures of a particular sort. One might also
view the language orientation as a return of sorts to an understanding of system models that is closer to
computer science or possibly to cybernetics, where the language and communication emphasis tends to
be pronounced.
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2.1 Introduction

In this chapter we begin by introducing a notion of analogy-making that is considerably broader than
the normal construal of this term. We argue that analogy-making, thus defined, is one of the most
fundamental and powerful capacities in our cognitive arsenal. We claim that the standard separation of
the representation-building and mapping phases cannot ultimately succeed as a strategy for modeling
analogy-making. In short, the context-specific representations that we use in short-term memory—and

2-1



2-2 Handbook of Dynamic System Modeling

that computers will someday use in their short-term memories—must arise from a continual, dynamic
interaction between high-level knowledge-based processes and low-level, largely unconscious associative
memory processes. We further suggest that this interactive process must be mediated by context-dependent
computational temperature, a means by which the system dynamically monitors its own activity, ultimately
allowing it to settle on the appropriate representations for a given context.

It is important to be clear about the goals of this chapter. It is not intended to be a review of computational
models of analogy-making. For such a review, see, for example, Hall (1989), Gentner et al. (2001), French
(2002), or Kokinov and French (2003). Rather, I will present a particular class of models developed,
in the main, by Hofstadter and colleagues from the mid-1980s, in which dynamic, stochastic control
mechanisms play a defining role. This, of course, is not to say that no other computer models of analogy-
making incorporate dynamic control mechanisms. Certainly, for example, the settling mechanisms of
Holyoak and Thagard’s (1989) ACME, a constraint-satisfaction connectionist model, or the mechanisms
of dynamic binding over distributed representations of Hummel and Holyoak’s (1997) LISA model, are
dynamic. The models by Gentner and colleagues (e.g., Gentner, 1983; Falkenhainer et al., 1989; Forbus
et al., 1995) clearly have dynamic mechanisms built into them. Why, then, do I choose to discuss the
Hofstadter family of models?

Several points set these models apart from all others (with the exception of a model, independently
developed by Kokinov (1994) that adopted a similar design philosophy). One key principle is the eschewal
of hand-coded representations. Instead, these programs rely on a dynamic feedback loop between
the program’s workspace and its long-term semantic memory that allows it to gradually converge on
context-appropriate representations. This architecture was explicitly designed to allow scaling up with-
out combinatorial explosion. The second key feature was the use of a context-dependent computational
temperature function that mediated the degree to which the activity of the program was deterministic:
the higher the temperature, the more random the program’s choices became. Temperature is a measure of
the overall quality of the structures perceived and as that structure becomes more and more coherent, the
temperature gradually falls and the program settles into a set of coherent, stable representations. When
the temperature is low enough, the program will stop.

2.2 Analogy-Making as Sameness

Before entering into a discussion of the dynamics of computational modeling of analogy-making, we must
first make clear what we mean analogy-making. Frequently, what is understood by analogy-making is the
classic, but more restricted, Aristotelian notion of proportional analogies. These take the form “A is to B as
C is to D.” For example, “Left is to right as up is to down” is an example of this kind of analogy. While this
is certainly part of the story, I will take a broader view of analogy-making, one originally adopted, among
others, by Hofstadter (1984), Mitchell and Hofstadter (1990), Chalmers et al. (1992), Mitchell (1993),
French (1995), Hofstadter et al. (1995), and Kokinov (1994). In this view, analogy-making involves our
ability to view a novel object, experience, or situation that belongs to one category as being the same as
some other object, experience, or situation, generally belonging to another category. This view is summed
up by French (1995, p. xv) as follows:

If only by definition, it is impossible for two things, any two things, to be exactly the same. And yet,
there is nothing puzzling or inappropriate about our everyday use of the word “same.” We see nothing
odd or wrong about ordinary utterances such as: “That’s the same man I saw yesterday at lunch,” or
“We both wore the same outfit,” or, “I felt the same way when Julie and I broke up,” or, finally, “That’s
the same problem the Americans had in Vietnam.” What makes all these uses of “the same” (and this
one, too) the same?

The answer is: analogy-making. . . . . Since no two things are ever identical, what we really mean
when we say “X is the same as Y,” is that, within the particular context under discussion, X is the
counterpart of Y. In other words, X is analogous to Y.
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This way of looking at analogy-making, unlike the classic view of proportional analogy, allows us to
speak of a continuum of analogy-making. This continuum runs from simple recognition—an apple we
have never seen before is recognized as being a member of the category Apple because it is “the same
as” other apples we have seen before—to deep “structural” analogies where elements in one situation
are mapped to completely dissimilar elements in another situation—a fellow baseball player once said of
homerun king, Hank Aaron, “Trying to sneak a fastball by Hank Aaron is like trying to sneak the sun
past a rooster.” In this analogy, Hank Aaron is mapped, completely naturally, to a rooster, and fastballs
are mapped to the sun, even though, under normal circumstances, roosters have precious little to do with
Hank Aaron and fastballs have even less to do with the sun.

2.3 Analogy-Making as a Means of “Bootstrapping’’ Cognition

The ability to see new things as being already familiar things with a twist is, unquestionably, one of the
most powerful tools in the human cognitive arsenal from early infancy to adulthood. This ability to use
analogies to understand novel situations allows infants (and adults in unfamiliar settings) to “bootstrap”
new knowledge based on previously learned knowledge. In short, analogy-making allows us to comprehend
new situations by seeing them as being“the same”as familiar situations that we already know how to handle,
even if they require a bit of behavioral fine tuning.

In its simplest form, analogy-making involves finding a set of correspondences between a “base” object
(or situation, experience, etc.) and a corresponding “target.” For example, you understand the statement
“A credit card is like a check book,” because, even though credit cards do not physically resemble check
books in the least, you effortlessly extract the appropriate parts of the representations of both—in this
case, attributes related to their monetary function—and bring them into correspondence.

Young children, as we have said, constantly engage in analogy-making of the most complex kind.
A perfectly run-of-the-mill example was provided one day by my not-yet-3-year-old son. He lightly touched
the front bumpers of two of his little toy cars together and told me,“The cars are giving each other a little kiss,
Dada.” What most people fail to realize, because it happens so often and seems so completely natural—“Of
course little kids say things like that! It’s so cute!” remarked one of my friends, thoroughly unimpressed—is
that his remark constitutes an amazing cognitive leap for a 2 year old. Think of the machinery put into play
for him to have made that remark: people must be mapped to cars, a car’s front bumpers to lips, touching
them together lightly (as opposed to slamming them together) constitutes “a little kiss,” etc.

2.4 The Necessity of Malleable Representations

Well over a century ago, William James (1890) recognized just how malleable our representations of the
world had to be:

There is no property ABSOLUTELY essential to one thing. The same property which figures as the
essence of a thing on one occasion becomes a very inessential feature upon another. Now that I
am writing, it is essential that I conceive my paper as a surface for inscription . . . . But if I wished
to light a fire, and no other materials were by, the essential way of conceiving the paper would
be as a combustible material . . . . The essence of a thing is that one of its properties which is so
important for my interests that in comparison with it I may neglect the rest . . . . The properties which
are important vary from man to man and from hour to hour . . . . many objects of daily use—as
paper, ink, butter, overcoat—have properties of such constant unwavering importance, and have
such stereotyped names, that we end by believing that to conceive them in those ways is to conceive
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them in the only true way. Those are no truer ways of conceiving them than any others; there are only
more frequently serviceable ways to us. (James, 1890, pp. 222–224)

This point, largely overlooked throughout the heyday of traditional artificial intelligence (AI), was reit-
erated by Chalmers et al. (1992). They apply James’ key insight to the domain of analogy-making and
provide a number of examples to illustrate their point.

Consider, they say, deoxyribonucleic acid (DNA). There is an obvious—physical—analogy between
DNA and a zipper. Here, we focus on two strands of paired nucleotides “unzipping” for the purposes
of replication. A second analogy—focusing on information this time—involves comparing DNA to the
source code of a computer program. What comes to mind now is the fact that information in the DNA gets
“compiled” into enzymes, which correspond to machine code (i.e., executable code). In the latter analogy,
the focus of the representation of DNA is radically different: the DNA is seen as an information-bearing
entity, whose physical aspects, so important to the first analogy, are of virtually no consequence. While
we obviously have a single rich representation of DNA in long-term memory, very different facets of
this large, passive representational structure are selected out as being relevant, depending on the pressures
of a particular analogy context. The key point is that, independent of the vast, passive content of our
long-term representation of DNA, the active content that is processed at a given time is determined by a
very flexible representational process.

But one might argue that examples of this kind do not really prove much of anything. One might
claim that they are vanishingly small in number and, therefore, need not be taken into consideration
when attempting to model the broad sweep of cognitive mechanisms, any more than one must worry
about monotremes (i.e., egg-laying mammals, like the duck-billed platypus) when discussing mammals,
in general.

For this reason, we consider the representation of an utterly ordinary object—in this case, a credit card—
and demonstrate that the representational problems encountered for DNA also exist for this ordinary
object, and, by extension, any real-world object that we try to represent. We will consider a number of
simple statements involving a “credit card” that will serve to illustrate how fluidly our representational
focus changes depending on the analogy we wish to make. All of the following utterances are perfectly
ordinary and easy to understand (for us humans):

A credit card is like:

• money (here, the representational emphasis is on its function)
• a check book (again, an emphasis on its function)
• a playing card (emphasis on its size, shape, and relative rigidity; function becomes unimportant)
• a key (a thief can slide it between the door-stop strips and the door frame to open the door)
• a CD (bits of information are stored on its magnetic strip; bits of information are stored on the CD)
• a ruler (emphasis on its straight edges)
• Tupperware (both are made of plastic)
• a leaf (drop one from a high building and watch how it falls)
• a Braille book (emphasis on the raised letters and numbers on its surface)
• the Lacoste crocodile (emphasis on its potential snob-appeal)
• a suitcase full of clothes (advertising jingle: “You can travel light when you have a Visa card . . .”)
• a ball-and-chain (rack up too much debt on one and its like wearing one of these . . .)
• a letter opener (emphasis on its thin, rigid not-too-sharp edge)
• a hospital, a painting, a pair of skis, a Scotsman’s kilt, etc. (left to the reader).

The point should by now be clear: With a little effort, by focusing on particular aspects of our passive
long-term memory representations of “credit card” and the object to be put into correspondence with it,
we can invariably come up with a context for which the two objects are “the same.” In short, given the
right contextual pressure, we can see virtually any object as being like any other.

We will now describe a process, which we call dynamic context-dependent representation-building, by
means of which the analogical alignment between two objects (or experiences or situations, etc.) takes place
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in a progressive fashion, involving a continual interaction between long-term (passive) memory and work-
ing (active) memory. Most importantly, we claim that this dynamic process is machine-implementable,
thereby allowing a machine to develop representations without the guiding hand of a programmer who
knows ahead of time the analogy that the machine is supposed to produce.

2.5 The Dynamics of Representation-Building in
Analogy-Making

The representation of anything is, as I hope to have shown, highly context-dependent. Unfortunately,
however, the early work of computational modeling of cognition was dominated by a far more rigid view
of representations, one which Lakoff (1987) has called objectivism, described as follows:

On the objectivist view, reality comes complete with a unique correct, complete structure in terms of
entities, properties and relations. This structure exists, independent of any human understanding.

Were this actually the case, a universal representation language and independent representation modules
would make sense. “Divide and conquer” strategies for making progress in AI would be reasonable, with
some groups working on the “representation problem” and other groups independently working on how
to process representations.

We argue, however, that such a division of labor is simply not possible (Chalmers et al., 1992; Mitchell,
1993; Hofstadter et al., 1995: French, 1995, 1999), at least in the broad area of computational modeling of
analogy-making. While analogy-making does, indeed, consists of representing two situations and mapping
the corresponding parts of each of these representations onto one another, these two operations are neither
independent nor sequential (i.e., first, representation, then mapping). Representation and mapping in real
analogy-making are inextricably interwoven: the only way to achieve context-appropriate representations
is to continually and dynamically take into consideration the mapping process. And conversely, to produce
a coherent mapping, the system must continually and dynamically take into consideration the represen-
tations being processed. In other words, representations depend on mapping and vice versa and only a
continual interaction of the two will allow a gradual convergence to an appropriate analogy.

The inevitable problem with any dissociation of representation and mapping can be summed up as
follows. The complete representation of any object must include every possible aspect of that object, in
all possible contexts, to be able to produce the vast range of potential analogies with other objects. Now,
presumably, we have stored in our long-term memory just this kind of megarepresentation of all the
objects, situations, experiences, etc., with which we are familiar. The problem is, though, that, even if
it was possible (or desirable) to activate in working memory the full megarepresentations for both the
base and target objects, the very size of these representations would produce a combinatorial explosion of
possible mappings between them. To determine precisely which parts of each megarepresentation mapped
onto one another would require a highly complex process of selection, filtering, and organizing of the
information available in each representation. But in that case, we are back to square one, because the
very reason for separating representation from mapping was to avoid this process of mapping-dependent
filtering and organizing! In contrast, if, to avoid the problem of this combinatorial explosion of mappings,
you use smaller, reduced representations of each object, then the obvious question becomes, “On what
basis did you reduce the original representation?” And this basis has been, almost invariably: the mapping
that is to be obtained by the program!

The problem then is: How do we arrive at the “right” representations that allow us to map people to cars,
famous baseball players to roosters, and credit cars to kilts? We suggest that representations must be built up
gradually by means of a continual interaction between (bottom-up) perceptual processes and (top-down)
mapping processes. If a particular representation seems approximately appropriate for a given mapping,
then that representation will continue to be developed and the associated mappings will continue to be
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made. If, however, the representation seems less promising, then alternative directions will be explored by
the bottom-up (perceptual) processes. These two processes of representation-building and mapping are
interleaved at all stages. In this way, the system gradually converges to an appropriate analogy, based on
overall representations that dovetail with the final mappings.

2.6 Context-Dependent Computational Temperature

The entire representation-building/mapping process is dynamically mediated by a feedback loop (context-
dependent computational temperature, Hofstadter, 1984; Mitchell and Hofstadter, 1990; Mitchell, 1993;
French, 1995) that indicates the quality of the overall set of representations and mappings that have
been discovered. It is important to distinguish context-dependent computational temperature from the
temperature function that drives simulated annealing, as described in Kirkpatrick et al. (1983). The former
depends on the overall quality of the representational structures and mappings that have been built between
them, whereas the latter is based on a preestablished annealing schedule.

The role of temperature is to allow the system to gradually, stochastically settle into a “high-quality” set
of representations and mappings. It measures, roughly speaking, how willing the system is to take risks. At
high temperature, it is very willing to do so, to abandon already created structures, to make mappings that
would, under normal circumstances, be considered implausible, etc. Conversely, at low temperature, the
program acts far more conservatively and takes few risks. This all-important mechanism will be discussed
in greater detail later in this chapter. Suffice it to say, for the moment, that temperature is inversely
proportional to the program’s perception of the overall quality and coherence of the representations and
mappings between them. As these representations and mappings gradually improve, the temperature falls.
With each temperature, there is a probability that the program will stop and select as “the analogy” the set
of mappings that it has developed up to that point. The lower the temperature, the more probable that the
program will conclude that it has found a set of good representations and mappings and stop.

Note that the use of a dynamic, context-sensitive computational temperature function is not limited to
the computational modeling of analogy-making. For example, in the area of human mate choice, French
and Kus (2006) have built a model centered on context-sensitive computational temperature applied
to individuals in a population. They likened this variable (actually, the inverse of it) to an individual’s
choosiness in picking a mate: the higher the temperature, the less choosy an individual is about his/her
mate; the lower the temperature, the more choosy.

2.7 Interaction between Top-Down and Bottom-Up Processes:
An Example

Let us begin by illustrating what we mean by this interaction between top-down and bottom-up processing
that, we claim, is the way for a system to converge to context-appropriate representations and mappings for
an analogy. The example below actually occurred. I was asked to review a paper and I accepted. But, unfor-
tunately, I was unable to complete the review on time. Finally, the Action Editor contacted me and said,
“I need your review quickly.” I thought,“OK, I’ll put the paper to review in plain sight next to my computer
keyboard. Its continual presence there will goad me into getting it done.” I wanted to describe my strategy
to the editor (a friend) in a more creative way than simply saying, “The paper is right next to my computer
which will constantly remind me to get it done.” I chose to resort to an analogy. Below is my thought process
as I recorded it immediately afterward (Figure 2.1). Notice that there is nothing out of the ordinary about
this process—in fact, it is a completely everyday cognitive occurrence—but it clearly illustrates the back-
and-forth switching between bottom-up, stochastic processes and top-down, knowledge-based processes.

The problem, then, is to find an analogy with the base situation: “Putting the paper in plain sight, so as
to continually remind me to get the review done.”
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Top-down: Semantic, rule-based, conscious part of network

Bottom-up: Stochastic “subcognitive” part of network

“Something that won’t go away until you’ve taken care of it”

No, too intimate
to relate a paper
to review to a
hungry child

No, too easy to
just scratch it;
papers are
hard to review You can’t

make them go
away, ever

Until you get
up and swat it,
it NEVER stops
buzzing!

Removing
dandelionsScratching

an itch
Feeding a
hungry child

Swatting a
mosquito

Swat mosquito
⇔

Do the review

FIGURE 2.1 The gradual interaction between top-down (knowledge-based) and bottom-up (stochastic) processes
that lead to context-appropriate representations.

Problem: Find an analogy for “something that won’t go away until you’ve taken care of it.”
Route to a response:

Bottom-up: “Feeding a crying child who is hungry” popped up as something that doesn’t stop until you
take care of it.

Top-down: Comparing a paper to review to feeding a crying, hungry child feels inappropriate because
one is intimate and personal, while the other is purely professional. This then modifies the
representation of the original situation: we realize that it is not merely something that won’t
go away until you complete it, but it is a nonintimate that won’t go away until you do it and,
thus, doesn’t map well, to intimate situations.

Bottom-up: “Scratching an itch.”
Top-down: But normal itches are too easy to get rid of, you simply scratch them and they disappear. Again,

this redefines the representation of the original situation. It is a nonintimate something that
won’t go away until you’ve done it, but it’s something that, nonetheless, takes some energy
and effort to achieve.

Bottom-up: “Removing dandelions from your yard.”
Top-down: No, getting rid of dandelions is too hard! Reviewing a paper isn’t that hard. So, the target

object has to be something that demands our attention and won’t go away until we attend to
it, is not too intimate, is not too easy to take care of, but not too hard, either.

Bottom-up: “Swatting a mosquito that’s preventing you from sleeping.” Who has never had their sleep
troubled by the supremely irritating high-pitched whine of a mosquito? And, as we all know,
it NEVER goes away until you get up out of bed, turn on the light, and chase it all over the
room with a rolled up newspaper. And only with the Swat! that transforms the offending
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mosquito into a speck on the wall does the problem end. So, it fits the above criteria: it’s a
problem that won’t go away till you take care of it, it’s not too easy to do (unfortunately . . .),
and it’s not too hard either. That is the analogy I used.

It is crucial to note the aspects of my extensive (and passive) long-term memory representation of
“mosquito,” which became active in working memory, were entirely dependent on the mapping that
I wanted to achieve. In other words, the working-memory representation does not include myriad other
characteristics of mosquitoes, such as their disease-bearing nature, that they breed in water, that they
feed on blood, that they have six legs, that they do not weigh very much, that they live from 3 to 100
days, that most of their head consists of their compound eye, etc. Further, in finding this analogy, we
also modified our working-memory representation of “review a paper,” in particular, focusing on reviews’
strictly professional, nonintimate nature, on the fact that reviews are neither too easy nor very hard to
do, of the fact that no amount of waiting will allow you to make the slightest progress on the review, etc.,
all aspects that were not part of my working-memory representation of “review a paper” when I began
looking for an appropriate analogy.

2.8 Computational Models Implementing this
Bottom-Up/Top-Down Interaction

“Hybrid” models of analogy-making (Kokinov and French, 2003) explicitly attempt to integrate mecha-
nisms from symbolic and connectionist approaches to AI. Crucially, they rely on a distinction between
long-term memory and working memory, although the implementation details of this separation
may vary.

The overarching principles of the class of models that I will briefly describe were originally formulated
in Douglas Hofstadter’s research group from the 1980s to the present. Many people have contributed to
the development and implementation of these ideas, including Hofstadter (1984), Defays (1990), Mitchell
and Hofstadter (1990), Hofstadter and Mitchell (1992), Mitchell (1993), French (1995), Hofstadter et al.
(1995), McGraw (1995), Bolland and Wiles (2000), Marshall (2002a, 2002b), Bolland (2005), and so on.

These models—Copycat, Numbo, Tabletop, Letter Spirit, Metacat, the Fluid Analogies Engine, etc.—
are all agent-driven models that operate in microworlds that are, by design, felt to be rich enough to
demonstrate the architectural principles of the models, but not so complicated that extraneous details
interfere with understanding. It is beyond the scope of this chapter to present a detailed defense of
microworlds. Suffice it to say that microdomains can be appropriately likened to the “ideal objects”
studied in elementary physics to understand the principles of movement, gravity, force, reaction, etc. Only
once these principles are mastered in the “microdomain” of these ideal objects does it make sense to be
concerned with friction, air resistance, dilation due to heat, etc. The microdomains in which these analogy-
making programs work are designed to help isolate the principles of analogy-making. Microdomains are
to analogy-making what “ideal objects” are to physics.

2.9 Architectural Principles

The basic features of the Hofstadter family of architectures are described in the following section (cf.
French, 1995, chap. 3; see also, Bolland [1997] for a particularly clear presentation of Copycat, the
mainstay program of this class of programs).

2.9.1 The “Slipnet,’’ a Semantic Network
This is a semantic network with fixed concepts, but in which the distances between concepts vary according
to the situation being processed. This context-dependent malleability is a crucial feature of the architecture.
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A rather vivid example (Bonnetain, 1986, personal communication) will serve to illustrate how significantly
context can modify distances between concepts in a semantic network. In France, unlike in the United
States, a driver’s license is needed only when one is operating a motor vehicle and does not serve as an
identity card. Further, while laws aimed at preventing under-age drinking in France do exist, they are rarely
enforced. In other words, no one ever checks young people’s age at the entrance to a bar in France, much
less asks for a driver’s license. As a result, in the mind of a 19-year-old French college student, the concepts
“beer” and “driver’s license” are every bit as distant as, say, “refrigerator” and “tennis ball.” But were the
same French college student to go to the United States for a year—where drinking age is enforced and
a driver’s license is invariably used as the means of checking ages—his/her conceptual distance between
“driver’s license” and “beer” would soon be radically altered. This would result in a change in the Slipnet
structure—namely, the shortening of the conceptual distance between the concepts “beer” and “driver’s
license.”

2.9.2 The Workspace
This is where all the representational structures needed to perceive the situation being examined are
gradually built up. Consider the following group of letters to be parsed:

AAB
There are two obvious possible parsings of this three-letter sequence, namely

• An AA group, followed by a B.
• An A, followed by an AB group.

However, neither representation is a priori more correct than the other. So, if the AAB group is embedded
in a context, such as

PPS

DDM

RRX  

ZZP

CCJ
LLB

BBL

EEVTTQ

AAB

the chances are that the letter string will be parsed as a “An AA group, followed by a B.”
In contrast, if the context in which this image is embedded is

XDE 

NXY

JBC

BMN
ZRS

UST

CPQ

VFGLGH

AAB

this will significantly increase the probability that it will be parsed as a “An A, followed by an AB group.”
So, in a setting in which the program, to make an analogy, must parse various configurations of AAB,

both of the following structures:

AA and AB

are likely to be included in the workspace. These two potential representations—which cannot coexist
simultaneously in conscious perception, i.e., in the Worldview (see below)—will then compete with each
other based on what else is found on the table. Ultimately, one will win out and will be used in the final
representation.
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2.9.3 The Worldview
These are the structures that are currently, consciously being perceived. The assumption here is that, just as
in a Necker cube (or the Old Woman/Young Woman illusion, or any other ambiguous figure), one cannot
perceive both of the possible interpretations simultaneously. Thus, there is one representation, based on
the context as it is perceived up to that moment (say, for example “a pair of forks with a knife to the right”).
Structures move in and out of the Worldview during the process of building up the final representation
of the objects on the table. The longer a given representation remains in the Worldview, the lower the
computational temperature of the simulation, meaning that the program believes that it has found a good,
coherent way of representing the situation at hand. When the program stops, what is in the Worldview is
considered to be the analogy that the program has discovered.

2.9.4 Codelets
These are the task-specific “worker ants” of the program. They carry out all of the processes necessary to
produce an emerging understanding of the situation being represented and the mappings being made.
None of these task-specific agents has an overview of what is going on, any more than a single ant has an
overview of the anthill in which it toils. Agents are released based on numerous triggers, such as activation
levels of concepts in the semantic network, computational temperature, and structures that have already
been discovered. They each carry out very simple tasks. They build and break correspondences between
structures, they discover relations between individual objects, etc. They perform a single task and then
“die.”

2.9.5 The Coderack
This is the “staging ground” for the task-specific agents. When an agent is called, it does not run immedi-
ately, but rather it is put onto the coderack. Each agent has an “urgency” value that expresses its importance
and agents are probabilistically selected to run based on their urgency.

2.9.6 Dynamic Codelet Selection via Computational Temperature
This is where computational temperature plays a key role. Assume that there are N agents on the coderack
waiting to run, each of which has an urgency u. The general idea of temperature-based selection is that, if
the overall temperature (T) is very high (T = 1 is the “neutral” temperature), the probability of selection
should be essentially independent of their urgency, and each agent will be as likely to be selected as any
other (i.e., a uniform selection distribution over all agents, regardless of their urgency). In contrast, the
lower the temperature, the more codelet selection will take place based strictly on the value of a codelet’s
urgency (i.e., in this case, selection is essentially deterministically based on urgency).

If there are N agents, A1, A2, . . . , AN , each with a raw urgency, ui, then for a given computational
temperature, T , the probability that a given codelet, Ai, will be selected is given by

Pr (Ai) = uα
i∑N

k=1 uα
i

(2.1)

where α = 1/T .

It is clear that, as T → ∞ (or gets large), Eq. (2.1) reduces to

Pr (Ai) = u0
i∑N

k=1 u0
i

= 1∑N
k=1 1

= 1

N
(2.2)

which is what is required, i.e., a uniform selection distribution. In contrast, when temperature is low, α

becomes large and the agent with the highest urgency will, if the temperature is low enough, be picked
almost deterministically over its rivals with lower raw urgency.
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An example will be useful to clarify this. Assume that there are three agents, A1, A2, and A3, with
respective urgencies, ui, of 2, 3, and 5. When the temperature, T , is high, α → 0 and we have

Pr (A1) = 20

20 + 30 + 50
= 1

3

Pr (A2) = 30

20 + 30 + 50
= 1

3

Pr (A3) = 30

20 + 30 + 50
= 1

3

When T = 1, then α = 1. This is the “neutral” selection condition, i.e., each agent has a selection
probability determined by its urgency divided by the total urgency of all agents on the Coderack.

Pr (A1) = 21

21 + 31 + 51
= 2

10
= 0.2

Pr (A2) = 31

21 + 31 + 51
= 3

10
= 0.3

Pr (A3) = 51

21 + 31 + 51
= 5

10
= 0.5

Finally, assume the temperature falls to, say, 1/5. This means that α = 5 and we have

Pr (A1) = 25

25 + 35 + 55
= 32

3400
≈ 0.01

Pr (A2) = 35

25 + 35 + 55
= 243

3400
≈ 0.07

Pr (A3) = 55

25 + 35 + 55
= 5

3400
≈ 0.92

In this case, the selection probability of agent A3 leaps to 0.92. In other words, the fact that A3 has a raw
urgency of 5, as opposed to its rivals with urgencies of 3 and 2, means that it will be chosen to run 92 times
out of 100 when T = 1/5.

One might wonder why this mechanism is of any importance. In the language of classic tree-searching
AI, the answer is that it allows the program to occasionally (especially when the temperature is high)
explore branches of the search tree that it would never have explored, thereby potentially arriving at a truly
unexpected, excellent solution to a problem at the end of an exploration path that would not have been
taken without this mechanism.

But, at the same time, one does not want the program to be searching these unusual paths very often. But
one must not restrict the program to never search these paths. And, especially, in the event of hitting what
appears to be a “dead end” when attempting to find the answer to a problem, computational temperature,
as implemented above, allows the program to break structures it has already made, to reform structures
and make mappings in a new way, and then to gradually settle using these new structures. If another dead
end is encountered, the process will repeat.

One might wonder what would prevent this process from going on forever in the event that there are
no good structures to be found. The answer is that at each temperature, there is a “StopWork” agent
that is on the Coderack and, when it runs, all further processing comes to a halt. The structures that are
currently in the Worldview, good or bad, are taken to be the best answer for that run. The “StopWork”
agent will eventually run and bring to an end this cycle of building-breaking structures brought about
by temperature oscillations. What frequently does, in fact, happen is that the program will find what it
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believes to be good structures, the temperature will therefore fall, but the overall coherence never comes
and so the temperature rises. But then the program once again discovers the same structures that led it
down the fruitless path, and so on. In short, the program must remember where it has been, a capability
which the earlier versions of this architecture did not have. This problem has been dealt with, albeit to a
limited extent, in later versions of this architecture (e.g., Marshall, 2002a, 2002b).

In conclusion, Mitchell (1993, p. 44) sums up the importance of context-dependent computational
temperature as follows:

. . . [Temperature] has two roles: it measures the degree of perceptual organization in the system (its
value at any moment is a function of the amount and quality of structure built so far) and it controls
the degree of randomness used in making decisions . . . . Higher temperatures reflect the fact that
there is little information on which to base decisions; lower temperatures reflect the fact that there is
greater certainty about the basis for decisions.

2.9.7 Local, Stochastic Processing
It is worth reiterating here that there is nothing that resembles a global executive in these programs, any
more than there is a global executive in an anthill. All results emerge from the limited actions of a large
number of agents responsible for finding/breaking structures, making maps, communicating with the
semantic network, etc. All decisions—whether or not to group certain elements, whether or not to put
certain structures into correspondence, etc.—are made stochastically.

2.9.8 Integration of Representation-Building and Correspondence-Finding
Finally, and arguably, most importantly, there is no separation of the processes of building representa-
tions and finding correspondences between elements of different representations. A fundamental tenet of
Copycat and Tabletop is that it is impossible to separate the process of representation-building from the
process of correspondence-building (Chalmers et al., 1992).

2.10 How this Type of Program Works: The Details

2.10.1 Copycat
Certainly the best known implementation of this type of architecture is the Copycat program
(Mitchell and Hofstadter, 1990; Mitchell, 1993). The best place to find a reasonably complete, yet
succinct description of this program is in Mitchell (2001), an article that was written by the pro-
gram’s author. There is also an online executable version of Copycat, complete with a description
of how the program works on Melanie Mitchell’s website: http://web.cecs.pdx.edu/∼mm/how-to-
get-copycat.html. In addition, Scott Bolland at the University of Queensland wrote a Java ver-
sion of Copycat, which can be downloaded from http://www2.psy.uq.edu.au/CogPsych/Copycat and
http://www2.psy.uq.edu.au/CogPsych/Copycat/Tutorial/.

2.10.2 Tabletop
In what follows we will illustrate the principles discussed above by briefly looking at another of these
programs, Tabletop (French, 1995), designed to work in a simulated tabletop microworld. The basic idea is
that there are some ordinary objects (forks, spoons, cups, saucers, glasses, plates, salt and pepper shakers,
etc.) on a small table. There are two people (Henry and Eliza) seated across from one another at the table.
Henry touches one object and says to Eliza, “Do this!” (meaning, of course, “Touch the object you think is
analogous to the one I just touched”) (see Figure 2.2).

So, for example, if there is a cup in front of Henry, and only silverware in front of Eliza, and Henry
touches his cup, Eliza will probably reach across the table and touch Henry’s cup (reason: silverware is
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Henry

? ?

Eliza

FIGURE 2.2 A table configuration where the context provided by the silverware surrounding Henry’s cup and Eliza’s
glass influences Eliza’s initial bottom-up “impulse” to respond by simply touching the cup on her side of the table.

semantically “too far” from the object that Henry touched, so she might as well touch exactly the same
object he touched). Or suppose there is a cup in front of Henry and a glass and two forks in front of Eliza.
Henry touches his cup. In this case, Eliza will (most likely) touch the glass in front of her, because, even
though it is not the same as the cup Henry touched, it is in an analogous place on the table and the glass
is semantically not too far from the cup.

The contextual factors that can be brought to bear to shift the initial bottom-up pressures to touch one
or the other object are almost limitless. Suppose Henry’s cup is surrounded by two forks and a knife on
one side of the cup and two spoons on the other and Eliza has, on her side of the table, only an isolated
cup and an isolated glass. Henry touches his cup. Eliza will, almost certainly, touch the cup on her side of
the table. If, however, her glass is surrounded by the same objects as Henry’s cup, i.e., by two forks and a
knife on one side and two spoons on the other (Figure 2.2), she will considerably be more likely to allow
this context to shift her choice toward touching her glass rather than the isolated cup. In other words, even
if her first (bottom-up) response might have been to touch the cup on her side of the table, noticing the
objects (and how they are grouped) around Henry’s cup and “the same” objects around her glass affects
her initial bottom-up impulse to touch her cup. The probability of her touching her glass is considerably
increased by the “top-down” pressures induced by the discovery of the mappings between the groups of
silverware surrounding the glass and the cup.

2.11 How Tabletop Finds a Reasonable Solution

How the program, Tabletop, finds a solution to this particular problem is explained in detail for the
interested reader in French (1995, pp. 95–111). We will give an overview of the algorithm below.

As we described earlier, the architecture consists of a semantic network (the Slipnet), a Workspace,
and a launching area for the codelets, the exploratory/structure-building agents (the Coderack). There is
continual interaction between these three areas, as illustrated in Figure 2.4.

First, consider the semantic memory (called the“Slipnet”). This spreading-activation network, similar to
the networks from Collins and Loftus (1975), is designed to represent the interconnections of the concepts
acquired through a lifetime of interacting with the world. It represents, in some sense, our “top-down”
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Smaller than

ISA ISA

ISAISA

Wine
glass

Water
glass

Dessert
fork 

Dinner
fork

Crystal

Silverware

FIGURE 2.3 Part of the semantic memory (Slipnet) used in solving the Tabletop configuration shown in Figure 2.2.

knowledge of the world. The links represent connections between concepts in the world and their length
corresponds to the semantic distances between them (Shepard, 1962). Most importantly, as mentioned
above, it is malleable, i.e., it can change dynamically depending on the concepts that are activated. If, for
example, the concept “smaller than” becomes active because, for example, we notice that dessert forks are
smaller than dinner forks, then we become more sensitive to this relationship for all pairs of concepts for
which it applies (e.g., saucers versus dinner plates, wine glasses versus water glasses, etc.) (see Figure 2.3).
Among the concepts in the semantic memory is “group.” Concepts in semantic memory correspond, at
least approximately, to the agents that will be building structures in Working Memory.

Let us start the process by launching some agent, for example, a “Find-Group” agent. It looks for a
“group” on the table. It does not see forks, knives, spoons, cups, etc. It merely looks for clusters of objects,
any objects. It finds one (say, the group closest to Henry). This causes several things to happen:

• Activation is sent by the agent to the “group” node in the semantic network. The “group” node in
the semantic network becomes more active.

• It spawns (i.e., places on the Coderack) a number of finer-grained agents that will, if they run, look
for things that might be inside the just-discovered group. For example, a Find-Group agent that
has found a group on the table, would put several Find-End-Object agents on the Coderack, each
having as a parameter the Group that has just been found. When one of these Find-End-Object
agents runs it will explore an extremity of the Group that was found by its parent Find-Group agent
to determine what the objects at the extremity of the group are.

The added activity of the “group” node in the semantic network causes new “Find-Group” agents to be put
on the Coderack, waiting there to be selected to run. (Here we see the permanent interaction between the
bottom-up processes of the agents and the semantic network.) After a while the Find-Group agents will be
unable to find any more groups. Agents that happen to be on the Coderack will continue to be selected for
a while, but since they would not find any new groups, activation of “group” in the Slipnet will fall. This
will mean that no more new Find-Group agents will be put on the Coderack. The activity of exploring the
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Semantic
network

Coderack

Codelet
Urgency

Find-group ()             20
Find-end-object (Group1)          10
Build-correspondence (knife1, knife2)   5
Build-correspondence (cup1, cup2)       5

Workspace

Worldview

FIGURE 2.4 An illustration of Tabletop in the process of building its representations of the table configuration
in Figure 2.2. Notice that at this relatively early stage of a run of the program, the Worldview contains a cup–cup
correspondence, a correspondence between the two fork groups and one between the two knives. Were the program
to stop now, Eliza would touch the cup on her side of the table. In general, it will end up replacing the cup–cup
correspondence by the more globally coherent cup–glass correspondence, once it has found the mappings between
items and subgroups of items in the two groups of silverware.

table will now be in the hands of other codelets, some of which have been spawned by the Find-Group
agents.

As structures are gradually discovered—for example, the fork subgroups, the spoon subgroups, the
correspondence between the two groups of two spoons (a “correspondence” being a structure, just like a
“group” is a structure), etc.—they are put into the program’s Workspace, where they can be accessed by
the agents.

The best, most coherent structures discovered to date are put into the Worldview. But structures are
continually competing to get into the Worldview from the Workspace. So, for example, early in the
exploration of the table configuration in Figure 2.2, the structure mapping the two cups onto one another
was part of the Worldview (see Figure 2.4). In other words, early on it was considered to be the best
mapping of the object touched by Henry to the object that Eliza should touch. But as the program
gradually discovered the other structures surrounding Henry’s cup and Eliza’s glass, the overall coherence
of the mapping between Henry’s cup and Eliza’s glass grew stronger, until (usually, at least) it displaces
the cup–cup mapping in the Worldview.
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The overall coherence of structures in the Worldview determines the temperature of the program. If
there is little coherence, then the temperature rises, causing structures in the Workspace to be broken.
This allows new agents to try again and gives the program the possibility of discovering new structures
from the “rubble” of the broken structures. However, if the structures in the Worldview are good and
coherent, temperature falls. When temperature falls low enough, the program stops and picks as its answer
the correspondence in the Worldview containing the touched object.

2.12 The Issue of Scaling Up

One of the important claims about this architecture is that, at least theoretically, it should be capable of
scale up. This is because the program, by design, never examines all possible structures on its way to an
answer. It starts its exploration very broadly and gradually narrows its focus as time goes on, based on
what it has already found. This means that many structures, many potential mappings, many potential
groupings, etc., never get examined to any depth (or, in some cases, are not seen at all) as the program
moves toward an answer.

So, in the example shown in Figure 2.2, if there were, say, 30 groups of objects on the table, instead of
two as there are now, the program would, almost certainly, not explore (or potentially, even find) all of
them. Why? Because very soon after the discovery of the initial, most salient groups, finer-grained agents
would already be exploring these groups. Most probably, if there were a reasonable answer to be found in
these groups, it would be found. Only if this exploration did not lead to an answer in a reasonable time,
would temperature rise and the old structures be broken, thus pushing the program to explore in new
directions. In other words, the amount of exploration that is done is not proportional to the amount of
potential exploration.

2.13 The Potential Long-Term Impact of the
Mechanisms Presented

We have attempted to explain, by means of a number of simple everyday examples, the flexibility of human
analogy-making capabilities. This argues for the importance of programs that develop representations by
means of a continual interaction between a knowledge store and working memory. This crucial ability
will potentially allow scaled-up versions of these programs to navigate safely between the Scylla of hand-
tailored representations designed with the desired mappings in mind and the Charybdis of unfiltered
megarepresentations that entail a combinatorial explosion of mappings. We believe that the mechanism
of context-dependent computational temperature will be a necessary ingredient in programs that will one
day be called truly creative. It allows programs to explore—infrequently, but at least occasionally—highly
improbable areas of space where wonderfully creative answers to a problem could lie.

2.14 Conclusions

I would go so far as to say that analogy-making is, to steal a phrase from the literature on consciousness,
The Hard Problem of AI. Not the Impossible Problem, but Very, Very Hard, all the same, and perhaps
also The Central Problem. And one that will not be fully solved for a very long time. Unlike chess, unlike
optical character recognition, unlike wending your way across a desert with a large database of what to
expect, unlike finding someone’s fingerprints or face in a huge database of fingerprints or faces, etc.—all
of which, however difficult, can be precisely specified—the mechanisms of analogy-making are much
harder to pin down. They involve representing situations so that they can be seen one way in one context,
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another way in another context. They involve enormous problems of extracting and aligning just the right
parts of different representations. And what makes this so hard is that almost anything can, under the
right circumstances, be “like” something else. A claw hammer is like a back scratcher. Stiletto heels are
like a Bengal tiger. Thinking a high IQ is enough to succeed at research is like thinking that being tall
is enough to succeed at professional basketball. And so on, ad infinitum. Analogies cover all domains of
human thought. We abstract something from an event in one domain and explain in by an analogy to
something in a completely different domain. And we do this constantly. It is one of our most powerful
means of explaining something new or unusual. Progress in this area will, no doubt, be slow but will,
without question, be one of the key means by which we will move forward in AI.
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3.1 Introduction

During the mid-1990s, the World Wide Web began to substantially impact the use of computer technology.
This sparked the development of the field of Web-based simulation, which is still advancing today. This
chapter will examine how an ongoing major initiative involving the Web, the semantic Web, may further
impact modeling and simulation (M&S).

More specifically, this chapter considers the issue of using semantics in M&S. The impetus for this is
the large initiative to develop the next-generation Web, the semantic Web being developed by the artificial
intelligence (AI), database and information retrieval communities. A complimentary parallel track is
represented by the model-driven architecture (MDA) approach being developed by object management
group (OMG) and the software engineering community. The goal of this initiative is for all software
development to be model-driven.

Semantics (and the semantic Web) will likely impact the M&S community in two ways. First, the
community should develop ontology to delineate, define, and relate the concepts in the field. Ontology for
M&S should be logically connected to more general (or higher level) ontology, e.g., one for mathematics
such as Monet (Caprotti et al., 2004) or one for general knowledge upper ontology such as the suggested
upper merged ontology (SUMO) (Niles and Pease, 2001). Second, simulation models, model components,
and other artifacts should be provided with richer semantic descriptions. The least disruptive way to do
this is through annotation in which the artifacts refer to semantic models (e.g., a concept in ontology).

The fact that the semantic Web is being developed and simulation artifacts can be semantically annotated,
begs the question of why do it. This question relates to the basic motivation for having the semantic Web and
its services. For the M&S community, semantics represented in ontology provides standard terminology to
the community and beyond, so that common understanding of concepts and relationships can be achieved,
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which, in turn, increases the potential for application interoperability and reuse of simulation artifacts.
Semantic Web technology can also be used for the discovery of simulation components, composition of
simulation components, implementation assistance, verification, and automated testing.

To make the discussions in this chapter more directed, we will develop as we go a small ontology
for discrete-event simulation (DeSO). The purpose of this ontology is to provide a general conceptual
foundation for M&S. Every effort was made to keep the ontology from becoming convoluted. If concepts
were too complex to be defined in a straightforward way, they were left out. At this point, DeSO is a toy
example. Later, we plan to expand and merge it with the more developed discrete-event modeling ontology
(DeMO). DeMO is oriented toward discrete-event modeling techniques such as Markov chains, finite state
machines, Petri nets, and event graphs. We are making DeSO more general in the following ways:

1. Include concepts related to common methodologies for creating simulation models, e.g., those
built using simulation languages (or programming languages augmented with simulation libraries).
DeMO is more oriented toward formal modeling techniques (of course, that was a sensible place
to start since these are well defined, at least mathematically).

2. Take a first step to extend DeMO with concepts from combined continuous and discrete simulation,
without obscuring the discrete event concepts.

3. Include enough concepts to allow, say, a simulation engine to interact with an animation engine.
The animation engine would permit realistic (or at least interesting) rendering using 2D or 3D
graphics. Either engine (simulation or animation) could include software such as a physics engine
to enhance the realism of animation. This is part of the motivation for item 2, allowing, for example,
smooth continuous motion governed by Newton’s laws of motion.

Building such a large ontology is a daunting task, which needs guidance from well-established founda-
tional knowledge. In this work, we use the following foundational sources: modeling, simulation, systems
theory, physics, mathematics, and philosophy.

We endeavored to make our definitions as compatible as we could with existing definitions within
these fields. Many sources were used for this including Wikipedia (Wikipedia, 2006a), WordNet (Miller
et al., 1990), OpenMath (OpenMath, 2006), SUMO (Niles and Pease, 2001), Stanford Encyclopedia of
Philosophy (Zalta, 2006), AstroOnto (Shaya et al., 2006), Simulation reference markup language (SRML)
(Reichenthal, 2002), extensible modeling and simulation framework (XMSF) (Brutzman, 2004), and
discrete-event systems specification (DEVS, 2005) as well as textbooks and papers in a variety of fields (see
References).

Finding and defining the concepts is hard enough, but the subsequent step of determining a minimal set
of useful properties is even more difficult. More important to get right are the relationships between the
concepts. This is where much of the formal semantics comes in, since many of the concepts are defined in
natural (not formal) languages. Indeed, certain semantically primitive concepts are not formally definable.

The rest of this chapter is organized as follows. In Section 3.2, we overview developments in the semantic
Web relevant to creating and using ontology for M&S. Section 3.3 provides a conceptual framework suitable
for defining the top concepts for such ontology. This is followed, in Section 3.4, by high-level classifications
based on these main concepts. Techniques for adding semantics to simulation models are given in Section
3.5. A summary of DeSO is presented in Section 3.6. An overview of DeMO is given Section 3.7. Finally,
Section 3.8 summarizes the chapter.

3.2 Semantic Web: Relevant Issues

Ever since the article was published by Berners-Lee et al. (2001), in the Scientific American, there has been a
great deal of research and development on the semantic Web. Indeed, much of it is rooted in prior research
in knowledge representation, distributed AI, database systems, and information retrieval. A large portion of
the current Web consists of hypertext markup language (HTML) pages (either static or dynamic) intended
for humans to read. To make the Web more accessible by programs (or agents), the Web content needs to
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be organized better, linking meaning with content. An obvious first step is to replace the formatting tags
of HTML, with ones that are related to content. This is the purpose of the extensible markup language
(XML) and its schema languages: data type definition (DTD) and XML schema definition (XSD). XML is
good for representing nested structures in documents, but is weak regarding named relationships.

The resource description framework (RDF) is useful for indicating that certain entities of interest are
discussed in a document and that these entities are related to other entities in this and other documents.
In this way, it permits logical connections within and between documents. Although, one might think that
hyperlinks in HTML or XLinks in XML documents play a similar role, from a program’s perspective these
are akin to untyped pointers. RDF provides a richer modeling language, and although RDF syntax can be
represented using XML, the underlying abstract models for the two languages are fundamentally different.
The abstract model for XML is tree based, while the model for RDF is graph based (Berners-Lee, 1998;
Johnston, 2005).

The above additions to the Web mainly provide it with better organization, which is key in making
the Web more useful to programs. The real goal of the semantic Web is to make the Web content more
understandable to programs. One approach is to use natural language processing and text understanding.
Long-term research efforts in these areas are beginning to bear fruit, and various algorithms have been
designed to process text at morphological, syntactic, semantic, and discoursal levels with reasonable accu-
racy (Mitkov, 2003). However, they are not the principal focus of current semantic Web research. As already
mentioned, the tags used by XML are more meaningful than the tags used by HTML (e.g., <h3> . . . </h3>

versus <address> . . . </address>. While certainly true, this meaningfulness is mainly attributed to human
understanding, but what does it mean to a program? An initial step to make documents more understand-
able to a program is to lessen the program’s need to understand all of the documents individually. This can
be done by relying on a schema that applies to several documents of the same kind. If the program knows the
XSD for a group of documents, then it can more readily process the document. Furthermore, if the program
knows the RDF schema (RDFS) for this group, it can process relationships between entities in this group
of documents. This capability is particularly useful for semantic search (Sheth et al., 2005). Whereas, Web
search engines such as Yahoo and Google use keyword search and page ranking schemes, semantic search
follows meaningful links, and has the potential, in specific domains, to enhance precision and recall of doc-
uments as well as direct one to relevant portions of documents (Noronha and Silva, 2004). (Precision means
the fraction of retrieved documents that are relevant; recall means the fraction of relevant documents that
are retrieved.) Still, the depth of program understanding is rather shallow (useful, but shallow).

Deep understanding approaching human levels is such a long-term goal that something more interme-
diate is needed. For one thing, it would be better to give the tags used in XML documents more precise
definitions. A key aspect of the semantic Web is to provide standard (i.e., agreed upon) definitions of
terms or concepts in a variety of domains. A terminology defines a set of related terms, which may be
classified to form a taxonomy. When named relationships are added, it may be referred to as ontology.
Specifically, ontology concerns the classification of concepts (or classes) as well as their subclasses, proper-
ties, and relationships to other concepts. These defined concepts can also be used to annotate the content
of documents. Finally, instances of these concepts can be created by extracting content from Web pages.
Together the classes, properties, and instances form a knowledge base. The Web ontology language (OWL)
provides this capability for the semantic Web (OWL comes in three types: OWL-Lite, OWL-DL, where
DL stands for description logic, and OWL-Full). Other possible languages for modeling ontology include
the entity-relationship model (Chen, 1976), unified modeling language (UML) (Rumbaugh et al., 1998),
knowledge interchange format (Genesereth and Fikes, 1992), and resource description framework (Klyne
and Carroll, 2004).

Having introduced the term “knowledge base,” we should mention that typically they may also include
rules (or something equivalent). Indeed, the latest part of the semantic Web undergoing standardization
is the semantic Web rule language (SWRL). Rules allow new facts to be generated from existing facts
and relevant rules, thus greatly increasing the expressivity of the knowledge base. Unfortunately, as the
expressivity goes up, so does its complexity. Table 3.1 shows the current set of languages used in the semantic
Web, and includes the complexity class for basic inferencing operations such as subsumption. (We also



3-4 Handbook of Dynamic System Modeling

TABLE 3.1 Semantic Web Languages.

Acronym Language Schema Complexity of �
XML Extensible Markup Language DTD, XSD, Relax NG –
RDF Resource Description Language RDFS PTIME
OWL-Lite Web Ontology Language OWL Schema Portion EXPTIME-Complete
OWL-DL Web Ontology Language OWL Schema Portion NEXPTIME-Complete
OWL-Full Web Ontology Language OWL Schema Portion Semi-decidable
SWRL Semantic Web Rule Language – Semi-decidable

note that the ontology definition metamodel (ODM) supporting UML which is under development by
OMG has a proposal to have a description logic core.)

A more general and deeper discussion of semantics and ontology as well as their relationship to the
semantic Web is given in the appendix. Although all the semantic Web languages are important, the OWL is
the most relevant to this chapter. We may use it to define and relate terms or concepts in the fields of M&S.
In the next section, we develop a conceptual foundation or basis for M&S. From this conceptualization,
we create an OWL. This ontology is broad, but currently shallow. This ontology also includes a few SWRL
rules. Later in this chapter, we overview DeMO, which is narrower and deeper.

3.3 Conceptual Basis for Discrete-Event Simulation

In this section, we develop a conceptual framework that is needed to clearly capture the foundational
concepts of discrete-event M&S. A secondary goal is to provide a very general framework for discrete-event
modeling, including combined discrete-continuous modeling. A tertiary goal is to keep this framework
as simple as possible. This last goal, may allow naivety to creep in, especially with regards to continuous
modeling. For example, with continuous modeling, energy-based modeling may work better than state-
based modeling (Cellier, 1991). Keep in mind that the main purpose of this framework is to create basic
ontological concepts for understanding the field of discrete-event simulation and modeling.

The model world begins as an empty void with space and time coordinates (Wikipedia, 2006b).

• Time. Let t ∈ T indicate a point in time. Typically, T would be a subset of real numbers R or
integers Z.

• Space. Let x ∈ X indicate a point or location in a vector space X . For example, X could be the 3D
vector space R

3 or something more abstract. Taken together, space and time may be viewed as a
space-time continuum (as in relativity theory). We, however, continue to treat time as a special
dimension in space-time. The void is then filled with objects, which are principally entities. Entities
are the things that exist in the model world. If entities do not interact, the entities that exist at
the start of simulation would simply move at a constant velocity (or remain at rest) forever. To
allow entities to interact, additional entities need to be introduced into the model world. These
agents may cause changes to entities such as entity creation, destruction, property updates, and
acceleration. Events are used to model changes that occur instantaneously (or nearly so). Forces are
used to model changes that occur smoothly over time.

• Entity. An entity k is an object that exists in space-time. It is also uniquely identifiable. Examples of
entities include customers in banks, golf balls flying through the air, and even molecules in boiling
water. As the number of entities becomes very large, modeling techniques that deal with aggregations
of entities offer advantages. In many cases, the models will deal with properties of aggregations such
as pressure, temperature, or weight rather than the entities (or aggregate entities) themselves.

• Event. An event is an object that does not exist in space-time, rather it exists only in the time
dimension. It has a creation time, but the important time is its occurrence time. When the event
occurs, it may affect other entities, trigger other events, or modify forces. For example, it may create
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FIGURE 3.1 DeSO Visualization.

(or destroy/cancel) other events, increase (or decrease) forces, move entities, or change entity prop-
erties. An event is considered to occur instantaneously and therefore can produce discontinuities
in the trajectories of entities within space-time (see below and Figure 3.1). To relate the event to
space-time, we assume that it is associated with a particular main entity or agent. Finally, the event
must specify what action is to be performed. The action may be specified as algebraic equations,
difference equations, or in general using action logic (all of which may be implemented using a
programming or simulation language). The type of action determines the type of the event (e.g.,
an arrival event or a departure event). The complete set of event types is denoted by the set E.

• Force. Complementary to events that have immediate effects, forces make changes over time. This
corresponds to the worldview provided by classical physics, e.g., as exemplified by Newton’s laws
of motion. Force laws are typically expressed as differential equations. A common force to use is
gravity, which in simulations/animations makes the motion of entities look more realistic.

• State. Let {w(t)|t ≥ 0} be the process (e.g., a stochastic process) representing the evolution of the
model world over time. We would like to be able to stop the process at some time t ′, and save the
minimal amount of information from the initial conditions w(t0) and the current world w(t ′), so
that the process can be resumed without affecting any future results. How this is done and how the
dynamics are expressed in terms of this information largely defines the type of modeling technique
that is applied. We assume that the following are defined at the beginning of the world w(t0): the
range of time for the model world to exist, the space for entities in the model world to exist in, the
event action logic (for discrete changes), the forces (for continuous changes), and an initial event
(or events) to initiate the simulation.
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• No force case. At first, let us keep things simple and suppose there are no forces. The dynamic state
of the model world s(t) is simply the aggregation of the configurations (location and, if need be,
property values) of all the currently existing entities.

s(t) = (x1(t), . . . , xk(t), . . . ) where xk(t) ∈ X (3.1)

Besides the current state, we must know the future events that are ordered in the time dimension
based upon their occurrence time.

r(t) = ((e1, t1), . . . , (ej , tj), . . . ) (3.2)

where ej ∈ E represents an event type occurring at time tj ≥ t .
The model world w(t) at time t can be reconstructed from the initial configuration of the

world, the current state of the entities and the list of future events.

w(t) = f (w(t0), s(t), r(t)) (3.3)

• Force case. Adding forces to the simulation can be done in many ways. Pritsker (1986) talks about
three types of interactions: type 1, a discrete event makes a discrete change to a continuous variable
(a discontinuity); type 2, a discrete event affects the physical laws governing the behavior of entities
(equations governing continuous variable); type 3, a “state” event triggers a “time” event. A state
event is said to occur when an entity or variable reaches a certain threshold, say xk ≥ c.

3.4 Types of Mathematical Models

Now that we have defined the fundamental concepts of time, space, entity, state, event, and force, we may
classify mathematical models by differentiating them based on these fundamental concepts. Recall that the
first two concepts, time T and space X , may form a time–space continuum in which entities exist. Finally,
the agents of change are events E and forces. We may consider changes in time t and state s(t) as specified
by a clock function c and a transition function f .

h = c(s(t), t) (3.4)

s(t + h) − s(t) = f (s(t), t)g(h) (3.5)

where the clock function c determines the time increment h, while the transition function f and the time
influence function g determine the next state. For continuous-time models, we let g(h) = h; otherwise, we
let g(h) = 1. (Typically, for the discrete case, one writes s(t + h) = f (s(t), t); however, we use f to indicate
state difference, thus making it easier to show the relationship between the continuous and discrete cases.)

3.4.1 Classification Based on State
The state of the model world, which is a snapshot at a particular time, is based on the more primitive
notion of space as well as the notion of entities that populate the space. If there is only one entity and it has
no varying properties, then the two concepts space and state may be unified (i.e., s(t) = x(t)). Since the
concepts of space and state go together, we will classify them together, in regard to whether they are discrete
or continuous. The distinction between discrete and continuous simply depends on the cardinality of the
state space S. The state space is discrete if its cardinality is less than or equal to the cardinality of the natural
numbers, N, denoted by ℵ0; otherwise, we consider it to be continuous, i.e.,

|S| ≤ ℵ0 or |S| > ℵ0 (3.6)
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Similarly, one could say that discrete means that the state space is finite or countably infinite (like the
integers, Z), whereas continuous means that the state space is uncountable (like the reals, R).

3.4.2 Time-Based Classification
Our second classification is based upon time, particularly the clock function indicating how time is
advanced within the model: continuous-time, discrete-event, discrete-time, or static.

3.4.2.1 Continuous-Time Models

In continuous-time models, the clock moves smoothly and continuously. The next instant of time t + h
is infinitesimally beyond the current time t . If we let g(h) = h and consider the limit as h tends to 0, we
obtain the following:

lim
h→0

s(t + h) − s(t)

h
= f (s(t), t) (3.7)

d

dt
s(t) = f (s(t), t) (3.8)

This equation is a first-order ordinary differential equation (ODE). Rather than having a function to
describe the state trajectory (i.e., the values of s(t) over time), the function in Eq. (3.8) describes the rate
of state change. The trajectory can then be determined using some solution technique (e.g., integrating
factors and Runga-Kutta). Writing the equation in terms of the derivative allows one to concisely express
commonly occurring phenomena such as systems with constant growth rates and many laws of classical
physics such as Newton’s Second Law of Motion. For one entity (e.g., a ball) whose coordinates in space-
time are given by (x(t), t) and acted upon by a constant force −g , Newton’s second law becomes the
following:

−g = m
d2

dt2
x(t) (3.9)

(For simplicity, we assume x is one-dimensional in the vertical direction.) Note that this is a second-order
ODE. However, by introducing another variable, velocity v, into the state, this second-order ODE can be
converted into two coupled first-order ODEs.

−g = m
d

dt
v(t) (3.10)

v(t) = d

dt
x(t) (3.11)

In this and in many other cases, enlarging the state from x(t) to (x(t), v(t)) can allow one to model
phenomena using first-order ODEs. This is similar to the technique of enlarging the state space to make
stochastic systems Markovian. Still, much of physics requires more than time derivates, e.g., partial
derivates, leading to a partial differential equation (PDE) such as the heat equation or Schrödinger equation.
We do not include PDEs, because the goal of this work is simply to generalize the DeMO papers so as to
address hybrid discrete-continuous simulations as well as basic physics engines used in animations.

3.4.2.2 Discrete-Event Models

The major division of the field of M&S is between continuous-time and discrete-event models. Both
have very large and long-established communities. Discrete-event models are very general and include
discrete-time models. They can handle anything except an infinite number of infinitesimal changes that
requires calculus. Discrete-event models are the focus of DeMO presented in Miller et al. (2004), Fishwick
and Miller (2004), Miller and Baramidze (2005), and Silver et al. (2006).

In this case, model dynamics are simplified in that state changes can only occur at a countable number
of points and hence a simulation may focus on these time points (also known as event occurrences).
Therefore, the evolution of the model world is driven by events. Events represent things that can happen
which may cause state changes (i.e., nothing else can cause the state s(t) to change). Besides making state
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changes, events may also trigger other events to happen at the current time or in the future. The clock and
transitions are given as follows: Letting g(h) = 1, we have

h = c(s(t), t) (3.12)

s(t + h) − s(t) = f (s(t), t) (3.13)

The causality owing to events, in their most general form, is embedded in the clock c and transition
function f . However, it is often useful to think of the clock and transition functions as working together to
advance the model forward in time to the next state, based on the type of event e ∈ E that occurs. This is
indicated by making the c and f functions parametrically dependent on e. Processing the event advances
the clock to the event’s occurrence time t + h and transitions the state s(t) to the next state s(t + h).

t + h = c(s(t), t ; e) + t (3.14)

s(t + h) = f (s(t), t ; e) + s(t) (3.15)

The event type e is a point in a finite set E of event types such as {arrival, departure}. This now begs
the question of how e is chosen. In general, determination of e can be complex, since events are created
by other events and can indeed be canceled by other events. A future event may be created and put in, for
example, a future event list (FEL). If the future event is not canceled, it will eventually come to the front of
the time-ordered FEL, and become the imminent event to be processed next (i.e., used in the evaluation
of c and f ). Abstractly, this may be denoted by introducing activation and cancellation functions.

3.4.2.3 Discrete-Time Models

For discrete-time models, the state s(t) may change only at event occurrence times which happen with
regularity, i.e., every h, a fixed constant number of time units. Although, h can be any fixed constant, it can
also be rescaled to one (i.e., let g(h) = h = 1). Then the clock function simply returns 1 every time, while
the state change is as follows:

s(t + 1) − s(t) = f (s(t), t) (3.16)

This equation is a difference equation, which is the discrete analog to a differential equation. Here, the
state s may be a discrete random variable. If we add the following restrictions:

1. let the time be discrete, for example, let T = Z,
2. let the clock function be the successor function,
3. let the transition function be time homogeneous, that is, invariant over time, and
4. let E be a singleton set or equivalently the event is embedded into transition probabilities.

Then, the difference equation becomes the balance equation for discrete-time Markov chains.

P(s(t + 1) = sj) =
∑

i

P(s(t + 1) = sj|s(t) = si)P(s(t) = si) (3.17)

where P(s(t + 1) = sj) is the probability that the next state is sj . DeMO gives a step-by-step development of
more and more restrictive Markov models (e.g., from generalized semi-Markov processes to semi-Markov
processes to Markov chains).

3.4.2.4 Static Models

So far, we have been simplifying how we deal with time. Obviously, the simplest thing to do is freeze
time (or equivalently eliminate it all together). This moves us from a dynamic worldview to a static one.
Although simulation is mainly concerned with dynamic models, static models (often called Monte Carlo
models) are also useful.
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3.4.3 Causality-Based Classification
Causality is a well-established principle in philosophy as well as classical physics. Some modern theories
such as general relativity, quantum mechanics, and string theory challenge the simple notion of causality.
Yet for the simulations we are considering, we assume causality (or cause and effect). Causes or agents of
change may cause changes in the current state s(t) or even defer their effects to the future. The effects may
introduce a gradual or sudden change. Sudden changes are captured as events that theoretically happen
instantaneously. In reality they may not, but it is reasonable to represent them in this way in the model.
Gradual changes happen over time by an ongoing application of force. In physics, the primary causes of
changes are forces such as the four fundamental ones: gravity, electromagnetic, weak nuclear, and strong
nuclear.

We may classify models based upon a characterization of the causes of change. Change may be modeled
discretely or continuously. In the discrete case, changes happen discretely at specific event times. Between
these times, what is happening in the simulation may be ignored. Thus, discrete-event simulations, for
efficiency sake, jump discretely through time, processing event after event.

This discrete motion may present an issue for animation in the following sense: After leaving one service
center, a customer goes to the next. From a simulation point of view, this may not be problematic. However,
from an animation point of view, the customer should smoothly go from one center to another. This can
be handled by adding animation friendly events to the simulation, or by doing event interpolation and
adjustment in an animation engine.

The bottom line is that between events, the system being modeled need not be static (e.g., entities or
particles may be moving), it is just that these changes are not judged to be important for the purposes of
the model. Typically, in higher fidelity models which more faithfully represent the system, more events
will be represented and animations should look more realistic.

In summary, changes to the model may occur discretely or continuously. Discrete changes owing to
events make discontinuous changes (or jumps) to entities in the model world. Continuous changes owing
to forces make infinitesimal changes in an infinitesimal amount of time to produce typically smooth
changes.

Note that the character of a model’s space–time does not determine whether changes occur discretely or
continuously, in general, but clearly, continuous changes require space (or state) and time to be continuous.
Since there are three concepts (time, state, and change) where the discrete versus continuous dichotomy
applies, there are eight distinct possibilities. Of these eight possibilities only five make sense, as shown in
Table 3.2.

3.4.4 Classification Based on Determinism
Determinism has been a hotly debated subject in philosophy and physics for a long time. In classical
physics, mathematical models were basically deterministic. Probability was introduced to deal with lack
of knowledge or just to simplify the model. Modern physics, however, postulates that probability is a
fundamental part of reality. For these reasons, we classify models as either deterministic or stochastic. For
a deterministic model, given the input, the output is uniquely determined. However, for a stochastic model
this is not necessarily the case, since randomness is included in the model.

TABLE 3.2 Discrete (D) vs. Continuous (C).

State Time Change Model Type

C C C Continuous System Simulation
C C D Discrete Event Simulation
D C D e.g., Generalized Semi-Markov Processes
C D D e.g., Time Series
D D D e.g., Discrete-time Markov Chains
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3.5 Adding Semantics to Simulation Models

In this section, we claim that adding semantics to simulation models is going to become more and more
important in the future. A skeptic might counterclaim that semantics is not crucial for M&S, because they
are general purpose techniques that achieve their usefulness through abstraction. In this way, a bank and
drive-through restaurant can be modeled in similar ways using abstract queues with different parameter
values for interarrival and service times. It is great to be able to abstract out the essential features and
discover fundamental similarities. The M&S community has been doing this successfully for decades.
In our opinion, this paradigm has three weaknesses:

1. The mapping from the real world to the abstract model is largely in the mind of the simulation
analyst.

2. High fidelity, multifaceted modeling is difficult to achieve.
3. Building models out of model components is limited, in part due to lack of semantics.

As the semantic Web progresses, one might consider how it could positively impact the development and
use of mathematical models in general and simulation models in particular. The purpose of a mathematical
model is to create an abstract representation of a system or mini-world (be it real or artificial). As an abstract
rather than concrete representation, the model could be mapped to multiple systems or mini-worlds. Being
abstract, the model can be more easily analyzed and manipulated than an actual system. In this sense,
abstraction is good. However, too much abstraction can result in the loss of realism and meaningfulness.
One way to lessen the loss is by increasing the amount of explicit semantics given.

Previously, simulation was concerned with getting the numbers right. Have we created a simulation
model (validation) and a program implementation (verification) that produce accurate estimates or pre-
dictions? Animation puts an additional constraint on this. The time evolution of the model should “look
right.” Still, what is the relationship between the model and the system? What are the things moving
around in the model? How do they compare to similar things found in other models? How do they relate
to existing knowledge such as the laws of classical physics?

A small step in this direction is to document the model (or even the program implementing the model).
However, this is likely to be minimal and certainly informal. An alternative would be annotate the model
as well as the model elements so that, for example, one would know what an entity looks like and what
it means. Defining the meaning of something is only feasible if related terms are already defined. Then
clearly these related terms only make sense if terms related to them are defined. These terms should be
logically organized into a well-defined conceptualization and made readily available using the Web. This
is one of the central thrusts of the semantic Web and Web-based ontology.

Since simulation is used for modeling of a vast array of fields, the above prescription is really quite
challenging. First, ontology needs to be developed for simulation and modeling methodology. Then
ontology from application domains (e.g., health care and transportation) needs to be utilized. Fortunately,
many domains are developing ontology as shown for scientific domains in Table 3.3. There are many more
ontology listings on the open biomedical ontologies (OBO) site (obo.sourceforge. net/cgi-bin/table.cgi)
with 52 at last count.

The focus of this chapter, however, is more on ontology for the simulation and modeling methodology.
One way to start is to try to understand what a model is and what it is used for (its purpose). The word
itself has many definitions (e.g., in Merriam-Webster’s dictionary and in WordNet). We are interested in its
usage for abstract, conceptual, or mathematical models. From Wikipedia (2006b), we have the following
definition:

An abstract model (or conceptual model) is a theoretical construct that represents physical, biological
or social processes, with a set of variables and a set of logical and quantitative relationships between
them. Models in this sense are constructed to enable reasoning within an idealized logical framework
about these processes.
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TABLE 3.3 Ontology for Scientific Domains

Name Title Domain

PhysicsOnto Ontology of Physics Physics
archive.astro.umd.edu/ont/Physics.owl

AstroOnto Ontology of Astronomy Astronomy
archive.astro.umd.edu/ont/Astronomy.owl

ChemOnto Chemical Ontology Chemistry
www.personal.leeds.ac.uk ∼ scs1tvp/onto/chemonto.owl

GO Gene Ontology Biology
archive.godatabase.org/latest − termdb/go_daily − termdb.owl.gz

SO Sequence Ontology Biology
cvs.sourceforge.net/viewcvs.py/song/ontology/so.obo

MDEG Microarray Gene Expression Data Biology
mged.sourceforge.net/ontologies/MGEDOntology.owl

The purpose of a model or modeling in general is even harder to capture. In an idealized sense, a model
is the essence of science. Since the real world or real systems are so complex, models are constructed
that can be manipulated logically or mathematically. The models help us dissect, understand, and make
predictions about the real world. For science to be self-correcting, the models (or hypothesis or theories)
must be falsifiable. In other words, tests and experiments must be developed to show that the model has
deficiencies that need to be corrected either by improving the model or throwing it out completely. Besides
empirical validation, models need to be consistent with other models or theories.

Let us now examine in greater detail, the problem of defining or describing a model in terms of (i) statics
and (ii) dynamics. The statics of an entity define its type (types of properties) and immutable state. The
statics can be described at a high level using, for example, a UML class diagram or OWL. The dynamics of
an entity define its behavior. There are several ways to describe behavior in UML (e.g., sequence diagrams,
collaboration diagrams, statechart diagrams, or activity diagrams). In addition, other formalisms such
as process algebras, Petri nets, bond graphs, activity cycle diagrams, and event graphs may be used. The
current state of affairs is that there are several competing approaches and none are as successful as the
approaches used for statics. Clearly, the problem is much more difficult.

Ontology is ideal for describing things, so statics can be well handled. Dynamics or behavioral specifica-
tions are more challenging. Although knowledge representation languages in AI, such as Frames (Minsky,
1974), support the use of procedural attachments, current semantic Web initiatives are avoiding this com-
plexity because of the need to effectively support querying and inferencing on a Web scale. Still there is,
however, ongoing research work on behavioral specifications for semantic Web services. Behavioral units
(such as operations) can be annotated with functional semantics, such as functional category, inputs,
outputs, preconditions, and postconditions (Sivashanmugam et al., 2003). For simple cases, preconditions
and postconditions (or effects) may be expressed using an ontology language like OWL, while for more
complex conditions a rule language like SWRL is more suitable. One could apply such an annotation
approach to simulation in several ways. For example, in the event-scheduling paradigm, the behavior
can be captured in the logic of an occur operation (event routine). Similarly, in the process-interaction
paradigm, the behavior can be captured in the logic of the entity’s script (a network of operations).

The complexity of modeling dynamics is testified by the plethora of modeling techniques used: message
charts, collaboration diagrams, state charts, activity diagrams in UML, the three simulation worldviews,
event-scheduling, process-interaction, and activity scanning in simulation, as well as, event graphs, state
machines, Petri nets, process models, and process algebras.

The goal is to capture what an entity does short of providing the code to implement the behavior. (The
specification should provide the basis for verification of the code, and hence, cannot be the code. Yet to allow
automatic verification, the specification must be machine-interpretable.) This is the essence of providing a
semantic description of behavior. Entities can be coupled by (i) shared state, (ii) invocations, or (iii) events,
with each being more loosely coupled than the former. The complexity of verification goes up dramatically
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TABLE 3.4 Ontology for Modeling and Simulation

Name Title Domain

Monet Mathematics on the Web Mathematics
www.cs.man.ac.uk/∼dturi/ontologies/monet/allmonet.owl

GeomOnto Ontology of Geometry Mathematics
archive.astro.umd.edu/ont/Geometry.owl

StatOnto Ontology of Statistics Statistics
archive.astro.umd.edu/ont/Statistics.owl

DeMO Discrete-event Modeling Ontology Simulation
chief .cs.uga.edu/∼jam/jsim/DeMO/

DeSO Discrete-event Simulation Ontology Simulation
chief .cs.uga.edu/∼jam/jsim/DeSO/

MSOnto Agent Ontology for Modeling and Simulation Simulation
www.nd.edu/∼schristl/research/ontology/agents.owl

if the shared state space is large, and so it should be kept to a minimum. In the software engineering as well
as the agent and semantic Web services communities, the semantics of invocations is often modeled using
inputs, outputs, preconditions, and postconditions. Since inputs and outputs are objects, they may be
described ontologically. For example, in the proposed semantic annotations for Web services description
language (SAWSDL) standard (based on WSDL-S) (Akkiraju et al., 2005; Farrell and Lausen, 2006) they
may be annotated with model references to OWL or UML. Pre- and postconditions (alternatively effects)
may be modeled with a constraint language such as SWRL or UML’s object constraint language (OCL).
Although, this approach can be used to describe an invocation, it says nothing about the sequencing or
ordering of invocations, leading to the need to describe interactions via a protocol specification. To more
fully capture behavior, richer languages are necessary. Unfortunately, use of Turing-complete languages
makes inferencing fundamentally challenging, leading to a trade-off between the ability to capture detailed
behavior versus the ability to analyze it.

We conclude this section by listing ontology in Table 3.4 used for M&S as well as ontology that could
provide foundations for M&S.

3.6 Overview of DeSO

DeSO is an initial attempt at providing a concise, but adequately precise ontology for the most fundamental
concepts often referred to in M&S. Such an effort, however, is by no means easy, as to precisely define
the basic concepts would mean to define many of the relevant concepts in mathematics, philosophy,
and physics. We have no intention of making DeSO a huge, self-contained ontology, yet we have taken
significant measures to make it work beyond its size.

The current DeSO includes six elementary concepts in M&S, namely, time, space, physical entity, state,
effector, and model. We present an overall picture of how models are classified based on certain properties
of these basic concepts as described in Section 3.4. These concepts are also complemented in DeSO by
some other related concepts to provide more accurate definitions and to reflect the complicated relations
between them.

The first measure we have taken to compact DeSO is to begin by importing the SUMO, as opposed to
starting from scratch. The SUMO upper ontology was developed at TeKnowledge to cover around 1000
of the most general concepts intended for use by middle-level and domain ontology such as DeSO. We
summarize a few of the advantages of importing an upper ontology:

• First, an obvious advantage is the reuse of established knowledge systems. DeSO, for example, uses
directly many definitions and relations already in the SUMO, such as TimePoint, Set, and FiniteSet.

• Second, an important use of ontology is to facilitate information sharing through the use of com-
mon vocabulary, as it effectively reduces ambiguity in communication and facilitates machine
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understanding. Since OWL does not enforce the unique name assumption, the same class name
may be used to refer to different concepts in different ontological specifications. (Part of developing
ontology is to handle synonyms and homonyms. Different names for the same concept are syn-
onyms, while different concepts with the same name are homonyms.) The following two approaches
will guarantee that the same name in DeSO and the SUMO refers to the same concept.

The first approach is to use the needed SUMO class directly without reproducing the same
concept in DeSO. This sometimes requires that we create some new DeSO classes whose existence is
dependent on the SUMO. For example, if we need to define two new classes“DeterministicFunction”
and “StochasticFunction” in DeSO and we can choose to use the superclass “Function” in the SUMO
directly, then the two DeSO classes would be created as the subclasses of SUMO:Function. While
this approach is favorable theoretically, current ontology editors such as Protégé, do not support
the notion of a package view as one would see in Javadoc, so the classes in the SUMO and DeSO are
mixed up structurally, and the classes of DeSO may be buried deep inside a SUMO hierarchy. Such
a mixture often deprives us of the ability to freely create new class relationships and to generate
visualization, and, thus, the freedom to express what we want to say in the ontology.

Because of the limitations of the current ontology editors, common vocabulary between the
SUMO and DeSO is realized through the second approach: using the equivalentClass restriction
in OWL. Our way of using the SUMO classes is to generate new classes in DeSO and restrict these
classes to be equivalent to the classes in the SUMO where appropriate. We choose to use the same
class names as in the SUMO for easy understanding, although identical class names are not required
for the equivalentClass restriction. For example, to conform to the naming system of the SUMO,
the “Entity” class that we discussed in Section 3.3 is called “PhysicalEntity” in DeSO. This latter
approach provides us with desirable autonomy of DeSO, the flexibility of generating class relations
as we want, as well as common vocabulary between the two ontological specifications. In DeSO, for
example, a new TimePoint class is defined as equivalent to the SUMO TimePoint class and is used
in all the relationships involving TimePoint in DeSO.

• Third, the use of an upper ontology makes inferences across different domains easier, as relations
are established across OWL files by sharing the generic concepts in the upper ontology.

The second characteristic of DeSO is that it utilizes SWRL on top of OWL so that the expressiveness
of the ontology increases considerably without substantial addition in size. For instance, we would have
needed 24 additional classes for all the combinations of model types based on the four classification criteria
we mentioned in Section 3.4; instead, we use nine rules that express the same ideas and more. A very simple
example of these SWRL rules is

isStochastic(? m, false) → isDeterministic(? m, true) (3.18)

which means “if a Model m is not stochastic, then m is deterministic.” This short rule allows us to reuse the
definition of stochastic model and saves us the trouble of defining deterministic model. However, rules are
not always so short. More often than not, we need to write long rules to define some concepts. In DeSO,
stochastic model is defined with the following rule:

existsIn(? m, ? st) ∧ populatedBy(? st , ? pe) ∧ effectedBy(? pe, ? ef ) ∧ computes(? ef , ? sf )

∧StochasticFunction(? sf ) → isStochastic(? m, true)
(3.19)

To put it in plain English, the rule says “if a Model m exists in some SpaceTime st , and st is populated by
some PhysicalEntity pe, and pe is effected by some Effector ef which computes a StochasticFunction sf ,
then m is Stochastic.” SWRL rules are more than simple definitions of concepts, in that they reflect the
relations between the concepts in addition to the definitions of the concepts themselves.

DeSO has been developed using Protégé with its OWL plugin. The SWRL editor (an extension to the
Protégé OWL plugin) has been used to edit the SWRL rules in DeSO. Figure 3.1 is a visualization of the
DeSO classes and their relationships created by OntoViz (one of the several popular visualization plugins
for Protégé).
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In short, DeSO is a middle-level ontology built upon SUMO that includes the most fundamental
concepts in the domain of M&S. As one of the first attempts at using SWRL in an ontology, DeSO achieves
maximal expressiveness within minimal volume.

3.7 Overview of DeMO

Work on the DeMO began in 2003 (Miller et al., 2004; Fishwick and Miller, 2004) to explore issues
and challenges in developing ontology for simulation and modeling. As its name suggests, it is focused on
discrete events models in which state changes discretely over time owing to the occurrence of events. It used
the OWL language to define over 60 classes and many properties. Figures 3.2–3.5 contains visualizations
created by OntoViz showing the DeMO classes and their relationships. The ontology consists of four
main parts: ModelConcept, DeModel, ModelComponent, and ModelMechanism. DeModel is
itself divided into four parts based on the three simulation worldviews plus a fourth representing state
models, namely, StateOrientedModel,ActivityOrientedModel,EventOrientedModel,
and ProcessOrientedModel. (Note that the images show DeMO version 1.8, which is missing the
ProcessOrientedModel subtree, but is going into version 1.9.)

As illustrated by the OBO site, it is often better to have several (but not too many) interrelated ontology,
rather than one huge monolithic ontology. Along these lines, DeMO as it is extended, could be divided
into more than one ontology. In addition, DeMO ignores much of the M&S domain, including con-
tinuous models, statistical modeling, output analysis, random variates, etc. Also, DeMO at present has
few instances. One could attempt to populate the ontology (or knowledgebase) with information about
simulation engines, available simulation models, model components, etc. This could be done by writing
extractors which scan the Web for information or by providing a mechanism for publication. Alterna-
tively, one could simply use the ontology for annotation of simulation artifacts, as is done in the proposed
WSDL-S standard (Akkiraju et al., 2005). Then special semantic search engines could precisely retrieve the
information requested.

There can be several ways to approach the descriptions of different modeling formalisms (formalism
specification) for the purpose of ontology engineering. One way is to consider each model separately
and define it from scratch. This may be called a “problem-in-hand” approach—given a problem, define
a modeling formalism that “fits” the problem well. This is a natural approach from a practical point of
view: different modeling formalisms “fit” differently into different problems; some are more fitting for
one purpose, some for another. Another way is to define some very general formalism and consider all
other models to be some sort of subformalisms—restrictions on a general framework such as the DEVS.
This view is logical and natural as well, because many of the existing modeling approaches have a formal
description and it is only a question of finding a general enough framework that encompasses all the
existing formalisms and from which new subformalisms can be derived. However, if this philosophy is
taken to the extreme, it can lead to unnecessary complexity and awkward notations.

DeMO utilizes a middle-ground approach, where several general (upper-level) formalisms are defined
independently of each other. (Of course, they do not have to be completely independent of each other
and may themselves be derived from some even more general formal framework.) These upper-level
formalisms can be viewed as root classes for a taxonomic tree for the discrete-event M&S domain. All
other modeling formalisms are defined as restrictions on one of the root classes.

Importantly, DeMO uses a uniform approach based upon common modeling formalisms. Each
DeModel is considered as having model components and model mechanisms (syntax and semantics
of the model), which in turn are defined using fundamental model concepts. This approach allows for
great flexibility and straightforwardness in constructing an ontology and defining new formalisms.

We close by giving a simple application for DeMO involving Petri nets. Figure 3.6 shows a screenshot
from the Protégé ontology editor of the PetriNet class in DeMO. One thing to notice in this diagram is
where the class fits in the class hierarchy. Another important aspect is the properties section. The former
indicates how PetriNets relate to other modeling formalisms, while the latter indicates what is in a PetriNet
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FIGURE 3.5 DeMO DeModel class hierarchy.

(for example, the following properties, has-ActivitySet, has-ArcSet, has-Component, has-Mechanism,
has-PlaceSet, has-TimeSet, time-Specified-by, define the structure and mechanics of a PetriNet). Since
Petri nets formalism is very popular, there are several simulators that run Petri nets. For the purposes
of standardization and interoperability, the Petri net markup language (PNML; Jngel et al., 2000) has
been created. Several of the simulators accept input in this format. One existing application of DeMO
is the automatic generation of PNML specifications from instances stored in DeMO. Note that DeMO
maintains topological information on the PetriNet, while PNML requires geometrical coordinates. Rules
could be developed to select layout algorithms that will take the topological information and convert it
into geometrical coordinates. This could lead to visually appealing animations of Petri net executions.

3.8 Summary

New developments in the semantic Web, especially in the ontology layer, present many opportunities for
the M&S community. This chapter has highlighted several of them. We have developed a general conceptual
framework for M&S as represented by DeSO and DeMO shown in Figures 3.1–3.5. The potential impact
of semantic Web research on the M&S communities has been discussed. In particular, the use of OWL and
SWRL have been demonstrated in the development of DeSO. Several issues in the construction and use of
ontology for M&S have also been addressed in this chapter.
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FIGURE 3.6 Protégé screenshot of DeMO.

Appendix: Semantics—Some Perspectives

Semantics has been a major topic of inquiry for a long time. As a traditional branch of linguistics, it refers
to the study of the meaning of language. Deeply rooted in philosophy, semantics was first formalized in
logic in the nineteenth century and was later expanded to deal with programming-language semantics.
Now, the semantic Web initiative is bringing new life to this research and is attempting to make it practical
and scalable at the Web level. In this appendix, we look at semantics from the standpoint of philosophy,
linguistics, logic, programming languages, and the semantic Web.

Linguistics divides the world distinctly into “language” and “meaning.” Words, go in a lexicon, axioms
encoding meaning go in an ontology, and semantic lexicographers create bidirectional mappings between
the two. A lexicon of words or symbols is mapped to concepts, listing multiple concept types for words
that have more than one meaning. With many variations of notation and terminology, the basis for most
systems in computational linguistics consists of the following (Sowa, 2000): (i) lexicon—a set of symbols,
(ii) grammar—rules governing the ordering of symbols, and (iii) ontology—a topology of concepts.
A mapping that involves all three serves as a foundation for establishing meaning.

Given a description in a formal language, a difficult question is “what does it mean.” Such a description,
as with natural language, will contain objects/nouns and actions/verbs. The meaning of the nouns and
verbs may be refined using adjectives and adverbs, respectively. The elements of the description can
therefore be naturally decomposed into the two parts: objects and actions.

The study of the nature of objects has long been pursued in the field of ontology. First, defined by
Aristotle as “the science of being qua being,” ontology studies the existence of things. It concerns the nature
and meaning of existence as well as the basic categories of entities. Ontology is considered fundamental
because it tells people what words refer to entities, and it provides the classification (including classes and
subclasses) of entities as well as their properties and relationship to other entities. Languages for modeling
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ontology (or the related notion of schema) include the entity-relationship model (Chen, 1976), UML
(Rumbaugh et al., 1998), knowledge interchange format (Genesereth and Fikes, 1992), RDF (Klyne and
Carroll, 2004), OWL (McGuinness and Van Harmelen, 2004), and SWRL (Horrocks et al., 2003). The last
four of these languages are based on logic, primarily, description logic, and first-order predicate logic.

Now that we have a way of describing entities, statically, we need to describe their dynamics. Issues
of behavior and interaction come to the forefront. One might look for an analog to ontology used to
describe nouns, objects, or entities that would work for verbs or actions. Unfortunately, dynamics is
much more challenging that statics. The first phase of science is to describe the entities (e.g., genes and
proteins), while the second phase is to describe (better yet predict) how they will behave or interact (e.g.,
biochemical pathway models). Dynamic models involve entities that change (appear, disappear, move,
change properties, and affect others) over time.

Verbs are most naturally captured in ontology as relationships such as “student A enrolls in course B.”
However, this begs the question, what does enrolls in mean. The verb is not so much modeled as it is used
in the model of student. Still, one could in OWL define the enrolls in property to be a subproperty of takes
to claim some semantics is provided. A few comprehensive attempts at verb classification have been done,
e.g., see VerbNet (Palmer, 2004).

A more complete treatment of dynamics calls for space-time models, which have a collection of inter-
acting entities that change over time. (Note, for generality, space is often represented abstractly as a state
which may include coordinates as well as other types of information.)

In formal logic, semantics provides a way to show that a statement (logical expression) is true. The most
prevalent approach is model-theoretic semantics (Tarski, 1983). A logical expression consists of constants,
variables, logical connectives, functions, and predicates. In first-order logic, variables can be quantified,
while in second-order logic, functions and predicates may also be quantified. Unless, the expression is
a tautology, a “model” is required to determine its truth value. The “model” (not to be confused with a
simulation model) will indicate the domain that variables can range over, as well as, how to evaluate the
functions and predicates. If the “model” relates to something meaningful (e.g., a part of the real world)
then the expression can be meaningfully interpreted. There are also other alternative approaches such as
proof-theoretic semantics (Gentzen, 1969).

The semantics of programming languages formally or mathematically deals with the meaning of pro-
gramming languages. The symbols and the allowable orderings of these symbols are defined using the
language’s lexicon (what symbols) and grammar (what order). The lexicon is often described using a reg-
ular language, while the grammar is often defined using a context-free language. Together these constitute
the syntax of the language. Capturing what a sequence of symbols means is not so easy. For example, what
does x + y mean? Does the addition operator mean integer addition, floating point addition, or string
concatenation? There are three approaches to defining the meaning of programs: denotational semantics,
operational semantics, and axiomatic semantics (Hoare, 1969; Scott-Strachey, 1971; Plotkin, 1981).

There is an ongoing debate about whether the semantic Web is really semantic (i.e., will it explicate
the meaning of resources on the Web). This debate involves open issues in philosophy and science, which
are not likely to be resolved any time soon. Hence, we simply claim that the approach makes things
“more” meaningful, in the sense of being easier to find, use, and understand. Whether the machine truly
understands it, is an issue for others to tackle.
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4.1 Introduction

There are many ways in which we can define and describe systems engineering. It can be described
according to structure, function, and purpose. It may also be described in terms of efforts needed at the
levels of systems management, systems methodology, and systems engineering methods and tools. We can
speak of systems engineering organizations in terms of their organizational management facets, in terms
of their business processes or product lines, or in terms of their products or services. We can speak of
systems engineering in terms of the knowledge principles, knowledge practices, and knowledge perspectives
necessary for present and future success in systems engineering. This chapter takes a multifaceted and
transdisciplinary view of systems engineering. It attempts to describe systems engineering in terms of this
relatively large number of trilogies. the process view of systems engineering is expanded on in some detail.
Within this, a large number of necessary roles for systems engineering are described. A brief discussion
of systems engineering from the perspective of each of these necessary roles concludes the chapter. We
provide brief discussions on the theme of this handbook: dynamic system modeling.

The main objective of this chapter is to provide a multifaceted perspective on systems engineering and,
within that, systems management. This is a major challenge for a single chapter, one that is particularly
focused on the role of systems engineering in dynamic system modeling. Hopefully, this objective will be
realized. We believe that some appreciation for the overall process of systems engineering will lead naturally
to a discussion of the important role for systems management, and the applications of this to important
areas such as how best to use dynamic system modeling in the engineering of systems of all types.

We are concerned with the engineering of large-scale systems, or systems engineering (Sage, 1992a),
especially strategic-level systems engineering, or systems management (Sage, 1992b). We begin by first
discussing the need for systems engineering, and then providing several definitions of systems engineering.
We next present a structure describing the systems engineering process. The result of this is a life-cycle
model for systems engineering processes. This is used to motivate discussion of the functional levels, or
considerations, involved in systems engineering efforts: systems engineering methods and tools, systems
methodology, and systems management. There is a natural hierarchical relationship among these levels and
this is shown in Figure 4.1. There will be some discussions throughout this chapter on systems engineering
methods. Simulation and modeling is one of the major methods of systems engineering and, of course,
the theme of this work. Our primary focus here, however, is on systems engineering processes and systems
management for the technical direction of efforts that are intended to ultimately result in appropriate
systems, products or services. These result from an appropriate set of systems engineering methods and
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FIGURE 4.1 Conceptual illustration of the three levels for systems engineering. (From Sage, A.P., Systems Management
for Information Technology & Software Engineering, Wiley, Hoboken, NJ, 1995.)

tools, the resulting product line or process effort, and are guided by efforts at systems management, as
suggested in Figure 4.1. Considerably more details are presented in Sage (1992a, 1992b), which are the
sources from which much of this chapter is derived.

4.2 Systems Engineering

Systems engineering is a transdisciplinary management technology. Technology is organization, appli-
cation, and delivery of scientific knowledge for the betterment of a client group. This is a functional
definition of technology as a fundamentally human activity. A technology inherently involves a purposeful
human extension of one or more natural processes. For example, the stored program digital computer is
a technology in that it enhances the ability of a human to perform computations and, in more advanced
forms, to process information.

Management involves the interaction of the organization with the environment. The purpose of man-
agement is to enable organizations to cope better with their environments such as to achieve purposeful
goals and objectives. Consequently, a management technology involves the interaction of technology,
organizations concerned with both the evolvement and use of technologies, and the environment.

Information and associated knowledge are the catalysts that enable these necessary interactions and
allows them to be satisfactory. Information and knowledge are very important quantities that are assumed
to be present in the management technology that is systems engineering. This strongly couples notions of
systems engineering with those of technical direction or systems management of technological develop-
ment, rather than exclusively with one or more of the methods of systems engineering, important as they
may be for the ultimate success of a systems engineering effort. It suggests that systems engineering is the
management technology that controls a total system life-cycle process, which involves and results in the
definition, development, and deployment of a system that is of high quality, trustworthy, and cost-effective
in meeting user needs. This process-oriented notion of systems engineering and systems management will
be emphasized here.

As suggested in Sage (1992a, 1992b) systems engineering knowledge comprises three types of knowledge
(Sage, 1987a). Knowledge principles generally represent formal problem-solving approaches to knowledge,
and are employed in new situations and unstructured environments. Knowledge practices represent the
accumulated wisdom and experiences that have led to the development of standard operating policies
for well-structured problems. Knowledge perspectives represent the view that is held relative to future
directions and realities in the technological area under consideration. Clearly, one form of knowledge
leads to another. Knowledge perspectives may create the incentive for research that leads to the discovery
of new knowledge principles. As knowledge principles emerge and are refined, they generally become
embedded in the form of knowledge practices. Knowledge practices are generally the major influences of
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Technology & Software Engineering, Wiley, Hoboken, NJ, 1995.)

the systems that can be acquired or fielded. These knowledge types interact with each other and support
one another. In a non-exclusive way, they each support one of the principal life cycles associated with
systems engineering. There are a number of feedback loops that are associated with learning to enable
continual improvement in performance over time. This supports our view that it is a serious mistake to
consider these life cycles in isolation from one another.

It is on the basis of the appropriate use of these knowledge types that we are able to accomplish the
technological system planning and development and the management system planning and development
that lead to a new innovative system, product or service. All three types of knowledge are needed. We
envision three different life cycles for technology evolution: system planning and marketing; research,
development, test and evaluation (RDT&E); and system acquisition, production, or procurement. Each of
these are generally needed, and each primarily involves the use of one of the three types of knowledge. We
will discuss these briefly here, and will illustrate how and why these make major but non-exclusive use of
knowledge principles, practices, and perspectives. Figure 4.2 illustrates interactions across these life cycles
for one particular three-phase realization of a system acquisition life cycle.

It is important to define an area of intellectual inquiry for a better understanding. We have provided
one definition of systems engineering thus far. It is primarily a structural and process-oriented definition.
A related definition, in terms of purpose, is that systems engineering is a management technology to
assist and support policy making, planning, decision making, and associated resource allocation or action
deployment. Systems engineers accomplish this by quantitative and qualitative formulation, analysis,
and interpretation of the impacts of action alternatives upon the needs perspectives, the institutional
perspectives, and the value perspectives of their clients or customers. Each of these three steps is generally
needed in solving systems engineering problems, and models are especially useful supports in achieving
these ends. Issue formulation is an effort to identify the needs to be fulfilled and the requirements associated
with these in terms of objectives to be satisfied, constraints and alterables that affect issue resolution, and
generation of potential alternate courses of action. Issue analysis and assessment enables us to determine the
impacts of the identified alternative courses of action, including possible refinement of these alternatives.
It is in this step that model development and use are of particular value. Issue interpretation enables
us to rank order the alternatives in terms of need satisfaction and to select one for implementation or
additional study. This particular listing of three systems engineering steps and their descriptions is rather
formal. The steps of formulation, analysis, and interpretation may also be accomplished in an “as if” basis
by application of a variety of often useful heuristic approaches. These may well be quite appropriate in
situations where the problem solver is experientially familiar with the task at hand, and the environment
into which the task is embedded.
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The key words in this definition are formulation, analysis, and interpretation. In fact, all of systems
engineering can be thought of as consisting of formulation, analysis, and interpretation efforts, together
with the systems management and technical direction efforts necessary to bring this about. We may
exercise these in a formal sense, or in an as if or experientially based intuitive sense. These are the stepwise
or microlevel components that comprise a part of the structural framework for systems engineering.

Finally, we can think of a functional definition of systems engineering. Systems engineering is the art and
science of producing a product, based on phased efforts, that satisfies user needs. The system is functional,
reliable, of high quality, and trustworthy; and has been developed within cost and time constraints through
the use of an appropriate set of methods and tools.

In our first definition of systems engineering, we indicated that systems engineers are concerned with
the appropriate definition, development, and deployment of systems. These comprise a set of phases
for a systems engineering life cycle, as actually illustrated within the systems acquisition, production, or
procurement life cycle of Figure 4.2. There are many ways to describe the life-cycle phases of the systems
engineering process, and we have described a number of them in Sage (1992a, 1992b). Each of these basic
life-cycle models, and those which are outgrowths of them, comprises these three phases. For pragmatic
reasons, a typical life cycle will almost always contain more than three phases. Generally, it takes on the
“waterfall” pattern illustrated in many works, although there are a number of modifications of the basic
waterfall, or grand-design life cycle, to allow for incremental and evolutionary development of systems, as
discussed in Sage (1992a, 1992b) and many other sources.

4.3 The Importance of Technical Direction and
Systems Management

Systematic measurements are essential for appropriate practice of systems management. The use of the
terms reactive measurements, interactive measurements, and proactive measurements may seem unusual.
We may, however, approach measurement, and systems engineering and management in general, from at
least four perspectives:

1. Inactive: This denotes an organization that does not use metrics, or that does not measure at all
except perhaps in an intuitive and qualitative manner.

2. Reactive: This denotes an organization that will perform an outcome assessment and after it has
detected a problem, or failure, will diagnose the cause of the problem and, often, will get rid of the
symptoms that produce the problem.

3. Interactive: This denotes an organization that will measure an evolving product as it moves through
various phases of the life-cycle process to detect problems as soon as they occur, diagnose their
causes, and correct the difficulty through recycling, feedback, and retrofit to and through that
portion of the life-cycle process in which the problem occurred.

4. Proactive: Proactive measurements are those designed to predict the potential for errors and syn-
thesis of an appropriate life-cycle process that is sufficiently mature such that error potential is
minimized.

We can also refer to the systems management style of an organization as inactive, reactive, interactive, or
proactive. All of these perspectives on measurement purpose, and on systems management, are needed.
Inactive and reactive measurements are associated with organizations that have a low level of process
maturity. As one moves to further higher levels of process maturity, the lower level forms of measurements
become less used. In part, this is so because a high level of process maturity results in such appropriate
metrics for systems management that final product errors, which can be detected through a reactive
measurement approach, tend to occur very infrequently. While reactive measurement approaches are
used, they are not at all the dominant focus of measurement. In a very highly mature organization, they
might be only needed on the rarest of occasions. In many situations, models and associated simulations of
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systems are needed to obtain measurements from these, especially when we are in the preliminary design
and architecting phases of a systems engineering effort and the actual system has yet to be engineered,
even in a preliminary manner.

Management of the systems engineering processes, which we call systems management, is very essential
for success. There are many evidences of systems engineering failures at the level of systems management.
Often, one result of these failures is that the purpose, function, and structure of a new system are not
identified sufficiently before the system is defined, developed, and deployed. These failures, generally, are
the result of costly mistakes that could truly have been avoided. A major objective of systems engineering,
at the strategic level of systems management, is to take proactive measures to avoid these difficulties.

Concerns associated with the definition, development, and deployment of tools such that they can be
used efficiently and effectively have always been addressed, but often this has been on an implicit and “trial-
and-error” basis. When tool designers were also tool users, which was more often than not the case for the
simple tools, machines, and products of the past, the resulting designs were often good initially, or soon
evolved into good designs through this trial-and-error effort. When physical tools, machines, and systems
become so complex that it is no longer possible to design them by a single individual who might even also
be the intended user of the tool, and a design team is necessary, then a host of new problems emerge. This is
very much the condition today and it is especially the case with respect to system models and simulations.
To cope with this, a number of methodologies associated with systems engineering have evolved. Through
these, it has been possible to decompose large design issues into smaller component subsystem design
issues, design the subsystems, and then build the complete system as a collection of these subsystems.

These phased efforts of definition, development, and deployment represent the macro structure of a
systems engineering framework. Each of them need to be employed for each of the three life cycles of
formulation, analysis, and interpretation. Thus, we see that our relatively simple description of systems
engineering is becoming more and more complex.

Figure 4.3 illustrates how these three steps, three phases, and three life cycles comprise a more complete
methodological, structural, or process-oriented view of systems engineering. Even in this relatively simple
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methodological framework, which is simultaneously incomplete but relatively complex, we have a total of
27 cells of activity. In a much more realistic view of the steps and phases, as would need to be the case
in actual systems development, we might well have seven phases and seven steps of effort. This yields a
total of 147 cells of activity. Each of the three levels—systems engineering methods, systems engineering
processes, and systems management—are necessarily associated with applicable environments to assure
an appropriate systems engineering process, including the very necessary client interaction during system
definition, development, and deployment. The use of appropriate systems methods and tools as well
as systems methodology (Sage, 1977; Sage and Armstrong, 2000) and systems management constructs
enables system design for more efficient and effective human interaction (Sage, 1987b).

System management and associated architecting and integration issues are of major importance in
achieving effectiveness, efficiency, and overall functionality of systems engineering efforts. To achieve a
high measure of functionality, it must be possible for a system design to be efficiently and effectively
produced, used, maintained, retrofitted, and modified throughout all phases of a life cycle. This life cycle
begins with need conceptualization and identification, through specification of system requirements and
architectures, to ultimate system installation, operational implementation or deployment, evaluation, and
maintenance throughout a productive lifetime.

In reality, there are many difficulties associated with the production of functional, reliable, and trust-
worthy systems of large scale and scope. These potential difficulties, when they are allowed to develop, can
create many problems that are difficult to resolve. Among these are inconsistent, incomplete, and other-
wise imperfect system requirement specifications; system requirements that do not provide for change as
user needs evolve over time; and poorly defined management structures for product design and delivery.
These lead to delivered products that are difficult to use, that do not solve the intended problem, that
operate in an unreliable fashion, that are unmaintainable, and that—as a result—are not used. Sometimes
these failures are so great that operational products and systems are never even fully developed, much less
operationally deployed, before plans for the product or system are abruptly canceled.

These same studies generally show that the major problems associated with the engineering of trustwor-
thy systems, or systems engineering, have a great deal more to do with the organization and management of
complexity than with direct technological concerns that affect individual subsystems and specific physical
science areas. Often the major concern should be more associated with the definition, development, and
use of an appropriate process, or product line, for production of a product than it is with over attention to
the internal design aspects of the actual product itself, in the sense that exclusive attention to the product
or service without appropriate attention to the process leads to the fielding of a low-quality and expensive
product or service. Models of both are needed, of course.

In our previous section, we provided structural, functional, and purposeful definitions of systems
engineering. There are, of course, other definitions. Two closely related and appropriate definitions are
provided by MIL-STD-499A (1974) and MIL-STD-499B (1991), which, although no longer current, have
been the benchmark for many subsequent standards. According to MIL-STD-499B, systems engineering
is “an interdisciplinary approach to evolve and verify an integrated and life-cycle balanced set of system
product and process solutions that satisfy the customers needs. Systems engineering: encompasses the
scientific and engineering efforts related to the development, manufacturing, verification, deployment,
operations, support, and disposal of system products and processes; develops needed user training equip-
ment, procedures, and data; establishes and maintains configuration management of the system; and
develops work breakdown structures and statements of work, and provides information for management
decision making.” This definition attempts to illustrate and combine structural, functional, and purposeful
views of systems engineering. There are many subsequent and reasonably comparable definitions.

We have illustrated three hierarchical levels for systems engineering in Figure 4.1. We now expand on
this to indicate some of the ingredients at each of these levels. The functional definition, or lowest level,
of systems engineering says that we will be concerned with the various tools and techniques and methods
that enable us to design systems. Often, these will be systems science and operations research tools that
enable the formal analysis of systems, including modeling. They can also include specific system design
tools and components. With respect to information technology and software engineering applications,
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these would certainly include a variety of computer science and programming tools or methods. It should
be, strictly speaking, more appropriate to refer to these as product-level methods. Then we could also refer
to process methods and systems management methods. When the term “method(s)” is used alone and
without a modifier, what is generally being referred to are product-level methods. The specific nature of
the most useful methods and tools will naturally depend, greatly, on the particular life cycle and life-cycle
phase that is being considered and the particular product, service, or system, that is ultimately to be
acquired.

The functional definition of systems engineering also mentions that we will be concerned with a com-
bination of these tools. In systems engineering, we obtain this combination as the result of using systems
methodology. For our purpose, a methodology is an open set of procedures for problem solving. This
brings about such important notions as appropriate development life cycles, operational quality assurance
issues, and configuration management procedures, which are very important and are discussed in much
more detail in Sage (1992b). Each of these reflects a structural, or methodological, perspective on systems
engineering. How to best bring about these will vary from product to product and across each of the three
life cycles leading to that product or system, or service.

The structural definition of systems engineering tells us that we are concerned with a framework for
problem resolution that, from a formal perspective at least, consists of three fundamental steps: issue
formulation, issue analysis and assessment, and issue interpretation. These are each conducted at each
of the life-cycle phases that have been chosen for definition, development, and deployment. Regardless of
the way in which the systems engineering life-cycle process is characterized, and regardless of the type of
product or system, or service that is being designed, all characterizations of systems engineering life cycles
will necessarily involve (Sage, 1992a, 1992b; Sage, 1982):

1. formulation of the issue—in which the needs and objectives of a client group are identified, and
potentially acceptable alternatives, or options, are identified or generated;

2. analysis and assessment of the alternatives—in which the impacts of the identified options are
identified and evaluated; and

3. interpretation and selection—in which the options, or alternative courses of action, are compared
by means of an evaluation of the impacts of the alternatives and how these are valued by the client
group. The needs and objectives of the client group are necessarily used as a basis for evaluation.
The most acceptable alternative is selected for implementation or further study in a subsequent
phase of systems engineering.

We note these three steps again, because of their great importance in systems engineering. Our model of
the steps of the fine structure of the systems engineering process, is based upon this conceptualization.
These three steps can be disaggregated into a number of others. Each of these steps of systems engineering
is accomplished for each of the life-cycle phases. There are generally three different systems engineering
life cycles. Thus we may imagine a three-dimensional model of systems engineering that comprises steps
associated with each phase of a life cycle, the phases in the life cycle, and the life cycles that comprise the
coarse structure of systems engineering. This is one of the many possible morphological frameworks for
systems engineering (Sage, 1992a).

Without question, we have presented a formal rational model of the way in which these three systems
engineering functions of formulation, analysis, and interpretation are accomplished. Even within this
formal framework, there is the need for much iteration from one step back to an earlier step when it is
discovered that improvements in the results of an earlier step are needed to obtain a quality result at a later
step, or phase, of the systems engineering effort. Also, this description does not emphasize the key role of
information and information requirement determination.

Even when these realities are associated with the morphological, or form-based, framework, it still
represents an incomplete view of the way in which people do, could, or should accomplish planning, design,
development, or other problem-solving activities. The most that can be argued is that this framework is
correct in an “as if” manner. This introduces the notion that humans use a variety of approaches to assist
them in acquisition, representation, and use of information. Although many have contributed to this
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area (Sage, 1990), the fundamental work of Rasmussen and his colleagues (1994) is especially significant.
Three types of human information-processing activities are described: skill-, rule-, or formal-knowledge-
based reasoning. The choice of which form of reasoning to employ is based primarily on the experiential
familiarity of an individual with the situation at hand, the task that is in need of being performed, and
the environment into which the task and situation are embedded. Additional details of this model of
information processing are provided in the works of Rasmussen and his colleagues (1994) and this and
other models are also discussed in Sage (1992a, 1992b). Recent application of organizational and human
models are discussed in a valuable work (Sage, 1990) for those concerned with organizational models and
simulations.

Systems engineering efforts are very concerned with technical direction and management of systems
definition, development, and deployment, or systems management. By adopting and applying the man-
agement technology of systems engineering, we attempt to be sure that correct systems are designed, and
not just that system products are correct according to some potentially ill-conceived notions of what the
system should do. Appropriate metrics to enable efficient and effective error prevention and detection at
the level of systems management, and at the process and product level will enhance the production of
systems engineering products that are “correct” in the broadest possible meaning of this term. To ensure
that correct systems are produced requires that considerable emphasis be placed on the front end of each
of the systems engineering life cycles.

In particular, there needs to be considerable emphasis on the accurate definition of a system, what it
should do, and how people should interact with it before one is produced and implemented. In turn,
this requires emphasis upon conformance to system requirement specifications, and the development of
standards to insure compatibility and integratibility of system products. Areas such as documentation
and communication are important in all of this. Thus, we see the need for the technical direction and
management technology efforts that comprise systems engineering, and the strong role for process and
systems management-related concerns in this.

4.4 Other Parts of the Story

There are many ingredients associated with the development of trustworthy systems. From a top-down
perspective, the following ingredients are surely present:

1. Systems engineering processes, including process development life cycle and process configuration
management;

2. process risk, operational-level quality assurance and evaluation, and product risk and development
standards;

3. metrics for quality assurance, and process and product evaluation;
4. metrics for cost estimation, and product cost and operational effectiveness evaluation;
5. strategic quality assurance and management, or total quality management;
6. organizational cultures, leadership, and process maturity;
7. reengineering at the levels of systems management, organizational processes and product lines, and

product.

and related issues that concern enterprise management and systems integration, economic systems analysis,
cognitive ergonomics, and system assessment and evaluation.

These are the principal issues addressed in Sage (1992a, 1992b) and we could only begin to suggest their
importance here. A handbook of systems engineering and management (Sage and Rouse, 1999) provides
many perspectives in these needs.

These ingredients interact with one another. One of the first efforts in systems management is to identify
an appropriate process life cycle for the production of a trustworthy system. As we have already discussed,
this life cycle involves a sequence of phases. These phases include identification of client requirements,
translation of these requirements into (hardware and) software requirement specifications, development
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of system architectures, detailed design through coding, operational implementation and evaluation, and
maintenance of the delivered product. The precise life cycle that is followed will depend upon the client
needs. It will also depend upon environmental factors such as the presence of existing system components,
or subsystems, into which a new system must be integrated, and the presence of existing software modules
that may be retrofitted and reused as a part of the new system. This need for system integration brings about
a host of systems management and, in many cases, legal issues (Beutel, 1991) that are much larger in scale
and scope than those associated with program development only. In a similar manner, the development
of appropriate system-level architectures is very important in that efficiency and effectiveness in systems
architecting is very influential of the ease with which systems can be integrated and maintained and,
therefore, of the extent to which an operational system is viewed as trustworthy and of high quality.

Following the identification of an appropriate systemic process-development life cycle, configuration
management plans are identified. This involves using the life cycle and defining a specific development
process for the set of life cycle tasks at hand. Metrics are needed to enable this to be done effectively.
These metrics are the metrics of cost analysis, or cost estimation for systems engineering. They also
include effectiveness analysis or estimation of system productivity indices using various metrics. This
couples the notion of development of a product into notions concerning the process needs associated
with developing this product. It is becoming widely recognized that these metrics must form a part of a
process-management approach for process, and ultimately product.

We have set forth some of the very large number of issues associated with systems engineering as
a catalyst for innovation and quality in this chapter. There are four principal messages developed that
provide benchmarks for continuing efforts:

1. Much contemporary thought concerning innovation, productivity, and quality can be easily cast
into a systems engineering framework.

2. This framework can be valuably applied to systems engineering in general and information
technology and software engineering in particular.

3. The information technology revolution provides the necessary tool base that, together with systems
engineering and systems management, provides the wherewithal to allow the needed process-level
improvements for the development of systems of all types.

4. Development of appropriate system models is an essential ingredient in essentially all of this.

Further, the relatively large number of ingredients necessary to accomplish the needed change fit well within
a systems engineering framework. Our discussions also illustrate that systems engineering constructs are
useful not just for managing big systems engineering projects according to government and industry
requirements, but for creative management of the organization itself.

4.5 Summary

The top-level objectives for systems engineering might be stated as the reduction of cost, and improvement
of quality in the technical direction and management of definition, development, and deployment of
modern products, systems, and services through the use of systems engineering processes. Together with
the ingredients to be dealt with in a systems engineering study—humans, organizations, and technologies,
and the environments that surround these—we see that systems engineering is a mixture of a management
discipline and a technology discipline, and that is why we have illustrated and described systems engineering
as a management technology. Finally, we indicate perhaps the major objective of systems engineering, and
that is to bring together people, organizations, and technology, and all within a suitable environmental
context, for creative issue resolution and innovation. This is clearly a transdisciplinary endeavor and one
to which models and associated simulations can be of major use, as especially illustrated in Rouse and Boff
(2005) and Sage and Rouse (1999), which are efforts discussing the substantial role of systems engineering,
and modeling, in simulation-based acquisition (Sage and Olson, 2001; Olson and Sage, 2003).
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A dictionary definition states that a model is “a miniature representation of something; a pattern of
something to be made; an example for imitation or emulation; a description or analogy used to help
visualize something (e.g., an atom) that cannot be directly observed; a system of postulates, data, and
inferences presented as a mathematical description of an entity or state of affairs.” This definition suggests
that modeling is an activity, a cognitive activity in which one thinks about and makes models to describe
how devices or objects of interest behave. Since there are many ways in which devices and behaviors
can be described—words, drawings or sketches, physical models, computer programs, or mathematical
formulas—it is worth refining the dictionary definition for the present purposes to define a mathematical
model as a representation in mathematical terms of the behavior of real devices and objects.

Scientists use mathematical models to describe observed behavior or results; explain why that behavior
and results occurred as they did; and to predict future behaviors or results that are as yet unseen or
unmeasured. Engineers use mathematical models to describe and analyze objects and devices to predict
their behavior because they are interested in designing devices and processes and systems. Design is a
consequential activity for engineers because every new airplane or building, for example, represents a
model-based prediction that the plane will fly and the building will stand without dire, unanticipated
consequences. Thus, especially in engineering, it is important to ask: How are such mathematical models
or representations created? How are they validated? How are they used? And, is their use limited, and how?

To answer these and related questions, this chapter first sets out some basic principles of mathematical
modeling and then goes on to briefly describe:

• dimensional consistency and dimensional analysis;
• abstraction and scaling;
• conservation and balance laws; and
• the role of linearity.

5-1
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5.1 Principles of Mathematical Modeling

Mathematical modeling is a principled activity that has both principles behind it and methods that can be
successfully applied. The principles are overarching or metaprinciples are almost philosophical in nature,
and can be both visually portrayed (see Figure 5.1) and phrased as questions (and answers) about the
intentions and purposes of mathematical modeling:

• Why? What are we looking for? Identify the need for the model.
• Find? What do we want to know? List the data we are seeking.
• Given? What do we know? Identify the available relevant data.
• Assume? What can we assume? Identify the circumstances that apply.
• How? How should we look at this model? Identify the governing physical principles.
• Predict? What will our model predict? Identify the equations that will be used, the calculations that

will be made, and the answers that will result.
• Valid? Are the predictions valid? Identify tests that can be made to validate the model, i.e., is it

consistent with its principles and assumptions?
• Verified? Are the predictions good? Identify tests that can be made to verify the model, i.e., is it

useful in terms of the initial reason it was done?

Why? What are we looking for?
Find? What do we want to know?

How? How should we look at this model?Given? What do we know?
Assume? What can we assume?

Predict? What will
                our model predict?

Valid? Are the predictions valid?

Improve? Can we improve the model?

Use? How will we exercise the model?

Object/System

Model
Variables; Parameters

Model predictions Test

Valid, accepted predictions

Verified? Are the predictions good?

FIGURE 5.1 A first-order view of mathematical modeling that shows how the questions asked in a principled approach
to building a model relate to the development of that model. (Inspired by Carson, E. and Cobelli, C. (Eds.), Modelling
Methodology for Physiology and Medicine, Academic Press, San Diego, 2001.)
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• Improve? Can we improve the model? Identify parameter values that are not adequately known,
variables that should have been included, and/or assumptions/restrictions that could be lifted.
Implement the iterative loop that we can call “model-validate-verify-improve-predict.”

• Use? How will we exercise the model? What will we do with the model?

It is worth noting that the “final” principle, Use?, is often considered early in the modeling process, along
with Why? and Find?, because the way a model is to be used is often intimately connected with the reason
it is created.

Note also that this list of questions and instructions is not an algorithm for building a good mathematical
model. However, the underlying ideas are key to mathematical modeling, as they are key to problem
formulation generally. Thus, the individual questions will recur often during the modeling process, and
the list should be regarded as a general approach to ways of thinking about mathematical modeling. In a
similar vein, it is also worth remembering the associated modeling “methods” that are presented below
(e.g., dimensional analysis, and abstraction and scaling) support rather than lead the modeling process;
these modeling methods are neither algorithms themselves or susceptible to being encapsulated into some
overarching “modeling algorithm.”

Having a clear picture of why the model is wanted or needed is of prime importance to the model-
building enterprise. For example, a first estimate of the available power generated by a dam on a large
river, say The Three Gorges Dam on the Yangtze River in Hubei Province in the People’s Republic of China,
would not require a model of the dam’s thickness or the strength of its foundation. However, its height
would be essential, as would some model and estimates of river flow quantities. By contrast, a design of the
actual dam would need a model that incorporates all of the dam’s physical characteristics (e.g., dimensions,
materials, and foundations) and relates them to the dam site and the river flow conditions. Thus, defining
the task is the first essential step in model formulation.

The next step would be to list what is known, for example, river flow quantities and desired power
levels, as a basis for listing variables or parameters that are not yet known. One should also list any relevant
assumptions. For example, levels of desired power may be linked to demographic or economic data, so
any assumptions made about population and economic growth should be spelled out. Assumptions about
the consistency of river flows and the statistics of flooding should also be spelled out.

Which physical principles apply to this model? The mass of the river’s water must be conserved, as
must its momentum, as the river flows and energy is both dissipated and redirected as water is allowed to
flow through turbines in the dam (and hopefully not spill over the top!). Mass must be conserved, within
some undefined system boundary, because dams do accumulate water mass from flowing rivers. There
are well-known equations that correspond to these physical principles. They could be used to develop an
estimate of dam height as a function of power desired. The model can be validated by ensuring that all
equations and calculated results have the proper dimensions, and the model can be exercised against data
from existing hydroelectric dams to get empirical data and validation.

If the model is inadequate or that it fails in some way, an iterative loop is then entered in which one cycles
back to an earlier stage of the model building to reexamine any assumptions, known parameter values,
the principles chosen, the equations used, the means of calculation, and so on. This iterative process is
essential because it is the only way that models can be improved, corrected, and validated.

5.2 Dimensional Consistency and Dimensional Analysis

There is a very powerful idea that is central to mathematical modeling: Every equation used must be
dimensionally homogeneous or dimensionally consistent, that is, every term in a balance of mass should have
the dimension of mass, and when forces are summed to ensure equilibrium, every term in that summation
must have the physical dimension of force. Equations that are dimensionally consistent are also called
rational equations. Ensuring the (dimensional) rationality of equations is very useful for validating newly
developed mathematical models or for confirming formulas and equations before doing calculations with



5-4 Handbook of Dynamic System Modeling

them. There is a technique called dimensional analysis, which H. L. Langhaar has defined as “a method by
which we deduce information about a phenomenon from the single premise that the phenomenon can
be described by a dimensionally correct equation among certain variables.” Some of the available tools of
dimensional analysis are now described.

5.2.1 Dimensions and Units
The physical quantities used to model objects or systems represent concepts, such as time, length, and
mass, to which are also attached numerical values or measurements. If the width of a soccer field is said
to be 60 m, the concept invoked is length or distance, and the numerical measure is 60 m. A numerical
measure implies a comparison with a standard that enables (1) communication about and (2) comparison
of objects or phenomena without their being in the same place. In other words, common measures provide
a frame of reference for making comparisons.

The physical quantities used to describe or model a problem are either fundamental or primary quanti-
ties, or they are derived quantities. A quantity is fundamental if it can be assigned a measurement standard
independent of that chosen for the other fundamental quantities. In mechanical problems, for example,
mass, length, and time are generally taken as the fundamental mechanical variables, while force is derived
from Newton’s law of motion. For any given problem, enough fundamental quantities are required to
express each derived quantity in terms of these primary quantities.

The word dimension is used to relate a derived quantity to the fundamental quantities selected for a
particular model. If mass, length, and time are chosen as primary quantities, then the dimensions of area
are (length)2, of mass density are mass/(length)3, and of force are (mass × length)/(time)2. The notation
of brackets [ ] is introduced to read as “the dimensions of.” If M, L, and T stand for mass, length, and time,
respectively, then

[A = area] = (L)2, [ρ = density] = M/(L)3, [F = force] = (M × L)/(T)2 (5.1)

The units of a quantity are the numerical aspects of a quantity’s dimensions expressed in terms of a given
physical standard. By definition, then, a unit is an arbitrary multiple or fraction of that standard. The
most widely accepted international standard for measuring length is the meter (m), but length can also
be measured in units of centimeters (1 cm = 0.01 m) or of feet (0.3048 m). The magnitude or size of the
attached number obviously depends on the unit chosen, and this dependence often suggests a choice of
units to facilitate calculation or communication. For example, a soccer field width can be said to be 60 m,
6000 cm, or ∼197 ft.

Dimensions and units are related by the fact that identifying a quantity’s dimensions allows us to
compute its numerical measures in different sets of units, as we just did for the soccer field width. Since
the physical dimensions of a quantity are the same, there must exist numerical relationships between the
different systems of units used to measure the amounts of that quantity (e.g., 1 foot [ft] ∼= 30.48 centimeters
[cm], and 1 hour [h] = 60 minutes [min] = 3600 seconds [s]). This equality of units for a given dimension
allows units to be changed or converted with a straightforward calculation, for example,

65
mi

h
= 65

mi

h
× 5280

ft

mi
× 0.3048

m

ft
× 0.001

km

m
∼= 104.6

km

h
(5.2)

Each of the multipliers in this conversion equation has an effective value of unity because of the equiva-
lencies of the various units, that is, 1 mi = 5280 ft, and so on. This, in turn, follows from the fact that the
numerator and denominator of each of the above multipliers have the same physical dimensions.

5.2.2 Dimensional Homogeneity
A rational equation is dimensionally homogeneous, which means each independent term in that equation
has the same net dimensions. Simply put, length cannot be added to area in the same equation, or mass to
time, or charge to stiffness—although quantities having the same dimensions but expressed in different
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units can be added, although with great care, e.g., length in meters and length in feet. The fact that
equations must be rational in terms of their dimensions is central to modeling because it is one of the
best—and easiest—checks to make to determine whether a model makes sense, has been correctly derived,
or even correctly copied!

A dimensionally homogeneous equation is independent of the units of measurement being used.
However, unit-dependent versions of such equations can be created for convenience in doing repeated
calculations or as a memory aid. In an example familiar from mechanics, the period (or cycle time), T0, of
a pendulum undergoing small-angle oscillations can be written in terms of the pendulum’s length, l, and
the acceleration of gravity, g :

T0 = 2π

√
l

g
(5.3)

This dimensionally homogeneous equation is independent of the system of units chosen to measure length
and time. However, it may be convenient to work in the metric system, in which case g = 9.8 m/s2, from
which it follows that

T0(s) = 2π

√
l

9.8
∼= 2

√
l (5.4)

Eq. (5.4) is valid only when the pendulum’s length is measured in meters. In the so-called British system,
where g = 32.17 ft/s2,

T0(s) = 2π

√
l

32.17
∼= 1.1

√
l (5.5)

Eq. (5.4) and Eq. (5.5) are not dimensionally homogeneous. So, while these formulas may be appealing or
elegant, their limited ranges of validity must be kept in mind.

5.2.3 The Basic Method of Dimensional Analysis
Dimensional analysis is the process by which dimensional consistency is ensured. First, the dimensions of
all derived quantities are checked to see that they are properly represented in terms of the chosen primary
quantities and their dimensions. Second, the proper dimensionless groups of variables—ratios and prod-
ucts of problem variables and parameters that are themselves dimensionless—are identified. There are
two different techniques for identifying such dimensionless groups, the basic method and the Buckingham
Pi theorem.

The basic method of dimensional analysis is a rather informal, unstructured approach for determining
dimensional groups. It depends on being able to construct a functional equation that contains all of the
relevant variables, for which we know the dimensions. The proper dimensionless groups are then identified
by the thoughtful elimination of dimensions.

To illustrate the basic method, consider the mutual revolution of two bodies in space that is caused by
their mutual gravitational attraction. The goal is to find a dimensionless function that relates the period
of oscillation, TR, to the two masses and the distance r between them:

TR = TR(m1, m2, r) (5.6)

The dimensions for the four variables in Eq. (5.6) are

[m1], [m2] = M, [TR] = T, [r] = L (5.7)

Note that in this formulation, none of the dimensions are more than once, except for the two masses. So,
while the masses can be expected to appear in a dimensionless ratio, how can the period and distance be
kept in the problem? The answer is that a parameter containing the dimensions heretofore missing to the
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functional equation (5.6) must be added. Newton’s gravitational constant, G, is such a variable, so that the
functional equation (5.6) can be restated as

TR = TR(m1, m2, r, G) (5.8)

where the dimensions of G are

[G] = L3/MT2 (5.9)

The complete list of variables for this problem, consisting of Eq. (5.7) and Eq. (5.9), includes enough
variables to account for all of the dimensions.

Applying the basic method to Eq. (5.8) as the assumed functional equation for two revolving bodies, the
dimension of time is eliminated first. Time appears directly in the period TR and as a reciprocal squared
in the gravitational constant G. It follows dimensionally that

[TR

√
G] =

√
L3

M
(5.10)

where the right-hand side of Eq. (5.10) is independent of time. Thus, the corresponding revised functional
equation for the period would be

TR

√
G = TR1(m1, m2, r) (5.11)

The length dimension can be eliminated simply by noting that

⌊
TR

√
G√

r3

⌋
=

√
1

M
(5.12)

which leads to a further revised functional equation

TR
√

G√
r3

= TR2(m1, m2) (5.13)

The mass dimension can be eliminated from Eq. (5.13) by multiplying it by the square root of one of the
two masses. Choosing the square root of the second mass,

√
m2, suggests that

⌊
T

√
Gm2√
r3

⌋
= 1 (5.14)

This means that Eq. (5.13) becomes

TR
√

Gm2√
r3

= √
m2TR2(m1, m2) ≡ TR3

(
m1

m2

)
(5.15)

where a dimensionless mass ratio has been introduced in Eq. (5.15) to recognize that this is the only way
that the function TR3 can be both dimensionless and a function of the two masses. It then follows from
Eq. (5.15) that

TR =
√

r3

Gm2
TR3

(
m1

m2

)
(5.16)

This example shows that it is important to start problems with complete sets of variables. Recall that the
gravitational constant G was not included until it became clear that a wrong path was being followed,
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after which it was included to rectify an incomplete analysis. In hindsight, it might be argued that the
attractive gravitational force must somehow be accounted for, and including G would have achieved that.
This argument, however, demands insight and judgment whose origins may have little to do with the
particular problem at hand.

This single application of the basic method of dimensional analysis shows that it does not have a formal
algorithmic structure, it can be described as a series of steps to take:

1. List all of the variables and parameters of the problem and their dimensions.
2. Anticipate how each variable qualitatively affects quantities of interest, that is, does an increase in

a variable cause an increase or a decrease?
3. Identify one variable as depending on the remaining variables and parameters.
4. Express that dependence in a functional equation (i.e., the analog of Eq. ([5.6]).
5. Eliminate one of the primary dimensions to obtain a revised functional equation.
6. Repeat step 3 until a revised, dimensionless functional equation is found.
7. Review the final dimensionless functional equation to see whether the apparent behavior accords

with the behavior anticipated in step 2.

5.2.4 The Buckingham Pi Theorem of Dimensional Analysis
Buckingham’s Pi theorem, fundamental to dimensional analysis, can be stated as follows: “A dimensionally
homogeneous equation involving n variables in m primary or fundamental dimensions can be reduced
to a single relationship among n–m independent dimensionless products.” A rational (or dimensionally
homogeneous) equation is one in which every independent, additive term in the equation has the same
dimensions. This means that any one term can be defined as a function of all of the others. If Buckingham’s
� notation is introduced to represent a dimensionless term, his famous Pi theorem can be written as

�1 = �(�2, �3, . . . , �n−m) (5.17a)

or, equivalently,

�(�1, �2, �3, . . . , �n−m) = 0 (5.17b)

Eq. (5.17a) and Eq. (5.17b) state that a problem with n derived variables and m primary dimensions or
variables requires n–m dimensionless groups to correlate all of its variables.

The Pi theorem is applied by first identifying the n derived variables in a problem: A1, A2, . . . , An. Then
m of these derived variables are chosen such that they contain all of the m primary dimensions, say, A1, A2,
A3 for m = 3. Dimensionless groups are then formed by permuting each of the remaining n–m variables
(A4, A5, . . . , An for m = 3) in turn with those m values already chosen:

�1 = Aa1
1 Ab1

2 Ac1
3 A4,

�2 = Aa2
1 Ab2

2 Ac2
3 A5,

...

�n−m = A
an−m
1 A

bn−m
2 A

cn−m
3 An (5.18)

The ai, bi, and ci are chosen to make each of the permuted groups �i dimensionless.
A classical physics problem—modeling the small angle, free vibration of an ideal pendulum (viz.

Figure 5.2)—will now be used to illustrate the application of Buckingham’s Pi theorem. There are six
variables to consider in this problem, and they are listed along with their fundamental dimensions in
Table 5.1. In this case m = 6 and n = 3, so that three dimensionless groups are expected. If l, g , and m are
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T

mg

�

FIGURE 5.2 The classical pendulum oscillating through angle θ owing to gravitational acceleration g .

TABLE 5.5.1 The Six Derived Quantities Chosen to
Model the Oscillating Pendulum

Derived Quantities Dimensions

Length (l) L
Gravitational acceleration (g) L/T2

Mass (m) M
Period (T) T
Angle (θ) 1
String tension (T) (M × L)/T2

chosen as the variables around which to permute the remaining three variables (T0, θ, T) to obtain the
three groups, it follows that

�1 = la1 gb1 mc1 T0,

�2 = la2 gb2 mc2θ,

�3 = la3 gb3 mc3 T

(5.19)

The Pi theorem applied here then yields three dimensionless groups:

�1 = T0√
l/g

,

�2 = θ,

�3 = T

mg

(5.20)

These groups show how the period depends on the pendulum length l and the gravitational constant
g (recall Eq. [5.3]), and the string tension T on the mass m and g . The second group also shows that
the (dimensionless) angle of rotation stands alone, that is, it is apparently not related to any of the other
variables. This follows from the assumption of small angles, which makes the problem linear, and makes
the magnitude of the angle of free vibration a quantity that cannot be determined.

One of the “rules” of applying the Pi theorem is that the m chosen variables include all n of the
fundamental dimensions, but no other restrictions are given. So, it is natural to ask how this analysis
would change if one started with three different variables. For example, suppose T0, g , and m were chosen
as the variables around which to permute the remaining three variables (l, θ, T) to obtain the three groups.
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In this case

�′
1 = Ta1

0 gb1 mc1 l,

�′
2 = Ta2

0 gb2 mc2θ,

�′
3 = Ta3

0 gb3 mc3 T

(5.21)

Applying the Pi theorem to Eq. (5.21) can then be shown to yield the following three “new” dimensionless
groups:

�′
1 = l/g

T2
0

= 1

�2
1

,

�′
2 = θ = �2,

�′
3 = T

mg
= �3

(5.22)

Eq. (5.22) presents the same information as Eq. (5.20), albeit in a slightly different form. In particular, it
is clear that and �1 and �′

1 contain the same dimensionless group, which suggests that the number of
dimensionless groups is unique, but that the precise forms that these groups may take are not. This last
calculation demonstrates that the dimensionless groups determined in any one calculation are unique in
one sense, but they may take on different, yet related forms when done using a slightly different calculation.

Note that these applications of the basic method and of the Buckingham Pi theorem of dimensional
analysis can be cast in similar, step-like structures. However, experience and insight are key to applying
both methods, even for elementary problems.

5.3 Abstraction and Scale

While still dealing with dimensions, the focus now shifts to issues of scale, that is, issues of relative size. Size,
whether absolute or relative, is very important because it affects both the form and the function of those
objects or systems being modeled. Scaling influences—indeed, often controls—the way objects interact
with their environments, for objects in nature, the design of experiments, or the representation of data by
smooth, nice-looking curves. This section briefly discusses abstraction and scale, size and shape, size and
function, scaling and conditions that are imposed at an object’s boundaries, and some of the consequences
of choosing scales in both theory and experimental measurements.

5.3.1 Abstraction, Scaling, and Lumped Elements
An important decision in modeling is choosing an appropriate level of detail for the problem at hand, and
thus knowing what level of detail is prescribed for the attendant model. This process is called abstraction
and it typically requires a thoughtful and organized approach to identifying those phenomena that will
be emphasized, that is, to answering the fundamental question about why a model is being sought or
developed. Further, thinking about finding the right level of abstraction or the right level of detail often
requires finding the right scale for the model being developed. Stated differently, thinking about scaling
means thinking in terms of the magnitude or size of quantities measured with respect to a standard that
has the same physical dimensions.

For example, a linear elastic spring can be used to model more than just the relation between force
and relative extension of a simple coiled spring, as in an old-fashioned butcher’s scale or an automobile
spring. For example, it is possible to use F = kx to describe the static load-deflection behavior of a diving
board, but the spring constant k should reflect the stiffness of the diving board taken as a whole, which in
turn reflects more detailed properties of the board, including the material of which it is made and its own
dimensions. The validity of using a linear spring to model the board can be ascertained by measuring and
plotting the deflection of the board’s tip as it changes with standing divers of different weight.
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The classic spring equation is also used to model the static and dynamic behavior of tall buildings as
they respond to wind loading and to earthquakes. These examples suggest that a simple, highly abstracted
model of a building can be developed by aggregating various details within the parameters of that model.
That is, the stiffness k for a building would incorporate or lump together a great deal of information about
how the building is framed, its geometry, its materials, and so on. For both a diving board and a tall
building, detailed expressions of how their respective stiffnesses depended on their respective properties
would be needed. It is not possible to do a detailed design of either the board or of the building without
such expressions. Similarly, using springs to model atomic bonds means that their spring constants must
be related to atomic interaction forces, atomic distances, subatomic particle dimensions, and so on.

Thus, the spring can be used at both much smaller, microscales to model atomic bonds, as well as at
much larger macroscales, as for buildings. The notion of scaling includes several ideas, including the effects
of geometry on scale, the relationship of function to scale, and the role of size in determining limits—all
of which are needed to choose the right scale for a model in relation to the “reality” we want to capture.

Another facet of the abstraction process occurs whenever, for example, a statement is made that, for
some well-defined purposes, a “real,” three-dimensional object behaves like a simple spring. Thus, the
concept of a lumped element model is introduced wherein the actual physical properties of some real
object or device are aggregated or lumped into a less detailed, more abstract expression. An airplane, for
example, can be modeled in very different ways, depending on the modeling goals. To lay out a flight plan
or trajectory, the airplane can simply be considered as a point mass moving with respect to a spherical
coordinate system. The mass of the point can simply be taken as the total mass of the plane, and the
effect of the surrounding atmosphere can also be modeled by expressing the retarding drag force as acting
on the mass point itself with a magnitude related to the relative speed at which the mass is moving. To
model and analyze the more immediate, more local effects of the movement of air over the plane’s wings,
a model would be build to account for the wing’s surface area and be complex enough to incorporate the
aerodynamics that occur in different flight regimes. To model and design the flaps used to control the
plane’s ascent and descent, a model would be developed to include a system for controlling the flaps and
to also account for the dynamics of the wing’s strength and vibration response.

Clearly, a discussion about finding the right level of abstraction or the right level of detail is simultane-
ously a discussion about finding the right scale for the model being developed. Scaling or imposing a scale
includes assessing the effects of geometry on scale, the relationship of function to scale, and the role of
size in determining limits. All of these ideas must be addressed when the determination is made on how
to scale a model in relation to the “reality” that is being captured.

The scale of things is often examined with respect to a magnitude that is set within a standard. Thus,
when talking about freezing phenomena, temperatures are typically referenced to the freezing point of
materials included in the model. Similarly, the models of Newtonian mechanics work extraordinarily
well for virtually all earth- and space-bound applications. Why is that so? Simply because the speeds
involved in all of these calculations are far smaller than c, the speed of light in a vacuum. Thus, even
a rocket fired at escape speeds of 45,000 km/h seems to stand still when its speed is compared with
c ≈ 300,000 km/s = 1.080 × 109 km/h!

These scaling ideas not only extend the ideas discussed earlier about dimensionless variables, but they
also introduce the notion of limits. For example, in Einstein’s general theory of relativity, the mass of a
particle moving at speed, v, is given as a (dimensionless) fraction of the rest mass, m0, by

m

m0
= 1√

1 − (v/c)2
(5.23)

The scaling issue here is to find the limit that supports the customary practice of taking the masses or
weights of objects to be constants in everyday life and in normal engineering applications of mechanics.
A box of candy is not expected to weigh any more whether one is standing still, riding in a car at
120 km/h (75 mi/h), or flying across the country at 965 km/h (600 mi/h). This means that the square of
the dimensionless speed ratio in Eq. (5.23) is much less than 1, so that m ∼= m0. According to Eq. (5.23),
for that box of candy flying across the country at 965 km/h = 268 m/s, that factor in the denominator of
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the relativistic mass formula is
√

1 −
(v

c

)2 = m0

m
=

√
1 − 7.98 × 10−13 ∼= 1 − 3.99 × 10−13 ∼= 1 (5.24)

Clearly, for practical day-to-day existence, such relativistic effects can be neglected. However, it remains
the case that Newtonian mechanics is a good model only on a scale where all speeds are very much smaller
than the speed of light. If the ratio v/c becomes sufficiently large, the mass can no longer be taken as the
constant rest mass, m0, and Newtonian mechanics must be replaced by relativistic mechanics.

5.3.2 Geometric Scaling
Consider now two cubes, one of which has sides of unit length in any system of units, that is, the cube’s
volume could be 1 in3 or 1 m3 or 1 km3. The other cube has sides of length L in the same system of units,
so its volume is either L3 (in3) or L3 (m3) or L3 (km3). Thus, for comparison’s sake, the units in which
the two cubes’ sides are actually measured can be ignored. The total area and volume of the first cube are,
respectively, 6 and 1, while the corresponding values for the second cube are 6L2 and L3. An instance of
geometric scaling can be immediately seen, that is, the area of the second cube changes as does L2 and its
volume scales as L3. Thus, doubling the side of a cube increases its surface area by a factor of four and its
volume by a factor of eight.

Geometric scaling has been used quite successfully in many spheres of biology, for example, to compare
the effects of size and age in animals of the same species, and to compare qualities and attributes in different
species of animals. As an instance of the latter, consider Figure 5.4, wherein are plotted the total weight of
the flight muscles, Wfm, of quite a few birds against their respective body weights, Wb. How many birds
are “quite a few”? The figure caption states that the underlying study actually included 29 birds, but the
figure shows data only within the range 10 ≤ bird number ≤23. For the 14 birds shown in Figure 5.3 there
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FIGURE 5.3 A simple linear fit on a plot of the total weight of the flight muscles against body weight for 14 of the 29
birds studied, including starlings, barn owls, kestrels, common terns, mallards, and herons. (From Alexander, R. M.,
Size and Shape, Edward Arnold, London, 1971.)
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FIGURE 5.4 A “log–log” plot of the total weight of the flight muscles against body weight for 29 birds, including
hummingbirds, wrens, terns, mallards, eagles, and albatrosses (From Alexander, R. M., Size and Shape, Edward Arnold,
London, 1971.). Compare this with the linear plot of the data of Figure 5.3.

seems to be a fairly nice straight line fit for the data presented. While fitted by eye, that straight line can be
determined to be

Wfm
∼= 0.18Wb (5.25)

Eq. (5.25) suggests that flight muscle makes up about 18% of a bird’s body weight, and that flight muscle
weight scales linearly with—or is proportional to—body weight, a result that seems reasonable enough
from our everyday observations of the birds around us.

What happened to the other 15 birds in the small scaling study just described? (Among those discrim-
inated against in Figure 5.4 are hummingbirds, wrens, robins, skylarks, vultures, and albatrosses.) These
birds were not included because the bird weights studied spanned a fairly large range, which made it hard
to include the heavier birds (e.g., vultures and albatrosses) in the plot of Figure 5.4 without completely
squashing the data for the very small birds (e.g., hummingbirds and goldcrests). This suggests a problem
in organizing and presenting data, in itself an interesting aspect of scaling.

There is a straightforward way to include the heretofore left-out data: Construct log–log plots in which
the logarithms of the data (normally to base 10) are graphed, as shown in Figure 5.4. In fact, the complete
data set was plotted, essentially doubling the number of included data points, and a statistical regression
analysis was applied to determine that the straight line shown in Figure 5.4 is given by

Wfm = 0.18W 0.96
b (5.26)

We could observe that Eq. (5.26) is not exactly linear because, after all, 0.96 �= 1. However, it is clear that
Eq. (5.25) and Eq. (5.26) are sufficiently close that it is still quite reasonable to conclude that flight muscle
weight scales linearly with body weight.
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The above example makes clear that large ranges of data can be handled by introducing log–log plots
to extend the graphical range. Of course, with modern computational capabilities, one could skip the
“old-fashioned” method of laboriously plotting data and simply enter tables of data points and let the
computer spit out an equation or a curve. But thinking through such issues without a computer forces
one to think about the actual magnitudes being analyzed and to develop a feel for the magnitudes of the
parameters or variables being analyzed.

5.3.3 Scale in Equations: Size and Limits
As noted above, limits occur quite often in mathematical modeling, and they may control the size and
shape of an object, the number, kind of variables and the range of validity of an equation, or even the
application of particular physical models—or “laws,” as they are often called.

Modern electronic components and computers provide ample evidence of how limits in different
domains have changed the appearance, performance, and utility of a wide variety of devices. The bulky
radios that were made during the 1940s, or the earliest television sets, were very large because their
electronics were all done in old-fashioned circuits using vacuum tubes. These tubes were large and threw
off an enormous amount of heat energy. The wiring in these circuits looked very much like that in standard
electrical wiring of a house or office building. Now, of course, people carry television sets, personal digital
assistants, and wireless telephones on their wrists. These new technologies have emerged because the
limits on fabricated electrical circuits and devices have dramatically changed, as they have also on the
design and manufacturing of small mechanical objects. And this is true beyond electronics. The scale at
which surgery is done on people has changed because of new abilities to “see” inside the human body with
greater resolution—with increasingly sophisticated scans and imagers, as well as with fiber-optic television
cameras—and to design visual, electronic, and mechanical devices that can operate inside a human eye,
and in arteries and veins. Things are being engineered at the molecular level in the emerging field of
nanotechnology. Thus, the mathematical models will change, as will the resulting devices and “machines.”

In certain situations, scaling may shift limits or points on an object’s boundary where boundary conditions
are applied. For example, to approximate the hyperbolic sine,

sinh x = 1
2 (ex − e−x) (5.27)

For large values of x, the term ex will be much larger than the term e−x . The approximation problem is
one of defining an appropriate criterion for discarding the smaller term, e−x . For dimensionless values of
x greater than 3, the second term on the right-hand side of Eq. (5.27), e−x , becomes very small (less than
4.98 × 10−2) compared with ex for x = 3, which is 20.09. Hence, one could generally take sinh x ∼= 1/2ex .
All that must be decided is a value of x for which the approximation e2x − 1 ∼= e2x is acceptable.

This problem can be approached by introducing a scale factor, λ, which can be used to look for values
of x for which the approximation

sinh(x/λ) ∼= 1
2 ex/λ (5.28)

can be made. Putting a scale factor, λ, in the approximation of Eq. (5.28) obviously means that it will affect
the value of x for which that approximation is acceptable. Now the comparison is one which wants

e2x/λ − 1 ∼= e2x/λ (5.29)

For λ = 1, the approximation is good for x ≥ 3, while for λ = 5 the approximation works for x ≥ 15. Thus,
by introducing the scale factor λ we can make the approximation valid for different values of x because we
are now saying that e−x/λ is sufficiently small for x/λ ≥ 3. Changing λ has in effect changed a boundary
condition because it has changed the expression of the boundary beyond which the approximation is
acceptable to x ≥ 3 λ.
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Recall that functions such as the exponentials of Eq. (5.28) and Eq. (5.29), as well as sinusoids and
logarithms, are transcendental functions that can always be represented as power series. For example, the
power series for the exponential function is

ex/λ = 1 + x

λ
+ 1

2!
( x

λ

)2 + 1

3!
( x

λ

)3 + � + 1

n!
( x

λ

)n + � (5.30)

It is clear that the argument of the exponential must be dimensionless because without this property
Eq. (5.30) would not itself be a rational equation. Furthermore, one could not calculate numerical values
for the exponential—or any other transcendental—function, if its argument was not dimensionless. The
presence of a scale factor in Eq. (5.30) renders the exponential’s argument dimensionless, and so numerical
calculations can be performed.

Now, a charged capacitor draining through a resistor produces a voltage drop V (t) at a rate proportional
to the value of the voltage at any given instant. The mathematical model is

dV (t)

dt
= −λV (t) (5.31)

which can be rewritten as

dV (t)

V (t)
= −λ dt (5.32)

For this rate equation to be a rational equation, the net dimensions of each side of Eq. (5.32) must be
the same, which means that each side must be dimensionless. The left-hand side is clearly dimensionless
because it is the ratio of a voltage change to the voltage itself. The right hand will be dimensionless only if
the scale factor, λ, has physical dimensions such that [λ] = 1/T. Furthermore, the dimensionless product
λt can be used to derive a measure of the time that it takes to discharge the capacitor being modeled. Thus,
define a decay or characteristic time as the time it takes for the voltage to decrease to a specified fraction of
its initial value, say 1/10. The characteristic or decay time of the charged capacitor would then be

V (tdecay) ≡ V0

10
(5.33)

The value of the characteristic time tdecay can be calculated from the solution to Eq. (5.32) as

λ ∼= 2.303

tdecay
(5.34)

Equation (5.34) says that the scale factor λ for the discharging capacitor is inversely proportional to the
characteristic (decay) time, and so the voltage in the capacitor can then be written as

V (t) ∼= V0e−2.303(t/tdecay) (5.35)

5.3.4 Consequences of Choosing a Scale
Since all actions have consequences, it should come as no surprise that the acquisition of experimental
data, its interpretation, and its perceived meaning(s) generally can be very much affected by the choice of
scales for presenting and organizing data. To illustrate how scaling affects data acquisition, consider the
diagnosis of a malfunctioning electronic device such as an audio amplifier. Such amplifiers are designed to
reproduce their electrical input signals without any distortion. The outputs are distorted when the input
signal has frequency components beyond the amplifier’s range, or when the amplifier’s power resources
are exceeded. Distortion also occurs when an amplifier component fails, in which case the failure must be
diagnosed to identify the particular failed component(s).

A common approach to doing such diagnoses is to display (on an oscilloscope) the device’s output to
a known input signal. If the device is working properly, a clear, smooth replication of the input would
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Square wave input

Square wave output on
timescale of 0.5 s/division

Square wave output on
timescale of 0.5 ms/division

Square wave output on
timescale of 0.5 �s/division

(a)

(b)

(c)
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FIGURE 5.5 A square wave (a) is the input signal to a (hypothetical) malfunctioning electronic device. Traces
of the output signals are shown at three different timescales (i.e., long, short, and shorter): (b) 0.5 s/division; (c)
0.5 ms/division; and (d) of 0.5 µs/division.

be expected. One standard test input is the square wave shown in Figure 5.5(a). A nice replication of
that square wave is shown in Figure 5.5(b), and it seems just fine until it is noticed that the horizontal
timescale is set at a fairly high value, that is, 0.5 s/division. To ensure that something that might not show
up on this scale is not overlooked, the same signal we spread out on shorter timescales of 0.5 ms/division
(Figure 5.5[c]) and 0.5 µs/division (Figure 5.5[d]), neither of which is a nice square wave. This suggests that
the device is malfunctioning. Had the oscilloscope not been set to shorter, more appropriate timescales,
an erroneous conclusion might have been reached. Thus, it is important to understand that scaling issues
are central not only to displaying experimental data, but also to its measurement and interpretation.

5.3.5 Scaling and Perceptions of Data Presentations
The scales used to present modeling “results” also significantly influence how such data are perceived, no
matter whether those models are analytical or experimental in nature. Indeed, individuals and institutions
have been known to choose scales and portrayals to disguise or even deny the realities they purport to
present. Thus, whether by accident or by intent, scales can be chosen to persuade. While this is more of
a problem in politics and the media than it is in the normal practice of engineering and science, it seems
useful to touch on it briefly here since the underlying issue is a consequence of scale.

Figure 5.6 and Figure 5.7 illustrate the consequences of scale in contexts somewhat beyond the normal
professional concerns of engineers and scientists. Both examples are shown because they use the same
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FIGURE 5.6 Plots of traffic fatalities in the state of Connecticut, showing the dangers of truncating scales and deleting
comparative data: (a) Connecticut data for 1955–1956; (b) Connecticut data for 1951–1959; and (c) normalized data
for Connecticut and three neighboring states for 1951–1959. (From Tufte, E. R., The Visual Display of Quantitative
Information, Graphics Press, Cheshire, Connecticut, 1983.)

technique of carefully choosing a scale in a figure to present data out of context. Figure 5.6(a) shows a
rather dated picture of traffic deaths in the state of Connecticut during the time interval 1956–1957, and a
sharp drop in traffic deaths can be seen to have occurred then. But, was that drop real? And, in comparison
to what? It turns out that if more data are added, as in Figure 5.6(b), the drop is seen to follow a rather
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FIGURE 5.6 (Continued)

precipitous increase in the number of traffic fatalities. Further, data from adjacent states were added and
the number of deaths was normalized against a common base, as shown in Figure 5.6(c), it would then be
seen that the numbers of Connecticut’s traffic fatalities was similar to those of its neighbors, although the
impact of the stricter enforcement is still visible after 1955.

Similarly, one of the most often shown graphics in the financial pages of newspapers, or in their televised
equivalents, are graphics such as that shown in Figure 5.7. Here, the immediate sense conveyed is that the
bottom has dropped out of the market because the scale used on the ordinate (or y- or vertical axis) has
been so foreshortened that it includes only one week’s trading activities. Thus, a decline of a few percent
in a stock market barometer such as the Dow Jones Industrial Average (DJIA) appears initially like a much
more precipitous decline—especially if the curve itself is drawn in red ink!

5.4 Conservation and Balance Principles

The development of mathematical models often starts with statements that indicate that some property of
an object or system is being conserved. For example, the motion of a body moving on an ideal, frictionless
path could be analyzed by noting that its energy is conserved. Sometimes, as when modeling the population
of an animal colony or the volume of a river flow, quantities that cross a defined boundary (whether
individual animals or water volumes) must be balanced. Such balance or conservation principles are applied
to assess the effect of maintaining or conserving levels of important physical properties. Conservation and
balance equations are related—in fact, conservation laws are special cases of balance laws.

The mathematics of balance and conservation laws are straightforward at this level of abstraction.
Denoting the physical property being monitored as Q(t) and the independent variable time as t , a balance
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FIGURE 5.7 A plot of the performance of the New York Stock Exchange during 13–15 May 2002, as exemplified by
that universally-cited barometer, the Dow Jones Industrial Average (DJIA). (From www.bigcharts.com, 2002)
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FIGURE 5.8 A system boundary surrounding the object or system being modeled. The influx qin(t), efflux qout(t),
generation g(t), and consumption c(t) affect the rate at which the property of interest, Q(t), accumulates within the
boundary. (After Cha, P. D., Rosenberg, J. J., and Dym, C. L., Fundamentals of Modeling and Analyzing Engineering
Systems, Cambridge University Press, New York, 2000.)

law for the temporal or time rate of change of that property within the system boundary depicted in
Figure 5.8 can be written as

dQ(t)

dt
= qin(t) + g(t) − qout(t) − c(t) (5.36)

where qin and qout represent the flow rates of Q(t) into (the influx) and out of (the efflux) the system
boundary, g(t) is the rate at which Q is generated within the boundary, and c(t) the rate at which Q is
consumed within that boundary. Note that Eq. (5.36) is also called a rate equation because each term has
both the meaning and dimensions of the rate of change with time of the quantity Q(t).
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In those cases where there is no generation and no consumption within the system boundary (i.e., when
g = c = 0), the balance law in Eq. (5.36) becomes a conservation law:

dQ(t)

dt
= qin(t) − qout(t) (5.37)

Here, then, the rate at which Q(t) accumulates within the boundary is equal to the difference between the
influx, qin(t), and the efflux, qout(t).

5.5 The Role of Linearity

Linearity is one of the most important concepts in mathematical modeling. Models of devices or systems
are said to be linear when their basic equations—whether algebraic, differential, or integral—are such
that the magnitude of their behavior or response produced is directly proportional to the excitation or
input that drives them. Even when devices like the classic pendulum are more fully described by nonlinear
models, their behavior can often be approximated by linearized or perturbed models, in which cases the
mathematics of linear systems can be successfully applied.

Linearity is applied during the modeling of the behavior of a device or system that is forced or pushed
by a complex set of inputs or excitations. The response of that device or system to the sum of the individual
inputs is obtained by adding or superposing the separate responses of the system to each individual input.
This important result is called the principle of superposition. Engineers use this principle to predict the
response of a system to a complicated input by decomposing or breaking down that input into a set of
simpler inputs that produce known system responses or behaviors. However, some typical behaviors cannot
be captured by linear models, in which case it is important to be careful not to oversimplify inappropriately.

5.5.1 Linearity and Geometric Scaling
The geometric scaling arguments discussed earlier can also be used to demonstrate some ideas about
linearity in the context of geometrically similar objects, that is, objects whose basic geometry is essentially
the same. Figure 5.9 shows two pairs of drinking glasses: one pair are right circular cylinders of radius r
and the second pair are right circular inverted cones having a common semi-vertex angle α. If the first pair
is filled to heights h1 and h2 respectively, the total fluid volume in the two glasses is

Vcy = πr2h1 + πr2h2 = πr2(h1 + h2) (5.38)

Eq. (38) demonstrates that the volume is linearly proportional to the height of the fluid in the two
cylindrical glasses. Further, since the total volume can be obtained by adding or superposing the two
heights, the volume Vcy is a linear function of the height h. Note, however, that the volume is not a linear
function of radius r.

h1

h2

h�1
h�2

a

FIGURE 5.9 Two pairs of drinking glasses: one pair are cylinders of radius r, the second pair are inverted cones
(sometimes referred to as martini glasses) having a common semivertex angle α.
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In the two conical glasses, the radii vary with height. In fact, the volume, Vco, of a cone with semivertex
angle, α, filled to height, h, is

Vco = π

3

h3

tan2 α
(5.39)

Hence, the total volume of fluid in the two conical glasses of Figure 5.9 is

Vco = π

3

h′3
1

tan2 α
+ π

3

h′3
2

tan2 α
�= π

3

(h′
1 + h′

2)3

tan2 α
(5.40)

That is, the relationship between volume and height is nonlinear for the conical glasses, the total volume
cannot be calculated just by superposing the two fluid heights, h′

1 and h′
2. Note that this result, while to

a simple, even obvious case, is emblematic of what happens to superposition when a linearized model is
replaced by its (originating) nonlinear version.

5.6 Conclusions

This chapter has provided a very brief summary of the most basic foundations of mathematical modeling.
In this context, the discussion began with a statement of principles under which the activity of mathe-
matical modeling could be properly performed. This was followed by a discussion of basic foundational
matters, including dimensional homogeneity and dimensional analysis, abstraction and scaling, balance
and conservation laws, and an introduction to the role of linearity. It is important to note that this overview
emphasized brevity, dictated by chapter length limitations, and so it will hopefully serve as a stimulant to
the reader’s appetite for further reading and application of these basic ideas and methods.
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This chapter introduces the discrete-event systems specification (DEVS) formalism for modeling of
discrete-event systems (DESs). Based on set theory, the formalism specifies DESs in a hierarchical, modular
manner. Models specified by the formalism can be used for analysis as well as performance simulation of
DESs.

6.1 Introduction

A DES consists of a collection of components that interact with each other via events exchange to perform
a given function. A component of such a system is represented by a discrete states set and operations
defined on the set. The operations are mainly a set of rules for states transition, which is performed only
with an occurrence of instantaneous events over time. An event in DES may occur either by an external
stimulus to the component (external event) or an internal condition within the component (internal
event). A message arrival and a timeout in a communication system are examples of an external and an
internal event, respectively. Consider a DES of a ping-pong protocol system whose state transition diagram
is shown in Figure 6.1.

The protocol system consists of two components, SENDER and RECEIVER, each of which has its
own states and associated transition rules. Note that components, SENDER and RECEIVER, are cou-
pled together via two events: msg and ack. Let us first give an informal description of each component
and then the interaction between the two. SENDER has two states, “Send” and “Receive,” the input
event ?ack and the output event !msg. Initially, SENDER stays at the “Send” state at which an output
event !msg is generated with a state transition to the “Receive” state. It then waits for an input event

6-1
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FIGURE 6.1 State transition diagram for ping-pong protocol.
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FIGURE 6.2 External and internal views for SENDER.

?ack to be arrived from RECEIVER. When SENDER receives the ?ack event at the “Receive” state it returns
to the “Send” state again. However, if the ?ack event is not arrived before a specified period SENDER
changes its state to the “Send” state. The state change is based on an assumption that !msg or ?ack is lost
during transmission through components coupling. Once SENDER comes back to the “Send” state it sends
!msg again, which may be a new one or the one previously sent. Note that SENDER changes its state from
“Receive” to “Send” either by an external input event ?ack or an internal event *timeout of the timeout
condition. The operation of RECEIVER can be described similarly.

The informal description of SENDER allows one to identify an external and an internal view of a
DES. The external view is a sequence of two events !msg and ?ack. The order of the two depends on
a rate of lost events and/or a value of the timeout. Thus, a legal events sequence may be one such as
!msg → ?ack → !msg → !msg → !msg … → !ack. However, an events sequence !msg → ?ack → ?ack is not
a legal one. In contrast, the internal view of SENDER is a sequence of states which is a piecewise constant
function over time. For example,“Send”→“Receive”→“Send”→“Receive”… →“Send” is one such states
sequence. Figure 6.2 shows an external as well as an internal view of SENDER. Note that a state transition
from “Receive” to “Send” has been made by an internal event ∗timeout.

A DES can be viewed as a system whose abstraction level in modeling is at the discrete-event one. In
the level, a modeler is interested only in what happens if an event occurs while ignoring details of system
behavior between events occurrences. In this sense most systems can be modeled at the discrete-event level
which we call a DES. Examples of DES include a communication protocol viewed at or above the data
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link layer, a computer system viewed at or above the operating system level, a military war game at the
operation level, and others.

Rest of this chapter is organized as follows. Section 6.2 presents DES modeling in the system-theoretic
view and Section 6.3 introduces the DEVS formalism. Analysis and simulation of DES with DEVS models
are given in Sections 6.4 and 6.5, respectively. Section 6.6 concludes this chapter.

6.2 System-Theoretic DES Modeling

The system-theoretic approach for systems modeling views a system as an object in which its representation
and associated operations are explicitly defined. In the view a system is represented by three sets: inputs
set, outputs set, and states set; operations on the sets are defined as a collection of rules, or functions, for
state transition and output generation.

In DES, both inputs and outputs are finite event sets. However, a states set is not finite. To be precise
recall the definition of state at t in system theory: information required at t which uniquely determines
output at t ′ > t . In fact, an output in DES is generated at a specified time when a certain condition is
satisfied. Thus, a state at t is represented by a discrete state, s, and an associated elapsed time, e, which is
a real number. Of course, the maximum elapsed time for each discrete state is predefined, which we call
the maximum sojourn time, r, from now on. Then, a state (s,e) means that the discrete state s has been
kept for the e time unit without any external input. If no input is arrived at the state before the maximum
sojourn time r an output would be generated. Of course, an input event can be arrived anytime before
the r time unit. In such a case, the discrete state s is changed to a new one s′ that has its own maximum
sojourn time r′. To be clear we call s a discrete state and q = (s,e) a total state or just a state of DES. Since e
is a real number q is not finite.

We are now ready to explain how system theory defines state transition functions of a dynamic system.
In the theory, two state transitions are considered: one with an input and the other without an input. For
example, a well-known vector differential equation for state transition of a linear continuous system is
dQ/dt = AQ + BX, where Q is a state set, X an inputs vector, and A and B are the coefficient matrices.
Note that dQ/dt = AQ specifies state transition without inputs and dQ/dt = BX specifies that with inputs
X . As will be shown later, the same view would be applied in DES modeling. More specifically DES has a
state transition either with an external input event or with a condition internal to a system, which causes
an internal event. Such a condition at a state q = (s,e) includes e = r, meaning that an elapsed time e is
reached to the maximum sojourn time r at s. From now on we call state transition with an input as external
state transition and that without an input as internal state transition. Similarly, an output is a function of
both an input and a state. However, an output function can be represented only by state information, for
the information memorizes history of inputs information.

As shown in Figure 6.1, a DES consists of components that are connected together for interaction with
events exchange. Thus, specification of DES should have a means to specify the connection. In sum,
modeling of DES in the system-theoretic approach requires the following expression:

• each component needs inputs set, outputs set, states set, state transition functions, both external
and internal transitions, and output function;

• connection of components needs a means for coupling between events associated with components.

The DEVS formalism to be introduced in the following chapter supports such an expression in a formal
manner for modeling of DES.

6.3 DEVS Formalism for DES Modeling

The DEVS formalism, developed by Zeigler, specifies a DES with the following three major features
(Zeigler, 1984; Zeigler et al., 2000):

• set theory-based formalism
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• system-theoretic representation
• hierarchical, modular specification.

The DEVS formalism is constructed based on set theory in which a static structure, such as states, is
represented by a set and dynamic behavior, such as state transition, is specified by operations on sets.
Set-theoretic modeling is known to be very intuitive in a modeling process. Moreover, with the set theory
the formalism represents a DES in a system-theoretic view. With the view the formalism specifies a system
as a static representation of inputs, outputs, and states sets and dynamic operations defined on sets.
Finally, the formalism specifies a system in a hierarchical, modular manner. This feature allows a modeler
to decompose a discrete-event model into a collection of modular submodels, each of which in turn is
decomposed into modular submodels, and so on. To do so develops a discrete-event model with a powerful
combination of top-down model design and bottom-up model implementation.

6.3.1 Atomic DEVS Model
The DEVS formalism defines a DES into two classes of models: atomic model and coupled model. An
atomic model is a nondecomposable model in hierarchical decomposition; a coupled one is a collection
of either atomic or coupled model. An atomic model specifies state transition and output generation over
time. In contrast, a coupled model specifies a list of components and their coupling information. Formally,
an atomic DEVS model (AM) is defined as follows:

AM = <X , S, Y , δext, δint, λ, ta>

where
X : a set of input events;
S : a set of sequential states;
Y : a set of output events;

with the following constraints:
ta: S → R (nonnegative real number), time advance function;
δint: Q → Q, an external transition function;
where Q = S × R = {(s, e) | s ∈ S and 0 ≤ e ≤ ta(s)}, states set of M ;
λ: Q → Y , an output function;
δext: Q × X → Q, an external transition function.

As shown in the above definition, AM has three sets and four functions which we call characteristic
functions. Note that AM has two transitions, δext and δint. δext is state transition with an input event and
δint is that without an input event but with an internal condition. The internal transition, δint: Q → Q,
changes states from q ∈ Q to q′ ∈ Q, which is different from that of δint: S → S in the original DEVS
formalism (Zeigler, 2000). Note that q = (s,e) ∈ Q represents a discrete state and an associated elapsed
time at the state. Thus, the use of Q in the definition of internal transition here allows us to explicitly
specify a condition for when an internal transition would have occurred. For similar reasons, external
transition and output functions are defined with Q, which is slightly different from that in Zeigler (2000).
As will be shown later, the transitions with Q allow us to formulate state/output equations for DEVS that
would be analogous to the ones for continuous dynamic systems. Note also that S is defined as a set of
discrete states although it can represent a continuous set.

Let us briefly explain the four functions. Time advance function defines the maximum sojourn time
for which each discrete state can stay unless an external input is arrived before the time. Note that the
sojourn time at a discrete state s, defined by ta(s), should be updated whenever a discrete state is changed.
The sojourn time can model such information as delay time for information transmission, work time for
processing tasks, and interdeparture time for generation of events. The internal transition specifies state
transition without an input but with an internal condition. The condition is whether an elapsed time
at a discrete state s is reached to the maximum sojourn time ta(s) at s. More specifically, assume that a
discrete state of an atomic model is s and that no input is arrived until the ta(s) time unit. Then, a state
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q = (s, ta(s)) of the model is changed into another state q′ = (s′, 0). Recall that the internal transition of
Q → Q, instead of S → S, explicitly specifies when the transition occurs. That is, no internal transition
occurs at a state q′′ = (s, e), where e < ta(s), although discrete states for both q = (s, ta(s)) and q′′ = (s,
e) are identical. Note that the elapsed times at the discrete state in q and that in q′ at which an internal
transition occurs are always ta(s) and 0, respectively.

Definition of the external transition can be similarly explained in which an elapsed time for a new state
immediately after the transition is also 0. The output function, Q = S × R → Y , specifies which discrete
state in S generates what output in Y at what time in R. Recall that the output function, S → Y , only
specifies which discrete state in S generates what output in Y with no information about what time.

6.3.2 Coupled DEVS Model
A coupled DEVS model is a composition of DEVS models, each of which can be either atomic or coupled,
thus supporting hierarchical construction of a complex model. A well-known DEVS property of closed
undercoupling is a theoretical basis for such hierarchical models construction, similar to a process of
assembling a complex hardware from pieces of components. A formal definition of a coupled DEVS
model (CM) is as follows:

CM = <X , Y , D, {Mi | i ∈ D}, EIC, EOC, IC, Select>

where
X , Y : same as in AM;
D: a set of component names;
Mi: a component DEVS model, atomic or coupled;

with the following constraints:
EIC ⊆ X × ∪

i∈D
Xi, external input coupling relation;

EOC ⊆ ∪
i∈D

Yi × Y , external output coupling relation;

IC ⊆ ∪
i∈D

Yi × ∪
j∈D

Xj , internal coupling relation;

Select: 2D − Ø → D, tie-breaking selector.

A coupled DEVS model has three sets and four functions. A set of components Mi is coupled to form
a coupled model. The coupling specification is defined by three mathematical relations: external input,
external output, and internal coupling relations. Each relation is a set of ordered pairs of events, each of
which is represented by (e1, e2), indicating that an event e1 is coupled to an event e2. With the coupling
in DEVS theory, all information in e1 is transmitted to e2 without any time delay. Let us look into the
three relations. The external input coupling relation, EIC, specifies how an input event of CM is routed to
input events of component models. The external output coupling relation, EOC, specifies how an output
event of a component is connected to an output event of CM. Lastly, the internal coupling relation, IC,
specifies how an output event of a component of CM is coupled to input events of other components
of CM. Note that the selection function, select, designates a component to be selected out of many if the
selection is required. The function is activated when more than one component is ready to generate their
output events while events can be handled one by one.

6.3.3 Example of DEVS Modeling: Ping-Pong Protocol
Let us illustrate DEVS modeling of ping-pong protocol. We first specify atomic DEVS models for SENDER
and RECEIVER, and then the overall coupled DEVS model for the protocol. We call two atomic DEVSs
AMsender and AMreceiver for SENDER and RECEIVER,respectively, and the overall DEVS model CMppp.
The atomic DEVS model of AMsender is defined as follows:

AMsender = <X , S, Y , δext, δint, λ, ta>
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FIGURE 6.3 DEVS model for ping-pong protocol.

where
X = {?ack}; Y = {!msg}; S = {Send, Receive};
ta(Send) = ST(!m) // Sending time of !msg ;
ta(Receive) = Timeout // Maximum waiting time for input ?ack;
δint(Send, ST(!m)) = (Receive, 0);
δint(Receive, Timeout) = (Send, 0);
λ (Send, ST(!m)) = !msg ;
δext((Receive, e < Timeout), ?ack) = (Send, 0).

AMreceiver can be similarly specified. Figure 6.3 shows AMsender and AMreceiver. Note that each discrete
state in Figure 6.3 has an associated sojourn time defined by the time advance function of ta, such as ST(!m),
Timeout, ST(!a), and ∞. Interpretation of the time is as follows. ST(!m) associated with the discrete state
“Send” is a time to be spent for transmission of !msg from SENDER to RECEIVER. It may be modeled
as a fixed real number including zero or a random number depending on a modeling objective. Timeout
associated with the discrete state “Receive” is the maximum waiting time for the input ?ack to arrive. Thus,
as shown in Figure 6.3 SENDER can change its discrete state either by the condition of Timeout or by the
input event ?ack, depending on which one occurs first between the condition and the input. Meaning of
ST(!a) associated with the discrete state “Accept” is similar to that of ST(!m). The sojourn time of ∞ at
the discrete state “Receive” in RECEIVER means that RECEIVER does not know how long it should wait
for the input ?msg to arrive from SENDER.

The internal transition of AMsender, δint(Send, ST(!m)) = (Receive, 0), means that if an elapsed time
at the discrete state “Send” is reached to the maximum sojourn time ST(!m) then AMsender changes
its state to the beginning of the discrete state “Receive.” The output function, λ(Send, ST(!m)) = !msg,
means that if an elapsed time at “Send” is reached to the maximum sojourn time ST(!m) then the output
!msg is generated. Note that the output generation at a given state occurs at the same time as an internal
transition at the state. The external transition function of δext((Receive, e < Timeout), ?ack) = (Send, 0)
specifies what to do when the input ?ack has arrived at an elapsed time e before the maximum sojourn
time of Timeout. In this case AMsender changes its state to (Send, 0). Note that both internal and external
transition functions are piecewise constant functions over time.

Let us specify the coupled model CMppp. As shown in Figure 6.3, CMppp consists of two atomic models
AMsender and AMreceiver. Thus, CMppp is defined as

CMppp = <X , Y , {Mi}, EIC, EOC, IC, Select>

where
X = Y = { } (no input and output to environment);
{Mi} = {AMsender, AMreceiver};
EIC = EOC = { } (no interaction with external world);
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IC = {(AMsender.!msg, AMreceiver.?msg),
(AMreceiver.!ack, AMsender.?ack)};
Select({AMsender, AMreceiver}) = AMsender.

Note that CMppp has no interaction with an external environment, thus X = Y = EIC = EOC = { }.
However, if the coupled model has any such interaction specification of the sets it should reflect it.
Specification of {Mi} is self-evident. Specification of IC employs a list of ordered pairs each of which
represents coupling information between two models. An ordered pair of (M1.m1, M2.m2) means that
an output event m1 of a model M1 is coupled to an input event m2 of a model M2. By the coupling, all
information associated with m1 is transferred to m2 with no delay. Thus, by the coupling (AMsender.!msg,
AMreceiver.?msg), two models change their states simultaneously, “Send” to “Receiver” for AMsender and
“Receiver” to “Accept” for AMreceiver. If a model is coupled to more than one model all such couplings
should be listed in ordered pairs by following the definition of mathematical relation on two sets. Finally,
the select function Select specifies that if AMsender and AMreceiver are ready to change its state at the
same time then AMsender executes the change first, then AMreceiver. Such selection priority should be
carefully specified with the deep domain knowledge of a target system to be modeled. The priority does
not matter in system analysis for some cases, but it does matter for most cases.

6.3.4 State Equation Form of Atomic DEVS
As described earlier, the DEVS formalism specifies a DES in the system-theoretic viewpoint. Recall that
the viewpoint considers system’s dynamics both with and without inputs. Following the viewpoint the
DEVS formalism has two transition functions: internal and external. Thus, a state transition in an atomic
DEVS model can occur either by an internal event (i.e., timeout condition) or by an external event. No
specification is given for a state transition to be performed by the two events that have occurred at the same
time. A priority rule for selection of such conflict events is specified at a coupled DEVS model to which
the atomic DEVS belongs as a component. Thus, a state equation of an atomic DEVS is represented as

q′ = δint(q) ⊕ δext(q, x) or (s′, r′) = δint(s, r) ⊕ δext((s, e ≤ ta(s)), x) (6.1)

y = λ(q) = λ(s, r) (6.2)

where the binary operator, ⊕, is used to represent that a state transition can occur by either δint or δext,
but not by both at any time. Note that Eq. (6.1) is similar to the state equation dQ/dt = AQ + BX for a
continuous dynamic system, where Q is a states set, X an inputs vector, and A and B are the coefficient
matrices. The state equation indicates that a state change (dQ/dt) is composed of a state change without
input (dQ/dt = AQ) and a state change with input (dQ/dt = BX). Comparison of the two state equations
show that δint(q) and δext(q, x) in DEVS correspond to dQ/dt = AQ and dQ/dt = BX in a continuous
system, respectively.

6.4 DES Analysis with DEVS Model

Generally, the purpose of systems modeling is twofold: verification of desired behavior and performance
evaluation. A DEVS model for a DES can be used for such purposes. Verification of behavior for a DES
includes properties of the system such as liveness and safeness, desired states/events sequences, and others.
Safeness is a property which claims that a bad thing will never happen; liveness is another property which
claims that a good thing will eventually happen. An example of safeness is deadlock-free and that of
liveness is an arrival of a message ?ack at SENDER in the ping-pong protocol introduced in Section 6.1.
A desired events sequence is one that satisfies functionality of the system to be modeled. An example of
a desired events sequence in the ping-pong protocol is !msg → ?msg → !ack → ?ack, meaning of which is
self-explained.
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6.4.1 Composition of Atomic DEVS Models
Verification of DES usually relies on a state space exploration approach. The approach generates a global
state space of an overall system model by composition of component models. Composition of atomic
DEVS models considers all atomic models on a whole as a timed state transition model. Although the
composition deals with more than two components, we restrict our definition of composition on two
atomic models without loss of generality. A composed model of two atomic DEVS models of AMi and
AMj , noted by (AMi || AMj), is defined as follows:

AMi||AMj = <E, S, T , ta, {AMi, AMj}>

where
E : events set;
S : composed discrete states set;
T : transition relation of composed discrete states;
ta: time advance function;

with the following constraints:
E = (Xi ∪ Yi ∪ {φ}) × (Xj ∪ Yj ∪ {φ}), where φ is a null event;
S ⊆ Si × Sj ;
T ⊆ S × E × S;
ta: S → R.

To complete the definition, we define transition relation and time advance function with the following
three rules:

• Rule 1: Transit AMi only

— Transition relation

If (si, s′i) ∈ δinti and (si, !a) ∈ λi and (sj , ?a, s′j) /∈ δextj

then ((si, sj), (!a, φ), (s′i , sj)) ∈ T for all sj ∈ Sj

— Time advance

ta((s′i , sj)) = min{tai(s′i), taj(sj) − tai(si)}

• Rule 2: Transit AMj only

— Transition relation

If (sj , s′j) ∈ δintj and (sj , !b) ∈ λj and (si, ?b, s′i) /∈ δexti

then ((si, sj), (φ, !b), (si, s′j)) ∈ T for all si ∈ Si

— Time advance

ta((si, s′j)) = min{tai(si) − taj(sj), taj(s′j)}

• Rule 3: Transit both AMi and AMj

— Transition relation

If (si, s′i) ∈ δinti and (si, !c) ∈ λi and (sj , ?c, s′j) ∈ δextj

(or [(sj , s′j) ∈ δintj and (sj , !c) ∈ λj and (si, ?c, s′i) ∈ δexti ])

then ((si, sj), (!c, ?c), (s′i , s′j)) ∈ T

(or [(si, sj), (?c, !c), (s′i , s′j) ∈ T]) for all si ∈ Si and sj ∈ Sj

— Time advance

ta((s′i , s′j)) = min{ tai(s′i), taj(s′j)}
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Note that each rule separates specifications of transition for a composed state from time advance for the
state. The separation allows us to specify a composed DEVS model as a timed state automation which is
closed from an external world. Although the composed model does not have an explicit state representation,
a composed state should be represented by q = ((si, sj), e) ∈ Q, where e is an elapsed time at the composed
discrete state (si, sj).

An event e ∈ E is an ordered pair of two events of component models. An event (!m, ?m) ∈ E in transition
relation means that an output event !m of AMi is successfully transmitted to AMj as an input event ?m.
Likewise, an event (?m, !m) in transition relation means that an output event !m of AMj is successfully
transmitted to AMi as an input event ?m. In the above cases, both AMi and AMj concurrently perform
state transitions of their own. However, (φ, !m) or (!m, φ) represents a failure of such concurrent state
transitions; instead, it represents that either one of the two performs its own state transition.

Figure 6.4 shows a composed model of AMsender || AMreceiver by application of the above composition
rules. For the composition, we assume that !msg is never lost and that !ack may be lost during transmis-
sion. Also assume that Timeout > ST(!a). In the figure a state of AMsender || AMreceiver is represented by
q = ((s1, s2), r), where s1 and s2 are discrete states of AMsender and AMreceiver, respectively, and r = ta((s1,
s2)). Initially, the states of AMsender and AMreceiver are at SD(“Send”) and RV(“Receive”), respectively,
thus being represented by (SD, RV). Time advance of (SD, RV) is the minimum of ta(SD) of AMsender and
ta(RV) of AMreceiver which is ST(!m). Combining the event and an associate sojourn time, a state ((SD,
RV), ST(!m)) is represented in an oval with two partitions in Figure 6.4: the top, (SD, RV), representing
the composed discrete state and the bottom, ST(!m), representing the sojourn time of (SD, RV). With the
event (!msg, ?msg), (SD, RV) changes to (RV, AP) after ST(!m) is completely elapsed. The discrete state (RV,
AP) stays for ST(!a) time. At the end of ST(!a), (RV, AP) is changed either to (SD, RV) with (?ack, !ack) or to
(RV, RV) with (φ, !ack). Now note that the maximum sojourn time at (RV, RV) is min{Timeout − ST(!a),
∞} = Timeout − ST(!a) according to Rule 2. In fact, Timeout − ST(!a) is a remaining time for which the
discrete state (RV, RV) is changed to the discrete state (SD, RV) without any event.

6.4.2 System Analysis by Composed DEVS Model
We now are ready to analyze a DES whose analysis model is represented by a composed DEVS model. We
first exemplify an intuitive analysis of the ping-pong protocol in Figure 6.3 using the composed DEVS
model of Figure 6.4. We then briefly introduce a method for automatic verification of DESs using composed
DEVS models.

As explained in Section 6.4.1, Figure 6.4 represents a global state transition with a sojourn time between
each transition. Thus, an intuitive investigation of Figure 6.4 can answer questions on states sequence as

(RV, RV)

Timeout–ST(!a)

(!msg, ?msg)

(?ack, !ack)

(SD, RV)

(�, !ack)

ST(!m)

(RV, AP)

ST(!a)

FIGURE 6.4 Composed DEVS model of ping-pong protocol (SD, send; RV, receive; AP, accept).
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well as timing property of the protocol to be analyzed. The following questions–answers for ping-pong
protocol can be performed using Figure 6.4:

• Question 1 on safeness: Is the protocol deadlock-free?
Answer 1: Yes, because each state in the Figure 6.4 has a next state to move.

• Question 2 on liveness: Can 10 !msg be eventually transmitted to RECEIVER?
Answer 2: Yes, because SENDER will eventually receive 10 ?ack if the probability of loss of !ack is
less than 1.0.

• Question 3 on a discrete state sequence: Is (SD, RV) → (RV, AP) → (SD, AP) a legal state sequence?
Answer 3: No, because no such sequence can be constructed in Figure 6.4.

• Question 4 on the minimum and maximum round trip times from (SD, RV) to (SD, RV)?
Answer 4: ST(!m) + ST(!a) is minimum; ST(!m) + Timeout is maximum.

Although the above example shows the concepts of DES analysis using composed DEVS models, comput-
erized automatic verification needs a systematic method for construction of a complete global state space
from a composed DEVS model. Generally, the global state space is represented by an infinite number of
timed events/states sequences. The sequences can be constructed by a combination of basic sequences each
of which is a loop in the composed model. Once all possible events/states sequences are constructed, a
complete verification of a system’s property and behavior is possible.

Consider Figure 6.4, the composed DEVS model of Figure 6.3, and assume that states sequences are of
interest in analysis. Intuitively, Figure 6.4 has the following two basic states sequences:

• ((SD, RV), ST(!m)) → ((RV, AP), ST(!a)) → ((SD, RV), ST(!m));
• ((SD, RV), ST(!m)) → ((RV, AP), ST(!a)) → ((RV, RV), Timeout − ST(!a)) → ((SD, RV), ST(!m)).

The first sequence is a sequence for a successful message transmission, and the second for a failure one. Let
us call the successful one and the failure one ss and fs, respectively. Combinations of the two sequences can
construct all possible states sequences of the composed DEVS model, which include ss → ss → ss… → ss,
ss → fs → fs → ss… → fs, fs → fs → ss → ss → … → ss, and so on. Note that each sequence may be infinite
in general, but it can be finite if conditions, such as a total number of messages to be transmitted and a
failure rate of each transmission are given. A method for the systematic generation of the minimum set of
basic loops of states/events sequences is a research issue and one such method can be found in Hong and
Kim (2005).

Once all possible sequences of a composed DEVS model are given, questions on the system can be
answered. To get an answer required is an efficient search method that finds properties translated from
questions in the state space. Recall that the size of a global state space of DES is infinite. Thus, a construction
of the state space causes a well-known state explosion problem, a general solution of which has not been
proposed so far. To solve the problem, subclasses of DEVS, such as schedule-preserved DEVS (SP-DEVS)
(Hwang and Cho, 2004) and schedule-controllable DEVS (SC-DEVS) (Hwang, 2005), have been proposed
in which some restrictions are applied to bound an infinite state space to a finite one.

6.5 Simulation of DEVS Model

DEVS models can be used for performance simulation of a DES. Since DEVS modeling is based on
the concept of the object-oriented (OO) worldview so does simulation of such models. Recall that DEVS
defines two model classes, atomic and coupled models, with which a hierarchical construction of a complex
model is specified.

6.5.1 DEVS Modeling Simulation Methodology and Environment
Figure 6.5 shows a generic architecture for a DEVS-based modeling and simulation environment using
a programming language L, where L can be any OO language such as C++ and Java.

Note that the DEVS modeling environment and the simulation engine are explicitly separated. Within
the environment, modelers can develop DEVS models using modelers’ interface which is a set of application
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FIGURE 6.5 DEVS modeling/simulation environment.

programming interfaces (APIs) to specify DEVS models in DEVS semantics. Thus, APIs for the specification
of DEVS models are defined such that there is a one-to-one correspondence between APIs in the formalism.
For example, APIs for specification of atomic DEVS models in a C++ modeling/simulation environment
include TimeAdvanceFn(), ExtTransFn(Message &, e), IntTransFn(), and OutputFn(Message &). APIs for
the specification of coupled DEVS models are similarly defined.

The hierarchical simulation engine realizes the concepts of abstract simulators (or simulation algo-
rithms) developed in Zeigler (1984). The abstract simulators are a set of distributed simulation algorithms
which can be implemented in a sequential as well as a distributed computing environment. Also, it is natural
to implement the abstract simulators algorithm in an OO language such as C++. The first implementation
is DEVSim++ (Kim and Park, 1992), which is a C++ environment for DEVS modeling and simula-
tion. Different implementations are available in public domains and efforts for standardization of DEVS
modeling/simulation environments is ongoing by DEVS Standardization Organization (DEVS-STD,2005).

The main purpose of OO implementations of DEVS modeling/simulation is to exploit the reusability
of DEVS models in models development. In fact, a carefully designed environment would support two-
dimensional (2D) reusability of DEVS models: one from the OO paradigm and the other from the DEVS
methodology (Kim and Ahn, 1996). The former exploits inheritance mechanism in the paradigm; the
latter does modular, hierarchical model construction in the methodology (Kim, 1991). Reuse metrics for
DEVS models developed in the DEVSim++ environment are proposed and measure of such reusability
was reported in Choi and Kim (1997).

Simulation-based performance analysis requires careful design of experimental frame, the concepts of
which has been proposed in Zeigler (1984). The experimental frame is a coupled DEVS model, independent
of the DEVS model of a target system to be simulated. The frame usually includes at least two models: one
for the generation of events which is input scenarios to the simulated DEVS model and the other for the
collection of simulation data which is output from the simulated DEVS model. Design of experimental
frame is objective-driven, meaning that different design objectives require different experimental frames.
More specifically, a set of simulation objectives is transformed into a set of performance indices. Then, an
experimental frame is designed such that the desired performance indices are measured by simulation.

For example, assume that the ping-pong protocol described in Section 6.1 is simulated and that the
simulation objective is to know how fast messages are to be transmitted with the protocol. Then, we employ
the DEVS model, CMppp, in Figure 6.3 and identify that the throughput of message transmission is a
performance index to be measured. The throughput is measured as a ratio of the total messages success-
fully transmitted to the total time spent for the transmission. To measure the ratio, an experimental frame
consists of at least one atomic DEVS model which is connected to CMppp via appropriate coupling rela-
tions. Of course, ST(!m) for AMsender and ST(!a) for AMreceiver should be identified before simulation
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starts. The values may be fixed ones or random ones depending on a simulation objective. However, the
values should be identical or statistically equivalent to those in a real ping-pong protocol. Data modeling
of the values in terms of a distribution function with statistical parameter(s) is an important activity in a
modeling process.

6.5.2 Simulation Speedup and Simulators Interoperation
Simulation for performance evaluation of practical scale DESs may spend a large amount of time. To
reduce such simulation time in DEVS simulation, some attempts have been made. Among others three
approaches are introduced here. The first one is distributed simulation of DEVS models in which an
overall simulation is partitioned into a set of distributed computing resources (Kim et al., 1996; Seong
et al., 1995). Speedup for the approach depends not only on a balance between partitioned workloads but
also on a communication overhead between distributed computing resources. The second one is a hybrid
simulation method in which simulation models are a combination of DEVS models and analytic models
(Ahn and Kim, 1994). Speedup would be made without sacrificing accuracy if analytic models satisfy
certain assumptions in the system behavior. The third one is a model composition approach in which an
overall DEVS model is first composed into an atomic DEVS model and then simulate the atomic DEVS
model (Lee and Kim, 2003). A tool for automatic composition of an overall DEVS model into an atomic
model is developed and experimental results show about five times faster simulation than of the original
DEVS model.

Recently, simulation interoperation between heterogeneous simulators is of interest first in the military
domain and then in the civilian one. Accordingly, a standard for such interoperation has been proposed.
High-level architecture (HLA) is a standard specification for simulators interoperation; run-time infra-
structure (RTI) is implementation of HLA. HLA was first adapted as a defense modeling and simulation
office (DMSO) standard in 1966 and then as an institute of electrical and electronics engineers (IEEE) stan-
dard in 2000. In conjunction with the simulators interoperation, the DEVSim++ environment has been
extended such that simulators developed in DEVSim++ is HLA-compliant, meaning that the simulators
can interoperate with other simulators via RTI interface. The extended environment, called DEVSimHLA
(Kim, 1999; Kim and Kim, 2005) has been developed based on the concepts of a simulation bus of
DEVS-BUS (Kim and Kim, 2003). The DEVSimHLA environment has been successfully employed for
the development of HLA-compliant military war game simulators in Korea, which have been certified by
DMSO.

6.6 Conclusion

Analysis and performance simulation of DESs should be based on a mathematical model for the systems.
The DEVS formalism is one such modeling means, which supports specification of DESs in a hierarchical,
modular manner. An advantage of the DEVS formalism is that it provides us with a unified model which
can not only be used in analysis but also to study the performance simulation of a system. Analysis of
DES with composed DEVS models requires a computerized tool for a state space construction and an
associate search method for a state space exploration. Composition of more than two DEVS models can
be done in an incremental manner for which only two models are composed at a time. Performance
simulation of DEVS models needs a modeling/simulation environment which is usually implemented in
OO programming languages such as C++ or Java.
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7.1 Introduction

Since the inception of the software industry, modeling tools have been a core product offered by commer-
cial vendors. In fact, the first software product sold independently of a hardware package was Autoflow,
which was a flowchart modeling tool developed in 1964 by Martin Goetz of Applied Data Research (John-
son, 1998). Although software modeling tools have historical relevance in terms of offering productivity
benefits, there are a few limitations that have narrowed their potential.

The primary drawback of most software and system modeling tools is that they are constrained to work
with a fixed notation. That is, the tool vendor has defined a notation and environment that must be used
in a prescribed way, regardless of the unique requirements of the user. Such inflexibility forces the user to
adopt a language that may not be suitable in all cases for their distinct needs. Examples of such modeling
tools include early flowchart tools, or more recent environments supporting object-oriented modeling,
such as the unified modeling language (UML) (Booch et al., 1998). As an alternative to fixed-language
modeling tools, many users desire a customized modeling environment that can be tailored to the concepts
represented in the user’s problem domain.

A movement within the software modeling community is advancing the concept of tailorable modeling
languages (Bézivin, 2005), in opposition to a universal language that attempts to offer solutions for a
broad category of users. This newer breed of tools enables domain-specific modeling (DSM), in which a
metamodel is used to express the definition of a modeling language that represents the key abstractions
and intentions of an expert in a particular domain (DSMFORUM; Gray et al., 2004; Pohjonen and Kelly,
2002). For example, the conference phone registration case study presented later in this chapter allows an
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end-user to describe the essence of a registration system at a very high-level of abstraction using concepts
that are much more aligned to the problem domain, rather than the programming language solution
space. Figure 7.8, shown later in the chapter, illustrates the manner in which an end-user can specify the
rules of conference registration, with a complete application generated from the domain-specific model
(see Figure 7.9 for the model-generated version of the phone registration application). In this case, Python
code was generated from the high-level model, but the end-user is unaware of the specific technology used
at the implementation level.

A contributing factor to the rising interest in DSM comes from the realization of productivity gains
that have been attributed to a shift in focus toward software represented at higher levels of abstraction.
In the past, abstraction was improved when programming languages evolved toward higher levels of
specification. DSM takes a different approach, by raising the level of abstraction, while at the same time
narrowing down the design space, often to a single range of products for a single domain. When applying
DSM, the models consist of elements representing things that are part of the domain world, not the
code world. The language follows the domain abstractions and semantics, allowing developers to perceive
themselves as working directly with domain concepts.

In the next section of this chapter, the essential characteristics of DSM are presented, including a
discussion regarding those domains that are most likely to benefit from DSM adoption. The chapter also
contains a case study section where two different examples are presented in two different metamodeling
tools. An overview of the history of metamodeling tools is also provided as well as concluding comments.

7.2 Essential Components of a Domain-Specific Modeling
Environment

Domain-specific languages (DSLs) that are of a textual nature have been deeply investigated over the
past several decades (van Deursen et al., 2000). Language tools for textual DSLs are typically tied to a
grammar-based system that supports the definition of new languages (Henriques et al., 2005). A set of
patterns to guide the construction of DSLs exists (Spinellis, 2001) as well as principles for general use of
DSLs (Mernik et al., 2005). In comparison, this section offers a description of the essential characteristics
of DSM, which is typically focused on graphical models as opposed to the textual representation of a DSL.

As illustrated in Table 7.1, there are several similarities that can be observed between DSM and other
artifacts that are specified by a meta-definition (e.g., programming languages and databases). In DSM,
the highest layer of the meta-stack is a meta-metamodel that defines the notation to be used to describe
the modeling language of a specific domain (e.g., the metamodel). Instances of the metamodel represent
a real system that can also be translated into an executable application. This four-layered meta-stack
is also evident in programming language specification (where the meta-meta level is typically extended
Backus–Naur form used to define a grammar) and database table definition (where the SQL data definition

TABLE 7.1 Comparison of Metamodeling to Programming Language and Database Definition

Domain-Specific Programming Database Schema
Modeling Language Definition Definition

Schema definition Meta-metamodel Language specification Database definition formalism
notation (e.g., UML/OCL) formalism (e.g., EBNF) (e.g., SQL Data Definition Language)
Schema definition Metamodel for a Grammar for a specific Table, constraint, and stored procedure

specific domain language (e.g., Java) definitions for a specific domain (e.g.,
(e.g., Petri net) University payroll database)

Schema instance An instance of the A program written in Intension of a database at a specific
metamodel (e.g., Petri net a specific language instance in time (e.g., the June 2006
model of a teller machine) payroll instance)

Schema execution Executing application Executing program Transactions and behavior of stored
procedures in an executing application
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language is the meta-meta level that defines the database schema). The first to acknowledge a meta-stack
for schema definition were Kotteman and Konsynski (1984). Despite these similarities, there exist core
differences between metamodeling and other schema definition approaches. This section highlights some
of the essential parts of a modeling environment to support the concepts of DSM.

7.2.1 Language Definition Formalism
A language, L, in its most basic form, provides a set of usable expressions as well as rules for expression
composition. Well-formed composed expressions define a program that may be executed. We define a
modeling language in Eq. [7.1], where C is the concrete syntax of the language, A the abstract syntax, S the
semantics of program execution, Ms the semantic mapping (a function mapping from the abstract syntax
to the semantics, as in Eq. [7.2]), and Mc the syntactic mapping (a function mapping from the concrete
syntax to the abstract syntax, as in Eq. [7.3]). The composition rules are found in Ms, the well-formedness
rules found in S as execution errors, and in A as a constraint layer.

L = <C, A, S, Ms, Mc> (7.1)

Ms : A → S (7.2)

Mc : C → A (7.3)

The concrete syntax of a language defines how expressions are created, and their appearance. It is the
concrete syntax that programmers see when using a language. Concrete syntax can be textual or graphical.
The abstract syntax of a language defines the set of all possible expressions that can be created (note that
it also defines possible expressions that may not be well-formed under the execution rules of S). The
abstract and concrete syntax, along with the function Mc, make up the structural portion of a language.
The semantics S makes up the semantic domain portion of the language, and the function Ms makes up
the semantic mapping portion of the language.

DSM requires a language that is by definition linked to the domain over which it is valid. A domain-
specific modeling language (DSML) is a language that includes domain concepts as members of the sets A
or C (i.e., first-class objects of the language). The presence of other concepts that are not domain-specific
affects the restrictiveness of the DSML as a language. A DSML’s level of restrictiveness is only vaguely
measurable, but generally is inversely proportional to the amount of freedom a developer has to address
problems outside the domain. More restrictive languages reduce the modeling space, and thus reduce the
possibility for errors unrelated to domain concepts (e.g., buffer overruns).

A DSML can be defined in more than one way. For instance, the DSML can be layered on top of an existing
language, which is known as “piggybacking” (Mernik et al., 2005). Examples of piggybacking include
programming libraries that define new classes with behaviors that reflect domain concepts. This layered
style of DSML design is very unrestrictive, because it does not preclude the use of non-DSML expressions.
DSMLs that use this layered style are often accompanied by a coding style guide. Implementation of a
DSML via definition of a new language from scratch is also possible. Examples of this kind include VHDL
(very high speed integrated circuits [VHSIC] hardware description language) for hardware description,
and simulation program with integrated circuit emphasis (SPICE) for circuit design. This language style
of DSML design is very restrictive, because the language is self-contained and more difficult to extend.

Implementation of a language coupled with its own development environment through rigorous plan-
ning and software engineering is also possible. In this case, an application with an interface for accessing
the concrete syntax items of the language is the programming environment. This integrated development
environment, or IDE style, of DSML design is also very restrictive, though it is important to note that the
language definition is often obscured in the environment design, rather than decoupled from it. When a
modeling environment is domain-specific, we call it a domain-specific modeling environment (DSME).
The difference between a DSME and a DSML is that the DSME will provide interfaces for such activities
as expression building, model execution, and well-formedness checking (among others).

The final way to define a DSML involves the co-creation and synthesis of the structural portion (i.e.,
C, A, and Mc) of the language (DSML), and DSME through the use of a metamodeling environment.
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This metamodeling style of DSML design is also somewhat restrictive. This style produces similar results as
the IDE style of design, though it is significantly more sophisticated because the definition of the language
is used to define the DSME, rather than a design-time result of the development of the DSME.

7.2.2 Domain-Specific Modeling Environments
DSMEs provide the tools necessary for a system developer to rapidly build systems belonging to a specific
domain that are syntactically correct-by-construction. DSMEs leverage the power of DSMLs to provide the
model engineers with the building blocks necessary to develop systems rapidly and correctly. To enable
syntactically correct by construction systems, a DSME must incorporate only those syntactic elements that
are defined by the DSML while strictly abiding by the semantics. The modeling elements, which form the
building blocks provided by the DSME, correspond to the concrete syntax defined in a DSML. The DSME
must permit the composition and associations between these building blocks, which is guided by the syntax
of the language. A powerful DSME provides a complete IDE and often has the following characteristics:

• Metamodeling support—a DSME must include the metamodel representing the DSML along with
its syntactic elements, semantics and constraints. Only then can a DSME enable a developer to
use only those artifacts that belong to the desired domain and build systems that are syntactically
correct by construction.

• Separation of concerns—the DSME should enable separation of concerns, wherein it can provide
multiple views corresponding to the different stakeholders and their concerns. For example, different
development teams of a large project must be able to view only those artifacts that are part of their
responsibility. At the same time, the DSME must maintain seamless coordination between the
different views.

• Change management—a DSME must provide runtime support for issues such as change notifi-
cation. For example, a DSME must be able to reflect changes made to the models in one view to
appear in other views.

• Generative capabilities—a DSME must be able to provide the capabilities to transform the models
into the desired artifacts. These could include code, configuration, and deployment details, or testing
scripts. This feature requires that a single DSME be able to support multiple model interpreters,
each of which performs a different task. Note that the modeling editor of a DSME will enable a
developer to create syntactically correct systems. However, this does not ensure that the behavior
and the output of a system will be correct. To validate and verify that systems perform correctly will
require the generative capabilities in a DSME to transform the models into artifacts that are useful
by third-party verification and validation tools.

• Model serialization—a DSME must ideally provide capabilities for serializing the models so that
they can be made persistent. Model serialization provides an archival representation of a specific
model such that it can be used in a later modeling session, or stored in a version control system.
The process of model serialization manifests all of the model attributes and connections, while
resolving all of the hierarchical relationships, in a manner that can be stored persistently in a
specific file format. This capability is essential because the DSM philosophy mandates that models
are the most important part of system design and implementation. Code and other artifacts, such as
those related to configuration and deployment, are all generated. Thus, the models and associated
generators must be maintained over time. Additional benefits of serialization are driven by the
desire to share models among different tools.

• Plug-in capabilities—although not a strictly required feature, a DSME could provide the capabilities
to plug-in third-party tools, such as model checkers and simulation tools.

7.2.3 Model Generators
Model generators are at the heart of model-driven development by forming the generative programming
capabilities of a DSME. A fundamental benefit of generative programming is to increase the productivity,
quality, and time-to-market of software by generating portions of a system from higher-level abstractions
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(Czarnecki and Eisenecker, 2000). This concept is particularly applicable to the realm of product-line
architectures, which are software product families that illustrate numerous commonalities in system
design (Clements and Northrop, 2002). Product variants within the software family represent the parame-
terization points for customization. Generative programming makes it easier to manage large product-line
architectures by generating product variants rapidly and correctly. This vision is being explored in further
depth by the software factories movement (Greenfield et al., 2004).

Generators (in the form of model interpreters) are useful in synthesizing code artifacts or metadata
used for deployment and configuration. There are numerous challenges in this space. For example, a
modeled system may need to be deployed across a heterogeneous distributed system. This requires the
generated code artifacts to be tailored to and optimized for the platform on which the systems will execute.
Deployment and configuration metadata must address the heterogeneity in configuring and fine-tuning
the platforms on which the systems will execute. The platform models typically include descriptions of
the hardware, networks, operating systems, and middleware stacks. Thus, generators must incorporate
optimizers and intelligent decision logic so that the generated artifacts are highly optimized for the target
platforms.

Generative capabilities at the modeling level are useful in transforming models into numerous other
artifacts (e.g., input to model-checking tools to verify properties like deadlock and race conditions; simu-
lations for validating system performance and tolerance to failures; or empirical testing used for systems
regression testing). These capabilities are important in the overall verification and validation of the mod-
eled software, so that ultimately the systems developed using DSMEs and their generative capabilities are
truly correct by construction.

7.2.4 Key Application Areas of DSM
As with all technologies, it is helpful to understand the situations where the technology is most likely to
succeed as well as the limitations that prevent the technology from offering benefit in some scenarios. This
section discusses characteristics of particular domains that suggest the applicability of DSM.

7.2.4.1 Areas Where DSM is Most Applicable

From our collective experience, DSM has been very successful in the following domains:

• Factory automation systems, where a tight coupling between the hardware configuration and soft-
ware exists. As an example, the configuration of an automotive factory may be changed several
times during a year to manufacture different models of a product line (Long et al., 1998). In a
manual approach to software evolution, the associated software is written in an unproductive and
error-prone fashion. By applying DSM, the hardware configuration can be captured in models and
the associated software generated automatically from hardware configuration changes.

• Deeply embedded microcontroller systems, where the embedded system’s control logic is developed
using higher-level abstractions (e.g., VHDL), and low-level code (possibly assembly language) is
generated and burned into microprocessor chips (Karsai et al., 2003).

• Large distributed systems, particularly those that are heterogeneous, network-centric and dis-
tributed, having stringent performance and dependability requirements, and are developed and
deployed using middleware solutions (Gokhale et al., 2004).

There are general characteristics about these domains that suggest scenarios when DSM would be useful.
Each of these examples represents a type of configuration problem with numerous choices (e.g., multiple
“knobs” are available to configure a system). Furthermore, each of these examples is based upon an
underlying execution platform that may often change. The accidental complexities associated with evolving
source code in the presence of platform adaptation are very hard to accomplish using ad hoc techniques
based on low-level manual coding. This makes a system brittle because of the tight coupling to the
execution platform. Moreover, these systems are constantly evolving by virtue of changes in the hardware
and software platform, and due to changes in requirements. Therefore, there is a need to incorporate
several degrees of concern separation through higher levels of system representation.
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Recently, DSM has had success in product-line modeling because the commonalities and variabilities of
a software product line are best captured and represented in model forms, while the generative techniques
can be used to tailor a product to a platform. The commonalities and variabilities of product lines represent
the different configurations of the systems belonging to the family. Application of DSM can help decouple
these systems from the specific platforms on which they are deployed, and generative techniques can then
seamlessly synthesize platform-specific configurations. Other uses of DSM arise when the same high-level
representation of a system can be used to accomplish a variety of other activities, such as regression
testing where such code can be autogenerated, or model checking for behavioral correctness. Verifying the
correctness of a system is of paramount importance particularly for large and complex mission-critical
systems, such as avionics mission computing (Balasubramanian et al., 2005).

7.2.4.2 Situations Where DSM is Not Very Useful

We have found that DSM is not useful in systems that are very static and do not evolve much over time.
In such systems, even though it is conceivable to have product families, the range of configurations is very
limited and the choice of platforms usually does not exist. Therefore, most system development begins
from scratch using low-level artifacts.

DSM can be difficult to use in autonomous systems, which entail self-healing and self-optimization. In
such systems, the DSME is required to be used during system runtime where the modeling environment
is driven by systemic conditions as input from which the system must infer the next course of action.
Dynamic changes to models and subsequent autonomous actions are a significant area of future research.

7.2.4.3 Trade-Off Analysis for DSM Development

Not all domains are easily lumped into “easy-to-use” or “difficult-to-use” categories. One task of an expert
in the domain is to perform a trade-off analysis of the effort required to produce the environment versus
the effort saved by that environment. Even complex domains that are fairly established and static may
benefit from a DSM effort if they will be widely used and incur frequent changes.

7.3 Case Studies in DSM

There are multiple approaches that can be adopted to achieve the goals of DSM. This section presents
two separate modeling languages in two different tools to provide an overview of the different styles of
metamodeling to support DSM.

7.3.1 A Customized Petri Net Modeling Language in the
Generic Modeling Environment

An approach called model integrated computing (MIC) has been under development since the early 1990s
at Vanderbilt University to support DSM (Sztipanovits and Karsai, 1997). A core application area of MIC
is computer-based systems that have a tight integration between a hardware platform and its associated
software, such that changes to the hardware configuration (e.g., an automobile assembly floor) necessitate
large software adaptations. In MIC, the configuration of a system from a specific domain is modeled,
resulting in an application that is generated from the model specification.

The generic modeling environment (GME) realizes the principles of MIC by creating DSMEs that are
defined from a metamodel (Lédeczi et al., 2001). An overview of the process for creating a new DSME in
the GME is shown in Figure 7.1, where a metamodeling interface allows a language designer to describe
the essential characteristics of the language. In the GME, the metamodel definition is specified in UML
and object constraint language (OCL), which is translated into a DSME that provides a model editor that
permits creation and visualization of models using icons and abstractions appropriate to the domain (note
that both the metamodeling interface and the subsequent DSME are hosted within the GME; i.e., the GME
has a meta-metamodel available for defining metamodels). In the model interpretation process, a specific
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FIGURE 7.1 An overview of the metamodeling process in GME.

model interpreter is selected to traverse the model and translate it into a different representation (e.g.,
code or simulation scripts).

The left side of Figure 7.1 shows a metamodel for a Petri net (Peterson, 1977) language (top left), with
an instance of the Petri net representing the dining philosophers (middle left). An interpreter for the Petri
net language is capable of generating Java source code to allow execution of the Petri net (bottom left). The
remainder of this subsection presents an overview of the Petri net modeling environment as modeled in
the GME. This language is intentionally simple in nature so that the details do not overwhelm the reader
in such a short overview. However, the GME has been used to create many very rich DSMEs that have
several hundred modeling concepts (Balasubramanian et al., 2005).

7.3.1.1 Defining the Modeling Language

Figure 7.2 shows a screenshot of the GME to define the metamodel for the Petri net language. It should
be noted that the metamodel is specified in MetaGME, which is the meta-metamodel for the GME
representing a subset of UML class diagrams with OCL. In this metamodel, a PetriNetDiagram is
defined to contain Connections, Transitions, and Places. The AbstractElement entity is
a generalization of the two main diagram types that may appear in a Petri net (i.e., places and transitions).
Each place has a text attribute that represents the number of tokens that exist in a particular state at
a specific moment in time. Both places and transitions have names and descriptions that are inherited
from their abstract parent. A Connection associates a Transition with two Places. Visualization
attributes can also be associated with each modeling entity (e.g., the Place icon will be rendered from
the “place.bmp” graphics file, which represents an open circle).

In addition to the class diagram from Figure 7.2, a metamodel also contains constraints that are enforced
whenever a domain model is created as an instance of the metamodel. A constraint is used to specify
properties of the domain that cannot be defined in a static class diagram. For example, the metamodel
of Figure 7.2 would actually allow a Place to connect directly to another Place, or a Transition
to connect directly to another Transition. This is not allowed in a traditional Petri net, and an OCL
constraint is used to restrict such illegal connections. In the GME, constraints are specified in a different



7-8 Handbook of Dynamic System Modeling

FIGURE 7.2 The Petri net metamodel represented within the GME.

FIGURE 7.3 A constraint limiting the number of tokens for a Petri net place.

context diagram from that shown in Figure 7.2. The attribute panel shown in Figure 7.3 contains a sample
constraint for the Petri net metamodel. This constraint specifies that a Place may not have more than
five tokens. The first part of the OCL equation obtains a collection of all Places that appear in a model.
A quantification predicate (i.e., the “forAll” statement) is associated with the collection to state that all
such places must have its numTokens attribute less than or equal to five.

7.3.1.2 The Dining Philosophers in the Petri Net Language

After creating the metamodel, the Petri net language can be used to create an instance of the language, such
as the dining philosophers model shown in Figure 7.4. In this model, the states (e.g., eating, thinking, and
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FIGURE 7.4 Dining philosophers expressed in the Petri net modeling language.

full) of five philosophers are modeled along with the representation of five forks. At this level, if the model
engineer creates a Petri net that violates the metamodel in any way (e.g., connecting a Place directly to
another Place, or adding more than five tokens to any Place), an error dialog is presented to indicate
that the model is in an incorrect state.

7.3.1.3 Generating Applications

In the GME, a model interpreter is a plug-in that is associated with a particular metamodel and can be
invoked from within the modeling environment. The GME provides an API for accessing the internal
structure of a model, which can be navigated like an abstract syntax tree in a compiler to generate code at
each node. A model interpreter is typically written in C++ and can be compiled to a Windows DLL that
is registered to the GME.

An interpreter has been written to generate Java code that simulates the execution of a Petri net. The
generated code will interact with a user to display a list of places and enabled transitions, and ask the
user to select which transition to fire. Two different segments of the Petri net interpreter are shown in
Listing 7.1. The top part of this listing contains the portion of the interpreter that generates the Java
main method, which obtains all of the Places from a model as a collection (note that the outf file
stream represents the .java file that is generated). The collection of Places is then inserted into a Java
ArrayList for future processing. Although not shown here, a similar fragment of code is used to obtain
the Transitions and associated connections. The CBuilderAtomList and CBuilderAtom are
generic data structures within the GME that provide access to the underlying model representation. In the
case of the top portion of Listing 7.1, the code fragment simply iterates over the collection of atoms that
correspond to Places in the model. The bottom part of Listing 7.1 generates the corresponding Java
code that will report to the user the names of available Places and the enabled Transitions.
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...
outf << "public static void main(String[] args)" << endl;
outf << "{" << endl;
outf << " ArrayList places = new ArrayList();" << endl;

const CBuilderAtomList *allPlaces = petrinet->GetAtoms("Places");
pos = allNets->GetHeadPosition();

int tokens = 0;
CBuilderAtom *next;
CString strNumTokens, strPlaceName, strPlaceDescription;

while(pos)
{

next = allPlaces->GetNext(pos);
next->GetAttribute("numTokens", strNumTokens);
tokens = atoi(strNumTokens);

next->GetAttribute("Name", strPlaceName);
next->GetAttribute("Description", strPlaceDescription);

outf << "places.add(new Place(\"" << strPlaceName << "\", \"" <<
strPlaceDescription << "\", " <<
strNumberOfTokens << "));" << endl;

}
...

...
outf << "System.out.println(\"These places have tokens:\");" << endl;
outf << "for (int i = 0; i < places.size(); i++) {" << endl;
outf << " Place p = (Place) places.get(i);" << endl;
outf << " if (p.numTokens() > 0)" << endl;
outf << " System.out.println(p.name() + \" - \" + p.description() +

\" - \" + p.numTokens());" << endl;
outf << "}" << endl;

outf << "System.out.println(\"The following transitions are " +
"enabled:\");" << endl;

outf << "for (int i = 0; i < transitions.size(); i++) {" << endl;
outf << " Transition t = (Transition) transitions.get(i);" << endl;
outf << " if (t.isEnabled())" << endl;
outf << " System.out.println(t.name() + \"-\" +

t.description());" << endl;
outf << " }" << endl;

outf << "System.out.print(\"Select transition to fire:\");" << endl;
...

LISTING 7.1 Model interpreter for Petri net language.
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private void fireTransition(String transitionName)
{

System.out.println("Firing transition " + transitionName +
"...\n");

int tranIndex = 0;
for (; tranIndex<transitionCount; ++tranIndex)

if (transitionList[ind].equalsIgnoreCase(transitionName.trim()))
break;

// the transitionName was not found
if (tranIndex == transitionCount){

System.out.println("Transition not valid.\n");
return;

}

// the associated place does not have the proper number of tokens
// to fire

// the transition
for (int i = 0; i < transitionInput[tranIndex]; ++i)

if (tokens[transitionInputIndex[tranIndex][i]] == 0){
System.out.println("Transition not enabled.\n");
return;

}

// remove the tokens from the input place and add to the output
// place

for (int i=0; i<transitionInput[tranIndex]; ++i)
tokens[transitionInputIndex[tranIndex][i]]−−;

for (int i=0; i<transitionOutput[tranIndex]; ++i)
tokens[transitionOutputIndex[tranIndex][i]]++;

}

LISTING 7.2 Java code generated from the dining philosophers model.

Listing 7.2 shows a small fragment of the Java code that was generated from the Petri net model
interpreter. This particular piece of generated code represents the firing of a transition based on the
transition name entered by the user. When executed, this code will check to see if the transition name
exists and if it is enabled (i.e., the proper number of tokens are available in all of its input places). After firing,
this code will decrement the tokens from the input places, and increment the tokens in the output places.

7.3.2 Modeling and Generating Mobile Phone Applications in MetaEdit+
This second example deals with modeling and generating enterprise applications for mobile phones based
on Symbian/S60 (Nokia S60) and its Python framework. This framework provides a set of APIs and expects
a specific programming model for the user interface (Nokia Python). To enable model-based generation,
a modeling language and generator must follow the Nokia framework.

The example is implemented with MetaEdit+, a commercial tool for defining and using DSMLs and
generators (MetaCase). The emphasis of MetaEdit+ is to make modeling language creation fast and
easy—tool support is implemented without writing a single line of code. At any point in time, a language
definition and the associated generators can be executed and tested. MetaEdit+ provides a metamod-
eling tool suite for entering the modeling concepts, their properties, associated rules, and symbols.
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FIGURE 7.5 Defining the language concept “List.”

This definition is stored as a metamodel in the MetaEdit+ repository allowing future modifications, which
reflect automatically to models and generators (Kelly et al., 2005). Design data can be edited and viewed in
diagram, table, matrix, or textual representations. Teamwork is supported with multiple concurrent users
through a repository. Integration with other tools uses a Web Services-based API, with XML import and
export also being supported. In addition to graphical metamodeling similar to GME in the previous case
study, MetaEdit+ metamodels can be specified through interaction with form-based tools.

7.3.2.1 Defining the Modeling Language

The DSML in this example aims to hide the programming details by raising the abstraction level to phone
concepts. This is achieved by defining modeling concepts directly based on the phone’s services and user-
interface (UI) widgets. These concepts include “Sending text message,” “Note,” “Form,” and “Pop-up.”
Figure 7.5 shows how a language concept “List” is defined in MetaEdit+. In this figure, the concept name
and its properties (e.g., collection of list items, optional internal name, and return variable for the selection)
are entered into the form. Other main language constructs are defined in a similar manner.

The behavioral logic of the application is modeled using a flow model that allows user navigation to be
specified in the application in a manner similar to how phone services are accessed. The navigation actions
(e.g., acceptance, opening a menu, and canceling a selection) are defined with connections between
the modeling concepts. The language definition also includes domain rules that follow the phone’s UI
programming model, supporting early error prevention, model consistency, and reuse. For example, in an
S60 phone, after sending a short message server (SMS) message, only one UI element or phone service can
be triggered. Accordingly, the metamodel allows only one flow from an SMS element. This rule is defined
in Figure 7.6. In MetaEdit+, these rules are treated as data and can be changed at any time, even while
developers are using the language. MetaEdit+ also updates the models correspondingly and delivers the
domain rules automatically to the developers.

Models based on a DSML are usually represented in some format using graphical models, matrices, or
tables. In MetaEdit+, the symbols are drawn or imported with a Symbol Editor tool. Figure 7.7 shows
the symbol definition for the List concept. The properties of the List symbol include shape, size, and
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FIGURE 7.6 Choosing rules for the language constructs.

FIGURE 7.7 Drawing the notational element for language concept “List.”

color. A symbol definition also declares the location for the property values to be shown in a model. The
selection list is displayed in the middle of the symbol, aligned to the top left along with the font settings.
This corresponds to the similar appearance of an actual list on a real S60 phone.

7.3.2.2 DSM in Use

The DSM language is illustrated in Figure 7.8 using a sample application design representing a conference
registration application. This design should be intuitive to any model engineer who has experience using
basic phone applications (e.g., phone book or calendar applications). A user can register for a conference
using text messages, choose a payment method, view program and speaker data, browse the conference
program on the Web, or cancel the registration.

As can be seen from the model, all of the implementation concepts are hidden and are not even necessary
to know (i.e., the focus is on the specification of the problem in the domain of interest). The modeling
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FIGURE 7.8 Design of a conference registration application for a Symbian/S60 mobile phone.

language also ensures that the architectural rules and the required programming model are followed as
defined in the metamodel. As the descriptions capture all the required static and behavioral aspects of the
application, it is possible to generate the application fully from the models.

7.3.2.3 Generating Applications

From the designs expressed in the model, a generator can be invoked to produce code that can be executed
either in an emulator for testing purposes, or in the actual target device. The generator itself is structured
into modules, often with one generator module per modeling concept (e.g., one generator module takes
care of Lists, and another generator exists for SMS messages). A simple example of a generator definition
for a Note dialog is presented in Listing 7.3. The Note opens a dialog with information (such as the
“Conference registration: Welcome” dialog in Figure 7.8). Lines 1 and 6 are simply the structure for
a generator. Line 2 creates the function definition signature and line 3 provides a comment. Function
naming is based on an internal name that the generator can produce if the developer does not want to give
each symbol its own function name.

Line 4 produces the call for the platform service. It uses the design data from the model (e.g., the
value for the Text property of the Note element). Similarly, the developer may choose the “Note type”
value in the model from a list of available notification types, such as the “info” or “confirmation” values
that are used in the “Registration made” task of Figure 7.8. As several concepts require similar code to be
generated, parts of the generator definitions are made into modules called by other generator modules. For
example, the _next element generator is used by other dialogs to generate transitions. The generator
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1 report ’_Note’
2 ’def ’; subreport; ’_Internal name’; run; ’():’; newline;
3 ’# Note ’; :Text; newline;
4 ’ appuifw.note(u"’; :Text; ’", ’’’; :Note type; ’’’)’; newline;
5 subreport; ’_next element’; run;
6 endreport

LISTING 7.3 Code generator for Note dialog.

01 import appuifw
02 import messaging
03
04 # This application provides conference registration by SMS.
...
33 def List3_5396():
34 # List Check Credit card Invoice
35 global Payment
36 choices3_5396 = [u"Check", u"Credit card", u"Invoice"]
37 Payment = appuifw.selection_list(choices3_5396)
38 if Payment == None:
39 return Query3_1481
40 else:
41 return SendSMS3_677
..
85 def SendSMS3_677():
86 # Sending SMS Conference_registration
87 # Use of global variables
88 global PersonName
89 global Payment
90 string = u"Conference_registration "\
91 +unicode(str(PersonName))+", "\
92 +unicode(str(Payment))
93 messaging.sms_send("4912345678", string)
94 return Note3_2227
...
101 def Stop3_983():
102 # This applications stops here
103 return appuifw.app.set_exit
...
107 f = Note3_2543
108 while True:
109 f = f()

LISTING 7.4 Python code generated for the conference registration model.

also includes some framework code for dispatching and for multiview management, as shown by different
tabs in the pane of the UI.

A part of the generated code from the designs illustrated in Figure 7.8 is shown in Listing 7.4. The gen-
erator produces the module-importing statements (lines 1–2) based on the services used (e.g., importing
the messaging module that provides SMS sending services). This is followed by documentation specified
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in the design. Next in the listing, each service and widget is defined as a function. Lines 33–41 describe
the code for the payment method selection that uses a list widget. After defining the function name and
comment, the “Payment” variable is declared and made available for the whole application. Line 36 shows
the list values as Unicode in a local variable. Line 37 calls the List widget provided by the framework.

SMS sending (lines 85–94) is handled in a similar way to the List widget. Line 93 calls the imported SMS
module and its sms_send function. Parameters to the function (e.g., recipient number, message keyword,
and content) are taken from the model by the generator to assist in forming the correct message syntax.

The end of a function includes code for calling the next function based on user input. In SMS sending,
the generator simply follows the application flow (line 94). In the case of list selection, the situation is a
bit more complex. Depending on selections from the list, different alternatives can exist; for example, the
cancel operation (i.e., pressing the cancel/back button on the phone) is also possible (lines 38–41). Where
necessary, the generator creates the operation-cancel code to return to the previous widget. This choice
minimizes the need to model this concept explicitly and guarantees that exceptions are acknowledged.
As a last function, the application exit code is created based on the end-state (lines 101–103). Finally, a
dispatcher starts the application by calling the first function (line 107) with tail recursion to reduce stack
depth (lines 108–109).

The DSML and corresponding generators allow the application developers to focus on finding solutions
using the problem domain concepts directly, while ignoring the low-level details and accidental complex-
ities associated with coding in the S60 architecture. The cost and expertise needed to make other types
of enterprise applications on Symbian/S60 phones is now greatly reduced. As shown in Figure 7.9, the
generated application can be executed on a S60 simulator to observe the resulting behavior. When the
applications need to be changed, it is easier to understand and make the change directly to the problem
domain concepts than to the code. Additionally, if the platform changes (e.g., the API for accessing the
List changes), the code generator needs to be changed in only one place, rather than manually modifying
all the List usage code. Another example that examines the benefits of DSM applied to mobile devices can
be found in Davis et al. (2005).

FIGURE 7.9 Generated conference registration application executing within a S60 simulator.
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7.4 Overview of Supporting Tools

In addition to GME and MetaEdit+, there are several other metamodeling tools that are available, ranging
from research prototypes to fully supported commercial products. From a historical context, the system
encyclopedia manager (SEM) is one of the earliest metatools. SEM was developed by Dan Teichroew at the
University of Michigan (Teichroew et al., 1980) and it was applied to information requirements modeling
of various categories of systems. Like SEM, many of the early metatools are no longer available, but a
summary of several representative examples are provided in the next subsection.

7.4.1 A Retrospective of Metamodeling Tools
The MetaPlex tool had a textual rather than graphical notation (Chen and Nunamaker, 1989). However, it is
worthy of mention as one of the earliest metaCASE tools. It used a textual language to define metamodels,
which were interpreted rather than compiled, and even included some rudimentary functionality to
generate help text for method users from the metamodel.

The virtual software factory (VSF) used the set-theoretical and propositional calculus language
CANTOR to define the conceptual data in metamodels and its constraints, and the graphical and design
language (GDL) to specify graphical representations (Pocock, 1991). The latter was somewhat compli-
cated: 15 lines of code was needed to represent a simple data flow arrow. VSF’s strong point was its ability
to define complex constraints. A clear weakness was the complicated nature of metamodeling: the time to
construct a metamodel in VSF would be considerably longer than with today’s leading tools.

The ToolBuilder metaCASE system was originally reported as a research tool in Alderson (1991) and
later commercialized. It consisted of three components: the specification component—used to create the
specification of the tool; the generation component—used to transform the specification into parameters
for the generic tool; and the runtime component—the generic CASE tool itself. The first two are contained
in the method specification capture component (METHS) system, and the third is called DEASEL, which
provided standard CASE functionality to support multiple users on a true repository. EASEL, from “easy
language,” was the language generated by METHS for configuring the generic CASE tool, DEASEL. The
name DEASEL came from EASEL, and as a pun related to the use of a generator: both diesel and meths
are fuels used by generators. METHS captured four kinds of information: (1) the data model upon which
data capture and output generation is based, (2) the frame model upon which the views are based, (3) the
diagrammatic notation for each diagram frame, and (4) the textual presentation for each structured text
frame. The data model of Toolbuilder was an entity-relationship (ER) model that was extended with some
constraints and the ability to have attributes whose values are derived from other attributes. It allowed
triggers on events applying to attributes and relationships.

7.4.2 Modern Metamodeling Tools
The GME and MetaEdit+ emerged toward the end of the first period of metaCASE tools (i.e., they each
have over a decade of research and development), and are the only ones from that period that are still
available. There are three other metamodeling tools that are more recent and deserve mention: AToM3,
eclipse modeling framework (EMF), and the Microsoft DSL tools.

AToM3 is a research metamodeling tool that has been under development at McGill University (de Lara
and Vangheluwe, 2002). A focus of AToM3 is multiparadigm modeling, which is a realization of the benefits
of modeling a system at multiple levels of abstraction using several different formalisms (e.g., Petri
nets, state machines, and differential equations). The underlying representation of an AToM3 model is
represented as a graph, and the modeling environment provides a transformation system from which
models can be manipulated by graph rewrite rules. A collection of preexisting metamodels is available for
download, including ER diagrams and structure charts.

The EMF is relevant to this chapter because of the major influence it has made on the general modeling
community (Budinsky et al., 2004). The EMF provides its own metamodel, called the ECore, which is used
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to describe application data models that can be fed to EMF in several formats. The native input format is
an XML file, which can be produced from UML class models by tools like Rational Rose. Java source code
that is annotated appropriately can also be converted into ECore models. EMF provides a code generator
(called java emitter templates, or JET) that is capable of translating models that conform to the ECore
into Java. Based on the input to ECore, the EMF.Codegen can generate a basic model editor following
the schema. The editor uses classes from the EMF.Edit framework to provide standard table and property
sheet views. Most modeling projects have extended the EMF.Edit framework with customized capabilities.
The EMF itself does not produce graphical editors—other eclipse plug-ins that provide such capabilities
have been integrated with EMF.

Microsoft has committed to the DSM community by initiating a metamodeling tool that is integrated
within Visual Studio (Microsoft DSL) and tied to the software factory vision (Greenfield et al., 2004). At
the time of this writing, this tool is still in beta mode and represents one of the newer entries in this space
of representative tools. The current state of the MS DSL tools support the definition of a modeling editor
as specified from a project wizard. A template-based code generator is available from which generic code
can be instantiated with various placeholders representing data obtained from a model.

Given the numerous tool suites that support DSM, it is often desirable to share models among different
tools. In fact, initial consideration has been given toward bridging the gap between EMF and Microsoft
DSL models (Bézivin et al., 2005). The ability to exchange models among tools has several obstacles such
as: (1) the syntactic problem of sharing the information within a model across different data formats, (2)
the semantic problem of resolving the meaning of a model as expressed across different metamodels that
may describe common properties of the same domain, and (3) the infrastructure problem resulting from
tools that are open, but have different APIs to access the underlying representation. An approach to tool
integration that addresses these problems is to consider patterns of interaction and configuration within
a tool integration framework (Karsai et al., 2005).

7.5 Conclusion

This chapter presented an introduction to DSM, including an overview of general concepts as well as case
studies to illustrate the potential for application. From our own collective experience, DSM offers an order
of magnitude improvement in productivity in those environments that are tied to software product lines
that can be configured across multiple alternative design spaces. Although the future outlook for DSM
looks promising, there is still much research and development needed to improve the capabilities provided
by supporting modeling tools. Issues related to group or team modeling (e.g., version control of models that
are distributed among a globally dispersed team) are being explored, but additional functionality is needed
to make DSM tools popular beyond specific niche domains. In addition to future technical developments,
there is also a need to combat the organizational culture to promote adoption. This has been stymied by
the stigma associated with the past failures of CASE tools (i.e., many who are first introduced to DSM
mentally create a link back to the limitations of past CASE environments). This chapter described the
flexibility and productivity that can be achieved by a modeling environment that can be tailored to a
specific domain to generate applications from higher-level abstractions.

Acknowledgment

This work was supported in part by an NSF CAREER grant (CCF-0643725).

References

Alderson, A. Meta-CASE Technology. 1991. Software Development Environments and CASE Technology,
Proceedings of European Symposium, Königswinter, Germany, pp. 81–91.



Domain-Specific Modeling 7-19

Balasubramanian, K., J. Balasubramanian, J. Parsons, A. Gokhale, and D. Schmidt. 2005. A platform-
independent component modeling language for distributed real-time and embedded systems.
IEEE Real-Time and Embedded Technology and Applications Symposium, San Francisco, California,
pp. 190–199.

Bézivin, J. 2005. On the unification power of models. Journal of Software and System Modeling, 4(2):
171–188.

Bézivin, J., G. Hillairet, F. Jouault, I. Kurtev, and W. Piers. 2005. Bridging the gap between the MS/DSL tools
and the Eclipse Modeling Framework. OOPSLA Software Factories Workshop, San Diego, California.

Booch, G., J. Rumbaugh, and I. Jacobson. 1998. The Unified Modeling Language User Guide. Redwood
City: Addison-Wesley.

Budinsky, F., D. Steinberg, E. Merks, R. Ellersick, and T. Grose. 2004. Eclipse Modeling Framework.
Redwood City: Addison-Wesley.

Chen, M. and J. Nunamaker. 1989. METAPLEX: An integrated environment for organization and informa-
tion systems development. Proceedings of the Tenth International Conference on Information Systems,
Boston, Massachusetts, pp. 141–151.

Clements, P. and L. Northrop. 2002. Software Product Lines: Practices and Patterns. Redwood City: Addison-
Wesley.

Czarnecki, K. and U. Eisenecker. 2000. Generative Programming: Methods, Tools, and Applications.
Redwood City: Addison-Wesley.

Davis, V., J. Gray, and J. Jones. 2005. Generative approaches for application tailoring of mobile devices.
43rd ACM Southeast Conference, Kennesaw, Georgia, pp. 237–241.

de Lara, J. and H. Vangheluwe. 2002. Using AToM3 as a meta-Case tool. Proceedings of the International
Conference on Enterprise Information Systems, Ciudad Real, Spain, pp. 642–649.

DSMForum. The Domain-Specific Modeling Forum, http://www.dsmforum.org/
Gokhale, A., D. Schmidt, B. Natarajan, J. Gray, and N. Wang, 2004. Model-Driven Middleware. In

Middleware for Communications, Q. Mahmoud (Ed.), New York: Wiley, Chap. 7, pp. 163–187.
Gray, J., M. Rossi, and J.-P. Tolvanen. 2004. Preface: Special issue on domain-specific modeling. Journal of

Visual Languages and Computing, 15(3–4): 207–209.
Greenfield, J., K. Short, S. Cook, and S. Kent. 2004. Software Factories: Assembling Applications with

Patterns, Models, Frameworks, and Tools. New York: Wiley.
Henriques, P. R., M. J. V. Pereira, M. Mernik, M. Lenic, J. Gray, and H. Wu. 2005. Automatic generation of

language-based tools using LISA, IEE Proceedings—Software, 152(2): 54–69.
Johnson, L. (James). 1998. A view from the 1960s: How the software industry began. IEEE Annals of the

History of Computing, 20(1): 36–42.
Kelly, S., M. Rossi, and J.-P. Tolvanen. 2005. What is needed in a MetaCASE environment? Journal of

Enterprise Modeling and Information Systems Architectures, 1(1): 25–35.
Karsai, G., A. Lang, and S. Neema. 2005. Design patterns for open tool integration. Journal of Software and

System Modeling, 4(2): 157–170.
Karsai, G., J. Sztipanovits, Á. Lédeczi, and T. Bapty. 2003. Model-integrated development of embedded

software. Proceedings of the IEEE, 91(1): 145–164.
Kotteman, J. and B. Konsynski. 1984. Information systems planning and development: Strategic postures

and methodologies. Journal of Management Information Systems, 1(2): 45–63.
Lédeczi, Á., A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprinkle, and G. Karsai. 2001. Composing

domain-specific design environments. IEEE Computer, 34(11): 44–51.
Long, E., A. Misra, and J. Sztipanovits. 1998. Increasing productivity at Saturn. IEEE Computer, 31(8):

35–43.
Mernik, M., J. Heering, and A. Sloane. 2005. When and how to develop domain-specific languages. ACM

Computing Surveys, 37(4): 316–344.
MetaCase. MetaEdit+ 4.5 User’s Guide. http://www.metacase.com
Microsoft DSL. Visual Studio Launch: Domain-Specific Language (DSL) Tools: Visual Studio 2005 Team

System. http://msdn.microsoft.com/vstudio/dsltools/



7-20 Handbook of Dynamic System Modeling

Nokia Python. Python for Series 60: API reference. http://www.forum.nokia.com
Nokia S60. S60 SDK Documentation. http://www.forum.nokia.com
Peterson, J. 1977. Petri Nets. Computing Surveys, 9(3): 223–252.
Pocock, J. VSF and its relationship to open systems and standard repositories. 1991. In Software

Development Environments and CASE Technology, A. Endres and H. Weber (Eds.), Berlin:
Springer-Verlag.

Pohjonen, R., and S. Kelly. 2002. Domain-specific modeling. Dr. Dobbs Journal, 27(8): 26–35.
Spinellis, D. 2001. Notable design patterns for domain specific languages. Journal of Systems and Software,

56(1): 91–99.
Sztipanovits, J. and G. Karsai. 1997. Model-integrated computing. IEEE Computer, 30(4): 110–111.
Teichroew, D., P. Macasovic, E. Hershey, and Y. Yamamoto. 1980. Application of the entity-relationship

approach to information processing systems modeling. In Entity-Relationship Approach to Systems
Analysis and Design, P. P. Chen (Ed.), Amsterdam: North-Holland.

van Deursen, A., P. Klint, and J. Visser. 2000. Domain-specific languages: An annotated bibliography. ACM
SIGPLAN Notices, 35(6): 26–36.



8
Agent-Oriented Modeling
in Simulation: Agents for
Modeling, and Modeling

for Agents

Adelinde M. Uhrmacher
University of Rostock

Mathias Röhl
University of Rostock

8.1 Introduction .................................................................. 8-1
8.2 Agents for Modeling in Simulation .............................. 8-3

Using the Agent Metaphor for Understanding in Simulation
• Using the Agent Metaphor for Designing in Simulation

8.3 Modeling and Simulation for Agents ........................... 8-6
Modeling and Simulation for Understanding
Multiagent Systems • Simulation for Designing
Multiagent Systems

8.4 Conclusion .................................................................... 8-10

8.1 Introduction

The relations between agents, modeling, and simulation are manifold (Uhrmacher et al., 2001). In relating
agents and simulation research, we will concentrate on using agents as a metaphor to model the system of
interest and on using virtual dynamic environments to analyze the behavior of multiagent software systems.
Thereby, modeling aspects rather than the many challenges of an efficient execution shall be the focus.

Before starting our exploration, we will shortly introduce agents and discuss some characteristics that
also influence the relation between agents and simulation.

A common perspective originates agents in artificial intelligence (AI) and distributed artificial intelli-
gence (DAI) methods; even if most existing agent-oriented approaches seem to be complacent with agents
that utilize only a small portion of intelligence (Wooldridge and Jennings, 1998). The goal of AI is to
let machines do things that would require intelligence if done by humans: intelligence being typically
interpreted as the ability to learn and understand, to solve problems, and to make decisions (Russell
and Norvig, 2003). The interaction between AI software and environment was typically mediated by the
user: an intelligent machine should help humans to make decisions (Negnevitsky, 2002). Real-time expert
systems aimed at online diagnosis were among the first to address issues of a direct interaction with a
dynamic, continuous environment including sensing and acting, timeliness of reactions, incompleteness,
and uncertainty of available information. This interaction with an environment which is continuous, not
entirely accessible, and dynamic has become an intrinsic part of the agent metaphor and has challenged
and propelled research in knowledge representation, evaluation, planning, and learning likewise.

While AI starts from individual cognition and individual systems, DAI examines the properties of
distributed, interacting AI programs. Whereas individual AI systems are increasingly designed as single
agent systems working in dynamic environments, e.g., Pollack et al. (2003), DAI focuses on multiagent
systems (O’Hare and Jennings, 1996): “DAI is the study, construction, and application of multiagent
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systems, that is, systems in which several interacting, intelligent agents pursue some set of goals or perform
some set of tasks” (Weiss, 2000). One motivation for DAI was that intelligent behavior might more easily
come into being by the coordination of multiple entities. Intelligent behavior as an emergent phenomenon
holds some natural attraction, because at first glance it seems to release researchers from the problem to
implement intelligent behavior explicitly. However, it still has to be decided how entities on microlevel
should look like to enforce the desired effect on macrolevel and what the communication mechanisms and
conventions of a “civilized” discourse for effective problem solving are. This discussion has been circling
around reactiveness and deliberativeness and their role in realizing intelligence (Brooks, 1991; Etzioni,
1993). Whereas in the latter the entities constitute knowledgeable agents with symbolic representation
and reasoning skills, based on explicit knowledge about themselves and their environment, the former do
not possess such an explicit model, their behavior is determined by simply “reacting” to environmental
changes. How to combine the ability to react and the deliberativeness to solve problems effectively is one
of the major challenges in designing agents for dynamic, uncertain environments.

Sociology has had an impact on agent-based research from the outset, interpreting multiagent sys-
tems as societies. The functioning of societies and what role individual behavior plays is the subject of
individualistic social theory. One argumentation line explains the development of societies as structured
exchange relations between independently acting individuals. Social order and cooperation emerges from
the unintended interaction of multiple agents in a framework of decentralized coordination. Another argu-
mentation line emphasizes contracts, norms, and intentional cooperation in achieving desirable goals in
the society and thus reflects a view of agents as being“deliberative”rather than“reactive”(Conte et al., 2001;
Gilbert and Troitzsch, 2005). “Reactive” agents and the functioning of societies is also the subject of biolog-
ical studies on ant and bee societies, insights which were also used in developing software agent solutions,
e.g., in network routing. Thus, social theories have an impact in designing better, e.g., more robust and effi-
cient software systems. In the opposite direction, multiagent systems as a modeling metaphor support the
testing of sociological hypotheses by simulation. Thereby, the knowledge about social systems is enhanced.

Rather the efficient and reliable handling of multiple, concurrent, and interacting individuals than the
achievement of the desired intelligent overall behavior motivated the involvement of the area of distributed
systems in multiagent research. This becomes most obvious in the field of mobile agents, where agents are
no longer dependent on one computer to be executed. Mobile code and data migrate from one computer
to the next. Thereby, they cope more easily with network connections that are only temporarily available
and have a limited bandwidth (Tanenbaum and van Steen, 2002). Typically, distributed systems require
a balance between decentralized and central strategies, which requires answering how much a single node
must know, who is in control, and what cooperation strategies to apply. This leads us back to central
questions in DAI and social theories.

By illuminating the background of agents, we have already revealed their central characteristics. The
least common denominator for most researchers and users is to associate agents with autonomy, which
refers to the ability to act without permanent guidance.

Some kind of intelligence is needed if agents shall decide for themselves what they need to do to satisfy
their design objectives. In this context, reactive, proactive, and social abilities are required (Wooldridge,
2000).

Since the beginning of agent-based development, the question of differentiation has loomed: is it an
agent or just a program, an object, or a component for reuse? Although a general answer to this question
seems elusive, compared with objects, agents embody a stronger notion of autonomy in the sense that they
have control over their actions: agents can say“no”and“go”(Odell, 2002). Thus, agents can be interpreted as
reflective concurrent objects and a community of agents as a special type of concurrent, distributed system.
Components can be used to implement agents (Melo et al., 2004); however, with components neither an
own thread of control is associated, nor a functioning in a dynamic environment (Casagni and Lyell, 2003).

Most agent definitions make use of the term “environment.” For agents it is central to be able to operate
robustly in rapidly changing, unpredictable, and open environments (Wooldridge, 2002). This dynamic
environment, the described properties, and the different backgrounds shape the multiple facets of the
relationship that has formed between simulation and agents.
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A simulation is an experiment based on a model and performed on a computer, aimed at exploring
the behavior of a dynamic system. If the dynamic system itself or parts of it are interpreted as agents, the
modeling is shaped accordingly to distinguish between these different autonomously interacting entities.
The resulting model design is necessarily nonmonolithic, and similarities between agent-based modeling
and multilevel, individual-based, and/or object-oriented modeling are plentiful (Uhrmacher, 1997).

Another dimension that relates agents to simulation is the question whether agent-oriented software
approaches can be utilized in realizing and implementing flexible simulation environments, e.g., to facilitate
reusing models and interoperating between different simulation systems. In the latter case, agents are not
subject of modeling and simulation but a metaphor used to develop flexible simulation systems.

Agent-based systems are often mission critical (or even safety critical) and, like other software systems,
must be tested and evaluated before being deployed. Thus, a third dimension in relating agents and
simulation is that simulation can help designing multiagent systems. It is used as an experimental technique
for evaluation.

Whereas in the last case simulation helps to develop software agents, in the former two cases agents are
used for modeling and designing simulation systems. Thus, we find both directions: simulation for agents
and agents for simulation (Uhrmacher et al., 2001; Yilmaz and Ören, 2005). As a metaphor, agents improve
understanding and designing certain systems. This also applies to simulation. Simulation is typically used
in certain areas for a better understanding, in other areas to support the concrete design of systems.
Furthermore, both agents and simulation are used for entertainment and training.

In the following, our exploration shall be focused on how the agent metaphor is used for modeling
and thereby enhances the understanding or design of the system that is simulated, and subsequently how
simulation is used as an experimental technique to improve the understanding and to support the design
of software agents.

8.2 Agents for Modeling in Simulation

The multiagent metaphor, perceiving a dynamic system as a community of autonomously interacting
entities, has started permeating many application areas of modeling and simulation. Modeling means
structuring the knowledge about a given system. In psychology, sociology, and biology, where little is
known about the system of interest, modeling and simulation are used for falsifying or supporting theories
(Gilbert and Troitzsch, 2005). The more is known about a system, the more modeling and simulation are
aimed at designing or manipulating systems. This design-oriented approach is traditionally found when
dealing with “man-made” systems, e.g., in manufacturing and traffic systems. At first glance, agents as a
metaphor seems similar to other metaphors used before. However, at second glance it shows multiple facets,
as, although having often an anthropomorphic flavor, the ingredients of agents are not commonly agreed
upon. On the one side, this has made deriving a uniform agent modeling formalism or reference model for
agents illusive, on the other, it has propelled the propagation of the metaphor in diverse application fields.

8.2.1 Using the Agent Metaphor for Understanding in Simulation
Generally, simulation of biological, ecological, or social systems focuses on analyzing and predicting rather
than on designing systems. These systems are typically not well understood, component libraries as in
technical domains are not available, and thus typically modeling starts from scratch. The question when
to use agents for modeling is only one facet of the central question in modeling: at which level of detail
shall the system be described (Gilbert and Troitzsch, 2005)? Whereas simplicity of a model has long been
interpreted as a quality in itself, this seems no longer be commonly agreed upon, neither in sociology or
economy (Axtell, 2000) nor in biology (Chen et al., 2004).

If we are interested in the activities of a small number of actors with frequent stochastic fluctuations
and stepwise motions, we would likely opt for a discrete, stochastic model to describe the involved actors
individually. In contrast, behaviors that involve a large amount of entities are typically described at the
macrolevel. Quantitative changes are represented traditionally and effectively by differential equations.
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Sometimes it makes sense to aggregate and other times to explicitly and individually track entities within
the simulation resulting in individual-based simulations. Individual-based simulation belongs to the
class of multilevel simulation where phenomena observed at the macrolevel are produced by the entities
located on microlevel (Knorr-Cetina and Cicourel, 1981; Bunge, 1979). When the individuals in the
model are usefully characterized as having some sort of cognitive processes, individual-based turns into
an agent-based approach (Gilbert, 2005).

Thus, agent-based models shift the focus to the individuals’ intentions, desires, and beliefs (Ferber,
1999). Although intentions, like the wish to reproduce or to allay hunger and thirst, might direct the
behavior of individuals, these decision processes are often not part of the model, as they are not of main
interest. So, the appropriateness of the agent metaphor depends on the system to be described and on the
objective of the simulation study, for example, we can treat a light switch as a (very cooperative) agent;
however, “. . . it does not buy us anything, since we essentially understand the mechanism sufficiently to
have a simpler, mechanistic description of its behaviour” (Shoham, 1993). Agent-based models are neither
ipso facto preferable to other modeling approaches nor vice versa. The complexity of the model should be
related to the complexity of the problem (Edmonds and Möhring, 2005).

As do multilevel simulations in general, agent-based approaches turn the attention to interacting indi-
viduals and the emerging macropatterns on the institutional level (David et al., 2003). In addition, they
support the simulation of heterogeneous social communities that embrace reactive and deliberative actors
likewise (Doran et al., 1996). In combination with cellular automata, agent-based models allow to capture
the interplay of deliberative decisions and spatial dynamics, e.g., the growth of cities (Batty, 2005). Thereby,
agent-based models move the interrelations between decision processes based on norms and preferences
and the dynamics of communities into the focus of exploration. Let us illustrate this with an example.

A premodern town has been described based on agents (Ewert et al., 2003). Three actor groups, i.e.,
merchants, craftsmen, and laborers, form the town’s population and are modeled as agents which behave
according to the assumption of utility and profit maximization. They are interacting as consumers and
suppliers via several markets, e.g., a grain market, a consumer good market, and a labor market. The local
authorities are modeled as a planning agent which decides upon a course of interventions into market and
social structures.

Disasters are induced into the model, provoking reactions of actors according to their preferences
and intentions. Macrolevel effects can be observed that are not intended by the individual actors, but
are characteristic for premodern mortality crises. Thus, this simulation model allows to experiment
with actors’ intentions and preferences, to mimic disasters leading to mortality crises, and to trace the
courses of economic and demographic developments in the aftermath of such crises. The local authorities
are described as a typical belief-desire-intention (BDI) agent (Rao and Georgeff, 1995), whereas the
other actors are utility-based agents (Russell and Norvig, 2003). Figure 8.1 shows the beliefs of the local
authorities about the situation at hand, the current desires, and the actions that are planned to take. The
local authorities belief that laborers are not contented and the price for grain is high, whereas for labor
it is low. To content the laborers and turn prices to normal, stored grain is supplied to the market and
labor is demanded via a job program by the local authorities. Because these actions also take effect on the
merchant’s and craftsmen’s contentedness, the local authorities have to decide on further interventions on
the tax and the guild system.

The project revealed that the desires of the local authorities have a significant influence on the pace of
disaster discovery—especially that short-term leveraging in favor of single actor groups, e.g., merchants,
may even intensify a crisis in the long run. However, the central problems in an agent-based modeling
and simulation remain: How to justify the made assumptions and validate the chosen model (Doran,
1997)? Whereas the utility-based agents could be based upon theories in microeconomy, the design of the
local authorities was based on knowledge about frequent intervention schemes in premodern towns and
speculation. Only a face validation of the model was possible. Still the model and simulation increased
the understanding of the system and inspired some “Gedankenexperimente” that a less expressive model
would not have motivated.

Thus, agent-based simulation appears what some areas have been waiting for, i.e., “. . . to provide the
social sciences with conceptual and experimental tools, namely the capacity to model, and make up in
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FIGURE 8.1 Sample plan generation by a deliberative agent that represents the local authorities in a premodern
town.

parallel, reactive and cognitive systems, and the means to observe their interactions and emerging effects”
(Conte and Castelfranchi, 1995).

8.2.2 Using the Agent Metaphor for Designing in Simulation
Simulation is also used for designing systems, i.e., to explore the implications of different design alter-
natives. If the performance of the system under study depends on the behavior of human individuals or
institutions, the agent metaphor can be exploited. As in the previous section, the agent metaphor is used
for modeling. However, it is no longer the objective of the simulation study to get insights into the behavior
and motivations of human or biological communities, but to mimic the behavior sufficiently well to allow
a good design of the technical system.

A human behavior representation (HBR) is a “model that mimics either the behavior of a single human
or the collective action of a team of humans” (Pew and Mavor, 1998). Research on HBRs has strongly
been driven by the military community, namely the U.S. Department of Defense Modeling and Simulation
Office (DMSO), and lately by research on home security. Typically, an HBR model is understood primarily
as a “representation of the decision making processes [. . .] of humans” (Wise et al., 2001), and “the details
of how individual humans actually accomplish tasks—that is, the psychological theory—is [. . .] irrelevant
as long as the behavioral output seems realistic” (Pew and Mavor, 1997). In contrast to work in related
fields, such as human modeling or human factors research, HBR research does neither try to output
any new evidence on human cognition nor does it need to realistically mimic physiological processes.
Nevertheless, the fields are interrelated: HBR design is based on psychological and medical findings (Wise
et al., 2001; Silverman, 2003).

Traffic simulation is one of the prominent areas where agents are employed to describe the behavior of
individuals (Helbing and Nagel, 2004) and help exploring the effects of different traffic control strategies
and thereby the design of traffic systems. To enhance the validity of traffic simulations, human behavior
representation plays a central role. Typically, a physical motion model (including information about streets,
intersections, surface, and speed limits) is combined with a mental model, which represents individual car
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drivers. Over the years models of the individuals have been gradually enriched. Classical traffic simulations
use origin–destination matrices that aggregate individual mobility. Current approaches take a hierarchical
approach. Overall behavior patterns are selected, appropriate locations assigned, timings determined,
and finally routes calculated (Balmer et al., 2004). These are more realistic than traffic models based on
averaged behavior and they are easily extensible and amenable to parallel execution. An important agent
feature for traffic simulation is learning: route choice may be revised day today and within the day given
the situation at hand.

Human behavior modeling in traffic systems exploits the agent metaphor to simulate realistic individual
behavior and thereby stimulate emergent phenomena (e.g., traffic jams). Herein, agents work without
explicit communication and use implicit coordination and social laws (Klügl and Bazzan, 2004).

Whereas to model humans seem the natural place to employ the agent metaphor, also technical sys-
tems sometimes lend themselves to be perceived as communities of interacting autonomous entities. If
characteristics like distribution, heterogeneity, and self-organization match, the system to be designed
can be thought of as a multiagent system. If agents and related concepts become the key abstractions for
structuring these systems, they shape also modeling these systems.

The agent metaphor is especially useful if autonomous entities should be developed that are situated
within an environment, e.g., to develop suitable decentral control strategies for manufacturing systems
(Parunak, 1999), or if heterogeneous entities are involved and coordination and communication becomes
important, e.g., to manage supply chains efficiently (Baumgaertel et al., 2003), which involve different alter-
native producers. Adopting the agent metaphor in modeling those systems helps reducing the complexity
by decomposing the whole system into smaller pieces.

In contrast to human behavior representation, these approaches take no advantage of intensive cog-
nition abilities of an individual agent, but use a set of more light-weight agents for distributed problem
solving (Parunak, 1997). Herein, the autonomy of the agents is complemented with social abilities and
communication becomes the enabling factor for coordination. For example, controlling manufacturing
processes based on unmanned transportation vehicles is a nontrivial problem involving routing, collision
avoidance, and deadlocks avoidance. Centralized approaches to control manufacturing processes are com-
putationally complex and time-consuming. Weyns et al. (2005b) suggest a decentralized control based on
autonomous, cooperative agents to realize flexible and open manufacturing systems. Flexibility is gained
from agents that are able to locally commit to transport jobs and react to opportunities as they appear.
Openness stems from the easiness of adding (or removing) vehicles to (from) the model and the facility.

So far, we have concentrated on the agent metaphor that is used in describing the system under study.
However, as the last example has shown, using the metaphor in modeling for designing can imply that the
system to be designed is perceived as a community of agents. If this system comprises software, obviously
pieces of the software to be designed are interpreted as agents. Thus, we arrive at the point where simulation
is used to test software agents. In the next section, we will no longer emphasize the view of using the agent
metaphor for modeling, but approach the field from the point of view that there are software agents that
shall be evaluated and tested in virtual dynamic environments.

8.3 Modeling and Simulation for Agents

Simulation provides a means for systematically analyzing the behavior of agents in dynamic virtual
environments (Helleboogh et al., 2006). The development of agents faces problems associated with tra-
ditional distributed concurrent systems. Additional difficulties arise from complex interactions between
autonomous problem-solving components (Jennings et al., 1998). Agent-based systems are often mission
critical (or even safety critical) and, like other software systems, must be tested and evaluated before being
deployed. However, their autonomy and the open heterogeneous nature of the environment in which
they operate make testing and evaluation difficult. Often, existing formal notations are either too weak to
express the structure and state of the agent and its environment, or if formalization is possible, the resulting
formulations are intractable. Consequently, it can be difficult to verify their properties. One alternative is to
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test them in virtual environments. Thereby, the design of multiagent systems might become an application
area for simulation tools similar to the design of manufacturing systems or network protocols.

We wish to now explore the role of simulation to help understanding and designing agents. This
discussion will be based on a controversy put forward in a publication by Paul Cohen, Steve Hanks, and
Martha Pollack at the beginning of the 1990s. They discussed the role of controlled experimentation in
agent design in general and that of small world testing in particular (Hanks et al., 1993). In the following
discussion, the focus will change from agents to their environment.

8.3.1 Modeling and Simulation for Understanding Multiagent Systems
Test beds offer sets of test scenarios are aimed at revealing prototypical problems in dynamic environments.
They fill the gap between purely synthetic benchmarks and the deployment of agent systems within real
environments. Since the beginning of research on agents, a series of test beds have been developed that
provide dynamic environments to conduct controlled experimentation with agents in well-defined settings
(Hanks et al., 1993). Test beds are simplified problem domains and facilitate testing in the small, i.e., rather
isolated questions can be explored. The primary intent is not to confront the agent with a valid model of
the concrete environment the agent shall dwell in. Instead, it aims at presenting a simplistic world in which
properties of a concrete agent or a simplified version of an agent can be analyzed in isolation—of course,
finding such “correct” simplifications is a very crucial part in the experimentation process. Test beds help
to explain and understand why agents behave as they do by illuminating behavior facets of a given agent
architecture.

To assess the behavior of an agent architecture, experimenting with one test scenario will hardly suffice. In
general, software systems are not evaluated based on one benchmark result only. The implementation and
application of dynamic scenarios requires more effort than that of conventional benchmarks. Accordingly
rare are the examples where an agent architecture has been systematically tested in several dynamic
scenarios.

Many scenarios have been developed together with the agent architectures to be tested. Thus, agent
architecture and test environment are often closely coupled. There are only few examples where one
scenario has been used to test different agent architectures. One of them is the TILEWORLD (Pollack and
Ringuette, 1990) scenario that was developed to investigate commitment strategies. TILEWORLD consists
of a grid of cells with tiles, obstacles, holes, and agents on it. The agents’ task is to fill holes with tiles.
The developed plans of how to optimally fill the different holes are subject to change as the environment
changes by its own dynamics (holes and tiles appear randomly).

TILEWORLD has been picked up by several other research groups to evaluate agent architectures (Philips
and Bresina, 1991; Kinny and Georgeff, 1991; Goldman and Rosenschein, 1994; Clark et al., 1997). In
the course of adopting the TILEWORLD to test single- or multiagent systems, however, it has been adapted
to the researchers’ objectives and needs, which hampers comparing different agent architectures based on
the results achieved. Therefore, it has not the role of a benchmark, but provides a type of scenario in
which design alternatives can be tested. The extension of the original TILEWORLD scenario to analyze the
behavior of multiagent systems (Ephrati et al., 1995) brings it close to another type of scenario which
permeates the literature: variants of predator prey models explicitly designed for multiagent systems (Agre
and Chapman, 1987; Doran et al., 1994; Wooldridge and Vandekerckhove, 1994; Luck et al., 1997). In this
context, the interaction, coordination, and cooperation strategies are of central interest.

Cooperation, i.e., teamwork, and fast reactions are at the bottom of another test scenario for multiagent
systems, which has gained popularity since the International Joint Conference on Artificial Intelligence
1997 in Japan: the soccer game. In addition to a robot league, a simulation league is held (Kitano et al.,
1997; Tambe et al., 1999), in which a soccer simulator provides the common environment for evaluating
different strategies of virtual robots.

In 1999, another scenario has been proposed to test agent architectures: RoboCup-Rescue (RCR) (Kitano
and Tadokoro, 2001) and spurred a lot of research activities. The challenges are the number of agents
(100 and more), a heterogeneous, partly hostile environment, real-time pressure, uncertain and limited
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FIGURE 8.2 Architecture of a typical testbed for evaluating agents: The RoboCup Rescue simulator. (From Rescue
Technical Committee, T. R. (2000). RoboCup Rescue simulator manual. Ver. 0, Rev. 4.)

information access, and distributed control. Simulators are used to describe the dynamics of typical
disasters, e.g., such as the spread of fire, the collapse of buildings, and blocking of highways. Rescue
complements RoboCup-Soccer with challenges in logistics, long-range planning, and collaboration among
heterogeneous agents. RCR takes a special position among test beds, as it is not only a challenging
artificial environment, but is directly aimed at socially significant problems. Besides the ability to put
agent architectures to test with the Rescue simulator, RCR is aimed to make progress in emergency
decision support for large-scale disaster scenarios (Kitano et al., 1999). Furthermore, the RCR-simulator is
intended to function as a standard benchmark environment to compare and evaluate crisis management
and provide the ground for digitally empowered rescue brigades. Figure 8.2 depicts the structure of the
RCR-simulator (Rescue Technical Committee, 2000).

Each of these test beds supports testing of agents within predefined, dynamic scenarios. They may
cast light on what is important and concentrate attention on key problems in a scientific area as they
operationalize scientific paradigms (Sim et al., 2003). However, as Hanks points out, testing should
ultimately be aimed at analyzing how agents will perform in the environment they are constructed for.
With agents, AI methods have moved toward embedded applications, “the ultimate interest being not
simplified systems and environments but rather real world systems deployed in complex environments”
(Hanks et al., 1993, p. 18). Consequently, recent benchmarks (Kitano and Tadokoro, 2001; Weyns et al.,
2005a) blur the border between artificial and real domains.

8.3.2 Simulation for Designing Multiagent Systems
Unlike testing in the small, where general strategies of agents are tested, this section discusses concrete
agents designed for concrete applications. Simulation is used for testing agents in a virtual environment.
Therefore, a valid model of the concrete environment the agent shall dwell in is required.

Generally, testing checks an implementation against some requirements. To this end, a set of test cases
has to be generated to cover the requirements as much as possible. If testing cannot be done exhaustively,
selecting suitable test cases becomes crucial. Efficient testing relies on the use of explicit models representing
the conditions under which an implementation has to operate—its environment. Whereas most of the
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testing approaches concentrate on models of the software itself, i.e., the specification of requirements from
which test cases are derived, model-based testing uses additional explicit models for test case selection
(Pretschner et al., 2004). To constrain the set of test cases, model-based testing introduces a model of the
test scenario to distinguish significant test cases. A random selection would reduce the number of test cases
arbitrarily. In contrast, the integration of further knowledge, e.g., about critical situations or common user
behavior, allows a goal-directed focusing of test cases. This is of particular importance for testing agent
software, as they are usually intended to operate in rather complex settings.

The usage of a virtual environment in contrast to the real environment typically reduces costs and
efforts and allows to test a system’s behavior in “rare event situations.” Virtual environments are easier
to observe and to control, and probe effects are easier to manage. Environment models can be used to
generate different test cases dynamically during simulation, including specific interaction patterns and
time constraints. Thereby, the validity of the environmental models is crucial, independent of whether
abstract models of agents are experimentally evaluated, single agent modules are embedded for testing, or
entire agent systems are plugged into the virtual environment (Röhl and Uhrmacher, 2005).

For example, have a look at peer-to-peer (P2P) networks (Moro et al., 2005), which differ from typical
client–server architectures in assigning to each node equivalent capabilities and responsibilities. P2P
networks are characterized by autonomous nodes and a dynamic topology as nodes might leave or enter
the network dynamically. For publishing and requesting information services in P2P networks, multiagent
software systems are designed (König-Ries et al., 2004). To evaluate different protocol strategies, classical
network simulators are considered as too inflexible and being on a too detailed level of abstraction (Klein,
2003). Therefore, simulators are developed from scratch, which simulate the underlying network at a
rather abstract level (Minar et al., 1999; Huebsch et al., 2003), e.g., by counting hops. Often, more detail is
required on the application level; e.g., instead of using simple “Churn”-rates, which describe the dynamics
of the topology (Joseph, 2003), the user’s individual activities are taken into account (König-Ries et al.,
2004). As those users can be modeled as agents, human behavior representation becomes part of the
environment software agents are tested in.

This has also been the case in developing a test environment for Autominder. Autominder is a distributed
monitoring and reminder system developed at the University of Michigan (Pollack et al., 2003). It is being
designed to support older adults with mild to moderate cognitive impairment in their activities of daily
living. The software is installed in the client’s house, together with a set of sensors and given a list of
actions that must be performed during the day. At runtime, Autominder evaluates sensor echoes from the
environment, reasons about ongoing user activity, and compares its findings to the given client plan to
detect forgotten actions and remind the user of their execution.

Autominder complements a human in-place nurse and thus has a huge responsibility for its client’s
safety. Consequently, it must be tested in a variety of application scenarios before its release. Since those
scenarios are not always safe for a human client and may be hard to observe during human-in-the-loop
field tests, a virtual testing environment for Autominder has been developed (Gierke et al., 2006). Its
layout is shown in Figure 8.3. The testing environment focuses on the model of an elderly person who
acts as the Autominder user. Besides that, it includes a model of the client’s living environment where
Autominder is supposed to work. The Elderly model is designed as a human behavior representation that
represents an elderly person in terms of actions and mental state (Gierke and Uhrmacher, 2005). There-
fore, it provides two basic client functionalities: emulate suitable elderly behavior and react to incoming
reminders.

Depending on its initial memory fitness and current stress level, the Elderly model may forget some of
the plan actions. If the model receives an external reminder, it interrupts this default behavior as reminders
should be evaluated with priority. However, there is no guarantee the Elderly model will cooperate with
Autominder and execute the requested action. Depending on its initial cooperativeness and current degree
of annoyance, the Elderly model may as well choose to ignore reminders.

In this scenario, we find agents as a metaphor for modeling, i.e., part of the virtual environment, the
Elderly model, is described utilizing the agent metaphor HBR; and we find agents as a subject for being
tested, i.e., the Autominder software. In many environments for which software agents are designed, human
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FIGURE 8.3 Testing of an agent application (Autominder) by coupling it to a simulated environment. (From Gierke,
M., J. Himmelspach, M. Röhl, and A. Uhrmacher (2006). Modeling and simulation of tests for agents. In German
Conference on Multi-Agent System Technologies MATES’06, to appear.)

beings play an important role and thus have to be taken into account when designing virtual environments
for testing.

8.4 Conclusion

Agents are a metaphor used for designing software systems and for modeling dynamic systems that shall
be evaluated by simulation. Multiagent systems as communities of interacting autonomous entities are
supposed to function in dynamic environments. Thus, simulation is used as a means to evaluate and test
agents. Accordingly, the relationship that ties agents and simulation is multifaceted.

The objective of the chapter has been to entangle the relations between agents and modeling against the
background of simulation from two starting points: using the agent metaphor for modeling and modeling
the virtual environment for analyzing agents. Thereby, the focus moved from the structure of single agents
to their environments. These two approaches were further structured by the criteria whether analysis or
design was the objective that motivated the modeling effort. As it turned out, many dependencies between
these perspectives exist, which blur the distinction at some points. Figure 8.4 shows the introduced
dimensions in relating agents and simulation from a modeling perspective.

For example, if we look at robots playing soccer as a possible application, a soccer simulator would help
designing the software to run on the robots. However, current RoboCup simulators are not aimed toward
this goal. Therefore, their models would need to include more physical and sensory details of the robots
and the playing ground. Consequently, although simulators are used for designing soccer-playing robots,
these are quite different from the simulators used in the RoboCup-Soccer league illustrating quite nicely
that the objective influences the suitability of models. However, current approaches are aimed at enriching
the RoboCup-Soccer simulator for supporting the design of soccer-playing robots, thus, bridging the gap
between testing in the small and testing in the large, or simulation for understanding and simulation for
design.
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FIGURE 8.4 Interdependencies between agents for simulation and simulation for agents.

To analyze the strategies of multiagent systems, scenarios from ecology and sociology have often
been used. Scenarios like RCR show that not only implemented strategies and the resulting emergent
phenomena shall be analyzed by a virtual environment, but it is also hoped to learn more about decision
structures in and the ability to cope with real disaster scenarios. In this case, modeling and simulation is
not only used for agents, i.e., as a test bed to get a better understanding about coordination strategies when
multiple heterogeneous agents are involved, but also the agent metaphor helps to understand dynamic
systems, e.g., when dealing with real disaster scenarios, where the agent metaphor serves for modeling and
simulating this system.

If technical systems like unguided vehicles in manufacturing systems are perceived as agents and
described in the simulation based on the agent metaphor, their implementation is likely to be agent-
based as well. Thus, as the implementation and design of the system progresses, we gradually turn from
the view of using the agent metaphor during simulation, toward using simulation for analyzing the imple-
mented agents. If, as in testing the agent software Autominder or information retrieval in P2P networks,
human factors play a role, agent as a metaphor for modeling humans naturally become part of the virtual
environment aimed at evaluating the agent software. In this context, the ideas of using agents as a metaphor
for modeling and using modeling (and simulation) to evaluate agents are combined.

To conclude, let us summarize our discussion:

1. Agents are used as a metaphor for modeling a dynamic system.

(a) The agent metaphor supports a better understanding of certain phenomena in social, ecological,
or biological communities. It typically enriches traditional individual and multilevel modeling
approaches by sophisticated internal decision models of the individuals, and thus helps to
analyze phenomena that are supposed to depend on decision processes and preference models
(e.g., urban disasters).

(b) Whereas in sociology, simulation serves a better understanding, many technical areas depend on
simulation for designing. In this area we find the agent metaphor as well. If the technical system
can only be evaluated taking human behavior into account, agents are used as a metaphor to
mimic the behavior of the humans, e.g., in the HBR approach. The goal is to have a realistic
behavior pattern rather than to have a valid model of human decision and behavior processes,
e.g., in traffic simulation. If the technical system shows characteristics of a multiagent system,
i.e., a community of autonomously and concurrently interacting entities, the agent metaphor
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is used for describing this system, which brings it close to the relation described in Section 8.2.2
(e.g., manufacturing system).

2. The other dimension that relates agents and simulation is using simulation for evaluating software
agents. This turns the focus of modeling from the agent toward the environment.

(a) Small world testing presents a simplistic world in which properties of a concrete agent or a
simplified version of an agent can be analyzed in isolation, a better understanding of agents and
their behaviors being its purpose. Scenarios are often chosen by adopting social or biological
systems. However, less the understanding of the social society but more the implications of
the specific problem solving and cooperation strategies are the focus of interest (examples are
TILEWORLD, RoboCup simulation league).

(b) Testing in the large requires a valid model of the environment the agents are supposed to work
in. The focus is on evaluating design alternatives of concrete software agent applications. If the
environment comprises humans, they will likely be presented as agents. However, less with the
intention to understand humans in their interaction with software, but with the intention to
mimic the human behavior reasonably well to assess the performance of the software agent in
interaction with humans (examples are P2P systems and Autominder).

By focusing on the modeling level, research areas like using agents for realizing simulation systems, e.g.,
in supporting data-driven, online simulations (Low et al., 2005) have not been considered. Similarly, the
many challenges of an efficient and effective execution of multiagent systems and their environments have
not been discussed, nor any of the steps toward addressing these challenges, e.g., by flexible simulation
layers that support different types of executions and synchronization between agents and simulation
(Himmelspach and Uhrmacher, 2004), or e.g., by an efficient handling of shared states in distributed,
parallel execution (Lees et al., 2005), nor were the different simulation tools that exist, most of which
originated in the realm of social simulations (Tobias and Hofmann, 2004), presented.
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9.1 Introduction

Other chapters in this book discuss various aspects of dynamic systems modeling. The purpose of this
chapter is to present an introduction to some of the contemporary innovations in the use of distributed
computing techniques to support modeling. This is called distributed simulation and can be defined as
the distribution of the execution of a single run of a simulation program across multiple processors
(Fujimoto, 2000). The various motivations for this include: the reduction of the execution time of a
single simulation run, the use of multiple computers to support the memory needs of the simulation
when one computer cannot, and the linking of simulations sited in different locations (Fujimoto, 2003).
A cursory examination of the many Winter Simulation Conferences (WSC) (www.informs-cs.org and
www.acm.org/dl), the Principles of Advanced and Distributed Simulation (PADS) (www.acm.org/dl), and
Simulation Interoperability Workshops (SIW) (www.sisostds.org) show the wide applications and issues
of distributed simulation. By way of introduction, and to give focus to this work, we restrict our discussion
to the use of distributed simulation in the field of modeling associated with the use of Commercial-off-the-
shelf (COTS) Simulation Packages (CSPs). CSPs are widely used in industry. In this chapter, we term the
combination of distributed simulation and CSPs, CSP-based distributed simulation.

In addition to the above general reasons to use distributed simulation, additional reasons to use
CSP-based distributed simulation include the interoperation of discrete-event simulations across virtual
organizations, extended enterprises, and supply chains; the reduction of the cost of model development
by enabling the reuse of distributed model components; and the protection of intellectual property (infor-
mation hiding in distributed models) (Gan et al., 2000; Mertins and Rabe, 2002; Paul and Taylor, 2002;
Robinson et al., 2004). Additionally, variants of distributed simulation techniques can also reduce the
time taken for simulation experimentation (distributed replication and experimentation) and reduce sim-
ulation project costs (remote model execution, group working) (Robinson, 2005; Taylor et al., 2005).

9-1
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Although there are excellent examples of successful distributed simulations with CSPs (in particular, Boer
et al. [2002a] and Mertins et al. [2000]), a general solution to this area is illusive. In general dynamic sys-
tems modeling this means that this potentially highly useful technology cannot be used without significant
cost.

In this chapter we consider why this is the case and review some of the new standards-based approaches
that are currently being developed. The chapter is structured as follows. First, the notion of the CSP is
explored in more depth. Distributed simulation is then introduced. The problems of CSP-based distributed
simulation and the current progress of research in this area is then considered. The chapter then introduces
a standards-based approach to the solution of the problems faced by CSP-based distributed simulation.
Within this the key roles of the Simulation Interoperability Standards Organization (SISO) and the COTS
Simulation Package Interoperability Product Development Group (CSPI-PDG) in standardization are dis-
cussed. Detail is then given on one research “target” in this area, the Type I interoperability reference model
(IRM). A case study outlining its use is then presented to show how progress in this area is being made.

9.2 Modeling with COTS Simulation Packages

Discrete-event simulation (DES) is a computer-based dynamic systems modeling technique typically used
to model and investigate the behavior of complex, dynamic systems (Banks, 1998; Pidd, 1998; Robinson,
2004). Discrete event refers to the type of simulation that models a system in terms of state variables
that change instantaneously at separated points in time (events) as opposed to continuous change (con-
tinuous simulation) (Law and Kelton, 2000). As with most modeling techniques, DES can be used to
support system analysis, education and training, acquisition and system acceptance, research and plan-
ning, organizational change, and facilitation (Nance and Sargent, 2002; Robinson, 2002) in a range of
diverse areas such as commerce (Bosilj-Vuksic et al., 2003), defense (Hofmann, 2004), health care (Eldabi
et al., 2000), manufacturing (Bruzzone, 2003), supply chains (Goel et al., 2002), civil (Demirci, 2003), and
maritime transportation (Lee et al., 2004). Visual interactive simulation has played an important role in
DES for around 25 years (Bell, 1985; Bell and O’Keefe, 1987; Hurrion, 1998). We use the term commercial-
off-the-shelf discrete-event simulation packages (CSPs) to describe commercially available software tools
that have been developed from visual interactive simulation to facilitate the process of DES and to provide
a distinction from other similar modeling approaches such as those based on Petri nets (Peterson, 1981)
or systems dynamics (Lane, 1999). Examples of CSPs include ProModel (Harrell and Price, 2003), Arena
(Bapat and Sturrock, 2003), AutoMod (Rohrer, 2003), Simul8 (www.simul8.com), Extend (Krahl, 2003),
and Witness (www.lanner.com). Some of these packages support other modeling techniques; we restrict
ourselves to DES in this discussion.

CSPs support environments use visual programming approaches that allow simulation modelers to
build discrete-event models using drag and drop interfaces and provide a range of facilities for DES (e.g.,
2/3D animation and visualization, replication control, experimentation and statistical analysis utilities,
and optimization support) All support DES in that each CSP supports the building of models that change
state at events. Generally, such DES models are typically composed of networks of alternating queues and
activities that represent, for example, the series of buffers and operations composing a manufacturing
system. Entities, consisting of sets of typed variables termed as attributes, represent the elements of the
manufacturing system undergoing machining. Sometimes the term is used to refer to a class, i.e., an entity
“Job” might refer to the class of jobs that require machining. Each individual entity, each individual “Job”
can be distinguished by attributes. In this chapter, we use the term to refer to a collection of items (hence
entities “Jobs” and entity “Job”). Entities are transformed as they pass through these networks and may
enter and exit the model at specific points. Additionally, activities may compete for resources that repre-
sent, for example, the operators of the machines. Resources tend to be passive and elements of the model
“compete” for them. For example, a resource might be used to represent a collection of operators—when
a machine wishes to begin processing an entity it might request an operator from the operator resource.
If there are any, an operator is assigned to the machine. If there are none, then the machine must wait
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for an operator to become available. To simulate a model a CSP will typically have a simulation execu-
tive, an event list, a clock, a simulation state, and a number of event routines. The simulation state and
event routines are derived from the simulation model. The simulation executive is the main program that
(generally) simulates the model by first advancing the simulation clock to the time of the next event and
then performing all possible actions at that simulation time. For example, this may change the simula-
tion state (e.g., ending a machining activity and placing an entity in a queue) or schedule new events
(e.g., a new entity arriving in the simulation). This cycle carries on until some terminating condition
is met.

Virtually every CSP has a different variant of the above. Each is based on a variant of a simulation
worldview. A worldview, or conceptual framework, is “… a structure of concepts and views under which
the simulationist [modeler] (developer) is guided for the development of a simulation model” (Balci,
1988). The most well known of these are event scheduling, activity scanning (Buxton and Laski, 1962), the
three-phase approach (Tocher, 1963), and process interaction. In the 1960s, these gave rise to simulation
programming languages such as GPSS, SIMAN, SIMSCRIPT, SIMULA, and SLAM. Many of these were the
predecessors to the CSPs used today (Nance, 1996). In addition to these different worldviews, CSPs have
widely differing terminology, representation, and behavior (Schriber and Brunner, 2003). For example,
without reference to a specific CSP, in one CSP an entity as described above may be termed as an item and in
another as object. In the first CSP, the datatypes might be limited to integer and string, while in the other the
datatypes might be the same as those in any object-oriented programming language. The same observa-
tions are true for the other model elements of queue, activity, resource, and entry and exit point. Behavior
is also important as the set of rules that govern the behavior of a network of queues and activities subtly
differ between CSPs (e.g., the rules that govern behavior when an entity leaves a machine to go to a buffer).
Indeed, even the representation of time can differ. This is also further complicated by variations in model
elements over and above the “basic” set (e.g., transporters, conveyors, flexible manufacturing cells, and
robots).

The consequence of this is a point that many researchers new to this area miss; it is entirely plausible
to argue that there are now as many worldviews as there are CSPs. This presents a substantial challenge to
the field of distributed simulation. Let us now consider general progress in distributed simulation and in
particular CSP-based distributed simulation.

9.3 Distributed Simulation

The IEEE 1516 standard The High Level Architecture (HLA) (IEEE 1516, 2000) is a general standard that
supports distributed simulation. This, and its predecessor the IEEE 1278 standard Distributed Interactive
Simulation (DIS) (IEEE, 1995), came from the need of the US Department of Defense (DoD) to reduce
the cost of training military personnel by reusing computer simulations linked via a network, i.e., through
the creation of distributed simulations of real-time military applications.

The DIS standard described the format of data exchanged by simulators linked over a network for
military applications. The limited domain of DIS (military, real-time applications) and technical problems,
such as time management and limited bandwidth, led to the creation of the HLA. In the HLA, a distributed
simulation is called a federation, and each individual simulator (in our case the combination of a CSP and its
model) is referred to as a federate. A HLA Runtime Infrastructure (RTI) provides facilities to enable federates
to interact with one another, as well as to control and manage the simulation. The HLA is composed of
four parts: a set of rules (IEEE 1516.0, 2000), the Object Model Template (OMT) (IEEE 1516.1, 2000),
the Federate Interface Specification (FIS) (IEEE 1516.2, 2000), and the federate development Process
(FEDEP) (IEEE 1516.3, 2004). The rules are a set of 10 basic conventions, which define the responsibilities
of federates and their relationship with the RTI. The FIS is an application interface standard for distributed
simulation middleware, which defines how federates interact within the federation, and is implemented
by an RTI. The OMT provides a common presentation format for HLA federates. Using the OMT, each
federate defines, in its simulation object model (SOM), the data that it is willing to share (publish) with
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other federates and the data it requires from other federates (subscribe). The federation object model
(FOM) combines the federate SOMs into a single object model for the federation and therefore defines the
overall data to be exchanged (published and subscribed) between federates during a simulation execution.
The FEDEP defines the recommended practice processes and procedures that should be followed by users
of the HLA to develop and execute their federations.

Federates do not communicate with one another directly. Instead, they exchange information only using
the services provided by the RTI. Each federate has an RTIambassador and a FederateAmbassador. A federate
invokes an operation on the RTIambassador whenever it needs an RTI service (e.g., a request to advance
simulation time). In the reverse direction, the RTI invokes an operation on the FederateAmbassador
whenever it needs to pass data to the federate (e.g., to inform the federate that the request to advance
simulation time has been granted). Thus, operations in the FederateAmbassador need to be implemented
by the federate, as part of the federate code or as part of some interface service. As defined by the FIS, an
RTI provides six classes of services:

• Federation management : These services allow federates to create and destroy federation executions,
and join or resign from an existing federation.

• Declaration management : These services allow federates to publish federate data and to subscribe
to updated data produced by other federates.

• Object management : These services allow federates to create and delete object instances, and produce
and receive data.

• Ownership management : These services allow federates to transfer the ownership of object data
during the federation execution.

• Time management : These services coordinate the advancement of simulation time of the federates.
• Data distribution management (DDM): These services can reduce unnecessary information transfer

between federates by filtering out irrelevant data.

This overcame the shortcomings of DIS by being simulation-domain neutral (the OMT) and specifying
functionality for time management and bandwidth control (in the FIS modules). In terms of heterogene-
ity, the HLA therefore provides facilities to describe any data exchange format as required. Specifically,
the OMT provides neutral data representation types that are mapped to/from the RTI. These are the
basic representation types of HLAinteger16/32/64BE/LE, HLAfloat32/64BE/LE, HLAoctetPairBE/LE, and
HLAoctet (16/32/64 represents bit size, BE/LE represents big/little endian representation); the simple data
representation types of HLAASCIIchar, HLAunicodeChar, and HLAbyte; user-defined enumerated types
(including HLAboolean represented as a HLAinteger32BE with possible values of 0 and 1); the array
datatype representation types of HLAASCIIstring, HLAunicodeString, and HLAopaqueData (uninter-
preted); user-defined array types; user-defined fixed record datatypes; and user-defined variant record
datatypes. Apart from datatypes, the OMT also provides 13 tables that are used to define various different
aspects of the SOMs and FOM of a distributed simulation using the HLA. These are

• Object model identification table: This associates important identifying information with a
HLA object model (SOM/FOM).

• Object class structure table: This records the namespace of all federate or federation object classes
and describes their class–subclass relationships.

• Interaction class structure table: An interaction is a type of data exchange that models “(a)n explicit
action taken by a federate that may have some effect or impact on another federate within a
federation execution.” This table records the namespaces of all federate or federation interaction
classes and describes their class–subclass relationships.

• Attribute table: An attribute is a type of data exchange that models “(a) named characteristic of
an object class or object instance” and is semantically different to attributes mentioned in our
discussion of CSPs. This table specifies the object attributes in a federate or federation that can be
exchanged.
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• Parameter table: This specifies the parameters of interaction classes in a federate or federation.
• Dimension table: This specifies the dimensions used to filter instance attributes and interactions

(used in DDM).
• Time representation table: This is used to specify the common representation of time values.
• User-supplied tag table: This specifies the representation of tags used in HLA services.
• Synchronization table: This specifies the representation and datatypes used in HLA synchronization

services (typically used to synchronize the federation at the start and end of the simulation).
• Transportation type table: This table describes the transportation mechanisms used in the federation

(essentially following UDP and TCP semantics).
• Switches table: This specifies the initial settings for parameters used by the RTI.
• Datatype tables: This specifies details of data representation in the object model (as described above).
• Notes table: This table expands explanations of any OMT table item as required.
• FOM/SOM lexicon: This defines all of the objects, attributes, interactions, and parameters used in

the HLA object model.

What progress has been made in using this standard or other nonstandard approaches to support CSP-
based distributed simulation? In other words, how do we use the complexity of the HLA?

9.4 CSP-Based Distributed Simulation

In this section we consider the specific problems that CSP-based simulation faces and the progress that
has been made toward a general solution.

9.4.1 The Problem of CSP-Based Distributed Simulation
Consider the simple distributed simulation of Figure 9.1 In our discussion, a distributed simulation
(federation) is composed of CSPs and their models (federates) that exchange data (interactions and
attributes) via an RTI in a time synchronized manner. Two factories, F1 and F2, interact in various ways
as denoted by the black double-headed arrow. Each model consists of an arrival source Soi, a queue Qi, a
workstation Wi, a resource Ri, and an exit sink Sii (where i is the factory identifier). There are various types
of model information that we might share. For example, entities might be passed between models (i.e.,
the two factories are linked together—entities leave F1 at Si1 and arrive in F2 at So2) and the resources
R1 and R2 might be shared to reflect a shared set of operators that can operate workstations W1 and
W2. If this was the case, factory F1 must publish and send information to the RTI in an agreed format
and time synchronized manner and factory F2 must subscribe to and receive that information in the

So1 Q1 W1

R1

Si1

Factory F1

COTS simulation package

So2 Q2 W2

R2

Si2

Factory F2

COTS simulation package
Time

synchronized
data exchange

Runtime infrastructure

FIGURE 9.1 Simple distributed simulation.
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same agreed certain format and time synchronized manner, i.e., both federates must agree on a common
representation of data and both must use the RTI in a similar way. Further, the “passing” of entities and
the sharing of resources require different distributed simulation protocols. In entity passing, the departure
of an entity at a sink and the arrival of an entity at a source are effectively the same scheduled event in the
two models—most distributed simulations represent this as a timestamped event message sent from one
federate to another (with the timestamp typically equal to the time that the entity finished processing in
the last workstation [W1 in our example]) (Boer et al., 2002b; Sudra et al., 2000). The sharing of resources
cannot be handled in the same way. For example, when resource (R1) is released or an entity arrives in
queue Q1, a CSP executing the simulation of F1 will determine if workstation W1 can start processing
an entity. If resources are shared, then each time R1 or R2 changes state, a timestamped communication
protocol is required to inform and update the changes of the shared resource state (Low et al., 2001).

Our heterogeneous distributed CSP integration problem therefore consists of several parts. These are

• what are the synchronization demands of data exchanged between federates?
• how should these be implemented through an RTI?
• what format should the data take and what relationship should this have to the CSPs and their

models?

Let us now consider current progress to a solution to these questions.

9.4.2 CSP-Based Distributed Simulation: Current Progress
Although initial work on the use of the HLA to integrate heterogeneous distributed CSPs can be traced back
to pioneering work done by Straßburger in the late 1990s (Straßburger, 2001), this area is still emerging
(Taylor et al., 2003). Research has mainly focused on technological challenges using combinations of
various CSPs and HLA-based and non-HLA-based approaches. Mertins et al. (2000), Rabe and Jäkel
(2001, 2003), Hibino et al. (2002), McLean and Riddick (2000), and Linn et al. (2002) discuss the use
of the HLA and the associated adapter technologies of the MISSION project to support the distributed
simulation of manufacturing systems. Lenderman et al. (2001) and Straßburger et al. (2003) also discuss
strategies for HLA use in the same domains. In terms of non-HLA approaches the following contributions
have been made. Sudra et al. (2000) and Taylor et al. (2002) discuss the use of the generic runtime
infrastructure for distributed simulation (GRIDS) to support the distributed simulation of supply chains
and automotive engine production. Fuji et al. (2000) present an approach to the distributed simulation of
virtual factories. Zülch et al. (2002) show how distributed simulations of manufacturing systems can be
composed hierarchically. Gan et al. (2000) compare HLA against an MPI-based implementation extended
from the protocol described in Gan and Turner (2000). Boer et al. (2002b) discuss the use of distributed
simulation to link to real-time data sources using the FAMAS backbone. Finally, Boer et al. (2002b) also
discuss the use of the same technology to support the distributed simulation of a port.

In terms of the questions posed above, what contributions have the above made? Let us summarize:

• what are the synchronization demands of data exchanged between federates?
• Many!

• how could these be implemented through an RTI?
• In many different, incompatible ways!

• what format could the data take and what relationship should this have to the CSPs and their
models?
• Many, different, incompatible forms!

In short, although much of the above work has led (to various degrees) to some successful solutions, the
solutions themselves are incompatible. While each is excellent in its own context, the lack of a standardized
approach means it is difficult for end users and CSP vendors to choose a solution. A standardized approach
means that there is only (usually) one approach to select. Let us now consider how a standardized approach
can be created in this area.
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9.5 A Standards-Based Approach

In this section we first consider the organization responsible for the development of standards in the area
of distributed simulation. We then consider the emerging standards being developed in this area before
specifically considering two.

9.5.1 The Simulation Interoperability Standards Organization
It is the role of SISO to oversee the process of standards making in HLA-based distributed simulation. The
HLA was initially developed in conjunction with the IEEE via the Simulation Interoperability Standards
Committee (SISC) with US DoD support. In 2003, SISC was disbanded and replaced with (SISO’s)
Standards Activity Committee (SAC). SISO is led by its Executive Committee (EXCOM) that oversees
work performed by SAC. The SAC in turn oversees the various product development groups (PDGs). A
PDG is a working party responsible for developing a specific SISO product (a SISO term for standard).
Products are developed according to a balloted product development process (BPDP) that describes a six-
stage process: activity approval, product development, ballot product, product approval, distribution and
configuration management, and periodic review. A prestage involves the development and submission of a
document called a product nomination, a proposal for a PDG and the products intended for development.
During the life of a PDG, members vote at various stages of the BPDP to accept, modify, or reject products
under development. The process so seeks to reflect consensus agreements to create stable, well-understood,
technically competent standards that have significant public support. An example of a SISO product is
the RPR FOM, a HLA equivalent representation of DIS. Others are under development for military
applications such as Link-16 and C4ISR by PDGs such as PDG-LINK16 and PDG-C4ISRTRM.

Essentially the main work of SISO’s PDGs is to develop standards to support different distributed
simulation domains. We now discuss emerging standards to support CSP-based distributed simulation.

9.5.2 Emerging Standards and the CSPI-PDG
In August 2002, the High Level Architecture COTS Simulation Package Interoperability Forum (HLA-
CSPIF) was created in an attempt to produce a generalizable solution to the problem of distributed
heterogeneous CSP integration. Over 2 years, discussions led by the Forum resulted in the splitting up
of the integration problem into different requirements. The rationale is this. If we consider all possible
distributed simulation requirements in this area three important observations can be made:

• not all distributed simulations need all integration requirements;
• some integration solutions are relatively straightforward and some are extremely complex; and
• not all integration requirements are known.

In the simple example of Figure 9.1, some distributed simulations only require entities to be passed between
them. The problem of entity passing is somewhat simpler than the problem of synchronous shared state
in the case of resource sharing. The issue of not being able to know all integration requirements has
been demonstrated by the experiences of the Forum. Entity passing and resource sharing were the first
requirements that were identified. However, the requirements to integrate models with shared (global)
events, various data structures, and conveyors were later identified by members. It is expected that as
simulation modelers use distributed simulation, more requirements will emerge.

The above requirements have been encapsulated into (currently) six IRMs (Taylor, 2003). These are

• Type I: Asynchronous entity passing
• Type II: Synchronous entity passing (bounded buffer)
• Type III: Shared resources
• Type IV: Shared events
• Type V: Shared data structures
• Type VI: Shared conveyor.
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Briefly, the Type I IRM asynchronous entity passing deals with the common requirement of transferring
entities between simulation models. The Type II IRM synchronous entity passing deals with the case where
a receiving queue is bounded, i.e., in the above example queue Q2 has limited capacity. In this case, the
requirement means that the federate containing the sending workstation W1 must, when the processing
of an entity is complete, check to determine that there is space in Q2. If there is space available then the
entity may be transferred. If there is none the federate must ensure that W1 is blocked until space becomes
available. The Type III IRM shared resources deals with the sharing of resources across simulation models.
For example, a resource R might be common between two models and represents a pool of workers. In this
scenario, when a machine in a model attempts to process an entity waiting in its queue it must also have
a worker. If a worker is available in R then processing can take place. If not then work must be suspended
until one is available. The Type IV IRM shared events deals with the sharing of events across simulation
models. For example, when a variable within a model reaches a given threshold value (a quantity of
production, an average machine utilization, etc.) it should be able to signal this fact to all models that have
an interest in this fact (to throttle down throughput, route materials via a different path, etc.). The Type V
IRM shared data structures deals with the sharing of variables and data structures across simulation models
that are semantically different to resources (e.g., a bill of materials or a shared inventory). Finally, the Type
VI IRM shared conveyors deals with the problem of sharing transportation systems such as conveyor or
barges across simulation models (as distinct to the representation of these in Type I IRMs). Note that not
all IRMs will be applicable to all CSPs. For example, the Type I and II IRMs would only be applicable to
CSPs that are capable of representing entities (such as those mentioned in Section 9.1).

The creation of the IRMs has proved to be a powerful tool in the development of standards in this area
as it is now possible to create solutions for specific integration problems (rather than the general notion
of integration as is currently the case). These have formed the basis for the creation of a new SISO-based
standards group that arose from the HLA-CSPIF. Led by Taylor, this group is called the COTS Simulation
Package Interoperability Product Development Group (CSPI-PDG) (www.cspi-pdg.com). They propose
a suite of CSPI standards consisting of IRMs that outline different integration needs of CSPI, Interop-
erability Frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange
representations to specify the data exchanged in an IF, and benchmarks termed CSP Emulators (CSPE) (see
the Web site for recent versions of these). It has been noted that the creation of an efficient link between
CSPs and an RTI is problematic as it requires investment by the vendor of the CSP (Taylor et al., 2003).
While there are several good examples of this cited elsewhere in this chapter, it is difficult to judge the
performance of the distributed simulation approach as the latency between a CSP and RTI is hidden. The
use of a CSPE is intended to form a common platform to compare different proposed approaches to each
IF. It is anticipated that there will be several data exchange formats to cover the possible needs of the IRMs.
However, our concern in this chapter is a data exchange format specification that can deal with the passing
of entities between federates and is relevant to Type I and II IRMs and their HLA-based IFs (as each of
these IRM specifically deal with entities). We term this the Entity Transfer Specification (ETS). To discuss
our ETS, we first present the Type I IRM in detail.

9.5.3 The Type I Interoperability Reference Model
Figure 9.2 shows the Type I IRM (asynchronous entity passing). This IRM represents models that interact
on the basis of entities; models are linked together so that one model may “pass” an entity to another
at a given timestamp. The reason why this is termed “asynchronous” is that there is no immediate or
direct feedback when an entity is passed (this does not mean to say that no feedback can exist, just that it
must happen at a different time to when an entity is passed—our case study shows an example of this).
The model elements that have been placed in each model are there to indicate in a simple manner the
relationships between models, i.e., the internal structure of a model can be far more complex—it is the
relationship between the last workstation (W1), sink (S1), source (S2), and queue (Q2) that is important.
Also, it is possible that models could have more that one set of links and that there could be more than two
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FIGURE 9.2 Type I interoperability reference model.

models connected in arbitrary topologies. Again, this IRM is intended to show the simplest relationship
between models, one that can be extrapolated to many different scenarios.

In terms of minimum technological support of the logical link between the two models, all that is
required is the transmission of timestamped entity information between model Mo1 and model Mo2 in
such a way that model Mo2 receives the timestamped entity information in a correct order with its own
events. The reason why this IRM has been termed “asynchronous” is that there is no synchronous message
exchange needed to transfer the entity information between the two models (as is required in the Type II
IRM). An IF solution to this Type I IRM must therefore be able to

• transfer timestamped entity information from one model to another via a timestamped message
or such,

• allow a model to correctly receive timestamped entity messages from one or more models, and
• correctly coordinate this information with the receiving model events being processed by the COTS

simulation package (Taylor and Mustafee, 2003).

We now discuss the latest contribution to this, the representation of entity information.

9.5.4 The Entity Transfer Specification
The ETS deals with the representation of entities in Type I and II IRMs. The reason for this is that both
IRMs deal with the transfer of entities between CSPs. The difference between the IRMs is that Type II
requires additional synchronization to deal with the bounded buffer problem (this is further discussed
in Taylor [2003]). The following discussion is based on the current version of this emerging standard
Version 1.1.1. Consider Figure 9.3. This shows the relationship between a CSP, interfacing software called
the CSP Handler (CH) and an RTI (a candidate architecture for the CSPI IFs). We shall define a source
model as being the model from which a timestamped entity leaves and a destination model as the model
at which the timestamped entity arrives. These are necessary as there may be different possible routings
between models (as defined by the model, not the RTI) and there must be enough information for this to
be conveyed between a CH and RTI and vice versa for this model routing to be accomplished. Models may
also have multiple entry points (i.e., the point at which an entity “arrives” at the model) and it is therefore
important that there must be some way of indicating at which entry point an entity enters a model. In
this version of the ETS, we assume there is only one receiving point in the destination model for a specific
entity type from a specific source model, i.e., for different entity types there are different single receiving
points. We shall define time as being the time when an entity leaves a source model and instantaneously
arrives at the destination model (i.e., an event has occurred at time marking the departure of an entity
from one subsystem to instantly arrive at another).

In terms of entity representation, as we are concerned with the transfer of a timestamped entity from a
model in one federate to a model in another, our focus is a common data exchange format of the entity
that has been prepared for transfer. We will assume that there is some translation mechanism between the
heterogeneous CSP and CH to convert to and from our ETS representation. We shall also assume that time
has been converted into the same units and resolution in both models. As with most distributed systems,
the representation of an item must be marshaled (flat) so that it can be sent as a stream of bytes. We shall
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FIGURE 9.3 Entity transfer specification architecture.

therefore represent a mapped entity as a name and zero or more attributes. The form and type of the
attributes are the result of the entity–entity mapping between the heterogeneous CSPs and their models.

An entity is therefore defined as follows

entity = {entityName, attributes∗}
for example,

widgetEntity = {widgetEntity, 24, “Acme”}

which represents a widget entity with attributes of (integer) 24 and (string) Acme.
When a CSP determines that an entity has left its model, the CSP must be able to deliver the following

information to the CH:

output(entity, time, source, destination)

Similarly, when the CH is ready to pass an entity to the CSP, indicating that an entity has arrived, the
CH must be able to deliver the following information:

input(entity, time, source)

where entity is the name of the entity entityName and zero or many attributes, time is the time at which
the entity left the model, source is the name of the sending model, and destination is the name of the
destination model.

On output, the source and destination are used by the CH to select the appropriate transfer mechanism.
On input, the CSP uses source to determine the appropriate entry point in a model (i.e., where the entity
has been transferred from). time is used to perform CSP time synchronization.
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FIGURE 9.4 Interaction hierarchy.

In this specification, HLA interactions are used to represent the passing of an entity from one model to
another at the RTI level. Figure 9.4 shows the ETS interaction class hierarchy. Features of this are

• transferEntity: the superclass. This allows a federate to conveniently subscribe to all instances of
entity transfer (for purposes of monitoring, visualization, etc.).

• transferEntityToFedDest : a single subclass per receiving federate where FedDest is the name or
abbreviation of the receiving federate’s model. It exists for the convenience of the FedDest federate to
subscribe to all instances of transferEntity bound to the destination federate without explicit naming.

• transferEntityFedSoToFedDest : subclasses for each entity transfer relation where FedSo is the name
or abbreviation of the sending federate’s model. It allows the source federate to send a timestamped
interaction that represents the transfer of an entity from source to destination at a given time.

Note that in the above for an actual implementation FedSo and FedDest are replaced by the source and
destination federate names and Entity is replaced by the name of the entity as appropriate. As we will see
in our case study a wheel entity is transferred from the federate BAL to the federate WPL by the interaction
transferWheelEntityBALtoWPL.

In a federate’s SOM or the federation FOM the following tables are used in our exchange format.

• Interaction class table: This contains the interaction classes used to transfer the entities. These will
be the interaction superclass transferEntity, its interaction subclasses transferEntityToFedDest, and
their interactions subclasses transferEntityFedSoToFedDest.

• Parameter table: Each transferEntityFedSoToFedDest interaction will have a named parameter Entity
with a named datatype EntityType. In the table, unless otherwise stated, Available Dimensions shall
be NA (as data distributed management is not used), Transportation shall be HLAreliable (TCP
semantics), and Order shall be timestamp, i.e., messages must arrive in timestamp order.

• Datatype table: A fixed record datatype table shall exist to represent the named EntityType and will
consist of entityName, source, destination, and attributes. The datatypes of entityName, source, and
destination will be of type HLAASCIIstring. The type of the attributes will be defined using the HLA
datatype types as appropriate to best represent the type of the attribute.

These tables are shown in Figure 9.5. We assume that in any object model, these will be in addition to
all other required tables (as described in the previous section). Additionally, as required by the OMT, the
valid publish/subscribe options will be

• For an SOM:
• P (Publish): The federate is capable of publishing the interaction class.
• S (Subscribe): The federate is capable of subscribing to the interaction class.
• PS (PublishSubscribe): The federate is capable of publishing and subscribing to the interaction class.



9-12 Handbook of Dynamic System Modeling

TransferEntityFedSoAToFedDestC(P/S)

Parameter table
Interaction Parameter Datatype Available

dimensions
Transportation Order

TransferEntityFedSoAToFedDestB Entity EntityType NA HLAreliable TimeStamp

Fixed record datatype table
FieldRecord name
Name Type Semantics

Encoding Semantics

EntityName HLAASCIIString Name of the entity
Source HLAASCIIString FedSo
Destination HLAASCIIString FedDest

EntityType

Attributes Appropriate datatypes
(4,12)

The various attributes
of the entity

HLAfixedRecord An entity

Attributes

... ... ...

...

Appropriate datatypes
(4,12)

The various attributes
of the entity

Interaction class table
HLAinteraction Root(N) TransferEntity(N/S) TransferEntityToFedDest(N/S) TransferEntityFedSoAToFedDestB(P/S)

FIGURE 9.5 OMT tables used for entity transfer specification.

• N (Neither): The federate is incapable of either publishing or subscribing to the interaction class.
HLAInteractionRoot is always this.

• In an SOM, transferEntity will be
• S if a federate wishes to get all entity transfer interactions.
• N if the federate is not interested in receiving this global information.

• In an SOM, transferEntityToFedDest will be
• S if the federate’s model is FedDest.
• N if the federate’s model is not FedDest (i.e., it is required to support the interaction class hierarchy

for a publish-only transferEntityFedSoToFedDest).
• In an SOM, transferEntityFedSoToFedDest will be

• P if the federate is FedSo, i.e., its model sends entities to FedDest ’s model.
• S if the federate is FedDest, i.e., its model receives entities from FedSo.

• For an FOM, these interactions will be
• transferEntity will be N if there is no “monitor” federate or S.

• transferEntityToFedDest will be S.
• transferEntityFedSoToFedDest will always be PS.

• Classes designated as Subscribe or Neither are never sent, but they can have subclasses that are sent.
• It will be assumed that when an FOM is composed from SOMs there will be some kind of entity

name resolution.
• HLAinteractionRoot is a superclass of all other interaction classes in an FOM or SOM and is

mandatory.

The above is enough to define the representation of an entity transferred from one model to another via
the RTI. The translation of the datatype of this representation and the internal type representation of the
CSP must be performed by the CH according to the requirements of the CSP.

The interaction classes are meant to be used in the following way in a Type I IF. During initialization,
a federate will

• indicate that it is capable of sending entities to various destination federates by publishing all
transferEntityFedSoToFedDest interactions, and
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• indicate that it is capable of receiving entities from any other federate by subscribing to all
transferEntityToFedDest interactions.

During runtime, when the CSP sends the message equivalent to

output(entity, time, source, destination)

the CH will use destination to select the appropriate interaction class to use. It will then parameterize an
interaction instance with the details supplied in the output message. When the RTI passes an interaction
instance to the CH, the CH will use the instance’s details to pass the entity to the CSP in some input
message with source to indicate which model the entity has arrived from.

We now present an illustrative case study showing the use of the ETS to support the integration of
heterogeneous CSPs according to the Type I IRMs within the Type I IF.

9.6 Case Study

Consider the illustrative Type I IRM-based distributed simulation in Figure 9.6. A company manufactures
bicycles. Three models exist in three possibly heterogeneous CSPs that represent the three main parts of
the manufacturing system: a wheel production line (WPL), a frame production line (FPL), and a bicycle
assembly line (BAL) that assembles two wheels to one frame to produce a bicycle. The BAL checks wheels
for faults and can return them to the WPL for re-machining (an example of valid feedback for Type I
IRMs). Frames have no such problems. To describe part of the simulation, raw materials for the WPL
arrive every 20 min at entry point En1a and wait for processing in Q1a. When workstation W1a becomes
free, raw materials are taken from queue Q1a, processed into wheels and released. This activity takes a
fixed time of 20 min. The newly created wheels then take 100 min travel time to be transferred to the BAL’s
entry point En3a. We assume that the entry point, the queue, and the workstation are adjacent. Frame
entities have the attributes “frame_size” which is of type integer and “frame_color” which is of type string.
Wheels have a single attribute “wheel_size” of type integer. The rest of the distributed simulation can be
described in a similar manner with the various times to perform actions shown on the models. Note that
in our example all distributions are fixed. In a real simulation it is likely that these will be probabilistic
distributions and that there will be a greater number of model elements. However, our simple model
with its fixed distributions is appropriate for purposes of illustration as we are concerned with distributed
simulation issues. Each simulation model in our example runs in a CSP or in different CSPs, with each
CSP/model combination a federation in our approach (the models WPL, FPL, and BAL and their CSPs
becoming federates Fd1, Fd2, and Fd3).

Figures 9.7(a)–9.7(c) show the SOMs for Fd1, Fd2, and Fd3. Figure 9.7(d) shows the composite FOM
for the federation as a whole. As can be seen, these tables provide a neutral representation of data that the
various heterogeneous CSPs are required to translate to and from as they send and receive entities. This
illustrates our contribution to emerging standards in this area in support of the Type I and II IRMs and
their IFs.

9.6.1 Illustrative Protocol
As part of the IF, the CH provides an interface consisting of a set of functions to be invoked by the CSP
when needed. Through the interface, the CH invokes necessary calls to the RTI ambassador on behalf of
the CSP and transfers the information received from the federate ambassador to the CSP. Figure 9.8 shows
the basic communication protocol between the CSP, CH, and RTI and its relationship with the ETS output
and input.

There are various different approaches to time management using a HLA RTI to support dis-
tributed discrete-event simulation (Fujimoto, 1998). The approach described here is based around
NextEventRequest (others are currently under investigation as part of the work developing the Type I IF).
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FIGURE 9.6 The bicycle factory model.

Interaction class table (4.3)
HLAinteractionRoot(N) TransferWheelEntity(N) TransferWheelEntityToBAL(N) TransferWheelEntityWPLToBAL(P)

TransferWheelEntityToWPL(S) TransferWheelEntityBALToWPL(S)

Parameter table (4.5)
Interaction Parameter Datatype Available dimensions Transportation Order

TransferWheelEntityBALToWPL WheelEntity WheelType NA HLAreliable TimeStamp
TransferWheelEntityWPLToBAL WheelEntity WheelType NA HLAreliable TimeStamp

Fixed record datatype table (4.12)
FieldRecord name
Name Type Semantics

Encoding Semantics

Wheel HLAASCIIString Name of the entity
Source HLAASCIIString WPL or BAL
Destination HLAASCIIString WPL or BAL

WheelType

Wheel_Size HLAinteger16BE Size of the wheel

HLAfixedRecord An Entity

Interaction class table

(a)

(b)

HLAinteractionRoot(N) TransferFrameEntity(N) TransferFrameEntityToBAL(N) TransferFrameEntityFPLToBAL(P)

Parameter Table
Interaction Parameter Datatype Available dimensions Transportation Order

TransferFrameEntityFPLToBAL FrameEntity FrameType NA HLAreliable TimeStamp

Fixed record datatype table
Field
Name

Record name
Type Semantics 

Encoding Semantics

Frame HLAASCIIString Name of the entity
Source HLAASCIIString FPL
Destination HLAASCIIString BAL
Frame_Size HLAinteger16BE Size of the frame

FrameType

Frame_Color HLAASCIIString Color of the frame

HLAfixedRecord An Entity

FIGURE 9.7 Entity transfer specifications. (a) Wheel production line SOM; (b) frame production line SOM.
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TransferFrameEntity(N)
TransferWheelEntityToWPL(N) TransferWheelEntityBALToWPL(P)
TransferFrameEntityToBAL(S) TransferWheelEntityFPLToBAL(S)

Parameter table
Interaction Parameter Datatype Available dimensions Transportation Order

TransferEntityBALToWPL WheelEntity WheelType NA HLAreliable TimeStamp

TransferEntityFPLToBAL FrameEntity FrameType NA HLAreliable TimeStamp
TransferEntityWPLToBAL WheelEntity WheelType NA HLAreliable TimeStamp

Fixed record datatype table
FieldRecord name
Name Type Semantics

Encoding Semantics

Frame HLAASCIIString Name of the entity
Source HLAASCIIString FPL
Destination HLAASCIIString BAL

FrameType

WheelType

Frame_Size HLAinteger16BE Size of the frame

HLAfixedRecord An entity

HLAfixedRecord An entity
Frame_Color HLAASCIIString Color of the frame
Wheel HLAASCIIString Name of the entity
Source HLAASCIIString WPL or BAL
Destination HLAASCIIString WPL or BAL
Size HLAinteger16BE Size of the wheel

(c)

Interaction class table
HLAinteractionRoot(N) TransferWheelEntity(N) TransferWheelEntityToBAL(S) TransferWheelEntityWPLToBAL(S)

TransferFrameEntity(N)
TransferWheelEntityToWPL(S) TransferWheelEntityBALToWPL(PS)
TransferFrameEntityToBAL(S) TransferFrameEntityFPLToBAL(PS)

Parameter table
Interaction Parameter Datatype Available dimensions Transportation Order

TransferWheelEntityBALToWPL WheelEntity WheelType NA HLAreliable TimeStamp

TransferFrameEntityFPLToBAL FrameEntity FrameType NA HLAreliable TimeStamp
TransferWheelEntityWPLToBAL WheelEntity WheelType NA HLAreliable TimeStamp

Fixed record datatype table
FieldRecord name
Name Type Semantics

Encoding Semantics

Frame HLAASCIIString Name of the entity
Source HLAASCIIString FPL
Destination HLAASCIIString BAL

FrameType

WheelType

Frame_Size HLAinteger16BE Size of the frame

HLAfixedRecord An entity

HLAfixedRecord An entity
Frame_Color HLAASCIIString Color of the frame
Wheel HLAASCIIString Name of the entity
Source HLAASCIIString WPL or BAL
Destination HLAASCIIString WPL or BAL
Size HLAinteger16BE Size of the wheel

(d)

Interaction class table
HLAinteractionRoot(N) TransferWheelEntity(N) TransferWheelEntityToBAL(S) TransferWheelEntityWPLToBAL(PS)

FIGURE 9.7 Entity transfer specifications. (c) Bicycle assembly line SOM; (d) Bicycle manufacturing, system FOM.

When the CSP wishes to advance to the time of its next event, it issues an advanceTime request to the
CH. The CH invokes the corresponding RTI service nextEventRequest. The response from the RTI is zero
or many ETS interactions received via receiveInteraction and a new simulation time granted via timeAd-
vanceGrant. The interactions represent the arrival of entities at the time granted by timeAdvanceGrant and
may be less than the time initially requested by the CSP (i.e., entities arrive before the time of the original
next event—the new time of next event is that of the arriving entities). If no interactions appear, the time
granted is exactly the requested time. Either way, this grant time is returned to the CSP with the entities
received (if any) via input(entity, time, source), the CSP advances its local simulation time and continues
execution. If, as a consequence of this, any entities leave the simulation model, the CSP will send to CH as
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FIGURE 9.8 Illustrative protocol.

many output(entity, time, source, destination) as appropriate. CH will translate these into ETS interactions
and then forward these to the RTI by invoking sendInteraction. This continues until some terminating
condition is met.

9.7 Conclusion

The purpose of this chapter has been to introduce some of the contemporary innovations in the use of
distributed computing techniques to support modeling. Our discussion has been centered around CSP-
based distributed simulation and represents a rich area of research that continues to be very rewarding for
those involved. As presented in the introduction, the development of a generalized solution to this area
will open up many new opportunities for those involved in dynamic systems modeling. Indeed several
successes have been achieved already. Brailsford et al. (to appear) describe work on the modeling of large
systems in health care with a distributed version of the CSP Simul8. Lendermann et al. (to appear) describe
progress in using a distributed version of the CSP AutoSched to model the rapidly changing demands of
semiconductor manufacture.
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10.1 Introduction

A computer software-based model is typically designed to produce a trace of system evolution over time.
The actual process of computing the model state and producing the state values as the simulation time
is advanced is called model execution. Models could be designed with a specific execution technique in
mind, or could be generally amenable to multiple execution techniques. Two popular methods that are
used to execute models are time-stepped method and discrete-event method. Each of these methods could
in turn be executed either sequentially (on a single processor), or in parallel (using multiple processors
concurrently). In this chapter, we describe the time-stepped and discrete-event execution methods and
outline some of the common approaches to their sequential and parallel execution. Execution concepts
common to the methods are described followed by implementation details of the methods.

10.1.1 Systems and Models
Figure 10.1 shows the general architecture in which model execution is used. A system of interest is modeled
at appropriate resolution and the resulting models are configured for given scenarios of interest. The
execution is based on the given configuration of interest and its execution generates the required output.
This chapter deals with different methods by which simulation models can be mapped to executable units
and how their execution is controlled to obtain meaningful and useful output from the simulation. Model
execution is multifaceted, involving issues such as execution order and synchronization.

∗This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government
purposes.
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FIGURE 10.1 Relationships among modeling and simulation elements.
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FIGURE 10.3 Simulation modes based on computation platforms.

10.1.2 Elements of Execution
Although simulation models are qualitatively different relative to each other, they share common under-
lying execution concepts (Tocher, 63). Essentially, the modeled entities need to be mapped on to suitable
execution units, and the actions of the execution units have to be driven in simulation time order (Pidd, 92).

A key design element in model execution is the time advance mechanism (Nance, 81; Chandy, 89; Zeigler,
00), as illustrated in Figure 10.2. In the traditional time-stepped simulation method, time is advanced in
fixed increments, and the system state is updated synchronously at each increment. Discrete-event sim-
ulation method, on the other hand, evolves different parts of system state at their own timescales, using
the concept of events. Each event signals the specific instant in simulation time at which a particular part
of the system is to be updated. Yet another method that is less commonly used is called the time parallel
simulation, in which simulation time is partitioned into multiple segments, and each segment is executed
independently from each other. Initial state of one segment is reconciled with the ending state of its pre-
vious segment and the process is iterated until convergence is reached. Time parallel simulation differs
from time-stepped and discrete-event simulation methods in that time parallel simulation partitions the
simulation across the simulation time dimension, whereas the latter two methods partition the simulation
across the problem’s spatial dimension.

The next important element is whether the execution is performed using one processor or using
multiple processors, as shown in Figure 10.3.

Sequential simulation uses one processor for its execution. Parallel simulation can assume shared memory
or high-speed interconnects among multiple processors. Distributed simulation is performed on loosely
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FIGURE 10.4 Classical simulation unit types, also called simulation worldviews.
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FIGURE 10.5 Approaches to simulating large-scale models/scenarios.

connected nodes, such as a cluster of workstations connected by a local network, or a geographically sepa-
rated set of servers connected over a wide area network. Sequential execution is by far the most commonly
used approach, primarily due to its simplicity of implementation and the availability of a large number of
simulation tools that run on a single processor. Parallel execution using multiple processors is used when
the execution speed needs to be increased and the model needs large amount of memory that cannot fit in
a single processor’s memory. Distributed execution employs multiple processors connected by a network
and that do not share memory. The key distinction between parallel and distributed execution is that the
former uses shared memory among processors while the latter executes on distributed memory platforms.

Another related element is the type of modeling framework (Balci, 88; Fishwick, 95; Banks, 96) used
to map modeled entities to simulation units, as categorized in Figure 10.4. Process-oriented views are
those that provide a full stack (thread) of context for each modeled entity, which typically results in more
readable, maintainable, and shorter descriptions of the models (Banks, 96; Perumalla, 98). In contrast,
the alternative event-oriented views are those that provide a bare-bones event-handler interface, for poten-
tially better runtime performance than process-oriented views, but that are more complex to develop and
maintain. Another simulation approach is called activity scanning in which execution of “a set of guarded
actions” is enabled via continual scanning of predicated guards that prefix each action. Actions associated
with the guards that evaluate to true are executed during each scan.

Finally, large-scale scenarios are developed and simulated using two distinct approaches, shown in
Figure 10.5. In a monolithic approach, all models are developed and instantiated in a single simulator
(sequential or parallel), and the entire scenario is configured and executed in the same simulator. In
a federated approach, on the other hand, different models spanning multiple simulators are used to
assemble a single scenario, and the simulators are integrated at runtime to exchange data across models
(Nicol, 96) and synchronize their execution. While the monolithic approach is simpler and efficient to
implement and use if all models are present in a single simulator, the federated approach is useful when
no single simulator exists that contains all the desired functionality and, consequently, multiple simulators
are needed to realize a large integrated scenario.

10.1.3 Execution Platforms
The most common environment for model execution is a desktop computer, which serves well for typical
models that are small in size. A dual-processor or quad-processor workstation (called symmetric shared
memory multiprocessor [SMP]) can be used to improve processing speed by employing parallel simulation
techniques based on shared memory communication across processors. Cluster of workstations connected
by local area network represents the next level of computation platform to leverage dozens of uniprocessor
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and SMP workstations. The highest levels of execution performance are afforded by supercomputing
platforms containing hundreds to thousands of processors connected by fast processor interconnects.

In addition to these traditional simulation platforms, new nontraditional platforms are emerging that
offer better performance to cost ratios. These include field programmable gate arrays (FPGA), application-
specific integrated circuits (ASIC), and general purpose graphical processing units (GPGPU).

10.1.4 Generating Executables from Models
Models in general can be developed in various environments. Some of the most common forms are
library-based, language-based, and integrated development environment (IDE)-based. In a library-based
approach, runtime support is provided in the form of a library module that is linked into simulation model.
Models are written using the interface provided by the library (e.g., process and event class hierarchies). The
model, for example, invokes execution primitives to help coordinate time advances and message exchanges.
Examples of library-based approach include Georgia Tech Time Warp (GTW) (Das, 94) and A Discrete
Event Simulation (ADEVS) (Nutaro, 93) packages. In a language-based approach, the model is written in
a high-level modeling language, and a compiler automatically transforms models into executable entities.
The compiler also generates the runtime loop to invoke the generated executable entity code in appropriate
order. Examples of language-based approach include Modelica and PARSEC (general purpose) (Bagrodia,
98), and telecommunications description language (TeD) (Perumalla, 98), VHDL, and Verilog (domain-
specific). In an IDE-based approach, an IDE presents a graphical interface to compose models from model
repositories, and transparently performs all the required translations and assemblage to execute the model.
Examples of IDE-based systems include Simulink, Cadence, and OPNET. Another category might include
single-use efforts commonly used to build simulators. Even spreadsheets such as Microsoft Excel can be
used to quickly code certain simulations. These are not discussed here.

The generation of an executable model in a typical modeling system based on a hypothetical modeling
language L is shown in Figure 10.6. A language-based approach uses such a translation system to generate
the model executable. An IDE-based approach hides much of the internal operation from the user, but the
internal operation roughly follows the language-based approach. A library-based approach can be viewed
as the bottom half of the language-based process. In Figure 10.6, for example, the C++ code is generated
by the user instead of by a separate translator.

A simulation language shields the user from details of simulation units (Nance, 93; Schriber, 74), and
provides domain-specific constructs. For example, a modeling language for telecommunication networks
provides network-specific constructs such as network packets and protocols, and shields the modeler from

Models
written in

L

LP & event
class interface

LP & event
class library

L-to-C��
translator

C�� code

C�� compiler Executable

FIGURE 10.6 Illustration of how a hypothetical simulation language L is converted to an executable based on an
intermediate conversion to C++.
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simulation concepts such as logical processes and timestamped events. The modeler simply describes the
model in the language constructs and then uses the compiler to generate equivalent simulation executable
code. A system based on an IDE goes a bit further and hides much more of the model execution details
from the modeler by performing compilation, linkage, and execution under the covers of the IDE.

Regardless of the approach, the fundamental units of simulation execution remain the same. These are
the time advance method, the types of execution units, and whether the execution is sequential or parallel.
Once a model is defined, it needs to be executed to compute the state of the system over time.

10.1.5 Executable Timelines
In model execution, there are generally three distinct time axes. The first corresponds to the physical time,
which is the time in the physical system that is being modeled (e.g., 10–11 pm on January 1990). The
second corresponds to the simulation time, which is a representation of the physical time for the purposes
of simulation (e.g., number of seconds since 10 pm of January 1990, represented in floating point values
in the range [0 . . . 3600] corresponding to the simulated time period of the physical time). Finally, the
last axis corresponds to wallclock time, which is the elapsed real time during execution of the simulation,
as measured by a hardware clock (e.g., number of milliseconds of computer time during execution). For
each, the notions of time axis and time instant can be defined such that the time axis is the totally ordered
set of time instants along the corresponding timeline.

10.1.6 Pacing the Execution
Almost always, there is a one-to-one mapping from physical time to simulation time. In contrast, there
may or may not exist a specific relationship between simulation time and wallclock time. The mode
of simulation execution determines this particular relationship. In an as-fast-as-possible execution, the
simulation time is advanced as fast as computing speed can allow, unrelated to wallclock time. In real-time
execution, on the other hand, advances in simulation time are performed in lockstep with wallclock time,
such that one unit of simulation time is advanced exactly in one same unit of wallclock time. A variation of
real-time execution is scaled real-time execution, in which simulation time period is some constant factor
times an equivalent wallclock time period.

10.2 Time-Stepped Execution

By far the most commonly used mode of execution in scientific simulations is the time-stepped method.
Time-stepped simulation is schematically illustrated in Figure 10.7. The horizontal bars represent timelines
of each modeled entity, while the solid vertical lines represent points in simulation time at which the entities
are updated.

The time-step value (simulation time period between successive updates to the state) is determined
by model-specific means to ensure stability of numerical computation along with sufficient accuracy of
results. The pseudocode for a generic sequential time-stepped algorithm is shown in Figure 10.8. It consists

FIGURE 10.7 Schematic of a time-stepped simulation.
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of a simple simulation loop which typically terminates when a certain simulation time is reached. Within
the loop, each iteration consists of advancing the state of the entire set of modeled entities by a time step.
The variable tnow maintains the current simulation time, which is updated by time step in step 1.1. All
elements are advanced using their advance() method to the new simulation time. From the loop, it can
be seen that time-stepped execution is one of the easiest time advance methods to implement. Although
this simple algorithm uses a constant time step during the entire execution, variants to this algorithm exist
that vary the time step dynamically as permitted by the model.

10.2.1 Example: Heat Equation
We will illustrate the time-stepped algorithm using an example application. The application is a simulation
of the diffusion process, such as heat transfer, which is a well-studied problem and has many applications.
We will use the following one-dimensional version of the diffusion equation:

∂Q

∂t
= αx

∂2Q

∂x2
+ β (10.1)

For discretization of this continuous function, the spatial dimension is discretized by partitioning the
space as a grid in the x dimension. Time is discretized into a grid with equidistant points, with the spacing
fixed for all grid elements. Within each time step, the processing per grid element i in the 1-D grid can
be performed by one of several known methods. In the following simple explicit method, qn+1

i is the
computed value of qi at time step n + 1.

qn+1
i = qn

i + αx
qn

i−1 − 2qn
i + qn

i+1

�x2
+ β (10.2)

This model can be executed to answer any of the several questions, such as (1) what is the value of a given
qi at some time tn, and (2) what is the distribution of all values of q at a given time tn. In the time-stepped
algorithm, the advance() method updates qn

i to qn+1
i using the preceding equation. Of course, the new

values are stored in temporary variables while all the values are updated, to correctly access the previous
values for neighbors.

10.2.2 Parallelizing Time-Stepped Execution
We now turn to the question of how the time-stepped execution could be parallelized. This turns out to be
quite easy. The sequential simulation loop of Figure 10.8 is modified to that in Figure 10.9. Grid elements
are mapped to different processors, and the simulation loop is executed on every processor. Data exchange
among neighboring grid elements is achieved by sending out a copy of the updated state to neighbors
via interprocessor messages. Synchronization across processors is obtained by invoking a barrier call at
the end of each time step, as shown in step 1.1 of the parallel algorithm. The barrier is a “flush barrier”
which ensures that all messages destined to a processor are delivered before the barrier call returns. The
use of the flush barrier ensures that all updates to neighboring grid elements from a previous iteration
are incorporated before moving on to the next iteration. Note that the update messages are sent to other
processors for only those grid elements that have neighbors outside their own processor.

1. While not end of simulation

/*Advance current simulation time*/

1.1 tnow + = timestep

/*Advance all entities to next timestep*/

1.2 For all (i): advance(i, tnow)

FIGURE 10.8 Time-stepped algorithm for sequential execution.
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1. While not end of simulation

/*Synchronize with rest of processors to start the current timestep*/

1.1 flush-barrier()

/*Advance current simulation time*/

1.2 tnow += timestep

/*Advance all entities’ state to next timestep*/

1.3 For all (i on this processor): advance(i, tnow)

/*Send copy of new state to all neighboring entities*/

1.4 For all (i on this processor having off-processor neighbors): send(state(i),

neighbor-processors(i))

FIGURE 10.9 Time-stepped algorithm for parallel execution.

10.3 Discrete-Event Execution

10.3.1 Execution Method
In discrete-event simulation, the system behavior is modeled in terms of actions at discrete points along
the time axis. The evolution of the state of the system is fully expressed in terms of these actions. Each
action, typically, is expressed as an instantaneous change in the system state, with causal dependencies
among the actions. Thus, after effecting an instantaneous action, the model may dynamically determine a
new set of future actions which are affected by this action. Each action is called an event. Since these events
occur at discrete points in simulated time, this type of a simulation is called a discrete-event simulation.

Figure 10.10 shows a schematic of time advances occurring in discrete-event simulation. It illustrates
the staggered time instants for updates to entities. The horizontal bands represent the timelines of entities
in the model, and each vertical bar represents an event processed at a particular simulation time on an
entity. Owing to the fact that update times are staggered, and also owing to the fact that future updates
are scheduled while processing current updates, the simulation loop becomes slightly more complex than
time-stepped simulation loop. The discrete-event simulation loop is shown in Figure 10.11. The simulation
starts at time zero in step 1, and the entities are initialized in step 2, as part of which the entities schedule
their initial set of events into the future. The main simulation loop starts in step 3. A priority queue data
structure is used to store all scheduled events, such that the minimum timestamped event is always readily
available to be dequeued. In each iteration of the loop, the minimum timestamped event is deleted from
the event list. The event data structure contains the timestamp of the event along with the identity of the
entity for whom the event is scheduled. The event is presented to the corresponding entity to process. As
part of processing, the entity updates its state to the time of the event, and schedules new events, if any,
to other entities (or to itself). The entity provides an event handler that processes events presented to the
entity. Typically, there can be multiple event handlers per entity to handle different event types coming to
the entity. In the algorithm in Figure 10.11, a generic handler called process() is assumed for the entity.
Multiple event handlers can be added to the entity that are invoked within the process() method of that
entity based on the type of event received.

10.3.2 Example: ATM Multiplexer
To illustrate the discrete-event execution method, we will use an example from the domain of telecommu-
nications networks using asynchronous transfer mode (ATM) protocol. Consider a simple model shown
in Figure 10.12 of a nonpreemptive ATM multiplexer (Fujimoto, 95) containing a buffer of size B (i.e.,
can hold at most B ATM cells). Suppose we are interested in measuring the cell loss probability (i.e., what
fraction of incoming cells are to be discarded due to lack of space in buffer) and delay distributions on the
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FIGURE 10.10 Schematic of updates in discrete-event simulation.

1. tnow = 0

2. For all entities (i) EventList. Insert(initial-event(i,dti))

3. While EventList is not empty and tnow < end time

/*Find the event with the earliest timestamp*/

3.1 E(imin, tmin) = EventList.DeleteMin()

/*Move global simulation time to the time of this event*/

3.2 tnow = tmin

/*Let the entity process the event*/

3.3 Entity(imin).process(E) /*This can schedule more events into EventList*/

FIGURE 10.11 Sequential discrete-event simulation algorithm.

Source 1

Source 2

Source n

Output cell streamB

FIGURE 10.12 Schematic of a model of an ATM multiplexer.

queue (i.e., the amount of delay that each incoming cell experiences before being sent on output channel).
This system can be modeled using multiple entities. The multiplexer itself is modeled as an entity, con-
taining a model of the buffer and the output channel. One entity is used to model each ATM cell source.
Cell source entities send events to the multiplexer entity to signal arrival of ATM cells from the source to
the multiplexer on the corresponding input channel.

The state of the multiplexer entity is simplified in terms of four variables, as shown in Figure 10.13(a). All
variables are initialized to zeros. The qlen variable is used to keep track of the current buffer occupancy;
sent and lost are variables to accumulate statistics of the total number of cells transferred to the
output link and the total number of cells dropped because of a full buffer respectively. The array delays
measures the number of cells experiencing a given amount of delay, which in combination with the sent
counter gives the cell delay distribution. Two event handlers are used to model actions of the multiplexer
upon cell arrivals and departures. A cell arrival event occurs at the multiplexer entity to mark the arrival
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Integer qlen;
Integer sent;
Integer lost;
Integer delays [B];

(a)

if qlen < B
delays[qlen]++;
qlen++;

else
lost++;

(b)

if qlen > 0
qlen--;
sent++;
send(cell);

(c)

FIGURE 10.13 Simple model of an ATM multiplexer. (a) State. (b) Cell arrival event handler. (c) Cell departure
event handler.

of a cell from a source to the multiplexer. A cell departure event is scheduled by the multiplexer entity to
signal the transfer of a cell from the buffer to the output channel.

The code associated with the event handler in the multiplexer is shown in Figure 10.13(b) for processing
a cell arrival event. If there is room in the buffer to add the cell, the qlen variable is incremented to
mark that one more cell is added to the queue. The cell delay distribution is updated by noting that one
more cell experienced a delay of qlen units of time. If there is no room to hold the new cell (i.e., the
buffer is full), the cell is recorded as dropped by incrementing the lost counter. A cell departure event is
scheduled by the multiplexer to periodically emit a cell, if there are any cells present in the buffer. The cell
emission is marked by decrementing the qlen variable and incrementing the sent counter. The actual
cell emission is performed in Figure 10.13(c) by sending a cell event on its output channel, which typically
gets forwarded to the entity, if any, that is mapped to the output channel.

10.3.3 Parallelizing Discrete-Event Execution
How can discrete-event execution be parallelized? In other words, how can multiple processors be used
to execute the same simulation such that it produces the same set of results as a sequential execution,
albeit faster. A rich body of literature exists to address this question, and multiple approaches have been
proposed (Fujimoto, 90b). In parallel simulation, model entities are mapped to different processors, and
events among entities are exchanged via interprocessor communication (e.g., using shared memory or
local area network). The crux of parallel discrete-event simulation (PDES) is the need to perform efficient
synchronization such that the results from the parallel execution are the same as those from an equivalent
sequential execution. This means that all events have to be processed in such a way that global timestamp
order of processing is maintained for all events. This is achieved by processing all events local to each
processor in strict order of nondecreasing timestamps and ensuring that no incoming events from other
processors arrive in simulation past. Broadly, there are two main categories of PDES. A classification is
shown in Figure 10.14. The main methods are (1) conservative parallel simulation and (2) optimistic
parallel simulation.

In conservative parallel simulation (Chandy, 89), at every processor, processing of the minimum times-
tamped local event is blocked until a guarantee is obtained that no event with a smaller timestamp will
later arrive from other processors. This blocking can introduce idle time at the processor but will ensure
that the event processing always strictly follows the timestamp order. Conservative parallel simulation,
however, is constrained by an application-defined limitation called lookahead (explained later) which is
necessary to permit concurrency.

Optimistic parallel simulation (Fujimoto, 90a) is an approach by which the same timestamp ordered
processing is ensured across all processors, but it is achieved as an asymptotic guarantee. In other words,
the system might violate the timestamp ordered processing guarantee at certain times during execution,
but uses corrective measures to undo the guarantee violations. Processors optimistically execute ahead and
process locally minimum timestamped events without having to wait for absolute guarantees from other
processors. When the other processors indeed end up generating lower timestamped events, the violation
of the order is detected and the processor undoes the incorrect part of the optimistic computation, and
resumes from the correct state.
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Parallel/
distributed
execution

Conservative Optimistic Mixed mode

Asynchronous Synchronous State-saving Reverse
computation

Unified
framework

FIGURE 10.14 Classification of common parallel/distributed execution techniques.

10.3.3.1 Conservative Parallel Execution

A fundamental problem with conservative parallel simulation is concerned with the concept of lookahead.
In the absence of the concept of lookahead, suppose any simulator that is processing an event with
timestamp T can generate another event, whose timestamp is also equal to T , to another simulator.
Moreover, this new event could be destined to any or all simulators. In such a scenario, to ensure timestamp-
ordered processing, it is clear that there is little concurrency among federates. Only the event with the
globally minimum timestamp in the entire system can be processed at its simulator, while all the rest of
the simulators necessarily have to stay idle. Essentially, this degenerates to sequential execution, albeit with
multiple simulators. Clearly, this is undesirable in interest of runtime performance. It becomes desirable
to uncover concurrency among simulators to avoid such serialization. The concept of lookahead is defined
to resolve this problem (Deelman, 01).

Lookahead is defined as the minimum increment in simulation time between an event and any new
events generated during processing of that event. When this lookahead is greater than zero at all simulators,
the parallel execution can experience concurrency. If the lookahead is zero for any federate (i.e., a simulator
can generate events with zero delay), then the entire simulation suffers from serial execution (discounting
unrelated events with equal timestamps at different simulators).

In simulation models, it is possible to extract lookahead by examining the minimum time for interactions
to occur among entities. For example, signal transmission delays could be used to compute minimum
propagation delays across the ATM source and multiplexer entities. In other models, it might be difficult
to extract nonzero lookahead. Lookahead extraction is a topic of much research, and unfortunately remains
a challenge in its generality.

A typical conservative parallel simulation algorithm is shown in Figure 10.15. A quantity called lbts,
short for lower bound on incoming timestamps, is used to keep track of the smallest timestamp on
events that can potentially arrive from other processors. If lbts equals infinity, it is clear that this loop
simply degenerates to the sequential simulation loop in Figure 10.15. The complexity of the conservative
algorithm is in the computation of lbts, in step 4.3.1. Assuming there are no events in transit in the
interprocessor messaging network, it is easy to compute lbts, which is simply the minimum among all
values passed to the compute-lbts() function by all processors. Once this value is computed, it should be
corrected to take into account the events in transit, if any, among processors. This final value can now be
used as the lower bound guarantee on incoming event timestamps, and the rest of the loop is a simple
variant of the sequential loop.

An example scenario of conservative execution is shown in Figure 10.16. Let us assume each entity is
mapped to a different processor, and consider the operation of the processor simulating the multiplexer
entity. Suppose the multiplexer has just processed its events until time 8 (i.e., tnow=8). It now finds two
events D@9 and A@10 in its event list. To determine if D@9 can be processed, it needs to compute the
value of lbts and wait until lbts is at least 9. Assume that the modeler has specified a transmission



Model Execution 10-11

1. tnow = 0

2. lbts = 0

3. For all entities (i mapped to this processor) EventList.Insert(initial-event(i,dti))

4. While EventList is not empty and tnow < end time

/*Query for the local event with the earliest timestamp*/

4.1 E(imin, tmin) =EventList.PeekMin()

/*See if this event can indeed be processed safely*/

4.2 if(tmin <= lbts)

/*Move global simulation time to the time of this event*/

4.2.1 tnow = tmin

/*Let the entity process the event*/

4.2.2 Entity(imin).process(E) /*This can schedule more events into EventList*/

4.3 else /*Need to compute new guarantee of safe processing time*/

/*Compute globally safe lower bound on timestamps of incoming events*/

4.3.1 lbts = compute-lbts(tmin + lookahead)

FIGURE 10.15 Conservative parallel discrete-event simulation algorithm.

Source 1
C@8 C@20

Source 2
C@22C@5

Multiplexer
A@13A@10 D@12D@9 D@15 A@25D@18

FIGURE 10.16 Example scenario of a two-source multiplexer model. Sources send cell arrival events A@t to the
multiplexer, with a constant delay (lookahead) of 5 time units. Multiplexer schedules departure events D@t to itself
every 3 time units.

delay (lookahead) of five time units from the sources to the multiplexer (the minimum time it takes for a
cell to move from a source to the multiplexer). It is clear that the minimum timestamp on any cell arrival
from source 1 or source 2 would be at least 13 (8+5). Thus,lbts at the multiplexer would be computed as
13. This enables the multiplexer to process all local events upto time 13, which allows it to safely process its
events A@10 and D@12. Once the time reaches 13, this process repeats, by which a new lbts computation
is initiated to determine a new (updated) guarantee on incoming timestamps.

10.3.3.2 Optimistic Parallel Execution

In optimistic parallel execution, local events are processed without having to wait for lbts guarantees,
unlike conservative execution. Clearly, as a result, the system can sometimes find itself performing event
processing in incorrect timestamp order. For example, in the scenario given in Figure 10.16, suppose
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the lbts value (13) is being computed. Conservative simulation simply waits until the lbts value is
known. Optimistic simulation, on the other hand, goes ahead with processing the events A@10 and D@12
even while lbts is being computed. Suppose the lbts value is still being computed even after A@10
and D@12 are processed. The multiplexer continues its optimistic processing and processes D@15 as
well. Later, the event A@13 from source 1 arrives and lbts is advanced to 13. Clearly, D@15 has been
incorrectly processed ahead of A@13, and hence it needs to be corrected. The optimistic simulation then
initiates a corrective action called rollback, which restores the state of the system back to the point of fault,
namely to time 13. Once the rollback is completed, the incorrect effects of D@15 are fully undone, and
hence the system is effectively in the same position as though it only processed until D@12 and never
processed D@15. Event processing now resumes at A@13 correctly. The net gain is that the three events
D@9, A@10, and D@12 have all been already processed (correctly) without having to wait for the actual
lbts value. This overlap of computation with communication results in better concurrency in execution,
thus increasing the overall speed of simulation.

The key element enabling this type of optimistic operation is the capability to rollback incorrect com-
putation. For example, in our scenario, we assumed that the system state can be restored to its correct
value before D@15 even though we have already processed D@15 and overwritten the state with newly
computed values with D@15. How is it now possible to undo the effects of D@15? Also, D@15 scheduled a
new event which should also be retracted. In general, optimistically processed events overwrite the entity
state with newly updated values and also send out new events to other processors; all of these effects need
to be carefully undone to restore the state to correct values for complete rollback. Let us consider the two
distinct aspects of rollback: (1) state restoration and (2) event retraction.

For state restoration, several variants have been proposed, of which there are mainly two categories: (1)
state saving and (2) reverse computation. In the state saving method, a copy of the system state is saved
before it is modified in the optimistic event processing. In other words, a copy of the values of all system
variables is saved before being overwritten by the event handler code. In the multiplexer example, a copy
of all variables in Figure 10.17(a) is saved in a buffer before the departure event handler code of Figure
10.17(c) is invoked for the event D@15. A pointer to this buffer is stored in the event data structure of
D@15 itself. When it is necessary to rollback D@15, the buffer is retrieved using the pointer, and the old
values saved in the buffer are used to overwrite the multiplexer state variables, thus effectively restoring
the state to correct values before D@15 was incorrectly processed.

An alternative method for state restoration is called reverse computation (Carothers, 99). In this
approach, instead of using the copy-restore method, inverse event handlers are used to undo the effects
of incorrectly executed event handlers, on a statement-by-statement basis of the handler code, in reverse
order of invocation. For example, the inverse event handlers shown in Figure 10.17 are defined and used
to undo incorrect invocations to event handlers.

A bit variable is added to the state to keep track of whether the “if” statement body has been evaluated in
the forward (incorrect) execution. This single bit variable, stored in the event data structure, is sufficient
to later restore the rest of the variables to their correct previous values. This is achieved by defining the

Integer qlen;
Integer sent;
Integer lost;
Integer delays[B];
bit b;

(a)

b = 0
if qlen > 0

b = 1
qlen--;
sent++;
send(cell);

(b)

if b == 1
retract(cell);
--sent;
++qlen;

(c)

FIGURE 10.17 Modified version of departure event handler of ATM multiplexer for reverse computation-based
rollback. (a) Modified state (one bit variable added). (b) Departure event handler—Forward. (c) Departure event
handler—Reverse.
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reverse event handler shown in Figure 10.17(c). This is obtained by inverting the order of the statements
in the forward event handler in Figure 10.17(b) and inverting the operations within each statement.

Event retraction within a processor is relatively easily achieved, simply removing the event from local
priority queue data structure of event list. Retracting events that have been forwarded to other processors
is slightly more involved, which requires forwarding a retraction request to the destination processor.
Two cases arise: the retraction request arrives the destination processor after the original event already
has arrived at that processor; the retraction request arrives at the destination processor even before the
original event arrived at that processor. The first case is easy to handle, since the original event is already
identifiable—the event is removed from the event list if it has not been processed, or it is first rolled back
and then removed if it has been already processed. If the retraction arrives before the event arrives, the
retraction is simply buffered and until the actual event is received and then both the retraction and the
event are nullified.

10.3.3.3 Mixed-Mode Parallel Execution

In mixed-mode parallel execution, the system supports a mixture of optimistic and conservative execution
within each processor. Entities can specify whether their events are to be processed using optimistic
(rollback-based) synchronization or conservative (blocking-based) synchronization. As a result, the
simulation algorithm becomes considerably more complex and hence not discussed here.

10.4 Summary

Model execution involves computing the evolution of state values for a set of interacting entities in
a model over time. Computing the state evolution can be performed using different time advancing
techniques, and executed sequentially or in parallel. Popular techniques include time-stepped execution
and discrete-event execution. While sequential execution of time-stepped techniques can be parallelized
in a relatively straightforward manner, parallelization of discrete-event execution involves resolution of
important synchronization issues. Parallel discrete-event synchronization approaches broadly fall under
two categories: conservative and optimistic methods. This chapter described the time-stepped and discrete-
event methods with examples and presented algorithms for their implementation for sequential and
parallel execution.
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11.1 Introduction

Computer simulation of a system described by differential equations requires that some element of the
system be approximated by discrete quantities. There are two system aspects that can be made discrete:
time and state. When time is discrete, the differential equation is approximated by a difference equation
(i.e., a discrete-time system), and the solution is calculated at fixed points in time. When the state is
discrete, the differential equation is approximated by a discrete-event system. Events correspond to jumps
through the discrete state space of the approximation.

The essential feature of a discrete time approximation is that the resulting difference equations map
a discrete time set to a continuous state set. The time discretization need not be regular. It may even be
revised in the course of a calculation. Nonetheless, the elementary features of a discrete time base and
continuous state space remain.

The basic feature of a discrete-event approximation is opposite that of a discrete time approxima-
tion. The approximating discrete-event system is a function from a continuous time set to a discrete
state set. The state discretization need not be uniform, and it may even be revised as the computation
progresses.

These two different types of discretizations can be visualized by considering how the function x(t),
shown in Figure 11.1(a), might be reduced to discrete points. In a discrete time approximation, the
value of the function is observed at regular intervals of time. This kind of discretization is shown in

∗This chapter has been authored by UT-Battelle, LLC, under contract De-AC05-00OR22725 with the U.S. Depart-
ment of Energy. The United States Government retains and the publisher, by accepting the article for publication,
acknowledges that the Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this chapter, or allow others to do so, for the Government’s purposes.
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(a) (b) (c)

FIGURE 11.1 Time and state discretizations of a system. (a) Continuous, (b) Discrete time, and (c) Discrete state.

Figure 11.1(b). In a discrete-event approximation, the function is sampled when it takes on regularly
spaced values. This type of discretization is shown in Figure 11.1(c).

From an algorithmic point of view, these two types of discretizations are widely divergent. The first
approach emphasizes the simulation of coupled difference equations. Some distinguishing features of
a difference equation simulator are nested “for” loops (used to compute function values at each time
step), single instruction multiple data (SIMD) type parallel computing (using, e.g., vector processors or
automated “for” loop parallelization, see Hwang, 1993), and good locality of reference.

The second approach emphasizes the simulation of discrete-event systems. The main computational
features of a discrete-event simulation are very different from a discrete time simulation. Foremost among
them are event scheduling, poor locality of reference, and multiple instruction multiple data (MIMD) type
asynchronous parallel algorithms (see, e.g., Hwang, 1993). The essential data structures are different, too.
Where difference equation solvers exploit a matrix representation of the system coupling, discrete-event
simulations often require different, but structurally equivalent, data structures (e.g., influence graphs).

Mathematically, however, they share several features. The approximation of functions via interpolation
and extrapolation are central to both. Careful study of error bounds, stability regimes, conservation
properties, and other elements of the approximating machinery is essential. It is not surprising that
theoretical aspects of differential operators, and their discrete approximations, have a prominent place in
the study of both discrete time and discrete-event numerical methods.

This confluence of applied mathematics, mathematical systems theory, and computer science makes
the study of discrete-event numerical methods particularly challenging. This chapter presents some basic
results, while avoiding more advanced topics. The goal is to present essential concepts clearly, and so
portions of this material will, no doubt, seem underdeveloped to a specialist. Pointers into the appropriate
literature are provided for readers who want a more in-depth treatment.

The remainder of this chapter is organized as follows. In Section 11.2, discrete-event simulation of
a single ordinary differential equation is introduced. This technique is expanded to systems of ordinary
differential equations in Section 11.3. A general scheme for representing discrete-event integration schemes
using the discrete-event system specification (DEVS) is described in 11.4, and the first-order method
introduced in Sections 11.2 and 11.3 are recast in terms of DEVS. In Sections 11.5 and 11.6, the first-order
DEVS integrator is applied to simulating partial differential equations using finite differences in space and
discrete events in time. Second-order discrete-event integration schemes are discussed in Section 11.7. In
Section 11.8, the chapter concludes with a brief, but broad, overview of related research.

11.2 Simulating a Single Ordinary Differential Equation

Consider an ordinary differential equation that can be written in the form

ẋ(t) = f (x(t)) (11.1)
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Algorithm 11.1 Simulating a single ordinary differential equation.

t ← 0
x ← x(0)
while terminating condition not met do

print t, x
if f (x) = 0 then

h ← ∞
else

h ← D
|f (x)|

end if
if h = ∞ then

stop simulation
else

t ← t + h
x ← x + D sgn( f (x))

end if
end while

A discrete-event approximation of this system can be obtained in, at least, two different ways. To begin,
consider the Taylor series expansion

x(t + h) = x(t) + hẋ(t) +
∞∑

n=2

hn

n! x(n)(t) (11.2)

If we fix the quantity D = |x(t + h) − x(t)|, then the time required for a change of size D to occur in x(t)
is approximately

h =
{ D

|ẋ(t)| if ẋ(t) �= 0

∞ otherwise
(11.3)

This approximation drops the summation term in Eq. (11.2) and rearranges what is left to obtain h.
Algorithm 11.1 uses this approximation to simulate a system described by Eq. (11.1). The procedure
computes successive approximations to x(t) on a grid in the state space of the system. The resolution of
the state space grid is D, and h approximates the time at which the solution jumps from one state space
grid point to the next.

The sgn function, on line 14 in Algorithm 11.1, is defined to be

sgn(q) =
⎧⎨
⎩

−1 if q < 0
0 if q = 0
1 if q > 0

The expression D sgn( f (x)) on line 14 could, in this instance, be replaced by h f (x) because

h f (x) = D

| f (x)| f (x) = D sgn( f (x))

However, the expression D sgn( f (x)) highlights the fact that the state space, and not the time domain, is
discrete. Note, in particular, that the computed values of x are restricted to x(0) + kD, where k is an integer
and D is the state space grid resolution. In contrast, the computed values of t can take any value.
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TABLE 11.1 Simulation of ẋ(t) = −x(t), x(0) = 1, Using
Algorithm 11.1 with D = 0.15

t x f (x) h

0.0 1.0 −1.0 0.15
0.15 0.85 −0.85 0.1765
0.3265 0.7 −0.7 0.2143
0.5408 0.55 −0.55 0.2727
0.8135 0.4 −0.4 0.3750
1.189 0.25 −0.25 0.6
1.789 0.1 −0.1 1.5
3.289 −0.05 0.05 3.0
6.289 0.1 −0.1 1.5
7.789 −0.05 0.05 3.0
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0.8

1

0 1 2 3 4 5 6 7 8

x 
(t

 )

t

FIGURE 11.2 Computed solution of ẋ(t) = −x(t), x(0) = 1 with D = 0.15.

The procedure can be demonstrated with a simulation of the system ẋ(t) = −x(t), with x(0) = 1 and
D = 0.15. Each step of the simulation is shown in Table 11.1. Figure 11.2 shows the computed x(t) as a
function of t .

The approximation given by Eq. (11.3) can be obtained in a second way. Consider the integral

∣∣∣∣∣∣
t0+h∫

t0

f (x(t))dt

∣∣∣∣∣∣ = D (11.4)

As before, D is the resolution of the state space grid and h is the time required to move from one point
in the state space grid to the next. For time to move forward, it is required that h > 0. In the interval
(t0, t0 + h), the function f (x(t)) can be approximated by f (x(t0)). Substituting this approximation into
Eq. (11.4) and solving for h gives

h =
{

D
| f (x(t0))| if f (x(t0)) �= 0

∞ otherwise

This approach to obtaining h gives the same result as before.
There are two important questions that need answering before this can be considered a viable simulation

procedure. First, can the discretization parameter D be used to bound the error in the simulation? Second,
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under what conditions is the simulation procedure stable? That is, under what circumstances can the error
at the end of an arbitrarily long simulation run be bounded? Several authors (see, e.g., Zeigler et al., 2000;
Kofman, 2004; Nutaro, 2003) have addressed these questions in a rigorous way. Happily, the answer to the
first question is a “yes!” The second question, while answered satisfactorily for linear systems, remains (not
surprisingly) largely unresolved for nonlinear systems.

The first question can be answered as follows: If ẋ(t) = f (x(t)) describes a stable and time-invariant
system (see Szidarovszky and Bahill [1998], or any other introductory systems textbook), then the error
at any point in a simulation run is proportional to D. The constant of proportionality is determined by
the system under consideration. The time-invariant caveat is needed to avoid a situation in which the first
derivative can change independently of x(t) (i.e., the derivative is described by a function f (x(t), t), rather
than f (x(t))). In practice, this problem can often be overcome by treating the time-varying element of
f (x(t), t) as a quantized input to the integrator (see, e.g., Muzy et al., 2005).

The linear dependence of the simulation error on D is demonstrated for two different systems in
Figure 11.3 and Figure 11.4. In these examples, x(t) is computed until the time of next event exceeds
a preset threshold. The error is determined at the last event time by taking the difference of the computed
and known solutions. This linear dependency is strongly related to the fact that the scheme is exact when
x(t) is a line, or, equivalently, when the system is described by ẋ(t) = k, where k is a constant.
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FIGURE 11.3 Error in the computed solution of ẋ(t) = −x(t), x(0) = 1. (a) Comparison of computed and exact
solutions. (b) Absolute error as a function of D.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 
(t

 )

t

D � 0.01
D � 0.005
D � 0.001
D � 0.00075
0.02/(0.005�(2.0�0.005)*exp(�2*x ))

(a)

0

0.01

0.02

0.03

0.04

 0.05

0.06

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

A
bs

ol
ut

e 
er

ro
r

D(b)

FIGURE 11.4 Error in the computed solution of ẋ(t) = (2 − 0.5x(t))x(t), x(0) = 0.01. (a) Comparison of computed
and exact solutions. (b) Absolute error as a function of D.
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11.3 Simulating Coupled Ordinary Differential Equations

Algorithm 11.1 can be readily extended to sets of coupled ordinary differential equations. Consider a
system described in the following form:

˙̄x(t) = f̄ (x̄(t)) (11.5)

where x̄(t) is the vector

[x1(t), x2(t), . . . , xm(t)]

and f̄ (x̄(t)) is a function vector

[ f1(x̄(t)), f2(x̄(t)), . . . , fm(x̄(t))].

As before, we construct a grid in the m-dimensional state space. The grid points are regularly spaced by a
distance D along the state space axes. To simulate this system, four variables are needed for each xi, and so
4m variables in total. These variables are:

xi, the position of state variable i on its state space axis;
tNi, the time until xi reaches its next discrete point on the ith state space axis;
yi, the last grid point occupied by the variable xi; and
tLi, the last time at which the variable xi was modified.

The xi and yi are necessary because the function fi(·) is computed only at grid points in the discrete
state space. Because of this, the motion of the variable xi along its state space axis is described by a
piecewise constant velocity. This velocity is computed using the differential function fi(·) and the vector
ȳ = [y1, . . . , ym]. The value of yi is updated when xi reaches a state space grid point. The time required for
the variable xi to reach its next grid point is computed as

h =
{

D−|yi−xi |
|fi(ȳ)| if fi(ȳ) �= 0

∞ otherwise
(11.6)

The quantity D is the distance separating grid points along the axis of motion, |xi − yi| the distance already
traveled along the axis, and fi(ȳ) the velocity on the ith state space axis.

With Eq. (11.6), and an extra variable t to keep track of the simulation time, the behavior of a system
described by Eq. (11.5) can be computed with Algorithm 11.2.

To illustrate the algorithm, consider the coupled linear system

ẋ1(t) = −x1(t) + 0.5 x2(t) (11.7)

ẋ2(t) = −0.1 x2(t)

with x1(0) = x2(0) = 1 and D = 0.1. Table 11.2 gives a step-by-step account of the first five iterations
of Algorithm 11.2 applied to this system. The output values computed by the procedure are plotted in
Figure 11.5 (note that the figure shows the results beyond the iterations listed in the table). Each row in
the table shows the computed values at the end of an iteration (i.e., just prior to repeating the while loop).
Blank entries indicate that the variable value did not change in that iteration. The blank entries, and the
irregular time intervals that separate iterations, highlight the fact that this is a discrete-event simulation.
An event is the arrival of a state variable at its next grid point in the discrete state space. Clearly, not every
variable arrives at its next state space point at the same time, and so event scheduling provides a natural
way to think about the evolution of the system.

Stability and error properties in the case of coupled equations are more difficult to reason about, but
they generally reflect the one-dimensional case. In particular, the simulation procedure is stable, in the
sense that the error can be bounded at the end of an arbitrarily long run, when it is applied to a stable
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TABLE 11.2 Simulation of Two Coupled Ordinary Differential Equations on a Discrete State Space Grid

t x1 ẋ1 y1 tL1 h1 x2 ẋ2 y2 tL2 h2

0 1 −0.5 1 0 0.2 1 −0.1 1 0 1
0.2 0.9 −0.4 0.9 0.2 0.25
0.45 0.8 −0.3 0.8 0.45 0.3333
0.7833 0.7 −0.2 0.7 0.7833 0.5
1 0.6567 −0.25 1.0 0.2267 0.9 −0.09 0.9 1 1.111

Algorithm 11.2 Simulating a system of coupled ordinary differential equations.

t ← 0
for all i ∈ [0, m] do

tLi ← 0
yi ← xi(0)
xi ← xi(0)

end for
while terminating condition not met do

print t , y1, . . . , ym

for all i ∈ [0, m] do
tNi ← tLi + hi, where hi is given by Eq. (11.6)

end for
t ← min{tN1, tN2, . . . , tNm}
Copy ȳ to a temporary vector ȳtmp

for all i ∈ [0, m] such that tNi = t do
yi ← xi + hifi(ȳtmp)
xi ← yi

tLi ← t
end for
for all j ∈ [0, m] such that a changed yi alters the value of fj(ȳ) and tNj �= t do

xj ← xj + (t − tLj)fj(ȳtmp)
tLj ← t

end for
end while
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FIGURE 11.5 Plot of y(t) for the calculation shown in Table 11.2.
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and time invariant linear system (see Kofman, 2004; Zeigler et al., 2000). The final error resulting from the
procedure is proportional to the state space grid resolution D (see Kofman, 2004; Zeigler et al., 2000).

11.4 DEVS Representation of Discrete-Event Integrators

It is useful to have a compact representation of the integration scheme that is readily implemented on
a computer, can be extended to produce new schemes, and provides an immediate support for parallel
computing. The DEVS satisfies this need. A detailed treatment of DEVS can be found in Zeigler et al.
(2000). Several simulation environments for DEVS are available online, e.g., PowerDEVS (Kofman et al.,
2003), adevs (Muzy and Nutaro, 2005), DEVSJAVA (Zeigler and Sarjoughian, 2005), CD++ (Wainer,
2002), and JDEVS (Filippi and Bisgambiglia, 2004) to name just a few.

DEVS uses two types of structures to describe a discrete-event system. Atomic models describe the
behavior of elementary components. Here, an atomic model will be used to represent individual inte-
grators and differential functions. Coupled models describe collections of interacting components, where
components can be atomic and coupled models. In this application, a coupled model describes a system
of equations as interacting integrators and function blocks.

An atomic model is described by a set of inputs, set of outputs, and set of states, a state transition
function decomposed into three parts, an output function, and a time advance function. Formally, the
structure is

M = < X , Y , S, δint , δext , δcon, λ, ta >

where

X is a set of inputs,
Y is a set of outputs,
S is a set of states,
δint : S → S is the internal state transition function,
δext : Q × Xb → S is the external state transition function with Q = {(s, e)|s ∈ S & 0 ≤ e ≤ ta(s)} and
Xb is a bag of values appearing in X,
δcon: S × Xb → S is the confluent state transition function,
λ: S → Y is the output function, and
ta: S → R is the time advance function.

The external transition function describes how the system changes state in response to input. When
input is applied to the system, it is said that an external event has occurred. The internal transition
function describes the autonomous behavior of the system. When the system changes state autonomously,
an internal event is said to have occurred. The confluent transition function determines the next state
of the system when an internal event and external event coincide. The output function generates output
values at times that coincide with internal events. The output values are determined by the state of the
system just prior to the internal event. The time advance function determines the amount of time that
must elapse before the next internal event will occur, assuming that no input arrives in the interim.

Coupled models are described by a set of components and a set of component output to input
mappings. For our purpose, we can restrict the coupled model description to a flat structure (i.e., a
structure composed entirely of atomic models) without external input or output coupling (i.e., the com-
ponent models cannot be affected by elements outside of the network). With these restrictions, a coupled
model is described by the structure

N = < {Mk}, {zij} >

where

{Mk} is a set of atomic models, and
{zij} is a set of output to input maps zij : Yi → Xj ∪ {�}

where the i and j indices correspond to Mi and Mj in {Mk} and � is the nonevent.
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The output-to-input maps describe how atomic models affect one another. The output-to-input map is,
in this application, somewhat overgeneralized and could be replaced with more conventional descriptions
of computational stencils and block diagrams. The nonevent is used, in this instance, to represent com-
ponents that are not connected. That is, if component i does not influence component j, then zij(yi) = �,
where yi ∈ Yi.

These structures describe what a model can do. A canonical simulation algorithm is used to generate
dynamic behavior from the description. In fact, Algorithms 11.1 and 11.2 are special cases of the DEVS
simulation procedure. The generalized procedure is given as Algorithm 11.3. Its description uses the same
variables as Algorithm 11.2 wherever this is possible. Algorithm 11.3 assumes a coupled model N , with a
component set {M1, M2, . . . , Mn}, and a suitable set of output-to-input maps. For every component model
Mi, there is a time of last event and time of next event variable, tLi and tNi, respectively. There are also state,
input, and output variables si, xi, and yi, in addition to the basic structural elements (i.e., state transition
functions, output function, and time advance function). The variables xi and yi are bags, with elements
taken from the input and output sets Xi and Yi, respectively. The simulation time is kept in variable t .

Algorithm 11.3 DEVS simulation algorithm.

t ← 0
for all i ∈ [1, n] do

tLi ← 0
set si to the initial state of Mi

end for
while terminating condition not met do

for all i ∈ [1, n] do
tNi ← tLi + tai(si)
Empty the bags xi and yi

end for
t ← min{tNi}
for all i ∈ [1, n] do

if tNi = t then
yi ← λi(si)
for all j ∈ [1, n] & j �= i & zij(yi) �= � do

Add zij(yi) to the bag xj

end for
end if

end for
for all i ∈ [1, n] do

if tNi = t & xi is empty then
si ← δint ,i(si)
tLi ← t

else if tNi = t & xi is not empty then
si ← δcon,i(si, xi)
tLi ← t

else if tNi �= t & xi is not empty then
si ← δext ,i(si, t − tLi, xi)
tLi ← t

end if
end for

end while
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To map Algorithm 11.2 into a DEVS model, each of the x variables is associated with an atomic model
called an integrator. The input to the integrator is the value of the differential function, and the output of
the integrator is the appropriate y variable. The integrator has four state variables

ql , the last output value of the integrator;
q, the current value of the integral;
q̇, the last known value of the derivative; and
σ, the time until the next output event.

The integrator input and output events are real numbers. The value of an input event is the derivative at
the time of the event. An output event gives the value of the integral at the time of the output.

The integrator generates an output event when the integral of the input changes by D. More generally, if
�q is the desired change, [t0, T] the interval over which the change occurs, and f (x(t)) the first derivative
of the system, then

T∫

0

f (x(t0 + t))dt = F(T) = �q (11.8)

The function F(T) gives the change in x(t) over the interval [t0, T]. Eq. (11.8) is used in two ways. If F(T)
and �q are known, then the time advance of the discrete-event integrator is found by solving for T . If
F(T) and T are known, then the next state of the integrator is given by q + F(T), where T is equal to the
elapsed time (for an external event) or time advance (for an internal event).

The integration scheme used by Algorithms 11.1 and 11.2 approximates f (x(t)) with a piecewise constant
function. At any particular time, the value of the approximation is given by the state variable q̇. Using q̇ in
place of f (x(t0 + T)) in Eq. (11.8) gives

T∫

0

q̇ dt = q̇T

When q̇ and T are known, then the function

F̂(T , q̇) = q̇T (11.9)

approximates F(T). Because T must be positive (i.e., we are simulating forward in time), the inverse of
Eq. (11.9) cannot be used to compute the time advance. However, the absolute value of the inverse

F̂−1(�q, q̇) =
{

�q
|q̇| if q̇ �= 0

∞ otherwise
(11.10)

is suitable.
The state transition, output, and time advance functions of the integrator can be defined in terms of

Eq. (11.9) and (11.10). This gives

δint ((ql , q, q̇, σ)) = (q + F̂(σ, q̇), q + F̂(σ, q̇), q̇, F̂−1(D, q̇))

δext ((ql , q, q̇, σ), e, x) = (ql , q + F̂(e, q̇), x, F̂−1(D − |q + F̂(e, q̇) − ql|, x))

δcon((ql , q, q̇, σ), x) = (q + F̂(σ, q̇), q + F̂(σ, q̇), x, F̂−1(D, x))

λ((ql , q, q̇, σ)) = q + F̂(σ, q̇)

ta((ql , q, q̇, σ)) = σ

In this definition, F̂ computes the next value of the integral using the previous value, the approximation
of f (x(t)) (i.e., q̇), and the time elapsed since the last state transition. The time that will be needed for
the integral to change by an amount D is computing using F̂−1. The arguments to F̂−1 are the distance
remaining (i.e., D minus the distance already traveled) and the speed with which the distance is being
covered (i.e., the approximation of f (x(t))).

An implementation of this definition is shown in Figure 11.6. This implementation is for the adevs
simulation library. The implementation is simplified by taking advantage of two facts. First, the output
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class Integrator: public atomic {
public:

/∗ Arguments are the initial variable value, variable index,
integration quantum, and an array for storing output values. ∗/

Integrator(double q0, int index, double D, double∗ x):
atomic(),index(index),q(q0),D(D),x(x) { x[index] = q; }
/∗ Initialize the state prior to start of the simulation. ∗/

void init() {
dq = f(index,x); compute_sigma();

}
/∗ DEVS state transition functions. ∗/

void delta_int() {
q = x[index]; dq = f(index,x); compute_sigma();

}
void delta_ext(double e, const adevs_bag<PortValue>& xb) {

q + = e∗dq; dq = f(index,x); compute_sigma();
}
void delta_conf(const adevs_bag<PortValue>& xb) {

q = x[index]; dq = f(index,x); compute_sigma();
}
/∗ DEVS output function. ∗/

void output_func(adevs_bag<PortValue>& yb) {
x[index] = q+ta()*dq;
output(cell_interface::out,NULL,yb); // Notify influences of change.

}
/∗ Event garbage collection function. ∗/

void gc_output(adevs_bag<PortValue>& g){}
/∗ Virtual derivative function. ∗/

virtual double f(int index, const double∗ x) = 0;
private:

/∗ Index of the variable associated with this integrator. ∗/

int index;
/∗ Value of the variable, its derivative, and the integration quantum. ∗/

double q, dq, D;
/∗ Shared output variable vector. ∗/

double∗ x;
/∗ Sign function. ∗/

static double sgn(double z) {
if (z > 0.0) return 1.0; if (z < 0.0) return −1.0; return 0.0;

}
/∗ Set the value of the time advance function. ∗/

void compute_sigma() {
if (fabs(dq) < ADEVS_EPSILON) hold(ADEVS_INFINITY);
else hold(fabs((D-fabs((q-x[index])))/dq));

}
};

FIGURE 11.6 Code listing for the integrator class.
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/∗ Integrator for the two variable system. ∗/

class TwoVarInteg: public Integrator {
public:

TwoVarInteg(double q0, int index, double D, double∗ x):
Integrator(q0,index,D,x){}
/∗ Derivative function. ∗/

double f(int index, const double∗ x) {
if (index == 0) return −x[0]+0.5∗x[1];
else return −0.1∗x[1];

}
};

int main() {
double x[2];
TwoVarInteg∗ intg[2];
// Integrator for variable x1
intg[0] = new TwoVarInteg(1.0,0,0.1,x);
// Integrator for variable x2
intg[1] = new TwoVarInteg(1.0,1,0.1,x);
// Connect the output of x2 to the input of x1
staticDigraph g;
g.couple(intg[1],1,intg[0],0);
// Run the simulation for 3.361 units of time
devssim sim(&g);
while (sim.timeNext() <= 3.4) {

cout 	 "t = "	 sim.timeLast() 	 endl;
for (int i = 0 ; i < 2; i++) {

intg[i]→printState();
}
sim.execNextEvent();

}
// Done
return 0;

}

FIGURE 11.7 Main simulation code for the two equation simulators.

values can be stored in a shared array that is accessed directly, rather than via messages. Second, the
derivative value, represented as an input in the formal expression, can be calculated directly from the
shared array of output values whenever a transition function is executed.

The integrator class is derived from the atomic model class, which is part of the adevs simulation library.
The atomic model class has virtual methods corresponding to the output and state transition functions of
the DEVS atomic structure. The time advance function of an adevs model is defined as ta(s) = σ, where
s is a state variable of the atomic model, and its value is set with the hold(·) method. The integrator class
adds a new virtual method, f (·), that is specialized to compute the derivative function using the output
value vector ȳ.

A DEVS simulation of a system of ordinary differential equations, using Algorithm 11.3, gives the same
result as Algorithm 11.2. This is demonstrated by a simulation of Eq. (11.7). The code used to execute
the simulation is shown in Figure 11.7. The state transitions and output values computed in the course of
the simulation are shown in Table 11.3. A comparison of this table with Table 11.2 confirms that they are
identical.
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TABLE 11.3 DEVS Simulation of Two Coupled Ordinary Differential Equations

t q1 q̇1 y1 ta Event Type q2 q̇2 y2 ta2

0 1 −0.5 1 0.2 Init 1 −0.1 1 1
0.2 0.9 −0.4 0.9 0.25 Internal
0.45 0.8 −0.3 0.8 0.3333 Internal
0.7833 0.7 −0.2 0.7 0.5 Internal
1 0.6567 −0.25 0.2267 External 0.9 −0.09 0.9 1.111

11.5 The Heat Equation

In many instances, discrete approximations of partial differential equations can be obtained with a two-
step process. In the first step, a discrete approximation of the spatial derivatives is constructed. This creates
a set of coupled ordinary differential equations. The second step approximates the time derivatives. This
step can be accomplished with the discrete-event integration scheme.

To illustrate this process, consider the heat (or diffusion) equation

∂u(t , x)

∂t
= −∂2u(t , x)

∂x2 (11.11)

The function u(t , x) represents the quantity that becomes diffuse (temperature, if this is the heat equation).
The spatial derivative can be approximated with a center difference, this giving

∂2u(t , k�x)

∂x2 ≈ u(t , (k + 1)�x) − 2u(t , k�x) + u(t , (k − 1)�x)

�x2 (11.12)

where �x is the resolution of the spatial approximation, and k are indices on the discrete spatial grid.
Substituting Eq. (11.12) into Eq.(11.11) gives a set of coupled ordinary differential equations

du(t , k�x)

dt
= −u(t , (k + 1)�x) − 2u(t , k�x) + u(t , (k − 1)�x)

�x2 (11.13)

that can be simulated using the DEVS integration scheme. This difference equation describes a grid of N
integrators, and each integrator is connected to its two neighbors. The integrators at the end can be given
fixed left and right values (i.e., fixing u(t , −�x) and u(t , (N + 1)�x)) equal to a constant, or some other
suitable boundary condition can be used. For the sake of illustration, let u(t , −�x) = u(t , (N + 1)�x) = 0.
With these boundary conditions, two equivalent views of the system can be constructed. The first view,
shown in Eq. (11.14), uses a matrix to describe the coupling of the differential equations in Eq.(11.13).

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

u(t , 0)
u(t , �x)

u(t , 2�x)
. . .

u(t , (N − 1)�x)
u(t , N�x)

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

�x

⎡
⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 . . . . . . . . . 0
0 0 1 −2 1
0 0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u(t , 0)
u(t , �x)

u(t , 2�x)
. . .

u(t , (N − 1)�x)
u(t , N�x)

⎤
⎥⎥⎥⎥⎥⎥⎦

(11.14)

Because the kth equation is directly influenced only by the (k + 1)st and (k − 1)st equations, it is also
possible to represent Eq. (11.13) as a cellspace in which each cell is influenced by its left and right neighbors.
The discrete-event model favors this representation. The discrete-event cellspace, which is illustrated in
Figure 11.8, has an integrator at each cell, and the integrator receives input from its left and right neighbors.



11-14 Handbook of Dynamic System Modeling

DEVS
integrator

0 �x (N �1)�x N�x

DEVS
integrator

DEVS
integrator

DEVS
integrator

…

FIGURE 11.8 A cellspace view of the system described by Eq. (11.13).

Figure 11.9 shows the adevs simulation code for Eq. (11.13). The cellspace view of the equation coupling
is implemented by the adevs Cellspace class.

The discrete-event approximation to Eq. (11.13) has two potential advantages over a similar discrete
time approximation. The discrete time approximation is obtained from the same approximation to the
spatial derivatives, but using the explicit Euler integration scheme to approximate the time derivatives (see,
e.g., Strang, 1986). Doing this gives a set of coupled difference equations

u(t + �t , k�x) = u(t , k�x) + �t

(
u(t , (k + 1)�x) − 2u(t , k�x) + u(t , (k − 1)�x)

�x2

)

This discrete time integration scheme has an error term that is proportional to the time step �t . In
this respect, it is similar to the discrete-event scheme whose error is proportional to the quantum size D.
However, there is an extra constraint in the discrete time formulation that is not present in the discrete-
event approximation. This extra constraint is a stability condition on the set of difference equations (not
the differential equations, which are inherently stable). For a stable simulation (i.e., for the state variables
to decay rather than explode), it is necessary that

�t ≤ (�x)2

2

Freedom from the stability constraint is a significant advantage that the discrete-event scheme has
over the discrete time scheme. For discrete time systems, this stability constraint can only be removed
by employing implicit approximations to the time derivative. Unfortunately, this introduces a significant
computational overhead because a system of equations, in the form Ax = b, must be solved at each
integration step (see, e.g., Strang, 1986).

The unconditional stability of the discrete-event scheme can be demonstrated with a calculation. Con-
sider a heat conducting bar with length 80. The ends are fixed at a temperature of 0. The initial temperature
of the bar is given by u(0, x) = 100 sin(πx/80). Figure 11.10(a) and Figure 11.10(b) show the computed
solution at t = 300 using �x = 0.1 and different values of D. Even with large values of D, it can be seen
that the computed solution remains bounded. Figure 11.10(c) shows the error in the computed solution
for the more reasonable choices of D. From the figure, the correspondence between a reduction in D and
a reduction in the computational error is readily apparent.

In many instances, the discrete-event approximation enjoys a computational advantage as well. An
in-depth study of the relative advantage of a DEVS approximation to the heat equation over a discrete
time approximation is described in Jammalamadaka (2003) and Zeigler (2004). This advantage is realized
in a fire simulation described by Muzy et al. (2005), where a diffusive process is the spatially explicit piece
of the fire model. In that report, the DEVS approximation is roughly four times faster than an explicit
discrete time simulation giving the similar errors with respect to experimental data.

The reason for the performance advantage can be understood intuitively in two related ways. The first is
to observe that the time advance function determines the frequency with which state updates are calculated
at a cell. The time advance at each cell is inversely proportional to the magnitude of the derivative, and
so cells that are changing slowly will have large time advances relative to cells that are changing quickly.
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class DiffInteg: public Integrator, public cell_interface {
public:

DiffInteg(double q0, int index, double D, double∗ x, double dx):
Integrator(q0,index,D,x),cell_interface(){ dx2=dx∗dx; }
double f(int index, const double∗ x) {

return (x[index−1]−2.0∗x[index]+x[index+1])/dx2;
}

private:
static double dx2;

};
double DiffInteg::dx2 = 0.0;

void print(const double∗ x, double dx, int dim, double t) {
for (int i = 0; i < dim; i++) {

double soln = 100.0∗sin(M_PI∗i∗dx/80.0)∗exp(−t∗M_PI∗M_PI/6400.0);
cout 	 i∗dx 	 " "	 x[i] 	 " "	 fabs(x[i]-soln) 	 endl;

}
}

int main() {
// Build the solution array and assign boundary and initial values
double len = 80.0;
double dx = 0.1;
int dim = len/dx;
double∗ x = new double[dim+2];
// Half sine intial conditions with zero at boundaries
for (int i = 0; i <= dim; i++) {

x[i] = 100.0∗sin(M_PI∗i∗dx/80.0);
}
x[0] = x[dim+1] = 0.0;
// Create the DEVS model
double D = 10.0;
cellSpace cs(cellSpace::SIX_POINT,dim);
for (int i = 1; i <= dim; i++) {

cs.add(new DiffInteg(x[i],i,D,x,dx),i−1);
}
// Run the model
devssim sim(&cs);
sim.run(300.0);
print(x,dx,dim+2,sim.timeLast());
// Done
delete [ ] x;
return 0;

}

FIGURE 11.9 Code listing for the diffusion simulation.

This causes the simulation algorithm to focus effort on the rapidly changing portions of the solution, with
significantly less work being devoted to portions that are changing slowly.

This is demonstrated in Figure 11.11. The state transition frequency at a point is given by the inverse
of the time advance function following an internal event (i.e., u̇(i�x, t)/D, where i is the grid point
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FIGURE 11.10 DEVS simulation of the heat equation with various quantum sizes. (a) Simulation with large D.
(b) Simulation with small D. (c) Absolute errors.
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FIGURE 11.11 Activity tracking in the DEVS diffusion simulation using D = 0.0001. (a) State update frequency.
(b) State transition count.

index). Figure 11.11(a) shows the state transition frequency at the beginning and end of the simulation.
Figure 11.11(b) shows the total number of state changes that are computed at each grid point in the course
of the calculation. It can be seen that the computational effort is focused on the center of the bar, where
the state transition functions are evaluated most frequently.

A second explanation can be had by observing that the number of quantum crossings required for
the solution at a grid point to move from its initial to final state is, approximately, equal to the distance
between those two states divided by the quantum size. This gives a lower bound on the number of state
transitions that are required to move from one state to another. It can be shown that, in many instances,
the number of state transitions required by the DEVS model closely approximates this ideal number (see
Jammalamadaka, 2003).

11.6 Conservation Laws

Conservation laws are an important application area where DEVS approximations of the time derivatives
can be usefully applied. A DEVS simulation of Euler’s fluid equations is presented in Nutaro et al. (2003).
In that report, a significant performance advantage was obtained, relative to a similar time-stepping
method, via the activity-tracking property described above. In this section, the application of DEVS to
conservation laws is demonstrated for a simpler problem, where it is easier to focus on the derivation of
the discrete-event model.
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A conservation law in one special dimension is described by a partial differential equation

∂u(t , x)

∂t
+ ∂F(u(t , x))

∂x
= 0

The flux function F(u(t , x)) describes the rate of change in the amount of u (whatever u might represent)
at each point x (see, e.g., Strang, 1986). To be concrete, consider the conservation law

∂u(t , x)

∂t
+ u(t , x)

∂u(t , x)

∂x
= 0 (11.15)

Eq. (11.15) describes a material with quantity u(t , x) that moves with velocity u(t , x). In this equation, the
flux function is u(t , x)2/2. Eq. 11.15 is obtained by taking the partial derivative of the flux function with
respect to x.

As before, the first step is to construct a set of coupled ordinary differential equations that approximates
the partial differential equation. There are numerous schemes for approximating the derivative of the flux
function with respect to x (see, e.g., Kroner, 1997). One of the simplest is an upwinding scheme on a
spatial grid with resolution �x. Applying an upwinding scheme to Eq. 11.15 gives

u(t , k�x)
∂u(t , k�x)

∂x
≈ − 1

2�x
(u(t , (k − 1)�x)2 − u(t , k�x)2) (11.16)

Substituting Eq. (11.16) into Eq. (11.15) gives the set of coupled ordinary differential equations

du(t , k�x)

dt
= 1

2�x
(u(t , (k − 1)�x)2 − u(t , k�x)2) (11.17)

It is common to approximate the time derivatives in Eq. (11.17) with the explicit Euler integration scheme
using a time step �t . This gives the set of difference equations

u(t + �t , k�x) = u(t , k�x) + �t

2�x
(u(t , (k − 1)�x)2 − u(t , k�x)2)

that approximate the set of differential equations. The difference equations are stable provided that the
condition

�t

�x
max|u(i�t , j�x)| ≤ 1

is satisfied at every time point i and every spatial point j.
Because Eq. (11.17) is nonlinear, it is not necessarily true that a discrete-event approximation will be

stable regardless of the size of the integration quantum. However, it is possible to find a sufficiently small
quantum for which the scheme works (see Nutaro, 2003). This remains an open area of research, but we
will move recklessly ahead and try generating solutions with several different quantum sizes and observe
the effect on the solution.

For this example, a space of 10 units in length is assigned the initial conditions

u(0, x) =
{

sin(πx/4) if 0 ≤ x ≤ 4
0 otherwise

and the boundary conditions u(t , 0) = u(t , 10) = 0. The integrator implementation for this model is
shown in Figure 11.12. The simulation main routine is identical to the one for the heat equation (except
where DiffInteg is replaced by ClawInteg; see Figure 11.9). Figure 11.13 shows snapshots of the solution
computed with �x = 0.1 and three different quantum sizes: 0.1, 0.01, and 0.001. The computed solutions
maintain important features of the real solution, including the shock formation and shock velocity (see
Strang, 1986).

While the advantage of the discrete-event scheme with respect to stability remains unresolved (but looks
promising!), a potential computational advantage can be seen. From the figure, it is apparent that the
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class ClawInteg: public Integrator, public cell_interface {
public:

ClawInteg(double q0, int index, double D, double∗ x, double dx):
Integrator(q0,index,D,x),cell_interface(){ ClawInteg::dx=dx; }
double f(int index, const double∗ x) {

return 0.5∗(x[index−1]∗x[index−1]−x[index]∗x[index])/dx;
}

private:
static double dx;

};
double ClawInteg::dx = 0.0;

FIGURE 11.12 Integrator for the conservation law simulation.
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FIGURE 11.14 Front tracking in the DEVS simulation of Eq. (11.17) with D = 0.001. (a) Update frequency, and
(b) State transition count.

larger derivatives follow the shock, with the area in front of the shock having zero derivatives and the area
behind the shock having diminished derivatives. The DEVS simulation apportions computational effort
appropriately. This is shown in Figure 11.14 for a simulation with D = 0.001. Figure 11.14(a) shows several
snapshots of the cell update frequency (i.e., u̇(i�x, t)/D following an internal event, where i is the grid point
index) at times corresponding to the solution snapshots shown in Figure 11.13(c). Figure 11.14(b) shows
the total number of state transitions computed at each cell at those times. The effect of this front-tracking
behavior on the simulation running time can be significant. In Nutaro et al. (2003), it is responsible for a
speedup of 35 relative to a discrete time solution for Euler’s equations in one spatial dimension.
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11.7 Two-Point Integration Schemes

The integration scheme discussed to this point is a single point scheme. It relies on a single past value of
the function, and it is exact for the linear equation ẋ(t) = k, where k is a constant. Recall that the single
point scheme for simulating a system ẋ(t) = f (x(t)) can be derived from the expression

∣∣∣∣∣
∫ t0+h

t0

f (x(t))dt

∣∣∣∣∣ = D (11.18)

by approximating f (x(t)) with the value f (x(t0)).
If the function f (x(t)) in Eq. (11.18) is approximated using the previous two values of the derivative,

then the resulting method is called a two-point scheme. A DEVS model of a two-point scheme requires
the state variables

q, the current approximation to x(t);
ql , the last grid point occupied by q;
σ, the time required to move from q to the next grid point;
q̇1 and q̇0, the last two computed values of the derivative; and, possibly,
h, the time interval between q̇1 and q̇0.

At least two different two-point methods have been described (see Kofman, 2004; Nutaro, 2005). The
first method approximates f (x(t)) in Eq. (11.18) with the line connecting points q̇1 and q̇0. The distance
moved by x(t) in the interval [h, h + T] can be approximated by

h+T∫

h

q̇1 − q̇0

h
+ q̇0 dt = q̇1 − q̇0

2h
T2 + q̇1T = �q

The functions

F̂1(T , q̇1, q̇0, h) = q̇1 − q̇0

2h
T2 + q̇1T (11.19)

and

F̂−1
1 (�q, q̇1, q̇0, h) = �T (11.20)

where �T is the smallest positive root of

∣∣∣∣ q̇1 − q̇0

2h
T2 + q̇1T

∣∣∣∣ = �q

or ∞ if such a root does not exist, can be used to define the state transition, output, and time advance
functions (which will be done in a moment). Eq. (11.19) and Eq. (11.20) are exact when x(t) is quadratic.

The second method approximates f (x(t)) with the piecewise constant function

aq̇1 + bq̇0, a + b = 1 (11.21)

If x(t) is the line mt + b, then f (x(t)) = m, (am + bm) = (a + b)m = m, and so this approximation is exact.
Integrating Eq. (11.21) over the interval [0, T] gives the approximating functions

F̂2(T , q̇1, q̇0) = (aq̇1 + bq̇0)T (11.22)

F̂−1
2 (�q, q̇1, q̇0) = �q

|aq̇1 + bq̇0| (11.23)

This approximation does not require the state variable h.
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For brevity, let q̄ denote the state of the integrator, and d̄q denote the variables q̇1, q̇0 or q̇1, q̇0, h as
needed. Which is intended will be clear from the context in which it is used. The time advance function
for a two-point scheme is given by

ta(q̄) = σ

and the output function is defined by

λ(q̄) = F̂(σ, d̄q)

If Eq. (11.19) and Eq. (11.20) are used to define the integration scheme, then the resulting state transition
functions are

δint (q̄) = (q + F̂1(σ, d̄q), q + F̂1(σ, d̄q), q1, q1, σ, F̂−1
1 (D, q̇1, q̇1, σ))

δext (q̄, e, x) = (ql , q + F̂1(e, d̄q), x, q1, e, F̂−1
1 (D − |q + F̂1(e, d̄q) − ql|, x, q̇1, e))

δcon(q̄, x) = (q + F̂1(σ, d̄q), q + F̂1(σ, d̄q), x, q1, σ, F̂−1
1 (D, x, q̇1, σ))

When Eq. (11.22) and Eq. (11.23) are used to define the integrator, then the state transition functions are

δint (q̄) = (q + F̂2(σ, d̄q), q + F̂2(σ, d̄q), q1, q1, F̂−1
2 (D, q̇1, q̇1))

δext (q̄, e, x) = (ql , q + F̂2(e, d̄q), x, q1, F̂−1
2 (D − |q + F̂2(e, d̄q) − ql|, x, q̇1))

δcon(q̄, x) = (q + F̂2(σ, d̄q), q + F̂2(σ, d̄q), x, q1, F̂−1
2 (D, x, q̇1))

The scheme that is constructed using Eq. (11.19) and Eq. (11.20) is similar to the QSS2 method in
Kofman (2004), except that the input and output trajectories used here are piecewise constant rather than
piecewise linear.

The scheme constructed from Eq. (11.22) and Eq.(11.23) is nearly second-order accurate when a and
b are chosen correctly. If a = 3

2 and b = − 1
2 , then the error, with respect to Eq. (11.18), in the integral of

Eq. (11.21) is

E =
(

f (x1) − 3f (x1)

2
+ f (x0)

2

)
T + 1

2
T2 d

dt
f (x1) +

∞∑
n=3

1

n!
d

dt

(n)

f (x1)Tn (11.24)

For this scheme to be nearly second-order accurate, the terms that depend on T and T2 need to be as
small as possible. Let h be the time separating x1 and x0 (i.e., x1 = x(t1), x0 = x(t0), and h = t1 − t0), and
let α = T

h , the ratio of the current time advance to the previous time advance. It follows that T = αh. The

function d
dt f (x1) can be approximated by

d

dt
f (x1) ≈ f (x1) − f (x0)

h
(11.25)

Substituting Eq. (11.25) into Eq.(11.24) and dropping the high-order error terms gives

E ≈ αh

(
f (x1) − f (x0)

2
+ α

f (x0) − f (x1)

2

)
(11.26)

Eq. (11.26) approaches 0 as α approaches 1. It seems reasonable to assume T and h become increasingly
similar as D is made smaller. From this assumption, it follows that the low-order error terms in Eq. (11.24)
vanish as D shrinks.

Figure 11.15(a) and Figure 11.15(b) show the absolute error in the computed solution of ẋ(t) = −x(t),
x(0) = 1, as a function of D for these two integration schemes. The simulation is ended at t = 1.0, and
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FIGURE 11.15 Simulation error as a function of D for the system ẋ(t) = −x(t) with x(0) = 1. (a) Simulation error
using Eq. (11.19) and Eq. (11.20). (b) Simulation error using Eq. (11.22) and Eq. (11.23).

α and the absolute error are recorded at that time. In both cases, it can be observed that the absolute error
is proportional to D2.

These two schemes use additional information to reduce the approximation error with respect to the
single point scheme. Fortunately, these two schemes share the unconditional linear stability of the single
point scheme (see Kofman, 2004; Nutaro, 2003), and so they represent a tradeoff between storage, execution
time, and accuracy. When dealing with very large systems, the single point scheme has the advantage of
needing less computer memory because it has fewer state variables per integrator. However, it will, in
general, be less accurate than a two-point scheme for a given quantum size. If the quantum size is selected
to obtain a given error, then the two-point scheme will generally use a larger quantum than the one-point
scheme, and so the simulation will finish more quickly using the two-point scheme.

11.8 Conclusions

This chapter introduced some essential techniques for constructing discrete-event approximations to
continuous systems. Discrete-event simulation of continuous systems is an active area of research, and
the breadth of the field cannot be adequately covered in this short space. In the conclusion, some related
research is summarized, and references are given, for the interested reader.

A side-by-side introduction of discrete time and discrete-event methods for continuous system sim-
ulation can be found in Cellier and Kofman (2006). Comparisons of nonadaptive discrete time and
discrete-event methods can be found in Muzy et al. (2005), Nutaro et al. (2003), Zeigler (2004), and Kof-
man (2004). In-depth comparison of discrete-event schemes with adaptive time stepping, asynchronous,
and other types of advanced numerical integration methods remains a topic for future research.

The construction of high-order discrete-event integration schemes is discussed in Nutaro (2005).
A third-order scheme, and the only third-order method developed to date, is described in Kofman
(2005a, 2005b).

In Bolduc and Vangheluwe (2003), an adaptive quantum scheme is introduced. This scheme allows the
integration quantum to be varied during the course of the calculation to maintain an upper bound on
the global error. An application of adaptive quantization to a fire-spreading model is discussed in Muzzy
et al. (2002).

A methodology for approximating general time functions as DEVS models is discussed in Giambiasi et al.
(2000). The approximations introduced in that paper associate events with changes in the coefficients of
an interpolating polynomial. An application of this methodology to partial differential equations is shown
in Wainer and Giambiasi (2005).
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Applying DEVS models to finite element methods for equilibrium problems is discussed in D’Abreu and
Wainer (2003) and Saadawi and Wainer (2004). A steady state heat transfer problem is used to demonstrate
the method.

Simulation of partial differential equations leads naturally to parallel computing. Parallel discrete-event
simulation for the numerical methods presented in this chapter are discussed in Nutaro (2003) and Nutaro
and Sarjoughian (2004). Specific issues that emerge when simulating DEVS models using logical process-
based algorithms are described in Nutaro and Sarjoughian (2004). Parallel discrete-event simulation
applied to particles in cell methods is discussed in Tang et al. (2005) and Karimabadi et al. (2005).
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12.1 Introduction

There is a long history of developing mathematical representations capable of providing behavioral pre-
dictions of physical parameters on the atomic, molecular, microscopic, and macroscopic scales. Over the
past half century, simulation programs have been developed to support the computerized solution of these
mathematical representations which, in some cases, are discretized with billions of degrees of freedom
(dofs) and solved on massively parallel computers with thousands of processors. Historically, scientists
and engineers have applied these models (simulation programs) to solve problems on a single physical
scale. However, in recent years it has become clear that to continue to make advances in the areas of nan-
otechnology and biotechnology, and to develop new products and treatments based on those advances,
scientists and engineers must be able to solve sets of coupled models active over multiple interacting scales.
For example, the development of new materials will require the design of structure and function across
a hierarchy of scales, starting at the molecular scale to define nanoscale building blocks that will be used
to construct mesoscale features that may be combined into micron-scale weaves that could be used in the
manufacturing of complete parts (Figure 12.1). Such capabilities are clearly central to the development of
nanoelectronics devices and future biomedical device design as well as many of other future products.

As an example of the potential impact of multiscale simulation on biomedical device design, consider a
drug-eluting stent (Figure 12.2). Drug-eluting stents are hybrid device–drug medical products that release
therapeutic drugs and provide a scaffold to maintain arterial lumen size after angioplasty. The design
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FIGURE 12.1 Multimodel hierarchy used in the design of a composite material system.

of these devices requires consideration of the mechanical function of holding open a diseased artery,
and of the pharmacological function of delivering the appropriate drug in the appropriate concentration
for the requisite length of time to prevent in-stent restenosis. The mechanical simulations involved with
device deployment includes continuum-scale models of the stent and blood vessel, which employ complex
material models. The complex nature of the blood vessel requires the application of multiscale methods
to determine those material models. Consideration of drug delivery from the stent coating requires a
model that includes continuum-level modeling of blood flow coupled with molecular-level diffusion and
transport of drug molecules, which needs to be coupled to cellular- and molecular-level models of drug
diffusion into blood vessels through cell membranes. Similar models and methods are central to many
other applications. For example, similar models and model coupling are needed in the consideration of
new automotive skins made of nanoreinforced materials in which the material interfaces are strong at
strain rates consistent with normal use, while at high strain rates demonstrating substantial local damage,
leading to high stiffness so that little dents are avoided, but providing high-energy absorption under impact
loading to keep passengers safe.

There are many available models to solve various single-scale simulation problems, but while the
development of multiscale methods is an active research area, there has been limited attention paid



Toward a Multimodel Hierarchy to Support Multiscale Simulation 12-3

Coll

Coll

EL

SMC

EL

SMC

Qx

Stenting

MLU

Cell membrane

Rat aorta: composite,
collagen, smooth muscle
cells, elastin (clockwise
from top left)

Vessel
Tunica adventitia

Tunica media
Tunica

intima

LumenThrombus

Foam cell

Protein
molecule

Protein molecule

Protein
channel

Lipids
(bilayer)

Inside cell

Carbohydrate
chain

D

D

D

O
uts

ide cell

FIGURE 12.2 Multimodel hierarchy needed for a drug delivery system.

to the development of general multiscale modeling techniques. One procedure that does address the
complex issue of bridging from atomistic to continuum physics, including the ability to adaptively control
the model selection over the domain, is the quasicontinuum method (Knap and Ortiz, 2001; Miller
and Tadmor, 2002). Since this procedure is based on a single method to define and link the physical
scales, its development has not needed to address the inclusion of flexible methods or the insertion of
alternative models and scale-linking methods. Other efforts have limited the range of models included
to similar models such as the OCTA software, which includes four discrete mesoscale models (OCTA,
2006). Considering the thousands of person years of effort that has gone into the development of the
existing single-scale models that operate at each of the physical scales needed, the effective development of
multiscale simulations will be greatly facilitated by the development of methods that can easily integrate and
use existing and developing single-scale models. This chapter outlines the overall structure of a component-
based multimodel approach in which each model uses clearly defined interfaces and functionality for
sharing information. Since these methods are early in the development phase, this chapter provides
one view of how this complex problem could be addressed with the goal of opening a constructive
dialog between the software engineers developing multimodel methods and the computational engineers
developing multiscale methods.

The next section considers the key information and function hierarchies of a multiscale simulation.
Section 12.3 discusses the overall design of a set of functional components defined to support the full set of
interactions and transformations needed by multiscale simulation. It is the combination of these functional
components with existing single-scale models that will provide an operational multimodel multiscale
simulation system. Section 12.4 presents two example simulations combining existing single-scale models
with prototypes of the interfaces described here.
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12.2 Functional and Information Hierarchies in
Multiscale Simulation

In abstracting multiscale simulation processes, one must consider the hierarchy of transformations
required to go from a description of physical behavior to a set of mathematical and computational models
capable of simulating the desired behaviors. The highest level in the hierarchy is an overall problem def-
inition related to mathematical descriptions used to describe the behavior, typically coupled, at various
scales, including equations relating parameters between the scales. The other two levels in the hierarchy are
the discretizations of the mathematical models and the numerical algorithms used to solve the discretized
mathematical models. A key to abstracting this process is to qualify the information needed to support
the models and the transformations required as information is shared by models. The information used
in the processes can be placed in the following three groups:

Mathematical models: The description of the mathematical equations used as a description of the
physical behavior on the various scales, and mathematical equations that relate behaviors between
scales.

Domains: The description of the domains over which the various mathematical equations apply. In the
case of multiscale analysis, this includes appropriate definitions at each relevant scale of space and
time, and the spatial and temporal interactions between them.

Physical parameters: The description of the various physical parameters used in the mathematical
equations, defined over the appropriate domains as required to qualify the current instances of the
governing equations to be solved.

The ability to properly support component-based multiscale simulation requires the specification of
mathematical descriptions with associated domain and physical-parameter definitions at the highest pos-
sible level meaningful to the execution of the process so that the full range of solution methods interaction
modes can be supported.

12.2.1 Mathematical Physics Description Transformations and
Interactions

A mathematical physics description is a set of governing equations that are assumed to govern the behavior
at a particular scale over a particular domain. The equations are written in terms of a set of dependent vari-
ables and given parameters, and are a function of the coordinates of the domain of the problem. To make
this more concrete, consider the two most common forms of equations encountered in multiscale anal-
ysis: partial differential equations (PDEs), which are defined at various continuum scales, and molecular
dynamics (MD), which is based on interatomic potentials that define the interactions between molecules
and atoms at the small scales for which continuum equations over the domain are not applicable.

12.2.1.1 Partial Differential Equations

PDEs may be written in terms of multiple sets of dependent variables where each set can contain tensors
of various orders that vary over the space–time domain. For the purposes of this discussion, consider the
PDE

Dm(u, σ) − f = 0 on � (12.1)

subject to boundary conditions

Di(u, σ) − gi = 0 on �i for i = 0, 1, 2, . . . , m − 1 (12.2)

where

Dm represents the appropriate mth-order differential operator;
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u(x, t) represents one or more dependent vector variables which are functions of the independent
variables of space, x, and time, t ;

σ represents one or more dependent scalar variables which are functions of the independent variables
of space, x, and time, t ;

f represents the forcing functions;
� represents the domain over which the equation is defined;
Di are the appropriate ith-order differential operators;
gi are the given boundary conditions;
�i are the portions of the boundary over which the associated boundary conditions act.

Computerized models of the PDEs typically use mesh-based methods in which a two-part discretization
process is used to transform the mathematical model into numerical systems which are solved. The first part
of the discretization is the decomposition of the space–time domain into a set of mesh entities with simple
shapes in space and time. The second part of the discretization is to discretize the shapes of the functions.
A set of basis functions related to a “weak form” of the governing equation, and to difference relations for
the differential operators, is used to discretize the dependent variables over the individual mesh entities in
terms of a set of to-be-determined parameters, called dofs. The dofs can always be associated with a single
mesh entity whereas the distribution functions (basis functions or difference relations) are associated with
one or more mesh entities. In the case that the distribution is associated with multiple mesh entities, that
set is defined by rules associated with the discretization operator and can be supported by using mesh
adjacency information. Three common cases that employ different combinations of interactions among
the mesh entities, the dofs, and the distributions are

Finite difference based on a vertex stencil, in which the dofs are typically values of the dependent variables
at vertices of a mesh and the distribution functions are difference stencils defined in terms of vertex
values for mesh vertices for the appropriate set of topologically adjacent mesh entities.

Finite volume methods are constructed in terms of distribution function written over individual mesh
entities. In most cases the field being defined is discontinuous between elements (i.e., C−1). There-
fore, dofs are not shared between neighboring mesh entities. The coupling of the dofs from different
mesh entities is through operators acting over boundary entities between neighboring mesh entities.

Finite element distribution functions are written over individual mesh entities called elements. In cases
where Cm, m ≥ 0 continuity is required, the distribution functions associated with neighboring
elements are made Cm, m ≥ 0 continuous by having common dofs associated with the bounding
mesh entities common to the neighboring elements.

The application of the discretization operations over the mesh entities produces a local contributor
which can be stated symbolically as

kcdc = f c (12.3)

where kc is the discretized matrix for contributor c that multiplies the vector of dofs associated with the
contributor, dc .

These individual contributions are then assembled into a global algebraic system, Kd = F, based on an
assembly operator defined by the relationships of the contributor-level dofs, dc , with the assembled set of
global dofs, d.

12.2.1.2 Molecular Dynamics

In MD, the mathematical model is a potential function describing the forces among interacting atoms
and which depends on the relative position of the atoms (Frenkel and Smit, 2002). A common potential
function is the Lennard–Jones potential which approximates the force between two atoms as

VLJ = 4ε

[(σ

r

)12 −
(σ

r

)6
]

(12.4)
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where σ and ε are Lennard–Jones parameters for a given material and r is the interatomic distance. The
parameters in potential equations may be developed empirically or based on simulations performed on
a finer ab initio scale using an electron model. Owing to the large number of atoms required to fill
domains, MD simulation is typically performed over small subdomains where boundary conditions must
be applied to the atoms on or near the boundary. Typical boundary conditions are free-surface, periodic,
or fixed (Dirichlet). The direct outputs of an MD simulation, atom trajectories and forces on the atoms, are
typically not of specific interest, but rather are needed to determine the meaningful higher-scale parameters
of interest. The extraction of those higher-scale parameters is often done by taking statistical ensembles.

12.2.1.3 Interactions Between PDEs and MD

It is common for a simulation to require the solution of a set of coupled mathematical models where the
coupling is defined by parameters assumed to be given in one model but which are actually the results
of another model. In some cases, the coupling simply requires solving the models in a given order so
that parameters are available when required. In other cases, parameters are shared in both directions,
necessitating the application of an appropriate coupling method.

Coupling on a single scale occurs when multiple models are used to solve for different sets of the
physical parameters of interest. A common example is fluid–structure interactions, in which the flow field
is influenced by the geometry of the structure over which it flows and the geometry of the structure is a
function of the forces on it caused by the flow field. The issues associated with the transfer of parameters
between models depend on the portions of the domain over which the interactions occur and on how
those portions have been discretized, both in terms of its geometry (mesh) and the distributions and
dof used.

The interactions of parameters between models solved on multiple scales must account for differences
of the domain representation at the different scales, for the models used to couple information between the
scales, and for the relationships between the parameters passed between the models on the different scales.
Two broad classes of scale-linking methods are “information-passing” and “concurrent-bridging” (Fish,
2006). With information-passing methods, fine scales are modeled and their gross response is infused into
the coarse scale; the influences of coarse-scale fields on the fine scales are taken into account as boundary
conditions and forcing functions on the fine scale. With concurrent bridging, the fine and coarse scales
are simultaneously resolved. For nonlinear problems, the models at different scales are coupled in both
directions and information continuously flows between the scales.

In many information-passing techniques, the fine-scale model is a representative unit cell subject to
appropriate boundary conditions, and information passed to the larger scale is considered to be at a point
on the larger scale. In concurrent techniques, the fine-scale model acts over some small finite portion
of the coarse-scale domain and the parameters are passed through the common boundary between the
domains, or through some overlap portion of the domains.

In multiscale methods, where entirely different models are used at each scale, the relationships of
parameters between scales is usually not direct and care must be taken to define the appropriate operations
to relate them. In some cases, these operations act as filters to remove information (e.g., the removal of
high-frequency modes when up-scaling). In others, they must account for relating discrete and continuum
models (e.g., relating atomic-level deformations defined by atomic positions to a continuum displacement
field). In some cases, operations are needed to relate quantities with different forms of definition (e.g.,
atomic-scale forces to continuum stresses) or to define terms not defined at a given scale (e.g., defining
continuum-level temperature in terms of atomic scale motions).

The complication of properly relating information between scales has led to the active development of
methods for scale linking and to computer implementation of these methods. Representative information-
passing methods include multiple-scale asymptotic techniques (Fish et al., 2002), variational multiscale
methods (Hughes et al., 2000), heterogeneous multiscale methods (E and Enquist, 2002), multiscale
enrichment schemes based on partition of unity (Fish and Yuan, 2005), discontinuous Galerkin discretiza-
tions (Hou and Wu, 1997), and equation-free methods (Kevrekidis et al., 2003). Spatially concurrent
schemes are based on either multilevel (Fish and Belsky, 1995) or domain-bridging methods (Belytschko
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and Xiao, 2003; Broughton et al., 1999), while concurrent schemes in the time domain are typically based
on multistep methods (Gravouil and Combescure, 2001).

12.2.2 Domain Definitions, Transformations, and Interactions
The domains considered here are space–time domains. Time is a linear progression that runs from an
initial time to a final time and is typically discretized using a well-accepted set of methods based on time
increments. In contrast, there are a number of general forms commonly used to provide a high-level
representation of spatial domains. To meet the needs of multiscale simulation,

• The domain representation must support the transformation of an original domain definition into
representations that can support a discretization of the governing equations over the domain. For
example, the original definition of a domain may be a feature-based model of a domain over which a
mesh-based simulation is to be performed. The process of creating the mesh in this case requires the
transformation of the feature model into a nonmanifold geometric model upon which an automatic
mesh generation procedure can be applied to generate the desired mesh (Shephard et al., 2004).
In addition, the transformations needed to construct the required domain representations; it is
necessary to maintain the relationship between the entities in each of the representations.

• The domain representation must support the definition of the physical parameters (attributes)
associated with the equations to be solved and the proper transformation of that information into
any derived representation to be used by the models. For example, the ability to map the components
of a tensor with a given distribution onto a model entity, such as a surface of the geometric domain.

• The domain representation must support the ability to address any domain interrogation required
during the execution of models involved with the simulation. Most of these interrogations can be
limited to pointwise evaluations (e.g., determine the normal vector at a given point on a surface).

• The domain representation must support geometric interactions between related domains used in
a multiscale simulation. For example, in a concurrent multiscale model, to determine the mesh
entities in the continuum domain which overlap with the atomic region.

The definition of the domain is a function of the type of mathematical description used. For example,
continuum domain definitions are needed in the case of PDEs while a discrete set of atomic positions is
needed in MD.

12.2.2.1 Continuum Domains

There are multiple sources for domain definitions, the most common being CAD models, mesh models,
and image data. CAD systems and mesh models employ a boundary representation. Image data are
generally defined in terms of voxels. Except in cases of directly using the image data as the model, it is
generally accepted that boundary representation is well suited for defining continuum domains. Common
to all boundary representations is the use of topological entities and their adjacencies to represent the
entities of various dimensions. Information defining the actual shape of topological entities can be thought
of as information associated with each entity. The ability to interact with a domain definition in terms of
the topological entities provides an effective means to develop abstract interfaces to a domain definition,
allowing easy integration of multiple domain-definition sources.

An important consideration in selecting a boundary representation is its ability to represent the classes
of domain needed. In the most general case, domains can be general combinations of 0-, 1-, 2-, and 3-D
entities where lower-order entities are not required to bound higher-order entities. Figure 12.3 shows a
typical analysis domain of this type, which would be appropriate for structural analysis. The boundary rep-
resentations that can fully and properly represent such geometric domains are referred to as a nonmanifold
boundary representations (Weiler, 1998).

In addition to the topological entities and associated shape information, geometric-modeling systems
maintain numerical tolerance information on how well the entities fit together. The algorithms and
methods within a geometric, modeling system are able to use such tolerance information to effectively
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FIGURE 12.3 Example of a nonmanifold model.

define and maintain a consistent representation of the geometric domain. (The vast majority of what
various geometry-based applications have referred to as “dirty geometry” is caused by a lack of knowledge
of, or improper use of, the tolerance information (Beall et al., 2004).)

Abstracting topology is an effective way to allow the development of functional interfaces to boundary-
based modelers that are independent of specific shape information. The developers of CAD systems have
recognized the possibility of supporting geometry-based applications through general application program
interfaces (APIs), where functions that provide entity adjacencies, calculate geometric information such
as surface normals, etc. are keyed to topological entities. This has led to the development of geometric-
modeling kernels such as ACIS (Spatial Inc.) and Parasolid (Parasolid, Inc.) which have been successfully
used to develop automated finite element modeling processes (Shephard et al., 2005; Wan et al., 2005) and
automatic mesh generators (Beall et al., 2004).

In the application of generalized numerical analysis processes, a meshed approximation must be created
from a geometric domain. To support the full set of operations needed for reliable multiscale analysis, a
mesh must maintain an association with its continuum-domain representation and with the distribution
functions and number of dofs used in discretizing the PDEs (see Section 12.2.1.1). From the perspective of
maintaining its relationship to the geometric domain, the use of an appropriate set of topological entities
and their adjacency is ideal (Beall and Shephard, 1997).

A key component supporting mesh-based simulation is the association of a mesh to its geometric model
(Beall and Shephard, 1997; Shephard and Georges, 1992), which indicates the mesh entities that represent
particular model entities. This association is used for operations such as ensuring the mesh entities on the
boundary of a model are properly curved when needed, associating boundary conditions defined at the
model entity level with the appropriate mesh entities, etc. This association can be defined as follows:

Classification: The unique association of the ith mesh topological entity (with dimension di), Mdi
i , to a

topological entity of the geometric model of dimension dj , G
dj

j , on which it lies, where di ≤ dj . This

is denoted Mdi
i � G

dj

j where the classification symbol, �, indicates that the left-hand entity, or set,
is classified on the right-hand entity.

Reverse Classification: For each model entity, Gd
j , the set of equal-order mesh entities classified on

that model entity defines the reverse classification information for that model entity. Reverse
classification is denoted as

RC(Gd
j ) = {Md

i | Md
i � Gd

j } (12.5)

Shape information can be effectively associated with the topological entities defining the mesh. In
many cases this is limited to the coordinates of the mesh vertices and, if they exist, higher-order nodes
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associated with mesh edges, faces, or regions. In addition, it is possible to associate other forms of geometric
information with the mesh entities. For example, the association of Bézier curves and surface definitions
with mesh edges and faces for use in high-order curved finite elements (Luo et al., 2002). The mesh
classification can be used to obtain other needed geometric information such as the coordinates of a new
mesh vertex formed by splitting a mesh edge classified on a model face.

12.2.2.2 Discrete Domains

The domain definition for the discrete domains are the positions of the entities for which the potentials
are written to relate. For example, in the case of MD this is the position of atoms. In many cases it is
possible to define the full set of discrete entity positions from a higher-level construct with appropriate
transformations. In this case the highest-level domain definition consists of the geometry of the domain
to be included, parameters defining the distribution of the discrete positions, and the functions required
to define those positions. The overall domain is often a representative volume that has portions of its
boundary interior to a higher-level domain and may include knowledge of free surfaces.

The parameters and transformations used to define the atomic positions are a function of the type of
material being defined. In the case of perfect crystals, the position of atoms within each crystal is defined
by a set of lattice vectors, which provide information defining the positions of atoms. The definition of
the geometric configuration of the crystal is a nontrivial process that can start with a statistical method to
define an initial set of seed locations for crystals whose initial shape can then be defined as the Voronoi
diagram of those points. To define more-realistic configurations, various grain-growth procedures can be
applied which account for knowledge of the material system. There can be defects in the crystal systems
(Hull and Bacon, 1965). With additional information about these defects and the total number of atoms,
coordinates, and velocities of the atoms can have an initial adjustment applied to them. In the case of
polyms, an atom’s position must be defined by its position along its molecular chain, where there are strong
bounds between neighboring units in the chain. Statistically based geometric constructs can be used to
define these material-dependent chains in the simulation box. Methods like those just outlined, which
can take a compact definition of discrete domains and produce a proper set of atomistic positions, are
required. In some cases these methods will be purely geometric while in others will require the execution
of a full atomistic relaxation model.

One approach to bridging scales is to interpolate the behavior of a large set of atoms in terms of a
small subset of them. One such approach, well-suited to lattice structures, is the quasicontinuum method
in which the position of atoms over simple shapes such as triangles and tetrahedra is described to vary
linearly between known atom positions (Knap and Ortiz, 2001; Miller and Tadmor, 2002). In the case of
polymer chains, atoms along a chain can be represented by a small number of “beads” placed along the
chain (Mavrantzas et al., 1999; Padding and Briels, 2002).

12.2.2.3 Interactions of Domains

There are three general forms of domain interactions used in multiscale simulations. They are

Disjoint domains, which share information across a common boundary.
Overlapping domains, which have portions of the overall domain represented at more than one scale

and the information is shared through the overlapped region.
Telescoping domains, which represent microstructure by many small-scale domains, which have essen-

tially zero size with respect to the higher-scale domain. Thus, each small-scale domain passes
information to a point in the higher-scale domain.

In each case, the operations used to transfer parameters between the scales must be consistent with the
form of domain interaction.

12.2.3 Physical Parameter Definitions, Transformations, and Interactions
The physical parameters used in the mathematical equations are tensor quantities (Beju et al., 1983) defined
over various portions of the domain that can be general functions of the independent variables of space
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and time as well as other dependent variables. Knowledge of the order of a tensor and the dimension of the
spatial domain it is defined over defines the number of components needed to uniquely define the tensor.
The symmetries, for tensors of order two or greater, define those components that are identical to, or
negative of (antisymmetric), other components. The components of the tensor are, in general, functions
of the domain parameters as well as other problem parameters. The ability to understand and use a
tensor at any particular instant requires knowledge of the coordinate system in which the components
are written. Tensors can be represented in other coordinate systems of equal or lower order through
appropriate coordinate transformations.

To support the full range of simulation needs, the tensors used to define the equation’s parameters must
be related to the highest level of the geometric representation possible. For example, in the case of solving
a PDE over continuum domains, the distribution of the given input tensors needs to be related to the
entities in the geometric model. The model topological entities of regions, faces, edges, and vertices are
ideally suited for supporting that specification in a general way.

The tensors associated with the dependent parameters are determined as part of the solution process.
Therefore, these tensors, referred to as fields, are understood with respect to the spatial and equation
discretizations used in the simulation process. Since the spatial discretizations are required to maintain
the relationship to the original domain definition (see Section 12.2.2), the fields can also be related to the
highest-level domain definitions.

In multiscale simulation, a single tensor field can be used by a number of different analysis routines
that interact and the field may be associated with multiple spatial discretizations (e.g., meshes) having
alternative relationships between them. In addition, different distributions can be used by a field to
discretize its associated tensor. The ability to have a given tensor defined over multiple meshes or discretized
in terms of multiple distributions can be handled by supporting multiple field instances.

12.3 Constructing a Multimodel: Design of Functional
Components to Support Multiscale Simulations

In the design of a multimodel system to support multiscale simulations, it is important to determine the
information required by the models and the transformations to be applied to provide the information in
the needed form. Within the multimodel multiscale simulation environment, functional APIs are defined
to support the various classes of information transformations needed. Employing the APIs provided by
components makes it straightforward to combine various single-scale models to construct multimodels
for multiscale simulations. Each of the various models interact with other models only through the
component’s API. For example, in a concurrent model, part of the scale-linking component would be
a function linking atomistic to continuum using statistical averaging of atomic displacements on the
boundary of the atomistic region thereby providing boundary deformations to the continuum model.

A key goal of this design is to build multiscale simulation procedures by using adaptive solution strategies
to control existing time-tested single-scale models thereby ensuring the reliability of simulation in terms
of providing predictions of the desired parameters to the required degree of accuracy. The only way to
provide this reliability is to explicitly consider the approximation errors that can arise within each step
executed by a model or transformation performed by a component. Since many of these errors cannot
be controlled through a priori means, it is necessary to support adaptive feedback processes that use a
posteriori information to control the execution of each model step and transformation.

A number of the models needed to perform specific simulation steps are well established and should
be used. Two examples are generalized fixed-mesh continuum PDE solvers (finite element, finite volume,
and finite difference) and discrete-level models for solving discrete-potential systems (ab initio, molecular
statics, MD).

The majority of the mature and widely used software operates only through input and output files.
In that case, the components will be a facade, crating the input files and interacting with the output
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files. Although this case does not take full advantage of the components, advantages gained are the easy
substitution of other models, including ones that can more directly interact with the components.

Some programs support the addition of user-defined functionality. For example, ABAQUS (ABAQUS
Inc.) supports user-defined material models and user-defined finite elements. Although limited, these
two features facilitate the majority of the functionality needed for ABAQUS to be an effective model in a
multiscale simulation environment.

Another area in which mature models exist to support multiscale modeling is the definition of geometric
domains of 3-D parts using boundary representations. Most existing systems provide a functional API
(Parasolid, Inc. [2006]; Spatial Inc. [2006]), which is ideal for creating a component for a multiscale
simulation. These geometric-modeling APIs provide the capabilities needed to represent continuum-level
domains in multiscale simulations. There are also many existing programs that can generate mesh-level
discretizations of geometric domains, the interfaces of which range from file- to API-based (Beall et al.,
2004). API-based interfaces have been used in the development of adaptive mesh modification procedures
(Li et al., 2002) and complete adaptive PDE multimodel simulations (Shephard et al., 2005; Wan et al.,
2005), and are well suited for the needs of multiscale simulation.

In designing a multimodel system to support multiscale simulation, we must identify appropriate levels
of abstraction to support the flow of information between models such that information can be provided
to procedures that execute any required transformations. The components defined to support multimodel
multiscale simulations are

1. problem definition,
2. equation parameters,
3. geometric domains,
4. discretized geometric domains,
5. tensor fields, and
6. scale-linking operations.

A subset of similar functional components being defined to support the interoperability of simulation
models is a topic of current development for mesh-based continuum-simulation methods both in terms
of open-source code (Chand et al., 2007; TSTT Software, 2006) and commercial products (Simmetrix Inc.,
2006).

Figure 12.4 illustrates the structure of a multiscale multimodel in which five functional components
are used by the single-scale models in the multimodel of a given multiscale simulation. Additional scales
can be added by adding another scale-linking component and model to either side of the diagram. Each
instance of a component utilizes other components in the same scale to do its job. Information flow is
indicated by the arrows. Furthermore, components will only share information through scale linking with

Model 1

Subproblem definition

Overall problem definition

S
cale linking

Equation
parameters

Tensor
fields

Discretized
domain

Geometric
domain

Model 2

Subproblem definition

Equation
parameters

Tensor
fields

Discretized
domain

Geometric
domain

FIGURE 12.4 Interactions between components.
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the component of the same type in the other model. Based on this, the functions within a component
need to consider the following three modes of interaction:

1. Providing and modifying component-internal data (procedures which do not involve interactions
with other components),

2. Providing information between components within a model, and
3. Providing information between like components for different models.

12.3.1 Problem Definition
To consider multiscale simulations, we need an overall problem definition. A problem definition must
include all of the relevant physical parts, must define the relationships between the parts, and must facilitate
the creation of alternate representations of the parts. In addition, a problem definition must provide any
other information needed to construct and execute the desired solution process. A problem definition
must also allow for the creation of viewpoint-specific interfaces as needed by the solution strategy and
simulation models to be used (e.g., considering an atomic region as though it is a continuum).

Representations, including simulation viewpoints, are under development (Shephard et al., 2004). These
representations can be defined in terms of graph structures similar to those used to define assembly and
feature models in CAD systems (Bidarra and Bronsvoort, 2000; Hoffman and Joan-Arinyo, 1998), with the
extensions to support hierarchal decompositions and multiple viewpoints (Bronsvoort and Jansen, 1993;
Hoffman and Joan-Arinyo, 1998, 2000; Noort et al., 2002). In the single-scale case, a problem-definition
component would then support the following interaction modes:

Component-internal: part definitions, relationships of parts, and mathematical equations governing
part behavior.

Intercomponent : relationships of parts to domains, relationships of parts to parameters, relationships
of parts to model functions, and model-level simulation strategy information.

Interacting with like components of other models: viewpoint construction rules, relation of mathematical
equations on related parts in the different models, and multiscale simulation strategy information.

In the multiscale case, the overall problem definition is inherently multiscale. As such, it will depend on
a scale-linking component, as well as single-scale models which compose it, complete with their own
subproblem definitions.

12.3.2 Equation Parameters
The parameters in the mathematical equations representing physical quantities are, in general, tensors.
The types of physical parameters these tensors define are material properties, loading functions, boundary
conditions, and initial conditions. Although the execution of any model requires a specific set of these
tensors associated with the mathematical equations of that model, the parameters can be stated abstractly
in terms of the highest-level problem-definition entities. For example, a boundary heat flux of 1 kW/m2

defined on surface 1 of mesh element 2 might be abstractly stated as the same heat flux applied to the
bottom surface of a heat sink. This boundary conditions on the heat sink would be mapped onto a
corresponding concrete solid model, and in turn onto a mesh. By defining conditions on the highest-
possible level, it becomes easy to change the mesh, or even the solid model itself, without having to start
from scratch. Generalized methods to define and manipulate such a structure of models have been defined
(O’Bara et al., 2002, Shephard, 1985).

The equation parameters component must support

Component-internal: parameter information queries, parameter instance information queries, param-
eter coordinate transformations, and parameter reduction and modification functions.

Intercomponent : relation to problem parts and geometric domains, relation to model solution process,
and relation to fields.
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Interacting with like components of other models: dependencies between parameters for different
models.

12.3.3 Geometric Domain
A geometric-domain component is a functional unit to describe a multiscale simulation domain at a
particular scale (e.g., continuum domain or atomistic domain). Within a multiscale model, a geometric
domain supports geometric interactions between other geometric domains.

Consider, first, a continuum geometric domain defined in a CAD modeler in terms of a boundary
representation. This component must support

Component-internal: topological entity information, shape information, geometric-model tolerance
information, and geometric-model modification.

Intercomponent : association with parts in the problem definition, association of equation parameters
with the geometric domain (and, through that, association with domain discretizations—meshes),
and association with scale linking.

Interacting with like components of other models: geometric interactions relating domains on different
scales through boundaries or overlaps.

Atomic-scale models must support

Component-internal: the definition of atom layouts, and the geometric relationships among atoms.
Intercomponent : obtain potentials and provide forces.
Interacting with like components of other models: placement of the domain with respect to larger-scale

domains, and geometric interactions relating domains of different scales through boundaries or
overlaps.

12.3.4 Discretized Geometric Domains
A discretized geometric-domain component is a piecewise-geometric approximation of a corresponding
geometric-domain component in terms of a mesh or idealized atomistic layout. This component must
support

Component-internal: topological entity queries for meshes, geometric shape of mesh entities, and
geometric queries such as position of atoms and distance between atoms or mesh entities.

Intercomponent : mesh Jacobian information, association with the geometric domain, and association
with fields.

Interacting with like components of other models: mesh-to-mesh interaction, mesh-to-atomistic
interactions, and discrete-to-atomistic interactions.

12.3.5 Tensor Fields
A tensor-field component is a discretization of a tensor field over a discretized domain. To support a tensor
field defined over multiple discretized domains, the tensor-field component must support a collection of
field instances for a single field where one field instance is defined over each of the discretized domains.
The tensor-field component must support

Component-internal: field information queries, field coordinate transformation, and field reduction and
modification.

Intercomponents: association of field with the discretized geometric-domain entities, association with
quantities determined by model solution processes, and relation to parameters.

Interacting with like components of other models: field transfer between field instances, and field
transformation or modification to meet the model needs.
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12.3.6 Scale-Linking Operators
Scale-linking operators exist to transform parameters among different single-scale models. A scale-linking
operator is defined in terms of

• the domains at each scale and the form of the domain interactions,
• the domain discretization used for the interacting fields,
• the distribution functions and number of dofs used to represent the interacting fields over the

discretized domains, and
• the functional operations associated with transforming the field information on one scale to the

other.

The methods used should allow scale-linking operations to be defined at the highest level of problem
definition, with additional qualification as needed to account for specific forms of domain discretizations
and field distributions used. As such it must support

Component-internal: the definition of the linking operations.
Intercomponent : the relationship to parts and domains, and to other fields and parameters.
Interacting with models: using single-scale components’ interfaces to transfer information between scales.

By combining components as described, and as shown in Figure 12.4, each component will have minimal
dependence on the rest of the system. This reduces software complexity and will allow the components to
be easily interchanged.

12.4 Example Multimodel Simulation Procedures

The examples of automated adaptive simulation procedures presented in this section employ prototype
implementations of the functional components outlined in Section 12.3. The first example is an automated
adaptive single-scale procedure that is currently used in industry. The second is an adaptive atomistic–
continuum multiscale procedure under development.

12.4.1 Automated Adaptive Mesh-Based Simulation
Many programs are used for the solution of PDEs on a given fixed mesh. Although they are capable of
providing results to required levels of accuracy, the vast majority lack the ability to automatically control
mesh discretization errors through adaptive methods. Using the interoperable components discussed in
Section 12.3 in conjunction with existing fixed-mesh finite element models and a mesh-modification
component (Li et al., 2002), multiple adaptive analysis procedures have been built.

One such example was created for 3-D forming simulations in which the deformable parts undergo
large plastic deformations that result in major changes in the analysis domain geometry. The meshes of
the deforming parts need to be frequently modified to continue the analysis owing to significant element
distortions, mesh discretization errors, and geometric approximation errors. In these cases, it is necessary
to replace the deformed mesh with an improved mesh that is consistent with the current configuration.
Procedures using the two domain and field components are employed to determine a new mesh size field,
which is provided to a local mesh modification procedure (Wan et al., 2005) which creates an adapted
mesh. A tensor-field component is also used to transfer history-dependent field variables as each mesh
modification is performed (Wan et al., 2005) so that the full set of information needed for the next set of
analysis steps can be provided to the analysis model, the commercial finite element program DEFORM-3D
(Fluhrer, 2004).

Figure 12.5 shows the setup, initial mesh, and final adapted meshes for a steering-link manufacturing
problem solved using this multimodel capability. This simulation shows a total stroke of 41.7 mm. The
initial mesh of the workpiece consists of 28,885 elements. The simulation was completed with 20 mesh-
modification steps producing a final mesh with 102,249 elements.
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Top die

Initial mesh of workpiece

Final adapted mesh

Bottom die

Work
piece

FIGURE 12.5 Adaptive forming simulation example where the left image shows the problem setup with geometry of
the two dies and initial workpiece and the right two images show the initial (top) and final (bottom) meshes.

12.4.2 Adaptive Atomistic/Continuum Adaptive Multiscale Simulation
Concurrent adaptive multiscale simulation capabilities are being developed for modeling fracture in metal-
lic structures (Datta et al., 2004). The key analysis engines for this multimodel application are nonlinear
finite element models for the continuum level and molecular-statics models to address the atomistic
aspects of dislocation formation and growth. Part of the simulation viewpoint in this case is the indi-
cation of the set of behaviors that can be associated with the parts which indicate that both linear- and
nonlinear continuum behavior can be considered, and that atomistic regions can be superimposed at
locations of dislocation formation such as crack tips. The equation parameters include the continuum
material properties, loads and boundary conditions, and the atomistic potentials. The geometric domain
includes the full part geometry and atomistic overlays, including defect locations for the locations that
are adaptively determined to require an atomistic overlay. The computational representation of these two
regions includes a finite element mesh and atomistic positions, taking account of the defects. The tensor
fields include overall and local deformations as well as stresses at the continuum level, and atom positions
and forces on the atomistic level. Since the atomistic and continuum levels overlap, the options for a
scale-linking operator include relating local deformations and forces either through a common boundary
or through an overlap region. In both cases, the atomistic deformations must be smoothed before being
transferred to the continuum level and the discrete interatom forces must be transformed into stress-like
quantities so they can be related to continuum-level stresses.

Figure 12.6 shows an example of an adaptive atomic continuum simulation for the definition and growth
of dislocations at a crack tip. In this case, the cracked macrodomain was defined in a solid modeler and
the finite elements were generated automatically. Atomic overlay regions are defined in the critical areas
based on an error indicator; as defects form, the atomic domains automatically adjust.

12.5 Closing Remarks

The focus of this chapter has been an examination of the process of performing adaptive multiscale simu-
lation with the goal of defining an appropriate set of high-level components to support the construction of
multimodel simulations taking advantage of established models that can effectively address specific aspects
of these simulations. Six functional components have been defined which support the transformation and
transfer of information to the various models used by these multimodel simulations. The application
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(a) (b)

(c) (d)

FIGURE 12.6 Adaptive molecular/continuum multiscale simulation. (a) 3-D domain with a crack and macroscale
mesh; (b) adaptively superimposed atomic region (shaded); (c) adapted atomic region accounting for dislocation
formation and growth; (d) continued adaptation of the atomic region with dislocation growth.

of these components has been demonstrated through two multimodel automated adaptive simulation
examples building on an initial prototype of six functional components.
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13.1 Finite Element Theory

The finite element method (FEM) allows complex, continuum problems to be modeled. The FEM was
originally developed by structural engineers as an extension of matrix structural analysis. It has since been
used in just about every field where differential equations are used to define problem behavior. Here we will
use the physical behavior of stress flow to discuss how finite elements can be derived and how the derivation
assumptions affect the results. This process can be abstracted to apply to other domains such as fluid flow,
temperature flow, population changes, stellar physics, and electronic circuits. In these cases, the quantities
developed here (stiffness, stress, displacement) need to be mapped into the problem domain described by
the differential equation being used. The process of the FEM is to create a stiffness matrix (coefficients)
and a set of loads (right-hand side). After that, the solution process is identical to that covered in any
stiffness-based structural analysis textbook. Many excellent books covering the FEM exist; this section is
intended only as a basic introduction (Bathe, 1995; McGuire et al., 2002; Zienkiewicz et al., 2000).

The basic physical idea of the FEM is to break up a continuum into a discrete number of smaller
“elements.” These elements are connected at discrete points called nodes. It is at these nodes where the
solution is found. These elements can be modeled mathematically by a stiffness matrix and are connected
by nodes that have degrees of freedom (DOFs) (allowed movements). This is identical to what is done for
beam and truss elements. However, beams and trusses have natural locations at which to define nodes. In
addition, the derivation of their stiffness matrices can be done on a physical basis.

13.1.1 Simple FEM Theory
More general finite elements require more complicated procedures than used for beams and trusses to
derive the stiffness matrix. The basic procedure is to assume a shape function that describes how the nodal

13-1
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displacements (and sometimes stresses) are distributed throughout the element. From the differential
equation, we form an operator matrix that will convert the displacements within the element into strains
(derivatives of displacement). Next, the internal and external virtual work (an energy method) can be
formed and equated to develop the stiffness matrix. The last step involves solving for the unknown
displacements which is identical to that used for truss and bending elements.

As an example, we will develop the stiffness matrix for a truss element, an axial member. The truss
element has two nodal displacements, v1 and v2, one at each end. For any given set of displacements at
the ends, a function is required to convert these into displacements along the length of the element. The
obvious selection for the functions is the linear set given below in Figure 13.1.

Note how the given functions distribute the end displacements throughout the element. These distri-
bution functions are called the shape functions. The shape functions can be put into the matrix form
along with the end displacements to form an equation that describes the displacement variation within the
element. The displacement anywhere within the element is described by the following matrix equation:

u(x) =
〈

1 − x

L

x

L

〉{ v1

v2

}
(13.1)

Note that the displacement is a function of x, the position within the element. Also note that the displace-
ment anywhere in the element, u(x), is the sum of the displacements caused by both end displacements
distributed throughout the element. Eq. (13.1) can be rewritten as

u(x) = H(x) ∗ v (13.2)

The matrix H(x) is called the shape function matrix and v the vector of element nodal displacements.
We now need a differential equation that converts the displacement into strain. For our one-dimensional
(1-D) example the equation is

εx = δu(x)

δx
(13.3)

It is useful to rewrite Eq. (13.3) into the form of two matrices. This alternate form puts the differential
operator into the form of an operator matrix, D. Eq. (13.3) is rewritten as

εx = D ∗ u(x) (13.4)

where the operator matrix has the form

D =
〈

δ

δx

〉
(13.5)

L

V1 V2

V1 � 1

V2 � 1

X

U2 (x ) �
L

X

U1 (x ) � 1�
L

X

FIGURE 13.1 Unit displacement functions for axial member.
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If we apply this operator to the displacement, u(x), given in Eq. (13.2), we can find the strain as a function
of the element displacements, v, and the shape function matrix, H(x). This gives the form for the strain in
terms of the shape function matrix H(x).

εx = D ∗ H(x) ∗ v (13.6)

Note that the nodal displacements, v, are constants (individual numbers for a given problem and actually
the problem unknowns) with respect to x and need not be operated on, differentiated (as a result of the
chain rule). Therefore, only the derivatives of the shape functions need to be taken. For our case of the
axial element, the strain can then be written by substituting the shape functions, H(x), into Eq. (13.6) and
applying the D operator giving

ε(x) =
〈
− 1

L

1

L

〉 {
v1

v2

}
(13.7)

Typically, the differential operator times the shape function matrix is called B, the strain–displacement
matrix. The strain is then commonly written in the shorter form:

εx = B ∗ v (13.8)

where B = D ∗ H(x). We also need the relationship of Hooke’s law that converts strain into stress, given as

σ = E ∗ ε (13.9)

Therefore, if we calculate the internal strain energy, a form of work energy, to develop a stiffness matrix,
virtual strain times stress, with substitutions we have

δWi =
∫

volume
εTσ =

∫
volume

(vT ∗ BT ∗ E ∗ B ∗ v)δV (13.10)

Equating internal to external virtual work (conservation of energy) and removing the arbitrary virtual
displacements, vT, from both sides, we get

S =
∫

volume
(BT ∗ E ∗ B)δV ∗ v (13.11)

Looking at Eq. (13.11), we see that this is the familiar stiffness form of the element relationship between
forces and displacements. As a result, we can see that the integral is just the element stiffness. Taking that
portion out of the equation we have

Ke =
∫

volume
(BT ∗ E ∗ B)δV (13.12)

This is the classic form of the finite element stiffness formulation. For our axial element example, we
substitute for B from Eq. (13.7) and E is just the familiar Young’s modulus. In the general case, E is the
constitutive matrix. For the linear case, E is just the three-dimensional (3-D) representation of Hooke’s
Law. Integrating over the Y and Z coordinates for part of the volume integral we get the area of cross
section. Multiplying the matrices after the partial integration for the area and removing the constants from
the integral we get

Ke = AE ∗
∫

length

⎡
⎢⎣

1

L2
− 1

L2

− 1

L2

1

L2

⎤
⎥⎦ dx (13.13)

Integrating the matrix term by term over the length, we get the familiar form for a truss stiffness as

Ke = AE

L
∗

[
1 −1

−1 1

]
(13.14)



13-4 Handbook of Dynamic System Modeling

This is the final result we are looking for. Of course, this is identical to the standard truss stiffness matrix
developed by traditional stiffness methods. However, the described shape function process can be extended
to other types of elements where the traditional stiffness-by-definition method is not possible.

13.1.2 Shape Functions
As seen in the previous section, one of the major variables in deriving a finite element is the choice of the
shape function H(x). Remember that it is the shape function that describes how the nodal displacements
are distributed throughout the element. In the truss member, it was assumed that the end displacements
are distributed linearly. This is an exact assumption for a uniform cross-section member.

The choice of the shape function is directly related to the number of unknowns in the element. The
number of unknowns defines the order of approximation that the shape function can have. Again for the
truss member, there were two unknowns (one at each end). This gave linear shape functions since two
points give a straight line.

As a result, to increase the accuracy of an analysis you need to increase the number of unknowns.
This can be handled by two methods: (1) you can increase the number of unknowns and use piecewise
continuous linear shape functions or (2) you can increase the number of unknowns and increase the order
of the shape function within an element. The next section will show the effects of these assumptions on a
simple example.

13.1.3 Tapered Extensional Example
For a constant cross-section truss member, there is no need to increase the accuracy above linear shape
functions. Instead, let us look at another simple problem. We want to see the effects of shape function
selection on accuracy when trying to solve a tapered member subjected to axial load for different modeling
conditions (see Figure 13.2).

The problem is simple enough that it can be solved exactly and the approximate finite element results
compared with this exact result. The problem has a unit thickness and is subjected to an axial load of 20.
Note that no units are given. Any consistent units are acceptable. The exact solution for the displacement
is

u(x) = −0.0074074 ∗ ln (10 − 0.09 ∗ x) + 0.0170561

The solution was achieved by integrating the strain, ε = σ
E . The exact solution for the stress, force over

area, in the section is

σ(x) = 20

10 − 0.09 ∗ x
(13.15)

We will use the FEM and solve the problem using three different assumed shape functions. First, we will
start by choosing a single unknown at the tip of the member. Second, we use two unknown displacements,

100
A(x ) � 10 � 0.09 * x E � 30,000

Unit thickness

20
(load)

Area � 1

Area � 10

x

FIGURE 13.2 Axial loaded tapered problem.
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one at the tip and the other at the midpoint. Using the two unknowns we have a choice, we can use a
quadratic shape function or we can use two linear functions. We will perform the analysis using both.
Figure 13.3 shows the finite element models and assumed shape functions.

Using the appropriate shape functions, forming the stiffness matrices using Eq. (13.12), and then solving
for the displacements and stresses for each problem, we obtain the displacement and stress results shown
in Figure 13.4 and Figure 13.5.

There are some important things to notice about the results. First let us look at the displacement plots
(see Figure 13.4). The exact displacement is the natural log function given in Eq. (13.15). The assumed
displacement functions try to approximate this function by a linear, bilinear, and a quadratic function,
respectively. The FEM states that you can use the linear function, but in the limit as the number of linear
segments goes to infinity, the answer will be exact. You can see that the bilinear is a better approximation
than the linear. A trilinear would be even better, and so on. Also, the quadratic is even better than the other
two at approximating the natural log function.

Next we will look at the stresses (see Figure 13.5); here we see an even more dramatic result. The stress in
each linear element is constant. This is obvious since the stress is proportional to the strain and the strain
is the derivative of the displacement. Another fact about finite elements is that it is a displacement-based
method. This assumes that the displacements are continuous. However, it generally says nothing about the

v1 v2 v1 v2 v1

One displacement
linear

Two displacements
bilinear

Two displacements
quadratic

FIGURE 13.3 Three shape function models for tapered section.
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FIGURE 13.4 Axial displacement result for tapered element models.
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FIGURE 13.5 Axial stress for different tapered element models.

strain or stress. The displacement is continuous but the stresses are not continuous. This can be seen from
the bilinear result. The stresses are constant but different between the two halves of the tapered element
sections.

Finally, note that the stress from the quadratic element is linear. Again, this is due to the fact that the
stress is proportional to the derivative of the displacement. Note how in all the cases, the finite element
stress underestimated the true stress. Elements can be derived that also have stress continuity, but these
are more complex.

13.1.4 Shape Function Accuracy
In summary, the accuracy of a finite element is dependent on the choice of the shape function for that
element and the number of elements used in the model. In the limit, as the number of elements approach
infinity, the model will give exact results. The displacements are assumed to be continuous between elements.
However, stresses are not continuous between elements.

The best accuracy is achieved with many higher order elements. Equal accuracy can be achieved by
a larger number of lower order elements. Clearly, the required number of elements depends on the
displacement field you are trying to match. A linear displacement field only needs linear elements.

13.1.5 Numerical Integration
In the previous section, we saw how the choice of the number of unknowns dictated the order of the
finite element shape function. The more nodes and unknowns used in the element, the higher the order.
Once the shape function is chosen, the element can be formed by performing an integral over the element
volume. In simple elements, this integration is easy to perform exactly. However, when we use irregular
shaped elements in two and three dimensions, it is very difficult to perform the integration exactly.

As a result, most finite element programs rely on numerical integration techniques. Most engineers are
familiar with Trapezoidal and Simpson’s rule for numerical integration. While these methods are easy to
understand, they are computationally inefficient. Instead, in finite element codes, the Gauss–Legendre
quadrature method is often used.

Gauss–Legendre quadrature is exact for simple polynomials and requires very little computation. The
basic formula for the method is

∫ 1

−1
F(x) dx =

number of points∑
i=1

Ai ∗ F(µi) (13.16)
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This formula says that to get the integral for a function F(x), you just need to sum the function at some
given evaluation points, µi, times some weighting values, Ai, for the given number of evaluation points.
Both the evaluation points and the weights are known numbers! It turns out that the weights (Ai) and the
evaluation points (µi) never change. As an example, the two point Gauss–Legendre quadrature points and
weights are

µ1 = 1√
3

µ2 = − 1√
3

(13.17)

A1 = A2 = 1.0

These formulas say that if the function to be integrated is evaluated at the two Gauss–Legendre points and
the results are summed you get the exact integral (from −1 to 1).

The Gauss–Legendre quadrature procedure is EXACT depending on the number of points used for the
sum. In the case above, for two-point integration, the method is exact for up to a cubic equation. The
formula for exactness is P = 2N − 1, where P is the order of the polynomial that can be integrated exactly
using N Gauss–Legendre sampling points.

Therefore, three Gauss–Legendre points (N = 3) is exact for up to a fifth-order polynomial. The Gauss–
Legendre points do not have to be rederived once they are found. As a matter of fact, they can be looked
up in many sources for up to 20 points.

It is clear that this method requires a very small number of function evaluations to get exact integration
results. Also note that the method is defined as integrating a function from (−1 to 1). This restriction can
be lifted by using the mapping formula:

∫ B

A
F(x) = (B − A)

2

number of points∑
i=1

F

(
B − A

2
x + B + A

2

)
(13.18)

This formula takes the points defined on (−1 to 1) and shifts and scales (or maps) them into the new
limits, A to B. Using the mapping method also has some additional benefits. Most finite element programs
define their element on this −1 to 1 coordinate system. Then, whatever the actual shape of the element, it
is mapped to the −1 to 1 system. This allows us to use nonrectangular shaped elements. The mapping of a
nonrectangular element into a −1 to 1 coordinate system develops the isoparametric finite element.

This same mapping and integration procedures are used in two and three dimensions. When going to
more dimensions, we need to extend the Gauss–Legendre quadrature scheme. The usual method is to use
the same points as in the 1-D case but in all coordinate directions.

13.1.6 Mapping Errors
There can also be problems when using the mapping to shift to a −1 to 1 coordinate system. In
isoparametric elements, the mapping procedure uses the displacement shape functions as mapping
functions. Therefore, any real location X in the element can be found from its −1 to 1 coordinate by the
formula:

X =
N∑

i=1

Hi(µ)Xi (13.19)

where H(µ)i is the shape function for nodes i and Xi is the coordinate for node i. This mapping will work
for (1-D, 2-D, 3-D) elements. If we look at the 1-D axial problem again, we can develop the coordinate
mapping for the quadratic (two-node) element. If we allow the midpoint node to move between 1/4



13-8 Handbook of Dynamic System Modeling

from the left past the midpoint and 1/4 of the distance to the right end, we get the mapping as shown in
Figure 13.6.

Note in Figure 13.6 that if the midpoint node is either larger than 3/4 or smaller than 1/4, the mapping
goes outside the actual length of the element. This has the effect of saying that more than one location on
the element maps to the same point in the real X coordinate.

Clearly, this is not a valid element configuration. It also means the element mapping is not valid because
it is not invertible. The mapping from one coordinate to the other is handled by a transformation matrix
called the Jacobian. The Jacobian matrix needs to be inverted to switch from one coordinate system to the
other. The validity of a mapping can be determined by the invertibility of this mapping matrix. Therefore,
if the Jacobian matrix is singular or noninvertible, then the mapping is not valid. This usually means that
the nodes are not in the correct locations, outside the 1/4 points, or there are bad nodal coordinates.

13.1.7 Available Elements
Energy derivations (e.g., virtual work) are commonly used to form the stiffness for a variety of element
types. The most common stiffness elements are the membrane (planar), plate, shell, and solid elements.
Each of these elements has a given set of nodes and displacements associated with those nodes. The
common forms of these elements are given in Figure 13.7.
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FIGURE 13.6 Mapping with midpoint node not at the center.
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FIGURE 13.7 Common finite elements.
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These elements have additional restrictions on their behavior that depend on their derivation. However,
the result is always a stiffness matrix that can then be treated like any other stiffness matrix and may be
rotated and transformed as desired. When combining these elements, the same concerns about boundary
conditions and matching DOF at the nodes must be accounted for. Additional concerns are also generated
since the shape function assumption can affect the accuracy of the results.

13.2 Membrane Elements

Membrane elements can be used to describe any continuum problem that is 2-D in nature. Either the
plane stress or plane strain condition can be modeled using these elements. The plane strain condition says
the out-of-plane strain is zero, and the plane stress condition says the out-of-plane stress is zero.

As an example, the following problems can be analyzed in 2-D using membrane elements (Figure 13.8).

13.2.1 Membrane Theory
The membrane element is a flat element. It is generally assumed to have constant thickness. It can be
triangular, rectangular, four-sided polygonal, or have curved sides. The element is generally found in
configurations of three, four, six, eight, nine, and variable 3–9 nodes. Whatever the shape or number of
nodes, the element has two translational DOFs per node. These DOFs must lie in the plane of the element.
The results from the element consist of two normal stresses and a shear stress in the plane of the element
(see Figure 13.9). The stress results are generally given at each node in the element.

The difference in element behavior is dictated by the choice of the number of nodes and hence the num-
ber of DOFs for the element. The three-node triangle has linear shape functions and hence constant strain
and stress. This element is referred to as the constant strain triangle. The four-node element has a slightly
better response than the three-node element. The six-node triangle has quadratic shape functions and
linear stress and strain. The eight- and nine-node element has better response than the six-node element.

13.2.2 2-D Shape Functions
Remember, the shape function describes how the nodal displacements are distributed throughout the
element. In the membrane element, the X and Y displacements are assumed to be independent. As a
result, the same shape functions are reused for the X and Y displacements. The three-node elements have
linear shape functions for displacement. The four-node element adds an XY term to the shape function.

Rock

Soil

Tapered beam

Pavement

Concrete
dam

FIGURE 13.8 2-D problems using membrane.
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FIGURE 13.9 Membrane DOF and stress results.
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FIGURE 13.10 Shear locking of membrane.

The nine-node element has a quadratic variation of displacement. Remember the stress is the derivative
of the shape function and hence it will be linear with some quadratic parts.

The order of the shape functions are given to reinforce the capabilities of the particular elements
to model displacements. The more nonlinear the displacement field in a problem, the more elements
required (like the tapered axial problem). In addition, higher order elements can approximate a more
complex displacement field with fewer elements.

13.2.3 Shear Locking
When using or developing the FEM, the goal is to reduce the number of unknowns (nodes) and get
the highest order displacement behavior possible. Often, modeling complex behavior using lower order
elements can cause unexpected behavior. The problem with the four-node element (and all lower order
elements) lies in how the element models a higher order displacement field like the bending (flexural)
effect. Figure 13.10 gives the displaced shapes that each element uses to approximate beam bending.

The four-node element can only model bending (cubic displaced shape) by linear displacements. The
nine-node element has quadratic capabilities. The linear displaced shape causes shear to occur in the
element while in true bending none exists. The nine-node element does not generate this fictitious shear.

This phenomenon is called shear locking. Four-node elements exist that do not exhibit this problem. By
changing the formulation, you can create an element that gives better behavior. The two most common
methods are by creating a nonconforming element or by using reduced integration. A nonconforming
element adds additional shape functions that contain the higher order (bending) shape (see Figure 13.11).
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FIGURE 13.11 Methods for removing shear locking.

However, this additional shape function is NOT continuous across element boundaries and hence dis-
placements are not continuous. Therefore, the effect is to allow gaps to open between elements. Reduced
integration uses a different number of Gauss–Legendre points during the integration, a number less than
that required for exact integration. The sampling points are chosen so that this shear is not included. For
the current example, a single point in the center of the element is used for integrating the shear terms. As
can be seen, this will neglect the shear developed in the element as a result of the linear displaced shape.
There are other more complex constraint processes that remove the shear locking problem.

13.2.4 Mesh Correctness and Convergence
As discussed in Section 13.1, the accuracy of the solution depends on the number of elements and the order
of the shape functions. As the number of elements increases, the piecewise displacement approximation
approaches the true displacement field. Recall that two linear elements provided a better response than a
single linear element. Also, a single quadratic element performed even better.

13.2.5 Stress Difference to Indicate Mesh Accuracy
The stress results also follow the same pattern. More elements provide better stress results. However, since
we only guarantee the continuity of the displacements, the stresses are discontinuous. This means that at a
node where two elements meet, the stresses do not match. However, as the number of elements increases,
the difference in stresses between elements gets smaller. As an example, Figure 13.12 is a plot of the stress
along the top of the cantilever beam. The results are plotted for 4-4, 2-9, and 40-4 node membranes.

Note that for the 4-4-node elements, the difference between the elements is 28%. This large percentage
error indicates a poor mesh (or not enough elements). Looking at the two nine-node model we see a closer
difference. Here the error is 14%. This indicates that the mesh is marginal but probably sufficient. Finally,
we look at the 40-element model. Here the error is much better and only 3%. The 40-element model is
very good. Note that many solution techniques perform another process of stress averaging to improve
the final presented result.

The difference in element stresses at a node is an important measure of model correctness. In general, we
do not have the exact displacements to compare and check our model. Hence, stress checks are necessary
to verify convergence of our model. If the difference in stresses between elements is small, the finite element
mesh is good.

13.2.6 Element Meshing
Defining a mesh is critical to finding a correct solution with a minimum number of elements. More
elements are needed where the displacement field is highly nonlinear (or in a high stress gradient area).
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FIGURE 13.13 Mesh variation with stress gradient.

Fewer elements are needed as the response becomes linear and only a single element is required in a constant
stress field. As an example, the following stress function could be modeled by the mesh given in Figure 13.13.

This change in the number of elements is handled by mesh changes from a single to multiple or higher
order elements. This is where variable node elements are useful.

Another important principle is that stress concentrations are localized phenomena and do not affect
the solution at a reasonable distance from the concentration. In other words, bad stress differences at one
portion of a model do not necessarily affect the results in a well-modeled portion.

In summary, a small stress difference between elements means a good mesh. Large stress differences in
localized areas will not necessarily affect the result a reasonable distance away.

13.3 Flat Plate and Shell Elements

The next finite element we examine is the flat plate bending element. This element can be thought of
as a 2-D extension of a beam element. Beam elements provide both shear and bending resistance. Plate
elements provide this same resistance but in two directions.
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FIGURE 13.14 Structures where flat places can be used.

Plate bending elements can be used to model common structural elements such as floor slabs, floor
diaphragms, bridge decks, and even I-beams. Whenever out-of-plane bending effects need to be considered,
plate elements can be used. They are also useful for thin-walled structures like pipes and tanks. Most
modeling situations require that both the out-of-plane plate bending and in-plane membrane effects be
modeled. Some example structures are shown in Figure 13.14 that use plate and membrane elements.

True plate elements do not include in-plane effects. In-plane effects are handled by membrane elements.
Similarly in a beam element the bending and axial effects are uncoupled. This is the same in two dimensions.
These two elements are commonly merged to get a complete in-plane and out-of-plane element referred
to as a flat shell element. A curved shell element would be needed to include the coupling of axial and
bending effects. We will discuss a true plate element before discussing flat shell elements.

13.3.1 Plate Theory
There are two common versions of plate theory used in finite elements: Kirchoff and Mindlin. Kirchoff plate
bending theory is derived in a similar fashion to beam bending but includes bending in both directions.
The derivation assumes that the normal displacement, w, controls. In Kirchoff theory the rotation, �, in
the plate is the derivative of w, the vertical displacement. This is the same as Euler–Bernoulli beam theory.
In Mindlin theory, shear deformation is included and the rotation is the sum of the derivative of w and
the shear deformation angle.

13.3.1.1 Kirchoff Theory

In Kirchoff theory, the normal to the surface remains normal. Hence, this theory ignores shear deformations
(just like Euler–Bernoulli beam theory). To derive this type of finite element, a shape function that describes
the distribution of the normal displacement w(x, y) throughout the element is needed. This shape function
has the property that its derivative is equal to the slope of the surface. An important implication of this is
that the slope is continuous across elements! This is called a C1 element, meaning that it has continuous
first derivatives between elements. Figure 13.15 shows the relationship between w and � for Kirchoff
theory.

13.3.1.2 Mindlin Theory

The second theory, Mindlin, includes shear deformations. As a result, a vector initially normal to the
surface does not remain normal during deformation. The derivative of the shape function for the normal
displacement w(x, y) is not equal to the rotation. In Mindlin theory, the rotation of the surface is the sum
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FIGURE 13.15 Kirchoff plate theory.

Shear included:
Rotation � Sum of dw/dx � Shear rotation

dw
dx

w

Shear deformation � θ

FIGURE 13.16 Mindlin plate theory.

of the derivative of w(x, y) and the shear deformation angle change. Figure 13.16 shows the relationship
between the displacement w(x, y), shear angle γ , and the derivative of the displacement.

This sum of angles to get the total rotation implies that independent shape functions can be used for the
displacement w and the rotations (�x , �y). Mindlin theory is the most common formulation found in
flat plate and shell elements used in current computer programs. This means there will not be rotational
continuity across elements boundaries (since shear exists). There is of course still rotational continuity at
the nodes. Hence the elements are considered to be C0 elements.

In both the Kirchoff and Mindlin formulations, the pure plate bending element has three DOFs per node:
the normal displacement w and the out-of-plane rotations (�x , �y). These are shown in Figure 13.17.

13.3.2 Generalized Stress
In plate theory, most derivations refer to the equations for generalized stress and strain. This is because the
equations for plate behavior can be converted to the form:

M(x, y) = E∗ ∗ �(curvature) (13.20)

where E∗ is a modified constitutive matrix. Note that this is just like the equation for stress and strain
except we have moments replacing stresses and curvature replacing strain. In plates, the displacement
unknowns are the normal displacement and the two rotations. Following the analogy of generalized stress,
moments are equivalent to stress and curvature is equivalent to strain. This means that when using these
elements in modeling, we treat the moment gradient like we would stress to determine the level of shape
function and number of elements required for an accurate analysis. In addition, the difference in moment
at a common node between two elements indicates the adequacy of the mesh.
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FIGURE 13.17 Plate DOF and stress results.

The results from all plate elements consist of moments and the transverse shear, Q. It is important to
note that the moments and shear results are per unit length of plate.

Flat plate elements can be found in three- to nine-node versions, just like membrane elements. The
same concepts of shape function order are true for plates as they were for the membranes. Three-node
triangular plates model constant moments exactly. Nine-node elements model linear moments with some
second-order effects. It is important to remember that in plates, moments are equivalent to stress and
curvature is equivalent to strain, in terms of modeling. In other words, we need more elements in a high
moment gradient area for plates.

Flat shell elements combine the effects of plate bending with in-plane (membrane) effects. There
exist formulations for both flat and curved shell elements. The curved element formulation is a more
complicated derivation. The flat shell however can be considered to be merely the addition of the membrane
and flat plate elements. This is the most common form of shell element found.

13.4 Solid Elements

The final element we will look at is the 3-D solid element. This element is the most general of the finite
elements. It fully represents a 3-D stress and strain state. It is a fundamental building block that can be
used to create any shape structure. Clearly, as a structure becomes more complex, the effort required
defining the geometry and mesh becomes time consuming. As a result of the required sophistication of
many analyses, many people are moving to computer-based solid geometry modeling of structures. This
especially includes mechanical components. Solid elements are a natural choice for this type of modeling
since any solid object can be meshed by solid elements.

13.4.1 Solid Element Behavior and DOF
Solid elements are found in varied configurations analogous to membrane elements. They can be found in
four-node tetrahedrons, eight-node bricks, 20-node bricks, and 27-node bricks. Of course, variable node
versions exist that allow from 8 to 27 nodes.

The solid element is a 3-D analog of the membrane element. It has three DOFs per node. It does not
have any rotational DOF or rotational stiffness at the nodes. The solid element is capable of representing
a fully 3-D stress state. The available DOF and stress results for a typical eight node of a solid element are
shown in Figure 13.18.

The properties required for the solid element consist of Young’s modulus, E, and Poisson’s ratio, ν. Note
no thickness is required as was the case for membrane element. Solid elements model the full 3-D effects
of Hooke’s Law.
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FIGURE 13.18 3-D solid DOF and stress results.

13.5 Dynamics

In the displacement-based linear static finite element analysis method described above, the governing
equation to be solved is the static equilibrium equation:

K q = F (13.21)

where K is the global stiffness matrix of the system, q a vector of global displacement DOF, and F a vector
of global nodal forces (loads). Solving Eq. (13.21) yields a vector of spatially varying, but time-invariant,
displacements q that may be used to recover (back-calculate) element quantities such as strains, stresses,
and internal forces. Dynamic finite element analysis, in contrast, involves solution of a governing equation
of motion that is both spatially varying and time-varying:

Mq̈ + Cq̇ + Kq = F(t) (13.22)

In this equation, M is the global mass matrix of the finite element model under consideration, C the global
damping matrix, and K the global stiffness matrix. Quantities q̈, q̇, and q are vectors of time-varying nodal
accelerations, velocities, and displacements, respectively, and F(t) is a vector of time-varying forces acting
at the system DOF. The equation of motion can be interpreted as a force balance between inertial force Mq̈,
damping force Cq̇, internal structural force Kq, and external load F(t). Dynamic finite element analysis
requires that the force balance described by Eq. (13.22) be satisfied at each point in time.

Formation of the global stiffness matrix K is carried out by assembling element stiffness matrices Ke,
computed as indicated in Eq. (13.12), for all elements constituting the model. The global mass matrix M
is similarly constructed as an assembly of element mass matrices. A commonly used method of forming
element mass matrices Me is referred to as the consistent-mass formulation and is given by

Me =
∫

volume
ρ(HT ∗ H)δV (13.23)

where ρ is the mass density of the material and H a shape function matrix. Alternatively, in many
applications is it sufficiently accurate to simply lump mass at the nodes of the model in accordance with
tributary areas (or volumes) for each node. Such an approach produces a diagonal mass matrix and is
referred to as a lumped-mass formulation.

Methods of formulating the global damping matrix C are more varied than those used to form K and
M . Moreover, virtually all formulations of damping are simply mathematically convenient constructions
that only approximately represent actual damping phenomena that occur in solid materials. Dynamic
damping models are generally intended to model energy dissipation in structural materials. In Eq. (13.22),



Finite Elements 13-17

q(t )

F(t )

q(t )

F(t )

q(t )

F(t )

k

c

m

m m

k, c k, c

FIGURE 13.19 Schematic diagrams of single degree of freedom (SDOF) systems.

a viscous damping model is employed in which the energy dissipating damping forces Cq̇ are assumed
to be proportional to the nodal (particle) velocities q̇. A common and mathematically convenient means
of formulating viscous damping matrices is referred to as Rayleigh damping (also called proportional
damping), and is given by

C = αM + βK (13.24)

where α and β are scalar constants. If the Rayleigh damping model is employed at the element level,
rather than at the global level indicated in Eq. (13.24), then element damping matrices are formed as
Ce = αMe + βKe and are then assembled into a global damping matrix C in the same manner that element
mass and stiffness matrices Me and Ke are assembled.

13.5.1 Single Degree of Freedom (SDOF) Dynamic Analysis
SDOF dynamic systems are structures in which inertial, damping, and stiffness (internal structural) forces
may be adequately described by a single displacement DOF q, and its time derivatives q̇ and q̈. Schematic
diagrams of example SDOF systems are shown in Figure 13.19.

For an SDOF system, the equation of motion, previously described in terms of matrices and vectors in
Eq. (13.22), simplifies to

mq̈ + cq̇ + kq = f (t) (13.25)

where m, c, and k are scalar constants, and q̈, q̇, q, and f (t) are time-varying scalars. If no forcing (loading)
function f (t) is present, i.e., f (t) = 0, then free vibration of the system results. Oscillation of a system
in free vibration may be initiated by nonzero initial conditions such as initial displacement and initial
velocity. In Figure 13.20, free vibration displacement responses q(t) for an undamped (c = 0) system are
shown for cases of nonzero initial displacement q0 �= 0, nonzero initial velocity q̇0 �= 0, and nonzero initial
displacement and velocity q0 �= 0 and q̇ �= 0.

In each case shown in Figure 13.20, the SDOF system oscillates at the same characteristic frequency,
denoted the circular natural frequency of the system, and determined as

ω = √
k/m (rad/s) (13.26)

Parameters related to ω are the natural frequency of the system f = ω/2π (Hz), and the natural period of
the system T = 1/f (s). Because damping has been ignored in Figure 13.20, no dissipation of energy occurs,
and oscillation continues without decay. For damped cases in which c �= 0, energy dissipation during each
cycle of oscillation causes the amplitude of free vibration to decay. The rate at which this decay occurs is
a function of the level of damping c present in the structure. The level of damping may also be expressed
as a fraction of a special level of damping called critical damping. The critical viscous damping coefficient
for an SDOF structure is given by

ccr = 2mω = 2
√

mk (13.27)
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FIGURE 13.20 Free vibration of an undamped SDOF system under nonzero initial conditions.

Critical damping ccr is the minimum level of damping that will prevent oscillation of an SDOF dynamic
system in free vibration. For systems in which c < ccr (underdamped), free vibration oscillations will
occur in response to nonzero initial conditions. However, for systems in which c > ccr (overdamped), free
vibration oscillations will be completely suppressed. Damping levels in structures are therefore very often
described in relation to ccr by using the parameter:

ξ = c/ccr (13.28)

where ξ is called the ratio of critical damping or fraction of critical damping. Damping also generally affects
the frequency and period of oscillation. Analogous to the undamped natural circular frequency ω, the
damped circular frequency is defined as

ωd = ω
√

1 − ξ2 (rad/s) (13.29)

Following from this definition, the damped frequency is fd = ωd/2π (Hz) and the damped period is
Td = 1/fd (s). For most structural materials, natural damping levels fall within the range ξ < 10%. For
such conditions, ωd

∼= ω, fd ∼= f , and Td
∼= T . In Figure 13.21, displacement responses q(t) for undamped

and damped SDOF systems subjected to nonzero initial conditions are compared for various levels of
damping.

When a nonzero forcing function f (t) acts on a structure, the resulting response is referred to as forced
vibration. Depending on the complexity of f (t), one of a variety of different techniques may be employed
to quantify the displacement time-history of the SDOF system. For relatively simple mathematical forms
of f (t), Duhamel’s integral

q(t) = e−ξωt
(

q0 cos (ωdt) + q̇0 + ξωq0

ωd
sin (ωdt)

)

+ 1

mωd

∫ t

0
f (τ)e−ξω(t−τ) sin (ωd(t − τ))dτ (13.30)
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FIGURE 13.21 Free vibration of a damped SDOF system under non-zero initial displacement and velocity conditions.

may be used to compute the displacement response q(t) of an SDOF system subjected to nonzero initial
conditions q0 and q̇0 and forcing function f (t). For more complex forms of f (t)—as would arise, for
example, in seismic (earthquake) analysis—numerical methods must instead be employed. Generally,
direct integration techniques are used to time-integrate the equation of motion (Eq. [13.25]). All such
methods fall under the general classification of time-domain analysis, because the equation of motion
is solved in the time-domain, advancing one time-step at a time through the entire range of times of
interest. Commonly employed direct integration methods include the average acceleration method, linear
acceleration method, and central difference method. For additional details regarding these numerical
procedures, the reader may consult Chopra (2000), Clough and Penzien (1993), Tedesco et al., (1999), and
Weaver and Johnston (1987).

13.5.2 Multiple Degree of Freedom (MDOF) Dynamic Analysis
In MDOF time-domain analysis, direct time-integration procedures may be applied either to the coupled
matrix equation of motion (Eq. [13.22]), or to a transformed form of that equation. For an MDOF
finite element model having n global DOFs, the matrices M , C, and K , in Eq. (13.22) will be n × n in
size and nondiagonal (generally) in form. The presence of off-diagonal terms in these matrices couples
the various DOFs in the system together requiring that all n DOFs be time-integrated simultaneously.
A variety of numerical methods are available for direct time integration of MDOF-coupled equations of
motion. Examples include the average acceleration method, linear acceleration method, Wilson-θ method,
Newmark-β method, and the central difference method.

An alternative time-domain analysis approach for MDOF systems is to transform the n-dimensional
coupled equation of motion (Eq. [13.22]), into a set of n separate—and uncoupled—SDOF equations of
motion that can be solved individually using SDOF analysis methods. MDOF methods based on this type
of transformation are called modal methods because they generally employ normal (or natural) modes of
vibration in the transformation process. Normal modes of vibration, and the corresponding frequencies
at which these modes oscillate, are obtained by solving the eigen problem

Kφ = λMφ (13.31)
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FIGURE 13.22 Normal mode shapes (eigen vectors) for an MDOF system.

for the n eigen vectors φ and eigen values λ of the system. Normal mode shapes of the structure
(Figure 13.22) are described by the vectors φ whereas the corresponding frequencies are computed as
ω = √

λ.
Normal modes of vibration exhibit a property called orthogonality, which is critically important in

transforming (uncoupling) the coupled equations of motion. For two normal modes r and s of a structure,
orthogonality with respect to the mass and stiffness matrices states that

φT
r Mφs = 0 for r �= s (13.32)

and

φT
r Kφs = 0 for r �= s (13.33)

If all n normal modes (eigen vectors) of a finite element model are collected into an eigen vector matrix
� = [φ1φ2 . . . φn], the coupled matrix equation of motion Eq. (13.22) can then be transformed into

Mq̈ + Cq̇ + Kq = F(t) (13.34)

where M = �T M�, C = �T C�, K = �T K�, and F(t) = �T F(t). In Eq. (13.34), M , C, and K are the
modal mass, modal damping, and modal stiffness matrices, respectively; and q̈, q̇, and q are the modal
accelerations, modal velocities, and modal displacements, respectively. F(t) is the modal load vector. Each
of the modal matrices M , C, and K is diagonal due to the orthogonality of the eigen vectors with respect
to mass and stiffness (C must be a Rayleigh damping matrix for C to be diagonal). Because M , C, and K
are diagonal, Eq. (13.34) then represents a set of n-separate, uncoupled SDOF modal equations of motion.
For a given mode r, the corresponding SDOF modal equation of motion is then

mrq̈r + cr q̇r + krqr = f r(t) (13.35)

where mr = φT
r Mφr , cr = φT

r Cφr , kr = φT
r Kφr , and f r(t) = φT

r F(t). Each modal SDOF equation of motion
given by Eq. (13.35) may be solved using SDOF time-integration methods. Once all of the SDOF modal
equations of motion have been time-integrated to obtain time-histories of modal displacement qr(t) for
each mode r, time-histories of structural displacements may be recovered by superposition

q(t) =
∑

r

φrqr(t) (13.36)

In many practical applications of MDOF dynamic analysis, only a relatively small percentage of the n modes
of a system may participate substantially in dynamic response to loading. In such cases, the processes
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described above only need to be carried out for a truncated subset of p modes rather than making use
of all n modes. Under such conditions, modal analysis techniques may be more computationally efficient
than methods that time-integrate the n-dimensional coupled equation of motion directly.

13.6 Summary

The basics of the finite element process have been described using the simple virtual work formulation and
physical elements as examples. There are numerous books and publications on finite elements that give
more detailed descriptions, alternate formulations, and specific formulations for different domains. What-
ever the domain or derivation method, the basics given in this chapter still hold and give the foundation
for understanding more complex modeling.
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14.1 Introduction

Multimodels are models that are composed of other models either through homogeneous or heterogeneous
coupling. Multimodeling (Fishwick, 1995) is the process of engineering a model by combining different
model types to form an abstraction network or hierarchy. Multimodeling, in a nutshell, endows the
simulation modeler with the capability to blend different model types together to form hybrid models.

When we begin to understand a physical system by creating a model, we often find that the model is too
limited: the model will answer only a very limited set of questions about system behavior. It is necessary,
then, to create many models and link them, thereby maintaining a multilevel view of a system while
permitting an analyst to observe system output at several abstraction levels. For example, consider this
scenario: a region with several key military vehicles and targets, planes (both fighter as well as command and
control center), surface-to-air missile (SAM) sites, and drones. A variety of models define the geometry and
dynamics of these objects. Ideally, we can explore and execute these models within a 2D or 3D visualization
environment by formalizing domain knowledge and providing a well-defined modeling methodology.

We will introduce two multimodeling approaches, integrative multimodeling (Fishwick, 2004; Park
and Fishwick, 2004a, 2004b; Park, 2005) and general multimodeling (Fishwick, 1995; Lee, 2005). The
purpose of integrative multimodeling is to provide a human–computer interaction environment that
allows components of different model types to be linked to one another—specifically dynamic models
used in simulation to geometry models for the phenomena being modeled. General multimodeling,
however, describes a number of abstraction perspectives for a complex real-world system using simulation
model types such as finite state model (FSM) and functional block model (FBM) (Fishwick, 1995).

To support the above multimodeling environments, we developed an XML-based modeling and simu-
lation framework called RUBE (Kim et al., 2002; Kim and Fishwick, 2002a, 2002b; Fishwick, et al., 2003;
Fishwick, 2002), which encompasses the modeling process of a real-world system as well as the simulation

14-1
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process of the model. The XML-based RUBE framework defines a formal approach to capture physical
knowledge as well as the semantic information of the model and represent the information as separate
XML documents.

We developed two XML-based languages: the multimodeling exchange language (MXL) (Kim et al.,
2002; Kim and Fishwick, 2002a, 2002b; Fishwick et al., 2003; Fishwick, 2002; Damkjer, 2003) and the
dynamic exchange language (DXL) (Lee, 2005; Lee and Fishwick, 2002), for the RUBE framework. MXL
is an XML-based modeling language to support traditional heterogeneous model types such as FSM,
FBM, and Petri net (Fishwick, 1995). DXL is an XML-based functional block language to support low-
level simulation execution within the RUBE framework. We first discuss two multimodeling concepts,
integrative multimodeling and general multimodeling as well as the overall structure of the XML-based
RUBE framework. In Section 14.2, the process for constructing a multimodel is presented. The concepts
and descriptions of MXL and DXL are explained in Sections 14.3 and 14.4. In Section 14.5, we demonstrate
how the methodology is applied to a real-world application using an example.

14.1.1 Integrative Multimodeling
A real-world system can be embodied as a certain model type within a 2D or 3D visualization environment.
It can be described by different perspectives depending on the modelers’ viewpoint since the real-world
system has the geometry or dynamics. Therefore, through the modeling process, the real world could be
expressed in diverse model types, such as a geometry model or a dynamic model. Ideally, we can explore
and execute these models within a unified 3D scene that integrates such models.

We present a novel method (i.e., integrative multimodeling) of visually merging two types of models
with the intention of allowing the user to more easily, and contextually, associate dynamic model and scene
model components. We need to define a formalized scene domain in which multiple model representations
can exist together and a certain model type can be transformed into other model types via user interactions,
by conceptualizing all objects, that the scene domain contains, and specifying properties (i.e., geometry and
dynamics) of objects and relationships between objects. We employ the concept of ontology to formalize
a certain scene domain. The purpose of integrative multimodeling is to provide a human–computer
interaction environment that allows users to change model types within the same environment. Therefore,
user interactions should be logically formalized and implemented to support the integrative multimodeling
environment. We formalize the user interaction as an interaction model and derive the interaction model
(Park and Fishwick, 2004a, 2004b; Park, 2005) based on first-order logic (FOL) rules. The concepts of
ontology and the FOL rules along with the interaction model will be further discussed in Section 14.2.

14.1.2 General Multimodeling
In this section, we discuss a multimodel concept and two types of multimodels according to their model
types, such as homogeneous and heterogeneous multimodels.

14.1.2.1 Intralevel and Interlevel Couplings

General multimodels are simulation models that are composed of heterogeneous simulation models. Since
most simulation models like FSM and FBM represent only a part of the overall system behavior, they make
only a subset of a solution for analyzing the prediction and diagnosis of the real world. General multimodels
could, however, have a number of abstraction perspectives for a complex real-world system. Therefore,
they can more correctly represent and analyze a complex real-world system. Different component models
in a multimodel can define the activity at different stages of the simulation.

Figure 14.1 shows a general multimodel example having an abstraction hierarchy of heterogeneous
simulation models. Double dotted lines in this figure mean the relation of its components to compose
an upper-level model. This relation should ensure intralevel coupling. Intralevel coupling defines model
components coupled to one another in the same model (Cubert and Fishwick, 1998). In Figure 14.1, there
are two intralevel couplings. M2 is composed of m1, m2, and m3. M3 is composed of s1, s2, and s3. The
intralevel coupling in M2 defines how the submodels of M2 are formed to represent a model M2 and the
intralevel coupling in M3 defines how the submodels of M3 are formed to represent a model M3.
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FIGURE 14.2 Homogeneous refinement: declarative → declarative.

In Figure 14.1, down-arrows mean refining a model and up-arrows mean the abstraction of a model.
These two relations should ensure interlevel coupling. Interlevel coupling defines rules as to how model
components from one model can be refined into models of different types (Cubert and Fishwick, 1998).
In Figure 14.1, there are two interlevel couplings. M2 refines a model M1 and M3 refines m2. A model m2

abstracts M3, and M1 abstracts M2. To refine m2 into M3, we should ensure the intralevel coupling in M2

when we change the submodel m2 and M3.

14.1.2.2 Homogeneous and Heterogeneous Multimodels

In Figure 14.2, the FSM shows top-down homogeneous decompositions (i.e., intralevel coupling), since
the element of the upper model is defined by the same type of models. State s1 is decomposed into the
lower level of FSM. The predicates p1(i) and p2(i) involves external input variable i.

Figure 14.3 shows a two-level functional hierarchy, where function f is defined in terms of a composition
of three other functions f1, f2, and f3.

Heterogeneous decomposition of models in intralevel coupling describes the semantics of a model using
different model’s semantics. Figure 14.4 shows FSM that contains the internal state transitions associated
with function f . The predicate p(i) tests input variable i. Any FSM should be defined inside a functional
block (i.e., function f in Figure 14.4) to represent explicit external input and output semantics.

Figure 14.5 shows a state-to-state space mapping, which is not immediately apparent from the figure.
Specifically, most functional block models that represent some aspects of physical reality involve state
transitions, which means f1 and f2 contain internal state transitions. There is a transition with two possible
types of semantics coming out of state s in Figure 14.5. An external transition would be of the form p2(i) and
an internal transition would be based on a variable o that is a component of internal state space of f1 and f2.
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14.1.3 RUBE Framework
The RUBE framework is an XML-based dynamic modeling and simulation framework permitting the
users to specify and execute a dynamic model, with an ability to customize a model presentation using 2D
or 3D visualization (Park and Fishwick, 2004a, 2004b; Park, 2005; Fishwick et al., 2003; Kim and Fishwick,
2002b). The purpose of RUBE is to facilitate a dynamic multimodel construction based on XML, and
visualize and execute the model within a 2D environment (Fishwick et al., 2003) or a 3D immersive
environment (Park and Fishwick, 2004a, 2004b; Park, 2005; Fishwick et al., 2003; Carey and Bell, 1997).
The overall process of the XML-based RUBE framework is shown in Figure 14.6.

We will proceed using the architecture depicted in Figure 14.6, referencing each section by number as it
appears in the figure. For each section, we will cover a description of that section.

A scene file contains 2D or 3D geometry objects that represent geometry and dynamic models. The RUBE
framework has 2D- (i.e., Sodipodi, 2006) and 3D-based (i.e., Blender, 2006; Roosendaal and Selleri, 2004;
Roosendaal and Wartmann, 2002) interfaces for representing 2D and 3D scenes, respectively. The scene
files represent the appearance of geometric objects in the model and do not have any information about
model behavior or dynamics. The scene could be represented either in standard 2D/3D XML documents
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(i.e., scalar vector graphics (SVG) (Eisenberg, 2002) or extensible 3D (X3D, 2006) or in Blender. Therefore,
any 2D or 3D tools, which can generate SVG or X3D files, might be applied as a part of the RUBE
framework.

For model creation there are two stages: model translation and model simulation. For model translation,
a dynamic model is an actual model file that is represented in MXL. The MXL file describes the behavior
of the model and represents the model file that includes the specification of a heterogeneous multimodel
in an abstract level such as FBM and FSM. The MXL-to-DXL translator in extensible stylesheet language
(XSL) (Kay, 2000) translates a model file written in MXL into a low-level functional specification language
called DXL, which can be described with a homogeneous block diagrammatic presentation. For model
simulation, the DXL is translated into an executable programming code for the model simulation using the
DXL-to-simulation translator. The programming code either in JavaScript or in Python can be executed
based on SimpackJ/S or Simpack Python (Fishwick, 1992; Park and Fishwick, 2002), which provides the
underlying code foundation for libraries, classes, and objects for simulation.

For model merging we have two approaches: (1) using a 2D or 3D merge engine in XSL, we can merge
a scene file with an actual model execution file in JavaScript or (2) within the Blender environment, we
could naturally combine the 3D scene in Blender with simulation code in Python using Blender game
engine. Then, finally we could visualize and execute the geometry and dynamic models within a 2D or 3D
environment.

14.2 Scene Construction

14.2.1 Ontology
We need to formalize physical systems based on particular domain knowledge, since such formalism should
help to build multiple, cooperative simulation models of certain physical systems. We can describe a certain
target system using the concept of ontology. An ontology represents a formal conceptualization of a domain
by clearly specifying meaning of terms and their interrelationships among concepts used in a particular
domain (McGuinness, 2002; McGuinness and Harmelen, 2003; Berners-Lee et al., 2001). Ontologies
consist of three general elements: classes, properties, and the relationships between classes. Any concepts in
a target domain are represented as classes. Classes could be further generalized into specific categories using
“is-a-kind-of”relationship (i.e., generalization in unified modeling language (UML). Also, we can express a
structural relationship (i.e., association in UML) that specifies mappings between objects (i.e., instances of
classes). Using “has-a”/“whole-part” relationship (i.e., aggregation in UML), structural dependency could
be described. In addition, certain constraints, such as multiplicity and multiple associations, are specified
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along with the relationships between objects. We explain the conceptualization process by creating an
ontology for a sample domain: a boiling water domain. Figure 14.7 shows an example scene ontology for
boiling water (some concepts and relationships are not shown to avoid ontology complexity).

14.2.1.1 Classes and Relationships

Consider a pot of boiling water on a stovetop electric heating element. This domain contains a pot and
an electric stove with a temperature knob. Initially, the pot is filled to some predetermined level with
water. And this system has one input or control—the temperature knob. The knob is considered to be in
one of the two states: on or off. On the basis of the given domain knowledge, we could create four basic
classes, Pot, Electric Stove, Knob, and Water, as well as one abstract class called Scene. Because the overall
scene (i.e., boiling water scene) “is-a-kind-of” scene, we could add one more abstract class called Boiling
Water Scene as a subclass of the Scene class. And the electric stove “has a” knob. Therefore, aggregation
relationship could be created between the Electric Stove and Knob classes. In addition, we could make
aggregation relationships between the Boiling Water Scene class and Pot, Electric Stove, and Water classes,
since the scene contains the three classes. If we consider system dynamics approach (Fishwick, 1995),
which is a methodology for engineering simulation models, to examine the scene domain, we could derive
the following simple causal diagrams:

• Knob_On � Water_Not_Cold
• Knob_Off � Water_Cold.

The graphs show that “turning on/off the stove causes a change of water phase from cold/not cold to not
cold/cold.” (We assume that initially the water is in the cold phase.) Also, we could further generalize the
second nodes in the graphs. Hence, we could drive the following generalized causal graphs:

• Knob_On � Water_Heating (=Water_Getting_Hotter) � Water_Boiling
• Knob_Off � Water_Cooling (=Water_Getting_Colder) � Water_Cold.

By analyzing the causal graphs above, we could create a dependency relationship between Knob and Water
classes. Also, the Water class could be further generalized into “cold” water and “not cold” water based
on current water phase. Therefore, corresponding classes, such as Cold and Not cold, could be created as
subclasses of the Water class. Besides, more generalized water phases (i.e., heating, cooling, and boiling
phases) could be adopted as subclasses of the Not cold class. However, the following issue naturally arises:
How do we express the sudden change in temperature within the heating and cooling phases? In other
words, how do we naturally describe the continuous behaviors inside the phases? Therefore, we need
to define reasonable functions that could describe more specific dynamic behaviors inside the phases.
We could employ differential equations, since differential equations are the natural method of defining
physical phenomena. Consider, for example, the heating phase. We could derive the following differential
equation using Newton’s law and the capacitance law:

T ′ = k(100 – T)

where T is the temperature (α ≤ T ≤ 100, α is the ambient temperature) and k the thermal conductivity
of water (i.e., rate constant).

In this case, one integrator, one multiplication, one subtraction, and one constant-number generation
functions are needed. Therefore, corresponding functions are inserted into the Heating class as methods.
Likewise, proper functions for cooling phase could be inserted into the Cooling class.

We define Dynamic Model and Geometry Model classes, since we want a formalized scene domain in
which multiple model representations can exist together (i.e., integrative multimodeling) and a certain
model type can be transformed into another model type via user interactions (i.e., geometry model to
dynamic model and vice versa). In addition, Boiling Water Dynamic Model class is defined as a subclass
of the Dynamic Model class. Similarly, Boiling Water Geometry Model class is defined as a subclass of the
Geometry Model class. The Boiling Water Dynamic Model class could be composed of at least one dynamic
model, such as FSM or FBM. Therefore, we define FSM and FBM classes as subclasses of the Simulation
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Model class. Because each simulation model has its model elements (i.e., transitions and states for FSM;
traces and functions for FBM), we also define four classes such as Transition, State, Trace, and Function.
Likewise, Geometry class is created, since 2D/3D objects are needed for explicitly representing geometric
representations for a geometry model as well as a dynamic model in 2D or 3D space. Specific geometric
types, such as primitive objects (i.e., cube, sphere, and arrow) and nonprimitive objects (i.e., stove, water,
and pot), could be defined as subclasses of the Geometry class. By conceptualizing the simulation model
type and 2D/3D geometry domains, we would provide syntactic and semantic mappings between objects
in the boiling water domain and objects in the simulation model type domain, and objects in the boiling
water domain and objects in the 2D/3D geometry domain.

To support the integrative multimodeling environment, we need to define additional classes, such
as Interaction Model, Scene Handler (i.e., 3D icons for supporting integrative multimodeling), Sensor,
Controller, and Actuator. We will cover these concepts in the following subsections.

14.2.1.2 Properties and Relationships

We assign two named properties (i.e., attributes), Geometry Model and Dynamic Model, to the Boiling Water
Scene class. In addition, we generate two association relationships, named“has a geometry model,” and“has
a dynamic model,” which connect to the Boiling Water Geometry Model and Boiling Water Dynamic Model
classes. Therefore, an object (i.e., an instance) of class Boiling Water Scene could have two attributes whose
values are objects of Boiling Water Geometry Model and Boiling Water Dynamic Model classes. Similarly,
two attributes, Geometry Object and Dynamic Model Element, are declared for the five fundamental classes
of the scene (i.e., Pot, Electric Stove, Knob, Water, and Scene Handler classes), since we assume that every
object in the scene has a corresponding geometric object for presentation as well as a dynamic model
element (i.e., state or function) for dynamics. Because Cold, Not Cold, Boiling, Cooling, and Heating
classes are subclasses of the Water class, these generalized classes can have their own attribute values that
are generated from Geometry, State, and Function classes. Therefore, we create association relationships,
named “has a geometry object,” and “has a dynamic model element,” between the water domain and the
geometry domain, and the water domain and the function/state domain. Because all classes in the water
domain are generated based on the water phases, state-based dynamic model type (i.e., FSM) could be the
reasonable choice to represent dynamics. Therefore, association relationships between the water domain
and the state domain are generated.

We create another association relationship named “uses” between class State/Function and class Geom-
etry, since 2D/3D objects are needed for explicitly representing geometric representations for a certain
dynamic model in 2D/3D space. An attribute, Interaction Model, is defined inside Geometry class, since
we attempt to induce an overall scene interaction model by taking an individual interaction model for
each geometric object that the boiling water scene contains. In addition, we define three attributes, Sensor,
Controller, and Actuator, in class Interaction Model so that an interaction model for a certain object could
be inferred from its attribute values (i.e., sensor, controller, and actuator, which are components of an
interaction model) through first-order logics. Likewise, the overall interaction model for the boiling water
scene could be generated from each object’s interaction model through first-order logics. We will explain
the process for creating interaction models for the boiling water scene in next section. To represent relation-
ships above, we create four association relationships,“has a sensor,”“has a controller,”“has an actuator,” and
“has an interaction model,” between Interaction Model and Sensor classes, Interaction Model and Controller
classes, Interaction Model and Actuator classes, and Geometry and Interaction Model classes, respectively.

14.2.2 Interaction Model Creation
The purpose of integrative multimodeling is to provide a human–computer interaction environment that
allows users to change model types within the same environment. Therefore, user interactions should be
logically formalized and implemented to support the integrative multimodeling environment. We formal-
ize the user interaction as an interaction model and create the interaction model(s) through first-order
logic rules. The interaction model consists of a sensor, a controller, and an actuator as model components
as well as links between components, since we will utilize Blender game logic bricks (Roosendaal and
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Wartmann, 2002), which have three logic components, sensors, controllers, and actuators, to execute the
interaction model.

First, we induce all interaction models for the main model components through logic rules. Then an
overall interaction model for a certain scene domain is generated from individual interaction models along
with logic rules. The following are general first-order logic rules for creating interaction models used for
an individual object and an overall scene domain.

• For an individual object
1. There exists an object

∃ x Object(x)
2. There exists a sensor

∃ x Sensor(x)
3. There exists a controller

∃ x Controller(x)
4. There exists an actuator

∃ x Actuator(x)
5. Every Object has an interaction model

∀ x (Object(x) � ∃ y (InteractionModel(y) ∧ hasInteractionModel(x,y)))
6. Every Interaction Model has a sensor

∀ x (InteractionModel(x) � ∃ y (Sensor(y) ∧ hasSensor(x,y)))
7. Every Interaction Model has a controller

∀ x (InteractionModel(x) � ∃ y (Controller(y) ∧ hasController(x,y)))
8. Every Interaction Model has an actuator

∀ x (InteractionModel(x) � ∃ y (Actuator(y) ∧ hasActuator(x,y)))
9. If Interaction Model has a sensor and a controller, it has a link that connects the sensor with the

controller
∃ x, y1, y2 (InteractionModel(x) ∧ Sensor(y1) ∧ Controller(y2) ∧ hasSensor(x,y1) ∧ hasCon-
troller(x, y2) � Link(y1, y2) ∧ hasLink(x, Link(y1,y2)))

10. If Interaction Model has a controller and an actuator, it has a link that connects the controller
with the actuator
∃ x, y1, y2 (InteractionModel(x) ∧ Controller(y1) ∧ Actuator(y2) ∧ hasController(x, y1) ∧
hasActuator(x,y2) � Link(y1, y2) ∧ hasLink(x, Link(y1,y2)))

• For an overall scene domain
11. There exists a scene

∃ x Scene(x)
12. The scene has an Interaction Model

∃ x, y ((Scene(x) � (InteractionModel(y) ∧ hasInteractionModel(x,y))))
13. The Interaction Model includes all individual interaction models

∃ x (InteractionModel(x) � ∀ y (InteractionModel(y) ∧ includes(x, y)))
14. If there exists a “hasHandler” relationship between two objects and the objects have their

interaction models, then the interaction model has a link that connects the actuator of the
parent object with the sensor of the child object
∃ w, x1, x2, y1, y2, z1, z2 (Object(x1) ∧ Object(x2) ∧ hasParent(x2, x1) ∧ hasInteractionModel(x1,
y1) ∧ hasInteractionModel(x2, y2) ∧ hasActuator(y1, z1) ∧ hasSensor(y2, z2) � Link(z1, z2) ∧
hasLink(InteractionModel(w), Link(z1,z2)))

15. If two objects are conceptually mapped (i.e., geometry and dynamic model components for a
certain object), then the interaction model has a link that connects the actuator of the geometry
object with sensor of the dynamic object
∃ v, w, x1, x2, x3, y1, y2, z1, z2 (Object(w) ∧ hasDynamic(w, x1) ∧ hasGeometry(w, x2) ∧
uses(x1,x3) ∧ hasInteractionModel(x3, y1) ∧ hasInteractionModel(x2,y2) ∧ hasSensor(y1,z1) ∧
hasActuator(y2, z2) � Link(z2,z1) ∧ hasLink(InteractionModel(v), Link(z2,z1)))



14-10 Handbook of Dynamic System Modeling

Interaction models for water’s geometry and dynamic

Sensor Controller Actuator

Sensor Controller Actuator

Sensor Controller Actuator

Interaction model for Handler’s geometry Fade (Geometry
     dynamic)

Fade (Dynamic
     geometry)

FIGURE 14.8 The overall interaction model for the boiling water scene.

16. If two objects are conceptually mapped (i.e., geometry and dynamic model components for a
certain object), then the interaction model has a link that connects the sensor of the geometry
object with actuator of the dynamic object
∃ v, w, x1, x2, x3, y1, y2, z1, z2 (Object(w) ∧ hasDynamic(w, x1) ∧ hasGeometry(w, x2) ∧
uses(x1,x3) ∧ hasInteractionModel(x3, y1) ∧ hasInteractionModel(x2,y2) ∧ hasSensor(y2,z2) ∧
hasActuator(y1, z1) � Link(z2,z1) ∧ hasLink(InteractionModel(v), Link(z2,z1))).

Based on these rules, we could induce an interaction model for the boiling water scene. First, we need
to define a user interaction scenario: (1) if an individual model object is touched, only the object is
transformed into other model type’s object (i.e., a geometry model object to a dynamic model object and
vice versa) and (2) if a handler (i.e., 3D icon) is touched, all model objects are transformed into other model
type’s objects (i.e., all geometry model objects to all dynamic model objects and vice versa). According to
the scenario, total three interaction models are needed: two for Water (i.e., geometry and dynamic objects)
and one for Handler (i.e., geometry object). Additional association relationships, such as “has a link” and
“has a hander,” are inserted in the scene domain so that we could represent a topological connectivity
between interaction model components and interaction models. Figure 14.8 shows the overall interaction
mode for the boiling water scene.

The Protégé Ontology Editor (2006) is employed to create an actual scene ontology as well as first-
order logic rules. Web ontology language (OWL) (Lacy, 2005) and semantic Web rule language (SWRL)
(Horrocks et al., 2004) are utilized to construct an ontology and logic rules. To verify an ontology for
a certain scene domain, we use RACER (2006) reasoner along with Protégé. Based on the ontological
structures for the boiling water scene, we define all the classes and subclasses for the scene domain
and modeling knowledge along with all necessary relationships based on Figure 14.7. An interaction
model for the boiling water scene could be induced from the scene ontology using first-order logic rules.
Therefore, using an inference engine such as Jess (2006), we could inference certain knowledge from
domain knowledge in OWL through inference processes. In Protégé, we use SWRL to describe first-order
logic rules, since SWRL tab is provided to allow users to create user-defined logic rules. There are a couple
of approaches for inference in Protégé:

1. Create first-order logic in SWRL and then perform inference using a Jess rule engine.
2. Write and store logical constraints using Protégé Axiom Language (PAL) and then perform inference

using PAL query statements.

We use the first approach since SWRL includes a high-level abstract syntax for Horn-like rules. However,
the current version of Protégé does not provide inference capability for SWRL. Therefore, we manually
generate an interaction model for the boiling water scene based on logic rules at this time.

14.2.3 Blender Interface
We developed a Python-based interface, Blender Interface (Park and Fishwick, 2004a, 2004b; Park, 2005),
which can build 3D simulation models based on an ontology for a certain target domain. Blender Interface
consists of two components, Model Explorer and Simulation. Figure 14.9 depicts the overall environ-
ment in the Blender software. The environment consists of Blender 3D Window (Scene Editor), Blender
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FIGURE 14.9 Blender environment containing the game engine.

Interface, and Blender Logic Brick. Geometry and dynamic models for a certain system are composed
in the Scene Editor, while specifying the dynamic model types and styles for the system and generating
Python simulation code for the dynamic model in the Blender Interface. The Python code is inserted into
Blender Logic Brick to simulate the dynamic model. In addition, the interaction model, which could be
induced through inference processes, is implemented and executed in the Blender Logic Brick for providing
a human–computer interaction environment.

To use Blender Interface, RUBE must be installed. The RUBE has four folders: primitive, predefined theme,
user-defined theme, and rube_utility folders. The primitive and predefined theme folders are given for users
to provide libraries containing dynamic model objects and the corresponding MXL (we will explain it in
detail in the next section) files and functions in Python. As the names imply, the primitive folder has primi-
tive blender objects, such as cube and sphere, with the corresponding MXL file and function for each model
type, such as FSM or FBM. The predefined theme folder contains prefabricated, customized and personal-
ized blender objects, as well as MXL files and functions. If modelers want their own model representations,
they can create an object and store it into a proper model-type folder under the user-defined theme.

Using Model Explorer, modelers are able to search model objects, which they want to import, within the
RUBE folders. From the given dynamic model components in Blender 3D Editor using Simulation (we will
explain it in detail in Section 14.5), we can generate an MXL file for the target system automatically, since
we provide library systems that contain Blender objects as well as the corresponding MXLs and functions
in a set of pairs.

14.3 Multimodeling Exchange Language (MXL)

14.3.1 Concepts of MXL
MXL is an XML-based dynamic modeling language used to represent traditional simulation model types
within the RUBE framework. For MXL, the functional elements for each model type are clearly identified,
and entry points of the functional elements are defined as ports.

The functional elements are model components that behave as functions that naturally fit as part of
the model description. Figure 14.10 shows the multimodel structure of MXL. Multimodeling is permitted
wherever the appropriate model component could be “extended” or “expanded” to another model whose
outermost definition is a function. These couplings achieve multimodeling by inserting one function
inside of another (interlevel coupling) or by connecting one function to another (intralevel coupling).
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Ports

M2

m1

m3

s1 s3

s2

Other polygons: different model types

FIGURE 14.10 MXL multimodel structure.

<?xml version="1.0" encoding="utf-8"?>
<MXL>

<fbm id="MXL">
<block id="F1">

<output id ="F1_outports_integer1"datatype="Integer" index="0"/>
<script lang="Python" src="input.py" func="gen"/>

</block>

<block id="F2">
<input id="F2_inports_integer1" datatype="Integer" index="0"/>
<output id="F2_outports_string1" datatype="String" index="0"/>
<fsm id="FSM_F2" src="FSM_F2.xml"/>

</block>

<trace from="F1_outports_integer1" to="F2_inports_integer1"/>
</fbm>

<simulation start_time="0" end_time="10" delta_time="0.1" cycle_time="0.1"/>
</MXL>

FIGURE 14.11 Functional block model in MXL.

14.3.2 Multimodeling in MXL
Suppose a system could be represented as multimodeling concepts. The system has an FBM with two
blocks (i.e., functions) and one trace; the second block contains an FSM with two states and two transitions
(i.e., interlevel coupling). Figure 14.11 and Figure 14.12 show the MXL representation for the system.

In Figure 14.11, the MXL contains f bm and simulation as subelements. f bm represents model type
(i.e., FBM) and has two elements, block and trace. Each block element has an attribute, id, to specify the
names of blocks. In addition, the element has port information, input or output as well as its function-
ality, script. Each input and output element contains id, datatype, and index, which define the name of
input/output, data type of input/output, and the number of input/output, respectively. The script element
has lang, src, and func to specify program language, the name of the script file, and function to be exe-
cuted, respectively. If a block contains another model type (i.e., multimodel), the model type and its MXL
can be specified in the block (i.e., Block F2 in Figure 14.11.) trace has from and to attributes denoting
connectivity between blocks. Simulation has specific information for executing a certain dynamic model
such as start time, end time, and delta time. Figure 14.12 depicts an internal dynamic model type which
Block F2 contains. In this case, the MXL represents the FSM. Therefore, MXL has state and transition as
subelements. Likewise, each state and transition has its id, script information, and topological connectivity.
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<?xml version="1.0" encoding="utf-8"?>
<MXL>

<fsm id="FSM_F2">
<input id="F2_inports_integer1" datatype="Integer" index="0"/>
<output id="F2_outports_string1" datatype="String" index="0"/>

<state id="S1" start="true">
<script lang="Python" src="input.py" func="off "/>

</state>
<state id="S2">

<Script lang="Python"src="input.py" func="on"/>
</state>
<transition from="S1" to="S2">

<script lang="Python" src="input.py" func="off2on"/>
</transition>

</transition from="S2" to="S1">
<script lang="Python" src="input.py" func="on2off "/>

</fsm>

</MXL>

FIGURE 14.12 Finite state model in MXL.

Using an MXL-to-DXL translator, the MXL file can be translated into DXL, which is a homogeneous
assembly level block diagram modeling language consisting of Connectors, Blocks, and Ports. The concepts
of DXL will be explained semantically and syntactically in the next section.

14.4 Dynamic Exchange Language (DXL)

14.4.1 DXL Concepts
DXL is a unified, low-level functional specification language, and associated diagrammatic presentation
for simulation on the RUBE framework. In simple DXL models, models are defined by connection of
input and output ports of primitive models such as multipliers or adders.

In DXL multimodels, the models may be abstracted upper-layer block models in the form of sublayer
models. DXL combines the lower-level block models of subsystems to describe a complex system hierarchi-
cally (i.e., homogeneous multimodeling). Because each DXL model has its outermost block as a wrapper,
it supports the important characteristics for multimodeling, composability, and reusability.

When each block plays a role as a leaf node in the structure of a multimodel, it can be encoded in one
of the programming languages, such as JavaScript or Python. Multiple programming languages become
the target codes for DXL-to-simulation translators, and an actual data flow for simulation is achieved by
using XML data and schema.

In this section, a diagrammatic presentation and formalism for DXL, which operates like a circuit, is
created. Ports constitute the interface that defines the boundary of components or subsystems in a system
configuration. MXL and DXL ports are used for port coupling where all ports match in number and data
type. MXL ports are used for conceptual multimodeling in the RUBE framework. DXL ports, however, are
utilized to support the multimodel execution as well as to maintain the conceptual multimodeling. A DXL
or MXL model supports not only streaming of simple data types but also XML “information streaming”
since DXL ports are capable of encoding documents (i.e., XML documents) rather than data under the
XML-based environment. XML schemata that define the typing structure accompany the “types.”
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14.4.2 Syntax of DXL
The right side of Figure 14.13 shows syntax elements of DXL. DXL elements are composed of blocks, input
and output ports, and connects. Generally, a DXL model is composed of “block” and “connect” elements.
A DXL block element is composed of “port” elements and “its actual computation codes.” DXL block
elements are connected by each connect element through input and output port elements, which can be
included in a block element. Each port element is connected to the corresponding output and input port
elements of other block elements for its data flow, which each connect element controls.

The left side of Figure 14.13 shows a simple DXL model consisting of two blocks and one connect. This
model shows that the output becomes the input of “Block 2” after the computation of “Block 1” is finished.
Therefore, “Block 2” executes its own computation using the output of “Block 1” as its input.

Each block becomes an object in object-oriented programming unlike a function in procedure program-
ming. Input and output ports become the variables that are defined in the block objects according to their
data types such as primitive and object data types. From the viewpoint of object-oriented programming,
therefore, the DXL model of Figure 14.13 is explained in Figure 14.14.

The DXL block element might include another DXL model when it represents a homogeneous multi-
model. In Figure 14.15, “Outer Block B” does not have “its actual computation codes,” but it does contain
another DXL model. Therefore, when “Outer Block B” starts, the input of “Outer Block B” becomes the
input of “Inner Block a.” In contrast, when “Outer Block B” finishes, the output of “Inner Block b” becomes
the output of “Outer Block B.”According to the flow of “connect” elements, after the inner blocks of “Outer
Block B” are executed, the output of “Outer Block B” becomes the input of “Block C” in Figure 14.15.

Input
port

Output
port

Port

Block

Connect

Block 1 Block 2

FIGURE 14.13 DXL syntax.

Object B1

Input ports variables
Output ports variables
Methods

Object B2

Input ports variables
Output ports variables
Methods

When the output of B1 is sent to the input of B2

B2.input = B1.output

FIGURE 14.14 DXL programming semantics.

A. OP

Inner Block a

Block A

Inner Block b

Outer Block B

B. IP B. OPa. IP b. IP

a. OP b. OP

Block C

C. IP

FIGURE 14.15 DXL multimodel syntax.
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14.4.3 Semantics of DXL
14.4.3.1 Notation

Figure 14.16 defines a notation to describe the functionalities of DXL blocks. We describe algorithmic
semantics of blocks using a set theory and some pseudocodes. IP and OP mean input port and output
port of a block. For notation of DXL ports, the orders of the ports are expressed as an argument of IP or
OP, and the identifiers of their parent blocks are subscripted. Therefore, the first and second input ports
of block B1 become IPB1(1) and IPB1(2). The first and second output ports of block B1 become OPB1(1)
and OPB1(2). OB means output blocks of current block. The input ports of these output blocks receive
the output after the current block finishes its computation. For notation of DXL output blocks, the orders
of output ports of the current block are presented as arguments of OB, and the identifier of the current
block is subscripted. Therefore, the output blocks of the first and second output ports of the current block
B1 become OBB1(1) and OBB1(2).

14.4.3.2 Information Stream Mechanism

Generally, a DXL model is composed of “block”and“connect”elements. A DXL block element is composed
of “port”and“definition”elements. It might include another DXL model when it represents a homogeneous
multimodel. The DXL block elements are connected by each connect element through the input and
output port elements, which are included in a block element. The data flow between block elements is
notated by the pseudocode SEND, which means different information streaming according to the various
environment modes. For example, the pseudocode SEND means “generate next event” based on discrete-
event scheduling methods (Fishwick, 1995) in sequential simulation, and also “send message” based on
message-passing protocols in distributed simulation. This information streaming abstraction approach,
which is used to generate different target codes on heterogeneous environments, makes it easy to create a
DXL-to-simulation translator and integrate model components.

In Figure 14.17, the meaning of the SEND pseudocode is “transfer DATA in an output port OP of a block
B1 to an input port IP of a block B2 and generate next event B2, after time t passes,” based on discrete-event
scheduling methods. If this model is based on message-passing protocols in distributed simulation, this

Notation
IPi: a set of input ports for a block i
IPi(n): the nth input port of a block i
OPi: a set of output ports for a block i
OPi(n): the nth output port of a block i
OBi(j): a set of output blocks for the jth port of a block i
SEND(t, DATA(i), IPk(j)): Current block sends data of ith output
port to jth input port of block k after time t

FIGURE 14.16 DXL block notation.

IP2(1)OP1(1)

SEND (t1, DATA(1), IP2(1))

Input port

Block

Connect

Block 1 Block 2

FIGURE 14.17 Augmented DXL syntax.



14-16 Handbook of Dynamic System Modeling

IPi(1)

IPi(m) OPi(n)

IP1 (1)

IPn(1)

OP1 (1)

OPM(1)

SEND (t1, DATA(1), IPi (1)) SEND (ti, DATA(1), IP1 (1))

SEND (tm, DATA(1), IPi (m)) SEND (ti, DATA(1), IPn (1))

Block 1

Block m

Block 1

Block n

Block i

OPi(1)

FIGURE 14.18 Examples of SEND pseudocode.

SEND pseudocode means “create DATA in an output port OP of a block B1 as a message and send the
message to an input port IP of a block B2, after time t passes.”

In Figure 14.18, the meanings based on discrete-event scheduling methods of SEND pseudocodes are
as follows:

• SEND (t1, DATA(1), IPi(1)): transfer DATA in an output port OP of a block B1 to an
input port IP1 of a block Bi and generate next event Bi, after time t1 passes.

• SEND (tm, DATA(1), IPi(m)): transfer DATA in an output port OP of a block BM to an
input port IPm of a block Bi and generate next event Bi, after time tm passes.

• SEND (ti, DATA(1), IP1(1)): transfer DATA in an output port OP1 of a block Bi to an
input port IP of a block B1 and generate next event B1, after time ti passes.

• SEND (ti, DATA(1), IPn(1)): transfer DATA in an output port OPn of a block Bi to an
input port IP of a block BN and generate next event Bn, after time ti passes.

In Figure 14.18, the meanings based on message-passing protocols in distributed simulation of SEND
pseudocodes are as follows:

• SEND (t1, DATA(1), IPi(1)): create DATA in an output port OP1 of a block B1 as a
message and send the message to an input port IP1 of a block Bi, after time t1 passes.

• SEND (tm, DATA(1), IPi(m)): create DATA in an output port OP1 of a block Bm as a
message and send the message to an input port IPm of a block Bi, after time tm passes.

• SEND (ti, DATA(1), IP1(1)): create DATA in an output port OP1 of a block Bi as a
message and send the message to an input port IP1 of a block B1, after time ti passes.

• SEND (ti, DATA(1), IPn(1)): create DATA in an output port OPn of a block Bi as a
message and send the message to an input port IP1 of a block Bn, after time ti passes.

14.4.3.3 Synchronous Input Property

Block B3 in Figure 14.19 divides the output of block B1 with the output of block B2 and then sends its
quotient to block B4 and remainder to block B5. To make the division, block B3 should have two inputs at
the same time (i.e., a synchronous block in DXL). Note that the block has two output ports to support a
different output at the same time unlike the functions of traditional programming languages, which have
only one output. The right side of Figure 14.19 describes the processing algorithm of block B3.

14.4.3.4 Asynchronous Input Property

In Figure 14.20, block B3 plays a role in switching input data. It is not necessary to receive both inputs to
relay its data. In other words, the block just relays its input to its next block whenever it receives the input.
The block should therefore have an asynchronous input property, which is depicted with a gray color. The
switch block algorithm is described on the right side of Figure 14.20. In DXL, the above combinations of
simple blocks and their properties create an actual model for a system.
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Algorithm for a block having synchronous inputs

if(for ∀x∈IPi, x has input data) then

   The computation of the function in a DXL block

   For ∀y∈Pi, if(y has output data) then for z∈OBi(y), SEND(t,

DATA(y), z) elseif

IP1

IP2

OP1

OP2

Algorithm for block B3

if (for ∀x∈IPB3, x has input data)

then

  OPB3(1) ← IPB3(1)/IPB3(2)

  OPB3(2) ← IPB3(1)%IPB3(2)

SEND(tB4, DATA(OPB3(1)), B4)

SEND(tB5, DATA(OPB3(2)), B5)

elseif

B1

B2

B4

B5

B3 
(�)

FIGURE 14.19 Example of synchronous inputs.

Algorithm for a block having asynchronous inputs

if(for ∃x∈IPi, x has input data) then

   The computation of the function in a DXL block

   For ∃y∈OPi, if(y has output data) then for z∈OBi(y),SEND(t,

DATA(y), z) elseif

Algorithm for block B3

if (IPB3(1) has input data) then

  OPB3(2) ← IPB3(1)

SEND(tB5, DATA(OPB3(2)), B5)

elseif

if (IPB3(2) has input data) then

OPB3(1) ← IPB3(2)

SEND(tB4, DATA(OPB3(1)), B4)

elseif

IP1

IP2

OP1

OP2

B1

B2

B4

B5

B3
switch

FIGURE 14.20 Example of asynchronous inputs.

14.4.4 Multimodeling
For DXL, multimodeling is defined by specifying a block circuit inside of a block, and continuing recursively
as needed. Ports are coupled by ensuring matching data types for each connecting port on each connector.
The general DXL methodology in transforming heterogeneous models (MXL models) into homogeneous
models (DXL models) is as follows:

• Transform submodels in an MXL multimodel into DXL models and
• Incorporate each of the transformed models according to port coupling.
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FIGURE 14.21 Translation of an FBM into a DXL model.

14.4.4.1 FBM-to-DXL Translation

The FBM is composed of functional elements where functions, along with inputs and outputs, are often
depicted in a “block” form. An arbitrary number of blocks can be coupled to form an FBM. This FBM is
similar to DXL except for synchronous and asynchronous inputs of DXL. Therefore, functions of FBM
are translated into DXL blocks, and FBM’s inputs and outputs are translated into DXL input and output
ports. Because each block of traditional FBM has a pure function, all inputs of the function should be
valid before the block is executed, meaning all FBM blocks have synchronous property for inputs.

An FBM for the differential equation x′′ = −ax′ is described on the left side of Figure 14.21. This
FBM is composed of four blocks: two integrators, one multiplier, and one constant. Because each block
of a traditional FBM has a synchronous input property, these blocks are translated into blocks having
synchronous inputs in DXL. Its arrows are translated into connectors of DXL. This FBM also has a
continuous simulation property. To support the property, a start block of the DXL model is generated
every simulation unit time.

14.4.4.2 FSM-to-DXL Translation

The FSM has states and transitions. A state represents the current condition or “snapshot” of a system
for some length of time. Transitions enable the system to move from one state to another during the
simulation while under the control of the system input. The basic rule of translating FSM into DXL is that
all functional elements are translated into DXL blocks. The transitions of FSM are predicates under the
system input and can, therefore, be translated into DXL blocks. These DXL blocks have the same type of
input ports as the system input and a Boolean type of output ports that decide whether the predicates are
true or false. Since states have the functional properties to access the system input, all states are translated
into DXL blocks. In addition, we need the special block to control the system input.

The left side of Figure 14.22 shows an FSM modeling of a four-stroke gasoline engine with four phases:
compression, ignition, expansion, and exhaustion. The key point that makes FSM different from FBM is a
state-based model. To translate a state-based model into a function-based model, all states and transitions
are translated into DXL blocks. Then DXL connectors and block properties control the semantics of
the state-based model. The right side of Figure 14.22 shows a translated DXL model for the four-stroke
gasoline engine. If we made a DXL code manually, we could create a simpler DXL code than the right side
of Figure 14.22. But to make automatic MXL-to-DXL translation easy, we used the DXL model to include
INPUT and OUTPUT blocks, as in Figure 14.22. Our translator generated the INPUT and OUTPUT
blocks to control the FSM semantics. The right blocks next to INPUT blocks are translated transition
blocks and the right blocks next to OUTPUT blocks are translated state blocks.

14.4.4.3 Multimodeling between Homogeneous Models

In Figure 14.23, the upper model is a two-level functional hierarchy, where function f is defined in terms
of a composition of three other functions f1, f2, and f3. The lower model shows multimodeling in DXL
for the upper model. Because DXL is specifically based on a functional block diagram, FBM models in
Figure 14.23 are refined only if the number and types of ports are matched.
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FIGURE 14.23 Multimodeling between functional block models in DXL.

In Figure 14.24, the upper model is a two-level finite state hierarchy, where state s1 is defined in terms of
another FSM. The lower model shows the transformed DXL model for the two-level finite state hierarchy.
All FSMs should have this kind of functional box around them to represent external input and output
semantics even though the functional box is not expressed explicitly in the FSM graphical representation.

Because FSMs represent behavior or dynamics of another component in multimodeling, an FSM is
inserted in it to represent a state more specifically. In that case, multimodeling between FSMs should be
supported, but there is a difficulty in integrating the two FSMs because of the implicit expression of input
and output in FSMs.

However, in DXL, states and transitions in FSMs are transformed into the same blocks. MXL-to-DXL
translator generates special blocks, which control state and transition blocks (i.e., INPUT and OUTPUT
blocks). In Figure 14.24, after a submodel (i.e., the lower FSM model) is transformed into a DXL model, it
is inserted in its upper state block and then connected with external input and output ports using connect
elements in DXL.
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FIGURE 14.24 Multimodeling between FSM models in DXL.

14.4.4.4 Multimodeling between Heterogeneous Models in DXL

In Figure 14.25, the upper model is the same model as shown in Figure 14.4. The submodel in this figure
is an FSM that defines the internal state transitions associated with function f . The generated DXL model
for an FSM is inserted in function f . Because the number and types of input and output of the function
f are the same as the input and output ports of the DXL model, the integration is accomplished through
port matching.

In Figure 14.26, a state of an FSM decomposes into an FBM to represent internal functionality. The
state in an FSM is different from an FBM from the viewpoint of a system. In an FSM, while input and
output are not specified explicitly, control flow is unclear in an FBM. In a DXL model, however, the input
and output of transformed FSM states are specified explicitly, which makes it easier for the integration of
the components of an FSM and the components of an FBM. The lower model in Figure 14.26 indicates
a transformed DXL multimodel. A sublayer of the model, a transformed DXL model for an FBM, is
connected to the input and output ports of the outer state block s1.

14.5 A Boiling Water Example

In this section, we explain how multimodeling environments (i.e., integrative and general multimodeling
environments) can be implemented in the Blender 3D environment through our methodology, as proposed
in the previous sections, using the example of the boiling water scene. The pot is filled to a predetermined
level with water. A small amount of detergent is added to simulate the foaming activity that occurs
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FIGURE 14.26 Multimodeling for an FSM including an FBM in DXL.

naturally when boiling certain foods. This system has a temperature knob. The knob is considered to be in
one of two states: on or off. We first define the following conditions and assumptions in connection with
this scene:

• External event: I = {ON, OFF}
• Internal event: T = {T = α, α < T < 100, T = 100}
• Input space: {(I = ON, T = α), (I = ON, α < T < 100), (I = ON, T = 100), (I = OFF, T = α),

(I = OFF, α < T < 100), (I = OFF, T = 100)}
• Boiling state: T = 100
• Heating state: T ′ = k1(100 − T)
• Cooling state: T ′ = k2(α − T).
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FIGURE 14.29 Third-level FBM for the boiling water example.

14.5.1 2D Representation
We begin the process by creating 2D representations of dynamic models for the boiling water scene based
on the scene ontology, which is specified in the previous section, as well as conditions and assumptions
above. Figure 14.27 shows the 2D representation for the highest level of FSM of the boiling water example.
There are two states, “Cold” and “Not Cold.” The input is either ON or OFF. Input can occur at any
time and will facilitate a change in state. Because the “Not Cold” state could be further generalized, we
could insert another FSM inside, as shown in Figure 14.28. To describe the continuous dynamic behaviors
inside “Heating” and “Cooling” states, we need FBMs. Therefore, we could insert two FBMs, as shown in
Figure 14.29, inside “Heating” and “Cooling” states. Figure 14.30 shows the overall 2D dynamic model
representation for the boiling water example.

14.5.2 Model Creation
14.5.2.1 Geometry and Dynamic Models

We create the corresponding geometry and dynamic models for the scene. For geometry model, a teapot
and a stove could be created within Blender Scene Editor (i.e., Blender 3D Window). And then using Model
Explorer, which is provided by Blender Interface, we create dynamic models for the scene based on the 2D
model representations. We employ a chemistry metaphor to describe the dynamic models instead of simple
primitive objects (i.e., sphere and arrows), since the RUBE library system provides predefined chemistry
objects in the predefined theme folder as well as corresponding MXLs and functions. To represent the“Cold”
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FIGURE 14.30 Multimodel for a boiling water example.

and “Not Cold” states as well as transitions, we use chemistry holders and chemistry pipes, respectively.
And to describe the three states inside the “Not Cold” state and transitions, chemistry glasses and pipes
are employed. In the case of two functional block models, which could be inserted into “Heating” and
“Cooling” states, we use simple primitive objects (i.e., cubes and arrows).

14.5.2.2 Interaction Model

On the basis of the induced interaction model, which is discussed in Section 14.2, for the scene, we
embody the interaction model within the Blender Game Logic. In the Blender Game Logic, there are
sensors, controllers, and actuators. These are used to create “Logic Brick” graphs that drive the interaction.
The Game Engine can cover most interaction behaviors since it has well-defined built-in sensors and
actuators. If a user, however, wants more complicated interactions, the user can handle the interactions
by Python scripting language. After creating a Python file, the user puts it in one of the controllers and
connects the controller with any proper actuator.

14.5.3 Code Generation
From given dynamic model components in Blender 3D Editor, using the Simulation component, which is
also provided by Blender Interface, we can generate a simulation code for a target system through the RUBE
framework. The simulation code is Python scripting language. The process for generating a simulation
code includes three steps:

1. Blender-to-MXL: First, an MXL file for a given scene dynamic model is created by gathering all
segmented MXL files from the libraries, since the library system contains Blender objects as well as
the corresponding MXLs and functions in a set of pairs.

2. MXL-to-DXL: Using XSLT, the MXL file is converted to a low-level XML language called DXL.
3. DXL-to-Python: The Python code for simulation is generated from DXL using DOM.
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The “Heating FBM” of Figure 14.29 describes the differential equation T ′ = k1(100 − T). This FBM is
composed of five blocks: one integrator, one multiplier, one subtracter, and two constants. Because
each block of this FBM has a synchronous input property, these blocks are translated into blocks having
synchronous inputs in the “Heating DXL” of Figure 14.31. Its arrows are translated into connectors of
the DXL. The “Cooling FBM” of Figure 14.29, which describes the differential equation T ′ = k2(α − T), is
translated into the “Cooling DXL” model according to the same procedure as the “Heating FBM.”

The two FSMs of Figure 14.27 and Figure 14.28 are translated into Figure 14.31 except for the DXL
models of “Heating” and “Cooling” blocks. Our translator generates the INPUT and OUTPUT blocks to
control the FSM semantics. The right blocks next to INPUT blocks are translated transition blocks, and
the right blocks next to OUTPUT blocks are translated state blocks, such as “Cold,” “Not Cold,” “Boling,”
“Heating,” and“Cooling.” Figure 14.31 shows the translated DXL multimodel for the boiling water example
according to the MXL-to-DXL translation approach. In Figure 14.31, the output of state DXL blocks is
T (the temperature of water). And the output of transition DXL blocks is I and T. We simplify blocks
A–E because of the complexities in Figure 14.31. Figure 14.32 shows the specific descriptions of blocks
A–E which can be found in Figure 14.31. Because DXL blocks are simple, the total DXL diagram could be
complex. The simplification from Figure 14.31 to Figure 14.32 could be used for the optimization of DXL
diagrams in our future research.

Figure 14.33 shows input and temperature trajectories. The input trajectory is displayed in a red line;
turning the knob on and off over some time period. This was chosen at random to display phase switching.
The temperature trajectory, which shows the execution results of simulation code in Python, is displayed in
a blue line. The temperature rises to T = 100 in response to the step input and then it falls before reaching
the ambient temperature of T = 20. The temperature levels off at T = 100.

Figure 14.34 and Figure 14.35 represent the 3D boiling-water scene that contains geometry and dynamic
models. Through user interactions, we can convert a geometry model, which is shown in Figure 14.34, to
a dynamic model, which is shown in Figure 14.35 (chemistry glasses and pipes used to describe states and
transitions), and vice versa (i.e., integrative multimodeling).
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FIGURE 14.32 Descriptions of blocks A–E.
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14.6 Conclusion

We have presented the approach and methodology for multimodeling. Also, we have explained and
discussed the multimodeling concepts and environments. Using the example (i.e., boiling water), we have
demonstrated how the multimodeling concepts and semantic Web technology are applied to a real-world
system. The characteristics of this approach are summarized as follows:

• Web-based modeling and simulation through the use of XML to represent simulation models
• Multimodeling through ontology, MXL, DXL, and an MXL–DXL bridge
• Flexible diagrammatic presentation in terms of the functionality for each DXL “block”
• Port-based modeling and simulation capable of encoding documents rather than data
• Explicit support for discrete event and continuous simulation.

Several issues remain to be researched, such as model type extension, effective means of composability,
ensuring complete mapping among models and ports, and expanding to remote distributed modeling and
simulation.
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15.1 Introduction

To remain competitive, organizations throughout industry are increasingly adopting Model-Based Design.
Computational models take a central position in Model-Based Design as illustrated in Figure 15.1. The
use of models throughout the design of engineered systems has a number of advantages. In Figure 15.1,
four of these are shown:

• Early evaluation ensures the appropriateness, consistency, rigor, and unambiguity of requirements.
• Simulation allows quick design iterations while the use of models makes it possible to search a very

large design space efficiently.
• Automatic code generation eliminates the expensive manual coding, which is labor-intensive and

error-prone.
• Test vector sets can be composed in the early design stages, based on a system model, thus eliminating

much of the lead time needed in traditional testing, which requires the real system to be available.
Verification of completeness and parsimony of the design can be done before implementation.

Overall, from a business perspective, Model-Based Design allows a shorter design cycle so engineers can
develop better products at a lower cost.

The models that are used throughout the product design have to address many different aspects. For
example, structuring requirements may be best done by modeling scenarios and in an axiomatic manner,

15-1
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FIGURE 15.1 Model-based design.

FIGURE 15.2 A power window.

while the numerical models with an intensive data processing aspect are often best represented in a
declarative manner. Meanwhile, execution models typically are best captured in an imperative manner.

Similarly, certain modeling tasks are best addressed by continuous-time models, while other tasks may
be better performed with discrete-time or untimed models. For example, consider the power window in
Figure 15.2 (Mosterman et al., 2004). Modeling the behavior of the window sliding up and down is often
easiest using continuous-time differential equations, employing laws of physics such as Newton’s Second
Law of Motion that the acceleration, a, of a mass, m, is determined by the force, F, applied to it, F = m · a,
where the acceleration is the time-derivative of velocity, v, a = dv

dt .
In contrast, the desired behavior to start moving the window when the user presses a button is often

best viewed as discrete in nature. An event windowUp then causes a state change from neutral to moveUp.
At certain stages during the design, such an untimed model may be sufficient and even desired, as it leaves
any implementation choices on how to achieve such control still open.
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To implement the control of the power window, an electronic control unit that operates at a certain
sample rate can be selected. In this implementation, the untimed events can be modeled to occur at points
in time. During the fixed intervals of time in between, no changes of the variable values in the model
occur. This leads to a discrete time but periodic model.

Yet another task may consist of modeling the network that transmits the user command to move
the window up to the controller that effects this command. In automobiles, these commands may be
transmitted over a controller area network (CAN) (CAN specification, 1991), that is also used to transmit
other commands such as moving the headlights up and down, adjusting the outside mirrors, and opening
the sunroof. At a certain level, the network traffic can be thought of as discrete time but nonperiodic, since
commands may be initiated with very different intervals of time in between.

When the integration of different parts of a system is studied, it becomes necessary to employ the
different models in concert (Mosterman et al., 2005). This can be done in a number of ways. For example,
the different types of models can be combined, integrated, and translated. Whichever approach is chosen,
the result is likely to include both continuous-time and discrete-event behavior, and the overall system
is often referred to as a hybrid dynamic system, or hybrid system for short.1 It is important to stress, at
this point, that an engineered system is not inherently a “hybrid system.” A hybrid system is a term for a
mathematical representation not a physical system. Whether an engineered system is modeled as a hybrid
system depends on the problem that needs to be solved, the level of abstraction chosen, the phenomena
the system embodies, and the background of the model designer (Mosterman and Vangheluwe, 2004).

This chapter intends to provide a bird’s eye view of the modeling and execution of hybrid systems.
Some of the uses of hybrid systems will be presented, and the different ways of simulating them and
their idiosyncrasies will be investigated. In Section 15.2, hybrid dynamic systems are presented: what they
are, how they come about, and what different modeling perspectives exist. In Section 15.3, the behavioral
perspective is discussed and the different behavioral aspects are introduced. In Section 15.4, the two possible
implementations of an execution engine, time- and event-driven implementation, and combinations
are introduced. Section 15.5 then presents advanced topics with regards to numerical simulation. In
Section 15.6 a number of pathological behaviors that may arise in simulation are discussed. Section 15.7
presents the conclusions of this work.

15.2 Hybrid Dynamic Systems

This section illustrates where the need for hybrid dynamic systems emerges from in embedded control
systems design, what the mathematical notions are that hybrid dynamic systems involve, and the modeling
concepts that require these notions.

15.2.1 Why Hybrid Dynamic Systems?
A power window will serve to illustrate the application of hybrid dynamic systems in the design of
engineered systems. This example has been studied in more detail in other work (Mosterman et al., 2004;
Mosterman and Vangheluwe, 2004) and is part of the Simulink® (Simulink, 2004) automotive demos.
The elements of interest in this context are illustrated on the left-hand side in Figure 15.3, along with
exemplary data as used in the design and analysis on the right-hand side. In the center near the top is the
window lift mechanism. A dc motor translates the electrical signals that reflect the controller commands
into movement in the mechanical domain. A current sensor is used to measure the current drawn by the
dc motor, which is used by the controller to determine whether the top or bottom of the window frame is
reached. Behavior of these components is often modeled as continuous in time.

The controller is often modeled as operating at a periodic sample rate and it may receive the user input
over a CAN. This network provides communication between the electronic control units (ECUs) in an

1Note that omitting the adjective “dynamic” may lead to confusion with hybrid systems such as mixed neural
network/fuzzy logic systems and combined electrical/mechanical drivetrains.
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FIGURE 15.3 A hybrid dynamic system with different behavior classes.

automobile and connects the ECU that interfaces with the window up and down button to the ECU that
interfaces with the window lift mechanism. Network traffic is often modeled as aperiodic events.

The design of such a system typically proceeds by determining a set of requirements that it has to satisfy.
Among these requirements it may state that (Friedman and Ghidella, 2006)

1. The window should be closed within 5 s.
2. The passenger command should always be overruled by the driver command.
3. The driver and passenger commands should be acted upon within 200 ms.

To validate Requirement 1, a continuous-time model of the lift mechanism is best used. This could be
a set of differential and algebraic equations (DAEs) that model how fast the window with mass, mwindow,
moves, vwindow, given a voltage on the dc motor, umotor, and the corresponding current that the motor
draws, imotor. The equations

Fmotor = rumotor

Fwindow = mwindow v̇window

Flift = Rliftvwindow

imotor = rvwindow

Fwindow + Flift = Fmotor

ẋwindow = vwindow

(15.1)

model the conversion of the dc motor voltage by a parameter, r, and include linear friction, Rlift , that
causes a friction force component, Flift , for the lift mechanism. Solving this system of equations over time
shows whether the window can rise quickly enough for certain input voltages by evaluating the window
position, xwindow.

In contrast, the control structure that Requirement 2 addresses is best modeled by a state machine that
has hierarchical structure of its states. This allows the passenger commands to execute when the driver
commands are neutral. When the driver issues a command, the passenger control structure is departed
and overruled by the driver command. This is illustrated by the Stateflow® (Stateflow, 2004) chart in
Figure 15.4.

In this Stateflow chart, there are three states for the driver control, driverNeutral, driverDown, and
driverUp. When driverDown is the active state, the window is moved down, and when the driverUp state
is active, the window is moved up. The driverNeutral state is of a hierarchical nature, and contains the
control structure for the passenger, analogous to the control structure for the driver. In this manner, the
driver control takes precedence over the passenger control, and the passenger may command the window
only if the driver does not issue a command (i.e., a neutral command). The initial states are indicated by
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FIGURE 15.4 A finite state machine in the form of a Stateflow chart.
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a transition that is depicted by an arrow with a solid circle on one end and arrow head on the other end.
Note that the ordering of transitions that could be activated simultaneously is indicated by the numbers
associated with the respective transitions.

The events issued by the driver, drvUp and drvDown, command the window to go up or down. When
any of the commands is released, the drvNeutral command is issued. The behavior is similar with the
passenger-related commands pasUp, pasDown, and pasNeutral. The endstop command is issued when the
window has reached the top or bottom of the door frame.

To validate the response time as put forward in Requirement 3, the communication network needs
to be modeled. In this case, a server/queue type model is best used where the network is modeled as a
server that aperiodically frees up and passes a packet from one ECU to another. A SimEvents™ (SimEvents,
2005) model of the packet transmitter is shown in Figure 15.5. Here, the command as issued by the driver
is assigned as the attribute of packets that are generated at a fixed rate. The packets themselves have an
attribute that identifies their destination. The system then attempts to put the packets into a first-in-first-
out (FIFO) queue and if this fails, they are lost as dropped packets. The FIFO queue is connected to another
subsystem, which models the CAN bus behavior.

Stochastic server times may be included to model the variable arrival times of network requests from con-
trol systems (such as the headlights control system) that communicate using the same CAN. This is a type
of system integration test that is often performed in hardware because the different systems are provided by
different suppliers, and the models used for the design of each system are not shared among these suppliers.

Combining all these different types of models that are needed to verify the requirements necessitates
handling both continuous-time differential equation models as well as discrete-event state-transition
models. This can be achieved, for example, by transforming the continuous-time models into discrete-
event representations or the other way around. Alternatively, a computational model can be designed that
can handle both the continuous-time and discrete-event behavior. This latter approach leads to the hybrid
dynamic execution structure.
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15.2.2 What Is a Hybrid Dynamic System?
A hybrid dynamic system is defined in behavioral terms, because it is model structure agnostic, and,
therefore, does not impose unnecessary and undesired modeling assumptions.

In a geometric sense, a hybrid dynamic system evolves continuously in time in a mode, αi, according to
a field, fαi (Guckenheimer and Johnson, 1995; Mosterman and Biswas, 1997). This field defines a relation
fαi (ẋ, x, u, t) = 0 between the state, x, its time derivative, ẋ, the input u, and the time, t . This is illustrated
in Figure 15.6, where the continuous-time behavior is shown as a solid directed line in the plane α1.

The continuous-time behavior is often captured by an explicit representation as a set of differential
equations

ẋ = fαi (x, u, t) (15.2)

where αi is the mode of the model, x the continuous-time state vector, u the exogeneous input, and t the
time. An alternative formulation is the implicit form

fαi (ẋ, x, u, t) = 0 (15.3)

often used in plant modeling, and the semi-explicit form that has an explicit representation of the time
derivatives, f d

αi
, combined with a set of implicitly formulated algebraic constraints (van Dijk, 1994), f a

αi
,

ẋ = f d
αi

(x, u, t), 0 = f a
αi

(x, u, t) (15.4)

In Figure 15.6, the change to mode α2 occurs when the state in mode α1, xα1 , reaches a threshold value.
In general, a mode transition relation γ

αi+1
αi (x, u, t) ≥ 0 defines the change from mode αi to αi+1 when true.

The state space in a mode αi consists of two parts: (i) the domain where fαi is properly defined and (ii)
a patch, where γ

αi+1
αi does not invoke a mode change. In Figure 15.6, the patches are shown as white areas

in the state space. When the boundary of the patch in α1 is reached, a mode transition as defined by γ
α2
α1

is invoked. In the new mode, a patch defined by γ
α3
α2 is entered in which the state can continue to evolve,

now governed by the field fα2 .
When a mode transition from αi to αi+1 takes place, in general, the state xαi may change its value

to xαi+1 . Without loss of generality it is first assumed that the explicitly defined state transition func-
tion, xαi+1 = g

αi+1
αi (xαi , uαi , t), is the identity function, i.e., xαi+1 = xαi , as shown in Figure 15.6 by the

perpendicular dashed arrow.
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FIGURE 15.6 Geometric representation of a hybrid dynamic system. (From Mosterman, P. J. Mode transition
behavior in hybrid dynamic systems. In Proceedings of the 2003 Winter Simulation Conference, pp. 623–631, New
Orleans, LA, December 2003 (invited paper).)
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15.2.3 How Are Hybrid Dynamic System Models Designed?
The behavioral definition of hybrid dynamic systems left open the specific underlying model structure
that is employed. There are two basic approaches to the design of hybrid dynamic system models: (i) an
implicit approach and (ii) an explicit approach.

15.2.3.1 Implicit Models

In modeling for analysis, often an implicit approach is favored. This is best illustrated by considering the
modeling of a physical device under control, the plant, such as the power window mechanism of the system
in Figure 15.3. The continuous-time behavior that models moving the window up is given in Eq. (15.1)
in an implicit form. The equations are not converted in an explicit form that allows their solution yet.
For example, the velocity of the window, vwindow, is a state variable and so its time derivative needs to be
computed by the system of equations in Eq. (15.1). However, applying Newton’s Second Law of Motion
leads to a formulation with the force, Fwindow, on the left-hand side. To arrive at an explicit computation
of v̇window, the equation has to be reformulated into

v̇window = Fwindow

mwindow
(15.5)

The reason for the implicit formulation is modeling convenience. It is often easier to model physical
constraints in an implicit, constraint-based form such as Newton’s Second Law of Motion. Another such
constraint is, for example, conservation of momentum,

∑
miv

+
i =

∑
miv

−
i (15.6)

which states that the some of the momentum, miv
−
i , of each body, mi, with velocity, v−

i , before a collision
and after a collision, miv

+
i , should be the same. Which velocities are input to this constraint, and which

ones are computed from the constraint, is left implicit.
In the same vein, mode changes in models of physical systems are often best represented in an implicit

manner. For example, when the window reaches the top of its frame, further upward movement is restricted
by a rapid increase of resistance to motion. This can be modeled in three different manners, illustrated in
Figure 15.7.

• By a nonlinear resistance that is distance-dependent and rapidly increases when the window reaches
the top of the frame position (Figure 15.7[a]).

• By a piecewise linear resistance that abruptly changes the resistance value when the window reaches
the top of the frame position (Figure 15.7[b]).

• By an ideal switch of the resistance that enforces a hard stop when the window reaches the top of
the frame position (Figure 15.7[c]).

F

v0

(a)

0

(b)

F

v 0

(c)

F

v

FIGURE 15.7 Abstraction classes for endstop models. (a) Nonlinear, (b) C0 hybrid, and (c) ideal switch.
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These three classes of modeling approaches are typical in the modeling of physical systems with perceived
discontinuities. The latter two lead to hybrid dynamic systems.

To illustrate how the window reaching the top of the frame could be formulated as a mathematical
relation that represents an ideal switch, the equation Fwindow + Flift = Fmotor in Eq. (15.1) is replaced by

0 = L(Fwindow + Flift − Fmotor) + (L − 1)vwindow (15.7)

where L is a logical variable that switches based on the window position, xwindow, where L = xwindow ≤ xtop.
Such “local” and “implicit” switching of equations is intuitive and convenient in the domain of plant
modeling.

15.2.3.2 Explicit Models

Controller modeling typically takes a different perspective because the modeled behavior is the explicit
objective of the design. As such, implicit modeling constructs such as algebraic loops that have
a cyclic dependency (e.g., x = −2x + 3) are not desired or even illegal (such as for real-time code
generation).

The corresponding continuous-time formalism that is often used in control system design is explicit
ordinary differential equations (ODEs). Whereas the DAEs used for implicit modeling are of the form
0 = f (ẋ, x, u, t), the explicit ODE form is ẋ = f (x, u, t). This form is especially popular because it is
amenable to control law synthesis, in particular when it is linear. For example, when the behavior of the
lift mechanism of the power window in Figure 15.3 is available in an explicit linear ODE form, root-locus
methods can be applied to design a controller that can achieve the desired behavior, such as the position
overshoot in response to a step input (Control System Toolbox, 2004).

The discrete-event behavior is often modeled by finite state machines. For example, state transition
diagrams are graphical models that represent finite state machines. The different modes of behavior then
correspond to the states of the transition diagram, and, consequently, are explicitly available. In addition,
the imperative nature of state transition diagrams makes the state transition behavior become operational.
The modeler has rendered the manner in which the transitions between states are made explicit. In the
implicit formulation, constraints are provided on the modes, and a transformation to an operational form
has to still be derived.

The combination of state transition diagrams and ODEs has been a popular modeling approach for
control design as its explicit nature makes it amenable to reachability analyses (e.g., Lynch and Krogh,
2000). Such hybrid automata (Alur et al., 1993) consist of discrete states with associated ODEs. When in a
state, the associated ODE governs continuous-time behavior. The transitions between states are enabled by
guards and when enabled, the transition from one state to another may be taken. Each state has an invariant
associated with it as well that cannot be violated while in that state. When the continuous behavior in a
state reaches a point where it would violate the corresponding invariant, an enabled transition must be
available and taken.

To illustrate, Figure 15.8(a) shows a hybrid automaton for the power window behavior that is modeled
in an implicit form in the previous section. The state (also called mode as it captures the mode of operation
of the entire system) on the left-hand side models the window moving up by the two equations for vwindow

and ẋwindow. The invariant of the state is xwindow < xtop, which requires that the window can move up
freely; that is, it is not pushing against the top of the frame.

When the top of the frame is reached, xwindow ≥ xtop becomes true and the transition into the right-hand
state is enabled. Because the invariant xwindow < xtop becomes false at the same time, the transition is forced
to be taken, and the system moves into a state where the window does not move anymore (vwindow = 0).

In case some bounce-back effect would be modeled because of the window colliding with the top of
the frame, the continuous-time state vwindow could be reinitialized with a value −ηvwindow, where η is
a coefficient of restitution. This reinitialization can be included on the enabled transition as an action
vwindow = −ηv−

window, as shown in Figure 15.8(b). Note that the superscript is to indicate the left-hand
limit value of the continuous-time behavior.
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FIGURE 15.8 Hybrid automaton of power window endstop behavior. (a) without bounce back and (b) with bounce
back.

15.3 Hybrid Dynamic System Behaviors

The different aspects of generating behaviors for hybrid systems are discussed and efficient methods to do
so are presented.

15.3.1 An Operational Structure
To execute a hybrid dynamic system, three different types of behavior need to be handled (see Figure 15.9)
(Mosterman and Biswas, 2002):

• Continuous-time behavior as specified by f needs to be generated.
• The crossing of thresholds of continuous-time variables needs to be detected and transitions between

modes of behavior inferred, as specified by γ .
• The continuous-state variables need to be initialized and possibly reinitialized (think of the window

that bounces back, reversing its velocity), as specified by g .

Each of these parts are reviewed here.

15.3.2 Continuous-Time Behavior
Continuous-time behavior is typically modeled by differential equations, either as ODEs or DAEs. To
generate behaviors, a numerical solver such as differential/algebraic system solver (DASSL) (Petzold, 1982)
can be used to integrate the time-derivative behavior.

Typically, the derivative with respect to time is computed at one or multiple points, after which a
weighted mean is taken to infer the direction of behavior. In its most straightforward form, called a
forward Euler integration scheme, the time derivative, ẋ(tk), at a time, tk , is multiplied by the step in time,
h = tk+1 − tk , and the resultant is added to the current state, x(tk), to produce the state at tk+1

x(tk+1) = hẋ(tk) + x(tk) (15.8)



15-10 Handbook of Dynamic System Modeling

ff

x�i +1

x�i +1

x�i
x�i

�i+1

g

g

�

FIGURE 15.9 Functional model of hybrid dynamic systems.

More sophisticated solvers rely on continuity constraints on the continuous-time behavior. For example,
a second-order Runge–Kutta algorithm is implemented by

m1 = hf (x(tk), tk)

m2 = hf (x(tk) + 0.5m1, tk + 0.5h) (15.9)

x(tk+1) = x(tk) + m2

This scheme is based on a Taylor expansion

x(tk + h) = x(tk) + hf (tk , x(tk)) + h2

2

(
∂f (tk , x(tk))

∂t
+ ∂f (tk , x(tk))

∂x
f (tk , x(tk))

)
+ O(h3) (15.10)

and so it requires the integrated behavior to be continuous up to its third order for the error estimate to be
valid. If this continuity constraint is not satisfied, the integration may still succeed, but without guaranteed
error convergence behavior.

15.3.3 Handling Mode Transitions
Transitioning between two modes of continuous behavior requires: (i) detecting and locating the event
that causes the mode change and (ii) inferring the new mode.

15.3.3.1 Event Detection and Location

The continuous-time behavior of a model typically affects the discrete-event part by events that are
generated by continuous-time variables crossing threshold values. An example of this is when the power
window in Figure 15.2 reaches the top of the door frame.

The exceeding of a threshold can be formulated as an inequality on 0 that either includes the boundary,
γ

αi+1
αi (x, u, t) > 0, or not, γ

αi+1
αi (x, u, t) ≥ 0. In general, multiple mode transition relations such as both a

relation γ
αi+1
αi (x, u, t) > 0 as well as γ

αi+2
αi (x, u, t) > 0 may apply in any given mode. However, in case of

deterministic models, only one of these should be active. Note that the behavior of the continuous-time
states is best “left-closed”. In other words, each of the abutting intervals of continuous behavior includes
its starting point to satisfy causality requirements (Mosterman, 1999).

An implementation of the event generation requires two parts:

• First, it has to be detected whether the threshold has been exceeded when an integration step �T is
about to be taken.



Hybrid Dynamic Systems: Modeling and Execution 15-11

• Second, the values of the continuous states, input, and time for which the threshold was first
exceeded have to be determined. In other words, the point in time at which the zero-crossing event
occurs has to be located.

A robust implementation of the event location can be done by means of a bisectional search to find
when the first event (in general there are multiple events) in the �T interval occurs. In this case, if an
event is detected, the step size is reduced from �T to δtm, where δtm is computed based on whether an
event occurs, σ = 1, or not, σ = 0, in the interval δti as follows

δti+1 = δti + �ti(1 − σ)

�ti+1 = 1
2�ti

(15.11)

The initial values for this iteration are δt0 = 0 and �t0 = �T , and the iteration terminates after a fixed
number of a priori prescribed steps, m.

Other approaches to finding the point in time where the threshold is first exceeded such as regular-falsi
and the illinois algorithm exist (Moler, 1997) and in practical simulation engines a combination of the
different approaches tends to be employed.

Note that this requires the model not to change its mode until the zero crossing is located. For example, an
absolute value computation may not be effected while the zero crossing is located. This implies that a nega-
tive value may indeed be computed to ensure that behavior is continuous and, in this case, smooth. In some
cases, such a scheme may not work. For example, in case of a square root computation, a negative value of
the argument is outside of the domain of the square root function (unless complex values are allowed).

15.3.3.2 Mode Transition Inferencing

The discrete events generated by the zero-crossing function may cause a mode change in the model. The
relation γ

αi+1
αi (x, u, t) transitions the model from a mode αi to a mode αi+1. It takes as arguments the

continuous-time state vector, x, the exogeneous input, u, and time, t . The mode change is typically
implemented as an instantaneous transition, which means there is no passage of time. As such, it is best
modeled by an untimed formalism.

The discrete-state transition behavior can be represented in two basic forms: (i) by combinational logic
and (ii) by sequential logic. This is an important distinction as it makes quite a difference in the complexity
of analyses of the hybrid dynamic systems.

Combinational Logic
An important approach that applies combinational logic is complementarity modeling, which has proven
very successful in the domain of collision modeling (Lötstedt, 1981; Pfeiffer and Glocker, 1996) as well
as, for example, power electronics (Kassakian et al., 1991). Complementarity formulations are further
employed in the work on mixed logical dynamical (MLD) systems (Torrisi and Bemporad, 2004). A linear
complementarity model is of the form

y = Bz + b
yz = 0
y ≥ 0, z ≥ 0

(15.12)

Only one of the variables y and z can be positive while the other has to be 0. This is an intuitive repre-
sentation for points of contact in mechanical systems, where there is either some distance larger than 0
between two bodies and no force acting, or there is no distance and a force larger than 0 acting.

Sequential Logic
In case the logic contains memory, a combinational representation does not apply and sequential logic is
needed. This holds true, for example, for certain models of sequences of collisions such as those found in
Newton’s Cradle (Mosterman, 2007).

Sequential logic can be represented by a state machine, φ, often with a finite number of states (Kohavi,
1978). Many graphical formalisms exist that are of a discrete state, sequential logic, nature. For example,
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there are state transition diagrams (Kohavi, 1978), statecharts (an example of these are given in Figure 15.4)
(Harel, 1987), and Petri nets (David and Alla, 1992; Murata, 1989). Computationally, a finite state machine
can be represented by a five tuple

φ = 〈α, α0, σ, δ, ν〉 (15.13)

in which the state transition function, δ, changes the active state, α, in response to events, σ, while actions,
ν, are generated. The initial state is given by α0.

15.3.4 Reinitialization of State Variables
In response to a mode transition inferred by γ

αi+1
αi , the continuous-time state variables may be reinitialized,

as governed by g
αi+1
αi . For example, in case of the power window bounce back, the window reverts its velocity

upon impact with the frame and the corresponding state variable, vwindow, needs to be reinitialized from a
positive to a negative value. An important implication of this is that the numerical solver may have to be
reset. Sophisticated numerical solvers build up a history of time points and based on that history attempt
to take larger steps in time to compute the next integration point. If an integrator state is reset, even if no
mode transition occurs, this history becomes invalid and needs to be cleared. In this case, the integrator
starts off with a minimal step size once continuous-time behavior resumes.

Note that to specify the reinitialization, semantics need to be defined for the two values around a dis-
continuity, the a priori and a posteriori values. In this work, if necessary, the a priori values are indicated
by a “−” superscript, and the a posteriori values by a “+” superscript (see Eq. [15.6], for an example).

Finally, the number of continuous-time state variables may change between mode transitions. For
example, while modeling a highway, vehicles may enter and leave, and, therefore, continuous-time states
would be included or discarded. This, again, will require a reset of the numerical solver, depending on the
integration algorithm that is being used.

15.4 An Implementation

To generate behaviors for a hybrid dynamic system, two basic approaches exist: (i) time-driven execution
and (ii) event-driven execution. The former has the execution driven by moving time forward, often by
means of a numerical solver. The latter jumps in time in response to discrete events.

15.4.1 Classes of Events
For purposes of discussion, it is convenient to first identify two classes of events (Cellier, 1979): (i) time
events and (ii) state events. A time event is an event that occurs at a given point in time, independent of the
continuous-time state of the model, x, and the forcing function, u. Therefore, a time event is predictable.
A state event, however, is generated based on the values of the continuous-time state and the forcing
function.

15.4.2 Classes of Temporal Behavior
Depending on the particular type of behavior that is generated, one or the other may be more efficient.
For the purposes of execution analysis, three categories of behavior over time can be distinguished, as
illustrated in Figure 15.10. These behaviors correspond to those shown in the power window example in
Figure 15.3.

In Figure 15.10(a), a behavior is shown that evolves continuously in time. This evolution is typically
modeled by differential equations and the traces are generated using numerical solvers. In Figure 15.10(a),
there is a time event that occurs at the point in time that is marked by the dashed vertical. A state event
is generated at the point in time when the continuous-time behavior, the solid line, exceeds the dashed
horizontal. When the threshold is exceeded, it is backtracked to the earliest point in time where this
occurred, indicated by the dashed arrow. The events are indicated by vertical solid arrows.
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FIGURE 15.10 Different types of execution. (a) Continuous time (b) discrete time and (c) discrete event.

In Figure 15.10(b), two signals are shown: (i) the top signal has a period of 4 (ms) with an offset of
3 (ms) and (ii) the bottom signal has a period of 3 (ms) and an offset of 2 (ms). Such behaviors only
contain time events that are of a periodic nature. This is typical in the design of an embedded controller,
where the system operates at a fixed sample time, the base rate, and the different aspects of the control
may execute at the fast base rate or have a sample time that is an integer multiple of the base rate. For the
signals in Figure 15.10(b), the base rate is 1 (ms). Synchronous languages such as Lustre (Halbwachs et al.,
1991) have been specifically designed to handle this class of systems.

In Figure 15.10(c), a behavior with only time events is shown, but the events are not periodic. Such
behaviors are typical in network modeling, where the time in which a packet arrives is variable as is the time
it takes to move the packet through a network. Another application is the modeling of the task scheduling
on a microprocessor network, where events occur when a task is completed. This time is typically variable
and the execution may even be preempted by higher priority tasks, resulting in further variability of the
execution time.

15.4.3 Time-Driven Execution
In a time-driven execution, a numerical solver is applied that governs the advance of time. The numerical
solver is typically provided with a set of differential equations, a start time, a set of initial states, a set of
input values, and a stop time. It then attempts to solve the differential equations to generate a trace of
numerical values for the states from the start time to the stop time. This trace may consist of any number
of steps and corresponding integration points.

The trace is generated by the numerical solver computing the size of a step in time to take, based on
the time gradients of the differential equations, as, for example, in Eq. (15.9). If there is a steep gradient
because of the fast changes in the state values, small steps are taken, whereas when the behavior changes
relatively slowly, larger steps are taken.

The stop time is either taken to be the end time of the requested simulation, or, in case there are time
events, the first of such an event is provided as the stop time. If only time events are present, and they are
statically known, then a schedule for execution can be precompiled. This is the case if all of the events are
periodic in nature. The greatest common denominator of all the different sample times is determined and
each of the events are executed at an integer multiple of this base rate.
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TABLE 15.1 Event Calendar

Time (ms) Event

20 open_tonneau
2020 move_top_up_cmd
2150 move_down_window
2250 stop_moving_window

For aperiodic events, this approach may not be applicable, as the accuracy with which the time at which
events can be effected degenerates to the period of the base rate, which is typically too coarse.

In case state events are present, a numerical solver with zero-crossing detection built-in is desirable. Such
a numerical solver returns before the final time is reached and reports the time at which a zero crossing
was found.

15.4.4 Event-Driven Execution
Another approach to generating behavior takes an event-driven perspective. This is particularly efficient
for time events that are aperiodic and often have a stochastic component to their time of occurrence.

Rather than having a numerical solver move time forward until each of the events occurs, time imme-
diately jumps from one event time to another. To efficiently implement this, typically an event calendar is
used to keep track of all events that are scheduled to occur. An example of an event calendar is presented in
Table 15.1. It shows how the first upcoming event to occur is at 20 (ms), followed by another at 2020 (ms).

An event-driven approach is much more efficient in handling aperiodic time events as it does not
require a time-driven solver to move time forward by means of integration over time. Typically, hundreds
of thousands of events can be conveniently simulated in a matter of seconds.

To achieve such efficiency, it is critical that the event calendar be implemented in an efficient manner. In
particular, efficient search of the event calendar needs to be facilitated, because new events must be inserted
in the correct place, and events that were scheduled at one time may have to be located and retracted at a
later time.

One implementation, called calendar queue, mimics a traditional calendar [3], which uses an array to
index into a number of bins while the content of each bin is implemented as a doubly linked list. In this
list, each item has a link to the next item as well as the previous item, which allows each item in the list
to be accessed in a forward as well as backward manner. Deleting any item can then be done in constant
time. The array that implements the number of bins has constant access time to each of the bins.

This is illustrated in Figure 15.11 where four bins are represented by the array at the top. The bin with
index 0 contains all elements with a time stamp in the range from 0 to 1, with 1 not included; the bin with
index 1 contains all elements with a time stamp in the range from 1 to 2, with 2 not included, etc. Events
with a time stamp of 4 or more are distributed based on the result of the time stamp modulo 4.

The calendar queue combines the benefit of quick insertion of events in the doubly linked list where the
array is more efficient for indexing a large event calendar. Further permutations of different data structures
such as arrays, lists, and heaps can be devised depending on the characteristics of the event distributions
particular to a problem under study. For example, if the number of scheduled events varies greatly during
simulation, dynamically reconfiguring the data structure may become important.

Note that an event-driven implementation can be exploited to generate behaviors for continuous-time
models as well. In this approach, the numerical solver is modeled as a discrete-event component and the
computations at each time step are aperiodic events to be handled (e.g., D’Abren and Wainer, 2003).

15.4.5 Combining the Execution Types
In many applications of modeling and simulation, in particular for hybrid dynamic systems, it is common
to have an extensive model component that is of an aperiodic discrete-event nature as well as a component
that is of a continuous-time nature. For example, the power window system in Figure 15.3 may contain
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FIGURE 15.11 Calendar queue event list.

a detailed continuous-time model of the door with window, dc motor actuator, signal conditioning
hardware, and the like, all of which may contain some discontinuities modeled by local finite state machines.
Similarly, the controller may operate in a discrete-time manner because it executes with a given sample
rate. The controller may implement an extensive signal processing component, data analysis computations,
supervisory control, and further elements. The CAN behavior may be modeled in detail by a discrete-
event model that performs behaviors such as capturing the generation of packets, routing them through
the network, and possibly resending dropped packets.

To efficiently execute models that comprise all of these behaviors, it is desirable to support: (i) a
numerical solver for continuous-time behavior, (ii) a scheduler for the discrete-time behavior, and (iii) an
event calendar handler for the discrete-event behavior.

Because of the predictability of the discrete-time events and the fixed base rate, discrete-time behavior
as handled by a scheduler can often be conveniently integrated into the numerical solver to comprise a
time-driven execution engine. A getNextEventTime call is typically exploited to tell the solver the time until
which it should solve for the continuous-time behavior.

The discrete-event part is a different matter, though. Because there is no fixed base rate, events may
occur arbitrarily close in time. Halting the numerical solver at each of these points in time quickly becomes
very inefficient. So an event-driven execution engine is preferred.

Rather than integrating the time-driven execution engine that uses a numerical solver and event schedule
with the event-driven execution engine that relies on an event calendar, it is more efficient to combine the
two different execution engines. When combining the two, it is important to first observe that the event-
driven engine may process many events that have no bearing on the time-driven behavior. The time-
and event-driven execution engine can then compute behavior independently until an event is generated
that requires interaction between the two. This requires coordination between the time- and event-driven
execution to ensure the two are synchronized upon communication (Nicolescu et al., 2006).

Two possibilities to implement this are illustrated in Figure 15.12. In Figure 15.12(a), the event-driven
behavior shown at the bottom leads the time-driven behavior shown at the top. Behavior generation starts
with processing the events (indicated as vertical arrows) that are registered on the event calendar. When
the first event that has a bearing on the time-driven behavior is processed, a time event is set and the
numerical solver starts integrating up to that point in time, shown at the top. A complication arises when
the continuous-time behavior exceeds a threshold that causes a state event to occur that has a bearing on
the event-driven behavior located in time before the time event that was set. This state event then occurs at
a point in time that the event-driven execution has passed already. So, events that were already processed
have to be retracted and the state of the event-driven behavior has to roll back.
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The other possibility is illustrated in Figure 15.12(b), where the time-driven behavior leads the event-
driven behavior. In this case, the state event is generated and registered on the event calendar before the
event-driven behavior reaches this point in time and execution control is handed over to the event-driven
behavior to catch up. Now, it may happen that the event-driven behavior sets a time event in the time-
driven execution at a point in time before the state event occurred. This event may cause a change in
continuous-time behavior, and the threshold that caused the state event may never be reached. So, the
time-driven execution engine needs to roll back.

Efficient implementations can be developed based on, for example, employing an interpolation polyno-
mial in the time-driven part to quickly obtain the previous continuous-time state values, so the numerical
integration does not have to be restarted anew, which is an expensive proposition.
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FIGURE 15.12 Combining event-driven and time-driven execution. (a) Event-driven leads and (b) time-driven leads.



Hybrid Dynamic Systems: Modeling and Execution 15-17

15.5 Advanced Topics in Hybrid Dynamic System Simulation

To build on the understanding of the basic elements of a hybrid system, some of the complications that
arise when implementing and combining these elements are explored.

15.5.1 Zero-Crossing Detection
The typical approach to zero-crossing detection compares the sign of a function result and if it changes, it
has crossed zero. This approach may fail if the zero-crossing function has an even number of zeros in the
interval �T between the two evaluated points as determined by the numerical integration algorithm. This
is illustrated in Figure 15.13(a). In general, the zero-crossing function, z, is a function of the model state,
but it does not contribute to its continuous dynamics, f . Therefore, numerical integration can proceed
without taking the dynamics of z into account, and when these are faster than the dynamics of f , the
situation with even zeros may arise.

One solution to the even zeros problem is to include the dynamics of z in the model dynamics so the
numerical solver adjusts its step size when too large an error in the zero-crossing function dynamics is
found (Park and Barton, 1996). This does not, however, address the problem of moving outside of the
domain of the zero-crossing function, such as outlined for the square root computation in Section 15.3.3.
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FIGURE 15.13 Difficulty in zero-crossing detection and location. (a) Even roots, (b) comparing a float, and
(c) discontinuity sticking.
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To avoid moving outside of a function domain, an alternate approach to event detection relies on a
feedback-control concept. If k is the index of the points in time at which the numerical solver computes
a value, tk , then, if k is considered dense rather than discrete, the step size between consecutive points, h,
becomes h(k) = dt

dk . This step size can be chosen as

h(k) = −η
z(x)
∂z
∂x f

(15.14)

to control the step size selection (Esposito et al., 2001). Given the sensitivity of the zero-crossing function,
z, with respect to the step size

dz

dk
=

(
∂z

∂x

dx

dt

)
dt

dk
=

(
∂z

∂x
f

)
h(k) (15.15)

this results in z behaving as

dz

dk
= −ηz (15.16)

which gradually converges to 0 without actually crossing it. Instead, the solution to Eq. (15.16) is
z(k) = z(0)e−ηk , and z(k) approaches 0 exponentially as k tends to infinity. So, the function domain is
never departed. However, this requires a number of additional computations during numerical integration
such as the sensitivity, and, therefore, is computationally less attractive.

Other than exceeding the threshold value, another issue with zero-crossing detection arises when the
zero-crossing function z returns 0 exactly. This does not constitute a crossing, and, therefore, is not detected
as such. Root-finding facilities of numerical solvers may require the function z to actually change sign
between two integration steps to report that a crossing has occurred. For example, when z starts off at
0 and then moves away from it, no zero-crossing event would be generated and consequently no mode
change could occur.

One solution is the use of a zero-crossing function that is not at 0 exactly. Rather, it is chosen to be
−ε when z is negative and ε when z is positive, with ε very small. When −ε < z < ε, both zero-crossing
functions, z − ε and z + ε, are used.

One effect of this implementation is the need for a “numerical 0”; a ±ε band around 0 in which the
zero-crossing function is considered to be the 0 value of the sign function.

sign(x) =
⎧⎨
⎩

− ∀x(x < −ε)
0 ∀x(−ε ≤ x ≤ ε)
+ ∀x(x > ε)

(15.17)

As long as the zero-crossing function evaluates to a value within the ±ε band, its sign is considered to be 0.
This approach has an important implication for the analytical correctness of comparing for equality.

If a simulation contains the comparison with zero, x = 0, when x is a continuous signal, a zero-crossing
function z(x, u, t) is used to find the value of x that satisfies this equality within a certain tolerance. For
this value, x′, the zero-crossing function has sign 0, whereas the strict equality x = 0 may not be satisfied.
Figure 15.13(b) shows how the signal x may therefore cross 0 without having x = 0 evaluate to true because
the analytical solution that satisfies this comparison is never evaluated by the numerical integration.

Another issue that is less critical but still causes inefficiencies to occur because of recomputation of the
model variables after the zero crossing has been located. Because of numerical inaccuracies, even if no
changes to the states are made that are used to compute a zero-crossing variable, the return value of the
function may still differ. This is illustrated in Figure 15.13(c), which shows that restarting the simulation
results in a function return value that is slightly different from the computed value immediately before
the zero crossing. Continuing simulation leads to the same zero crossing being detected and located again.
This phenomenon has been referred to as discontinuity sticking (Park and Barton, 1996).
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15.5.2 Mode Changes
When a change between modes occurs, the continuous-time state variables may have to be reinitialized
and an immediate consecutive mode change may occur as a result.

15.5.2.1 Reinitialization

An important phenomenon of the general DAE form 0 = fα(ẋ, x, u, t) is that the system may only be allowed
to move in part of the generalized state space (Verghese et al., 1981). This is the case, for example, when
the power window in Figure 15.2 collides with an object, mobject, in a perfectly nonelastic manner. After
the collision, the window and object proceed to move with equal velocity, and this leads to the equations

mobject v̇object + mwindow v̇window + Rliftvwindow = rumotor

vobject = vwindow

ẋwindow = vwindow

ẋobject = vobject

(15.18)

to describe the dynamic behavior. In the form of a matrix pencil (Demmel and Kägström, 1986) with a
forcing function, Eẋ + Ax + Bu = 0, this becomes
⎡
⎢⎢⎣

mwindow mobject 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v̇window

v̇object

ẋwindow

ẋobject

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

Rlift 0 0 0
−1 1 0 0
−1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

vwindow

vobject

xwindow

xobject

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

−r
0
0
0

⎤
⎥⎥⎦ [ umotor ] = 0

(15.19)

Here, because of the constraint that vwindow = vobject, only the part of the state space for which this
constraint holds can be accessed. This implies that there is also a limitation on the reachability in the
xwindow, xobject space, but this is a nonholonomic constraint rather than it being disallowed.

In a general sense, the reduced state space can be represented in geometric terms as shown in Figure 15.14.
Here, the system evolves in a mode α1 until the boundary of a patch is reached. At this point in time, the
system transitions into another mode, but the continuous-time state is not in the allowed space, which is
marked by the thick solid line. To arrive at a consistent situation, the continuous-time state has to be in
the allowed space, and the exact value is computed based on the jump space, which is the space in which
the required instantaneous changes are allowed.

In the linear case, this computation in the jump space corresponds to a projection. This projection can be
computed in several ways (Gantmacher, 1965; Griepentrog and März, 1986; Lewis, 1992; Mosterman, 2000,
2002; van der Schaft and Schumacher, 1996; Verghese et al., 1981). To illustrate the method in Mosterman
(2001), the Weierstrass normal form is derived for the velocity part of the equations in Eq. (15.19). The
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FIGURE 15.14 A projection. (From Mosterman, P. J. Mode transition behavior in hybrid dynamic systems. In
Proceedings of the 2003 Winter Simulation Conference, pp. 623–631, New Orleans, LA, December 2003 (invited paper).)



15-20 Handbook of Dynamic System Modeling

positions are geometric states that do not change discontinuously, and, therefore, are irrelevant for the
example. This leads to the system of equations

[
mwindow mobject

0 0

] [
v̇window

v̇object

]
+

[
Rlift 0
−1 1

] [
vwindow

vobject

]
+

[ −r
0

]
[ umotor ] = 0 (15.20)

After applying the following change of basis:

[
vwindow

vobject

]
=

[
1 − mobject

mwindow

0 1

] [
1 0

− mwindow
mwindow + mobject

1

] [
v̄window

v̄object

]
(15.21)

the following matrix pencil is arrived at:

[
mwindow 0

0 0

] [ ˙̄vwindow˙̄vobject

]
+

⎡
⎣ 0 mwindow

mwindow + mobject
Rlift

0
mwindow + mobject

mwindow

⎤
⎦

[
v̄window

v̄object

]
+

[ −r
0

]
[ umotor ] = 0 (15.22)

The matrix

[
mwindow 0

0 0

]
contains a finite space (top-left entry) [mwindow] and infinite space (bottom-

right entry) [0]. Note that this is an index 1 system of equations, as the infinite space is the null matrix.
Therefore, its nilpotency is 1, and this is also referred to as the index of the system of equations (van
Dijk, 1994). The nilpotency is an indicator of how many stages of substitution are required to compute
all infinite variables. Eq. (15.22) is considered to be of index 1 because the infinite variable, v̄object, can be
computed in one stage, i.e., v̄object = 0.

The finite part in Eq. (15.22) consists of v̄window and this can be converted into a regular one-dimensional
ODE by inverting the matrix [mwindow] and left-multiplying. Because it is a regular ODE, there is no
discontinuous change in the variable v̄window, or

v̄window = v̄−
window (15.23)

where the “−” superscript indicates the final value of v̄window before the mode change (in case of the
initialization before simulation starts, it is the user-supplied initial value).

Now, from v−
window and v−

object, the value v̄−
window can be computed using the inverse change of basis.

Straightforward computations yield

v̄−
window = v−

window + mobject

mwindow
v−

object (15.24)

which equals v̄window. With v̄object = 0 the change of basis can now be applied to yield

vwindow = 1

mwindow + mobject
(mwindowv−

window + mobjectv
−
object) (15.25)

and from vwindow = vobject, vobject can be computed. Details on the derivation are available in previous
work (Mosterman, 2000).

15.5.2.2 Sequences of Mode Changes

After one mode change, γ
αi+1
αi , and computing the initial values of the continuous-state variables in the

new mode, a new transition, γ
αi+2
αi+1 , may follow immediately as shown in Figure 15.9 (Mosterman and

Biswas, 1996). The mode change causes a new mode to be arrived at, after which reinitialization is per-
formed again. This process repeats until no further mode changes occur and the system proceeds to evolve
continuously again.
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The values of the continuous-time state in modes where there is no continuous-time behavior can be
of two types (Mosterman and Biswas, 1996):

• When the value does not change from the previous mode, and the mode is a so-called mythical
mode (Figure 15.15(a)).

• When the reinitialization causes a change in value from the previous mode, which results in an
isolated point, a so-called pinnacle, with no continuous behavior in that mode (Figure 15.15(b)).

In case of sequences of mode transitions, the left-closedness mentioned in Section 15.3.3 may (have to)
be relaxed, though, in particular for sequences of pinnacles. For example, a pressure relief valve may move
through a sequence of opening and closing cycles before the pressure has subsided to below the threshold
for opening the relief valve. In a sufficiently detailed model, this sequence occurs over time, but when small
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FIGURE 15.15 Sequences of mode transitions. (a) State invariance and (b) state reinitialization. (From
Mosterman, P. J. Mode transition behavior in hybrid dynamic systems. In Proceedings of the 2003 Winter Simulation
Conference, pp. 623–631, New Orleans, LA, December 2003 (invited paper).)
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physical phenomena are not included in the model, for example, to simulate it in real time, this sequence
may occur at one point in time (Mosterman, 2002). Note that this requires the “state” of the system to
include an additional dimension to allow multiple values at one point in time. This can be done by using
pairs that consist of the continuous-time state and an index (Guckenheimer and Johnson, 1995).

An important behavior that is not properly dealt with in simulation tools at present is the crossing of
the patch boundary in an intermediate mode such as in mode α2 in Figure 15.15(b). The proper value
of the continuous state to be applied for initialization in mode α3 appears to be the point at which the
projection crosses the patch boundary. However, there may be physical phenomena that are best modeled
with a different semantics. This is still a subject of research.

15.6 Pathological Behavior Classes

Once sequences of mode changes occur, models can be constructed that contain loops of mode changes,
i.e., a previously visited mode is revisited, without continuous-time behavior evolving in between.

Two classes of behavior are illustrated in Figure 15.16. In Figure 15.16(a), the pathological case is shown
that violates the divergence of time principle (Mosterman and Biswas, 1998). Here, the state is initialized
inside of the patch in mode α1. It evolves continuously until it reaches the patch boundary as defined by
γ

α2
α1 . When the state xα1 is then transferred to mode α2, it is outside of the patch as defined by γ

α1
α2 (note

the exchange in subscripts of α). This causes the state to be transferred back to α1 where it is outside of
the patch as defined by γ

α2
α1 . Thus, a loop of discrete changes between modes arises.2 Because these are

instantaneous, no time elapses, and, therefore, the model stops evolving in time. In other words, time does
not diverge. Since this behavior is not observed in physical systems, such behavior is considered the result
of anomalous models of physics.

Similar but different behavior is illustrated in Figure 15.16(b). Here, after reaching the patch boundary
in α1, the state transfers onto the patch boundary in α2 as defined by γ

α1
α2 (note again the exchange in

subscripts of α). Because it is the patch boundary, the state transfers back to α1 after an infinitesimal step
in time. This step results in a value xα1 that may be immediately inside the patch in α1 as defined by γ

α2
α1

and so another infinitesimal step will transfer the state back to α2.3

Far-fetched and pathological as it may seem, this behavior, referred to as chattering or sliding mode
behavior, is actually aimed for by robust control design methodologies (Utkin, 1992) (e.g., it is used in
antilock braking systems), as it is relatively insensitive to plant model parameter variations. Unlike the
behavior in Figure 15.16(a), here the state does continue to evolve in time and the divergence of time
principle is satisfied. To efficiently derive the actual behavior along the switching surface as defined by the
patches in mode α1 and α2, two methods can be applied: (i) equivalence of control (Utkin, 1992) and
(ii) equivalence of dynamics (Filippov, 1960; Mosterman et al., 1999). Although there are classes of models
for which these “regularizations” result in the same behavior, in general they may differ.

Finally, another class of pathological behaviors can be identified, namely Zeno behavior.4 Behaviors that
are Zeno do progress in time by a noninfinitesimal value each time a mode transition occurs. However,
this time reduces upon each transition as a converging series. For example, in case the time is halved upon
each transition, the transition series converges to a limit value in time

tf = �i
1

2i
(15.26)

that is never exceeded. In case the bounce-back of the window in the hybrid automaton in Figure 15.8(b)
does not include the threshold clause, the bounce transition would be taken indefinitely, with shorter

2Note that a loop may involve any finite number of modes.
3Note how left-closedness is violated in this particular instance of behavior. In general, an infinitesimal “hysteresis”

effect may be present to guarantee left-closedness again.
4Named after the Greek philosopher Zeno who studied the relation between points and intervals, i.e., whether an

interval is an infinite collection of points.
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FIGURE 15.16 Recurring mode transitions. (a) Nondivergent and (b) sliding. (From Mosterman, P. J. Mode transi-
tion behavior in hybrid dynamic systems. In Proceedings of the 2003 Winter Simulation Conference, pp. 623–631, New
Orleans, LA December 2003 (invited paper).)

and shorter intervals of time in between. Depending on the coefficient of restitution, η, the new interval
between bounces would be a fraction of the present one. The increasingly smaller intervals would converge
to a limit point in time beyond which time would not progress. Therefore, although time diverges locally,
it does not do so globally.

It is now possible to compare the three mode revisiting behaviors.

• Divergence of time: infinitely many discrete steps in zero time. Time remains the same.
• Chattering: infinitely small time steps. Evolves past any value in time.
• Zeno: infinitely many time steps in a finite, nonzero, time interval. Does not evolve past a limit point

in time.

Note that, although it is important to clearly distinguish between these three behaviors, often Zeno is used
as an all-encompassing term that includes each of these (e.g., behavior that is locally not divergent in time
is often called Zeno as well).

15.7 Conclusions

This chapter presented an overview of the field of numerical simulation for hybrid dynamic systems. It
discussed the basic parts of continuous-time behavior generation, event detection and location, mode
transitions, and reinitialization that are needed and how they combine together.

The implementation was shown to be potentially based on a numerical integrator scheme, use of a
statically compiled schedule, and use of a dynamically kept event calendar. In some cases, it may be
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desirable to combine the different forms of implementation for efficiency and ways to achieve this were
discussed.

The richness and complexity of mode transition behavior in hybrid dynamic systems was shown by
presenting a number of mode transition behavior classes that require special attention. Pathological
behaviors were classified.
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If you nail two things together that have never been nailed together before, some schmuck will buy it
from you.

George Carlin

16.1 Introduction

For the better part of the past quarter century, the defense simulation industry has invested significant
resources in technologies and methods for making independently developed simulations work together at
run-time. Many reasons for this activity exist. The initial impetus was the need for a common “synthetic
environment” that could interconnect simulators in support of small-team training—such environments
are now commonplace to today’s online gamers. Subsequently, the notion of “moving electrons to the

16-1
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people” rather than “moving people to the electrons” led to a proliferation of geographically distributed
simulation-based training environments. In addition, there was the belief that each Service (e.g., Army,
Navy, Air Force, and Marines) could best model that Service’s capabilities, and if you needed to access
such capabilities, you should do so by interconnecting with that Service’s “authoritative” simulations.
And of course, the notion of cost savings through simulation reusability also drove the development of
technologies for simulation interconnection. Today, simulation interconnection is pervasive in the defense
simulation arena.

Issues in simulation interconnection are variously referred to as integration, interoperation, composition,
configuration, and more. Today, the dominant notions are interoperability and composability. And while
there is some ambiguity in their usage, for purposes of this chapter, interoperability is the realm of the
practical aspects of simulation interconnection, and composability encompasses the theoretical work in
simulation interconnection.

To a large extent, the simulation interconnection problem can be viewed as a computer science problem,
tackled by the “modern miracles” of standards, middleware, distributed algorithms, data type coercion,
and so forth. The practice of simulation interconnection (interoperability) is reviewed in these terms. But
there is also the notion of what it means when you interconnect two simulations. And while this topic has
received much less attention in the defense simulation arena than the more immediately tractable issues of
aligning bits and bytes, some notable work has been done, and is covered under the theory of simulation
interconnection (composability). A careful reader will no doubt observe a close connection between the
issues confronted in the theory of simulation interconnection and the fundamental concerns of multiscale,
multiresolution, and multiformalism modeling.

A tremendous volume of literature exists in this area. Simulation interconnection is, for practical
purposes, an industry unto itself. There are several longstanding conferences and workshops devoted
to the topic, most notably the Simulation Interoperability Workshops (see SISO, 2005). Entire texts are
dedicated to aspects of the problem, e.g., the high-level architecture (HLA) (Kuhl et al., 1999), and
simulation interconnection represents the primary business for many companies that support the defense
simulation industry. The goal of this chapter is to provide a broad and gentle introduction to the topic,
with lots of pointers to the more comprehensive, detailed sources.

And, just for the record: George Carlin was offering general advice to aspiring entrepreneurs. As far as
this author is aware, Mr. Carlin had no connections with the defense simulation industry!

16.2 The Practice of Simulation Interconnection—Simulation
Interoperability

The lineage of the practice of simulation interconnection is typically traced from the Defense Advanced
Research Project Agency (DARPA) simulator networking (SIMNET) project, through the development
of the distributed interactive simulation (DIS) protocols and aggregate level simulation protocol (ALSP),
to the current approach defined by HLA for modeling and simulation. Each of these is briefly surveyed
here. Interested readers should consult Voss (1993) and Miller and Thorpe (1995) for histories of SIM-
NET and DIS, Miller and Zabek (1996) and Weatherly et al. (1996) for ALSP, and Kuhl et al. (1999)
for HLA.

Interconnecting simulations over computer networks may be rightly viewed as an application of
distributed simulation. Within the defense simulation arena, work in simulation interconnection has
sometimes been referred to as advanced distributed simulation (ADS). Here, the distributed simulations
are mostly (but not exclusively) used for training, and the purpose of distributed execution is enhanced
functionality. A newcomer to this area should be aware that there is a separate body of work in distributed
simulation whose objective is to reduce the execution time of a simulation by utilizing multiple processors.
In his comprehensive text on parallel and distributed simulation, Fujimoto (2000) refers to distributed
simulation in the defense community as distributed virtual environments (DVEs).
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16.2.1 Simulator Networking
Prior to the 1980s, simulators were very expensive, special purpose devices used to train an individual
in the essential skills needed to operate the real platform that the simulator represented. Although a few
cases of one-to-one locally interconnected air combat simulators had been created, networking technology
was inadequate to support the interconnection of large numbers of simulators or the interconnection of
simulators at great distances. The evolution of the ARPAnet and its concomitant technologies (e.g., packet
switching) changed things, however, and in 1983 DARPA launched the SIMNET project. The purpose
of SIMNET was to investigate the capability of networked simulators to support group (or “collective”)
training in large scales and at great distances. The idea was that a large-scale, interactive, networked
simulation created a “synthetic environment” that could be entered by any authorized combatant from
anywhere on the network using his simulator as a porting device (Miller and Thorpe, 1995). The initial
project scope was to develop a SIMNET testbed with at least four geographically distributed sites with
50–100 vehicle simulators each. Because it was believed that the networking technologies of the day
would not support the demands (owing to speed and maneuverability) of aircraft simulators, the initial
SIMNET testbed focused on slower moving ground-based platforms, e.g., tanks and armored personnel
carriers.

SIMNET spurred technical advancements in both computer networking and image generation, and is
the basis for a variety of successful Service programs, including the U.S. Army’s Close Combat Tactical
Trainer (CCTT). Most of the fundamental design principles underlying SIMNET have demonstrated
lasting value for simulation interconnection (Miller and Thrope, 1995):

• Selective fidelity. To minimize simulator costs, a simulator should only contain high fidelity repre-
sentations of those elements essential to the training task. All other elements should be represented
at lower fidelities, or not at all.

• Autonomous simulation nodes. Each node is responsible for maintaining the state of at least one
object in the synthetic environment, and for communicating to other nodes any events caused by
its object(s). Each node receives event reports from other nodes and calculates the effects of those
events on its objects. All events are broadcast on the simulation network, and are available to any
node that is interested. There is no centralized controlling process. Nodes may join and leave the
network without affecting other nodes. Each node advances simulation time according to a local
clock (typically a hardware clock).

• Transmission of “ground truth” data. Each node transmits the absolute truth about the current state
of the object(s) it represents. Alteration of data to suit simulation objectives is the responsibility of
the receiving node. For example, the position of a vehicle is broadcast to the network with 100%
accuracy. If an object in another simulator determines that it could perceive the vehicle through
a particular sensor, but with an accuracy determined by the alignment of the sensor and current
weather conditions, then the receiving simulator should degrade the reported position accordingly.

• Transmission of state change information. To minimize communications processing, nodes transmit
state update information only. To accommodate late-joining nodes and networks with high packet
loss, this rule is often relaxed. In these situations, nodes send periodic (but relatively infrequent)
updates for each owned object regardless of whether or not their state changes. This update interval
is known as the “heartbeat.”

• Dead reckoning. Between state update messages, receiving nodes may extrapolate the last reported
state of remote objects that are of interest. To keep the extrapolated values from becoming too far
afield of the actual values, the sending node maintains the same approximation and transmits a
state update whenever the true position (or orientation) of an object diverges from the calculated
dead reckoned values by more than an agreed-upon threshold. Fujiomoto (2000, p. 206) discusses
common dead reckoning algorithms.

Other mainstays of modern defense simulation introduced by SIMNET include semi-automated forces
(SAF) and the “flying carpet” (or “stealth”) display.
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16.2.2 Distributed Interactive Simulation
Following the successful demonstrations of SIMNET in the late 1980s, the defense simulation community
undertook an industry-wide effort to define a set of standard networking protocols for interconnecting
simulations. This work was accomplished largely within a series of semiannual workshops, and the DIS
protocols became an IEEE standard in the spring of 1993 (Pullen and Wood, 1995; Voss, 1993). The
primary mission of DIS is (University of Central Florida, 1993, p. 3)

. . . to create synthetic, virtual representations of warfare environments by systematically connect-
ing separate subcomponents of simulation which reside at distributed, multiple locations . . . The
property of connecting separate subcomponents or elements affords the capability to configure
a wide range of simulated warfare representations patterned after the task force organization of
actual units . . . Equally important is the property of interoperability which allows different simula-
tion environments to efficiently and consistently interchange data elements essential to representing
warfighting outcomes.

The fundamental design principles for DIS follow directly from SIMNET. Most of the standardization
effort focused on extending the basic SIMNET communication structure, the protocol data unit (PDU),
a bit-encoded packet for communicating entity state, and other types of information identified as useful
for distributed combat simulations, e.g., weapons fire and weapons detonation events.

Like SIMNET, DIS was primarily designed to support the interconnection of simulations that (1) run
in real-time, and (2) have a significant visual component. A great deal of focus in the DIS arena dealt with
minimizing network latencies for PDUs. The creation of DIS led to a burgeoning market in SAF. SAFs
were used to populate synthetic environments with background objects that behaved in a “reasonable”
way. They were “semiautomated” because human intervention was often required to make the modeled
entities maintain their reasonable behavior. The power and utility of SAFs was recognized very quickly,
and eventually DIS-supported simulation environments consisting entirely of SAFs emerged.

DIS has been used as the protocol underlying numerous warfighting experiments and advanced concepts
technology demonstrations (ACTDs), most notably, the Synthetic Theater of War (STOW) family of
experiments.

16.2.3 Aggregate Level Simulation Protocol
As noted by Page and Smith (1998), defense simulation has a vernacular that can be nonintuitive to
simulationists from outside the defense arena. For example, a commonly applied taxonomy for defense
simulation is the virtual, live, constructive taxonomy (U.S. Department of Defense, 1997):

• Virtual simulation refers to a simulation involving real people operating simulated systems. Virtual
simulations inject human-in-the-loop in a central role by exercising motor control skills (e.g., flying
an airplane), decision skills (e.g., committing fire control resources to action), or communication
skills (e.g., as members of a C4I team).

• Live simulation refers to a simulation involving real people operating real systems.
• Constructive simulation refers to a simulation that involves simulated people operating in simu-

lated systems. Real people stimulate (make inputs) to such simulations, but are not involved in
determining the outcomes.

Essentially, virtual simulation refers to the use of simulators, live simulation to rehearsal, or practice with
“go-to-war” systems, and constructive simulation refers to “classical” computerized simulation models.
These classical simulation models are also categorized with respect to their inherent level of abstraction.
If the simulation includes explicit representation of individual vehicles, it is referred to as an entity-level
simulation. If, however, the basic unit of representation in the simulation corresponds to a military echelon,
e.g., a platoon, company, brigade, or battalion, then the simulation is referred to as an aggregate-level
simulation.
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Like the DIS protocols, the ALSP is rooted in SIMNET, but ALSP was targeted toward support for
the interoperation of aggregate-level simulations used within command post exercises (Page et al., 1997;
Weatherly et al., 1993, 1996). In addition, ALSP supported the explicit representation and synchronization
of simulation time using a variant of the Chandy–Misra–Bryant protocol (Chandy and Misra, 1979; Bryant,
1977).

Fielded in the spring of 1991, the ALSP Joint Training Confederation (JTC), currently known as the Joint
Training Transformation Initiative Plus (JTTI+), has been successfully employed to support numerous
major, large-scale, joint training exercises, including the annual Ulchi Focus Lens, Prairie Warrior, and
Unified Endeavor exercises (Miller and Zabek, 1996; ALSP, 2005).

16.2.4 High Level Architecture
By 1995, SIMNET, DIS, and ALSP had each contributed to the demonstration that interconnecting sim-
ulations could be of practical value. SIMNET provided an efficient and effective mechanism for linking
simulators. DIS extended SIMNET and provided scalability to many thousands of entities in SAF-based
exercises. ALSP provided support for synchronization required to interconnect “logical time,” e.g., discrete
event, simulations. By 1995, many defense simulations had interconnection interfaces—some SIMNET,
some DIS, some ALSP, some “home grown.” To mitigate against the proliferation of homegrown intercon-
nection standards, the U.S. Department of Defense (DoD) established a unifying standard for simulation
interconnection known as the High Level Architecture (HLA). The HLA represents both a generalization
and extension of SIMNET, DIS, and ALSP, and is defined by three components:

• an object model template—a common model definition and specification formalism,
• an interface specification—a collection of services describing the HLA run-time environment, and
• the HLA rules—governing compliance with the architecture.

The HLA is intended to have applicability across the full range of defense simulation applications, including
those used to support training, analysis, mission rehearsal, and acquisition.

At the heart of the HLA is the notion of a federation. A federation is a collection of federates—simulations
and other systems—that interoperate using the protocols described by the architecture. A federation object
model (FOM) provides the model specification and establishes a contract between the federates regarding
the nature of the activity taking place during federation run-time. Federation execution is accomplished
through an HLA run-time infrastructure (RTI), which is an implementation of the infrastructure services
defined by the architecture. In addition to defining services for the RTI, the HLA interface specification
also defines services that must be implemented by federates.

In a typical federation execution, a federate joins the federation, indicates its operating parameters (e.g.,
information the federate will provide to the federation and information it will accept from the federation),
and then participates in the evolution of federation state until the federate departs the federation or the
simulation terminates. FOM data are provided to the RTI at run-time, enabling the infrastructure to
provide a level of enforcement with respect to the “information contract” that the FOM represents.

16.2.5 Summary Thoughts on the Practice of Simulation Interconnection
It would be hard to argue that the pursuit of making independently developed systems work together at
run-time has not been worthwhile for the defense simulation community. The technology has been used
successfully too many times to condemn it. However, there is still the sense in the defense simulation
community that simulations generally, and federations of simulations particularly, are expensive, difficult
to use, and fragile. The community still has not achieved the level of interoperability that it would like.
Although HLA was (is) a unifying standard, a great many DIS and a few ALSP applications still persist. The
technology seems to be almost in a perpetual proof-of-concept mode. Organization after organization still
spend nontrivial sums on the creation of federations with minimal utility. On the one hand, this seems like
a bad sign. On the other, fundamental change within government organizations takes time, and 25 years
is probably too soon to fully evaluate the impact of this technology.
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16.3 The Theory of Simulation Interconnection—Simulation
Composability

In recent years, the defense simulation community has begun to complement a robust practice of simula-
tion interconnection with some regard to the development of supportive theories. Most of this work has
arguably been accomplished under the rubric of simulation composability. Like many terms from the DoD
lexicon, the notion of composability is vaguely and disparately applied, as evidenced by the history below,
adopted from Page et al. (2004).

16.3.1 A Brief History of Composability
The earliest uses of the term composability within the defense simulation context date to the Composable
Behavioral Technologies (CBT) project during the mid-1990s (see Courtemanche et al., 1997). The purpose
of CBT was to give ModSAF users a convenient way to develop new entity behaviors without appealing to
the underlying SAF source code. Shortly after the initiation of CBT, composability appeared as a system
objective within the Joint Simulation System (JSIMS) Mission Needs Statement. A taxonomy and use
case for JSIMS composability appears in (JSIMS Composability Task Force, 1997), and the impact of
composability as a system objective on the JSIMS design is described in Pratt et al. (1999). Composability
also appeared as a key system objective for OneSAF in 1999 (U.S. Army STRICOM, 2000).

In 1998, the DARPA Advanced Simulation Technology Thrust (ASTT)—which was chartered to develop
technology in support of JSIMS—funded two separate studies on simulation composability: (1) the model-
based simulation composition (MBSC) project, which developed a prototype composition environment
for JSIMS (Aronson and Wade, 1998, 2000; Davis and Aronson, 1999; Wade and Aronson, 1999); and (2)
a study by Page and Opper (1999) that investigated the composability problem from a computability and
complexity theoretic perspective.

A focus-paper session at the 2000 Winter Simulation Conference addressed methodologies for compos-
able simulation (Kasputis and Ng, 2000; Davis et al., 2000). Recently, the work of Petty, Weisel, and Mielke
(Petty and Weisel, 2003a, 2003b; Petty et al., 2003, 2005; Weisel et al., 2003, 2005) provides a broad survey
of the uses of the term composability, extends the work of Page and Opper, and examines the composite
validation problem within the context of automata theory and computable functions.

The Defense Modeling and Simulation Office (DMSO) initiated a collection of studies as part of the
Composable Mission Space Environments (CMSE) initiative in FY03 (DMSO, 2005). The comprehensive
report by Davis and Anderson (2003) provides a broad survey of the topic of composability and suggests
a wide-ranging investment strategy for the DoD in this area.

Related work outside the defense simulation community included the emergence of the topic of
“Web-based simulation” in the mid-1990s, which included the concept of composing simulations via
Web protocols (see Fishwick, 1996; Fishwick et al., 1998; Page et al., 2000). Most recently, the Extensible
Modeling and Simulation Framework (XMSF) was initiated by the Naval Postgraduate School, George
Mason University, SAIC, and Old Dominion University to develop a ubiquitous Web-based simulation
environment (XMSF, 2005).

16.3.2 Composability and Complexity
Motivated by the high degrees of automated support for composability expressed within the JSIMS and
OneSAF program requirements, Page and Opper (1999) consider composition from a computability
and computational complexity theoretic perspective. The authors observe that prior work in analyzing
simulation model specifications suggests that many of the problems attendant with simulation model
development, verification, and validation are fundamentally hard, and that automation can only provide
so much relief (Page and Opper, 1999, p. 554). For example, problems such as the following cannot be
solved in the general case: (1) determining if a model is finite (i.e., will run to completion); (2) determining
if a model specification is complete; and (3) determining if a model specification is minimal. Other analyses
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have shown that problems such as the following have no efficient solution: (1) determining whether any
given state will occur during an execution of a model; (2) determining the existence of, or possibility for,
simultaneous events; and (3) determining whether a model implementation satisfies a model specification.

Motivating the work of Page and Opper (1999) was the fairly simple observation that the class of
model specifications must include the class of model compositions, and therefore all prior results in the
computational complexity of model specifications also applied to model compositions. In support of
this observation, the authors develop a formal analysis of a simple, generic methodology for composable
simulation. They observe that building simulation models by composition implies not only identifying
(via search) relevant candidates from (possibly massive) component repositories, but also answering the
following: (1) does a combination of components exist that satisfies the modeling objectives, and (2) if so,
can the “best” (or a “good enough”) solution be identified in a reasonable time. If not, how closely can the
objectives be met?

Determining whether a collection of components satisfies a modeling objective might be accomplished
in any number of ways, including

• Determination made strictly on the basis of the descriptions of component capabilities (i.e.,
metadata).

• Determination made by modeling or approximating component interactions.
• Determination made by constructing the composed model and observing the result(s).

Page and Opper observe that a determination made on the basis of metadata is the least computationally
intensive solution—assuming such a determination was possible. They suggest a simple formal model of
composition based on set theory and describe a generic decision problem for composability as follows:

COMPOSABILITY
INSTANCE: A set O of objectives and a collection C of components.
QUESTION: Is there a valid composition that meets the objectives stated in O?

The authors conjecture that the decision problem COMPOSABILITY is NP-complete. In the development
of a proof of this conjecture, the authors observe, however, that certain objectives may be undecid-
able on their face, e.g., the simulation terminates for a given set of circumstances. To accommodate
this, Page and Opper suggest two variants of the COMPOSABILITY decision problem: (1) BOUNDED
COMPOSABILITY—each objective in O is decidable; and (2) UNBOUNDED COMPOSABILITY—some
objective in O is undecidable. Further, the authors observe that it may be possible for two components, A
and B, to satisfy some objective O and that their ability to satisfy O could not be predicted based on any
metadata for A and B. Page and Opper suggest that this characteristic is like the property of emergence
in complex adaptive systems and suggests two more variants of the COMPOSABILITY decision prob-
lem: (1) EMERGENT COMPOSABILITY—composition cannot be evaluated based on metadata; and
(2) NONEMERGENT COMPOSABILITY—the composition can be evaluated based on metadata.

The cross product of the variants yields four decision problems:

• UNBOUNDED EMERGENT COMPOSABILITY
• BOUNDED EMERGENT COMPOSABILITY
• UNBOUNDED NONEMERGENT COMPOSABILITY
• BOUNDED NONEMERGENT COMPOSABILITY (BNC).

From a complexity perspective, BNC is the simplest. Page and Opper provide a proof that BNC is
NP-complete. This proof suggests that use cases for composability that imply automated support for
determining valid combinations of components (e.g., Steps 2 and 5 from the JSIMS composability use
case [JSIMS, 1997]) cannot have an efficient solution in the general case.

Petty et al. (2003) extend the work of Page and Opper and suggest another variant of the problem, ANTI-
EMERGENT COMPOSABILITY (AC). In AC, two models A and B may each satisfy some objective O,
but their combination does not. Petty, Weisel, and Mielke suggest a general form of the component
selection problem that subsumes the variants and prove that it is NP-complete.
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16.3.3 Formalisms for Composability
Petty and Wiesel (2003b) develop a formal model of simulation composition based on computable
functions operating on vectors of integers. In this formalism, the composition of simulation models
is isomorphic to the composition of computable functions. The authors suggest a mechanism to measure
the validity of a composition by comparing its output vector to the output vector of a “perfect model,”
a model whose outputs perfectly correspond to the outputs of the system being modeled. Weisel et al.
(2005) evaluate their formalism with respect to the DEVS formalism, noting their analytic equivalence
despite the fact that DEVS is not explicitly restricted to computable functions.

16.3.4 Proposal to Restrict the Scope of Composability
Page et al. (2004) observe that despite the decades of successful practice in simulation interconnection
and the solid theoretical work ongoing by Petty and others in the context of simulation composability, a
refinement of the terminology in use by the defense simulation community could serve to better focus the
community’s research and development efforts.

As illustrated by the history of composability above, the term composability is used within the military
simulation domain to imply a variety of notions, ranging from interoperability, to end-user tailorability, to
any act of creation. Page et al. (2004) suggest that for the term to be most useful, it should be unambiguously
differentiated from these other concepts.

The definition suggested by Petty and Weisel (2003a) loosely differentiates the notions of composability
and interoperability as follows:

Essentially, interoperability is the ability to exchange data or services at run-time, whereas compos-
ability is the ability to assemble components prior to run-time . . . It can be seen that interoperability
is necessary but not sufficient to provide composability. Composability (engineering and modeling)
does require interoperability (technical and substantive). Federates that are not interoperable can
not be composed, so interoperability is necessary for composability. However, interoperability is not
sufficient to provide composability, i.e. federates may be interoperable but not composable. Recall
that an essential aspect of composability is the ability not just to combine federates but to combine
and recombine federates into different simulation systems. Federates that are interoperable in one
specific configuration or with one specific object model, and cannot be combined and recombined
in other ways, are not composable . . . The matter of substantial effort is crucial to the distinction
between interoperability and composability.

These distinctions seem somewhat problematic, because it is not immediately clear how a run-time
characteristic (interoperability) could be a necessary condition to enable a prerun-time characteristic
(composability). Further, the term “substantial effort” requires quantification.

Petty and Weisel (2003a) distinguish composability and integratability as follows:

Integration is the process of configuring and modifying a set of components to make them interop-
erable and possibly composable. Essentially any federate can be integrated into any federation with
enough effort, but composability implies that the changes can be made with little effort.

This distinction also seems somewhat problematic since the level of “effort” is also used to distinguish
between composability and interoperability.

As an alternative, Page et al. (2004) suggest that composability be viewed as a property of a set of models.
Specifically, it should be expressed as some function on the congruity of the objectives and assumptions
underlying each model in the set. In this sense, they agree with the definition of Petty and Weisel. That is,
composability is a property that may be assessed prior to run-time. However, in their view composability is
independent from interoperability. Interoperability is a property of the software implementation of a set of
models (or other systems). The objectives and assumptions underlying two models, A and B, may be wholly
congruent and thus the models are composable, but their software implementations may utilize different
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programming languages, data types, marshaling protocols, and so forth such that the two implementations
are not interoperable.

Informally, two models are composable if they share compatible objectives and assumptions. Quan-
tifying and reasoning about the “compatibility” of objectives and assumptions should be the domain of
research in algebras and calculi for composition. Thus, Page et al. (2004) suggest the following framework:

• Composability—realm of the model (e.g., two models are composable if their objectives and
assumptions are properly aligned).

• Interoperability—realm of the software implementation of the model (e.g., are the data types
consistent, have the little endian/big endian issues been addressed, etc.)

• Integratability—realm of the site the simulation is running at (e.g., have the host tables been set up,
are the NIC cards working properly).

16.3.5 Summary Thoughts on the Theory of Simulation Interconnection
The defense simulation lexicon is generally underwhelming—although this may simply reflect the author’s
academic bias—and the community treatment of the terms surrounding the simulation interconnection
problem is no exception. While the definitions promulgated by Petty et al., and currently embraced by the
defense simulation community, are not as “crisp” as they could perhaps be, their theoretical work in the
composition of models is a great service to the community. We do a reasonably good job, as a community,
in getting the bits to flow between simulations. We do not have a good handle on how to reason about the
semantics of the interoperating simulations once the bits start flowing. Algebras and calculi of composition
are much in need here.

16.4 Conclusions

For the better part of the past quarter century, the defense simulation industry has been heavily invested
in technologies and methods to make independently developed simulations work together. This pursuit
has met with significant technological successes, notably: SIMNET, DIS, ALSP, and HLA. The pres-
sures that drove the development of this technology were primarily fiscal. Defense simulations represent
a significant investment, and mechanisms for their reuse must be defined to preserve the defense simula-
tion community’s capabilities in an era of ever-shrinking budgets. Like many areas where the realities of
the day demand a solution, the practice of simulation interconnection has led the theory. But important
theoretical work is beginning to take shape to quantify and reason about the semantics of interconnected
simulations.
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17.1 Introduction

Right from the invention of calculus, ordinary differential equations (ODEs) have been used to model
continuous systems in all scientific and engineering disciplines. The idea is simple in principle and applies
to physical situations in which information can be obtained about the continuous rate of change of the
state variables of the system. The hope is that we will be able to ascertain the evolution of the system using
this information and the knowledge of its initial state.

We first consider some examples from different disciplines.

17.1.1 The Simple Pendulum
A simple pendulum is a physical abstraction in which a point mass m oscillates in a vertical plane at the end
of a rod of length L with negligible mass. The motion of a simple pendulum can be modeled by the ODE:

mL2θ̈(t) + bθ̇(t) + mgL sin θ(t) = τe(t) (17.1)

where θ(t) is the angular position of the rod of the pendulum with respect to the vertical, b the friction
coefficient, g the acceleration due to gravity, and τe(t) a time-dependent external torque which drives the
motion. Typically, the pendulum starts at time t = 0 from a given angle θ0 with zero initial angular velocity.

17-1
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17.1.2 Dynamics of Chemical Reactions
The Brusselator was proposed in 1968 by R. Lefever and the Nobel Prize winner I. Prigogine, as a model
for an autocatalytic, oscillating chemical reaction. The mechanism for the reaction is given by

A
k1−→ X (17.2a)

B + X
k2−→ Y + C (17.2b)

2X + Y
k3−→ 3X (17.2c)

X
k4−→ D (17.2d)

We are interested in the evolution of the intermediate products X and Y . If we assume that the concentration
of the reactants A and B is kept constant, a = [A] and b = [B], and denote the concentrations of the products
as x = [X] and y = [Y ], the system is described by the differential equations:

ẋ(t) = k1a − k2bx(t) + k3x2(t)y(t) − k4x(t) (17.3a)

ẏ(t) = k2bx(t) − k3x2(t)y(t) (17.3b)

The initial values of x and y are zero. For appropriate values of the parameters, this system can exhibit
oscillatory behavior.

17.1.3 Predator–Prey Population Dynamics
ODEs are frequently used in biology to model population dynamics. The famous Lotka–Volterra model
describes the evolution of two species, one of which preys (feeds) on the other, using the ODEs:

ẋ1(t) = ax1(t) − bx1(t)x2(t) (17.4a)

ẋ2(t) = cx1(t)x2(t) − dx2(t) (17.4b)

where x1 represents the number of prey and x2 is the number of predators (in appropriate units so that
they take continuous values in the interval [0, 1]), and a, b, c, and d are the parameters. The terms ax1

and −dx2 account for the reproduction rate of each species in the absence of interaction with the other
and the nonlinear terms represent the effects of predation on the reduction of prey and the reproduction
of the predators. This model was used in the mid-1920s to study how the intensity of fishing affected the
different fish populations in the Mediterranean Sea.

17.1.4 Planetary Motion
Kepler discovered his three laws of planetary motion after a titanic analysis of years of astronomical
observations by Tycho Brahe. Newton’s inverse-square law of gravitation allows us to reformulate this
motion in modern terms using the equations for a massless test particle about a particle of mass M located
at the origin:

ẍ(t) = −GM
x(t)

(x2(t) + y2(t))3/2
(17.5a)

ÿ(t) = −GM
y(t)

(x2(t) + y2(t))3/2
(17.5b)

where M is the combined mass of the Sun and the planet, and G is the universal gravitational constant.
The xy-coordinates for the massless test particle are the relative position of the planet with respect to the
Sun in this two-body approximation of the solar system. The initial values for x and y and its derivatives
are taken from direct astronomical observation.
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The examples presented here are typical. Formulating the problem with the help of ODEs and stating
the existence and uniqueness of a solution under reasonable regularity conditions are relatively easy tasks.
But finding an analytic solution is often difficult and might be impossible. Although analytic solutions,
such as in the case of linear ODEs, are very important theoretically, the vast majority of problems cannot be
solved in this manner. In these cases, we must use numerical techniques to approximate the evolutionary
behavior predicted by the model. This chapter introduces some of these techniques.

The numerical algorithms we will discuss can be implemented in many different ways, using almost
any programming language. We have chosen Java to illustrate particular algorithmic implementations.
Java is an object-oriented programming language that is designed to run on a virtual computer that can
be implemented in any modern operating system. This promise of platform independence has become a
reality, and we can now write programs that have attractive graphical user interfaces and support common
tasks such as printing, disk access, and copy–paste data exchange with other applications.

Although these features can be implemented using the standard Java library, it usually requires much
programming and a working knowledge of the Java application programmer interface (API). Learning
the Java API is essential for software developers, but experienced programmers usually adopt or develop
an add-on code library. To enable scientists and engineers to quickly begin writing their own programs,
we have developed the Open Source Physics (OSP) library (Christian, 2007). This library enables users to
quickly perform common visualization tasks such as creating a graph.

PlotFrame plot= new PlotFrame("f(t)","t","Sine Function");
for (int i = 0; i < 100; i++) {

double t=i*2*Math.PI/100.0;
plot.append(0,t,Math.sin(t)); // Add data to graph #0

}

You do not need to know much about Java to understand that these statements graph a sine function. The
advantage of an object-oriented approach is that readers who are unfamiliar with or uninterested in Java
may treat the code listings in this chapter as pseudocode while Java programmers can compile and run
the examples. Source code for the pendulum, the chemical reaction, the predator–prey, and the planetary
motion examples are available on the OSP website (http://www.opensourcephysics.org/
CRC_examples). The website also has ready-to-run (executable) versions of these programs available
for downloading.

An alternative approach to coding the examples in Java is to use a high-level modeling program. The
Easy Java Simulations (Ejs) authoring tool uses the OSP library to provide a simple way to create your
own simulations for continuous (and noncontinuous) systems. Ejs has a graphical drag-and-drop user
interface that helps users build models and connect models to graphical elements to visualize the state of
the system and its evolution. These simulations can then be used to explore the behavior of the system
under different conditions. Examples of Ejs (including the examples in this chapter) can be found at
http://fem.um.es/Ejs/CRC_examples.

17.2 Numerical Solution

The mathematical formulation most frequently used in modeling continuous systems is that of an initial-
value problem for a first-order ordinary differential equation.1 An initial-value problem is an expression
of the form:

ẋ(t) = f (x(t), t), x(a) = x0 (17.6)

1ODEs can also appear in the form of boundary value problems, where the information about the state of the system
is provided partly in one initial instant of time, and partly in one final instant of time (Press et al., 1992; Keller, 1992).
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where t (which often represents the time) is called the independent variable and can take values in a given
interval [a, b] of the real line, x(t) represents a k-dimensional vector of real numbers that describes the
state of the system at a given instant, and the vector function f conveys all the information that relates
the rate of change of the state vector with the value of the independent variable and the state itself. The
information provided at the initial instant of time, x(a) = x0, is called the initial condition, and is necessary
to completely determine a solution out of the many possible solutions.

ODEs in which the right-hand side has no explicit dependence on time, ẋ(t) = f (x(t)), are called
autonomous. Autonomous equations are of interest because they describe dynamical systems whose evo-
lution depends only on their internal state independent of time. Nonautonomous equations contain an
explicit time dependence, ẋ(t) = f (x(t), t). The simple pendulum in Section 17.1 is an example of a
nonautonomous equation, while all the others describe dynamical systems.

Every nonautonomous ODE can be reformulated as a dynamical system by adding the time to the
system of differential equations. That is, we add the independent variable t to create a new state vector
x́ = (x(t), t) and we add the trivial time rate dt/dt = 1 to create a new rate f́ = (f (x, t), 1). Although adding
another variable makes the geometrical interpretation more difficult, it is inconsequential (and sometimes
more convenient) from a computational point of view. We will use this approach in our implemen-
tation code.

We have chosen to represent the dynamical system state (x1, x2, x3, . . . , xk , t) as a vector because most
interesting phenomena involve multiple state variables. Even in cases where the state can be described
by a single number, derivatives of order higher than one usually appear. For instance, a typical physics
model, such as the pendulum, obeys Newton’s second law F = ma, which usually turns into a second-
order differential equation. These cases are contained in our definition above, because any higher-order
differential equation can be rewritten as a new first-order ODE. As an example, we can construct a system
of first-order differential equations from Eq. (17.1) by introducing the angular velocity ω as the rate of
change of the angle θ. The driven pendulum can then be written as the following coupled system of
first-order differential equations for the variables (θ, ω, t):

θ̇ = ω (17.7a)

ω̇ = − g

L
sin (θ) − b

mL2
ω + 1

mL2
τe(t) (17.7b)

ṫ = 1 (17.7c)

The numerical solution of ordinary differential equations is a well-studied problem in numerical anal-
ysis. Most numerical techniques are based on difference methods. In these methods, we attempt to obtain
approximate values of the solution at a sequence of mesh points a = t0 < t1 < · · · < tN = b. Although
obtaining a solution at a finite number of mesh points appears restrictive, the idea is actually very useful.
In many cases, scientists and engineers use models to study how systems evolve in time by simulating them
with different parameters and initial conditions, plotting or displaying the state of the system at regular
time steps. This is precisely what difference methods do.

Solving differential equations numerically is both a science and an art. There exist many authoritative
books on the subject, both because the discipline is very mathematically advanced, and because dif-
ferent numerical techniques are developed for particular types of systems. A universal solving method
for ordinary differential equations does not exist and practitioners should select a method based on
requirements such as speed, accuracy, and the conservation of important physical properties such
as energy.

The numerical methods most frequently used fall into the following categories: Taylor methods, Runge–
Kutta methods, multistep methods, and extrapolation methods. We concentrate on Taylor and Runge–
Kutta methods first because they work well in many situations and are easy to implement (particularly
Runge–Kutta methods), and because they will help us illustrate the main concepts and details for the
computer implementation of difference methods. We will discuss other methods in Section 17.8.
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Physical law Differential equations Solution
ODE ODESolver

FIGURE 17.1 Differential equations can be solved using the ODE interface to define the equations and the
ODESolver interface to define the numerical algorithm.

17.2.1 Implementation Techniques
The numerical solution of differential equations can be made simpler using object-oriented program-
ming techniques that separate the differential equations from the numerical algorithm. The ODE and
ODESolver interfaces shown in Figure 17.1 are code files that will be described in Section 17.5.

A Java interface is a list of methods that an object can perform. Note that Java allows us to define variables
using an interface as a variable type. The ODE interface in the OSP library defines methods (similar to
subroutines or functions) that enable us to encapsulate an initial value problem such as Eq. (17.6) in a
Java class. The ODESolver interface defines methods that implement numerical algorithms for solving
differential equations. The most important method in ODESolver is the step method that advances
the state of the differential equation. This allows us to write a code such as

ODE ode = new Pendulum(); // creates ODE
ODESolver solver = new RK4(ode);// creates numerical method
solver.initialize(0.01); // each step advances by 0.01
for(int i=0; i<100; i++) { // advances by 100 steps

solver.step();
}

In the spirit of object-oriented programming, the details of how the differential equations are defined
and solved are hidden in the Pendulum and RK4 objects. This hiding is known as encapsulation and
is a hallmark of good object-oriented design. A user can solve the pendulum problem using a different
numerical algorithm by creating (instantiating) a different ODESolver. The OSP library contains many
differential equation algorithms. The user assumes that these algorithms have been properly programmed
and the library assumes that the user has obeyed the OSP API.

17.3 Taylor Methods

The first difference method we will study is based on the Taylor series expansion of the solution x(t). Namely

x(t + h) = x(t) + hẋ(t) + h2

2! ẍ(t) + h3

3! x(3)(t) + · · · (17.8)

If we know the value of x(t), we can compute ẋ(t) from the differential equation. The second and
subsequent derivatives of x at t can be obtained by repeatedly differentiating Eq. (17.6). Thus,

ẍ(t) = ft (x(t), t) + fx(x(t), t)f (x(t), t) (17.9)

and similarly for higher-order derivatives. Note, however, that the expression becomes more complicated
as we compute higher-order derivatives.

Because we actually know from Eq. (17.6) the value of x at t0, we can take h0 = t1 − t0, and use a
Taylor expansion to obtain u1, an approximation to x(t1). We can now use u1 to repeat the process with
h1 = t2 − t1 and obtain an approximation of x(t2), u2, and so on until we reach tN .

Consider again the example of the simple pendulum (with no external torque, for simplicity). By
repeatedly differentiating Eq. (17.7) and applying the described numerical scheme, we obtain the coupled
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recurrent sequences:

θn+1 = θn + hnωn + h2
n

2!
[
− g

L
sin (θn) − b

mL2
ωn

]
+ · · · (17.10a)

ωn+1 = ωn + hn

[
− g

L
sin (θn) − b

mL2
ωn

]

+ h2
n

2!

[
− g

L
cos (θn)ωn + b

mL2

g

L
sin (θn) +

(
b

mL2

)2

ωn

]
+ · · · (17.10b)

tn+1 = tn + hn (17.10c)

for n = 0, 1, . . . , N − 1, where t0 = 0, θ0 = θ(0), and ω0 = 0.
Implementing such an iterative procedure on a computer is straightforward. We only need to choose

the number of terms in the Taylor expansion that we will use, and the appropriate values for the mesh
points tn. The typical choice is to first choose N (the number of steps), and then take all tn equally spaced
in the interval [a, b]. This choice leads to hn = h = (b − a)/N , for all n.

We have implemented this algorithm and plotted the approximate solution of the pendulum for the
algorithm including first-, second-, and third-order derivative terms of the Taylor expansion using h = 0.1.
The result, shown in Figure 17.2, displays the typical behavior of Taylor methods. The first-order method
(the largest plot in the figure), also known as the Euler method, provides a very poor approximation to
the solution. A second-order expansion does a better job, but still not perfect. The solution that includes
third-order terms (the darker one in the figure) is almost indistinguishable from the true solution.

The reason for this behavior can be explained using the error term for the Taylor expansion. If we
include up to p order terms in this expansion, the remainder (the local error) has the form O(hp+1). Thus,
for the same value of h, we gain an order of magnitude in the approximation with each term. A method
with O(hp+1) local error is said to be of order p. Although the error in one step of the method is of the
order of hp+1, we need to take (b − a)/h steps to go from a to b. Thus, the global error can be shown to be
of the form O(hp).

The approximation described above can also be improved for any order by reducing the value of h.
However, reducing h increases both the computational effort and the round-off error. Thus, we will need
to balance the order of the method with the right value of h for our problem.

FIGURE 17.2 Taylor methods applied to the pendulum example.
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17.4 Runge–Kutta Methods

Although methods based on a Taylor series expansion can be made very accurate by taking sufficiently
many terms, computing higher-order derivatives becomes increasingly complicated and the resulting code
cannot be reused for a different problem. For this reason, numerical analysts have developed methods
with similar accuracy that are easier to implement and reuse. In particular, these methods only require
evaluations of the function f that defines the differential equation. The Runge–Kutta methods described
here are among the most popular.

Whereas Taylor methods advance the solution by evaluating f and its derivatives at a single point,
Runge–Kutta methods advance the solution un by evaluating f at several intermediate points in the
interval [tn, tn+1]. These intermediate results are combined in such a way as to match the Taylor expansion
of the solution up to a given order. The precise formulation of an s-stage explicit Runge–Kutta method is
the following:

k1 = f (un, tn)

k2 = f (un + hna21k1, tn + c2hn)

· · ·
ks = f (un + hn(as1k1 + · · · + as,s−1ks−1), tn + cshn)

un+1 = un + hn(b1k1 + b2k2 + · · · + bsks)

(17.11)

Note that the method describes a simple recurrent algorithm, which is easy to implement on a computer
and requires only the evaluation of the function f . The method is determined by the parameters, which are
listed traditionally in the form of a table (Table 17.1). Usually, the ci satisfies the condition: ci = ∑i−1

j=1 aij .
For a given s, the algorithm consists of choosing appropriate values of the a, b, and c parameters that

provide a good approximation of the solution. The case s = 2 illustrates the procedure. Consider the
second-order Taylor approximation of the solution at tn given by

x(tn + hn) = x(tn) + hnf + h2
n

2! (ft + fx f ) + O(h3
n) (17.12)

where f and its derivatives are evaluated at (x(tn), tn). If we expand the value of the approximation produced
by the method in Eq. (17.11) for s = 2 and use the Taylor expansion of the function f , we find that

un+1 = un + hn[b1f (un, tn) + b2f (un + hna21f (un, tn), tn + c2hn)]

= un + hnb1f + hnb2(f + hnc2ft + hna21fx f ) + O(h3
n)

= un + hn(b1 + b2)f + h2
n(b2c2ft + b2a21fx f ) + O(h3

n)

(17.13)

TABLE 17.1 Generic Runge–Kutta Table of
Coefficients

0

c2 a21

c3 a31 a32

.

.

.
.
.
.

.

.

.
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs
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TABLE 17.2 Coefficients of the Classical
Fourth-Order Runge–Kutta Method

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 2/6 2/6 1/6

Except where explicitly indicated, f and its derivatives are evaluated at (un, tn). Hence, if un is a good
approximation of x(tn), the method will approximate the solution at tn + hn with a third-order local error
(which leads to a second-order method) if b1 + b2 = 1, b2c2 = 1/2, and b2a21 = 1/2. Because we have
four unknowns and only three equations, this expression gives a one-parameter family of methods for
Runge–Kutta algorithms of order 2. The most popular are the following:

(Heun’s method)

un+1 = un + hn

2

[
f (un, tn) + f (un + hnf (un, tn), tn + hn)

]
(17.14)

(Midpoint method)

un+1 = un + hnf

(
un + hn

2
f (un, tn), tn + hn

2

)
(17.15)

(Ralston’s method)

un+1 = un + hn

4

[
f (un, tn) + 3f

(
un + 2

3
hnf (un, tn), tn + 2

3
hn

)]
(17.16)

which correspond to b1 = 1/2, b1 = 0, and b1 = 1/4, respectively. Among all second-order Runge–Kutta
methods, Ralston’s method2 provides a minimum bound of a specified type for the local error
(Ralston, 1962).

The same approach can be used to obtain families of higher-order Runge–Kutta methods, although the
algebra becomes much more complicated and more sophisticated techniques must be used (Hairer et al.,
2000; Butcher, 1987).

The best seller of all Runge–Kutta methods is the fourth-order classical method given in Table 17.2,
which requires four rate evaluations per step. But this method is certainly not the end of the story, and we
will give higher-order methods in Section 17.6. However, for orders 5 and above, all Runge–Kutta methods
require a number of stages strictly greater than the order. This limitation is one of the Butcher’s barriers.

17.5 Implementation

Runge–Kutta methods provide powerful, high-precision algorithms for solving initial value problems. In
this section we show how these methods can be used to create computer algorithms that are effective, easy
to program, and easy to reuse for different ODE problems. In particular, we will show how the OSP library
implements some of these routines.

Experienced programmers divide a complex problem into several smaller parts that they later combine
in a modular way. This division helps implement, test, and, if required, later replace or reuse code. The

2We name Eq. (17.16) as Ralston’s method following Ralston (1962). Other authors define Ralston’s second-order
method using different coefficients.
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object-oriented features of Java are very appropriate for such an approach. To show how it works in
practice, OSP first defines a Java interface that encapsulates the mathematical definition of an ODE:

public interface ODE {
public double[] getState();
public void getRate(double[] state, double[] rate);

}

Encapsulation is an object-oriented concept that combines the data and behavior of an object, hiding
the implementation from the user of that object. Encapsulation helps abstract in computer terms the
characteristic features of an object. In this case, encapsulation means that to define a particular ODE a
user needs to create a class that implements the two methods defined in the interface.3

The getState method returns the (x0, x1, . . . , xk) array of state variables, while the getRate
method evaluates the derivatives using the given state array and stores the result in the given rate array
(ẋ0, ẋ1, . . . , ẋk). Since, as we have seen, Runge–Kutta methods evaluate the rate multiple times as they
advance the system by hn, the state given to getRate is usually not the current state of the system.

The OSP library uses the dynamical system approach and considers all ODEs as autonomous. Hence, the
independent variable t is always included in the system of differential equations as a final trivial equation
ṫ(t) = 1 (consequently, xk represents the time). Also, in cases where second-order equations are coded,
OSP uses the convention that the velocity coordinate follows the corresponding position coordinate when
constructing the state and rate arrays. This ordering makes it possible to efficiently code certain numerical
algorithms (such as the Verlet method in Section 17.8).

The second step is to abstract the general behavior of Runge–Kutta solvers. Independent of the number
of stages it uses and the values of the parameters, a Runge–Kutta method (and many other methods as
well) is encapsulated in the OSP library by the ODESolver interface:

public interface ODESolver {
public void initialize(double stepSize);
public double step();
public void setStepSize(double stepSize);
public double getStepSize();

}

Any implementing class also needs to provide a public constructor (a method that instantiates an object
of the class), which takes an ODE class as a parameter. With this reference to the ODE class, the solver’s
initialize method sets the initial step size and allocates arrays to store temporary values. Typically,
the initialize method needs to be called only once at the beginning of the program execution.

The step method is the heart of the algorithm. The ODESolver obtains a reference (pointer) to the
state array using the ODE object’s getState method and advances this state by applying the numeric
method defined within the solver. Because adaptive algorithms (see Section 17.6) are free to change the
step size, the method returns the value of the step size that was used. The interface also provides the
setStepSize and getStepSize methods to modify and read the step size parameter.

Before showing how a particular Runge–Kutta solver class looks, let us see how the combination of these
two interfaces works in practice to create clean, well-structured, and easy to reuse code. We first create a
Java class that implements the ODE interface for the (undriven) pendulum example in Section 17.1:

public class Pendulum implements ODE {
double[] state = new double[] {Math.PI/2.0, 0.0, 0.0};
double m=1.0, L=1.0, g=9.8, b=0.1; // parameters

3Method is the term Java uses for both functions and routines. This usage should not be confused with its use in an
expression that refers to an algorithm such as “Runge–Kutta method.”
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public double[] getState() { return state; }

public void getRate(double[] state, double[] rate){
rate[0] = state[1];
rate[1] = - g/L*Math.sin(state[0]) - b/(m*L*L)*state[1];
rate[2] = 1; // time derivative

}
}

If we assume that we have created an implementation of the ODESolver interface for the fourth-
order Runge–Kutta method called RK4, a simple driver program would instantiate both the ODE and
ODESolver classes and repeatedly invoke the solver’s step method to solve the initial value problem:

public class PendulumMain {
public static void main(String[] args){

double max = 4; // solution range
double h = 0.1; // ode step size
ODE ode = new Pendulum();
ODESolver ode_solver = new RK4(ode);
ode_solver.initialize(h);
while(max>0) {

double[] state = ode.getState();
String xStr = "angular position = "+state[0];
String vStr = ", angular velocity = "+state[1];
String tStr = ", time = "+state[2];
System.out.print(xStr+vStr+tStr+"\n");
max –= ode_solver.step();

}
}

}

The important point is that the end user only needs to program the class that implements the ODE inter-
face and thereby defines the initial value problem. Numerical algorithms, such as the RK4 class, are imple-
mented in the OSP library. These algorithms can be written (and tested) once, perhaps by a professional
numerical analyst, in an independent manner. Switching to a different numerical algorithm only requires
instantiating a different ODESolver class (see Table 17.6 for a listing of solvers in the OSP library).

We now list, for completeness, a possible implementation of the step method for the RK4 method:

public double step() {
double state[] = ode.getState();
ode.getRate(state, k1);
for(int i=0;i<numEqn;i++) {

temp_state[i] = state[i]+stepSize*k1[i]/2;
}
ode.getRate(temp_state, k2);
for(int i=0;i<numEqn;i++) {

temp_state[i] = state[i]+stepSize*k2[i]/2;
}
ode.getRate(temp_state, k3);
for(int i=0;i<numEqn;i++) {

temp_state[i] = state[i]+stepSize*k3[i];
}
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ode.getRate(temp_state, k4);
for(int i=0;i<numEqn;i++) {

state[i] = state[i]+stepSize*(k1[i]+2*k2[i]+2*k3[i]+k4[i])/6.0;
}
return stepSize;

}

17.6 Adaptive Step

An important aspect of solving ODEs numerically is that of choosing the best possible set of mesh points
t0 < · · · < tN , mentioned in Section 17.2. The fixed step size approach that we have used so far, that is,
hn = h = (b − a)/N , is not always appropriate. The solution of the ODE may vary rapidly in some parts
of the [a, b] interval (which requires a small step size), while it may be very smooth in other parts of it
(which allows a larger step size). Taking the same step size for the entire interval might result in either loss
of precision or in an unnecessary waste of computer resources, or both.

Making an appropriate choice of mesh points in advance can be difficult. A detailed analytical study
of the local error at different points within the interval is required. Alternatively, there exist numerical
techniques that allow the computer to estimate this error and automatically compute an appropriate value
of hn for each integration step. These techniques are, for Runge–Kutta methods, based on two approaches:
interval-halving and embedded formulas.

Interval-Halving
The first approach consists in using, from each point (un, tn), the same Runge–Kutta method in two
parallel computations. The first one applies the method once with a given step size h, while the second
uses the method twice, each with half this step size, i.e., h/2. We thus obtain two different approximations
of the solution at tn + h. Both values are then compared to estimate the error obtained with this step size,
to accept the solution or not, and to compute a more appropriate step size (Schilling and Harris, 2000).

Although this extrapolation process can be easily programmed, the resulting code is inefficient. For the
case of the fourth-order Runge–Kutta method, we would need 11 different evaluations of the rate function
for each individual step and would achieve only a fifth-order approximation.

Embedded Runge–Kutta Formulas
A more efficient scheme was first discovered by Fehlberg, who found a pair of Runge–Kutta formulas that
used the same set of coefficients to provide two approximations of different orders. The difference between
both approximations can then be used to estimate the error of the lower-order formula, while taking the
higher-order approximation as the final output of the method (this is called local extrapolation).

Since the original Fehlberg scheme, many other embedded formulas have been found. The most used
ones are the 6-stage formulas of Cash and Karp (Table 17.3), and the 7-stage formulas of Dormand and
Prince (table not provided), which attempt to minimize the error of the local extrapolation approxima-
tion. Table 17.3 contains a pair of Runge–Kutta–Fehlberg formulas of orders 5 and 4. The first row of
b-coefficients in Table 17.3 corresponds to the higher-order approximation, while the second row gives the
lower-order one. Both Cash–Karp and Dormand–Prince schemes are implemented in the OSP library.

Adapting the Step
Once the estimated error is found, the technique adapts the step size so that this error keeps within rea-
sonable limits, decreasing the step size if the error is too large, and increasing it if the error is too small.
A popular procedure to compute the new step size, h̃, consists in using the following formula (Press et al.,
1992):

h̃ = Sh

∣∣∣∣�0

�1

∣∣∣∣
α

(17.17)
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TABLE 17.3 Coefficients for the Embedded Runge–Kutta Formulas Computed by Cash and Karp

0

1/5 1/5

3/10 3/40 9/40

3/5 3/10 −9/10 6/5

1 −11/54 5/2 −70/27 35/27

7/8 1631/55296 175/512 575/13824 44275/110592 253/4096

37/378 0 250/621 125/594 0 512/1771

2825/27648 0 18575/48384 13525/55296 277/14336 1/4

where S is a safety constant (such as 0.9) that prevents h̃ from actually reaching the limit for an acceptable
step size, h the current step size, �0 denotes the desired accuracy, and �1 measures the current accuracy.
Finally, α denotes a constant that (for a p-order method) is 1/(p + 1) when the step size is increased, and
1/p otherwise.

There are different ways to interpret �0 and �1 in Eq. (17.17). Usually, �1 is taken as the maximum of
the absolute values of the components of the estimated error (for embedded formulas, of the difference of
both approximations). For �0, the simplest option is to let the user specify a suitable small tolerance, ε.
For other possibilities such as including a scaling vector, see Press et al. (1992), Hairer et al. (2000), and
Enright et al. (1995).

17.7 Implementation of Adaptive Step

Implementing an adaptive algorithm based on a pair of Runge–Kutta embedded formulas is straightfor-
ward. The following code shows how the stepmethod can be implemented for the Cash–Karp formulas.
Note that the code includes additional checks to avoid abrupt changes to the step size. In addition, the
algorithm will return if the required precision cannot be attained.

public double step() {
int iterations = 10;
double currentStep = stepSize, error=0;
double state[] = ode.getState();
ode.getRate(state, k[0]); // gets the initial rate
do {

iterations--;
currentStep = stepSize;
// Compute the k’s
for (int s=1; s<numStages; s++) {

for (int i=0; i<numEqn; i++) {
temp_state[i] = state[i];
for (int j=0; j<s; j++) {

temp_state[i] = temp_state[i]+stepSize*a[s-1][j]*k[j][i];
}

}
ode.getRate(temp_state, k[s]);

}
// Computes the error
error = 0;
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for (int i=0; i<numEqn; i++) {
truncErr = 0;
for (int s=0; s<numStages; s++) {

truncErr = truncErr+stepSize*er[s]*k[s][i];
}
error = Math.max(error,Math.abs(truncErr));

}
if (error<=Float.MIN_VALUE) { // error too small

error = tol/1.0e5; // actually increase stepSize x10
}
// find h step for the next try.
if(error>tol) { // shrink, but by no more than x10

double fac = 0.9*Math.pow(error/tol,–0.25);
stepSize = stepSize*Math.max(fac,0.1);

}
else if(error<tol/10.0) { // grow, but no more than x10

double fac = 0.9*Math.pow(error/tol, –0.2);
if(fac>1) { // sometimes fac<1 if error/tol close to 1

stepSize = stepSize*Math.min(fac, 10);
}

}
} while(error>tol && iterations>0);
// advance the state
for (int i=0; i<numEqn; i++){

for (int s=0; s<numStages; s++){
state[i] = state[i]+currentStep*b5[s]*k[s][i];

}
}
return currentStep; // step actually taken.

}

Independent of how the algorithm is implemented internally, Java’s object-oriented features again help
us construct easy-to-use and well-structured code for solving ODEs using adaptive methods. The OSP
library defines theODEAdaptiveSolver interface that encapsulates the methods for an adaptive solver:

public interface ODEAdaptiveSolver extends ODESolver {
public void setTolerance(double tol);
public double getTolerance();
public int getErrorCode();

}

Because the interface extends the previously defined ODESolver interface, it inherits all the methods
defined in this interface. The only new methods are those that allow the user to specify or read the desired
tolerance (the ε mentioned above) and to check for a possible error in the application of the algorithm.
This interface allows the user to create a code such as the following:

ODEAdaptiveSolver ode_solver = new CashKarp45(ode);
ode_solver.initialize(h);
ode_solver.setTolerance(1.0e–3);

Note that the only difference with the previous code is in the instantiation of the
ODEAdaptiveSolver object and the addition of a line that sets the desired tolerance. All other parts
of the driver program and the definition of the ODE remain unchanged.
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FIGURE 17.3 Arenstorf orbit computed with fixed step (gray) and adaptive (black) Runge–Kutta methods.

Using an adaptive algorithm can dramatically increase the performance of our programs in situations
where the solution has regions of different behavior. A typical example is that of the computation of
the Arenstorf orbits, closed trajectories of the restricted three-body problem (two bodies of masses µ and
1 − µ moving in a circular orbit, and a third body of negligible mass moving in the same plane), such as
a satellite–earth–moon system. The equations for the motion of the third body are given by Hairer et al.
(2000):

ẍ1(t) = x1(t) + 2ẋ2(t) − (1 − µ)
x1(t) + µ

D1
− µ

x1(t) − (1 − µ)

D2
(17.18a)

ẍ2(t) = x2(t) − 2ẋ1(t) − (1 − µ)
x2(t)

D1
− µ

x2(t)

D2
(17.18b)

where D1 = ((x1(t) + µ)2 + x2
2(t))3/2 and D2 = ((x1(t) − (1 − µ))2 + x2

2(t))3/2.
The Arenstorf orbit for the initial values x1(0) = 0.994, ẋ1(0) = 0, x2(0) = 0, ẋ2(0) =

−2.0317326295573368357302057924, and µ = 0.012277471 is displayed in Figure 17.3.4 The gray tra-
jectory has been computed using 3000 fixed step iterations of the fourth-order Runge–Kutta algorithm
(the trajectory is not even closed), while the black, closed trajectory has been computed by the adaptive
Cash–Karp algorithm with a tolerance of 10−5 in 123 steps with 98 steps accepted and 25 steps rejected. The
fact that the second algorithm is of order 5 is secondary. Comparing the total number of rate evaluations
(12,000 versus 713) shows that the adaptive method is far superior.

4This high accuracy is required because Arenstorf orbits are very sensitive to small changes in the initial conditions.
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Multistepping
Given the relatively small additional effort required to compute two Runge–Kutta solutions and thereby
to control the error, is there any reason to use a nonadaptive algorithm? Sometimes. Adaptive algorithms
do not work if the rate contains discontinuous functions. A fixed step size is also convenient if the output
is to have evenly spaced values.

However, a fixed step size can also be achieved by taking multiple steps. Because the step size is chosen
so as to obtain the desired accuracy, the last step will almost always overshoot the desired endpoint. This
overshoot can be eliminated by reducing the last step. The ODEMultistepSolver class in the OSP
library combines multiple steps of any adaptive algorithm in this manner.5

Interpolation
Using an adaptive solver to compute the solution at fixed intervals has an obvious inconvenience, it
prevents the adaptive algorithm from taking large steps in areas where the estimated error is small. A
different technique, interpolation, can help improve performance.

The idea consists in letting the solver work internally at its own pace, taking as large a step as it sees
fit and asking it to provide approximated values of the solution at equally spaced points. The algorithm
is then assumed to interpolate the internally computed values to produce an approximation at the given
points. The interpolation is expected to have a similar order of precision as the internal approximations
of the solution.

Interpolation is a bit more complex to implement, since it actually involves the concept of dense output
(Hairer et al., 2000). This means that, instead of providing an approximate solution to the ODE at
a finite set of points of the interval [a, b], the method provides a function that can approximate the
solution of the ODE at any point of it. The user could then in principle use this function to produce
solution points everywhere in the trajectory (a dense output). OSP has implemented this technique using
the ODEInterpolationSolver interface for two of the most powerful, higher-order methods of the
library: the Dopri5 and Dopri853 classes. The first one implements a pair of embedded optimized formulas
of orders 5 and 4, found by Dormand and Prince, together with dense output interpolation of order 4.
The second is based on a pair of embedded formulas of orders 8 and 5, with dense output interpolation of
order 7.

These two ODE solvers are available in the OSP library and can be created using factory methods as the
code below shows.

ODEAdaptiveSolver dopri5=ODEInterpolationSolver.Dopri5(ode);
ODEAdaptiveSolver dopri8=ODEInterpolationSolver.Dopri853(ode);

17.8 Performance and Other Methods

Up to this point, we have only used explicit Runge–Kutta methods for solving ordinary differential equa-
tions. Explicit Runge–Kutta methods work correctly in almost every situation. But they might not be the
most efficient or convenient ones:

• When the ODE to solve is a stiff equation for which implicit algorithms have better stability
properties and are therefore more efficient.

• When the solution of the ODE is very smooth or the rate function is very expensive to evaluate, a
multistep algorithm can be preferred.

• When high accuracy is required (of the order of 10−12 or higher), and evaluating the rate function
is not cheap in terms of CPU time, extrapolation techniques can be more efficient in this situation.

5Multistepping and the ODEMultistepSolver class should not be confused with the multistep methods
described in Section 17.8.
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• When the long-term behavior or the preservation of certain geometrical properties of the computed
solutions of a Hamiltonian system are of interest, a symplectic algorithm is preferred.

We now briefly cover these four cases.

Implicit Algorithms and Stiff Equations
An ODE is said to be stiff when the solution comprises two or more terms that change at speeds which
differ in several orders of magnitude. Consider the simple one-dimensional initial value problem (Chapra
and Canale, 2006):

ẋ(t) = −1000x(t) + 3000 − 2000e−t , x(0) = 0 (17.19)

which has the exact solution x(t) = 3 − 997
999 e−1000t − 2000

999 e−t . The solution contains a slow-changing
exponential together with a fast-changing one. Although the fast exponential quickly contributes only
very small values, its presence forces a typical explicit algorithm to keep a small step size, even after the
transient part of the solution becomes very small.

The stability of an algorithm refers to its capability of not exponentially propagating the (unavoidable)
small errors that take place in the solving process, even when taking moderately large step sizes. Implicit
algorithms typically show better stability properties and consequently perform better on stiff problems.

A more generic formulation of an s-stage Runge–Kutta algorithm,

ki = f(un + hn

s∑
j=1

aijkj , tn + cihn), i = 1, . . . , s

un+1 = un + hn

s∑
i=1

biki

(17.20)

allows, when any of the aij , j ≥ i, is not 0, for implicit algorithms, in which the values of the ki may appear
at both sides of the evaluation of some intermediate rate. If the rate function is nontrivial, finding the
solution of the (possibly nonlinear) equations imposes an additional computation burden.

Implicit Runge–Kutta methods often possess better stability properties than their explicit counter-
parts given reasonably good behavior of the rate function f . Their implementation is, however, more
sophisticated, because it must include techniques to solve the nonlinear system of equations.

The OSP library implements an implicit Runge–Kutta method in the Radau5 class, following the
implementation proposed in Hairer and Wanner (2002). This class includes all the necessary routines to
implement the Radau IIA fifth-order method given by Table 17.4, with step size control and dense output
(interpolation).

Although implementing such an advanced algorithm is reserved to specialists, using it in the OSP
framework is very easy. The Radau5 class is created using the static (factory) method:

ODEAdaptiveSolver radau5=ODEInterpolationSolver.Radau5(ode);

and can be treated as any other ODEAdaptiveSolver object.
To show how the method compares to explicit Runge–Kutta methods, the classical fourth-order Runge–

Kutta method requires 400 rate function evaluations (for a step size of 0.001) to achieve comparable results

TABLE 17.4 Coefficients for Radau IIA Fifth-Order Method

(4 − √
6)/10 (88 − 7

√
6)/360 (296 − 169

√
6)/1800 (−2 + 3

√
6)/255

(4 + √
6)/10 (296 + 169

√
6)/1800 (88 + 7

√
6)/360 (−2 − 3

√
6)/255

1 (16 − √
6)/36 (16 + √

6)/36 1/9

(16 − √
6)/36 (16 + √

6)/36 1/9
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in the small interval [0, 0.1] when solving Chapra and Canale’s initial value problem [Eq. (17.19)]. The
adaptive Cash–Karp formulas required 217 evaluations for the same test (the number of steps growing
with the length of the interval, not being restricted to the initial transient part of the solution). Finally,
Radau5 solves the problem with only 60 evaluations, showing no deviation from the analytical solution.

For nonstiff ODEs, explicit adaptive methods usually perform better than implicit ones. For instance,
to obtain similar results for the Arenstorf orbit computation of Section 17.7, Radau5 required 2.5 times
the number of rate function evaluations of CashKarp45.

Multistep Methods
These methods take advantage of the information contained in previous steps of the solution. The general
algorithm for a (p + 1)-step method is

un+1 =
p∑

j=0

ajun−j + h

p∑
j=−1

bjfn−j , (n ≥ p) (17.21)

where fj represents f(uj , tj). Note that, if b−1 �= 0, the method is implicit and must be solved by iteration.
Simple multistep methods for initial value problems belong to two main families: Adams’ methods and
backwards differentiation formulas.

Adams’ methods derive from numerical methods for the equivalent integral equation:

x(tn+1) = x(tn) +
∫ tn+1

tn

f(x(t), t)dt (17.22)

Typical examples of Adams’ method are the following fourth-order explicit and implicit methods
(Atkinson, 1989):

un+1 = un + h

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3) (17.23a)

un+1 = un + h

24
(9fn+1 + 19fn − 5fn−1 + fn−2) (17.23b)

Sometimes, explicit and implicit Adams’ formulas are applied in pairs, in predictor–corrector formulas.
The latter is a mixed method that tries to obtain some of the stability properties of implicit formulas with
the simplicity of implementation of explicit ones. The scheme first uses an explicit method to predict the
solution of the ODE at tn+1. It then corrects the approximation by applying the implicit formula with the
value of fn+1 computed from the prediction.

Backwards differentiation formulas are obtained by approximating the solution by a polynomial through
a series of past un−j points and then taking un+1 such that the polynomial satisfies the ODE at tn+1. A
typical result of this process is (Hairer et al., 2000)

25

12
un+1 − 4un + 3un−1 − 4

3
un−2 + 1

4
un−3 = hfn+1 (17.24)

Both Adams’ methods and backwards differentiation formulas need the help of an auxiliary method to
start the process (that is, to compute the first p + 1 points of the solution) and require that the steps be
equally spaced. This requirement makes it complicated (though not impossible) to implement adaptive
step versions of the algorithms.

Extrapolation Methods
These algorithms effectively accelerate the convergence by using a power series to extrapolate to zero step
size applying successively the algorithm with different step sizes. The Bulirsch–Stoer method chooses a
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sequence of increasing integer numbers N , and then uses, for each of them, a fixed step H , and h = H/N ,
the formula:

v1 = un + hf(un, tn) (17.25a)

vi+1 = vi−1 + 2hf(vi, tn + ih), for i = 1, 2, . . . , N − 1 (17.25b)

un+1 = 1

2
[vN + vN−1 + hf(vN , tn + H)] (17.25c)

to advance from (un, tn) to (un+1, tn + H). The error term for this formula is an expansion with only
even powers of h. Standard extrapolation techniques can then be used to obtain an arbitrarily high-order
method that accurately approximates the solution in the given interval (Press et al., 1992).

Symplectic Integration Methods
These methods can be the preferred choice when studying Hamiltonian systems:

ṗi = −δH

δqi
(p, q), q̇i = δH

δpi
(p, q), i = 1, . . . , k (17.26)

which define a 2k-dimensional ODE with variables qi and pi representing the generalized coordinates of
the system and the generalized momenta, respectively. Such problems frequently arise when modeling
mechanical systems, where the Hamiltonian H is the energy function of the system.

The symplectic property of these problems states that the flow of the system preserves the differential
2-form:

ω2 =
k∑

i=1

dpi ∧ dqi (17.27)

The symbol ∧ represents the exterior or wedge product between the two differential 1-forms (do Carmo,
1994). If k = 1 the 2-form above can be interpreted as an area. In this case, the symplectic property has the
geometrical interpretation that the area (in phase space) is preserved by the flow. Numerical methods that
also preserve this geometric property are called symplectic and are of interest when studying this type of
problems.

Although no explicit Runge–Kutta method is symplectic, it is possible to find high-order so-called
partitioned Runge–Kutta methods that are symplectic. These consist of a pair of Runge–Kutta methods
with different sets of coefficients applied “separately” to the variables pi and qi. For separable systems, in
which the Hamiltonian is of the form H = T(p) + V (q), such methods do exist (Hairer et al., 2000, 2002;
Enright et al., 1995).

A simple lower-order symplectic method that can be applied to solve the equations of motion with
acceleration a(t) = f (x(t), v(t), t) for a system of particles is the Verlet algorithm. This is an easy-to-
program multistep method that produces stable long-term trajectories. The method has the additional
advantage that, although it does not preserve the energy of the system over short times, it does produce
accurate averages over long times because the energy oscillates about the mean. It therefore reduces
the computational effort for systems where statistical averages are more important than the accuracy of
particular trajectories.

The partitioned Runge–Kutta coefficients for the Verlet method are given for (x, v) in Table 17.5. Because
these coefficients define a simple implicit algorithm, it is convenient to solve for the values at tn+1. This
reformulation, which is included in the OSP library, averages the acceleration at the old and new positions
to update the velocity. It is known as the velocity form of the Verlet method and is given by

xn+1 = xn + vnh + 1

2
anh2 (17.28a)

vn+1 = vn + 1

2
(an+1 + an)h (17.28b)
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TABLE 17.5 Partitioned Runge–Kutta Coefficients for the Ver-
let Method. The Left-Hand Table is Used to Advance the Position
and the Right-Hand Table is Used to Advance the Velocity

0 0 0

1 1/2 1/2

1/2 1/2

1/2 1/2 0

1/2 1/2 0

1/2 1/2

Important areas in which symplectic methods are preferred to other, perhaps more accurate, methods are
molecular dynamics and astrophysics, where large-scale simulations involving thousands of particles are
studied over very long time scales (Gray et al., 1994).

17.9 State Events

Sometimes the model of a continuous system needs to include discontinuities to reflect special situations.
The typical case is that of a collision between two objects. Although the collision can be modeled at a
microscopic scale, it is frequently much more convenient to stick to the macroscopic model and instruct
the computer to detect that the collision has taken place, find the precise moment when it happened,
compute explicitly the state of the system after the collision, and finally restart the continuous model from
it. This is a particular case of what is known as a state event (Cellier and Kofman, 2006).

Because our numerical method solves the ODE at given step sizes (either fixed or adaptive), a particular
event will almost always take place in between two successive computed states. A simple way to implement
event detection is to provide a real valued function of the state, h(x), which changes sign whenever an event
takes place. The algorithm can then keep track of possible changes in the sign of h in each solution step and
then apply a standard root-finding algorithm to find the precise instant of time when the event takes place.
The user must provide a method (function) that changes the state of the system at that particular time. For
example, a collision event would use conservation of energy and momentum to change particle velocities.

The OSP library implements a simple state event mechanism in the StateEvent interface. An event
takes place whenever the event function h changes from positive to strictly negative (zero does not trigger
an event). A sample implementation of this interface for a one-dimensional collision between two planar
disks is

class OneDimensionalCollisionEvent implements StateEvent {

public double getTolerance() { return 1.0e–4; } // precision

public double evaluate(double[] state) { // the event function h
return Math.abs(state[0]-state[2])-(radius1+radius2);

}

public boolean action() { // What to do on collision
double v_temp = state[1];
state[1] =

(2*mass2*state[3]+(mass1-mass2)*state[1])/(mass1+mass2);
state[3] =

(2*mass1*v_temp+(mass2–mass1)*state[3])/(mass1+mass2);
return true; // return state at the collision

}
}
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TABLE 17.6 List of ODE Solvers Implemented in the OSP Library
(ERK, Explicit Runge–Kutta; IRK, Implicit Runge–Kutta)

Type of Solver Solver Class Name

ERK fixed step Euler, Butcher5, Felhberg8,
Heun3, Ralston2, RK4

ERK adaptive CashKarp45, DormandPrince45
ERK adaptive + multistepping ODEMultistepSolver
ERK adaptive + interpolation Dopri5, Dopri853
IRK adaptive + interpolation Radau5
Predictor–corrector fixed step Adams4, Adams5, Adams6
Symplectic Verlet
Event-enabled fixed step ODEBisectionSolver

Because the model is one-dimensional, the disks have the same y coordinate and the state array is
(x1, vx1, x2, vx2, t).

The ODEBisectionEventSolver class in the OSP library can use any ODESolver to advance
the system. It checks for possible events and applies the bisection algorithm to find the instant of the event
(up to the prescribed tolerance) if an event has occurred. Although more sophisticated techniques can be
used, the bisection method is both simple and effective, reduces the number of the computations involved,
and provides support for handling situations in which multiple events take place, perhaps simultaneously.
Examples of systems displaying quite sophisticated event-handling are available on the Web links for this
chapter.

17.10 The OSP Library

Table 17.6 summarizes the numerical algorithms implemented in the OSP library. The Dopri5,
Dopri853, and Radau5 methods were contributed to the library by Andrew Gusev and Yuri B.
Senichenkov of Saint Petersburg Polytechnic University, Russia. These high-order differential equation
solvers are being distributed in an optional osp_ode.zip archive. All other interfaces and algorithms
are implemented in the numerics package (org.opensourcephsics.numerics) in the core OSP
library and are being distributed in the osp_core.zip archive. Both code archives are available on the
OSP website (http://www.opensourcephysics.org).

The OSP project is a synergy of curriculum development, computational physics, and physics education
research. One goal of the project is to make a Java library and a large number of Java simulations available
for education using the GNU Open Source model. You can redistribute it and/or modify it under the
terms of the GNU General Public License (GPL),6 as published by the Free Software Foundation either
version 2 of the License or (at your option) any later version. Code that uses any portion of the code in
the org.opensourcephysics package or any subpackage (subdirectory) of this package must also be released
under the GNU GPL.

Programmers wishing to adopt OSP code for their projects are encouraged to do so, provided
that they release their source code under the GNU Open Source GPL. Curricular material and devel-
oper resources are being distributed from the OSP server hosted at Davidson College and from other
servers.

6The Free Software Foundation website http://www.gnu.org promotes the creation and distribution of open source
software. The most common software license is the GNU General Public License (GNU GPL), which makes the software
free to all users.
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18.1 Introduction

Interest in difference equations goes a long way back to the times before the discovery of differential
and integral calculus. For instance, the famous sequence 0,1,1,2,3,5,8, … that appeared in the work of
Fibonacci (ca. 1202) is the solution of a difference equation, namely xn = xn−1 + xn−2 with given initial
values x−1 = 0, x0 = 1. This difference equation also generates the well-known Lucas numbers if x−1 = 1,
x0 = 3. Even after the invention of the concept of derivative until around the mid-twentieth century,
difference equations found numerous applications in numerical analysis where they were used in the
solution of algebraic and differential equations. Indeed, the celebrated Newton’s method for finding roots
of scalar equations is an example of a difference equation, as is the equally famous Euler’s method for
estimating solutions of differential equations through estimation of the derivative by a finite difference
(Burden and Fairs, 1997). These are just two among many other and more refined difference methods for
dealing with complex problems in calculus and differential equations. By the mid-twentieth century, the
theory of linear difference equations had been developed in sufficient detail to rival, indeed parallel, its
differential analog. This theory had already been put to use in the 1930s and 1940s by economists (Hicks,
1965; Samuelson, 1939) in their analyses of discrete-time models of the business cycle.

Interest of a different sort began to emerge in the 1960s and 1970s with important discoveries, such
as the Mandelbrot and Julia sets, the Sharkovsky ordering of cycles, and the Li-Yorke “chaos theorem.” A
substantial amount of work by numerous researchers since then led to the creation of a qualitative theory
of difference equations that no longer paralleled similar discoveries in differential equations. Although
many analogs can be found between the two disciplines, there are also significant differences; for example,
the Poincare–Bendixon theorem (Hirsch et al., 2004) establishes dimension 3 as the minimum needed for
the occurrence of deterministic chaos in differential equations, whereas such behavior can appear even

18-1
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in simple, one-dimensional difference equations. The work in the latter part of the twentieth century
inspired a further development of the qualitative theory of difference equations, which included the study
of conditions for asymptotic stability of equilibria and cycles, and other significant aspects of nonlinear
difference equations.

Solutions of difference equations are sequences and their existence is often not a significant problem,
in contrast to differential equations. Furthermore, it is unnecessary to estimate solutions of difference
equations. Because of their recursive nature, it is easy to generate actual solutions on a digital computer
starting from given initial values. Therefore, modelers are quickly rewarded with insights about both the
transient and the asymptotic behaviors of their equation of interest. A deeper understanding can then
be had from the qualitative theory of nonlinear difference equations, which has now been developed
sufficiently to make it applicable to a wide variety of modeling problems in the biological and social
sciences. In studying nonlinear difference equations, qualitative methods are not simply things to use in
the absence of quantitative exactitude. In the relatively rare cases, where the general solution to a nonlinear
difference equation can be found analytically, it is often the case that such a solution has a complicated
form that is more difficult to use and analyze than the comparatively simple equation that gave rise to
it (see, e.g., Example 9). Thus, even with an exact solution at hand, it may not be easy to answer basic
questions such as whether an equilibrium exists, or if it is stable, or if there are periodic or nonperiodic
solutions.

In this chapter, we present some of the fundamental aspects of the modern qualitative theory of
nonlinear difference equations of order one or greater. The primary purpose is to acquaint the reader with
the outlines of the standard theory. This includes some of the most important results in the field as well as
a few of the latest findings so as to impart a sense that a coherent area of mathematics exists in the discrete
settings that is independent of the continuous theory. Indeed, there are no continuous analogs for many
of the results that we discuss below. As it is not possible to cover so broad an area in a limited number of
pages, we leave out all proofs. The committed reader may pursue the matters further through the extensive
list of references provided. Entire topics, such as bifurcation theory, fractals and complex dynamics, and
measure theoretic or stochastic dynamics had to be left out; indeed, each of these topics is quite extensive
and it would be impossible to meaningfully include more than one of these within the confines of a single
chapter.

18.2 Basic Concepts

A discrete dynamical system (autonomous, finite dimensional) basically consists of a mapping F : D → D
on a nonempty set D ⊆ R

m. We usually assume that F is continuous on D. We abbreviate the composition
F ◦ F by F2, and refer to the latter as an iterate of F. The meaning of Fn for n = 3, 4, . . . is inductively clear;
for convenience, we also define F0 to be the identity mapping. For each x0 ∈ D, the sequence {Fn(x0)}
of iterates of F is called a trajectory or orbit of F through x0 (more specifically, a forward orbit through
x0). Sometimes, x0 is called the initial point of the trajectory. In analogy with differential equations, we
sometimes refer to the system domain as the phase space, and call the plot of a trajectory in D a phase plot.
Also, the plot of a scalar component of Fn(x0) versus n is often called a time series.

Associated with the mapping F is the recursion

xn = F(xn−1) (18.1)

which is an example of a first-order, autonomous vector difference equation. The vector equation (18.1) is
equivalent to a system of scalar difference equations, analogously to systems of differential equations which
are composed of a finite number of ordinary differential equations. If the map F(x) = Ax is linear, where
x ∈ R

m and A is an m × m matrix of real numbers, then Eq. (18.1) is called a linear difference equation.
Otherwise, Eq. (18.1) is nonlinear (usually this excludes cases like the linear-affine map F(x) = Ax + B,
where B is an m × m matrix, since such cases are easy to convert to linear ones by a translation). Each
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trajectory {Fn(x0)} is a solution of Eq. (18.1) with initial point x0 and may be abbreviated {xn}. Unlike a
first-order nonlinear differential equation, it is clear that Eq. (18.1) always has solutions as long as F is
defined on D, and that each solution of Eq. (18.1) may be recursively generated from some point of D by
iterating F. A (scalar, autonomous) difference equation of order m is defined as

xn = f (xn−1, xn−2, . . . , xn−m) (18.2)

where the scalar map f : R
m → R is continuous on some domain D ⊂ R

m. Given any set of m initial values
x0, x−1, . . . , x−m+1 ∈ R, Eq. (18.2) recursively generates a solution {xn}, n ≥ 1. Eq. (18.2) may be expressed
in terms of vector equations as defined previously. Associated with f or with Eq. (18.2) is a mapping

Vf (u1, . . . , um)
.= [f (u1, . . . , um), u1, u2, . . . , um−1]

of R
m, which we call the standard vectorization or “unfolding” of f . Note that if we define

xn
.= [xn, . . . , xn−m+1], n ≥ 0

then

Vf (xn−1) = [f (xn−1, . . . , xn−m), xn, . . . , xn−m+1]

= [xn, xn−1, . . . , xn−m+1]

= xn

Hence, the solutions of Eq. (18.2) are known if and only if the solutions of the vector equation
xn = Vf (xn−1) are known. The latter equation is the standard vectorization of Eq. (18.2) and a common
way of expressing Eq. (18.2) as a system of difference equations.

A fixed point of F is a point x̄ such that F(x̄) = x̄. Clearly, iterations of F do not affect x̄, so x̄ is a
stationary point or equilibrium of Eq. (18.2). For Eq. (18.2), x̄ is a fixed point if and only if x̄ = (x̄, . . . , x̄)
is a fixed point of Vf . A fixed point of Fk for some fixed integer k ≥ 1 is called a k-periodic point of F. The
orbit of a k-periodic point p of F is a finite set {p, F(p), . . . , Fk−1(p)} which is called a cycle of F of length
k, or a k-cycle of F. A point q is eventually periodic if there is l ≥ 1 such that p = Fl(q) is periodic. These
definitions imply that a k-cycle of Eq. (18.2) is a finite set {p1, . . . , pk} of real numbers such that pkn+i = pi

for i = 1, . . . , k and n ≥ 1. Evidently, the point p = (p1, . . . , pk) is a period-k point of Vf .
A fixed point x̄ of F is said to be stable if for each ε > 0, there is δ > 0 such that x0 ∈ Bδ(x̄) implies that

Fn(x0) ∈ Bε(x̄) for all n ≥ 1. Here, Br(x̄) is the open ball of radius r > 0 with center x̄, which consists of all
points in R

m that are within a distance r from x̄. Thus, x̄ is stable if trajectories starting near x̄ stay close
to x̄. If a fixed point is not stable, then it is called unstable. If there is r > 0 such that for all x0 ∈ Br(x̄) the
trajectory {Fn(x0)} converges to x̄, then x̄ is attracting. If x̄ is both stable and attracting, then x̄ is said to
be asymptotically stable.

In the case of the scalar difference Eq. (18.2), linearization is more easily done than for Eq. (18.1) because
the characteristic polynomial of the derivative is easily determined. The Jacobian of the vectorization Vf

is given by the m × m matrix

⎡
⎢⎢⎢⎣

∂f /∂x1 ∂f /∂x2 · · · ∂f /∂xm−1 ∂f /∂xm

1 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎦ (18.3)
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where the partial derivatives are evaluated at an equilibrium point (x̄, . . . , x̄). The characteristic polynomial
of this matrix (and hence, also of the linearization of the scalar difference equation at the equilibrium) is
computed easily as

P(λ) = λm −
m∑

i=1

∂f

∂ri
(x̄, . . . , x̄)λm−i (18.4)

The roots of this polynomial give the eigenvalues of the linearization of Eq. (18.2) at the fixed point x̄.
If all roots of P(λ) have modulus less than unity (i.e., if all roots lie within the interior of the unit disk
in the complex plane), then the fixed point x̄ is locally asymptotically stable, i.e., it is stable and attracts
trajectories starting in some usually small neighborhood of x̄. If any root lies in the exterior of the unit
circle, then x̄ is unstable as some trajectories are repelled away from x̄ because of the eigenvalues outside
the unit disk.

If the mappings F or f above depend on the index n, then we obtain the more general nonautonomous
versions of Eq. (18.1) and Eq. (18.2) as

xn = F(n, xn−1) (18.5)

and

xn = f (n, xn−1, xn−2, . . . , xn−m) (18.6)

respectively. Eq. (18.5) and Eq. (18.6) are useful in modeling such things as periodic changes in the
environment in the case of modeling discrete-time population growth or to account for nonhomogeneous
media in the case of discrete spaces as in infarcted cardiac tissue.

For additional reading on fundamentals of difference equations, see Agarwal (2000), Alligood et al.
(1996), Arrowsmith and Place (1990), Davies (1999), Demazure (2000), Devaney (1989, 1992), Drazin
(1992), Elaydi (1999), Holmgren (1996), Jordan (1965), Kelley and Peterson (2001), Kocic and Ladas
(1993), Lakshmikantham and Trigiante (1988), Sandefur (1993), Sedaghat (2003a), and Sharkovski
et al. (1993).

18.3 First-Order Difference Equations

Eq. (18.1) and Eq. (18.2) are the same when m = 1, i.e., the dimension of the phase space is 1, the same as
the order of the equation. In this section, we present conditions for the asymptotic stability or instability
of equilibria and cycles, the ordering of cycles for continuous mappings, and conditions for the occurrence
of chaotic behavior for first-order equations. Eq. (18.5) and Eq. (18.6) are also the same when m = 1, but
they are not first-order equations, since the variable n in F or f adds an additional dimension (see, e.g.,
Drazin, 1992).

18.3.1 Asymptotic Stability: Necessary and Sufficient Conditions
Let f : I → I be a mapping of an interval I of real numbers. Here the invariant interval I may be any
interval, bounded or unbounded as long as it is not empty or a singleton. Let x̄ be a fixed point of f in I
that is isolated, meaning that there is an open interval J such that x ∈ J ⊂ I and J contains no other fixed
points of f . The one-dimensional version of Eq. (18.3) is

|f ′(x̄)| < 1 (18.7)

In Eq. (18.7), it is assumed that f has a continuous derivative at the fixed point x̄. If Eq. (18.7) holds,
then x̄ is stable and the orbit of each point x0 will converge to x̄ provided that x0 is sufficiently near x̄.
Furthermore, the rate of convergence is exponential, i.e., |f n(x0) − x̄| is proportional to the quantity e−an

where a > 0 for all n ≥ 1. However, if |f ′(x̄)| > 1 then nearby points x0 will be repelled by the unstable
fixed point x̄, also at an exponential rate.
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Example 1
The equation

xn = axn−1(1 − xn−1) (18.8)

is called the one-dimensional logistic equation (with the underlying “logistic map” f (x) = ax(1 − x)).
For a > 1, this equation has a unique positive fixed point x̄ = (a − 1)/a. Further, if a ≤ 4 then f has an
invariant interval [0, 1]. Since

f ′(x̄) = a − 2ax̄ = 2 − a

it follows that x̄ is (1) asymptotically stable if 1 < a < 3 or (2) repelling if a > 3. The origin 0 is the only
other fixed point of the logistic equation and it is unstable because |f ′(0)| = a > 1.

Despite its ease of use, Condition (18.7) that is based only on a linear approximation of f has some
limitations: (1) it does not specify how near x̄ the initial point x0 needs to be (it may have to be quite
near in some cases); (2) it requires that f be smooth; and (3) it conveys no information when |f ′(x̄)| = 1;
and (4) it is not a necessary condition.

We may remove one or more of these deficiencies by using more detailed information about the
function f than its tangent line approximation can provide. In particular, necessary and sufficient
conditions for asymptotic stability are given next.

Theorem 1. (Asymptotic Stability) Let f : I → I be a continuous mapping and let x̄ be an isolated fixed
point of f in I . The following statements are equivalent :

(a) x̄ is asymptotically stable.
(b) There is a neighborhood U of x̄ such that for all x ∈ U ⊂ I the following inequalities hold:

f 2(x) > x if x < x̄, f 2(x) < x if x > x̄ (18.9)

(c) There is a neighborhood U of x̄ such that for all x ∈ U ⊂ I the following inequalities hold:

f (x) > x if x < x̄, f (x) < x if x > x̄ (18.10)

and the graph of f−1
r (the inverse image of the part of f to the right of x̄) lies above the graph of f .

Reversing the inequalities in Theorem 1 gives conditions that are necessary and sufficient for x̄ to be
repelling. This follows from the next result that characterizes all possible types of behavior at an isolated
equilibrium for a mapping of the real number line.

Theorem 2. Let f : I → I be a continuous mapping and assume that f has an isolated fixed point x̄ ∈ I.
Then precisely one of the following is true:

(i) x̄ is asymptotically stable;
(ii) x̄ is unstable and repelling ;

(iii) x̄ is semistable (attracting from one side of x̄ and repelling from the other side); or
(iv) there is a sequence of period-2 points of f converging to x̄.

Example 2
Let us examine the logistic Eq. (18.8) in cases a = 1, 3. If a = 1, then it is easy to verify that

f (x) = x(1 − x) < x if x 	= 0

It follows that 0 is a semistable fixed point. Now consider a = 3. This value of the parameter a
represents the boundary between stability and instability. Linearization fails in this case so we apply
Theorem 1. Note that x̄ = 2/3 when a = 3 and

f 2(x) = 3[3x(1 − x)][1 − 3x(1 − x)] = 9x(1 − x)(1 − 3x + 3x2)
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The function 9(1 − x)(1 − 3x + 3x2) is decreasing on (−∞, ∞) and has a value 1 at x = 2/3 = x̄.
Thus Eq. (18.9) is satisfied and the fixed point is asymptotically stable.

The situation in Theorem 2(iv) does not occur for the logistic map, but it does occur for maps of the
line; a trivial example is f (x) = −x, which has a unique fixed point at the origin (see Sedaghat [2003a,
p. 32] for a more interesting example).

18.3.2 Cycles and Limit Cycles
One of the most striking features of continuous mappings of the line is the way in which their periodic
points can coexist. The following result establishes the peculiar manner and ordering in which the cycles
of a continuous map of an interval appear.

Theorem 3. (Coexisting cycles) Suppose that a continuous map f : I → I of the interval I has a cycle of
length m, and consider the following total ordering relation � of the positive integers:

3 � 5 � 7 � 9 � 11 � · · ·
2 × 3 � 2 × 5 � 2 × 7 � 2 × 9 � · · ·
...

2i × 3 � 2i × 5 � 2i × 7 � 2i × 9 � · · ·
...

· · · � 2n � · · · � 23 � 22 � 2 � 1

Then for every positive integer k such that m � k, there is a cycle of length k for f . In particular, if f has a cycle
of length 3, then it has cycles of all possible lengths.

It may be shown that a continuous mapping f has a 3-cycle in the interval I if and only if there is α ∈ I
such that

f 3(α) ≤ α < f (α) < f 2(α) or f 3(α) ≥ α > f (α) > f 2(α) (18.11)

These conditions have come to be known as the Li–Yorke conditions (Li and Yorke, 1975). The logistic
map of Example 1 has a 3-cycle when a ≈ 3.38.

It must be emphasized that even if a 3-cycle exists for a mapping f , most or even all of the cycles may
be unstable. Therefore, in numerical simulations one will not see all of the above cycles. The question as
to which of the cycles, if any, can be stable is the subject of the next theorem.

Theorem 4. (Limit cycles) Let f ∈ C3(I) where I = [a, b] is any closed and bounded interval, with
Schwarzian

Sf = f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

< 0

on I. Here Sf = −∞ is a permitted negative value.

(a) If p is an asymptotically stable periodic point of f , then either a critical point of f or an end point of I
converges to the orbit of p.

(b) If f has N ≥ 0 critical points in I, then f has at most N + 2 limit cycles (including any asymptotically
stable fixed points).

Example 3
Consider the logistic map f (x) = ax(1 − x), x ∈ [0, 1], 1 < a ≤ 4. We know that Sf < 0 on [0, 1] since f
is a quadratic polynomial and f ′′′(x) = 0 for all x. Since f ′(0) = a > 1, it follows that 0 is unstable so it
cannot attract the orbit of the unique critical point c = 1/2, unless c ∈ f −k(0) for some integer k ≥ 1. If
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a < 4, then the maximum value of f on [0, 1] is f (c) = a/4 < 1, so that f −k(0) = {0, 1}. Thus when a < 4,
Theorem 4 implies that there can be at most one limit cycle, namely the one whose orbit attracts 1/2. In
fact, because Theorem 4 holds for nonhyperbolic periodic points also (Sedaghat, 2003a, p. 47), it follows
that for the logistic map all cycles, except possibly one, must be repelling! If a limit cycle exists for some
value of a, then certainly, we may compute f n(1/2) for sufficiently large n to estimate that limit cycle. If
a = 4, then f 2(1/2) = 0, the unstable fixed point. Hence, by Theorem 4 there are no limit cycles in this
case, even though a 3-cycle exists for a = 4 and therefore, by Theorem 3 there are (unstable) cycles of all
lengths.

18.3.3 Chaos
Recall from Section 18.1 that by the Poincare–Bendixon theorem chaotic behavior does not occur in
differential equations in dimensions 1 and 2 (i.e., first- and second-order differential equations), so
dimension 3 is the minimum needed for the occurrence of deterministic chaos in the continuous case.
However, even a first-order difference equation can exhibit complex, aperiodic solutions that are stable,
in the sense that “most” solutions display such unpredictable behavior. The essential characteristic of
these solutions is that they exhibit sensitive dependence on the initial value x0; i.e., a trajectory starting
from a point arbitrarily close to x0 rapidly (at an exponential rate) diverges from the trajectory that starts
from x0. This unpredictability exists even though the underlying map f is completely known; therefore,
this phenomenon has been termed “deterministic chaos.” Since sensitive dependence on initial values
exists near any repelling fixed point, usually deterministic chaos involves certain other features also, such
as complicated orbits that may be dense in some subspace if not the whole space. The following famous
result shows that “period 3 implies chaos.”

Theorem 5. (Chaos: Period 3) Let I be a bounded, closed interval and let f be a continuous function on I
satisfying one of the inequalities in Eq. (18.11). Then the following are true:

(a) For each positive integer k, f has a k-cycle.
(b) There is an uncountable set S ⊂ I such that S contains no periodic points of f and satisfies the following

conditions:
(b1) For every p, q ∈ S with p 	= q,

lim sup
n→∞

|f n(p) − f n(q)| > 0 (18.12)

lim inf
n→∞ |f n(p) − f n(q)| = 0 (18.13)

(b2) For every p ∈ S and periodic q ∈ I ,

lim sup
n→∞

|f n(p) − f n(q)| > 0 (18.14)

The set S is called the scrambled set of f . Its existence characterizes chaotic behavior on the line in the
sense of Li and Yorke. By Eq. (18.12), the orbits of two arbitrarily close points in S will be pulled a finite
distance away under iterations of f so there is sensitivity to initial conditions. By Eq. (18.13), the orbits
of any two points in S can get arbitrarily close to each other, and by Eq. (18.14) no orbit starting from
within S can converge to a periodic solution. The logistic map with 3.83 < a ≤ 4 has a 3-cycle in I = [0, 1]
and thus satisfies the conditions of Theorem 5. If a is close to 3.83, then the 3-cycle is stable and it follows
that S is a proper subset of I . In many cases, S is a “large” subset of I (e.g., when a is large enough then
the 3-cycle becomes unstable) and for a = 4, in fact S is dense in I . However, S could be a fractal set of
Lebesgue measure zero in some cases. Also see Lasota and Yorke (1973).

The logistic map displays erratic behavior for smaller values of a also and this suggests that the existence
of period 3 may not be necessary for the occurrence of chaotic behavior. Indeed, for difference equations
in dimension 2 or greater this is often the case. In particular, we can define a mapping of the unit disk that
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exhibits sensitive dependence on initial values and its trajectories are dense in the disk, but which has no
k-cycles for k > 1 (Sedaghat, 2003a, p. 127). There is also a result that applies to higher dimensional maps
and establishes a Li–Yorke type chaos in which Condition (a) in Theorem 5 is relaxed; under conditions
of Theorem 12, chaotic behavior occurs in the logistic map for a ≥ 3.7.

Chaotic behavior may occur even on unbounded intervals. The following example illustrates this feature.

Example 4
Consider the continuous, piecewise smooth mapping

ρ(r) =
∣∣∣∣1 − 1

r

∣∣∣∣ , r > 0

This mapping does not leave the interval (0, ∞) invariant since it maps 1 to 0, but it does have a
scrambled set in (0, ∞). We show this through an indirect application of Theorem 5 because ρ itself
does not have a period-3 point. Remarkably, ρ does have period-p points for all positive integers p 	= 3
and in Sedaghat (2004b) these points were explicitly determined using the Fibonacci numbers. We can
complete the list of periodic solutions for ρ by adding a “3-cycle that passes through ∞” as follows:

Let [0, ∞] be the one-point compactification of [0, ∞) and define ρ∗ on [0, ∞] as

ρ∗(0) = ∞, ρ∗(∞) = 1, ρ∗(r) = ρ(r), 0 < r < ∞.

Note that ρ∗ extends ρ continuously to [0, ∞] and furthermore, ρ∗ has a 3-cycle {1, 0, ∞}. The
interval [0, ∞] is homeomorphic to [0, 1], so ρ∗ is chaotic on [0, ∞] in the sense of Theorem 5. To
show that ρ is chaotic on (0, ∞), we show that it has a scrambled set. Let S∗ be a scrambled set for ρ∗
and take out ∞ and the set of all backward iterates of 0, namely, ∪∞

n=0ρ
−n(0) from S∗. The subset S that

remains is contained in (0, ∞). Further, S is uncountable because S∗ is uncountable and each inverse
image ρ−n(0) is countable for all n = 0, 1, 2, . . . (in fact ∪∞

n=0ρ
−n(0) is the set of all nonnegative rational

numbers; see (Sedaghat [2004b]). Further, since ρ(S) ⊂ S and ρ|S = ρ∗|S it follows that S is a scrambled
set for ρ that has the properties stated in Theorem 5.

18.3.4 Notes
A proof of the equivalence of (a) and (b) in Theorem 1 first appeared in Sharkovski (1960) (also see
Sharkovski et al. [1993]). A different proof of this fact, which also established the equivalence of Part (c),
was first given in Sedaghat (1999). Theorem 1 is true only for maps on an invariant subset of the real
number line. It is not true for invariant subsets of the Euclidean plane (see Sedaghat [1998b]). For
complete proofs of Theorems 1 and 2, including other equivalent conditions not stated here and some
further comments, see Sedaghat (2003a).

Theorem 3 was first proved in Sharkovski (1995) (also see Collet and Eckmann [1980], Devaney [1989],
and Sedaghat [2003a]). Like Theorem 1 and 2, this result is peculiar to the maps of the interval and is not
shared by the continuous mappings of a closed, one-dimensional manifold like the circle, or by continuous
mappings of higher dimensional Euclidean spaces. See (Sedaghat (2004b)) for an example of a second-
order difference equation all of whose solutions are either periodic of period 3 or else they converge to zero.

Theorem 4 was proved almost simultaneously in Allwright (1978) and Singer (1978) (also see Collet
and Eckmann [1980], Devaney [1989], and Sedaghat [2003a]. Theorem 5 was first proved in Li and Yorke
(1975) (also see Sedaghat [2003a]). Example 4 is extracted from Sedaghat (2004a).

18.4 Higher Order Difference Equations

Equations of type (18.2) or (18.6) with m ≥ 2 are higher order difference equations. As noted above, these
can be converted to first-order vector equations. Unfortunately, the theory of the preceding section largely
fails for the higher order equations or for vector equations. Higher order equations provide a considerably
greater amount of flexibility for modeling applications, but results that are comparable to those of the
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previous section in power and generality are lacking. Nevertheless, there do exist results that apply to
general classes of higher order difference equations and we shall be concerned with those results in this
section. Because of space limitations we will not discuss results that are applicable to narrowly defined
types of difference equations. Although many interesting results of profound depth have been discovered
for such classes of difference equations, these types of equations do not offer the flexibility needed for
scientific modeling.

18.4.1 Asymptotic Stability: Weak Contractions
A general sufficient condition for the asymptotic stability (nonlocal) of a fixed point is given next.

Theorem 6. (Asymptotic Stability) Let f be continuous with an isolated fixed point x̄, and let M be an
invariant closed set containing x̄ = (x̄, . . . , x̄). If A is the containing x̄ and all u = (u1, . . . , um) ∈ M such that

|f (u) − x̄| < max{|u1 − x̄|, . . . , |um − x̄|}
then x̄ is asymptotically stable relative to each invariant subset S of A that is closed in M ; in particular, x̄
attracts every trajectory with a vector of initial values (x1−m, . . . , x0) ∈ S.

Further, if A is open and contains x̄ in its interior, then x̄ is asymptotically stable relative to (x̄ − r, x̄ + r),
where r > 0 is the largest real number such that Br(x̄) ⊂ A. In particular, if A = R

m, then x̄ is globally
asymptotically stable.

When f satisfies the inequality in Theorem 6 we may say that f is a weak contraction at x̄ (“weak” because
the vectorization Vf is not strictly a contraction in the usual sense).

Example 5
Consider the third-order equation

xn = axn−1 + bxn−3 exp (−cxn−1 − dxn−3), a, b, c, d ≥ 0, c + d > 0 (18.15)

This equation was derived from a model for the study of observed variations in the flour beetle
population (see Kuang and Cushing [1996]). For an entertaining account of the flour beetle experiments
see Cipra (1997). We show that the origin is asymptotically stable (so that the beetles go extinct) if

a + b ≤ 1, b > 0 (18.16)

We note that the linearization of Eq. (18.15) at the origin, i.e., the characteristic polynomial Eq. (18.4),
has a unit eigenvalue λ = 1 when a + b = 1. Therefore, linear stability analysis is not applicable in this
particular case.

Now, observe that if Eq. (18.16) holds, then for every (x, y, z) ∈ [0, ∞)3,

ax + bz exp (−cx − dz) ≤ [a + b exp (−cx − dz)] max{x, z}
< (a + b) max{x, y, z}
≤ max{x, y, z}

so by Theorem 6 the origin is stable and attracts all nonnegative solutions of Eq. (18.15).
A generalization of Example 5 is the first part of the next corollary of Theorem 6, which in particular

provides a simple tool for establishing the global stability of the zero equilibrium. The simple proof
(showing that the map is a weak contraction) is omitted.

Corollary 1. (a) Let fi ∈ C([0, ∞)m, [0, 1)) for i = 1, . . . , k and k ≥ 2. If
∑k

i=1 fi(u1, . . . , um) < 1 for all
(u1, . . . , um) ∈ [0, ∞)m, then the origin is the unique, globally asymptotically stable fixed point of the following
equation

xn =
k∑

i=1

fi(xn−1, . . . , xn−m)xn−i
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(b) The origin is a globally asymptotically stable fixed point of the equation

xn = xn−kg(xn−1, . . . , xn−m), 1 ≤ k ≤ m

where g ∈ C(Rm, R), if |g(x)| < 1 for all x 	= (0, . . . , 0).

The following result gives an interesting and useful version of Theorem 6 for the nonautonomous
equation (18.6).

Theorem 7. Let f be the function in Eq. (18.6) and assume that there is a sequence an ≥ 0 such that for all
u ∈ R

m and all n ≥ 1,

| f (n, u)| ≤ an max{|u1|, . . . , |um|}

(a) If lim supn→∞ an = a < 1 then the origin is the globally exponentially stable fixed point of Eq. (18.6).
(b) If bk = max{amk , amk+1, . . . , amk+k} and

∏∞
k=0 bk = 0, then the origin is the globally asymptotically

stable fixed point of Eq. (18.6).

18.4.2 Asymptotic Stability: Coordinate-Wise Monotonicity
In case the function f in Eq. (18.2) or Eq. (18.6) is either nondecreasing or nonincreasing in all of its
arguments, it is possible to obtain general conditions for asymptotic stability of a fixed point. There are
several results of this type and we discuss some of them in this section along with their applications. The
first result is the most general of its kind on attractivity of a fixed point within a given interval.

Theorem 8. Assume that f : [a, b]m → [a, b] in Eq. (18.2) is continuous and satisfies the following
conditions:

(i) For each i ∈ {1, . . . , m} the function f (u1, . . . , um) is monotone in the coordinate ui (with all other
coordinates fixed).

(ii) If (µ, ν) is a solution of the system

f (µ1, µ2, . . . , µm) = µ

f (ν1, ν2, . . . , νm) = ν

then µ = ν, where for i ∈ {1., . . . , m} we define

µi =
{
µ if f is nondecreasing in ui

ν if f is nonincreasing in ui

and

νi =
{

ν if f is nondecreasing in ui

µ if f is nonincreasing in ui
.

Then there is a unique fixed point x̄ ∈ [a, b] for Eq. (18.2) that attracts every solution of Eq. (18.2) with initial
values in [a, b].

The following variant from Chan et al. (2006) has less flexibility in the manner in which f depends on
variations in coordinates, but it does not involve a bounded interval and adds stability to the properties of x̄.

Theorem 9. Let r0, s0 be extended real numbers where −∞ ≤ r0 < s0 ≤ ∞ and consider the following
hypotheses:

(H1) f (u1, . . . , um) is nonincreasing in each u1, . . . , um ∈ I0 where I0 = (r0, s0] if s0 < ∞ and I0 = (r0, ∞)
otherwise.

(H2) g(u) = f (u, . . . , u) is continuous and decreasing for u ∈ I0.
(H3) There is r ∈ [r0, s0) such that r < g(r) ≤ s0. If r0 = −∞ or limt→r+

0
g(t) = ∞, then we assume that

r ∈ (r0, s0).
(H4) There is s ∈ [r, x∗) such that g2(s) ≥ s, where g2(s) = g(g(s)).
(H5) There is s ∈ [r, x∗) such that g2(u) > u for all u ∈ (s, x∗).



Difference Equations as Discrete Dynamical Systems 18-11

Then the following is true:

(a) If (H2) and (H3) hold, then Eq. (18.2) has a unique fixed point x∗ in the open interval (r, g(r)).
(b) Let I = [s, g(s)]. If (H1)–(H4) hold, then I is an invariant interval for Eq. (18.2) and x∗ ∈ I .
(c) If (H1)–(H3) and (H5) hold, then x∗ is stable and attracts all solutions of Eq. (18.2) with initial values

in (s, g(s)).
(d) If (H1)–(H3) hold, then x∗ is an asymptotically stable fixed point of Eq. (18.2) and is an asymptotically

stable fixed point of the mapping g ; e.g., if g is continuously differentiable with g ′(x∗) > −1.

It may be emphasized that the conditions of Theorems 8 and 9 imply asymptotic stability over an interval
and as such, they impart considerably greater information than linear stability results about the ranges on
which convergence occurs. They also have the added advantage that if the extent of the interval I is not
an issue, then we may reduce the amount of calculations considerably by using Theorem 9(d) instead of
examining the roots of the characteristic polynomial (18.4).

Example 6
Consider the difference equation

xn = α − ∑m
i=1 aixn−i

β + ∑m
i=1 bixn−i

, α, β > 0, (18.17)

ai, bi ≥ 0, 0 < a =
m∑

i=1

ai < β, b =
m∑

i=1

bi > 0

The function f for this equation is

f (u1, . . . , um) = α − ∑m
i=1 aiui

β + ∑m
i=1 biui

which is nonincreasing in each of its m coordinates if ui < α/a for all i = 1, . . . , m. Eq. (18.17) has one
positive fixed point x̄ which is a solution of the equation g(t) = t where

g(t) = α − at

β + bt

Eq. (18.17) satisfies (H1)–(H3) in Theorem 11 with s = g−1(α/a) and

g ′(x̄) = −aβ − αb

(β + bx̄)2

It is easy to verify that x̄ ∈ [s, α/a] with |g ′(x̄)| < 1 so x̄ is asymptotically stable according to
Theorem 9(d).

We finally mention the following result for the nonautonomous equation:

xn = f

(
m∑

i=1

[an−ig(xn−i) + gi(xn−i)]

)
, n = 1, 2, 3, . . . (18.18)

which is of type (18.6) whose autonomous version (the coefficients an−i all have the same value) is a
special case of Theorem 9. In Eq. (18.18), we assume that

amn+i = ai ≥ 0, i = 1, . . . , m, n = 1, 2, 3, . . . , a =
m∑

i=1

ai (18.19)
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The functions f , g , gi are all continuous on some interval (t0, ∞) of real numbers R and mono-
tonic (nonincreasing or nondecreasing). It is assumed for nontriviality that all ai and all gi are not
simultaneously zero. Define the function h as

h(t) = f

(
m∑

i=0

gi(t)

)
, g0(t) = ag(t)

and assume that h satisfies the condition

h(t) is decreasing for t > t0 ≥ −∞ (18.20)

Theorem 10. Suppose that Eq. (18.19) and Eq. (18.20) hold and consider the following assumptions:
(A1) for some r > t0 ≥ −∞, h(r) > r;
(A2) for some s ∈ (r, x̄), h2(s) ≥ s;
(A3) for some s ∈ (r, x̄), h2(t) > t for all t ∈ (s, x̄).
Then

(a) If (A1) holds, then Eq. (18.18) has a unique fixed point x̄ > r.
(b) If (A1) and (A2) hold, then the interval (s, h(s)) is invariant for Eq. (18.18) and x̄ ∈ (s, h(s)).
(c) If (A1) and (A3) hold, then the fixed point x̄ of Eq. (18.18) is stable and attracts every point in the

interval (s, h(s)).

Example 7
The propagation of an action potential pulse in a ring of excitable media (e.g., cardiac tissue) can be
modeled by the equation

xn =
m∑

i=1

an−iC(xn−i) − A(xn−m) (18.21)

if certain threshold and memory effects are ignored and if all the cells in the ring have the conduction
properties. Models of this type can aid in gaining a better understanding of causes of cardiac arrhythmia.
The ring is composed of m units (e.g., cardiac cell aggregates) and the functions A and C in Eq. (18.21)
represent the restitutions of action potential duration (APD) and the conduction time, respectively, as
functions of the diastolic interval xn. The numbers an represent lengths of the ring’s excitable units that
are not generally constant, but the sequence {an} is m-periodic since cell aggregate m + 1 is the same as
cell aggregate 1 and another cycle through the same cell aggregates in the ring starts (the reentry process).

The following conditions are generally assumed:

(C1) There is rA ≥ 0 such that the APD restitution function A is continuous and increasing on the
interval [rA, ∞) with A(rA) ≥ 0.
(C2) There is rC ≥ 0 such that the conduction time or CT restitution function C is continuous and
nonincreasing on the interval [rC , ∞) with infx≥rC C(x) ≥ 0.
(C3) There is r ≥ max{rA, rC} such that mC(r) > A(r) + r.

Define the function F = mC − A and note that by (C1)–(C3), F is continuous and decreasing on the
interval [r, ∞) and satisfies

F(r) > r (18.22)

Thus, (A1) holds and there is a unique fixed point x̄ for Eq. (18.21). Now assume that the following
condition is also true:

(C4) There is s ∈ [r, x̄) such that F2(x) > x for all x ∈ (s, x̄).

Then, (A1) and (A3) in Theorem 10 are satisfied with h = F, f (t) = t , g = C, and gi = −A/m for all i
and the existence of an asymptotically stable fixed point for Eq. (18.21) is established. In the context of
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cardiac arrhythmia, this means that there is an equilibrium heart beat period of A(x̄) + x̄ that is usually
shorter than the normal beat period by a factor of 2 or 3.

18.4.3 Persistent Oscillations and Chaos
It is possible to establish the existence of oscillatory solutions for Eq. (18.2) if the linearization of this
equation exhibits such behavior; i.e., if some of the roots of the characteristic polynomial Eq. (18.4) are
either complex or negative. Such linear oscillations occur both in stable cases where all roots of Eq. (18.4)
have modulus less than 1 and in unstable cases where some roots have modulus greater than 1. Further,
linear oscillations take place about the equilibrium (i.e., going past the fixed point repeatedly, infinitely
often) and by their very nature; if linear oscillations are bounded and nondecaying, then they are not
structurally stable or robust.

Our focus here is on a different and less familiar type of oscillation. This type of nonlinear oscillation
is bounded and persistent (nondecaying), and unlike linear oscillations, it is structurally stable. Further, it
need not take place about the equilibrium, although it is caused by the instability of the equilibrium.

We define a persistently oscillating solution of Eq. (18.2) simply as one that is bounded and has two or
more (finite) limit points.

Theorem 11. (Persistent Oscillations) Assume that f in Eq. (18.2) has an isolated fixed point x̄ and satisfies
the following conditions:

(a) For i = 1, . . . , m, the partial derivatives ∂f /∂xi exist continuously at x̄ = (x̄, . . . , x̄), and every root of
the characteristic polynomial (18.4) has modulus greater than 1.

(b) f (x̄, . . . , x̄, x) 	= x̄ if x 	= x̄.

Then all bounded solutions of Eq. (18.2) except the trivial solution x̄ oscillate persistently. If only (a) and (b)
hold, then all bounded solutions that do not converge to some x̄ in a finite number of steps oscillate persistently.

Example 8
The second-order difference equation

xn+1 = cxn + g(xn − xn−1) (18.23)

has been used in the classical theories of the business cycle, where g is often assumed to be nondecreasing
(also see Goodwin [1951], Hicks [1965], Puu [1993], Samuelson [1939], Sedaghat [1997, 2003a, 2003b],
and Sedaghat and Wang [2000]). If 0 ≤ c < 0 and g is a bounded function, then it is easy to see that all
solutions of Eq. (18.23) are bounded and confined to a closed interval I . If additionally g is continuously
differentiable at the origin with g ′(0) > 1, then by Theorem 11 for all initial values x0, x−1 that are not
both equal to the fixed point x̄ = g(0)/(1 − c), the corresponding solution of Eq. (18.23) oscillates
persistently, eventually in the absorbing interval I .

We also mention that if tg(t) ≥ 0 for all t in the interval I that contains the fixed point 0 of Eq. (18.23),
then every eventually nonnegative and every eventually nonpositive solution of Eq. (18.23) is eventually
monotonic (Sedaghat, 2003b, 2004c). This is true, in particular, if g(t) is linear or an odd function. But
in general it is possible for Eq. (18.23) to have oscillatory solutions that are eventually nonnegative (or
nonpositive). For example, if

g(t) = min{1, |t|}, c = 0

then Eq. (18.23) has a period-3 solution {0, 1, 1}, which is clearly nonnegative and oscillatory. This
type of behavior tends to occur when g has a global minimum (not necessarily unique) at the origin,
including even functions (see Sedaghat [2003b] for more details).

With regard to chaotic behavior, it may be noted that persistently oscillating solutions need not be
erratic. Indeed, they could be periodic as in the preceding example. The conditions stated in the next
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theorem are more restrictive than those in Theorem 11, enough to ensure that erratic behavior does
occur. The essential concept for this result is defined next.

Let F : D → D be continuously differentiable where D ⊂ R
m, and let the closed ball B̄r(x̄) ⊂ D where

x̄ ∈ D is a fixed point of F and r > 0. If for every x ∈ B̄r(x̄), all the eigenvalues of the Jacobian DF(x)
have magnitudes greater than 1, then x̄ is an expanding fixed point. If, in addition, there is x0 ∈ B̄r(x̄)
such that (a) x0 	= x̄; (b) there is a positive integer k0 such that Fk0 (x0) = x̄; and (c) det [DFk0 (x0)] 	= 0,
then x̄ is a snap-back repeller. If F = Vf is a vectorization so that x̄ = (x̄, . . . , x̄), then we refer to the fixed
point x̄ as a snap-back repeller for Eq. (18.2). Note that because of its expanding nature, a snap-back
repeller satisfies the main Condition (a) of Theorem 11.

Theorem 12. (Chaos: Snap-back repellers) Let D ⊂ R
m and assume that a continuously differentiable

mapping F has a snap-back repeller. Then the following are true:

(a) There is a positive integer N such that F has a point of period n for every integer n ≥ N .
(b) There is an uncountable set S satisfying the following properties:

(i) F(S) ⊂ S and there are no periodic points of F in S;
(ii) For every x, y ∈ S with x 	= y,

lim sup
n→∞

‖Fn(x) − Fn(y)‖ > 0;

lim sup
n→∞

‖Fn(x) − Fn(y)‖ > 0

(c) There is an uncountable subset S0 of S such that for every x, y ∈ S0

lim inf
n→∞ ‖Fn(x) − Fn(y)‖ = 0

The norm ‖ · ‖ in Parts (b) and (c) above may be assumed to be the Euclidean norm in R
m. The set S in

(b) is analogous to the similar set in Theorem 5, so we may also call it a “scrambled set”. Unlike Theorem
5, Theorem 12 can be applied to models in any dimension (see Dohtani [1992] and Sedaghat [2003a] for
applications to social science models).

18.4.4 Semiconjugacy: First-Order Equations Revisited
Given that there is a comparatively better-established theory for the first-order difference equations than
for equations of order 2 or greater, it is of interest that certain classes of higher order difference equations
can be related to suitable first-order ones. For these classes of equations, it is possible to discuss stability,
convergence, periodicity, bifurcations, and chaos using results from the first-order theory. Owing to
limitations of space, in this section we do not present the basic theory, but use specific examples to indicate
how the main concepts can be used to study higher order difference equations. For the basic theory and
additional examples, see Sedaghat (2002, 2003a, 2004b).

We say that the higher order difference equation (18.2) is semiconjugate to a first-order equation if there
are functions h and ϕ such that

h(Vf (u1, . . . , um)) = ϕ(h(u1, . . . , um))

The function h is called a link and the function ϕ is called a factor for the semiconjugacy. The first-order
equation

tn = ϕ(tn−1), t0 = h(x0, . . . , x−m+1) (18.24)

is the equation to which Eq. (18.2) is semiconjugate. A relatively straightforward theory exists that relates
the dynamics of Eq. (18.2) to that of Eq. (18.24) and bears remarkable similarity to the theory of Liapunov
functions (LaSalle, 1976, 1986; Sedaghat, 2003a) and invariants (Ladas, 1995; Kulenovic, 2000). The link
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function h also plays a crucial role and in some cases, two or more different factor and link maps can be
found that shed light on different aspects of the higher order difference equation.

Example 9
Consider the second-order scalar difference equation

xn = a

xn−1
+ bxn−2 a, b, x0, x−1 > 0 (18.25)

It can be readily shown that this equation (see Magnucka-Blandzi and Popenda [1999]) is
semiconjugate to the first-order equation

tn = a + btn−1 (18.26)

with the link H(x, y) = xy over the positive quadrant D = (0, ∞)2. Indeed, multiplying both sides of
Eq. (18.25) by xn−1 gives

xnxn−1 = a + bxn−1xn−2

which has the same form as the first-order equation if tn = xnxn−1. This semiconjugacy can be used
to establish unboundedness of solutions for Eq. (18.25). Note that if b ≥ 1 then all solutions of the
first-order equation (18.26) diverge to infinity, so that the product

xnxn−1 = tn (18.27)

is unbounded. It follows from this observation that every positive solution of Eq. (18.25) is unbounded
if b ≥ 1.

If b < 1, then every solution of the first-order equation converges to the positive fixed point
t̄ = a/(1 − b). It is evident that the curve xy = t̄ is an invariant set for the solutions of Eq. (18.25)
in the sense that if x0x−1 = t̄ then xnxn−1 = t̄ for all n ≥ 1. Hence, every solution of Eq. (18.25) con-
verges to this invariant curve. Now since all solutions of the first-order equation xnxn−1 = t̄ are periodic
with period 2, we conclude that if b < 1 then all nonconstant, positive solutions of Eq. (18.25) converge
to period-2 solutions.

In this example, we saw how semiconjugacy allows a factorization of the second-order equation into
two simple first-order ones. Subsequently, we can actually solve Eq. (18.25) exactly by first solving
Eq. (18.26) to get

tn = α + βbn, α = a

1 − b
, β = t0 − α, t0 = x0x−1

(for b 	= 1) and then using this solution in Eq. (18.27) to find an explicit solution for Eq. (18.25) as

xn = x0δn

n/2∏
k=1

1 + cbn−2k+2

1 + cbn−2k+1
+ x−1(1 − δn)

(n+1)/2∏
k=1

1 + cbn−2k+2

1 + cbn−2k+1

where c = β/α and δn = [1 + (−1)n]/2.

Example 10
Consider again the second-order difference equation from Example 8

xn = cxn−1 + g(xn−1 − xn−2), x0, x−1 ∈ R. (18.28)

where g is continuous on R and 0 ≤ c ≤ 1. In particular, in Puu (1993) the equation

yn = (1 − s)yn−1 + syn−2 + Q(yn−1 − yn−2)
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is considered where 0 ≤ s ≤ 1 and Q is the “investment function” (taken as a cubic polynomial). We may
rewrite this equation as

yn = yn−1 − s(yn−1 − yn−2) + Q(yn−1 − yn−2)

which has the form Eq. (18.28) with c = 1 and g(t) = Q(t) − st . In the case c = 1, Eq. (18.28) is
semiconjugate with link function h(x, y) = x − y and factor g(t). In this case, since xn − xn−1 = tn, the
solutions of Eq. (18.28) are just sums of the solutions of the first-order equation

tn = g(tn−1), t0 = x0 − x−1

i.e., xn = ∑n
k=1 tk . If g is a chaotic map (e.g., if it has a snap-back repeller or a 3-cycle), then the solutions

of Eq. (18.28) exhibit highly complex and unpredictable behavior (see Puu [1993] and Sedaghat [2003a]
for further details).

Example 11
Let an, bn, dn be given sequences of real numbers with an ≥ 0 and bn+1 + dn ≥ 0 for all n ≥ 0. The
difference equation

xn+1 = an|xn − cxn−1 + bn| + cxn + dn, c 	= 0 (18.29)

is nonautonomous of type (18.6). Using a semiconjugate factorization, we show that its general solution
is given by

xn = x0cn +
n∑

k=1

cn−k

⎛
⎝dk−1 + |t0|

k−1∏
j=0

aj +
k−1∑
i=1

(bi + di−1)
k−1∏
j=i

aj

⎞
⎠ (18.30)

where t0 = x0 − cx−1 + b0. To see this, note that Eq. (18.29) has a semiconjugate factorization as

xn − cxn−1 + bn = tn, tn = an−1|tn−1| + bn + dn−1 (18.31)

The second equation in Eq. (18.31) may be solved recursively to get

tn = |t0|
n−1∏
j=0

aj + bn + dn−1 +
n−1∑
i=1

(bi + di−1)
n−1∏
j=i

aj (18.32)

Substituting Eq. (18.32) in the first equation in Eq. (18.31) and using another recursive argument
yields Eq. (18.30). For additional details on the various interesting features of this and related equations,
see Kent and Sedaghat (2005).

Example 12
As our final example we consider the difference equation

xn+1 = |axn − bxn−1|, a, b ≥ 0, n = 0, 1, 2, . . . (18.33)

An equation such as this may appear implicitly in smooth difference equations (or difference relations)
that are in the form of, e.g., quadratic polynomials. We may assume that the initial values x−1, x0

in Eq. (18.33) are nonnegative and for nontriviality, at least one is positive. Dividing both sides of
Eq. (18.33) by xn we obtain a ratios equation

xn+1

xn
=

∣∣∣∣a − bxn−1

xn

∣∣∣∣
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which can be written as

rn+1 =
∣∣∣∣a − b

rn

∣∣∣∣ , n = 0, 1, 2, . . . (18.34)

where we define rn = xn/xn−1 for every n ≥ 0. Thus, we have a semiconjugacy in which Eq. (18.34) is
the factor equation with mapping

φ(r) =
∣∣∣∣a − b

r

∣∣∣∣ , r > 0

and the link function is h(x, y) = x/y. Note that a general solution of Eq. (18.33) is obtained by
computing the solution rn of Eq. (18.34) and then using these values of rn in the nonautonomous linear
equation xn = rnxn−1 to obtain the solution xn = x0

∏n
k=1 rk . However, closed forms are not known for

the nontrivial solutions of Eq. (18.34). In fact, when a = b = 1 we saw in Example 4 that Eq. (18.34) has
chaotic solutions. For a detailed analysis of the solutions of Eq. (18.33) and Eq. (18.34) see Kent and
Sedaghat (2004) and Sedaghat (2004b).

18.4.5 Notes
Theorem 6 and related results were established in Sedaghat (1998a) (see also Sedaghat [2003a]). For some
results concerning the rates of convergence of solutions in Theorem 6, see Stevic (2003). Theorem 6 has
also been shown to hold in any complete metric space not just R (Xiao and Yang, 2003). For a proof of
Theorem 7 and related results, see Berezansky et al. (2005).

Theorem 8 appeared without a proof in Grove and Ladas (2005); it is based on similar results for second-
order equations that are proved in Kulenovic and Ladas (2001). This theorem in particular generalizes
the main result in Hautus and Bolis (1979) where f is assumed to be nondecreasing in every coordinate.
The requirement that the invariant interval [a, b] be bounded is essential for the validity of Theorem 8,
though it may be restrictive in some applications. Theorem 9 was motivated by the study of Eq. (18.21) in
Example 7 and was established in different cases in Sedaghat et al. (2005) and Sedaghat (2005). The more
complete version on which Theorem 9 is based is proved in Chan et al. (2006). Example 6 is based on
results from Dehghan et al. (2005). Theorem 10 is proved in Sedaghat (2005) and Example 7 is based on
results from Sedaghat (1998b). For additional background material behind the model in Example 7 also
see Courtemanche and Vinet (2003), Ito and Glass (1992).

Theorem 11 is based on results in Sedaghat (1998b) where some classical economic models are also
studied. Theorem 12 was first proved in Marotto (1978) (see Sedaghat [2003a] for various applications of
this result to social science models).
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19.1 Introduction

19.1.1 Definition
Process algebra is the study of distributed or parallel systems by algebraic means. The word “process”
here refers to the behavior of a system. A system is anything showing behavior, such as the execution of
a software system, the actions of a machine, or even the actions of a human being. Behavior is the total
of events, actions, or evolutions that a system can perform, the order in which these can be executed and
maybe other aspects of this execution such as timing, probabilities, or continuous aspects. Always, the
focus is on certain aspects of behavior, disregarding other aspects, so an abstraction or idealization of the
“real” behavior is considered. Instead of considering behavior, we may consider an observation of behavior,
where an action is the chosen unit of observation. As the origin of process algebra is in computer science,
the actions are usually thought to be discrete: occurrence is at some moment in time, and different actions
are separated in time. This is why a process is sometimes also called a discrete-event system. Please note
that this is a less restrictive definition than, e.g., Cassandras and Lafortune (1999).

The word “algebra” denotes that the approach in dealing with behavior is algebraic and axiomatic.
That is, methods and techniques of universal algebra are used. A process algebra can be defined as any
mathematical structure satisfying the axioms given for the basic operators. A process is an element of a
process algebra. By using the axioms, we can perform calculations with processes. Often, though, process
algebra goes beyond the strict bounds of universal algebra: sometimes multiple sorts and/or binding of
variables are used.

19-1
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The simplest model of behavior is to see behavior as an input/output function. A value or input is given
at the beginning of the process, and at some moment there is a value as outcome or output. This model
was used to advantage as the simplest model of the behavior of a computer program in computer science,
from the start of the subject in the middle of the twentieth century. It was instrumental in the development
of (finite state) automata theory. In automata theory, a process is modeled as an automaton. An automaton
has a number of states and a number of transitions going from a state to a state. A transition denotes the
execution of an (elementary) action, the basic unit of behavior. Also, there is an initial state (sometimes,
more than one) and a number of final states. A behavior is a run, i.e., a path from initial state to final state.
An important aspect is when to consider two automata to be equal, expressed by a notion of equivalence.
On automata, the basic notion of equivalence is “language equivalence,” which considers equivalence in
terms of behavior, where a behavior is characterized by the set of executions from an initial state to a final
state. An algebra that allows equational reasoning about automata is the algebra of regular expressions
(see, e.g., Linz, 2001).

Later on, this model was found to be lacking in several situations. Basically, what is missing is the notion
of interaction: during the execution from initial state to final state, a system may interact with another
system. This is needed in order to describe parallel or distributed systems, or the so-called reactive systems.
When dealing with interacting systems, the phrase concurrency theory is used. Thus, concurrency theory
is the theory of interacting, parallel, or distributed systems. When referring to process algebra, we usually
consider it as an approach to concurrency theory, so that a process algebra usually (but not necessarily)
has an operator (function symbol) to put things in parallel called parallel composition.

Thus, a usable definition is that process algebra is the study of the behavior of parallel or distributed
systems by algebraic means. It offers means to describe or specify such systems, and thus it has means to
specify parallel composition. Besides this, it can usually also specify alternative composition (put things
in a choice) and sequential composition (sequencing, put things one after the other). Moreover, it is
possible to reason about such systems using algebra, i.e., equational reasoning. By means of this equational
reasoning, verification becomes possible, i.e., it can be established that a system satisfies a certain property.

What are these basic laws of process algebra? In this chapter, we do not present collections of such laws
explicitly. Rather, it is shown how calculations can proceed. To repeat, it can be said that any mathematical
structure with operators of the right number of arguments satisfying the given basic laws is a process
algebra. Often, these structures are formulated in terms of transition systems, where a transition system has
a number of states (including an initial state and a number of final states) and transitions between them.
The notion of equivalence studied is usually not language equivalence. Prominent among the equivalences
studied is the notion of bisimulation. Often, the study of transition systems, ways to define them, and
equivalences on them are also considered as a part of process algebra, even in the case no equational theory
is present.

19.1.2 Calculation
One form of calculation is verification by means of automated methods (called model checking, see e.g.,
Clarke et al., 2000) that traverse all states of a transition system and check that a certain property is true in
each state. The drawback is that transition systems grow at a rate exponential in the number of components
(in fact, due to the presence of parameters, often they become infinite). For instance, a system having 10
interacting components, each of which has 10 states, has a total number of 10,000,000,000 states. It is said
that model checking techniques suffer from the state explosion problem.

In contrast, reasoning can take place in logic using a form of deduction. Also here, progress is made,
and many theorem proving tools exist (Bundy, 1999). The drawback here is that finding a proof needs user
assistance (as the general problem is undecidable), which requires a lot of knowledge about the system.

On the basis of an algebraic theory equational reasoning takes the middle ground. On the one hand, the
next step in the procedure is usually clear, since it is more rewriting than equational reasoning. Therefore,
automation can be done in a straightforward way. On the other, representations are compact and allow
the presence of parameters, so that an infinite set of instances can be verified at the same time.
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19.1.3 History
Process algebra started in the late seventies of the twentieth century. At that point, the only part of
concurrency theory that existed was the theory of Petri nets, as discussed in Chapter 24.

The question was raised how to give semantics to programs containing a parallel composition operator.
It was found that this was difficult using the semantic methods used at that time. The idea of a behavior as
an input/output function needed to be abandoned. A program could still be modeled as an automaton, but
the notion of language equivalence was no longer appropriate. This is because the interaction a process has
between input and output influences the outcome, disrupting functional behavior. Secondly, the notion
of global variables needed to be overcome. Using global variables, a state of an automaton used as a model
was given as a valuation of the program variables, that is, a state was determined by the values of the
variables. The independent execution of parallel processes makes it difficult or impossible to determine
the values of global variables at a given moment. It turned out to be simpler to let each process have its
own local variables and to denote exchange of information explicitly.

After some preliminary work by others, three main process algebra theories were developed. These
are Calculus of Communicating Systems) (CCS) by Robin Milner (Milner, 1980, 1989), Communicating
Sequential Processes (CSP) by Tony Hoare (Hoare, 1985), and Algebra of Communicating Processes (ACP)
by Jan Bergstra and Jan Willem Klop (see Bergstra and Klop, 1984; Baeten and Weijland, 1990).

Comparing these best-known process algebras CCS, CSP, and ACP, we can say that there is a consid-
erable amount of work and applications realized in all three of them. In that sense, there seem to be
no fundamental differences between the theories with respect to the range of applications. Historically,
CCS was the first with a complete theory. Different from the other two, CSP makes fewer distinctions
between processes. More than the other two, ACP emphasizes the algebraic aspect: there is an equa-
tional theory with a range of semantic models. Also, ACP has a more general communication scheme;
in CCS, communication is combined with abstraction, in CSP, there is also a restricted communication
scheme.

Over the years, other process algebras were developed, and many extensions were realized. Most inter-
esting for this book is the extension to hybrid systems. The language we consider in this chapter is most
closely related to the ACP approach, as in this approach, there is most work and experience on hybrid
extensions. For a taste of another approach, see He (1994).

19.1.4 Hybrid Process Algebra
Process algebra started out in computer science, and is especially geared to describing discrete-event
systems such as computer programs and software systems. With the growing importance of embedded
systems, which are software systems that are integrated in the machine or device that they control, it was
considered to use process algebra also to model and reason about the controlled physical environment
of the software. However, specifications of physical systems not only require discrete-event models (such
as timed or untimed transition systems), but also continuous-time models (such as differential algebraic
equations (Kunkel and Mehrmann, 2006)), leading to hybrid models.

In recent years, several attempts were made to incorporate such aspects into process algebra. In this
chapter, we report on one of these based on the χ language. Other hybrid process algebras are HyPA
(Cuijpers and Reniers, 2005), process algebra for hybrid systems ACPsrt

hs (Bergstra and Middelburg, 2005),
and the φ-calculus (Rounds and Song, 2003). The history of the χ formalism dates back to quite some
time. It was originally mainly used as a modeling and simulation language for discrete-event systems.
The first simulator (Naumoski and Alberts, 1998) was successfully applied to a large number of industrial
cases, such as integrated circuit manufacturing plants, breweries, and process industry plants (Beek et al.,
2002). Later, the hybrid language and simulator were developed (Fábián, 1999; Beek and Rooda, 2000).
Recently, the χ language has been completely redesigned. The result is a hybrid process algebra with a
formal semantics as defined in Beek et al. (2006). This chapter informally defines the most important
elements of the syntax and semantics of the χ process algebra. It also extends the formal definitions of
Beek (2006) with a more user-friendly syntax including the specification of data types.
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19.2 Syntax and Informal Semantics of the χ Process Algebra

In this section, the syntax and informal semantics of the χ process algebra is first illustrated by means of
two examples: a controlled tank and an assembly line example. After this intuitive explanation, the syntax
and semantics are more precisely defined.

19.2.1 Controlled Tank
Figure 19.1 shows a liquid storage tank with a volume controller VC. The incoming flow Qi is controlled
by the means of a valve n. The outgoing flow is given by the equation Qo = √

V . The volume controller
maintains the volume V of the liquid in the tank between 2 and 10. The χ model of the controlled tank is
as follows:

model Tank() =
|[ var n : nat = 0, cont V : real = 10, alg Q i, Qo : real
:: V̇ = Q i − Qo

‖ Q i = n · 5
‖ Qo = √

V
‖ *(V ≤ 2 → n := 1; V ≥ 10 → n := 0)
]|
Figure 19.2 shows the result of a simulation of the model for 7 time units. Initially, the volume in

the tank equals 10, and the valve is closed (n = 0). The derivative of the volume equals the difference
between the incoming and outgoing flows (V̇ = Qi − Qo). The specification of the controller is given

V

n Q i

Qo

VC

FIGURE 19.1 Controlled tank.
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FIGURE 19.2 Simulation of the controlled tank.
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by ∗(V ≤ 2 → n := 1; V ≥ 10 → n := 0), where the loop statement ∗(p) denotes the infinite repetition of
statement p. The guard operator “→” is used to specify conditional execution of a statement, by prefixing a
condition (referred to as a guard) b to a statement p, which is written as b → p. The sequential composition
operator “;” is used to specify sequential execution of components, and the parallel composition operator
“‖” is used to specify the parallel execution of components. In the example, the equations and the controller
are all executed in parallel.

Initially, the three equations are enabled and the guard V ≤ 2 is also enabled. Since the value of the
guard is false initially (V = 10), the assignment n := 1 is disabled. The model executes by doing a sequence
of delays, which involve passing of time, and actions, which are executed instantaneously, without passing
of time. The model can do a delay of t time units when all enabled statements can simultaneously do a
delay of t . A guard that is false, allows arbitrary delays until it becomes true (see Section 19.2.6.2), and
equations allow a delay of t , when a solution of the equations exists that defines the values of the variables
as a function of time (on domain [0, t]). At the end point of the delay(s), V = 2, and the guard becomes
true. The assignment n := 1 is now enabled. The model can now no longer delay, since assignments cannot
delay; an assignment is a so-called nondelayable statement (see Section 19.2.3). The model can do an
action when any of the enabled statements can do an action. Assignments can do an action by executing
the assignment. Therefore, the model executes the assignment n := 1, which models opening of the valve.
The assignment causes the value of variable Qi to immediately become 5, to satisfy the equation Qi = n · 5.
This is referred to as the “consistent equation semantics”: equations must be satisfied at all times. The
value of the continuous variable V , however, is unchanged; only algebraic variables are allowed to change,
to satisfy equations, when other variables are assigned. Execution of the assignment n := 1 causes the
assignment to be disabled and the next statement (V ≥ 10 → n := 0) to be enabled. The guard V ≥ 10 is
false. Therefore, the model delays, while solving the equations, until the guard becomes true (volume in
the tank equals 10). Now the assignment n := 0 is executed, modeling closing of the valve. As a result, the
assignment is disabled and the first statement (V ≤ 2 → n := 1) of the repetition is reenabled.

The general form of a χ model is

model id(Dm) = |[D :: p]|
where id is an identifier that represents the name of the model, Dm denotes the model parameters that are
not present in the example, and D denotes the declaration of variables or channels of the model. Channels
are introduced in the assembly line example of Section 19.2.2. Finally, p denotes a statement also known
as a process term. Notation |[D :: p]| is in fact a scope operator, which is defined in Section 19.2.3, together
with statement p. The following kinds of variable can be declared in D:

• “Discrete” variables, such as in var n :nat= 0. This declares a variable n with initial value 0. The
name “discrete” is common in hybrid systems terminology, and refers to the fact that the variable
takes only a limited number of values when the model is executed (in this case only 0 and 1). The
value of a discrete variable remains constant when model time progresses. The value, in principle,
changes only by means of assignments (e.g., n := 1). Discrete variables can be of type real, however.

• “Continuous” variables, such as in contV :real= 10. Continuous variables are the only vari-
ables for which dotted variables (derivatives) can be used in models. Therefore, the declaration
contV :real implies that V and its dotted version V̇ can both be used in the model. The val-
ues of continuous variables may change according to a continuous function of time when model
time progresses. The values of continuous variables are further restricted by equations (or in more
general terms: delay predicates, defined in Section 19.2.5.2). The value of a continuous variable can
also be changed by means of an assignment.

• “Algebraic” variables, such as in algQi, Qo :real. These variables behave in a similar way as
continuous variables. The differences are that algebraic variables may change according to a dis-
continuous function of time, algebraic variables are not allowed to occur as dotted variables,
and algebraic variables do not have a memory: the value of an algebraic variable is in principle
determined by the enabled equations and not by assignments (e.g., Qo = √

V ).
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Finally, a predefined reserved global variable time, which denotes the model time, exists. Initially, the value
of this variable is zero and it is incremented by t whenever the model does a delay of t .

19.2.2 Assembly Line Example
An assembly process A assembles three different parts that are supplied by three suppliers G. The order
in which the parts are supplied is unknown, but each part should be received by the assembly process as
soon as possible. When all the three parts have been received, assembly may start. Assembly takes tA units
of time. When the products have been assembled, they are sent to an exit process E. Figure 19.3 shows the
iconic model of the assembly line, which is modeled as a discrete-event system. For the χ model of the
assembly line, the first two types are declared. The type “part,” representing a part as a natural number,
and the type “assy,” representing an assembled unit as a 3-tuple of parts:

type part = nat
, assy = (part, part, part)

The χ model consists of parallel instantiations of the three generator processes G, the assembly process A,
and the exit process E:

model AssemblyLine ( val t0, t1, t2, tA : real) =
|[ chan a, b, c : part, d: assy
:: G(a, 0, t0) ‖ G(b, 1, t1) ‖ G(c, 2, t2) ‖ A(a, b, c, d, tA) ‖ E(d)
]|

The channels a, b, c, and d are used for communication and synchronization between the parallel processes.
Each generator G sends a part n in every t time units:

proc G (chan a! : partval n: nat t : real) = |[ ∗ (�t ; a!n)]|
The assembly process receives the parts by means of the parallel composition (a ? x ‖ b ? y ‖ c ? z). This
ensures that each part is received as soon as possible. The parallel composition terminates when all parts
have been received.

proc A (chan a? , b? , c? : part, d!: assy, val t : real) =
|[ var x, y, z : part
: : ∗( ( a ? x ‖ b ? y | c ? z) ; �t ; d!(x, y, z) )
]|

The exit process is simply

proc E (chan a? : assy) = |[var x : assy :: ∗(a? x)]|

G

G A E

G

a

b

c

d

FIGURE 19.3 Iconic model of an assembly line.
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To understand the meaning of the model, the process instantiations can be replaced by their definitions, as
defined in (Beek et al. (2006), and the model parameters can be replaced by their values. Thus, the model
instantiation AssemblyLine(5, 6, 7, 2) can be rewritten into the following equivalent form:

model AssemblyLine() =
|[chan a, b, c : part d : assy
:: |[var n : nat= 0, t : real= 5 :: ∗(�t ; a!n)]|
‖ |[var n : nat= 1, t : real= 6 :: ∗(�t ; b!n)]|
‖ |[var n : nat= 2, t : real= 7 :: ∗(�t ; c!n)]|
‖ |[var x, y, z : part, t : real= 2 :: ∗((a ? x ‖| b ? y ‖| c ? z); �t ; d!(x, y, z))]|
‖ |[var x : assy :: ∗(d ? x)]|
]|

Initially, the first statements of the repetitions are enabled. The first statement of the repetition of the
assembly process is a parallel composition of three receive statements (a ? x ‖ b ? y ‖ c ? z). Enabling a paral-
lel composition enables its components. Therefore, initially, the statements �t , �t , �t , a ? x, b ? y, c ? z, and
d ? x are enabled. Each of these statements can delay. A delay statement �t behaves as a timer that can delay
for at most t time units. After this, the timer is expired and can terminate by means of an action. The values
of the three local variables of t are 5, 6, and 7, respectively. Therefore, initially, a (maximum) delay of 5 time
units is possible. After this, the first timer terminates by means of an action, and the send statement a!n is
enabled. The enabled statements are now a!n, �t , �t , a ? x, b ? y, c ? z, d ? x, where the two timers modeled by
�t and �t can delay for 1 and 2 remaining time units, respectively, before expiring. We now have an enabled
pair of a send and a receive statement on the same channel that are placed in parallel: a ! n and a ? x. This
pair can simultaneously do a send and a receive action followed by joint termination. The result is compa-
rable to the (distributed) execution of the assignment x := n, or x := 0, since the value of the first variable n
is 0. After this, the send and receive statements are disabled. Disabling of a!n enables the delay statement �t
again. The enabled statements are now: �t , �t , �t , b ? y, c ? z, d ? x, where the three timers need to delay for
another 5, 1, and 2 time units, respectively, before expiring. After expiration of the second and third timer,
communication of 1 via channel b and 2 via channel c takes place, respectively. Then, the parallel compo-
sition terminates, enabling the delay statement �t of the assembly process. After this intuitive explanation
of the χ language by means of examples, the next sections more precisely define the syntax and semantics.

19.2.3 Statement Syntax
This section defines the syntax of a considerable and representative subset of χ models using a Backus-Naur
(BNF) like notation. The symbol | defines choice, and notation {Z}∗ denotes a sequence of zero or more
Zs. Statements can be divided in two classes: the atomic statements that represent the smallest statement
units and the compound statements that are constructed from one or more (atomic) statements by means
of operators. The syntax of the atomic χ statements is as follows:

patom::= skip nondelayable action
| x := e nondelayable (multi)assignment
| [skip] delayable action
| [x := e] delayable (multi)assignment
| h ! e | h! delayable send
| h ? x | h? delayable receive
| �d delay
| u delay predicate

where x and e denote comma separated variables x1, . . . , xn and expressions e1, . . . , en, respectively, for
n ≥ 1, h denotes a channel, and d denotes an expression of type real. Delay predicate u denotes a predicate
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over variables (including the variable time) and dotted continuous variables (derivatives). Delay pred-
icates may occur in the form of differential algebraic equations, such as ẋ = y, y = n, or in the form of a
constraint or invariant, such as x ≥ 1.

The syntax of the compound χ statements is as follows:

p ::= patom atomic
| p; p sequential composition
| b → p guard operator
| p [] p alternative composition
| p ‖ p parallel composition
| ∗p loop statement

| b
∗→ p while statement

| |[D :: p]| variable and channel scope operator
| id(e) process instantiation
| pR recursion scope operator (see Sections 19.3.2 and 19.3.3),

where guard b denotes a predicate over variables. The operators are listed in descending order of their

binding strength as follows: {∗,
∗→, →}, ; , {‖, []}. The operators inside the braces have equal binding

strength. Parentheses may be used to group statements. For example, x := 1; y := x [] x := 2; y := 2x means
(x := 1; y := x)[](x := 2; y := 2x). To avoid confusion, parentheses are obligatory when alternative compo-
sition and parallel composition are used together. For example, p [] q ‖ r is not allowed and should either
be written as (p [] q) ‖ r or as p [] (q ‖ r).

19.2.4 Semantic Framework
In this chapter, the meaning (semantics) of a χ model is informally defined in terms of delay behavior and
action behavior, based on the formal semantics as presented in Beek et al.(2006). Delay behavior involves
passing of time, where the semantics defines for each variable how its value changes as a function of time.
Action behavior is instantaneous: time does not progress, and the semantics defines for each variable the
relation between its value before and after the action.

Atomic statements can be disabled or enabled. Actions and delays are done by enabled atomic statements,
with one exception only: an enabled guarded statement b → p, with a guard that is false can do any delay.
Atomic statements terminate by doing an action. They never terminate by doing a delay. A statement that
terminates becomes disabled by doing so.

Compound statements combine (sub)statements by means of operators. The operator defines the
relation between enabling, disabling, and termination of the compound statement and its substatements.
Enabling or disabling a compound statement is defined in terms of enabling or disabling its substatements.
Enabling a compound statement implies enabling one or more of its substatements. For example, enabling
a sequential composition p1; . . . ; pn implies enabling the first statement p1, whereas enabling a parallel
composition p1 ‖ . . . ‖ pn implies enabling all statements p1 . . . pn.

Execution of a χ model M , defined as model M(D0) = |[D1 :: p0]|, takes place by executing a sequence
of delays and actions in the following way:

• At the start, statement p0 is enabled.
• Any enabled skip statement or assignment statement (delayable or nondelayable) can do an action.
• An enabled pair of a send and a receive statement on the same channel that are placed in parallel

can simultaneously do a send and a receive action followed by joint termination. The result, in
terms of values of variables, is comparable to the (distributed) execution of a (multi)assignment.
For example, execution of the communication action in h ! 1 ‖ h ? x is comparable to execution of
the assignment x := 1.

• The model can do delays only when and for as long as:
— All enabled statements can delay. The delayable versions of the skip statement, assignment,

and send and receive statements can always delay (the nondelayable versions can never delay).
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A delay statement �d can delay for as long as its internal timer is not expired (see Section
19.2.5.3), and the set of all enabled delay predicates can delay for as long as they have a solution.
Such a solution defines the values of the variables as a function of time for the period of the delay.

Note that the set of enabled statements may change while delaying. The reason for this is the
guarded statement b → p, because the value of the guard can change while delaying, owing to
changes in the values of continuous or algebraic variables used in b.

— No parallel pair of a send and a receive statement on the same channel is enabled or
becomes enabled. This is because, by default, channels in χ are urgent: communication or
synchronization cannot be postponed by delaying.

• When different actions and/or delays are possible, any of these can be chosen. This is referred to
as nondeterministic choice. Note that delays may always be shorter than the maximum possible
length.

The values of the discrete and continuous variables are stored in memory. The values of the algebraic
variables are not stored. This means that the starting point of the trajectory of a discrete or continuous
variable equals its last value stored in memory. The starting point of the trajectory of an algebraic variables
can be any value that is allowed by the enabled equations.

In models of physical systems, the delay behavior of the continuous and algebraic variables is usually
uniquely determined: there is usually only one solution of the set of enabled differential algebraic equations.
Multiple delays/solutions can be caused by underspecified systems of equations, where there are less
equations than variables, or by delay predicates that allow multiple solution such as “true” or ẋ ∈ [0, 1].

The action behavior of the discrete, continuous, and algebraic variables is as follows:

• The discrete and continuous variables do not change as a result of actions unless the change is
explicitly specified, for example, by means of an assignment, or by receiving a value via a channel.

• The algebraic variables can, in principle, change arbitrarily in actions. In most models, their values
are defined by equations.

19.2.5 Semantics of Atomic Statements
19.2.5.1 Skip and Multiassignment

An enabled skip statement can do an action, and then terminates. It corresponds to an assignment x := x,
because the values of continuous and discrete variables are left unchanged. The skip statement can be used
to make a choice in an alternative composition statement, because it executes an action (see process Tank
in Section 19.3.2).

An enabled multiassignment statement xn := en for n ≥ 1 can do an action that changes the values of the
variables x1, . . . , xn in one step to the values of expressions e1, . . . , en, respectively, and then terminates.
For n = 1, this gives a normal assignment x := e.

19.2.5.2 Delay Predicate

An enabled delay predicate u can perform delays but no actions. Delay predicates restrict the allowed
trajectories of the variables while delaying in such a way that at each time point during the delay the
delay predicate holds (its value must be true), when all variables and dotted variables in the predicate are
replaced by their current value.

Delay predicates also restrict the action behavior of χ models, because the enabled delay predicates must
also hold before and after each action. In fact, the enabled delay predicates of a χ model must hold at all
times. This is referred to as the “consistent equation semantics.”

The relation between the trajectory of a continuous variable x and the trajectory of its “derivative” ẋ
is given by the Caratheodory solution concept: x(t) = x(0) + ∫ t

0 ẋ(s)ds. This allows a nonsmooth (but
continuous) trajectory for a differential variable x in the case that the trajectory of its “derivative” ẋ is
nonsmooth or even discontinuous, as in, for example, model M() = |[cont x : real= 0 :: ẋ = step
(time− 1)]|, where step(y) equals 0 for y ≤ 0 and 1 for y > 0.
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19.2.5.3 Delay Statement

A delay statement �d behaves as a timer that can be in three modes: reset, running, or expired. A timer
that is in mode running keeps track of the remaining time texp before expiring. Initially, timers are in mode
reset. In modes reset and running, a timer can delay; in mode expired, it can terminate by means of an
action. If the timer is enabled, its behavior is as follows:

• In mode reset, when the value c of expression d is bigger than zero, the timer can do a delay t for
t ≤ c. If t < c, the new mode after the delay is running with texp = c − t . If t = c, the new mode is
expired.

• In mode running, the timer can do a delay t ≤ texp to mode running (t < texp) or expired (t = texp).
It switches to mode reset when it is disabled as a result of a choice being made in an alternative
composition (see Section 19.2.6.3).

For example, in x := 0; ∗(�3 [] ẋ = 1 [] x ≥ 1 → x := 0), when the delay statement/timer �3
becomes running, it switches to mode reset after 1 time unit, because of the execution of the
(second, guarded) assignment x := 0, which enforces a choice in the alternative composition and
disables the timer.

• In mode expired, or in mode reset when the value c of expression d equals zero, the timer can do an
action, accompanied by termination to mode reset. It also switches to mode reset when it is disabled
as a result of a choice being made in an alternative composition.

The mode of a timer remains unchanged when it is disabled as a result of the value of a guard becoming
false. For example, in sin(2πtime) ≥ 0 → �1, the timer expires after two time units, that is after two
periods of the sine function, because the timer only delays when the sine function is positive. As a final
example, consider ∗(h ? d; �d) ‖ ∗ (h ! 1; h! 2). The first delay of the timer is 1, the second delay is 2, and
then the cycle is repeated.

19.2.6 Semantics of Compound Statements
19.2.6.1 Sequential Composition

In a sequential composition p1; . . . ; pn (n ≥ 1), only one statement pi, 1 ≤ i ≤ n, can be enabled at the same
time. Enabling a sequential composition p1; . . . ; pn implies enabling its first statement p1. When statement
pi (1 ≤ i ≤ n − 1) terminates (and is therefore also disabled), the next statement pi+1 becomes enabled.
The sequential composition terminates upon termination of its last statement pn.

19.2.6.2 Guard Operator

Enabling of a guarded statement enables its guard b. Behavior of a guarded statement b → p depends on
the value of the guard b:

• Statement p is enabled while the guard is enabled and the value of the guard is true. Execution of
the first action by p disables the guard. Thus, after this first action, the value of the guard becomes
irrelevant.

• Statement p is disabled while the value of the guard is false. The guarded statement b → p can, in
principle, do any delay while the guard is enabled and its value is false; only at the start point and
end point of such a delay, the value of the guard may be true.

When a guarded statement occurs in parallel with another statement, as in q ‖ b → p, the value of the
guard can change owing to the actions of statement q, which may cause statement p to change from being
disabled to enabled or vice versa. For example, b := false; (�1; b := true ‖ b → skip).

When in q ‖ b → p, the guard b contains continuous or algebraic variables, and q contains one or more
enabled delay predicates, the value of the guard may change during a delay, causing statement p to change
from being disabled to enabled or vice versa. For example, ẋ = 1 ‖ x ≥ 1 → x := 0.



Process Algebra 19-11

19.2.6.3 Alternative Composition

Enabling p1[] . . . []pn enables the statements p1, . . . , pn. Execution of an action by any one of the statements
p1 . . . pn disables the other statements. In this way, execution of the first action makes a choice. When one
of the statements p1, . . . , pn terminates, the alternative composition p1[] . . . []pn also terminates.

19.2.6.4 Parallelism

Enabling p1 ‖ . . . ‖ pn enables the statements p1, . . . , pn. When a statement pi, 1 ≤ i ≤ n, executes an action,
the other statements remain enabled. The parallel composition p1 ‖ . . . ‖ pn terminates when the statements
p1, . . . , pn have all terminated.

Informally, we often refer to the statements p1, . . . , pn occurring in p1 ‖ . . . ‖ pn as parallel processes.
Parallel processes interact by means of shared variables or by means of synchronous point-to-point com-
munication or synchronization via a channel. Communication in χ is the sending of values of one or
more expressions by one parallel process via a channel to another parallel process, where the received
values are stored in variables. In case no values are sent and received, we refer to synchronization instead
of communication.

19.2.6.5 Loop and While Statement

Loop statement ∗p represents the infinite repetition of statement p. When ∗p is enabled, p is enabled.
Termination of p results in reenabling of p.

The while statement b
∗→ p can be interpreted as “while b do p.” Enabling of b

∗→ p when b is true

enables p (by means of an action), and enabling of b
∗→ p when b is false, leads to termination of the while

statement (by means of an action).

19.2.6.6 Variable and Channel Scope Operator

A variable and channel scope operator may introduce new variables and new channels. Enabling of a
variable and channel scope statement |[D :: p]|, where the local declaration part D introduces new variables
and/or channels (see Sections 19.2.1 and 19.2.2), performs the variable initializations specified in D and
enables statement p. Termination of p terminates the scope statement |[D :: p]|. Any occurrence of a variable
or channel in p that is declared in D refers to that local variable or channel and not to any more global
declaration of the variable or channel with the same name, if such a more global declaration should exist.

19.3 Algebraic Reasoning and Verification

19.3.1 Introduction
The χ process algebra has strong support for modular composition by allowing unrestricted combination
of operators such as sequential and parallel composition, by providing statements for scoping, by pro-
viding process definition and instantiation, and by providing different interaction mechanisms, namely
synchronous communication and shared variables.

The fact that the χ language is a process algebra with a wide range of statements potentially complicates
the development of tools for χ, since the implementations have to deal with all possible combinations of
the χ atomic statements and the operators that are defined on them. This is where the process algebraic
approach of equational reasoning, that allows rewriting models to a simpler form, is essential.

To illustrate the required implementation efforts, consider the following implementations that are
developed: a Python implementation for rapid prototyping; a C implementation for the fast model
execution; and an implementation based on the MATLAB Simulink S-functions (The MathWorks, 2005),
where a χ model is translated to an S-function block. Furthermore, there is an implementation for real-
time control (Hofkamp, 2001). In Bortnik, et al. (2005) it has been shown that different model checkers
each have their own strengths and weaknesses. Therefore, for verification, translations to several tools are
defined. In particular, for hybrid models a translation to the hybrid I/O automaton-based PHAver (Frehse,
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2005) model checker is defined. For timed models the following translations are defined: (1) a translation
to the action-based process algebra µCRL (Groote, 1997), used as input language for the verification tool
CADP (Fernandez et al., 1996); (2) a translation to PROMELA, a state-based, imperative language, used
as input language for the verification tool SPIN (Holzmann, 2003); and (3) a translation to the timed
automaton-based input language of the UPPAAL (Larsen et al., 1997) verification tool. In future, for
verification of hybrid models, additional translations may be considered to tools such as HYTECH (Alur
et al., 1996), or one of the many other hybrid model checkers.

Instead of defining the implementations mentioned above on the full χ language as defined in Section
19.2.3, the process algebraic approach of equational reasoning makes it possible to transform χ models in
a series of steps to a (much simpler) normal form, and to define the implementations on the normal form.
The original χ model and its normal form are bisimilar, which ensures that relevant model properties are
preserved. The normal form has strong syntactical restrictions, no parallel composition operator, and is
quite similar to a hybrid automaton. Currently, correctness proofs are developed, and in the near future,
implementations will be redesigned based on the normal form.

The steps to the normal form are as follows. First, the process instantiations are eliminated, by replacing
them by their defining bodies, and replacing the formal parameters by actual arguments. Second, parallel
composition is eliminated by using laws of process algebra, in particular a so-called expansion law (not
given here). An example of a process algebra law in χ specifying that the guard distributes over alternative
composition is b → (p [] q) = b →p [] b → q. Finally, the normal form may be simplified further, taking
advantage of the fact that it no longer contains parallel composition. Note that it is possible to construct
models for which the normal form cannot be (easily) generated. These exceptions are not discussed in this
chapter, since they do not restrict translation to the normal form for practical purposes. For a definition
of the normal form see Section 19.3.5.

19.3.2 Bottle Filling Line Example
Figure 19.4 shows a bottle filling line, based on Baeten and Middelburg (2002), consisting of a storage
tank that is continuously filled with a flow Qin, a conveyor belt that supplies empty bottles, and a valve
that is opened when an empty bottle is below the filling nozzle, and is closed when the bottle is full. When
a bottle has been filled, the conveyor starts moving to put the next bottle under the filling nozzle, which
takes one unit of time. When the storage tank is not empty, the bottle filling flow Q equals Qset. When the
storage tank is empty, the bottle filling flow equals the flow Qin. The system should operate in such a way
that overflow of the tank does not occur. We assume Qin < Qset.

Figure 19.5 shows an iconic representation of the model of the filling line. It consists of the processes
Tank and Conveyor that interact by means of the channels open and close, and shared variable Q. The

VT

Q

VB

Q in

FIGURE 19.4 Filling line.

Tank

Conveyor

open Q close

FIGURE 19.5 Iconicmodel of the filling line.
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model is defined below. It has two parameters: the initial volume VT0 of the storage tank, and the value Qin

of the flow that is used to fill the storage tank. The constants Qset, VTmax, and VBmax define the maximum
value of the bottle filling flow Q, the maximum volume of the storage tank, and the filling volume of the
bottles, respectively. The model FillingLine consists of the algebraic variable Q, the channels open and close,
and the parallel composition of the process instantiations for the tank and the conveyor.

const Qset : real= 3
, VTmax : real= 20
, VBmax : real= 10

model FillingLine(val VT0, Qin : real)=
|[ alg Q : real, chan open, close : void
:: Tank(Q, open, close, VT0, Qin) ‖ Conveyor(Q, open, close)
]|

The tank process has a local continuous variable VT that is initialized to VT0. Its process body is a recursion
scope consisting of three modes: closed, opened, and openedempty that correspond to the valve being
closed, the valve being open, and the valve being open while the storage tank is empty. The syntax and
semantics of recursion scopes is defined in Section 19.3.3. In the mode opened, the storage tank is usually
not empty. When the storage tank is empty in mode opened, the delayable skip statement [skip] may
be executed causing the next mode to be openedempty. Owing to the consistent equation semantics, the
skip statement can be executed only if the delay predicate in the next mode openedempty holds. This
means, among others, that VT = 0 must hold. Therefore, the transition to mode openedempty can be
taken only when the storage tank is empty. Note that the comma in delay predicates denotes conjunction.
For example, V̇T = Qin, Q = 0 means V̇T = Qin ∧ Q = 0.

proc Tank(alg Q : real, chan open?, close? : void, val VT0, Qin : real) =
|[ cont VT : real= VT0

:: |[ mode closed =
( V̇T = Qin, Q = 0, VT ≤ VTmax [] open?; opened )

, mode opened =
( V̇T = Qin − Q, Q = Qset, 0 ≤ VT ≤ VTmax

[] [skip]; openedempty
[] close?; closed
)

, mode openedempty =
( VT = 0, Q = Qin [] close?; closed )

:: closed
]|

]|
Process Conveyor supplies an empty bottle in 1 unit of time (VB := 0; �1). Then it synchronizes with the
storage tank process by means of the send statement open!, and it proceeds in mode filling. When the
bottle is filled in mode filling (VB ≥ VBmax), the process synchronizes with the storage tank to close the
valve and returns to mode moving. The initial mode is moving.

proc Conveyor(alg Q : real, chan open!, close! : void) =
|[ cont VB : real= 0
:: |[ mode moving = ( VB := 0; �1; open!; filling )

, mode filling = ( VB ≥ VBmax → close!; moving )
:: moving
]|

‖ V̇B = Q
]|
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FIGURE 19.6 Simulation results of model FillingLine.

Figure 19.6 shows the results of the first 12 time units of a simulation run of the model FillingLine(5, 1.5),
that is with model parameters VT0 = 5 and Qin = 1.5. The graph shows that the first bottle is filled from time
point 1 until time point 1 + 10/3 ≈ 4.33. Filling of the second bottle starts 1 time unit later, and somewhat
after 7 time units, the storage tank becomes empty, so that filling continues at the reduced flow rate.

19.3.3 Syntax and Semantics of the Recursion Scope Operator
The syntax of the recursion scope operator statement pR, that was introduced in Section 19.2.3, and first
used in Section 19.3.2 is defined as

pR ::= |[mode X = p+{,modeX = p+}∗ :: X]|

where X denotes a recursion variable, and statements p+ consist of statements p (see Section 19.2.3) to
which recursion variables X are added

p+ ::= p | p; X | p+ [] p+ | b → p+ | p; p+

The syntax enforces any recursion variable X to occur only at the end of a sequential composition. An
additional restriction is that each recursion scope operator must be “complete.” This means that in

|[modeX1 = p+
1 , . . . ,modeXn = p+

n :: Xk]|

all occurrences of free recursion variables in p+
i (1 ≤ i ≤ n) must be defined in the recursion scope operator

itself. These restrictions enforce structured use of recursion: only one recursion variable Xi with corre-
sponding statement p+

i can be executed at the same time, and termination of any of the statements pi

terminates the scope operator itself. This structured use of recursion simplifies analysis of χ models, it
simplifies the translation to the normal form as discussed in Section 19.3, and it simplifies tool support
for χ.

The meaning of recursion scope operators is as follows. Enabling the recursion scope opera-
tor |[X1 = p+

1 , . . . , Xn = p+
n :: Xi]|, enables the statement Xi (1 ≤ i ≤ n). When a recursion variable Xj

(1 ≤ j ≤ n) is enabled (or disabled), its defining statement pi is enabled (or disabled) instead. When a
defining statement pj terminates, the recursion scope operator terminates.
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19.3.4 Elimination of Process Instantiation
Elimination of the process instantiations for the Tank and Conveyor processes by replacing the process
instantiations by their definitions, as defined in Beek et al. (2006), leads to the following model:

model FillingLine(val VT0, Qin : real) =
|[ alg Q : real, chan open, close : void
:: |[ cont VT : real= V L

T0
, var V L

T0 : real= VT0, QL
in : real= Qin

:: |[ mode closed =
( V̇T = QL

in, Q = 0, VT ≤ VTmax [] open?; opened )
, mode opened =

( V̇T = QL
in − Q, Q = Qset, 0 ≤ VT ≤ VTmax

[] [skip]; openedempty
[] close?; closed
)

, mode openedempty =
( VT = 0, Q = QL

in [] close?; closed )
:: closed
]|

]|
‖ |[ cont VB : real= 0

:: |[ mode moving = ( VB : = 0; � 1; open!; filling )
, mode filling = ( VB ≥ VBmax → close!; moving )
:: moving
]|

‖ V̇B = Q
]|

]|
To avoid naming conflicts between the formal parameters VT0 and Qin declared in the process definition for
process Tank, and the actual arguments VT0 and Qin in the process instantiation Tank (Q, open, close, VT0,
Qin), the newly defined local discrete variables that are used to hold the values of the last two parameters
of the process instantiation, are renamed to V L

T0 and QL
in.

19.3.5 Syntax of the Normal Form
A slightly simplified syntax for the normal form in χ is given by a model with on the outer level a global
variable and channel declaration D (see Sections 19.2.1 and 19.2.2), on the inner level a local variable and
channel declaration D, and one recursion scope operator statement:

χnorm ::= model id(Dm) = |[ D :: |[ D :: |[ X = pnorm {, X = pnorm}∗ :: X ]| ]| ]|
The normalized statements pnorm, used to define the recursion variables X , may consist of undelayable
normalized atomic statements pna (defined below). Such a normalized atomic statement may be prefixed
by a guard b, and/or it may be made delayable (e.g., b → pna and [pna]). Sequential composition is allowed
only in the form of such (guarded or delayable) atomic statements followed by a recursion variable. Finally,
all of these statements may be part of alternative composition:

pnorm ::= pnga (guarded) atomic action
| u delay predicate
| pnga; X atomic action followed by recursion variable
| pnorm [] pnorm alternative composition
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where the normalized guarded atomic action statements pnga are defined by

pnga ::= pna nondelayable atomic action statement
| b → pna guarded nondelayable atomic action statement
| [pna] delayable atomic action statement
| b →[pna] guarded delayable atomic action statement

and the normalized atomic action statements pna, that are all nondelayable, are defined by

pna ::= skip skip statement
| x := e multiassignment
| h!? synchronization via channel h
| h!? x := e communication via channel h

The synchronization statement h!? and communication statement h!? x := e are required because of the
fact that there is no parallel composition in the normalized form. The parallel composition h! ‖ h? is
normalized to h!?, and h!e ‖ h?x is normalized to h!?x := e. The statement h!? is comparable to the skip
statement, and the statement h!?x := e is comparable to the multiassignment statement x := e. The effect
on the values of the variables is the same. There is only a small difference with respect to the occurrence
of channel h, possibly accompanied by the value of e, in the transition system.

As an example, that clarifies how the delay statement is eliminated in the translation to the normal form,
consider the statement x := 2; �1 is first rewritten as x := 2; |[cont t : real= 1 :: ṫ = −1 [] t ≤ 0 → skip ]|
and then normalized to

|[ cont t : real
:: |[ X0 = ( x, t := 2,1; X1 )

, X1 = ( ṫ = −1 [] t ≤ 0 → skip )
:: X0

]|
]|

The normal form makes it easy to analyze system behavior and it simplifies tool implementations in the
following way. When a model is defined as

model M(val x : t) =
|[ D0

:: |[ D1 :: |[ X1 = pnorm1 , . . . , Xn = pnormn :: Xi ]| ]|
]|

M(c) defines a particular model instantiation. At each point of execution of this model instantiation,
exactly one recursion variable Xi is enabled, so that the set of all possible next steps is determined by the
term pnormi only. In addition, the term pnormi defines for each action the recursion variable (if any) that is
enabled after execution of the action. Process definition, process instantiation, parallel composition, send
and receive statements, the loop statement, while do statement, and delay statement are no longer present.
Also scoping has been eliminated, apart from one top-level variable and channel scope operator, and one
top-level recursion scope operator.
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19.3.6 Elimination of Parallel Composition
Elimination of parallel composition and translation to the normal form, as discussed in Section 19.3.5,
leads to the model

model FillingLine (val VT0, Qin : real) =
|[ alg Q: real, chan open, close : void
:: |[ cont VT : real= V L

T0, VB : real= 0
, cont t : real, var V L

T0 : real= VT0, QL
in : real= Qin

:: |[ moving_closed =
( V̇T = QL

in, Q = 0, VT ≤ VTmax, V̇B = Q
[] VB, t := 0,1; moving0_closed
)

, moving0_closed =
( V̇T = QL

in, Q = 0, VT ≤ VTmax, V̇B = Q, ṫ = −1
[] t ≤ 0 → skip; moving1_closed
)

, moving1_closed =
( V̇T = QL

in, Q = 0, VT ≤ VTmax, V̇B = Q
[] open!?; filling_opened
)

, filling_opened =
( V̇T = QL

in − Q, Q = Qset, 0 ≤ VT ≤ VTmax, V̇B = Q
[] [skip]; filling_openedempty
[] VB ≥ VBmax →close!?; moving_closed
)

, filling_openedempty =
( VT = 0, Q = QL

in, V̇B = Q
[] VB ≥ VBmax → close!?; moving_closed
)

:: moving_closed
]|

]|
]|

19.3.7 Substitution of Constants and Additional Elimination
The model below is the result of substitution of the globally defined constants by their values. Further-
more, the discrete variables QL

in and V L
T0, that were introduced by elimination of the process instantiations,

are eliminated. Also, the presence of the undelayable statements VB, t := 0, 1 and open!? in modes mov-
ing_closed and moving1_closed, respectively, allows elimination of the differential equations in these
modes.

Most hybrid automaton-based model checkers, such as PHAver (Frehse, 2005) and HYTECH (Henzinger
et al., 1995), do not (yet) have urgent transitions that can be combined with guards. Therefore, the urgency
in the guarded statements is removed by making the statements that are guarded delayable, and adding
the closed negation of the guard as an additional delay predicate (invariant). For example, t ≤ 0 → skip is
rewritten as t ≥ 0 [] t ≤ 0 → [skip].

model FillingLine (val VT0, Qin : real) =
|[ alg Q: real, chan open, close : void
:: |[ cont VT : real= VT0, VB : real= 0, t : real
:: |[ moving_closed =
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( VT ≤ 20, Q = 0
[] VB, t := 0,1; moving0_closed
)

, moving0_closed =
( V̇T = Qin, Q = 0, VT ≤ 20, V̇B = 0, ṫ = −1, t ≥ 0
[] t ≤ 0 → [skip]; moving1_closed
)

, moving1_closed =
( VT ≤ 20, Q = 0
[] open!?; filling_opened
)

, filling_opened =
( V̇T = Qin − 3, Q = 3, 0 ≤ VT ≤ 20, V̇B = 3, VB ≤ 10
[] [skip]; filling_openedempty
[] VB ≥ 10 → [close!?]; moving_closed
)

, filling_openedempty =
( VT = 0, Q = Qin, V̇B = Q, VB ≤ 10
[] VB ≥ 10 → [close!?]; moving_closed
)

:: moving_closed
]|

]|
]|

Figure 19.7 shows a graphical representation of the model. By means of straightforward mathematical
analysis of the model, it can be shown that overflow never occurs if Qin ≤ 30/13.
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FIGURE 19.7 Graphical representation of the normalized χ model.
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19.3.8 Tool-Based Verification
As a final step, for the purpose of tool-based verification, the model is translated to the input language
of the hybrid IO automaton-based tool PHAVer (Frehse, 2005). Since most hybrid automata, including
PHAVer, do not know the concept of an algebraic variable, first the algebraic variables are eliminated from
the χ model. Because of the consistent equation semantics of χ, each occurrence of an algebraic variable
in the model can simply be replaced by the right-hand side of its defining equation. The urgency owing to
unguarded undelayable statements is in principle translated by defining the corresponding flow clause as
false. The resulting PHAVer model follows below. Note that an additional variable x is introduced and the
derivatives of Vb and Vt need to be defined in all locations, because of the current inability of PHAVer to
define false as flow clause.

automaton filling_line
state_var: Vt,Vb,t,x;
parameter: Vt0,Qin;
synclabs : open,close,tau;
loc moving_closed:

while Vt <= 20 & x==0 wait {x’==1 & Vb’==0 & Vt’==0};
when true sync tau do {Vt’==Vt & Vb’==0 & t’==1 & x’==0}

goto moving0_closed;
loc moving0_closed:

while Vt <= 20 & t >= 0 wait {Vb’==0 & t’==-1 & Vt==30/13};
when t <= 0 sync tau do {Vt’==Vt & Vb’==Vb & t’==t & x’==0}

goto moving1_closed;
loc moving1_closed:

while Vt <= 20 & x==0 wait {x’==1 & Vb’==0 & Vt’==0};
when true sync open do {Vt’==Vt & Vb’==Vb & t’==t}

goto filling_opened;
loc filling_opened:

while Vt >= 0 & Vt <= 20 & Vb <= 10 wait {Vb’==3 & Vt’==30/13-3};
when Vt==0 sync tau do {Vt’==Vt & Vb’==Vb & t’==t}

goto filling_openedempty;
when Vb >= 10 sync close do {Vt’==Vt & Vb’==Vb & t’==t & x’==0}

goto moving_closed;
loc filling_openedempty:

while Vt == 0 & Vb <= 10 wait {Vb’==30/13};
when Vb >= 10 sync close do {Vt’==Vt & Vb’==Vb & t’==t & x’==0}

goto moving_closed;
initially moving_closed & Vt == Vt0 & Vb==0 & x==0;

end

The following properties were derived: if Qin = 30/13 and 0 ≤ VT0 ≤ VTmax − 30/13, overflow does not
occur, and the storage tank does not become empty when filling a bottle. The volume of the storage
tank then remains in the region VT0 ≤ VT ≤ VT0 + 30/13. If Qin > 30/13, eventually overflow occurs. If
Qin < 30/13, eventually the container becomes empty every time a bottle is filled. In this small example,
these properties can also be derived by means of straightforward mathematical analysis of the χ models
of Section 19.3.6 or 19.3.7.

19.4 Conclusions

Process algebra originated in the domain of theoretical computer science, where it was designed for
the purpose of reasoning about the behavior of concurrent discrete-event systems. Recently, process
algebra theory has been extended to also include continuous-time systems, and combined discrete-event/
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continuous-time, or hybrid systems. The χ process algebra, that has been used as an example in this
chapter, illustrates that process algebra is not only suited to verification, but also very well suited to high-
level modeling and simulation of complex dynamical systems. The compositional semantics of a process
algebra facilitates modular composition of processes and statements not only using parallel composition
but also sequential composition, and in fact any kind of combination of statements by means of the process
algebra operators. The equational reasoning, that is characteristic of process algebra, allows rewriting of
complex specifications to a straightforward normal form, where parallel composition and many other
operators and statements have been eliminated. For the χ process algebra, the normal form is very similar
to a hybrid automaton, and thus simplifies the use and development of tools for simulation and verification.
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In this chapter, we introduce temporal logic (TL), a logical formalism for reasoning about domains in
which the truth or falsity of statements can vary over time. These statements could include formulae
representing states of a dynamical system, which brings TL clearly within the scope of this handbook.
Since TL is an extension of propositional logic, we believe that the reader will best be in a position to
appreciate the former if we first provide a brief introduction to the latter; readers already familiar with
propositional logic can skip directly to Section 20.2.

20.1 Propositional Logic

Propositional logic is a basic system of formal logic that underlies most logical systems. Its purpose is to
enable the formalization of certain types of reasoning, such as

If the power supply is on, and the light-switch is down, and the bulb is not blown, then the light is on.
The light-switch is down and the light is not on.
Therefore, either the bulb is blown or the power supply is not on.

This piece of reasoning takes the form of an inference or argument; it consists of a set of premises (the
first two statements) followed by a conclusion (flagged by “therefore”), the idea being that the conclusion
is supposed to follow logically from the premises. An inference is said to be valid if the conclusion does
indeed logically follow from the premises; this means that the truth of the premises is sufficient to guarantee
the truth of the conclusion, i.e., in any situation in which the premises are all true, the conclusion must be
true as well. Propositional calculus (PC) is a formal system by which the process of determining whether
an inference is valid or not may be effectively mechanized.

20-1
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FIGURE 20.1 Truth table used for determining validity of an inference.

Writing PowerOn, SwitchDown, BulbBlown, and LightOn to stand for “The power supply is on,” “The
light-switch is down,” “The bulb is blown,” and “The light is on” respectively, the above inference can be
formalised as

PowerOn ∧ SwitchDown ∧ ¬BulbBlown → LightOn
SwitchDown ∧ ¬LightOn

BulbBlown ∨ ¬PowerOn

Here, the symbol “∧,” known as conjunction, is read “and”; “∨” (disjunction) as “or,” “→” (material
implication) as “if …, then …,” and “¬” (negation) as “not” (or “it is not the case that”). An additional
symbol commonly used is “↔” (material equivalence), read “if and only if.”1 The specific interpretations
of these symbols are provided by the following semantic rules, in which α and β stand for arbitrary
propositions:

• α ∧ β is true if and only if both α and β are true.
• α ∨ β is true if and only if at least one of α and β is true.
• α → β is true if and only if it is not the case that α is true and β is false.
• α ↔ β is true if and only if α and β are either both true or both false.
• ¬α is true if and only if α is false.

Because the meanings of these symbols are defined purely in terms of truth values, they are known as
truth-functional connectives; they are also known as Boolean connectives, in honor of George Boole who
first introduced a system recognizable as the PC in his Laws of Thought (1854).

Using these rules, we can show that the inference above is valid. A mechanical, if sometimes unnecessarily
complicated, way of doing this is through the construction of a truth table, as shown in Figure 20.1. Here,
every possible combination of truth values for the four atomic propositions occurring in the inference is
listed; for each combination, we use the semantic rules for the connectives to compute the truth values of

1Commonly used alternative versions of some of these symbols include ⊃ for material implication,≡ for material
equivalence, and ∼ for negation. In some contexts, these symbols are used in addition to the ones given in the main
text, with different meanings. Note also the bracket-dropping convention: α ∧ β → γ is understood to be implicitly
grouped as (α ∧ β) → γ , and in general both ∧ and ∨ are regarded as binding their arguments more closely than →
and ↔, unless this is explicitly overridden by brackets, as in α ∧ (β → γ).
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the premises and conclusion of the inference. That the inference is valid is shown by the fact that every
combination of truth values which makes both the premises true also makes the conclusion true (lines 2,
10, and 12 of the table).

Within PC it is possible to establish the validity or invalidity of any pattern of inference that can be
expressed using the truth-functional connectives. Many types of reasoning, however, cannot be expressed
in this way, and for this reason the PC has been extended to produce various more expressive formalisms.
The most well known of these is the first-order predicate calculus, or first-order logic (FOL).2 However,
the TL described in this chapter represents an alternative extension of PC.

20.2 Introducing Temporal Logic

In the PC inference discussed above, no reference is made to time, and this is true of the classical forms
of logic generally. The truth or falsity of each of the propositions is implicitly referred to a particular,
unstated time, so it is not possible to use PC to reason about propositions which refer to different times.
TL was introduced to remedy this deficiency.

An inference requiring some form of TL for its formulation is

The light is only ever on if the battery is charged.
Whenever the battery is charged, at a later time it will not be charged.
Therefore, the light will not always be on.

A TL formulation of this inference is as follows:

�(LightOn → BatteryCharged)
�(BatteryCharged → �¬BatteryCharged)

¬�LightOn

(20.1)

Here, the symbols “�” and “�” may be read “always” and “eventually,” respectively. More exactly, their
meanings are expressed by the following semantic rules:

• �α is true at time t0 if and only if α is true at every time t ≥ t0.
• �α is true at time t0 if and only if α is true at at least one time t ≥ t0.

Note that if �¬α is true at t0, then ¬α must be true at every time t ≥ t0, which means that there cannot
be any time t ≥ t0 at which α is true; hence �α must be false at t0. Conversely, if �¬α is false then �α

must be true. For this reason, we can affirm that the formulae ¬�¬α and �α are always equivalent, and
this is usually captured by defining � in terms of � as follows:

�α =def ¬�¬α (Def�)

The validity of inference (Eq. [20.1]) may be demonstrated informally by a reductio ad absurdum
argument. Suppose that, at t0, the premises are both true but the conclusion is false. At t0, therefore, we
have �(LightOn → BatteryCharged), �(BatteryCharged → �¬BatteryCharged), and �LightOn. By the
semantic rule for �, this means that at t0 (and indeed at every time t ≥ t0), we have

LightOn → BatteryCharged (20.2)

BatteryCharged → �¬BatteryCharged (20.3)

LightOn (20.4)

2An account of FOL can be found in almost any textbook on formal logic, for example, Hodges (2001) and
Jeffrey (2006).
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By PC reasoning, from Eq. (20.4) and Eq. (20.2) we also have

BatteryCharged (20.5)

at t0 and hence also from Eq. (20.5) and Eq. (20.3)

�¬BatteryCharged (20.6)

By the semantic rule for �, this means that there is a time t ≥ t0 at which ¬BatteryCharged is true (note
that since BatteryCharged is true at t0, we must in fact have t > t0). Moreover, since t ≥ t0, we know from
our earlier deductions that both Eq. (20.2) and Eq. (20.4) are true at t ; and these imply that BatteryCharged
is true at t as well. This contradicts our earlier deduction that ¬BatteryCharged is true then. Hence, the
supposition that the premises could be true and the conclusion false is absurd, and we conclude that if the
premises are true, the conclusion must be true too—i.e., the inference is valid.

Although we referred to individual times (t0, t) in this reasoning, TL allows us to work purely at the
level of the �, � language used in the formulae, with no explicit reference to times. To illustrate this, we
shall prove the above inference in a TL in which the following formulae are posited as axioms:3

�(α → β) → (�α → �β) (AxK)

�α → α (AxT)

and the following rules of inference are introduced:4

From 	 α and 	 α → β infer 	 β (MP)

From 	 α infer 	 �α (R�)

If α is a theorem of PC, infer 	 α (PCT)

Here “	 α” means that α is a theorem, i.e., considered proved. All the axioms count as theorems, and
anything that can be inferred from the axioms using the rules of inference is also a theorem.

To establish the validity of the inference above, we make use of three PC theorems, not proved here:

(α → β) ∧ (β → γ) → (α → γ) (20.7)

(α → β) ∧ (¬α → β) → β (20.8)

(α → β) ↔ (¬β → ¬α) (20.9)

Starting with the two premises

�(LightOn → BatteryCharged)

�(BatteryCharged → �¬BatteryCharged)

we can use (PCT), Eq. (20.7), and (AxK) to give �(LightOn → �¬BatteryCharged), and hence by (AxT)

LightOn → �¬BatteryCharged (20.10)

Premise 1 also gives, by (AxK), �LightOn → �BatteryCharged. Using Eq. (20.9), this can be rewritten as
¬�BatteryCharged → ¬�LightOn, and hence, by (Def�), as

�¬BatteryCharged → ¬�LightOn (20.11)

3K and T are the labels conventionally given to these axioms; as far as I am aware, these letters do not “stand for”
anything.

4See Section 20.3 for a general explanation of axioms and rules of inference. “MP” here stands for Modus Ponens,
the Latin name given to this pattern of inference in the logical tradition.
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From Eq. (20.10) and Eq. (20.11), using Eq. (20.7) and (AxK), we now have

LightOn → ¬�LightOn (20.12)

By (AxT), we also have �LightOn → LightOn, which using Eq. (20.9) gives

¬LightOn → ¬�LightOn (20.13)

Finally, from Eq. (20.12) and Eq. (20.13), using Eq. (20.8) we infer the desired conclusion ¬�LightOn.

20.3 Syntax and Semantics

The preceding section introduced a particular, rather simple, variety of TL, and in the next section we will
examine some other varieties. To prepare the way for this, it is necessary to say a few words about what a
logical system consists of and how it is structured.

At the heart of the system is a formal language. This is defined as a set of well-formed formulas (wffs),
each of which is a legitimate concatenation of symbols taken from some predefined vocabulary. Which
concatenations are legitimate is determined by the rules of formation of the language, which define its
syntax (or formal grammar).

For the TL in Section 20.2, the vocabulary consists of the logical constants “¬,”“∧,”“∨,”“→,”“↔,”“�,”
and “�” together with a set of literals to represent elementary propositions; these may be tailored to the
application context by taking a form suggestive of their intended meanings (e.g., LightOn, BatteryCharged),
but in more general application-independent treatments it is convenient to use simple letters (e.g., A, B,
C, …) instead. Finally, parentheses “(” and “)” are used to help articulate the structure of formulae.

The wffs of this system are defined by the following rules of formation:

1. Any literal is a wff.
2. If α and β are wffs then so are ¬α, (α ∧ β), (α ∨ β), (α → β), (α ↔ β), �α, and �α.

This is a recursive definition; by repeated applications of these rules we can build up complex wffs such as
�(�A → B) ∨ �(�B → A).5

Thus far, all we have defined is a set of symbol-concatenations which we have dignified with the name
of wff; these wffs do not, on their own, possess any meaning. Wffs can be made meaningful in two ways:

1. Explicitly, by specifying how they are to be interpreted.
2. Implicitly, by specifying their logical relationships to other wffs.

The former method gives rise to what is known as model theory, and the latter to proof theory.
Consider the symbol “∧.” Its semantic rule, given above, states that a wff α ∧ β is true if and only if

both α and β are true. But a formula such as α can be given many different interpretations, in some of
which it stands for a true statement, in others for a false one; an interpretation in which α stands for a true
statement is said to satisfy α. The meaning of “∧” is specified by stipulating that an interpretation satisfies
α ∧ β if and only if it satisfies both α and β. The other semantic rules in Section 20.1 are to be understood
analogously.

Given a collection of wffs, we may or may not be able to find an interpretation, consistent with the
semantic rules, in which all the wffs are true; any such interpretation is called a model for that set of wffs.
Model theory is thus the way of specifying the meanings of formulae by laying down what counts as an
interpretation of the formal language, and what it is for an interpretation to satisfy a formula. For our TL,
this was what is provided, in part, by the semantic rules given above.

5Strictly speaking this should be (�(�A → B) ∨ �(�B → A)), but it is conventional to omit the outer pair of
brackets in cases such as this (see also footnote 1).
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Recall the semantic rule for “�”: �α is true at time t0 if and only if α is true at every time t ≥ t0. This
is not telling us about the truth of �α absolutely, but its truth at a particular time; moreover, the rule
specifies the truth of �α at one time in terms of the truth of α at other times—thus t0 is just one of a set of
times, elements of which can be compared using the relation ≥ (where t1 ≥ t0 means that t1 is later than
or equal to t0). From these observations we see that an interpretation of a TL formula must be considered
as relative to a time taken from some ordered system of times.

Let T be the set of times, and let ≺ denote the ordering relation on T (this may be read as “precedes,”
with the caveat that in some models, a time may precede itself). Together, these constitute a temporal frame
(T , ≺). We write

(T , ≺, t) |= α

to mean that the wff α is true at time t in the temporal frame (T , ≺). With this notation, the semantic
rules for � and � can be reformulated as6

• (T , ≺, t) |= �α if and only if, for every t ′ ∈ T , if t ≺ t ′ then (T , ≺, t ′) |= α.
• (T , ≺, t) |= �α if and only if, for at least one t ′ ∈ T , t ≺ t ′ and (T , ≺, t ′) |= α.

Proof theory offers a completely different approach to specifying meanings. We characterize the meaning
of a logical symbol by stating logical properties of formulae containing that symbol. One way of doing
this is in terms of inference rules. For conjunction, “∧,” the inference rules most commonly given are

(∧-introduction) From 	 α and 	 β, derive 	 α ∧ β.
(∧-elimination) From 	 α ∧ β, derive both 	 α and 	 β.

Introduction and elimination rules, some more complex than these, can be given for the other connectives.
We have already met some inference rules for TL (MP, R�, and PCT). A“natural deduction”system provides
a proof theory consisting entirely of inference rules; an axiom system includes in addition a set of formulae,
called axioms, which are stipulated to be true (e.g., AxK and AxT).

Logic is concerned with making valid inferences. The meaning of validity is generally defined in terms of
a model theory: an inference is valid if and only if every model for the premises satisfies the conclusion. This
corresponds to the intuitive idea that in a valid inference, if the premises are true then the conclusion cannot
fail to be true as well. The model-theoretic definition sets the standard which the proof theory, as a practical
set of inferential procedures, should live up to. A proof theory is sound with respect to a given model theory
if every inference validated by the former is indeed valid according to the latter; and it is complete with
respect to the model theory if every inference valid according to the latter is validated by the former. The
ideal is a proof theory that is both sound and complete with respect to the model theory corresponding
to the intended application of the logic. In some cases this can be achieved, but in others it cannot.

20.4 Models of Time

An interpretation of TL is defined by specifying a temporal frame (T , ≺ ), a reference time t0 (“now”),
and, for each literal L in the language, its truth value at each time t ∈ T . The semantic rules for the logic
then determine the truth value of each formula at each time, and in particular at the reference time t0.

The temporal frame obviously plays an essential role in all this, and the truth values of formulae in
the logic can depend critically on the properties of the frame. The frame in effect encapsulates a model of
time. In this section, we look at some of the key frame properties that are used in different applications,
and the impact they can have on the truth values of different formulae. As a side effect of this survey, we
shall also be led to indicate extensions to the logical vocabulary which have been introduced to enhance
the expressive power of the logic with respect to different models of time.

6The semantic rules for the Boolean connectives, when considered as forming part of TL, can likewise be written in
this style, e.g., for conjunction: (T , ≺, t) |= α ∧ β if and only if (T , ≺, t) |= α and (T , ≺, t) |= β.
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Of the two components required to specify a frame, i.e., the set T and the relation ≺, the latter will play
a major role in what follows. As far as the former is concerned, nothing depends on what the elements
of T actually are: essentially they can be regarded as abstract elements that are taken to represent “times,”
but there is little need here for a philosophical discussion on what we actually mean by “a time.” The only
exception to this concerns whether we regard times as durationless instants or extended intervals. Most
developments of TL opt for the former understanding, but the latter also has had its advocates, especially
when TL is used to specify the semantics of temporal expressions in natural language.7 Here we shall
assume that times are effectively point-like, so that no change can take place within a time; thus each
formula has a single truth value at each time. That apart, the only feature of T that is relevant for TL is its
cardinality, e.g., whether it is finite, countably infinite, or uncountable.

We now embark on the survey of frame properties. These will be expressed in both English and FOL.
Readers unfamiliar with the latter should be able to understand the properties from the English description
alone.

20.4.1 Transitivity
It is natural to regard the ordering of times as transitive, as implied by the use of the word “ordering.” It
means that if one time precedes a second, which in turn precedes a third, then the first time must also
precede the third; in symbols

∀t∀t ′∀t ′′(t ≺ t ′ ∧ t ′ ≺ t ′′ → t ≺ t ′′) (Trans)

Transitive temporal frames can be characterized by the fact that in any interpretation over such a frame,
for any TL formula α, the formula

�α → ��α (Ax4)

is true at every t ∈ T . This is often postulated as an axiom, thereby restricting the allowed interpretations
to transitive frames.

One way of describing transitivity is that the future of the future already counts as future now—this
corresponds to the formula ��α → �α which can be proved to be equivalent to (Ax4). A nontransitive
frame thus requires the notion of “future” to be qualified in some way which leads to a breakdown in
transitivity, e.g., the “near” future (“within the next 10 years,” say).

20.4.2 Reflexivity
A temporal order is reflexive if every time is regarded as “preceding” itself, i.e.,

∀t(t ≺ t) (Refl)

In effect, this means that the precedence relation ≺ is interpreted not as “precedes” but as “precedes or
equals” (i.e., “not later than” rather than “earlier than”). This was, in fact, the interpretation used in our
example in Section 20.2, where the semantic rules used “t ≥ t0” for “t0 ≺ t .”

Reflexive temporal frames are characterized by the schema (AxT) which we discussed in Section 20.2.
An equivalent formulation is α → �α.

20.4.3 Irreflexivity
A nonreflexive frame satisfies ¬∀t(t ≺ t) (“not every time precedes itself”), but for a frame to count as
irreflexive it must satisfy the stronger condition

∀t¬(t ≺ t) (Irref)

7Examples are, in the context of reasoning about programs (Moszkowski, 1986) and in the context of analyzing
natural language (Dowty, 1979).
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i.e., no time precedes itself. This is satisfied by our normal understanding of “precedes” as “earlier than.”
However, there is no TL formula that exactly characterizes irreflexive frames in the way (AxT) characterizes
reflexive ones.

20.4.4 Linearity
The reader has probably assumed in the foregoing that the temporal structure is linear, i.e., that the times
are as it were strung out along a single line, in keeping with our ordinary notion of a “time line.” However,
such linearity is by no means entailed by any of the properties mentioned above, all of which are compatible
with a wide range of branching or network-like structures. If we wish our time line to be linear, then this
has to be built in explicitly.

The property of linearity is expressed by the formula

∀t∀t ′(t ≺ t ′ ∨ t = t ′ ∨ t ′ ≺ t) (Lin)

which says that either the times t and t ′ are the same time (t = t ′) or one precedes the other (t ≺ t ′ ∨ t ′ ≺ t).
The TL we have used so far cannot express this notion of linearity. The best we can do is

�α ∧ �β → �(α ∧ β) ∨ (α ∧ �β) ∨ (�α ∧ β)

which captures the idea that of any two future times, either they coincide or one precedes the other. This
characterizes time as “linear in the future,” 8 but does not rule out “alternative pasts” whose times do not
stand in any direct temporal relation to each other. Future-linearity is expressed by the formula

∀t∀t ′∀t ′′(t ′′ ≺ t ∧ t ′′ ≺ t ′ → t ≺ t ′ ∨ t = t ′ ∨ t ′ ≺ t) (FLin)

For linear time we also require past-linearity (or “left-linearity”), i.e.,

∀t∀t ′∀t ′′(t ≺ t ′′ ∧ t ′ ≺ t ′′ → t ≺ t ′ ∨ t = t ′ ∨ t ′ ≺ t) (PLin)

and this cannot be expressed using the operators � and �, since these operators are future-directed,
describing the present in terms of the future. To express past-linearity, and hence full linearity, we need
past-directed operators as well.

The usual notation, when both sets of operators are used, is to write F and G for the future-directed
operators (i.e., our earlier � and �), and P and H for the past-directed ones, as captured by the following
mnemonics:

FA A will be true sometime in the Future
GA A is always Going to be true
PA A was true sometime in the Past
HA A Has always been true

The operators F, G, P, and H are called tense operators, and a TL that uses both sets of operators is called
a tense logic. Historically, tense logics were the first kind of TL to be developed, arising from the work of
the philosopher A. N. Prior in the 1950s and 1960s (Prior, 1967, 1968).

Backward and forward linearity are expressed by the tense logic formulae

Pα ∧ Pβ → P(α ∧ β) ∨ (α ∧ Pβ) ∨ (Pα ∧ β)
Fα ∧ Fβ → F(α ∧ β) ∨ (α ∧ Fβ) ∨ (Fα ∧ β)

but with both past- and future-tense operators available the same properties can be more simply
expressed by

FPα → Pα ∨ α ∨ Fα

PFα → Pα ∨ α ∨ Fα

8Often called “right-linear,” presupposing a picture in which time flows from left to right!



Temporal Logic 20-9

The first formula says that anything that will be past is either already past, present, or still future. This
rules out the possibility of separate past time lines converging on a common time. Similarly the second
formula likewise rules out separate future time lines diverging from a common time.

One might expect that (PLin) and (FLin) together would suffice for full linearity (Lin), but this is not so,
since they allow two or more “parallel” time lines between which there are no temporal relations. Indeed,
it is not possible to rule out this latter kind of model by means of any tense logic formula.

While for many purposes it is natural to demand that the model of time is linear, this is not always the
case. If TL is used to model the evolution of a nondeterministic dynamical system, one way of incorporating
the indeterminacy is to model the full set of possible histories by means of a temporal frame which branches
into the future—and hence lacks future-linearity. It is usual even in this case to retain past-linearity, so
as to rule out convergent time lines. Then each point in time has a unique past but may have more than
one future. This kind of structure was introduced in the context of reasoning about nondeterministic
computations by Lamport (1980).

For reasoning about such future-branching models, an extension to TL called computation tree logic
(CTL) has been introduced. In addition to temporal operators such as � and �, CTL uses the “path
operators” A and E to describe properties as true for respectively all or some of the futures diverging
from the time at which a formula is evaluated. For example, the CTL axiom A�α → ¬E�¬α says that
if α is true throughout all possible futures then there is no possible future in which α is at any time
false. CTL was introduced (Emerson and Clarke, 1982) as a method for deriving the “synchronization
skeleton” of a concurrent computer program from a high-level specification. The specification, in CTL,
expresses the temporal constraints which must be satisfied by any execution of the program, and the
synchronization skeleton that is derived from it is “an abstraction of the actual program where detail
irrelevant to synchronization is suppressed.” Subsequently, more expressive extensions of CTL such as
CTL*, ECTL, and ECTL+ were introduced (see (Emerson, 1990), for references).

20.4.5 Boundedness
A model of time is bounded in the past if it has a start time, that is, a time which is not preceded by any
other time; and it is bounded in the future if it has an end time which is not followed by any other time. So
long as time is linear, there can be at most one of each, but in a nonlinear temporal frame there can be many
possibilities, for example, some branches might have an end time but others not. For reasoning about a
dynamic system that is set up at a particular time and then allowed to evolve, it is natural to include a
start time, but not an end time, in the temporal model. For reasoning about natural systems which may be
regarded as having histories extending indefinitely far into the past as well as into the future, it may be better
to drop the start time as well. In that case, we have an unbounded temporal frame. The first-order formulae

∀t∃t ′(t ′ ≺ t) (PUnb)

∀t∃t ′(t ≺ t ′) (FUnb)

express unboundedness in the past and future, respectively. Corresponding tense logic axioms are
Hα → Pα and Gα → Fα. The first says that a formula true at every past time is true at some past
time, and hence there must be at least one past time; for this to hold universally, it must be that for every
time there is an earlier time, as expressed by (PUnb). The second axiom may be explained similarly. The
conjunction of (PUnb) and (FUnb) may be designated (Unb).

20.4.6 Density and Discreteness
The transitivity axiom, discussed in Section 20.4.1, says that whenever t precedes t ′ and t ′ precedes t ′′, then
t precedes t ′′. An important question for a model of time is whether the converse holds, i.e., if t precedes
t ′′ must there be a time t ′ such that t precedes t ′ and t ′ precedes t ′′. A temporal frame that satisfies this
condition is called dense. The first-order formulation of density is

∀t∀t ′(t ≺ t ′ → ∃t ′′(t ≺ t ′′ ∧ t ′′ ≺ t ′)) (Dens)
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and the corresponding TL formulation is ��α → �α. Note the relationship between this and (Ax4),
reflecting the status of transitivity and density as mutually converse. An equivalent formulation of density
is �α → ��α.

A dense model of time corresponds well to our normal practice of identifying positions in the time
series by means of numbers. Given times t1 and t2 identified as, say, exactly 10 and 11 s, respectively after
some agreed “zero” time t0, then if we assume the existence of a time t corresponding to 10.5 seconds after
t0 we are in effect making use of the density property. Further applications of density then allow us to
bring in times at 10.25 and 10.75 s, then 10.125, 10.375, 10.625, 10.875 s, and so on, there being no limit,
on this picture, to how finely the time line can be subdivided.

For some purposes, however, it is more convenient to regard time as proceeding in discrete steps
rather than a continuous flow. An example is when modeling the execution of a computer program,
where nothing significant, from the point of view of the program, occurs between successive steps of the
execution. Another example would be a game such as chess, where what matters is the configuration of
the board after each successive move, forming a discrete series of times that are relevant. Such discrete
time series can still be marked off using numbers, only now the appropriate number system to use is the
integers (Z, <) rather than the real numbers (R, <).

A discrete-temporal frame has the two properties

∀t∀t ′(t ′ ≺ t → ∃t ′′(t ′′ ≺ t ∧ ¬∃u(t ′′ ≺ u ∧ u ≺ t))) (PDisc)

∀t∀t ′(t ≺ t ′ → ∃t ′′(t ≺ t ′′ ∧ ¬∃u(t ≺ u ∧ u ≺ t ′′))) (FDisc)

Thus (FDisc) says that if t is followed by any time at all, then it has an immediate successor t ′′ characterized
by the fact that there is no time between t and t ′′. Similarly, (PDisc) says that any point with a predecessor
has an immediate predecessor. We use (Disc) to denote the conjunction of these two formulae.

It can be shown that there is no tense logic formula that exactly characterizes discreteness (see Van
Benthem, 1983).9 However, the discreteness of the temporal frame can be implicitly incorporated into a
TL by extending the language. A new temporal operator ©, called the Next-time operator, is introduced,
interpreted so that ©α is true at time t just if α is true at the immediate successor time, which we may
denote t + 1 on the assumption that integers are used to label the times in the model.

20.4.7 Combinations of Properties
Certain combinations of the above-mentioned properties are noteworthy. The combination (Trans, Irref,
Lin, Unb) corresponds to the intuition of time as a line extending indefinitely far back into the past (“no
beginning”) and indefinitely far into the future (“no end”). We may add to this combination either (Dens)
or (Disc), the resulting combinations being labeled DE and DI, respectively (Van Benthem, 1983). In neither
case do we end up specifying the flow of time completely. DE, for example, holds for both a real (R, <)
and a rational (Q, <) time line; to identify (R, <) uniquely we need a second-order formula (expressing
Dedekind continuity). Gabbay et al. (1994) give the following pair of TL formulae to express this:

FGα ∧ F¬α ∧ G(¬α → F¬α) → F(Gα ∧ ¬PGα)
PHα ∧ P¬α ∧ H(¬α → P¬α) → P(Hα ∧ ¬FHα)

Likewise, while the most natural model for DI is (Z, <), others are possible, e.g., two copies of Z, one
after the other. To identify (Z, <) uniquely, we need a second-order condition (given (Disc), Dedekind
continuity suffices again).

9Note, however, that if the temporal frame is assumed to be linear, then the formulae GPα → α ∨ Pα and
HFα → α ∨ Fα together secure discreteness as well. For, to take the second formula, if t does not have an imme-
diate predecessor, then letting α be true at all predecessors of t and at no other times, we see that HFα is true at t (since
every point in the past of t has a point in its future which is still in the past of t), but α ∨ Fα is false at t .
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20.5 Further Extensions to the Formal Language

An important addition to the expressive power of TL was made by Kamp (1968) who introduced new
temporal operators S and U, read “since” and “until.” Syntactically, these are binary operators, acting on a
pair of propositions rather than a single one as in the case of P and F. As binary operators, they may be
treated either as prefixes (e.g., “Spq”) or as infixes (e.g., “pSq”)—both conventions have been used; here
we use infix notation to emphasize the reading of “pSq” as “p since q” (and likewise with U).
The semantic rules for the new operators are

• (T , ≺, t) |= αSβ if and only if, for some t ′ ∈ T , t ′ ≺ t , (T , ≺, t ′) |= β and, for every t ′′ ∈ T , if
t ′ ≺ t ′′ � t then (T , ≺, t ′′) |= α

• (T , ≺, t) |= αUβ if and only if, for some t ′ ∈ T , t ≺ t ′, (T , ≺, t ′) |= β and, for every t ′′ ∈ T , if
t � t ′′ ≺ t ′ then (T , ≺, t ′′) |= α.

Thus, αSβ says that β was true at some past time, and α has been true ever since then, up to and including
the present. Similarly, αUβ says that β will be true at some future time, but until then, α will always
be true.

A weak variant of U that is sometimes used is the operator UW , perhaps misleadingly read “unless,”
defined so that αUW β is equivalent to αUβ∨Gα, meaning that α will be true until such time as β becomes
true—there being no requirement for this ever to happen. In the case that β never becomes true, α must
remain true forever, as indicated by the second disjunct.

The significance of these new operators is that, subject to certain assumptions about the model of time,
they bring the expressive power of the logic up to that of the FOL of time. For example, over linear discrete
time, or linear continuous time, for any first-order temporal formula φ(t), there is an S, U-TL formula α

which holds at all and only those times t for which φ(t). That we need S and U follows from the fact that
these operators cannot be defined in terms of P, F, G, and H—that is, no formula constructed using these
four operators is equivalent to either pSq or pUq.

In contrast the other operators can be defined in terms of S and U. To do this, it is convenient to
introduce formulae ⊥ and � that are defined to be always true (i.e., equivalent to α ∨ ¬α) and always
false, respectively (equivalent to α ∧ ¬α). Then we can define Pα as �Sα, and Fα as �Uα, with H and
G then defined as ¬P¬ and ¬F¬, respectively. The formula �Sα says that α was true at some past time,
since when � has always been true. Since the latter clause must hold in any case, the statement reduces to
an assertion that α was true at some past time—i.e., Pα; and likewise with U and F.

20.6 Illustrative Examples

In this section, we provide some brief illustrations of a range of possible applications of TL. The area in
which it has been most widely used, and which has provided the main stimulus to its development, is in the
specification and verification of concurrent computer programs, as illustrated in Section 20.6.2. However,
similar considerations, concerning sequencing, scheduling, and temporal constraint satisfaction, can arise
in the specification of any system which evolves through time, and in Section 20.6.3 we mention a couple
of examples to illustrate this.

20.6.1 A System with an Attractor
Suppose we have a system with just three states; these can be represented by three mutually exclusive
formulae P, Q, and R, with the understanding that each of the formulae is true just when the state it
represents holds. The dynamics of the system are such that whenever it is in state P, it will eventually enter
state Q, and whenever it is in state Q it will eventually enter state R. Moreover, state R is an attractor state,
i.e., once the system has entered it, it can never leave it. With a little reflection it seems obvious that that the
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system will eventually enter state R and stay there. One might, naively, illustrate this with a state sequence
such as

PPPPPPPQQQQQQQQQQQQQRRRRRRRRRRRRRRRR . . .

but this is only illustrative since in reality there is an infinite number of possible state sequences for this
system, another one being, for example

PPPPQPPQPPQQQQPQPPPQQRRRRRRRRRRRRRRR . . .

The state sequences illustrated here implicitly presuppose a discrete linear time, but is either of these
properties necessary for the desired result to follow? TL can help us to determine exactly what underlying
assumptions are required for the reasoning to go through correctly.

To establish the desired conclusion, we can formulate the problem in TL as follows. Our description
of the system dynamics corresponds to the following four formulae (we use �, � notation since we are
reasoning forward in time):

�(P ∨ Q ∨ R) (20.14)

�(P → �Q) (20.15)

�(Q → �R) (20.16)

�(R → �R) (20.17)

From these we have to derive the formula ��R. Without writing out the full formal derivation, we can
indicate the lines along which it proceeds as follows.

We know from Eq. (20.14) that at any time in the system’s evolution we have P ∨ Q ∨ R. Several
applications of Eq. (20.15), Eq. (20.16), and Eq. (20.17) enable us to derive from this the formula
���R ∨ ��R ∨ �R. To get from here to ��R we need the following assumptions:

��α → �α (20.18)

�α → ��α (20.19)

Assumption Eq. (20.18) is equivalent to (Ax4), the transitivity axiom. Given transitivity, Eq. (20.19) may be
derived from ��α → ��α, which in turn is an instance of (FUnb). We have thus laid bare the assumptions
underlying our intuitive reasoning: the flow of time is transitive and unbounded in the future. There is
no need to assume linearity, density, discreteness, or any of the other conditions we might suppose to
be required (and which may be present in the mental models we construct in the course of our intuitive
reasoning).

20.6.2 Application to Reasoning about Programs
TL has been considered the most appropriate logic for reasoning about the behavior of reactive programs—
that is, programs which maintain an ongoing interaction with the environment rather than delivering a
final output and then halting. Commonly cited examples of reactive programs include computer operating
systems, airline reservation systems, and many e-business systems. One area in which it is important
to be able to reason correctly about the behavior of such systems is correctness: how can we be sure
that the program as implemented actually behaves in the manner required by its specification? Among
the correctness properties of programs we may distinguish safety properties, informally characterized
as ensuring that “nothing bad happens,” and liveness properties, ensuring that “something good will
happen.” 10 In TL terms, safety properties are typically expressed using formulae of the form �α, while
liveness properties are expressed using �α.

10These terms, and the associated slogans, are due to Lamport (1977).
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To illustrate these ideas with a simple example, suppose that we have a number of concurrent processes
which have to apply to some resource allocator for the use of various resources.11 We introduce the
following primitive propositions to describe this situation:

Available(i) says that resource i is unallocated.
Granted(i, j) says that process i is granted use of resource j.
Requesting(i, j) says that process i is requesting use of resource j.
Using(i, j) says that process i is using resource j.

The following are all safety properties:

• A process cannot request a resource which it is already using
�(Using(i, j) → ¬Requesting(i, j))

• A process cannot use a resource which it has not been granted
�(Using(i, j) → Granted(i, j))

• Two processes cannot simultaneously use the same resource
�¬(Using(i, j) ∧ Using(i′, j) ∧ i �= i′)

The following are liveness properties:

• If a process requests use of a resource, it is eventually granted it
�(Requesting(i, j) → �Granted(i, j))

• If a process is granted a resource, it will eventually use it
�(Granted(i, j) → �Using(i, j))

• If a process is using a resource, it will eventually release it
�(Using(i, j) → �¬Using(i, j))

These are just a sample of the system requirements that can be expressed as TL formulae. A complete
set of such formulae may constitute a formal specification for a system to exhibit the desired behavior.
This can be used in various ways: it provides a standard to which any implementation of the program
must adhere, and temporal reasoning may be used to verify that a given implementation does indeed meet
the specification. To do this, it is necessary to show that the formulae in the specification hold for every
possible execution sequence of the program (see Manna and Pnueli, 1981). A related goal is to use the
specification as a starting point from which to synthesize the synchronization skeleton of a program, as
indicated in (Section 20.4.4).

20.6.3 Other Applications
The extremely general nature of TL formalism means that in principle it should be applicable to a wide
range of situations in which it is necessary to specify or control the behavior of systems evolving through
time. Here we mention just two examples.

In artificial intelligence, TL has been used by Bacchus and Kabanza (1996) as a means for controlling
search in a forward-chaining planner, thereby at least mitigating the combinatorial explosion to which
such planners are inevitably prone. Their approach is implemented in a system called TLPlan, which uses a
first-order linear temporal logic, LTL for expressing strategies tailored to the chosen planning domain—an
example being the formula

∀[x : object(x)]�(polish(x) ∧ ©¬polish(x) → ©�¬polish(x))

which “prohibits action sequences where an object is polished twice.”
In a very different setting, Wood (1989) used TL to specify the operation of a bank of identical elevators

servicing a number of floors in a building. This was approached in the spirit of a case study to investigate
the suitability of TL for this kind of work; the author’s conclusion is largely positive, including the

11This example is adapted from Pnueli (1985).
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statement that TL specification is “a splendid vehicle for communicating precisely the behavior of the
elevator system.” Examples of temporal formulae used are

∀i, m�(¬flDoorsClosed(i, m) ↔ ¬elDoorsClosed(i) ∧ elPosition(i, m))

which states that at all times, the door for accessing elevator i on the mth floor will be open if and only if
elevator i is at the mth floor and its doors are open; and

∀i, m(dormant(i, m) ∧ elDestLit(i, m) → ©¬elDoorsClosed(i))

which says that if elevator i is in a dormant condition at the mth floor and the user pushes the destination
button for the mth floor in that elevator, then the elevator doors will open immediately afterwards (note
the use of the “next time” operator © to express this, implying a discrete model of time).

20.7 Conclusion

We have introduced TL, a system for reasoning about the dynamical properties of the world by manipu-
lating formulae expressed in a formal language specifically designed to allow different properties to hold
at different times. We described the formalism from both a syntactic and a semantic point of view, and
introduced a range of different varieties of TL, adapted to working with a range of different models of
time. Some applications were briefly described. Owing to the introductory nature of the chapter, much of
importance has inevitably been left out, and the reader interested in pursuing the topic is encouraged to
consult the references recommended in the next section.

20.8 Further Reading

There is a voluminous literature on TL, emanating from several distinct (though overlapping) research
communities, notably computer science, mathematics, logic, and philosophy, with a correspondingly wide
range of focus. Much of this literature appears in the form of journal articles or conference proceedings,
but over the years a number of books have been produced on the subject, some of which have been very
influential.

In the philosophical tradition, the seminal work (Prior, 1967) still retains much of interest to the modern
reader, although its readability is somewhat compromised by the use of “Polish” prefix notation for the
logical operators. This notation is largely unfamiliar to present-day readers, who may have the feeling of
having to decipher the formulae rather than read them; but this has been remedied in the later work (Prior,
1968), which has been recently reissued with all the formulae rewritten in the more familiar infix notation
(Prior, 2003). An important work exploring the logical and mathematical properties of models of time
and their logics, with many interesting philosophical sidelights, is Van Benthem (1983).

For the computer science perspective, some useful works to consult are Galton (1987), Goldblatt (1987),
and Bolc and Szałas (1995). A detailed survey, with many references, is provided by Emerson (1990). More
technical, but containing a wealth of useful material and many stimulating observations, is Gabbay et al.
(1994). A sample of recent research, covering many aspects of TL, is Barringer et al. (2000). A still more
recent compilation with an emphasis on applications to artificial intelligence—but with much of interest
in a wider setting—is Fisher et al. (2005).

For the reader interested in the history of TL, Øhrstrøm and Hasle (1995) is recommended, although it
should be noted that the applications in computer science are largely neglected.

An important forum for the dissemination of research in TL is provided by a series of international
symposia on Temporal Representation and Reasoning entitled simply TIME, first held in Florida in 1994
and still going strong at the time of writing.
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21.1 Introduction

In modeling dynamic systems, one of the first questions to be answered is whether the involved processes
can be viewed to be discrete in state, time, space, or continuous. The model choice should be robust with
respect to the chosen space–time–state framework. Table 21.1 gives a selective overview of the various
modeling approaches.

In this chapter, we focus on complete discrete model systems: cellular automata (CAs). CAs are decen-
tralized spatially extended systems consisting of large numbers of simple and identical components with
local connectivity. Such systems have the potential to perform complex computations with a high degree
of efficiency and robustness as well as to model the behavior of complex systems from nature. CAs have
been studied extensively in the natural sciences, mathematics, and computer science. They have been
considered as mathematical objects about which formal properties can be proved and have been used as
parallel computing devices, both for high-speed simulation of scientific models and for computational

TABLE 21.1 Mathematical and numerical modeling approaches to spatio-temporal processes.

Model/Variable State Space Time

PDEs C C C
Integro-difference equations C C D
Coupled ODEs C D C
Interacting particle systems D D C
Coupled map lattices, systems of difference equations, LBE models C D D
Cellular automata and lattice gas automata D D D

PDE, partial differential equation; ODE, ordinary differential equation; LBE, lattice Boltzmann
equation. For more details see Berec (2002) and Deutsch and Dormann (2004).

21-1
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tasks such as image processing. CAs have also been used as abstract models for studying “emergent”
cooperative or collective behavior in complex systems (e.g., Sloot, 2001b). In addition, CAs have been
successfully applied to the simulation of a large variety of dynamical systems such as biological processes
including pattern formation, earthquakes, urban growth, galaxy formation, and most notably in studying
fluid dynamics. Their implicit spatial locality allows for very efficient high-performance implementations
and incorporation into advanced programming environments. For a selection of the numerous papers in
all of these areas, see, e.g., Bandini (2002), Burks (1970), Deutsch and Dormann (2004), Farmer et al.
(1984), Forrest (1990), Frisch et al. (1986), Ganguly et al. (2003), Gutowitz (1990), Jesshope et al. (1994),
Kaandorp et al. (1996), Mitchell (1998), Naumov (2004), Sloot (1999), Sloot and Hoekstra (2001), Sloot
et al. (1997, 2001c, 2002, 2004), and Wolfram (1986a, 1986b, 2002).

In this chapter, we will give some background on CA modeling and simulation of dynamical systems
with an emphasis on simulating fluid dynamics.

21.2 A Bit of History

In 1948, on the occasion of the Hixon Symposium at Caltech, John von Neumann gave a lecture entitled
“The General and Logical Theory of Automata” (von Neumann, 1951, 1966), where he introduced his
thoughts on universal, self-reproducing machines, trying to develop an abstract model of self-reproduction
in biology, a topic that had emerged from investigations in cybernetics (Wolfram, 2002, 876 ff). von
Neumann himself said to have been inspired by Stanislaw Ulam (1952, 1962) and Turing’s theory of
universal automata, which dates back another 10 years (Turing, 1936). Some scientists regard the paper by
Wiener and Rosenblueth (1946) as the start of the field (Wolf-Gladrow, 2000), or mathematical work that
was done in the early 1930s in Russia.

So we see that the roots of CA may be traced back to biological modeling, computer science, and
(numerical) mathematics. From the early days of von Neumann and Ulam up to the recent book of
Wolfram, CAs have attracted researchers from a wide variety of disciplines. It has been subjected to
rigorous mathematical and physical analysis for the last 50 years, and its application has been proposed
and explored in almost all branches of science. A large number of research papers are published every year.
Specialized conferences, such as Sloot et al. (2004), Automata (2005), and NKS (2005), and special issues of
various journals on CA have been initiated in the last decades. Several universities started offering courses
on CA. The reason behind the popularity of CA can be traced to their simplicity and to the enormous
potential they hold in modeling complex systems, in spite of their simplicity. Or in the words of R. May:
“We would all be better off if more people realized that simple dynamical systems do not necessarily lead to
simple dynamical behavior” (May, 1976). This has led to some very remarkable claims and predictions by
renowned researchers about the potential of CAs. In this respect, we came across the following statements
that are worth mentioning:

The entire universe is being computed on a computer, possibly a cellular automaton.
Konrad Zuse, as he referred to this as “Rechnender Raum” (Zuse, 1967, 1982)

I am convinced that CA, in one form or another will eventually be found lurking at the very heart of how
the universe really works

Andrew Ilachinski (2001)

The view of the Universe as a cellular automaton provides the (same) perspective, (i.e.,) that reality
ultimately is a pattern of information.

Ray Kurzweil (2002)

I have come to view [my discovery] as one of the more important single discoveries in the whole history
of theoretical science

Stephan Wolfram: Talking about his CA work in his NKS book (Wolfram, 2002)
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The remainder of this chapter is organized as follows, we start with a formal description of CA and
some of their spatio-temporal properties and we will briefly discuss their capacity to model dynamical
systems. Next we will focus on the use of CAs to model fluid flow, starting from Lattice Gas CAs up to
recent developments in the related Lattice Boltzmann Method for fluid flow.

21.3 Cellular Automata to Model Dynamical Systems

In general, a CA is specified by the following four characteristics:

• A discrete lattice L: This is the discrete lattice of cells (nodes and sites) upon which the CA dynamics
unfolds. L ⊂ RD

• consists of a set of cells that homogeneously cover a D-dimensional Euclidian
space. L can have any dimension “D” (normally 1, 2, or 3), with well-defined boundary conditions.

• A finite state space: Each cell can assume only one of a finite number of different values:
σi∈L(t) ∈ � ≡ {0, 1, 2, · · · , k − 1}, where σi is the value of the ith cell at time t , and � is usually
taken to be the set of integers modulo k, Zk (formally any finite commutative ring will do). For a
finite lattice of N cells, the total number of global states is also finite and given by kN .

• Boundary conditions: Boundary conditions play an important role in CA dynamics. Although CA
are defined on infinite large lattices, computer simulations impose finite sets. Common boundary
conditions are periodic (i.e., the lattice is repeated periodically in each direction, in effect wrapping
the boundaries onto each other in each direction), reflecting (i.e., boundary values are reflected back
into the lattice), and fixed (i.e., the boundary values have a prescribed fixed value).

• Dynamical update and transition Rule φ:
φ: � × � × · · · × �︸ ︷︷ ︸

n

→ �, where n is the number of cells that defines the “neighborhood” of a

given cell i. With Si to be the sublattice neighborhood about cell i, the transition rule is given by
σi(t + 1) = φ(σj(t) ∈ Si).

The spatial arrangement of the cells is specified by the nearest neighbor connection links, obtained by
joining pairs of cells. State transitions are local in both space and time. Individual cells evolve iteratively
according to a fixed (often deterministic) function of the current state of that cell and its neighboring cells.
One iteration step of the dynamical evolution is achieved after synchronous (i.e., simultaneous in time)
application of the rule φ to each cell in the lattice L.

21.4 One-Dimensional CAs

The general form of a one-dimensional (1D) CA rule φ with an arbitrary range ‘r’ is given by σi(t + 1) =
φ(σi−r(t), . . . , σi(t), . . . , σi+r(t)); with φ: �2r+1 → �, where σj ∈ {0, 1, . . . , k − 1}, and φ is explicitly
defined by assigning values to each of the k2r+1 possible (2r + 1)-tuples of possible configurations for a
given sublattice neighborhood Si. From this we see that we have a total of kk2r+1

possible rules in a 1D CA.
So for a binary state 1D CA, with nearest neighbor interaction, there are 256 (223

) possible rules.
The boundary conditions imposed in a 1D CA can be

• Periodic: When the left boundary cell is kept identical to the most right (normal) cell, and the right
boundary cell is kept identical to the most left (normal) cell.

• Reflecting : When the left boundary cell is kept identical to the most left (normal) cell, and the right
boundary cell is kept identical to the most right (normal) cell.

• Fixed: When the boundary cells are set to a fixed value.

The system dynamics of the CA is determined by the local transition rule φ, which can be spatial homo-
geneous (independent of cell position), or inhomogeneous (for instance in the case of fixed boundary
conditions shown in Figure (21.1). Furthermore, the update can be time dependent or time independent,
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FIGURE 21.1 A 1D CA with range r = 2.

0 0 0 1 1 1 1 0

FIGURE 21.2 Updates for rule 30. The upper three blocks denote the cell that must be update, together with its left
and right neighbors, and the lower block shows the outcome of applying rule 30. Black denotes for a state 1 and white
for a state 0.

(a)

FIGURE 21.3 (a) Space–time diagram of Wolfram’s elementary (k = 2, r = 1) CA rule 30 starting from a single seed.
The sequence of updates “time” runs from top to bottom. (b) same rule for 300 updates on the 1D CA.

synchronous or asynchronous, deterministic or stochastic. This gives the modeler a plethora of possibilities
to capture the dynamics of the system to be modeled. In the paragraph on lattice gas CAs, we will see more
examples of how to design and apply such update rules. For the binary state 1D CA with nearest neigh-
bor interaction, Wolfram introduced a convenient rule-code R for these important CAs, which uniquely
identifies the update mechanism:

R[φ] = 27 · φ1,1,1 + 26 · φ1,1,0 + 25 · φ1,0,1 + 24 · φ1,0,0 + 23 · φ0,1,1 + 22 · φ0,1,0 + 21 · φ0,0,1 + 20.φ0,0,0

The number φ is an eight-bits number that encodes all possible 256 rules for this 1D CA and φi,j,k are
the bits of the binary notation of φ. The rule should be read as follows. The outcome of the rule is
determined by the current state of a cell (0 or 1) and the current state of the left and right neighbor of
the cell. The binary number that is formed by concatenating the state of the left neighbor, the cell itself,
and the right neighbor is a number between 0 and 7. The outcome of rule R[φ] is then the bit of the
binary representation of φ at the position of the number encoded by the input states. So, for example,
R[30] = 00011110, since the decimal value of 00011110 = 30. The update rules in terms of black (=1)
and white (=0) blocks are graphically depicted in Figure 21.2.

The first five updates (spatial homogeneous, time independent, synchronous, and deterministic) of this
R[30], starting from a single seed is shown in Figure 21.3.



Modeling Dynamic Systems with Cellular Automata 21-5

(a)
(b)

FIGURE 21.4 (a) Class 1 (e.g., Rules 0, 8, 128, 136, 160, 168): evolution leads to a homogeneous state, in which all
cells eventually attain the same value (continues analog: attractive fixed limit point), shown is rule 168. (b) Class 2
(e.g., Rules 4, 37, 56, 73): evolution leads to inhomogeneous state; either simple stable states or periodic and separated
structures (continues analog: limit cycle), shown is rule 4. (c) Class 3 (e.g., Rules 18, 45, 105, 126): evolution leads to
chaotic nonperiodic patterns (continues analog: strange attractor), shown is rule 105. (d) Class 4 (e.g., rules 30, 110):
evolution leads to complex, localized propagating structures (no continuous analog), shown is rule 110.

FIGURE 21.5 (a) von Neumann, Moore, and Hexagonal neighborhoods. (b) Fixed and periodic boundary conditions.

In his seminal paper on CA classification, Wolfram (1986a) identified four classes of CAs, linking them
to analogs in continuous system dynamics (see Figure 21.4).

The behavior in two-dimensional (2D) CAs is much more complex and less well understood. In this
case, we need again to define the update neighborhood and the boundary conditions; this is shown in
Figure 21.5.

21.5 Lattice Gas Cellular Automata Models of Fluid Dynamics

Perhaps the most successful practical application of CAs as computing devices has been in the field of fluid
dynamics. Coined lattice gas cellular automata (LGCA), this class of CA mimics a fully discretized fictitious
fluid. Both the positions and velocities of the fluid’s “molecules” are discrete, and tightly coupled to the
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LGCA’s discrete lattice L. Moreover, the dynamics of the molecules is highly simplified and completely
synchronous. All molecules perform free streaming from one lattice node to a neighboring one in a time
period δt . Next, particles arriving at a node collide with each other, thus exchanging momentum in some
deterministic or stochastic way. The collisions on the nodes all happen at the same time and the duration
of a collision is assumed to take zero time. By enforcing conservation of mass, momentum, and energy
in a collision, we have created a model gas with a fully discrete and simplified, yet physically correct
micro dynamics. With this LGCA dynamics, we may then investigate macroscopic variables, i.e., averaged
quantities such as fluid density or momentum, which vary over time and length scales much larger than
those of the micro dynamics, and hope that they behave as a real fluid. In fact, we know that if � is sufficient
isotropic (to be defined later) an LGCA, when operated in the right limits, reproduces the incompressible
Navier–Stokes equations and therefore is a model for fluid dynamics.

The most complete account of LGCA (including a highly useful “guide to further reading”) is the book
by Rivet and Boon (2001). Other influential monographs on LGCA are Rothman and Zaleski (1997),
Wolf-Gladrow (2000), and Chopard and Droz (1998). Finally, Boghosian (1999) provides a nice overview
of lattice gases and cellular automata.

21.5.1 The Road to Lattice Gas Cellular Automata
As suggested by Rivet and Boon (2001), LGCA can be traced back to discrete kinetic models, in which a
gas is modeled as a collection of particles with continuous position and time variables, but with a (small)
discrete set of velocities. Such discrete kinetic models were studied intensively starting in the sixties of the
previous century. LGCA would then be one step further down the road to minimalist models, in which
also space and time are discrete. Indeed, in 1972 the point of departure for Hardy and Pomeau, who 1 year
later introduced the first real LGCA, was the discrete velocity Maxwell model (Hardy and Pomeau, 1972).
In contrast, Boghosian (1999) suggests a connection between early minimalist discrete models in statistical
physics (such as the Ising spin, Creutz, and Kawasaki models) in the sense that LGCAs are comparable
minimalist models, but on top of that they are also truly dynamic and have conserved quantities (mass,
momentum, and energy) whose dynamics (approach to equilibrium) are of interest. Boghosian also points
out that a first step toward LGCA probably was the Kadanoff–Swift model (Kadanoff and Swift, 1968).
Strictly speaking this was not a CA, but it had a number of ingredients that are close to LGCA, such as
fictitious particles living on a 2D Cartesian lattice with discrete velocities oriented along the diagonals of
the lattice. The dynamics would then be performed sequentially on randomly selected particles. From a
statistical physics point of view, this model already had many features of real fluids that made it quite
interesting to study. Interestingly, the basic papers on LGCA have never referenced the Kadanoff–Swift
paper.

The first real LGCA was introduced by Hardy, Pomeau and de Pazzis in 1973 (Hardy et al., 1973), and
its hydrodynamics were studied in detail in Hardy et al. (1976). The HPP model, as we now call it, is a real
CA. It has an underlying 2D Cartesian lattice. On each node, particles with unit mass are defined that can
have one one of the four discrete velocities ci, i ∈ {1, 2, 3, 4} (see also Figure 21.6(a)):

c1 =
(

1
0

)
; c2 =

(
0
1

)
; c3 =

( −1
0

)
; c4 =

(
0

−1

)
(21.1)

At each node only one particle can have a velocity ci. This exclusion principle allows us to denote the state
of a node as a binary 4-vector n. A value “TRUE” (or 1) of element i of the state vector (denoted as ni)
encodes for the presence of a particle with velocity ci, and a value “FALSE” (or 0) denotes the absence
of a particle with velocity ci. So, the vector (1,0,0,1) would represent a state as shown in Figure 21.6(b).
The number of different states per node in HPP is 16. Owing to the exclusion principle, the maximum
number of particles on a node is 4. The dynamics is very straightforward. First, incoming particles at
a node collide, and next particles perform a free streaming, in which they move from their node to the
neighboring node in the direction of their velocity. We assume that the time for this streaming δt = 1, so
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(b) (c)(a)

c2

c1

c4

c3

FIGURE 21.6 The HPP model: (a) shows the four velocities of the model, (b) an example of a node with state
(1,0,0,1), and (c) the only possible collisions in HPP, (1,0,1,0) ⇔ (0,1,0,1).

that with the velocities as defined in Eq. (21.1), particles move exactly from one node to a neighboring
node during the streaming phase. Assigning a position vector r to the state vector of the node at r, and a
time stamp t , the streaming step can be mathematically expressed as

ni(r + ci, t + 1) = ni(r, t) (21.2)

In words, the content of the element ni of the state vector at position r at time t is copied in the next time
step to the neighbor at position r + ci. If ni(r, t) = 1, this means that a particle streams from r to r + ci.
If ni(r, t) = 0, it just means that at t + 1 ni(r + ci, t + 1) is correctly set to 0.1

The collision is also very straightforward. In a collision, the velocities of the particles are redistributed.
During a collision we must conserve mass, momentum, and energy. Since for all particles the magnitude
of velocity and their mass is 1, their kinetic energy is always 1/2. Therefore, mass conservation immediately
implies energy conservation.2 Mass conservation means preservation of the number of particles in the
collision. The momentum of a particle is just ci. So, during a collision we must preserve the total momen-
tum on a node, i.e., n1c1 + n2c2 + n3c3 + n4c4. By systematically going through all possible 16 states, it
turns out that only one type of collision is possible (see Figure 21.6[c]). These are the “head-on” collisions,
where two particles arriving from north-south (or east-west) are scattered over 90◦ and after the collision
propagate to east-west (or north-south), or in terms of the state vector, (1,0,1,0) ⇔ (0,1,0,1).

The collision can also be described more formally. We define a collision operator �i(n), which can take
the values {−1,0,1}. If before the collision a particle with ci is present, and after the collision this particle
is scattered into another direction, we must have �i(n) = −1 (i.e., the particle is removed from velocity
channel i). In the reverse case, when as the result of a collision, an empty channel i is filled with a particle,
we have �i(n) = 1. Finally, if the collision does nothing to channel i, �i(n) = 0. To find an expression for
�i(n), we must therefore have a trick to select certain states that undergo a collision (the two head-on
cases) and then assign the correct value to �i(n). Here we take advantage of the binary notation that
we introduced using the symbols “0” and “1.” In the collision operator, we assume these symbols are in
fact the integer numbers 0 or 1 and we compute with them. So, to select say the state (1,0,1,0) we could
formulate a logical expression as n1 AND (NOT n2) AND n3 AND (NOT n4), which returns TRUE if the
state (1,0,1,0) is present at a node and FALSE in all other cases. We could also write n1(1 − n2)n3(1 − n4)
and fill in the number 1 and 0 depending on the state. This expression will evaluate to 1 for the state
(1,0,1,0) and to 0 in all other cases. In the case of a precollision state (1,0,1,0), we know that the result
of the collision must be (0,1,0,1), so for, e.g., channel 1 we must have �1(n) = −1. This we can achieve
by writing �1(n) = −n1(1 − n2)n3(1 − n4). However, this is not the complete expression as we must also
accommodate the reverse situation, i.e., that the precollision state is (0,1,0,1), in which case a particle will
appear in channel 1, and �1(n) = 1. We achieve this by adding another term, i.e., (1 − n1)n2(1 − n3)n4

resulting in the full expression �1(n) = −n1(1 − n2)n3(1 − n4) + (1 − n1)n2(1 − n3)n4, and likewise for

1Physicists would say that in this case a “hole” is streaming from r to r + ci .
2For this reason, the HPP model (and other “homokinetic” models) have no thermal effects.
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the other channels 2–4. By introducing the shorthand notation ni = 1 − ni, we can finally write the HPP
collision operator in the following compact form:

�i(n) = −nini+1ni+2ni+3 + nini+1ni+2ni+3 (21.3)

where the index i is taken modulo 4 (so if i = 2, i + 3 = 1). With an expression for the collision operator,
we can now write the full equation for the dynamics of the HPP model:

ni(r + ci, t + 1) = ni(r, t) + �i(n(r, t)) (21.4)

In fact, Eq. (21.4) expresses the micro dynamics for all LGCAs. However, for each specific model, the total
number and definitions of the ci may be different, and the details of the collision operator are different.

We can now formulate the following CA rule for LGCA.

for each node in the Lattice do
1. Perform a collision step, i.e., redistribute the state
vector n such that ni := ni + �i (n)
2. Perform a streaming step, i.e.,

for all i
copy ni to ni at position = my_position + ci.

update the time t := t + 1

Having defined the structure, collision operator, and the dynamics as expressed in the CA rule, we are
now in the position to execute the HPP LGCA. Next, we must define observables. The total number of
particles and total momentum on a node are obtained by summing ni and nici over all i, respectively.
However, these instantaneous observables are very noisy, they fluctuate strongly as a function of time
and position. Although these fluctuations contain a wealth of interesting physical information (Rivet and
Boon, 2001), we want to observe smooth hydrodynamic fields such as the density or momentum of the
fluid. To achieve this we must first take ensemble averages of ni, yielding fi = <ni>. The fi values are real
numbers between 0 and 1 and should be interpreted as the probability to find a particle with velocity ci.
In an LGCA simulation, we can compute the ensemble average by, e.g., taking spatial or temporal averages
of the ni(r,t). We can now define the fluid density ρ and fluid velocity u as follows:

ρ(r, t) =
b∑

i=1
fi(r, t)

ρ(r, t)u(r, t) =
b∑

i=1
cifi(r, t)

(21.5)

where b is the total number of velocity vectors (for HPP b = 4). With these definitions, and the full
machinery of statistical mechanics and kinetic theory, one can work out the equations that govern ρ and
u. Although the resulting equations for HPP have a strong resemblance to the Navier–Stokes equations
that govern macroscopic fluid flow, there is a major flaw. It turns out that the resulting macroscopic
equations are not isotropic, meaning that the flow properties depend on the orientation with respect to the
underlying lattice. This problem can be traced back to isotropy properties of the underlying HPP lattice
and its four discrete velocities.3 This anisotropy is of course unacceptable for a model of fluid dynamics,
and therefore HPP did not catch the attention of people interested in doing fluid dynamics.

In 1986 the big breakthrough came for LGCA. Frish et al. (1986) introduced the first LGCA that produces
isotropic macroscopic equations for the density and velocity, reproducing the Navier–Stokes equations
for an incompressible fluid. The main innovation in this FHP model was to change the underlying lattice

3Technically, the HPP model has a crystallographic isotropy of order 3, which is too low to obtain isotropic
macroscopic equations (for details on this issue, see Rivet and Boon [2001]).
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FIGURE 21.7 The FHP model: (a) shows the six velocities of the model, (b) the head on collision, and (c) the triplet
collision.

to a 2D triangular lattice, and define six discrete velocities along the six directions of the lattice (see
Figure (21.7[a]). This lattice has sufficient isotropy4 to reproduce isotropic Navier–Stokes equations for
an incompressible fluid. In this version of the FHP model (coined FHP-I),5 the magnitude of the six
discrete velocities are the same and equal to 1. Therefore, mass conservation and energy conservation are
equivalent and FPH-I is also an a-thermal model. The micro dynamics are governed by Eq. (21.4), but we
need to adapt the collision operator. In FHP-I, we only consider two types of collisions (see Figure 21.7[b]
and Figure 21.7[c]). The first type is the head-on collision (as in HPP). However, in this case two possible
postcollision states are possible (rotated +60◦ or −60◦ with respect to the incoming direction). FHP-I
randomly selects one of those two postcollision states with a probability of 0.5. Because of this, FHP-I is
no longer a deterministic CA, but has become probabilistic. The second type of collision is the triplet state,
where three particles arrive with mutual angles of 120◦. The postcollision state is the same triplet rotated
over 60◦. Using the same procedure as for HPP, we can express the collision operator for FHP-I as follows

�FHP−I
i (n) = − nini+1ni+2ni+3ni+4ni+5

+ ξnini+1ni+2ni+3ni+4ni+5

+ (1 − ξ)nini+1ni+2ni+3ni+4ni+5

− nini+1ni+2ni+3ni+4ni+5

+ nini+1ni+2ni+3ni+4ni+5

(21.6)

where ξ is a Bernouilli random variable (i.e., it randomly takes the values 0 or 1) with mean 0.5. On each
time step and at each lattice node ξ is evaluated. On the right-hand side, the first three terms represent the
head-on collisions and the last two terms the triplet collision. The variable i is now taken modulo 6.

We can now proceed to execute the FPH-I LGCA and compute observables using Eq. (21.5), where
b = 6. In Figure 21.8, an example is shown, demonstrating the need to perform ensemble averaging before
computing the observables. In Figure 21.8(a) we show the results of a single iteration of FHP-I, in fact
we have assumed that fi = ni (i.e., no ensemble averaging is performed). Clearly, the resulting flow field is
very noisy. To observe smooth flow lines one should really compute fi = <ni>. Because the flow is static,
we compute the ensemble average fi by averaging the Boolean variables ni over a large number of FHP
iterations. The resulting flow velocities are shown in Figure 21.8(b).

4It has crystallographic isotropy of order 5, so sufficient for the required fourth-order isotropy needed for isotropic
large-scale dynamics.

5A number of extensions to FHP exist, including the so-called rest particles (i.e., particles on a node with zero
velocity, c0 = {0,0}), and with extended collision operators, taking into account all possible collisions (including the
rest particle). These extensions will not be further treated here, but see Rivet and Boon (2001).
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FIGURE 21.8 (a) FHP simulation of flow around a cylinder, the result of a single iteration of the LGCA is shown (i.e.,
no averaging). The arrows are the flow velocities, the length is proportional to the absolute velocity. The simulations
were done on a 32 × 64 lattice, the cylinder has a diameter of 8 lattice spacing, only a 32 × 32 portion of the lattice is
shown; periodic boundary conditions in all directions apply. (b) As in (a), the velocities are shown after averaging over
1000 LGCA iterations.

The year 1986 marked the beginning of an enormous research activity on LGCAs. Chapter 11 (guide for
further reading) from Rivet and Boon (2001) provides numerous references to this literature. Here we will
only touch upon a few interesting developments of practical interest. First, we mention the extension to
three-dimensional (3D) models, clearly a necessity for a serious model of hydrodynamics. It turns out that
a 3D LGCA is far from trivial. In fact, the LGCA community rapidly realized that all 3D regular (Bravais)
lattices do not have sufficient isotropy (“the magic didn’t work,” as Rivet and Boon put it). However, by
taking a detour into four-dimensional (4D) space and projecting back to three dimensions, d’Humières,
Lallemand, and Frisch were able to build a 3D LGCA with all required isotropy properties (d’Humières
et al., 1986). This model is based on a 4D face-centered hyper cube (FCHC), and has as many as 24 velocity
channels per node. The sheer amount of possible states in this model (224 = 16,777,261) and the number
of possible collisions (18,736 or 10,805, depending on assumption put on the model) make it completely
impossible to write down an explicit equation for the collision operator, and one must resort to a more
general approach. Moreover, an efficient implementation of such a complicated collision operator requires
new algorithmic strategies (see, e.g., Hénon, 1987), clever lookup table strategies (see, e.g., Rivet and Boon,
2001), or a combination of both.

An example of a thermal LGCA (i.e., a model where energy conservation is nontrivial) is the 2D
model proposed by (Grosfils et al. 1992). This GBL model, like FHP, is defined on the 2D triangular
lattice, but now has 19 velocities. It has one rest particle, six particles connected to nearest neighbors
(‖ci‖ = 1), six connected to next-nearest neighbors (‖ci‖ = √

3), and six connected to next-next-nearest
neighbors (‖ci‖ = 2). The GBL model has 219 = 524,288 possible states, of which 517,750 can undergo
collisions that change the state while preserving mass, momentum, and energy. Again, the complexity of
the collision operator requires efficient implementations (see, e.g., Dubbeldam et al., 1999). GBL is a true
thermo-hydrodynamic model for 2D fluid dynamics.

LGCAs are easily extended to multiple species models by coloring the particles. Besides the normal
collision rules, one also demands a color conservation. After collisions, colors are then randomly redis-
tributed, while preserving total color. In this way nonreacting mixed fluids can be modeled. Moreover, by
adding reactions one can create reaction–diffusion LGCAs (see, e.g., Boon et al., 1996) or by adding an
interaction term between differently colored particles, one can model multiphase immiscible fluids (see,
e.g., Rothman and Zaleski, 1997).
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21.5.2 LGCA and Fluid Dynamics
The Navier–Stokes equations for an incompressible fluid read

∇ · u = 0 (21.7)

∂u

∂t
+ u · ∇u = −∇P + ν∇2u (21.8)

where P is the pressure and ν the viscosity of the fluid. Eq. (21.7) expresses mass conservation, and
Eq. (21.8) momentum conservation. LGCAs with sufficient isotropy (e.g., FHP, GBL, and FCHC) can
reproduce these Navier–Stokes equations under the assumption that the velocities u are small. This can
be demonstrated by explicit simulations and by theory. In this section, we just outline such theory, for all
details we refer to Frisch et al. (1987), Rivet and Boon (2001), Rothman and Zaleski (1997), Chopard and
Droz (1998), and Wolf-Gladrow (2000).

The starting point is the LGCA micro dynamics (see Eq. [21.4]). The mass and momentum conservation
of the collision operator can be expressed as

b∑
i=1

�i(n(r, t)) = 0 (21.9)

b∑
i=1

ci�i(n(r, t)) = 0 (21.10)

One can ask if the evolution equation (21.4) is also valid for the averaged particle densities fi. It turns
out that this is true, but only under the Boltzmann molecular chaos assumption, which states that par-
ticles that collide are not correlated before and after collisions, or, that for any number of particles k,
〈n1n2 . . . nk〉 = 〈n1〉〈n2〉 · · · 〈nk〉. In this case, one can show that 〈�i(n)〉 = �i(f ), where f is the vector
containing all fi. By averaging Eq. (21.4) and applying the molecular chaos assumption we find

fi(x + ci, t + 1) − fi(x, t) = �i(f (x, t)) (21.11)

A first-order Taylor expansion of fi(x + ci, t + 1), substituted into Eq. (21.11), results in

∂t fi(x, t) + ∂αciα fi(x, t) = �i(N(x, t)) (21.12)

Note that the shorthand ∂t means ∂/∂t ; the subscript α denotes the α-component of a D-dimensional
vector, where D is the dimension of the LGCA lattice; and we assume the Einstein summation convention
over repeated Greek indices (e.g., in two dimensions ∂αciα fi(x, t) = ∂xcix fi(x, t) + ∂yciy fi(x, t)). Next,
we sum Eq. (21.12) over the index i and apply Eq. (21.5), Eq. (21.9), and Eq. (21.10), thus arriving at
∂tρ + ∂αρu = 0, or

∂ρ

∂t
+ ∇ · ρu = 0 (21.13)

which is just the equation of continuity that expresses conservation of mass in a compressible fluid. One
can also first multiply Eq. (21.12) with ci and then summate over the index i. In this case, we arrive at

∂tρu + ∂βαβ = 0 (21.14)

with

αβ =
∑

ciαciβfi (21.15)

The quantity αβ must be interpreted as the flow of the α-component of the momentum into the
β-direction; αβ is the momentum density flux tensor. To proceed, one must be able to find expressions
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for the particle densities fi. This is a highly technical matter that is described in detail in, e.g., Frisch et al.
(1987) or Rivet and Boon (2001). The bottom line is that one first calculates the particle densities for an
LGCA in equilibrium, f 0

i , and then substitute them into Eq. (21.15). This results in an equation that is
almost similar to the Euler equation, i.e., the expression of conservation of momentum for an inviscid
fluid. Next, one proceeds by taking into account small deviations from equilibrium, resulting in viscous
effects. Then, after a lengthy derivation one is able to derive the particle densities, substitute everything
into Eq. (21.15) and derive the full expression for the momentum conservation of the LGCA, which very
closely resembles the Navier–Stokes equations for an incompressible fluid. The viscosity and sound speed
of the LGCA are determined by its exact nature (i.e., the lattice, the discrete velocities, and the exact
definition of the collision operator).

We must stress that the derivations in this section are very loose, in the sense that we ignored many
important details. For instance, the Taylor expansion, which resulted in Eq. (21.12), was only accurate up
to first order. In fact one can show that an LGCA obeys the Navier–Stokes equations up to second order.
Also, we introduced very loosely the concept of equilibrium distributions, and small deviations from
equilibrium that give rise to viscous effects. By using a very powerful technique, known as the Chapmann–
Enskog expansion, one is able to solve Eq. (21.11) and derive expressions for mass and momentum
conservation of an LGCA, which turn out to be almost equal to the equations for a real, incompressible
fluid.

To be complete, we note that the derivation of the Navier–Stokes equations for the LGCA is correct in
the limit of small Mach and small Knudsen numbers. The first restriction means that the flow velocities
must be much smaller than the sound speed of the LGCA, and the second limit demands that the mean
free path of the particles must be much smaller than some macroscopic dimensions of the LGCA, i.e., the
particle density cannot be too small.

Finally, we must mention one last technical detail. As stated above, the momentum conservation
equations of the LGCA are almost equal to the Navier–Stokes equations of a real fluid. The difference lies
in a factor g(ρ) in the advection term (the u · ∇u term in Eq. [21.8]), which leads to the breakdown of
Galilean invariance. In the low velocity limit, however, this is not a real problem, because the fluid becomes
incompressible and g(ρ) a constant. A rescaling of the velocity and time with g(ρ) allows to fully recover
the exact Navier–Stokes equations for an incompressible fluid.

21.5.3 Simulating an LGCA
Although LGCA simulations can benefit from generic CA environments, there are a few typical aspects of
LGCA that will be discussed here. First, most 2D LGCAs are defined on triangular lattices. Such lattice
should be represented by some 2D array. To denote each node in the triangular lattice with coordinates
(x,y) by integer numbers, we multiply the coordinates by a factor (2, 2/

√
3). To avoid awkward diamond-

shaped grids representation, the streaming step is different for even and odd parity of the lattice (see Figure
21.9). This same mapping can be used for the 19 velocity GBL model.

(a)

c3
c2

c1

c6c5

c4

(b)

c3 c2

c1

c6c5

c4

(c)

c3 c2

c1

c6c5

c4

FIGURE 21.9 The mapping of the original triangular lattice (a) to a square domain. The mapping and streaming is
based on the parity of the lattice. On even lines we propagate using (b) and, for odd lines we propagate using (c).
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The state vector per node of an LGCA is a b-vector containing bits. So, the total LGCA lattice can be
stored with N×b bits with N being the total number of nodes in the lattice. The streaming step can be
accomplished by using two different lattice grids. The second lattice is used to calculate the new state at
the next time step from the first lattice. After updating the lattice, we swap the pointers to the lattices. If
memory size is a problem (e.g., large 3D problems), then it would be possible to do the streaming step
in-place, at the cost of accessing each lattice point several times instead of just once.

The collision can be handled in two ways. If the collision is not very complicated (as with HPP or
FHP-I), then it can be implemented as logical operations on the state bits. For instance, to implement the
HPP collision operator (Eq. [21.3]), one could first define a selection operator Si that returns TRUE if a
head-on collision state is present. For instance, for channel 1 the selection operator S1 would be

S1 = (n1 AND (NOT n2) AND n3 AND (NOT n4)) OR ((NOT n1) AND
n2 AND (NOT n3) AND n4).

If S1 returns 1, a collision occurs, and the state n1 must flip (from 1 to 0 or vice versa). If S1 returns 0, the
state n1 must stay the same. The postcollision state (n1 + �1(n)) can be obtained by applying the exclusive
OR operation on n1 with S1, i.e., n1 + �1(n) = n1 XOR S1.

This postcollision value is then streamed using the procedures as sketched above.
Another approach is to use lookup tables. If the collision becomes too complex to explicitly write down

the Boolean expression (as with FCHC or GBL) this is the only possibility. However, one may also want
to resort to lookup tables for HPP or FHP as this may be faster. We give an example of the use of lookup
tables in the implementation of the GBL model (for details see Dubbeldam et al., 1999). More discussions
on the lookup tables can be found in Rivet and Boon (2001). The first step is to group all 219 states of
GBL in equivalence classes with the same total mass, momentum, and energy. The collision then amounts
to randomly selecting a state from the equivalence class to which the input state belongs. It is clear that
the input state is also among them (meaning no collision when selected as output state), but since most
equivalence classes are quite large this has little influence. For the 19-bits GBL model we create a collision
table of 219 indexes, followed by the equivalence classes (see Figure 21.10). Every index of an element
in a class points to the start of the class (for instance, in Figure 21.5, 138, 273, and 41,024 all point to
219 + X). The left 12 bits are used to indicate the number of collision outcomes. If the number is zero,
then the outcome is equal to the input state. Otherwise, the value of the right 20 bits is an index pointing
to the start point of an array of possible postcollision states, of which we choose one at random (using the
information on the size of the equivalence class).

To have solid boundaries or solid objects in the flow, one must be able to set boundary conditions. In
LGCA this is almost trivial using the bounce-back rule, where particles that hit the boundary are reversed
and sent back into the direction they came from. To start an LGCA simulation the Boolean field must
be initialized. Usually one knows some initial values of the macroscopic fields (the density and the fluid
velocity). Based on these values, the initial Boolean field must be computed. This is done by using the
equilibrium distribution f 0

i that is explicitly known as a function of ρ and u in the limit of small u (see
Rivet and Boon, 2001, Chapter 4). This equilibrium distribution gives the average of the Boolean field in
equilibrium (i.e., the probability that a particle is present in channel i), so, the actual field is computed from
the equilibrium distribution using a random number generator that delivers random numbers between
0.0 and 1.0. If the random number is smaller than f 0

i , then ni is initialized to 1, otherwise it is set to 0.
With the initialization and the boundary conditions in place, the LGCA simulation can be started. If the

flow is driven by some pressure gradient, one can apply a body force that, after each collision, effectively
adds some momentum to the nodes. This was done in the simulations presented in Figure 21.8. Finally,
to extract the wanted macroscopic fields, an ensemble average must be computed. This is typically done
using time- or space-averaging, or a combination of both. In Figure 21.8(b) time averaging was applied.

LGCA simulations have been executed on every type of computers, from desktop PCs to massively
parallel supercomputers, and even dedicated CA and LGCA machines (including programmable FPGA
hardware). On current state-of-the-art computers, one can easily simulate quite large 2D and 3D LGCAs
(see Dubbeldam et al., 1999) for an example of running the GBL model on a parallel computer).
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0
12 bits 20 bits

0
0 1
0

3 219�X

3 219�X

341024

273

138

219�X

219�X

0 219�3
0 219�2
0

138
273

41024

219�1

219�3
219�2
219�1

2

0
1
2

FIGURE 21.10 Collision table. The first 219 indices are divided into 12 and 20 bits. The left 12 bits denote the number
of collision outcomes, the rightmost 20 bits denote an index number from where the collision outcomes are stored in
the table. These collision outcomes start from index 219. The figure shows an example for an equivalence class of size 3.

21.5.4 Some Applications
Lattice gases have been and are still being applied6 to challenging problems of multiphase fluids in complex
(e.g., porous) flow domains. These typically include fluid mixtures and colloids, reaction diffusions
systems, immiscible fluids and phase separation, multiphase flows, fluids with free interfaces, magneto
hydrodynamics, nonideal fluids, etc. Because of the ease to define boundary conditions using the bounce
back rule, all such complex fluids have been studied in porous media. For details we refer to the LGCA
books and references therein (Rivet and Boon, 2001; Rothman and Zaleski, 1997; Chopard and Droz,
1998).

21.5.5 Lattice Boltzmann Method
Immediately after the discovery of LGCA as a model for hydrodynamics in 1986, it was criticized on
three points. LGCA have noisy dynamics, lack Galilean invariance, and have an exponential complexity
of the collision operator. The noisy dynamics is clearly illustrated in Figure 21.8 and the lack of Galilean
invariance was discussed above. Adding more velocities in an LGCA leads to increasingly more complex
collision operators, exponentially in the number of particles (remember the numbers for GBL and FCHC).
Therefore, another model, the lattice Boltzmann method (LBM), was introduced. This method is reviewed
in detail in Succi (2001).

The basic idea is that one should not model the individual particles ni, but immediately the particle
densities fi, i.e., one iterates the lattice Boltzmann equation (Eq. [21.11]). This means that particle densities
are streamed from cell to cell, and particle densities collide, immediately solving the problem of noisy

6Although it must be said that the Lattice Boltzmann method, which will be mentioned in the next section, currently
is the preferred method over LGCAs, although in special situations LGCAs are still to be preferred.
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FIGURE 21.11 (a) Flow in a porous fiber mat; and (b) a porous medium composed of a dense random packing of
spheres.

dynamics. However, in a strict sense, we no longer have a CA with a Boolean state vector (in fact, the state
is now a vector of real numbers, so the state space per node is infinite). However, we can view LBM as a
generalized CA. By a clever choice of the equilibrium distributions f 0

i , the model becomes isotropic and
Galilean invariant, thus solving the second problem of LGCA. Finally, a very simple collision operator can
be introduced. This so-called BGK collision operator models the collisions as a single-time relaxation τ,
toward equilibrium, i.e.,

�BGK
i (N) = −1

τ

(
fi − f 0

i

)
(21.16)

Eq (21.11) and Eq. (21.16) together with a definition of the equilibrium distributions result in the Lattice-
BGK (L-BGK) model. The L-BGK model leads to correct hydrodynamic behavior in two and three
dimensions. The L-BGK not only applies to the triangular lattice, but also correctly works for other
lattices, e.g., 2- or 3D cubical lattices with nearest and next-nearest neighbor interactions. The LBM
and especially the L-BGK have found widespread use in simulations of highly complex fluid dynamical
problems, including turbulence, multiphase flows, spinal decomposition, etc. To get a flavor we refer
to Succi (2001). Below we present a few examples of successful L-BGK applications. All these L-BGK
simulations were routinely executed on parallel computers, using a highly efficient parallel implementation
of the L-BGK method (Kandhai et al., 1998).

The L-BGK method has played a significant role in studying flow in porous media. In Figure 21.11(a),
we show an example of flow in a porous medium that consists of randomly placed fibers. This fiber mat
is a model system for paper. Through L-BGK simulations, one can compute the permeability of such fiber
mats, as a function of the porosity (Kopenen, et al., 1998). The results showed a remarkable agreement with
experimental results. Since the permeability could be studied over a very large range of volume fractions,
much larger than accessible through experiments, the authors were able to check the quality of theoretical
approximations for this particular problem.

Another example of successful L-BGK simulations of flow in porous media was the transient dispersion
in homogeneous porous media. Figure 21.11(b) shows an example of a medium of a random distribution
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FIGURE 21.12 (a) Flow in a static mixer reactor; and (b) flow in the lower abdominal aortic bifurcation at peak
systole.

of densely packed spheres. Here the flow around the spheres is computed, as well as advection-diffusion
of tracer particles in the flow, and diffusion of the tracer particles through a microporous structure of
the spheres. From these simulations, the authors could derive transient tracer dispersion curves, which
showed a very good agreement with propagators that were measured using nuclear magnetic resonance
(Kandhai et al., 2002a, 2002b).

L-BGK simulations have been compared extensively with traditional computational fluid dynamics
(CFD) codes. As an example, we mention flow through a static mixer reactor (see Figure 21.12[a]).
The flow fields as computed with L-BGK were in very good agreement with results stemming from a
commercial CFD package (FLUENT). The computed fluid flux through the system, as a function of the
applied pressure gradient, was in very good agreement with experimental data (Kandhai et al., 1999). It
turned out that preparing the computational grid for L-BGK is trivial (just a Cartesian grid), whereas
creating a body-fitted finite element grid for this geometry is very tedious.

As a final example we mention the application of L-BGK for simulation of blood flow. In Figure 21.12(b),
we show the results of L-BGK simulations of time periodic systolic flow through the bifurcation of the
lower abdominal aorta. The geometry is taken from MRI images of real patients. The results are in good
agreement with previously published studies of systolic flow in region of the arterial tree (Artoli et al.,
2005).
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22.1 Introduction

In this chapter, we look at a popular class of dynamical systems that are based on simplified models of
how the brain processes information. These systems fall under the heading of artificial neural networks
called spatio-temporal connectionist networks (SCNs). SCNs are particularly interesting because they
are capable of representing all dynamical systems and all models of computation. This means that they
are as powerful (in terms of what they can do) as all other dynamical and computational systems. In
addition, these systems also typically embody adaptive mechanisms. That means they are capable of
changing over time to suit a particular task. In particular, the systems incorporate algorithms that allow
them to be trained to match a dataset of example behavior. Furthermore, they are able to both interpolate
and extrapolate. This means that they can perform well, not only on the data that was used to train the
system, but also on other data that has never been seen. In short, regularization can serve to address data
points beyond those available during the adaptation process and SCNs are thus able to generalize to novel
situations.

The chapter is organized as follows. In Section 22.2, we begin with a brief exposition of connectionist
(also called neural) networks, the basic model underlying all SCNs. We also examine the role of SCNs
within this paradigm. We follow this, in Section 22.3, with a generalized and comprehensive SCN model
to formalize the definition of SCNs and also present some specific examples popularized in the literature.
Then, in Section 22.4, we examine the representational power of this class of dynamical systems. Next, in
Section 22.5, we address the issue of adapting SCNs including a discussion of the challenges involved in
this type of inference. In Section 22.6, we present a brief survey of some applications to which SCNs have
been applied. Finally, in Section 22.7 we give some concluding remarks and avenues for future research.
Throughout the chapter, we present references to the source literature so that the reader can follow up
with a more extensive examination of the materials.

22-1
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22.2 Connectionist Networks (CNs)

Computer models of how neurons in the brain process information date back to the 1940s (McCulloch
and Pitts, 1943). More recently these models have been used for two different (though not necessarily
exclusive) purposes: either (1) to provide a model of brain function designed to correlate with actual
brain behavior (in other words, to model real brains) or (2) to provide a computational architecture for
systems designed to mimic intelligent behavior (or, to build “artificial intelligence”). While biologists and
neuroscientists typically focus on the former goal, cognitive scientists, computer scientists, and engineers
usually focus on the latter.
In an attempt to build a computational system designed to exhibit intelligent behavior, a number of
models have been developed. These models focus on analog computation, parallel implementation
and distributed information representation and processing. This means that they process real-valued
(continuous) numbers as opposed to the binary representations common in most computer systems.
They also process multiple streams of information in parallel and store pieces of information, not just
in one location, but spread across many venues. We shall refer to these models as CNs as this reflects
their essential character though the terms artificial neural networks, PDP systems, and others are also in
popular use.

22.2.1 Basic Approach
The key to CNs as a computational paradigm is their difference from the typical von Neumann architecture.
Specifically, CNs consist of many small and simple processing elements (PEs) that have an internal state
and communicate with each other through connections to achieve complex tasks. The basic operation of
a PE can be summarized by the following equation:

ai = f
(∑

j

wij · aj

)
(22.1)

where, ai represents the state or activation of PE i, f () is a transfer function, j an index over all PEs
connected to PE i, wij the weight of the connection from j to i, and aj the activation value of PE j. The
transfer function is typically a sigmoid function such as tanh or the logistic: 1/(1 + e−x). Basically, we
compute a weighted average of the activations of units aj and then feed the average to an s-shaped transfer
function, which limits the output of each process into the range from zero to one.

To prevent circular definitions of the activation (where an activation directly or indirectly depends on
itself), we enforce a specific constraint. This constraint says that the nodes in the network must be ordered,
and that no higher-ordered node can connect to any lower-ordered node, i.e., we requiring that wji = 0
∀j ≤ i. In mathematical terms, this ensures that the connectivity is limited to a directed acyclic graph (i.e.,
connections have a direction and there are no loops).

In practice, connection schemes more restrictive than directed acyclic graphs are implemented in the
form of layered architectures. That is, the PEs of the CN are organized into layers with connections only
existing between successive layers. Input information to the CN is encoded in a special layer (usually
called the input layer) that has its activation values explicitly set rather than obeying Eq. 22.1 like layers
of PEs. Also one special element in the network, called a bias, has its activation permanently set to a
value of 1. This provides a zero-offset to the summation in Eq. 22.1. Without this offset every hidden
unit would produce a value of 0.5 whenever the input values are all zeros. The inclusion of the bias with
a trainable weight makes it possible to generate any activation in the hidden units when the inputs are
all zero.

By far the most common connectionist network consists of an input layer of elements that encode the
input information, connected to a layer of hidden (or internal) elements, connected to a layer of output
elements which provide the resulting data. In such networks, each input unit is connected to each hidden
unit and each hidden unit is connected to each output unit (see Figure 22.1).
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Input layer

Hidden layer

Output layer

FIGURE 22.1 A typical connectionist network (CN).

There are a few variations on the basic PE presented here, one of the more notable of which is the
use of second-order connections replace the linear summation in Eq. 22.1 by a quadratic (Giles and
Maxwell, 1987):

ai = f
(∑

j,k

wkji · ak · aj

)
(22.2)

Because this equation multiplies two activations together, it can be viewed as a generalization of the AND
function in the sense that input activations of 0 and 1 elicit responses of 0 and 1 that are consistent with
the Boolean AND function.

22.2.2 Function Approximation
Another way to view a CN is as a continuous function, mapping from input data to output data. Since both
input and output data are expressed as real-valued activation values of PEs, the operation can be expressed
as a function mapping a vector in the n-dimensional input space to a vector in the m-dimensional output
space: �n → �m. Under this formulation, it is natural to ask, “for a given network architecture (defined
by connectivity scheme), what is the class of vector functions that can be implemented”?

It turns out that simple networks of PEs are surprisingly powerful. For example, simple CNs with a
single layer of PEs between an input and an output layer are universal function approximators (Hornik
et al., 1989). This speaks to the computational versatility of this approach and suggests that more elaborate
connection schemes, PEs, are not necessary.

22.2.3 Learning
One of the most exciting features of CNs is that many define an adaptation mechanism in addition to their
computational specification. These are typically referred to as learning algorithms. Such algorithms can be
broadly classified into two categories: (1) unsupervised and (2) supervised. Adaptation in unsupervised
learning algorithms is based solely on their input data and typically performs tasks such as clustering,
nearest neighbor identification, and data completion. In contrast, supervised learning algorithms rely on
an external mechanism to provide additional information about the desired output values. Often the exact
output vector for each input vector is provided. (One other alternative, that of semisupervised training
methods, has recently received some attention in the CN paradigm, but has thus far not had much influence
in the spatio-temporal versions we will discuss below.)

By far the most common learning algorithms for CNs are based on approaches that compute an error
gradient in weight space. By defining the error as the Euclidean difference between target, �a∗, and actual,
�a, output vectors,

E = |�a∗ − �a| (22.3)
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and defining the error gradient based on that,

∇ijE = ∂E

∂wij
(22.4)

It is possible to use a simple steepest descent algorithm to find a local minimum:

�wij = −η∇ijE (22.5)

where η is a scaling constant. The gradient in this equation can be computed by a simple equation

�wij = −η
∂E

∂neti
aj (22.6)

where

∂E

∂neti
=

{
ai(1 − ai)(a∗

i − ai) if i is an output element
ai(1 − ai)

∑
k wki

∂E
∂netk

otherwise
(22.7)

This technique (proposed by Werbos [1994] and popularized by Rumelhart et al. [1986]) will lead the
CN to adopt a weight configuration that represents a local minimum in the error space, E. While many
theoretical approaches to finding global optima instead of local ones have been proposed, in practice, most
applications rely on restarting the system with a different set of random initial weights (i.e., a different
starting point in the weight space) as a simple method to avoid local minima.

22.3 Spatio-Temporal Connectionist Networks

SCNs are CNs with a temporal delay associated with their connections and therefore no need of restrictions
on cyclical connectivity. By using the activation values of PEs at one time step to compute the activation
values of PEs at another step, a form of feedback is created that makes SCNs dynamical systems. With
proper connectivity, the feedback can be used to serve as an internal memory of old states and inputs, to
induce oscillatory activation patterns, and even implement chaotic dynamics. In fact, by the same approach
that allows CNs to serve as universal function approximators, SCNs can be universal dynamical systems.

22.3.1 Basic Approach
The operation of an individual PE in an SCN can be summarized by the following general equation:

ai(t) = f

⎛
⎝∑

j

∫ t

t ′=0
wij(t ′) · aj(t − t ′)dt ′

⎞
⎠ (22.8)

where ai(t) represents the activation of PE i at time t , f () is a transfer function, j an index over the PEs
connecting to i, t ′ a variable integrated over time from t ′ = 0 to t ′ = t , wij(t ′) a function giving the weight
of influence of the activation of element j as a function of time, and aj(t − t ′) the activation of element j at
time t − t ′. Note that this equation replaces the simple weight in Eq. 22.1 with a temporal weight kernel.

In most applications, time is assumed to be sampled at discrete unit time intervals so the integration in
Eq. 22.8 can be replaced by a summation. In other words, we implement a discrete time simulation of a
continuous time model with synchronous updates. Further, while there have been a number of studies of
varying weight kernels (see, e.g., Mozer, 1994), most SCNs rely on the simplest of kernels: an impulse of
delay 1. In this popular, degenerate case

ai(t) = f
(∑

j

wij · aj(t − 1)
)

(22.9)
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FIGURE 22.2 The most popular SCNs. (a) Elman network (From Elman, J. L. (1990). Cognitive Science 14, 179–211;
Elman, J. L. (1991). Machine Learning 7(2/3), 195–226.) (b) Williams and Zipser network (From Williams, R. J. and
D. Zipser (1989). Neural Computation 1(2), 270–280.) (c) Giles et al. network.

22.3.2 Specific Architectures
A number of specific architectures have been proposed and, as in the acyclic CN, they are organized into
layers. Owing to the cyclical nature of the connections in SCNs, it is useful to illustrate them by showing
the same layer at a given time step and also at a previous time step. By convention, the layer’s previous
time step is referred to as a context layer. The context layer is a virtual layer that does not involve any
computation and merely serves to better illustrate the operation of the network. Some of the most popular
SCN architectures are: the Elman network, the Williams and Zipser network, and the Giles et al. network.

22.3.2.1 Elman

In the Elman network (Elman, 1990, 1991), Figure 22.2(a), an input layer is connected to a hidden layer
which in turn is connected to an output layer. A virtual context layer is really the hidden layer at the
previous time step. The context layer also connects to the hidden layer, providing a simple feedback loop
from the activation vector of the hidden layer at the previous time step to the current activation vector of
the hidden layer.

22.3.2.2 Williams and Zipser

In the Williams and Zipser network (Williams and Zipser, 1989), Figure 22.2(b), the input layer is
directly connected to all activation computing PEs, which in turn have time-delayed connections back
to themselves. A subset of the PEs are used to represent the output of the network.

22.3.2.3 Giles et al.

In the Giles et al. network (Giles et al., 1990), second-order multiplicative elements are used. Thus,
the activation of each PE is computed based on a sum of products. Each product is computed by
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multiplying the activation value of a PE with the activation value of an input element. Thus, the governing
equation is

ai(t) = f
(∑

j,k

wijk · aj(t − 1) · ak

)
(22.10)

where j represents an input element and k a regular PE.

22.3.2.4 Other Architectures

A plethora of other architectures and variants on these three approaches have been developed, but a
comprehensive survey is beyond the scope of this chapter. Interested readers are referred to Kremer (2001)
and Barreto et al. (2003).

22.4 Representational Power

One issue of particular interest to researchers working with SCNs has been an examination of their
computational power and their representation ability relative to other systems previously studied. The
question asked is: as a class of systems, what can SCNs do? It is easiest to formulate an answer to this question
in the context of other systems and two spring immediately to mind: (1) formal models of computation
and (2) dynamical systems. The former are used to model digital computers and include finite-state
automata, pushdown automata, Turing machines, and similar mathematical models of computers and
their programs. The latter are generalized mathematical models involving time.

The computational power of SCNs has been extensively studied. The paradigm is inherently capable of
universal dynamical system approximation (by a trivial corollary of the universal function approximation
capability of CNs). This means that since CNs can implement any mathematical function, SCNs can also
implement any dynamical system that can be specified mathematically to an arbitrarily close approxi-
mation. Beyond this, much focus has been placed on comparisons of specific SCN models with formal
models of computation. These formal models rely on discrete input symbols. By encoding these inputs to
vectors, SCNs can be applied to the same classes of models as finite-state automata, pushdown automata,
and Turing machines.

Not surprisingly (given the universal dynamical system approximation), it can be shown that SCNs
can exhibit the same or superior computational powers to their conventional counterparts. For example,
Kremer (1995) shows that Elman networks are capable of implementing arbitrary finite-state automata,
Wiles et al. (2001) prove that SCNs are capable of implementing pushdown automata models in their
internal dynamics, and Siegelmann (2001) showed that not only can Turing machines be represented but
they also may even be able to compute more efficiently when implemented in these continuous dynamical
systems thus exhibiting super-Turing capabilities (though the existence of hypercomputation in itself is
debatable).

A particularly interesting approach to relating SCN power to the conventional spectrum of computa-
tional formalisms is that of Giles et al. (1990). The Giles network is designed in such a way that the weights
between the products of input/context elements and subsequent PEs correspond exactly to transitions in a
traditional finite-state automaton. This correspondence allows the authors to naturally encode finite-state
automata into these networks (Giles and Omlin, 1992) an even extract automata from trained SCNs (Giles
et al., 1992). The extraction of automata from SCNs is somewhat controversial, however, and some have
argued that the effort is futile (Kolen, 1994).

22.5 Learning

The impressive representational powers of SCNs gives confidence in their use on a broad range of applica-
tions. This leads one naturally to consider the matter of learning. For this, we are typically interested in map-
ping, not one vector (like in CNs), but rather a sequence of input vectors presented at each time step into not
one vector but rather a sequence of output vectors. Thus, the system is trained to act as a vector-sequence to
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FIGURE 22.3 Unfolding an SCN.

vector-sequence mapping system. In this case, we define the output error as an error over the output vectors
over time (usually summing the error values of the output over all the time steps). It turns out that com-
puting error derivatives in the weight space of an SCN is a simple extension of the CN training algorithm.

One of the simplest methods for computing such derivatives involves unrolling a network in time using
the context element trick over and over again to trace activation dynamics back to the very first time step. For
example, consider the Elman network in Figure 22.3(a). We can unfold this network for four time steps to
produce the unfolded network shown in Figure 22.3(b). In the resulting network, the connections from hid-
den to context and input to hidden at all levels of unfolding are identical. Thus, the chain rule for derivatives
allows the weight changes to each virtual set of connections to be summed to compute the gradient.

�wij = −η
∑

t

∂E

∂neti(t + 1)
aj(t) (22.11)



22-8 Handbook of Dynamic System Modeling

where

∂E

∂neti(t + 1)
=

{
ai(t + 1)(1 − ai(t + 1))(a∗

i (t + 1) − ai(t + 1)) if i is an output element
ai(t + 1)(1 − ai(t + 1))

∑
k wki

∂E
∂netk(t+2) otherwise

(22.12)

This method is a quick way of computing the error gradient in weight space, but requires memory to store
all the successive activation values and partial derivatives in the unfolded network. This implies a memory
requirement in the order of the number of time steps.

Interestingly, Elman himself does not unroll the network in the way described. Instead, he uses a
truncated version of gradient descent that ends the gradient computation at the virtual context layer.
This effectively results in an approximation to the gradient, which ignores distal effects in favor of more
proximal ones. This algorithm uses a fixed amount of memory and greatly reduces the computational time
since only one step of backpropagation needs to be performed.

Williams and Zipser (1989) propose an alternative approach to gradient computation where memory
usage is constant, but the computational time increases by a factor proportional to the number of PEs.
Another algorithm (Schmidhuber, 1992) combines the unrolling approach with that of Williams and
Zipser to get the best of both worlds. Some interesting dynamical systems can be induced using these
methods, for an extensive set of examples, the reader is referred to Pearlmutter (2001).

Unfortunately, however, the story does not end there. It turns out that computing the gradient is not an
effective method for training SCNs. Specifically, for problems where information must be retained for long
time periods, gradient approaches break down. Consider a problem where a network must remember the
first bit in a long binary sequence. To store this bit, the information must be effectively latched within the
PEs of the network. This requires the system to adopt a stable dynamic. Such a dynamic, however, requires
the PEs to operate in the flat outer regions of the transfer function f (). But, in these flat outer regions
the error gradient approaches zero. As a consequence, when an SCN faces a problem requiring the stable
storage of information over long-time periods, it typically is unable to learn such behavior because the
closer the PEs come to stable operation, the slower the learning gets and shorter-term effects dominate the
training process. This phenomenon is known as the shrinking gradients problem (Hochreiter et al., 2001).

Interestingly, this limitation was not discovered for some time and these networks were applied to
a number of problems without this limitation ever becoming apparent. The reason for this is that the
limitation described here, while mathematically significant, does not occur in many problems to which
these networks are typically applied. In fact, many of the models of human language actually benefit from
such a limitation as it can help to describe the limitations of human performance in comparison to formal
grammar models.

Nonetheless, a number of remedies have been suggested to the shrinking gradients problem. These
include the long short-term memory network (Hochreiter and Schmidhuber, 1997) and other training
algorithms (Palmer and Kremer, 2005). The long short-term memory approach relies on the use of
linear memory elements fed by gating elements to ensure that gradients do not deteriorate to zero. The
linear activation function guarantees that gradients do not deteriorate, while the gating elements ensure a
nonlinear dynamics which would limit the operation of the system to linearly separable problems only.

22.6 Applications

A number of applications of SCNs have been proposed and developed. For example, in Prokhorov et al.
(2001), an SCN is presented as a general purpose controller. This controller is applied to a plant that is a
third-order system with two inputs and two outputs, and to the problem of financial portfolio optimization.

Tabor (2001) has shown that the domain of linguistics can be tackled by an adaptive SCN. Specifically, he
uses dynamical systems theory embodied in the SCN to provide effective formal models of structures in nat-
ural languages. His work provides empirically reproducible predictions of human language performance.
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Bakker and Schmidhuber (2004) used SCNs to implement learning and subgoal discovery in robots.
This work applies to problems such as robot soccer and other tasks, where machines must dynamically
adapt strategies to a changing environment.

Eck and Schmidhuber (2002) applied SCNs to learning long-term structure in music. This can be
applied to both analysis and composition.

22.7 Conclusion

In this chapter, we have seen how spatio-temporal connectionist networks are a type of dynamical system.
These models are loosely based on abstractions of neuronal processing and typically incorporate a learning
mechanism. It is easy to extol the inherent computational capabilities of these systems, as they can be proven
to be just as powerful as the best digital computers, capable of computing anything that is computable
by a Turing machine (the formal definition of computable) and capable or representing any dynamical
system to an arbitrary degree of precision. There are a number of learning algorithms proposed for these
systems. The simplest of these suffer from an interesting limitation called the shrinking gradients problem.
This problem identifies a mathematical limitation to what can be learned, but does not always apply to
practical problems. A few solutions to the shrinking gradients have been recently proposed. SCNs have
been successfully applied to a number of interesting real-world problems.
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23.1 Introduction

Events are any potential change in the state of a dynamic system. Event relationship graphs (ERGs)
explicitly model the ways in which one system event may cause another system event to occur. The cause
and effect relationships between events modeled in an ERG, along with simple rules for execution and
initial conditions, completely specify all possible sample paths (state trajectories) of a dynamic system
model. Continuous dynamics systems have been modeled as ERGs, but they are most commonly used
to model discrete-event system dynamics. The ERG for a queueing system is typically a system of simple
difference equations analogous to a system of differential equations used in modeling continuous time
system dynamics. ERGs are completely general in that any dynamic system can be modeled as an ERG
(Savage et al, 2005). They are easy to develop and understand and facilitate the design of efficient simulation
models. ERGs also have analytical representations that aid in systems analysis, specifically when the
potential system trajectories for ERG model are represented as the solutions to mathematical optimization
problems.

23-1
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23.2 Background and Definitions1

23.2.1 Discrete-Event Systems and Models
It will be sufficient for our purposes to define a“system”as a collection of entities that interact with a common
purpose according to sets of laws and policies. A system may already exist, or it may be hypothetical or pro-
posed. Here, we intentionally do not define a system by the specific elements in it or its boundaries. Rather,
we define a system by its purpose. Thus, we speak of a communications system, a health care system, and a
production system. Using a functional definition of a system helps avoid thinking of a system as having a
preconceived structure. Consequently, a system is viewed in terms of how it ought to function rather than
how it currently functions. To design better systems it is important to think beyond the status quo.

The “entities” making up the system may be either physical or mathematical. A physical entity might
be a patient in a hospital or a part in a factory; a mathematical entity might be a variable in an equation.
When developing models of queueing systems, it is often useful to classify entities as being either resident
entities or transient entities. Resident entities remain part of the system for long intervals of time, whereas
transient entities enter into and depart from the system with relative frequency. In a factory, a resident
entity might be a machine; a transient entity might be a job or a part. Depending on the level of detail
desired, a factory worker might be regarded as a transient entity in one model and a resident entity in
another. The states of resident entities can often be modeled sufficiently on a computer using simple
fixed-dimension integer arrays, while transient entities often require creating and maintaining dynamic
records or objects. Entities are described by their characteristics (referred to here as attributes). Attributes
can be quantitative (represented in a computer by numeric codes) or qualitative. Moreover, they can be
static and never change (the speed of a machine), or they can be dynamic and change over time (the length
of a waiting line). Dynamic attributes can further be classified as deterministic or stochastic depending on
whether the changes in their values can be predicted with certainty or not.

The rules that govern the interaction of entities in a system that are not under our control are called
“laws.” Similar laws are grouped in families, members of which are distinguished by parameters. Rules that
are under our control are called “policies”; a family of similar policies may be distinguished by the values
of their factors.

We will define a model simply as a system used as a surrogate for studying another system. In this chapter,
when we use the word system, without qualification, we are referring to a real or hypothetical system that is
the subject of a modeling analysis or simulation study. In typical computer simulation models, systems of
mathematical equations and computational objects are used as a surrogate for a real or proposed system
of physical entities.

The state of a system is a complete description of the system and includes values of all attributes of
entities, parameters of laws, factors for its policies, time, and what might be known about the future.
The state space is the set of all possible system states. A process is an indexed sequence of system states;
typically, the index is time, but it might be the index of jobs in a queueing system or some other system
characteristic.

A discrete-event model of a dynamic system is one where the state of the system changes at particular
instants of time. Examples include queueing system models where a job arriving or leaving the system is
a discrete change in the system state. Changes in the system state for a discrete-event system are called
events. In a production system, for example, events might include the following:

1. Completion of a machining operation; such an event might be called “finish” and the state of the
machine involved would change from “busy” to “idle.”

2. Failure of a machine; a “failure” event would change the machine state to “broken.”
3. Arrival of a repair crew; an event called, say, “start_repair” where the machine state would change

to “under_repair.”

1 Source: Figures, examples, and model descriptions in this chapter are adapted from Schruben, D. L. and
L. W. Schruben, Event Relationship Graph Modeling Using SIGMA. ©Custom Simulations, used with permission.
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4. Arrival of a part at a machining center; this “arrival” event would, if an appropriate machine were
idle and in good working condition, immediately cause another event, a “start_processing” event
where the machine will again become “busy.”

The ability to identify and abstract system events in a discrete-event model are important skills that
take practice to acquire. The following simple steps identify system events: first, identify all the dynamic
attributes of the system entities; then, identify the circumstances (state conditions and/or time delays) that
may cause the values of these attributes to change. These circumstances are the system events and they will
in turn schedule or cancel other system events.

23.2.2 Discrete-Event System Simulations
We model (verb) the dynamic behavior of a discrete-event system by describing the events and the rela-
tionships between these events. When we use the word model (noun), without qualification, we will be
referring to a graphical description of a system called an ERG. Simulations will refer to computer programs
developed from ERGs. Simulations will be our methodology for studying the model.

The building blocks of a discrete-event simulation program are event procedures. Each event procedure
makes appropriate changes in the state of the system and, perhaps, may schedule a sequence of further
events to occur. Event procedures might also cancel previously scheduled events. An example of event
canceling might occur when a busy computer breaks down. End-of-job events that might have been
scheduled to occur in the future must now be canceled (these jobs will not end in the normal manner as
originally expected).

The event procedures describing the state changes in a discrete-event system simulation are executed
by a main control program that operates on a master appointment list of scheduled events. This list is
called the pending events list and contains all of the events that are scheduled to occur in the future. The
main control program will advance the simulated time to the time for the next scheduled event. The
corresponding event procedure is executed, typically changing the system state and perhaps scheduling
or canceling further events. Once this event procedure has finished executing, the event is removed from
the future events list. Then the control program will again advance time to the next scheduled event and
execute the corresponding event procedure. The simulation operates in this way, successively calling and
executing the next scheduled event procedure until some condition for stopping the simulation run is met.
The operation of the main simulation event scheduling and execution loop is shown in Figure 23.1.

23.2.3 The Basic Event Relationship Graph Modeling Element
ERGs are a way of explicitly expressing all the relationships between events in a discrete-event dynamic
system model. Some early references include Schruben (1983), Sargent (1988), Som and Sargent (1990),
and Wu and Chung (1991). ERG models of discrete-event system dynamics have been presented in many
textbooks on simulation, stochastic processes, and manufacturing systems engineering (Pegden, 1986;
Hoover and Perry, 1990; Law and Kelton, 2000; Askin and Standridge, 1993; Nelson, 1995; Seila et al., 2003).

The three elements of a discrete-event system model are the state variables, the events that change the
values of these state variables, and the relationships between the events (one event causing another to
occur, or preventing it from occurring). An ERG organizes sets of these three objects into a simulation
model. In the graph, events are represented as nodes (circles) and the relationships between events are
represented as arcs (arrows) connecting pairs of event nodes. The basic unit of an ERG is an arc connecting
two nodes. Suppose the arc represented in Figure 23.2 is part of an ERG.

We interpret the arc between A and B as follows: whenever event A occurs, it might cause event B to occur.
Arcs between event nodes are labeled with the conditions under which one event will cause another event
to occur, perhaps after a time delay. The state changes associated with each event are in braces next to the
event node.

ERGs may look similar to flow graphs, but they are very different. While one might sometimes think of
these graphs as modeling the flow of, say jobs, through a queueing system network, these graphs are actually
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FIGURE 23.1 Main discrete-event execution algorithm.
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FIGURE 23.3 Event relationship graph for a single server queue.

modeling the scheduling and canceling causal relationships between pairs of events that may change the
state of a system entity. Limiting the interpretation of ERGs to flow processes can lead to errors or model
inefficiencies. ERGs are related to state machines or state transition diagrams much like a derivative is
related to a function. In a state machine or transition diagram, each node represents the value of a state;
in an ERG, each node represents a change in state.

Using this notation, we can build a model that simulates a simple waiting line with one server (e.g.,
a ticket booth at a theater and the drive-in window at a fast-food restaurant). An ERG for this system is
represented in Figure 23.3.

We will begin our examination of this graph by discussing each node. The RUN node models the
initialization of the simulation, the ENTER node models the event when a new job enters the system, the
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START node models the start of service event, and the LEAVE node models the end of service when a job
will leave the system. The state variables chosen to describe this system are

SERVER = the status of the server (busy, idle), initially set idle

QUEUE = the number of jobs waiting in line, initially set equal to zero

To make our model more readable, we also define the constants IDLE=1 and BUSY=0.
Next, we will focus on the changes in the state variables shown in braces. The simulation RUN is started

by making the server available for use {IDLE=1, BUSY=0, SERVER=IDLE}. (Instead of using an initial
event, the initially scheduled events are indicated by a broken arrows in the ERGs in Law and Kelton [2000].)
Each time a job ENTERs the line, the length of the waiting line is incremented {QUEUE=QUEUE+1}.
When service STARTs, the server is made busy {SERVER=BUSY} and the length of the line is decremented
{QUEUE=QUEUE−1}. Whenever a job has been finished and LEAVEs the system, and the server is again
made available {SERVER=IDLE} to serve other jobs.

The dynamics of an ERG model are captured in the arcs of the graph. We read an ERG simply by
describing the arcs exiting each node (out-arcs). In-arcs take care of themselves. Continuing with our
example, we look at each arc in Figure 23.3 (event names are in italics).

The simulation run is started by having the first job enter the system (arc from run to enter). If the
entering job finds the server idle, service will start immediately (arc from enter to start). Each time a
job enters the system, the next job will be scheduled to enter sometime in the future (arc from enter
to enter). The start service event will always schedule a job to LEAVE after that job has been served
(arc from start to leave). Finally, if there are jobs waiting in line when a job leaves, the server will start
servicing the next job right away (arc from leave to start).

The self-scheduling arc (the loop) on the ENTER event is the conventional way of perpetuating successive
customer arrivals to the system. There will typically be some random time delay between customer arrivals.

The state changes for an event node for a queueing system are typically very simple. Most of the action
occurs on the arcs of the graph. The conditions and delays associated with the arcs of the ERG are very
important; it is on the graph arcs that the logical flow and dynamic behavior of the model are defined. For
each arc in the graph we will need to define under what conditions and after how long one event might
schedule another event to occur.

To make the event relationships explicit, we label each arc with the conditions that must be true for an
event to be scheduled. Also associated with each arc will be a label that is the delay time equal to the inter-
val until the scheduled event occurs. Time will be measured in minutes for our examples. In Figure 23.4,
the basic ERG is enriched to include arc conditions and arc delay times using the notation of Askin and
Standridge (1993).

This arc is interpreted as follows: if and only if condition (i) is true right after event A occurs, then event B
will be scheduled to occur t minutes later. If the condition is not true, nothing will happen, and the arc can be
ignored until the next time event A occurs. Arcs are stochastic: an arc does not exist unless its condition is
true. If the condition for an arc is always true, the condition label is left off the graph. We will call arcs with
conditions that are always true unconditional arcs. Zero time delays for arcs are also not labeled on the graph.

Our queueing system model with arc conditions and delay times is shown in Figure 23.5.
The state variables SERVER and QUEUE are now denoted by R and Q, respectively, and the status of S

is indicated by 1 or 0 (1 if the server is idle and 0 if busy ). In addition, the time between successive job
arrivals (often random) is denoted by ta and the service time required to process a job is denoted by ts.

BA

t

/

(i )

FIGURE 23.4 Event relationship arc with condition (i) and delay t .
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FIGURE 23.6 Verbal event relationship graph for a single server queue.

When values of ta are actually needed, they might be obtained from a data file or generated by random
variable generation algorithms. The graph in Figure 23.5 represents a well-defined dynamic model. To
simulate this model, only the starting and ending boundary conditions for the run need to be specified.

23.2.4 Verbal Event Graphs
Before designing a simulation model, it is important to first develop a verbal description of the system
dynamics. This can be done using a verbal ERG. This description would include state changes associated
with each node along with a verbal description of each arc condition and delay time on the graph. A verbal
ERG for a generic single server queueing system is shown in Figure 23.6.

Developing a verbal description of a system is a reasonable first step toward building a realistic and
accurate simulation model. It will help to conceptualize the major components in the system, determine
the key events and their interrelationships, and identify the state variables, arc conditions, and time delays
necessary for the model. It is easy to determine if a variable is required to define the state of a system: the
state variables needed for an ERG are those that permit testing all arc conditions in a verbal ERG. Once a
detailed verbal description has been developed, an ERG model is easier to build.

The visual modeling power of ERGs is most appreciated after one recognizes the complicated details
involved in a discrete-event simulation. The fundamental concept in ERG modeling is to use a directed
graph as a picture of the relationships among the elements in sets of expressions characterizing the dynamics
of the system. Each node of the graph is identified with a set of expressions for the state changes that
result when the corresponding event occurs. Each arc in the graph identifies sets of logical and temporal
relationships between a pair of events.

23.2.5 Reading Event Relationship Graphs
A concise description of the dynamics of an ERG model can be obtained by paraphrasing the arc definitions
given for Figure 23.4. The description will have roughly one sentence per arc. As you read the following
description, identify a single arc in Figure 23.5 with each sentence, again event names are in italics.

At the start of the simulation run, the first job will enter the system. Successive jobs enter the system
every ta minutes. If entering jobs find that the server is available (S>0), they can start service. Once
jobs start service, ts minutes later they can leave. Whenever a job leaves, if the queue is not empty
(Q>0), the server will start with the next job.
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Now reread the above paragraph without looking at Figure 23.5. You will see that it is a concise
description of the dynamic behavior of this queueing system. A verbal system description can be read
easily from the arcs of very complicated ERGs. Simply define each arc in the graph in a sentence—the
graph itself will connect these sentences into a complete description of the system’s dynamics. This is
an excellent way to communicate the essential features of a simulation model and a good step in model
validation. With experience in reading ERGs, it becomes easier to detect modeling errors.

23.3 Enrichments to Event Relations Graphs

23.3.1 Parametric Event Relationship Graphs
One of the most powerful enrichments of ERGs is parameters for the event nodes. Using event parameters,
a basic ERG can become an element in a multiple-dimensional array of ERGs without increasing the size
or complexity of the graph. For modeling large-scale systems, such as huge networks of queues, the ERG
represents a generic element in an array of ERGs for each component of the system. The events in the ERG
are parameterized (subscripted) with the particular station in the queueing network to which it applies by
using event parameters. For this, the basic definition of an ERG is expanded to allow the values of a string
of expressions computed after an event is executed to be passed to a string of state variables when an event
is scheduled. The values of expressions are included in boxes on the arcs.

To be explicit: define a string of state variables for each event, these are actually arguments for the
state change method for an event object. The values of these parameters are computed by a string of arc
expressions called arc attributes. The definition of a parametric arc in a simulation ERG is in Figure 23.7.

This arc is read as follows: Immediately after executing the state change for Event A, the elements of an
array of expressions, k, are evaluated. Before B is executed, the array of state variables, j, are assigned the
values previously computed for k. The arc condition and delay time, if any, are defined as before. This uses
a “pass-by-value” argument passing convention like in the C and Java programming languages.

Treating event parameters as subscripts, the graph becomes an element in an array of ERGs that model
a network composed of a large number of similar systems (Chan and Schruben, 2005). For example,
Figure 23.8 is an ERG for m parallel server queues in tandem. (The state changes are omitted in Figure 23.8
since these merely increment and decrement state variables Q(k) and R(k) for station k in the obvious
fashions.) The only change to the graph structure to obtain Figure 23.8 from Figure 23.5 is an additional
arc from the Finish(k) event for station k to the Arrival(k) event for the next station, k+1 (and the arc
attributes).

The ERG in Figure 23.8 can be easily extended to model more general queueing network systems. For
example, a generic queueing network can be modeled by adding a parameter, j, to the objects in the graph
that indicates job type. The attribute, k+1, on arc from Finish(k, j) to Arrival(k, j) in the resulting ERG can
be replaced by a general routing function. Transportation resources and move times could be added using
conditions and delays on this arc. The ERG then becomes an element of a two-dimensional array (kth
station by jth job type) of ERGs. See Schruben and Schruben (2005) where a general queueing network of
arbitrary size is modeled with an ERG having only two nodes.

We conclude this section with an example of an ERG for a more complex system. This is a model of a tool
commonly found in semiconductor manufacturing called a cluster tool (a configuration of isolated process-
ing chambers served by one or more dedicated robots). In recent years, the use of cluster tools in semicon-
ductor manufacturing has increased rapidly, causing the performance of cluster tools to become more and
more important (see Perkinson et al., 1994; Chan and Schruben, 2004; Ding and Yi, 2004). The ERG for this
system is given by Figure 23.9, which is an element in an array of ERGs each of which defines the relation-
ships among events that simulate wafer j as it is processed or moved between chambers m and n by a robot.

Chamber 0 is a load lock for loading or removing wafers from the cluster tool. In Figure 23.9, f is the
next wafer on the robot’s move schedule; x(j) the current location of wafer j, y(j) its next destination,
and z the current location of the robot. The time for the robot to move from chamber n to chamber m is
denoted as tn,m and the time for chamber n to process wafer j is pj,n.
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FIGURE 23.9 An ERG model for a semiconductor cluster tool.

In the ERG of Figure 23.9, wafers move from chamber to chamber around the center rectangle in the
graph and the robot cycles between the GET and the PUT events. The events are defined as follows:
Start ( j, n) = Start processing wafer j in module n; End( j, n) = End processing wafer j in module n; Get
( j, n) = Robot gets wafer j from module n and Put ( j, n) = Robot loads wafer j into module n. The
relationships between these events are defined by their delay times and their arc conditions. Condition (i)
is true if there is a wafer ( f ) waiting to be picked up at chamber x( f ) and the destination chamber, y( f ),
has been reserved. Condition (ii) is true when the requirements to start processing job j in chamber n are
satisfied (these might include conditions such as having a full batch for a batch process). Condition (iii)
is true if the robot is idle and has no backlog of wafers waiting to be moved. Many ERG simulations of
cluster tools have been developed (Pederson and Trout, 2002). Two of the more elegant ERGs for a generic
cluster tool, both modeled with only three events, are in Nehme and Pierce (1994) and Ding and Yi (2004).

23.3.2 Building Large and Complex Models
There is an important distinction between complicated ERG models and ERG models that are simply large.
Very large systems can merely be a large number of simple components. The ERG for such a large model
of similar components is the same as that for one of its components, but with parameter values indicating
to which components a particular event applies. Complex models, however, have different types of ERG
components, each of which might be quite complicated.

In this section, a moderately complex component is used to illustrate how ERGs can be developed and
enriched into a large system of such components. We start off using the graph in Figure 23.5 to model a



Modeling Causality with Event Relationship Graphs 23-9

RUN 
(C, b, B, S )

ta

{R�R�1; 
Q�Q�max(Q;B );}

{R�R�1;}

LEAVESTART

(Q�b)

ts
ENTER

{Q�Q�(Q�C);}

(R�0&&Q�b)

/

/

{R�S;}

/

FIGURE 23.10 ERG for queue with s servers, capacity c, and batch size between b and b.

system with S identical servers, a queue capacity of C, and a flexible batch size between b and B. A batch of
at least b jobs is required and at most B jobs can be processed together in a batch. The ERG for this system
is given in Figure 23.10. Boolean variables (conditional expressions that equal 1 if true and 0 if false) are
used. For example, the state change Q=Q+(Q<C) will increment Q by 1 if and only if the expression
(Q<C) is true, modeling a queue with capacity C.

Reading the arcs of this graph as before (the event node names are in italics).

A simulation run starts by setting the number of idle servers equal to S and the first job enters the
system. Jobs enter at the system every ta time units, but join the queue only if the Q size is less than
the capacity C. When new jobs enter, if they find an idle server and the minimum batch size of jobs
is waiting, then a batch of at most B jobs will start service. After a service time of tb the batch of jobs
will leave the system. When a batch of jobs leaves, if a minimum batch of b jobs is now waiting, the
server will start on the next batch of jobs.

The arc from ENTER to START is tested every time a new job enters the system regardless of whether there
is room in the queue for it to join or not. This does not cause any logical problems since the conditions
for the START event must still be satisfied.

The ERG model in Figure 23.10 can be used as the fundamental element in an array of ERGs to model
an arbitrarily large network of queues with different job types, each with a different routing among many
different server types. This is done by attaching four parameters to each event and arc in Figure 23.10 that
indicate the job type involved in an event, the step in that job’s route, the server type, and the batch size
being processed. The only structural change in the graph is a single additional arc from LEAVE to ENTER
so batches of jobs can go from one server type on their routes to the next. This arc will cause a LEAVE (job,
step, server, batch) event to schedule an ENTER (job, step, server, batch) node with attribute values given
by the expressions: job, route (job, step+1), step+1, batch. Here route(job, step) is a function that specifies
the server type for the next step on the route of a job. Complicated batching rules (jobs processed only in
batches with certain other types of jobs) can be modeled with the same graph structure; the state changes
and arc conditions can become as complex as necessary. Modeling resource failures or assembly operations
also does not require the graph structure to change (see Schruben and Schruben, 2005 for examples).

23.3.3 Variations of Event Relationship Graphs
Specializations of ERGs include resource cycle graphs (RCG) for simulating queueing networks (Hyden
et al., 2001). In an RCG, the state variables are all integer arrays and the resource state changes associ-
ated with every event are expressed as one or more integer difference equations. Simulating these models
involves increasing and decreasing the values of elements in the state arrays when specific events occur
(e.g., the number of idle servers of a particular class would decrease whenever a start_service event occurs
for this class). ERG modeling of such systems has certain advantages in terms of simplicity and efficiency in
simulation (Schruben and Schruben, 2005). For example, a simulated RCG for an actually semiconductor
factory ran orders of magnitude faster than the most popular commercial simulator (Schruben and
Roeder, 2003).
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Object-oriented ERGs (called listening event graph objects, LEGOs) have been developed by Buss and
Sanchez (2002). LEGO is a public domain collection of powerful Java applets for modeling general system
objects.

Qualitative ERGs have been developed for the analysis of qualitative decisions (Ingalls, et al., 2000).
These ERGs capture the relationships between various qualitative variables, modeling uncertainty using
ranges rather than distributions and get sensitivities to various aspects of a problem. Qualitative ERGs
have been applied to project management simulations where there are many unknowns that cannot easily
be quantified.

23.4 Relationships to Other Discrete-Event System Modeling
Methods

23.4.1 Stochastic Timed Petri Nets
In Schruben and Yucesan (1994), a method for representing a general stochastic timed Petri net (STPN)
model as an ERG is presented. Basically, the nodes in a Petri net become arcs in an ERG. It has been
shown that ERGs have equivalent representations using only zero-delay conditional arcs and nonzero
delay unconditional arcs (Yucesan and Schruben, 1992; Schruben and Yucesan, 1994). These two classes of
arcs are referred to here simply as conditional and timed arcs. Timed stochastic Petri nets can be mapped
directly into ERGs by representing the transition nodes in a Petri net as timed arcs in an ERG and the place
nodes in a Petri net as conditional arcs in an ERG.

Using the method for eliminating redundant events in Som and Sargent (1990), the resulting ERG
can determine the smallest number of essential events that captures the Petri net dynamics for efficient
simulation and analysis. ERGs are more general than Petri nets, so the reverse mapping of ERGs into
STPNs is not possible without additional restrictions.

A Petri net is a directed graph with two classes of vertices, places (balls), and transitions (bars). The
graph is bipartite, meaning that no two vertices in the same class are adjacent, places are connected only
to transitions and transitions are connected only to places. The state of the system is represented by a
marking of tokens in each place. The number of tokens at a place typically represents the value of some
associated state variable.

The dynamics of the STPN are modeled by a transition firing rule. For convenience in coding a simula-
tion, we separate state transitions into two sequential operations. A transition first becomes enabled when
all of its input places are marked with at least a single token. Enabling a transition involves removing a
single token from each of its input places. Next, after a delay associated with the transition, the transition
fires, depositing a token in each of its output places. There is no restriction on the conservation of the total
number of tokens. Note that we remove tokens from input places when a transition is enabled and then
we deposit tokens when the transition fires as done in Fishwick (1995) rather than removing tokens when
a transition is fired as is more common. Removing tokens when transitions are enabled often results in a
simpler dynamic model. One can think of a token as residing in a transition while it is active. If the STPN
is simulated, the number of tokens in a transition is the number of firing “events” for this transition that
are currently scheduled to occur on the pending events list.

An STPN model for the multiple server queue is given in Figure 23.11.
In Figure 23.11, the number of idle servers is the number of tokens in place, R, and the number of jobs

in queue is the marking of the place, Q. The marking shown is the initial marking for a system with three
identical servers. The time between job arrivals is ta and the time for service of a job is ts.

Next we consider a situation where jobs are processed in a batch of size, B; this model is in Figure 23.12.
Numerous enrichments of Petri net have been suggested for modeling dynamic systems. One we will use
in Figure 23.12 is a token count which is a number placed on an arc with the number of tokens that are to
be removed on enabling a transition or deposited on firing (if different from one).

A slight modification of the system in Figure 23.12, where there is a minimum batch size, b, and
maximum batch size, B, probably cannot be represented as a general STPN where the STPN remains the
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FIGURE 23.12 Initial marking for an STPN for a 3-server queue with batch size of 2.

same for all ranges of batch sizes with only the initial markings to differentiate the different batch size
limits. A flexible batch size such as this for arbitrary minimum and maximum batch sizes, b and B, is
modeled easily as an ERG in Figure 23.10.

STPNs provide an intuitive methodology for visualizing the dynamics of some discrete-event systems.
Using simple tokens, STPNs graphically represent the dynamic relationships between system entities,
modeling concurrency and contention for system resources. However, STPNs can easily become unwieldy
when modeling large or complex systems. Direct simulations of such dynamic models result in codes that
are often very slow to execute. Also, a simple method for parametric Petri nets is needed before highly
redundant, large-scale systems can be modeled easily. Event graphs however can model very large and
complex systems easily.

23.4.2 Mapping Petri Nets into Event Relationship Graphs
Let P denote the set of places and T the set of transitions in the STPN. We also define

d(t) = Delay time (possibly random) for each transition t ∈ T
{Ip(t),Op(t)} = Set of input and output places for t ∈ T
{It (p),Ot (p)} = Set of all input and output transitions for p ∈ P

The algorithm for translating an STPN into an ERG is as follows:

Step 0. ∀ p ∈ P: define an integer state variable, X(p).
Step 1. ∀ t ∈ T : create two event vertices, O(t) and D(t) (denoting the origin and destination of a

transition) and an arc (O(t), D(t)) with delay d(t).
Step 2. ∀ p ∈ P with unique (It (p), Ot (p)) pair: create the arc (D(It (p)), O(Ot (p))) with the condition

that all p ∈ Ip(Ot (p)) are marked. (For inhibitor arcs, the arc condition is that the input places must
not be marked.)
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FIGURE 23.13 An STPN for a communications channel with limited packet capacity.
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FIGURE 23.14 An ERG for a tandem communications channel with limited message packet capacity.

Step 3. Add state changes:
for O(t), decrement X(p) ∀ p ∈ Ip(t);
for D(t), increment X(p) ∀ p ∈ Op(t).

Step 4. Initialize the values of state variables in the ERG to the initial markings of the STPN.

This algorithm generalizes some of the more intuitive ideas in Schruben and Yucesan (1994). The algorithm
applied to the STPN in Figure 23.11 results in the ERG in Figure 23.5 after elimination of some redundant
events needed by the Petri net (Yucesan and Schruben, 1992).

Our second example is a buffered tandem queue with limited buffer size (channel bandwidth) between
the two resources—a sending resource R1 and a receiving resource R2. Here, we model communications
blocking with limited concurrent message packet capacity B between the two resources. The STPN model
for this system is given in Figure 23.13.

Applying the translation algorithm given earlier to this model results in the ERG given in Figure 23.14.
The arc conditions in Figure 23.14 are not shown; these conditions simply require that all state variables
decremented in the arc’s destination vertex are positive. In Figure 23.14, the “++” notation from C is used:
X++ means X is incremented by 1 (X=X+1) and X−−means X is decremented by 1 (X=X−1).

ERGs are more general and typically more parsimonious than basic STPNs for modeling discrete-event
dynamic systems. Petri nets have an intuitive graphical representation of resource contention. The two
modeling paradigms are most effective when used together. Basic STPNs can be used to develop an intuitive
high-level model of resource contention for a single component. These STPNs should then be translated
to ERGs for efficient simulation. In cases where STPNs are impossibly cumbersome, parametric ERGs can
be very compact and effective in capturing the system dynamics.
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FIGURE 23.15 Batch processing with parallel resources (b, batch size; r, idle resources; ts service times; ta, interarrival
times).

23.4.3 Process Interaction Flows
It is easy to model process flows by considering the subgraph of an ERG that models the action of a
resource (e.g., the START and LEAVE nodes in Figure 23.5) as a single “process” node. When these nodes
are combined into a single node then the ERG becomes a flow graph for modeling transient entity flows.

23.4.4 Generalized Semi-Markov Processes
A Generalized semi-Markov Processes (GSMP) is a mathematical construction, consisting of sets of events,
event clocks, and states for modeling discrete-event dynamic systems. GSMPs have been used extensively to
prove various mathematical properties of models and analysis methodologies. GSMPs are not general, but
the class of systems they model is large and includes many interesting systems. However, GSMPs are abstract
and provide very little insight into the systems being modeled. Like Petri nets, GSMPs can be mapped into
ERGs using the algorithm in Schruben and Savage (1996). Representing GSMPs as ERGs allows visualiza-
tion of a system that can be used to give intuitive interpretations to some of the mathematical properties
for particular GSMPs. An example is the conditions on a GSMP for asymptotic consistency of infinitesimal
perturbation analysis gradient estimators for simulation response optimization. In Freimer and Schruben
(2001) these properties are expressed as intuitive structural properties of their ERG representations.

23.4.5 Mathematical Optimization Programs2

The dynamics of continuous systems are often modeled by a system of differential equations that express
the relationships between changes in the values of system state variables. Given an initial state (boundary
condition) these equations completely specify a model of the system’s dynamic behavior. When this system
of differential equations is particularly simple or has some special properties, it can be solved analytically to
find the system’s path of motion (trajectory). However, many interesting models are too complex and must
be simulated by numerically solving (integrating) the set of differential equations. If the system is modeled
using random processes, then the simulations can be used to generate sample paths for statistical analysis.

In an analogous manner, the relationships between changes in the values of state variables in a discrete-
event system (events) can be modeled with an ERG. The vertices of the graph represent changes in state
and the arcs the dynamic and logical relationships between these changes. An ERG, along with initial
conditions, completely specifies the discrete-event system dynamics. Also, like for continuous systems,
the dynamics of most discrete-event systems are complex and must be numerically simulated. In this
section, we look at some properties of discrete-event models that allow us to solve, analytically, a system
of difference equations represented in their ERGs.

A simple ERG models will be used as examples. Figure 23.15 is a simple batch processing system with
parallel resources.

2 Source: This section is largely adapted from Schruben 2000, used with permission.
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The initial value of Q is assumed to be zero and the initial value of R is the number of parallel servers.
Of course, there are several equivalent ERGs for this system (in fact, special cases of this system can be
simulated with only one “Finish” event vertex).

We will first “read” the ERG in Figure 23.15. As discussed earlier, ERGs are read by substituting for
A, B, (i), and t and paraphrasing the arc definition in Figure 23.4. An accurate and concise description of
the system dynamics can typically be given with only one sentence for each arc in the graph. The four arcs
of the ERG in Figure 23.15 give a four sentence full description of the system dynamics (event names are
in italics).

Jobs arrive every ta time units. Jobs that arrive to find an idle resource and complete a full batch
will immediately start service. A resource will finish processing a batch of jobs ts time units after it
starts processing. When a resource finishes a batch, if a full batch of jobs is waiting, the resource can
immediately start on the next batch.

Again, for networks of queues, the ERG represents a generic element of an array of ERGs by using event
parameters k and j in the basic arc definition.

We will start by specifying the trajectory (say, waiting times or queue sizes) of n jobs processed in
a G/G/1 FIFO queue as the solution to a linear program. The G/G/1 queue has general random time
between job arrivals, general service times, and a single server. The ERG for a G/G/1 queue is Figure 23.15
with a batch size of B = 1 and the number of idle resources R initially equal to 1. For this system, the
linear program that specifies the dynamic system trajectory is almost obvious. The nonnegative decision
variables in our linear program will be the event times. Here

Ai = the time of the ith Arrival event

Si = the time of the ith Start event

Fi = the time of the ith Finish event.

The objective or the optimization will be to execute each event as soon as possible subject to the constraints
imposed by the ERG,

Min Z = �(Ai + Si + Fi)

Other objective functions will work for this model. In fact, we do not need to include the job arrival times
in our objective function since they are not scheduled by conditional arcs. Also, if we knew that the N jobs
occurred in the same busy period, then the simple objective of minimizing the length of the busy period,
FN , would suffice.

Each of the arcs of the ERG imposes a constraint on how events can be executed. For a given input
process of arrival times and service times (tA(i), tS(i): i = 1, 2, . . . n). Simple linear constraints are enforced
by each arc in the ERG.

Ai+1 − Ai = tA(i) (Arrival-Arrival arc)
Fi − Si = tS(i) (Start-Finish arc)
Ai ≤ Si (Arrival-Start arc)
Fi ≤ Si+1 (Finish-Start arc)

Ai, Si, and Fi ≥ 0

The analytic solution to this model is the dynamic system trajectory. If, for example, we can compute
the sequence of customer waiting times as, Wi = Si − Ai either after the model is solved or by adding
it as a constraint. The queue length process Q(t) = CA(t) − CS(t) can also easily be computed from the
trajectory.

We now illustrate the details with the simulation of multiple parallel resources and batch process-
ing in Figure 23.15. A general algorithm for expressing ERGs as linear programs is given in Chan and
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Schruben (2005). We will use the well-known relationship between an event and its counting point process
(Nelson, 1995),

Ei ≤ t ⇔ CE(t) ≥ i

This relationship simply enforces the forward progression of time: if E occurs i times at or before time t
then it will have occurred at least that many times by time t .

The number of jobs in line at time t , Q(t), is equal to the number of Arrival events (incrementing Q
by 1) that have occurred minus B times the number of Start events (each decrementing Q by B) that have
occurred, or,

Q(t) = CA(t) − B ∗ CS(t)

At any time in the simulation Q(t) must be greater than zero. Consider the instant, t = Si, at which the ith
batch service starts, then CS(Si) = i.

Therefore,

0 ≤ Q(Si) = CA(Si) − B ∗ CS(Si)

⇒ CA(Si) ≥ B ∗ CS(Si)

⇒ CA(Si) ≥ B ∗ i

⇒ AB∗i ≤ Si

This constraint, AB∗i ≤ Si simply says that, since jobs are processed B at a time, then B times as many jobs
must arrive as have started service.

Consider again any instant, t , at which the ith service can start. For service to start, there must be at
least one idle resource at time t . The number of idle resources at any time is equal to a count of the initial
number of idle resources, R, less than the count of the number of Start events (decrementing resources)
plus the count of the number of Finish events (incrementing resources). Therefore, at the time of the ith
Start event, SI, there must be a positive number of idle resources,

R + CF(Si) − CS(Si) ≥ 1

⇒ CF(Si) ≥ CS(Si) + 1 − R

⇒ CF(Si) ≥ i + 1 − R

⇒ Fi+1−R ≤ Si

This constraint, Fi+1−R ≤ Si simply says that, since there are only R resources, the number of Start events
cannot exceed the number of Finish events by more than R+1. This constraint is enforced in the simulation
by the arc from the Finish event to the Start event in the ERG of Figure 23.15.

In general, the number of occurrences of events that decrement the availability of a limited resource
can never exceed the number of events that increment that resource by the more than the number of such
resources. Sets of vertices in the resource-driven simulation that relate to limited resources will have such
constraints even if they do not share an arc in the ERG.

To summarize the ERG in Figure 23.15 translates into the following linear program:

(Events occur as soon as feasible)

Min �(Ai + Si + Fi)

The two unconditional timed arcs provide the constraints

Ai+1 = Ai + tA(i) and

Fk = Si + tS(i)
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While the two conditional zero-delay arcs provide the constraints

Si ≥ AB∗i and Si ≥ Fi+1−R

The subscripts on the last constraints reflect the bounds on the number of resources, R, in our system and
the Batch size.

Applications of modeling ERG trajectories as the solutions to linear programs include developing
optimal resource scheduling models, using the duals of the linear programs for sensitivity analysis, using
properties of the linear programs to prove system properties such as tandem queue reversibility, and
determining stochastic orderings of systems (Chan, 2005).

23.5 Simulation of Event Relationship Graphs

ERG models can be developed graphically and simulated easily with the software package SIGMA
(Schruben and Schruben, 2005), This software provides a simple but powerful and practical method
for ERG simulation modeling. SIGMA, the Simulation Graphical Modeling and Analysis system, is an
integrated, interactive approach to building, testing, animating, and experimenting with discrete-event
simulations. SIGMA supports the full simulation ERG model life cycle from model building and testing
to output analysis, animation, documentation, and report writing.

For speed and portability, SIGMA can automatically translate a model (with a mouse click) into a fast C
code. Not only does this code allow models to run thousands of times faster, but also the compiled models
can be run from a spreadsheet interface using preprogrammed Excel Visual Basic Templates (Schruben
and Schruben, 2005) with multiple experimental runs batched together. SIGMA also can write a verbal
description of a model in English to aid in debugging and model verification.

SIGMA graphically models the events taking place within a system and the cause and effect relationships
among these events. One of SIGMA’s more useful features is that simulation models can be created,
enriched, and edited while they are running. Events can be added, altered, executed, canceled, or deleted
during a simulation run. Logic can be changed and errors corrected without stopping a run to change
code and recompile, so the modeler can interactively “replay” interesting events.

Animation support is fundamentally different in SIGMA from most other simulation modeling envi-
ronments. Animations are not created from simulation models using separate add-on software. In SIGMA,
the animation and the simulation code is identical. In addition to graphical modeling, analysis, and anima-
tion, SIGMA also includes graphical data tracking tools and allows pictures, graphs, plots, and data to be
pasted into spreadsheets and word processors.

Multiple SIGMA sessions can be run concurrently. Objects can be copied and pasted from one modeling
session to another. In fact, models can be developed in one SIGMA session and then graphically integrated
into another simulation model while that model is executing.

23.6 Event Relationship Graph Analysis

There is a rich literature on the analysis of ERGs. This includes mappings of GSMPs and Petri nets into
ERGs as mentioned earlier allowing the rich analytical methodologies of Petri nets and GSMPs to be
applied to ERGs. There are also ERG-specific analytical tools such as in Som and Sargent (1990), where
rules for elimination and consolidation of events for more efficient simulation are given. They also identify
events that “interact” and might cause logical errors when they occur at the same time and are executed in
different orders.

Earlier it was shown that how the set of all possible sample paths from an ERG as the solutions
to optimization programs (Schruben, 2000; Chan and Schruben, 2005). This is done by algorithmic
mapping of the ERG models into linear and mixed integer programs. These programs are often simple
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linear programs which have duals that can be used for sensitivity analysis. For example, the dual of a
G/G/s queueing system is what is known in operations research as the production lot sizing problem.
These optimization model representations for ERGs also provide optimal resource scheduling models and
alternative simple proofs of complicated system properties, such as the reversibility of tandem queues
(Chan and Schruben, 2003a, 2003b; Chan, 2005). This mapping allows the rich algorithms and theory of
optimization to be applied to ERGs.

23.7 Experimenting with ERGs

Parametric ERGs can be used for running experiments where simultaneous replications of the same or
competing systems are done in a single run. An event parameter is used to designate to which system each
event execution belongs.

It is also possible to use different timescales for the systems corresponding to different design points. In
this manner, the run can focus on factor settings or systems that are likely to be optimal and feasible rather
than spend time simulating systems that are not contenders. This idea can be generalized as illustrated
in Hyden (2000) where a large-scale experiment to optimize a production system was solved orders of
magnitude faster than the commercial simulation optimization software available at that time.

In Schruben (1997) an example is presented using a penalty function to dilate event times to find the
cycle-time constrained capacity of a queue. The cycle-time constrained capacity of a queueing system is
defined as the maximum job arrival rate to the system so that the average job delay time is below some target.

Determining the cycle-time constrained capacity of a queueing system is straightforward when the
cycle-time function is known from queueing theory. However, small errors in approximating this function
can cause large errors in capacity estimation. This is particularly true for the short cycle-times found in
highly competitive industries; the trade-off curve in this region is flat. Standard simulation experiments are
almost useless in estimating the asymptotic upper bound on queueing system capacity. At high arrival rates,
observed cycle-times are highly correlated and run initialization bias is a serious concern. These factors
combine to give simulation estimators of heavy-traffic cycle-times both high bias and high variance. For
example, simulation of millions of wafer flows are needed to estimate semiconductor factory capacities.

An experimental strategy for simulation optimization is to assign parameters to the “arrival” from a grid
of interesting arrival rates. A range of arrival rates can then be simultaneously simulated during a single
run. This grid can be refined during the run if the initial grid is found to be too coarse.

As the simulation progresses, we want to spend more and more time running events that are near
the solution. To do this we will penalize rates that are not performing well or appear to be infeasible.
The “penalty function” takes the form of time dilation for events associated with arrival rates that are
unlikely to be near the capacity. When their relative timescales are increased, events will naturally tend to
be scheduled near the end of the pending events list. If the events list is very large, these penalized events
become essentially irrelevant and have no detrimental effect on execution speed. The number of event
executions devoted to a particular design point reflects the likelihood that the design point is optimal.
Hence, the simulation run is concentrated on those experimental points where success is most likely. This
has the positive effect of minimizing the estimator variance at exactly the right place. Events corresponding
to uninteresting parameter values will occur occasionally as in simulated annealing. This is necessary if
there is to be any theoretical hope of global optimization.

For illustration, this experimental technique was tested with a simulated single queue like that in
Figure 23.5. The simultaneous replication strategy and time dilation techniques in Schruben (1992) were
used. For this test system, exponential interarrival times and service times were used so the true cycle-time
constrained capacity rate is known. To put this problem in perspective, conventional replication methods
would require hundreds of thousands of simulated jobs to get a reasonably good estimate of the cycle-time
constrained capacity of this simple system.

Without using any of the information about the system (or even the fact that cycle-times increase
with arrival rate), we chose a grid of 40 arrival rates from 0.03125 to 1.25 is run. Therefore, there were
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FIGURE 23.16 Event execution frequency. (a) Without time dilation and (b) with dilation.

40 different possible parameter values for each executed event, depending on which arrival rate spawned
the event. We will set the average processing time at 1 so systems with arrival rates over 1 are unstable. We
did not use this information so some of the systems included in our run are unstable.

Let Wi denote the current average job delay corresponding to the ith arrival rate being used. We will
estimate the Wi < 4 capacity of this system with one simulation run. For time dilation, the timescale for
the arrival event at rate i was multiplied by (Wi − 4)2. The Wi < 4 capacity corresponds to event parameter
i = 24. All event indices over 30 correspond to unstable arrival rates.

After an initialization period of 5,000 jobs, the relative frequency that events corresponding to the
different arrival rates appear in Figure 23.16(a).

For the next 5,000 jobs, a quadratic time dilation penalty was then invoked (Figure 23.16[b]). After
a total of 10,000 simulated jobs shared across all 40 systems, the event index at the correct solution of
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FIGURE 23.17 Average event indices for (a) Wi < 2 and (b) Wi < 4 capacity experiments.

24 is clearly indicated. Events with unstable arrival rates received early penalties, effectively excluding them
from the experiment.

In Figure 23.17(a) and Figure 23.17(b), average event indices are plotted for both the Wi < 2 and Wi < 4
capacities. Periodically, these averages are reset causing a jump in the figures. These averages quickly
converged to the correct indices for ERGs having the optimal arrival rates as their event parameters.

Summary

This chapter introduces ERGs and illustrates some of their applications and properties. ERGs are a mini-
malist approach to modeling discrete-event system dynamics that are completely general (having the full
power of Turing machines). ERGs express the logical and temporal relationships between changes in system
state, analogous to systems of differential equations for modeling continuous state system dynamics. Para-
metric ERGs can model huge and complex systems using very small finite graphs. Specification of the initial
and terminating states for an ERG completely and unambiguously (perhaps using arc priorities) determine
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the state trajectory for a discrete-event model. Such models can be easily and efficiently simulated using
software such as SIGMA.

Some analytical properties of ERGs are also presented, most notably their representation as linear pro-
gramming or mixed integer optimization models. These linear program (LP) representations allow the
rich set of analytical and algorithmic methodologies from optimization to be applied to the study of
discrete-event dynamic systems as well as define explicit dual for discrete-event systems.
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24.1 Introduction

Petri nets were introduced in 1962 by Dr. Carl Adam Petri (Petri, 1962). Petri nets are a powerful modeling
formalism in computer science, system engineering, and many other disciplines. Petri nets combine a
well-defined mathematical theory with a graphical representation of the dynamic behavior of systems.
The theoretical aspect of Petri nets allows precise modeling and analysis of system behavior, while the
graphical representation of Petri nets enables visualization of the modeled system state changes. This
combination is the main reason for the great success of Petri nets. Consequently, Petri nets have been used
to model various kinds of dynamic event-driven systems such as computer networks (Ajmone Marsan et al.,
1986), communication systems (Merlin and Farber, 1976), manufacturing plants (Venkatesh et al., 1994;
Zhou and DiCesare, 1989; Desrochers and Ai-Jaar, 1995), command and control systems (Andreadakis
and Levis, 1988; Wang et al., 2000), real-time computing systems (Mandrioli et al., 1996; Tsai et al.,
1995), logistic networks (van Landeghem and Bobeanu, 2002), and workflows (van der Aalst and van Hee,
2000; Lin et al., 2002) to mention only a few important examples. This wide spectrum of applications is
accompanied by wide spectrum different aspects, which have been considered in the research on Petri nets.

24.2 Petri Net Definition

A Petri net is a particular kind of bipartite directed graphs populated by four types of objects. These objects
are places, transitions, directed arcs, and tokens. Directed arcs connect places to transitions or transitions to
places. In its simplest form, a Petri net can be represented by a transition together with an input place and
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an output place. This elementary net may be used to represent various aspects of the modeled systems. For
example, a transition and its input place and output place can be used to represent a data processing event,
its input data and output data, respectively, in a data processing system. To study the dynamic behavior of
a Petri net modeled system in terms of its states and state changes, each place may contain zero or a positive
number of tokens. Tokens are a primitive concept for Petri nets in addition to places and transitions. The
presence or absence of a token in a place can indicate whether a condition associated with this place is true
or false, for instance.

Denote by N the set of nonnegative integers. A Petri net is formally defined as a five-tuple N = (P, T , I ,
O, M0), where

(1) P = {p1, p2, …, pm} is a finite set of places.
(2) T = {t1, t2, …, tn} is a finite set of transitions. P ∪ T �= � and P ∩ T = �.
(3) I : T × P →N is an input matrix that specifies directed arcs from places to transitions; its entry I(ti,

pj) represents the number of arcs connecting place pj to transition ti.
(4) O: T × P →N is an output matrix that specifies directed arcs from transitions to places; its entry

O(ti, pj) represents the number of arcs connecting transition ti to place pj .
(5) M0: P →N is the initial marking.

A marking in a Petri net is an assignment of tokens to the places of a Petri net. Tokens reside in the
places of a Petri net. The number and position of tokens may change during the execution of a Petri net.
The tokens are used to define the execution of a Petri net.

Most theoretical work on Petri nets is based on the formal definition of Petri nets. However, a graphical
representation of a Petri net is much more useful for illustrating the concepts of Petri net theory. A Petri
net graph is a Petri net depicted as a bipartite directed multigraph. Corresponding to the definition of
Petri nets, a Petri net graph has two types of nodes: a circle that represents a place, and a bar or box that
represents a transition. Directed arcs (arrows) connect places and transitions, with some arcs directed from
places to transitions and other arcs directed from transitions to places. An arc directed from a place pj to a
transition ti defines pj to be an input place of ti, denoted by I(ti, pj) = 1. An arc directed from a transition ti

to a place pj defines pj to be an output place of ti, denoted by O(ti, pj) = 1. If I(ti, pj) = k (or O(ti, pj) = k),
then there exist k directed (parallel) arcs connecting place pj to transition ti (or connecting transition ti

to place pj). Usually, in the graphical representation, parallel arcs connecting a place (transition) to a
transition (place) are represented by a single directed arc labeled with its multiplicity, or weight k. A circle
containing a dot represents a place contains a token (Peterson, 1981).

Example 1
A simple Petri net.
Figure 24.1 shows a simple Petri net. In this Petri net, we have

P = {p1, p2, p3, p4};
T = {t1, t2, t3};
I(t1, p1) = 2, I(t1, pi) = 0 for i = 2, 3, 4;

p2

p3 t3

t2

2
2

t1

p1 p4

FIGURE 24.1 A simple Petri net.
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I(t2, p2) = 1, I(t2, pi) = 0 for i = 1, 3, 4;
I(t3, p3) = 1, I(t3, pi) = 0 for i = 1, 2, 4;
O(t1, p2) = 2, O(t1, p3) = 1, O(t1, pi) = 0 for i = 1, 4;
O(t2, p4) = 1, O(t2, pi) = 0 for i = 1, 2, 3;
O(t3, p4) = 1, O(t3, pi) = 0 for i = 1, 2, 3;
M0 = (2 0 0 0).

24.3 Transition Firing

The execution of a Petri net is controlled by the number and distribution of tokens in the Petri net.
By changing distribution of tokens in places, which may reflect the occurrence of events or execution of
operations, for instance, one can study the dynamic behavior of the modeled system. A Petri net is executed
by firing transitions. We now introduce the enabling rule and firing rule of a transition, which govern the
flows of tokens:

(1) Enabling Rule: A transition t is said to be enabled if each input place p of t contains at least the
number of tokens equal to the weight of the directed arc connecting p to t , i.e., M(p) ≥ I(t , p) for
all p in P. If I(t , p) = 0, then t and p are not connected, so we do not care about the marking of p
when considering the firing of t .

(2) Firing Rule: Only enabled transitions can fire. The firing of an enabled transition t removes from
each input place p the number of tokens equal to I(t , p), and deposits in each output place p the
number of tokens equal to O(t , p).

Mathematically, firing t at M yields a new marking

M ′(p) = M(p) − I(t , p) + O(t , p) for all p in P

Note that since only enabled transitions can fire, the number of tokens in each place always remains
nonnegative when a transition is fired. Firing a transition can never try to remove a token that is not there.

A transition without any input place is called a source transition, and one without any output place is
called a sink transition. Note that a source transition is unconditionally enabled, and that the firing of a
sink transition consumes tokens, but does not produce tokens.

A pair of a place p and a transition t is called a self-loop, if p is both an input place and an output place
of t . A Petri net is said to be pure if it has no self-loops.

Example 2
Transition firing.

Consider the simple Petri net shown in Figure 24.1. Under the initial marking, M0= (2 0 0 0), only t1 is
enabled. Firing of t1 results in a new marking, say M1. It follows from the firing rule that

M1 = (0 2 1 0)

The new token distribution of this Petri net is shown in Figure 24.2. Again, in marking M1, both
transitions of t2 and t3 are enabled. If t2 fires, the new marking, say M2, is

M2 = (0 1 1 1)

If t3 fires, the new marking, say M3, is

M3 = (0 2 0 1)
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p3 t3
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t1

p1 p4

FIGURE 24.2 Firing of transition t1.

24.4 Modeling Power

The typical characteristics exhibited by the activities in a dynamic event-driven system, such as concurrency,
decision making, synchronization, and priorities, can be modeled effectively by Petri nets.

1. Sequential Execution. In Figure 24.3(a), transition t2 can fire only after the firing of t1. This imposes
the precedence constraint “t2 after t1.” Such precedence constraints are typical of the execution of
the parts in a dynamic system. Also, this Petri net construct models the causal relationship among
activities.

2. Conflict. Transitions t1 and t2 are in conflict in Figure 24.3(b). Both are enabled but the firing of
any transition leads to the disabling of the other transition. Such a situation will arise, for example,
when a machine has to choose among part types or a part has to choose among several machines.
The resulting conflict may be resolved in a purely nondeterministic way or in a probabilistic way,
by assigning appropriate probabilities to the conflicting transitions.

3. Concurrency. In Figure 24.3(c), the transitions t1 and t2 are concurrent. Concurrency is an important
attribute of system interactions.

4. Synchronization. It is quite normal in a dynamic system that an event requires multiple resources.
The resulting synchronization of resources can be captured by transitions of the type shown in
Figure 24.3(d). Here, t1 is enabled only when each of p1 and p2 receives a token. The arrival of a
token into each of the two places could be the result of a possibly complex sequence of operations
elsewhere in the rest of the Petri net model. Essentially, transition t1 models the joining operation.

5. Mutually exclusive. Two processes are mutually exclusive if they cannot be performed at the same
time due to constraints on the usage of shared resources. Figure 24.3(e) shows this structure. For
example, a robot may be shared by two machines for loading and unloading. Two such structures
are parallel mutual exclusion and sequential mutual exclusion.

6. Priorities. The classical Petri nets discussed so far have no mechanism to represent priorities. Such
a modeling power can be achieved by introducing an inhibitor arc. The inhibitor arc connects an
input place to a transition, and is pictorially represented by an arc terminated with a small circle.
The presence of an inhibitor arc connecting an input place to a transition changes the transition-
enabling conditions. In the presence of the inhibitor arc, a transition is regarded as enabled if each
input place, connected to the transition by a normal arc (an arc terminated with an arrow), contains
at least the number of tokens equal to the weight of the arc, and no tokens are present on each
input place connected to the transition by the inhibitor arc. The transition firing rule is the same
for normally connected places. The firing, however, does not change the marking in the inhibitor
arc connected places. A Petri net with an inhibitor arc is shown in Figure 24.3(f). t1 is enabled if p1

contains a token, while t2 is enabled if p2 contains a token and p1 has no token. This gives priority to
t1 over t2: in a marking in which both p1and p2have a token, t2would not be able to fire until t1is fired.

7. Resource constraint. Petri nets are well suited to model and analyze systems that are constrained by
resources. For instance, Figure 24.4 depicts the Petri net model of a queue with two servers. The
transition a models the arrival of clients, b and c indicate the start and end of the service, whereas
d models the departure. The place p indicates clients that are waiting to be served, q models clients
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FIGURE 24.3 Petri net primitives to represent system features. (a) Sequential, (b) conflict, (c) concurrent,
(d) synchronization, (e) mutual exclusive, and (f) priority.
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FIGURE 24.4 A queue with two servers.

that are being served. A client being served occupies a resource, the server. Place s indicates free
resources; initially there are two resources (servers) available. To fire b, a waiting client in place p
and a free server in place s have to be available. When the first client arrives, a server becomes busy.
When the second client arrives before the first one has finished, the second server becomes busy as
well. When the third arrives before the other two have finished, he has to wait until one of the two
servers becomes available. The modeling of situations like the one sketched, where behaviors are
concurrent up to a certain degree, can be done very naturally by means of Petri nets.

24.5 Petri Net Properties

As a mathematical tool, Petri nets possess a number of properties. These properties, when interpreted
in the context of the modeled system, allow system designer to identify the presence or absence of the
application domain-specific functional properties of the system under design. Two types of properties
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can be distinguished, behavioral and structural. The behavioral properties are those which depend on the
initial state or marking of a Petri net. In contrast, the structural properties do not depend on the initial
marking of a Petri net. They depend on the topology, or net structure, of a Petri net (Murata, 1989).
Here we provide an overview of some of the most important, from the practical point of view, behavioral
properties: reachability, safeness, and liveness.

24.5.1 Reachability
An important issue in designing event-driven systems is whether a system can reach a specific state, or
exhibit a particular functional behavior. In general, the question is whether the system modeled with a Petri
net exhibits all desirable properties as specified in the requirement specification, and no undesirable ones.

To find out whether the modeled system can reach a specific state as a result of a required functional
behavior, it is necessary to find such a transition firing sequence that would transform its Petri net model
from the initial marking M0 to the desired marking Mj , where Mj represents the specific state, and the
firing sequence represents the required functional behavior. In general, a marking Mj is said to be reachable
from a marking Mi if there exists a sequence of transition firings that transforms Mi to Mj . A marking Mj

is said to be immediately reachable from Mi if firing an enabled transition in Mi results in Mj . The set of
all markings reachable from marking M is denoted by R(M). We will explain how to get R(M) later.

24.5.2 Safeness
In a Petri net, places are often used to represent information storage areas in communication and computer
systems, product and tool storage areas in manufacturing systems, etc. It is important to be able to
determine whether proposed control strategies prevent from the overflows of these storage areas. The Petri
net property, which helps to identify the existence of overflows in the modeled system, is the concept of
boundedness.

A place p is said to be k-bounded if the number of tokens in p is always less than or equal to k (k is a
nonnegative integer number) for every marking M reachable from the initial marking M0, i.e., M ∈ R(M0).
It is safe if it is 1-bounded.

A Petri net N = (P, T , I , O, M0) is k-bounded (safe) if each place in P is k-bounded (safe). It is
unbounded if k is infinitely large. For example, the Petri net of Figure 24.1 is 2-bounded, but the net of
Figure 24.4 is unbounded.

24.5.3 Liveness
The concept of liveness is closely related to the deadlock situation, which has been situated extensively in
the context of computer operating systems.

A Petri net modeling a deadlock-free system must be live. This implies that for any reachable marking
M , any transition in the net can eventually be fired by progressing through some firing sequence. This
requirement, however, might be too strict to represent some real systems or scenarios that exhibit deadlock-
free behavior. For instance, the initialization of a system can be modeled by a transition (or a set of
transitions) that fires a finite number of times. After initialization, the system may exhibit a deadlock-free
behavior, although the Petri net representing this system is no longer live as specified above. For this
reason, different levels of liveness are defined. Denote by L(M0) the set of all possible firing sequences
starting from M0. A transition t in a Petri net is said to be

(1) L0-live (or dead) if there is no firing sequence in L(M0) in which t can fire.
(2) L1-live (potentially firable) if t can be fired at least once in some firing sequence in L(M0).
(3) L2-live if t can be fired at least k times in some firing sequence in L(M0) given any positive integer k.
(4) L3-live if t can be fired infinitely often in some firing sequence in L(M0).
(5) L4-live (or live) if t is L1-live (potentially firable) in every marking in R(M0).
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For example, all the three transitions in the net of Figure 24.1 are L1-live because t1 and t3 can only fire
once each while transition t2can fire twice. However, all transitions in the net of Figure 24.4 are L4-live,
because they are all L1-live in every reachable marking.

24.6 Analysis of Petri Nets

We have introduced the modeling power of Petri nets in the previous sections. However, modeling by itself
is of little use. It is necessary to analyze the modeled system. This analysis will hopefully lead to important
insights into the behavior of the modeled system.

There are four common approaches to Petri net analysis: (1) reachability analysis, (2) the matrix-
equation approach, (3) invariant analysis, and (4) simulation. The first approach involves the enumeration
of all reachable markings, but it suffers from the state-space explosion issue. The matrix-equations tech-
nique is powerful but in many cases it is applicable only to special subclasses of Petri nets or special
situations. The invariant analysis determines sets of places or transitions with special features, as token
conservation or cyclical behavior. For complex Petri net models, discrete-event simulation is an option to
check the system properties.

24.6.1 Reachability Analysis
Reachability analysis is conducted through the construction of reachability tree if the net is bounded. Given
a Petri net N , from its initial marking M0, we can obtain as many “new” markings as the number of the
enabled transitions. From each new marking, we can again reach more markings. Repeating the procedure
over and over results in a tree representation of the markings. Nodes represent markings generated from
M0and its successors, and each arc represents a transition firing, which transforms one marking to another.

The above tree representation, however, will grow infinitely large if the net is unbounded. To keep the
tree finite, we introduce a special symbol ω, which can be thought of as “infinity.” It has the properties
that for each integer n, ω > n, ω + n = ω, and ω ≥ ω. Generally, we do not know if a Petri net is bounded
or not before we perform the reachability analysis. However, we can construct a coverability tree if the net
is unbounded or a reachability tree if the net is bounded according to the following general algorithm:

1. Label the initial marking M0 as the root and tag it “new.”
2. For every new marking M:

2.1. If M is identical to a marking already appeared in the tree, then tag M “old” and go to another
new marking.

2.2. If no transitions are enabled at M, tag M “dead-end” and go to another new marking.
2.3. While there exist enabled transitions at M, do the following for each enabled transition t at M :

2.3.1. Obtain the marking M′ that results from firing t at M.
2.3.2. On the path from the root to M if there exists a marking M′′ such that M′(p) ≥ M ′′(p) for

each place p and M′ �= M ′′, i.e., M′′ is coverable, then replace M′(p) by ω for each p such
that M′(p) > M ′′(p).

2.3.3. Introduce M′ as a node, draw an arc with label t from M to M′, and tag M′ “new.”

If ω appears in a marking, then the net is unbounded and the tree is a coverability tree; otherwise, the net
is bounded and the tree is a reachability tree. Merging the same nodes in a coverability tree (reachability
tree) results in a coverability graph (reachability graph).

Example 3
Reachability analysis.

Consider the Petri net shown in Figure 24.1. All reachable markings are M0 = (2, 0, 0, 0), M1 = (0, 2,
1, 0), M2 = (0, 1, 1, 1), M3 = (0, 2, 0, 1), M4 = (0, 0, 1, 2), M5 = (0, 1, 0, 2), and M6 = (0, 0, 0, 3).
The reachability tree of this Petri net is shown in Figure 24.5(a), and the reachability graph is shown in
Figure 24.5(b).
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FIGURE 24.5 (a) Reachability tree. (b) Reachability graph.

24.6.2 Incidence Matrix and State Equation
For a Petri net with n transitions and m places, the incidence matrix A = [aij] is an n × m matrix of integers
and its entry is given by

aij = O(ti, pj) − I(ti, pj)

In writing matrix equations, we write a marking Mk as an m × 1 column vector. The jth entry of Mk

denotes the number of tokens in place j immediately after the kth firing in some firing sequence. The
kth firing or control vector uk is an n × 1 column vector of n − 1 zeroes and one nonzero entry, a 1 in the
ith position indicating that transition i fires at the kth firing. Since the ith row of the incidence matrix A
denotes the change of the marking as the result of firing transition i, we can write the following state
equation for a Petri net:

Mk = Mk−1 + AT uk , k = 1, 2, . . .

Suppose that a destination marking Md is reachable from M0 through a firing sequence {u1, u2 …, ud}.
Writing the state equation for k = 1, 2, …, d and summing them, we obtain

Md = M0 + AT
d∑

k=1

uk

This state equation specifies a necessary condition for marking Md being reachable from M0, which is that
there is a nonnegative solution of the firing vector

∑d
k=1 uk .

24.6.3 Invariant Analysis
In a Petri net, arcs describe the relationships among places and transitions. They are represented by two
matrices I and O. By examining the linear equations based on the execution rule and the matrices, one
can find subsets of places over which the sum of the tokens remains unchanged. One may also find that
a transition firing sequence brings the marking back to the same one. The concepts of S-invariant and
T-invariant are introduced to reflect these properties.
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Mathematically, an S-invariant is an integer solution y of the homogeneous equation

Ay = 0

and a T-invariant is an integer solution x of the homogeneous equation

AT x = 0

The nonzero entries in an S-invariant represent weights associated with the corresponding places so that
the weighted sum of tokens on these places is constant for all markings reachable from an initial marking.
These places are said to be covered by an S-invariant. The nonzero entries in a T-invariant represent the
firing counts of the corresponding transitions, which belongs to a firing sequence transforming a marking
M0 back to M0. Although a T-invariant states the transitions comprising the firing sequence transforming
a marking M0 back to M0, and the number of times these transitions appear in this sequence, it does not
specify the order of the transition firings.

Invariant findings may help in the analysis of some Petri net properties. For example, if each place in a
net is covered by an S-invariant, then it is bounded. However, this approach is of limited use since invariant
analysis does not include all the information of a general Petri net.

The set of places (transitions) corresponding to nonzero entries in an S-invariant y ≥ 0 (T-invariant
x ≥ 0) is called the support of an invariant and is denoted by ‖x‖ (‖y‖). A support is said to be minimal
if there is no other invariant y1 such that y1(p) ≤ y(p) for all p. Given a minimal support of an invariant,
there is a unique minimal invariant corresponding to the minimal support. We call such an invariant a
minimal-support invariant. The set of all possible minimal-support invariants can serve as a generator of
invariants. That is, any invariant can be written as a linear combination of minimal-support invariants
(Memmi and Roucairol, 1980).

Example 4
Figure 24.6 shows a simple manufacturing system with a single machine and a buffer. The capacity of
the buffer is 1. A raw part can enter the buffer only when it is empty, otherwise it is rejected. As soon
as the part residing in the buffer gets processed, the buffer is released and can accept another coming
part. Fault may occur in the machine when it is processing a part. After being repaired, the machine
continues to process the uncompleted part. The places and transitions in this Petri net are as follows:

p1: The buffer available.
p2: A part in the buffer.
p3: The machine available.
p4: The machine processing a part.
p5: The machine failed.
t1: A part arrives.
t2: The machine starts processing a part.
t3: The machine ends processing a part.

t1

t2

p1

p2

t3

p3

p4

t5t4
p5

FIGURE 24.6 A simple manufacturing system with a single machine and a buffer.
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t4: The machine fails.
t5: Repair the machine.

We are going to find the S-invariants of the net and use them to see how this simple manufacturing
system works. First, we obtain the incidence matrix directly from the model:

A =

⎡
⎢⎢⎢⎢⎣

−1 1 0 0 0
1 −1 −1 1 0
0 0 1 −1 0
0 0 0 −1 1
0 0 0 1 −1

⎤
⎥⎥⎥⎥⎦

Then, by solving Ay = 0 we get two minimal-support S-invariants, y1 = (1 1 0 0 0)T and y2 = (0 0 1 1 1)T ,
where ‖y1‖ = {p1, p2} and ‖y2‖ = {p3, p4, p5} are corresponding minimal supports. Since the initial
marking is M0 = (1 0 1 0 0)T , then MT

0 y1 = 1 and this leads to the fact that

M(p1) + M(p2) = 1

It shows that the buffer is either free or busy. Similarly, it results from MT
0 y2 = 1 that

M(p3) + M(p4) + M(p5) = 1

It shows how the machine spends its time. It is either up and waiting, or up and working, or down.

24.6.4 Simulation
For complex Petri net models, simulation is another way to check the system properties. The idea is simple,
that is, using the execution algorithm to run the net. Simulation is an expensive and time-consuming
technique. It can show the presence of undesirable properties but cannot prove the correctness of the
model in general case. Despite this, Petri net simulation is indeed a convenient and straightforward yet
effective approach for engineers to validate the desired properties of a discrete-event system. The algorithm
is given as follows:

(1) Initialization: decide the initial marking and the set of all enabled transitions in the marking.
(2) If the number of preset simulation steps or certain stopping criteria is met, stop. Otherwise, if there is

no transition enabled, report a deadlock marking and either stop or go to Step 1.
(3) Randomly pick a transition to fire. Remove the same number of tokens from each of its input places as

the number of arcs from that place to the transition and deposit the same number of tokens to each of
its output places as the number of arcs from the transition to that place.

(4) Remove all disabled transitions from the enabled transition set, and add all newly enabled ones to the
enabled transition set. Go to Step 2.

The above algorithm can be modified to simulate extended Petri nets such as timed ones. The
advantage of the simulation methods is to allow one to derive the temporal performance for a system
under very realistic assumptions. A list of Petri net simulation tools along with feature descriptions can
be found in the following Petri Nets World website: http://www.informatik.uni-hamburg.
de/TGI/PetriNets/.

24.7 Colored Petri Nets

In a standard Petri net, tokens are indistinguishable. Because of this, Petri nets have the distinct dis-
advantage of producing very large and unstructured specifications for the systems being modeled. To
tackle this issue, high-level Petri nets were developed to allow compact system representation. Colored
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Petri nets (CPNs) (Jensen, 1981) and Predicate/Transition (Pr/T) nets (Genrich and Lautenbach, 1981)
are among the most popular high-level Petri nets. We will introduce colored Petri nets in this section.

Introduced by Kurt Jensen in 1981, a CPN has its each token attached with a color, indicating the identity
of the token. Moreover, each place and each transition has a set of colors attached. A transition can fire
with respect to each of its colors. By firing a transition, tokens are removed from the input places and added
to the output places in the same way as that in original Petri nets, except that a functional dependency is
specified between the color of the transition firing and the colors of the involved tokens. The color attached
to a token may be changed by a transition firing and it often represents a complex data-value. CPNs lead
to compact net models by using of the concept of colors. This is illustrated by Example 5.

Example 5
A manufacturing system.

Consider a simple manufacturing system comprising two machines M1 and M2, which process three
different types of raw parts. Each type of parts goes through one stage of operation, which can be
performed on either M1 or M2. After the completion of processing of a part, the part is unloaded from
the system and a fresh part of the same type is loaded into the system. Figure 24.7 shows the (uncolored)
Petri net model of the system. The places and transitions in the model are as follows:

p1(p2): Machine M1 (M2) available.
p3(p4, p5): A raw part of type 1 (type 2, type 3) available.
p6(p7, p8): M1 processing a raw part of type 1 (type 2, type 3).
p9(p10, p11): M2 processing a raw part of type 1 (type 2, type 3).
t1(t2, t3): M1 begins processing a raw part of type 1 (type 2, type 3).
t4(t5, t6): M2 begins processing a raw part of type 1 (type 2, type 3).
t7(t8, t9): M1 ends processing a raw part of type 1 (type 2, type 3).
t10(t11, t12): M2 ends processing a raw part of type 1 (type 2, type 3).

Now let us take a look at the CPN model of this manufacturing system, which is shown in Figure
24.8. As we can see, there are only 3 places and 2 transitions in the CPN model, compared at 11 places
and 12 transitions in Figure 24.7. In this CPN model, p1 means machines are available (corresponding
to places p1 and p2 in Figure 24.7), p2 means parts available (corresponding to places p3−p5 in Fig-
ure 24.7), p3 means processing in progress (corresponding to places p6−p11 in Figure 24.7), t1 means
processing starts (corresponding to transitions t1−t6 in Figure 24.7), and t2 means processing ends

t1

t7

p6

t2

t8

p7

t3

t9

p8

t4

t10

p9

t5

t11

p10

t6

t12

p11

p3 p4 p5

p1 p2

FIGURE 24.7 Petri net model of a simple manufacturing system.
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p1 p3 p2

t1

t2

<M1, M2> <J1, J2, J3>

FIGURE 24.8 Colored Petri net model of the manufacturing system.

(corresponding to transitions t7−t12 in Figure 24.7). There are three color sets: SM, SP, and SM × SP,
where SM = {M1, M2}, SP = {J1, J2, J3}. The color of each node is as follows:

C(p1) = {M1, M2}
C(p2) = {J1, J2, J3}
C(p3) = SM × SP
C(t1) = C(t2) = SM × SP

CPN models can be analyzed through reachability analysis. As for ordinary Petri nets, the basic idea
behind reachability analysis is to construct a reachability graph. Obviously, such a graph may become
very large, even for small CPNs. However, it can be constructed and analyzed totally automatically, and
there exist techniques that make it possible to work with condensed occurrence graphs without losing
analytic power. These techniques build upon equivalence classes. Another option to the CPN model
analysis is simulation. Readers are referred to Jensen (1997) for a detailed description of the concepts,
analysis methods, and practical use of colored Petri nets.

24.8 Timed Petri Nets

The need for including timing variables in the models of various types of dynamic systems is apparent
since these systems are real time in nature. In the real world, almost every event is time related. When a
Petri net contains a time variable, it becomes a timed Petri net (Wang, 1998). The definition of a timed
Petri net consists of three specifications:

• the topological structure,
• the labeling of the structure, and
• firing rules.

The topological structure of a timed Petri net generally takes the form that is used in a conventional
Petri net. The labeling of a timed Petri net consists of assigning numerical values to one or more of the
following things:

• transitions,
• places, and
• arcs connecting the places and transitions.

The firing rules are defined differently depending on the way the Petri net is labeled with time variables. The
firing rules defined for a timed Petri net control the process of moving the tokens around.

The above variations lead to several different types of timed Petri nets. Among them, deterministic
timed Petri nets (DTPNs) (Ramchandani, 1974) and stochastic timed Petri nets (STPNs) (Molloy, 1982;
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Bause and Kritzinger, 2002), in which time variables are associated with transitions, are the two most
widely used extended Petri nets.

24.8.1 Deterministic Timed Petri Nets
The introduction of deterministic time labels into Petri nets was first attempted by Ramchandani (1974).
In his approach, the time labels were placed at each transition, denoting the fact that transitions are often
used to represent actions, and actions take time to complete. The obtained extended Petri nets are called
deterministic timed Petri nets (DTPNs). (Ramamoorthy and Ho, 1980) used such an extended model to
analyze system performance. The method is applicable to a restricted class of systems called decision-free
nets. This class of nets involves neither decisions nor nondeterminism. In structural terms, each place is
connected to the input of no more than one transition, and to the output of no more than one transition.

A DTPN is a six-tuple (P, T , I , O, M0, τ), where (P, T , I , O, M0) is a Petri net and τ : T → R+ a function
that associates transitions with deterministic time delays.

A transition ti in a DTPN can fire at time τ if and only if

(1) for any input place p of this transition, there have been the number of tokens equal to the weight of
the directed arc connecting p to ti in the input place continuously for the time interval [τ − τi, τ],
where τi is the associated firing time of transition ti;

(2) after the transition fires, each of its output places, p, will receive the number of tokens equal to
the weight of the directed arc connecting ti to p at time τ.

An important application of DTPN is to calculate the cycle time of a Petri net model. For a decision-
free Petri net where every place has exactly one input arc and one output arc, the minimum cycle time
(maximum performance) C is given by

C = max

{
Tk

Nk
: k = 1, 2, �, q

}

where Tk = ∑
ti∈Lk

τi is the sum of the execution times of the transitions in circuit k; Nk = ∑
pi∈Lk

M(pi)
the total number of tokens in the places in circuit k; and q the number of circuits in the net.

Example 6
A communication protocol.

Consider the communication protocol between two processes, one indicated as the sender and the other
as the receiver. The sender sends messages to a buffer, while the receiver picks up messages from the
buffer. When it gets a message, the receiver sends an acknowledgment (ACK) back to the sender. After
receiving the ACK from the receiver, the sender begins processing and sending a new message. Suppose
that the sender takes 1 time unit to send a message to the buffer, 1 time unit to receive the ACK, and 3
time units to process a new message. Then, the receiver takes 1 time unit to get the messages from the
buffer, 1 time unit to send back an ACK to the buffer, and 4 time units to process a received message.
The DTPN model of this protocol is shown in Figure 24.9. The legends of places and transitions and
timing properties are as follows:

p1: The sender ready.
p2: Message in the buffer.
p3: The sender waiting for ACK.
p4: Message received.
p5: The receiver ready.
p6: ACK sent.
p7: ACK in the buffer.
p8: ACK received.
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FIGURE 24.9 Petri net model of a simple communication protocol.

t1: The sender sends a message to the buffer. Time delay: 1 time unit.
t2: The receiver gets the messages from the buffer. Time delay: 1 time unit.
t3: The receiver sends back an ACK to the buffer. Time delay: 1 time unit.
t4: The receiver processes the message. Time delay: 4 time units.
t5: The sender receives the ACK. Time delay: 1 time unit.
t6: The sender processes a new message. Time delay: 3 time units.

There are three circuits in the model. The cycle time of each circuit is calculated as follows:

circuit p1t1p3t5p8t6p1 : C1 = T1

N1
= 1 + 1 + 3

1
= 5

circuit p1t1p2t2p4t3p7t5p8t6p1 : C2 = T2

N2
= 1 + 1 + 1 + 1 + 3

1
= 7

circuit p5t2p4t3p6t4p5 : C3 = T3

N3
= 1 + 1 + 4

1
= 6

After enumerating all circuits in the net, we know the minimum cycle time of the protocol between the
two processes is 7 time units.

24.8.2 Stochastic Timed Petri Nets
STPNs are Petri nets in which stochastic firing times are associated with transitions. An STPN is essen-
tially a high-level model that generates a stochastic process. STPN-based performance evaluation basically
comprises modeling the given system by an STPN and automatically generating the stochastic process
that governs the system behavior. This stochastic process is then analyzed using known techniques (Haas,
2002). STPNs are a graphical model and offer great convenience to a modeler in arriving at a credible,
high-level model of a system.

The simplest choice for the individual distributions of transition firing times is negative exponential
distribution. Because of the memoryless property of this distribution, the stochastic process associated
with the STPN is a continuous-time homogeneous Markov chain (Ethier, 2005) with state space in one-
to-one correspondences with marking in R(M0), the set of all reachable markings. The transition rate
matrix of the Markov chain can be easily constructed from the reachability graph given the firing rates
of the transitions of the STPN. Exponential timed stochastic Petri nets, often called stochastic Petri nets
(SPNs), were independently proposed by Natkin (1980) and Molloy (1981), and their capabilities in the
performance analysis of real systems have been investigated by many authors.
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An SPN is a six-tuple (P, T , I , O, M0, �), where (P, T , I , O, M0) is a Petri net and � : T → R a set of
firing rates whose entry λk is the rate of the exponential individual firing time distribution associated
with transition tk . Natkin and Molloy have shown that the marking process of an SPN is a continuous-
time Markov chain. The state space of the Markov chain is the reachable set R(M0). Suppose there are
s markings in R(M0), and the underlying Markov chain is ergodic, then the steady-state probability
distribution � = (π0, π1, …, πs) can be obtained by resolving the following linear system:

�Q = 0
∑

j

πj = 1, πj ≥ 0, j = 0, 1, 2, . . .

where Q is a transition rate matrix whose elements outside the main diagonal are the rates of the exponential
distributions associated with the transitions from state, while the elements on the main diagonal make
the sum of the elements of each row equal to zero. Denote by E(Mi) the set of all enabled transition at
marking Mi, and Tij the set of enabled transitions at marking Mi whose firings lead the SPN to another
marking Mj . Then Q is determined as follows:

qij =
∑

tk∈Tij

λk qi = qii = −
∑

tk∈E(Mi)

λk

The probability of marking Mi changing to Mj is the same as the probability that one of the transitions
in the set Tij fires before any of the transitions in the set T\Tij . Since the firing times in an SPN are mutually
independent exponential random variables, it follows that the required probability has the specific value
given by

αij = qij/qi

In the expression for αij deduced above, note that the numerator is the sum of the rates of those enabled
transitions in Mi, the firing of any of which changes the marking from Mi to Mj ; whereas the denominator
is the sum of the rates of all the enabled transitions in Mi. Also note that αij = 1 if and only if Tij = E(Mi).

Example 7
A stochastic Petri net.

Figure 24.10 shows a simple SPN model with its reachable markings and its reachable graph. The linear
system of steady-state probabilities is

π0 + π1 + π2 + π3 + π4 = 1

Let � = (1 1 1 1), then solution to this system is

π0 = π4 = 2/7, π1 = π2 = π3 = 1/7

p1

p2

p3

p4

p5

t1

t2

t3

t4

(a)

M0

M1

M2

M3

M4

t1
t2

t3

t3 t2

t4
(b)

FIGURE 24.10 (a) SPN model. (b) Reachability graph.



24-16 Handbook of Dynamic System Modeling

The analysis of an SPN model is usually aimed at the computation of more aggregate performance
indices than the probabilities of individual markings. Several kinds of aggregate results are easily
obtained from the steady-state distribution over reachable markings. In this section, we quote some
of the most commonly and easily computed aggregate steady-state performance parameters (Ajmone
Marsan, 1990).

• The probability of an event defined through place markings (e.g., no token in a subset of places,
or at least one token in a place while another one is empty), can be computed by adding the
probabilities of all markings in which the condition corresponding to the event definition holds.
Thus, for example, the steady-state probability of the event A defined through a condition that holds
for the markings Mi ∈ H is obtained as

P{A} =
∑

Mi∈H

πi

• The average number of tokens in a place can be obtained by computing the individual probabilities
as those of the event “place pi contains k tokens.”

• The frequency of firing a transition, i.e., the average number of times the transition fires in unit
time, can be computed as the weighted sum of the transition firing rate:

fi =
∑

i:tj∈E(Mi)

λj(Mi)πi

where fj is the frequency of firing tj and λj(Mi) the firing rate of tj at Mi.
• The average delay of a token in traversing a subnet in steady-state conditions can be computed using

Little’s formula

E(T) = E(N)

E(γ)

where E(T) is the average delay, E(N) the average number of tokens in the process of traversing
the subnet, and E(γ) the average input (or output) rate of tokens into (or out of) the subnet. This
procedure can be applied whenever the interesting tokens can be identified inside the subnet (which
can also comprise other tokens defining its internal condition, but these must be distinguishable
from those whose delay is studied) so that their average number can be computed, and a relation
can be established between input and output tokens (e.g., one output token for each input token).

24.9 Concluding Remark

Petri nets have been proven to be a powerful modeling tool for various types of dynamic event-driven
systems. Since Petri nets were introduced in 1962, numerous research papers have been published. The
research has been conducted in many branches, with each branch exploring a promising application aspect
of this formalism. Given the rich research results from the Petri net society, it is hard to cover all of them in
such a short book chapter. Therefore, this chapter only aims at briefly introducing the most basic concepts,
theory and applications of ordinary Petri nets, and a few of the most popular extended Petri nets.
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25.1 Introduction

In a separate chapter, models for discrete-event systems (DES) were introduced and discussed. To briefly
recap, the behavior of such systems is governed by discrete events occurring asynchronously over time and
solely responsible for generating state transitions. In between event occurrences, the state of such systems
is unaffected. Examples include computer and communication networks, automated manufacturing sys-
tems, air traffic control systems, command-control systems, advanced monitoring and control systems in
automobiles or large buildings, intelligent transportation systems, distributed software systems, and so
forth. DES are also referred to as event-driven systems to distinguish them from time-driven systems. In the
latter, the state of the system generally changes as time changes: with every “tick” of an underlying clock the
state is expected to change and differential (or difference) equations are the standard modeling framework
one uses in such cases. In contrast, in an event-driven system state transitions are the result of combining
asynchronous concurrent event processes. Modeling frameworks for DES include state automata and Petri
nets, discussed elsewhere in the book.

An important class of DES is that of queueing systems. The term “queueing” is associated with the fact
that the resources we need to use in most systems we design and build (as well as in our daily life) are
not always accessible: to use them, we have to wait. For example, to use the resource “bank teller” in a
bank, people form a line and wait for their turn. Sometimes, the waiting is not done by people, but by
discrete objects or more abstract “entities.” For example, to use the resource “CPU” in a computer, various
“tasks” wait somewhere until they are given access to it through potentially complex mechanisms. There
are three basic elements that comprise a queueing system: (i) The entities that do the waiting in their quest
for resources; these are traditionally referred to as customers. (ii) The resources for which the waiting is
done; since resources typically provide some form of service to the customers, we shall generically call
them servers; and (iii) The space where the waiting is done, which we shall call a queue.

The study of queueing systems is motivated by the simple fact that resources are not unlimited; if they
were, no waiting would ever occur. This fact gives rise to obvious problems of resource allocation and
related tradeoffs so that (i) customer needs are adequately satisfied, (ii) resource access is provided in fair
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FIGURE 25.1 A simple queueing system.

and efficient ways among different customers, and (iii) the cost of designing and operating the system is
maintained at acceptable levels.

Graphically, we will represent a simple queueing system as shown in Figure 25.1. A circle represents
a server, and an open box represents a queue preceding this server. The slots in the queue are meant to
indicate waiting customers. Customers are thought of as arriving at the queue, and departing from the
server. The process of serving customers takes a positive amount of time (otherwise there would be no
waiting). Thus, a server may be thought of as a “delay block,” which holds a customer for some amount of
service time.

Queueing theory is a subject to which many books have been devoted. It ranges from the study of
simple single-server systems modeled as birth–death Markov chains to the analysis of arbitrarily complex
networks of queues. In this chapter, we limit ourselves to the essential ideas and techniques that are used
to analyze simple queueing systems. Queueing theory has as its main goal the determination of a system’s
performance under certain operating conditions, rather than the determination of the operating policies to
be used to achieve the best possible performance. Thus, its mission has been largely to develop“descriptive”
tools for studying queueing systems, rather than “prescriptive” tools for controlling their behavior in an
ever-changing dynamic and uncertain environment. Still, we must stress that queueing theory has made
some of the most important contributions to the analysis of stochastic DES where resource contention
issues are predominant.

25.2 Specification of Queueing System Models

There are three basic aspects of a queueing model that require specification: (i) stochastic models for the
arrival and service processes; (ii) structural parameters of the system, e.g., the storage capacity of a queue
and the number of servers; and (iii) Operating policies, e.g., conditions under which arriving customers
are accepted and preferential treatment (prioritization) of some types of customers by the server.

Stochastic Models for Arrival and Service Processes. Viewed as a DES, the simple model of Figure 25.1
has an event set E = {a, d}, where a denotes a customer arrival and d a departure following a service
completion. We associate with arrival events a a stochastic sequence {Y1, Y2, . . . }, where Yk is the kth
interarrival time, i.e., the time elapsed between the (k − 1)th and kth arrival, k = 1, 2, . . .. For simplicity,
we always set Y0 = 0, so that Y1 is the random variable describing the time of the first arrival. In most simple
queueing models, it is assumed that the stochastic sequence {Yk} is iid (i.e., Y1, Y2, . . . are independent
and identically distributed). Therefore, a single probability distribution

A(t) = P[Y ≤ t] (25.1)

completely describes the interarrival time sequence. In Eq. (25.1), the random variable Y is often thought
of as a “generic” interarrival time that does not need to be indexed by k. The mean of the distribution
function A(t), E[Y ], is particularly important and it is customary to use the notation

E[Y ] ≡ 1

λ
(25.2)

to represent it. Thus, λ is the arrival rate of customers.
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Similarly, we associate to the event d a stochastic sequence {Z1, Z2, . . . }, where Zk is the kth service time,
i.e., the time required for the kth customer to be served, k = 1, 2, . . . . If we assume that the stochastic
sequence {Zk} is also iid, then we define

B(t) = P[Z ≤ t] (25.3)

where Z is a generic service time. Similar to Eq. (25.2), we use the following notation for the mean
of B(t):

E[Z] ≡ 1

µ
(25.4)

so that µ is the service rate of the server in our model.
Structural Parameters. The most common structural parameters of interest in a queueing system are (i)

The storage capacity of the queue, usually denoted by K = 1, 2, . . . . By convention, we normally agree to
include in this storage capacity the space provided for customers in service. (ii) The number of servers,
usually denoted by m = 1, 2, . . . . In the simple system of Figure 25.1, we have K = ∞ and m = 1.

Operating Policies. Even for the simple system of Figure 25.1, there are various schemes one can adopt in
handling the queueing process. Here are just some of the natural questions that arise about the operation
of the system: (i) Is the service time distribution the same for all arriving customers? (ii) Are customers
differentiated on the basis of belonging to different“classes,” some of which may have a higher priority than
others in requesting service? (iii) Are all customers admitted to the system? (iv) Are customers allowed to
leave the queue before they get served, and, if so, under what conditions? (v) How does the server decide
which customer to serve next (if there are more than one in the queue); for example, the first one in queue,
anyone at random, and so forth? (vi) Is the server allowed to preempt a customer in service to serve a
higher-priority customer that just arrived?

Clearly, operating policies can cover a wide range of possibilities. In categorizing them, the most common
issues we consider are the following: (i) Number of customer classes. In the case of a single-class system, all
customers have the same service requirements and the server treats them all equally. This means that the
service time distribution is the same for all customers. In the case of a multiple-class system, customers
are distinguished according to their service requirements and/or the way in which the server treats them.
(ii) Scheduling policies. In a multiple-class system, the server must decide upon a service completion which
class to process next. For example, the server may always give priority to a particular class, or it may
preempt a customer in process because a higher priority customer just arrived. (iii) Queueing disciplines.
A queueing discipline describes the order in which the server selects customers to be processed, even if
there is only a single class. For example, first-come-first-served (FCFS), last-come-last-served (LCFS), and
random order. (iv) Admission policies. Even if a queue has infinite storage capacity, it may be desirable
to deny admission to some arriving customers. In the case of two arriving classes, for instance, higher
priority customers may always be admitted, but lower priority customers may only be admitted if the
queue is empty or if some amount of time has elapsed since such a customer was admitted. (v) Batching.
It is possible that arrivals occur in “batches,” i.e., customers may arrive one at a time or in groups of size
n > 1. Similarly, it is possible that service occurs in batches of size n > 1 customers processed at a time.

In the simple case of Figure 25.1, we assume a single-class system with all arriving customers admitted
and served one at a time and the queueing discipline is FCFS.

Notation. It is customary in queueing theory to employ a particular type of notation to succinctly
describe a system. This notation (attributed to Kendall) is A/B/m/K , where A is the interarrival time
distribution, B the service time distribution, m the number of servers present, m = 1, 2, . . . , and K the
storage capacity of the queue, K = 1, 2, . . . . Thus, the infinite queueing capacity single-server system of
Figure 25.1 is described by A/B/1/∞. To simplify the notation, if the K position is omitted it is understood
that K = ∞. Therefore, in our case, we have A/B/1. Furthermore, there is some common notation used
to represent the distributions A and B. In particular, G stands for a General distribution when nothing
else is known about the arrival/service process, GI for a General distribution in a renewal arrival/service
process (i.e., all interarrival/service times in that process are iid), D for the Deterministic case, (i.e., the
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interarrival/service times are fixed), and M for the Markovian case, i.e., the interarrival/service times are
exponentially distributed; using our notation in Eqs. (25.1)–(25.4), this means that A(t) = 1 − e−λt and
B(t) = 1 − e−µt .

These are the most often encountered cases. Here are some examples to illustrate the A/B/m/K notation:
the M/M/1 queueing system has a single server and infinite storage capacity with both interarrival and
service times exponentially distributed; the M/M/1/K system is the same but with storage capacity
given by some K < ∞ (including space at the server); the M/G/2 system has two servers and infinite
storage capacity, with exponentially distributed interarrival times, while the service times have an arbitrary
(general) distribution.

Note that the A/B/m/K notation does not specify the operating policies to be used. It also does
not describe the case where two or more customer classes are present, each with different interarrival and
service time distributions. Finally, note that when A(t) = 1 − e−λt the underlying arrival process is Poisson.
Thus, the statement “the arrival process is Poisson” is the same as “interarrival times are independent and
exponentially distributed.” In the case of departure events generated by a Poisson process, we normally
use the statement “service times are exponentially distributed,” because these events are only feasible when
the server is busy.

The A/B/m/K notation can be extended to include one more characteristic of a queueing system:
whether it is open to an infinite population of customers who can request service at any time or whether
the system is limited to a finite population of customers, usually denoted by N . In the latter case, a
customer completing service at some server is always routed to another queue and never leaves the system.
We refer to the former as an open queueing system and the latter as a closed one. In such cases, the notation
A/B/m/K/N is used, where N represents the customer population residing in the system. As in the case
of infinite storage, omitting N implies an open system (i.e., N = ∞). Note that if K = ∞, but N < ∞, we
normally write A/B/m//N . Closed queueing systems should not be thought of as strictly consisting of a
particular set of fixed customers. Instead, the population N may indicate a number of resources limiting
access to more customers. A typical example arises in modeling a computer system with N access points.
Here, the total number of users is limited to N , but users certainly come and go replacing each other at
various access points. Similarly, in a manufacturing system production parts are often carried in pallets
whose number is limited to N . When a finished part leaves the system, it relinquishes its pallet to a new
part, so that the effective number of customers in the system is limited to N .

25.3 Performance of a Queueing System

In addition to the random variables already introduced, i.e., the interarrival time Yk and the service time Zk ,
let us define Ak to be the arrival time of the kth customer, Dk its departure time, Wk its waiting time, and
Sk its system time (from arrival instant until departure), also referred to as response time, sojourn time, or
delay. Note that

Sk = Dk − Ak = Wk + Zk (25.5)

and

Dk = Ak + Wk + Zk (25.6)

In addition, we define the random variables X(t) to denote the queue length at time t , X(t) ∈ {0, 1, 2, . . . }
and U(t) to denote the workload (or unfinished work) at time t , i.e., the amount of time required to empty
the system at t .

The stochastic behavior of the waiting time sequence {Wk} provides important information regarding
the system’s performance. The probability distribution function of {Wk}, P[Wk ≤ t], generally depends
on k. We often find, however, that as k → ∞ there exists a stationary distribution, P[W ≤ t], independent
of k, such that

lim
k→∞

P[Wk ≤ t] = P[W ≤ t] (25.7)
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If this limit indeed exists, the random variable W describes the waiting time of a typical customer at steady
state. Intuitively, when the system runs for a sufficiently long period of time (equivalently, the system
has processed a sufficiently large number of customers), every new customer experiences a “stochastically
identical” waiting process described by P[W ≤ t]. The mean of this distribution, E[W ], represents the
average waiting time at steady state. Similarly, if a stationary distribution exists for the system time
sequence {Sk}, then its mean, E[S], is the average system time at steady state.

The same idea applies to the stochastic processes {X(t)} and {U(t)}. If stationary distributions exist for
these processes as t → ∞, then the random variables X and U are used to describe the queue length and
workload of the system at steady state. We will use the notation πn, n = 0, 1, . . . , to denote the stationary
queue length probability, that is,

πn = P[X = n], n = 0, 1, . . . (25.8)

Accordingly, E[X] is the average queue length at steady state, and E[U] the average workload at steady state.
In general, we want to design a queueing system so that a typical customer at steady state waits as little

as possible (ideally, zero). In contrast, we also wish to serve as many customers as possible by keeping the
server as busy as possible, that is, we try to maximize the server’s utilization. To do so, we must constantly
keep the queue nonempty; in fact, we should make sure there are always a few customers to serve in case
several service times in a row turn out to be short. However, this is directly contrary to our objective
of achieving zero waiting time for customers. This informal argument serves to illustrate a fundamental
performance tradeoff in all queueing systems. To keep a server highly utilized we must be prepared to
tolerate long waiting times; conversely, to maintain low waiting times we have to tolerate some server
idling. With this observation in mind, the main measures of performance (at steady state) that we are
interested in are (i) the average waiting time of customers, E[W ], (ii) the average queue length, E[X],
(iii) the utilization of the system, i.e., the fraction of time that the server is busy, and (iv) the throughput
of the system, i.e., the rate at which customers leave after service. Our objective is to keep the first two as
small as possible, while keeping the last two as large as possible.

To gain some more insight on the utilization of a queueing system, we define the traffic intensity ρ as

ρ ≡ [arrival rate]

[service rate]

Then, by the definitions of λ and µ in Eq. (25.2) and Eq. (25.4), we have

ρ = λ

µ
(25.9)

In the case of m servers, the average service rate becomes mµ, and, therefore,

ρ = λ

mµ
(25.10)

In a single-server system at steady state, the probability π0, defined in Eq. (25.8), represents the fraction of
time the system is empty, and hence the server is idle. It follows that for a server at steady state:

[utilization] ≡ [fraction of time server is busy] = 1 − π0

Since a server operates at rate µ and the fraction of time that it is actually in operation is (1 − π0), the
throughput of a single-server system at steady state is

[throughput] ≡ [departure rate of customers after service] = µ(1 − π0)

At steady state, the customer flows into and out of the system must be balanced, that is,

λ = µ(1 − π0)

It then follows from Eq. (25.9) that

ρ = 1 − π0 (25.11)
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Thus, the traffic intensity, which is defined by the parameters of the service and interarrival time distri-
butions, also represents the utilization of the system. This relationship holds for any single-server system
with infinite storage capacity. Note that if π0 = 0, the system is permanently busy, which generally leads to
an instability in the sense that the queue length grows to infinity. Thus, the values of ρ must be such that
0 ≤ ρ < 1.

A typical design problem for queueing systems is the selection of parameters such as the service
rate and number of servers to achieve some desirable performance in terms of the measures above.
In controlling queueing systems, our task is to select operating policies that help us achieve such
performance.

25.4 Queueing System Dynamics

Consider once again the queueing system of Figure 25.1, operating on an FCFS basis. Using the notation
we have established, a typical sample path of this system is shown in Figure 25.2. In this example, the first
arriving customer at time A1 finds an empty queue. During the interval starting at A1 and ending with
D3 the server remains busy. Such an interval is termed a busy period of the queueing system. During the
interval starting with D3 and ending with the next arrival at A4 the server remains idle. We term this an
idle period of the system. We can see that one way to view this system is as a sequence of alternating cycles
each consisting of a busy period followed by an idle period.

Taking a closer look at Figure 25.2 helps us identify the basic dynamic mechanism of this queueing
system. When the kth customer arrives, two cases are possible. In the first case, the system is empty,
therefore Wk = 0. The system can only be empty when Dk−1 ≤ Ak , i.e., the previous customer departed
before the current customer arrived. Thus

Dk−1 − Ak ≤ 0 ⇔ Wk = 0 (25.12)

This is clearly seen in Figure 25.2 with the case W4 = 0, which is a result of D3 < A4.
In the second case, the system is not empty, therefore, Wk > 0 and the kth customer is forced to wait

until the previous, i.e., (k − 1)th, customer departs. Thus,

Dk−1 − Ak > 0 ⇔ Wk = Dk−1 − Ak (25.13)

This situation arises with W2 = D1 − A2 > 0 in Figure 25.2, as well as with W3 and W5.
Combining Eq. (25.12) and Eq. (25.13), we obtain

Wk = max{0, Dk−1 − Ak} (25.14)

1

2

A1 A2 A3 A4 A5

D1 D2 D3 D4 D5

Z1 Z2 Z3 Z4 Z5

X(t )
Y2 Y3 Y4 Y5

FIGURE 25.2 A typical queueing system sample path.
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Now using Eq. (25.6) for the (k − 1)th customer on a sample path, and recalling that Ak − Ak−1 = Yk , we
get the following recursive expression for waiting times:

Wk = max{0, Wk−1 + Zk−1 − Yk} (25.15)

Similarly, we can rewrite this relationship for system times:

Sk = max{0, Sk−1 − Yk} + Zk (25.16)

Finally, we can obtain a similar recursive expression for departure times using the fact that
Wk = Dk − Ak − Zk and we get

Dk = max{Ak , Dk−1} + Zk (25.17)

These relationships capture the essential dynamic characteristics of a queueing system. Eq. (25.15) is
referred to as Lindley’s equation, after D. V. Lindley who studied queueing dynamics in the 1950s (Lindley,
1952). Also note that these relationships are very general, in the sense that they apply on any sample path
of the system regardless of the distributions characterizing the various stochastic processes involved. There
are few results we can obtain for queueing systems, which are general enough to hold regardless of the
nature of these distributions. Aside from the relationships derived above, there is one more general result
which we discuss in the next section.

25.5 Little’s Law

Consider once again the queueing system of Figure 25.1 and define Na(t) and Nd(t) to count the number
of arrivals and departures, respectively, in the interval (0, t]. Assuming that the system is initially empty, it
follows that the queue length X(t) is given by

X(t) = Na(t) − Nd(t) (25.18)

Let U(t) be the total amount of time all customers have spent in the system by time t . Thus, the average
system time per customer by time t , denoted by S̄(t), is

S̄(t) = U(t)

Na(t)
(25.19)

Similarly, dividing U(t) by t , we obtain the average number of customers present in the system over the
interval (0, t], i.e., the average queue length along this sample path, X̄(t):

X̄(t) = U(t)

t
(25.20)

Finally, dividing the total number of customers who have arrived in (0, t], Na(t), by t , we obtain the arrival
rate λ(t):

λ(t) = Na(t)

t
(25.21)

Combining Eq. (25.19)–(25.21) gives

X̄(t) = λ(t)S̄(t) (25.22)

We now make two assumptions. We assume that as t → ∞, λ(t) and S̄(t) both converge to fixed values
λ and S̄, respectively, i.e., the following limits exist: limt→∞ λ(t) = λ, limt→∞ S̄(t) = S̄. These values
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represent the steady-state arrival rate and system time, respectively, for a given sample path. If these limits
exist, then, by Eq. (25.22), X̄(t) must also converge to a fixed value X̄ . Therefore,

X̄ = λS̄ (25.23)

This relationship applies to a particular sample path we selected. Suppose, however, that the limits we have
assumed exist for all possible sample paths and for the same fixed values of λ and S̄, and hence X̄ . In other
words, we are assuming that the arrival, system time, and queue length processes are all ergodic. In this
case, X̄ is actually the mean queue length E[X] at steady state, and S̄ the mean system time E[S] at steady
state. We may then rewrite Eq. (25.23) as

E[X] = λE[S] (25.24)

This is known as Little’s Law. It is a powerful result in that it is independent of the stochastic features
of the system, that is, the probability distributions associated with the arrival and departure events. This
derivation is not a proof of the fundamental relationship [Eq. (25.24)], but it does capture its essence.
In fact, this relationship was taken for granted for many years even though it was never formally proved.
Formal proofs finally started appearing in the literature in the 1960s (e.g., Little, 1961; Stidham, 1974).

It is important to observe that Eq. (25.24) is independent of the operating policies employed in the
queueing system under consideration. Moreover, it holds for an arbitrary configuration of intercon-
nected queues and servers. This implies that Little’s Law holds for a single queue (server not included) as
follows:

E[XQ] = λE[W ] (25.25)

where E[XQ] is the mean queue content (without the server) and E[W ] the mean waiting time. Similarly,
if our system is defined by a boundary around a single server, we have

E[XS] = λE[Z] (25.26)

where E[XS] is the mean server content (between 0 and 1 for a single server) and E[Z] the mean service
time.

25.6 Simple Markovian Queueing Models

Most interesting performance measures can be evaluated from the stationary queue length probability
distribution πn = P[X = n], n = 0, 1, . . ., of the system. Obtaining this distribution (if it exists) is there-
fore a major objective of queueing theory. This is generally an extremely hard problem, even when the
interarrival and service time distributions are relatively simple. The Markovian case, where they are both
exponential, is of particular interest because it captures many practical situations and it is analytically
tractable under certain assumptions regarding the structure of the queueing system.

The key observation is that the state transition diagram of a simple queueing model, such as the one
in Figure 25.1, is that of a birth–death Markov chain as seen in Figure 25.3: in such a DES, there are
two events, a “birth” and a “death” with a state X(t) and an underlying state space {0, 1, . . . }. The time
between births is exponentially distributed and its (generally state-dependent) birth rate parameter is λi,
i = 0, 1, . . . . Similarly, the time between deaths (defined only when X(t) > 0) is exponentially distributed
and its death rate parameter is µi, i = 1, 2, . . . . It is easy to see that this model also represents a queueing
process where births correspond to customer arrivals and deaths correspond to customer departures.
Birth–death Markov chains have been extensively studied in the stochastic process literature. Of particular
interest for our purposes is the fact that the steady-state probabilities πn, n = 0, 1, . . . of such a chain are
given by (see, e.g., Cassandras and Lafortune, 1999; Kleinrock, 1975).
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0 1 2 n… …

λ0 λ1 λ2 λn�1 λn

µ1 µ2 µ3 µn µn�1

FIGURE 25.3 State transition rate diagram of a birth–death Markov chain.

πn =
(

λ0 · · · λn−1

µ1 · · · µn

)
π0, n = 1, 2, . . . (25.27)

π0 = 1

1 + ∑∞
n=1

(
λ0···λn−1
µ1···µn

) (25.28)

where λn and µn are the birth and death rates, respectively, when the state is n.
Before proceeding with applications of this general result to Markovian queueing models, let us discuss

an important property of the Poisson process, which has significant implications to our analysis. Looking
once again at the single-server system of Figure 25.1, consider the event [arriving customer at time t finds
X(t) = n] that is to be compared to the event [system state at some time t is X(t) = n]. The distinction
may be subtle, but it is critical. In the first case, the observation of the system state (queue length) occurs
at specific time instants (arrivals), which depend on the nature of the arrival process. In the second case,
the observation of the system state occurs at random time instants. In general,

P[arriving customer at time t finds X(t) = n] �=
P[system state at some time t is X(t) = n]

However, equality does hold for a Poisson arrival process (Kleinrock, 1975), regardless of the service time
distribution, as long as the arrival and service processes are independent. This is also known as the Poisson
Arrivals See Time Averages (PASTA) property. Using the notation πn(t) = P[system state at some time t
is X(t) = n] and αn(t) ≡ P [arriving customer at time t finds X(t) = n], the PASTA property asserts that
πn(t) = αn(t).

Theorem 1. For a queueing system with a Poisson arrival process independent of the service process, the
probability that an arriving customer finds n customers in the system is the same as the probability that the
system state is n, i.e., πn(t) = αn(t).

Using Eq. (25.27)–(25.28) above, as well as Theorem 1, it is possible to analyze a number of Markovian
queueing systems of practical interest. We will limit ourselves here to the M/M/1 queueing system and
refer the reader to the queueing theoretic literature where more such systems are analyzed extensively
(e.g., Asmussen, 2003; Kleinrock, 1975; Trivedi, 1982).

25.6.1 The M/M/1 Queueing System
Using the notation we have established, this is a single-server system with infinite storage capacity and
exponentially distributed interarrival and service times. It can therefore be modeled as a birth–death chain
with a state transition rate diagram as shown in Figure 25.3 with birth and death parameters λn = λ for all
n = 0, 1, . . . and µn = µ for all n = 1, 2, . . . . It follows from Eq. (25.28) that

π0 = 1

1 + ∑∞
n=1 (λ/µ)n
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The sum in the denominator is a simple geometric series that converges as long as λ/µ < 1. Under this
assumption, we get

∞∑
n=1

(
λ

µ

)n

= λ/µ

1 − λ/µ

and, therefore,

π0 = 1 − λ

µ
(25.29)

Let us set ρ = λ/µ, which is the traffic intensity defined in Eq. (25.9). Thus, we see that

π0 = 1 − ρ (25.30)

which is in agreement with Eq. (25.11). Note also that 0 ≤ ρ < 1, since Eq. (25.29) was derived under the
assumption λ/µ < 1.

Next, using Eq. (25.30) in Eq. (25.27), we obtain πn =
(

λ
µ

)n
(1 − ρ) or

πn = (1 − ρ)ρn, n = 0, 1, . . . (25.31)

Eq. (25.31) gives the stationary probability distribution of the queue length of the M/M/1 system. The
condition ρ = λ/µ < 1 is the stability condition for the M/M/1 system. We are now in a position to obtain
explicit expressions for various performance measures of this system.

Utilization and Throughput. The utilization is immediately given by Eq. (25.30), since 1 − π0 = ρ. The
throughput is the departure rate of the server, which is µ(1 − π0) = λ. This is to be expected since at steady
state the arrival and departure rates are balanced. Thus, for a stable M/M/1 system, the throughput is
simply the arrival rate λ. In contrast, if we allow λ > µ, then the throughput is simply µ, since the server
is constantly operating at rate µ.

Average Queue Length. This is the expectation of the random variable X whose distribution is given by
Eq. (25.31). Thus,

E[X] =
∞∑

n=0

nπn = (1 − ρ)
∞∑

n=0

nρn (25.32)

We can evaluate the preceding sum by observing that

d

dρ

( ∞∑
n=0

ρn

)
=

∞∑
n=0

nρn−1 = 1

ρ

∞∑
n=0

nρn

Since
∑∞

n=0 ρn = 1
1 − ρ

and d
dρ

(
1

1 − ρ

)
= 1

(1 − ρ)2 , we get

∞∑
n=0

nρn = ρ

(1 − ρ)2

Then, Eq. (25.32) gives

E[X] = ρ

1 − ρ
(25.33)

Note that as ρ → 1, E[X] → ∞, that is, the expected queue length grows to ∞. This clearly reveals the
tradeoff we already identified earlier: As we attempt to keep the server as busy as possible by increasing
the utilization ρ, the quality of service provided to a typical customer declines, since, on the average, such
a customer sees an increasingly longer queue length ahead of him.

Average System Time. Using Eq. (25.33) and Little’s Law in Eq. (25.24), we get

ρ

1 − ρ
= λE[S]
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or, since λ = ρµ,

E[S] = 1/µ

1 − ρ
(25.34)

As ρ → 0, we see that E[S] → 1/µ, which is the average service time. This is to be expected, since at very
low utilizations the only delay experienced by a typical customer is a service time. We also see that as
ρ → 1, E[S] → ∞. Once again, this is a manifestation of the tradeoff between utilization and system time:
the higher the utilization (good for the server), the higher the average system time (bad for the customers).
Owing to the nonlinear nature of this relationship, the issue of sensitivity is crucial in queueing systems.
Our day-to-day life experience (traffic jams, long ticket lines, etc.) suggests that when a queue length starts
building up, it tends to build up very fast. This is a result of operating in the range of ρ values where the
additional increase in the arrival rate causes drastic increases in E[S].

Average Waiting Time. It follows from Eqs. (25.5)–(25.6) at steady state that E[S] = E[W ] + E[Z] =
E[W ] + 1/µ. Then, from Eq. (25.34) we get

E[W ] = 1/µ

1 − ρ
− 1

µ

or

E[W ] = ρ

µ(1 − ρ)
(25.35)

As expected, we see once again that as ρ → 1, E[W ] → ∞, that is, increasing the system utilization toward
its maximum value leads to extremely long average waiting times for customers.

Before leaving the M/M/1 system, we briefly discuss the issue of determining the transient solution
for the queue length probabilities πn(t) = P[X(t) = n], n = 0, 1, . . . . This requires solving a set of flow
balance equations obtained from Figure 25.3 with λn = λ and µn = µ:

dπn(t)

dt
= −(λ + µ)πn(t) + λπn−1(t) + µπn+1(t), n = 1, 2, . . . (25.36)

dπ0(t)

dt
= −λπ0(t) + µπ1(t) (25.37)

Obtaining the solution πn(t), n = 0, 1, . . ., of these equations is a tedious task. We provide the final result
below to give the reader an idea of the complexity involved even for the simplest of all interesting queueing
systems we can consider (see also Asmussen, 2003; Kleinrock, 1975):

πn(t) = e−(λ+µ)t

⎡
⎣ρ(n−i)/2Jn−i(at) + ρ(n−i−1)/2Jn+i+1(at) + (1 − ρ)ρn

∞∑
j=n+i−2

ρ−j/2Jj(at)

⎤
⎦

where the initial condition is πi(0) = P[X(0) = i] = 1 for some given i = 0, 1, . . ., and a = 2µρ1/2,

Jn(x) =
∞∑

k=0

(x/2)n+2k

(n + k)!k! , n = −1, 0, 1, . . .

Here, Jn(x) is a modified Bessel function, which makes the evaluation of πn(t) particularly complicated.

25.7 Markovian Queueing Networks

The queueing systems we have considered thus far involve customers requesting service from a single
service-providing facility (with one or more servers). In practice, however, it is common for two or
more servers to be connected so that a customer proceeds from one server to the next in some fashion.
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In communication networks, for instance, messages often go through several switching nodes followed
by transmission links before arriving at their destination. In manufacturing, a part must usually proceed
through several operations in series before it becomes a finished product. This leads to models referred to
as queueing networks, where multiple servers and queues are interconnected. In such systems, a customer
enters at some point and requests service at some server. Upon completion, the customer generally moves
to another queue or server for additional service. In the class of open networks, arriving customers from
the outside world eventually leave the system. In the class of closed networks, the number of customers
remains fixed.

In the simple systems considered thus far, our objective was to obtain the stationary probability dis-
tribution of the state X , where X is the queue length. In networks, we have a system consisting of M
interconnected nodes, where the term “node” is used to describe a set of identical parallel servers along
with the queueing space that precedes it. In a network environment, we shall refer to Xi as the queue length
at the ith node in the system, i = 1, . . . , M . It follows that the state of a Markovian queueing network is a
vector of random variables

X = [X1, X2, . . . , XM ] (25.38)

where Xi takes on values ni = 0, 1, . . . just like a simple single-class stand-alone queueing system. The
major objective of queueing network analysis is to obtain the stationary probability distribution of X (if it
exists), i.e., the probabilities

π(n1, . . . , nM ) = P[X1 = n1, . . . , XM = nM ] (25.39)

for all possible values of n1, . . . , nM , ni = 0, 1, . . . .

In the next few sections, we present the main results pertinent to the analysis of Markovian queueing
networks. This means that all external arrival events and all departure events at the servers in the system are
generated by processes satisfying the Markovian (memoryless) property, and are therefore characterized
by exponential distributions. A natural question that arises is: “what about internal arrival processes?” In
other words, the arrival process at some queue in the network is usually composed of one or more departure
processes from adjacent servers; what are the stochastic characteristics of such processes? The answer to
this question is important for much of the classical analysis of queueing networks and is presented in the
next section.

25.7.1 The Departure Process of the M/M/1 Queueing System
Let us consider an M/M/1 queueing system. Recall that Yk and Zk denote the interarrival and service time,
respectively, of the kth customer, and that the arrival and service processes are assumed to be independent.
Now let us concentrate on the departure times Dk , k = 1, 2, . . . , of customers, and define �k to be the
kth interdeparture time, that is, a random variable such that �k = Dk − Dk−1 is the time elapsed between
the (k − 1)th and the kth departure, k = 1, 2, . . . , where, for simplicity, we set �0 = 0, so that �1 is the
random variable describing the time of the first departure. As k → ∞, we will assume that there exists a
stationary probability distribution function such that

lim
k→∞

P[�k ≤ t] = P[� ≤ t]

where � describes an interdeparture time at steady state. We will now evaluate the distribution P[� ≤ t].
The result, stated below as a theorem without proof (see also Buzen, 1973) is quite surprising:

Theorem 2. The departure process of a stable stationary M/M/1 queueing system with arrival rate λ is a
Poisson process with rate λ, i.e., P[� ≤ t] = 1 − e−λt .

This fundamental property of the M/M/1 queueing system is also known as Burke’s theorem (Burke,
1956): a Poisson process supplying arrivals to a server with exponentially distributed service times results



Queueing System Models 25-13

in a Poisson departure process with the exact same rate. This fact also holds for the departure process
of an M/M/m system. Burke’s theorem has some critical ramifications when dealing with networks of
Markovian queueing systems, because it allows us to treat each component node independently, as long
as there are no customer feedback paths. When a node is analyzed independently, the only information
required is the number of servers at that node, their service rate, and the arrival rate of customers (from
other nodes as well as the outside world).

25.7.2 Open Queueing Networks
We will consider a general open network model consisting of M nodes, each with infinite storage capacity.
We will assume that customers form a single class, and that all nodes operate according to an FCFS queueing
discipline. Node i, i = 1, . . . , M , consists of mi servers each with exponentially distributed service times
with parameter µi. External customers may arrive at node i from the outside world according to a Poisson
process with rate ri. In addition, internal customers arrive from other servers in the network. Upon
completing service at node i, a customer is routed to node j with probability pij ; this is referred to as the
routing probability from i to j. The outside world is usually indexed by 0, so that the fraction of customers
leaving the network after service at node i is denoted by pi0. Note that pi0 = 1 − ∑M

j=1 pij .
In this modeling framework, let λi denote the total arrival rate at node i. Thus, using the notation above,

we have

λi = ri +
M∑

j=1

λjpji, i = 1, . . . , M (25.40)

where the first term represents the external customer flow and the second term represents the aggregate
internal customer flow from all other nodes.

Before discussing the general model, let us first consider the simplest possible case, consisting of two
single-server nodes in tandem, as shown in Figure 25.4. In this case, the state of the system is the two-
dimensional vector X = [X1, X2], where Xi, i = 1, 2, is the queue length of the ith node. Since all events are
generated by Poisson processes, we can model the system as a Markov chain whose state transition rate
diagram is shown in Figure 25.5.

� �1 �2

FIGURE 25.4 A two-node open queueing network. (From Cassandras, C.G., and Lafortune, S., Introduction to
Discrete Event Systems, Springer, Berlin, 1999, pp. 485–486.)
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FIGURE 25.5 State transition rate diagram for a two-node open queueing network. (From Cassandras, C.G., and
Lafortune, S., Introduction to Discrete Event Systems, Springer, Berlin, 1999, pp. 485–486.)
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We can now write down flow balance equations by inspection of the state transition rate diagram. First,
for any state (n1, n2) with n1 > 0 and n2 > 0 we have

λπ(n1 − 1, n2) + µ1π(n1 + 1, n2 − 1) + µ2π(n1, n2 + 1) − (λ + µ1 + µ2)π(n1, n2) = 0 (25.41)

Similarly, for all states (n1, 0) with n1 > 0 we have

λπ(n1 − 1, 0) + µ2π(n1, 1) − (λ + µ1)π(n1, 0) = 0 (25.42)

and for states (0, n2) with n2 > 0:

µ1π(1, n2 − 1) + µ2π(0, n2 + 1) − (λ + µ2)π(0, n2) = 0 (25.43)

and finally for state (0, 0):

µ2π(0, 1) − λπ(0, 0) = 0 (25.44)

In addition, the state probabilities must satisfy the normalization condition:

∞∑
i=0

∞∑
j=0

π(i, j) = 1 (25.45)

The set of Eqs. (25.41)–(25.45) can readily be solved to give

π(n1, n2) = (1 − ρ1)ρn1
1 · (1 − ρ2)ρn2

2 (25.46)

where

ρ1 = λ

µ1
, ρ2 = λ

µ2

with the usual stability conditions 0 ≤ ρ1 < 1 and 0 ≤ ρ2 < 1. Clearly, ρ1 is the traffic intensity at the first
node. Moreover, ρ2 is the traffic intensity of node 2, since the throughput (departure rate) of node 1,
which is λ, is also the arrival rate at node 2. Observe that if we view each of the two nodes as separate
M/M/1 systems with stationary state probabilities π1(n1) and π2(n2), respectively, we get

π1(n1) = (1 − ρ1)ρn1
1 , π2(n2) = (1 − ρ2)ρn2

2

We see, therefore, that we have a simple product form solution for this two-node network:

π(n1, n2) = π1(n1) · π2(n2) (25.47)

In fact, the product form in Eq. (25.47) is a consequence of Burke’s theorem, which also asserts that the
queue length at time t in an M/M/1 system is independent of its departure process prior to t . It allows us
to decouple the two nodes, analyze them separately as individual M/M/1 systems, and then combine the
results as in Eq. (25.47). It is straightforward to extend this solution to any open Markovian network with
no customer feedback paths. Let us briefly indicate why customer feedback may create a problem. Suppose
that in a simple M/M/1 system customers completing service are returned to the queue with probability p,
or they depart with probability (1 − p). The difficulty here is that the process formed by customers entering
the queue, consisting of the superposition of the external Poisson process and the feedback process, is not
Poisson (in fact, it can be shown to be characterized by a hyperexponential distribution). Remarkably, the
departure process of this system is still Poisson (see also Walrand, 1988).

Returning to the general open network model described above, it was established by Jackson (1963)
that a product form solution still exists even if customer feedback is allowed. This type of model is also
referred to as a Jackson network. What is interesting in this model is that an individual node need not have
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Poisson arrivals (due to the feedback effect), yet it behaves as if it had Poisson arrivals and can therefore
still be treated as an M/M/1 system. Thus, we have the general product form solution:

π(n1, n2, . . . , nN ) = π1(n1) · π2(n2) · · · πM (nM ) (25.48)

where πi(ni) is the solution of an M/M/1 queueing system with service rate µi and arrival rate given
by λi in the solution of Eq. (25.40). It is worth mentioning that the same result also holds for M/M/mi

queueing systems, i.e., systems with mi ≥ 1 servers at node i. To guarantee the existence of the stationary
probability distribution in Eq. (25.48), we impose the usual stability condition for each node:

λi = ri +
M∑

j=1

λjpji < miµi (25.49)

The open network model we have considered can be extended to include state-dependent arrival and
service processes. In particular, Jackson considered the case where an external arrival process depends on
the total number of customers (n1 + · · · + nN ), and the ith service rate depends on the queue length at
node i (Jackson, 1963). Although the analysis becomes considerably more cumbersome, the stationary
state probability can still be shown to be of the product form variety.

25.7.3 Closed Queueing Networks
A closed queueing network is one with a finite population of N customers. From a modeling standpoint,
a closed network may be obtained from the open network model of the previous section by setting

ri = 0 and
M∑

j=1

pij = 1 for all i = 1, . . . , M

In this case, no external arrivals occur and no customers can leave the system. Under these conditions, the
state variables of the system, X1, . . . , XM , must always satisfy

∑M
i=1 Xi = N . Thus, the state space is finite

and corresponds to the number of placements of N customers among M nodes, given by the binomial
coefficient (

M + N − 1
M − 1

)
= (M + N − 1)!

(M − 1)!N !
In addition, if we balance customer flows as in Eq. (25.40) we get

λi =
M∑

j=1

λjpji, i = 1, . . . , M (25.50)

There is an important difference between the set of equations (25.40) and that in Eq. (25.50). In Eq. (25.40),
we have M linearly independent equations, from which, in general, a unique solution may be obtained. In
contrast, the absence of external arrival rate terms ri in Eq. (25.50) results in (M − 1) linearly independent
equations only. Thus, the solution of Eq. (25.50) for λ1, . . . , λM involves a free constant. For instance,
suppose we choose λ1 to be this constant. We may then interpret λi, i �= 1, as the relative throughput of
node i with respect to the throughput of node 1.

It turns out that this class of networks also has a product form solution for its stationary state prob-
abilities π(n1, . . . , nM ), with the values of n1, . . . , nM constrained to satisfy

∑M
j=1 ni = N (Gordon and

Newell, 1967). For simplicity, we limit our discussion here to single-server nodes, although the result also
applies to the more general case where node i consists of mi servers. Solving the flow balance equations in
this case gives:

π(n1, . . . , nM ) = 1

C(N)
ρ

n1
1 · · · ρnM

M (25.51)
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where ρi = λi/µi with λi obtained from the solution of Eq. (25.50) with a free constant (arbitrarily chosen)
and C(N) is a constant dependent on the population size N , which is obtained from the normalization
condition

1

C(N)

∑
n1,...,nM

ρ
n1
1 · · · ρnM

M = 1

Thus, to obtain the stationary state probability distribution in Eq. (25.51) we need to go through several
steps of some computational complexity. First, the solution of the linear equations Eq. (25.50) to determine
the parameters λ1, . . . , λM must be obtained. This solution includes a free constant, which must next
be selected arbitrarily. This selection will not affect the probabilities in Eq. (25.51), but only the values
of the parameters ρi in the product form. Lastly, we must compute the constant C(N), which is usually
not a trivial computational task. There exist several computationally efficient algorithms to carry out this
computation, e.g., see Buzen (1973) where the following recursive relationship is exploited:

Ci(k) = Ci−1(k) + ρiCi(k − 1), i = 2, . . . , M , k = 2, . . . , N (25.52)

with initial conditions C1(k) = ρk
1, k = 1, . . . , N and Ci(1) = 1, i = 1, . . . , M , from which C(N) is

obtained as C(N) = CM (N).
It can also be shown that the utilization of node i when the population size is N is given by

µi[1 − πi(0)] = ρi
C(N − 1)

C(N)

Expressions for other performance measures can similarly be derived in terms of the parameters ρi and
C(k), k = 1, . . . , N .

25.7.3.1 Mean Value Analysis

If we are only interested in obtaining performance measures such as the network throughput and the
mean values of the queue length and system time distributions at nodes, then Mean Value Analysis (MVA),
developed in Reiser and Lavenberg (1980), bypasses the need for computing the normalization constant
C(N). MVA exploits a simple relationship between the average customer system time at a network node
and the average queue length at that node. Specifically, consider a customer arriving at node i, and let S̄i be
the average system time the customer experiences at i. Moreover, let X̄i be the average queue length seen
by that arrival. Observe that

S̄i = 1

µi
+ X̄i

1

µi

where 1/µi is the mean service time at node i. In other words, the customer’s system time consists of two
parts: his own service time, and the total time required to serve all customers ahead of him. It can be
shown that in a closed queueing network with N customers, X̄i is the same as the average queue length at
i in a network with (N − 1) customers. Intuitively, what a typical customer sees is the network without
that customer. Therefore, if we denote by X̄i(N) and S̄i(N) the average queue length and average system
time at node i, respectively, when there are N customers in the network, we obtain the following recursive
equation:

S̄i(N) = 1

µi
[1 + X̄i(N − 1)], i = 1, . . . , M (25.53)

with initial condition X̄i(0) = 0, i = 1, . . . , M . In addition, we can use Little’s Law (25.24) twice. First, for
the whole network, we have

N =
M∑

i=1

�i(N)S̄i(N) (25.54)
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where �i(N) is the node i throughput when there are N customers in the network and N the fixed number
of customers in the network. Note that �i(N)/�j(N) = λi/λj for all i, j where λi, λj are obtained from
Eq. (25.50), so that �j(N) is obtained from Eq. (25.54) as

�j(N) = N

[
M∑

i=1

(
λi

λj

)
S̄i(N)

]−1

(25.55)

The second use of Little’s Law is made for each node i and we get

X̄i(N) = �i(N)S̄i(N), i = 1, . . . , M (25.56)

The four equations (25.53)–(25.56) define an algorithm through which X̄i(N), S̄i(N), and �i(N) can be
evaluated for various values of N = 1, 2, . . . .

25.7.4 Product Form Networks
The open and closed queueing network models considered thus far are referred to as product form net-
works. Obviously, this is because the stationary state probabilities π(n1, . . . , nM ) can be expressed as
products of terms as in Eq. (25.48) or Eq. (25.51). The ith such term is determined by parameters of
the ith node only, which makes a decomposition of the network easy and efficient. Even though we
have limited ourselves to Markovian networks, it turns out that there exist significantly more com-
plicated types of networks, which are also of the product form variety. The most notable type of
product form network is one often referred to as a BCMP network after the initials of the researchers
Baskett, Chandy, Muntz, and Palacios who studied it (Baskett et al., 1975). This is a closed network
with K different customer classes. Class k, k = 1, . . . , K , is characterized by its own routing proba-
bilities and service rates and four different types of nodes are allowed: (i) A single-server node with
exponentially distributed service times and µk

i = µi for all classes. In addition, an FCFS queueing dis-
cipline is used. This is the simplest node type which we have used in our previous analysis as well.
(ii) A single-server node and any service time distribution, possibly different for each customer class,
as long as each such distribution is differentiable. The queueing discipline here must be of the processor-
sharing (PS) type (i.e., each customer in queue receives a fixed“time slice”of service in round-robin fashion
and then returns to the queue to wait for more service if necessary; the PS discipline is obtained when
this time slice is allowed to become vanishingly small). (iii) The same as before, except that the queueing
discipline is of the Last-Come-First-Served (LCFS) type with a preemptive resume (PR) capability. This
means that a new customer can preempt (i.e., interrupt) the one in service, with the preempted customer
resuming service at a later time. (iv) A node with an infinite number of servers and any service time
distribution, possibly different for each customer class, as long as each such distribution is differentiable.

In this type of network, the state at each node is a vector of the form Xi = [Xi1, Xi2, . . . , XiK ], where Xik

is the number of class k customers at node i. The actual system state is the vector X = [X1, X2, . . . , XK ]
and, assuming the population size of class k is Nk , we must always satisfy the condition

∑M
j=1 Xik = Nk for

all k. The actual product form solution can be found in Baskett et al. (1975) or several queueing theory
textbooks such as Trivedi (1982).

25.8 Non-Markovian Queueing Systems

Beyond queueing systems whose arrival and service processes are modeled through exponential distribu-
tions, analytical results are very limited. There are several sophisticated techniques for approximating the
distributions of these processes using combinations of exponential ones or by approximating interesting
performance measures by means of the first two moments only. These and related techniques for analyzing
complex queueing models are beyond the scope of this chapter and the reader is referred to specialized
books, including Asmussen (2003), Bremaud (1981), Chen and Yao (2000), Kelly (1979), Kleinrock (1975),
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Neuts (1981), Walrand (1988). We limit ourselves to one well-known and very useful analytical result that
applies to the M/G/1 queueing system. In particular, it is possible to derive a simple expression for the
average queue length E[X] of such a system. This is known as the Pollaczek–Khinchin formula (or PK
formula):

E[X] = ρ

1 − ρ
− ρ2

2(1 − ρ)
(1 − µ2σ2) (25.57)

where 1/µ and σ2 are the mean and variance, respectively, of the service time distribution and ρ = λ/µ

is the traffic intensity as defined in Eq. (25.9), λ being the Poisson arrival rate. We can immediately see
that for exponentially distributed service times, where σ2 = 1/µ2, (Eq. 25.57) reduces to the average queue
length of the M/M/1 system, E[X] = ρ/(1 − ρ), as in Eq. (25.33).

Finally, it is worth mentioning that many software tools have been developed over the years to facilitate
the process of modeling queueing systems and of estimating performance measures such as throughput,
mean queue lengths, and mean delays. Some are based on discrete event simulation (Extend and SimEvents
are two of the most recent commercial products of this type), while others are based on approximation
methods (RESQ and QNA are such examples). More specialized tools have also been developed for
particular application areas such as communication networks (e.g., Opnet) and manufacturing systems
(e.g., MPX).
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26.1 Introduction

26.1.1 Port-Based Modeling versus Traditional Modeling
To be concise, port-based modeling of dynamic behavior will be introduced from the point of view that
the reader is well aware of traditional modeling techniques as well as the common pitfalls of modeling, viz.:

• confusion of physical components with ideal concepts (conceptual elements), and
• confusion of modeling with model manipulation, where modeling is the mere decision process of

which aspects should be taken into account to arrive at a competent model for a specific prob-
lem context, while model manipulation is any kind of transformation of the representation of a
model into a form that allows better insight in the particular aspect under study (none of these
transformations should change the physics properties of the model).

The key idea in any modeling approach that starts from the a priori knowledge about the physics properties
of the system to be modeled is that a conceptual separation is made between various fundamental behaviors
that are (considered to be) relevant for a given problem context. Although this step is always present, it is
often preceded by a step in which the system to be modeled is subdivided into subsystems on the basis of
aspects of function or configuration. A pump (drive) system, for example, can be seen as an interconnection
of an electric power source (an amplifier), an electric motor, a transmission, and a mechanism for
displacement of a fluid (a gear box and a load). This is the first conceptual level of observable, functional
components. The total behavior consists not only of the observable dynamic interaction between these
subsystems, but also of the conceptual interaction between the fundamental behaviors that constitute the
behavior of these subsystems. Already when modeling at this level, it is useful to consider both forms
of interaction from the point of view of bilateral relations, instead of the unidirectional input–output
relations that are often used, thus implicitly assuming no “back-effect” (Figure 26.1). This bilateral relation

26-1
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Submodel 1 Submodel 2

FIGURE 26.1 Bilateral relation.

FIGURE 26.2 Double RC network.

and its relation to the concept of energy is the key idea behind a port-based modeling approach, as will be
one of the main objectives of this chapter.

To give a rather simple example: when modeling the behavior of a double resistor-capacitor (RC)
network (Figure 26.2) assuming connection to a fit source, e.g., a sine generator, the first step is to
identify the components (two resistors and two capacitors). Unlike many other domains of physics, the
fabrication of components applied in electrical circuits is given so much attention that, in a context of
normal operation (i.e., neglecting radiation and high frequencies), the components map during modeling
in a one-to-one way to the conceptual elements with the same name (resistor R and capacitor C) that
represent two basic physical concepts, viz. Ohm’s law for dissipation and electrical storage (of charge and
electrostatic energy), respectively. It is discussed later that the use of this conceptual resistor implies an
implicit assumption that the variations of the temperature are such that they may be neglected in the given
context, such that “dissipatable” free energy can be used instead of globally conserved “true” energy. If
one would identify each RC network as a subsystem and consider the transfer function between the input
and the output voltages, the total transfer function is not equal to the product of these transfer functions,
unless one includes a so-called separation amplifier. This is due to the bilateral relation between all these
elements and these two subsystems in particular.

Note that the adjective“physical” (physical system, physical model, and physical modeling) is not used in
the sense of “concrete”within the context of dynamic modeling, and thus this text, but in the sense of “obey-
ing the laws of physics.” As of now the terminology “physical properties” will be used to address what has
been called “physics properties” earlier. Consequently, a physical model in this sense can be rather abstract.

In most classical modeling approaches, most of the relations are thought to be unilateral (input–output),
in other words, the back-effect is implicitly considered negligible. In those cases where the back-effect
cannot be neglected, it is thought of as a separate, unilateral relation, often addressed as the feedback.

Next all conceptual behaviors are commonly linked at the conceptual level into a set of differential and
algebraic equations using common variables and balance equations. In principle, the algebraic equations
can be used to eliminate a number of variables, such that a set of (partial) differential equations remains.
In some simple cases (e.g., linear systems), such a set may have an analytical solution. However, in most
cases such an analytical solution does not exist and numerical integration (simulation) is used to obtain
an approximate solution. This is discussed extensively in Chapter 17.

However, if the model is written in terms of equations, an important change in the nature of the model
representation is implicitly made: from a simultaneous, by definition graphical, representation of a system
model in terms of interconnected subsystems and interconnected conceptual elements, the representation
becomes sequential, in the sense that the equations can only be read one after the other. As the parts
of the actual system that is being described are present simultaneously and take part in the behavior
simultaneously, simultaneous representations generally provide more insight, in particular during the
conceptual phase of the modeling process. Furthermore, when algebraic equations are eliminated, not
only some physically relevant variables are lost but also the (conceptual) structure of the relations, such
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that local changes in the model structure are not possible anymore, even though such elimination may be
very useful for analysis or computational purposes.

Several examples of domain-dependent, simultaneous model representations exist and are frequently
used, in particular in engineering, although at the same time they represent the wish to take the structure
apart for a local analysis per submodel or element. For example, a free-body diagram is used to compute
the net contribution to the rate of change of momentum (dp/dt) on the basis of the forces acting on a
body. For the analysis of electrical circuits similar techniques exist, like (modified) nodal analysis, mesh
analysis, and incidence matrices, see any standard textbook on circuit analysis (e.g., Hayt et al., 2002).

The bilateral interaction between conceptual elements requires the concept of a port, introduced in
the context of electrical networks by Harold Wheeler (Wheeler and Dettinger, 1949) and extended by
Henry Paynter to all relevant physical domains (Paynter, 1961). Some authors have taken this concept even
beyond physical systems as any relation can be considered bilateral. As a bilateral interaction can be seen
as a combination of two opposite unilateral interactions or signals, two relevant quantities are required to
characterize such a port. This aspect is discussed later in more detail.

Important at this point is that port-based modeling can be distinguished from classical modeling tech-
niques not only by its use of bilateral relations a priori in a simultaneous representation (i.e., graphical), but
also in particular by the fact that no decisions are made about the input–output nature of the constituting
signals of this relation. The relations between the ports are said to be acausal, a terminology to be explained
later and somewhat different from the commonly used meaning of causality and acausality related to the
“arrow of time,” even though it is related in case of the so-called storage ports (cf., the concept of preferred
causality in Section 26.3.3.1). This property of a port not only enables easy reuse of model parts within
other contexts, but also gives immediate feedback to the modeler about his modeling decisions as the
so-called causal properties of ports to be connected not only determine the final computational structure,
but may also indicate that certain physical phenomena are not taken into account. This feedback stimulates
the modeler in taking a deliberate decision about what he should include in his model and what not.

26.1.2 Dynamic Models of Engineering Systems
To be precise, the aspects of reality to be modeled are “limited” herein to behavior in time, i.e., dynamics,
of systems that obey the basic principles of classical physics, in the sense that quantum effects play no
role. This means that the dynamic behavior is modeled of macroscopic phenomena that are all supposed
to obey the basic principles of thermodynamics, viz. (global) conservation of energy and positive entropy
production, independent of some specific domain. The adjective “macroscopic” refers to the nature of
the scope, viz. a thermodynamic approach, rather than the scale of the phenomena: phenomena at the
nanoscale may for instance still be modeled using a macroscopic viewpoint, which combines the kinetic
energy of the random motions into thermal energy using entropy not only as an energy state but also as a
property to express the increase of random motion in terms of the positive entropy production principle.
In contrast, the microscopic view does not collect any motion into thermal energy and this kind of view
may even be applied to objects at a relatively large scale like queueing behavior.

The particular problem context in which the model is made determines the criteria for the selection
of basic phenomena that may determine the relevant behavior of each of the functional or tangible
components. As discussed earlier, the structured set of physical components that constitutes a model,
has to be further abstracted into a conceptually interconnected set of basic behaviors, like storage and
transformation, which will be discussed in more detail later in the form of ideal elements (Section 26.3.2).
It will turn out that this process may be supported by the use of multiport generalizations of the most
basic conceptual elements, in particular, if the relevant phenomena take place in various physical domains.
Such systems are called “multidomain,”“multidisciplinary,”“multiphysics,” and “mechatronic.”

A clear distinction is required between intended behavior and realized behavior, where intended behav-
ior is analyzed by functional modeling during design, while during design evaluation as well as during
troubleshooting the behavior that will be or is actually realized should be analyzed by physical modeling of
all realized aspects, in other words, including the undesired behaviors from a functional point of view. It
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can be often observed during troubleshooting that the functional models that served their purpose well in
the design phase, fail to provide the required insight for troubleshooting. This means that when a designer
is involved in either concept validation or troubleshooting, he has to make the difficult step of reducing the
priority of what he envisioned on a functional basis, while trying to capture all physical behaviors (to be)
actually realized, even when there is no direct link with the intended function. Making a clear separation
between functional modeling and physical modeling supports this step considerably.

26.2 Structured Systems: Physical Components and Interaction

In this section, a special focus of the port-based approach to modeling is put on structured systems, i.e.,
systems that can be seen as a set of physical or functional components in a structure. Key element of such a
structure is that it represents the relations between the constituting parts or subsystems. As these relations
are bilateral, the (virtual) “points” where these relations can be “attached” to a subsystem have a bilateral
nature too: the ports. In other words, the relations interconnect subsystems into a system via the ports of
the subsystems. The properties of ports related to behavior in terms of classical physics are discussed as
well as the basic concepts that are required to describe the subsystem behavior: state and change (of state).
In contrast with domain-specific simultaneous representations like free-body diagrams, the analysis of
the model in the port-based approach is not based on tearing the structure apart and performing local
analyses: the structural elements are considered subsystems (nodes of a graph) as well and called junctions
(cf., Section 26.3.2.5).

Within the context of dynamic systems, where the core of the dynamics itself lies in the process of
“storage,” the two relevant quantities or variables in a bilateral relation discussed later in this section are
strongly related to the concept of equilibrium, the balance between the two parts in which a (locally)
conserved quantity or so-called extensive state can be stored: they can either establish the equilibrium by
changing the stored quantity (“equilibrium establishing variable” or “rate of change of extensive state”)
or they determine the equilibrium by forming a balance independent of the extent of the communicating
parts (“equilibrium determining variable” or “intensive state”). For example, in case of diffusion pro-
cesses, the flows of matter of the participating species are the equilibrium-establishing variables (called
generalized fluxes in nonequilibrium thermodynamics) that become zero when the equilibrium is reached.
The concentrations of the participating species are the equilibrium-determining variables (called gener-
alized forces in nonequilibrium thermodynamics) that become equal (zero difference or gradient) when
equilibrium is reached.

The conjugation between these two types of variables that characterize a port is called dynamic conju-
gation. Diffusion phenomena are commonly studied at constant pressure and temperature, thus allowing
energy exchange with the environment that is not considered relevant for the dynamics of the diffusion
process. However, as soon as such assumptions cannot be made and more than one domain (i.e., type
of conserved quantity) needs to be considered, the energy bookkeeping becomes an important means for
consistent modeling, and the dynamic conjugation has to be further constrained to power conjugation
in the sense that the relation between two ports that dynamically interact, describes the power, in other
words, the energy exchange linked to the relation between two connected power ports (in the sequel “port”
will refer to a “power port” unless otherwise indicated). In other words, the power of a port has to be
a function of the two power conjugated variables. The shape of this function is not dictated by nature,
but a common choice is that the product of the two power conjugate variables forms the power of the
interconnection between two power ports called bond. This is a natural consequence of the mathematical
property that a change of energy E, being a function of one or more stored quantities E(q1, …, qi, …,
qn), can be written as the inner product of the partial derivatives with respect to the stored quantities and
the changes of those stored quantities: dE(q1, …, qi, …, qn) = ∑n

i=1
∂E
∂qi

dqi. Domain-dependent examples
of power conjugate variables are voltage and current, force and velocity, pressure and volume flow, and
temperature and entropy flow. The domain-independent terminology for the equilibrium-determining
variable is effort, and flow is used for the equilibrium-establishing variable. In case of common (power)
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bonds, the product of effort and flow is assumed to represent the power, in case of pseudobonds effort
and flow may be related to the power in another manner. For instance, in case of the common variables
used to model thermal behavior, viz. temperature and heat flow, the heat flow itself is the (thermal) power
already. However, it only represents a rate of change of the stored energy as long as the dynamics of other
domains play no role; otherwise, the amount of heat cannot play the role of a proper state variable, as
discussed at length in many introductions to thermodynamics (e.g., Callen, 1960).

Figure 26.3 demonstrates how specific functional or material parts of an actual system can be represented
in the form of submodels by a short text enclosed by some closed line and identifying them in an insightful
way (often an ellipse is used to distinguish them from the common “blocks” of a block diagram of which
the interface consists of inputs and outputs and where the blocks themselves represent mathematical
operations). These ellipses form the nodes of a graphical representation, a so-called word bond graph, of
which the edges represent the so-called bonds between the ports of these subsystems (Paynter, 1961). The
word bond graph can be seen as the highest level description of a dynamic model, close to the functional
and structural level. The direction of the edges in the form of the half-arrow that is typical for a bond
represents the positive orientation of both flow and power related to that bond.

Another aspect that can be added to a bond is its so-called causal stroke, a little stroke attached to one
end of the bond and perpendicular to it. It represents the computational direction (when chosen) of the
effort signal and consequently also that of the flow signal as the signals of the two conjugate variables are
opposite by definition (Figure 26.4).

26.3 Bond Graphs

Readers who have been exposed previously to analog models and the bond graph notation in particular
are warned that many introductions start from the misconception that analogies are merely based on
similarity of the underlying differential equations. In this treatise this is considered as an exchange of
cause and effect. The actual source of analogies that lead to the domain independence of both differential
equations and bond graph notation is the mere fact that in human reasoning about dynamic behavior only
a rather limited set of elementary concepts is exploited. This set of ideal concepts is chosen as the backbone
of Section 26.3.2 and maps directly onto the bond graph symbolism. In Section 26.3.3, it is shown how the
concept of computational causality that augments the representation of the physical structure by a bond
graph with a representation of the computational structure, leads to the formulation of a computable
mixed set of differential and algebraic equations.

In models that are solved analytically, it is commonly preferable to eliminate the algebraic equations as
much as possible, as only the structure of the differential equations determines the nature of the described
behavior. In mathematics, this is often taken one step further by scaling or normalizing the variables, which
takes the model a step further away from its physical interpretation. In the days of analog computing, scaling
and reduction to a minimal form was a necessity and in the early days of digital computing “superfluous”
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computations were to be avoided. However, the algebraic part describes the interconnection structure
and maintaining this model information, particularly in a graphical representation, allows rapid model
modification, quick interpretation of simulation results and thus enhances insight, in particular if the
variables continue to represent common physical concepts. Owing to the increase of computational power
and robustness of modern computing maintaining this information that is not essential for solving the
dynamics is less costly, in particular due to automatic symbolic manipulation.

Starting from the word bond graph, this section explains the basic structure of a bond graph and the
most important semantics and grammar of this graphical language.

26.3.1 Appearance
The mathematical structure of a word bond graph is that of a labeled, directed graph or digraph of which
the directed edges are the bonds with their orientation (half-arrows) and of which the labeled nodes
(ellipses with text) represent the subsystems characterized by some (functional) description (Figure 26.3).
The transition to a regular bond graph is relatively simple: basic behaviors with respect to energy are
represented by a mnemonic code (acronym) consisting of up to a few capital letters. In this chapter, these
basic behaviors will be discussed at different levels, which lead to different categorizations. However, the
key elementary behaviors of macroscopic physics, viz. conservation (in fact expressing the need for any
useful model to satisfy time translation symmetry) and positive entropy production (expressing the need for
most macroscopic models to satisfy time reflection asymmetry, in other words, the “arrow of time”) will
play a key role at all times.

26.3.2 Elementary Behaviors
26.3.2.1 Storage

We start with a bottom-up discussion that assigns all reversible storage to those nodes of the graph that
are called storage elements. Note that the adjective “reversible” is in fact a tautology when identifying this
ideal process and will be omitted in the sequel. In principle, these storage nodes may have an arbitrary
number of ports and are called multiport storage elements in that generic case. For reasons of simplicity,
the one-port version will be described first. The storage element or capacitive element stores a specific,
(locally) conserved quantity that, by definition, is extensive in nature, i.e., it is proportional to the spatial
or material extent of the object to be modeled. Examples are electric charge, amount of moles, entropy,
momentum, and magnetic flux (linkage). Some of these quantities, like charge and momentum, are also
globally conserved, but others, like entropy, elastic displacement, and flux linkage, are not. Such a locally
conserved quantity q is by definition a state variable, in the sense that its cyclic integral is zero:

∮
dq = 0 (26.1)

which means that it describes the state of the system in a unique way, independent of the history of the
system. One could also say that the history of the system is uniquely reflected in its current state, in other
words, the states can be considered the “memory” of the system.

The locally conserved quantity also determines the nature of the so-called physical domain and will
require some reference value. The process of storage of such a locally conserved quantity can be represented
by the time integral of its rate of change, which is the already identified equilibrium establishing variable
or flow variable f

q(t)∫

q(t0)

dq(t) =
t∫

t0

dq(τ)

dτ
dτ =

t∫

t0

f (τ)dτ = q(t) − q(t0) (26.2)

where q(t) − q(0) is the increase of the stored quantity in a time interval t − t0. Later it is shown that the
powerful—in particular in the conceptual modeling phase—feature of the relation of the effort and flow
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variables with the concept of equilibrium is commonly lost due to a symmetrization of the role of the
power conjugate variables. However, the concept of the symplectic gyrator to be discussed later, allows an
alternative approach that maintains this asymmetry and can be converted into the traditional form.

Independent of the domain, the storage element is represented by the label C that stands for capacitor.
The conjugate effort or equilibrium determining variable has to be an intensive state, i.e., a state that is
independent of the extent of the described system, as equilibrium between two systems does not depend
on their individual extents. Obviously, intensive states are related to the extensive states. In case of physical
properties with a spatial orientation, like force and electrical current, it is clear that the concept of extent has
to be related to the nature of the spatial dependence of the physical quantity, so the role of the intensity is
played by the linear vector and the role of the extensity by the axial vector. Without going in to more detail,
it is noted that this creates an additional constraint on how these vectorial extensities can be combined in
case of equilibrium.

The relation between the intensive state and extensive state is described by the constitutive relation of the
C-element, which depends both on constituting matter and geometry. In the common, linear, one-port
case the constitutive relation reduces to a proportionality constant

e(t) = q(t)

C
= 1

C

t∫

t0

f (τ)dτ + q(t0) (26.3)

The inverse of this proportionality constant is called the capacitance C, which, as a natural consequence of
the above discussion, should be extensive in nature. Examples are the capacitance of an electric capacitor
and the compliance of a spring (inverse of a spring constant). Such constitutive parameters (also in the
nonlinear case) are always dependent on material parameters that are not related to the extent, like mass
density and geometric parameters like length, width, and height that are by definition related to the spatial
extent. Sometimes they also contain global natural constants. Sometimes the spatial extent is combined
with the mass density into a material extent expressed in amount of moles or in kilograms.

For example, an electric flat-plate capacitor of which fringing and losses can be neglected can be
described by a linear constitutive relation:

u(t) = q(t)d

Aε0εr
= q(t)

C
= 1

C

⎛
⎝

t∫

t0

i(τ)dτ + q(t0)

⎞
⎠ = 1

C

t∫

t0

i(τ)dτ + u(t0) (26.4)

where the capacitance is C = Aε0εr
d , A (plate area), and d (distance between plates) are the geometrical

parameters, εr (relative permittivity or dielectric constant) the material parameter, and ε0 the global
natural constant (permittivity).

Another example of a linear storage element is an ideal, nonrelativistic mass m (product of mass density
ρ and volume V ), storing momentum p:

v(t) = p(t)

m
= p(t)

ρV
= 1

m

t∫

t0

F(τ)dτ + v(t0) (26.5)

Although the association with a capacitance may seem somewhat awkward, it is emphasized that so far only
one type of storage has been identified on the basis of the asymmetric role of effort and flow. The kinetic
equilibrium determining variable (kinetic effort) is the velocity v, while the equilibrium establishing
variable is the rate of change of momentum (kinetic flow) or net force F. The paradox with common
modeling approaches that treat a force as an effort and a velocity as a flow will be resolved later.

26.3.2.2 Environment, Sources, Boundary Conditions, and Constraints

If the system to be modeled cannot be isolated in an energetic sense from the rest of the world, its so-called
environment, the environment should “store” too as this allows exchange of the stored conserved quantity
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with this environment. However, the criterion for selecting the system boundary that separates the system
from its environment is that the environment does not influence the dynamic characteristic of the system.
In other words, the intensive state of the environment does not depend on its extensive state, such that the
extent of the environment becomes irrelevant, which coincides with the concept of an environment. This
means that the intensive state or effort is also independent of the rate of change of its extensive state, i.e.,
its conjugate flow. This kind of imposed intensity at the boundary is often called a source, a constraint, or a
boundary value. In bond graph terminology, such an environmental influence becomes a source of effort
with acronym Se. Not only from a mathematical point of view it can be considered a C-type element of
which the capacitance has become infinite, such that it becomes independent of a change in extent and just
depends on its initial value (or “initial condition”), but also from a modeling point of view, since storage
in the environment can only be considered as such when the capacitances of all capacitors in the system
itself are relatively small compared to the capacitance of the environment.

The energy of a system is the sum of all partial energies stored in the capacitors. In other words, the
energy is a state that is a function of all stored quantities (independent extensive states) and as such an
extensive state too. Since the environment is not related to the extent, the reference of each conserved state
is also made at the intensive level and can be either absolute or relative in nature, for instance, temperature
and pressure have absolute zero points, but voltage and velocity (the effort of the kinetic domain) have no
absolute zero point.

In many cases these types of boundary conditions, viz. sources of effort, are combined with certain types
of transducers that are considered ideal in such a way that the constant effort imposed to the transducer
(ideal pump or motor) is translated into an imposed flow variable in another domain. Such combinations
of effort sources with interdomain transducers are called flow sources with acronym Sf. Both types of
sources can also be deliberately approximated by means of external energy supply and feedback control.
In those cases, the conceptual connection to some “infinite” storage becomes much less elucidating.

In the degenerate case of zero-valued sources, the power is zero too (also called Dirichlet and von
Neumann type of boundary conditions), which means that the modeled system is energetically isolated
and its energy becomes an invariant. Many analyses of systems described by partial differential equations
(such as finite-element analyses) are based on these kinds of boundary conditions. If such models are
considered submodels to be combined with other submodels the description of this interaction is not
straightforward (Ligterink et al., 2006).

26.3.2.3 Power Continuous Structure

Now that all storage in the system (C-type ports) and in the environment (Se- and Sf-type ports) has been
described, the principle of energy conservation means that all other conceptual elements in the system
need to be power continuous accordingly. In other words, they require an instantaneous power balance
between all the ports

∑
i

εiPi =
∑

i

εieifi = 0 (26.6)

where εi = ±1 depending on the orientation of the half-arrow of the connecting bond.
This condition means that all other elements need to have at least two ports. This seems a quite unnatural

conclusion, because the average reader will immediate think of the resistor as a basic one-port element. To
resolve this paradox, the ideal resistor is treated first.

26.3.2.4 Resistor

Indeed, this basic element in its general form is a two-port, irreversible transducer, where one of the ports
is by definition a thermal port with the flow of irreversibly produced entropy as conjugate flow variable of
the thermal effort, the temperature. However, in most cases, it is implicitly assumed that the temperature
variations can be neglected at the timescale of interest. This means that this thermal port can be considered
to be connected to an effort source and that the conjugate flow is irrelevant for the dynamics of the system.
In fact, this is also the case for the storage elements and, as will be explained later in more detail, this
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means that the stored energy is replaced by one of its Legendre transforms (cf., Section 26.4.1.1), the free
energy, as a generating function of the constitutive relations. The free energy does not satisfy a conservation
principle and can thus be dissipated by a one-port R-element.

Many constitutive relations of these resistive elements, like Ohm’s law in the electric case, are considered
linear algebraic relations between the two conjugate variables of the remaining port:

u − Ri = 0 (26.7)

The power into the electric port is the product of effort and flow, voltage u and current i, and is considered
dissipated when the (absolute) temperature T is considered constant:

Pdiss = ui = Ri2 = u2

R
= TfSirr = Pthermal (26.8)

In contrast, if the temperature cannot be considered constant, the thermal port needs to be explicitly
modeled. Owing to the power continuity constraint the flow of irreversibly produced entropy fSirr can
always be computed, independent of the form of the constitutive relation of the resistive port, by dividing
the input power that equals the thermal output power, i.e., the heat flow, by the absolute temperature:

fSirr = Pthermalout

T
= Pin

T
(26.9)

This relation cannot be inverted as the flow of produced entropy is zero in equilibrium.
Furthermore, it shows that the irreversible transducer that represents the positive entropy production

in the system is by definition nonlinear, even if the constitutive relation of the nonthermal port is linear,
like in the case of an ohmic resistor. From another perspective to be discussed later, it will become clear
that all linear power continuous two-ports are reversible transducers, which confirms the conclusion that
an irreversible transducer needs to have at least one nonlinear constitutive relation. To distinguish the
two-port irreversible transducer from the one-port dissipator of free energy R, the symbol RS is used,
emphasizing the explicit representation of the production (source) of entropy.

Any nonlinear constitutive relation of the nonentropy producing port of the R(S) should be a relation
that lies in the first and third quadrant owing to the second law of thermodynamics. This means that all
resistive constitutive relations cross the origin and that all linear resistors are positive. Only differential
resistances in an operating point that is kept out of equilibrium by external energy input can be considered
negative. Living systems are in such a state.

26.3.2.5 Generalized Junction Structure: Transduction and Interconnection

Now that all energy storage and irreversible production of entropy (dissipation of free energy) has been
given a conceptual location in the C & Se (Sf) and R(S), respectively, the rest of the model can be seen as
a power continuous multiport that is called generalized junction structure (GJS). However, this GJS can be
usefully substructured into elements with specific properties that can be globally split into transducers and
interconnections.

The common choice for the relation between the two power conjugate variables and the power is a
product operation, which can be observed from the common choices for effort and flow. However, as a
simple linear transformation transforms effort- and flow-type variables into so-called (wave) scattering
variables of which the relation with the power is a sum operation, this illustrates that this is just the
modeler’s choice (Paynter and Busch-Vishniac, 1988). The transformation to scattering variables provides
quite some insight if the properties of power continuous n-ports (n ≥ 2) are studied, thus providing a
means to create a substructure in the GJS.

When the interconnection aspect of power continuous n-ports is studied, the key property is that one
should be able to make arbitrary connections, in other words, all ports should behave in the same way
and cannot be mutually distinguished. This means that the interconnection n-port is not only power
continuous but also port-symmetric, which can be easily translated into the form of the scattering matrix
that represents the constitutive relations in terms of scattering variables. By means of this scattering
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approach it is relatively straightforward to prove that there are only two possible solutions when these two
constraints are applied (Hogan and Fasse, 1988). These two solutions are described by linear constitutive
relations without any characteristic parameter and can be seen as a combination of a generalized form of a
Kirchhoff’s law for one of the conjugate variables combined with the identity of the other conjugate variable:

n∑
i=1

εiei = 0 εi = −1, +1 and fi = fj ∀i, j : i �= j

or (26.10)

n∑
i=1

εifi = 0 εi = −1, +1 and ei = ej ∀i, j : i �= j

In all the cases, these kind of analyses start from the assumption that the inbound orientation is positive
in principle, which means that εi = +1 for inbound port orientations and εi = −1 for outbound port
orientations. These interconnection multiports are called junctions, where the 0-junction describes the
instantaneous balance of the flow variables combined with the identity of the effort variable and where
the dual case, i.e., interchanged role of efforts and flows, is called a 1-junction. No other assumption about
the form of the constitutive relations was made than power continuity and port symmetry, such that this
linear, parameter-free result holds for any domain in which power and ports are meaningful concepts.

Applying scattering variables to power continuous two-ports without the port symmetry constraint to
get more insight in the transformation aspect of the GJS, it turns out that these two-ports are characterized
by multiplicative constitutive relations

e1 = −εn(.)e2 f2 = εn(.) f1 ε = −1, +1 and e1 = −εr(.) f2 e2 = εr(.) f1 ε = −1, +1

that in the linear case reduce to one parameter:

e1 = −εne2 f2 = εnf1 ε = −1, +1 and e1 = −εrf2 e2 = εrf1 ε = −1, +1.

If the two-port orientations are chosen unequal (one inbound and one outbound), these relations reduce
to the common relations for a transformer TF and a gyrator GY, respectively: e1 = ne2, f2 = nf1 and
e1 = rf2, e2 = rf1. The nonlinear case (including the time-variant case) is constrained to modulation by the
multiplier, which is expressed by adding the letter M to the acronyms MTF: e1 = n(.)e2, f2 = n(.)f1 and
MGY: e1 = r(.)f2, e2 = r(.)f1, where (.) stands for any modulating signal. If these signals are external, this
does not require additional attention. In contrast, internal signals mean that system variables or functions
of system variables may become part of the constitutive relation, which may result in constitutive relations
of other types. An example is the gravitational force on a pendulum mass (Figure 26.5[a]). In principle,
this force is constant and independent of the velocity (Se-type source). However, the kinematic constraint
has the nature of an MTF between the translational domain and the rotational domain with the angular
position as a modulating signal (Figure 26.5[b]). Owing to this state modulation, the Se-port acts via the
MTF as a C-type port on the rotational domain, for small deflections even as a linear C that results in an
oscillator when combined with the kinetic storage in the mass (Figure 26.5[c] and Figure 26.5[d]).

Both the MTF and MGY can be generalized to modulated multiport versions, where the generic
multiport MTF is an m + n-port, characterized by an m × n-matrix T(.)

e1 = Tt (.)e2 f2 = T(.)f1 (26.11)

where e1 and f1 are the power conjugate variables of an m-dimensional inbound multiport, and e2 and
f2 are the power conjugate variables of an n-dimensional outbound multiport. The transposition of the
matrix follows from the power continuity constraint:

f2 = T(.)f1
P1 = P2 : et

1 f1 = et
2 f2

}
et

1f1 = et
2T(.)f1 et

1 = et
2T(.) e1 = Tt (.)e2 (26.12)

The generic multiport MGY is an arbitrary n-port characterized by a n × n-matrix G(.):

e = G(.)f (26.13)
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FIGURE 26.5 Pendulum: Se via position-modulated MTF results in C-type storage.

The power continuity constraint results in this case in the antisymmetry of the matrix G:

P = et f = f t Gt (.)f = 0 G(.) = −Gt (.) (26.14)

By mixing efforts and flows in the input and output vectors and by taking all ports inbound again (−f2),
the multiport MTF can be written in a similar manner

P = et f = [
et

1 −f t
2

] [
f1
e2

]
= [

f t
1 et

2

] [
0 −Tt (.)

T(.) 0

] [
f1
e2

]
= 0 (26.15)

The GJS is a combination of all possible forms and thus leads to an antisymmetric matrix too. The
quadratic form of an arbitrary matrix representing a multiplicative, algebraic relation between power
conjugate efforts and flows of an arbitrary multiport represents the power generated or absorbed by such
a multiport. The power continuity constraint thus requires this quadratic form to be zero. Indeed, this
corresponds to the antisymmetry of the constitutive matrix:

P = et f = [
et

1 −f t
2

][f1
e2

]
= [

f t
1 et

2

][G(.) −Tt (.)
T(.) H(.)

][
f1
e2

]
= 0 G = −Gt , H = −Ht (26.16)

where H is an “inverse” gyration matrix (f ′
2 = H(.)e2), not necessarily generated though by taking some

inverse, in other words, H does not need to have an inverse. This results in the GJS decomposition in
Figure 26.6, where the double-lined bonds represent multibonds; i.e., arrays of bonds, similar to the
common notation for signal arrays in block diagrams.

The categorization of the junction structure elements used here initially is not based on the asymmetry
between effort and flow pointed out earlier on a physical basis, as this type of categorization corresponds
to the conventional viewpoint provided by the existing mathematical analyses for engineering systems like
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FIGURE 26.6 GJS decomposition.

electrical networks. Even though a voltage (potential difference) or a current (rate of change of charge/flow
of moving electrons) are physically quite different, they are treated in a symmetric, dual way in Kirchhoff ’s
equations.

In the sequel, we return to the physical differences, in which an effort can be considered a point-like
variable (scalar potential, intensive state) when related to storage and a line vector (negative gradient)
when related to a potential difference. In contrast, a flow can be seen as a rate of change of an extensive
stored quantity (proportional to available volume or amount of matter) or one of the axial vectors that
contribute to this rate of change in the balance equation of the stored quantity (divergence).

Given this distinction, it is straightforward to conclude that the discrete versions of the (negative)
gradient and divergence operations are represented by the summing port relations of the 1- and 0-
junctions, respectively, keeping in mind that the junctions themselves represent the respective conjugate
flow and effort, which are common at all ports.

When elaborating this distinction based on operators in a continuum approach, it should be noted here
already that a unit gyrator, called symplectic gyrator (SGY) for reasons to be discussed later, represents a
spatially discretized version of two rotation operators between the efforts on the one hand and the two
nonconjugate flows on the other. This SGY is indeed similar to the junctions in the sense that it is linear
without any constitutive parameter. Later, this SGY will turn out to be useful for explicitly representing
two interdomain couplings that are not self-evident, despite the fact that they are often considered that way
and structurally eliminated by partial dualization accordingly. Dualization here means the inversion of
the roles of effort and flow in the constitutive relations and “partial” means that not all ports are dualized.
Allowing dualization immediately leads to a full symmetrization of the roles of effort and flow in the
constitutive relations, thus not only going back to dual 0- and 1-junctions, but also giving every other type
of port its dual, viz. Se and Sf, a storage element in which the effort is integrated into a conserved quantity
(generalized momentum) called I-type port (generalized “inertia” or “inductance”). Inverting the roles of
effort and flow in a constitutive relation of an R-type port (e.g., in Ohm’s law) does not change its nature,
although the relation is inverted and a resistance parameter becomes a conductance parameter. Finally,
it should be noted that TF and GY are each others partial dual, i.e., they are obtained from each other
by dualization of only one of the two ports. However, the S-type port of the RS cannot be dualized, as
temperature and entropy production are by definition asymmetric. In the thermal domain, dual storage
is not a viable concept as it would violate the second law of thermodynamics (Breedveld, 1982).

The full symmetrization of effort and flow thus leads to the common nine basic port types:

C & I, (M)Se & (M)Sf, (M)R(S), (M)TF & (M)GY, (X)0 & (X)1

where the letter M is added in case the constitutive relations can be modulated and the combination of the
letter X with a junction means that the junction can be switched by a (Boolean) condition:

X1 : ej = if condition then −εj

n∑
i �=j

εiei else 0 end; εi = −1, +1 and

fi = if condition then fj else 0 end; ∀i, j : i �= j
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or (26.17)

X0 : fj = if condition then − εj

n∑
i �=j

εifi else 0 end; εi = −1, +1 and

ei = if condition then ej else 0 end; ∀i, j : i �= j

Modulation of storage ports is omitted in principle as it violates energy conservation and contradicts the
concept of storage (change of content without a rate of change). At a level where it can be accepted that
the energy exchange via one of the ports of a multiport C can be neglected with respect to the other ports,
one might choose to represent this kind of so-called bond activation by a modulated C. However, it should
be clear that this condition exists and it should be checked that it is satisfied.

These are the nine basic node types in common bond graphs that are frequently used to describe electric
circuits and simple mechanical systems. Trying to fit other domains in this approach often leads to com-
plications although the hydraulic domain can be relatively easily incorporated as long as incompressibility
is assumed, which allows description of a mass flow by a volumetric flow.

This is not a coincidence: in the descriptions of both electrical networks and mechanical systems, some
implicit assumptions are made by default that lead to a simplification of a coupling that is an interdomain
coupling in principle. In case of electrical circuits containing capacitors and coils, both the electrical
domain (storage and conservation of charge, dielectric displacement) and the magnetic domain (storage
and conservation of magnetic flux, more particular flux linkage of a coil) play a role. In its most general
form this coupling is described by Maxwell’s equations, in particular the third equation (Faraday’s law of
induction)

rotE = ∇ × E = −∂B

∂t
(26.18)

and the fourth equation (Ampere’s law)

rotH = ∇ × H = ∂D

∂t
+ J (26.19)

where E is the electric field strength, D the dielectric displacement, B the magnetic induction, H the
magnetic field strength, J the electric current density, and ρ the electric charge density.

However, if one assumes that electrical networks do not radiate, which is identical to assuming that
changes in the EM fields take place quasistationary and if simple geometries are considered (e.g., an ideal
coil with n windings), such that these relations can be written in terms of standard efforts and flows,
this coupling (based on two rotation operators, cf., Eq. [26.18] and Eq. [26.19]) reduces to two simple
identities:

E′ · l′ = u = nd(B′ · A′)
dt

= nd�

dt
= dλ

dt
, i.e., u = eelec = dλ

dt
= fmag (26.20)

the identity between the electric effort (voltage u) and the magnetic flow (rate of change of flux, for one
current loop) or flux linkage λ (for a coil with n windings; change of sign due to choice of orientation)
and

H ′ · l′ = MMF = n(J ′ · A′) = ni = nemag, i.e., emag = i = dq

dt
= felec (26.21)

the identity between the magnetic effort and the electrical flow (electric current). The quotes refer to the
fact that the configuration is chosen such that the required spatial integrations are simplified. These two
identities are exactly represented by a unit gyrator called SGY between the two domains, which can be
eliminated next by dualization of the magnetic storage into the common I-type storage element. Magnetic
dissipation is not commonly assumed relevant for electric circuits and neither are the magnetic sources.
The only element that is commonly considered relevant, the magnetic storage in a coil or solenoid, is thus
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FIGURE 26.7 Initial bond graph of the pump system.

considered part of the electric domain as a dual type of storage. This explains the common modeling
difficulties that occur if permanent magnets play a role.

Although this may be harder to accept, a similar situation exists between the potential (or elastic) domain
and the kinetic domain that are commonly considered one domain, viz. the mechanical domain. In the
mechanical domain, the implicit SGY coupling between the potential domain (storage of displacement)
and the kinetic domain (storage of momentum) is commonly considered unconditionally present. How-
ever, the implicit assumptions that are made by default here are that motions are described with respect to
an inertial reference frame and in inertial coordinates.

Only in that case Newton’s second law states that the rate of change of momentum (kinetic flow) is an
effort of the potential domain (force). Obviously, in such a situation the velocity (kinetic effort) serves as
a rate of change of elastic or gravitational displacement (potential flow).

In recent work (Golo et al., 2000), the link between the spatially discrete, quasistationary network
approach, and the continuum approach viz. 1-junction related to gradient, 0-junction related to diver-
gence, and SGY related to two rotations (Breedveld, 1984a), has been generalized into the so-called Dirac
TransFormer or DTF, which can be seen as a condensed notation for the fact that for numerical solu-
tion (simulation) of the underlying partial differential equations a nontrivial spatial discretization has
to be performed that commonly cannot be seen independent from the required time discretization. The
DTF represents the so-called Dirac-structure (Maschke et al., 1995). An extension that includes the rota-
tion operators unconditionally is called the Stokes–Dirac structure, which is represented by the acronym
stokes-dirac transformer (SDTF) or stokes-dirac structure (SDS) (Maschke and van der Schaft, 2001).

Before making the relation between the physical structure of the bond graph and the computational
structure that can be added via causality assignment, the example of the pump system in Figure 26.3 will be
converted into an initial bond graph by translating the components into their most dominant elementary
behavior. From this perspective the electrical power supply, e.g., the power grid voltage, can be considered
a voltage source (Se). The dominant behavior of the electric motor, i.e., the Lorentz force that relates the
torque with the same ratio to the motor current as the voltage (rate of change of flux linkage) to the angular
velocity, can be considered a gyrator (GY). The transmission basically relates two angular velocities with
the same ratio as the two torques (TF). The momentum balance in a centrifugal pump relates the pressure
difference to the angular velocity and the volume flow to the torque. Although these relations will generally
be nonlinear, this dominant behavior can be captured by a gyrator (GY). Finally, the water tank primarily
stores water, where the pressure at the bottom of the tank (assuming that the inlet is there too), depends on
the stored volume, i.e., the integral of the net volume flow. This means that Figure 26.3 can be converted
into the initial bond graph in Figure 26.7, assuming that the environmental pressure can be taken as the
zero reference pressure.

26.3.3 Causality
26.3.3.1 Causal Port Properties

Each of the nine basic elements (C, I, R(S), TF, GY, Se, Sf, 0, 1) introduced above has its own causal port
properties, which can be categorized as follows: fixed causality of the first kind, fixed causality of the second
kind, preferred causality, arbitrary causality, and causal constraints between ports. The representation by
means of the causal stroke has been introduced already (cf., Figure 26.4).

Fixed Causality of the First Kind
It needs no explanation that a source of effort always has an effort as output signal, in other words, the
causal stroke is attached to the end of the bond that is connected to the rest of the system (Figure 26.8 and
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FIGURE 26.10 Preferred integral causality of a capacitor.

Figure 26.9[a]). Mutatis mutandis the causal stroke of a flow source is connected at the end of the bond
connected to the source (Figure 26.9[b]). These causalities are called “fixed causalities” accordingly.

Fixed Causality of the Second Kind
Apart from the fundamentally fixed causalities of the first kind, all ports of elements that may become
nonlinear and noninvertible, i.e., all but the regular (i.e., nonswitched) junctions, may become com-
putationally fixed due to the fact that the constitutive relation may only take one form that cannot be
inverted.

Preferred Causality
A less strict causal port property is that one of the two possibilities is, for some reason, preferred over the
other. Commonly, this kind of property is assigned to storage ports, as the two forms of the constitutive
relation of a storage port require either differentiation with respect to time or integration with respect
to time (Figure 26.10). Owing to the amplification of numerical noise by numerical differentiation the
integral form is preferred from a computational perspective, but there are more fundamental arguments
as well. A first indication is that the integral form requires an initial condition, while the differential
form does not. Obviously, an initial state or content of some storage element is a physically relevant
property that supports the statement that “integration exists in nature, whereas differentiation does not.”
Although one should be careful with the concept of “existence” when discussing modeling, this statement
seeks to emphasize that differentiation with respect to time requires information about future states in
principle, in contrast with integration with respect to time. The discussion of causal analysis will make
clear that violation of a preferred integral causality gives important feedback to the modeler about his
modeling decisions. Some forms of analysis, e.g., finding the rank of the system matrix, may require that
the differential causal form is preferred at some point in the analysis too, but this requirement is never
used as a preparation of the equations for numerical simulation.
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FIGURE 26.11 Arbitrary causality of two resistors causing an algebraic loop.

Arbitrary Causality
The expected next possibility in the sequence is that the causality of a port is neither fixed nor preferred,
thus arbitrary. Examples of arbitrary port causality are linear, resistive ports that are consequently invertible
and algebraic, respectively. The acausal form of the constitutive relation of an ohmic resistor is u − Ri = 0,
the effort-out causal form is u = Ri, while the flow-out causal form is i = u/R (cf., Figure 26.11).

Causal Constraints
Causal constraints only exist for basic multiports, i.e., elements with two or more ports like the transducers
(TF, GY) and the junctions (0, 1). For instance, if the constitutive relation of the two-port transducers is
linear (the junctions are intrinsically linear), the first port to which causality is assigned is arbitrary, but
the causality of the second port is immediately fixed. For instance, the two-port transformer always has
one port with effort-out causality and one with flow-out causality. In contrast, the causalities of the ports
of a two-port gyrator always have the same type of causality. In graphical terms: a TF has only one causal
stroke directed to it, while a GY has either both causal strokes directed to it or none.

The fundamental feature of the junctions that either all efforts are common (0) or all flows are common
(1) shows that only one port of a 0-junction can have “effort-in causality,” i.e., flow-out causality, viz.
the result of its flow-balance. In contrast, only one port of a 1-junction can have “flow-in causality,” i.e.,
effort-out causality, viz. the result of its effort-balance. In graphical terms, only one causal stroke can be
directed toward a 0-junction, while only one open end can be directed toward a 1-junction.

26.3.3.2 Causal Analysis: Feedback on Modeling Decisions

Causal analysis, also called causality assignment or causal augmentation, is the algorithmic process of
putting the causal strokes at the bonds on the basis of the causal port properties induced by the nature
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of the constitutive relations. Not only the final result, but also the assignment process itself provides
immediate feedback on modeling decisions.

Fixed Causality of the First Kind
The first step is to assign fixed causalities of the first kind and immediately propagate them via the causal
constraints, as the latter cannot be violated. For instance, if a flow source is connected to a 1-junction,
the source-port flow-out causality by definition, which in turn means that the corresponding port at the
1-junction gets flow-in causality, which means that all other ports of the 1-junction get flow-out causality
(Figure 26.12), unless one can apply numerical iteration to impose the same flow at the junction from
more than one of its ports, but this is not anticipated in regular causal analysis that is focused on feedback
nor is it possible if only sources are involved. Conflicts between fixed causalities of the first kind via the
constraints indicate that the problem is ill-posed, e.g., two voltage sources in parallel or two force sources
trying to impose a different value to the same force. The causality propagation may lead to violation
of preferred causalities, e.g., a voltage source in parallel to a capacitor or a velocity source on a mass.
This violation feeds back to the modeler that no independent state is related to the storage element as its
content is imposed by a source, which also means that it is dynamically inactive as its rate of change will
only influence the source, which is insensitive to it by definition. Not only storage ports, but also resistive
ports that get their causality imposed by a source are dynamically inactive, as they cannot form signal
loops (so-called causal paths) via other ports. A causal path can be found to be following either a causal
stroke or an open end from one R-, C-, or I-type port to another. At a GY the causality reverses, so if one
follows the stroke one should continue with the open end or vice versa.

The adjective “dynamically inactive” does not mean that the port-variables cannot change, but that the
port does not contribute to the dynamic characteristics (like time constants and eigen frequencies) of the
system, which will become more clear after the discussion of preferred causality below. Conflicts with fixed
causalities of the second kind inform the modeler that the model has to be changed in such a way that
either the constitutive relation is changed such that it can be inverted or the structure is changed such that
the conflict disappears. If this is impossible, numerical iteration has to be applied to solve the noninvertible
relation.

Preferred Causality
After the assignment of all fixed causalities of the first kind, the preferred causalities are similarly assigned
and immediately propagated via the causal constraints. Conflicts at this stage indicate that a port may get
differential causality as a result of another port getting preferred integral causality. Figure 26.13 shows the
bond graph of two rigidly linked inertias, e.g., the motor inertia and the load inertia in a servo system
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FIGURE 26.14 Independent inertias by adding the elasticity of the transmission (e.g., belt-drive).

model, including a transmission (TF), but without any compliance. The causality of this bond graph shows
the modeler that he has chosen a model in which two storage ports depend on each other and form a
signal loop (causal path) with an integration that is compensated by a differentiation, i.e., a net algebraic
loop. The computational problem may be solved by

• the application of implicit numerical integration,
• changing the model (the sequence of putting the causal strokes hints the modeler where a model

change should be made, e.g., adding the compliance of the transmission between the two rigid bodies
(see Figure [26.14]), or

• symbolic manipulation (either manually or automatically) of the model.

Preferred integral causalities that impose other preferred integral causalities give immediate feedback on
the existence of second-order signal loops by identifying the causal paths in the bond graph, i.e., loops
containing two integrations that lead to behavior as described by second-order differential equations, viz.
potentially oscillatory behavior. A similar kind of feedback on the dynamic properties of the model is
obtained by a port with arbitrary causality that is assigned its causality via propagation of an integral
causality. The resulting first-order causal path informs the modeler about relaxation type of behavior.
Finally, if a preferred causality creates a conflict with a fixed causality of the second kind, then the source
of the fixation has to be reconsidered and the problem solved by either changing the constitutive relation
or the model structure or by implementing numerical iteration.

Fixed Causality of the Second Kind
As discussed above, fixed causalities of the first kind and preferred causalities are given a higher priority
than fixed causalities of the second kind, unless a physical meaning can be assigned to the noninvertibility,
in which case the model needs reconsideration in the sense that the model becomes ill-posed or that the
number of free-to-choose initial conditions may be reduced. Accordingly, fixed causalities of the second
kind can only propagate to ports with arbitrary causality. In that case, mostly an algebraic loop will occur
and, if not solved symbolically beforehand, this requires numerical iteration during simulation too. This
shows that an explicit ODE model can only be obtained if fixed causalities of the second kind obtain
their proper causalities via propagation of fixed causalities of the first kind and preferred causalities. The
modeler should consider adapting the model if this is not the case.

Arbitrary Causality
Commonly all ports in a bond graph are causal after assigning and propagating fixed and preferred
causalities, but if this is not the case, it means that at least two ports with arbitrary causality are present.
If an arbitrary choice is made for one of these ports, this means that at least one other port will obtain its
causality as a result of propagation via the causal constraints (cf., Figure 26.11). The dual choice would have
the same effect. This shows the modeler that this situation always results in an algebraic loop (or its reverse
form corresponding to the dual choice of causality) that requires numerical iteration during simulation.
Similar to other causal conflicts, e.g., generated by differential causality, the assignment procedure itself
hints the modeler how to change the model to prevent the algebraic loop. The causality assignment process
is completely algorithmic and more advanced variations on this algorithm exist and are implemented that
can handle all possible situations in an automated way (van Dijk and Breedveld, 1991; Golo, 2002). As a
result, it can be used without using the notation itself, e.g., by replacing the bond graph with the more
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common iconic diagram representation or the linear graph notation. However, this largely reduces the
amount of feedback that can be given to the modeler about his modeling decisions and the effect of model
modifications becomes less obvious. Nevertheless, if one is merely interested in converting simple iconic
diagrams into code ready for simulation, this is a powerful option.

The support offered by causal analysis in the common trade-off between conceptual and computational
complexity of a model is illustrated by the simple example of a rigid constraint between two rigid bodies.
Conceptual simplicity leads to a causal problem (a so-called dependent inertia with differential causality)
and consequently to numerical complexity. The example in Figure 26.13 already showed that a loop
emerges containing an integration and a differentiation that cancel each other, i.e., a “net” algebraic loop,
similar to the situation where two resistors form such an algebraic loop (Figure 26.11). Direct equation
generation does not generate a set of ordinary differential equations (ODE), but a mixed set of differential
and algebraic equations (DAE). A set of DAE cannot be solved straightforwardly by means of explicit
numerical integration (e.g., with the common Runge–Kutta fourth-order method). However, the way in
which the causal problem emerges in the model during causal analysis of the bond graph clearly suggests
how the model can be modified to prevent the causal problem. In this example, the rigid constraint can be
replaced by an elastic element, i.e., a finite rigidity. Although this gives the model some more conceptual
complexity, the numerical (structural) complexity is reduced due to the fact that the resulting equations
are a set of ODE that can be solved by explicit numerical integration schemes (Ascher and Petzold, 1998).

The resulting model needs a rather stiff constraint and thus introduces dynamics at a timescale that is
not of interest. This not only means that both options to formulate the model can be a solution depending
on the problem context, the available tools, etc., but also that a third solution can be obtained, viz. a
symbolic transformation of the model as to eliminate the dependent inertia. In other words, two rigidly
connected rigid bodies may be considered as one rigid body. This possibility is directly induced by the
causal analysis of the bond graph model.

Example of Causal Analysis
If causality analysis is applied to the bond graph in Figure 26.7, the fixed causality of the Se propagates all
the way through the graph via the causal constraints of the two-ports and imposes differential causality
on the storage element (Figure 26.15).

It shows that the state of the system is imposed by the source, which means that the model cannot be
used to capture any physical behavior. At best, it may serve to analyze a stationary situation, although it is
not likely in a practical situation that none of the components has any losses. This immediate feedback on
modeling decisions is obtained without writing any equation. If dynamic behavior is to be captured, one
needs to modify the graph in such a way that it contains at least one independent state, e.g., the content of
the water tank. To that end it will need to have integral causality. For instance, if one would decide that the
friction in the bearings in the mechanical part should be modeled, the causal graph immediately shows
that this does not change the causality of the storage element (Figure 26.16).
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FIGURE 26.15 Causally augmented initial bond graph of the pump system: no dynamics.
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FIGURE 26.16 Addition of friction to the pump model: still no dynamics.
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FIGURE 26.17 Addition of inertias to the pump model: still no dynamics.
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FIGURE 26.18 Addition of inertias to the pump model: some dynamics, but not the expected dominant behavior.
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FIGURE 26.19 Addition of motor inductance and fluid inertia solves the causal conflicts: ample dynamics.

The same holds for adding the inertias of the rotating parts (Figure 26.17). The differential causality of
the I-ports demonstrates that the imposed voltage not only imposes the hydraulic pressure, but also all
velocities.

The bond graphs shows that the only way to “break” the causal propagation between voltage source,
velocities, and pressure is to add a junction that breaks the causal path. This can be either a 0-junction in
the mechanical connections, i.e., allowing some relative speed or a nonstiff connection, or a 1-junction
in the electrical or hydraulic domain, i.e., allowing a voltage difference between source and motor or a
pressure difference between pump and tank. For instance, if the transmission is a belt drive, the elasticity
of the belt can be modeled (Figure 26.18).

However, this only gives the tank and the belt independent states: the two Cs form a second-order loop
via the GY-action of the pump. Furthermore, it forms a first-order loop (causal path via this GY with the
mechanical R at the right-hand side. The first inertia still gets its velocity imposed by the source, while the
state of the second depends on the state of the tank. The only way the resolve the first dependency is to
add an electric 1-junction connected to the resistance or the inductance of the current loop. Similarly, the
second dependency can be resolved by adding a hydraulic 1-junction connected to the resistance or the
inertia of the hydraulic line (Figure 26.19).

The process of eliminating all dependencies resulted in a relatively high-order system, viz. a sixth-order
system (4 × I, 2 × C). If we assume for instance at this point that the elasticity of the belt can be neglected
after all, the two mechanical Is become dependent again, but these can be symbolically combined into one.
If the hydraulic lines are relatively short, the hydraulic I can be omitted too (Figure 26.20), such that a
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FIGURE 26.20 Simplification of the model by symbolic manipulation and maintaining key behavior.

third-order model (2 × I, 1 × C) remains to capture the observed dynamics. Further modeling iterations
require a more detailed study of problem context and measurement data.

The above example demonstrates that it is possible to make far-reaching modeling decisions quickly,
because no detailed equations have to be written yet. Causality assignment thus proves to be not only a
means to create a model in a form ready for numerical simulation, but also provides direct feedback on
modeling decisions. The nine basic elements can be used to model many different dynamic problems.
However, in the next section it will be shown how the generalization of the basic elements can lead to even
more powerful modeling concepts.

26.4 Multiport Generalizations

All basic elements can be generalized to a multiport form and put into a multibond notation of which
the most important aspects are quite intuitive, cf., Figure 26.6 (Breedveld, 1985). Sources just form
arrays without any coupling owing to their nature, i.e., no relations between their conjugate variables.
Junctions already are arbitrary multiports. The multiport forms of the (modulated) TF and GY were
already introduced in Section 26.3.2.5. Herein, it is merely mentioned that position modulated multiport
transformers (MTF) are a powerful tool in modeling planar and spatial mechanisms (Tiernego and van
Dixhoorn, 1979; Bos and Tiernego, 1985; Bos, 1986; Stramigioli, 1998).

The generalization of a resistor, or rather the resistive port of an irreversible transducer, is also straight-
forward as it concerns an algebraic relation between the port variables. Assuming that the generic algebraic
form �(e, f) = 0, where e and f are the conjugate effort and flow vector of the resistive multiport can be
written e = e(f) (or f = f(e)) with variations dei = ∑

j
∂ei(f )
∂fj

dfj , where ∂ei
∂fi

is the “self resistance” of the ith

port (diagonal element of the Jacobian) and ∂ei
∂fj

∀j �= i are the nondiagonal coupling terms. If the Jacobian is

constant, the relations are linear ei = ∑
j

∂ei
∂fj

fj = ∑
j Bij fj or e = Bf. In that case, the irreversibly produced

entropy flow fSirr conjugate to temperature T can be written fSirr = T−1etf = T−1 ftBtf, i.e., a quadratic
form in the flows. As only the symmetric part R = (B + Bt)/2 of the constitutive matrix contributes to
the entropy production, only this part R is commonly considered to describe the resistive multiport. Its
symmetry corresponds to what is called Onsager symmetry or reciprocity in irreversible thermodynamics
(Callen, 1960), as the multiport R can be considered to represent a domain-independent form of descrip-
tion common in irreversible thermodynamics of the relations between generalized forces and fluxes. The
antisymmetric part G = (B − Bt)/2 is readily identified as a power continuous multiport gyrator as intro-
duced already from another perspective in Section 26.3.2.5. It corresponds to Casimir’s extension of the
Onsager relations (Breedveld, 1982). Although it is quite interesting to see that this extension only occurs
between ports of domains that were identified earlier as having a symplectic interdomain coupling on
different grounds, further discussion goes beyond the scope of this treatise. Finally, it is noted that the
multiport resistor, just like the elementary one-port can be modulated without changing its fundamental
nature and that the symmetric matrix R has to be positive-definite where all diagonal elements have to be
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positive as well as the determinants of all subblocks to satisfy the positive entropy production principle
at all times. Finally, only the multiport generalization of a storage element adds a new behavior, viz.
transduction. For this reason, multiport storage will be analyzed in more detail in the following section.

For all the multiports mentioned above (canonical), decompositions (Breedveld, 1984b) can be found
that not only enhance insight into the potential dynamic behavior of a model, but also allow recognition of
substructures as specific multiports (composition), of which an alternative decomposition may improve
numerical solution properties, as is the case for the well-known Euler junction structure (Karnopp and
Rosenberg, 1968; Breedveld, 1999).

26.4.1 Multiport Storage Elements
The generalization of a one-port storage element into an n-port storage element, where the ports may
belong to different domains, requires an approach based on the commonly conserved property, the energy.
It turns out that a new type of behavior will emerge from this extension, viz. transduction by a cycle
process. In other words, power can be transformed from one port to another and thus from one domain
into another by performing a cycle process with a multiport storage element with at least two ports. As
much of the literature is rather inaccurate about the use of the concept of energy, the distinction between
coenergies (often incorrectly considered energies when they have the same numerical value as the energy)
and the globally conserved energy will be made clear first by a discussion of Legendre transformations of
homogeneous functions.

26.4.1.1 Coenergy and Legendre Transforms

A concise overview of homogeneous functions and Legendre transforms is given and applied to energy
functions, thus introducing the concept of coenergy. Various properties of energy and coenergy related
to multiport storage are shortly discussed and related to a physical interpretation. Finally, some domain-
specific forms of coenergy are discussed.

Math Background: Homogeneous Functions and Euler’s Theorem
A function F(x) with x = x1, . . . , xk is homogeneous of order n if F(αx) = αnF(x). If yi(x) = ∂F/∂xi,
then yi(αx) = ∂F(αx)/∂αxi = αn

α
· ∂F(x)/∂xi = αn−1yi(x), in other words, yi(x) is homogeneous of order

(n − 1). For such homogeneous functions Euler’s theorem holds

k∑
i=1

∂F

∂xi
· xi = n · F(x) or F(x) = 1

n

k∑
i=1

yi · xi = 1

n
· yT · x (26.22)

By definition the variation of F can be written as

dF =
k∑

i=1

∂F

∂xi
· dxi =

k∑
i=1

yidxi = yT · dx (26.23)

but also using Eq. (26.22)

dF = d

(
1

n
yT · x

)
= 1

n
yT · dx + 1

n
(dy)T · x (26.24)

Combination of Eq. (26.23) and Eq. (26.24) gives

(dy)T · x = (n − 1)yT · dx

and for n = 1 : (dy)T · x = 0, for n �= 1 : dF = 1
n − 1 (dy)T · x.

Homogeneous Energy Functions
The energy of a system with k state variables q is E(q) = E(q1, . . . , qk). If qi is an “extensive” state

variable, this means that E(αq) = αE(q) = α1E(q). Hence E(q) is first order (n = 1) homogeneous, so
ei(q) = ∂E/∂qi is zeroth order (n − 1 = 0) homogeneous, which means that ei(q) is an “intensive” variable,

i.e., ei(αq) = α0ei(q) = ei(q).



Port-Based Modeling of Engineering Systems in Terms of Bond Graphs 26-23

e1

f1
�� n�1

n�1
Sf:0

FIGURE 26.21 Bond graph of a “one-port storage element.”

This means also that in case n = 1 and k = 1 e(q) is constant, i.e., ∂e/∂q = de/dq = 0, which changes the
behavior of this element into that of a source. This means that storage elements should in principle be mul-
tiports (k > 1). A one-port storage element is in principle an n − port storage element of which the flows
of n − 1 ports are kept zero. Accordingly, the corresponding n − 1 states are constant and commonly not
recognized as states. Such states are often considered parameters: if E(q1, q2, . . . , qn)|dqi=0,∀i �=1 = E′(q1),
then E′ (q1) not necessarily first-order homogeneous in q1 (cf., Figure 26.21).

For n = 1 and k independent extensities there are only k − 1 independent intensities, because for n = 1
we find Gibbs’ fundamental relation: E(q) = eT · q. As by definition holds that dE = eT · dq, this results in

the Gibbs–Duhem relation: (de)T · q = 0, which expresses that one of the intensities depends on the others.

Math Background: Legendre Transforms
A Legendre transform L of F(x) with respect to xi is by definition L{F(x)}xi = Lxi = F(x) − yi · xi, where

yi = ∂F/∂xi and the total Legendre transform of F(x) is L{F(x)} = L = F(x) − ∑k
i=1 yixi. Eq. (26.22)

shows that L = 0 for n = 1. Now dLxi = dF − d(yixi) = dF − yidxi − xidyi = ∑
j �=i yjdxj − xidyi or

Lxi = Lxi (x1, . . . , xi−1, yi, xi+1, . . . , xk), which means that xi is replaced by yi as independent variable

or “coordinate!” Hence L = L(y); dL = − ∑k
i=1 xidyi = −(dy)T · x.

Coenergy Functions
The complimentary energy or coenergy E∗

qi
of E(q) of with respect to qi is by definition:

E∗
qi

= −Lqi = E∗
qi

(q1, . . . , qi−1, ei, qi+1, . . . , qk). Hence E(q) + E∗
qi

(. . . , ei, . . .) = ei · qi. For the total coen-

ergy E∗(e) of E(q) holds that E∗ = −L, hence E(q) + E∗(e) = eT · q, which explains the terminology. For
n = 1: E∗(e) = 0, confirming the earlier conclusion that there are only k − 1 independent intensities ei. For
n = 2: E(q) = E∗(e) = 1

2 eT · q (i.e., equal in value, but different in nature as is the case for linear constitutive

relations that result in quadratic energy functions!) and for n = 3: E(q) = 1
3 eT · q while E∗(e) = 2

3 eT · q.
The following relations for coenergy functions can be useful:

dE∗
qi

= dei · qi −
∑
j �=1

ej · dqj dE∗ =
k∑

i=1

dei · qi = (de)T · q = (n − 1)eT · dq = (n − 1)dE

E∗ = (n − 1)E = n − 1

n
· eT · q =

(
1 − 1

n

)
eT · q.

Next, several domain dependent manifestations of the Legendre transforms will be discussed.

Legendre Transforms in Thermodynamics
In thermodynamic systems of “simple” systems with internal energy U that is a function of the extensities
entropy S, volume V , total mole number N , and mole number per species i Ni, the conjugate intensities
are temperature T = ∂U/∂S, pressure p = ∂U/−∂V = −∂U/∂V (energy increases in case of compression
−∂V , total material potential µtot = ∂U/∂N , and chemical potential µi = ∂U/∂Ni, respectively. The Leg-
endre transforms are the free energy F, the enthalpy H, and the Gibbs free enthalpy G. The free energy F is a
Legendre transform of the energy with respect to the entropy S: LS = F(T , V , N , N) = U − TS =, −pV +∑m−1

i=1 µiNi + µtot · N (=N · f (T , v, c)) where c, is the vector of molar fractions and with variation dF =
−SdT − pdV + ∑m−1

i=1 µidNi + µtot · dN , which means that the thermal domain does not influence the
free energy at constant temperature. The enthalpy H is a Legendre transform of the energy with respect
to the available volume V : LV = H(S, p, N , N) = U − (−pV ) = U + pV (= N · h(s, p, c)) with variation
dH = TdS + V dp + ∑m−1

i=1 µi · dNi + µtot · dN , which means that the mechanical domain does not influ-
ence the enthalpy at constant pressure. Finally, the Gibbs free enthalpy G is a Legendre transform of the
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energy with respect to both the entropy S and the available volume V : LS,V = G(T , p, N , N) = U − TS −
(−pV ) = µtot · N + ∑m−1

i=1 µiNi (= N · g(T , p, c)) with variation dG = −SdT + V dp + ∑m−1
i=1 µidNi +

µtot · dN , which means that both the mechanical domain and the thermal domain do not influence
the Gibbs free enthalpy at constant pressure and temperature. For one constituent (m = 1) it holds
that g = µtot(T , p), which means that the equilibrium of the material is determined by pressure and
temperature.

Legendre Transforms in Mechanics
In mechanical systems with kinetic energy T and potential energy V , i.e., of which the total
energy is the Hamiltonian H that is a function of the extensities displacements vector x and the
momenta vector p: E(q) = H(x, p) = T + V , while the conjugate intensities are the velocities vector
v = ∂H/∂p and the vector of forces F = ∂H/∂x, respectively. The Legendre transforms of the Hamilto-
nian H are the Lagrangian L, the co-Hamiltonian and the co-Lagrangian or Hertzian. The Lagrangian
L is a negative Legendre transform (coenergy) of the Hamiltonian with respect to the momenta
p: H∗

p = −Lp = vT · p − H = (T + T∗) − (T + V ) = T∗ − V = L(x, v), the co-Hamiltonian is a negative

Legendre transform (coenergy) of the Hamiltonian with respect to both the displacements x and the
momenta p: H∗

x,p = vT · p + FT · q − H = (T + T∗) + (V + V ∗) − (T + V ) = T∗ + V ∗ = H∗(F, v) and the

co-Lagrangian or Hertzian is a negative Legendre transform (coenergy) of the Hamiltonian with respect to
the displacements x: H∗

x = FT · q − H = (V + V ∗) − (T + V ) = V ∗ − T = −L∗(F, p).
Note that adding the symplectic coupling between the kinetic and potential domains leads to the

common Hamiltonian formulation of the equations of motion, where J is the symplectic matrix:

d
dt

[
q
p

]
=

[
0 +1

−1 0

]
⎡
⎢⎢⎣

∂H
∂q
∂H
∂p

⎤
⎥⎥⎦ +

[
0

Fexternal

]
= J

⎡
⎢⎢⎣

∂H
∂q
∂H
∂p

⎤
⎥⎥⎦ (26.25)

while after the Legendre transform into the Lagrangian the equations of motion are written

d
dt

⎡
⎣ q

∂L
∂v

⎤
⎦ =

[
0 +1

−1 0

]⎡
⎣

∂L
∂q
v

⎤
⎦ +

[
0

Fexternal

]
or, by eliminating

dq
dt

= v :
d

dt
∂L
∂v

+ ∂L
∂q

= Fext

Note that in both common formulations velocity sources are excluded.

Legendre Transforms in Electrical Circuits
In electrical circuits with capacitor charges q and conjugate voltages u and coil flux linkages λ

and conjugate currents i, the total stored energy is E(q, λ) = EC(q) + EL(λ). The total coenergy is

E∗(u, i) = uT · q + iT · � − E = E. Note that the last equal sign only holds in case of circuit elements
with linear constitutive relations. Nevertheless, this assumption is seldom made explicit when coenergy is
used as the “energy” of an electric circuit.

Legendre Transforms and Causality
The above similarities between the Legendre transforms in these different domains are often not made
explicit. For instance, some properties of and processes with multiports that are quite common in ther-
modynamics are not common in mechanics and electrical circuit theory, although they may be used to
enhance insight in similar ways.

In the domain independent approach as denoted in bond graphs one can conclude that if an effort
is “forced” on a port of a C-element (“derivative causality” or “flow-out causality”), this means that
the roles of e and q are interchanged in the set of independent variables, which means that the energy
has to be Legendre transformed to maintain a generating function for the constitutive relations. Such a
transformation is particularly useful when the effort e is constant. For example, an electrical capacitor in an
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FIGURE 26.22 Use of free energy at constant temperature: no thermal port required.
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FIGURE 26.24 Addition of magnetic storage with an explicit magnetic domain.

isothermal environment with T = Tconst can be characterized by the free energy: dF = udq − SdT = udq
and the thermal port can be omitted as it does not result in changes of the free energy F (Figure 26.22):

P = u · q̇ = dF

dt
(26.26)

Independent of the domain the function ei(q) that characterizes a storage port is called constitutive relation
or constitutive equation, constitutive law, state equation, and characteristic equation. If ei(q) is linear, i.e.,
first-order homogeneous, then E(q) is second-order homogeneous, i.e., E(q) is quadratic. In this case, and

only in this case: E(αq) = α2E(q) E(q) = 1
2 eT · q = E∗(e) and dE∗ = (de)T · q = eT · dq = dE, i.e., the value

of energy and coenergy are equal.
Another property of constitutive relations of storage elements that is commonly used in thermodynamics

is Maxwell reciprocity or Maxwell symmetry. From the principle of energy conservation can be derived
that the mixed second derivatives of the energy should be equal ∂2E/∂qi∂qj = ∂2E/∂qj∂qi. This means that
∂ej/∂qi = ∂ei/∂qj , i.e., the Jacobian matrix of the constitutive relations is symmetric. Maxwell symmetry
requires the “true energy” form (integral causality) as Legendre transforms generally destroy the symmetry
of the Jacobian. Yet another property that is commonly used in thermodynamics (le Chatelier–Braun
principle) to check the intrinsic stability of a system that can be considered a multiport storage element
is that the Jacobian of and all its subblocks are also positive-definite: det (∂e/∂q) > 0 and that the diagonal
elements of the Jacobian are positive: ∂ei/∂qi > 0 ∀i.

26.4.1.2 Loudspeaker Example

The dominant behavior of a loudspeaker, in particular the electromechanical transduction based on the
Lorentz force, F = n(i × B)l and on dλ/dt = u = n(v × B)l, can in the given configuration be approximated
by a gyrator, F = (nBl)i and u = (nBl)v (Figure 26.23).

Making the relation between electric and magnetic domain explicit by means of an SGY shows that
the storage of magnetic energy in the voice coil can be represented by a magnetic C (Figure 26.24) for
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FIGURE 26.25 Addition of elastic cone suspension resulting in the decomposition of a two-port storage element.

which can be written dλ/dt = dLi/dt + nBlv = dLi/dt + nBldx/dt , after integration: λ = Li + nBlx. If this
constitutive relation is put in preferred integral causality i = 1/Lλ − (nBl)/(L)x and combined with the
relation of the mechanical port F = −nBli = (−nBl/L)λ + ((nBl)2/L)x into a relation of a two-port C in
matrix form:

[
i
F

]
=

⎡
⎢⎢⎣

1

L
−nBl

L

−nBl

L

(nBl)2

L

⎤
⎥⎥⎦

[
λ

x

]
(26.27)

it can be concluded that this two-port satisfies Maxwell symmetry, but that it is singular
(1/L((nBl)2/L) − (−nBl/L)2 = 0), such that a positive mechanical spring constant K representing the
connection to the frame of the moving voice coil, has to be added to make it intrinsically stable:
1/L(((nBl)2/L) + K) − (−nBl/L)2 > 0 (Figure 26.25).

The junction structure with the transformer and the two Cs coincides with the so-called congruent
canonical decomposition of a linear two-port C of which the energy can be used as a generating function
of the constitutive relations (Breedveld, 1984b). When starting again without a mechanical spring, the
energy of this two-port should be written in terms of λ and x:

dE(λ, x) = idλ + Fdx =
(

λ

L
− (nBl)x

L

)
dλ +

(
− (nBl)λ

L
+ (nBl)2x

L

)
dx = d

(λ − (nBl)x)2

2L

such that E(λ, x) = (λ − (nBl)x)2/2L, but is commonly mistaken by what is actually the coenergy in terms
of i and x: E∗(i, x) = Li2/2 + nBlix.

If this is the case and the force is incorrectly derived by taking the partial derivative of this coenergy as

if it were an energy F
incorrect!= ∂E∗(i, x)/∂x = (i2/2)dL/dx + nBli, a sign error is obtained, as it should be

F = ∂E(λ, x)

∂x
= ∂

∂x

(λ − (nBl)x)2

2L
= −(nBl)

(
λ

L
− (nBl)x

L

)
− 1

2

(
λ

L
− (nBl)x

L

)2 dL

dx
= −(nBl)i − 1

2
i2 dL

dx

Note that the mere difference in the form of a minus sign between these results only occurs for the
particular case in which the current i depends linearly on the flux linkage λ. In case of a nonlinear relation,
the error is larger than “just” a sign error that is commonly not noticed as it is compensated by an implicit
change in orientation: in contrast with the global convention, the mechanical port is then taken positively
outbound.

If a spring is added to satisfy intrinsic stability the energy increases with the potential energy
E(x) = Kx2/2 and similar constitutive relations are found from the energy function:

[
i
F

]
=

⎡
⎢⎢⎣

∂i

∂λ

∂i

∂x
∂F

∂λ

∂F

∂x

⎤
⎥⎥⎦

[
λ

x

]
=

⎡
⎢⎢⎣

∂2E

∂λ2

∂2E

∂x∂λ

∂2E

∂λ∂x

∂2E

∂x2

⎤
⎥⎥⎦

[
λ

x

]
=

⎡
⎢⎢⎣

1

L
−nBl

L

−nBl

L

(nBl)2

L
+ K

⎤
⎥⎥⎦

[
λ

x

]
(26.28)
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FIGURE 26.26 Simulation of the mechanical and magnetic cycle with frequency sweep input.

which is intrinsically stable as long as (nBl)2/L2 + K/L − (nBl)2/L2 = K/L > 0. Figure 26.26 shows the
simulation results of a loudspeaker model containing this two-port, with a sinusoidal frequency sweep
input at the electric port. Both ports indeed perform a cycle process in which the magnetic port cycles
clockwise and the mechanical port counterclockwise (large loops, i.e., more energy transferred per cycle,
represent a simulation at the resonance frequency of the speaker), which demonstrates that indeed per
cycle a net amount of magnetic (electric) energy is transduced into mechanical energy. The areas of the
loops are equal in the conservative case.

Obviously, if the coenergy is explicitly identified as being different from the energy, the derivations lead
to the correct results too

E∗(i, x) = −(E(λ, x) − iλ) = iλ − E(λ, x) = Li2

2
+ nBlix − Kx2

2
(26.29)

dE∗(i, x) = λdi − Fdx = Lidi + nBlidx − Kxdx (26.30)

Hence

E∗(i, x) = Li2

2
+ nBlix − Kx2

2
λ = ∂E∗(i, x)

∂i
= Li + nBlx (26.31)

so u = dλ/dt = d/dt(∂E∗(i, x)/∂i) = L(di/dt) + nBlv = uself ind + uLorentz and F = −∂E∗(i, x)/∂x =
−nBli +Kx, in matrix form:

[
λ

F

]
=

⎡
⎢⎢⎣

∂λ

∂i

∂λ

∂x

∂F

∂i

∂F

∂x

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∂2E∗

∂i2

∂2E∗

∂i∂x

−∂2E∗

∂x∂i

−∂2E∗

∂x2

⎤
⎥⎥⎦ =

[
L nBl

−nBl K

] [
i
x

]
(26.32)

i.e., no symmetry of the Jacobian if energy and coenergy are confused.
This example demonstrates that the concept of multiport storage, in particular two-port storage, may

not only lead to conceptual models of transduction phenomena, but also that reversible transduction
requires a cycle process in principle. This means that a transducer cannot continuously transduce a DC
input. By changing its configuration into that of an electric motor, the configuration takes care of the cycle
of the conductors in the magnetic field.
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Hence, pure “DC”-type transduction can only be achieved by some form of “carrier” that performs a
cycle: gears carrying teeth (with elastic deformation!) during contact, a cooling fluid, and a rolling wheel
that cycles its interaction point, which is a useful insight during conceptual design of transducers.

26.5 Conclusion

In this chapter, the basics of the port-based approach were introduced as well as their natural notation,
viz. bond graphs. The main advantages of the use are

(1) the domain-independence of the elementary behaviors and their graphical notation that allow quick
analysis of dynamic interaction across domain boundaries;

(2) that not all ports have an a-priori fixed causality, thus allowing flexible reuse of submodels;
(3) the combination of physical and computational structure in one notation, thus allowing

a. direct physical interpretation of required changes in model structure, e.g., for controller design,
b. direct feedback on modeling decisions,
c. direct graphical input for simulation software.

All these features contribute to rapid insight and the ability of efficient iteration during the modeling
process.

It was also demonstrated that various domains of physics that use some form of energy-based model
formulation technique are all strongly related, even though terminology and a loss of conceptual distinction
between conserved energy and its nonconserved Legendre transforms commonly obstructs this insight.
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This chapter provides a short tutorial on the system dynamics approach to computer simulation modeling.
The modeling usually begins when managers face a dynamic pattern that is causing a problem. The
modeling is based on the premise that we can improve our understanding of the dynamic behavior by the
construction and testing of models that focus on the information feedback. The approach was pioneered
by Forrester (1961) and is explained in recent texts by Ford (1999) and Sterman (2000). The models are
normally implemented with visual software such as

Stella (http://www.iseesystems.com),
Vensim (http://www.vensim.com/), and
Powersim (http://www.powersim.com/).

These programs use “stock and flow” icons to help us see the accumulation in the system. The programs
also help one to see the information feedback in the simulated system. The programs use numerical
methods to show the dynamic behavior of the simulated system.

This chapter begins with simple models to demonstrate that different systems can exhibit the identical
pattern of growth over time. One model shows the growth in flowered area; the second shows the growth
in a sales company. These systems show the same dynamic behavior because their growth is governed by
the same feedback loop structure. The flower model is then extended to simulate the imaginary Daisy
World created by Watson and Lovelock (1983). Daisy World provides an additional example of feedback
loop structure. It also provides a convenient way to illustrate interactive “flight simulators,” one of the
several methods to promote communication and learning from system dynamics models. The chapter
concludes with a list of readings for those who wish to learn more about system dynamics modeling of
environmental systems.

27.1 Introductory Examples

Figure 27.1 shows a flow diagram of a model to simulate the growth in the area covered by flowers. (This
diagram is in Stella.) In this example, we start with 10 acres of flowers located within a suitable area of
1000 acres. The area of flowers is called a stock variable; the growth and decay variables are called flows.

27-1
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Area of flowersGrowth Decay

Decay rate

Intrinsic growth rate

Actual growth rate

~
Growth rate multiplier

Fraction occupied
Suitable area

FIGURE 27.1 Stella diagram of a model to simulate growth in the area of flowers (from Island Press, 1999).
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Lookup for growth
rate multiplier

FIGURE 27.2 Vensim diagram of the flowers model.

The growth flow increases the area of flowers over time. The decay flow reduces the flowered area over
time. The remaining variables in the Stella diagram are called converters. The converters are used to help
explain the flows. Stella depicts the action of the flows by the double lines leading into or out of the stocks.
Stella represents the information connections by single lines. For example, the single lines connecting to
the decay flow indicate that the decay is influenced by the area of flowers and the decay rate. The variables
in system dynamics models are normally assigned long names to make their meaning clear. When this is
done, the reader can usually guess the equation for each variable. For example, you can probably guess
that the equation for the decay is the product of the area of flowers and the decay rate.

Figure 27.2 shows the Vensim version of the flow diagram for the flowers model. The two programs
use somewhat different icons, but the stock and flows are clear to see. Figure 27.2 shows that the area of
flowers is a stock which is increased by growth and reduced by decay. Additional variables (such as the
decay rate) appear in Figure 27.2 by their names. Vensim allows the user to assign a variety of symbols to
the variables, but the convention is to avoid extra symbols to minimize clutter in the diagram.

System dynamics models may be viewed as a coupled set of differential equations. In the flower model, we
have only one stock variable, so the model may be represented by a single differential equation, as shown
in Table 27.1. This format will be familiar to many handbook readers who have studied calculus and
differential equations. These readers will appreciate that an analytic solution to the differential equation is
difficult because of the nonlinear relationship for the growth rate multiplier.

System dynamics models are filled with nonlinear relationships, so the software programs are designed
to make it easy to find a numerical solution to the equations. Most simulations are performed with Euler’s
method. The model user is responsible for setting a sufficiently short step size to ensure accurate results.
Accuracy is usually checked by simply repeating the simulation with the step size cut in half. If we see the
same results, we know the results are numerically accurate.
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TABLE 27.1 Flower Model in the Form of a Differential
Equation

Let dA(t)/dt = G(t) − D(t)
A = area of flowers A(0) = 10
G = growth
D = decay D(t) = A(t)*d

G(t) = A(t)*g
d = decay rate g(t) = ig*gm(t)
g = actual growth rate gm = f (FO)
ig = intrinsic growth rate FO(t) = A(t)/SA
SA = suitable area SA = 1000
gm = growth rate multiplier ig = 1.0
FO = fraction occupied d = 0.2

1000
400

500
200

0
0

0 2 4 6 8 10 12 14 16 18 20

Time (year)

Area of flowers: CRC 1st example
Growth: CRC 1st example
Decay: CRC 1st example

FIGURE 27.3 Vensim graph of flower simulation results. (The area is scaled to 1000 acres. The growth and decay are
scaled to 400 acres/year.)

Figure 27.3 shows a Vensim time graph of a 20-year simulation. The graph shows rapid growth in the
space occupied by flowers during the first 5 years as the growth far exceeds the decay. As the flowers fill
up the suitable area, their growth rate falls below the intrinsic growth rate that applied at the start of the
simulation. The growth gradually declines until it matches the decay. At this point, the system has reached
a dynamic equilibrium with 800 acres of flowers. The flowered area is maintained by a growth and decay
of 160 acres/year.

Figure 27.4 shows a somewhat more complicated model. This is a Vensim flow diagram of a model to
simulate the growth in a sales company. A stock variable represents the size of the sales force. The stock
is increased by the new hires, and it is reduced by the departures. Departures are controlled by the exit
rate, which is set to 20% per year. The new hires are controlled by the budgeted size of the sales force.
To illustrate, consider a numerical example with the sales force initially at 50 people. With a small sales
force, we assume that each person can sell 2 widgets per day. If the widget price is $100, the 50 people
could generate $3.65 million in annual revenues. If the company assigns half of the revenues to the sales
department budget, the company could budget for 73 sales persons paid an annual salary of $25,000. In
this situation, the new hires would be calculated to build the stock toward the goal of 73 persons. The pace
at which the new hires builds the stock is controlled by the hiring fraction, which is measured as a fraction
per year. When new hires exceed departures, the sales force will grow toward saturation. With so many
sales persons working the market, their effectiveness will fall below the initial value of 2 widgets per day.
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Size of
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Departures
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sales force
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FIGURE 27.4 Vensim diagram of a model to simulate the growth of a sales company.
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Size of sales force: CRC 2nd example
New hires: CRC 2nd example
Departures: CRC 2nd example

FIGURE 27.5 Vensim time graph for the sales model. (The sales force is scaled to 1000 persons. The new hires and
departures are scaled to 400 persons per year.)

Figure 27.5 shows the simulated growth in the sales force when the model is simulated over a 20-year
period. The graph shows rapid growth in the size of the sales force during the first 9 years as the new
hires far exceed the departures. However, as the sales force climbs past 500 persons, the new hires begins
to decline. New hires gradually decline until the company achieves dynamic equilibrium with around
150 new hires and departures per year. The equilibrium size of the company is around 750 persons.

27.2 Comparison of the Flowers and Sales Models

Figure 27.3 and Figure 27.5 show that the sales company exhibits essentially the same pattern of behavior
as the flowers system. Both simulations begin with rapid growth. The growth is powered by a high growth
rate of flowers and by the high effectiveness of the sales persons. But both systems face limits, so they
cannot grow forever. As the systems encounter these limits, their growth declines in a gradual manner.
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FIGURE 27.6 Feedback loop structure of the flowers model (from Island Press, 1999).
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FIGURE 27.7 Feedback loop structure of the sales model (from Island Press, 1999).

Eventually, they reach a state of dynamic equilibrium, an equilibrium which could be maintained year after
year. The similarity in these patterns is no coincidence. It arises from the similarity in their underlying
structure. You can see some similarity by comparing the model diagrams. But the similarity will be even
more apparent when we draw causal loop diagrams to focus our attention on the feedback in the systems.
We expect to see positive feedback when a system is able to grow on its own; we expect to see negative loops
that limit or shape the growth of the system. These loops come into clearer view when we show variables
and their interconnections as in Figure 27.6 and Figure 27.7.

Figure 27.6 shows the three feedback loops in the flowers model. The rapid growth is powered by the
positive feedback loop in the upper left corner of the diagram: more flowered area leads to more growth,
which leads to more flowered area. The convention is to label the positive feedback loops with a (+).
These loops will be found whenever a system has the power to exhibit exponential growth on its own.
Figure 27.6 shows two negative loops, both of which are marked with a (−). One negative loop involves
the decay of flowered area over time. The strength of this loop is controlled by the decay rate, which is
assumed to remain constant in this example. The other negative loop involves the reduction in the growth
rate as the flowers occupy a larger and larger fraction of the suitable area. This is a negative loop that
becomes stronger and stronger over time. (Such feedback is sometimes called density-dependent feedback
in environmental systems.) The negative feedback on flower growth eventually reaches the point where
growth and decay are in dynamic equilibrium.

Figure 27.7 shows a somewhat similar set of loops in the sales model. Since the sales force grows rapidly
on its own, we know that there should be positive feedback in the system. This loop involves the size
of the sales force and the annual revenues: a larger sales force leads to greater sales, increased revenues,
a larger budget for the sales department, a larger budgeted number of sales persons, more new hires, and
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a still larger sales force. This positive feedback loop serves the same general function as the positive loop
in the flower model. If the positive feedback is sufficiently strong, the sales company will be able to grow.
However, the positive feedback in the sales company is different in that the company has a clearly identified
goal associated with the budgeting process. (Such a goal is not apparent in the flowers model.) Figure 27.7
shows a negative feedback loop associated with the company’s attempt to bring the size of the sales force
into balance with the budgeted goal. Such loops are to be expected whenever a system is designed with
goal-seeking behavior. An additional negative loop is associated with the departures of sales persons. This
loop is controlled by the exit rate and is similar in function to the decay loop in the previous model.

The fourth loop in Figure 27.7 provides the density-dependent feedback that we would expect to see if
the sales company is to eventually come into dynamic equilibrium. To understand the impact of the loop,
imagine there is a major increase in the size of the sales force. This would reduce the effectiveness of each
sales person which tends to reduce the widget sales. Lower sales lead to lower revenues, a reduction in the
budgeted size of the sales force, fewer new hires, and a smaller size of the sales force. By working through
the loop in a step-by-step fashion, we see that the loop acts to negate the effect of the original change. This
is a characteristic effect of negative feedback.

27.3 Background on Daisy World

Daisy World is an imaginary world invented by Watson and Lovelock (1983) to illustrate a system with close
coupling between the biota and the global environment. This imaginary world is inhabited by white daisies
and black daisies. The white daisies have a high albedo, which means they are highly reflective. When the
planet surface is covered by a large area of white daisies, the planet will tend to reflect much of the incoming
solar luminosity. The black daisies have a low albedo, so their surface tends to absorb much of the incoming
luminosity. Consequently, the mix of daisies on the planet influences the absorbed luminosity and the
planet’s temperature. Now imagine that the planet’s temperature influences the rate of growth of the
daisies. If the temperature is close to the optimum value for flower growth, the flowered areas will spread
across the planet. But if the temperature is too high or too low, the flowered areas will recede over time.

This imaginary world was created as a concrete example of system with homeostatic properties, like
those described for the human body by Cannon (1932). According to Levine (1993, p. 89), Lovelock’s
conclusion on a living planet followed from the principle of physiology: “that the living body strives to
maintain the constancy of its internal environment.” Lovelock believed that “Earth behaves in the same
way: its living and nonliving parts collaborate to hold temperature and other conditions at reasonably
constant levels.” The idea of a “living earth” needed a name, and Lovelock was reluctant to invent a
“barbarous acronym such as Biocybernetic Universal Systems Tendency/Homeostasis.” Instead, he chose
the name “Gaia Hypothesis” with the hope that Gaia would remind us of The Greek Earth goddess, and
“hypothesis” would encourage scientists to ask a different set of questions about the world.

The Gaia Hypothesis is a subject of much discussion (Capra, 1996; Dawkins, 1982; Joseph, 1990;
Levine, 1993; Lovelock, 1988, 1991, 1995), as is the example of Daisy World (Capra, 1996; Joscourt, 1992;
Kirchner, 1989; Lovelock, 1991). My purpose in this chapter is to use Daisy World as a third example of
system dynamics modeling. This new model builds from the simple flower model shown previously so that
the reader can appreciate how system dynamics models can be created by building on previous work. The
Daisy World model will also illustrate how causal loop diagrams can help one understand and anticipate
the dynamic behavior. Finally, the model is used to illustrate a “management flight simulator” a model
designed to promote learning through interactive experimentation.

27.4 The Daisy World Model

The Daisy World model was created by adapting the original differential equations by Watson and Lovelock
(1983) into a system dynamics model implemented in Stella (Ford, 1999, Chapter 21). Figure 27.8 shows
part of the model in the form of an equilibrium diagram. (An equilibrium diagram is a stock-and-flow
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FIGURE 27.8 Equilibrium diagram for the daisy areas in the Daisy World model (from Island Press, 1999).

diagram with the equilibrium values for each variable on display.) The model represents a world with
1000 acres. When the system reaches equilibrium, the white daisies occupy 403 acres, and the black daisies
occupy 271 acres. Both flowered areas are subject to a fixed decay rate of 30%/year, so the system finds
its way to an equilibrium with both growth rates at 30%/year. With this mix of areas, the average albedo
is 0.53 which means the plant would absorb 47% of the incoming solar luminosity. Lovelock and Watson
set the incoming luminosity at 1.0, but their main interest was how the world would respond to changes
in the solar luminosity. They calculated the planet’s average temperature as a nonlinear function of the
absorbed luminosity. In this case, the average temperature turns out to be 21.8◦C. They then assumed
that local effects would lead to somewhat higher temperatures in the area covered by black daisies and
somewhat lower temperatures in the area covered by white daisies. Figure 27.8 shows the equilibrium
temperatures at 17.46◦C near the white daisies and 27.46◦C near the black daisies. Both flowers grow
best (at 100%/year) when their local temperature is 22.5◦C. Figure 27.8 shows that the white flowers are
experiencing temperatures cooler than the optimum, and their indicated rate of growth would be 92% if
there were no limits based on the empty area. The black flowers are experiencing temperatures hotter than
the optimum, and their indicated rate of growth is also 92%/year (if there were no limits based on the
empty area). Both flowers experience a reduction in the actual growth rates from the space limitations. By
the time all of these effects are sorted out, the two areas grow at the rate of 30%/year, just what is required
to counter the decay rate of 30%/year. The preceding description skips over some of the equations, but
the interested reader can learn the missing details from Modeling the Environment or by downloading the
model (http://www.wsu.edu/∼forda/GuidetoRest.html).

It is useful to now turn to the feedback loops that will help us anticipate how this world would respond
to a change in solar luminosity. Figure 27.9 shows a collection of eight feedback loops. This is a complex
diagram, so it is helpful to find a familiar place to start. Let us begin with the black area in the upper right
corner of the diagram and look for the feedback loops that remind us of the three loops shown previously
in Figure 27.6. This comparison shows that the spread of the black daisies is controlled by the same set of
loops. There is a positive loop to power the growth in a flowered area; a negative loop based on a fixed rate
of decay, and a negative loop whose strength changes with the amount of empty area. If we turn to the
white area in the upper left part of the diagram, we see a similar set of three loops that control the spread
of the white daisies.

The remaining two loops in Figure 27.9 involve the plant’s absorbed luminosity and average temperature.
Each of these loops provides negative feedback, and it is these feedback effects that give the world the
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homeostatic properties to illustrate the Gaia Hypothesis. To understand these loops, let us trace the
world’s reaction to a major change in solar luminosity. To begin, let us assume a large increase in incoming
luminosity and trace the reaction of the left-side loop involving the growth of the white daisies. With an
increase in solar luminosity, we would see an increase in the absorbed luminosity, an increase in the planet’s
average temperature, and an increase in the local temperature for the white daisies. The white flowers would
then experience temperatures that are closer to their optimum growing conditions. This increases the white
growth rate and the area covered by white flowers. With a greater area covered by white daisies, the planet
has a higher albedo and a lower absorbed luminosity. By tracing the cause and effect reactions around the
loop, we learn that the loop acts to negate the impact of the assumed increase in solar luminosity. We have
learned that this loop acts to protect the world against the threat of increases in the solar luminosity.

The remaining loop in Figure 27.9 operates through the black daisy area and the average temperature. To
understand the effect of this loop, let us imagine that the world experiences a major drop in the incoming
solar luminosity. This would lower the absorbed luminosity and the planet’s average temperature. The
local temperature near the black daisies would be lowered, so the black flowers would then experience
temperatures closer to their optimum growing conditions. This increases the black growth rate and the area
covered by black flowers. With a greater black area, the planet has a lower albedo and a greater absorbed
luminosity. The overall reaction of this loop is to negate the impact of the assumed drop in solar luminosity.
We have learned that this loop acts to protect the world against the threat of reduced solar luminosity.

Some readers may look at the temperature-dependent loops in Figure 27.9 and think of the actions
of a heating/cooling system that protects our home against changes in the external temperature. But
this analogy was not what Watson and Lovelock had in mind for Daisy World. They intentionally avoided
creating a world with anything resembling the target temperature on our home thermostat. Given their view
of the natural world, a better analogy is the human body which has evolved over the centuries to achieve
homeostatic regulation of body temperature. This is accomplished through involuntary physiological
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FIGURE 27.9 Feedback loop control of Daisy World temperatures (from Island Press, 1999).
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reactions such as shivering and sweating. Shivering acts to protect the body’s core temperature under cold
conditions, so one might think of shivering as analogous to the spread of black daisies on Daisy World.
Sweating acts to protect the body’s core temperature under hot conditions, so one might think of sweating
as analogous to the spread of white daisies on Daisy World.

27.5 The Daisy World Management Flight Simulator

Figure 27.10 concludes the Daisy World example with a view of an interface to make it easy to experiment
with the model in interactive fashion. Such models are sometimes called “management flight simulators”
because they remind us of a pilot flight simulator, an electromechanical model of an airplane. A pilot flight
simulator is a simplified representation of an airplane equipped with a sophisticated interface resembling
the cockpit. Pilots experiment with the simulated airplane to improve their flying instincts. A management
flight simulator has a similar purpose. It is designed to help managers improve their business instincts.
Such simulations have proven useful in several business systems including health care, airlines, insurance,
real estate, and project management (Morecroft, 1988; Sterman, 1992; Senge, 1990). Environmental
examples include simulators for management of fees and rebates (to promote sale of cleaner vehicles) and
the management of a salmon fishery (Ford, 1999).

The simulator in Figure 27.10 provides information buttons to explain that the user is to experiment
with strategies to help Daisy World support life in the face of massive uncertainties in the solar luminosity.
In the example shown in Figure 27.10, the user has elected to test the simulated world’s response to a heat
shock scenario in which the solar luminosity jumps from 1.0 to 1.25 in the year 2010. The user may select
from a variety of daisies with different albedos and optimum temperatures. In this example, the user has
selected the 5th variety (which corresponds to the flowers described by Watson and Lovelock). The graph
in Figure 27.10 shows the first 30 years of a 40-year simulation. (The simulation is advanced 2 years at
a time when the user clicks on the “Run for 2 years” button.) The graph shows that the planet’s average
temperature has declined to around 22◦C by the year 2010. This is the year of the sudden increase in solar

FIGURE 27.10 Part way through a simulation of a heat shock scenario for Daisy World.
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luminosity, and the planet’s average temperature jumps immediately to around 37◦C. But the world is not
fixed at 37◦C even though the solar luminosity is fixed at 1.25. Figure 27.10 shows that the planet’s average
temperature declines to around 22◦C within a decade after the onset of the heat shock conditions. This
decline is made possible by the spread of white daisies and the retreat of the black daisies, both of which
act to increase the planet’s average albedo. By the 30th year of the simulation, the world appears to have
found a new equilibrium condition with the average temperature close to the value well suited for the
flowers. This is the response that Lovelock and Watson were looking for since it shows the biota reacting
with the nonliving part of the system to maintain conditions suitable for life—the central feature of the
Gaia Hypothesis.

Figure 27.10 shows two distinctive features that are crucial to the use of system dynamics models for
interactive experimentation as management flight simulators. Since system dynamics focuses on dynamic
behavior, the first and most important feature is the display of simulated behavior over time. In this
case, the time graph shows the jump in temperature in 2010 followed by the decline in temperature as
the planet’s feedback mechanisms negate the effect of the heat shock scenario. The display of dynamic
behavior over time is present in all system dynamics models and is often a key feature that distinguishes the
approach from other modeling methods. (In the case of Watson and Lovelock’s Daisy World, for example,
the original set of differential equations was not simulated over time. Rather, the authors found the
equilibrium properties of the world through analytical methods.) The second distinguishing feature is the
use of models in a highly interactive fashion to promote learning. Interactive simulation is encouraged by
a “score keeper” which gives a quantitative measure of the success in maintaining a world with homeostatic
properties that are conducive to life. The score keeper is a convenient way to promote friendly competition
and increased discussion within a group of students or managers.

Further Reading

The preceding examples provide the reader with simple, concrete examples of system dynamics modeling
of environmental systems. To learn more, the reader may turn to a variety of texts and articles. Starting
with texts, two of the early books are Forrester’s (1961) Industrial Dynamics and Richardson and Pugh’s
(1981) Introduction to System Dynamics Modeling with Dynamo. In my view, the most comprehensive and
useful textbook is Business Dynamics by Sterman (2000). Readers interested in environmental systems can
learn from Modeling the Environment (Ford, 1999).

System dynamics has been applied to a wide variety of environmental and resources systems. The most
widely known application is probably the collection of models associated with the study of population
growth in a world with finite resources (Forrester, 1971; Meadows et al., 1972, 1973, 1974, 1992). Some
of the recent applications are described in special issues of the System Dynamics Review. A special edition
edited by Sterman (2002) presents historical reflections and recent applications, all organized to cele-
brate the life of Dana Meadows. A special issue edited by Ford and Cavana (2004) presents the articles
summarized in Table 27.2.

Readers may learn of other applications from the citations listed in the bibliography of the System
Dynamics Society (2003). Figure 27.11 reveals the distribution of citations with keywords “environmental”
or “resource” over the time period from 1960 to 2002. There are 635 citations, approximately 10% of the
total publications in the 2003 bibliography. The number of publications increased in the early 1970s,
probably as a result of the tremendous interest in the Limits to Growth (Meadows et al., 1972). There were
around 10 citations per year during the 1980s and early 1990s followed by a dramatic increase at the turn
of the century. The appearance of 70–80 annual citations in the past few years is certainly a dramatic
development that might be attributed to growth in the System Dynamics Society and a growing awareness
of environmental problems.

Figure 27.12 provides further analysis of the number of environmental and resource publications during
the past four decades. This chart shows that energy and resource applications dominate the frequency of
citations. Resource applications cover a lot of ground, so it is reasonable for this keyword to extract a large
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number of citations. Energy issues have received major attention of system dynamics practitioners, as
explained by Ford (1999) and by Bunn and Larsen (1997). Figure 27.12 shows a significant number of
citations for more narrowly defined keywords such as fisheries and earth systems.

The citation analysis shows a tremendous quantity of work, and these citations are mostly limited to
those who elect to publish their models in the system dynamics literature. The number of citations would
be even greater if we were to count the many modeling applications using system dynamics software



System Dynamics Modeling of Environmental Systems 27-13

such as Stella. These citations would include work by Costanza and Ruth (1997), Grant et al. (1997),
Costanza (1998), Deaton and Winebrake (1999) and the recent book on Mediated Modeling by Van Den
Belt (2004). These researchers do not place the same emphasis on feedback structure that is common in
system dynamics studies advocated by Forrester (1961), Ford (1999), and Sterman (2000). Nevertheless,
their use of computer simulation helps one understand the reasons for dynamic behavior. Counting such
applications would reinforce the upward trends in the citation analysis. Clearly, there is a major surge in
interest in the application of system dynamics methods to environmental systems.
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28.1 Introduction

Energy Systems Language is a tool for identifying self-organized environmental systems and exploring
their development and possible responses to environmental change. It is a diagrammatic language not a
computer language. The meaning of the resulting diagrams is so specific, however, that a simulation model
can be directly derived from a diagram. The process of reading a diagram and deriving the simulation
model is the main focus of this chapter. In addition, some background history and theory of the method will
be mentioned along with some general guidelines for system identification through diagramming. With
these tools, the reader may begin to find appropriate uses of Energy Systems Language in their own work.

At its core, Energy Systems Language incorporates both an energy-based philosophy about natural orga-
nization of systems, and a methodology for developing and testing complex hypotheses about ecosystem
organization and response to change. The philosophy and methodology were developed by H.T. Odum
(1924–2002), one of the most influential intellectual leaders in the field of ecology and a primary developer
of the discipline of systems ecology. The philosophy includes a broad theory of self-organization of natural
systems such as ecosystems and other open energy systems of humanity and nature.

No plans can be consulted for the design of self-organized systems, however, basic laws of nature must
be followed. Energy is the primary natural resource for self-organized systems. A constant supply of energy
is essential both to maintain each living individual as well as to obtain all other resources needed for life.

28-1
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A process of natural selection is at work that replaces components that become less competitive for the
energy sources with more productive ones that accomplish a similar function. As long as a constant source
of energy is available, and changes are not too great and sudden, the self-organization of a natural system,
once begun, is self-perpetuating.

Odum’s systems philosophy and methodology therefore focused on energy. The theoretical basis com-
bines the principles of natural selection and the laws of thermodynamics to account for the development
and structure of natural systems and so their response to environmental change. Out of the theory and
some massive field studies of energy flow through entire ecosystems, came complex ideas that were difficult
to communicate to other ecologists at a time when few incorporated energy concepts in their research
(mid-1950s).

Energy Systems Language was then developed to address the need for precise communication of (a) the
likely structure of naturally organized energy systems; and (b) the consequences of a given arrangement of
energetic components and connections on the response of a natural system to environmental change. The
language consists of symbols that can be arranged in a diagram for precise communication of the energy
and resource network that defines a given model. The methodology is accomplished through a process of
diagramming a network of flows and storages, followed by numerical simulations and analyses derived
directly from the diagram, given limited empirical estimates with which to calibrate the model.

An example diagram, Figure 28.1, is used in this chapter to illustrate the process. The diagram was
developed originally to help describe salient features of the ecological and economic system associated
with marsh estuaries of the Gulf of Mexico coast (Montague and Odum, 1997). At first glance, the diagram
may seem overwhelming and cluttered, but the rules for diagram layout are strict and the symbols have
precise meaning. The diagram is not primarily a visual aid. Rather, it communicates specific ideas in a
systematic way. Both the choice of symbols and their layout in the diagram have specific meanings. This is
the reason for calling the method a language. The symbols are simply words and sentences. The sense of the
document is contained in the arrangement of these on the page. Increasing familiarity with the rules and
uses of Energy Systems Language will demystify such diagrams. The process can begin with this chapter.

As can be seen in Figure 28.1, an Energy Systems Language diagram connects energy resources, plants,
animals, ecological processes, people, mineral resources, economic products, and socioeconomic processes
in a complex network of flow and control based on careful thought about the nature of each individual flow,
storage, and interaction in the set thought to define a given system. The diagram then is an expression
of a complex hypothesis of system structure that will produce specific dynamic responses to change.
Compared with a verbally stated or mental model, it is a very rigorous representation of the hypothesis. The
computer is required because the brain cannot fathom the consequences of the many influences thought
to be operating simultaneously in the real system. Like many scientific hypotheses, complex models of
poorly known self-organized systems cannot be proven correct, but they are capable of disproof. Often
the disproof comes with the output from the first simulation model!

An important aspect of Energy Systems Language is the fixed relationship between a sufficiently detailed
diagram and a set of differential and algebraic equations that describe dynamic change in all storages
and flows. The unique feature of the approach is the use of relatively few types of control and storage
processes to represent a complex system by arranging them in a highly specific, information rich diagram.
Accordingly, a few basic types of equation are sufficient to represent most of the individual flows, storages,
and interactions in an Energy Systems Language diagram. The diagram consists of a complex arrangement
of relatively simple symbols that corresponds to a complex system of relatively simple equations.

In this chapter, a portion of Figure 28.1 (the Marsh sector) will be translated into equations and
simulated to illustrate this process and the highly dynamic output that can result even in a constant
environment. A caveat : The experienced user of Energy Systems Language has intimate knowledge of
the equations implied by the diagram, and chooses to draw subtle details in a certain way so that the
proper process occurs. Because a sufficiently detailed diagram can be translated nearly by rote, beginners
are often encouraged to draw a diagram and see what simulation model it produces. This speeds up the
process of getting interesting model output to discuss; however, it postpones the need to recognize how to
represent known processes adequately by combining model components appropriately. Experimentation
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with various model structures is helpful, along with advanced reading on the subject. A good introduction
to the approach along with many simple model examples can be found in Odum and Odum (2000). The
most complete description of the behavior of combinations of components is in Odum (1983, revised and
retitled as Odum, 1994).

28.2 Reading an Energy Systems Language Diagram

The diagram in Figure 28.1 includes the nine most commonly used symbols of Energy Systems Language.
For reference, these symbols are listed in Figure 28.2. Lines throughout the diagram connect various
symbols to one another. Flows of energy and materials are represented by solid lines. Dashed lines represent
flows of money. Money always flows in the opposite direction of the products and sources it purchases.

Reading the diagram involves the symbols, their combination in connected pairs, and the overall layout
scheme that together provide a wealth of information about the system under study. Complex Energy
Systems Language diagrams, such as Figure 28.1, communicate several levels of detail about system
organization. Translating the diagram involves the finest level of detail. At the highest level, a sense of
system self-organization is imparted. Reading Energy Systems Language diagrams is easier once major
features of diagram layout are recognized. With experience, the richness of the diagram becomes more
apparent, while at the same time, the complexity of it seems less daunting.

28.2.1 Layout of a Diagram and its Connection to Energy Theory
The layout process imparts distinctive left–right, up–down, clockwise, and counterclockwise facets of
meaning to the diagram. Lines of energy and material flow generally from left to right and from up to

Source

Sink

Interaction
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General process

Price-controled flow
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Producer

Consumer
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an
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FIGURE 28.2 The nine most common symbols used in Energy Systems Language diagrams.
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down. Toward the center and further right, however, some lines bend upward and back to the left creating a
counterclockwise impression of flow. Conversely, dashed lines representing money flows enter the system
generally from the right and bend upward and back to the right in a clockwise manner.

In the theory behind Energy Systems Language, the primary function of a persistent self-organizing
system is to combine and upgrade energy and material sources into products that reproduce and maintain
its lasting components. The products include the living components and concentrated stores of nonliving
resources. The processes of upgrading and maintaining the system components use large amounts of
energy. Most of the energy that enters the system is consumed and degraded into relatively dilute heat no
longer able to do useful work. Relatively little of the energy is left behind in the form of upgraded products.
Some of the upgraded products leave the system, either by leakage, migration, or by export in trade for
high-quality inputs.

Diagram layout incorporates the distinction between energy sources, upgraded energy, and downgraded
energy. The diagram is drawn so that sources enter each symbol from the left or top, and upgraded products
exit to the right. Upgraded products also cross the right side of the system boundary. Lines representing
heat losses, however, leave the bottom of each energy-using component and terminate in a heat sink symbol
outside the lower boundary. In general, the lines in the diagram that curve continuously downward are
heat losses. In Figure 28.1, these lines converge at one of two heat sinks at the bottom of the diagram.

Diagram layout itself is not critical to equation translation, but knowing the scheme helps to organize
the process. Understanding the overall principle behind the layout allows the diagram to be read and
studied at telescoping levels of detail. For those fluent in Energy Systems Language and indoctrinated into
its theory, a diagram can begin to impart a sense of system self-organization and of the response to be
expected with a given change.

28.2.1.1 Transformity Principle of Diagram Layout

The concept of transformity—central to Odum’s energy systems theory of self-organization—provides the
principle for layout of Energy Systems Language diagrams. Essentially, transformity is the amount of basic
source energy (usually sunlight) used in the necessary network of flows and transformations to place a
single unit of source energy into a given upgraded product. Each component of the network depicted in
Figure 28.1, for example, has its own transformity, which can be calculated from amounts of the various
sources that ultimately lead to it. To do this, each source must be weighted by its own transformity.

Each source represented by a circle is itself a product of energetic processes that occur in a network. This
network must be identified to determine the transformity of the source. The progression then extends to
the sources for the source until ultimately each can be traced back to primary sources for all processes on
Earth (sunlight, the Earth’s internal heat, and the planetary motions that create tides, seasons, etc.).

Transformity analysis is beyond the scope of this chapter, but it is a second major use of Energy Systems
Language diagrams. The procedures are described in detail in Odum (1996).

28.2.1.2 Arrangement of Sources in Order of Transformity

In Energy Systems Language diagrams, circles are arranged outside the sides and top of the system boundary
in order of the transformity of the indicated source. The arrangement is clockwise beginning with sunlight
at the lower left, which, as the basis for the approach, has a transformity of 1. All other sources have higher
transformities. In Figure 28.1, the next one is wind energy, a joule of which, according to transformity
analysis, requires on the order of 1500 J of sunlight.

Third is tide, which is a primary energy source. Part of transformity analysis requires establishing a
sunlight energy equivalence for the work of tide. Extrapolation from the solar tide would not yield the
required equivalence to light energy; however, sunlight energy can lift water through evaporation, which
is the usual basis for establishing a sunlight equivalence for tide.

In any case, the layout of sources continues clockwise. Those above the middle of Figure 28.1 change
from natural energy sources of high transformity (geological processes that form land) to sources that
have been transformed into commodities in part through human work. In Figure 28.1 these sources
include electricity, fuels, goods and services, and others arranged around the diagram. In Figure 28.1,
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the last source is labeled markets. It has such a high transformity because markets are based largely on
information. According to transformity analysis, useful information is the highest transformity product
of society (Odum, 1996).

28.2.1.3 Overall Effect of Transformity on Diagram Organization

Inside the diagram, the various symbols are arranged according to their proximity to the resources needed
for their production. Given the layout of sources and the rules of connecting flows to symbols, a progression
occurs from left to right across the diagram that reflects a general increase in transformity of the various
components as the number of preceding transformations increases, and higher transformity sources are
used. The layout procedure results in nonhuman processes and the products of nature generally appearing
to the left side of a diagram, while those involving greater amounts of human labor and education are
further to the right.

High transformity components of systems are often involved with the production of lower transfor-
mity products, thereby forming positive feedback loops. Animals, for example, regenerate nutrients that
influence rates of plant production, which ultimately provides more food for more animal production.
Likewise, people farm foods and direct natural resources for their own use. Feedback from higher transfor-
mity components to lower ones is distinguished by the counterclockwise return flows that sweep upward
and back to the left in the diagram.

28.2.2 Symbols within the System Boundary
Two categories of symbol are used in Energy Systems Language: basic symbols and composite symbols.
Composite symbols represent commonly occurring sets of basic symbols. The two most common compos-
ite symbols are for living components: the bullet-shaped symbol for primary producers and the hexagon
for consumers.

The basic symbols include the circles that denote sources and the heat sinks that are generally shown
outside the system boundaries. Five other basic symbols occur within the system boundary and within
various composite symbols. These include the storage symbol (reminiscent of a water storage tank), and
the five transformation symbols listed in Figure 28.2.

In Figure 28.1 storages include water, salt, nutrients, detritus, circulation of water, land formations,
coastal image, money, and waste. A storage is part of the two composite symbols as well. A total of 43
separate storages are shown in Figure 28.1. The amount of material or energy within each storage changes
according to the net effect of all inflows and outflows connected to them.

A variety of symbols represent specific energy transformation processes that have standard mathematical
representations. The most common one is the interaction symbol shown in Figure 28.2. Figure 28.1 also
includes several two-way flows, a price-controlled interaction, and several rectangular general process
symbols. The general process remains unspecified in the diagram. It may be a simple transformation, or a
composite. In any case, the rectangle is the only transformation symbol that requires further specification
than appears in the diagram before it can be used in an equation.

When the interaction symbol is used, the primary source of energy to be used in the transformation
process enters from the left and the product exits from the right and usually enters a storage symbol.
Smaller amounts of upgraded energy from elsewhere in the system enter the symbol from the top. These
assist or subsidize the transformation. In this way, the main energy source appears to pass through the
interaction, while the interacting subsidy appears to control or assist the rate of transformation.

By far the most frequently used function associated with the interaction symbol is multiplication.
Multiplication is so common that an unspecified interaction is assumed to be multiplicative. Otherwise, a
mathematical character, such as a division sign, will appear within the interaction symbol to indicate its
function. The rationale for this frequent use stems from its similarity to the second-order reaction kinetics
in physical chemistry. A rate of reaction of two chemicals is often adequately represented by the multiple
of the concentrations of the two reactants times a rate constant. The rate declines as the reactants are
converted to products. As in chemical kinetics, multiplication is thought to adequately represent many
kinds of energy transformation that combine several necessary forms of energy and materials.
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All of the flows entering and leaving the interaction symbol have the same equation form. This applies
to the formation rate of the product, the loss of raw materials from the main source and the assisting
variables, and heat loss associated with the transformation. The equation form consists of the indicated
combination of source and assisting variable multiplied by a constant. Only the value of the constant will
differ for the associated flows.

When two or more variables assist a transformation, adjacent interaction symbols will occur in series,
and the terms of the equation are built accordingly. One multiplicative interaction gives a rate equation with
a second-degree term. Likewise, a series of three multiplicative interactions will produce a fourth-degree
term. Again all the reactant and product flows will have the same equation form.

A two-way interaction symbol denotes a flow of energy and materials back and forth created by an
interacting source of energy. The tide is such an energy source in Figure 28.1. The tide moves water and
the materials it contains between the marsh and the estuary. The rate of movement depends also on the
relative amounts of material stored on each side of the interaction relative to an equilibrium ratio, and on
various fixed conditions that along with the tide determine the rate at which equilibrium can be restored.
The specific equation structure is given in the section on equation writing.

The price-controlled flow is a symbol that converts a flow of purchased products to a flow of money. The
flow of product may be caused by a variety of events. The price controls the flow of money in return. The
supply of money and products may also feed back and influence the price. When the price is so influenced,
lines will enter the price-controlled flow from the top and the details of the equation must be specified.
Often the effect on price is simply proportional to the supply of product or to the ratio of product and
available money. Figure 28.1 shows a situation where the markets outside the system influence the price.
If no explicit price controls are specified, a fixed price is implied that will be represented in the model by
a constant.

The rectangle is reserved for unspecified processes. This symbol can represent a single transformation
equation, or a combination of symbols. Rectangles are used to reduce clutter when the process involved is
complex. In any case, the detail must be provided before a simulation model can be built. In Figure 28.1,
the rectangle is used for many of the processes associated with the economic system on the right side of
the diagram.

Rectangles and price controls are the only symbols for which no direct translation to equations is
possible. Before simulation can be done, the process within each rectangle must be represented either
in a special diagram of its own, or by a suitable input–output relationship already in equation form (a
regression equation, for example).

A variety of other symbols were introduced by Odum over the years to represent specific recurring
processes found in open energy systems; however, these are not as often used as those listed in Figure 28.2.
Among others, they include ratio interactions, switches, backflow interactions, and saturation limits; all
are described in Odum (1983, 1994).

28.2.3 Stylistic Diagramming Features not Directly Involved in
Equation Formulation

Certain features of Energy Systems Language diagrams are primarily stylistic, but help organize like
components, indicate relative importance, and reduce clutter. These include the use of different sizes for
symbols and line thickness, grouping related symbols within sector boundaries, and stacking or clustering
related symbols. Symbol size and line thickness indicate the relative sizes of various storages and flows
of upgraded materials. Lines of degraded energy are often thinner than other lines even though most of
the energy travels through them. This is to reduce clutter and provide an additional way to distinguish an
upgrade from a downgrade in a transformation process.

28.2.3.1 Sector Boundaries

Sector boundaries are lines that encompass a group of related symbols within the system boundary. Sector
boundaries can be rectangles or, when the overall effect of the sector on the larger system is similar to that
of a given symbol, sector boundaries may take the shape of the relevant symbol.
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Several sectors are identified by boundaries in Figure 28.1. On the right side of Figure 28.1, a grouping
labeled “Facilitative processes” is outlined with a rectangle. The sector contains some of the infrastructure
of the coastal economic system. Near the top of the left side of Figure 28.1 is a group of “Water storages”
enclosed in a sector boundary resembling a storage tank. Below that is a sector called “Marsh.” Because in
general more organic matter is produced in coastal marshes than is consumed there, the sector boundary
is bullet shaped like the primary producer symbol. Finally in Figure 28.1 is a hexagonal sector boundary
labeled “Bottom” because the living organisms and biochemical reactions within the estuarine bottom
consume more organic matter than they produce.

28.2.3.2 Nested Symbols

Sometimes basic symbols contain smaller and differently labeled symbols of the same type inside them.
Nested within the tide source in Figure 28.1, for example, are source symbols for larvae, adult animal
populations, and sediments that move into the coastal system from nearshore waters with the tide. The
rain and river symbols contain source symbols for nutrients and detritus that are delivered in significant
amounts along with the freshwater that enters the system.

In the water storage sector, the symbol for the water storage itself includes a storage of salt. The sector
boundary already points out the collection of important constituents that it contains. Salt is treated
differently to highlight an important difference in its effect from the other constituents. The saltiness of
coastal water is represented by its salinity. Production in estuaries is often higher at lower salinity. The
nesting of salt within the water represents salinity.

28.2.3.3 Vertical and Horizontal Stacks of Symbols

Throughout Figure 28.1 are symbols that touch or partially overlap one another. The proximity suggests
tight coupling of the symbols. In the marsh sector, for example, is a vertical stack of three primary producer
symbols. The stack shows that all the three are influenced by the set of five variables entering the top of
the stack. The order in the stack is also important. Low and high refer to elevation relative to sea level. By
being closer to the estuarine water, the low marsh plants receive the effects of the water constituents first
and then the high marsh plants.

At the bottom of the stack, the smaller size of the symbol for benthic microalgae indicates their lower
biomass and the inset of the symbol under the other two indicates their existence in the shade of the other
plants. This latter issue does affect the primary production equation for benthic microalgae. The part of
the diagram that dictates this for the equation is found on the line that represents the flow of sunlight
energy to primary producers. The benthic microalgae receive light last. This will be clarified below when
the marsh sector is redrawn for equation writing.

Also in the marsh sector is an illustration of a horizontal stacking of the community of detritivores.
In this case, the stack means that all three consume detritus, meiofauna also consume microbes, and
macrofauna, which are the last consumers in the stack, consume all three. To write equations from a
diagram requires that such details be explicitly shown. The flow lines were left out to reduce clutter.

28.2.3.4 Converging and Diverging Flow Lines

Figure 28.1 includes a variety of convergent and divergent flow lines to reduce clutter. The line labeled
recycle, for example, originates from the three components of the detritivore community in the marsh
sector. Three separate lines converge into one at the marsh sector boundary. Divergent lines are also used
in Figure 28.1. A single line from the source labeled “Goods, Services” splits into several as it crosses the
right side of the upper system boundary.

28.3 Translating a Diagram to Dynamic Equations

From a sufficiently detailed diagram, a mathematical system of first-order, nonlinear differential equations
can be derived. The set of differential equations represents the net rate of change over time for each material
and energy storage in the model system. The rates are based on cause and effect influences from the storages
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themselves and various environmental inputs to the system. The equations are solved on a computer to
reveal the dynamic patterns produced in each model variable.

The set of equations that can be developed from an Energy Systems Language diagram will at a minimum
consist of one equation for each flow and one integrating equation for each storage that combines the
flows into and out of it. In total, Figure 28.1 contains 43 storages and nearly 120 explicitly represented
flows, plus a number of flows implied in the stacking of symbols. A complete translation of Figure 28.1
for simulation would have close to 200 equations for dynamic variables, and another 200 that specify
inputs, constants, and initial conditions. Figure 28.1, however, is incompletely specified and the resulting
model would provide an unwieldy demonstration at best! So to illustrate the process, a portion of the
diagram (the marsh sector) is redrawn, the corresponding equations derived, and the resulting model
simulated.

Equation writing is easier than it may appear from a complex diagram, especially one that includes all
necessary details. However, only a few types of equation are actually needed. Like the repeated use of the
same symbols in the diagram, the same equation form is repeated many times.

Equations are based upon symbol connections in Energy Systems Language diagrams. The individual
symbols provide only a part of the equation. In general, a combination of two components connected by
a line are necessary to determine the form of each equation used.

The necessary details for deriving model equations for the Marsh sector are given in the diagram
shown in Figure 28.3. A close examination of the marsh sector in Figure 28.1 will reveal a few important
differences. First, the effect of Tidal Creek Form is excluded because the intended effect is not clearly
understood. Second, the line from high marsh plants to birds is misplaced in Figure 28.1. In the revised

Tide

Rain

E.

T.

Sun
J0

JR

Water sector

Water
circulation
in marsh

Water

Salt
Nutrients

MQ7

Sed. and
peat

Detritus Micr.

Spid.

Birds

Marsh sector

Ins.

Meio.
Macr.

Rac-
Rats

Other
sources

Fsh, crb,
and shr.

LM plants

Benthic
microalgae

X X � XX X

HM plants

FIGURE 28.3 Detailed Energy Systems Language diagram of the marsh sector of the coastal system diagram. The
diagram is sufficiently detailed for the derivation of model equations.
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marsh sector diagram of Figure 28.3, a line from high marsh plants goes to detritus and another line from
insects to birds is added. The line from rats and raccoons to birds is also reversed (rats and raccoons eat
birds eggs but few rats and raccoons are eaten by birds in the marsh). Finally, a missing line is added from
salt to the primary producers.

Only the low-elevation portion of the marsh sector has been translated into equations and simulated
in this chapter. The equation list for this simulation is given in Table 28.1. Equations for the high marsh
portion would differ little other than in the calibration of constants to reflect high marsh conditions.
The correspondence between equations in Table 28.1 and the symbols on the diagram (Figure 28.3)
will become apparent by cross-referencing the diagram labels with the column of Table 28.1 labeled
“Meaning.”

The 16 storages involved in the low marsh subsector are listed first in Table 28.1 (Eqs. [001]–[016]).
These are followed by the rate equations, then model inputs, model constants, and the time parameters
used in the simulation. A total of 141 entries are made in Table 28.1.

28.3.1 Equation Naming Convention Used in this Chapter
The equation list uses a naming convention for variables that helps to track the relationship among model
variables. In general, storage i is indicated by Qi and rates of flow from storage j to storage k by Jjk . Marsh
variables are preceded by an M and estuarine water variables by a W. For example, MQ7 represents the
marsh plants (Eq. [007]), and WQ4 the nutrients in estuarine water (Eq. [077]). MJ71 represents the flow
from plants to detritus (MQ1) in the marsh (Eq. [048]). JW4M4 represents the two-way interaction (upper
left of the diagram in Figure 28.3) that defines exchange of nutrients between the water and the marsh.
By listing W4 as the first subscript, the positive direction is toward the marsh for this two-way nutrient
exchange. Equally, a negative flow represents export of nutrients from the marsh.

Constants in rate equations are indicated by a K. An A denotes an auxiliary variable that must first
be calculated to assign a value to a flow rate. Constants and auxiliaries are prefixed and subscripted like
the rate to which they apply. MA20, for example, denotes the light available for evaporation of water
(Eq. [031]), which is used to compute evaporation (MJ20, Eq. [040]). The latter equation also uses the
proportionality constant denoted as MK20.

A subscript of 0 indicates a location outside the system boundary. A flow from a source outside the
boundary to a given storage i is labeled J0i. Sunlight from outside the system is assimilated by benthic
microalgae (MQ9), for example, so their rate of gross primary production is labeled MJ09 (Eq. [034]).

Conversely, flows that leave the system from storage i are denoted by Ji0. The flow MJa0, for example,
identifies the metabolic heat loss from microbes (MQa). The equation number for MJa0 is 054 in Table 28.1.
Note that the constant in the equation, MKa0, has the same subscript. If more than one flow from a given
source connects to the same sink, the flows are distinguished by a third character appended to the name.
Evaporation and transpiration, which are two ways in which water leaves the marsh system boundary, are
represented by MJ20 (Eq. [040]) and MJ207 (Eq. [041]), respectively. The added 7, in this case, indicates
plants (MQ7) that are involved in the rate. Additional characters are also used to distinguish the same flow
converted to different units. Burial of detritus in sediment requires energy units when subtracted from
the detritus storage as MJ15 (Eq. [035]), but requires mass units when added to the sediment as MJ15D

(Eq. [036]).
Likewise, if more than one auxiliary variable is calculated for the same flow rate, a third subscript is

used. To calculate gross primary production of low marsh plants (MJ07, Eq. [033]), for example, requires
calculation of available light (MA07a, Eq. [027]), and a multiplier based on other environmental conditions
(MA07b, Eq. [028]).

Model constants associated with a flow have the same subscript as the flow. For example, the equation
for assimilation of meiofauna by macrofauna, MJbc, has a constant MKbc (Eq. [060]). As before, where
a given equation has more than one constant, a third character is appended to distinguish the two. The
equation for the two-way exchange of sediment between estuary and marsh (JW6M5, Eq. [025]) has a rate
constant KW6M5 for restoring equilibrium, and an equilibrium constant KW6M5n.



Dynamic Simulation with Energy Systems Language 28-11

TA
B

LE
28

.1
E

qu
at

io
n

s
C

or
re

sp
on

di
n

g
to

th
e

E
n

er
gy

Sy
st

em
s

La
n

gu
ag

e
D

ia
gr

am
of

th
e

M
ar

sh
Se

ct
or

(L
ow

M
ar

sh
Po

rt
io

n
).

T
h

e
Ta

bl
e

is
O

rg
an

iz
ed

in
to

Fi
ve

Se
ct

io
n

s:
St

or
ag

e
E

qu
at

io
n

s,
R

at
es

,I
n

pu
ts

,M
od

el
C

on
st

an
ts

,a
n

d
Si

m
u

la
ti

on
T

im
e

Pa
ra

m
et

er
s

N
o.

St
or

ag
e

E
qu

at
io

n
a

U
n

it
s

M
ea

n
in

g
U

se
d

in
E

q.
N

o.

(0
01

)
M

Q
1
=

IN
T

E
G

(J
W

5M
1+

M
J7

1−
M

J1
5−

M
J1

a−
M

J1
b−

M
J1

c,
J

O
rg

an
ic

de
tr

it
u

s
in

m
ar

sh
(0

24
),

(0
35

),
(0

36
),

In
it

ia
lv

al
u

e:
9.

18
00

0e
+0

14
)

(0
37

),
(0

38
),

an
d

(0
39

)
(0

02
)

M
Q

2
=

IN
T

E
G

(J
R

ai
n
+J

W
2M

2−
M

J2
0−

M
J2

07
,

kg
-H

2
O

W
at

er
in

m
ar

sh
(0

21
),

(0
27

),
(0

28
),

(0
30

),
In

it
ia

lv
al

u
e:

5.
43

75
0e

+0
06

)
(0

31
),

an
d

(0
40

)
(0

03
)

M
Q

3
=

IN
T

E
G

(J
W

3M
3,

kg
-s

al
t

Sa
lt

in
m

ar
sh

(0
22

),
(0

28
),

an
d

(0
30

)
In

it
ia

lv
al

u
e:

2.
56

21
7e

+0
05

)
(0

04
)

M
Q

4
=

IN
T

E
G

(J
W

4M
4+

M
Ja

4+
M

Jb
4+

M
Jc

4−
M

J4
7−

M
J4

9,
kg

-N
In

or
ga

n
ic

n
u

tr
ie

n
ts

in
m

ar
sh

(0
23

),
(0

28
),

an
d

(0
30

)
In

it
ia

lv
al

u
e:

2.
52

00
0e

+0
04

)
(0

05
)

M
Q

5
=

IN
T

E
G

(J
W

6M
5+

M
J1

5D
,

kg
-s

ed
im

en
t

Se
di

m
en

t
an

d
pe

at
in

m
ar

sh
(0

25
)

In
it

ia
lv

al
u

e:
1.

59
03

0e
+0

10
)

(0
06

)
M

Q
6
=

IN
T

E
G

(M
J0

6−
M

J6
0−

M
J6

07
,

J
W

at
er

ci
rc

u
la

ti
on

en
er

gy
in

m
ar

sh
(0

28
),

(0
30

),
(0

44
),

an
d

(0
45

)
In

it
ia

lv
al

u
e:

1.
47

00
0e

+0
11

)
(0

07
)

M
Q

7
=

IN
T

E
G

(M
J0

7−
M

J7
0−

M
J7

06
−M

J7
1−

M
J7

e,
J

Lo
w

m
ar

sh
pl

an
ts

(0
27

),
(0

31
),

(0
33

),
(0

45
),

In
it

ia
lv

al
u

e:
9.

18
00

0e
+0

14
)

(0
46

),
(0

48
),

an
d

(0
49

)
(0

08
)

M
Q

9
=

IN
T

E
G

(M
J0

9−
M

J9
0−

M
J9

b−
M

J9
c−

M
J9

e,
J

B
en

th
ic

m
ic

ro
al

ga
e

(0
29

),
(0

34
),

(0
50

),
(0

51
),

In
it

ia
lv

al
u

e:
2.

52
00

0e
+0

12
)

(0
52

),
an

d
(0

53
)

(0
09

)
M

Q
a
=

IN
T

E
G

(M
J1

a−
M

Ja
0−

M
Ja

b−
M

Ja
c,

J
M

ic
ro

be
s

on
de

tr
it

u
s

(0
37

),
(0

54
),

(0
56

),
an

d
(0

57
)

In
it

ia
lv

al
u

e:
2.

52
00

0e
+0

11
)

(0
10

)
M

Q
b

=
IN

T
E

G
(M

J1
b+

M
J9

b+
M

Ja
b−

M
Jb

0−
M

Jb
c−

M
Jb

FC
S,

J
M

ei
of

au
n

a
in

m
ar

sh
(0

38
),

(0
51

),
(0

56
),

(0
58

),
In

it
ia

lv
al

u
e:

2.
52

00
0e

+0
12

)
(0

60
),

an
d

(0
61

)
(0

11
)

M
Q

c
=

IN
T

E
G

(M
J1

c+
M

J9
c+

M
Ja

c+
M

Jb
c−

M
Jc

0−
M

Jc
d−

M
Jc

FC
S−

M
Jc

g,
J

M
ac

ro
fa

u
n

a
in

m
ar

sh
(0

39
),

(0
52

),
(0

57
),

(0
60

),
In

it
ia

lv
al

u
e:

2.
52

00
0e

+0
12

)
(0

62
),

(0
64

),
(0

65
),

an
d

(0
66

)
(0

12
)

M
Q

d
=

IN
T

E
G

(M
Jc

d+
M

Jg
d−

M
Jd

0,
J

R
ac

co
on

s
an

d
ra

ts
in

m
ar

sh
(0

64
),

(0
67

),
an

d
(0

74
)

In
it

ia
lv

al
u

e:
1.

26
00

0e
+0

12
)

(0
13

)
M

Q
e
=

IN
T

E
G

(M
J7

e+
M

J9
e−

M
Je

0−
M

Je
f−

M
Je

g,
J

In
se

ct
s

in
m

ar
sh

(0
49

),
(0

53
),

(0
68

),
(0

69
),

an
d

In
it

ia
lv

al
u

e:
2.

52
00

0e
+0

12
)

(0
70

)
(0

14
)

M
Q

f=
IN

T
E

G
(M

Je
f−

M
Jf

0−
M

Jf
g,

J
Sp

id
er

s
in

m
ar

sh
(0

69
),

(0
71

),
an

d
(0

72
)

In
it

ia
lv

al
u

e:
2.

52
00

0e
+0

11
)

(0
15

)
M

Q
g
=

IN
T

E
G

(M
Jc

g+
M

Je
g+

M
Jf

g−
M

Jg
0−

M
Jg

d,
J

B
ir

ds
in

m
ar

sh
(0

66
),

(0
70

),
(0

72
),

(0
73

),
an

d
In

it
ia

lv
al

u
e:

2.
52

00
0e

+0
12

)
(0

74
)

(0
16

)
Q

FC
S
=

IN
T

E
G

(J
0F

C
S+

M
Jb

FC
S+

M
Jc

FC
S−

JF
C

S0
−J

Y
ie

ld
,

J
Fi

sh
es

,c
ra

bs
,a

n
d

sh
ri

m
ps

in
m

ar
sh

(0
19

),
(0

61
),

an
d

(0
65

)
In

it
ia

lv
al

u
e:

4.
83

00
0e

+0
13

)
cr

ee
ks

an
d

es
tu

ar
y

(C
on

ti
nu

ed
)



28-12 Handbook of Dynamic System Modeling

TA
B

LE
28

.1
C

on
ti

nu
ed

N
o.

R
at

e
(o

r
A

u
xi

lia
ry

)
E

qu
at

io
n

U
n

it
s

M
ea

n
in

g
U

se
d

in
E

q.
N

o.

(0
17

)
J0

FC
S
=

K
0F

C
S

J/
y

N
on

m
ar

sh
fo

od
as

si
m

ila
ti

on
by

fi
sh

es
,c

ra
bs

,a
n

d
sh

ri
m

ps
(0

16
)

(0
18

)
J0

L
M

=
1.

42
00

9e
+0

17
J/

y
Li

gh
t

in
fl

u
x

(0
27

)
an

d
(0

31
)

(0
19

)
JF

C
S0

=
K

FC
S0

∗ Q
FC

S
J/

y
M

et
ab

ol
ic

h
ea

t
lo

ss
es

by
fi

sh
es

,c
ra

bs
,a

n
d

sh
ri

m
ps

(0
16

)
(0

20
)

Jr
ai

n
=

R
ai

n
kg

-H
2
O

/y
R

ai
n

on
m

ar
sh

(0
02

)
(0

21
)

JW
2M

2
=

T
id

e
∗ K

W
2M

2
∗ (

W
Q

2
−

K
W

2M
2n

∗
kg

-H
2
O

/y
W

at
er

ex
ch

an
ge

w
it

h
es

tu
ar

y
(0

02
)

M
Q

2)
(0

22
)

JW
3M

3
=

K
W

3M
3

∗ (
W

Q
3
−

K
W

3M
3n

∗ M
Q

3)
kg

-s
al

t/
y

Sa
lt

ex
ch

an
ge

w
it

h
es

tu
ar

y
(0

03
)

(0
23

)
JW

4M
4
=

K
W

4M
4

∗ (
W

Q
4
−

K
W

4M
4n

∗ M
Q

4)
kg

-N
/y

In
or

ga
n

ic
n

u
tr

ie
n

t
ex

ch
an

ge
w

it
h

es
tu

ar
y

(0
04

)
(0

24
)

JW
5M

1
=

K
W

5M
1

∗ (
W

Q
5
−

K
W

5M
1n

∗ M
Q

1)
J/

y
O

rg
an

ic
de

tr
it

u
s

ex
ch

an
ge

w
it

h
es

tu
ar

y
(0

01
)

(0
25

)
JW

6M
5
=

K
W

6M
5

∗ (
W

Q
6
−

K
W

6M
5n

∗ M
Q

5)
kg

-s
ed

im
en

t/
y

Se
di

m
en

t
ex

ch
an

ge
w

it
h

es
tu

ar
y

(0
05

)
(0

26
)

Jy
ie

ld
=Y

ie
ld

J/
y

C
at

ch
of

fi
sh

es
,c

ra
bs

,a
n

d
sh

ri
m

ps
in

es
tu

ar
y

an
d

cr
ee

ks
(0

16
)

(0
27

)
M

A
07

a
=

J0
LM

/(
1

+(
M

K
07

∗ M
A

07
b

∗ M
Q

7)
+

J/
y

Li
gh

t
in

fl
u

x
av

ai
la

bl
e

to
lo

w
m

ar
sh

pl
an

ts
(0

29
)

an
d

(0
33

)
(M

K
20

E
∗ M

K
20

∗ M
Q

2)
)

(0
28

)
M

A
07

b
=

(M
Q

2
∗ M

Q
4

∗ M
Q

6)
/M

Q
3

C
om

pl
ex

E
nv

ir
on

m
en

ta
lc

on
di

ti
on

s
fo

r
lo

w
m

ar
sh

pl
an

t
ph

ot
os

yn
th

es
is

(0
27

),
(0

31
),

an
d

(0
33

)
(0

29
)

M
A

09
a
=

M
A

07
a

/(
1

+(
M

K
09

∗ M
A

09
b

∗ M
Q

9)
)

J/
y

L
ig

h
t

in
fl

u
x

av
ai

la
bl

e
to

be
n

th
ic

m
ic

ro
al

ga
e

(0
34

)
(0

30
)

M
A

09
b

=
(M

Q
2

∗ M
Q

4
∗ M

Q
6)

/M
Q

3
C

om
pl

ex
E

nv
ir

on
m

en
ta

lc
on

di
ti

on
s

fo
r

be
n

th
ic

m
ic

ro
al

ga
lp

h
ot

os
yn

th
es

is
(0

34
)

an
d

(0
29

)
(0

31
)

M
A

20
=

J0
LM

/(
1

+(
M

K
07

∗ M
A

07
b

∗ M
Q

7)
+

J/
y

Li
gh

t
in

fl
u

x
av

ai
la

bl
e

to
ev

ap
or

at
e

w
at

er
fr

om
m

ar
sh

(0
40

)
(M

K
20

E
∗ M

K
20

∗ M
Q

2)
)

(0
32

)
M

J0
6
=

T
id

e
J/

y
In

fl
u

x
of

ti
da

le
n

er
gy

to
m

ar
sh

(0
06

)
(0

33
)

M
J0

7
=

M
K

07
∗ M

A
07

b
∗ M

Q
7

∗ M
A

07
a

J/
y

G
ro

ss
pr

im
ar

y
pr

od
u

ct
io

n
by

lo
w

m
ar

sh
pl

an
ts

(0
07

),
(0

41
),

(0
42

),
an

d
(0

47
)

(0
34

)
M

J0
9
=

M
K

09
∗ M

A
09

b
∗ M

Q
9

∗ M
A

09
a

J/
y

G
ro

ss
pr

im
ar

y
pr

od
u

ct
io

n
by

be
n

th
ic

m
ic

ro
al

ga
e

(0
08

)
an

d
(0

43
)

(0
35

)
M

J1
5
=

M
K

15
∗ M

Q
1

J/
y

B
u

ri
al

of
de

tr
it

u
s

in
se

di
m

en
t

(i
n

en
er

gy
u

n
it

s)
(0

01
)

(0
36

)
M

J1
5D

=
M

K
15

D
∗ M

Q
1

kg
-s

ed
im

en
t/

y
B

u
ri

al
of

de
tr

it
u

s
in

se
di

m
en

t
(i

n
se

di
m

en
t

u
n

it
s)

(0
05

)
(0

37
)

M
J1

a
=

M
K

1a
∗ M

Q
1

∗ M
qa

J/
y

A
ss

im
ila

ti
on

of
de

tr
it

u
s

by
m

ic
ro

be
s

(0
01

)
an

d
(0

09
)

(0
38

)
M

J1
b

=
M

K
1b

∗ M
Q

1
∗ M

qb
J/

y
A

ss
im

ila
ti

on
of

de
tr

it
u

s
by

m
ei

of
au

n
a

(0
01

)
an

d
(0

10
)

(0
39

)
M

J1
c
=

M
K

1c
∗ M

Q
1

∗ M
qc

J/
y

A
ss

im
ila

ti
on

of
de

tr
it

u
s

by
m

ac
ro

fa
u

n
a

(0
01

)
an

d
(0

11
)

(0
40

)
M

J2
0
=

M
K

20
∗ M

Q
2

∗ M
A

20
kg

-H
2
O

/y
Ev

ap
or

at
io

n
of

w
at

er
in

m
ar

sh
(0

02
)

(0
41

)
M

J2
07

=
M

K
20

7
∗ M

J0
7

kg
-H

2
O

/y
Tr

an
sp

ir
at

io
n

of
w

at
er

by
lo

w
m

ar
sh

pl
an

ts
(0

02
)

(0
42

)
M

J4
7
=

M
K

47
∗ M

J0
7

kg
-N

/y
U

pt
ak

e
of

in
or

ga
n

ic
n

u
tr

ie
n

ts
by

lo
w

m
ar

sh
pl

an
ts

(0
04

)
(0

43
)

M
J4

9
=

M
K

49
∗ M

J0
9

kg
-N

/y
U

pt
ak

e
of

in
or

ga
n

ic
n

u
tr

ie
n

ts
by

be
n

th
ic

m
ic

ro
al

ga
e

(0
04

)
(0

44
)

M
J6

0
=

M
K

60
∗ M

Q
6

J/
y

B
as

el
in

e
di

ss
ip

at
io

n
of

w
at

er
ci

rc
u

la
ti

on
en

er
gy

in
m

ar
sh

(0
06

)
(0

45
)

M
J6

07
=

M
K

60
7

∗ M
Q

6
∗ M

Q
7

J/
y

D
is

si
pa

ti
on

of
ci

rc
u

la
ti

on
en

er
gy

by
lo

w
m

ar
sh

pl
an

ts
(0

06
)

(0
46

)
M

J7
0
=

M
K

70
∗ M

Q
7

J/
y

B
as

el
in

e
m

et
ab

ol
ic

h
ea

t
lo

ss
es

by
lo

w
m

ar
sh

pl
an

ts
(0

07
)

(0
47

)
M

J7
06

=
M

K
70

6
∗ M

J0
7

J/
y

M
et

ab
ol

ic
h

ea
t

lo
ss

es
by

lo
w

m
ar

sh
pl

an
ts

du
e

to
pr

od
u

ct
io

n
pr

oc
es

se
s

(0
07

)



Dynamic Simulation with Energy Systems Language 28-13

(0
48

)
M

J7
1
=

M
K

71
∗ M

Q
7

J/
y

D
ea

th
of

lo
w

m
ar

sh
pl

an
t

ti
ss

u
e

an
d

fl
ow

to
de

tr
it

u
s

(0
01

)
an

d
(0

07
)

(0
49

)
M

J7
e
=

M
K

7e
∗ M

Q
7

∗ M
Q

e
J/

y
A

ss
im

ila
ti

on
of

lo
w

m
ar

sh
pl

an
ts

by
in

se
ct

s
(0

07
)

an
d

(0
13

)
(0

50
)

M
J9

0
=

M
K

90
∗ M

Q
9

J/
y

M
et

ab
ol

ic
h

ea
t

lo
ss

es
by

be
n

th
ic

m
ic

ro
al

ga
e

(0
08

)
(0

51
)

M
J9

b
=

M
K

9b
∗ M

Q
9

∗ M
Q

b
J/

y
A

ss
im

ila
ti

on
of

be
n

th
ic

m
ic

ro
al

ga
e

by
m

ei
of

au
n

a
(0

08
)

an
d

(0
10

)
(0

52
)

M
J9

c
=

M
K

9c
∗ M

Q
9

∗ M
Q

c
J/

y
A

ss
im

ila
ti

on
of

be
n

th
ic

m
ic

ro
al

ga
e

by
m

ac
ro

fa
u

n
a

(0
08

)
an

d
(0

11
)

(0
53

)
M

J9
e
=

M
K

9e
∗ M

Q
9

∗ M
Q

e
J/

y
A

ss
im

ila
ti

on
of

be
n

th
ic

m
ic

ro
al

ga
e

by
m

ac
ro

fa
u

n
a

(0
08

)
an

d
(0

13
)

(0
54

)
M

Ja
0
=

M
K

a0
∗ M

Q
a

J/
y

M
et

ab
ol

ic
h

ea
t

lo
ss

es
by

de
tr

it
u

s
m

ic
ro

be
s

(0
09

)
an

d
(0

55
)

(0
55

)
M

Ja
4
=

M
K

a4
∗ M

Ja
0

kg
-N

/y
N

u
tr

ie
n

t
re

ge
n

er
at

io
n

by
de

tr
it

u
s

m
ic

ro
be

s
(0

04
)

(0
56

)
M

Ja
b

=
M

K
ab

∗ M
Q

a
∗ M

Q
b

J/
y

A
ss

im
ila

ti
on

of
m

ic
ro

be
s

by
m

ei
of

au
n

a
(0

09
)

an
d

(0
10

)
(0

57
)

M
Ja

c
=

M
K

ac
∗ M

Q
a

∗ M
Q

c
J/

y
A

ss
im

ila
ti

on
of

m
ic

ro
be

s
by

m
ac

ro
fa

u
n

a
(0

09
)

an
d

(0
11

)
(0

58
)

M
Jb

0
=

M
K

b0
∗ M

Q
b

J/
y

M
et

ab
ol

ic
h

ea
t

lo
ss

es
by

m
ei

of
au

n
a

(0
10

)
an

d
(0

59
)

(0
59

)
M

Jb
4
=

M
K

b4
∗ M

Jb
0

kg
-N

/y
N

u
tr

ie
n

t
re

ge
n

er
at

io
n

by
m

ei
of

au
n

a
(0

04
)

(0
60

)
M

Jb
c
=

M
K

bc
∗ M

Q
b

∗ M
Q

c
J/

y
A

ss
im

ila
ti

on
of

m
ei

of
au

n
a

by
m

ac
ro

fa
u

n
a

(0
10

)
an

d
(0

11
)

(0
61

)
M

Jb
FC

S
=

M
K

bF
C

S
∗ M

Q
b

∗ Q
FC

S
J/

y
A

ss
im

ila
ti

on
of

m
ei

of
au

n
a

by
fi

sh
es

,c
ra

bs
,a

n
d

sh
ri

m
ps

(0
10

)
an

d
(0

16
)

(0
62

)
M

Jc
0
=

M
K

c0
∗ M

Q
c

J/
y

M
et

ab
ol

ic
h

ea
t

lo
ss

es
by

m
ac

ro
fa

u
n

a
(0

11
)

an
d

(0
63

)
(0

63
)

M
Jc

4
=

M
K

c4
∗ M

Jc
0

kg
-N

/y
N

u
tr

ie
n

t
re

ge
n

er
at

io
n

by
m

ac
ro

fa
u

n
a

(0
04

)
(0

64
)

M
Jc

d
=

M
K

cd
∗ M

Q
c
∗ M

Q
d

J/
y

A
ss

im
ila

ti
on

of
m

ac
ro

fa
u

n
a

by
ra

cc
oo

n
s

an
d

ra
ts

(0
11

)
an

d
(0

12
)

(0
65

)
M

Jc
FC

S
=

M
K

cF
C

S
∗ M

Q
c
∗ Q

FC
S

J/
y

A
ss

im
ila

ti
on

of
m

ac
ro

fa
u

n
a

by
fi

sh
es

,c
ra

bs
,a

n
d

sh
ri

m
ps

(0
11

)
an

d
(0

16
)

(0
66

)
M

Jc
g
=

M
K

cg
∗ M

Q
c
∗ M

Q
g

J/
y

A
ss

im
ila

ti
on

of
m

ac
ro

fa
u

n
a

by
bi

rd
s

(0
11

)
an

d
(0

15
)

(0
67

)
M

Jd
0
=

M
K

d0
∗ M

Q
d

J/
y

M
et

ab
ol

ic
h

ea
t

lo
ss

es
by

ra
cc

oo
n

s
an

d
ra

ts
(0

12
)

(0
68

)
M

Je
0
=

M
K

e0
∗ M

Q
e

J/
y

M
et

ab
ol

ic
h

ea
t

lo
ss

es
by

in
se

ct
s

(0
13

)
(0

69
)

M
Je

f=
M

K
ef

∗ M
Q

e
∗ M

Q
f

J/
y

A
ss

im
ila

ti
on

of
in

se
ct

s
by

sp
id

er
s

(0
13

)
an

d
(0

14
)

(0
70

)
M

Je
g
=

M
K

eg
∗ M

Q
e
∗ M

Q
g

J/
y

A
ss

im
ila

ti
on

of
in

se
ct

s
by

bi
rd

s
(0

13
)

an
d

(0
15

)
(0

71
)

M
Jf

0
=

M
K

f0
∗ M

Q
f

J/
y

M
et

ab
ol

ic
h

ea
t

lo
ss

es
by

sp
id

er
s

(0
14

)
(0

72
)

M
Jf

g
=

M
K

fg
∗ M

Q
f
∗ M

Q
g

J/
y

A
ss

im
ila

ti
on

of
sp

id
er

s
by

bi
rd

s
(0

14
)

an
d

(0
15

)
(0

73
)

M
Jg

0
=

M
K

g0
∗ M

Q
g

J/
y

M
et

ab
ol

ic
h

ea
t

lo
ss

es
by

bi
rd

s
(0

15
)

(0
74

)
M

Jg
d

=
M

K
gd

∗ M
Q

d
∗ M

Q
g

J/
y

A
ss

im
ila

ti
on

of
bi

rd
s

eg
gs

by
ra

cc
oo

n
s

an
d

ra
ts

(0
12

)
an

d
(0

15
)

N
o.

In
pu

ts
U

n
it

s
M

ea
n

in
g

U
se

d
in

E
q.

N
o.

(0
75

)
R

ai
n

=
4.

5e
+0

10
kg

-H
2
O

/y
A

n
n

u
al

ra
in

fa
ll

on
m

ar
sh

(0
20

)
(0

76
)

T
id

e
=

1.
03

75
2e

+0
14

J/
y

T
id

al
en

er
gy

in
fl

u
x

to
m

ar
sh

(0
21

)
an

d
(0

32
)

(0
77

)
W

Q
2
=

1e
+0

11
kg

-H
2
O

W
at

er
in

es
tu

ar
y

an
d

ti
da

lc
re

ek
s

(0
21

)
(0

78
)

W
Q

3
=

2.
56

41
e+

00
9

kg
-s

al
t

Sa
lt

in
es

tu
ar

y
an

d
ti

da
lc

re
ek

s
(0

22
) (C

on
ti

nu
ed

)



28-14 Handbook of Dynamic System Modeling

TA
B

LE
28

.1
C

on
ti

nu
ed

(0
79

)
W

Q
4
=

56
00

kg
-N

N
u

tr
ie

n
ts

in
es

tu
ar

y
an

d
ti

da
lc

re
ek

s
(0

23
)

(0
80

)
W

Q
5
=

5.
1e

+0
13

J
O

rg
an

ic
de

tr
it

u
s

in
es

tu
ar

y
an

d
ti

da
lc

re
ek

s
(0

24
)

(0
81

)
W

Q
6
=

7e
+0

06
kg

-s
ed

im
en

t
Se

di
m

en
t

in
es

tu
ar

y
an

d
ti

da
lc

re
ek

s
(0

25
)

N
o.

M
od

el
co

n
st

an
ts

U
n

it
s

M
ea

n
in

g
U

se
d

in
E

q.
N

o.

(0
82

)
K

0F
C

S
=

2.
89

8e
+0

12
J/

y
N

on
m

ar
sh

fo
od

as
si

m
ila

ti
on

by
fi

sh
es

,c
ra

bs
,a

n
d

sh
ri

m
ps

(0
17

)
(0

83
)

K
FC

S0
=

0.
38

37
5

1/
y

Fr
ac

ti
on

of
bi

om
as

s
en

er
gy

u
se

d
p

er
ye

ar
in

m
et

ab
ol

ic
pr

oc
es

se
s

by
fi

sh
es

,c
ra

bs
,a

n
d

sh
ri

m
ps

(0
19

)
(0

84
)

K
W

2M
2
=

5.
86

73
5e

−0
14

1/
y

R
at

e
co

n
st

an
t

fo
r

w
at

er
ex

ch
an

ge
w

it
h

es
tu

ar
y

(0
21

)
(0

85
)

K
W

2M
2n

=
18

93
4.

6
dm

ls
E

qu
ili

br
at

io
n

co
n

st
an

t
fo

r
w

at
er

ex
ch

an
ge

w
it

h
es

tu
ar

y
(0

21
)

(0
86

)
K

W
3M

3
=

3.
04

37
5

1/
y

R
at

e
co

n
st

an
t

fo
r

sa
lt

ex
ch

an
ge

w
it

h
es

tu
ar

y
(0

22
)

(0
87

)
K

W
3M

3n
=

10
00

7.
5

dm
ls

E
qu

ili
br

at
io

n
co

n
st

an
t

fo
r

sa
lt

ex
ch

an
ge

w
it

h
es

tu
ar

y
(0

22
)

(0
88

)
K

W
4M

4
=

8.
11

66
7

1/
y

R
at

e
co

n
st

an
t

fo
r

in
or

ga
n

ic
n

u
tr

ie
n

t
ex

ch
an

ge
w

it
h

es
tu

ar
y

(0
23

)
(0

89
)

K
W

4M
4n

=
−1

.0
92

05
dm

ls
E

qu
ili

br
at

io
n

co
n

st
an

t
fo

r
in

or
ga

n
ic

n
u

tr
ie

n
t

ex
ch

an
ge

w
it

h
es

tu
ar

y
(0

23
)

(0
90

)
K

W
5M

1
=

1
1/

y
R

at
e

co
n

st
an

t
fo

r
or

ga
n

ic
de

tr
it

u
s

ex
ch

an
ge

w
it

h
es

tu
ar

y
(0

24
)

(0
91

)
K

W
5M

1n
=

0.
05

55
55

6
dm

ls
E

qu
ili

br
at

io
n

co
n

st
an

t
fo

r
or

ga
n

ic
de

tr
it

u
s

ex
ch

an
ge

w
it

h
es

tu
ar

y
(0

24
)

(0
92

)
K

W
6M

5
=

1.
33

33
3

1/
y

R
at

e
co

n
st

an
t

fo
r

se
di

m
en

t
ex

ch
an

ge
w

it
h

es
tu

ar
y

(0
25

)
(0

93
)

K
W

6M
5n

=
0.

00
04

92
82

1
dm

ls
E

qu
ili

br
at

io
n

co
n

st
an

t
fo

r
se

di
m

en
t

ex
ch

an
ge

w
it

h
es

tu
ar

y
(0

25
)

(0
94

)
M

K
07

=
1.

13
16

e−
03

3
co

m
pl

ex
R

at
e

co
n

st
an

t
fo

r
pr

im
ar

y
pr

od
u

ct
io

n
by

lo
w

m
ar

sh
pl

an
ts

(0
27

),
(0

31
),

an
d

(0
33

)
(0

95
)

M
K

09
=

1.
03

01
4e

−0
31

co
m

pl
ex

R
at

e
co

n
st

an
t

fo
r

pr
im

ar
y

pr
od

u
ct

io
n

by
be

n
th

ic
al

ga
e

(0
29

)
an

d
(0

34
)

(0
96

)
M

K
15

=
0.

02
06

74
9

1/
y

R
at

e
co

n
st

an
t

fo
r

de
tr

it
u

s
bu

ri
al

in
se

di
m

en
t

(d
et

ri
tu

s
ou

tfl
o w

)
(0

35
)

(0
97

)
M

K
15

D
=

1.
21

61
7e

−0
09

1/
y

R
at

e
co

n
st

an
t

fo
r

de
tr

it
u

s
bu

ri
al

in
se

di
m

en
t

(s
ed

im
en

t
in

fl
o w

)
(0

36
)

(0
98

)
M

K
1a

=
2.

37
92

5e
−0

12
1/

(J
-y

)
R

at
e

co
n

st
an

t
fo

r
as

si
m

ila
ti

on
of

de
tr

it
u

s
by

m
ic

ro
be

s
(0

37
)

(0
99

)
M

K
1b

=
2.

18
78

2e
−0

14
1/

(J
-y

)
R

at
e

co
n

st
an

t
fo

r
as

si
m

ila
ti

on
of

de
tr

it
u

s
by

m
ei

of
au

n
a

(0
38

)
(1

00
)

M
K

1c
=

5.
46

95
4e

−0
15

1/
(J

-y
)

R
at

e
co

n
st

an
t

fo
r

as
si

m
ila

ti
on

of
de

tr
it

u
s

by
m

ac
ro

fa
u

n
a

(0
39

)
(1

01
)

M
K

20
=

9.
51

85
7e

−0
14

1/
J

Fr
ac

ti
on

of
w

at
er

ev
ap

or
at

ed
pe

r
u

n
it

of
av

ai
la

bl
e

lig
h

t
en

er
g y

(0
27

),
(0

31
),

an
d

(0
40

)
(1

02
)

M
K

20
7
=

1.
26

75
2e

−0
05

kg
-H

2
O

/J
W

at
er

tr
an

sp
ir

ed
pe

r
u

n
it

of
en

er
gy

as
si

m
ila

te
d

by
lo

w
m

ar
sh

pl
an

ts
(0

41
)

(1
03

)
M

K
20

E
=

1.
36

88
9e

+0
07

J/
kg

-H
2
O

E
n

er
gy

re
qu

ir
ed

to
ev

ap
or

at
e

w
at

er
(0

27
)

an
d

(0
31

)
(1

04
)

M
K

47
=

2.
25

e−
00

8
kg

-N
/J

In
or

ga
n

ic
n

u
tr

ie
n

ts
as

si
m

ila
te

d
pe

r
u

n
it

en
er

gy
as

si
m

ila
te

d
by

lo
w

m
ar

sh
pl

an
ts

(0
42

)
(1

05
)

M
K

49
=

2.
5e

−0
08

kg
-N

/J
In

or
ga

n
ic

n
u

tr
ie

n
ts

as
si

m
ila

te
d

pe
r

u
n

it
en

er
gy

as
si

m
ila

te
d

by
be

n
th

ic
m

ic
ro

al
ga

e
(0

43
)

(1
06

)
M

K
60

=
63

5.
21

7
1/

y
Fr

ac
ti

on
of

w
at

er
ci

rc
u

la
ti

on
en

er
gy

di
ss

ip
at

ed
pe

r
u

n
it

ti
m

e
(0

44
)

(1
07

)
M

K
60

7
=

7.
68

84
2e

−0
14

1/
(J

-y
)

Fr
ac

ti
on

of
ci

rc
u

la
ti

on
en

er
gy

di
ss

ip
at

ed
ye

ar
pe

r
u

n
it

of
lo

w
m

ar
sh

pl
an

ts
(0

45
)

(1
08

)
M

K
70

=
0.

77
34

71
1/

y
Fr

ac
ti

on
of

bi
om

as
s

en
er

gy
u

se
d

in
m

et
ab

ol
ic

pr
oc

es
se

s
by

lo
w

m
ar

sh
pl

an
ts

(0
46

)
(1

09
)

M
K

70
6
=

0.
00

5
dm

ls
Fr

ac
ti

on
of

lo
w

m
ar

sh
pl

an
t

pr
od

u
ct

io
n

lo
st

as
h

ea
t

(0
47

)
(1

10
)

M
K

71
=

0.
68

91
62

1/
y

Fr
ac

ti
on

of
lo

w
m

ar
sh

pl
an

t
bi

om
as

s
th

at
di

es
pe

r
ye

ar
(0

48
)

(1
11

)
M

K
7e

=
3.

03
86

3e
−0

14
1/

(J
-y

)
Fr

ac
ti

on
of

lo
w

m
ar

sh
pl

an
ts

co
n

su
m

ed
p

er
ye

ar
pe

r
u

n
it

in
se

ct
(0

49
)



Dynamic Simulation with Energy Systems Language 28-15

(1
12

)
M

K
90

=
69

.0
03

5
1/

y
Fr

ac
ti

on
of

bi
om

as
s

en
er

gy
u

se
d

p
er

ye
ar

in
m

et
ab

ol
ic

pr
oc

es
se

s
by

be
n

th
ic

m
ic

ro
al

ga
e

(0
50

)
(1

13
)

M
K

9b
=

1.
36

91
2e

−0
11

1/
(J

-y
)

Fr
ac

ti
on

of
be

n
th

ic
m

ic
ro

al
ga

e
co

n
su

m
ed

p
er

ye
ar

pe
r

u
n

it
m

ei
of

au
n

a
(0

51
)

(1
14

)
M

K
9c

=
1.

09
52

9e
−0

11
1/

(J
-y

)
Fr

ac
ti

on
of

be
n

th
ic

m
ic

ro
al

ga
e

co
n

su
m

ed
p

er
ye

ar
pe

r
u

n
it

m
ic

ro
fa

u
n

a
(0

52
)

(1
15

)
M

K
9e

=
2.

73
82

3e
−0

12
1/

(J
-y

)
Fr

ac
ti

on
of

be
n

th
ic

m
ic

ro
al

ga
e

co
n

su
m

ed
p

er
ye

ar
pe

r
u

n
it

in
se

ct
(0

53
)

(1
16

)
M

K
a0

=
17

47
.3

2
1/

y
Fr

ac
ti

on
of

bi
om

as
s

en
er

gy
u

se
d

p
er

ye
ar

in
m

et
ab

ol
ic

pr
oc

es
se

s
by

de
tr

it
u

s
m

ic
ro

be
s

(0
54

)
(1

17
)

M
K

a4
=

5e
−0

08
kg

-N
/J

R
eg

en
er

at
ed

n
u

tr
ie

n
ts

pe
r

u
n

it
en

er
gy

m
et

ab
ol

iz
ed

by
de

tr
it

u
s

m
ic

ro
be

s
(0

55
)

(1
18

)
M

K
ab

=
1.

04
00

7e
−0

10
1/

(J
-y

)
Fr

ac
ti

on
of

m
ic

ro
be

s
co

n
su

m
ed

p
er

ye
ar

pe
r

u
n

it
m

ei
of

au
n

a
(0

56
)

(1
19

)
M

K
ac

=
6.

93
38

2e
−0

11
1/

(J
-y

)
Fr

ac
ti

on
of

de
tr

it
u

s
m

ic
ro

be
s

co
n

su
m

ed
p

er
ye

ar
pe

r
u

n
it

m
ac

ro
fa

u
n

a
(0

57
)

(1
20

)
M

K
b0

=
72

.7
16

2
1/

y
Fr

ac
ti

on
of

bi
om

as
s

en
er

gy
u

se
d

p
er

ye
ar

in
m

et
ab

ol
ic

pr
oc

es
se

s
by

m
ei

of
au

n
a

(0
58

)
(1

21
)

M
K

b4
=

6e
−0

08
kg

-N
/J

R
eg

en
er

at
ed

n
u

tr
ie

n
ts

pe
r

u
n

it
en

er
gy

m
et

ab
ol

iz
ed

by
m

ei
of

au
n

a
(0

59
)

(1
22

)
M

K
bc

=
1.

60
30

9e
−0

12
1/

(J
-y

)
Fr

ac
ti

on
of

m
ei

of
au

n
a

co
n

su
m

ed
p

er
ye

ar
pe

r
u

n
it

m
ac

ro
fa

u
n

a
(0

60
)

(1
23

)
M

K
bF

C
S
=

8.
36

39
5e

−0
14

1/
(J

-y
)

Fr
ac

ti
on

of
m

ei
of

au
n

a
co

n
su

m
ed

p
er

ye
ar

pe
r

u
n

it
fi

sh
es

,c
ra

bs
,a

n
d

sh
ri

m
ps

(0
61

)
(1

24
)

M
K

c0
=

48
.7

21
9

1/
y

Fr
ac

ti
on

of
bi

om
as

s
en

er
gy

u
se

d
p

er
ye

ar
in

m
et

ab
ol

ic
pr

oc
es

se
s

by
m

ac
ro

fa
u

n
a

(0
62

)
(1

25
)

M
K

c4
=

6e
−0

08
kg

-N
/J

R
eg

en
er

at
ed

n
u

tr
ie

n
ts

pe
r

u
n

it
en

er
gy

m
et

ab
ol

iz
ed

by
m

ac
ro

fa
u

n
a

(0
63

)
(1

26
)

M
K

cd
=

1.
71

89
5e

−0
12

1/
(J

-y
)

Fr
ac

ti
on

of
m

ac
ro

fa
u

n
a

co
n

su
m

ed
p

er
ye

ar
pe

r
u

n
it

ra
cc

oo
n

s
an

d
ra

ts
(0

64
)

(1
27

)
M

K
cF

C
S
=

4.
48

32
7e

−0
14

1/
(J

-y
)

Fr
ac

ti
on

of
m

ac
ro

fa
u

n
a

co
n

su
m

ed
p

er
ye

ar
pe

r
u

n
it

fi
sh

es
,c

ra
bs

,a
n

d
sh

ri
m

ps
(0

65
)

(1
28

)
M

K
cg

=
4.

29
64

6e
−0

13
1/

(J
-y

)
Fr

ac
ti

on
of

m
ac

ro
fa

u
n

a
co

n
su

m
ed

p
er

ye
ar

pe
r

u
n

it
bi

rd
s

(0
66

)
(1

29
)

M
K

d0
=

4.
93

01
2

1/
y

Fr
ac

ti
on

of
bi

om
as

s
en

er
gy

u
se

d
p

er
ye

ar
in

m
et

ab
ol

ic
pr

oc
es

se
s

by
ra

cc
oo

n
s

an
d

ra
ts

(0
67

)
(1

30
)

M
K

e0
=

31
.3

15
5

1/
y

Fr
ac

ti
on

of
bi

om
as

s
en

er
gy

u
se

d
p

er
ye

ar
in

m
et

ab
ol

ic
pr

oc
es

se
s

by
in

se
ct

s
(0

68
)

(1
31

)
M

K
ef

=
6.

90
37

7e
−0

12
1/

(J
-y

)
Fr

ac
ti

on
of

in
se

ct
s

co
n

su
m

ed
p

er
ye

ar
pe

r
u

n
it

sp
id

er
s

(0
69

)
(1

32
)

M
K

eg
=

6.
90

37
7e

−0
13

1/
(J

-y
)

Fr
ac

ti
on

of
in

se
ct

s
co

n
su

m
ed

p
er

ye
ar

pe
r

u
n

it
bi

rd
s

(0
70

)
(1

33
)

M
K

f0
=

15
.6

57
8

1/
y

Fr
ac

ti
on

of
bi

om
as

s
en

er
gy

u
se

d
p

er
ye

ar
in

m
et

ab
ol

ic
pr

oc
es

se
s

by
sp

id
er

s
(0

71
)

(1
34

)
M

K
fg

=
6.

90
37

7e
− 0

13
1/

(J
-y

)
Fr

ac
ti

on
of

sp
id

er
s

co
n

su
m

ed
p

er
ye

ar
pe

r
u

n
it

bi
rd

s
(0

72
)

(1
35

)
M

K
g0

=
2.

69
67

9
1/

y
Fr

ac
ti

on
of

bi
om

as
s

en
er

gy
u

se
d

p
er

ye
ar

in
m

et
ab

ol
ic

pr
oc

es
se

s
by

bi
rd

s
(0

73
)

(1
36

)
M

K
gd

=
2.

37
81

2e
−0

13
1/

(J
-y

)
Fr

ac
ti

on
of

bi
rd

s
eg

gs
co

n
su

m
ed

p
er

ye
ar

pe
r

u
n

it
ra

cc
oo

n
s

an
d

ra
ts

(0
74

)
(1

37
)

Y
ie

ld
=

0
J/

y
C

ap
tu

re
of

fi
sh

es
,c

ra
bs

,a
n

d
sh

ri
m

ps
in

es
tu

ar
y

an
d

cr
ee

ks
(0

26
)

N
o.

Si
m

u
la

ti
on

ti
m

e
pa

ra
m

et
er

sb
U

n
it

s
M

ea
n

in
g

(1
38

)
FI

N
A

L
T

IM
E

=
4

y
T

h
e

fi
n

al
ti

m
e

fo
r

th
e

si
m

u
la

ti
on

(1
39

)
IN

IT
IA

L
T

IM
E

=
0

y
T

h
e

in
it

ia
lt

im
e

fo
r

th
e

si
m

u
la

ti
on

(1
40

)
T

IM
E

ST
E

P
=

2e
−0

07
y

T
h

e
ti

m
e

st
ep

fo
r

th
e

si
m

u
la

ti
on

(1
41

)
SA

V
E

P
E

R
=

0.
00

1
y

T
h

e
fr

eq
u

en
cy

w
it

h
w

h
ic

h
ou

tp
u

t
is

st
or

ed

a
IN

T
E

G
(i

n
fl

ow
s−

ou
tfl

ow
s)

re
fe

rs
to

th
e

in
te

gr
at

io
n

of
th

e
n

et
fl

ow
ra

te
to

de
te

rm
in

e
th

e
st

or
ag

e
va

lu
e.

T
h

e
in

it
ia

lv
al

u
es

gi
ve

n
fo

r
ea

ch
st

or
ag

e
ar

e
th

e
as

su
m

ed
st

ea
dy

- s
ta

te
va

lu
es

u
se

d
fo

r
m

od
el

ca
lib

ra
ti

on
.T

h
es

e
va

lu
es

yi
el

d
a

fl
at

-l
in

e
ou

tp
u

t.
To

ob
ta

in
dy

n
am

ic
ou

tp
u

t,
h

al
ve

th
e

in
it

ia
lv

al
u

e
fo

r
M

Q
d.

b
V

en
si

m
si

m
u

la
ti

on
so

ft
w

ar
e

w
as

u
se

d
w

it
h

th
e

fo
u

rt
h

-o
rd

er
R

u
n

ge
–K

u
tt

a
ro

u
ti

n
e

se
le

ct
ed

.T
h

e
m

od
el

w
as

ru
n

w
it

h
id

en
ti

ca
lr

es
u

lt
s

bo
th

on
a

M
ac

In
to

sh
Po

w
er

B
oo

k
G

4
(1

G
h

z
Po

w
er

P
C

G
4

(3
.3

)
pr

oc
es

so
r,

O
S:

A
pp

le
C

la
ss

ic
9.

2.
2

u
n

de
r

O
S1

0.
4.

6)
an

d
on

an
A

bi
t

K
T

7-
R

A
ID

P
C

m
ot

h
er

bo
ar

d
w

it
h

an
A

M
D

D
u

ro
n

70
0

pr
oc

es
so

r
(O

S:
W

in
do

w
s

20
00

P
ro

fe
ss

io
n

al
).



28-16 Handbook of Dynamic System Modeling

28.3.2 Basic Equation Forms Indicated in Energy Systems
Language Diagrams

Each storage in an Energy Systems Language diagram has lines indicating one or more inflows and outflows.
The equation for each storage is simply the integral of its net flow rate over time, that is to say, the integral
of the sum of all inflows into it minus the sum of outflows from it from all time past to the present
moment. Because the concept of “all time past” is indefinite, an initial starting time is specified (Time
Zero), at which point each storage is represented by an initial value. Eq. (001)–(016) in Table 28.1 show
the rates contained in an integration function and the initial value supplied for each of the model storages.

The form of each rate equation, however, is tied to specific details in the diagram. Each rate arises from a
symbol combination. The translation rules can be illustrated best with simpler diagrams of processes that
repeat many times in Figure 28.3. By applying a few simple rules, the entire equation list can be constructed.

The composite symbols for primary producers (bullet shapes) and consumers (hexagons) have the
same standard symbol combination to represent a reproduction process called “autocatalytic growth.”
This standard structure is given in Figure 28.4. The only difference between primary producers and
consumers is the type of energy assimilated: usually sunlight for primary producers and some form of
organic matter for consumers.

In either case, the designated energy source R passes at rate J1 through a multiplicative interaction to be
assimilated and stored in biomass Q1. As shown in Figure 28.4, energy from the recipient storage (Q1) feeds
back and intersects the top of the interaction symbol, and then dissipates as heat to the heat sink symbol.

The rate J1 is a net assimilation rate. Assimilation measurements for most living organisms are usually of
net assimilation. As the curly bracket in Figure 28.4 indicates the energy of Q1 fed back and used specifically
in the production process is rarely separated explicitly from the amount assimilated. In ecological literature,
the rate J1 is known simply as “assimilation” for consumers. For primary producers, it is the gross primary
production. The net production rate is J1 − J2, which is net primary production in the case of plants and
net secondary production for consumers. Old age death, or other passive loss of biomass is indicated by
rate J3.

The equations for the relevant energy flows and their combined effect on the storage are indicated in
the top panel of Figure 28.4. Consider first the net assimilation rate J1, the form of which arises from the
multiplicative interaction symbol involved. According to the translation rules of Energy Systems Language,
all flows (Ji) into and out of an interaction term have the same equation form. Equations differ only by
the numerical value of an associated constant (ki). In the case of multiplicative interaction, the resource
(R) and the biomass (Q1) multiply together to produce the indicated equation for net assimilation rate
J1 = k1RQ1. In other words, the rate of production is proportional to the multiple of the amount of energy
available for transformation in resource R and the amount already available in the autocatalytic biomass Q1.
The biomass acquires resources to form additional biomass. That is to say, in the presence of its resources,
growth is autocatalytic. The rate constant k1 is analogous to the second-order rate constant in chemical
reaction kinetics. The dimensional units for k1 are fractions of R assimilated per unit Q1 per unit time.

The outflows J2 and J3 in Figure 28.4 do not pass through an interaction symbol as drawn. If they did,
the form of the equation would follow interaction rules like those for J1. When the rate of outflow is simply
a constant proportion of the donor storage, the outflow line does not pass through an explicit interaction
symbol downstream. Hence, the equations for J2 and J3 in Figure 28.4 are constant proportions of Q1. The
dimensional units of the rate constants involved are simply the fraction of Q1 that is degraded per unit
time for k2, or in the case of k3, the fraction of upgraded material (Q1) that dies from old age, leaks out,
or is otherwise passively lost (per unit time).

In the complete marsh sector diagram (Figure 28.3), all of the metabolic heat losses from living organisms
are constant proportions of the energy in biomass. These flows are identified in the equation list (Table 28.1)
as MJx0, where x is the subscript associated with the standing stock Q of a living component x. Donor
proportional outflows are used elsewhere in Figure 28.3 as well. The flow from plants to detritus (MJ71,
Eq. [048]) is proportional to plant biomass (MQ7) and the burial of detritus in sediments as peat (MJ15,
Eq. [035]) is proportional to the detritus accumulation (MQ1).
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R

(a)

(b)

x

J2

J3

J1 � k1R.Q1

J2 � k2Q1

J3 � k3Q1

dQ1/dt � J1�J2�J3

Q1

J2N � k2NQ1

J1

R x

J2

J3

Q1
J1

FIGURE 28.4 Basic symbolic representation and equations for the autocatalytic process usually used in the com-
posite symbols for primary producers and consumers: (a) without nutrient regeneration indicated; (b) with nutrient
regeneration indicated (J2N). The curly bracket pointing to J1 indicates combined flows (see text). R is a variable that
represents the energy resource to be transformed, J’s are for the various flows, k’s are rate constants, Q1 represents the
storage of biomass, and dQ1/dt is the rate of change of biomass with time.

Although not illustrated in Figure 28.4, some of the biomass of one living component may be captured
and consumed by predators or other consumers. The amount is called the yield of biomass, and it becomes
the resource for the autocatalytic growth of the recipient consumers. The equation for such an outflow
from Q1 to a downstream consumer would have the same multiplicative form as used for J1. If, for example,
Q1 was the food of consumer Q2, the flow between them—call it J4—would be J4 = k4Q1Q2. The constant
k4 would represent the fraction of Q1 assimilated per unit time by each unit of consumer Q2.

A food Web can be represented by linking primary producer symbols to a network of consumer symbols.
Consumers may represent trophic levels, feeding guilds, or other functionally similar combinations of
species. Figure 28.3 includes a food Web based on marsh plant detritus, live marsh plants, and benthic
microalgae that after passing through a number of intermediate consumers, culminates in the birds,
raccoons, and rats of the salt marsh and the fishes, crabs, and shrimps of the tidal creeks and adjacent estuary
(QFCS). Each equation for an energy transfer from resource to consumer uses the two-way multiplicative
interaction described above.

The composite symbol for consumers sometimes has a flow of regenerated nutrients indicated in
conjunction with the metabolic energy loss. One way to handle this is illustrated by the flow labeled J2N

in the bottom panel of Figure 28.4. The flow line emanates from a small rectangle attached close to the
bottom of the storage tank. The small rectangle, called a “sensor,” denotes that no loss of the storage of
energy occurs, in this case because the flow is in units of something else besides the energy that is stored in
biomass (nutrients). Nutrient regeneration is a product of metabolism. Nutrients accompany the energy
losses denoted by the flow to the sink, but they must be tracked in a separate flow stream. Regenerated
nutrients flow from the consumer to a nutrient storage elsewhere. The lower panel of Figure 28.4 shows
the equation for nutrient regeneration (J2N). It has the same form as the metabolic energy loss equation
(J2), but the dimensional units for the constant (k2N) are nutrient units released per unit time per unit of
energy stored, rather than fraction of energy per time.

The marsh sector diagram (Figure 28.3) shows nutrient regeneration by microbes (MQa), meiofauna
(MQb), and macrofauna (MQc). The nutrient regeneration flow lines arise from the vicinity of the



28-18 Handbook of Dynamic System Modeling

metabolic heat losses for these three consumers and cycle up and to the left terminating in the nutrients
storage (MQ4). The tiny sensor symbols are left out of the diagram in Figure 28.3, and in the equation list
(Table 28.1) an alternate equation form is used for MJa4, MJb4, and MJc4 (Eq. [055], Eq. [059], and Eq.
[063], respectively). In this form, nutrient regeneration is a constant proportion of the respective metabolic
heat losses rather than to the amount of energy stored in each consumer’s biomass. The constants therefore
define the amount of nutrients regenerated per unit of energy metabolized, which may be conceptually
more familiar to some. Either way is consistent with the diagram.

In either case, the flow of regenerated nutrients is not subtracted from the accumulations of energy
(MQa, MQb, and MQc) because the associated energy subtraction takes place with the respective flows
to the heat sink (see Eqs. [009]–[011]). The nutrient flows are, however, added to the accumulation of
nutrients (Eq. [004]).

28.3.2.1 The Flow-Limited Source

A curved line entering the system boundary from a source and then passing back out, while being tapped
along the way inside the boundary, means that the equation for a “flow-limited source” is to be used. In the
coastal system and marsh sector diagrams (Figure 28.1 and Figure 28.3), sunlight is tapped by evaporation
of water and by the various primary producers in the system. Unused light is reflected by the system (the
system’s albedo), as represented by the line that curves back out of the system boundary.

Some resources, such as fossil fuels, are limited by the amount available in storage. For these resources,
use rate exceeds the regeneration rate. Once the storage is depleted, further use is limited by the rate of
regeneration. The resource then becomes flow-limited. Water flowing in a hillside stream is limited by the
flow from upstream. From its first diversion for irrigation or drinking water, a stream is recognized as
flow-limited. After diversion only the remaining flow is available for additional withdrawals. Likewise, the
flow of sunlight ultimately limits photosynthesis. Sunlight used in evaporating water is not available for
photosynthesis, and only the sunlight remaining in the shade and sunflecks beneath the tallest plants can
be used by the shorter ones.

When storage is the resource transformed for the production of an autocatalytic component, the
associated flow rate equations are based on the multiple of the donor and recipient storages. The production
rates of all consumers of the food Web illustrated in the marsh sector diagram (Figure 28.3) are of this type.
For primary producers, however, the main energy resource is flow-limited. Hence, the equation for gross
primary production is based on the remaining unused flow of the resource, rather than a donor storage.
The remaining flow is known generally as JR. A simple diagram of this process is shown in Figure 28.5.
In this case, the only tap is for gross primary production (J1), so the remaining light (JR) is simply the
solar input (J0) less that already incorporated into production. Substituting and rearranging this set of
implicit equations yields the explicit relationship suitable for models. The equation for JR is hyperbolic
and declines to zero as the storage grows. The first equation for J1 is simply the multiple of JR and Q1.
The dimensional units of the constant k1 are the inverse of the storage units. The constant represents the
fraction of the remaining light assimilated by each unit of biomass.

The equation derived for J1 from the definitions of J1 and JR (shown in Figure 28.5) is the Monod
function (or the Michaelis–Menten equation), often used in ecological models to represent flow saturation
at high levels of a resource and limitation at low levels. In the case illustrated, the maximum gross primary
production rate is equal to J0 and the level of biomass energy (Q1) at which the rate is half the maximum
is the inverse of k1. The practical maximum is actually considerably less than J0 for two reasons: (a) other
factors also limit photosynthesis; and (b) other processes compete for sunlight, such as water evaporation,
conversion to heat on dark surfaces, and reflection.

In the marsh sector diagram (Figure 28.3), the taps of sunlight for evaporation and for marsh plant
production originate from the same point, and the tap for benthic microalgae occurs afterwards. Usually,
tapping from the same point means the processes are all competing for the same remaining light, however,
this is not the case when the point refers to different areas. The vertically overlapping primary producer
symbols for low and high marsh plants indicate this distinction. The various grasses, rushes, and sedges that
comprise each of the two elevation regions exist literally side by side in the marsh, so they receive the same
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J1 � k1JRQ1

JR � J0�J1

Q1
J0

JR

JR � J0/(1 � k1Q1)
J1 � J0Q1/[(1/k1) � Q1)]

Sun

Plants

FIGURE 28.5 Flow-limited source coupled with an autocatalytic primary production process. Equations for J1 and
JR are given two ways.

amount of light from overhead. A complete model of the marsh sector would have two subsectors: one for
the low elevation marsh and the other for the high marsh. The equations of Table 28.1 show only the low
marsh subsector. The high marsh would be represented by an identical set of equations calibrated for high
marsh conditions. The total marsh sector would consist of the sum of each component in each subsector.

The independent process of water evaporation shown at the same tap point as plant production,
however, is a competing process, separately competing in both the low marsh and the higher elevation
marsh. Processes competing for the same flow-limited resource use the same calculation of remaining light
for its functions. Water evaporates through an interaction with sunlight, as illustrated in the diagram. The
equation for the evaporation rate (MJ20, Eq. [040]) is based on the multiple of the storage of water (MQ2),
and an auxiliary that provides the remaining light available (MA20, Eq. [031]). The right-hand side of the
corresponding auxiliary equation for plants is identical (MA07a, Eq. [027]). The form of each equation
for light remaining at the combined tap is similar to that given for a single tap in the simple diagram of
Figure 28.5, except that the denominator is based on the sum of the competing uses: evaporation of water
and production by low marsh plants. Note also the conversion of evaporation from water to energy using
the constant MK20E (specified in Eq. [103]) for dimensional consistency.

Benthic microalgae exist in water-saturated soil often covered by water, and they grow in the shade of the
emergent vascular plants of the marsh. Accordingly, the diagram shows the sunlight for benthic microalgae
drawn downstream of the simultaneous tap for the marsh plant production and water evaporation. The
source light available to benthic microalgae (analogous to J0 in Figure 28.5) is the light remaining after
evaporation of water and assimilation by the plants that shade them. This was already determined by
MA07a in Eq. (027) (or equivalently by MA20 in Eq. [031]). Otherwise the calculation of JR for benthic
microalgae (MA09a) follows the form given in Figure 28.5, as shown in Eq. (029).

28.3.2.2 Multiple Simultaneous Interactions in Energy Systems Language

According to Figure 28.1 five other factors influence the transformation of sunlight by plants. These are
illustrated more precisely in the marsh sector diagram (Figure 28.3). Water, nutrients, sediment, and
circulation energy (caused by winds and tide) all positively influence gross primary production. In Energy
Systems Language, these combine in a series of multiplicative interactions to determine the rate of gross
primary production. Salt negatively influences gross production, however, so it is represented by a divisor.
The resulting autocatalytic production equation for plants consists of a constant multiplied by the four
positive influence variables, divided by salt, and all multiplied as before by the remaining light and the
energy stored in plant biomass. A total of seven state variables are combined with one constant creating a
seventh-degree equation for gross photosynthesis.

The multiplication of all these values to achieve a given rate of gross photosynthesis means that the
single constant involved will have very complex dimensional units. Because production units and light
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flux units are both in energy units per time, a production function based only on the multiple of remaining
light and biomass involves a constant with dimensions of inverse biomass units (as shown in Figure 28.5).
If, however, two additional variables (say A and B) multiply and one divides (C), then for dimensional
consistency, the implied units for the constant are C units per A unit per B unit per biomass unit. In the case
given by the marsh sector diagram in Figure 28.3, the constant must cancel units from a total of six variables.

An additional practical detail concerning the constant is the small numerical value that must be assigned
to it. The multiple of all the variables involved in a complex interaction produces a very large number that
is proportional to the much smaller number that represents the resulting production rate. A very small
constant does the conversion. In fact, it can be too small to represent on a computer!

The need for a tiny constant became a significant practical issue in the marsh sector simulation, so the
multiplier auxiliaries for the gross photosynthesis equations, MA07b and MA09b (Eq. [028] and Eq. [030]),
do not include the influence of sediment (MQ5). To include the sediment influence, the constant needed
was on the order of 10−44. The number was too small to be represented precisely enough to run a required
model check on the available computer. Sediment was potentially the least dynamic influence on gross
production. The timescale of sediment dynamics in the model was on the order of 10,000 y, whereas the
next longest time scale (that of salt) was around 3 y. Sediment was unlikely to influence model output
spanning less than a few decades. By leaving out the sediment influence on production, the order of
magnitude for the gross production constant was increased to 10−33, large enough to allow the simulation
check (the check involved reproducing the steady-state condition used to calibrate the model).

28.3.2.3 Feedback Effect of Production Processes on the Environmental
Variables Involved

Some of the environmental influences on production are significantly consumed in the process. Nutrients,
for example, are used at a rate proportional to gross production of low marsh plants (MJ47, Eq. [042]) and
benthic microalgae (MJ49, Eq. [043]). Likewise, water is transpired by low marsh plants (MJ207, Eq. [041]),
and circulation energy is dissipated by marsh plant biomass (MJ607, Eq. [045]). The accumulations of salt
and sediment, however, are not changed directly by gross primary production. This lack of effect is denoted
in Figure 28.3 by the use of the sensor symbol (small rectangle attached to the storage symbol where the
line of influence originates).

Because gross production by benthic microalgae is not explicitly drawn on the marsh sector diagram,
the influencing variables and any influences on them are unspecified. The same variables involved in
low marsh plant production are involved with benthic microalgae. An examination of the equation list
(Table 28.1) shows that with the exception of nutrient uptake (MJ49, Eq. [043]), gross primary production
by benthic microalgae does not consume any of the variables that influence it, at least for this model.

28.3.2.4 Two-way Interactions

In coastal systems, water circulating with the tides creates an exchange of materials between marshes
and adjacent estuarine waters. Five exchanges are illustrated at the top left of the marsh sector diagram
using two-way interaction symbols acted upon as a group by the tides. These are water, salt, nutrients,
detritus, and sediment. All of these exchanges are driven by tidal energy. A two-way interaction indicates
a balance of forces arising from storages of the same material on the two sides of the interaction. In the
case of Figure 28.3, the storages are in the marsh and in the adjacent waters. A tendency toward dynamic
equilibrium of materials is expected. The rate equation involves the difference between the two storages.
Its general form is

J = kr(QS − keQR)

where QS is the quantity stored in the designated source location, and QR is that stored in the receiving
location. A positive difference in parentheses sends the flow toward the recipient, and a negative difference
establishes flow in the opposite direction. For the marsh sector model, a positive flow represents an import
into the marsh from the estuary. The constant ke is the dimensionless equilibrium ratio of QS:QR expected
once a dynamic equilibrium is established. The other constant kr is a rate constant: the fraction of the
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difference within the parentheses that can be closed per unit time. It is inversely proportional to the half-life
of the difference (half-life = ln 2/kr).

The above rate equation was applied to the two-way flow for water, salt, inorganic nutrients, organic
detritus, and sediment in Eqs. (021)–(025) in Table 28.1. Note that Eq. (021) for exchange of water (JW 2M2)
includes the multiplication by tide. This is not the case for the other four variables. In those cases, the
effect of tide is implicit in the selection of a value for the rate constant. As long as tidal influx is constant,
this distinction is unimportant to the model output; however, before tidal energy influx can be tested as
a variable, all the two-way exchanges must be converted to the form of Eq. (021). The conversion can be
done simply by dividing each rate constant by the constant tidal influx used now (Eq. [086]). The values
in question are given in Eq. (086), Eq. (088), Eq. (090), and Eq. (092), respectively.

28.3.2.5 Passive Inputs and Environmental Conditions

A basic input from the environment passively received by storage within the system is perhaps the simplest
concept used to create a rate equation. Unlike with flow- and storage-limited sources from outside the
system boundary, nothing within the system feeds back to limit the availability of such inputs. Examples
in the marsh sector model are the input of rain to marsh water (Rain, Eq. [075]) and the input of tidal
power to circulation (Tide, Eq. [076]).

When modeling a sector of a larger system, inputs from other sectors become basic environmental
conditions similar to passive inputs. For example, inputs to the marsh sector include the storages of water,
salt, nutrients, organic detritus, and sediment in the adjacent estuarine water (Eqs. [077]–[081]). These
storages would become dynamic model variables of the water sector in a complete model of the coastal
system diagrammed in Figure 28.1. Instead, they are set as passive inputs that do not change in response
to the flows in and out of the marsh.

A passive input may be an average represented as a constant, a test pattern (such as a sine wave), a statis-
tical distribution, or a complex time variable based on real data. In the early stages of model analysis, such
variables are often set to average conditions represented by constants so as to not confound dynamics gener-
ated by the model’s own feedback structure with those that are simply responding to variable driving forces.
Holding the environmental inputs constant allows the internally created dynamics to be revealed first.

28.3.2.6 An Unspecified Process (Rectangle)

The interaction of tide with the exchange of water circulation is represented by a small rectangle, indicating
a general process that must be made explicit in the documentation. In Figure 28.3, the rectangle merely
signifies that water circulation energy is affected by the tide and by other forces provided through the water
sector. Wind effects, for example, are shown in the coastal system diagram of Figure 28.1. The two kinds
of forces are additive, but the marsh sector model only uses tidal power to drive circulation.

28.4 Calibration of Model Constants

All of the types of rate equation indicated or implied in the marsh sector diagram and given in the equation
list have now been defined. The next step is to provide numerical values for all constants. In Energy
Systems Language, this is nearly always accomplished by back calculation from quantitative estimates of
all storages, rates, and system inputs. To do this, the rate equations are algebraically rearranged to solve for
the constants in terms of the rates, storages, and inputs involved. The process of back-calculating constants
in this manner is called model calibration.

To illustrate, consider the detailed diagram for a living composite symbol given in Figure 28.4(a). With
estimates of the amount storage (Q1), the amount of resources (R), and flow J1, an estimate for the constant
k1 can be calculated. Likewise, with estimates of the storage Q1 and each of the other flows (J2, and J3),
the constants k2 and k3 can be made.

Obtaining a complete set of applicable estimates for model calibration can be a time-consuming task;
however, it is easier than obtaining independent estimates for the constants themselves. Many of the
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constants, especially those with complex units, are not easily measured. By comparison, measurements
of the needed rates of production, metabolism, resource use and regeneration, and measurements of
the standing stock and energy content of biomass are commonly made in ecological studies. Even so, a
sufficiently complete set of measurements about the same system is very rare. A broad range of experience
and literature must be explored to come up with a set of preliminary numbers that can be used for model
calibration.

Moreover, the estimates must apply to the same time period. To correctly compute a constant, the
corresponding rates and storages must be in proper proportion. Average values for the rates and storages
are usually used because they integrate long time periods, so are thought to be in correct proportions.
A snapshot of synoptic measurements would provide a more precise set of estimates, but a specially
coordinated field study would be required. Such a study would be very involved for a snapshot of the 80
or so variables involved in the marsh model given in Table 28.1.

Table 28.2 provides the list of nominal steady-state values for each storage and rate that were used in
calibrating the constants for the model in Table 28.1. The nominal values were estimated from many kinds
of information. The basis for each estimate is provided and any formula involved is also given in the
Table 28.2. The nominal values so provided are for illustrative purposes only. They are plausible, based
on general literature and experience of the author, but they may not apply adequately to a given marsh.
Nevertheless, an analysis of model output sensitivity to changes in constants can be done to help identify
the estimates that have the most significant influence on the dynamics produced by the model.

28.5 Preparation for Simulation

Once in equation form with all constants specified, the process of simulation is no different from that
commonly used for nonlinear causal models in a wide variety of engineering and science fields. The same
issues of initial value selection, choice of integration procedure, specification of simulation step size (time
interval), and evaluation of roundoff error must be addressed. The same heuristic analytical procedures
can be used, and the same limitations and pitfalls are present.

Because the resulting differential equations are seldom solvable analytically with calculus, Energy
Systems Language models are represented and solved numerically on a computer by whatever means
available. Historically, this effort began with analog computers, the use of which is now all but forgotten
by Energy Systems Language practitioners. Today, Energy Systems Language models are often represented
in programming languages for scientists and engineers such as FORTRAN, BASIC, PASCAL, and C.

28.5.1 Simulation Software and Energy Systems Language
Simulation software, such as Vensim®, STELLA®, and EXTEND® are valuable tools for conceptualizing
the system, documenting flow equations, writing and integrating storage equations, and plotting output.1

Both Vensim and STELLA were developed specifically for the systems dynamics approach begun by Jay
Forrester (1961, 1968), but these programs work equally well for many other approaches to dynamic
simulation modeling, including Energy Systems Language models. Vensim Personal Learning Edition was
used for the model given in Table 28.1. To date, this version is free for educational use and comes with
well-written and informative documentation.

When writing simulation models in a programming language such as BASIC, the order of equations
is very important. Constants and initial values must be given before the iterative loop that represents the
passage of time. Within the loop, flow rates must be calculated before time is advanced, and storages
must be calculated immediately afterwards. Simulation languages free the modeler from the necessity to
properly sequence model equations, to program an integration procedure, and to plot output data.

1Vensim is a registered trademark of Ventana Systems Inc., Harvard, MA; STELLA is a registered trademark of Isee
Systems Inc., Lebanon, NH; and EXTEND is a registered trademark of Imagine That Inc., San Jose, CA.
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Some features offered in simulation software may not be appropriate for Energy Systems Language
simulation. In particular, storages should always be free to exceed physically impossible limits of the real
world should the model produce such behavior in a given simulation. Artificially preventing a storage
from going negative or from creating overflow errors will mask serious errors in the flow equations, and it
can mask the use of an incorrect integration procedure.

The storage equations themselves must not be manipulated. They are derived from a mathematical
integration process. Manipulating the storage in ways other than through changes in flow rates alters the
integration procedure, not the hypothesis. The greatest power of Energy Systems Language modeling is in
its ability to reject an erroneous hypothesis. Preserving this power must be done if the output is to be used
to evaluate the plausibility of the hypothesis.

The intensive focus on special diagramming symbols, layout, and equation-writing rules, and the neces-
sity for numerical integration procedures, when combined with the idea that ecologists and environmental
scientists should be the best ecological modelers, creates a compelling incentive for developing a simulation
language specifically to represent HT Odum’s Energy Systems Language. As noted by those who developed
DYNAMO, STELLA, and Vensim for easing simulation with Forrester’s Systems Dynamics approach, a
special simulation language can eliminate programming effort and numerical integration mistakes so that
those most knowledgeable about ecological systems need not also become experts in computer simulation
technique to test complex ideas. To date, however, no special simulation language has been forthcoming
for Odum’s Energy Systems Language.

28.5.2 Timescales and Numerical Integration
Energy Systems Language diagramming of complex systems may produce models with components that
operate over many timescales. This can lead to practical difficulties of numerical integration on a digital
computer, such as a tradeoff between roundoff error and truncation error, and misleading parasitic solu-
tions. Long central processing times are required for the computer, and output sampling is necessary if
available computer storage media is insufficient to hold all the data generated by the model.

The timescale of a given storage component is represented by the order of magnitude of its turnover time,
which is the amount stored divided by the sum of the inflows to it or the outflows from it. Turnover time can
be determined for any instant or averaged over various time periods. The steady-state turnover times for
the various components of the example model are given in Table 28.3. They span eight orders of magnitude.

TABLE 28.3 Turnover Times at Steady State (in Years and Days) for the 16 Storages Included in the Low Marsh
Subsector Model. Turnover Times Span Eight Orders of Magnitude

Storage Model Symbol Steady-State Value Units Years Days

Water in marsh MQ2 5.44 E6 kg-H2O 2.01E−4 0.074
Detrivorus microbes MQa 2.52 E11 J 4.58E−4 0.17
Nutrients in marsh MQ4 2.52 E4 kg-N 5.88E−4 0.22
Water circulation energy MQ6 1.47 E11 J 1.42E−3 0.52
Benthic microalgae MQ9 2.52 E12 J 5.79E−3 2.1
Marsh meiofauna MQb 2.52 E12 J 1.12E−2 4.1
Marsh macrofauna MQc 2.52 E12 J 1.63E−2 5.9
Marsh insects MQe 2.52 E12 J 2.74E−2 10
Marsh spiders MQf 2.52 E11 J 5.48E−2 20
Raccoons and rats MQd 1.26 E12 J 1.80E−1 66
Marsh birds MQg 2.52 E12 J 3.09E−1 110
Low marsh plants MQ7 9.18 E14 J 6.46E−1 240
Detritus in marsh MQ1 9.18 E14 J 1.45E0 530
Fishes, crabs, and shrimp QFCS 4.83 E13 J 2.37E0 866
Salt in marsh MQ3 2.56 E5 kg-salt 3.04E0 1100
Sediment and peat in marsh MQ5 1.59 E10 kg-sediment 1.42E4 5,200,000
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The model was successfully simulated using the Vensim Personal Learning Edition simulation language
with the fourth-order Runge–Kutta integration procedure selected and a tiny time step of 2.0e−7 y. Owing
to insufficient computer storage media, output from every model variable was sampled every 0.001 y and
stored. Many trials of time steps were required before a satisfactory one was achieved. Solutions converged
below 5e−7 y and above 5e−8 y. Presumably, divergence with shorter time steps was caused by roundoff
error, and with larger time steps by truncation error.

At the chosen time step, a 12 y continuous run was not possible (the CPU kept running, but the
data recording to screen and disk stopped and the Vensim program became unresponsive and had to be
rebooted). To achieve a 12-y simulation, the model was run for 4 y and the ending values for storages were
set as the initial values for another 4-y run. This was repeated a second time to achieve 12 y of data.

28.6 Dynamic Output of the Marsh Sector Model

When all constants and initial conditions are set to six significant digits, the model produces a flat line
steady-state response in all model variables. This steady-state check helps to verify that the equations
are operating as intended. However, if any one of the initial conditions is set slightly off of the steady
state, oscillations begin within a simulated year or two. Larger changes in any initial condition cause the
oscillations to begin sooner, but the patterns that eventually result are similar in frequency, amplitude,
and irregular appearance. The oscillations occur because of the feedback structure of the model. All the
environmental conditions are constant.

Figure 28.6 provides an example set of patterns for 14 of the 16 storages when the model is simulated
for 12 y. These dynamics result when the initial value for the storage of raccoons and rats is halved from its
steady-state value, while the other initial values remain calibrated for steady state. The dynamic patterns of
the 16 storages differ widely. Salt and sediment, the two storages with the highest turnover times, did not
change at all during the 12-y simulation, so they are not plotted in Figure 28.6. The others oscillate over a
wide range of frequencies and amplitudes. Most of the patterns include some amplitude modulation. The
storages with higher frequency oscillations show frequency modulation.

Many of the storages cycle several times per year; the larger animals of the marsh cycle more slowly.
Rats and raccoons are at the top of the marsh food Web. Their quantities are generally low for 3 y and then
spike every fourth year or so. Birds exhibit a complex set of cycles. A twice a year cycle seems superimposed
on a 5-y cycle. The mean and amplitude of the higher frequency cycles build for about 3 y and then birds
suddenly decline and remain low for a couple of years.

Between years 8 and 10, several interesting differences in the output occur: not only do high densities of
raccoons, rats, and birds occur, but also the oscillations of the high-frequency variables cycle even faster,
benthic microalgae all but disappear, the oscillating spider density seems to skip a peak and then produces
the highest peak of the entire 12 y run, and finally, the highest peak level of insects occurs. A longer
simulation is needed to determine whether such behavior recurs periodically.

The interesting mix of patterns is typical of complex models developed with Energy Systems Language.
Such patterns could in fact exist in nature and go undetected. Ecological field measurements are notoriously
variable, but are usually made too infrequently to capture the details of patterns such as those generated
by the model. Instead, the variation among repeated field measurements is most often used to describe
a statistical variance around a sample mean. Yet average values resulting from field data in this manner
become the data to which the model is calibrated in the first place. The model output shows that significant
nonrandom variation can result from deterministic processes like those represented in the marsh model.

The output from this preliminary model, however, is unlikely to be valid in any more than a general
sense. Some of the output is highly suspicious. Marsh macrofauna, for example, precipitously decline to
near zero after the first five simulated years and remain in unrealistically low quantities for the remainder
of the 12-y simulation. Marsh macrofauna include fiddler crabs and marsh snails that are easily noticed
by anyone visiting a salt marsh in the southeastern United States. If the macrofauna of tidal marshes
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FIGURE 28.6 Dynamic output over 12 simulated years for 14 of the 16 storages represented in the marsh sector
model. The run resulted from a single deviation from steady-state conditions caused by halving the initial number of
raccoons and rats. The set of outputs includes a rich array of frequencies, amplitudes, and modulations.

periodically disappeared for years at a time, the loss would be noticed and widely reported, but no such
reports are on record.

28.6.1 Model Output Analysis
Additional work with the model may be justified whether or not the output from the model is plausible.
A thorough analysis will reveal the reasons for the model’s behavior, whether it is plausible or not. Model
output analysis involves systematic experimentation with altered initial conditions, test inputs, and model
constants, and sometimes with alternate equations or even alternate system identifications.

A sensitivity analysis of a model consists of running the model repeatedly, each time with a standardized
adjustment to a different model constant. Halving and doubling is a common adjustment. Normally, only
one constant is changed on each such rerun. The constant is reset to its original nominal value before the
next one is halved and doubled. In this way, a standardized test is made in which all changes are based
on an arbitrary but identical type of change, and all tests are independent of one another. The concern is
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not the realism of the adjustment, just that it is standardized so that relative influence of each coefficient
on specific features of the model output can be identified and ranked. Further measurement of the real
system can be directed toward obtaining better understanding of the most influential parameters first.

The ranking of constants by their relative influence on model output can be usefully compared to
a ranking based on the confidence the modeler has in the nominal value used for the constant. Better
estimates would be sought first for those constants with the highest combination of effectiveness in
creating change in the model output and uncertainty in the original estimate.

28.6.2 Model Validation
A model is an abstraction of the cause-and-effect mechanisms believed to operate in the system under
study. A complex simulation model must be treated as a scientific hypothesis about cause and effect that
is too complex to be evaluated wholly in the mind. Computer representation allows the consequences of
an imagined system to be revealed and evaluated against what is known to be true about the system under
study. The adequacy of the abstraction must be defended in all of its aspects, including its level of detail,
the validity of each mathematical representation, and the interpretation of output.

Confidence is gained as the model passes repeated attempts to falsify it—a process called validation. If
the model produces plausible output on the computer, further examination is warranted using an interplay
between models, field observations, and experimentation with the real system. This process of validation
will either cause the hypothesis to eventually be rejected, or will bolster confidence in it. Model results
often lead to testable ideas that are explored experimentally or by careful observation of nature. Most
published simulation models in ecology await this process.

The utility often derives from model failure in spite of state-of-the-art thinking represented in it.
Hypothesis rejection is a powerful tool that defines the scientific method. Computer simulation of complex
hypotheses is a natural extension of the scientific method in the age of computers. Taken in conjunction
with observation and experimentation, computer simulation allows complex ideas to be tested.

With continued recycling between the marsh model, its output, and measurements from nature, the
knowledge and predictability of the marsh ecosystem will improve. The intriguing output and the obvious
failures stimulate thinking, identify key variables, and guide the planning of additional field measurements
and experimentation. It is through the interaction of these facets that the understanding arises.

28.7 A Brief Comparison with Forrester’s Systems
Dynamics Approach

The many components and connections within Energy Systems Language models continually respond to
one another in a complex system of feedback loops. The loops account for the dynamic behavior of a
naturally self-organized system. Control and alteration of the self-organization process is often desired to
direct more of the energy into the human sector, or sometimes to restore the direction of self-organization
back to an earlier state, and to do so without unintended consequences.

The above description of the nature of the systems studied with Energy Systems Language would seem
to provide an ideal setting for the Systems Dynamics approach of Jay Forrester (1961, 1968). In Forrester’s
approach, a specific cause of a dynamic pattern is sought. Odum’s approach takes the opposite approach:
Energy System Language is used to propose a system structure and discover the dynamics that would result
if a system was organized as described. The two are reverse processes of one another.

The method of systems identification involved in Energy Systems Language, while it can lead to a
simulation model filled with feedback processes, does not focus on feedback structure. In fact, the focus
is somewhat reversed from Forrester’s approach. Where the Systems Dynamics approach seeks loops to
account for existing dynamic patterns, simulation with Energy Systems Language links all essential energy
transformation and control processes thought to be present and identifies the resulting dynamics that
could be produced.
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The two methods can complement one another. They do not replace one another, nor are they at
philosophical odds. The two are simply focused differently. The founding difference of Odum’s approach
is the primary focus on energy flow rather than on identifying feedback loops that account for observed
dynamics. Energy tracing, rather than an analysis of dynamics, identifies the basic flow and control
system. Instead of using feedback theory to provide the evidence for controls on flows, generalizations
about the responses of organisms to the environment and to other organisms determine the rates of flows
in ecosystem models.

When dealing with environmental systems, the two approaches can be used together to considerable
advantage, but few analysts are adequately trained in the practical aspects of both methods. A reason
for this separation may relate to the different contexts within which the methods developed—System
Dynamics from the perspective of industrial management, and Energy Systems Language from the theory
of ecosystem recognition and ecosystem development.

By examining industrial systems with wild inventory fluctuations that could not be controlled through
traditional methods of industrial management, Forrester recognized that an unidentified system for oper-
ating the industrial plant had arisen on its own. It had self-organized, and no longer operated as designed.
Identifying this system within the confines of the industry included looking at how orders were received,
filled, and delivered, given the decisions made by various managers and other employees involved. For-
rester’s concept, originally called Industrial Dynamics, was to use features of the patterns of fluctuation,
such as frequency, amplitude, and damping rates, as clues that would help uncover the self-organized
feedback loops that were operating. Once this was done, the system could be modeled on a computer, and
the likely causes of the problem demonstrated. Furthermore, the effects of different decisions could be
explored in the model, discussed among the managers, and eventually tried in the real system.

To bring this approach into the hands of industrial managers, Forrester encouraged the development
of special computer software that would be easier for the industrial manager to use than a higher level
programming language such as FORTRAN. In response, Alexander Pugh created the simulation language
DYNAMO. The award-winning success of this approach in industry caused it to be generalized to many
other types of self-organized systems. Forrester then changed the name of this approach from Industrial
Dynamics to Systems Dynamics and began a philosophy of general principles of system self-organization
in society and nature.

At the same time and completely separately, H.T. Odum, an ecologist who had studied global strontium
cycling, was writing about general principles of self-organization from an ecosystem perspective. His
observations of ecosystems were not so much based on noticing curious dynamic patterns, but instead
on the more basic work of identifying the details of a self-organized system by tracing energy flows from
sunlight through plants, then animals, and ultimately the decomposers that consumed the remaining
energy in dead matter and recycled its component elements.

Like Forrester’s interest in easing the process of modeling for industrial managers, Odum wanted a
better way for ecologists to relate to the mathematical relationships that could be developed to represent
energy flows through ecosystems and how they might be controlled by amounts of various living and
nonliving components, and the genetically programmed responses of organisms. Out of this effort came
a diagrammatic language, originally called Energy Circuit Language, and now called Energy Systems
Language by most of its main practitioners.

In its overall goal, Odum’s approach is similar to Forrester’s for its attempt to identify and formally
represent the dynamic behavior of self-organized systems of humanity and nature so that the consequences
of change can be better assessed. Odum began with an interest in ecosystems and, like Forrester, soon
generalized his theory to all open energy systems, including the systems of humanity and nature that have
led to many of the environmental concerns of today. Through Energy Systems Language as tool to express
a theory and philosophy of natural system organization and behavior, he established considerable evidence
for a strong relationship between the natural environment and the economy (Odum and Odum, 2001).

Aside from the wide difference in focus between their fields of study, an important difference between
Odum’s and Forrester’s approaches can perhaps be traced to the nature of data available for observ-
ing industrial inventory problems versus that for ecosystems. First, owing to the difficulties of field
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measurement, ecosystem data are rarely obtained at a frequency that can distinguish temporal patterns
caused by feedback processes from random variation. Second, even when sufficiently frequent data are
collected, it is often impossible to separate the pattern generated by feedback processes within the ecosys-
tem itself from patterns generated by responses to regular changes in environmental factors. In general,
the most obvious dynamic patterns in ecological data are dominated by daily and seasonal changes in
light, temperature, rainfall, and other exogenous variables (forcing or driving variables). Unlike an out-
of-control industrial inventory, ecosystem data do not inspire particular curiosity about the feedback
processes involved. Most of the obvious dynamics are caused by feedback within a larger astronomical
system that is not the focus of ecological research.

Deviations from perfect tracking of exogenous variables might be found in the dynamics of key variables
of a system that could provide clues to feedback structure. This possibility, however, seems less likely to
occur to someone who examines the relatively uninspiring, exogenously driven, incompletely recorded
temporal variation found in most ecosystem data records. Such a notion is rather more likely to occur
to someone exposed both to systems ecology and to feedback analysis. With that combination comes the
imperative to monitor ecosystems frequently enough to recognize interesting patterns like those suggested
by the marsh model developed in this chapter.

28.8 Conclusions

The interesting dynamics produced by the marsh model could stimulate a closer look at the fluctuations of
animal and plant biomass in field or experimental settings. Conversely, a close look at actual dynamics from
the real system may force a completely new idea about system organization. In these alternate outcomes
lies the true value of modeling in environmental management. Models do not replace the need for real
system measurement and understanding. Instead they demand it and direct it.

Dynamic phenomena are the patterns of change we think happen through time. They are signals from
self-organized systems that we can analyze and attempt to explain. In contrast, a simulation model of a
self-organized system is a detailed hypothesis of how and why we think a given dynamic phenomenon
happens, and why certain changes may occur in response to new conditions. A computer provides a
mechanism for tracking complex networks of influences thought to be involved in causing change. The
output dynamics allow visualization of the dynamic consequences of thinking that way.

Energy Systems Language guides the imagination toward plausible constructs that follow reasonable
principles of self-organization. It also simplifies equation specification and provides a way to use scarce
information to estimate rate constants. The Energy Systems Language procedure does not replace the
judgment and real system understanding required to identify the system and evaluate the adequacy of a
given model.

Increased familiarity with the diagramming rules eases the process of representing an environmental
system with Energy Systems Language. Nevertheless, even among those most familiar with the theoretical
basis and instructions, to settle issues of how to diagram a process often requires intense thought and
discussion with others familiar with the process. Although equations can be developed from the diagram,
the complex reasoning for drawing it in a particular way can rarely be appreciated by those who were
not involved in its production. A lot of detail is represented in Energy Systems Language diagrams. The
diagram must be accompanied by considerable explanation even when presented to the most accomplished
users of this approach. Complete justification of the logic behind each line of Figure 28.1, however, is
beyond the scope here. For greater insight into the derivation of the diagram in Figure 28.1, the interested
reader may refer to the source publication and the other contributions to the book edited by Coultas and
Hsieh (1997).

A simulation model of a self-organized system built with Energy Systems Language is a rigorous state-
ment of a complex hypothesis composed of many relational and quantitative estimates. It is unlikely
to be completely correct, but when used in conjunction with real system measurements, it forms a
basis for tracking, testing, and improving understanding of the environmental system that the model
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represents. An Energy Systems Language model can become a record of the evolving state-of-the-art
understanding about a given system that can transcend generations of environmental managers. Each
generation can improve the model as the interplay between measured phenomena and model prediction
proceeds.

Flaws in understanding and difficulty in detecting dynamic phenomena each interfere with success-
ful environmental systems management. Environmental data in the absence of an explanation may add
description, but does little for understanding. Simulation models, in the absence of dynamic phenomena
from the real system, are untested hypotheses that produce a prediction of dynamics waiting to be tested.
With continued cycling between model formulation and measurement of phenomena, the high level of
understanding of self-organized environmental systems required to manage such systems will be forth-
coming. It is the interplay between models and measurement of dynamics that can guide understanding
toward management principles that work.

A system model can be built that shows impossible dynamics, sometimes intriguing ones, and perhaps
less often accurate ones. Nevertheless, Energy Systems Language opens the door to a rigorous energy
theory of nature that, perhaps unlike the models themselves, continues to have an enormous practical
impact on the observation, analysis, and management of ecosystems today.
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29.1 Introduction

Ecology studies the relationships between living organisms (individuals)—vegetal or animal—and the
environment in which they live. The biosphere in which we live is made up of the whole set of terrestrial,
marine, and aerial ecosystems. A scientist who endeavors to explain the relationships and the interactions
within an ecosystem must often be in contact with colleagues more specialized in other fields like chemistry,
genetics, oceanography, geography, hydrology, ethology, and climatic sciences. Considering the complexity
of this multidisciplinary study, modeling is a fundamental tool to understand ecosystems. A good modeling
practice is to design a model with a precise goal in mind; a modeler expects that his model outputs (results)
will help understanding the real system under study. The model final objective also helps selecting the
model simplifying assumptions and the level of realism, taking into account the limits of our knowledge
and the limits of our modeling techniques. Even if we had precise descriptions and observations, estimating
future trends will always be considered very risky. Considering the lack of biological data, we see in Begon
et al. (1990) that many ecologists focus on the following levels of organization: individuals, populations
of individuals, and ecosystems.

In this chapter, we will first focus on the history of ecological modeling, starting in the twelfth century. A
discussion will present the controversy opposing deterministic and probabilistic approaches in ecological

29-1
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modeling. We follow this discussion by an overview of the model types employed by ecological modelers.
The main focus is then given to individual-based models (IBMs). They appeared in the seventies (Kaiser,
1976, 1979; Lomnicki, 1978) and have been more intensively used since the remarkable paper from
Huston et al. (1988). Individual-based modeling is a bottom-up approach focusing on the individuals
(i.e., the parts) of an ecological population (i.e., the system). Then, the modeler tries to understand how
the properties of the population can emerge from the interaction among individuals. The strengths and
weakness of IBMs will be presented. Despite their advantages, bottom-up approaches are not sufficient
to build theories at the population level (Grimm, 1999). Indeed, more traditional mathematical models,
with state variables, described “top-down” and used like black boxes, provide integrated views replying to
relevant questions at the population level.

29.2 An Old Story?

The great adventure of modeling ecological processes began at the end of the twelfth century with regard
to a story about rabbits, in Pisa, Italy. In this thriving commercial town, young Leonardo of Pisa (1175–
1240) is very rapidly confronted with practical problems of arithmetic. Leornardo, son of Guilielmo and
a member of the Bonacci family, is trying to solve what appears at first sight to be quite a simple problem:
a couple of young rabbits will become adult and then will produce at each mating season, a new couple of
young rabbits. After a new season, the new couple has grown up and is in turn able to produce another
couple of rabbits. The question is how many rabbits will there be after “n” seasons?

In Table 29.1, it can be seen that the number of adult couples at season n is equal to the total number of
couples at season n − 1, and that the number of young couples at season n is equal to the total number of
couples at season n − 2. A little reflection convinces us very quickly that the total number of rabbit couples
at season n can be computed with the following sequence:

Tn = Tn−1 + Tn−2 (29.1)

This formula generates a series of numbers whose characteristic is that each number is equal to the sum
of the two previous numbers. Generally, this sequence is known as Fibonacci numbers: 1, 1, 2, 3, 5, 8,
13, 21, 34, 55, 89, 144, 233, 377, 610. . . The Fibonacci name was given in the nineteenth century by
Guillaume Libri, a mathematics historian (Leonardo of Pisa, was son of Bonacci: Filius Bonacci—which
gave the Fibonacci nickname). Naturally, the Fibonacci sequence is not very realistic for this problem, since
for instance it takes no account of mortality and running out of food resources. However, this sequence
has numerous other interesting applications for basic ecological models. Indeed, Fibonacci numbers
are interesting in understanding honeybees family trees, petals on flowers, seed heads, pinecones, leaf
arrangements, and even shell spirals. All the previously cited natural elements use what mathematicians
call the golden ratio. Curiously, we can perceive that the ratio Tn/Tn−1 is converging to a particular value,
21/13 � 1.615; 34/21 � 1.619; 144/89 � 1.617; 610/377 � 1.618. This value is called the golden ratio or the

TABLE 29.1 Number of Couples at Season n

Season Total Number of Couples Number of Adult Couples Number of Young Couples
n (= Tn) (= Tn−1) (= Tn−2)

1 1 0 1
2 1 1 0
3 2 1 1
4 3 2 1
5 5 3 2
6 8 5 3
7 13 8 5
8 . . . . . . . . .
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golden number (∼1.618034 and often represented by a Greek letter Phi [φ]) and it has also been used by
humans in many artistic creations, including architecture.

Thereafter, several centuries go by before mathematicians take an interest in biological and ecological
problems: Bernouilli in the eighteenth century proposes a mathematical theory of smallpox epidemic;
then, in the nineteenth, Malthus and Quetelet take an interest in the dynamics of human populations. But
it is Pierre François Verhulst (Verhulst, 1845), a Belgian mathematician, who invents in 1844 the famous
S curve known as the logistic curve:

dy

dt
= ry

(
K − y

K

)
(29.2)

This is the foundation of mathematical modeling applied to biological sciences, strongly influencing the
modeling of system dynamics throughout the twentieth century. This equation has been studied in depth,
notably in its discrete form. It will also be integrated in the famous double equation system, attributed
independently to Lokta (1925) and Volterra (1926), where they propose a mathematical formalism for the
relationship between consumers and resources.

Finally, mathematical modeling of sciences, apart from the strict circle of Physics, does not take off
until the twentieth century. In the nineteenth century, biological sciences were not particularly favorable
to using mathematical formalism. According to Giorgio Israel this can be explained by “The old ambition,
still alive and kicking, to achieve a unified mechanical and reductionistic description of the world, an
ambition resisting all difficulties and all failures.” Again, according to the same author: “The fundamental
method of modeling in the 20th, is mathematical analogy (where the fragment of mathematics unifies all
the phenomena it is supposed to represent), and no longer mechanical analogy, which has been for a very
long time, the principal mathematical method.”

With a mathematical analogy, Leslie (1945) presented to an adaptation of Markov Chains to the dynamics
of populations. This technique is interesting for modeling the changes in age-structured populations
(Figure 29.1).

In 1965, Lefkovitch introduced an alternative approach. A similar matrix model considers population
growth in organisms grouped by stages instead of age (Lefkovitch, 1965) (stage-specific survival rates).
Kent Holsinger gives the following reasons to explain why Lefkovitch models are often preferred to Leslie
matrix:

• It’s often difficult or impossible to age animals and plants accurately.
• In some organisms, especially perennial plants, survivorship and fecundity are more related to size

(or some other variable by which a population might be stage-classified) than to age.
• In some organisms, especially herbaceous perennial plants, individuals may actually revisit stages

they already left, e.g., they may get smaller from one season to the next.
• Focusing on life-cycle stages helps to focus attention on identifying the critical transitions that may

provide opportunities for management. (Holsinger, 2005)

At the end of the eighties, Caswell (1989) also adapted Leslie’s matrix to model the development of a species
of a vegetal species (Dipsacus sylvestris) in six development stages (from seed to flowering plant). Finally,
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FIGURE 29.1 A Leslie matrix. The first row contains the fertilities (Fi) of each the n class of age. pi represents the
transition probability (i.e., the survival probability) from one class of age to the next.
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FIGURE 29.2 (a) A stage-by-age model or multistate model. (b) Fertilities and transition matrix.
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FIGURE 29.3 Folding of a finite 2D grid to obtain a pseudo-infinite grid.

Lebreton (2005) proposed a stage-by-age models (or a multistate model) uniting the two characteristics
state and time (Figure 29.2[a] and Figure 29.2[b]).

After the Second World War, the original thoughts on self-reproducing cellular automata were intro-
duced. “This introduction can be traced back to 1948 when John von Neumann gave a talk entitled “The
General and Logical Theory of Automata” (Von Neumann, 1951). More than a decade later, Von Neu-
man, Ulam, and John Conway introduced self-reproducing cellular automata (Von Neumann, 1966; Burks,
1970) and the Game of Life (Gardner, 1970). Von Neumann and Ulam were modeling a minimal biological
self-reproduction and the Conway mathematical game was introduced to a wide public thanks to columns
written by Martin Gardner in Scientific American. The result was a famous synchronous spatial model,
centered on cells, and with a time-based evolution. The future of a cell depends on rules relying on the
other cells in its neighborhood. Each cell on a pseudo-infinite 2D grid (obtained by folding, Figure 29.3)
has two potential states: dead or alive. The generated cells are clones, exactly the same as the parent. From
these basic elements, more complex models can take into account heredity, variability, fitness and other
characteristics, which can be useful to model for instance the evolution by means of natural selection. Here
are the basic transition rules applied at each time step in the first issue of the Game of Life:

• If two or three neighbors of a cell are alive and the cell itself is currently alive, its next state is alive.
• If three neighbors of a cell are alive and the cell itself is currently not alive, its next state is alive.
• Otherwise the next cell state is dead.

Those simple rules were sufficient to give rise to order from an apparent“chaos.” Scientists rapidly identified
patterns like blinkers, gliders, guns, which grow and evolve for very long periods. Some other patterns
lead to dying or stagnating configurations. Since the theory of cellular automata was introduced, many
enhancements were proposed and the theory was simplified in the 1980s by Langton and Byl (Wolfram,
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1986). Cellular automata have also been recently embedded in the powerful Cell-DEVS environment,
which has been successfully applied to different ecological models (Wainer and Giambiasi, 2001). We
would not stay too long on cellular automata since they are detailed in a specific chapter of this book,
proposed by Peter Sloot.

29.3 Determinism or Probability?

Evidently, from what has just been said, the mathematical approach, i.e., deterministic, represents the base
on which modeling and simulation in environmental sciences has been developed. The introduction of
randomness with Monte Carlo simulation and the question of using models with probabilistic components
provoke fierce scientific controversy. For example, Papoulis explains: “The controversy of determinism
and causality versus randomness and probability has been the topic of extensive discussions […] the
phenomenon is thus inherently deterministic, and probabilistic considerations are necessary only because
of our ignorance” (Papoulis, 1965). Up to the early seventies, the majority of models concerning ecology
are deterministic. The position of Norman E. Kowal (1971, pp. 123–171) sums up the aversion of scientists
at that time to use probabilistic processes. Concerning ecological processes, which present: “Changes in
Space, or in Space and Time,” he writes:“Since there is more than one independent variable (two or three for
space, and, perhaps, one for time), the required mathematical theory becomes very complex and difficult
to work analytically. The most useful mathematical structures to use as models of such systems are partial
differential equations […] these models will probably always be solved by numerical approximation on
digital computers.” In the last sentence of his paragraph he also states that: “Probability density functions
may also be used.” In the Coda Volume I of System Analysis and Simulation in Ecology, Bernard C. Patten
writes: “Simulation models do not have to reproduce dynamic behavior realistically to be useful […] the
thought that goes into them may be their greatest value” (Patten, 1971). Patten preferred to reduce the
realism of the model rather than include stochastic aspects. From our point of view, the final modeling
goal has to be borne in mind when deciding whether or not a modeler can abandon the reproduction of
realistic behavior.

Thanks to the steady increase in memory capacity and calculation speed, to the emergence of procedural
and object-oriented programming languages, the limits of ecosystem modeling have rapidly extended.
Dealing with spatial systems and processes dependant on time, scientists found themselves confronted
with such a complexity that deterministic mathematics alone could not resolve (Jorgensen, 1994).

29.4 Modeling Techniques

Whether deterministic or not, there is a plethora of modeling techniques. Using the “Science direct”
database from Elsevier, we have built a classification of the most employed techniques found in papers
published in the Ecological Modeling journal since 1975 (Table 29.2). Most of them are not specific to
ecological modeling and they are detailed in other chapters of this book.

Two expressions in Table 29.2 do not belong to usual simulation vocabulary: Individual Based Model
and Gap Model. It is an example of vocabulary introduced by ecologists to qualify some kinds of simulation
models. IBMs have already been introduced, so we will present the Gap models. They are dedicated to the
simulation of vast forest spaces, discretized into small units (a few m2) on which the number of trees of
different categories and species, the transition probabilities and the reproduction success probabilities are
known. The term Gap model comes from the fact that these models were developed originally to simulate
the behavior of a forest area in which, over the course of time, a natural process of clearings healed up
more or less rapidly depending on characteristics of their immediate environment.

If we analyze more deeply the published databases in ecological modeling, we can see that ecological
specialists have now been using discrete simulation and IBMs more intensively particularly over the last
two decades (Grimm et al., 1999). Multiagent models can be considered as a special case of IBMs where
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TABLE 29.2 Results Extracted using the Science Direct Database on the Ecological
Modeling Journal (between 1975 and 2005). Expressions were Researched in the Titles,
Keywords, and Abstracts. In Brackets the Results Obtained by Extending the Search to
Journals Filed in Environmental Sciences

Expression Number of Articles

Model OR Modeling 3576 (36308)
Simulation 1361 (8146)
Mathematical model 298 (9396)
Individual-based model 106
Neural network 104 (1801)
Markov OR Leslie 91 (2273)
Cellular automata 46 (441)
Bayesian statistics 42 (120)
Mixed model 25 (561)
Gap model 26
Multiagent 6 (28)
Multimodel(ing) 4 (96)

individuals have shown a social behavior. This modeling technique is not specific to ecological modeling,
it has been introduced in Artificial Intelligence and more precisely in Distributed Artificial Intelligence.
Adelinde Uhrmacher is devoting a chapter of this book to agent-oriented modeling. In ecological modeling,
this approach is particularly interesting for of ethological systems. We have for instance studied herbivorous
animals, and also the memory of ewes at pasture using this approach (Dumont and Hill, 2001, 2004).

This development of individual-based modeling and its derivative can be explained first by the avail-
ability of powerful desktop computers, of user friendly software development environments, and of
prototyping design methods. With such tools and techniques, ecological modelers can study the complex-
ity of many systems they are interested in, in terms of number of animals, plants (or trees), strips of land,
volumes of air, flow of energy, interacting in time and in three dimensions.

This quick review of techniques in ecological models shows that a long road is ahead to use multiagents,
coupled models, mixed models and multimodels with different formalisms. The formalization of models,
using DEVS (Zeigler et al., 2000) or other more formal specification techniques, is still extremely rare
in ecological modeling. In our opinion, their use can be very promising, the introduction of Cell-DEVS
mentioned above, and other recent applications demonstrate the interest of the simulation community in
applying such advances to ecological and environmental models (Muzy et al., 2005).

29.5 The Use of Models in Ecology

In ecological modeling, the knowledge acquired these last decades experienced a spectacular growth
correlatively with the mastering of new sampling techniques (satellite and space imagery; radiogoniometric
follow-up of animals; automation of the physicochemical data acquisition of air and water), of numerical
analysis techniques (statistical analysis of multidimensional data and analysis of time series), and of data-
processing tool (hardware and software). At the same time, this amount of data made decision makers
aware of a wiser management of human activities. Table 29.3 presents several ecological topics discussed
in the Ecological Modeling Journal (still between 1975 and 2005).

In Table 29.3, we notice that the predominant subject of interest is incontestably the problem of
biodiversity, followed, but at a considerable distance, by global change, forestry problems, and population
dynamics. We therefore find here subjects covered by the media in the news, even though fundamental
research subjects are not neglected, as is proved by the 334 articles on population dynamics or the prey–
predator relationship. The greenhouse effect is almost not covered by the Ecological Modeling journal.
This can also be noticed in the “Environmental Sciences” section where only 197 references are found on
this subject, which, in reality, is dealt with by climatology specialists in collaboration with ecologists.
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TABLE 29.3 Number of Articles found in the Ecological Modeling
Review (1975–2005) Related to Several Ecological Topics

Expression Number of Articles

Organic matter 100
Nitrogen OR nitrogen cycle 295
Carbon OR carbon cycle 290
Global change 344
Greenhouse effect 2
Fish model 122
Fishing model 83
Trees OR forest 636
Populations dynamics 344
Predator–Prey 97
Productivity 187
Behavioral model 192
Biodiversity 2947

Plant architecture 34

TABLE 29.4 Number of Articles found in the Ecological
Modeling Review (1975–2005) Related to Ecosystems

Expression Number of Articles

Taïga 44
Tundra 145
Temperate forest 130
Tropical forest 198
Meadows 206
Arid ecosystem 18
Lake 141
River 227
Desert 275
Marine ecosystem 187
Estuarine ecosystem 29
Coral reef 10

Alga(e) 39

From Table 29.4, we observe that the ecosystems mostly studied by ecologists are mainly terrestrial
ecosystems, notably forest, tropical or not, where an attempt is made to predict their evolution in terms of
production, population structure, and biodiversity for future decades with a supposed changing climate.
Lakes and rivers are also the subject of numerous studies. One could advance the hypothesis that the
management of fresh and drinkable water resources arises today as one of the major challenges over the
next decades. Again from Table 29.4 we note that marine ecosystems are less studied, in spite of their
extremely dominant situation on the globe, and their capital importance in regulating climate. We have
developed models in oceanography and we could explain this small number of studies by the fact that
oceanographic model parameters are difficult to measure, involving costly and occasionally dangerous
operations (Hill et al, 1998; Coquillard et al., 2000).

29.6 Models are Scientific Instruments

From our simulation experience in various application fields, Ecological models basically do not differ—
not even by their complexity—from models developed in other disciplines such as meteorology and nuclear
physics, or from the models developed for manufacturing systems.
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The incredible complexity of the operation of an ecosystem cannot be seized by the simple acquisition
of the whole set of parameters that characterizes it, as this has been the case for a long time when ecology
was confined within a descriptive approach. The latter was a necessary stage, but the multiple interactions
and feedbacks within ecosystems reveal behaviors which one could not seize by the interpretation of data
collected (were they exhaustive). Even if we do not know all the ecosystem parts, studies in complexity
showed that the behavior of a complex system is not equivalent to the sum of the behaviors of the parts
(this is known as the “system effect”). Only a software, modeling the interaction of the various parts of a
system, can reveal the emerging behaviors. Even if models could also show impossible behaviors that only
field experts will be able to detect, they are more and more used for a better comprehension of ecosystems.
In his state-of-the-art textbook, Jorgensen (1994) summarizes in four points the advantages of modeling:

1. Models have their utility in the monitoring of complex systems.
2. Models can be used to reveal the properties of ecological systems.
3. Models can show deficiencies in our knowledge and can be used to define priorities in research.
4. Models are useful to test scientific assumptions, insofar as the model can simulate the reactions of

the ecosystem, which can be compared with the observations.

29.7 Levels of Organization and Methodological Choices

In practice, the development of a model is based on the two following constraints:

1. The objectives to be reached (which types of results are we expecting?).
2. The state of our knowledge concerning the studied system and the data at our disposal (or at least what

it is reasonable to hope to acquire in an assigned time).

These two constraints will define the level of organization (or the scale of the study). The choice of this
scale is in direct relationship with the complexity of the model. Will we be interested in the individuals,
in parts of individuals, in sets of individuals, in whole populations even in sets of populations? It is also
necessary to have in mind that the level of organization will also influence the choice of the modeling
technique that will be implemented. For instance, if we organize our model around the population level,
an individual-based modeling is completely unnecessary. In addition, there must be a close consistency
between the objectives (first point) and the available data (second point). If we only have data at the
molecular level, will it be really consistent to expect results at the population level? The identification of
the level of organization imposes a thorough examination of the data: the objectives being fixed and thus
the working scale determined, it is still necessary to have available data relating to this level of organization.
It is a frequent case that for a given level it is advisable to obtain data concerning a lower scale. Even if the
level of a population is retained, it could be necessary to collect data relating to the individuals. Indeed, the
behavior of the population results from the individual interactions. Biological individuals themselves are
not free from influences coming from the higher levels of the organization hierarchy: other populations,
environmental factors. How many factors do we have to take into account? Which one among them can
be regarded as negligible? There is no absolute rule in this field; a wise approach would be to bear in mind
the main goal of the modeling (i.e., the principal expected results). This will help to simplify the making
of choices.

The level of organization being selected according to the objectives (Figure 29.4), it is appropriate
to specify what is the level of detail. Thus, for a model of forest growth (with a level of organization
corresponding to a population), will we have to take into account, or not, the following nonexhaustive set
of parameters?

• Seasonal variation of the light intensity.
• CO2 partial pressure of the atmosphere.
• Competition for water resources and ground nutrients.
• Competition for space.
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• Density of the settlement.
• Competition for light.
• Competition with the shrubby and herbaceous species.

One quickly sees that objectives and data will interact; the choices will be in accordance with the exper-
imental framework. Thus, if we want to model the growth of a local forest over the next 5 years, it is
certainly not necessary to take into account the possible infinitesimal variations of the CO2 on this interval
of time. In the same way, the seasonal variation of the light intensity received by the settlement does
not appear crucial in the modeling, the whole settlement being subjected to the same light conditions.
Lastly, the competition for resources with the shrubby/herbaceous species will have to be neglected if we
consider that trees escape from this competition. We can also suppose that the forest ecosystem is relatively
homogeneous from this point of view.

A systematic increase in the model complexity by addition of variables will often not make a substantial
improvement in terms of model validation. Beyond a certain point, the addition of new variables does
nothing but increase the complexity of the model and accumulate uncertainties. It even occurs that
these increases in uncertainty make the model radically diverge from the real system under study. It is
often advisable to prefer holistic variables to several elementary variables whose uncertainties can only
obliterate the quality of the model. It goes without saying that an increase in model complexity will add
to the implementation difficulties, the ability to check the internal consistency of the software is reduced,
and computing speed problems can also occur even with our fastest computers. Unless we have specific
goals requiring the implementation of many details, simplification is a virtue in modeling.

Now that we have presented some methodological elements, we will give our main focus to IBMs.
We have seen in the previous sections that many modeling techniques used in ecological modeling are
common to other research fields, most of them are presented in this textbook and our preference goes to
individual-based modeling. This choice is not a way to champion this technique among others and we will
also discuss its drawbacks. However, this technique has met with an interesting development linked to the
evolution of computer technologies. In the next sections we will not distinguish IBMs from individually
oriented models (IOM), though the latter can be more powerful, see Fishwick et al. (1998).

29.8 Individual-Based Models

The IBM approach completes the set of mathematical methods that are still interesting for many appli-
cations (Grimm, 1994; Sultangazin, 2004). For instance, differential equations or partial differential
equations are very efficient to give a rough estimation of the spatial evolution of large areas. However,
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if we have previously seen how the latter were limited in simulating biological processes (Grimm and
Uchmanski, 1994) when we face questions requiring a high level of details, ecological modeling often has
to take into account:

• the diversity of individuals,
• the spatial heterogeneity of the environment,
• the changing interaction network (and changes in biotic structures),
• the discrete and distant interactions,
• some random aspects and behavior (i.e., random spatial interactions).

At the end of the 1980s, biologists and computer scientists highlighted the convergence between biological
concepts and object model concepts (Huston et al., 1988). Indeed, IBMs are often implemented by object-
oriented models (Coquillard and Hill, 1997) or by multiagent models when there is a need to represent
an autonomous social behavior of individuals involved in a common goal (Ferber, 1999). It is by the
way remarkable that the Simula language (Dahl and Nygaard, 1966), which introduced the essence of
object-orientation in computer science, is still providing one of the most convenient ways to implement
IBMs without additional libraries. Even if the authors of this chapter have abandoned this language, they
want to emphasize the work done by some of their pioneer colleagues in Germany (Kiel Ecology Center)
who built various models dealing with a wide range of delicate ecological interactions in Simula (Breckling
et al., 1998).

An object-oriented simulation will be based on individual organisms rather than on aggregated variables.
Classes and their relationships can define the biological taxonomy retained for the model (Baveco, 1997). A
domain analysis will produce an object model tightly associated with the biological model and helping the
communication process between both scientific communities (Computer Science/Biology) (Hill, 1996).
Coupling object-oriented concepts with individual-based modeling has the main following advantages:

• It avoids difficult or impossible mathematical modeling (i.e., a competition between three different
species including spatial constraints). It is also possible to enrich a model using inheritance, which
recovers all its original meaning. In addition, object classes can take into account a part of mathe-
matical modeling to obtain combined simulations if needed (mixing the discrete and continuous
approach as explained in the methodological chapters of this book).

• It avoids keeping scrupulous track of stands over longtime periods, which are necessary to feed
Markovian analysis. However, a lot of fieldwork is necessary as well as a substantial knowledge of
the species modeled by object classes. Class attributes can reflect the current expert knowledge; the
detail level will depend on the expected model result.

• It takes into account the spatial aspects of ecosystems, which is hardly possible with partial
differential equations (compartment models), or with classical Markovian analysis except with
time-dependent matrix (nonhomogeneous chains) which sets (i) the problem of the investigation
time cost and (ii) initialization difficulties in variable conditions (i.e., combinatorial exploration).

• It provides the possibility to manage, for each individual, the set of all the parameters which the
biologist decides to integrate in his model. The management of individuals, and correlatively their
physiological variations, enables the refinement of the model to close reality with the detailed level
the user wants.

We think that the two last points are essential. Even if spatial diffusion processes can be modeled by partial
differential equations, it is indeed impossible to take into account spatial constraints and distant stochastic
interactions (propagation of cuttings, of seeds, of sparks hundreds of meters away and sometimes a few
kilometers away). For instance, Figure 29.5(b) presents the spreading of Caulerpa taxifolia in the harbor
of “Villefranche sur Mer,” France, this model will be presented in details in the next section. C. taxifolia is
a green alga of tropical origin introduced by mistake in the Mediterranean Sea (Meinesz and Hesse, 1991),
it is currently colonizing the North Mediterranean (Hill, 1997) and we quote this application here since
it will give a concrete example of the importance of spatial constraints in some ecological models. In this
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FIGURE 29.5 (a) Map provided by the simulation model coupled with a GIS; C = Caulerpa taxifolia; R = rocks;
M = harbor mud; S = sediment; P = Posidonia oceanica beds. Inside the harbor: C = C. taxifolia, it appears in a two
gray scale; light gray corresponds to densities higher than 80%. (b) Result of a spectral analysis with 255 replicates.

model, the individual behavior including the spreading of cuttings and the stolon growth are important
colonization factors. In Figure 29.5, inside the harbor, denoted by a “C,” C. taxifolia appears mainly in
light gray, and spotting outside the harbor correspond to the spreading of Caulerpa cuttings. To obtain
colonization maps, we have to use spatial constraints, including the shape of the harbor, the bathymetry,
the position of undersea substrates, which are key elements. Such constraints impose the coupling of an
individual-based discrete-event simulation with a Geographical Information System and also the design
of discrete geometry algorithms (Hill et al., 1998).

As opposed to what can be modeled with IBMs, Huston, DeAngelis, and Post (Huston et al., 1988) note
that when we use formal models we often combine many individual organisms to describe a single variable
and each individual is assumed to have an equal effect on every other individual. This kind of modeling
is often mandatory because of the mathematical tools used. The resulting problem is that it violates two
main biological principles:

1. Each individual of a given population is different, with regard to behavior and physiology.
2. Interactions between individuals are inherently local. Spatial aspects are often key factors in biology.

IBMs do not require the same level of simplifying assumptions used for state-variable models. This fact
mainly explains the rise of this modeling approach observed by Judson, Breckling, and Müller at the
beginning of the 1990s (Breckling and Müller, 1994; Judson, 1994). The object-oriented approach enables
us to describe individual organisms that change their inner states and their environment. In Figure 29.6 we
see again how an IBM model can take into account spatial constraints by coupling the simulation model
with a geographical information system (GIS). Figure 29.6 presents a modeling of herbivorous behavior
in the French “Massif Central.” GIS combined with GPS devices assigned to horses and cows were used to
obtain precious field data (such as animal behavior, animal pasturing choices, and location).

In an IBM, individuals are able to react to their changing environmental state and to reproduce in
their “virtual” environment. This could sound like a definition of an “artificial life,” but the scientific
community studying “artificial life” has the following objective: they want to give access to the domain of
life-as-it-could-be by extending the limits of our current biology knowledge described as life-as-we-know-it.
For more details, the interested reader should consult the official Journal of the International Society of
Artificial Life edited by MIT Press. A common interest of both disciplines is the study of emergent
properties. With an IBM it is possible to understand how local interactions between individuals contribute
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FIGURE 29.6 Modeling of herbivore followed by GPS devices (horses and cows).

to structural changes at higher levels (DeAngelis and Gross, 1992; Grimm and Railsback, 2005). In an IBM,
we try to set up a model where local interactions work as far as possible as they do in nature (according to
field observation). Local interactions enable the emergence of properties observed in an ecological context
(Breckling et al., 2005). Scientists, working in Social Sciences, study the use of primitive rules assigned
to individuals to observe a more global behavior; they often use multiagent systems. As we said, we can
consider a multiagent system as an extension of an IBM in which social interactions have a significant role
to explain the system behavior.

IBMs do also present many limits; most of them can be rapidly reached depending on our computing
capacity. The main limit is that IBMs do not scale well in space, they are best suited to study ecosystems at
a local or regional scale. In addition, the number of individuals and individual interactions is also limited
(linked computing capacity). This is not crucial when we work on the scale of an ecosystem (millions of
individuals can be simulated over a 100 years even on a desktop personal computer).

To work on different scales, we have to face the challenge of simulating scale transfers. The team
of scientists running the Earth Simulator supercomputer in Japan introduced what they called Holistic
Simulation to explore complex interdependencies between micro- and macroscale processes (Sato, 2003).
On such a supercomputer, it is possible to simulate a reasonable number of different scales with the major
interactions between the most significant processes. Many scientists are trying to develop simulations
of the interactions between the main processes at different scales to help understanding the behavior of
complex systems (not only ecosystems). However, only Japan possesses a supercomputer dedicated to this
purpose, and it has been the World’s fastest public computer for two successive years (2003 and 2004).
Multiscale modeling methods are presented in this book by Mark Sheppard.

29.9 Applications

We will now give more details for a couple of linked applications where the development of an IBM was
necessary. The first application was already briefly introduced, it deals with the spreading of C. taxifolia
in the North Mediterranean. Posidonia oceanica, a protected Mediterranean species, and other more
common species are endangered by this colonization. The second application deals with the simulation of
C. taxifolia biocontrol using the Elysia subornata (a marine slug). This biocontrol simulation was achieved
using a multimodel embedding various models of different formalisms. A chapter of this book is devoted
to multimodeling (by Minho Park, Paul Fishwick, and Jinho Lee).
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FIGURE 29.7 Simulation of C. taxifolia spreading around Monaco 12 years after its introduction. A spectral result
obtained for the same geographical site is also presented on the top left of the figure.

In 1984, the French coast of the Mediterranean Sea near Monaco was the initial site of the development
of C. taxifolia. Twelve years latter, this species had colonized several thousand hectares of the French and
Italian coasts and was detected in numerous places of the northwestern Mediterranean coast, from Croatia
(Adriatic sea) to the Balearic Islands (Spain). Figure 29.7 presents the simulated situation around Monaco
12 years after the alga introduction and a spectral result that will be discussed a few paragraphs later.
This development has locally induced an intense alteration of the coastal ecosystems both on endoge-
nous species distribution (alga, cnidaria, sponges, echinoderms, fishes, etc.) as well as on the ecosystem
functioning. To predict the development of C. taxifolia, a simulation study was undertaken through an
interdisciplinary joint venture between marine ecologists, biologists, and computer scientists. An IBM
had been implemented to take into account spatial interactions and anthropic dispersion (dispersion by
people) or activities such as eradication. The attentive reader will recall that this model was based on a
coupling of a Geographical Information System with a stochastic discrete-event simulation, and was able
to deal with distant stochastic interactions. Even though the model had to cope with incomplete data
and sampling difficulties encountered in the hostile environment of the sea, interesting calibration and
validation procedures specified by oceanographers have been successfully achieved. The calibration has
been achieved on various sites and the model results matched a satisfying level of prediction at different
spatial scales (from a few centimeters to a few kilometers). Our calibration dealt with the local and spatial
patterns of expansion, the increase of C. taxifolia biomass, the increase in covered surfaces, and the invasive
behavior toward existing communities. The fact that we knew the initial settlements and that we had been
following the maps of Caulerpa evolution since 1988 was of great help in the calibration process. Indeed,
concrete evolution maps have been successfully compared with simulated maps obtained by a spectral
analysis of stochastic spatial results (Hill, 1997). Figure 29.5(b) presents on the right a spectral analysis of
simulation results over 5 years, using 255 replicates on Villefranche-sur-Mer harbor (La Darse) site. This
kind of result can be understood as a map of colonization probabilities; the darker the colors, the higher
the frequency of settlement. Spatial aspects in the spreading of cuttings did take into account geograph-
ical data available such as harbor walls, bathymetry, and different substrates. More details on how the
model determines whether or not a specific place was frequently or infrequently settled are given in Hill
et al. (1998).
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FIGURE 29.8 Excerpt of the UML class diagram for the biocontrol multimodel.

After an intensive use of this first model, we developed at the end of the 1990s a multimodeling
simulation to assess the potential of a biocontrol of the alga C. taxifolia by means of a small marine slug
of tropical origin: Elysia subornata. Biological and ecological parameters were considered as key factors
related to the behavior of E. subornata toward C. taxifolia and toward the Mediterranean conditions. To
this end, growth, survival, reproduction, feeding on C. taxifolia, and foraging of E. subornata were studied
through laboratory experiments, details are given in Coquillard et al. (2000). Simulations, taking into
account spatial effects, were in agreement with the laboratory experiments, the results demonstrated that
the greatest impacts on Caulerpa were obtained using either just some adults or mixing adults and juvenile
slugs. In any case, better results were obtained by a scattering of slugs on isolated spots rather than on
clusters (with constant surfaces). Lastly, the choice of a suitable date for scattering increases the weak
consumption of Caulerpa resulting from the scattering of juvenile slugs. To set up experiments in large
mesocosm, an E.E.C. agreement is now necessary. Figure 29.8 presents a metamodel of this simulation
application using the UML (unified modeling language). The metamodel describes the multimodel used
for this biocontrol application; it integrates submodels of different formalisms, and can still be considered
as an IBM, since at its main level we do consider individual differences and local interactions between
individuals.

Many other applications can be found in which IBM or multiagent simulations are of greatest interest.
For instance, the simulation of spatial interactions was essential in the modeling of the reproduction of the
fine-scale horizontal heterogeneity of a pure grass sward with its dynamics (Lafarge et al., 2005). We also
tried other formalisms like the metamodeling approach using artificial neural networks (ANN) trained
by the simulation results (Aussem and Hill, 1999). After a long training, this approach was able to give a
rough prediction of surface colonization but it was impossible to obtain colonization maps. More formal
approaches have also been studied though they are still using discrete-event simulation. In a recent paper,
we show how initial ideas and work proposed by Vasconcelos and Zeigler (1993) for fire spreading and
simulation can benefit from the recent advances in the theory of modeling and simulation (Muzy et al.,
2005). The last point we would like to highlight before ending this application section is the impact of
visualization tools. In the domain of ecological modeling or environmental modeling these tools are often
necessary for communication between specialists. Not only do they provide substantial gains in model
validation, but as in many other domains, the involvement of decision makers will also depend on the kind
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FIGURE 29.9 Snapshot of the postprocessed visualization tool designed for a coupling with an IBM model of forest
fire simulations.

and variety of presented results. A snapshot of a visualization tool we developed for fire simulation is given
in Figure 29.9. Decision makers should, however, be warned that visualization can lead to wrong decisions
(either intentionally or unintentionally). In the case of stochastic simulations under spatial constraints,
end users have to be aware that the animation of simulation results they are watching is only a very small
sample of what could really occur. However, maps presenting spectral results do integrate a sufficient
number of replications and are thus a better tool for decision-making.

29.10 Conclusion

In this chapter, we have exposed a short history of ecological modeling followed by a survey of current
modeling practices using the best journal for publications in this research field. We have given some
general indications concerning methodological choices including the importance of stochastic modeling.
Design problems such as the selection of an organization level have also been discussed. We hope that the
reader has seen that ecological modeling could benefit from many modeling formalisms, most of them
are presented in different chapters of this book. Among the various formalisms we wanted to explain
why more ecological modelers started to build IBMs. This choice was retained since this technique is not
presented in other chapters of this book and because IBMs are of great help when we want to study the
role of individual difference, space, and diversity. With such models, we use what computer scientist would
call a bottom-up approach, since the emergence of ecological properties can be observed from the activity
of individual behavior. Two concrete applications have been presented dealing with stochastic simulations
under spatial constraints (C. taxifolia spreading and biocontrol in the North Mediterranean). However, we
must also warn people that taking this approach, most IBMs rapidly lead to complex simulation programs
(Lorek and Sonnenschein, 1999) and they are only interesting for limited spatial scales (local and regional).
In addition, IBMs need a large amount of attention for the design, development, and debugging (model
verification). Software programming and statistical analysis experience is required when dealing with
stochastic simulation programs; interesting tools are presented in Kleijnen and Groenendaal (1992). Lorek
and Sonnenschein present software frameworks designed to help the building of IBMs, most of the time
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they are built on top of general purpose programming languages, some rely on simulation languages. IBMs
can be extended and linked with many other formalisms in a multimodel (Fishwick et al., 1998; Coquillard
et al., 2000). Whatever the modeling technique, it is important to remember that serious calibration, as a
first stage of model validation, can be achieved only if we have collected enough ecological information,
often supposing an extensive fieldwork.
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30.1 Introduction

An ontology is a formal representation of concepts and relationships among concepts within a particular
domain. In this chapter, the domain is models of agricultural and natural resource processes. There are
a vast number of concepts in this domain including abstract entities such as energy, mass, organism,
and mathematical operators (addition and subtraction) and specific entities such as soil chemicals, plant
components, or a particular plant disease. There are many relationships among these concepts (plant–
water, pest–host). A formal representation is a data structure that describes a concept or relationship and
which is based on a well-defined language. Many different languages have been developed for building
ontologies including the Web Ontology Language known as OWL (OWL, 2005), a W3 standard.

Ontologies languages are object-oriented languages, but they are not programming languages. Ontolo-
gies include objects called individuals that represent particular things in the world (e.g., a particular
soybean crop). Classes categorize similar individuals, and classes can be generalized to superclasses (i.e.,
soybean is a legume) creating a taxonomy of concepts. Individuals have properties that can be primitive
values such as numbers (a soybean crop that has a size of 35 acres) or relationships to other individuals
(the soybean crop is host to several pests).

Because of the formal nature of ontology languages such as OWL, reasoners can be built that perform
inferences over the concepts in an ontology. Such inferences include automatically determining what class

30-1
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an individual belongs to, determining whether a certain class is a special case (subclass) of some other class,
and determining how two concepts are similar or different. Reasoners can be used for many purposes,
including checking for consistency and querying the ontology.

An ontology-based approach to simulation, in which a model is represented using ontology concepts, can
help to address several problems with current methodology used to develop simulations within the domain
of agriculture and natural resources. The general goal is to better communicate knowledge about models,
model elements, and data sources among different modelers and between different computers. This is
achieved through the ontology’s ability to explicitly represent and thus define concepts used in models.

Various researchers create simulations within a particular domain to address a specific problem. There
is an overlap of the concepts and interactions used in these simulations. Frequently, different modelers use
different symbols for the same concept. The use of different programming languages makes communica-
tion even more difficult (Reitsma and Albrecht, 2005). Typically, a model is implemented in a particular
programming language like FORTRAN, C++, or Java. However, the meaning of the model is lost when it is
represented using program code (Furmento et al., 2001). Researchers must understand the programming
language to understand the model. While such models are usually documented using papers and manuals,
this documentation is physically separate from the model implementation itself. It is difficult to maintain
both the model and the documentation, and often the documentation is not an accurate description of the
model implementation. All the details of program code are difficult to describe in written documentation,
so that ultimately it is necessary to read computer code to truly understand how the model works. These
issues need to be addressed, so that the knowledge in a simulation can be made explicit (Lacy and Gerber,
2004; Cuske et al., 2005).

Typically, many different yet similar models are available for a particular domain. The challenge lies
in knowing precisely how two models are similar or different and selecting the one most suitable for
a particular task (Yang and Marquardt, 2003). When a particular model is encoded in a conventional
programming language, it is very difficult to do comparisons between models, and impossible to conduct
comparisons using automated techniques.

Most of the simulations in agriculture and natural resources use databases as a source of input data.
A simulation requires input data in a particular format, which is defined inside the simulation and which
is usually different from the format of the data stored in the database. The input data required for a
simulation must be matched with a database, and to do this matching, knowledge of the internals of
the simulation as well as the database is required. The matching is traditionally done manually, which
is certainly tedious if not error prone. There is a need for a technology that can represent and interpret
diverse data sources and support integration of these sources (Altman et al., 1999). The interoperability of
data can be solved by information integration (Miled et al., 2002; Altman et al., 1999).

Utilizing ontologies for managing model and simulation knowledge facilitates representing this knowl-
edge in an explicit manner. An ontology provides the model semantics that allows machines to interpret
concepts in an automated manner (Lacy and Gerber, 2004). The construction of ontologies encourages
the development of conceptually sound models, more effectively communicates these models, enhances
interoperability between different models, and increases the reusability and sharing of model components
(Reitsma and Albrecht, 2005). It also provides assistance in computation by structuring data (Altman
et al., 1999).

In this chapter, we discuss several important issues and problems addressed by ontology-based simula-
tion. We give an example of how to build a simulation using ontology techniques in a model of sequential
batch anaerobic composting (SEBAC). Tools for building ontology-based simulation are presented based
on a system we have developed that uses an ontology as a database management system.

30.2 Ways in Which Ontologies can be Applied to Simulation

The notion of combining ontologies with simulation has received much attention in recent years (Fishwick
and Miller, 2004; Lacy and Gerber, 2004; Miller et al., 2004; Raubal and Kuhn, 2004). This chapter
explores several different ways in which ontologies can be applied to simulation, and in particular how
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ontologies can solve some problems in current methods of building simulations for agriculture and natural
resources.

30.2.1 Model Base
Many physical processes in agriculture and natural resources are fundamental and well studied. For
example, basic crop physiology such as respiration and photosynthesis, soil/water dynamics, and crop–
pest interactions have been modeled extensively (Lu et al., 2004). Many different yet similar models
have been developed in each of these areas. One reason for the diversity of models is the diversity of
environments in which models need to be applied. There are hundreds of crops grown commercially, and
while as physical and biological systems they all share commonality, there is variability of climate and
geography as well as individualized crop characteristics that lead to differences in models. Furthermore,
each researcher describes a real-world problem based on different perspectives using his/her distinct
modeling environment (Park and Fishwick, 2005).

There are many crop models but there is no comprehensive management system for managing all these
models. Research is being done to develop a suite of crop models for a variety of crops and integrate these
with models for weeds and insects (Agriculture Research Service, 2005). Many other crops can be modeled
by assembling components from available models and changing parameters and rate equations. However,
having so many different yet similar models causes problems in managing models and in sharing model
components among developers. There is unnecessary redundancy resulting from poor communication
among developers. For example, there may be as many as two dozen irrigation models that all basically
operate on the principles of water balance. They may use similar ways of calculating processes such as
evapotranspiration, or they may use different equations to achieve the same results. Unfortunately, the
traditional methods for creating these models make it very difficult to compare the models to see how they
are similar or different.

An ontology can be used to build a database of models, that is, a “model base” that can help to classify
different but similar models and that can be searched to locate models and model components suitable
for some application. Each specific model can be represented by an instance in the ontology, and abstract
model structure and behaviors represented as classes. Similar models can be grouped together into a class,
and related classes grouped together to form superclasses. At the top of the resulting taxonomy would be
generic modeling approaches. If an ontology is also used to represent the internal structure of a model,
then model internals can be compared in an automated fashion to determine which parts of the models
are similar and which are different.

The vast collection of models and model components resulting from this analysis would create a large
but organized taxonomy. This taxonomy could be searched using query processors based on ontology
reasoners to locate models and model components of interest. It can also be used to compare and contrast
two models and explicitly identify how they are different or similar.

30.2.2 System Structure (Logical and Physical)
System structure can take many forms including a geometric structure, a chemical structure, or a phys-
iological structure. The use of object-oriented design for analysis of system structure is well known and
one of the first applications of object-oriented programming dating back to the 1960s. The biological and
physical systems in agriculture and natural resources are also analyzed in this fashion by decomposing
a complex system into simpler interconnected parts and subparts, and modular, object-oriented designs
are widely used (Beck et al., 2003; Kiker, 2001). Of course traditional object-oriented design uses pro-
gramming languages such as Java or C++ as a representation language. Using an ontology is the next
step in this approach (Fishwick and Miller, 2004). There are several advantages to elevating the objects
comprising the system to the status of ontology objects. For one, the model description and behavior is
forced to be done in an entirely declarative fashion. Ontologies do not utilize methods or program code
to represent behavior. Instead the representation is based entirely on concepts and relationships. Also,
by using ontology objects, model components can be classified and interrelated based on their meaning.
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FIGURE 30.1 Representation of equation as a tree structure.

System structure is made explicit in a way that can be exploited by ontology reasoners to compare and
contrast model structures.

30.2.3 Representing Equations and Symbols
Model behavior can be described entirely using mathematical equations (Cuske et al., 2005). Equations
are composed of symbols, and each of these symbols can be represented as a concept in the ontology. This
enables the symbol’s meaning to be more exposed and accessible to analysis and manipulation. Whereas
equations describe the quantitative behavior of variables, the variables are also symbols, and the things
the symbols represent can be made explicit. Furthermore, the basic mathematical operators can also be
treated as symbols and described in the same fashion.

Equations can be stored in the ontology by representing them as tree structures. For example, the
formula

NH+
4 = Nt − NH3

can be expressed using the tree structure in Figure 30.1. The tree is rooted on the equal symbol, and
equal has a left side and right side which are the first two branches in the tree. Operators, such as minus,
are nodes in the tree with subtrees for each of the operator arguments. Each node in the tree, including
operators and variables, become concepts in the ontology. Each concept includes associations to related
concepts, for example, “minus” contains associations to the concepts being subtracted.

The advantage of better defining symbols appearing in equations is improved interoperability of con-
cepts and associated symbols appearing in different models. In addition, with the inclusion of basic
operators, the ontology can classify groups of equations and organize them taxonomically from generic
forms to specific applications. This will lead to discovery of similarities in forms of equations used in
different models, and will help to communicate among different modelers (Altman et al., 1999).

There is one obvious limitation of using ontologies to store and organize equations. While an ontology
is a valuable tool for representing the meaning of the symbols, including operators, appearing in equations,
it has no facilities for solving equations or even performing simple arithmetic operations needed to do
simulation. Although, it is possible that an ontology could be extended to support analytical equation
solving, this area has not been explored and goes beyond the scope of ontology reasoners. Instead, whereas
the ontology acts as a library for organizing equations and their symbols, external facilities are needed
to solve the equations. An external code generator can take equation structures that are stored in the
ontology and automatically produces XML, or program code in C++ or Java (or other languages) that
can implement the simulation.

30.2.4 Connecting Models with Data Sources
Most simulations in agriculture and natural resources require access to data. Basic physical data, such
as weather data, soil parameters, and records of production operations including nutrient, pesticide,
and irrigation applications, are all stored in databases (Beck et al., 2004). These databases can come in
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many forms and are geographically distributed. Unfortunately, there are many and different databases
implemented on different database management systems.

There are several problems associated with attaching these data sources to the simulations that need the
data to run. These include logical considerations, such as determining if the database has the necessary data
in the correct form to provide the inputs required by the simulation. There is also a physical connection
problem as the software used for the simulation must be capable of attaching to the database and querying it
to extract the necessary information. There are also issues of resolution, in time and space, such that the data
provided is on the same resolution or can be converted to the same resolution as that required by the model.

Establishing the logical and physical connection between a model and database can be a tedious process.
To establish this connection, a developer must become very familiar with both the model and database. The
input requirements for the model must be fully specified (this is typically done with text-based documents)
and understood, and likewise the database schema and the meaning of all the attributes available in the
database must be studied in detail. Then the person establishing the connection must match the model
inputs and the database attributes. Seldom is this a perfect match, and often the model requires inputs
that the database cannot provide. In this case, the database must be expanded to include the necessary
inputs or it cannot be used to drive the simulation. Creating the physical connection is also tedious, as
usually code in the form of SQL statements must be written to extract the information from the database
needed by the simulation. Depending on how the database is published, additional work may be needed
to connect the simulation software with the data source using technologies such as ODBC, RMI, or Web
services (Mills-Tettey et al., 2002).

It would be possible for a simulation to automatically search for and attach to a data source. This
would require having a sufficiently rich description, in the form of an ontology, of both the simulation
input symbols and the entities and attributes in the database. A particular input symbol in the simulation
could match automatically to a database attribute. This would be accomplished by matching the ontology
descriptions of the model symbol and the database attribute to prove that they are compatible. Databases
and models could be published on the Internet as a Web service (Knutson and Kreger, 2002). The Web
service registry could be queried to determine the contents of databases contained in the service. The
physical connection between the model and database would be automatic using XML as the method of
exchanging data.

30.2.5 Integrating Documentation and Training Resources
If the ontology is part of a complete database management system, the ontology can store and organize
any content, including multimedia content in the form of rich text, images, 2D/3D animations, and video.
In the context of simulation, this creates a complete environment for all information associated with the
simulation. In particular, all research materials (experimental procedures, raw data, statistical analysis,
technical reports, and journal articles) and educational resources (training-based simulations, scenario
training, and case studies) can be integrated.

30.2.6 Reasoning
The power of ontologies lies not only in their ability to provide declarative representations of concepts and
their relationships, but also in the ability to automatically reason about those concepts. Basic reasoning
facilities include ontology validation, automatically determining subsumption relationships (determining
if class A is a subclass of class B), and classification (automatically determining the location of a new class
within the class taxonomy). Extended facilities included automatic clustering (conceptual clustering) of
concepts, and analogical reasoning or similarity-based queries and case-based reasoning. These facilities
can be applied to simulation to automatically classify models, model components, and the equations and
symbols used in the models. Query facilities based on reasoning can help to locate simulation elements
within a large collection. Clustering techniques can compare the structure of two models and tell how they
are similar or different.
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For example, the knowledge in an ontology in the bioprocessing domain can be used for automatically
generating equations based on physiochemical equilibrium laws. A particular law can be applied based
on the specific property of an individual. In the SEBAC simulation (Section 30.3) fatty acids dissociate
into fatty acid ions based on a physiochemical equilibrium law, and that law is represented by an equation
stored in the ontology. The reasoner can automatically instantiate an equation corresponding to the law
when it finds that an individual of the fatty acid class has a property called “in equilibrium with” and the
range of the property is fatty acid ion. It would use the particular properties of the individuals involved to
parameterize the equation.

30.3 How to Build an Ontology-Based Simulation—
Bioprocessing Example

SEBAC is an anaerobic digestion process that decomposes organic matter into methane and carbon dioxide
by a series of reactions in the presence of several microorganisms. It is used for treating the organic fraction
of municipal solid waste. A mathematical model of SEBAC has been developed to understand the SEBAC
system and to study the response of the system for various feed conditions (Annop et al., 2003). The model
consists of a set of differential equations, which have been constructed based on mass balance and physio-
chemical equilibrium relationships. The steps in building an ontology-based SEBAC model are as follows.

30.3.1 Collection of Relevant Documents
The first step in building an ontology-based simulation is to collect all relevant documents such as technical
papers of the system and any existing related models. In the case of SEBAC, an existing model had already
been implemented using MATLAB (Lai, 2001). We were able to obtain a graduate thesis describing the vari-
ables and equations used in the model (Lai, 2001), a research publication describing the implementation
of the mathematical model (Annop et al., 2003), and source code of the MATLAB implementation.

It would have been useful to have access to a conceptual model for understanding the conceptual
schema of the system. A simple conceptual model of the process was sketched for understanding the
SEBAC domain. Figure 30.2 shows a conceptual model with nine concepts (owl: Class) and three types
of interactions (owl: ObjectProperty). These classes have individuals that can be mapped to the variables
used in the simulation. There are six individuals of bacteria and six individuals of fatty acids in the SEBAC
system that are mapped to the state variables of the model.

Insoluble
substrate

Soluble
substrate

Substrate Reactor

Bacteria

Fatty acid

Methane Carbon
dioxide

Fatty acid
ion

Stored in

Acts on

Acts on

Converts to

Converts toConverts to

FIGURE 30.2 Conceptual model of SEBAC system.
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30.3.2 Define Model in Terms of Elements
The next step is to define the model in term of elements. Elements are used to modularize the model into
logical units. Related classes, individuals, properties, and equations are entered in a particular element.
The description of the model in terms of elements is helpful in understanding the structure of the model.
Typically, a modeler designs a particular model by creating a graph containing elements and links indicating
the information flow between elements. Our tools allow modeler to use a SimulationEditor (Section 30.4)
to build the module structure in the form of an element graph.

The SEBAC simulation involves biological process. The simulation is described in terms of elements that
capture the important processes like bioconversion of fatty acids and substrate and dissociation of fatty
acids. Figure 30.3 shows the elements of the SEBAC model and gives an overview of the SEBAC process
including various transformations that occur during the process.

30.3.3 Identifying Classes, Individuals, and Properties
After defining the general elements of the model, specific concepts in the model are identified. For the
SEBAC system, the concepts were identified from the list of variables used in the model (Lai, 2001). From
these, we created the following classes with the corresponding properties:

• Reactor—liquid volume, gas head space, and reactor temperature
• Fatty acid ion—equilibrium constant for dissociation and conversion factor
• Fatty acid
• Bacteria—biomass death rate, half velocity constant and maximum growth constant
• Methane
• Carbon dioxide
• Soluble substrate and insoluble substrate

Calcium ion

Nitrogen content

Total propionic acid
S4

Propionate bacteria

Hydrogen content determines

Converts to

Converts to

Converts to

Converts to

Acidogens X1

Total acetic acid S3

Converts to

Converts to Converts to

Converts to

Converts to

Converts to

Converts to

Converts to

Substrate Stored in

Dissociates to

Converts toHydrogen_aq

Insoluble substrate
S1

Methane_g Hydrogen ion

Carbon dioxide
content

Acetoclastic
methane bacteria

Soluble substrate S2

Reactor1

Total butyric acids S5

Butyrate bacteria

FIGURE 30.3 SimulationEditor diagram for SEBAC process showing elements of SEBAC simulation and showing
various transformations that occur during the process.
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FIGURE 30.4 Interface of EquationEditor to input the concepts in a particular element of the simulation.

Some of these classes have several individuals. There are three individuals of fatty acid ion, and each fatty
acid ion has a specific value of equilibrium constant for dissociation and conversion factor. Relevant classes,
individuals, and properties are entered in a particular element. Figure 30.4 shows how an individual called
“Ammonium ion” is entered into the ontology database. The other classes, individuals and properties are
entered into the database in a similar fashion.

In conventional modeling languages, the meaning of the symbols and the relationships between the
symbols are not defined explicitly. The SEBAC model has symbols for various forms of nitrogen such as
ammonia, nitrate, and ammonium ion, but the simulation written in MATLAB does not explicitly specify
relationship between these forms of nitrogen or the meaning of each form. The meaning of the symbols
and relationships can be defined explicitly using an ontology. Figure 30.5 shows a portion of the ontology
for different forms of nitrogen.

In the SEBAC model, total dissolved nitrogen is found in the form of ammonia, which in turn can be
found in two forms: ammonium ion (NH+

4 ) or dissolved ammonia gas (NH3). In Figure 30.5, there is a
relationship called“consists of”with a domain of total dissolved nitrogen and a range of forms of ammonia
(NH+

4 , NH3). Ammonium ion concentration is calculated by the difference of total dissolved nitrogen and
ammonia. NH+

4 and NH3 are in equilibrium and their concentration is given by the equation:

NH+
4 � NH3 + H+

Figure 30.5 contains a property called “in equilibrium with” having NH+
4 as a domain and NH3 as a range

that models reversible conversion between these two forms of ammonia. Ammonium ion and hydrogen
ion are specific kinds of ion, and thus are shown as subclasses of the class ion. Ammonia is defined as a
specific kind of gas, so it is also subclass of the class gas. There is a relationship called “converts to” between
NH+

4 and NH3.
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Hydrogen
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Nitrous Oxide Gas Nitrogen Dioxide

Nitrogen

Total dissolved nitrogen

FIGURE 30.5 Ontology for different forms of nitrogen.

NH4_plus � Nt � NH3

FIGURE 30.6 Interface of the EquationEditor for entering equation.

30.3.4 Define Equations
The equations describing dynamic behavior are entered in the system after entering the classes, individuals,
and properties of symbols that are used in the equation. Figure 30.6 shows the EquationEditor for entering
an equation that represents the relationship between total dissolved nitrogen, ammonia, and ammonium
ion concentration.

An equation models the dynamic relationship between concepts (classes) and represents a statement of
a specific law. The Michaelis–Menten equation (Heidel and Maloney, 2000) models a relationship between
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acid and bacteria. Acetic acid is an individual of the acid class and acetolistic methane bacteria is an
individual of the bacteria class. The acetolistic methane bacteria acts on acetic acid, and this relationship
can be modeled by Michaelis–Menten equation. These relationships can be explicitly shown in ontology
as properties. It is also possible to store the specific laws in the ontology based on the relationship between
classes so that the equations can be automatically generated based on the specific relationships between
individuals by using an ontology reasoner as described in Section 30.2.6.

30.3.5 Initial Values of State Variables, Constants, and Database Access
Initial values of state variables are entered manually using an input form which is generated automatically
based on the logic that each differential equation has a state variable and that an initial value is required
for each state variable. The SEBAC simulation has 21 state variables so the input form has 21 text fields.
The value of constants (like the universal gas constant) and other parameters used in the simulation are
entered as properties in individuals representing these constants as described in Section 30.3.3.

Many simulations obtain inputs from databases, such as weather databases or database of farm produc-
tion practices. The simulation can input values from the database by matching individuals representing
the inputs with individuals representing the database attributes as discussed in Section 30.2.4.

30.3.6 Generating Program Code for Implementing the Simulation
Program code for running the simulation is automatically generated by processing the descriptions of
model structure and behavior (equations) stored in the ontology. Currently, our system generates Java
code, but other languages can be supported. Code generation involves retrieving equations and symbols
belonging to each element in the ontology database and making a reference list of symbols having the
hierarchical structure of operators in each equation. A Java class is generated for each element of the
simulation (mainly to partition the code into logical modules). The symbols for variables belonging to
an element are generated as member variables in the Java class while the equations are generated as Java
methods. Each method returns a value for a particular variable based on an equation defined for that
variable. For example, a Java method is generated corresponding to the ammonia balance equation shown
in Figure 30.6 that returns the value of NH+

4 .

30.3.7 Simulation Execution
After generating the Java code, the code is compiled and the simulation is executed. The simulation results
are presented in the form of charts and tables. To enhance interpretation, the results of the simulation
can also be presented as an animation. The dynamics of the SEBAC simulation is shown in terms of
reactors that change colors based on pH and other chemical properties of the system (Figure 30.7). The
ontology facilitates creating these animated interfaces by storing graphic objects that can be used to render
an animation along with the associated model concepts.

30.4 Tools for Ontology-Based Simulation

This section describes some new Web-based authoring tools that we have developed for facilitating con-
struction of ontology-based simulations. These tools are Java applets that can be accessed online using
standard Web browsers that have the Java plug-in installed. Wherever possible we designed these tools to
be visually similar to traditional tools such as equation editors and editors for building system component
diagrams. However, our tools utilize the ontology as the back-end for representing all concepts in the model.

30.4.1 Ontology Editor
There exists a variety of ontology editors such as KAON, which is a popular ontology editor extending
RDFS (Volz et al., 2003), and (Knowledge Base Editor) (KBE), also known as Zeus and Protégé (Noy
et al., 2001). These editors have a rich set of features for building ontologies and support exporting their
ontology model to OWL. They include common functionalities and support several plug-in.
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FIGURE 30.7 Interface for presenting results of SEBAC simulation using animation.

Although they have excellent features, these tools can be difficult to use because they require high
level skills and understanding of ontologies and ontology modeling languages. These ontology editors are
general purpose tools and are not designed specifically for developing simulation models. To facilitate
developing ontologies for simulation, we created new editors which not only have more familiar graphic
interfaces, but also are based on the features of these traditional ontology editors as a back-end. They have a
dual-modality in which the modeler can either view the ontology-based simulation using traditional visual
modeling tools (Figure 30.6) or view the ontology concepts in a graph-based ontology editor (Figure 30.8).

For the classic ontology view, our ontology editor adopts the dynamic graph layout from TouchGraph
(TouchGraph Website, 2005) as illustrated in Figure 30.8. The editor includes tools for creating concepts
and describing properties. Two types of concepts are displayed in this editor: concepts representing the
symbols that appear in equations and concepts representing entire equations. The dynamic graph layout
integrates these two as one graphic view such as shown in the figure. Each node represents a symbol, and
the relation sign represents relationships between symbols in an equation.

30.4.2 EquationEditor
The process of building an equation starts with representing the equation as a mathematical expression of
symbols, including numbers and operators. The equation is rendered visually using classic mathematical
notation, but internally a hierarchical data structure (tree) is used for storing operators and symbols. Each
node in the equation tree is also a node in the ontology. For a particular equation, the equal operator is
the root node of the equation tree. Operators (like + and −) used in the equation become a node in the
tree with child nodes being additional operators or symbols.

The EquationEditor (Figure 30.4) includes a symbol dictionary for entering symbols appearing in the
equations along with their definitions and units. Each symbol is defined both using a gloss (this is a brief
definition in English) and by relationships to other symbols as expressed in the ontology. Equations can
automatically be converted to a sharable format, such as OpenMath or MathML, or to Java code using
code generators.

It is very important to carefully track the units associated with symbols. Different models may use the
same symbol but having different units. For example, mass per unit volume can be expressed with kg/m3
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FIGURE 30.8 Classic graph-based ontology editor showing simulation symbols and their relationships.

or with g/cm3. In the ontology, units are expressed not as simple strings but as a composition of other
units and operators (kg, /, m, power operator, 3) each of which are also symbols in the ontology. Such
composite units can be used to analyze the dimension of symbols appearing in equations. This facilitates
automatic unit conversions and helps determine the correctness of the equation and the dimension and
magnitude of the symbols.

30.4.3 SimulationEditor
SimulationEditor incorporates the EquationEditor described in the previous section and is used for
specifying overall model structure in the form of elements. SimulationEditor also contains facilities for
automatically generating and running simulations and generating reports. SimulationEditor is designed
to represent models of dynamic systems using graphic elements such as source, sink, storage, and flow.
We adopt this concept from the compartmental model (Peart and Curry, 1998) and Forrester notation
(Forrester, 1971), which is widely used in agriculture and natural resource models.

Figure 30.9 shows a mathematical equation that has been converted to various different languages
including MathML, OpenMath, and Java. For program code generation, each equation in the model is
converted to a Java method returning the result of solving the equation. The code is compiled and executed
after it is generated. Independent threads are used for generating and compiling code. The threads check
and report the consistency of the equation and the correspondence of unit and value. Simulation results
are shown as graphs and tables created with a report generator that is integrated into the SimulationEditor.

30.5 Conclusions

This chapter explored several ways in which ontologies can be applied to simulation in the agriculture and
natural resource domains. As an example, an ontology-based simulation was developed in the bioprocess-
ing domain. Development involved seven steps including collection of relevant documents, defining the
model in terms of elements, identifying classes, individuals, and properties, encoding equations, entering
initial values of state, constant, and other parameters, generating code, and executing the simulation.

We have developed an ontology database management system where the database management capabil-
ities are built entirely around an ontology language rather than a traditional relational or object database
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[ Source Equation]
A = B + C

[ generated documents]

<!-- MathML -->
<math display= 'block' xmlns = 'http://www.w3.org/1998/Math/MathML'>
<mrow>

<mi> A </mi>
<mo>=</mo>

<mrow> <!-- OpenMath---->
<mi> B </mi> <OMOBJ xmlns = "http://www.openmath.org/OpenMath"

version = "2.0" cbase = "http://www.openmath.org/cd">
<mo> + </mO> <OMA>

<mi> C </mi> <OMS cd= "relation1 " name= "eq" />
</mrow> <OMV name = "A" />

</mrow> <OMA>

</math> <OMS cd= "arith1" name= "plus" /> <!--- Java--->
<OMV name= "B" />
<OMV name= "B" /> public double A()

< /OMA> {
< /OMA> "return B() + c()" ;
< /OMBJ> }

FIGURE 30.9 MathML, OpenMath, and Java code generated automatically from an equation.

model. Authoring tools for developing models are provide in this environment which have interfaces
similar to traditional tools such as conventional equation editors. They utilize an ontology as the back-end
for representing all concepts in the model.

The development of an ontology for simulation models explicitly exposes knowledge contained in mod-
els at a higher level. This knowledge can be further used for constructing conceptual models, simulations
of similar systems, and educational and training materials. The construction of an ontology will allow
better communication of knowledge about models, model elements, and data sources among different
modelers, enhance interoperability between different models, and increase the reusability and sharing of
model components.
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31.1 Introduction

Most systems involve some level of human interaction. Therefore, if we are to model such systems it
seems necessary to have at least some understanding of the nature of that interaction. It would also seem
necessary to be able to model the interaction of humans to obtain a proper understanding of the system
and its performance.

This chapter explores the idea of modeling the interaction of humans with organizational systems. First,
the concept of system and the way in which humans interact with systems, and each other, are discussed.
The motivation for modeling human interaction is then addressed, before reviewing some examples of
modeling human-to-system and human-to-human interaction. A key focus of the chapter is to outline
the knowledge-based improvement (KBI) methodology. This methodology focuses on modeling a specific
form of human interaction, namely human decision making. An example of the methodology in practice
at the Ford Motor Company is then described.

31-1
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31.2 Systems and Human Interaction

Checkland (1981) identifies four main types of system. Natural systems have their inception with the
origins of the universe and range from atomic systems, through living systems on earth, to galaxies.
Although many of these systems appear to arise from natural processes, there is evidence that some are
the result of (intelligent) design (Dembski, 1999). Designed physical systems are the result of conscious
design and exist to serve some human purpose. Examples are a wrench, a manufacturing plant, and a
car. Meanwhile, designed abstract systems, such as mathematics and literature, are similarly the product of
conscious design, but are abstract in form. Finally, there are human activity systems. These less tangible, but
observable, systems are more or less consciously ordered and exist for some purpose. Examples include a
political system, a health system, a charitable organization, and a football team.

All of these systems can, and often do, involve some level of human interaction. This is most obviously
the case for human activity systems, since they exist as systems of human interaction. Designed abstract
systems are developed and exist through human consciousness and interaction between human actors.
Designed physical systems are developed by humans and often involve human interaction in their use.
A car, for instance, exists as a designed physical system, but only becomes useful when a human starts
to interact with the system, that is, drives the car. Even natural systems involve some level of human
interaction. The climate is affected by human activity through emissions of CO2, and as I write, humans
are crashing a spaceship into a comet having some (small) effect on our galaxy.

To one degree or another, the nature and degree of human activity determines the performance of these
systems. Place a hesitant driver in a Formula 1 car and its performance is going to be very different from that
expected when a professional is behind the wheel. The performance of a regional health system is hugely
dependent on the human activity that defines that system. Indeed, as we move from natural systems through
to human activity systems, human interaction has an increasing impact on the performance of the system.

In this chapter, the focus is on organizational systems primarily as they exist in business or public sector
organizations. These can primarily be classified as designed physical systems or human activity systems.
Indeed, rather than seeing these as bipolar extremes, there exists a continuum from systems that are largely
designed physical systems through to systems that mainly exist as human activity. This is illustrated in
Figure 31.1 with some examples of organizational systems. On the far left are designed physical systems
that involve little or no human interaction in their daily operation. Although an automated warehouse
requires human activity for its initial design and build, there is little or no human activity in its daily
operation with the exception of occasional manual overrides and maintenance.

To the far right are systems that exist purely as human activity. In between these two extremes are a
whole range of systems that are in part designed physical systems and in part human activity systems. A
retail bank, for instance, is designed with a layout and facilities. It also acts as a human activity system
with customers interacting with staff in some purposeful activity. The performance of the bank is in part
determined by the design and in part by the human activity.

Automated
warehouse

Designed physical
systems

Human activity
systems

Call center

Manufacturing
plant

Systems design by humans
No human interaction in day-
to-day operation

Systems of human activity
Exist purely as human
interaction

Retail bank
Regulated

market
Group decision

making

Health
system

Social
network

FIGURE 31.1 Systems and human interaction: a continuum.
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Within these organizational systems there are two types of human interaction. The first involves an
interaction between the human and the designed physical system (human-to-system interaction). Taking
the example of the bank, a customer interacts with the layout of the bank in choosing a route to a service
counter. The customer may also interact with an automated teller. A member of staff interacts with the
equipment at the service counter.

Secondly, there is human-to-human interaction. In the bank customers interact with staff when receiving
service. Customers also interact with one another (e.g., collision avoidance) as do staff. As we move further
to the right in Figure 31.1, human-to-human interaction gradually predominates over human-to-system
interaction.

31.3 Why Model Human Interaction?

Put simply, it is important to model human interaction because systems involve human activity and
because that activity helps determine the performance of a system. Balanced against this is the difficulty
of modeling human interaction, not least because humans are complex. A particular difficulty is being
able to obtain data on how humans behave. Customer behavior in a bank, for instance, is complex. What
determines their choice of service? How do customers choose which queue to join? When do customers
balk, jockey, or leave a queue? How do customers decide how to move from location to location in the bank?
What are the determinants of the time it takes to serve customers? Added to the difficulty of answering
these questions is the recognition that every customer behaves differently.

While human behavior is complex and important in determining system performance, expert modelers
advise that models should be kept as simple as possible (Robinson, 1994; Pidd, 1999). There are a number
of advantages to simpler models (Innis and Rexstad, 1983; Ward, 1989; Salt, 1993; Chwif et al., 2000;
Thomas and Charpentier, 2005):

• Faster development
• More flexible
• Less onerous data requirements
• Faster execution speed
• Easier interpretation of the results

These advantages are lost as the complexity of a model increases. This does not mean that complex models
should not be developed. However, it does mean that the aim should be to develop the simplest model
possible to achieve the objectives of a modeling study.

Robinson (2004) illustrates the need for simple models with the diagram in Figure 31.2. As complexity
(the scope and level of detail of the model) increases, the accuracy of the model also increases, but with
diminishing returns. Eventually a point is reached where the accuracy of the model may diminish with

Human interaction

Scope and level of detail (complexity)

100%

M
od

el
 a

cc
ur

ac
y

FIGURE 31.2 Model accuracy and increasing complexity. (Adapted with permission from Robinson, S., Simulation:
The Practice of Model Development and Use, p. 68, 2004.)
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increasing complexity. This is because the data required to support such models are not available. The
modeling of human interaction in organizational systems certainly involves increasing the complexity of
a model, and possibly to the point where the accuracy begins to diminish.

There is something of a paradox when it comes to modeling human interaction in organizational
systems. At one level it is important to include human factors because they affect the performance of a
system, but at another, the implied complexity suggests that human factors should be excluded from any
model of a system. The paradox is resolved to an extent by noting that the requirement is to design the
model with respect to the objectives of the modeling study (Robinson, 2004). The desire to model human
interaction should, therefore, be driven by a specific requirement to study human interaction. Among the
many reasons for this might be:

• Understanding the effects of human interaction on the performance of the system
• Improving the performance of human actors in the system
• Improving system performance

None of these necessarily require highly detailed or complex models. High model fidelity is not always
required to make a model useful (Hodges, 1991; Robinson, 2001). Instead, it is argued here that the key
aim is to provide a learning environment, in which the model is used to better understand the interaction
between human actors and the system. Through this improved understanding, actions can be taken to
improve the performance of the human actors and/or to improve the performance of the system.

31.4 Modeling Human Interaction: Research and Practice

Before describing a specific example of modeling human interaction, it is worth pausing to obtain an
understanding of the range of research and practical work that is being carried out in this area. That said,
it should be noted that the modeling of human interaction is a very underdeveloped field. Much of the
work remains at the level of research on examples, with only some practical applications. It is also a diverse
field with very little cohesion. As a result, the aim here is not to give a complete review of the field, but to
provide some examples of the type of work that has been, and is being, performed. This work is described
under two headings: modeling human-to-system interaction and modeling human-to-human interaction.

31.4.1 Modeling Human-to-System Interaction
Perhaps the first place to start in discussing the modeling of human-to-system interaction is to recognize
that simulation games incorporate human interaction with a system. A business game, for instance,
involves human actors entering policies and decisions on a periodic basis, which then determine the
performance of the organization being modeled. Simulators also incorporate human interaction with a
system. The best known example is probably a flight simulator where a human interacts with a simulation
as a means of practicing flight procedures. Neither of these strictly model human interaction since they
rely on interaction between real people and the game or simulator rather than on a model of the human
actors. What they do provide is a means of assessing the impact of human actors on a system.

In terms of specifically modeling human interaction, one area with a reasonably long history of research
has been the modeling of human decision making. Flitman and Hurrion (1987), Williams (1996), and Lyu
and Gunasekaran (1997) all describe examples of linking simulation models with artificial intelligence (AI)
representations of human decision makers. Flitman and Hurrion link a discrete-event simulation model of
a coal yard with a rule-based expert system, enabling human actors to input control decisions. The expert
system learns from the control actions taken. Williams uses a simulation to elicit knowledge from experts
concerning the scheduling of replenishment at sea by the Royal Navy. The knowledge is used to train a
rule-based expert system, which is then linked back to the simulation model to test the performance of the
scheduling strategy. Lyu and Gunasekaran represent managers’ decisions concerning unloading operations
at a wharf using a rule-based expert system, and then test the performance of decision strategies using a
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simulation. Similar ideas are discussed by Robinson et al. (1998) and Standridge and Steward (2000). In
all these cases, rule-based expert systems are used for representing the decision making strategies.

As an alternative to the use of rule-based expert systems for representing human decision making
strategies, both Liang et al. (1992) and Curram (1997) use neural networks. Meanwhile, Moffat (2000)
discusses the use of Bayesian inference for modeling command and control in simulation models of
military combat.

Outside of modeling human decision making in systems, Harmon et al. (2006) provide a general
discussion on human behavior representation in simulation with a focus on the validation of such repre-
sentations. A specific example of modeling worker behavior in manufacturing simulation models is given
by Baines and Kay (2002). They develop a pilot model, which includes the effects of worker stereotype (e.g.,
action oriented or thinking person) and the environment (e.g., noise level, temperature, and cleanliness)
on worker performance. The model utilizes a neural network to evaluate the relationship between these
factors and performance. In a similar vein, Brailsford and Schimdt (2003) model patients’ attendance
behavior for diabetic retinopathy. Using Schmidt’s PECS framework (Schmidt, 2000), the model takes
into account the patients’ physical state, emotions, cognitions, and social status. Both of these projects
incorporate ideas taken from cognitive psychology.

31.4.2 Modeling Human-to-Human Interaction
Agent-based modeling provides concepts and constructs for modeling human-to-human interaction.
Unlike traditional simulation approaches which aim to model a system as a defined set of relations between
system elements (top-down approach), agent-based models adopt a bottom-up approach. Agents with
given behaviors interact with other agents, leading to a system with emergent properties. The prisoners’
dilemma illustrates how complexity can arise from what appears to be a simple two-person human-to-
human interaction (Axelrod, 1997). Silverman et al. (2006) discuss the state-of-the-art in human behavior
modeling and identify the key challenges in improving models of socially intelligent agents.

Two specific examples of agent-based simulation in an organizational context are given by Baxter et al.
(2003) and Schelhorn et al. (1999). In the former, an agent-based model is developed to understand how
word of mouth influences the adoption of products and services by customers. Meanwhile, Schelhorn
et al. simulate pedestrian movements in an urban area based on the influence of spatial configuration,
predefined activity schedules and different combinations of land use.

Another branch of work in modeling human-to-human interaction is in evacuation simulations. These
models not only involve interactions between evacuees, but also interactions between people and the
system (e.g., a building). A number of examples of this type of simulation exist, for instance, Kim et al.
(2004) describe progress toward a simulation for evacuation in marine accidents, while Learmount (2005)
summarizes work on simulating evacuation from aircraft.

Social network analysis (SNA) provides a means for modeling and understanding human-to-human
interaction in organizations. Cross and Parker (2004) discuss the use of SNA in business organizations,
while Carley (2003) focuses on their use for intelligence work in identifying and understanding terrorist
networks.

What is apparent in this work is that a key challenge in modeling both human-to-system and human-to-
human interaction is developing valid models of human behavior. Further to this, it is difficult to obtain
data to populate these models. What now follows is a description of a methodology that aims to address
both these needs within the context of modeling human decision making. The methodology is illustrated
by a case study example in a Ford manufacturing plant.

31.5 The KBI Methodology

KBI uses visual interactive simulation (VIS) (Pidd, 2004; Robinson, 2004) and AI to develop an under-
standing of human decision making within organizational systems, primarily manufacturing systems. VIS
is used to elicit knowledge from decision makers and AI is used to learn and represent different decision
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FIGURE 31.3 The Knowledge Based Improvement methodology. (From Robinson et al. 2005. Journal of the
Operational Research Society 56: 913. With permission.)

making strategies. The VIS and AI are then linked to predict the performance of the system under different
decision making strategies.

As discussed above, the prime motivation of KBI is not to develop a more accurate simulation, but to
create a learning environment in which good practice can be identified and shared among decision makers.
KBI consists of five stages (Figure 31.3):

• Understanding the decision making process
• Data collection through simulation
• Determining the decision makers’ decision making strategies
• Determining the consequences of the decision making strategies
• Seeking improvements

Each stage is summarized below, with a more complete discussion to be found in Robinson et al. (2005).
In the KBI methodology the problem is conceived as follows. A decision making process consists of two

vectors:

Di, j = [d1, d2, . . . ]

Ai = [a1, a2, . . . ] (31.1)

Di,j is a set of decisions made by decision maker j at decision point i. Each decision made is represented
by decision variables (d1, d2, . . .). The values that these decision variables take are known as the decision
options. Vector Ai lists the decision attributes (a1, a2, . . .) at decision point i, described as the decision
scenario. The decision attributes can take on various attribute levels.
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The aim of the KBI methodology is to identify and improve the function fj , which represents the decision
making strategy of decision maker j:

Di, j = fj(Ai) (31.2)

Function fj is itself a model, in this case of a human decision making strategy. As such, the discussion
above concerning models as simplifications applies. Indeed, KBI does not set out with the notion that a
complete model of a decision making strategy can be obtained, but instead that only a partial explanation is
possible. This is similar to Zeigler’s (1976) view that the base model (a complete explanation of a system) is
unknowable, and that instead a lumped model (a partial and appropriate explanation) should be utilized.
The aim of KBI, therefore, is to identify a partial model of a decision making strategy based on a partial
understanding of the decision variables and decision attributes. As a consequence, the decision making
strategy as identified by KBI can be expressed as

D̂i, j = f̂j(Âi) (31.3)

denoting that the two vectors and the function f̂j are all approximate.

This does leave the question of what is the appropriate level of approximation for the function f̂j . It
is supposed that a relation similar to that set out in Figure 31.2 applies. Similarly, the determination of
how far to move along the curve should be driven by the objectives of the study. If the aim is to devise
an AI system to largely replace a human decision maker in a real system, then a much greater level of
accuracy is required than if the aim is to gain a better understanding of the effects of human decision
making on system performance. The selection of an appropriate simplification in modeling is itself a field
for further research. For discussions on this topic see Zeigler (1976), Ward (1989), Nance (1994), Powell
(1995), Brooks and Tobias (1996), Pidd (1999) and Pace (2000).

31.5.1 Stage 1: Understanding the Decision Making Process
In the first stage of KBI, the aim is to identify the decision variables, decision options, decision attributes,
and attribute levels. Although interviews and discussion with the decision makers can reveal some infor-
mation about the decision making process, usually a decision maker cannot explicitly identify and list all
the decision making components. Various other approaches can be used to develop a better understanding
of the decision variables and attributes:

• Observing the decision makers as they take decisions.
• Hypothesizing about likely decision variables and attributes.
• Interaction with a simulation model (stage 2 of the methodology).

31.5.2 Stage 2: Data Collection through Simulation
This step involves collecting example decisions from the decision makers to obtain the decision matrices:

D̂j =

⎡
⎢⎢⎢⎢⎣

d1,1 d1,2

. .

di,1 di,2

. .

dI ,1 dI ,1

⎤
⎥⎥⎥⎥⎦ Â =

⎡
⎢⎢⎢⎢⎣

a1,1 a1,2

. .

ai,1 ai,2

. .

aI ,1 aI ,1

⎤
⎥⎥⎥⎥⎦ (31.4)

where D̂j is the series of decisions taken by the decision maker j under the decision attributes represented

by Â. A total of I scenarios are presented to each decision maker. These data are collected through a VIS
model. The decision maker interacts with a VIS of the system in question entering his/her decisions to
the model. The model records the value of each decision variable and decision attribute to a data file. As
a result, a set of values for the matrices D̂j and Â are collected. Separate D̂j matrices can be generated for

each decision maker by presenting them with the same set of scenarios, Â.
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There are various advantages of using VIS over observing decision makers in the real system:

• The speed with which decision scenarios can be presented to the decision makers.
• The ability to control the nature of the decision scenarios.
• The ability to replicate the same decision scenarios with different decision makers.
• The ability to easily record every attribute of the simulated system at each decision point.

Of course, certain problems with the use of VIS also exist:

• The ability of a simulation to contain all the decision attributes of a decision scenario.
• The extent to which a decision maker makes realistic decisions in a simulated environment.
• The monotony of working in a simulated environment.

31.5.3 Stage 3: Determining the Decision Makers’ Decision Making
Strategies

AI methods are used to determine the decision making strategies (f̂j) of the different decision makers from
whom data have been collected. Various AI approaches can be used, for instance, rule-based expert systems,
case-based reasoning, and artificial neural networks, as well as statistical pattern recognition techniques
(e.g., logistic regression). The data collected in stage 2 are used to train an AI representation using, for
instance, the ID3 algorithm (Quinlan, 1986) for determining a decision tree in a rule-based system. Since
rule-based systems provide a decision tree they are favored. This is because they not only model a decision
making strategy, but they also have the greatest explanatory power. A separate AI representation (e.g.,
decision tree) should be created for each decision maker.

31.5.4 Stage 4: Determining the Consequences of the Decision Making
Strategies

In this step, the performance of the decision making strategies ( f̂ j) are determined by linking the AI
representation of each decision maker with the simulation model. Instead of requesting input from the
decision maker, the simulation now requests input from the AI models. This enables long simulation runs
to be performed so that the effect of different decision making strategies on the performance of the system
can be determined.

31.5.5 Stage 5: Seeking Improvements
Improved decision making strategies can be sought by combining the best strategies or by taking a good
strategy and discussing with the decision makers how improvements can be made. More formal heuristic
search methods could also be employed to look for better strategies. In each case, the alternative strategies
can be tested by running them with the VIS to determine their effectiveness.

31.6 A Case Study: Modeling Human Decision Making at
Ford Motor Company

The Ford engine assembly plant at Bridgend (South Wales) is one of the main production plants for
the Zetec petrol engine. The plant consists of three main assembly lines (Line A, Line B, and the Head
Subassembly Line) followed by a Hot Test area and an After Test Dress line for finishing operations. The
KBI methodology was applied to the problem of machine failures on the main assembly lines. When a
machine fails, the machine is first inspected and then the maintenance supervisors determine what courses
of action to take. The research project focused on the decision making strategies of the maintenance
supervisors. To reduce the scope of the work, only the maintenance activities in the first of the four areas
on the line were considered, representing about a quarter of the machines on the line.
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31.6.1 KBI Stage 1
Initial investigations in stage 1 of the methodology were carried out by observing maintenance engineers
at work and through discussion with the engineers and plant manager. These revealed that there were
three decision variables surrounding the failure of a machine (decision options are shown in brackets):

• What action should be taken? (repair immediately [RI],“standby”—operate manually [SB], switch-
off the machine [SO])

• Who should act? (group leaders [L1, L2], second skilled engineer [L3], semiskilled engineer [L4],
unskilled engineer [L5], ask the production manager [APM])

• Should planned maintenance be performed on the machine? (perform planned repair [PR], schedule
planned repair [SPR])

The decision vector in this context is therefore expressed as a set of binary variables:

D̂i,j = [RI SB SO L1 L2 L3 L4 L5 APM PR SPR] (31.5)

Following these investigations (and some use of the VIS in stage 2 of the methodology), the decision
attributes were found to be:

• Type of fault (TF)
• Estimated repair time (ERT)
• Machine number (MN)
• Time of day (TD)
• Number of engines produced so far this shift (NEP)
• Engines waiting on the conveyor before the machine (EWC)
• Number of heads in the buffer (NHB)
• Number of breakdowns on this machine today (NBMT)
• Number of breakdowns on this machine this month (NBMM)
• Number of breakdowns of this type on this machine today (NBTMT)
• Number of breakdowns of this type on this machine this month (NBTMM)

These attributes could each take on various levels. The vector of decision attributes is expressed as follows:

Âi = [TF ERT MN TD NEP EWC NHB NBMT NBMM NBTMT NBTMM] (31.6)

31.6.2 KBI Stage 2
A VIS model of the assembly line already existed, but this did not contain any complex decision making
logic for maintenance decisions; it defaulted to a repair immediately decision. The model was adapted to
enable decisions to be entered by an expert user as machines failed and an interface was devised for data
collection (Figure 31.4 and Figure 31.5). The interface, written in Visual Basic®,1 reported the status of
the simulation (the decision attributes) and asked the user to enter a decision (the decision variables).
Data collection sessions were run with three decision makers; the maintenance supervisor for each of
three shifts on the first area of the line. Each was presented with the same set of 63 scenarios (Â) via the
simulation. These scenarios were selected from a historic trace of data on machine failures obtained from
the plant. The trace was adjusted, removing repetitive and simple cases, to ensure that there was a wide
range of decision scenarios. Data collection sessions took around 1 h with each decision maker. This was
found to be both as long as the maintenance supervisors could spare for this exercise and as long as their
concentration when using the model could last.

1Registered trademark of Microsoft.
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FIGURE 31.4 Visual Basic interface for VIS model: reporting decision attributes.

FIGURE 31.5 Visual Basic interface for VIS model: entering decision variables.

31.6.3 KBI Stage 3
Based on the data obtained (D̂j), three approaches were used to learn the decision making strategies

( f̂ j) of the three decision makers: artificial neural networks, logistic regression, and rule-based expert

systems. MATLAB®,2 SPSS®,3 and the XpertRule®4 software were used, respectively, for implementing
these methods. All provided a reasonable fit to the original decisions. As stated previously, the rule-based
expert system was preferred due to its explanatory power in that it provides a decision tree showing each
decision making strategy.

An example extract of a decision tree generated using this approach is shown in Figure 31.6. If machine
Op1025 breaks down, the decision maker will repair immediately if the estimated repair time is less than
20 min, otherwise standby operation will be used. For Op1060 a different repair time threshold applies.

2Registered trademark of The Math Works Inc., Natick, MA.
3Registered trademark of SPSS Inc., Chicago, IL.
4Registered trademark of XpertRule Software, Leigh, UK.
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Machine

Op1025 Repair time � 20

Repair time � 20

Op1060

Op1120

Repair immediately

Standby

Repair time � 36

Repair time � 36

Repair immediately

Repair immediately

Heads in buffer � 36

Heads in buffer � 36

Repair immediately

Standby

FIGURE 31.6 Extract from the decision tree derived for one of the decision makers. (From Robinson et al. 2005.
Journal of the Operational Research Society 56: 918. With permission.)

TABLE 31.1 Performance of Decision Making Strategies in
Terms of Assembly Line Daily Throughput

DM1 DM2 DM3

Mean daily throughput 325.53 325.15 318.87
Standard deviation 36.28 28.54 34.34

Further to this, the decision maker takes account of the number of engine heads that are available in the
buffer. For Op1120 the decision is always to repair immediately.

Notice that only a few of the decision attributes are required to determine what decisions would be
taken. The same is true for all the decision makers, although some may take account of different attributes.
There is something of a disconnect then between the attributes that a decision maker suggests he/she uses
in forming decisions and those that are actually used. This helps confirm the view that simply asking
decision makers what decisions they take and how is unlikely to yield accurate information. Very often
experts simply do not know how they reach decisions or even what decisions they might take, since much
knowledge is tacit.

31.6.4 KBI Stage 4
The rule-based expert system was then linked to the VIS to perform a long simulation run of over 100
days. As decision points were reached during the model run, the expert system provided decisions in place
of the human decision maker. The model then continued its run simulating the consequences of each
decision.

This simulation runs showed some variations in performance between the decision makers as measured
by the throughput of the assembly line (Table 31.1). Note that a multiplier has been applied to the figures
for reasons of confidentiality. Decision makers 1 and 2 achieve a similar level of throughput, but decision
maker 2 achieves a lower variation on a day-to-day basis. Decision maker 3 achieves a mean throughput
of between 6 and 7 less engines a day.
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As previously stated, these decision makers only supervise maintenance activities on the first area of
the assembly line. There are three further areas. In the simulations, it was assumed that for the rest of
the facility the decision is always to repair immediately. As a result, the effect of the decision makers
studied on overall assembly line performance is limited. To understand the full effect of maintenance
decisions on assembly line performance, a further study of the other three line areas would have to be
carried out.

31.6.5 KBI Stage 5
In the Ford project stage 5 was not performed explicitly. However, it is notable that at one point in the
project a new supervisor used the model as a training device. When he was uncertain about which decision
to take for a specific scenario, he sought advice from a colleague. In this way the methodology acted as a
catalyst for improving the supervisor’s decision making strategy.

31.6.6 Findings about KBI
This project demonstrated the validity of the KBI approach, showing that a VIS could be used to elicit
knowledge from decision makers and an AI tool could then learn their (approximate) decision making
strategies. Further to this, the VIS and AI models could be linked to determine the performance of the
manufacturing system.

Various issues concerning the methodology also emerged:

• Stage 1: the use of formal problem structuring methods might aid this stage, e.g., cognitive mapping
(Eden and Ackermann, 2001) or soft systems methodology (Checkland, 1981).

• Stage 2: the use of VIS needs further investigation, particularly the design of the human–computer
interface, e.g., level of visual representation, reporting of decision attributes, and selection of
decision scenarios to obtain sufficient valid data rapidly.

• Stage 3: further exploration of AI approaches is required to identify those with greatest learning and
explanatory power.

• Stage 4: validation of the AI representations is problematic and requires methodological develop-
ments. How can we be sure that an AI representation of a decision making strategy is close to the
actual strategy used in the real system?

• Stage 5: use of informal and formal methods for improving decision making strategies need to be
explored.

A second project is focusing specifically on the issues surrounding stage 2 (Lee et al. 2005).

31.7 Conclusion

The KBI methodology provides an approach for obtaining data on, and representing, human decision
making strategies. It appears to do this with some success, but also a number of limitations. This suggests
the need for further development to the methodology.

Meanwhile, human decision making is just one form of human interaction with a system. There are many
other forms of interaction between humans and systems (e.g., speed of work, requests for information, and
environmental effects on humans) and between humans within systems (e.g., communication and physical
interaction). Since the performance of many organizational systems is in part determined by the interaction
of humans, it would be useful to better understand the nature of that interaction and its effects on system
performance. The modeling of systems and human interaction provides a means for achieving this.

At present examples of modeling systems and human interaction are quite limited and the field requires
further development with emphasis on two key areas. First, there is the need for modeling frameworks
to represent human interaction. KBI provides one such framework. Other approaches might be found
in fields such as AI, agent-based methods, game theory, evolutionary algorithms, and Bayesian belief
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networks. A second requirement is for data on human behavior and human interaction to be able to
populate the modeling frameworks. This is a complex task. Further development of the field surely
requires a multidisciplinary approach with input from modeling experts, computer scientists, and cognitive
psychologists.
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32.1 Introduction

The military has always been a very heavy user and innovative developer of modeling techniques and
technologies. The nature of military missions requires that they rehearse missions to better understand
their complex interactions and to estimate outcomes. This need has led them to apply modeling and
simulation to a number of different activities over the last 300 years. In this chapter, we will explore the
major applications of military modeling and will discuss the most common forms of dynamic modeling.

32.2 Applications

The U.S. military has made its own unique definitions of the terms “modeling” and “simulation.” For their
purposes, modeling is often defined as, “a descriptive, functional, or physical representation of a system”
(National Simulation Center, 2000). These representations may take the form of a mathematic equation, a
logical algorithm, a three-dimensional digital image, or a partial physical mock-up of the system. Models
are applied so widely that the variety of systems of interest is almost without bounds. In these systems,
military weapons systems are usually very prominently represented, to include land, air, and sea vehicles;
communications and radar equipment; handheld weapons; and individual soldiers. But models also rep-
resent the decision-making process and automated information processing that occurs inside the human
brain and within battlefield computers. They extend to representations of the environment that is made
up of terrain, vegetation, cultural features, the atmosphere, ocean, and radio frequency (RF) environment.
Different combinations of all of these are needed to accurately represent potential military situations.

One military definition of simulation is, “a system or model that represents activities and interactions
over time. A simulation may be fully automated, or it may be interactive or interruptible” (NSC, 2000).

32-1
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This definition attempts to encompass human-in-the-loop simulators for training as well as systems that
serve as analytical tools for computing outcomes without the aid of a human participant.

The official categorization of the use of models and simulation within the military is to divide them
into three large application groups.

The first is for use in “research, development, and acquisition.” In these applications, models are used
to provide insight into the cost and performance of military equipment, processes, or missions that are
planned for the future. These use scientific inquiry to discover or revise facts and theories of phenomena,
followed by transformation of these discoveries into physical representations.

The second category is in exploring “advanced concepts and requirements.” These models present
military systems and situations in a form that allows the military to conduct concept exploration and
trade studies into alternatives. These trade studies often explore multiple variations on a new weapon or
tactic and attempt to measure the effectiveness of each of them. The result is a general appreciation for
the different options available and some rough measure for ranking them. The models may be used to
understand physical weapons or equipment, but they may also explore different processes for organizing
and executing a mission. These require an understanding of processes and the interactions that occur
between the different steps in the processes. The models assist the military in creating a doctrine of
operations, constructing an internal organization, and selecting materials for acquisition.

The third category is in “training, education, and military operations.” Models that are embedded
in a simulation system are used to stimulate individuals and groups of personnel with specific military
scenarios. The goal is to determine the degree to which they have learned to execute the doctrines they
have been taught. It also gives them the opportunity to experiment with new ideas and to determine how
useful these might be in a real warfare situation. All of this can be done in a controlled environment that
is free of the life-threatening situations that are part of real combat operations.

Finally, it should be noted that military modeling and simulation has always been the basis for a large
segment of entertainment products. Many of the modeling concepts behind paper board-wargaming in
the 1950s were developed simultaneously by the RAND Corporation for serious military training and by
Charles Roberts at the Avalon Hill game company for popular entertainment (Perla, 1990). This trend
has continued for over 50 years and can be seen today in comparing realistic three-dimensional military
training systems and the product of the very popular computer gaming industry. Systems like America’s
Army provide an environment for experimentation and training in the military, a device to enhance Army
recruitment and education about the military lifestyle, and a game for use by anyone looking for a little
excitement in their free time (America’s Army, 2006).

32.3 Representation

Models, by their very nature are an abstraction or simplification of the real world. Therefore, it is possible
to create an almost infinite number of variations on the representation of objects, actions, and events in
a simulation. Over the past several decades, a number of different types of models have been developed
for representing a military system or mission. These have gradually converged into commonly recognized
categories of representation. These categories have significantly improved the ability of military modelers
to communicate with each other and to exchange models with a better understanding of the differences
between the products being created.

32.3.1 Engineering
Engineering models focus on the details of what a system does. These capture the physical properties
of materials, liquids, aerodynamics, servomechanisms, and computer control of specific systems. They
also include interactions between two physical objects or between an object and its environment. An
engineering model attempts to understand the physical capabilities of the system at a level that is accurate
enough to be used to design the system. Historically, physical prototypes were used to conduct these
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experiments. However, advanced computer technologies and modeling techniques have allowed us to
create digital models of systems that are nearly as predictive as are live physical tests. These models offer
many advantages over their physical counterparts. They are almost infinitely malleable so that experiments
can be conducted on many thousands of variations rather than just a few physical prototypes. They are
nearly infinitely instrumentable. It is possible to collect data from all points in space and time around
the event of interest. When using physical prototypes we are often limited by our ability to place sensor,
communication, and recording equipment at the precise place and time of interest. Engineering models
become a more prominent part of creating or studying military systems because of the accessibility of the
required computers and more mature methods for representing real systems.

32.3.2 Virtual
A “virtual model” often refers to a three-dimensional representation of a system that is operating in a
digital three-dimensional environment. The focus is usually on the visual appearance of the object and the
environment, more than on the properties of physics that are the focus of engineering models. Because of
its visual focus, the objects most often represented are military vehicles and humans that would appear on
a battlefield. This category is closely aligned with the more popularly recognized term “virtual reality.”

A virtual model and environment are usually constructed to simulate individual soldiers who are
immersed in a system that generates visual, aural, and tactile stimuli. The goal is usually to train, test, or
measure the ability of the human to respond in a desirable manner to the stimuli. Flight simulators are
the most popularly recognized form of these models and systems.

32.3.3 Constructive
A “constructive model” represents objects that are separate from the human user or player, but which are
under the control of this person. The user sends commands to these objects, but is not immersed in the
middle of the battle as he or she would be in a virtual environment. Historically, constructive models have
often been aggregated as well. Rather than representing individual vehicles or people, the model represents
groups of these in an attempt to reduce the number of details about each and to make it possible for the
computer and the human to control many more of them. More recently, constructive simulations that
represent individual objects have become very popular and very powerful. These are often referred to as
semiautomated forces (SAF) systems because of the way that control of the objects is shared between a
human user of the system and intelligent models of the human behavior embedded in the software. A
human may provide the overall mission and direction, but the SAF will supplement this with detailed
control of activities like movement and engagement.

A constructive model may represent a flight of four aircraft as a single item in the simulation or it may
represent each aircraft individually. What separates the constructive from the virtual is usually the method
of human interaction, the lack of a three-dimensional representation of the object, and the number of
objects that are controlled by a single user. A constructive may also group several hundred vehicles, humans,
and equipment into a single object model. This model must then represent the aggregated behaviors of
its many different constituent parts. There are a number of motivations for this type of modeling. First, it
allows the simulation system developers to capture the operations of a much broader battlefield in a form
that can be run on a reasonable computer suite. Second, in many cases the behavior of groups of objects
are not understood at the engineering or virtual level, but can be represented as a higher-level aggregate.
Third, this type of model mimics the organization, representation, and information that are used in the
real military organizational hierarchy.

Very basic constructive models of military operations can be seen in many board and computer games,
such as Chess, Stratego, and Risk. Constructive simulation systems differ from virtual systems in that the
human operator or player is often positioned outside of the battle. Engagements are not usually targeted
at the human player, so they are in a position to think more strategically about the situation and are not
required to react to individual events that appear to threaten them personally, as would occur in a virtual
system.
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32.3.4 Live
Though a “live model” appears to be an inappropriate description, the term has been adopted to refer
to activities in which live humans, vehicles, and equipment engage in mock combat. The combat events
do not involve real munitions and attempt to avoid situations that could have lethal outcomes. Using
computer, communication, navigation, and laser technologies, training areas have been constructed in
which combatants can use their real weapons in a form that is as physically realistic as possible. Laser
beams and radio often replace bullets, and radio messages indicate where bombs are dropped.

Live modeling allows humans to train in the real environment, to experience the physical hardships of
traversing rough terrain, operating in the desert sun, and experiencing the effects of dirt and water on the
equipment. The humans and vehicles become living models in a living simulation. In many cases, these
live participants are also supplemented with virtual and constructive models to enrich the entire training
experience. The largest, and in many ways, the definitive live exercise, was the Louisiana Maneuvers that
were conducted in 1941 and used to prepare U.S. forces for entry into World War II. These maneuvers
involved over half a million soldiers operating over an area of 3400 square miles of terrain in Louisiana
(Sanson, 2006).

32.3.5 Environment
The model of the environment has typically been a static representation of terrain, vegetation, roads,
rivers, wind, clouds, rain, ocean waves, salinity, ocean bottom, and any number of other features. This
environment provides a medium within which the above models could operate. The environment impedes
the movement of objects, obstructs sensor visibility, and changes the outcomes of all types of operations
(Mamaghani, 1998). However, in the midst of all of this activity, the environment itself usually remained
static and unchanged. A bomb dropped on a truck may destroy the truck, but makes no change to the
underlying terrain or the surrounding vegetation.

Recently, this has been changing. Military simulation systems have included dynamic models of the
interaction between military systems and environmental features. Simulated objects are able to knock
down trees, crater roads, dig holes, build barriers, and destroy buildings. To support this, a new form
of environmental model has evolved which understands the physical effects of vehicles and weapons on
dirt, trees, and masonry block structures. Representing these changes has required better understanding
of the physical properties of environmental features, especially as they relate to military operations. It is
also driving advances in the representation of environmental features as both data structures and three-
dimensional rendered scenes. As with all models, those of the environment contain almost an uncountable
number of variations on how objects and events are represented. It is not possible to identify or enumerate
all of these, but an interested reader is encouraged to explore this area more at the SEDRIS website given
at the end of the chapter.

32.4 Dynamics

To this point, we have focused on defining and categorizing military modeling according to its applica-
tion. Those categorizations were meant to illustrate the unique situations, problems, and interests of the
developers and customers for military models and simulation systems. In this section, we will describe
the most dominant forms of dynamic modeling that are used in the community. Because military systems
and problems are so diverse and such a large investment has been made in exploring them, there are many
more unique forms of dynamic modeling than can be captured in a single chapter or an entire book.
However, the forms that are described here are some of the most dominant in military systems.

Dynamic modeling of military systems and missions often focuses on activities like

• movement,
• perception,
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• exchange,
• engagement,
• reasoning, and
• dynamic environment.

In this section, we describe the dynamics that are included in each of these categories. This is followed by
a section that explores multiple approaches to modeling these dynamics.

32.4.1 Movement
Dynamic representation of movement captures the change in an object’s position over time. Models may
represent position as a coordinate in two-space, three-space, or as a velocity vector. Two-space coordinates
usually include a position in X and Y , such as latitude and longitude. For models that represent only
ground-based vehicles like trucks, tanks, and foot soldiers, this can be sufficient. The object may have no
variation in elevation, or the elevation may come from the underlying elevation of the terrain on which it
sits. Position may also include orientation, which in two-space would be limited to a 360◦ angle around
the vehicle. A common reference system for this angle is with the zero point being aligned with true north
and proceeding clockwise with 90◦ being east, 180◦ being south, and 270◦ being west.

In three-space, the coordinate system includes a representation of elevation. This third dimension may
be height above the local terrain, elevation above mean sea level, or distance from the center of a sphere that
represents the Earth. The latter measurement evolved during the creation of distributed heterogeneous
simulation systems. When networking multiple simulations, differences in the terrain representation
within each system led to significant differences in vehicle position with respect to the terrain. Therefore,
a nonterrain referenced coordinate system was needed to overcome these differences. When a three-space
orientation is added to this model, it includes the pitch, roll, and yaw of the object, creating a six degree-
of-freedom (6-DOF) model. When represented as a vector, this may also include the velocity of the vehicle
along the axis of orientation.

In their basic form, movement models change the position and orientation coordinates according
to a logical or physical representation of movement, as described in the next section. However, most
implementations go further to include the effects that movement has on the object and the environment.
The movement model may be linked to a model of the fuel consumption of the vehicle. This adds a
limiting factor that can stop movement when the fuel is depleted. The inclusion of a fuel model leads
to the need for the simulation system to represent a process for replenishing fuel as well. Otherwise, the
objects in the simulation will eventually grind to a halt as fuel is depleted and there is no mechanism to
refuel. In military modeling, the addition of each detail often leads to the need for more models to drive the
additional variables that are added. Systems can grow far larger than can be developed, funded, or hosted
on a computer if there is not a strict management of the details that are included in the models. Many
authors have warned against this gradual creep in features that leads to the eventual failure of the system
being developed (Law and Kelton, 1991). This type of growth is not limited to movement modeling, but
can occur throughout the system if the designers do not control it.

A movement model may also calculate the number of hours of operation that the object has been used.
This information is the root of most system failure and maintenance representations, and drives the mean
time between failure (MTBF), repair (MTBR), or other similar models.

The interaction of object movement with the terrain can generate environmental changes that trigger
yet another model, such as the generation of smoke or dust clouds in the wake of a vehicle. If these changes
to the environment are represented, then they call for specific environmental models that can calculate the
size and density of the cloud created as well as its drift and dispersion over time.

32.4.2 Perception
Military objects move about the environment to interact with other objects. One of the first steps in this
interaction is to perceive or detect the existence, position, and identification of the other object. Sensor
models capture the signatures of those objects, as when a visual sensor captures reflected light from an
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object to the sensor. In most cases, the sensor model does not actually represent the path of a light vector,
but instead considers the range and orientation between the target object and the sensor, and calculates
whether the target is potentially detectable based on the effective range and field-of-view of the sensor.
A sensor model may also include information about the environment in which the detection is being
attempted. For a visual sensor, atmospheric factors like the presence of smoke, dust, fog, and lighting
may be used to diminish the possibility of detection. Also, environmental features like hills, trees, and
buildings may be interposed between the target and the sensor and impact the detection of an object. The
physical characteristics of the target may also be considered. Its size, in contrast with the background, rate
of movement, and material composition, may significantly impact its detectability. Larger targets may be
easier to see than smaller ones. Targets may have a higher or lower degree of camouflage, changing the
ability of the sensor to separate them from the background image.

In military simulations, visual sensors are just one of a large variety that are available. Many systems
include sensor models that collect signature information in the infrared spectrum, sound, emitted radio
and radar signals, magnetic properties, and movement and vibrations. Models of each of these can
be constructed at a number of different levels of detail, but each must determine whether to include the
properties of the sensor, sensing platform, paired geometry, environment, target, and external interference.
As illustrated earlier, as the sensor model becomes more complex, it drives the complexity of the entire
system. Including all of the categories just listed would trigger the need for additional detail in the sensor
model, but also the need for additional details in all target objects and the environment. Often the limitation
in creating a high-fidelity sensor model is not driven by our understanding of the sensor, but, rather, by
our ability to represent the characteristics of the target and environment that are needed to implement
such a model. In a military simulation system, the detail included in a model may be limited both by the
needs of the customer and by the desire to keep the entire system balanced, not allowing one model to
drive others to a level of detail that is not necessary or affordable (Pritsker, 1990).

32.4.3 Exchange
After moving and detecting, models are needed to allow objects to exchange materials and information
with each other. Battlefield operations often lead to the depletion of materials like fuel, ammunition,
food, medical supplies, vehicles, and people. A logistics model may be used to represent the ability of
the military to constantly deliver these materials to units and objects in operation. Such models are often
based on an understanding of the rates of consumption, the predeployment of supplies to locations that
are close to the operation, and the constant replenishment of supplies through a network of supply nodes.
Replenishing supplies within an object on the battlefield is the culminating model of a much more complex
representation of the logistics infrastructure that can stretch across an entire country or even around the
world. The logistics model must also include mistakes and interference that cause it to breakdown and
deprive the military objects of the supplies that keep them operating. A logistics model may be driven by
textbook ratios of consumption or it may include specific messages from the military objects about the
levels and rates of consumption. In the latter case, a communications model is needed to carry information
about what materials are being consumed, by whom, and where they are located.

Communication is another model of exchange. The thing being exchanged is information rather than
physical items. In the modern military, the amount of information that is carried around in a physical
form, such as a book, letter, or paper map, is quite small compared to the amount that is transmitted
in digital form. Therefore, modern models focus on communications in the form of digital computers
and networks as well as analog radio networks. A model of radio communications, like that of a sensor,
may include the characteristics of the transmitter, transmitting platform, environment, the receiver, the
geometry between the sender and receiver, and interference by other objects. Details in the representation
of the radio or the signal it generates call for corresponding details in the receivers, environment, and
countermeasures.

Military models of digital computer communications are similar to the tools used to study Internet
traffic. They can represent the senders, receivers, relay nodes, interference from competing traffic, multiple
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paths for the information to travel, and the loss of a message or the failure of a network. Modeling how
people, objects, and units respond to the receipt of this information is included in the section on reasoning.

32.4.4 Engagement
Strictly speaking, engagement is another form of exchange. However, it is listed separately because it has
been the central focus on military simulations for decades. The item being exchanged is a weapon and the
effect is the degradation of the operational capabilities of the target. Most military simulations perform
movement, perception, and exchange specifically so they can put themselves in a position to engage enemy
targets. Engagement has historically been the pivotal centerpiece of a simulation system and one of the
most important models in the system. Certainly, not all objects engage the enemy, but those that do not are
often referred to as support elements whose mission is to make engagement possible for combat equipped
units (Smith, 2000).

An engagement model typically includes the exchange of weapons or firepower from a shooter to a
target. This exchange decrements the capability of the shooter by expending ammunition in one of its many
forms (e.g., bullets, missiles, bombs, rockets, grenades, and artillery rounds). Just as in the perception and
communication models described above, this exchange is usually impacted by the geometry between the
shooter and the target. Environmental features like trees, terrain, water, and buildings may interfere with the
optimal delivery of the weapon and reduce its impact on the target. The target may also contain defensive
systems that counter the effects of the engagement. A defensive model may represent the effects of flares or
chaff in deceiving and misleading a guided missile or the protective effects of armor to deflect the weapon.

If the weapon successfully impacts the target and is powerful enough to overcome any interference
or defenses, then a level of attrition must be calculated for the target. Different approaches to modeling
attrition are described in the next section. Attrition is usually directed at the model state variables that
control its ability to perform its primary functions. These may include health or strength, fuel levels, com-
munications capabilities, and mobility. Models may also make a binary decision about whether a vehicle,
human, or unit is completely destroyed or not. Models of engagement have been of great interest to both
the training and analysis communities for decades. A great deal in study and a number of publications
dedicated to these exist. Interested readers may consult sources like Ball (1985), Epstein (1985), Parry
(1995), and Shubik (1983). They should also visit the website of the Military Operations Research Society
given later.

The attrition model may be linked to communications and medical models. Communications models
propagate the outcome of an engagement so that units or operators are aware that an engagement has
occurred. These communications may trigger a medical model that will attempt to conduct extraction and
provide medical treatment to simulated humans that are wounded. It may also trigger the logistics model
to extract and repair vehicles.

32.4.5 Reasoning
Within large military simulation systems, there are usually many models of human decision making and
behaviors. These have become more prevalent as systems have grown in both the breadth of coverage and
the depth of battlefield detail that are represented. Representing human thinking and even some computer
reasoning are some of the most challenging parts of the current practice of military modeling. This type of
information processing is largely not understood and requires general approximations and simplifications
in models.

Reasoning models often rely on the techniques developed within the Artificial Intelligence field. Tech-
niques like finite state machines (FSMs), expert systems, rule-based systems, case-based reasoning, neural
networks, fuzzy logic, means-ends analysis, and others are used to organize information and create deci-
sions that are similar to those of living humans. FSMs are currently the most widely used approach to
modeling reasoning in both military models and commercial games. These reasoning models are chal-
lenged to perform a wide array of operations, to include commanding subordinate units, decomposing
and acting on commands from higher level units, reacting to enemy attacks, selecting maneuver routes,



32-8 Handbook of Dynamic System Modeling

identifying threats and opportunities for engagement, fusing sensor data, and extracting meaning from
intelligence reports. Each of these functions can be extremely complicated and require significant comput-
ing resources to execute. Reasoning models must balance their level of realism between robotic reactions
to stimuli and detailed consideration of the situation prior to selecting an action.

The variety of reasoning models that are required on a battlefield cannot be fit to a single modeling
technique. In practice, multiple techniques are required, each applied to a reasoning problem for which it
is best suited (Russell and Norvig, 1995).

32.4.6 Dynamic Environment
Earlier, we described the evolution of the simulated environment from static state structures to dynamic
representations of features and their interactions with military objects. Military objects interact with the
environment both through direct intention and through accidental collocation. An engineering unit may
be tasked to destroy a bridge or a road. This is an operation in which the effects on the environment are the
specific intent of the action. In another case, an aircraft may bomb a convoy of trucks moving on a road.
In this case, the trucks are the primary targets, but the road may sustain damage because of its collocation
with the trucks.

Until recently, military simulations seldom included impacts on the environment. However, with the
current focus on precision operations, there is much more interest in destroying specific buildings, roads,
bridges, communications equipment, and pieces of the social infrastructure. Since this data is usually found
in the environmental database, models that accurately modify environmental information are needed.

For decades, military organizations have worked on models that accurately represent the engagements
that take place between two tanks, soldiers, airplanes, or ships. It is becoming necessary for those models to
also impact the trees, terrain, and roads in the vicinity of the targeted objects. This means that information
on the effects of weapons on trees is necessary as well as their effects on buildings, roads, bridges, and a
host of other types of surrounding terrain.

Though the type and level of damage done to a tree is seldom the focus of the experiment or exercise
that is being conducted, similar damage to buildings, power grids, and command facilities may be the
focus of an experiment. As a result, the military modeling and simulation community is pursuing new
methods for accurately representing these types of engagements and doing so within the constraints of
available computer systems.

32.5 Modeling Approach

In the previous section, we discussed many patterns of relationships that exist between multiple models
and described in very general terms what would be represented in those models. However, we did not
explore specific mathematic or logical algorithms that could be used in those models. In practice, the
number of techniques, algorithms, and equations that are used in military models is close to uncountable.
It is not possible to describe all of them or even those that might be considered “the best.” So many
different problems are studied with military models that there is no “best” approach that can applied
universally when representing a specific vehicle, human, or unit. However, the techniques that are used do
exhibit characteristics that allow us to talk about them in terms of general categories. However, it is not
unusual for a model or a simulation system to combine techniques from any of these categories to create
the effects that they need for training or experimentation. The categories aid us in explanation, but should
not be considered a universal ontology of approaches. Figure 32.1 illustrates this with a missile that can be
modeled using any one of the four modeling categories that will be described.

32.5.1 Physics
Physics-based models are most often found in engineering and virtual simulation systems. For exam-
ple, a missile pursuing a target would be represented by the physics of motion, momentum, mass, and
aerodynamics. Changes in the fin positions would drive aerodynamic equations and change the vector of
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Physics – Material properties, Aerodynamics, Control rates

Mathematic – Aggregate attrition and Sensor models

Stochastic – Probability of kill, Mean time between failure

Logical – Launch sequence, In-flight logic, Detonation decision

Artificial intelligence – Human control, Visual perception, Safety procedures

FIGURE 32.1 Five different approaches to modeling the behavior of a missile.

the missile based on the forces at work on the mass of the missile. Similarly, the seeker head in the missile
would scan the environment electronically using the same pattern, revisit rates, and sampling rates of the
real missile. This behavior would allow the simulated missile to collect data about a target in the same way
that the real missile does.

Physics-based models are most often used to analyze the behavior of an existing weapon or to assist in the
design of a new weapon. Understanding exactly how the pieces of the system will behave is an important
part of exploring the design space to find optimum capabilities and combinations of capabilities that are
optimum for the entire system.

Physics models require a great deal of data and mathematics. The data must be available for the system
being modeled, the environment in which it is operating, and any other objects that it will interact
with. Mathematic equations are required to represent a number of different behaviors of the system,
interactions that occur within the system and interactions that occur with other objects. Given this need,
it is not sufficient to collect data and build equations only for the missile that is to be studied. The model
builders must do the same for the environment and for any objects that will interact with the missile.

Because of the volume of data, and the number and complexity of the equations that are required, physics
models are necessarily reserved for smaller scenarios that involve only a few objects. Once constructed, the
models can be computationally intensive, requiring high-powered computers or accepting extremely long
simulation times. The budget of the project limits the former and the schedule limits the latter. Therefore,
the models can literally be a compromise of what the project can afford in time, money, and skilled staff.
These types of limitations are one of the primary causes of the diversity of military modeling solutions.

32.5.2 Mathematic
Though a physics model is certainly mathematic, there are a number of modeling techniques that are
based in mathematics, but which neither represent the physics of the situation nor employ stochastic
methods of representing aggregate behaviors. In military modeling, the classic example of this is the
Lanchester equations. In his 1912 and 1916 publications, F.W. Lanchester attempted to represent the
attrition experienced by large military forces in combat using differential equations. These assume that
the combat power of each side can be represented accurately with fire power scores and that the weapons
of each side can be brought to bear equally on all targets and under all conditions. This creates a model
which will “grind down” both sides as they engage in combat over time. Each side loses capabilities at a
rate proportional to the size of the enemy that is attacking it, and in some cases, also incorporates the size
of the targeted unit. Lanchester equations have been used widely since their introduction and have only
been displaced relatively recently as the military has sought to represent combat situations that are not
symmetric between the attacker and the defender (Davis, 1995a and 1995b).

Lanchester’s differential equations may be a useful way of representing a large barrage of missiles
engaging targets. Instead of modeling the engagement and attrition of every individual missile, these
equations would model the overall impact of a large number of such engagements and determine the
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attrition to the target as a result of all engagements. There have been many variations to and criticisms of
Lanchester’s equations. But they remain a foundational part of military simulation techniques.

32.5.3 Stochastic
Stochastic processes, probability and statistics, are most often found in virtual and constructive models. As
simulation systems grow larger in their scope of representation, there is a need to capture many more activi-
ties and interactions in models. Lacking the detailed knowledge, breadth of expertise, access to data, time to
build, and compute power to run a pure physics-based system, modelers have often resorted to a statistical
representation of objects and interactions. In this case, the models capture the behavior of many iterations
of an event and represent individual event results using a probability function and the results of a pseudo-
random number generator. This type of modeling was introduced to the military modeling community by
Stanislaw Ulam when he was working on the design of atomic weapons during World War II. Ulam encoun-
tered a number of problems for which the specific physical behaviors were not known, but where the pattern
of outcomes had been measured. Therefore, he chose to use the statistical properties of the event and rely
on multiple simulation runs to arrive at an accurate behavior for the entire system (Metropolis, 1987).

The previous missile example lends itself well to stochastic models. Instead of representing all of the
minute physical interactions, a modeler could choose to represent the outcome of a missile engagement
given a limited number of input variables governing each event and recourse to a probability distribution.
The use of a pseudorandom number in decision making means that no one engagement contains all of
the details of the event as in a purely physics-based model. However, if the model is run a number of
times, the randomness of multiple replications will blend together and create an accumulated result that
is representative of the system behavior that emerges from all of the interacting models.

Stochastic modeling has proven to be extremely useful because it allows modelers to study problems
that were previously beyond our understanding of the physics of an event and perhaps beyond the com-
putational capability of accessible computers. This has led to the creation of very large simulation systems
capable of representing tens of thousands of events and objects on a battlefield. However, these models
also require that their creators understand both the physical behavior of the system and the statistical
aggregation of those behaviors to create accurate stochastic models.

32.5.4 Logical Process
A logical model of the missile’s behavior may capture the sequential steps and the branching decisions that
are used to control the flight of a missile. This model represents the programmed logic within the missile’s
computers, allowing scientists to explore all of the possible branches and to match logical decisions with
the environmental stimuli that the missile will encounter.

When an object is controlled by a simulation system rather than a human operator, most of the time
it is following a logical set of defined processes. These instructions tell it when to move, which direction
to go, how fast to proceed, which objects to focus on, and which to ignore. These may be very complex
processes, but they do not necessarily involve equations of physics or random decision points. In situations
when an object should follow some form of “textbook” operation, logical models are an excellent method
of encoding this.

FSMs are often used to assist in organizing very complex sets of behaviors. FSMs allow the modeler to
capture hierarchical behaviors, set triggers for changing from one behavior to another, and encapsulate
behaviors that can be reused in multiple FSMs. These structures are so useful that they often form the
framework in which models of all types are organized. As mentioned earlier, SAF systems and computer
games are dominated by FSMs for decision making.

32.5.5 Artificial Intelligence
Many military simulations require the representation of complex human decision making that goes beyond
the capabilities of logical models. These attempt to model the behavior of individual soldiers, groups, and
commanders. The community has turned to artificial intelligence (AI) as a source of unique and powerful
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methods for representing human behavior. Adopted techniques include FSMs, expert systems, case-based
reasoning, neural networks, means-ends analysis, constraint satisfaction, learning systems, and any other
technique that shows promise in accurately capturing the complex reasoning process of humans.

To illustrate this category, the missile guidance and navigation example that we have been using needs
to be augmented with a simulated human-in-the-loop as it pursues a target. Though a missile model
may use an FSM to represent its movement, it is not attempting to create a model of human intelligence;
rather it represents a logical process that is followed robotically by the weapon. If the missile were being
controlled remotely by a human who was viewing the target on a computer screen, then the behavior of the
human might be represented using an AI technique. A neural network may represent the human’s ability
to discriminate a target in the scene and means-ends analysis may represent the human’s decision process
in selecting a target, leading its position, and switching from one target to another opportunistically.

AI techniques usually focus on processing information in a human-like manner. Using databases or
rule sets, the algorithms attempt to make deductions that lead to behavior selection. These models may
incorporate deterministic or stochastic methods in representing human behavior (Russell and Norvig,
1995). As we pointed out at the beginning of this section, these categories are not necessarily mutually
exclusive; they are simply useful for explanation and understanding.

32.6 Military Simulation Systems

Modeling is one part of creating a military simulation system. Within any one of these systems there can
be a large number of models. Using the major categories of models described above, Figure 32.2 illustrates
the relationships that often exist between these models to create a working simulation system. This figure
includes only the major categories. For a specific system, the number of models would be much larger
and the relationships between them would be more complex. This figure illustrates many of the causal
relationships that were described in the earlier sections.

The movement model is a good place to begin tracing the models in the figure. When this model
calculates the new location, orientation, and velocity for an object, it may also trigger the dynamic
environment model to represent the creation of smoke, dust clouds, or tracks in the sand. Once completed,
the objects are in a position to execute perception models that can detect other objects from their newly
achieved position. The perception model provides the necessary information to allow the objects to engage

Move

Engage

Exchange

Perceive ReasonDynamic
environment

FIGURE 32.2 Model relationships for a simple battlefield simulation system.
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each other or to exchange information or material with each other. Engagement also triggers the dynamic
environment models to create effects like road craters and destroyed buildings in the environment. An
engagement between two objects may create collateral damage to surrounding trees, buildings, and roads.
In some cases, the engagement is actually targeted at an environmental feature like a road or a bridge.
The exchange model calculates functions like refueling an aircraft or transmitting a message. Following
the sequence of move–perceive–engage, the system may allow the objects to reason over what has just
happened. This reasoning can take into account the results of each of the engagement, exchange, and
perception, integrating them to enable the reasoning model to select the next action to be taken. Once
completed, the cycle can begin again with a new objective that is received from a human user or from the
reasoning models.

This cyclic diagram is a simplification of a real system. In actual implementation, the reasoning model
may be activated at the completion of each of the other models, providing much finer control over
the decision-making process. That is characteristic of virtual-level simulations in which the reasoning
component is providing very detailed control of a computer-controlled entity. The reasoning model may
also be triggered much less frequently than the other models. This occurs in constructive-level simulations
where the reasoning is at a much higher level of command and decisions are made infrequently with
respect to the rate of activities in the other models.

32.7 Conclusion

This chapter has provided a high-level overview of the dynamic modeling necessary to create military
simulation systems. The very large number and variety of military systems that have been created, makes it
impossible to describe the most common or “best” approach to modeling. Existing military systems focus
heavily on movement, perception, and engagement. But, they may also include models of medical oper-
ations, communications, intelligence processing, military engineering, logistics networks, and command
and control.

The mission of military organizations changes in response to the political situation in the world. The
changes that have occurred in world politics are influencing the types of things that are being modeled in
military systems. Newer simulation systems are focusing more on communications, social influence, police
actions, one-on-one interactions with noncombatants, and urban environments. These call for scenarios
that study smaller interactions between competing military forces or between the military and the civilian
populace, rather than large theater-level models involving thousands of combatants on each side.

Models of the threat or opposing forces are also changing significantly. New models are being created
that represent suicide bombers, improvised explosive devices, riots and protests, and active avoidance of
direct engagement.

The future of military modeling will include increasing level of dynamics in the modeled world. Rather
than focusing only on the combat-relevant activities of an object, we will be creating objects that have a
much more extreme range of dynamic properties. These “extreme dynamic” models will create a more
realistic world in which the human users and the automated objects will be able to interact with the virtual
world in all of the ways that a real person would. This could include being able to assemble primitive
objects into more complex ones, breaking objects into multiple pieces, tapping into the electrical systems
of buildings, digging holes in the terrain, or interfering with the normal operations of a vehicle by flattening
its tires or inserting rocks in its gun barrel. Such a dynamic representation of the world is far beyond our
current capabilities due to limitations in both our modeling capabilities and the processing capacity of
current computers. But, within a decade or two, military models will represent a world that is “McGuiver-
ready.” This means that the modeling is so rich that a user will be able to do almost anything he can
imagine in the world and a model will be there ready to represent those actions realistically.

Computer games like The Sims illustrate some of the richness that we are looking toward in military
simulation systems. These games often focus on mundane activities like creating a meal, painting a house,
mowing the grass, and reading a book. Though these activities will probably never be the primary focus of
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military simulations, they can play an important part in creating a realistic world in which to rehearse or
experiment with military actions. During the Cold War, the primary military problem changed very little
and this had a direct impact on the evolution of military models and simulations. In today’s more chaotic
and ever changing environment, the military is being forced to look for ways to represent a much wider
variety of objects and interactions. This will lead to significant changes in the dynamics that are modeled
in future simulation systems.
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33.1 Introduction

There was a time when even large businesses were staffed by many clerical workers whose main role was to
process data and turn it into information. The data included sales invoices, payments, orders, production
schedules, and the like. It had to be processed so that the managers of the organization, whether public
or private, could make sound decisions. Decision making is a fundamental part of any manager’s job;
sometimes the decisions are trivial and have little impact, but others are so significant that they could open
up new opportunities or ruin the business. Nowadays, the serried ranks of clerical workers have gone in
advanced economies and information processing is automated in computer systems, some of which offer
decision support. The importance of decision making and the use of information on which to base those
decisions led to the development of management science: sometimes known as operations research in the
USA or as operational research in the UK.

This chapter focuses on dynamic modeling to support decision making and planning as it has developed
in management science. A glance at the catalog of any academic publisher will show that there are many,
many texts that cover the techniques associated with management science. Examples include Hillier and
Lieberman (2005), Daellenbach and McNickle (2004), and Taha (2003) and the list of such books is
constantly changing. This chapter is not intended to provide a condensed version of these books, but
instead discusses dynamic systems modeling in management science and provides practical tips on how

33-1
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to go about doing this. Clearly, not everything can be covered in the space available, and much more detail
can be found in Pidd (2004a).

Models are used in decision making and planning to explore the consequences of decisions before they
are made. The decisions may be one-off: for example, a business may wish to plan its distribution network
for the next few years. Getting this right can save much money. A model that carefully explores the various
options against likely demand and cost scenarios can be very useful in this regard. Other decisions are
repetitive, for example airlines make routine use of dynamic pricing systems when selling tickets over
the Internet. As most of us know, two passengers sitting in adjacent seats on the same flight may pay
very different fares. Often these differences are due to the time at which the flight was booked, with early
bookers paying the lowest prices. As the flight fills, so the ticket prices rise, though they may fall again
if demand is lower than expected. This dynamic pricing, which is relatively simple for point-to-point
airlines, is executed through a set of interlinked models that forecast likely demand through the booking
period and adjust the prices so as to maximize revenue or profit from the flight. Similar systems are used
for other “perishable” goods (ones with no value after a sell-by date) such as hotel rooms. An airline that
operates many flights could not use dynamic pricing without automated decision models.

33.1.1 Models to Support Decision Making
The obvious first question to be faced is: Why use models to support good decision making and planning?
Aren’t some managers just very good, intuitive decision makers? Why go through all the rigmarole of
modeling to support a decision? While it may well be true that some managers are good intuitive decision
makers, a look at the longer term financial performance of almost any organization, whether public or
private, makes it clear that these are rare beasts. The trick is not to make a single, good decision, but to go
on making sensible choices time after time. For present purposes a model to support decision making will
be defined as follows (taken from Pidd, 2003):

an external and explicit representation of part of reality as seen by the people who wish to use that
model to understand, to change, to manage and to control that part of reality.

This may seem a little vague, so it will now be unpacked in a little more detail.
As Sterman (2000) and others in the system dynamics community point out, we all use mental models

to understand our experiences and to plan for the future. For example, I live on the west coast of Britain
near the sea, where the weather is very changeable and can switch from sunshine to rain rather quickly.
Over time, I have learned to “read” the sky and the wind to forecast the weather in the next few hours
or so. Though this mental model can be improved by experience, it is really not much use beyond an
immediate prediction and is unlikely to work for locations on the east or south coasts; let alone on another
continent. Early weather forecasting was based on folklore, which embodied experience: “Red sky at night,
shepherd’s delight, red sky at dawning, fisherman’s warning.” However, things are very different now, and
it is possible to get a 5-day weather forecast for almost anywhere in the world by logging on to one of
the many Web sites that provide this service. How is this done? Data from terrestrial weather stations and
from orbiting satellites is fed into data centers that use mathematical models of the weather systems to
predict the weather. This is obviously easier in some locations (for example in a desert) than others, but
the same generalized models are used. These were developed by meteorologists over many years and are
external and explicit—that is, anyone who understands the science and mathematics can explore, criticize,
and improve them. The models used in management science to support decision making and planning
are likewise external and explicit and open to scrutiny.

The second part of the definition stresses that such models are representations of part of reality. This
is important, because models are always simplifications. Any model that is as complicated and complex
as the system it represents would be as expensive to build and as difficult or dangerous to use. Models are
used in place of real experimentation, which was often known as “suck it and see” by old-style engineers—
an approach that seems attractive, unless the system being studied contains the economic equivalent of
strychnine. It is important to realize that the simplification needed to build a model is actually a good
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thing and should not be regarded as a limitation. It forces the modeler and decision makers to focus on
the important aspects of the system being studied. Thus, models that forecast sales in a supermarket may
be based on loyalty card data and it is usually enough to divide customers into categories for targeting
purposes, rather that considering them individually. That is, a simplified model of purchases by different
categories of customer may be enough.

The third part of the definition stresses that people are involved in the modeling and the use of the
model and that they have purposes in mind. This provides guidance on the appropriate simplification, as
discussed in the previous paragraph, and is also important when assessing whether a model is valid. In these
terms, a valid model is one that is useful enough for the purpose in hand—even if it is not good enough
for some other, possibly related, purpose. For example, a model to support the daily scheduling of jobs
in a manufacturing plant will need to be very detailed and will probably incorporate the characteristics of
jobs in the order book and of the available manufacturing resources. In contrast, a model to plan capacity
over the next 3 years may need to focus on trends in orders and likely changes in technology but will
not incorporate details of individual jobs. Thus the second, longer term, model may be very useful for its
intended purpose but may be hopeless for daily job scheduling.

It is also important to realize that models are used for decision support and planning rather than to
totally replace human decision making. Thus, an important maxim for modeling is: model simple, think
complicated. The models are used to free humans for tasks that they are rather good at—making sense
of unstructured situations—by performing the rapid calculations and inferences that most people do
relatively poorly. If the model turns out to be too simple, then it can always be made more complicated. In
one-off decision making, this essential link between the human decision maker and the model is obvious,
but what of routine decision making such as dynamic pricing systems? Though these systems, if well-
designed, are adaptive to changes in the environment such as increases in demand or costs, they have their
limits. For example, intense competition on a route may lead an airline to introduce a wholly new fare
structure to win customers. This will require human intervention and decisions; supported, of course, by
appropriate decision models.

The other human component in model building and use, which is often sadly ignored, concerns the
nature of “reality”—a term used in the definition. Sometimes, we are not modeling reality, but are
investigating something that does not exist—the future—and a model that is valid for now may not be
valid for then. Recognizing this is important. Also, we must ask what we mean by reality. This is an issue
considered by philosophers for millennia and it has practical import in modeling. First, people differ in
what they regard as “real.” Sometimes this is because they are psychotic, but this is rarely the case. It is
well known in the law courts that two people can provide quite different accounts of the same incidents
and neither may be lying. They have seen the incident from different perspectives and may have different
experiences with which they make sense of what they have seen. That is, each person’s knowledge is partial
and personal. Sharing and exposing that knowledge to criticism makes it more likely that the knowledge
will be more complete. This is well illustrated in the following story that seems common in a number of
cultures:

Six blind men are led into a circus ring, not knowing where they are and are asked, using touch, to
say where they are. The crowd watches with interest as an animal is brought slowly and quietly into
the ring. The men touch it at different places. One cries out, ‘I’m sure I’ve found a tree, it’s rough like
bark and I can put my arms around it’. Another tries the same and agrees; then another and a fourth.
The fifth man reports that he’s holding something long, narrow and sinuous—which must be a tree
creeper. The sixth man makes the same claim. Together they confer and announce that they’ve been
led into a tropical forest. Meanwhile the crowd is stifling its laughter, knowing that the blind men
have been feeling their way around an elephant.

The point of the story is that no human is omniscient like the crowd but we all, like the blind men, have
only partial knowledge. Sharing this incomplete knowledge makes it more likely that we will establish the
truth, but there is no human guarantee. Reality and its modeling is an elusive concept, since modeling
forms part of the investigation of that reality.
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Thus we arrive at the final part of the definition, which again stresses the purposes for which the models
are built and used. Though this section has focused on decision making, models are used in management
science for other purposes, too. For example, most police forces operate control rooms and these act as
contact points for members of the public who may phone in to report an incident or to ask for help. In the
UK, each police force is required to meet national standards that specify, for example, the proportion of
calls that are answered within 15 s. If a police force finds that it is not achieving these standards, it might
choose to model the control room operations to investigate what is happening and why targets are not being
achieved. That is, models are used to explore the“as is”situation as well as to conduct“what if”experiments.

33.1.2 Dynamic Systems Modeling in Management Science
There are two approaches to dynamic system modeling that find broad use in management science to
support decision making and planning. Each of these is discussed in much more detail later in this chapter,
but a quick overview is as follows:

• Discrete-event simulation (DES): in which a system to be modeled is treated as a set of discrete
entities (people, machines, vehicles, and orders) that change state from time to time. The states
are discrete: for example a machine may move between states such as busy, idle, under repair, and
warming up. Thus, the states are modeled as discrete attributes of the system entities. The dynamic
behavior of the system is thus the result of the interactions between entities as they change state. The
simulation model consists of sets of rules that define how different entity classes change state, given
particular conditions within the simulation. To build a DES, the modeler must decide which entities
to include and must find some way to represent the logic of their state changes. Most organizational
systems include variable behavior (e.g., the number of calls received per hour at a contact center)
and DES models often use random sampling methods to cope with this variation. In DES models
are usually developed using software known variously as simulators, or visual interactive modeling
systems (VIMSs). Examples include Arena, ProModel, AutoMod, Witness, Simul8, and Micro Saint,
descriptions of which can be found in the annual Proceedings of the Winter Simulation Conference.

• System dynamics: in which the focus is not on individual entities and their state changes, but rather
on populations of objects and the rules that govern their behavior through time. It is normal to think
in terms of flow rates (e.g., orders received per day) and accumulations (e.g., the order backlog),
often abbreviated as rates and levels. These are used to model the structure of business processes so
as to understand the effect that information feedback has on their behavior. Thus, process structure
is seen as important in system dynamics modeling and it is assumed that behavior follows from
this structure. Most system dynamics models are developed using dedicated VIMS and popular
examples are Stella (also known as IThink), Vensim and Powersim.

33.2 An Approach to Dynamic Systems Modeling in
Management Science

A number of texts, notably Robinson (2004) and Pidd (2004a), provide advice on how to participate in
and manage a simulation modeling project so as to ensure that it adds value. It is important to realize that
a successful simulation project requires more than a set of technical skills—though these are obviously
essential. A successful study is usually based on three different sets of skills, which can all be developed
with experience.

33.2.1 Project Management Skills
Within management science, most projects have a life cycle of their own, beginning with the need to
understand what the client wants or needs and ending either with further work, or with the end of the
current project. Figure 33.1 is a grossly simplified version of this cycle and shows 3 phases, each of which
could, in turn, be regarded as a further cycle of activity.
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FIGURE 33.1 Management of a simulation project.

1. Initial negotiation and project definition: in which the terms of reference for the work are discussed
and agreed, usually within some defined budget. It is often very difficult to do this for two reasons.
First, though loath to admit it, most clients do not know precisely what they want from such a study
and therefore cannot define what must be done. This is not because the clients are incompetent
but because there are several ways in which models are used and the actual use may only emerge
after some time. In addition, most clients are not modeling experts and may under-estimate or
over-estimate the work that is needed. It is also true that the modeler is unlikely to be an expert in
managing the system she is studying. Hence, the project definition is something that is negotiated
between two parties with different interests and with partial knowledge.

2. Project management and control: projects rarely run smoothly and slippage against dates and budgets
is highly likely unless the project is properly managed. This requires the project manager, who may
be the analyst engaged in the technical work, to keep in close touch with the client. Disappearing
off to another site for weeks on end is not an ingredient in a recipe for success. Instead, it is normal
to agree a series of milestones for the work and to review progress against them. This may require
considerable interpersonal skills as well as technical ones. Milestones may not be met for very good
reasons, at least from the analyst’s viewpoint. These include a changing view of what is required as
both modeler and client start to realize what is needed. They also include shortages of data, which
were assumed available when the project was defined. Sadly, technical incompetence by the analyst
is another reason for slippage. If there are good reasons for the slippage, then client and project
manager need to revise the milestones as appropriate.

3. Project completion: projects typically end in three ways. The first is that client and analyst agree that
the work has been satisfactorily completed and that there is no need for further work, at least at
this time. The second is that both client and analyst agree that further work is needed, possibly in
refining the same model or in doing other related work. If this happens, it is wisest to manage the
new work as a new project. Third, things may have gone so wrong that the project ends in failure
and this sometimes happens despite great effort and good practice.

33.2.2 Conceptual Modeling Skills
As noted earlier, a management science model is a simplification and abstraction that includes factors
believed to be relevant to some defined purpose. This raises two obvious questions: what should be included
and how do we decide this? In answering these questions it is helpful to distinguish between a conceptual
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model and the implementation of that model. In the case of computer simulation, the conceptual model
is implemented in computer software so that the model may mimic the dynamic behavior of the system
being modeled. There is no widely accepted definition of the term “conceptual model,” so for present
purposes, it is defined as “an external statement of the factors and relationships that should be included
in an implemented model.” As earlier, the reason for stating that this is an external statement is to ensure
that it is open to scrutiny and debate by other people. A purely mental and unexpressed conceptualization
cannot be scrutinized or properly debated by other people.

Used in this sense, a conceptual model is a statement of the elements of a system that are thought
important enough for inclusion in some implemented model. Needless to say, such a conceptual model
will develop through time and is part of a learning cycle in which the modeler develops ideas about the
elements of a system that are important enough to feature in the model. Developing a conceptual model
is rarely straightforward and is an aspect of practice that distinguishes novices from experts. It requires a
process of investigation in which the modeler tries to tease out what the client requires in the model while
trying to understand the main features and behavior of the system to be modeled.

Consider, for example, the task of developing a simulation of a call center. It would be a strange
simulation model of this that did not include some aspects of the behavior of the customers who phone
the call center. However, which of these aspects should be included and in what detail? For example, are
all callers to be treated as if from the same population, or should they be classified into subgroups? This
will depend on the nature of those callers but also on the purpose of the simulation project. The overall
population of callers may include some who need advice and others who wish to purchase a product. If
the main aim is to establish an appropriate staffing level for current demand it may not be important to
distinguish between them. However, if the aim is to consider what would happen if the business generated
more new customers, then it is probably important to distinguish between them. Similarly, in what detail
should the behavior of the call center operatives be modeled? Is it enough to develop a model based on
probability distributions of call durations, or is it important to model worsening performance toward the
end of a shift (if this occurs)?

Hence, a conceptual model must capture the important elements of the system to be modeled in a form
that is independent of the computer software used for the model’s final implementation. There are several
approaches that can be used and one, activity cycle diagrams, is discussed later in the chapter.

33.2.3 Technical Skills
Developing and using dynamic models in management science requires the modeler to develop skills in
two areas of work: computing and statistical methods. However, this does not mean that the modeler must
be a professional computer scientist or statistician. It was once true that dynamic models could only be
implemented on a computer if the modeler were a skilled programmer or had access to someone with
those skills. Hence, early books on computer simulation provided specific advice about how particular
programming languages could be used. Indeed, the very earliest such simulation models were implemented
before languages such as FORTRAN (let alone Visual Basic or Java) were in widespread use. Hence, the
early modelers had to learn how to program a computer in binary, machine code or assembler. Thankfully,
those days have long gone.

Most simulation applications in management science are implemented using VIMSs in which the model
is developed interactively by selecting objects from a palette and linking them on-screen. To do this requires
the usual skills with a PC that children acquire at home or at school. Hence, the vendors of these systems
are fond of implying that using their products requires no skill beyond this, but it is not true. As will
be clear later, using a VIMS almost always requires the modeler to write some code, though not a full
program. Some training and experience in computer programming is therefore desirable.

The dynamic systems modeled in management science are rarely deterministic: that is, they are not
wholly predictable. A business that can be certain of the precise demand for its products, with customers
that always do the same things, and whose production technologies are utterly reliable is very fortunate
indeed. Most organizational systems exhibit considerable variation. Some of this can be understood by
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analyzing root causes but some can only be understood by expressing it in statistical terms. Hence, we
might conclude that the number of calls per hour arriving at a call center can be modeled as a Poisson
distribution. Therefore, though we can never say how many calls will arrive in the next 60 min, we can
have some idea of the likely number if we apply correct statistical principles. Modelers must develop skills
in data analysis (to fit distributions to observed data sets), statistical inference (to see if observed variation
is significant), and in probability theory to underpin the other two areas.

33.3 Discrete Event Simulation

Within management science, two types of simulation modeling find widespread use: DES and system
dynamics; the latter is considered later in the chapter. There are many excellent introductions to DES and
the annual Winter Simulation Conference (www.wintersim.org) includes a range of tutorials, some aimed
at beginners and others at people who wish to further develop their skills and knowledge. The approach
taken here is based on the lengthier coverage in Pidd (2004a). Perhaps the most thorough coverage of DES
is to be found in Law and Kelton (2000). Other chapters in this book covering DEVS, Event Graphs, and
ARENA also provide valuable insights into the methods and practice of DES.

33.3.1 What Types of Problem are Well Suited to Discrete-Event
Simulation?

Many applications of DES involve queuing systems of one kind or another. The queuing structure may
be obvious, as in a queue of jobs waiting to be processed on a machine, or in a stack of aircraft waiting
for landing space at an airport or of phone calls arriving at a call center. As time progresses, queues build
up or are reduced as demand varies and as service patterns change. Mathematical queuing theory (see
Hlynka, 2004, for a survey of available books) can be used to model some simpler queuing systems, but
is ineffective when demand is nonstationary and when customers baulk (refuse to join a queue because
it looks too long) or renege (enter a queue but leave it before being served)—which is common in most
real applications. Sometimes, the queuing structure may be less obvious, as in the deployment of fire
appliances in a large city. In this case, the customers are the fires needing attention and the servers are the
fire-fighters together with their associated equipment.

DES is worth considering for systems with the following characteristics:

• They are dynamic: that is they display distinctive behavior which is known to vary through time.
This variation might be due to factors which are not well understood and may therefore be amenable
to statistical analysis—for example, the apparently random failures of equipment. Or they might be
due to well-understood relationships which can be captured in equations—for example, the flight
of a missile through a nonturbulent atmosphere.

• They are interactive: that is, the system is made up of a number of components that interact with
one another and this interaction produces the distinctive behavior of the system. For example, the
observed behavior of aircraft under air traffic control will be due to the performance characteristics
of the individual aircraft, the intervention of the air traffic controllers, the weather, and any routing
problems. This mix of factors will be varying all the time and their interaction will produce the
observed behavior of the air traffic.

• They are complicated: that is, there are many objects in the system of interest, and their individual
dynamics need careful consideration and analysis.

Despite the availability of excellent computer software for developing DES models, it is still true that
building, testing, and using such a model is surprisingly time-consuming. Hence, it is sometimes better
to try a very approximate mathematical model before resorting to simulation. If a discrete-event model is
being considered, then a number of characteristics are likely to be present in the system to be modeled.
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• Individual entities: the behavior of the system comes from the behavior of individual objects of
interest, usually known as entities. The simulation program tracks the behavior of each of these
entities through simulated time and will be minutely concerned with their individual logics. The
entities could be truly individual objects (e.g., machines, people, and vehicles) or could be a group
of such objects (e.g., a crowd, a machine shop, and a convoy of vehicles).

• Discrete events: each entity’s behavior is modeled as a sequence of events, where an event is a point
of time at which the entity changes state. For example, a customer in a shop may arrive (an event),
may wait for a while, their service may begin (an event), their service will end (an event), and so on.
The task of the modeler is thus to capture the distinctive logic of each of these events (e.g., what
conditions must hold if a begin service event is to occur?). Though real-time flows smoothly, the
flow of simulation time in a DES is not smooth, as it moves from event time to event time and these
intervals may be irregular.

• Stochastic behavior: the interval between successive events is not always predictable, for example the
time taken to serve a number of customers in a shop will vary. There may sometimes be obvious
and entirely predictable reasons for this (the server may speed up as the queue of waiting customers
increases) or there may be no obvious reason to explain things. In the latter case, the varying
intervals between events could be represented in a probability distribution and modeled by taking
samples from that distribution.

33.3.2 Common Application Areas for Discrete-Event Simulation in
Management Science

There are many different application areas for DES and surveys of the use of MS/OR methods usually place
simulation as one of the top three most frequently used approaches. The Winter Simulation Conference
(ref) is a fertile hunting ground for those seeking case studies of successful applications.

The last 20 years have seen increased competition between manufacturing companies and this has led
to a range of strategies including cost reduction and product differentiation. Both of these have relied
on increased automation, which in turn depends on large-scale investments. It clearly makes sense to
ensure that the investment is a wise one before making it and DES is often used for this purpose. The
idea is to simulate the operation of a manufacturing system before installing it or to simulate an existing
manufacturing system to seek performance improvements.

Many of the early simulation applications within MS/OR were in primary industries such as coal and
steel. Since then, simulation has been used in many industries including food manufacture, microelectron-
ics, aerospace, and automobile assembly. The latter is especially significant, since some of the commonly
used VIMS (most notably Witness) were developed within the automotive industry, which is where they
find most of their users. Hence, the terminology of many VIMS is geared toward that application area,
using terms like work station, conveyor, and cycle time.

A second major application area for DES is health care. Worldwide expenditure on health care has been
rising steeply in recent years. Current estimates suggest that health care expenditure in the USA amounts to
about 17% of GDP, of which about 50% is funded through taxation. In the UK, where most health care is
funded through taxation, it will soon account for about 10% of GDP. Why these large sums? First, because
people’s expectations are rising and, second, because of technological developments. Given the scale of
this activity and the risk of adverse outcomes from medical interventions, it is clear that improvements in
health care delivery are needed. Simulation methods have been successfully used in many areas of health
care. Example include: models of disease transmission for AIDS and hepatitis; models of treatments and
intervention for glaucoma and cardiac shunts; and models of hospital operations such as clinics and
emergency departments. Despite this level of activity there are curiously few VIMS dedicated to health
care modeling.

A third major area can be summarized under the heading of business process improvement; once
known, rather unfortunately, as business process re-engineering (BPR). Many organizations have tried
to streamline their business processes so as to make efficiency gains and, at the same time, to make



Dynamic Modeling in Management Science 33-9

their operations increasingly customer focused. For example, buying car insurance 20 years ago was a
long, drawn-out process involving forms completed by hand, visits to agents, repeated correspondence,
and laborious comparisons of quotations. Now we take it for granted that we can phone an insurance
company and arrange the insurance in a few minutes in a single conversation. Alternatively, we can use
price comparison Web sites and then enact the purchase using Web forms. A transaction that once took
a couple of weeks, end-to-end, now takes a few minutes. A similar story applies to the purchase of airline
tickets. These customer-focused business processes depend on IT systems that enable prices to be quickly
generated, credit standing to be quickly checked, and transactions to be completed with the minimum of
fuss. However, even the best IT in the world is a waste of time unless the processes are properly designed
and managed. Hence, computer simulation models are commonly used in the design and improvement
of call centers, workflow management systems, and document production systems.

A fourth major application area is transport and physical logistics—the movement of people and goods
and the associated systems that support this. Airlines and airports have long been major users of simulation
models to design and improve terminal buildings and baggage systems. Likewise, options for air traffic
control are usually simulated before any attempt at implementation, it being much safer if a simulated
aircraft runs out of fuel in a simulated flight. Physical distribution and supply chain management are two
more major application areas for computer simulation in transport and physical logistics. Large retailers
commonly own regional distribution centers to which suppliers deliver goods and from which sorted
supplies are sent to retail outlets. These centers are large complex operations that must run in a highly
synchronized manner if supplies are to reach the retail stores in time to meet customer demand. Simulation
methods allow supply chain managers to see how the centers will operate and to experiment with policies
that will enable proper synchronization.

Finally, and possibly the largest application area of all, is defence. War gaming and battle planning
have long been a feature of military training and the increasing expense of high tech battle equipment
makes simulation an essential part of most military operations. Applications are not restricted to gaming,
however, and range from studies equipment, of logistics operations, of deployment options through to
battle simulations. Not surprisingly, the majority of defence simulations are not reported in the open
literature.

33.3.3 Discrete-Event Simulation Terminology
Some writers have tried to develop precise definitions of the terms used in DES modeling, notably Zeigler
(1976) whose concept of DEVS is discussed in Chapter 6 of this book. However, the use of terms in the
DES community is not always consistent. This section defines terms as they are normally used. The first set
of terms refers to the objects within the system and the second set refers to their state changes and activity.
When referring to the objects in a DES model it is normal to divide them into two main types.

1. Simulation entities: These are the individual elements of the system that are being simulated and
whose behavior is being explicitly tracked. Examples might include machines in a factory, patients
in a hospital, or aircraft at an airport. When the simulation is implemented in computer software,
the computer program maintains information about each entity and therefore each one can be
individually identified. As an entity changes state in the simulation, the computer program keeps
track of these state changes. The overall system state is a result of the interaction of the simulation
entities and resources (see below) and the number of entities in a model gives some idea of how fast
it will run. Simulation entities are, conceptually at least, divided into classes which display similar
behavior. Examples might include a class of aircraft, of customers of doctors, or whatever. Taken
together, the number of entities and the number of classes partially determine the complexity of a
DES model.

2. Simulation resources: These are also system elements but they are not modeled individually. Instead,
they are treated as countable items whose individual behavior is not tracked in the computer
program. Examples might be the number of passengers waiting at a bus stop or the number of
boxes of a product available in a warehouse. Thus, a resource consists of identical items and the
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program keeps a count of how many are available, but their individual states are not tracked.
Resource contention occurs when the same resources are needed by different entities at the same
simulation time. The number of resource types in a DES model is another clue to its complexity,
but this is not the same as the number of resource items.

Whether a system element should be treated as an entity or as a resource is a decision for the modeler
and it is normal for either representation to be possible for one of more classes of object in the system. In
management science, DES models are built for particular purposes, typically to support decision making
and planning, and this purpose will often be what determines the representation. Consider the simulation
of a telephone call center in which callers dial in, wait for an operator, hold a conversation, and then end the
call. If we need to know the performance of each operator within the call center, then we will represent
these as entities whose precise behavior and quirks will be modeled. However, if we are only interested
in the general performance of the population of operators, we may choose to represent them as a resource
pool. In this second case, when a new call arrives, we check to see if the pool of available operators is greater
than zero; if not, the call will not be taken until an operator becomes free. If the current pool size is greater
than zero, it will be reduced by one (if a single operator is required) at the start of the conversation. At the
end of the conversation, the operator is now free and the pool size will be increased by one to represent this.

As well as representing the entities and resources, we also need to capture how they interact and change
state through time. This leads to the second set of terminology.

3. Simulation events: These are instants of time at which significant state changes occur in the system,
such as when a customer arrives, a machine breaks down, or some operation begins. Note that the
analyst must define whether an event is significant or not in the context of the objectives of the
simulation. For example, when simulating an airport baggage system it may not matter when a
rain shower begins and ends. However, when modeling the use of airspace around an airport, this
might be an important consideration when trying to establish separation rules for landing aircraft.

4. Simulation activities: Entities move from state to state because of the operations in which they
engage. The operations and procedures that are initiated at each event are known as activities and
these transform the state of the entities. For example, a phone conversation in a call center requires
a caller and an operator to co-operate for a period while the conversation proceeds. The start and
end of the conversation may be modeled as simulation events, and the conversation itself, which
takes time, is a simulation activity. Its start changes the state of caller and operator, and so does
its end. It can only begin if the caller is waiting and the operator is currently idle. Hence, starting
a simulation activity depends on the system state and also changes that system state. Ending a
simulation activity also changes the system state.

5. Simulation processes: Sometimes it is useful to group together a sequence of events in the chrono-
logical order in which they will occur. Such a sequence is known as a process and is often used to
represent all or part of the life of an entity class. For example, a phone call arrives at a call center,
may join a queue, may renege and leave the queue, may be answered by an operator and will then
leave the system. Hence simulation processes may include logical decision points.

6. Simulation clock: Since a DES model is concerned with the dynamic behavior of a system through
time, this movement of time must itself be simulated. As mentioned earlier, time does not progress
smoothly within a DES, but jumps from event to event in a chronological sequence. The simulation
clock time is the point reached by current simulated time in a simulation. Hence in a simulation
where the time unit is minutes, the test “is clock = 240?” might be used to test whether a lunch
break is due. If so, appropriate activity could then be initiated in the simulation.

33.3.4 Activity Cycle Diagrams in Conceptual Modeling
There are many different approaches to conceptual modeling in DES, each offering some support to the
modeler trying to represent the important elements of a system that will be simulated using a DES model.
Examples include event graphs (Schruben, 1983; also in Chapter 23), control flow graphs (Cota and
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Sargent, 1990), Petri nets (Zimmerman, 2004; also in Chapter 24), and activity cycle diagrams, which are
described here. Activity cycle diagrams are very simple and require the modeler to represent the interaction
of entities and resources as a network that uses two symbols (See Figure 33.2 and Figure 33.3).

The rectangles represent active states, which may involve the co-operation of entities and resources. The
states of those entities and the size of the resource pools may change at the start and end of the activity.
Active states take simulation time (which may include zero time—for example, two customers may phone
simultaneously) and we assume that this time can be computed when the activity begins. That is, when it
begins, the start time of an active state is known and its end can be scheduled at some future simulation
time. When simulating a call center, a conversation between an operator and caller is usually represented
as an active state.
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The circles are used to represent dead states, sometimes known as queues, and these have durations that
cannot be known in advance. Though we know the simulation time at which an entity enters a dead state,
such a state is defined as one in which the entity waits until some event provides a resource or co-operating
entity that allows it to proceed from that dead state. Hence, we do not know the time at which it will end. A
dead state is always preceded by an active state and is always followed by an active state. When simulating
a call center, the time a caller spends waiting for an operator to answer is usually modeled as a dead state;
as is the time that the operator is idle, waiting for another call.

To illustrate the use of activity cycle diagrams, consider the operation of the CallOut response center.
CallOut provides a breakdown and recovery service to car drivers who pay an annual subscription. It
operates several call centers, one of which supports motorists whose car has broken down while on the
road. To use the service, motorists phone the call center—in most cases they do so from their cell phones
using the number for on-road breakdown assistance. When they phone the call center, their call is taken
by the first available operator whose main task is to check that the caller has an up-to-date subscription
to CallOut, to note the precise location of the vehicle, its make and model details, and a summary of the
problem. At the end of the call, the operator checks a real-time location system to find the nearest free
breakdown truck (the trucks carry GPS locators), to whom she allocates the call. The truck driver then
travels to the stricken vehicle, provides whatever aid is required, and, at the end of the job, reports back by
phone that he is free for another job.

There are three important simulation object classes which, at this stage, we can think of as entity classes:

• Drivers: whose vehicles breakdown and who phone CallOut asking for assistance.
• Operators: who take the calls from drivers and despatch a breakdown truck to the location of the

stricken car.
• Trucks: which are despatched by the operator to the scene and offer aid.

Figure 33.3 shows an activity cycle for each of these entity classes.
The operators are initially Idle, they then Talk to a caller, after which they Locate and Despatch appropriate

resources, and return to an Idle state. Three of these are active states (Talk, Locate, and Despatch) and each
is separated by a dead state from the next active state. One such dead state, Idle, is genuine, the others are
there for convenience and to keep the rules of activity cycle diagrams.

The drivers are initially OK, and Drive a working vehicle until they break down (and enter a dead state,
Stopped) and Call the call center and Hang on until they Speak to an operator. They then Wait until
a breakdown truck arrives and then Watch while a repair is executed; after which they are OK again.
Following similar logic to the activity cycle for the operators, Wait is clearly a dead state and Phone is an
active state. Keeping to the alternative live and dead state rule means that OK is a dead state and Watch is
an active state.

Finally, consider the activity cycle of the trucks, which are initially ready for work in an Avail state, from
which they enter a Listen state in which they receive instructions from an operator, after which they are
Briefed. They then Travel to the location of the stricken vehicle, where they execute a Repair, after which
they are then once again in an Avail state. Instruct, Travel, and Repair are all active states and Avail, Briefed,
and Ready are dead states. Applying the alternate active: dead state rule, leads to the third activity cycle in
Figure 33.3.

As independent cycles, these diagrams are of little use. Their power comes when they are combined to
show the interaction of the entity classes; for it is this interaction that causes the dynamic behavior of the
system. An activity cycle diagram that combines the three cycles is shown in Figure 33.3, this is a little
messy, but can be very useful in conceptualizing a possible simulation model. Some of the active states
require the co-operation of two classes of entity: when an operator is in the active state Talk, this is the
same state labeled as Speak in the drivers’ activity cycle. This combined active state is labeled as Talk in
Figure 33.4. The operators’ active state Despatch requires the co-operation of a truck that is previously in
the Avail state. On the truck cycle of Figure 33.3 this is labeled as Instruct and the operators’ label Despatch
is used for the combined active state. Finally, the active state Repair from the trucks’ cycle is clearly the
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same as the active state Watch from the drivers’ cycle. In combining the two, the trucks’ state name of
Repair is used.

Examining the combined activity cycles of Figure 33.3 provides some useful insights that will serve the
basis of the implementation of a suitable DES model using computer software, independent of the type of
software used. First, we can write down the conditions that govern the start of the active states that involve
the co-operation of two or more entity classes. The Talk active state can only begin if two conditions hold:

• There must be a driver who is in the dead state Hang on.
• AND an operator in the dead state Idle.

Likewise, for the Despatch active state to begin, two conditions must both be satisfied:

• There must be a truck in the dead state Avail.
• AND an operator in the dead state Found.

The start of the Repair active state is also governed by two conditions:

• There must be a truck in the dead state Ready.
• AND a driver/car must be in the dead state Wait.

Notice that an unspoken approximation has crept into the model: we are not distinguishing between
drivers and cars. This is reasonable, unless the purpose for which the model is being built requires us to
do otherwise.

The other active states (Drive, Locate, and Travel) do not require the co-operation of two entity classes
to begin. These are active states in which their relevant entities (drivers for Drive, operators for Locate,
and trucks for Travel) are bound to occur once the preceding active is complete. For example, the truck
will automatically enter the Travel active state once the Despatch active state is complete—which means
that it will spend zero time in the intervening dead state, Briefed. The same applies to drivers in the OK
dead state and to operators in the dead state, Busy. These dummy dead states are needed so as to allow
the separation of the life cycles (or processes) of the co-operating entities at the end of the active state in
which they have co-operated. It is tempting, but inadvisable, to ignore these dead states; and doing so may
lead to problems later.

In this way, we can use devices such as activity cycle diagrams to represent the logical interactions
between the entities and resources of the system. Rather more detail will be needed if the conceptual
model is to be implemented in computer software, but modeling in too much detail at the start of the
simulation project is almost always a mistake.

33.3.5 Implementing a DES Model in Computer Software
There are many different DES computer packages available on the market. The OR/MS Today magazine of
INFORMS publishes occasional surveys of available software and the annual Winter Simulation Conference
(www.wintersim.org) usually includes presentations from the major vendors. Hence there is plenty of
choice and gaining information has been made much easier by the Internet. Broadly speaking, there are
two ways in which a DES model may be implemented in computer software: write a program or use a
VIMS.

Whatever the mode of implementation, it is important to distinguish between the model logic and the
simulation executive (sometimes known as the simulation engine). The model logic is an expression of the
rules that govern the system being simulated—its active and dead states and the rules that govern the state
changes. Each different DES model will have its own application logic, as captured in the conceptual model.
By contrast, the simulation executive is general purpose and can control any DES model whose logic is
expressed in a suitable form. The executive exists to ensure that the entities and resources change state at
the right simulation times and as required by the conditions in the simulation. In most circumstances,
the modeler is concerned only to ensure that the model logic is correctly expressed; that is, the simulation
executive is provided by the software vendor and is usually hidden from the modeler.
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33.3.6 Discrete Event Simulation using a VIMS
As stated earlier, most simulation applications in management science are implemented using VIMS, which
require little in the way of computer programming. These are shrink-wrapped software systems such as
Arena, Witness, Simul8, MicroSaint, and Automod in which models are built by point and click using
predefined objects for which the user must supply properties. Though there is no proper survey evidence
to support this assertion, the proportion of discrete simulation applications that use a VIMS may be as
high as 90%, with many of the remaining being large-scale models developed in the defence sector. The
latter, by contrast, usually involve significant programming and may require explicit management of the
events that comprise the dynamic behavior of the simulation. The pros and cons of the two approaches
are discussed at length in Pidd (2004b).

Why are VIMS so popular? Because they offer the prospect of rapid application development by people
who are not computer professionals. There is no doubt that a VIMS can be easy to learn, at least for
straightforward applications, as most simulation instructors will testify. However, it is also true that a
VIMS can run out of power when faced with large and complex applications. This, of course, may not
matter for routine business applications in which the 80:20 rule may apply: that is, a simple model may
be good enough. Few senior managers would invest very large sums in a one-off capital development
based on a complicated stochastic analysis with wide and overlapping confidence intervals. All models are
approximations; very approximate models are often good enough in management science, and VIMS are
good enough for very approximate models.

Figure 33.4 shows the logical composition of a typical VIMS. It presents a user interface that exploits
the API provided by the operating system (usually a version of Windows™). Working with the user interface,
models may be developed, edited, and run and experiments may be conducted. The latter usually requires
at least some statistical analysis, and VIMS usually allow the export of results files in some suitable format
for a spreadsheet or statistical package. Models are constructed by selecting icons that represent features
of the system being simulated and these are linked together on-screen, and parameterized using property
sheets. This is fine if the objects provided are a good fit for the application. However, the default logic
provided by the simulator may be inadequate to model the particular interactions of specific business
processes. To allow customization, most VIMS provide a coding language in which interactions can be
programmed. Some do this with a general-purpose programming language (e.g., Visual Basic or C#).
Others incorporate simulation quasi-languages that permit little beyond the assignment of attributes, the
definition of if statements, loops, and limited access to component properties. However, the modeler need
not write a full program, merely code sections to represent specific logic.

Inside every VIMS is a generic simulation model that is not usually available to the user, who works with
a network diagram that represents the activity and interactions of the model. Figure 33.5 shows such a
network for an accident and emergency department of a hospital using Micro Saint Sharp (Micro Analysis
and Design, 2005), a DES VIMS. In essence, the generic model takes the network diagram as data.

ExperimentationModel
running

Model
development

User  Interface

Model builder
and editor

Simulation and
application

classes
Generic model

Analysis and
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FIGURE 33.4 Internal organization of Visual Interactive Modeling Systems.
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Thus, if it were thought desirable, a VIMS on-screen network could be replaced by a series of verbal
commands each of which carries attribute data to represent the property sheets. The generic model
assumes that simulation entities change state and it reads the network description to define the sequence
of those states and the conditions that govern them. The code fragments, in whatever simulation language,
are then used to modify the standard generic model in some way or other. Once suitably parameterized,
the generic model is run by a simulation executive, which sequences and schedules the tasks that define the
application model. Like the generic model, the simulation executive is also hidden from the user. Hence,
the form of the simulation executive is rarely revealed by the VIMS vendors, who are keen to present their
software as easy to use and also powerful. How the simulation runs is deemed to be of little concern to the
users.

33.4 System Dynamics in Management Science

DESs are based on the dynamic interactions of individual simulation entities, using rules to represent this
logic. System dynamics, an approach introduced in Chapter 27, is the other dynamic modeling approach
that is commonly used in management science. In system dynamics, the aim is to model system behavior
at a more macroscopic level by considering how system structure may affect system behavior. Since a
systems perspective underpins system dynamics, this has led some enthusiasts to claim the name “systems
thinking” for their approach. This is a shame, since there are many different varieties of systems thinking,
as discussed, for example in Jackson (2003). Further damage is done by overblown claims such as those of
Senge (1999), whose popular book “The fifth discipline” shows how the ideas of system dynamics can be
used to support organizational learning. This is fine, but the claim that this represents a whole new way of
thinking that is revolutionary seems somewhat exaggerated. Instead, we should regard system dynamics
as providing a way to support thinking about decisions and plans.

When first developed by Forrester and his colleagues in the early 1960s, system dynamics, then known as
industrial dynamics (Forrester, 1961), had a strong engineering “feel” about it. Indeed, Forrester acknowl-
edged that he had taken ideas used in control engineering in which feedback structures are modeled as
differential equations (see Chapter 17 and Chapter 18). Forrester replaced the differential equations with
first-order difference equations (see Chapter 27) and simple Euler–Cauchy integration. The result was an
approach that could be used by people who were not trained engineers. The industrial dynamics approach
stressed system simulation in which models consisting of linked sets of difference equations were run
through time to provide a system simulation. This quantitative system dynamics was joined, some years
later, by qualitative approaches that stress the use of system dynamics to develop understanding rather than
as a simulation tool. Both approaches will be briefly covered in this chapter. For a thorough description of
both approaches see Sterman (op cit), for a quantitative treatment see Coyle (1996) and see Wolstenholme
(1990) for a more qualitative treatment.

33.4.1 System Structure and System Behavior
To illustrate the difference between system structure and system behavior, consider the following example.
Suppose we notice that the sales of a product have increased and we start to think about why this has
happened. That is, we try to develop a causal argument that links the observed increase in sales with some
other influences and events. In effect, this is a set of informal hypotheses such as: sales have increased
because the weather is good or sales have increased because we had the stocks in the shops when the
customers wished to buy them. This is, of course, what economic modelers aim to do when trying to
understand economic behavior—though in their case, the models are usually based on equations that rely
on statistical methods for their parameters. In economic models and in system dynamics, the aim is to
show how changes in one factor affects other variables. The intention is to help people to understand the
effect of their actions and those of others.

The question is, what causes the observed behavior? A fundamental assumption in system dynamics is
that behavior is a result of structures—both inside the system and in its environment. However, these are
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not structures as might often be understood—such as the number of staff employed or the layout of a
factory. Instead, they are the underlying, general features that can be observed across many types of system.
At their most basic, these are the feedback loops and delays that are present in most organizational systems.
System dynamics provides a way to model those feedback structures and delays so as to understand how
they affect the behavior of the system.

With this in mind, it is important to understand the distinction between content and structure. Structure
defines how variables interact, and content expresses the meaning of those variable and interactions—
rather like considering syntax and semantics in language. Two systems may have similar structures but
quite different content. For example, a supermarket and a telephone call center can both be analyzed in
terms of their queuing structure. Both systems have customers who are served, but the meaning (and
importance) of the customers differ. In the call center, the customers are calls awaiting response, whereas
in the supermarket the customers are the shoppers. Coyle (op cit) points out that the management scientist
has to maintain two views of a system at the same time. To model it, the system must be seen in terms of
its structure, but to consider making changes it is crucial to keep in mind the meaning of the variables.
Only then will it be clear which changes are feasible.

33.4.2 Qualitative System and Dynamics: Causal Loop Diagrams
As an example, consider the parent company of the CallOut response center introduced earlier in this
chapter. Suppose that the managers of this business are concerned about customer churn: that is, though
they gained new customers they also lost customers during the year. Because of this concern they have
called a meeting and as the discussion proceeds it becomes clear that most people think that the best way to
reduce this problem is to increase their marketing effort. This thinking is captured in the diagram of Figure
33.6, which shows that they regard marketing effort as having two components: marketing expenditure
and the effectiveness of their advertising. Figure 33.6 is an example of a causal loop diagram in which the
arrows are intended to show causal links between two factors. Each arrow carries a sign: a positive sign
indicates that an increase in the factor at the tail of the arrow will also lead to an increase in the factor at its
head. A positive sign also means that any decrease in the factor at the tail of the arrow is expected to lead
to a decrease in the factor at its head. Conversely, a negative sign indicates that an increase in the factor at
the tail of the arrow is thought likely to lead to a decrease in the factor at the head of the arrow. Likewise,
a negative sign could indicate that a decrease in the factor at the tail of the arrow is thought likely to lead
to an increase in the factor of its head.
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Ad effectiveness

Ad spend rate

Lost customer rate

Customer target
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FIGURE 33.6 Causal loop diagram for advertising to gain new customers.
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Thus the main loop of the diagram reflects straightforward beliefs and also what we might think of as
the “physics” of the system. That is, an increase in the number of new customers will lead to an increase
in the number of customers. This in turn will lead to a decrease in the expenditure on advertising, since
as they edge closer to their target number of customers, they can reduce advertising. It is also believed,
quite reasonably, that increasing advertising expenditure will lead to an increase in the number of new
customers. This loop is known as a balancing loop in the terminology of system dynamics and it reflects
negative feedback control. That is, the number of customers will not continually increase because, as the
number of customers increase, advertising expenditure will decrease, which will decrease the number of
new customers. This, of course, only works because an increase in the number of customers leads to an
increase in the number of lost customers that will, in turn, lead to a decrease in the number of customers.
Finally, since they believe that advertising effectiveness can vary, the diagram shows a positive link between
advertising effectiveness and of the number of new customers recruited. There is, of course, a problem
with the worldview shown in the causal loop diagram. It assumes that they can do nothing about the
number of customers that are lost each period.

Once they realize that this is wrong, they can construct a rather better causal loop diagram as shown in
Figure 33.7. This time two new factors have been included: marketing spend and expenditure on incentives
to existing customers. The idea of this is to retain existing customers since it is usually the case that doing
so is cheaper than spending money to gain new ones. There is a positive link shown between customers
and total marketing expenditure, since the more customers they have the more they can afford to spend
on marketing. In turn, marketing expenditure is split between incentives and advertising and it is clear
that a major decision facing the company is how to divide this expenditure between the two types of
marketing. There is a negative link from incentive expenditure to the number of lost customers, since
it seems reasonable to believe that the more they spend on these incentives the less likely customers are
to leave. This leads to a second balancing loop on the diagram which connects the customers, incentive
expenditure and lost customers.

Causal loop diagrams of this type are used in two ways. First, they are at the core of what has come to be
known as qualitative system dynamics. In this mode, the idea is to encourage individuals and, especially,
groups of people to sketch out their thinking using causal loop diagrams. Even if the diagrams do not lead
to a simulation of some kind they can be very useful devices for encouraging people to think about the
factors to be considered when tackling a difficult issue. In addition, skilled users of system dynamics can
recognize features of these diagrams that are based on structures found in many different types of system.
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FIGURE 33.7 Causal loop diagram for customer retention expenditure.
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Richmond and Petersen (1994) and Sterman (op cit) provide several examples of these system archetypes
and discuss the effects that they are likely to have on system behavior.

33.4.3 Quantitative System Dynamics: Level-Rate Diagrams
System dynamic models are based on two fundamental concepts as discussed in Chapter 27: levels (some-
times known as stocks) and rates (sometimes known as flow rates). Levels represent accumulations within
a system and will persist even if all activity within the system ceases for a while. For example, in Figure
33.6 and Figure 33.7, customers are clearly a level since, even if the company ceased to recruit any new
customers, the customers that they do have will remain, at least for a while. Rates or flow rates represent
activity within the system and these dropped to zero when activity ceases. It should be obvious that the
number of new customers recruited in any period is a rate, as is the number of customers lost in a period.
Advertising expenditure is also a rate and it will vary from period to period depending on the policy of the
company.

Figure 33.8 shows a level-rate diagram based on the causal loop diagram in Figure 33.6 using the
symbols provided by the Powersim software (www.powersim.com). Similar symbols are used in other
system dynamics software: levels are shown as rectangles and rates are shown as pipes with valves on them.
New customers are seen as arising from a cloud and this is to indicate that this source is not included in the
model; that is, the cloud represents the system boundary. Likewise lost customers disappear into a cloud
since we are not intending to model their destination. The main physical flow of the model represents
customers and it should be clear that if the inflow of new customers exceeds the outflow of lost customers,
the number of customers will increase. In a system dynamics model, a level will always have at least one
outflow or at least one inflow. In our example the level has one inflow and one outflow. Advertising
expenditure is also modeled as a flow rate and this is seen as an emerging from a cloud and disappearing to
a cloud because the model is not concerned with where this money comes from, nor where it goes to. The
rate of expenditure on advertising is a function of the actual number of customers and the target number
of customers. In addition, like all businesses, there is a limit to their expenditure and so Figure 33.8 has
an extra parameter—the maximum advertising spend each month. Finally, the diagram also includes two
diamond shapes of which one represents the number of customers they would like to have (customer
target) and the other represents the effectiveness of a particular advertising campaign. The diamonds
indicate that these are parameters for the model.

As discussed in Chapter 27, a system dynamics model consists of two main types of equations: level
equations and rate equations. When a modern system dynamics package such as Powersim, Stella/IThink

Lost customer rate

Loss proportion

New customer rate

Ad spend rate

Customers

Customer target

Ad effectiveness

FIGURE 33.8 Powersim diagram for advertising to gain new customers.
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or Vensim is used, the modeller draws the diagram on screen by selecting appropriate icons from a palette.
Hence, the software knows which objects are levels which are rates and which are parameters. In a more
complex model there might also be objects on the diagram to represent the delay is of different kinds.
Since the software knows which objects are levels and which are rates it can determine the level equations.
In our example there is only one level, customers, and the value that it takes at any time depends on its
previous value and the difference between the incoming rate and the outgoing rate. Most system dynamics
models are time slicing; that is, they move simulated time forwards in equal steps. This time increment is
usually known as dt . Hence the software can determine that the level equation for customers will take the
following form:

new customer level = old customer level + (new customer rate - lost
customer rate)*dt

where this assumes that the new customer rate and lost customer rate are both constant over the interval
dt . In essence, the level equations are determined by the “physics” of the system, in that matter is neither
created nor destroyed, but is conserved.

However, the software cannot determine the rate equations, for these depend on the policies chosen
by the company and also by factors outside of their control. For example, they may have analyzed the
customer losses over the last few years and discovered a regular pattern in which they lose a proportion of
their customers each month. Similarly, they may represent the effectiveness of an advertising campaign by
a constant which indicates the amount that should be spent to gain a new customer. Unless the model is
provided with this information, the simulation software has no way of knowing what these values are, nor
can it know what form the relationships take. Hence, in all system dynamics software, the user must define
each rate equation and the links between the system parameters and the various equations in the model.

Given what is said above, a possible set of rate equations might be as follows:

AdSpendRate = MIN(IF(CustomerTarget-Customers > 0,
50*(CustomerTarget-Customers), 0), MaxAdSpend)

LostCustomerRate = Customers*LossProportion
NewCustomerRate = AdSpendRate/AdEffectiveness

The first rate equation represents a policy of spending £50 per missing customer, where the number of
missing customers is the difference between the customer target and the actual current number of customs.
Since it is possible for the number of customers to be higher than the target, the calculation is wrapped in
an if statement that checks whether or not the actual number of customers is less than the target. If the
number of customers is greater than the target then it makes no sense at all to spend money on advertising
and hence the equation returns the value of zero. The other two rate equations are self-explanatory.

We can now run a simulation using this model if we provide values for the parameters and an initial
value for the number of customers. Suppose that the initial number of customers is 5000, the target
number of customers is 6000, the proportion of customers lost each period is 0.05, and the advertising
effectiveness takes the value of 45. Note that this value of 45 compares with a unit expenditure per missing
customer 50, implying that advertising is not 100% effective. Running a simulation for 100 time units,
where a time unit might be a week or a month, leads to the behavior shown in the graphs of Figure 33.9.
The bottom graph shows the effect of fixing MaxAdSpend at 10,000—they continually lose customers. The
top graph shows that raising this to 12,000 means that they will gradually approach their target. Hence, by
varying the parameter values the managers can experiment with different policies to see what effect they
may have. Similarly, they could take the causal loop diagram shown in Figure 33.7 and develop a set of
system dynamics equations to represent it. If they wished they could then run further simulations to see
what effect different options might have given the slightly more complicated representation of this second
model.
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33.5 Model Validation

In any modeling application it is important to ask whether the model is valid for its intended purpose. Sadly
this seems to be an area that is often neglected by management scientists engaged in simulation modeling,
whether using DES or system dynamics. It is rarely possible to fully validate any model, especially if
the model is to be used to investigate new situations. This is because using a model to investigate new
situations means that any data on which it was built may have to be stretched to represent the situation
being investigated. Even if we are clear that the model is valid for the current situation it may not be valid
for the new one being investigated. Nevertheless, some formal validation is always possible and the various
approaches are discussed in detail in Chapter 12 of Pidd (2004b). Not attempting any model validation is
risky because it may lead to wrong conclusions being drawn and wrong decisions being made.

The simplest form of model validation is often referred to as Black Box validation. In this we run the
model under well-defined conditions and collect output. We select the conditions under which the model
run is to be, as far as possible, identical to conditions that have occurred in the system being simulated.
We then tune the simulation model, that is we modify its values, as appropriate, in an attempt to ensure
that the model output is indistinguishable from the output of the real system. This is called Black Box
validation because we are only concerned with the inputs and outputs of the model and of the system
rather than the internal workings. We should, though, be aware that coincidences do happen and that they
could be several reasons why the model and the real system appear to behave in the same way. We cannot
be sure that this occurs because of the model adequately represents the operation of the real system. If we
wish to assure ourselves on this count, then we must attempt what is often known as White Box validation.
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A better name for White Box validation would be transparent box validation, since the idea is to look at
the detailed internal workings of the model to see if they adequately represent the operation of the system
being simulated. For example, in simulating a telephone call center we may wish to assure ourselves that
the way that one operator hands over to another at the end of a shift is correctly represented in the model.
This is not a question of looking at the model output but rather at the way the logic has been programmed
into the model. We must, though, notice that even a White Box validation can never be complete because
we may wish, as mentioned above, to simulate situations which as yet do not exist. In such cases we can
only check that the logic of the simulation model is the logic that is expected to hold in the real system.

Sadly, though, the known failings of both Black Box and White Box validation are unlikely to be the
reasons why many management science simulation models are not validated. In many cases they are not
properly validated because the analyst or the client have not allowed enough time for this to be done.
Shortage of time and other resources often leads to corners being cut, and proper validation is often the
victim of this. Fortunately, this may not matter in at least some situations, for it is very unlikely that most
organizations will make significant investments on the basis of small probabilities. That is, they are only
likely to make investments if there is a really significant benefit to be gained. It is possible that even a
partially valid model may be able to demonstrate this.

33.6 Chapter Summary

A core feature of management science, or operational research, is the use of models to aid in decision
making. Models help decision makers and planners to think through the possible consequences of decisions
before taking any action. There are many different modeling approaches used in management science and
the most commonly used dynamic approaches are DES and system dynamics. A DES model captures the
detailed logical interactions of the entities that compose the system of interest. In management science, DES
models are usually built using VIMSs, and it is rare for such applications to be programmed from scratch.
To build a system dynamics model we must take a rather different focus. Instead of modeling the detailed
interaction of individual entities we are concerned with the changes in populations of entities. These
are represented in first-order difference equations which may then be used, with a numerical integration
method, to simulate the operation of the system. Contemporary system dynamics in management science
may be qualitative or quantitative and in the former case, causal loop diagrams offer a useful way to
understand how systems operate. Sad to say, though, model validation is clearly very important, it is
probably true that this is not well executed in management science for either DES or system dynamics.
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34.1 Introduction

The dynamics of manufacturing systems has been a subject of study for several decades (Forrester, 1961;
Hopp and Spearman, 2000). Over the last years, manufacturing systems have become more and more
complex and therefore a good understanding of their dynamics has become even more important.

The goal of this chapter is to introduce a large variety of models for manufacturing systems. By means
of examples it is illustrated how certain modeling techniques can be used to derive models that can be used
for analysis or control. In addition to references that can be used as a starting point for further inquiry,
recent developments in the modeling, analysis, and control of manufacturing systems are presented.

Since no familiarity with manufacturing systems is assumed, in Section 34.2 some terminology and basic
properties of manufacturing systems are introduced. Section 34.3 provides some analytical modeling
techniques and methods for analyzing steady-state behavior. Section 34.4 is concerned with deriving
discrete-event models, which yield a more detailed insight in the dynamics of a manufacturing system. To
reduce the complexity of discrete-event models, the concept of effective process times (EPTs) is introduced
in Section 34.5, which results in modeling a manufacturing system as a large queueing network. This way
of modeling a manufacturing system is a first step in a larger control framework, which is introduced in
Section 34.6. This control framework makes it possible to study problems of controlling the dynamics
of manufacturing systems by means of the available inputs. An important role in this control framework
is played by approximation models. The most commonly used approximation models are presented in
Section 34.7. Recently, a new class of approximation models has been proposed, which is presented in
Section 34.8. Section 34.9 concludes this chapter.

34-1
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FIGURE 34.1 Basic quantities for manufacturing systems.

34.2 Preliminaries

First a few basic quantities are introduced as well as the main principles for manufacturing system analysis.
The items produced by a manufacturing system are called lots. Also the words product and job are
commonly used. Other important notions are throughput, flow time, wip, and utilization. These notions
are illustrated in Figure 34.1 at factory and machine level.

Raw process time t0 of a lot denotes the net time a machine needs to process the lot. This process time
excludes additions such as setup time, breakdown, or other sources that may increase the time a lot
spends in the machine. The raw process time is typically measured in hours or minutes.

Throughput δ denotes the number of lots per unit time that leaves the manufacturing system. At a
machine level, this denotes the number of lots that leave a machine per unit time. At a factory
level it denotes the number of lots that leave the factory per unit time. The unit of throughput is
typically lots/hour.

Flow time ϕ denotes the time a lot is in the manufacturing system. At a factory level this is the time
from the release of the lot into the factory until the finished lot leaves the factory. At a machine
level this is the time from entering the machine (or the buffer in front of the machine) until leaving
the machine. Flow time is typically measured in days, hours, or minutes. Instead of flow time the
words cycle time and throughput time are also commonly used.

Work in process (wip) w denotes the total number of lots in the manufacturing system, i.e., in the factory
or in the machine. Wip is measured in lots.

Utilization u denotes the fraction a machine is not idle. A machine is considered idle if it could start pro-
cessing a new lot. Thus process time as well as downtime, setup time, and preventive maintenance
time all contribute to the utilization. Utilization has no dimension and can never exceed 1.0.

Ideally, a manufacturing system should both have a high throughput and a low flow time or low wip.
Unfortunately, these goals are conflicting (cf. Figure 34.2) and both cannot be met simultaneously. If a
high throughput is required, machines should always be busy. As from time to time disturbances like
machine failures happen, buffers between two consecutive machines are required to make sure that the
second machine can still continue if the first machine fails (or vice versa). Therefore, for a high throughput
many lots are needed in the manufacturing system, i.e., wip needs to be high. As a result, if a new lot
starts in the system it has a large flow time, since all lots that are currently in the system need to be
completed first.
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FIGURE 34.3 A characteristic time-behavior of wip at a workstation.

Conversely, the least possible flow time can be achieved if a lot arrives at a completely empty system and
never has to wait before processing takes place. As a result, the wip level is small. However, for most of the
time machines are not processing, yielding a small throughput.

When trying to control manufacturing systems, a trade-off needs to be made between throughput and
flow time, so the nonlinear (steady-state) relations depicted in Figure 34.2 need to be incorporated in any
reasonable model of manufacturing systems.

A final observation of relevance for modeling manufacturing systems is the nature of the system signals.
In Figure 34.3 a characteristic graph of the wip at a workstation as a function of time is shown. Wip always
takes integer values with arbitrary (nonnegative real) duration. One could consider a manufacturing
system to be a system that takes values from a finite set of states and jumps from one state to the other as
time evolves. This jump from one state to the other is called an event. As we have a countable (discrete)
number of states, it is clear that discrete-event models are often used in modeling manufacturing systems.
Discrete-event models for manufacturing systems are considered in Section 34.4. But first some analytical
models for analyzing steady-state behavior of manufacturing systems are presented in the next section.

34.3 Analytical Models for Steady-State Analysis

To get some insights in the steady-state performance of a given manufacturing system simple relations
can be used. In this section, we deal with mass conservation for determining the mean utilization of
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workstations and the number of machines required for meeting a required throughput. Furthermore,
relations from queueing theory are used to obtain estimates for the mean wip and mean flow time.

34.3.1 Mass Conservation (Throughput)
Using mass conservation the mean utilization of workstations can easily be determined.

Example 1
Consider the manufacturing system with rework and bypassing in Figure 34.4. The manufacturing
system consists of three buffers and four machines. Lots are released at a rate of λ lots/h. The numbers
near the arrows indicate the fraction of the lots that follow that route. For instance, of the lots leaving
buffer B1 90% goes to machine M1 and 10% goes to buffer B3. The process time of each machine is
listed in the table in Figure 34.4.

Let δMi and δBi denote the throughput of machine Mi (i = 1, 2, 3, 4) and buffer Bi (i = 1, 2, 3),
respectively. Using mass conservation we obtain

δM1 = 0.9δB1 δB1 = λ

δM2 = 0.2δB2 δB2 = δM1 + δM2

δM3 = 0.8δB2 δB3 = δM3 + 0.1δB1

δM4 = δB3 δ = δM4

Solving these linear relations results in:

δM1 = 0.9λ δB1 = λ

δM2 = 0.225λ δB2 = 1.125λ

δM3 = 0.9λ δB3 = λ

δM4 = λ δ = λ

Using the process times of the table in Figure 34.4, we obtain for the utilizations:

uM1 = 0.9λ · 2.0/1 = 1.8λ uM3 = 0.9λ · 1.8/1 = 1.62λ

uM2 = 0.225λ · 6.0/1 = 1.35λ uM4 = λ · 1.6/1 = 1.6λ

Clearly, machine M1 is the bottleneck and the maximal throughput for this line is λ = 1/1.8 =
0.56 jobs/h.

Using mass conservation, utilizations of workstations can be determined straightforwardly. This also
provides a way for determining the number of machines required for meeting a given throughput. By
modifying the given percentages the effect of rework or a change in product mix can also be studied.
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FIGURE 34.4 Manufacturing system with rework and bypassing.
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34.3.2 Queueing Relations (Wip, Flow Time)
For determining a rough estimate of the corresponding mean flow time and mean wip, basic relations
from queueing theory can be used.

Consider a single machine workstation that consists of infinite buffer B∞ and machine M (see
Figure 34.5). Lots arrive at the buffer with a stochastic interarrival time. The interarrival time distri-
bution has mean ta and a standard deviation σa, which we characterize by the coefficient of variation
ca = σa/µa. The machine has stochastic process times, with mean process time t0 and coefficient of varia-
tion c0. Finished lots leave the machine with a stochastic interdeparture time, with mean td and coefficient
of variation cd. Assuming independent interarrival times and independent process times, the mean waiting
time ϕB in buffer B can be approximated for a stable system by means of Kingman’s equation (Kingman,
1961):

ϕB = c2
a + c2

0

2

u

1 − u
t0 (34.1)

with the utilization u defined by: u = t0/ta. Eq. (34.1) is exact for an M/G/1 system, i.e., a single machine
workstation with exponentially distributed interarrival times and any distribution for the process time.
For other single machine workstations it is an approximation.

For a stable system, we have td = ta. We can approximate the coefficient of variation cd by Kuehn’s
linking equation (Kuehn, 1979):

c2
d = (1 − u2)c2

a + u2c2
0 . (34.2)

This result is exact for an M/M/1 system. For other single machine workstations it is an approximation.
Having characterized the departure process of a workstation, the arrival process at the next workstation
has been characterized as well. As a result, a line of workstations can also be described.

Example 2 (Three workstations in line)
Consider the three workstation flow line in Figure 34.6. For the interarrival time at workstation 0 we have
ta = 4.0 h and c2

a = 1. The three workstations are identical with respect to the process times: t0,i = 3.0 h
for i = 0, 1, 2 and c2

0,i = 0.5 for i = 0, 1, 2. We are interested to determine the mean total flow time
per lot.

Since ta > t0,i for i = 0, 1, 2, we have a stable system and ta,i = td,i = 4.0 h for i = 0, 1, 2. Subsequently,
the utilization for each workstation is ui = 3.0/4.0 = 0.75 for i = 0, 1, 2.

td

t0, c0
2

B�

Mta, ca
2

FIGURE 34.5 Single-machine workstation.
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FIGURE 34.6 Three workstation flow line.
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Using Eq. (34.1) we calculate the mean flow time for workstation 0

ϕ0 = ϕB + t0 = c2
a + c2

0

2

u

1 − u
t0 + t0 = 1 + 0.5

2

0.75

1 − 0.75
3.0 + 3.0 = 9.75 h

Using Eq. (34.2), we determine the coefficient of variation on the interarrival time ca,1 for work-
station W1

c2
a,1 = c2

d,0 = (1 − u2)c2
a + u2c2

0 = (1 − 0.752)1 + 0.752 · 0.5 = 0.719

and the mean flow time for workstation 1

ϕ1 = 0.719 + 0.5

2

0.75

1 − 0.75
3.0 + 3.0 = 8.49 h

In a similar way, we determine that c2
a,2 = 0.596, ϕ2 = 7.93 h. We then calculate the mean total flow time

to be

ϕtot = ϕ0 + ϕ1 + ϕ2 = 26.2 h

Note that the minimal flow time without variability (c2
a = c2

0,i = 0) equals 9.0 h.

Eq. (34.1) and Eq. (34.2) are particular instances of a workstation consisting of a single machine. For
workstations consisting of m identical machines, in parallel the following approximations can be used:

ϕB = c2
a + c2

0

2

u
√

2(m+1)−1

m(1 − u)
· t0 (34.3)

c2
d = (1 − u2)c2

a + u2 c2
0 + √

m − 1√
m

(34.4)

Note that in case m = 1 these equations reduce to Eq. (34.1) and Eq. (34.2).
Once the mean flow time has been determined, a third basic relation from queueing theory, Little’s law

(Little, 1961), can be used for determining the mean wip level. Little’s law states that the mean wip level
(number of lots in a manufacturing system) w is equal to the product of the mean throughput δ and the
mean flow time ϕ, provided the system is in steady state

w = δϕ (34.5)

An example illustrates how Kingman’s equation and Little’s law can be used.

Example 3
Consider the system of Example 2 as depicted in Figure 34.6. From Example 34.3.2 we know that the
flow times for the three workstations are, respectively,

ϕ0 = 9.75 h, ϕ1 = 8.49 h, ϕ2 = 7.93 h

Since the steady-state throughput was assumed to be δ = 1/ta = 1/4.0 = 0.25 lots/h, we obtain via
Little’s law

w0 = 0.25 · 9.75 = 2.44 lots

w1 = 0.25 · 8.49 = 2.12 lots

w2 = 0.25 · 7.93 = 1.98 lots

The above-mentioned relations are simple approximations that can be used for getting a rough idea about
the possible performance of a manufacturing system. These approximations are fairly accurate for high
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degrees of utilization but less accurate for lower degrees of utilization. A basic assumption when using
these approximations is the independence of the interarrival times, which in general is not the case, e.g., for
merging streams of jobs. Furthermore, using these equations only steady-state behavior can be analyzed.
For studying things like ramp-up behavior or for incorporating more details like operator-behavior, more
sophisticated models are needed, as described in the next section.

34.4 Discrete-Event Models

In the previous section simple methods have been introduced for analyzing steady-state behavior of
manufacturing systems. For analyzing the dynamics of manufacturing systems, more sophisticated models
are required. Using Figure 34.3 in Section 34.2 it was illustrated that typical models of manufacturing
systems are the so-called discrete-event models. In this section, we present examples how to build a
discrete-event model of a manufacturing system using the specification language χ, explained in more
detail in Chapter 19 of this handbook.

The way to build a discrete-event model is to consider the manufacturing system as a network of
concurrent processes through which jobs and other types of information flows. For example, a basic
machine can be modeled as a process which repeatedly tries to receive a lot, waits for the period of time
(the process time), and tries to send a lot. Using χ, we can write

proc M(chan a?b! : lot, var te:real)= |[var x : lot :: (a?x; �te ; b!x)]|
The machine is able to receive lots via external channel a, is able to send lots via external channel b, and
the process time of the machine is given by parameter te . Repeatedly, the machine tries to receive a lot over
external channel a and store this lot in discrete variable x. Next, the machine waits for te , after which the
machine tries to send x via external channel b.

A buffer can be modeled as a process that may receive new lots if it is not full and may send lots if it is
not empty. Using χ, a finite first in, first out (FIFO) buffer with a maximal buffer size n can be modeled as

proc B (chan a?b! : lot, var n : nat) =
|[ disc xs : [lot] = [], x : lot
::(len(xs) < n → a?x; xs : = xs++[x]
[] len(xs) > 0 → b!hd(xs); xs : = tl(xs)
)

]|
This process can receive lots via external channel a, send lots via external channel b, and has its maximal
buffer size n as a parameter. Repeatedly, two alternatives can be executed:

• Trying to receive a lot via channel a (only if the length of the list xs is less than n) into discrete
variable x and consecutively adding it to list xs of lots (using a concatenation of lists).

• Trying to send the head of the list (its first element) via channel b (only if the list is not empty) and
consecutively reducing list xs to its tail (everything but the first element).

These two processes can be used to model a workstation that consists of a 3-place buffer and a machine
with process time te by simply executing the two previously specified processes in parallel:

procW (chan a?b! : lot, var te : real) = |[chan c : lot :: B(a,c,3)‖M(c,b,te)]|
We assume that lots arrive at this workstation according to a Poisson arrival process with mean arrival rate
of λ jobs per unit time. This can be modeled by means of the generator process

proc G (chan a! : lot, var λ : real) =
|[disc u: → real= exponential(1/λ) :: (a!τ; �σu; b!x)]|

Here the type lot is a real number which contains the time this lot entered the system. Generator G is able
to send lots via external channel a and has a mean departure rate, which is given by parameter λ. The
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discrete variable u contains an exponential distribution with mean 1/λ. Repeatedly, the generator tries
to send a lot over external channel a, where at departure it gets assigned the current time τ. Next, the
generator waits for a period which is given by a sample from the distribution u.

Once a lot has been served by workstation W it leaves to the exit process E:

proc E(chan a? : lot) = |[var x : lot :: (a?x)]|
This process repeatedly tries to receive a lot via external channel a.

For an arrival rate of λ = 0.5 and a process time of te = 1.5, the specification of the discrete-event model
can be completed by

model GWE() = |[chan a,b : lot :: G(a,0.5) ‖W (a,b,1.5)‖E(b)]|
In this way a manufacturing system can be modeled as a network of concurrent processes through which
jobs and other types of information flows. The presented model is rather simple, but clearly many more
ingredients can be added. For example, to include an operator for the processing of the machine we can
modify the process M into

proc M̄ (chan a?b! : lot, c?, d! : operator, var te : real) =
|[var x : lot, y : operator :: (c?y; a?x; �te; b!x; d!y)]|

Highly detailed models of manufacturing systems can be made in this way, even before the system has been
build. The influence of parameters can be analyzed by running several experiments with the discrete-event
model using different parameter settings. This is common practice when designing a several billion wafer
fab. However, since in practice manufacturing systems are changing continuously, it is very hard to keep
these detailed discrete-event models up-to-date.

Fortunately, for a manufacturing system in operation it is possible to arrive at more simple/less detailed
discrete-event models by using the concept of EPTs as introduced in the next section.

34.5 Effective Process Times

As mentioned in the previous section, for the processing of a lot at a machine, many steps may be required.
It could be that an operator needs to get the lot from a storage device, set up a specific tool that is required
for processing the lot, put the lot on an available machine, start a specific program for processing the lot,
wait until this processing has finished (meanwhile doing something else), inspect the lot to determine if all
went well, possibly perform some additional processing (e.g., rework), remove the lot from the machine
and put it on another storage device, and transport it to the next machine. At all of these steps something
might go wrong: the operator might not be available, after setting up the machine the operator finds out
that the required recipe cannot be run on this machine, the machine might fail during processing, no
storage device is available anymore so the machine cannot be unloaded and is blocked, etc.

It is impossible to measure all sources of variability that might occur in a manufacturing system. While
some of the sources of variability could be incorporated into a discrete-event model (tool failures and
repairs, maintenance schedules), not all sources of variability can be included. This is clearly illustrated in
Figure 34.7, obtained from Jacobs et al. (2003).

The left graph contains actual realizations of flow times of lots leaving a real manufacturing system,
whereas the right graph contains the results of a detailed deterministic simulation model and the graph in
the middle contains the results of a similar model including stochasticity. It turns out that in reality flow
times are much higher and much more irregular than simulation predicts. So, even if one tries hard to
capture all variability present in a manufacturing system, still the outcome predicted by the model is far
from reality.

The term EPT has been introduced by Hopp and Spearman (2000) as the time seen by lots from a
logistical point of view. To determine the EPT they assume that the contribution of the individual sources
of variability is known.
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FIGURE 34.8 Gantt chart of five lots at a single machine workstation.

A similar description is given in Sattler (1996) where the effective process time has been defined as all
flow time except waiting for another lot. It includes waiting owing to machine down time and operator
availability and a variety of other activities. In Sattler (1996) it was also noticed that this definition of
effective process time is difficult to measure.

Instead of taking the bottom-up view of Hopp and Spearman, a top-down approach can also be taken,
as shown by Jacobs et al. (2003), where algorithms have been introduced that enable determination of
effective process time realizations from a list of events.

We consider a single machine workstation and assume that the Gantt chart of Figure 34.8 describes a
given time period.

• At t = 0 the first lot arrives at the workstation. After a setup, the processing of the lot starts at t = 2
and is completed at t = 6.

• At t = 4 the second lot arrives at the workstation. At t = 6 this lot could have been started, but
apparently there was no operator available, so only at t = 7 the setup for this lot starts. Eventually,
at t = 8 the processing of the lot starts and is completed at t = 12.

• The fifth lot arrives at the workstation at t = 22, processing starts at t = 24, but at t = 26 the machine
breaks down. It takes until t = 28 before the machine has been repaired and the processing of the
fifth lot continues. The processing of the fifth lot is completed at t = 30.

From a lot’s point of view we observe:

• The first lot arrives at an empty system at t = 0 and departs from this system at t = 6. Its processing
took 6 units of time.

• The second lot arrives at a nonempty system at t = 4 and needs to wait. At t = 6, the system becomes
available again and hence from t = 6 on there is no need for the second lot to wait. At t = 12 the
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FIGURE 34.9 EPT realizations of five lots at a workstation.

second lot leaves the system, so from the point of view of this lot, its processing took from t = 6 till
t = 12; the lot does not know whether waiting for an operator and a setup is part of its processing.

• The third lot sees no need for waiting after t = 12 and leaves the system at t = 17, so it assumes to
have been processed from t = 12 till t = 17.

Following this reasoning, the resulting effective process times for lots are as depicted in Figure 34.9.
Note that only arrival and departure events of lots to a workstation are needed for determining the
effective process times. Furthermore, none of the contributing disturbances needs to be measured. In
highly automated manufacturing systems, arrival and departure events of lots are being registered, so for
these manufacturing systems, effective process time realizations can be determined rather easily. These
EPT realizations can be used in a relatively simple discrete-event model of the manufacturing system.
Such a discrete-event model only contains the architecture of the manufacturing system, buffers, and
machines. The process times of these machines are samples from their EPT distribution as measured
from real manufacturing data. There is no need for incorporating machine failures, operators, etc., as
this is all included in the EPT-distributions. Furthermore, the EPTs are utilization independent. That
is, EPTs determined collected at a certain throughput rate are also valid for different throughput rates.
Also, machines with the same EPT-distribution can be added to a workstation. This makes it possible
to study how the manufacturing system responds in case a new machine is added, or all kinds of other
what-if-scenarios. Finally, since EPT-realizations characterize operational time variability, they can be
used for performance measuring. For more on this issue, the interested reader is referred to Jacobs et al.
(2003, 2006). What is most important is that EPTs can be determined from real manufacturing data and
yield relatively simple discrete-event models of the manufacturing system under consideration. These
relatively simple discrete-event models can serve as a starting point for controlling manufacturing systems
dynamically.

34.6 Control of Manufacturing Systems: A Framework

In the previous section, the concept of effective process times has been introduced as a means to arrive
at relatively simple discrete-event models for manufacturing systems, using measurements from the real
manufacturing system under consideration. The resulting discrete-event models are large queueing net-
works which capture the dynamics reasonably well. These relatively simple discrete-event models are not
only a starting point for analyzing the dynamics of a manufacturing system, but can also be used as a
starting point for controller design. If one is able to control the dynamics of the discrete-event model of
the manufacturing system, the resulting controller can also be used for controlling the real manufacturing
system.

Even though control theory exists for controlling discrete-event systems, unfortunately none of it is
appropriate for controlling discrete-event models of real-life manufacturing systems. This is mainly due
to the large number of states of a manufacturing system. Therefore, a different approach is needed.



Modeling and Analysis of Manufacturing Systems 34-11

Manufacturing system

Discrete event model

Approximation model

Controller

FIGURE 34.10 Control framework (I).

Manufacturing system

Discrete event model

Approximation model

Controller

ConversionConversion

FIGURE 34.11 Control framework (II).

If we concentrate on mass production, the distinction between lots is not really necessary and lots
can be viewed in a more continuous way. Therefore, instead of the discrete-event model we consider an
approximation model.

Using the approximation model, we can use standard control theory to derive a controller for the
approximation model (cf. Figure 34.10).

When the closed-loop system of the approximation model and the controller behaves as desired, the
controller can be connected to the discrete-event model. However, since the derived controller is not a
discrete-event controller its control actions still need to be transformed into events. It might very well
be that the optimal control action would be to produce 2.75 lots during the next shift. One still needs
to decide how many jobs to really start (2 or 3), and also when to start them. This is the left conversion
block in Figure 34.11. Similarly, a conversion is needed from discrete-event model to controller: a simple
conversion would be to sample the discrete-event model once every shift, but other sampling strategies
might also be followed. For example, if at the beginning of a shift a machine breaks down it might not be
such a good idea to wait until the end of the shift before setting new production targets.

Once the two conversion blocks have been properly designed a suitable discrete-event controller for the
discrete-event model is obtained, as illustrated in Figure 34.11 (dashed).

Eventually, as a final step, the designed controller can be disconnected from the discrete-event model,
and attached to the real manufacturing system.

In the presented control framework two crucial steps can be distinguished. First, the discrete-event
model should be a good enough approximation of the real manufacturing system, i.e., the model needs to
be validated and if found unsatisfactory it needs to be improved. Second, the approximation model should
be a good enough approximation of the discrete-event model, or actually, of the discrete-event model
and conversion block(s), since that is the system that needs to be controlled by the continuous controller.
Depending on the variables of interest, a valid approximation model needs to be used. An overview of
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common used approximation models, assuming mass production, is provided in the next two sections.
In Section 34.7 approximation models are presented that mainly focus on throughput. In Section 34.8
approximation models are presented that incorporate both throughput and flow time, taking into account
the nonlinear relations as depicted in Figure 34.2.

34.7 Standard Fluid Model and Extensions

The analytical approximations models of Section 34.3 are only concerned with steady state, no dynamics
is included. This disadvantage is overcome by discrete-event models as discussed in Section 34.4. However,
since they model each job separately and stochastically long simulation times are required for obtaining
satisfactory results. Using an approximation model where jobs are viewed in a continuous way we can
overcome these long simulation times.

34.7.1 A Common Fluid Model
The current standard way of deriving fluid models is most easily explained by means of an example.
Consider a simple manufacturing system consisting of two machines in series, as displayed in Figure 34.12.
Let u0(t) denote the rate at which jobs arrive at the system at time t , ui(t) the rate at which machine Mi

produces lots at time t , yi(t) the number of lots in buffer Bi at time t (i ∈ {1, 2}), and y3(t) the number of
lots produced by the manufacturing system at time t . Assume that machines M1 and M2 have a maximum
capacity of µ1 and µ2 lots per time unit, respectively.

The rate of change of the buffer contents is given by the difference between the rates at which lots enter
and leave the buffer. Under the assumption that the number of lots can be considered continuously, we get

ẏ1(t) = u0(t) − u1(t),

ẏ2(t) = u1(t) − u2(t),

ẏ3(t) = u2(t)

(34.6)

which can be rewritten as

ẋ(t) =
⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ x(t) +

⎡
⎣1 −1 0

0 1 −1
0 0 1

⎤
⎦ u(t) (34.7a)

y(t) =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ x(t) +

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ u(t) (34.7b)

where u = [u0, u1, u2]� and y = [y1, y2, y3]�. We also have capacity constraints on the input as well as the
constraint that the buffer contents should remain positive, i.e.,

0 ≤ u1(t) ≤ µ1, 0 ≤ u2(t) ≤ µ2 and y1(t) ≥ 0, y2(t) ≥ 0, y3(t) ≥ 0 (34.8)

This system is a controllable linear system of the form ẋ = Ax + Bu, y = Cx + Du, extensively studied in
control theory.

B1 M1 B2 M2 B3

u0 u1 u1 u2 u2

y1 y2 y3

FIGURE 34.12 A simple manufacturing system.
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Note that instead of a description in continuous time, a description in discrete time can also be used:

ẋ(k + 1) =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ x(k) +

⎡
⎣1 −1 0

0 1 −1
0 0 1

⎤
⎦ u(k) (34.9a)

y(k) =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ x(k) +

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ u(k) (34.9b)

Also, the description of Eq. (34.7) is not the only possible input/output/state model that yields the
input/output behavior Eq. (34.6). To illustrate this, consider the change of coordinates

x(t) =
⎡
⎣1 −1 0

0 1 −1
0 0 1

⎤
⎦ x̄(t) (34.10)

which results in the following input/output/state model:

x̄(t) =
⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ x̄(t) +

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ u(t) (34.11a)

y(t) =
⎡
⎣1 −1 0

0 1 −1
0 0 1

⎤
⎦ x̄(t) +

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ u(t) (34.11b)

Note that in this description, the state x̄ denotes the cumulative production at each workstation.
We would like to study the response of the output of the system Eq. (34.7), or equivalently Eq. (34.11).

Assume we initially start with an empty production line (i.e., x(0) = 0), that both machines have a capacity
of 1 lot per unit time (i.e., µ1 = µ2 = 1) and that we feed the line at a rate of 1 lot per time unit (i.e.,
u0 = 1). Furthermore, assume that machines produce at full capacity, but only in case something is in the
buffer in front of it, i.e.,

ui(t) =
⎧⎨
⎩

µi if yi(t) > 0
i ∈ {1, 2}

0 otherwise
(34.12)

Under these assumptions, the resulting contents of buffer B3 are as displayed in Figure 34.13. Note that
immediately lots start coming out of the system. Clearly, this is not what happens in practice. Since both
machines M1 and M2 need to process the first lot, it should take the system at least (1/µ1) + (1/µ2) time
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8
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Time

y 3

FIGURE 34.13 Output of the manufacturing system using model Eq. (34.6).
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FIGURE 34.14 A simple manufacturing system revisited.

0 1 2 3 4 5 6 7 8

0

2

4

6

8

System response

Time

y 3

FIGURE 34.15 Output of the manufacturing system using model Eq. (34.13).

units before lots can come out. This illustrates fluid models as given by Eq. (34.7) or Eq. (34.11) do not
incorporate flow times.

34.7.2 An Extended Fluid Model
In the previous subsection, we noticed that in the standard fluid model lots immediately come out of the
system, once we start producing. A way to overcome this problem is to explicitly take into account the
required delay. Whenever we decide to change the production rate of machine M1, buffer B2 notices this
1/µ1 time units later. As a result, the rate at which lots arrive at buffer B2 at time t is equal to the rate
at which machine M1 was processing at time t − 1/µ1. This observation results in the following model
(see also Figure 34.14):

ẏ1(t) = u0(t) − u1(t)

ẏ2(t) = u1

(
t − 1

µ1

)
− u2(t)

ẏ3(t) = u2

(
t − 1

µ2

) (34.13)

Clearly, the constraints of Eq. (34.8) also apply to the model given by Eq. (34.13).
Figure 34.15 shows the response of the system given by Eq. (34.12) to the ramp-up experiment that lead

to Figure 34.13. Comparing these two figures we see that no products enter buffer B3 during the first 2.0
time units for the extended fluid model. Clearly, the extended fluid model produces more realistic results
than the standard fluid model.

34.7.3 An Approximation to the Extended Fluid Model
In the previous subsection, we proposed an extended version of the standard fluid model. Although the
model of Eq. (34.13) still is a linear model, standard linear control theory is not able to deal with this
model, due to the time delay. Instead we have to rely on control theory of infinite-dimensional linear
systems (see, e.g., Curtain and Zwart, 1995).
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FIGURE 34.16 Output of the manufacturing system using model Eq. (34.14).

Another possibility would be to approximate the time delays by means of a Padé approximation (Baker,
1965). Using a second-order Padé approximation, the model of Eq. (34.13) can be approximated as:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 4 6 −3 0 0
0 0 0 4 0 0 0
0 0 0 0 0 0 0
0 0 0 0 4 6 −3
0 0 0 0 0 4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

u (34.14a)

y =
⎡
⎣1 −1 0 0 0 0 0

0 1 −3 0 −1 0 0
0 0 0 0 1 −3 0

⎤
⎦ x +

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ u (34.14b)

Note the structure in Eq. (34.14). In bold face we can easily recognize the dynamics of Eq. (34.11). The
additional dynamics results from the Padé approximation.

If we initiate the system of Eq. (34.14) from x(0) = 0 and feed it at a rate u0 = 1 while using Eq. (34.12),
we obtain the system response as depicted in Figure 34.16. It is clear that we do not get the same response
as in Figure 34.15, but the result is rather acceptable from a practical point of view. At least it is closer to
reality than the response displayed in Figure 34.13.

34.7.4 A Hybrid Model
In the previous subsections, we provided extensions to the standard fluid model by taking into account
the time delay lots encounter owing to the processing of machines. We also mentioned the constraints of
Eq. (34.8) that have to be obeyed. These are constraints that we have to take into account when designing
a controller for our manufacturing system. The way we dealt with these constraints in the previous
subsections was by requiring the machines to produce only in case the buffer contents in front of that
machine were positive (cf. Eq. 34.12).

A way to extend the standard fluid model Eq. (34.7) is to think of these constraints in a different way. As
illustrated in Subsection 34.7.1, when we turn on both machines, immediately lots start coming out of the
system. This is an undesirable feature that we would like to avoid. In practice, the second machine can only
start producing when the first machine has finished a lot. Keeping this in mind, why do we allow machine
M2 to start producing as soon as the buffer contents of the buffer in front of it are positive? Actually,
machine M2 should only start producing as soon as a whole product has been finished by the machine M1.
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FIGURE 34.17 Output of the manufacturing system.

In words, machine M2 should only start producing as soon as the buffer contents of the buffer in front of
it becomes 1. Therefore, we should not allow for a positive u2 as soon as y2 > 0, but only in case y2 ≥ 1.

When we consider the initially empty system Eq. (34.7), i.e., x(0) = 0, and assume

ui(t) =
⎧⎨
⎩

µi if yi(t) ≥ 1
i ∈ {1, 2}

0 otherwise
(34.15)

the resulting system response to an input of u0 = 1 is shown in Figure 34.17. Note that we obtain exactly
the same response as in Figure 34.15.

While this hybrid model has an acceptable behavior when we ramp up our manufacturing system,
it stops producing at buffer level yi = 1 when we ramp down. This is not what we would like to have.
Therefore, in case u1 = 0, machine M1 should be allowed to produce until y1 = 0.

Under these conditions, we could also think of our model operating in different modes. For the
manufacturing system under consideration, we can distinguish the following modes:

mode 1: 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, u0 = 0, u1 ≥ 0, u2 = 0.
mode 2: 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, u0 ≥ 0, u1 =0, u2 ≥ 0.
mode 3: 1 ≤ y1, 0 ≤ y2 ≤ 1, u1 =0, u2 ≥ 0.
mode 4: 1 ≤ y1, 0 ≤ y2 ≤ 1, u1 ≥ 0, u2 = 0.
mode 5: 0 ≤ y1 ≤ 1, 1 ≤ y2, u0 = 0, u1 ≥ 0.
mode 6: 0 ≤ y1 ≤ 1, 1 ≤ y2, u0 ≥ 0, u1 = 0.
mode 7: 1 ≤ y1, 1 ≤ y2.

In all of these modes, the system dynamics is described by Eq. (34.7).
The hybrid model just presented is also known as a piecewise affine (PWA) system (Sontag, 1981).

Other well-known descriptions are linear complementarity (LC) systems (Heemels et al., 2000; Schaft
and Schumacher, 1998) and mixed logical dynamical (MLD) systems (Bemporad and Morari, 1999). In
Bemporad et al. (2000b) and Heemels et al. (2001) it was shown that (under certain assumptions like
well-posedness) these three descriptions are equivalent. This knowledge is useful, as each modeling class
has its own advantages. Stability criteria for PWA systems were proposed in DeCarlo et al. (2000) and
Johansson and Rantzer (1998), and control and state-estimation techniques for MLD hybrid models have
been presented in Bemporad et al. (2000a, 1999) and Bemporad and Morari (1999). These results can now
be applied for controlling the hybrid systems model of our manufacturing system.

34.8 Flow Models

The fluid models presented in the previous section are (still) not satisfactory. While they do not suffer
from the problem that lots come out of the system as soon as we start producing, flow times are not truly
present in these models. It is not possible to determine the time it takes lots to leave once they have entered
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the system. Furthermore, according to these models any throughput can be achieved by means of zero
inventory, whereas in Section 34.2 we already noticed that the nonlinear (steady-state) relations depicted
in Figure 34.2 should be incorporated in any reasonable model of manufacturing systems.

In this section, we present approximation models that do incorporate both throughput and flow
time. These dynamic models are inspired by the continuum theory of highway traffic. Therefore, before
presenting this dynamic model we first present some results from traffic theory.

34.8.1 Introduction to Traffic Flow Theory: The LWR Model
In the mid-1950s Lighthill and Whitham (1955) and Richards (1956) proposed a first-order fluid approx-
imation of traffic flow dynamics. This model nowadays is known in traffic flow theory as the LWR
model.

Traffic behavior for a single one-way road can be described using three variables that vary in time t and
space x: flow u(x, t), density ρ(x, t), and speed v(x, t). Flow is the product of speed and density:

u(x, t) = ρ(x, t)v(x, t) ∀x, t (34.16)

For a highway without entrances or exits, the number of cars between any two locations x1 and x2 (x1 < x2)
needs to be conserved at any time t , i.e., the change in the number of cars between x1 and x2 is equal to
the flow entering via x1 minus the flow leaving via x2:

∂

∂t

∫ x2

x1

ρ(x, t)dx = u(x1, t) − u(x2, t) (34.17a)

or in differential form:

∂ρ

∂t
(x, t) + ∂u

∂x
(x, t) = 0 (34.17b)

The two relations Eq. (34.16) and Eq. (34.17) are basic relations that any model must satisfy. As we have
three variables of interest, a third relation is needed. For this third relation, several choices can be made.
The LWR model assumes in addition to the relations Eq. (34.16) and Eq. (34.17) that the relation between
flow and density observed under steady-state conditions also holds when flow and density vary with x
and/or t ; i.e., for a homogeneous highway:

u(x, t) = S(ρ(x, t)) (34.18)

The model given by Eqs. (34.16)–(34.18) can predict some traffic phenomena rather well. To overcome
some of the deficiencies of the LWR model, in the early 1970s higher order theories have been proposed
where Eq. (34.18) has been replaced by another partial differential equation, containing diffusion or
viscosity terms. Unfortunately, these extended models experience some undesirable properties, as made
clear in (Daganzo, 1995). The most annoying of these properties is the fact that in these second-order
models cars can travel backward. Second-order models that do not suffer from this deficiency have been
presented in Jiang et al. (2002) and Zhang (2002).

34.8.2 A Traffic Flow Model for Manufacturing Flow
In the previous subsection, we introduced the LWR model from traffic flow theory. This model describes
the dynamic behavior of cars along the highway at a macroscopic level and contains information both
about the number of cars passing a certain point and about the time it takes cars to go from one point to
the other. The LWR model can not only be used for describing the flow of cars along the highway, but also
for describing the flow of products through a manufacturing line.

Consider, instead of a homogeneous highway, a homogeneous manufacturing line, i.e., a manufacturing
line that consists of a lot of identical machines. Let t denote the time and x the position in the manufacturing
line. The behavior of lots flowing through the manufacturing line can also be described by three variables
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that vary with time and position: flow u(x, t) measured in unit lots per unit time, density ρ(x, t) measured
in unit lots per unit machine, and speed v(x, t) measured in unit machines per unit time. Now we can
relate these three variables by means of Eqs. (34.16)–(34.18), where in Eq. (34.18) the function S describes
the relation between flow and density observed under steady-state conditions.

To make this last statement more explicit, consider a manufacturing line consisting of m machines with
exponentially distributed process times and an average capacity of µ lots per unit time. Furthermore,
consider a Poisson arrival process where lots arrive at the first machine with a rate of λ lots per unit time
(λ < µ), and assume that buffers have infinite capacity. Then we know from queueing theory (Kleinrock,
1975) that the average number of lots N in each workstation (consisting of a buffer and a machine) in
steady-state is given by

N =
λ
µ

1 − λ
µ

= λ

µ − λ
(34.19)

In words, in steady-state we have ρ(x, t) is constant and

1

m
ρ(x, t) = u(x, t)

µ − u(x, t)
(34.20)

from which we can conclude that in steady-state

u(x, t) = µρ(x, t)

m + ρ(x, t)
(34.21)

For this example, this is the mentioned function S(ρ).
With this information, we can conclude that the dynamics of this manufacturing line might be described

by means of the partial differential equation

∂ρ

∂t
+ µ

∂

∂x

(
ρ

m + ρ

)
= 0 (34.22a)

Together with the relations

u = µρ

m + ρ
and v = u

ρ
or v = µ

m + ρ
(34.22b)

this completes our model.
Note that contrary to the fluid models presented in the previous section, the dynamic model of

Eq. (34.22) is able to incorporate the stochasticity as experienced in manufacturing lines. If the man-
ufacturing line would be in steady-state, the throughput and flow time as predicted by the model of
Eq. (34.22) is exactly the same as those predicted by queueing theory. However, contrary to queueing
theory, the model of Eq. (34.22) is not a steady-state model, but also incorporates dynamics. Therefore,
the model Eq. (34.22) is a dynamic model that incorporates both throughput and flow time. Furthermore,
given the experience in the field of fluid dynamics, the model is computationally feasible as well. For more
on these flow models, the interested reader is referred to Armbruster et al. (2004, 2005) and Armbruster
and Ringhofer (2005).

34.9 Conclusions

In this chapter, we presented some of the models used in the modeling, analysis, and control of manufactur-
ing systems. In Section 34.3 some analytical modeling techniques and methods for analyzing steady-state
behavior of manufacturing systems have been introduced. To get a more detailed insight in the dynamics of
a manufacturing system discrete-event models, as introduced in Section 34.4 can be used. A disadvantage
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of discrete-event models is their complexity. To reduce the complexity of discrete-event models, EPTs have
been introduced in Section 34.5. This enables the modeling of a manufacturing system as a large queueing
network.

Once the dynamics of manufacturing systems can be well described by a relatively simple discrete-
event model, the problem of controlling the dynamics of manufacturing systems becomes of interest.
In Section 34.6 a control framework has been presented. A crucial role in this framework is played
by approximation models of manufacturing systems. In Section 34.7 the most common approximation
models, fluid models, have been introduced, together with some extensions of these models. These fluid
models mainly focus on throughput and do not contain information on flow times. Finally, in Section 34.8,
flow models have been presented that do incorporate both throughput and flow time information.
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35.1 The Need for a New Sensor Network Simulator

The emergence of wireless sensor networks brought many open issues to network designers. Traditionally,
the three main techniques for analyzing the performance of wired and wireless networks are analytical
methods, computer simulation, and physical measurement. However, because of many constraints imposed
on sensor networks, such as energy limitation, decentralized collaboration, and fault tolerance, algorithms
for sensor networks tend to be quite complex and usually defy analytical methods that have been proved
to be fairly effective for traditional networks. Furthermore, few sensor networks have come into existence,
for there are still many unsolved research problems, so measurement is virtually impossible. It appears
that simulation is the only feasible approach to the quantitative analysis of sensor networks.

35.1.1 Why a New Simulator
A good simulator possesses two essential features. First, it must support reusable models. A model written
for one simulation should be amenable to effortless embedding into other simulations that require the same
kind of a model. Second, the model should be easy to be built from scratch. Interestingly, we observe that
most existing simulators do not possess these two features simultaneously. Most commercial simulators
provide a reusable model library, often coming with a friendly graphical user interface, but adding new
models to the library is always a painful task. However, most freely available simulators follow a bottom-up
approach; writing models from scratch is straightforward, but the reusability is severely limited.

ns2 (ns2, 1990), perhaps the most widely used network simulator, has been extended to include some
basic facilities to simulate sensor networks. However, one of the problems of ns2 is its object-oriented design
that introduces much unnecessary interdependency between modules. Such interdependency sometimes
makes the addition of new protocol models extremely difficult, only mastered by those who have intimate

35-1
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familiarity with the simulator. Being difficult to extend is not a major problem for simulators targeted at
traditional networks, for there, the set of popular protocols is relatively small. For example, Ethernet is
widely used for wired LAN, IEEE 802.11 for wireless LAN, and TCP for reliable transmission over unreliable
media. For sensor networks, however, the situation is quite different. There are no such dominant protocols
or algorithms and there will unlikely be any, because a sensor network is often tailored for a particular
application with specific features, and it is unlikely that a single algorithm can always be the optimal one
under various circumstances.

Many other publicly available network simulators, such as JavaSim (Javasim, 2004), SSFNet (ssfnet,
2000), Glomosim (GloMoSim, 2004), and its descendant Qualnet (Qualnet, 2004), attempted to address
problems that were left unsolved by ns2. Among them, JavaSim developers realized the drawback of object-
oriented design and tried to attack this problem by building a component-oriented architecture. However,
they chose Java as the simulation language, inevitably sacrificing the efficiency of the simulation. Moreover,
C++ with Standard Template Library (Musser and Saini, 1996) can easily achieve high efficiency while
maintaining a high level of code reuse, which matched our design goal better than Java. SSFNet and
Glomosim designers were more concerned about parallel simulation, with the latter more focused on
wireless networks. They are not superior to ns2 in terms of design and extensibility.

35.1.2 Features of SENSE
SENSE is designed to be an efficient and powerful sensor network simulator that is also easy to use. We
identify three most critical factors as

• Extensibility: The enabling force behind the fully extensibility network simulation architecture is
our progress on component-based simulation. We introduced a component-port model that frees
simulation models from interdependency usually found in an object-oriented architecture, and
then proposed a simulation component classification that naturally solves the problem of handling
simulated time. The component-port model makes simulation models extensible: a new component
can replace an old one if they have compatible interfaces, and inheritance is not required. The
simulation component classification makes simulation engines extensible: advanced users have the
freedom to develop new simulation engines that meet their needs.

• Reusability: The removal of interdependency between models also promotes reusability. A compo-
nent developed for one simulation can be used in another if it satisfies the latter’s requirements on
the interface and semantics. There is another level of reusability made possible by the extensive use
of C++ template: a component is usually declared as a template class so that it can handle different
types of data.

• Scalability: Unlike many parallel network simulators, especially SSFNet and Glomosim, paralleliza-
tion is provided as an option to the users of SENSE. This reflects our belief that completely automated
parallelization of sequential discrete-event models, however tempting it may seem, is impossible,
just as automated parallelization of sequential programs. Even if it is possible, it is doomed to be
inefficient. Therefore, parallelizable models require larger effort than sequential models do, but a
good portion of users are not interested in parallel simulation at all. In SENSE, a parallel simulation
engine can only execute components of compatible components. If a user is content with the default
sequential simulation engine, then every component in the model repository can be reused.

35.1.3 Currently Available Components and Simulation Engines
• Battery Model: Linear Battery, Discharge Rate Dependent and Relaxation Battery
• Application Layer : Random Neighbor; Constant Bit Rate
• Network Layer: Simple Flooding; a simplified version of ADOV without route repairing, a simplified

version of DSR without route repairing
• MAC Layer: NullMAC; IEEE 802.11 with DCF
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• Physical Layer: Duplex Transceiver; Wireless Channel
• Simulation Engine: CostSimEng (sequential)

35.2 Component Simulation Toolkit

Component-oriented simulation toolkit (COST) is a general-purpose discrete-event simulator (Chen and
Szymanski, 2001). The main design purpose of COST is to maximize the reusability of simulation models
without losing efficiency. To achieve this goal, COST adopts a component-based simulation worldview
based on a component-port model. A simulation is built by configuring and connecting a number of
components, either off the shelf or fully customized. Components interact with each other only via input
and output ports, thus the development of a component becomes completely independent of others.
The component-port model of COST makes it easy to construct simulation components from scratch.
Implemented in C++, COST also features a wide use of templates to facilitate language-level reuse.

COST is a library of several classes that facilitates the development of discrete-event simulation using
CompC++, a component-oriented extension to C++. It differs from many other tools in the simulation
worldview it adopts. There are primarily two worldviews that are widely used in the discrete-event simula-
tion community: event scheduling and process interaction. Both have their strengths and weaknesses. The
event scheduling is much more efficient, but it is hard to program. Process interaction technique requires
less programming effort. However, it is difficult to implement using imperative programming languages
and many implementations based on special simulation languages are not efficient.

COST adopts a component-oriented worldview, which is a variation of the event scheduling worldview.
Using this technique, a discrete-event simulation is viewed as a collection of components that interact with
each other by exchanging messages through communication ports. Besides components, the simulation
contains a simulation engine that is responsible for synchronizing components. An event-oriented view
is adopted to model individual components, i.e., the component has one or more event handlers each of
which performs corresponding actions upon the arrival of a certain type event. Events are divided into
two categories. Synchronous events are the messages arriving at the input ports, which are sent by its
neighboring components. Asynchronous events are associated with timers, a special kind of ports lying
between the components and the simulation engine. Components receive and schedule asynchronous events
through timers.

COST takes advantage of component-oriented features that are only available in CompC++.

35.2.1 Motivation: From Object to Component
Convenient and powerful as object-oriented programming is, it has its limits. One of these is that it often
imposes unnecessary interobject dependence on the deployment of objects that prevents objects from
being reusable. As a small example, in Figure 35.1, an object A calls a method g() of another object B.

Object A must keep a pointer (or a reference) to object B to make such a method call. Let us assume that
these two objects have been set up correctly in one program. The difficulty arises when A is to be reused

B*pb;
  Object A
void f()
{
      ...
      pb��g();
      ...
}

  Object B
void q()
{
      ...
}

FIGURE 35.1 Object dependencies in object-oriented languages.
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 Component A

Outport void h();---
void f()
{
      ...
      h();
      ...
}

 Component B

–––Inport void g()
   {
       ...
   }

FIGURE 35.2 Component dependencies in component-oriented simulation.

in another program. Obviously, in such a case, either B must also be moved over to the new program, or
there is another object that is derived from B available for A to access. If it is the former, things will become
worse if some of B’s methods are dependent on another object C. As a result, any object that A depends
upon, either directly or indirectly, must be available in the new program.

Yet we only need, in the above example, a method that provides the same functionality as B.g() does. We
should not be concerned with which object can provide such a functionality, whether it be B or a different,
completely unrelated object D. In object-oriented programming, once you make an interobject method
call, you not only introduce explicit interobject dependence manifested by the method call (represented
by the solid arrow in the Figure 35.1), but also implicit dependence that is hard to trace and maintain
(represented by the dashed arrow).

The solution is to introduce inports and outports. The use of inports and outports has been introduced
in DEVS formalism (Zeigler et al., 1997; DEVS, 2004); however, in our approach their role have expanded
to become, next to component themselves, an integral part of composing simulations. An inport defines
what functionality an object (now it is becoming a component) provides, and an outport defines what
functionality it needs. In Figure 35.2, it is apparent that the implicit dependence has been removed.
Another benefit of having inports and outports is that any interaction a component may have with other
components can be deduced only from its interface (which is composed of declarations of inports and
outports). In contrast, for an object, the same information is clear only after scanning through the entire
source code.

The central idea of CompC++ is to add inports and outports to objects to make them look and function
like components. The extension to the standard C++ language is minimal: only four new keywords
(component, inport, outport, and connect) and four new syntactic rules are needed. The addition of these,
nevertheless, opens up a whole new programming paradigm, which is referred to as component-oriented
programming.

35.2.1.1 Implementation of COST

The first issue of implementing the aforementioned simulation component model is the choice of the
implementing language. Discrete-event simulators can be roughly divided into two groups: those based
on a special simulation language, such as GPSS and SIMSCRIPT (Law and Kelton, 1982), and those based
on a general programming language, such as SIMPACK (Fishwick, 1992) and SIMKIT (Gomes et al.,
1995) Simulation languages contain abundant semantics designed for simulation, but requires a steep
learning curve. General programming languages are more familiar to programmers, but lack the essential
simulation constructs.

We chose C++ as the implementation language for two reasons. First, general programming languages
always have good compiler support, and thus their execution speed is generally faster after optimization.
Second, language-level reusability is a factor as important as component-level reusability, and C++ is one
of the few languages that support code reuse well. With STL (Austern, 1999; Musser and Saini, 1996), C++
programs can easily achieve high efficiency while maintaining a high level of code reuse, which matches
our design goal.
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However, with C++ we ran into a problem. As mentioned in the last section, input ports are equivalent to
functions, so it is natural to define them as member functions of the component. But how can we represent
output ports? C++ language standard requires that the address of an object must be provided when
the member function is being called. This conflicts with the requirement that component development
should be completely independent. The classical solution for such a problem is a functor, which is the
generalization of the function pointer.

35.2.2 Functor
A functor, or a function object, is an object “that can be called in the same way that a function is” (Austern,
1999; Musser and Saini, 1996). A functor class overloads the operator () so that it appears as a function
pointer. For instance, the following is declaration of a functor class that takes one function argument.

template <class T> class functor {
public:
typedef funct_t bool (*f)(T );
functor (funct_t _f): f(_f) {}
virtual bool operator (T t) { return f(t); }

private:
funct_t f;

};

The class functor is a helper class that wraps a function pointer of type funct_t. Upon invocation, it calls
the actual function pointer and returns the result. The syntax of using the functor is exactly the same as
that of a function pointer.

The same idea can be applied to member functions as well. In C++, a member function of a class always
takes an implicit parameter this, which is a pointer to the object upon which the member function will
be invoked. As a result, two member functions that belong to different classes but take the same explicit
parameters are treated as functions of different types. In the component level, however, they should be
viewed as interchangeable. A mem_functor declared below can hide the class type as well as the implicit
parameter this.

template <class C, class T>

class mem_functor : public functor {
public:
typedef funct_t
bool (C::*f)(T);

mem_functor (C* _c, funct_t _f)
: c(_c), f(_f) {}

virtual bool operator(T t){return c->f(t);}
private:
C* c;
funct_t f;

};

With these two classes, functor and mem_functor, it is now straightforward to implement input and
output ports. An input port could be simply an instantiation of the mem_functor class. Since an output
port does not know the component(s) to which it will be connected, it could be represented as a pointer
to a functor. When connecting an input port to an output port implemented in this way, the address of the
mem_functor object corresponding to the input port is assigned to the functor pointer corresponding to
the output port, because the class mem_functor is derived from the functor class. When the output port is
invoked, the operator () of the mem_functor class is called, because it is declared as virtual.
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35.2.3 Inport and Outport Class
The method of implementing input and output ports directly on top of two functor classes should work
well, but there are some practical considerations. For instance, a port should have a name for the purpose
of debugging and a port must be set up properly before it can be used to initialize its member variables.
Moreover, one to multiple connections would make topology generation more convenient. It is easy to
connect an input port to multiple output ports by passing its address to each of them, but when connecting
an output port to multiple input ports, the output port must store the addresses of all connected input
ports. These reasons are the main motivation for building the inport and outport classes on top of functor
classes.

The outport class is declared to be a class with a template parameter that is the type of the events that can
be handled by this output port. The function Setup() gives the port a string name. The function Write() is
invoked by the component that outputs a message. ConnectTo() connects an input port to the output port.

template <class T>

class outport {
public:
void Setup(typeii* c, const char* name);
bool Write(T t);
void ConnectTo(inport& port);

private:
std::vector<functor<T>*> inports;
};

Similarly, the inport class takes one template parameter that is the type of the function argument. It
must be bound to a member function of a component, therefore the type of the component is passed as
the template parameter of the member template function Setup(), as shown below.

template <class T>

class inport {
public:
template <class C>

void Setup( typeii* c,
mem_functor<C,T>::funct_t _f,
const char* name);

bool Write(T t) { return (*f)(t); };
private:
functor<T>* f;

};

Since the type of the member function bound to the input port must be passed to the Setup() function,
we need to find a way to construct this type from two template parameters, C and T. Fortunately, this type
is declared publicly in the class mem_functor<C,T> as funct_t.

35.2.4 Simulation Time and Port Index
Until now, functors in COST take only one function argument, which is the message exchanged between
components. However, two more arguments are necessary. First, all the components in COST are time-
dependent components, so messages should be timestamped. Hence, an extra argument is needed to
denote the simulation time at which the message is generated. Another extra argument is for arrays of
input ports, which are convenient if a number of input ports are of the same type. All elements in an input
port array share the member function bound to them. Therefore, it is necessary to have an extra argument
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to distinguish between them by their indices. The index of an input port that is an element of an array is
always zero. The resulting functor class could be like (other classes must be modified accordingly):

template <class T> class functor {
public:
typedef funct_t bool (*f)(T,double,int );
functor (funct_t _f): f(_f) {}
virtual bool operator (T t, double time) {
return f(t,time,index); }

private:
funct_t f;
int index;

};

35.2.5 Timer
The timer class requires two different functor classes, t_functor and mt_functor, because a time event has
empty content, so the binding function of a timer only takes the timestamp argument and the index
argument. A timer object is actually an array of timers, each of which is identified with a unique integer
number, as in the input port arrays. The timer class has two methods: Set() to schedule an event and
Cancel() to cancel an event.

class timer {
public:
void Setup( typeii*,
mt_functor<C>::funct_t, const char* name);

void Set(double time, int index=0);
void Cancel(int index=0);

private:
t_functor * f;

};

So far, we have described techniques that we adopted to implement the component-port model in C++.
It should be noted that all these implementation details are transparent to users. Users do not need to have
advanced knowledge of C++ templates to write simulations in COST.

35.3 Wireless Sensor Network Simulation

Building a wireless sensor network simulation in SENSE consists of the following steps:

• Designing a sensor node component
• Constructing a sensor network derived from CostSimEng
• Configuring the system and running the simulation

Here, we assume that all components needed by a sensor node component are available from the compo-
nent repository. If this is not the case, the user must develop new components, as described in the COST
website (http://www.cs.rpi.edu/∼cheng3/cost). We should also mention that the first step of designing a
sensor node component is not always necessary if a standard sensor node is to be used.

This first line of this source file demands that HeapQueue must be used as the priority queue for event
management. For wireless network simulation, because of the inherent drawback of CalendarQueue, and
also because of the particular channel component being used, HeapQueue is often faster.
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#define queue_t HeapQueue

This header file is absolutely required.

#include "../../common/sense.h"

The following header files are necessary only if the corresponding components are needed by the sensor
node component:

#include "../../app/cbr.h"
#include "../../mob/immobile.h"
#include "../../net/flooding.h"
#include "../../net/aodvi.h"
#include "../../net/dsri.h"
#include "../../mac/null_mac.h"
#include "../../mac/mac_80211.h"
#include "../../phy/transceiver.h"
#include "../../phy/simple_channel.h"
#include "../../energy/battery.h"
#include "../../energy/power.h"
#include "../../util/fifo_ack.h"

#cxxdef is similar to #define, except that it is only recognized by the CompC++ compiler. The following
two lines state that the flooding component will be used for the network layer. These two macros can also
be overridden by command line macros definitions (whose format is ‘−D=’).

#cxxdef net_component Flooding
#cxxdef net_struct Flooding_Struct

For layer XXX, XXX_Struct is the accompanying class that defines data structures and types used in that
layer. The reason we need a separate class for this purpose is that each XXX is a component, and that due to
the particular way in which the CompC++ compiler was implemented, data structures and types defined
inside any component is not accessible from outside. Therefore, for each layer XXX, we must define all
those data structures and types in XXX_Struct, and then derive component XXX from XXX_Struct.

The following three lines state:

• The type of packets in the application layer is CBR_Struct::packet_t.
• The network layer passes application layer packets by reference (which may be faster than by pointer,

for CBR_Struct::packet_t is small, so app_packet_t becomes the template parameter of net_struct ;
the type of packets in the network layer is then net_packet_t.

• Now that net_packet_t is more than a dozen bytes long, it is better to pass it by pointer, so
net_packet_t* instead of net_packet_t becomes the template parameter of the MAC80211_Struct ;
the type of packets in the mac layer is then mac_packet_t. Physical layers also use mac_packet_t, so
there is no need to define more packet types.

typedef CBR_Struct::packet_t app_packet_t;
typedef net_struct<app_packet_t>::packet_t net_packet_t;
typedef MAC80211_Struct<net_packet_t*>::packet_t mac_packet_t;

Now we can begin to define the sensor node component. First, we instantiate every subcomponent used by
the node component. We need to determine the template parameter type for each subcomponent, usually
starting from the application layer. Normally the application layer component does not have any template
parameter.
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FIGURE 35.3 Sensor node components in SENSE.

Figure 35.3 shows the internal structure of a sensor node.

component SensorNode : public TypeII
{
public:

CBR app;
net_component <app_packet_t> net;
MAC80211 <net_packet_t*> mac;
// A transceiver that can transmit and receive at the same time (of course
// a collision would occur in such cases)
DuplexTransceiver < mac_packet_t > phy;
// Linear battery
SimpleBattery battery;
// PowerManagers manage the battery
PowerManager pm;
// sensor nodes are immobile
Immobile mob;
// the queue used between network and mac
FIFOACK3<net_packet_t*,ether_addr_t,unsigned int> queue;

double MaxX, MaxY; // coordinate boundaries
ether_addr_t MyEtherAddr; // the ethernet address of this node
int ID; // the identifier

virtual ∼SensorNode();
void Start();
void Stop();
void Setup();
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The following lines define one inport and two outports to be connected to the channel components:

outport void to_channel_packet(mac_packet_t* packet, double power, int id);
inport void from_channel (mac_packet_t* packet, double power);
outport void to_channel_pos(coordinate_t& pos, int id);

};

SensorNode::∼SensorNode()
{
}

void SensorNode::Start()
{
}

void SensorNode::Stop()
{
}

This function must be called before running the simulation.

void SensorNode::Setup()
{

At the beginning, the amount of energy in each battery is 1,000,000 J.

battery.InitialEnergy=1e6;

Each subcomponent must also know the ethernet address of the sensor node on which it resides. It must
be remembered that the application layer is a CBR component, which would stop at FinishTime to give
the whole network an opportunity to clean up any packets in transit. Assigning false to app.DumpPackets
means that if COST_DEBUG is defined, app still will not print out anything.

app.MyEtherAddr=MyEtherAddr;
app.FinishTime=StopTime()*0.9;
app.DumpPackets=false;

The coordinates of the sensor node must be set and the mob must be given ID since ID was used to identify
the index of the sensor node when the position info is sent to the channel component.

mob.InitX=Random(MaxX);
mob.InitY=Random(MaxY);
mob.ID=ID;

When a net component is about to retransmit a packet that it received, it cannot do so because all nodes that
received the packet may attempt to retransmit the packet immediately, inevitably resulting in a collision.
ForwardDelay gives the maximum delay time that the packet to be retransmitted may incur. The actual
delay is randomly chosen between [0,ForwardDelay].

net.MyEtherAddr=MyEtherAddr;
net.ForwardDelay=0.1;
net.DumpPackets=true;
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If Promiscuity is true, then the mac component will forward every packet even if it is not destined to this
sensor node, to the network layer. To debug the mac layer, set mac.DumpPackets to true.

mac.MyEtherAddr=MyEtherAddr;
mac.Promiscuity=true;
mac.DumpPackets=true;

The PowerManager takes care of power consumption at different states. The following lines state that the
power consumption is 1.6 W at transmission state, 1.2 at receive state, and 1.115 at idle state.

pm.TXPower=1.6;
pm.RXPower=1.2;
pm.IdlePower=1.15;

phy.TxPower is the transmission power of the antenna. phy.RXThresh is the lower bound on the receive
power of any packet that can be successfully received and phy.CSThresh the lower bound on the receive
power of any packet that can be detected. phy also needs to know the ID because it needs to communicate
with the channel component.

phy.TXPower=0.0280;
phy.TXGain=1.0;
phy.RXGain=1.0;
phy.Frequency=9.14e8;
phy.RXThresh=3.652e-10;
phy.CSThresh=1.559e-11;
phy.ID=ID;

Now, we can establish the connections between components. The connections will become much clearer
if we look at Figure 35.4 that represents the entire sensor network.

connect app.to_transport, net.from_transport;
connect net.to_transport, app.from_transport;

connect net.to_mac, queue.in;
connect queue.out, mac.from_network;
connect mac.to_network_ack, queue.next;
connect queue.ack, net.from_mac_ack;
connect mac.to_network_data, net.from_mac_data ;

These three lines are commented out. They are used when the net component is directly connected to the
mac component without going through the queue.

Node 0 Node 1

Channel

Node 0�1

FIGURE 35.4 Sensor network components in SENSE where each node has a structure shown in Figure 35.3.
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//connect mac.to_network_data, net.from_mac_data ;
//connect mac.to_network_ack, net.from_mac_ack;
//connect net.to_mac, mac.from_network;

connect mac.to_phy, phy.from_mac;
connect phy.to_mac, mac.from_phy;

connect phy.to_power_switch, pm.switch_state;
connect pm.to_battery_query, battery.query_in;
connect pm.to_battery_power, battery.power_in;

These three connect statements are different. All the above ones are between an outport of a subcomponent
and an outport of another subcomponent, while these three are between a port of the sensor node and a
port of a subcomponent. We can view these connections as mapping from the ports of subcomponents to
its own ports, i.e., to expose the ports of internal components. Also remember that the connect statement
is so designed that it can take only two ports, and then packets always flow through from the first port to
the second port, so when connecting two inports, the inport of the subcomponent must be placed in the
second place.

connect phy.to_channel, to_channel_packet;
connect mob.pos_out, to_channel_pos;
connect from_channel, phy.from_channel;

}

Once we have the sensor node component ready, we can start to build the entire simulation, which is
named RoutingSim. It must be derived from the simulation engine class CostSimEng. This is the structure
of the network.

component RoutingSim : public CostSimEng
{
public:

void Start();
void Stop();

These are simulation parameters. We do not want configurators of the simulation to access the parameters
of those intercomponents.

double MaxX, MaxY;
int NumNodes;
int NumSourceNodes;
int NumConnections;
int PacketSize;
double Interval;

Here, we declare sense nodes as an array of SensorNode, and a channel component.

SensorNode[] nodes;
SimpleChannel < mac_packet_t > channel;

void Setup();
};

void RoutingSim :: Start()
{

}
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After the simulation is stopped, we will collect some statistics.

void RoutingSim :: Stop()
{

int i,sent,recv;
double delay;
for(sent=recv=i=0,delay=0.0;i<NumNodes;i++)
{

sent+=nodes[i].app.SentPackets;
recv+=nodes[i].app.RecvPackets;
delay+=nodes[i].app.TotalDelay;

}
printf("APP -- packets sent: %d, received: %d, success rate: %.3f, delay: %.3f\n",

sent,recv,(double)recv/sent,delay/recv);
for(sent=recv=i=0;i<NumNodes;i++)
{

sent+=nodes[i].net.SentPackets;
recv+=nodes[i].net.RecvPackets;

}
printf("NET -- packets sent: %d, received: %d\n",sent,recv);
for(sent=recv=i=0;i<NumNodes;i++)
{

sent+=nodes[i].mac.SentPackets;
recv+=nodes[i].mac.RecvPackets;

}
printf("MAC -- packets sent: %d, received: %d\n",sent,recv);

}

The simulation has a Setup() function that must be called before the simulation can be run. The reason
we do not do this in the constructor is that we must assign values to its parameters after the simulation
component has been instantiated. The Setup() function, which can be renamed to anything, first maps
component parameters to corresponding simulation parameters (for instance, assign the value of the
simulation parameter interval to the component parameter source.interval). It then connects pairs of
inport and outports.

void RoutingSim :: Setup()
{

int i,j;

The size of the sensor node array must be set using SetSize() before the array can ever be used.

nodes.SetSize(NumNodes);
for(i=0;i<NumNodes;i++)
{

nodes[i].MaxX=MaxX;
nodes[i].MaxY=MaxY;
nodes[i].MyEtherAddr=i;
nodes[i].ID=i;

nodes[i].Setup(); // don’t forget to call this function for each sensor node
}

The channel component needs to know the total number of sensor nodes. It also needs to know the value
of CSThresh since it will not send packets to nodes that cannot detect them. RXThresh is also needed to
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produce the same receive power in those nodes that can just correctly receive packets when using different
propagation models.

In this example FreeSpace is used.

channel.NumNodes=NumNodes;
channel.DumpPackets=false;
channel.CSThresh=nodes[0].phy.CSThresh;
channel.RXThresh=nodes[0].phy.RXThresh;
channel.PropagationModel=channel.FreeSpace;

The channel component also has a Setup() function that sets the size of its outport array.

channel.Setup();

for(i=0;i<NumNodes;i++)
{

connect nodes[i].to_channel_packet,channel.from_phy;
connect nodes[i].to_channel_pos,channel.pos_in;
connect channel.to_phy[i],nodes[i].from_channel ;

}

This is to create communication pairs.

int src,dst;
for(i=0;i<NumSourceNodes;i++)
{

for(j=0;j<NumConnections;j++)
{
do
{

src=Random(NumNodes);
dst=Random(NumNodes);

}while(src==dst);
nodes[src].app.Connections.push_back(

make_triple(ether_addr_t(dst),Random(PacketSize)+PacketSize/2,
Random(Interval)+Interval/2));

}
}

}

35.3.1 Running the Simulation
To run the simulation we first need to create a simulation object from the simulation component class.
Several default simulation parameters must be determined. StopTime denotes the ending time of the
simulation. Seed is the initial seed of the random number generator used by the simulation.

To compile the program, the following commands can be used:

../../bin/cxx sim_routing.cc
g++ -Wall -o sim_routing sim_routing.cxx
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The following command line will start the simulation run:

sim_routing [StopTime] [NumNodes] [MaxX] [NumSourceNodes] [PacketSize] [Interval]

int main(int argc, char* argv[])
{

RoutingSim sim;

sim.StopTime = 1000;
sim.Seed = 1234;

sim.MaxX = 2000;
sim.MaxY = 2000;

sim.NumNodes = 110;
sim.NumConnections = 2;
sim.PacketSize = 2000;
sim.Interval = 100.0;

if(argc >= 2) sim.StopTime = atof(argv[1]);
if(argc >= 3) sim.NumNodes = atoi(argv[2]);
sim.NumSourceNodes = sim.NumNodes / 10;
if(argc >= 4) sim.MaxX = sim.MaxY = atof(argv[3]);
if(argc >= 5) sim.NumSourceNodes = atoi(argv[4]);
if(argc >=6) sim.PacketSize = atoi(argv[5]);
if(argc >= 7) sim.Interval = atof(argv[6]);

printf("StopTime: %.0f, Number of Nodes: %d, Terrain: %.0f by %.0f\n",
sim.StopTime, sim.NumNodes, sim.MaxX, sim.MaxY);

printf("Number of Sources: %d, Packet Size: %d, Interval: %f\n",
sim.NumSourceNodes, sim.PacketSize, sim.Interval);

sim.Setup();
sim.Run();

return 0;
}

35.4 Conclusions

The example given in the previous section has been extended to simulate two innovative protocols for
sensor networks: ESCORT (Branch et al., 2005) and SSR (Chen et al., 2005). In the first case, the focus
was on identifying groups of sensor nodes that can share communication duties to save energy. The
second protocol tested the efficiency of a self-selecting routing in which each hop decides its successor on
the fly, using lecture hall algorithm for self-selection (Chen et al., 2006). Both systems used large sensor
networks (several thousand nodes in each case) and many traffic scenarios requiring multiple runs for each
combination of parameters. In all cases, sensor simulator performed reliably and efficiently. Moreover,
introducing additional features in the simulation, or trying different variants of the implemented protocols
required either small modifications in existing components or introduction of new components, greatly
simplifying maintenance of the code.

More generally, COST has been used for other network simulations such as queuing networks, computer
networks, and PCS simulations. These examples can be found at http://www.cs.rpi.edu/∼cheng3/cost.
COST is targeted at the simulation modelers who have a beginning or intermediate knowledge of the
C++ language. Once they understand the basic component-port model and its support classes, it is
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fairly easy for them to write models with COST, and, more importantly, to take the component-based
approach to model the system to be simulated. Once a component repository with a wide range of models
is developed, the modeler will be able to construct a simulation just by connecting components obtained
from the component.

COST is a discrete-event simulator written in C++ that embodies a component-oriented modeling
style. At the heart of COST is a component-port model that is distinguished from many developed
component models by the notion of output ports. Our simulation component classification allows us to
extend such a component-port model to make it well suited for discrete-event simulation by introducing
the implicit timestamp mechanism and timers.

The most distinct feature of COST is the component reusability. Components developed for one
simulation can be effortlessly reused in other simulations. With an extensive set of library components,
writing simulation in COST could be as simple as dragging a few components from the library and
connecting them, as some commercial simulators do. The extra advantage of COST is that building
components from scratch is simple.

The only inefficiency of COST simulations comes from the message exchange between components,
which may involve several layers of function calls and a few virtual function table lookups. However, this
is rather the deficiency of the C++ language, not of the underlying component-port model, because
theoretically such overhead can be eliminated during the configuration phase. Had we had a truly
component-oriented language, COST would have achieved perfect efficiency.
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36.1 Modelica Overview

Modelica1 is a freely available language to model the dynamic behavior of technical systems based on
schematics. This chapter gives an overview of the language features, free and commercial Modelica libraries,
as well as symbolic algorithms needed to transform the high-level description of Modelica into a form that
is suited for a numerical integration algorithm.

Modelica is suited for multidomain modeling of large, complex, and heterogeneous technical systems,
for example,

• mechatronic models in robotics, automotive, and aerospace applications involving mechanical,
electrical, hydraulic, thermal, and control subsystems,

• process-oriented models with multiphase and multisubstance fluids in pipe networks such as air
conditioning systems, batch processes or machine cooling, and

• generation, distribution, and consumption of electric power.

Modelica is designed such that it can be utilized in a similar way as an engineer builds a real system:
first trying to find standard components like motors, pumps, and valves from manufacturers’ catalogues
with appropriate specifications and interfaces and only if there does not exist a particular subsystem, a
component model would be newly constructed based on standardized interfaces.

A typical example of a Modelica model, the components of a system model of a vehicle, is sketched in
Figure 36.1 below by screenshots of Modelica schematics and of three-dimensional animations of some
of the vehicle components (component animation can also be specified in a Modelica model based on
primitives and on CAD data).

1Modelica® is a registered trademark of the Modelica Association.
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FIGURE 36.1 Schematics and three-dimensional animations of vehicle components modeled in Modelica. (From
Hubertus Tummescheit Modelon AB, Sweden.)
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Models in Modelica are mathematically described by differential, algebraic, and discrete equations.2

Modelica is designed such that available, specialized algorithms can be utilized to enable efficient han-
dling of large system models having more than hundred thousand equations. It is suited and used for
hardware-in-the-loop simulations and for embedded control systems. Modelica is not designed for the
direct description of partial differential equations, as, e.g., performed by finite element or computational
fluid dynamics programs. However, results of finite element computations are utilized in Modelica, e.g.,
for the description of flexible bodies.

The Modelica language is a textual specification that describes details of a model on a high level. To
be useful, a Modelica modeling and simulation environment is needed to graphically edit and browse a
textually defined Modelica schematic, to transform the model in a form that is better suited for reliable
integration, to simulate the model, to visualize the simulation results, and to import Modelica models in
other simulation environments such as Simulink3 (see Chapter 37). A growing number of such Modelica
environments are available commercially and also in the “public domain.” For an actual overview, see
http://www.Modelica.org/tools.

Reuse is a key issue for handling complexity. There have been several attempts to define object-oriented
languages for modeling of technical systems. However, the ability to reuse and exchange models relies on
a standardized format. It was thus important to bring this expertise together to unify concepts and nota-
tions: the Modelica design effort was initiated and headed by Hilding Elmqvist and started in September
1996. The language has been designed by the developers of the object-oriented modeling languages Allan,
Dymola, NMF, ObjectMath, Omola, SIDOPS+, Smile, by computer scientists, and by modeling specialists
from the mechanical, electrical, electronic, hydraulic, pneumatic, fluid, and control domain. The non-
profit Modelica Association was formed in 2000 with Martin Otter as chairman, to manage the continually
evolving Modelica language and the development of the free Modelica standard library. In the same year,
Modelica was used the first time in actual applications. As of 2006, there are more than 1000 users of
Modelica. More details, especially the actual language specification, free Modelica libraries, downloadable
publications, links to Modelica modeling, and simulation environments as well as to Modelica consul-
tants can be found at the Modelica homepage http://www.Modelica.org/. Also books about Modelica are
available, such as Tiller (2001) and Fritzson (2003).

36.2 Modelica Basics

Modelica supports both high-level modeling by composition of components and low-level modeling by
implementing basic components with equations. Models of standard components are typically available
in model libraries. Using a graphical model editor from a Modelica environment, a model can be defined
by drawing a composition diagram (also called schematics) by positioning icons that represent the models
of the components, drawing connections, and giving parameter values in dialogue boxes. Constructs for
including graphical annotations in the Modelica language make icons and composition diagrams portable
between different tools. An example of a composition diagram of a simple drive train is shown in Figure 36.2
below.

The system can be decomposed into a set of connected components: an electrical motor, a gear,
a load inertia, and a controller. Every component is represented by an illustrative icon. At the bor-
der of a component icon “connectors” are present. A line drawn between two connectors represents
the actual physical coupling, such as electrical wire, rigid mechanical coupling, or fluid pipe flow.
The textual representation of this Modelica model is (graphical annotations are not shown; from

2“Discrete” equations are either equations that are active at distinct points in time only (e.g. at a sampling instant)
or equations that are used to compute Integer or Boolean variables.

3Simulink® is a registered trademark of The MathWorks Inc.
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FIGURE 36.2 Modelica schematic of a simple drive train consisting of a controlled motor, a gear, and a load inertia.
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FIGURE 36.3 Modelica schematic of a direct current motor.

these graphical annotations the schematic in Figure 36.2 is constructed by a Modelica schematic
editor):

model MotorDrive
PID controller;
Motor motor;
Gearbox gear (ratio=100);
Inertia inertia(J=10);

equation
connect(controller.y , motor.i_ref);
connect(controller.u2, motor.w);
connect(gear.flange_a, motor.flange);
connect(gear.flange_b, inertia.flange_a);

end MotorDrive;

This is a composite model which specifies the topology of the system to be modeled in terms of components
and connections between the components. The statement “Gearbox gear(ratio=100);” declares
a component gear of model class Gearbox and sets the value of the gear ratio, ratio, to 100.
A component model may be a composite model to support hierarchical modeling. The composition
diagram of the model class Motor is shown in Figure 36.3. On the left side, the reference current i_ref
is an input signal, whereas on the right side the flange is a one-dimensional rotational mechanical
connector.

The meaning of connections will be discussed below as well as the description of behavior on the lowest
level using mathematical equations.
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Physical modeling deals with the specification of relations between physical quantities. For the drive
system, quantities such as angle and torque are of interest. Their types are declared in Modelica as

type Angle = Real(quantity="Angle" , unit="rad",
displayUnit="deg");

type Torque = Real(quantity="Torque", unit="N.m");

where Real is a predefined type, which has a set of attributes such as name of quantity, unit of measure,
default display unit for input and output, minimum, maximum, nominal, and initial value. The Modelica
Standard Library, which is a free library developed by the Modelica Association, includes about 450 of
such type definitions based on ISO 31-1992 “General principles concerning quantities, units and symbols”
and on ISO 1000-1992 “SI units and recommendations for the use of their multiples and of certain other
units.”

Connections specify interactions between components and are represented graphically as lines between
connectors. A connector should contain all quantities needed to describe the interaction. For example,
node potential v and current i are needed for electrical components. Angle phi and cut-torque tau are
needed for drive train elements:

connector Pin connector Flange
Voltage v; Angle phi;
flow Current i; flow Torque tau;

end Pin; end Flange;

Two connections,

connect(pin1, pin2);
connect(pin1, pin3);

with pin1, pin2, and pin3 of connector class Pin, connects the three pins together at one node. This
implies three equations,

pin1.v = pin2.v
pin1.v = pin3.v
pin1.i + pin2.i + pin3.i = 0

The first two equations indicate that the electrical potentials on the connected branches are the same, and
the third corresponds to Kirchhoff’s current law stating that the current sums to zero at a node. Similar
laws apply to mass flow rates in piping networks and to cut-forces and torques in mechanical systems. The
sum-to-zero equations are generated when the prefix flow is used in the connector declarations. The
Modelica Standard Library includes also connector definitions (details see below).

To build reusable descriptions, partial models can be defined and reused. For example, a common
property of many electrical components is that they have two pins. This means that it is useful to define
an interface model class OnePort, that has two pins, p and n, and a quantity, v, that defines the voltage
drop across the component.

partial model OnePort
Pin p, n;
Voltage v;

equation
v = p.v - n.v;
0 = p.i + n.i;

end OnePort;

The equations define common relations between quantities of a simple electrical component. The equa-
tions in an equation section are mathematical equations of the form “expression = expression.” The
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alternative is an algorithm section that contains assignment statements of the form “variable := expres-
sion.” During code generation, equations are sorted and further manipulated, whereas assignment
statements in algorithm sections are not changed (details are given in Section 36.4 below).

The keyword partial indicates that the model is incomplete and cannot be instantiated. To be useful,
a constitutive equation must be added. A model for an inductor extends OnePort by adding a parameter
for the inductance and the appropriate equation:

model Inductor "Idealized inductor"
extends OnePort;
parameter Inductance L "Inductance";

equation
L*der(p.i) = v;

end Inductor;

A string between the name of a class and its body as well at the end of each statement (before the semicolon)
is treated as a description text. Tools may display this documentation in special ways, e.g., in parameter
menus, or as automatic labels in plots. The keyword parameter specifies that the quantity is constant during
a simulation experiment, but can change values between experiments. The built-in operator der(..) defines
the time derivative of the referenced variable.

36.2.1 Component Coupling
An important and difficult design decision is the definition of component interfaces, called “connectors”
in Modelica. One possibility would be to follow the bond graph approach (see, e.g., Karnopp et al., 2000;
Cellier, 1991) that models primarily the energy flow between components. The energy flow, i.e., power P,
is provided as the product of two variables, such as “P = velocity × force” and the two variables are used
in a connector (one of them has to have the “flow” prefix). This approach is only useful in special cases
and is utilized in Modelica for electrical and magnetic connectors and in the free BondLib library (Cellier
and Nebot, 2005). For other domains, a more general approach is needed that is based on the following
requirements and that includes the bond graph connectors as a special case:

1. A connector should contain an independent set of variables that describes the desired physical effects
in the interface. Usually, mean values over the interface area are used, e.g., a resultant cut-torque.4

2. When connecting components together, the relevant balance equations and the relevant boundary
conditions for the infinitesimal small connection point must be generated by the Modelica connec-
tion semantics (variables without the flow prefix are equal and the sum of the variables with the
flow prefix is zero).

Typical balance equations are energy balance, mass balance, momentum balance, equilibrium of cut-forces,
and cut-torques. Typical boundary conditions are the equality of position, angle, temperature, or pressure of
the connected components. This last rule guarantees the fundamental requirement that balance equations
are not only fulfilled within a component, but also when components are connected together.

As an example for balance equations, assume that three rotational mechanical flanges f1, f2, and f3
are connected together. With the definition of connector “Flange” above, the following equations are
generated:

f1.phi = f2.phi;
f2.phi = f3.phi;
0 = f1.tau + f2.tau + f3.tau;

4Variables ci in a connector are not independent, if at least one variable cj can be computed by algebraic equations,
by differentiation and/or by integration from the other variables ck in the connector. In Modelica it is possible to have
a redundant set of variables in a connector. In such a case, there are unnecessary restrictions how components can be
connected together, especially if the connection structure contains a loop.
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The first two equations state the boundary condition that connected absolute flange angles at the connection
point are identical. The last equation states torque equilibrium at the connection point. Other balance
equations are not taken into account for one-dimensional rotational mechanics. From the above equations,
it follows indirectly that also the energy balance is fulfilled, since

P = der(f1.phi)*f1.tau + der(f2.phi)*f2.tau + der(f3.phi)*f3.tau
= der(f1.phi)*(f1.tau + f2.tau + f3.tau)
= der(f1.phi)*0
= 0

Note, in bond graph methodology, angular velocity and cut-torque are used as variables here. The dis-
advantage is that a connection with the bond graph connectors does no longer guarantee the equality of
connected angles, as needed, e.g., for servo systems where angles are controlled.

A more complicated example is the connector for multiphase, thermo-fluid pipe flow of one substance
(Elmqvist et al., 2003):

connector FlowPort "Thermo-fluid flow of multi-phase substance"
AbsolutePressure p "Pressure in connection point";
SpecificEnthalpy h "Specific mixing enthalpy";
flow MassFlowRate m_flow "Mass flow in to component";
flow EnthalpyFlowRate H_flow "Enthalpy flow in to component";

end FlowPort;

When using this connector, it is required that the specific mixing enthalpy h in the port is only referenced in
the following equation of a component that computes the enthalpy flow rate H_flow from the upstream
specific enthalpy (= the specific enthalpy in the port, if the fluid flows from the port in to the component,
and the specific enthalpy of a point inside the component, if the fluid flows from the component to
the port):

port.H_flow = port.m_flow*(if port.m_flow > 0 then port.h
else h_in_component);

This approach solves the difficult problem to handle reversing, splitting, and joining flow of connected ports
automatically under the assumption of ideal mixing. More detailed models require special join/splitter
elements where the losses are described. This means that mass and energy balance in a connection point
are always fulfilled independently how components are connected together (the momentum balance is
fulfilled only under some additional assumptions). As an example, let us assume that ports A.port, B.port,
and C.port of the components A, B, and C are connected together. This results in the following equations:

Equations due to "connect(A.port, B.port); connect(A.port,C.port)":
A.port.p = B.port.p = C.port.p;
A.port.h = B.port.h = C.port.h;
0 = A.port.m_flow + B.port.m_flow + C.port.m_flow;
0 = A.port.H_flow + B.port.H_flow + C.port.H_flow;

Equations inside components A, B, C:

A.port.H_flow = A.port.m_flow*(if A.port.m_flow > 0 then A.port.h
else A.h;

B.port.H_flow = B.port.m_flow*(if B.port.m_flow > 0 then B.port.h
else B.h;

C.port.H_flow = C.port.m_flow*(if C.port.m_flow > 0 then C.port.h
else C.h;
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The first two lines state that pressure p and specific enthalpy h in the connection point are identical. Since
all other intensive quantities of a multiphase fluid (e.g., density, or specific entropy) can be computed from
p and h, the medium state is uniquely defined. The third and fourth equations state the mass and energy
balance for an infinitesimal small control volume in the connection point. Together with the remaining
equations for port.H_flow in the components, a linear system of equations is present to compute the
mixing enthalpy A.port.h = B.port.h = C.port.h in the connection point. It has the solution:

A.port.h = -( (if A.port.m_flow > 0 then 0 else A.port.m_flow*A.h)+
(if B.port.m_flow > 0 then 0 else B.port.m_flow*B.h)+
(if C.port.m_flow > 0 then 0 else C.port.m_flow*C.h) )

/( (if A.port.m_flow > 0 then A.port.m_flow else 0)+
(if B.port.m_flow > 0 then B.port.m_flow else 0)+
(if C.port.m_flow > 0 then C.port.m_flow else 0) )

Therefore, independently of the flow directions in the three ports, the mixing enthalpy is always uniquely
computed, provided at least one mass flow rate does not vanish (see Elmqvist et al., 2003 for details how
to handle the case if all mass flow rates vanish). From the mixing enthalpy and the port pressure, all other
mixing quantities can be computed, such as mixing temperature.

In the Modelica standard library (see below), elementary connectors for all important technical domains
are provided. The definition of these connectors is summarized in the Table 36.1.

Column “type” is the physical domain, column “potential” defines the variables in the connector that
have no “flow” prefix, column “flow” defines the variables with a “flow” prefix, column “connector name”
defines the connector class name where the definition is present and column “icon” is a screenshot of the
connector icon.

For three-dimensional mechanical systems, the position vector r[3] from the origin of the world frame to
the origin of the connector frame, the transformation matrix T[3,3] from the world to the connector frame,
as well as the cut-force vector f[3] and the cut-torque vector t[3] are utilized. The transformation matrix
T[3,3] contains a redundant set of variables. In Otter et al. (2003) it is described how the information about
the constraint equations of T is defined in Modelica, and how a tool can automatically remove connection
restrictions due to this redundancy based on this additional information. In Modelica, array dimensions
are declared with square brackets, e.g., A[3,4] is a two-dimensional array where the first dimension has
size 3 and the second size 4. A dimension size specified as “:”, e.g., Xi[:], defines an unknown dimension
that can be defined when using the array.

Type “thermal” refers to heat transfer. Note, in bond graph methodology temperature and entropy flow
rate are used as connector variables, because the product of these two variables is the energy flow through
the port. The definition in the Modelica Standard Library with temperature and heat flow rate also fulfills
the energy balance in a connection point. It has the additional advantage that lumped elements, such as a
thermal conductor, a thermal capacitor or the “fully isolated boundary condition” lead to linear equations
in the connector variables, whereas the bond graph approach leads to nonlinear equations.

Type “thermo-fluid pipe flow” refers to one-dimensional thermo-fluid flow in pipe networks with
incompressible or compressible media that may have one or multiple (homogenous) phases and/or one
or multiple substances. The potential variables in the connector are pressure p, specific mixing enthalpy h,
and the vector of independent mixture mass fractions Xi[:]. The flow variables are mass flow rate
mflow, enthalpy flow rate Hflow and the vector of the independent substance mass flow rates mXiflow[:].
When only one substance is present, vectors Xi and mXiflow have dimensions zero and are therefore not
present. More detailed information of this connector is available in Elmqvist et al. (2003) and in the
Modelica.Fluid.UsersGuide.

Besides physical connectors, also a set of signal connectors are provided, especially for block diagrams
and for hierarchical state machines. Type “signal bus” characterizes an empty connector that has the
additional prefix “expandable.” This connector type is used to define a hierarchical collection of named
signals where the full connector definition (containing all signal definitions) is defined implicitly by the
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set of variables occurring in all connections of this type. This connector is used to communicate a large
amount of signals in a convenient way between components.

Modelica supports also hierarchical connectors, in a similar way as hierarchical models. As a result, it is,
e.g., possible, to collect elementary connectors together. For example, an electrical plug consisting of two
electrical pins can be defined as:

connector Plug
Pin phase;
Pin ground;

end Plug;

With one connect(..) equation, either two plugs can be connected (and therefore implicitly also the phase
and ground pins) or a Pin connector can be directly connected to the phase or ground of a Plug connector,
such as “connect(resistor.p, plug.phase).” A predefined connector of this type is the “electrical multiphase”
connector (see table above), that contains a vector of pins, with a default dimension of 3, i.e., it allows a
convenient description of multiphase networks.

Besides “one-to-one” connections of components on the same hierarchical level, also “one-to-many”
connections over component hierarchies can be conveniently defined with the inner/outer language
construct to model the coupling of components with physical fields. Typical examples are bodies in the
gravity field of the earth where the gravity acceleration depends on the body position. A language construct
to model conveniently connections where every object is connected to any other object of a general physical
fields is currently under development.

36.2.2 Discontinuous Systems
After the presentation of the fundamental structuring mechanisms in Modelica and the means to describe
continuous models, attention is now given to discrete modeling features, especially the difficult problem
how to synchronize continuous and discrete components: In Modelica, the central property is the usage
of synchronous differential, algebraic, and discrete equations. Synchronous languages (Halbwachs, 1993;
Benveniste et al., 2003), such as SattLine (Elmqvist, 1992), Lustre (Halbwachs et al., 1991), or Signal (Gau-
tier et al., 1994) have been used to model discrete controllers to yield safe implementations for real-time
systems and to verify important properties of the discrete controller before executing it. The idea of gener-
alizing the data flow principle of synchronous languages in the context of continuous/discrete systems was
introduced in Elmqvist et al. (1993) and further improved in Otter et al. (1999) and Elmqvist et al. (2001).

A typical example of a (continuous/discrete) hybrid model is given in Figure 36.4
where a continuous plant

dxp

dt
= f (xp, u)

y = g(xp)

PlantController

r

�

u y

FIGURE 36.4 Continuous plant controlled by a discrete controller.
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is controlled by a digital linear controller

xc(ti) = Axc(ti − Ts) + B(r(ti) − y(ti))

u(ti) = Cxc(ti − Ts) + D(r(ti) − y(ti))

using a zero-order hold to hold the control variable u between sample instants (i.e., u(t) = u(ti) for
ti ≤ t < ti + Ts), where Ts is the sample interval, xp(t) is the state vector of the continuous plant, y(t)
is the vector of measurement signals, xc(ti) is the state vector of the digital controller and r(ti) is the
reference input. In Modelica, the complete system can be easily described by connecting appropriate
blocks. However, for simplicity of the discussion, here an overall description of the system is given in one
model where the discrete equations of the controller are within the when clause below.

model SampledSystem
parameter Real Ts=0.1 "sample period";
parameter Real A[:, size(A,1)], B[size(A,1), :],

C[:, size(A,2)], D[size(C,1),size(B,2)];
input Real r[size(B,2)] "reference";
output Real y[size(B,2)] "measurement";

Real u [size(C, 1)] "actuator";
Real xc[size(A, 1)] "controller state";
Real xp[:] "plant state";

equation
der(xp) = f(xp, u); // plant

y = g(xp);
when sample(0,Ts) then // digital controller
xc = A*pre(xc) + B*(r-y);
u = C*pre(xc) + D*(r-y);
end when;

end SampledSystem;

During continuous integration the equations within the when clause are deactivated. When the condition
of the when clause becomes true, an event is triggered, the integration is halted and the equations within
the when clause are active at this event instant. The operator sample(. ..) triggers events at sample
instants with sample time Ts and returns true at these event instants. At other time instants it returns
false. The values of variables are kept until they are explicitly changed. For example, u is computed only
at sample instants. Still, u is available at all time instants and consists of the value calculated at the last
event instant. The equations in a when clause are called “discrete equations” since they are only active at
distinct points in time. Equations in a when clause have the restriction that on one side of the “=” sign
only a variable reference and no expression is allowed to identify uniquely the variable of the equation that
“holds” its value when the equation is not active.

At a sampling instant ti, the controller needs the values of the controller state xc for the time ti and for
the previous sample instant ti − Ts, which is determined by using the pre operator. Formally, the left limit
x(t−) of a variable x at a time instant t is characterized by pre(x), whereas x itself characterizes the right
limit x(t+). Since xc is only discontinuous at sample instants, the left limit xc(t−

i ) at sample instant ti is
identical to the right limit xc(t+

i − Ts) at the previous sample instant and therefore pre(xc) characterizes
this value.

The generalized synchronous principle introduced in Elmqvist et al. (1993) states that at every time
instant the active equations express relations between variables that have to be fulfilled concurrently at the
current time instant. As a consequence, during continuous integration the equations of the plant have
to be fulfilled, whereas at sample instants the equations of the plant and of the digital controller hold
concurrently. To efficiently solve such types of models, all equations are sorted under the assumption that
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all equations are active (details see below). In other words, the order of the equations is determined by
data flow analysis resulting in an automatic synchronization of continuous and discrete equations. For the
example above, sorting results in an ordered set of assignment statements:

// "input" variables provided from environment: r, xp, pre(xc)
y := g(xp);
when sample(0,Ts) then

xc := A*pre(xc) + B*(r-y);
u := C*pre(xc) + D*(r-y);

end when;
der(xp) := f(xp, u);

Note, that the evaluation order of the equations is correct (in the sense that all active equations are
concurrently fulfilled) both when the controller equations are active (at sample instants) and when they
are not active.

The (generalized) synchronous principle has several consequences. First, evaluation of discrete equations
is performed in zero (simulated) time, i.e., Modelica has instantaneous communication (Benveniste et al.,
2003). If needed, it is possible to model the computing time by explicitly delaying the assignment of
variables. Second, unknown variables are uniquely computed from a system of equations,5 i.e., Modelica
has deterministic concurrency (Benveniste et al., 2003). This implies that the number of active equations
and the number of unknown variables in the active equations at every time instant are identical. This
requirement is, for example, violated in

equation // incorrect model fragment!
when h1> 3 then

close = true;
end when;

when h2 < 1 then
close = false;

end when;

If by accident or on purpose the relations h1 > 3 and h2 < 1 become true at the same time instant, we have
two conflicting equations for close and it is not defined which equation should be used. In general, it is
not possible to detect by source inspection whether conditions become true at the same event instant or
not. Therefore, in Modelica the assumption is used that all equations in a model may potentially be active at
the same time instant during simulation. Owing to this assumption, the total number of (continuous and
discrete) equations shall be identical to the number of unknown variables. It is often possible to rewrite
the model above by placing the when clauses in an algorithm section and changing the equations into
assignments

algorithm algorithm
when h1 > 3 then when h2 < 1 then

close := true; close := false;
end when; or alternatively elsewhen h1 > 3 then
when h2 < 1 then close := true;

close := false; end when;
end when;

5Nonlinear equations may have multiple solutions. However, starting from user defined initial conditions, the
desired solution is uniquely identified.
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Filltank1

Level1 > limit Level1 < 0.001True

0 0Waittime Waittime

True

Filltank2 Emptytank2T1 T4T3Wait1 Wait2T2

FIGURE 36.5 Part of a Modelica StateGraph to fill and empty a tank system.

The algorithm section groups the two when clauses so that they are evaluated sequentially in the order of
appearance and the second one get higher priority. All assignment statements within the samealgorithm
section are treated as a set of n equations, where n is the number of different left-hand side variables (e.g.,
the model fragment above corresponds to one equation in the unknown “close”). An algorithm section
is sorted as one entity together with the rest of the system. Another assignment to close somewhere else
in the model would still yield an error.

Handling hybrid systems in this way has the advantage that the synchronization between the continuous
time and discrete event parts is automatic and leads to a deterministic behavior. Problems are detected
during translation, e.g., nondeterministic concurrency (a variable is defined by two or more equations) or
deadlock (an algebraic loop between different when clauses).

The Modelica language elements for discrete systems are especially used to implement library
components on a higher level to define discrete systems in a convenient way graphically, such as

• discrete input/output blocks (Modelica.Blocks.Discrete, Modelica.LinearSystems.Sampled),
• logical blocks (Modelica.Blocks.Logical), and
• hierarchical state machines (Modelica.StateGraph) (Otter et al., 2005).

The Modelica.StateGraph library is based on a subset of JGraphcharts (Årzen et al., 2002) that is an
enhanced version of the industrial standard Grafcet/Sequential Function Charts (IEC 848 and IEC
61131-3). JGraphcharts and StateGraphs have a similar modeling power as Statecharts. A simple example
is shown in Figure 36.5 containing part of the definition to fill and empty a tank system. For example, if the
state machine is in step “fillTank1” and the Boolean condition “level1 > limit” of transition T1 becomes
true, then the state machine switches to step “wait1.” The basic ideas to implement state machines in
Modelica with Boolean equations are described in Mosterman et al. (1998) and Elmqvist et al. (2001).

In Grafchart, Grafcet, Sequential Function Charts, and Statecharts, actions are usually formulated within
a step or a state. Such actions are distinguished as entry, normal, exit, and abort actions. For example,
a valve might be opened by an entry action of a step and might be closed by an exit action of the same
step. In StateGraphs this is not possible due to the (generalized) synchronous principle explained above,
which does not allow that one variable is defined by two equations. Instead, Boolean equations are added
to a StateGraph to set the valve according to the StateGraph state, e.g.,

valve2 = fillTank2.active or emptyTanks.active and level1 > limit

This feature of a StateGraph is very useful, since it allows a Modelica translator to guarantee that a given
StateGraph has deterministic behavior without conflicts. For example, if the valve is opened and closed in
different steps, the Boolean equation for the valve defines uniquely the priority if several steps influencing
the valve would be active at the same time instant, e.g., by parallel execution branches.

36.2.3 Relation-Triggered Events
During continuous integration it is advantageous that the model equations remain continuous and differ-
entiable, since the numerical integration methods are based on this assumption. This requirement is often
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During event iteration

Twopoint

u

u
y

y

y0 � 1

FIGURE 36.6 Two point switch block to demonstrate relation-triggered events.

violated by if-clauses. For example the two-point switch block in Figure 36.6 with input u and output y
may be described by

model TwoPoint
parameter Real y0=1;
input Real u;
output Real y;

equation
y = if u > 0 then y0 else -y0;

end TwoPoint;

At point u=0 this equation is discontinuous, if the if-expression would be taken literally. A discontinuity
or a nondifferentiable point can occur if a relation, such as x1 > x2 changes its value, because the branch of
an if-statement may be changed. Such a situation can be handled in a numerical sound way by detecting
the switching point within a prescribed accuracy, halting the integration, selecting the corresponding new
branch, and restarting the integration, i.e., by triggering a state event.

In general, it is not possible to determine by source inspection whether a specific relation will lead to
a discontinuity or not. Therefore, in Modelica it is by default assumed that every relation will potentially
introduce a discontinuity or a nondifferentiable point in the model. Consequently, relations automatically
trigger state events (or time events for relations depending only on time) at the time instants where their
value is changed. This means, e.g., that model TwoPoint is treated in a numerical sound way: during the
iteration to determine the time instant when u crosses zero, the if-expression remains on the branch that it
had before the iteration started, i.e., during zero crossing detection the relation u > 0 is not taken literally.

Modelica has several operators for hybrid systems, such as smooth(...), noEvent(...) to switch off
event handling and treat relations literally, reinit(x, value) to reinitialize a continuous state with
a new value at an event instant, initial() to inquire the first and terminal() to inquire the last
evaluation of the model during a simulation run.

36.2.4 Variable Structure Systems
If a physical component is modeled (macroscopically) precisely enough, there are no discontinuities in
a system. When neglecting some “fast” dynamics, to reduce simulation time and identification effort,
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FIGURE 36.7 Detailed and idealized diode characteristic.
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FIGURE 36.8 Declarative description of an ideal diode model.

discontinuities may appear. As a typical example, consider modeling of a diode, where i is the current
through the diode and u is the voltage drop between its pins.

The diode characteristic is shown in the left part of Figure 36.7. If the detailed switching behavior can
be neglected with regard to other modeling effects and the diode shall be used in its “operating range,”
it is advantageous to use the ideal diode curve shown in the right part of Figure 36.7. It typically gives a
simulation speedup of 1–2 orders of magnitude.

It is straightforward to model the detailed diode curve, because the current i has just to be given as
(analytic or tabulated) function of the voltage drop u. It is more difficult to model the ideal diode curve
in the right part of Figure 36.8, because the current i at u = uknee is no longer a function of u, i.e.,
a mathematical description in the form i = i(u) is no longer possible. This problem can be solved by
introducing a curve parameter s and describing the curve as i = i(s) and u = u(s). This description form is
more general and allows defining an ideal diode uniquely in a declarative way:

equation
0 = i1 + i2;
u = v1 - v2;

on = s > 0;
u = uknee + (if on then 0 else s);
i1 = if on then s else 0;

To understand the consequences of parameterized curve descriptions, the ideal diode is used in the simple
rectifier circuit of Figure 36.9.
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FIGURE 36.9 Simple electrical circuit to demonstrate the handling of an ideal diode model.

Collecting the equations of all components and connections, as well as sorting and simplifying the set of
equations under the assumption that the input voltage v0(t) of the voltage source is a known time function
and that the states (here: v2) are assumed to be known and the derivatives should be computed, leads to

on = s > 0;
u = v1 - v2;
u = uKnee + (if on then 0 else s);
i0 = if on then s else 0;

R1*i0 = v0 - v1;

i2:= v2/R2;
i1:= i0-i2;
der(v2):= i1/C;

The first five equations build a system of equations in the five unknowns on, s, u, v1, and i0. The
remaining assignment statements are used to compute the state derivative der(v2). During continuous
integration the Boolean variables, i.e., on, are fixed and the Boolean equations are not evaluated. In this
situation, the first equation is not touched and the next four equations form a linear system of equations
in the four unknown variables s, u, v1, and i0, which can be solved by Gaussian elimination. An
event occurs if one of the relations (here: s > 0) changes its value.

At an event instant, the first five equations are a mixed system of discrete and continuous equations that
cannot be solved by, say, Gaussian elimination, since there are both Real and Boolean unknowns. However,
appropriate algorithms can be constructed: (1) Make an assumption about the values of the relations in
the system of equations. (2) Compute the discrete variables. (3) Compute the continuous variables by
Gaussian elimination (discrete variables are fixed). (4) Compute the relations based on the solution of (2)
and (3). If the relation values agree with the assumptions in (1), the iteration is finished and the mixed
set of equations is solved. Otherwise, new assumptions on the relations are necessary, and the iteration
continues. Useful assumptions on relation values are for example: (a) Use the relation values computed in
the last iteration and perform a fixed-point iteration (the convergence can be enhanced by some algorithmic
improvements). (b) Try all possible combinations of the values of the relations systematically (exhaustive
search). In the above example, both approaches can be simply applied, because there are only two possible
values (s > 0 is false or true). However, if n switches are coupled, there are n relations and therefore 2n

possible combinations which have to be checked in the worst case.
The technique of parameterized curve descriptions was introduced in (Claus et al., 1995) and a series of

related papers. However, no proposal was given on how to implement such models in a numerically sound
way. In Modelica, the solution method follows logically because the equation-based system naturally leads
to a system of mixed continuous/discrete equations, which have to be solved at event instants (Otter et al.,
1999).
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Alternative approaches to treat ideal switching elements are (a) by using variable structure equa-
tions that are controlled by state machines to describe the switching behavior (see, e.g., Barton, 1992;
Elmqvist et al., 1993; Mosterman and Biswas, 1996), or by (b) using a complementarity formulation (see,
e.g., Lötstedt, 1982; Pfeiffer and Glocker, 1996; Schumacher and van der Schaft, 1998). The approach (a)
has the disadvantage that the continuous part is described in a declarative way but not the part describing
the switching behavior. As a result, algorithms with better convergence properties for the determination of
consistent switching structure cannot be used. Furthermore, this involves a global iteration over all model
equations whereas parameterized curve descriptions lead to local iterations over the equations of the
involved elements. The approach (b) seems to be difficult to use in an object-oriented modeling language
and seems to be applicable only in special cases (e.g., it does not seem possible to describe ideal thyristors).

Note, mixed systems of equations do not only occur if parameterized curve descriptions are used, but
also in other cases, e.g., whenever an if-statement is part of an algebraic loop and the expression of the
if-statement is a function of the unknown variables of the algebraic loop.

36.2.5 Other Language Elements
The most basic Modelica language elements have been presented. Modelica additionally supports
enumerations as well as arrays and operations on arrays, for example,

parameter Real a[:]"Vector of coefficients";
final parameter Integer nx = size(a,1) - 1;
Real sigma[nx];
Real A[nx,nx] "System matrix";

equation
A = [zeros(nx-1,1), identity(nx-1);

-a[1:na-1]/a[na] ];
sigma = Modelica.Math.Matrices.singularValues(A);

The elements of arrays may be of the basic data types (Real, Integer, Boolean, and String) or in general
component models, e.g., a resistor. This allows convenient description of simple discretized partial dif-
ferential equations. Also mathematical functions without side effects can be defined. Functions may have
optional input and output arguments. External C- and Fortran subroutines can be called via this function
interface in a convenient way. A powerful package concept is available to structure large model libraries and
to find a component or/and a library in the file system giving its hierarchical Modelica class name due to a
name mapping of Modelica names to path names of the underlying operating system. Root level packages
may have a version number and scripts can be defined to perform automatic conversion between versions.
Instance and class definitions within a model may be replaceable and can be redeclared to another model
class in a higher hierarchy. This allows the substitution of complete submodels from a higher level, e.g., to
replace one controller or medium type by another one. Finally, a suite of annotations is standardized that
defines the graphical appearance of Modelica components, as well as annotations to define the details of
a parameter menu in a simple way. As an example, in Figure 36.10 the parameter menu of a revolute joint
is shown as it is automatically constructed by Dymola (Dynasim, 2006) from the Modelica definition.

36.3 Modelica Libraries

In order that the Modelica language is useful for modelers, it is important that libraries of the most
commonly used components are available, ready to use, and sharable between applications. For this
reason, the Modelica Association develops and maintains a growing Modelica Standard Library called
package Modelica. This is a free library that can be used in commercial Modelica simulation environments.
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FIGURE 36.10 Automatically constructed parameter dialog.

Furthermore, other people and organizations are developing free and commercial Modelica libraries. For
more information and especially for downloading the free libraries, see http://www.modelica.org/library.

Version 2.2.1 of the Modelica standard library from March 2006 contains about 650 model classes and
500 functions in the following sublibraries:

Sublibrary Content

.Blocks Continuous, discrete, logical, table input/output blocks

.Electrical.Analog Analog electrical components (e.g., resistor, diode, and MOS transistors)

.Electrical.Digital Digital electrical components based on the VHDL standard for 9-valued logic with
conversions to 2-, 3-, 4- valued logic

.Electrical.Machines Uncontrolled asynchronous, synchronous, DC-machines

.Electrical.MultiPhase Analog electrical components for 2, 3, and more phases

.Math Mathematical functions (e.g., sin, cos) and functions operating on matrices (e.g., norm,
solve, eigenValues, and singularValues)

.Mechanics.MultiBody Three-dimensional mechanical components (bodies, joints, sensors, forces, etc.)

.Mechanics.Rotational One-dimensional rotational mechanical components. Includes convenient to use
speed- and torque-dependent Coulomb friction elements

.Mechanics.Translational One-dimensional translational mechanical components

.Media Large library of fluids (1240 gases and mixtures between the gases, IF97 detailed
water medium, simple liquid water medium, dry and moist air, table-based media)

.SIunits 450 type definitions based on ISO 31-1992 (e.g., Angle and Length)

.StateGraph Hierarchical state machines with Modelica as action language

.Thermal.FluidHeatFlow Simple components for one-dimensional incompressible thermo-fluid
flow (e.g., to model cooling of machines with air or water).

.Thermal.HeatTransfer One-dimensional heat transfer with lumped elements

.Utilities Utility functions especially for scripting (e.g., operating on files, streams, strings,
and system)
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FIGURE 36.11 A VehiclesInterfaces architecture model consisting of accessory, engine, transmission, drive line,
chassis, brakes, driver environment, road, and atmosphere components with standardized interfaces.

Component libraries in package Modelica are realized by specialists in the respective area. There is also
a growing number of commercial Modelica libraries available, e.g.:

Library name Content

Air Conditioning Detailed models of vehicle air conditioning systems (from Modelon)
AlternativeVehicles Alternative vehicle architectures, such as hybrid cars (from arsenal research and DLR)
FlexibleBodies Modeling large motions of beams and of flexible bodies exported from finite element programs (DLR)
HyLib Hydraulic components (from Modelon)
PneuLib Pneumatic components (from Modelon)
PowerTrain Vehicle power trains (from DLR)
SmartElectricDrives Detailed models of controlled machines (from arsenal research)
Transmission Detailed models of vehicle transmissions (from Ricardo)
VehicleDynamics Three-dimensional mechanical models of complete vehicles (from Modelon)

The automotive related libraries are based on the free VehicleInterfaces package that provides standard
component interfaces and vehicle architectures for complete vehicle system models, in order that automo-
tive libraries can work seamlessly together (Dempsey et al., 2006). This library is based on ideas of Tiller
et al. (2003) and of the PowerTrain library (PowerTrain, 2002). A screenshot of one of the VehicleInterfaces
architecture models is shown in Figure 36.11.

36.4 Symbolic Processing of Modelica Models

The Modelica Language Specification (Modelica, 2005) defines how a Modelica model shall be mapped
into a mathematical description as a mixed system of differential-algebraic equations (DAE) and discrete
equations with Real, Integer, and Boolean variables as unknowns. There are no general-purpose solvers
for such problems. There are numerical DAE solvers, which could be used to solve the continuous part.
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However, if a DAE solver is used directly to solve the original model equations, the simulation will be
very slow and initialization might be not possible for higher index systems (see below). It is therefore
assumed that Modelica models are first symbolically transformed into a form that is better suited for
numerical solvers. In this section, the transformation techniques are sketched that have been initially
designed for the Dymola modeling language (Elmqvist, 1978), further developed in Omsim for the
Omola language (Mattsson and Söderlind, 1993) and in the commercial Modelica simulation environment
Dymola (Mattsson et al., 2000; Dynasim, 2006):

Dymola converts the differential-algebraic system of equations symbolically to ordinary differential
equations in state-space form, i.e., solves for the derivatives. Efficient graph-theoretical algorithms are
used to determine which variables to solve for in each equation and to find minimal systems of equations
to be solved simultaneously (algebraic loops). The equations are then, if possible, solved symbolically
or code for efficient numeric solution is generated. Discontinuous equations are properly handled by
translation to state or time events as required by numerical integration routines.

36.4.1 Sorting and Algebraic Loops
The behavior of a Modelica model is defined in terms of genuine equations and a Modelica translator
must assign an equation for each variable as part of the sorting procedure, which also identifies algebraic
loops. To be able to process problems with hundred thousand unknowns, the idea is to focus on the
structural properties, i.e., which variables that appear in each equation rather than how they appear. This
information can be represented by a “structure” Jacobian, where for a system of equations, h(x) = 0, each
element i, j, is zero if xj does not appear in the expression hi, otherwise it is one. The sorting procedure is
to order unknowns and equations to make the structure Jacobian become Block Lower Triangular (BLT).
A BLT partitioning reveals the structure of a problem. It decomposes a problem into subproblems, which
can be solved in sequence. There are efficient algorithms (see, e.g., Duff et al., 1986), for constructing BLT
partitions with diagonal blocks of minimum size (with respect to permutation of equations and variables).
Each nonscalar block on the diagonal constitutes an algebraic loop. This sorting procedure identifies all
algebraic loops in their minimal form that is unique. The sorting procedure is done in two steps. The first
step is to assign each variable, xj , to a unique equation, hi = 0 such that xj appears in this equation. It can be
viewed as permuting the equations to make all diagonal elements of the structure Jacobian nonzero. If it is
impossible to pair variables and equations in this way then the problem is structurally singular. The second
step of the BLT partition procedure is to find the loops in a directed graph that has the variable/equation
pairs of the first step as nodes. The basic algorithm was given by Tarjan (1972).

36.4.2 Reduction of Size and Complexity
A Modelica model has typically many simple equations, v1 = v2 or v1 = −v2 being the result of connections.
These are easy to exploit for elimination.

From the BLT partition it is rather straightforward to find unknowns that actually are constant and can
be calculated and substituted at translation. This may have considerable impact on the complexity of the
problem that has to be solved numerically. For example, a multibody component is developed for free
motion in a three-dimensional space. When using it we connect it to other components and set parameters
implying restrictions on its motion. For example, it may be restricted to move in a plane. It means that
coefficients in the equations become zero and terms disappear. This in turn may make algebraic loops to
decompose into smaller loops or even disappear.

A linear small algebraic loop is solved symbolically. Otherwise code for efficient numeric solution is
generated. To obtain efficient simulation, it is very important to reduce the size of the problem sent to a
numerical solver. The work to solve a system of equations increases rapidly with the number of unknowns,
because the number of operations is proportional to the cube of n, i.e., O(n3), where n is the number of
unknowns. One approach to reduce size is called tearing (Elmqvist and Otter, 1994). Let z represent the
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unknowns to be solved from the system of equations. Let z be partitioned as z1 and z2 such that

L · z1 = f1(z2)

0 = f2(z1, z2)

where L is the lower triangular with nonzero diagonal elements. A numerical solver needs then only
consider z2 as unknown. A numerical solver provides guesses for z2 and would like to have the f2 residuals
calculated for these guesses. When having a value for z2, it is simple to calculate z1 from the first set of
equations. Note, that it is very important to avoid divisions by zero. The assumption that the diagonal
elements are nonzero guarantees this. It is then straightforward to calculate the f2residuals. The z1 variables
are in fact hidden from the numerical solver. The general idea of tearing is to decompose a problem into
two sets, where it is easy to solve for the first set when the solution to the second set is known and to iterate
over the second set. The aim is of course to make the number of components of z2 as small as possible.
It is a hard (NP-complete) problem to find the minimum. However, there are fast heuristic approaches to
find good partitions of z. If the equations are linear, they can be written as

Lz1 = Az2 + b1

0 = Bz1 + Cz2 + b2

and it is possible to eliminate z1 to get Jz2 = b, where

J = C + BL−1A

b = b2 + BL−1b1

This may be interpreted as Gauss elimination of z1. The procedure may be iterated. Note, since L is a lower
triangular matrix, the determination of J and b is at most O(n2).

When solving a linear equation system, a major effort is to calculate an LU or QR factorization of the
Jacobian, J. Back substitutions are much less computationally demanding. In some cases, the elements of
the Jacobian does not vary continuously with time. The Jacobian may, for example, only change at events
and it is then only necessary to calculate and factorize it during event iterations and not during continuous
simulation. In other cases, it may depend only on parameters and constants and then it needs only to be
calculated once, at the start of a simulation.

When using Newton methods for nonlinear equation systems, it is necessary to calculate the Jacobian. If
this is made numerically from residuals, then n residual calculations are needed. Dymola provides analytic
Jacobians. These are more accurate and much less computationally demanding, because there are many
common subexpressions to exploit. Modelica provides facilities to provide derivatives also for external
functions.

36.4.3 Index Reduction
When solving an ordinary differential equation (ODE) the problem is to integrate, i.e., to calculate the states
when the derivatives are given. Solving a DAE may also include differentiation, i.e., to calculate the deriva-
tives of given variables. Such a DAE is said to have high index. It means that the number of states needed for
a model is less than the number of variables appearing differentiated. The number of states is equal to the
number of independent initial conditions that can be imposed. Higher index DAEs are typically obtained
because of constraints between models. To support reuse, model components are developed to be“general.”
Their behavior is restricted when they are used to build a model and connected to other components. Take
as a very simple example two rotating bodies with inertia J1 and J2 connected rigidly to each other. The
angles and the velocities of the two bodies should be equal. Not all four differentiated variables can be state
variables with their own independent start values. The connection equation for the angles, ϕ1 = ϕ2, must
be differentiated twice to get a relation for the accelerations to allow calculation of the reaction torque.

The reliability of a direct numerical solution is related to the number of differentiations needed to
transform the system algebraically into ODE form. Modern numerical integration algorithms for DAEs,
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such as used by most simulators, can handle systems where equations needed to be at most differentiated
once. However, reliable direct numerical solutions for nonlinear systems are not known if two or more
differentiations are required. Furthermore, if mixed continuous and discrete systems are solved, the hybrid
DAE must be initialized at every event instant. In this case, it is, in general, not sufficient to just fulfill the
original DAE. Instead, also some differentiated equations have to be fulfilled, in order that the initialization
is consistent. Direct numerical methods have problems at events to determine consistent restart conditions
of higher index systems.

Higher index DAEs can be avoided by restricting how components may be connected together and/or
include manually differentiated equations in the components for the most common connection structures.
The drawback is (1) physically meaningful component connections may no longer be allowed in the model
or (2) unnecessary “stiff” elements have to be introduced in order that a connection becomes possible. For
example, if a stiff spring is introduced between the two rotating bodies discussed above, the problem has
no longer a higher index.

Since most Modelica libraries are designed in a truly object-oriented way, i.e., every meaningful physical
connection can also be performed with the corresponding Modelica components, this leads often to
higher index systems, especially in the mechanical and thermo-fluid field. Also modern controllers based
on nonlinear inverse plant models lead to higher index DAEs (Looye et al., 2005) and can be conveniently
treated with Dymola.

Dymola transforms higher index problems by differentiating equations analytically. The standard algo-
rithm by Pantelides (1988) is used to determine how many times each equation has to be differentiated.
The algorithm by Pantelides is based on the structure of the equations. It means that there are examples
where it does not give the optimal result (Reissig et al., 2000). However, the practical experience is very
good. Moreover, for large problems a structural analysis is the only feasible approach. Selection of which
variables to use as state variables is done statically during translation or in more complicated cases during
simulation with the dummy derivative method (Mattsson and Söderlind, 1993; Mattsson et al., 2000). Let
us make the example above a bit more realistic and put a gearbox with fixed gear ratio n between the two
bodies. Dymola differentiates the position constraint twice to calculate the reaction torque in the coupling,
and it is sufficient to select the angle and velocity of either body as state variables. The constraint leads
to a linear system of simultaneous equations involving angular accelerations and torques. The symbolic
solution contains a determinant of the form “J1 + n2J2”. Dymola thus automatically deduces how inertia
is transformed through a gearbox.

36.4.4 Example
To illustrate how Dymola’s symbolic processing reduces the size and complexity, we will show the structure
Jacobian at different stages when translating a mechanical model with a kinematic loop.

Figure 36.12 shows the structure Jacobian of the original model. There are about 1200 unknown variables
and equations. Each row corresponds to an equation and each column corresponds to a variable. A blue
marker indicates that the variable appears in the equation. There are 3995 markers. The upper half of the
matrix has a banded structure. These equations are the equations appearing in the component models
and such equations refer typically only to the local variables of the component. The equations in the lower
part are equations deduced from the connections, which includes references to variables of two or more
components.

Figure 36.13 shows the structure of the problem after exploitation of simple equations to eliminate alias
variables and utilizing zero constants. The number of unknowns is reduced from about 1200 to 330.

Then equations are differentiated to reduce the DAE index and states are selected. After some further
simplifications the number of unknowns is reduced to 250. A BLT partitioning reveals that there are three
algebraic loops as indicated by Figure 36.14.

Figure 36.15 shows the structure after tearing. The first algebraic loop is a nonlinear loop with 12
unknowns. This loop includes the positional constraints of the kinematics loop. The tearing procedure
reduces the number of iteration variables to 2. This is illustrated by turning the eliminated part from grey
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FIGURE 36.12 The structure Jacobian of the original model.
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FIGURE 36.13 The structure Jacobian after elimination of alias variables.
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FIGURE 36.15 The structure after tearing.
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to green. The second loop includes the velocity constraints due to the kinematic loop. It means that this
loop includes the equations of the positional constraints differentiated. This loop has also 11 unknowns,
but it is linear. The remaining two by two system can be solved symbolically or numerically. The third loop
includes acceleration and force/torque as unknown variables. The loop is linear and has 62 unknowns and
the tearing procedure eliminates 57 so a linear 5 by 5 system remains to be solved numerically.

36.5 Outlook

The Modelica Association will continue to further improve the Modelica language and new versions of the
Modelica standard library will continue to occur every 6–12 months.

In June 2006, Dassault Systemes, the world leader in Computer Aided Design (CAD) and Product
Lifecycle Management (PLM) announced its new product line CATIA Systems (see http://www.3ds.com/
news-events/press-room). A central part will be behavioral modeling and simulation with Modelica and
Dymola. This will add a new dimension to Modelica because system simulation with close integration of
CAD and product databases will become possible. This means that the time consuming and error prone
process to parameterize system models will be considerably improved. We expect that Dassault Systems’
strategic decision will further accelerate the growth of the Modelica user community.
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37.1 Introduction

To remain competitive and reduce cost, industry increasingly relies on computational models (Mosterman,
2004). Designing computational models and using numerical simulation is an alternative to building
hardware prototypes for testing purposes. Computational modeling (Aberg and Gage, 2004; Breunese
et al., 1995; Cellier et al., 1996; Culley and Wallace, 1994) has a number of advantages over traditional
engineering methods, such as:

• Computational models tend to be less expensive to produce and easier to modify.
• The ease of modification enables answering “what-if” questions by facilitating rapid exploration of

design options, a task that is time consuming and expensive with physical prototypes. Additionally,
some experiments require multiple simulations with different parameters which can be performed
through Monte Carlo simulations. This is impossible with physical prototypes because these are
prohibitively expensive.

37-1
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FIGURE 37.1 A robotic arm.

• In the case of complex systems such as aircraft, power grids, and communication networks, simula-
tion enables unstable and emergency modes to be tested more safely, without risk to infrastructure
or human life.

• Simulation of such unstable and emergency modes is also an order of magnitude less expensive. For
example, testing an aircraft to failure would cost much more than simulating such an experiment,
which, if the failure would lead to a crash and loss of life, would not be possible otherwise.

• Modern computational packages allow engineers to employ designs that have been used in
simulation and use them in the eventual product. This is a major time-saving feature.

Building dynamic models in software is part of Model-Based Design (Barnard, 2004), which has all
the merits listed above and is being adopted by engineers in many fields, in particular, the aerospace
and automotive industry. It can be applied to applications such as feedback control, communications,
signal and image processing, and financial modeling. Model-Based Design with Simulink® (2006) enables
design, analysis, and simulation of processes in a safe software environment. Consider the example of a
robotic arm designed for use in a production plant, shown in Figure 37.1. Creating a physical prototype
would be expensive and time consuming. Testing it could be dangerous if the robot malfunctioned. The
alternative is to model the mechanical, electrical, and electronic components of the robot in software, and
then use the model to test the algorithms through simulation.

Model-Based Design enables continuous testing as algorithms and computational models are cre-
ated and refined. The integration of testing into the design process can identify problems sooner than
approaches that do not use modeling and simulation. Furthermore, tests can be designed earlier in the
overall design process, which is particularly advantageous if carried out in parallel with other design tasks.
Finally, Model-Based Design with Simulink provides the capability to generate computer code such as C
or C++ from algorithms and computational system models, and use that code for implementation and
testing. In particular, hardware-in-the-loop simulation which uses a real-time computational model of a
physical system will be discussed as well as the systematic testing process of a designed system (Mosterman,
2004). These aspects help bridge the gap between the software and hardware design.

This chapter outlines workflow and software tools for computational modeling and numerical sim-
ulation of dynamic systems with MATLAB® (2006) and Simulink. It will not concentrate on the
detailed methodological and technological aspects of numerical simulation of systems with combined
continuous-time and discrete-event behavior, so-called hybrid dynamic systems (Mosterman and Biswas,



On Simulation of Simulink® Models for Model-Based Design 37-3

2002). Instead, one of the key goals of the chapter is to explain the selection criteria for modeling tech-
niques based on simulation, design, and testing needs. Section 37.2 examines a robotic arm as a case study
and several examples with the goal of understanding different modeling techniques. Section 37.3 dis-
cusses how simulation can be used in control system design. Section 37.4 presents the modeling, spectrum
spanning first-principles modeling from equations, physics-based modeling, and data-driven modeling.
Section 37.5 applies the different modeling approaches to the robotic arm of the case study. Section 37.6
discusses further usages of simulation in control system design. Section 37.7 gives an overview of the use
of testing as a simulation tool in the design of control systems. Section 37.8 presents the conclusions of
this work.

37.2 The Case Study Example

A robotic arm application, shown in Figure 37.1, is used as a case study because it is relatively generic and
so will reduce the need for discussing overwhelming engineering theory. The robotic arm is a commercial
off-the-shelf product.1 It consists of a turntable base, an “upper arm,” a “forearm,” and a “hand.” Two
revolute joints connect the turntable to the upper arm, and a single revolute joint provides the connection
to each other part. Revolute joints have one degree of rotational motion about a fixed axis, such as a
wheel spinning on an axle. Each joint is connected to a DC motor, which serves as the joint actuator and
a potentiometer, which serves as a position sensor. The motor of a joint moves the bodies connected at
the joint relative to each other. The sensor measures and reports how far the bodies have moved. Each
actuator/sensor pair provides an input/output point, which can be used to manipulate the device through
the use of feedback control (Åström and Wittenmark, 1984; Dorf, 1987).

37.2.1 Feedback Control
Consider the task of moving the upper arm in the robotic arm to a specific position from its current
position. The steps are as follows:

• The position sensor reports its current position.
• The position is compared with the desired position and it is decided in which direction the motor

should turn.
• The motor starts turning in the desired direction.
• At a regular time interval, for example, every 0.01 s, the sensor value is read and compared with the

desired position.
• The speed and direction of the motor are then adjusted depending on whether the required position

is being approached or has been passed.
• These steps are repeated until the required position is reached plus or minus some acceptable

threshold.

In this simple feedback-control algorithm, information is returned regarding the current state of the
robotic arm position, which enables making a decision on what should happen in the next time step.
Feedback control theory and strategies can be arbitrarily complex (Åström and Wittenmark, 1984; Franklin
et al., 2002; Ogata, 2001; Zhou and Doyle, 1997), but the basic process outlined above provides the context
to understand how any feedback-control application can be taken and the algorithm is designed, tested,
and simulated. Figure 37.2 shows the basic feedback-control loop. The plant, the device to be controlled,
is the upper arm with its motor. The sensor is the position sensor. The controller is the algorithm that
adjusts the motor speed and direction on the basis of the difference between desired and actual position.

Now, consider the entire arm. By controlling the motion of each arm segment about the four joints,
the hand can be moved. This is a multiple-input, multiple-output (MIMO) problem of great interest to

1It can be acquired through Lynxmotion, www.lynxmotion.com.
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control engineers because many systems have multiple inputs and multiple outputs. Two examples of
this are

• Washing machines must control water temperature and level, and motor speed based on the type
of clothes and size of the load.

• Car engines must adjust intake and exhaust levels to meet performance and efficiency requirements.

In general, the use of computational modeling and simulation as described in this chapter has a prolific
application in industry.

37.3 Designing with Simulation

A “design” as used hereafter is defined as a software component or algorithm that functions either alone
or with other components or algorithms. To study the behavior of a new design, a model is needed that
includes not only the design but also other components, systems, or algorithms as well with which the
design interacts. Once a computational model of the entire system is available, simulation can be used to
test and refine the design before going to a final implementation.

Consider the robotic arm. The design is the control algorithm that will be embedded on a microprocessor
connected to the robotic arm. The entire system that must be modeled includes the algorithm, the actual
robot mechanics, electrical circuitry, and any other devices and components that the robot will interact
with. Once this has been modeled accurately, the feedback-control algorithm discussed in the previous
section can be designed. As the algorithm is designed, testing of it in combination with the robot can be
started in a simulation. Since simulated rather than actual hardware is used, it can be quickly experimented
with algorithms as they are developed without costly damage. This would not be possible with a physical
robot because hardware is likely to be damaged during experimentation with different designs. With actual
hardware, a small fleet of robots would be needed to run the same tests.

37.4 Obtaining Computational Models

Here, focus is on the parts of the computational model other than the control algorithm. In the case of
the robotic arm this is the plant, which consists of the actual mechanics, electrical circuitry, and dynamic
effects such as friction. Computational models of physical devices and phenomena can be obtained by one
or more of the following methods (this is not an exhaustive list):

1. Derive mathematical relationships from published or otherwise well-accepted theory, also called
first-principles modeling. To an extent, this area pertains to phenomenological modeling (Broenink,
1990; Karnopp et al., 1990).

2. Derive mathematical relationships using data gathered from the devices being modeled. The data
can then be used in a data-fitting approach (Bendat and Piersol, 2000; Ljung, 1998).
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FIGURE 37.3 A pendulum. (a) Multibody model. (b) Simulink model.

3. Use modeling software that derives computational models from physical information such as
mass, inertia, resistance, and capacitance (also considered as first principles). This is more closely
affiliated with structural modeling approaches such as Modelica (Elmqvist et al., 1999; Tiller,
2001).

The first method is typically the most time consuming, but is widely accepted because the engineer has
visual access to the equations that describe the system. The second method relies on techniques such as
curve fitting, fuzzy logic, neural networks, and nonlinear optimizations to produce mathematical estimates
of a systems behavior. While this method can be effective at obtaining models quickly, the engineer must
consider several test scenarios to ensure that the computational models capture all the system dynamics.
The third method is typically the most practical to implement, since the engineer needs to know only
physical properties, not mathematical relationships.

37.4.1 Modeling from First Principles
First-principle modeling methods offer the capability of testing a design through simulation without
committing to specific hardware. This enables development engineers to explore design options more
thoroughly and discover problems early, saving time and money.

Before looking at obtaining the computational model of the robotic arm, consider the double pendulum
in Figure 37.3(a) that is similar to the robotic arm. It contains one less linkage and no turntable. The
kinematics equations could be derived based on first principles (Method 1). The dynamics, however, are
much more difficult to model. The dynamics will require friction models that are difficult to come by,
certainly by derivation from first principles (see, e.g., (Lötstedt, 1981). To do so would require knowledge
much beyond that of multibody dynamics.
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The following equation represents the kinematics of the double pendulum in Figure 37.3(a):

α =
∫ −L2 sin (α) + mw2(− sin (α − γ)) sin (γ) − ne(− sin (α − γ)) cos (α − γ)α2 − n cos (α − γ)r2

1 − ne sin2 (α − γ)
(37.1)

Note that, in spite of the apparent complexity, Eq. (37.1) does not yet include a friction model. The
corresponding Simulink model for the generalized coordinates is given in Figure 37.3(b). Clearly, the
equations for this relatively simple system can be complex. The more complicated robotic arm will have
an even more complicated formulation.

To further compound matters, where Eq. (37.1) uses a generalized coordinate system with only two
variables, an implementation with Cartesian coordinates would have 12 variables. It is obvious how this
relatively simple device can become very complicated to model and analyze in detail.

The alternative is to use Method 3 for first-principles modeling. The pendulum can be considered a
multirigid-body system that can be modeled in SimMechanics (2006), a modeling tool that works within
Simulink and provides multibody mechanical modeling capabilities. The user only needs information
regarding mass, inertia, dimension, and the position and orientation of joint axes of motion to create a
SimMechanics model. With this information the model compiler can automatically derive the system of
differential and algebraic equations (DAE) that capture the model behavior (Wood and Kennedy, 2003).

Users can assemble bodies and joints to model their systems, or model their systems in SolidWorks®

(2002) and automatically extract SimMechanics models. Figure 37.4 shows the SimMechanics model
with its one-to-one correspondence to the physical components. This model can then be integrated with
standard Simulink blocks that can be used to model effects such as friction or a control algorithm in
continuous-time, sampled time, or scheduled task form.

Computer Automated Multiparadigm Modeling is increasingly become important to negotiate the
complexity of modern engineered systems (Mosterman and Vangheluwe, 2004). It relies heavily on
domain-specific formalisms and tools. In this vein, tools to model physical systems other than Sim-
Mechanics that generate the mathematical equations from higher-level component representations in
different domains are available to the modeler as well. Simulink integrates tightly with four tools for
component-level first-principles modeling of physical systems (Method 3):

• SimMechanics models three-dimensional mechanical systems.
• SimPowerSystems (2006) models electrical circuitry and power flow.
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• SimDriveline (2006) models one-dimensional rotational motion.
• SimHydraulics™ (2006) models hydraulic systems.

These tools can be used in conjunction with equations derived in Simulink to model various types of
systems for a variety of purposes.

37.4.2 Using Data and Simulation to Obtain or Tune Models
Often, one does not have the luxury of using Method 3 exclusively and must use Method 1 to model some
components. Simulink provides an environment where all the tools for modeling physical systems that
are referenced above can be mixed with equations represented with standard Simulink blocks. Methods 1
and 3 assume that the behavior of the system is well-understood. In an ideal world this is true, and one
could model complex behaviors such as friction very accurately. In the real world, however, it must be dealt
with manufacturing tolerances, lack of information about component behavior, and other uncertainties
regarding the systems being modeled. This is where Method 2 is used, which relies on data collected from
the components to either tune existing models built with Methods 1 and 3, or generate linear models
for “black box systems.” As mentioned earlier, there are a variety of data-fitting techniques but the basic
principle is as follows:

• Apply some disturbance or other input to the system such as moving the double pendulum in
Figure 37.3(b) in a measured way.

• Measure any change in the system with sensors, this is the system output (here, the pendulum angle
versus time).

• Use the input/output data pairs to
—tune parameters in existing models, using tools such as Simulink Parameter Estimation

(2006)(considered “gray-box” modeling), or
—generate models using an appropriate tool such as the System Identification Toolbox (2006) or

the Fuzzy Logic Toolbox (2006) (considered black-box modeling).

The black-box techniques such as fuzzy logic are particularly useful in characterizing phenomena
such as chemical processes for which equations might not be easily derived. These modeling methods
can be applied to many systems and processes. Both types of data modeling (gray-box and black-box)
are particularly interesting because they rely on simulation, to tune parameters and generate models,
respectively. In the case of gray-box modeling, Simulink Parameter Estimation simulates a model hundreds
or thousands of times while using optimization techniques to adapt parameter values until the actual system
output matches the measured system output. This is referred to as parameter tuning as well. In the case
of black-box modeling, the techniques vary slightly depending on the method. The System Identification
Toolbox (2006) enables multiple simulations to generate a model that will give the desired measured
output from the associated input. Once the parameters have been tuned so that the model reflects the
observations of reality accurately, the model can be used in the larger system simulation. Models generated
from data can be incorporated into larger system simulations as well.

Another approach to modeling with data is transfer function estimation. This is the process of tak-
ing experimental data and converting it using spectral estimation techniques to compute the frequency
response of a system (Bendat and Piersol, 2000). The Signal Processing Toolbox (2006) has many functions
that aid in the estimation of a transfer function. Additionally, a linear parametric model can be fit to the
experimental frequency response function using the modeling tools in the System Identification Toolbox.

In some cases, linear models may not describe the model accurately and the underlying equations of
motion may not be that well known. In this case, a nonlinear black-box neural network can be created.
These types of models can be created using the Neural Network Toolbox (2006).

37.5 The Robotic Arm Model

A computational model of the robotic arm is obtained using the different approaches.
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FIGURE 37.5 CAD model of a robotic arm.

37.5.1 The Mechanical Model of Arm
The computational model of the robotic arm consists of the mechanical model, the motor models, and
the actual controller feedback loop. To model the mechanics, the robot is first modeled with a computer-
aided design (CAD) tool, in this case SolidWorks (Figure 37.5) using the engineering drawings provided
by the manufacturer (Figure 37.6). The SimMechanics model is then automatically extracted from the
SolidWorks model.

SimMechanics models are composed of bodies connected to each other by joints that have user-specified
ranges of motion. The dimensions of the bodies and the axes of motion for the joints are specified in a
Cartesian coordinate space (x, y, z). The robot in Figure 37.5 has five bodies: three arm segments, the
turntable, and the base. The base is fixed to a reference point, the other dimensions and axes are specified
relative to this ground position. Each body is connected to the adjacent body by a joint as described in
Section 37.2.

37.5.2 Electromechanical Model of the Motor and Coupling
Once the kinematics of the mechanical model are available, the dynamics for the motors and the couplings
that connect the motors to the joints must be modeled. The joints are assumed to be frictionless (which is
a coarse approximation of reality, but sufficient for this application). A pulse-width modulation scheme
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FIGURE 37.6 Engineering drawing of a robotic arm.

regulates the voltage to the electric motor and controls the motion of the linkage. The switching circuitry
is modeled using an H-Bridge, a digital device that can switch the direction of current flow. The motor
itself consists of an inductor, a resistor, and a model of back electromotive force (EMF). The component
blocks for the motor and H-Bridge are from SimPowerSystems. The remaining components in the motor
model are gearing, inertia, and other mechanical components, all modeled in SimDriveline. Since each
joint has one motor, the model can be made a reference to a library component and a separate motor
model connected at each joint. An individual motor model is shown in Figure 37.7. The motor models can
then be coupled to the SimMechanics model of the robotic arm. Standard sensor and actuator interface
blocks are necessary when moving from one modeling formalism to another, such as from SimMechanics
to SimPowerSystems, or to standard Simulink. The blocks translate physical properties such as force and
torque into the time-based signals of Simulink.

37.5.3 Tuning the Motor Parameters with Data
The DC motor model shows a relationship between current and torque. Torque causes the motor shaft to
spin in accordance with a relationship to the back EMF. The remaining parameters include shaft inertia,
viscous friction (damping), armature resistance, and armature inductance. Values for those parameters
must be accurate for the motor model to behave similar to the actual motor. While manufacturers may
provide the values, one should assume those to be averaged values with added manufacturing tolerances.
It is necessary to estimate these parameters as precisely as possible for the model to ascertain whether it
is an accurate representation of the actual DC servo motor system. Table 37.1 lists the model parameters
and their initial values.

When a series of voltage pulses is input to the motor, the motor shaft turns in response. If there is a
discrepancy between the model parameters and those of the physical system, however, the model response
will not match that of the actual system. Figure 37.8 shows the response of the model using the initial
parameter values listed in Table 37.1 together with the actual response of the motor. To obtain a more
accurate response, the parameters must be reestimated. This is where Simulink Parameter Estimation plays
a pivotal role.
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FIGURE 37.7 Model of a DC motor and the signal conditioning hardware.

TABLE 37.1 Estimated Parameter Set.

Name Parameter Value Unit

Viscous friction B 0.008 Nms/rad
Shaft inertia J 5.7e−7 kgm2

Motor constant Km 0.0134 Vs/rad
Armature inductance La 6.5e−5 H
Armature resistance Ra 1.9 Ohm

Input/output data from the motors can be applied to tune parameters in the model until the computa-
tional model mimics the behavior of the real robotic arm with sufficient precision. The typical workflow
is as follows:

• Connect a voltage source to a motor on the robotic arm.
• Input a voltage to the motor and read the resulting position sensor values, and save these as

input/output datasets.
• Repeat this with different types of input such as steps, ramps, and frequency sweeps.
• Select the parameters to tune.
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FIGURE 37.8 Actual response and model response before fine-tuning the parameter estimates.

• Some datasets will be used to tune the parameters while others can be used to validate the tuned
values.

• Using the input/output datasets, tune the parameters until the input produces an output that
matches the actual robotic arm with the desired precision.

• For validation, simulate the model with an input from one or more datasets that were not used for
tuning.

• Compare the computational output to the output from the validation dataset. If they match within
reasonable tolerances, the model is sufficiently tuned for design.

Figure 37.9 shows the comparison of the outputs from the computational model to the robotic arm
outputs after tuning. Note that the results overlap closely. At this point, the model can be used to design the
controller, for example, by employing classical, modern, and robust control design approaches (Franklin
et al., 2002; MacIejowski, 1989; Ogata, 2001; Skogestad, 1996; Zhou and Doyle, 1997).

37.5.4 Generating the Motor Models from Data
In some cases, modeling the individual components of the overall system in detail may not be of great
interest. Though it is of value when, for example, designing the DC motor configuration, for the design
of the motor controller it may not be critical. In case of designing the controller, the entire motor model
can often be treated as a black box. A linear model of the motor can be estimated using the same datasets
used in Section 37.5.3. This approach works well when the system being modeled is relatively linear like
the motor used here. Using the System Identification Toolbox, a model can be identified using a similar
workflow as shown in Section 37.5.3.
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FIGURE 37.9 Actual response and model response after fine-tuning the parameter estimates.

• Connect a voltage source to one motor on the robotic arm.
• Input a voltage to the motor and read the resulting position sensor values, and save these as

input/output datasets.
• Repeat this with other inputs such as steps, ramps, and frequency sweeps.
• Some of the inputs can be used to identify the model while others are used to validate the model.
• Using the input/output datasets, identify the model until the input produces an output that matches

the robotic arm.
• For validation, use input from a dataset that was not used for identification.
• Compare the computational output to the output from the dataset. If they match within required

tolerances, the model is sufficiently accurate for design.

37.6 Using Computational Models for Control Design

The preceding sections have investigated how to obtain accurate dynamic models of physical devices. As
stated earlier, one important reason to develop accurate computational models of physical processes and
devices is to facilitate the design of control laws for regulating or controlling their behavior.

37.6.1 Designing Controllers through Modeling and Simulation
The most basic approach to designing a control system need not rely on computational models, but rather
can be developed through paper and pencil analysis, design, and iteration on the real systems that will be
controlled. This approach normally requires a lot of experience, and is typically complex to implement.
Additionally, it is more costly to implement because of the resources needed to mitigate the risks of
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damaging the system and actually making the physical system available for design work. Some benefits of
using computational models and simulation to design controllers are

• Ability to use specialized simulation-based control algorithm development tools.
• Ability to evaluate hardware and system constraints such as actuator effort and response time in a

safe, low-cost environment.
• Increased innovation through the ability to experiment with many possible solutions before

implementation.

The actual process to design controllers in a modeling and simulation environment varies depending
on the tools available. This section describes the approach used to design controllers in a simulation
environment and also studies the use of some specialized tools that aim to simplify the design process. The
typical process, which will be described in detail in the subsequent subsections, is

• Model the dynamics of the device or process being controlled (see Section 37.5 for the modeling of
the robotic arm).

• Obtain a linear representation of this “plant” model about the relevant operating points.
• Use linear control design techniques to tune the controllers to meet performance requirements.
• Validate the linear control design on the nonlinear computational model.

An alternative to this process is to use tools that depend on simulation and optimization-based tech-
niques. For the design of a controller for the robotic arm, a set of tools called Simulink Control Design
(2006), Control System Toolbox (2006), and Simulink Response Optimization (2006) are used. A single
workflow-based graphical user interface (GUI) serves as a task manager and portal to this set of tools.

In the case of the robotic arm, the control task is to move the hand to a desired point in space. This is
done by manipulating the arm segments of the robot arm. The exact control design goals are as follows:2

• Robot arm position control:
— Design joint angle controllers for the turntable, bicep, forearm, and hand joints.
— Design prefilters to balance the bandwidths of the responses to reduce the impact of off-

diagonal closed-loop responses.
• Joint angle loop control requirements:

— The bandwidth is less than 50 Hz.
— The gain margin is greater than 20 db.

• Closed-loop position control step-response requirements:
— The overshoot is less than 10%.
— The rise time is less than 1.5 s.
— The cross-coupling is less than 10%.

The model developed in the previous sections is used as a starting point. It will need to be linearized to
investigate how controllers can be designed to meet the specified requirements.

37.6.2 Linearizing Models for Control System Design
With the robotic arm, the first step is to obtain a linear representation of the nonlinear model. The
linearized model is then used to compute pertinent open- and closed-loop response plots that are used
directly in control design. To obtain the linearized model, the following steps need to be taken:

• Specify the control structure in Simulink, with feedback loops, compensators, and prefilters as
shown in Figure 37.10.

2Detailed definitions and descriptions of these terms can be found in the online documentation of the Control
System Toolbox (2006), http://www.mathworks.com.
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FIGURE 37.10 Feedback loop structure.

• Select the eight compensators to be tuned which include four prefilters and four feedback controllers.
• Select the closed-loop inputs and outputs which map the desired position to the actual measured

position.
• Specify or compute the operating points for the linear analysis of the model.

Linear models are then automatically extracted using the information from these steps. These linear
models are used to setup the control design task in the GUI.

The open- and closed-loop linearization results are highly dependent on the operating point—for exam-
ple, the states of the integrators of the model at different operating points. Trim or equilibrium operating
points are a special type of operating point that engineers find very useful. A basic description of equilib-
rium conditions is that, over time, the operating point remains steady and constant. In Simulink and other
block diagram simulation tools there are two commonly used approaches to specify equilibrium condi-
tions of a model of the physical system. The first method is that the users employ their intuitive knowledge
about the system to pick an equilibrium condition. This can be a rather time-consuming and difficult
process because of the large number of operating points that must be specified in a complicated model.

The second option is to employ an approach known as trim analysis. The approach uses optimization
to solve for a set of operating points that satisfy the equilibrium conditions. Simulink Control Design pro-
vides trim analysis capabilities to obtain initial conditions for various operating points. Another alternative
is to use “simulation snapshots” to specify operating points close to the region where the control effort is
desired.

In the case of the robotic arm, the model was linearized at a number of operating points for different
positions of the arm. A single operating point was selected for the design and the other operating points
were used to verify the control system of the robot arm in different configurations.

37.6.3 Designing a Controller
Once a linearized open-loop model has been obtained, a typical next step is to select a control system
structure and tune the individual compensators. In the case of designing a controller for the robotic arm,
the control structure is specified in the earlier step to help the tool determine the linear representation.
The robotic arm controller configuration consists of four feedback loops with prefilters as shown in
Figure 37.10. For such a multiloop system, several input/output combinations have to be linearized to
attempt to design multiple controllers such that the overall multiloop system meets controller performance
requirements. Multiloop controller design can be approached in a number of ways:

• Sequential loop closure where the designer first tunes one loop with the others open, and then
sequentially closes the other loops.
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FIGURE 37.11 SISO design plots.

• Use traditional MIMO design techniques such as H-infinity to tune the loops simultaneously.
• Simultaneously tune the coupled single input single output (SISO) control loops.

For the robotic arm, the GUI is used with the linearized model to setup a control design task to design
the controllers. The steps are

• Select design plots such as root locus, Bode and Nichols charts for each loop that needs to be
designed.

• Select closed-loop analysis plots for viewing.
• Use design plots (Figure 37.11) to graphically shape all loops and edit the compensator structure,

while viewing loop interactions and closed-loop responses in real time.

Because the tools can compute loop interactions while tuning all loops, the approach is to use visu-
alization to see how changing one compensator affects all the other responses that are of interest. The
graphical design tools can be employed in this way to design a set of compensators to try to best meet
the performance requirements. Additionally, optimization techniques within these graphical tools can be
exploited to help tune existing controllers, while trading off between multiple design requirements.
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FIGURE 37.12 Closed-loop responses before (left) and after (right) optimization.

37.6.4 Tuning Controller Designs Using Optimization Techniques
The described graphical design tools simplify tuning an MIMO controller by enabling simultaneous tun-
ing of loops. However, the process can still be quite complex; especially for systems with many tightly
coupled loops. Because a computational model is available, this process can be simplified by leveraging
optimization techniques to automate multiloop tuning. Using Simulink Response Optimization, perfor-
mance bounds and requirements can be specified on the design and closed-loop response plots and then
several compensators can be tuned simultaneously through optimization. This is done by graphically
specifying requirements in either the time domain, as overshoot, settling time, etc. or in the frequency
domain, for example, as gain/phase margin, bandwidth, or pole zero locations.

For the robotic arm, the performance requirements listed above are specified for the controller by
using a combination of both time-domain and frequency-domain plots. The optimization is then run
to obtain a valid solution. Figure 37.12 shows the final responses obtained and how these fit within the
performance envelopes that are defined. Note that although the system being tuned is an MIMO system,
the problem is configured as eight coupled SISO controllers that are tuned simultaneously. In the event that
the optimization is not able to meet all requirements, the requirements can be relaxed, or, alternatively, a
different control strategy can be evaluated using all the methods that have been discussed. Once satisfactory
control performance is obtained, the design can be validated on a full nonlinear simulation by exporting
the controller gains directly to the Simulink model.

37.7 Testing with Model-Based Design

One aspect of Model-Based Design is the testing of designs while they are under development. By testing
early in the design phase, errors and deficiencies may be recognized and rectified early in the design phase,
before the cost of correction becomes too high, or worse, the error makes it into the final implementation.
Testing early and often is a good principle, and it is imperative to do so in a systematic manner.
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FIGURE 37.13 An overview of Model-Based Design.

37.7.1 Requirements-Based Testing through Simulation
Requirements-based testing, which can contribute to systematic testing, refers to defining test vectors for
each requirement, and creating corresponding checks to verify that the requirements are met. Essentially, a
test harness is created to verify that the design algorithm meets the requirements. This workflow is shown
in Figure 37.13.

The test vectors typically consist of a series of inputs designed to exercise the computational model
through a range of expected and unexpected behavior. In case of the latter, this enables testing of dangerous
modes of operation, and the corresponding design of fail-safe elements. Often this kind of failure-mode
testing in simulation is impossible to do with a physical prototype or implementation of the system. In
addition to test vectors, verification blocks in Simulink can be used to check model output data ranges
and ensure that requirements are met. Once a test harness with test vectors and verification blocks has
been obtained, a coverage report can be generated to understand how well the algorithm was exercised.
Using Simulink Verification and Validation (2006), coverage metrics are collected as the tests execute to
quantify which elements of the design have been excited and which have not. Using coverage-based test
verification, the following features and benefits are achieved:

• Measure how well the model has been exercised.
• Identify what additional test vectors are needed to exercise the model more thoroughly.
• Identify and remove unnecessary elements in the design.
• Ensure that the requirements, design, and tests are consistent and complete.

37.7.2 Simulation with Hardware and Implemented Designs
In addition to the use of computational models for simulation during the design stages, models can also
be used in real-time simulations for verification and validation. In such a scenario, computer code is
generated from the computational model and downloaded to dedicated computers to simulate the model
in real time. This is often referred to as rapid prototyping, of which there are two variations. The first is
rapid controller prototyping, which typically involves placing the controller algorithm on a processor such
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as a commercially available PC-based processor, and interfacing the processor with the plant, here the
robotic arm. The entire system is then simulated in real time (Mosterman et al., 2005).

The second variation is hardware-in-the-loop (HIL), which refers to interfacing the processor on which
the controller runs with a combination of real hardware and computational models, and running in real
time on dedicated processors. HIL enables the integration of difficult-to-model hardware as part of the
simulation environment. For example, actuators can be highly nonlinear, and so if a model of such an
actuator is used, the analysis may not be sufficiently precise. HIL allows the model of the physical system
minus the actuator to be connected to the real actuator and hence enables the full nonlinear behavior to
be validated.

In the case of the robotic arm, rapid controller prototyping is used with xPC Target (2004). Code is
generated from the controller algorithm using Real-Time Workshop® (2002). Next, using a commercially
available PC running the real-time kernel of xPC Target, the controller algorithm is downloaded onto the
PC and commercially available I/O boards are used to connect the PC to the robotic arm. The control
algorithm running on the PC is then used to control the robotic arm and validate the algorithms. At this
point, the controller algorithm can be tuned in real time, while connected to the robotic arm. Alternatively,
the algorithm can be modified and code regenerated to test the new algorithm. This process is repeated till
the algorithm operates satisfactorily.

Reasons to perform rapid controller prototyping include

• Quick algorithm testing and retesting using hardware that has been tested in simulation.
• Testing control algorithms with fixed-step solvers in real time, which is closer to real-world

implementations.

To briefly study an example of HIL, consider a flight-control application with the flight controller
implemented on the actual flight-control box, a dedicated computer that will go into the production
aircraft. The flight-control box could then be integrated with a cockpit, a human pilot, and a flight-
simulator package. The cockpit would enable the pilot to provide realistic inputs, while the flight simulator
could be running the aircraft dynamics computational model (that have been modeled using a combination
of the three modeling methods) to validate the behavior of the controller.

The flight simulator could be mounted on a motion-simulator platform to generate the appropriate
forces and torques. Models of wind and turbulence and atmospheric effects can be included to test the
behavior of the controller in “dangerous” situations without risk to the pilot or the aircraft. This can
be implemented through the use of xPC Target and models generated with Simulink and the physical
modeling products such as SimMechanics. This approach is very useful in safety-critical applications
such as those found in aircraft and other vehicles, where testing with the real hardware is expensive,
time-consuming, and often heavily regulated.

37.7.3 Other Uses of Rapid Prototyping in the Design Process
To design a control system, rapid prototyping tools can be used as shown in Figure 37.14 for other stages
of the process including the actual computational modeling. At the start of the control design process, an
engineer may have a rather inaccurate model or no model at all. So, at first a skeleton control system is
developed to stabilize a system and to get the desired behavior to experiment with. Once this is achieved,
experiments can be designed and performed to acquire responses of the system at various operating
conditions. The acquired data can then be exploited to enhance the plant model, and to design a new
control system using the more accurate plant model. Simulation of the combined control system and
plant model then allows studying the performance of the system and the control system can be optimized
using the full nonlinear plant simulation model. Finally, the control system can be implemented on a
rapid prototyping system. If the system does not meet the performance of the control system as obtained
in simulation, the model is further refined as well as the design of the control system to try to achieve
improved performance.
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FIGURE 37.14 Rapid prototyping control design process.

37.8 Conclusions

Through the use of advanced computational modeling and numerical simulation capabilities available
in Simulink, an accurate model of the robotic arm can be quickly obtained and fine-tuned with mea-
sured data. Control algorithms for the robot arm were then designed and tested rapidly and effectively.
Using requirements-based testing and rapid controller prototyping each requirement was systematically
tested and the entire set of requirements was formally verified. When the control algorithm was finally
implemented its proper behavior to control the actual robotic arm was established with confidence. It was
thoroughly analyzed to deliver the required performance, even under fault conditions.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are regis-
tered trademarks and SimBiology, SimEvents, and SimHydraulics are trademarks of The MathWorks Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.
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28-5 to 28-6; transformity principle of,
28-5, See also under Transformity principle

Forrester’s systems dynamics approach,
comparison with, 28-29 to 28-31

Marsh sector model, 28-27 to 28-29, See also
separate entry

model constants, calibration of, 28-21 to 28-22
simulation, preparation for, 22-27: simulation

software and energy systems language,
28-22 to 28-26

stylistic diagramming features, 28-7 to 28-8:
converging and diverging flow lines, 28-8;
nested symbols, 28-8; sector boundaries,
28-7 to 28-8; vertical and horizontal stacks
of symbols, 28-8

symbols within the system boundary, 28-6 to
28-7, See also under Symbols

timescales and numerical integration, 28-26 to
28-27

translating a diagram to dynamic equations,
28-8 to 28-21: basic equation forms
indicated in, 28-16 to 28-21; equation
naming convention, 28-10 to 28-15;
feedback effect of production processes on
the environmental variables involved,
28-20; flow-limited source, 28-18 to 28-19;
multiple simultaneous interactions in,
28-19 to 28-20; of Marsh Sector, 28-11 to
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28-15; passive inputs and environmental
conditions, 28-21; two-way interactions,
28-20 to 28-21

Environmental systems
Daisy world model, 27-6 to 27-9, See also separate

entry
system dynamics modeling of, 27-1 to 27-13

flowers and sales models, comparison of, 27-4 to
27-6: feedback loop structure of flowers
model, 27-5; feedback loop structure of the
sales model, 27-5

Stella diagram, 27-2
Vensim diagram, 27-2

Euler–Cauchy integration, 33-16
Euler’s theorem, 26-22
Event relationship graphs (ERGs)

enrichments to, 23-7 to 23-10
building large and complex models, 23-8 to 23-9
parametric event relationship graphs, 23-7 to

23-8
process interaction flows, 23-13

experimenting with, 23-17 to 23-20
graph analysis, 23-16 to 23-17
modeling causality with, 23-1 to 23-20

background and definitions, 23-2 to 23-7
discrete-event systems and models, 23-2 to 23-3,

23-10 to 23-16: attributes, 23-2; factors,
23-2; mapping Petri nets into event
relationship graphs, 23-11 to 23-13;
parameters, 23-2; stochastic timed Petri net
(STPN), 23-10 to 23-11

discrete-event system simulations, 23-3
graph modeling element, ER in, 23-3 to 23-6
verbal event graphs, 23-6

reading, 23-6 to 23-7
simulation of, 23-16
variations of, 23-9 to 23-10

Execution, model, 10-1 to 10-13
discrete-event execution, 10-7 to 10-13, See also

under Discrete-event execution
elements of, 10-2 to 10-3
executable timelines, 5

physical time, 10-5
simulation time, 10-5
wallclock time, 10-5

execution platforms, 10-3 to 10-4
generating executables from models, 10-4 to 10-5
pacing the execution, 10-5
simulating large-scale models/scenarios,

approaches to, 10-3
systems and models, 10-1 to 10-2
time-stepped execution, 10-5 to 10-7

for parallel execution, 10-7
for sequential execution, 10-6
parallelizing, 10-6 to 10-7

F

4D face-centered hyper cube (FCHC), 21-10
Faraday’s law of induction, 26-13
Finite elements, 13-1 to 13-21

dynamics, 13-16 to 13-21
finite element theory (FEM), 13-1 to 13-9

shape functions, 13-4
simple FEM theory, 13-1 to 13-4
tapered extensional example, 13-4 to 13-6; axial

loaded tapered problem, 13-4; shape
function models for, 13-5; axial
displacement result, 13-5; axial stress for,
13-6

available elements, 13-8 to 13-9
mapping errors, 13-7 to 13-8
numerical integration, 13-6 to 13-7
shape function accuracy, 13-6

membrane elements, 13-9 to 13-12, See also
separate entry

multiple degree of freedom (MDOF) dynamic
analysis, 13-19 to 13-21

single degree of freedom (SDOF) dynamic
analysis, 13-17 to 13-19

solid elements, 13-15 to 13-16
behavior and DOF, 13-15 to 13-16

Flow models, 34-16 to 34-18
Forrester’s systems dynamics approach, 28-29 to

28-31
Formalism, 1-4
‘FSM synthesis’, 1-9

FSM Moore machine semantics, 1-9
Function

set-theoretic concepts, 1-9

G

Gaia hypothesis, 27-6
Gauss–Legendre quadrature method, 13-6 to 13-7
Generalized junction structure (GJS)

transduction and interconnection, 26-9 to 26-14
junctions, 26-10
decomposition, 26-12

Generalized semi-Markov Processes (GSMP), 23-13
Generic runtime infrastructure for distributed

simulation (GRIDS), 9-6
Geometric scaling, 5-11 to 5-13
Giles et al network, 22-5

H

Heat equation, 11-13 to 11-16
Higher order difference equations, 18-8 to 18-17

asymptotic stability
coordinate-wise monotonicity, 18-10 to 18-13
weak contractions, 18-9 to 18-10
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Higher order difference equations, (Contd.)
persistent oscillations and chaos, 18-13

to 18-14
semiconjugacy, 18-14 to 18-17

Human behavior representation (HBR), 8-5
Human interaction in organizational systems,

modeling, 31-1 to 31-13
systems and human interaction, 31-2

to 31-3
case study at Ford Motor Company, 31-8

to 31-12
designed abstract systems, 31-2
designed physical systems, 31-2
human activity systems, 31-2
human-to-human interaction, modeling, 31-5
human-to-system interaction, modeling, 31-4

to 31-5
knowledge-based improvement (KBI)

methodology, 31-5 to 31-8, See also
separate entry

natural systems, 31-2
need for, 31-3 to 31-4
research and practice, 31-4 to 31-5

Hybrid dynamic systems, modeling and execution,
15-1 to 15-24

advanced topics in, 15-17 to 15-22
mode changes, 15-19 to 15-22: reinitialization,

15-19 to 15-20; sequences of, 15-20 to
15-22

zero-crossing detection, 15-17 to 15-18:
difficulty in, 15-17

behavior classes of, 15-4, 15-9 to 15-12
continuous-time behavior, 15-9 to 15-10
handling mode transitions, 15-10 to 15-12:

event detection and location, 15-10 to
15-11; mode transition inferencing, 15-11
to 15-12

operational structure, 15-9
reinitialization of state variables, 15-12

description, 15-6
design, 15-7 to 15-9

explicit models, 15-8 to 15-9
implicit models, 15-7 to 15-8

driver control in, 15-4
geometric representation of, 15-6
implementation, 15-12 to 15-16

classes of events, 15-12
classes of temporal behavior, 15-12 to 15-13
event-driven execution, 15-14
time-driven execution, 15-13 to 15-14
types, combining, 15-14 to 15-16

need for, 15-3 to 15-5
pathological behavior classes, 15-22 to 15-23

Hybrid process algebra, 19-3
Hypertext markup language (HTML), 3-2 to 3-3

I

Individual-based models, 29-9 to 29-12
Integrative multimodeling, 14-2 to 14-4

general multimodeling, 14-2 to 14-4
homogeneous and heterogeneous multimodels,

14-3 to 14-4
intralevel and interlevel couplings, 14-2 to 14-3

purpose of, 14-2
Irreflexivity, 20-7 to 20-8

J

Jackson network, 25-14

K

Kadanoff–Swift model, 21-6
Kingman’s equation, 34-5
Kirchoff theory, 13-13 to 13-14, 36-5
Knowledge-based improvement (KBI) methodology,

31-5 to 31-8
data collection through simulation (stage 2), 31-7

to 31-8
determining the consequences of the decision

making strategies (stage 4), 31-8
determining the decision makers’ decision making

strategies (stage 3), 31-8
seeking improvements (stage 5), 31-8
understanding the decision making process

(stage 1), 31-7

L

Languages
natural language, 1-4
of dynamic system modeling, 1-3 to 1-5

pragmatics, 1-4, See also separate entry
semantics, 1-4
syntax, 1-4, See also separate entry

Lattice Boltzmann method (LBM), 21-14 to 21-16
Lattice-BGK (L-BGK) method, 21-15

Lattice gas cellular automata (LGCA) models
of fluid dynamics, 21-5 to 21-16

FHP model, 21-9
HPP model, 21-7

research activity on, 21-10
applications, 21-14
fluid dynamics and, 21-11 to 21-12
lattice Boltzmann method (LBM), 21-14 to

21-16, See also separate entry
simulating an, 21-12 to 21-14

Learning algorithms, 22-3
Lefkovitch models, 29-3
Legendre transforms, 26-22 to 22-25

causality and, 26-24 to 26-25
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in electrical circuits, 26-24
in mechanics, 26-24
in thermodynamics, 26-23 to 26-24

Leslie matrix, 29-3
Level-rate diagrams, 33-19 to 33-21
Lindley’s equation, 25-7
Linearity, 20-8 to 20-9
Linearity, 5-19 to 5-20

geometric scaling and, 5-19 to 5-20
Little’s Law, 25-7 to 25-8, 34-6
Lookahead, 10-10
Lotka–Volterra model, 17-2
Lumped elements, 5-9 to 5-11
Lumped-mass formulation, 13-16

M

M/M/1 queueing system, 25-9 to 25-11
average queue length, 25-10
average system time, 25-10
departure process of, 25-12 to 25-13
stability condition for, 25-10
utilization and throughput, 25-10

Management science, dynamic modeling in, 33-1 to
33-22

conceptual modeling skills, 33-5 to 33-6
discrete event simulation, 33-7 to 33-16

activity cycle diagrams in conceptual modeling,
33-10 to 33-13

application areas, 33-8 to 33-9: business process
re-engineering (BPR), 33-8; in business
process improvement, 33-8; in health care,
33-8; in transport and physical logistics,
33-9

DES model implementation in computer
software, 33-13

discrete event simulation using a VIMS, 33-14 to
33-16

suitable problems, 33-7 to 33-8: complicated
characteristic, 33-7; discrete events
characteristic, 33-8; dynamic characteristic,
33-7; individual entities characteristic,
33-8; interactive characteristic, 33-7;
stochastic behavior characteristic, 33-8

terminology, 33-9 to 33-10: simulation
activities, 33-10; simulation clock, 33-10;
simulation entities, 33-9; simulation
events, 33-10; simulation processes, 33-10;
simulation resources, 33-9

model validation, 33-21 to 33-22
models to support decision making, 33-2 to 33-4

dynamic systems modeling in, 33-4
project management skills, 33-4 to 33-5

initial negotiation and project definition, 33-5
project completion, 33-5

project management and control, 33-5
system dynamics, 33-16 to 33-21

qualitative system and dynamics, 33-17 to 33-19
quantitative system dynamics, 33-19 to 33-21
system structure and system behavior, 33-16 to

33-17
technical skills, 33-6 to 33-7

Manufacturing systems, modeling and analysis of,
34-1 to 34-19

basic quantities for, 34-2
control of, 34-10 to 34-12
discrete-event models, 34-7 to 34-8
effective process times, 34-8 to 34-10
flow models, 34-16 to 34-18

traffic flow model, 34-17 to 34-18
hybrid model, 34-15 to 34-16
preliminaries, 34-2 to 34-3
standard fluid model and extensions, 34-12 to

34-16
common fluid model, 34-12 to 34-14
extended fluid model, 34-14: approximation to,

34-14 to 34-15
steady-state analysis, analytical models for, 34-3 to

34-7
mass conservation (throughput), 34-4
queueing relations (Wip, Flow Time), 34-5 to

34-7
MarkovChains, 29-3
Markovian queueing models/networks, simple, 25-8

to 25-17
closed queueing networks, 25-15 to 25-17
M/M/1 queueing system, 25-9 to 25-11, See also

separate entry
mean value analysis (MVA), 25-16 to 25-17
non-Markovian queueing systems, 25-17 to 25-18
open queueing networks, 25-13 to 25-15
product form networks, 25-17

Marsh sector model
dynamic output of, 28-27 to 28-29

model output analysis, 28-28 to 28-29
model validation, 28-29

Mathematical modeling
basic elements, 5-1 to 5-20

abstraction and scale, 5-9 to 5-17, See also
separate entry

conservation and balance principles, 5-17 to
5-19

dimensional analysis, 5-5 to 5-7, See also
separate entry

dimensional consistency and analysis, 5-3
to 5-9

dimensional homogeneity, 5-4 to 5-5
linearity, role of, 5-19 to 5-20

types of, 3-6 to 3-8
classification based on state, 3-6 to 3-7
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Mathematical modeling (Contd.)
time-based classification, 3-7 to 3-8:

continuous-time models, 3-7;
discrete-event models, 3-7 to 3-8;
discrete-time models, 3-8; static models,
3-8

Mathematical optimization programs,
in ERGs, 23-13 to 23-16

MATLAB®, 37-2
Maxwell symmetry, 26-25
mean value analysis (MVA), 25-16 to 25-17
Meaning, 1-8

connotation concept, 1-8
defining, possibilities for, 1-8
denotation concept, 1-8

Membrane elements, 13-9 to 13-12
2-D shape functions, 13-9 to 13-10
flat plate and shell elements, 13-12 to 13-15

generalized stress, 13-14 to 13-15
Kirchoff theory, 13-13
Mindlin theory, 13-13 to 13-14
plate theory, 13-13 to 13-14

mesh correctness and convergence, 13-11
stress difference to indicate mesh accuracy, 13-11
element meshing, 13-11 to 13-12
membrane theory, 13-9
shear locking, 13-10 to 13-11

Mesh-based simulation
classification, 12-8
reverse classification, 12-8

Military modeling, 32-1 to 32-13
applications, 32-1 to 32-2
dynamics, 32-4 to 32-8

dynamic environment, 32-8
engagement, 32-7
exchange, 32-6 to 32-7
movement, 32-5
perception, 32-5 to 32-6
reasoning, 32-7 to 32-8

military simulation systems, 32-11 to 32-12
modeling approach, 32-8 to 32-11

artificial intelligence, 32-10 to 32-11
logical process, 32-10
Mathematic, 32-9 to 32-10
Physics, 32-8 to 32-9
stochastic processes, 32-10

representation, 32-2 to 32-4
constructive model, 32-3
engineering, 32-2 to 32-3
environment, 32-4
live, 32-4
virtual model, 32-3

Mindlin theory, 13-13 to 13-14
Modal methods, 13-19
Model execution, See under Execution, model

Modelica, multidomain modeling with, 36-1 to 36-25
basics, 36-3 to 36-17
component coupling, 36-6 to 36-10
connector definitions in, 36-9
discontinuous systems, 36-10 to 36-13
Modelica libraries, 36-17 to 36-19

automatically constructed parameter dialog,
36-18

overview, 36-1
relation-triggered events, 36-13 to 36-14
symbolic processing of, 36-19 to 36-25

index reduction, 36-21 to 36-22
size and complexity, reduction of, 36-20 to

36-21
sorting and algebraic loops, 36-20

variable structure systems, 36-14 to 36-17
vehicle components modeled in, 36-2

Molecular dynamics, 12-5 to 12-6
Multimodeling, 14-1 to 14-27

boiling water example, 14-20 to 14-26, See also
under Boiling water

dynamic exchange language (DXL), 14-13 to
14-20, See also separate entry

integrative multimodeling, 14-2 to 14-4, See also
separate entry

multimodeling exchange language (MXL), 14-11
to 14-13, See also separate entry

RUBE framework, 14-4 to 14-5 scene
construction, 14-5 to 14-11

blender interface, 14-10 to 14-11
interaction model creation, 14-8 to 14-10
ontology, 14-5 to 14-8: classes and relationships,

14-6 to 14-8; for the boiling water, 14-7;
properties and relationships, 14-8

Multimodeling exchange language (MXL), 14-11 to
14-13

concepts, 14-11 to 14-12
multimodeling in, 14-12 to 14-13

Multiple degree of freedom (MDOF) dynamic
analysis, 13-19 to 13-21

normal mode shapes for, 13-20
Multiport generalizations, 26-21 to 26-28

coenergy and Legendre transforms, 26-22 to
22-25, See also under Legendre transforms

loudspeaker example, 26-25 to 26-28
Multiscale simulation, multimodel hierarchy for,

12-1 to 12-16
composite material system, design, 12-2
for drug delivery system, 12-3
functional and information hierarchies in, 12-4 to

12-10
domain definitions, transformations, and

interactions, 12-7 to 12-9, See also under
Domains
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mathematical Physics description
transformations and interactions, 12-4 to
12-7: molecular dynamics (MD), 12-5 to
12-6; partial differential equations (PDE),
12-4 to 12-5; PDEs and MD, interactions
between, 12-6 to 12-7

physical parameter definitions, transformations,
and interactions, 12-9 to 12-10

functional components to support, 12-10 to 12-14
equation parameters, 12-12 to 12-13
interactions between components, 12-11
problem definition, 12-12
scale-linking operators, 12-14
tensor fields, 12-13 to 12-14

multimodel simulation procedures, 12-14 to 12-15
adaptive atomistic/continuum adaptive

multiscale simulation, 12-15
automated adaptive mesh-based simulation,

12-14 to 12-15
quasicontinuum method in, 12-3

N

Navier–Stokes equations, 21-12
Network traffic, 15-4

O

Object Model Template (OMT), 9-3
tables, 9-4

Odum’s systems philosophy and methodology, 28-2
Ontology

for modeling and simulation, 3-12
for scientific domains, 3-11

Open queueing networks, 25-13 to 25-15
Open Source Physics library (OSP), 17-3
Ordinary differential equations, 17-1 to 17-20

adaptive step, 17-11 to 17-12
adapting the step, 17-11 to 17-12
embedded Runge–Kutta formulas, 17-11
implementation, 17-12 to 17-15: interpolation,

17-15; multistepping, 17-15
interval-halving, 17-11

chemical reactions, dynamics of, 17-2
implementation techniques, 17-5, 17-8 to 17-11,

See also Runge–Kutta methods; Taylor
methods

numerical solution, 17-3 to 17-5
OSP library, 17-20
performance and other methods, 17-15 to 17-19

extrapolation methods, 17-17 to 17-18
implicit algorithms and stiff equations, 17-16 to

17-17
multistep methods, 17-17
symplectic integration methods, 17-18 to 17-19

planetary motion, 17-2 to 17-3

predator–prey population dynamics, 17-2
simple pendulum, 17-1
state events, 17-19 to 17-20

P

PackageModelica, 36-17
Parallel simulation, 10-2
Parametric event relationship graphs, 23-7

to 23-8
Partial differential equations, 12-4 to 12-5
Pending events list, 23-3
Pendulum model, 37-5
Persistent oscillations and chaos, 18-13 to 18-14
Petri nets

analysis of, 24-7 to 24-10
incidence matrix and state equation, 24-8
invariant analysis, 24-8 to 24-10:

minimal-support invariant, 24-9; support
of an invariant, 24-9

reachability analysis, 24-7
simulation, 24-10

colored Petri nets (CPNs), 24-10 to 24-12
definition, 24-1
for dynamic event-driven system modeling, 24-1

to 24-16
modeling power, 24-4 to 24-5: concurrency,

24-4; conflict, 24-4; mutually exclusive,
24-4; priorities, 24-4; resource constraint,
24-4; sequential execution, 24-4;
synchronization, 24-4

transition firing, 24-3 to 24-4, See also separate
entry

mapping, into ERGs, 23-11 to 23-13
marking in, 24-2
Petri net modeling language, 7-6 to 7-11

constraint, 7-8
defining the modeling language, 7-7 to 7-8
dining philosophers in, 7-8 to 7-9
Petri net language, dining philosophers in, 7-8

to 7-9
places, 1-8
properties, 24-5 to 24-7

liveness, 24-6 to 24-7
reachability, 24-6
safeness, 24-6

timed Petri nets, 24-12 to 12-16, See also under
Petri nets

tokens, 1-8
‘PhysicalEntity’ 3-13
Ping-pong protocol, DEVS modeling, 6-2, 6-5

to 6-7
Planetary motion, 17-2 to 17-3
Plate theory, 13-13 to 13-14
Poisson arrival process, 25-9
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Port-based modeling
bond graphs, 26-5 to 26-21, See also separate entry
dynamic models, 26-3 to 26-4
multiport generalizations, 26-21 to 26-28, See also

separate entry
of engineering systems in terms of bond graphs,

26-1 to 26-28
power conjugation, 26-4

structured systems, physical components and
interaction, 26-4 to 26-5

dynamic conjugation, 26-4
versus traditional modeling, 26-1 to 26-3

Pragmatics, 1-4 to 1-5, 1-10 affecting modeling, 1-10
Predator–prey population dynamics, 17-2
Process algebra, 19-1 to 19-20

algebraic reasoning and verification, 19-11 to
19-19, See also separate entry

calculation, 19-2
definition, 19-1 to 19-2
history, 19-3
hybrid process algebra, 19-3
χ process algebra, 19-4 to 19-11, See also separate

entry
χ Process algebra

syntax and informal semantics of, 19-4 to 19-11
assembly line example, 19-6 to 19-7: iconic

model of, 19-6
atomic statements, semantics of, 19-9 to 19-10:

skip and multiassignment, 19-9; delay
predicate, 19-9; delay statement, 19-10

compound statements, semantics of, 19-10 to
19-11: alternative composition, 19-11;
guard operator, 19-10; loop and while
statement, 19-11; parallelism, 19-11;
sequential composition, 19-10; variable
and channel scope operator, 19-11

controlled tank, 19-4 to 19-6: simulation of,
19-4

semantic framework, 19-8 to 19-9
statement syntax, 19-7 to 19-8

Propositional logic, 20-1 to 20-3

Q

Queueing system models, 25-1 to 25-18
Little’s Law, 25-7 to 25-8
non-Markovian queueing systems, 25-17 to 25-18
performance of, 25-4 to 25-6
queueing system dynamics, 25-6 to 25-7
simple Markovian queueing models, 25-8 to 25-11,

See also under Markovian Queueing models
specification of, 25-2 to 25-4

issues to consider, 25-3
notation, 25-3
operating policies, 25-3

stochastic models, 25-2
structural parameters, 25-3

R

Rapid prototyping, 37-17 to 37-18
Rational equations, 5-3 to 5-4
Reactive systems, 19-2
Recursion scope operator, 19-14
Reflexivity, 20-7
Relation

set-theoretic concepts, 1-9
Representation-building

in analogy-making, dynamics of, 2-5 to 2-6
Robotic arm model, 37-7 to 37-12

computational model of, 37-7
CAD model of, 37-8
electromechanical model of the motor and

coupling, 37-8 to 37-9
generating the motor models from data, 37-11

to 37-12
mechanical model of arm, 37-8
tuning the motor parameters with data, 37-9 to

37-11
RUBE framework, 14-4 to 14-5
Runge–Kutta methods, 17-7 to 17-8, 17-10 to 17-18

embedded Runge–Kutta formulas, 17-11
generic Runge–Kutta table of coefficients, 17-7

Runtime Infrastructure (RTI), 9-3
services, 9-4

S

Scaling up issue, 2-16
Semantic Web impact, on modeling and simulation,

3-1 to 3-20
adding semantics to simulation models, 3-10 to

3-12
ontology for modeling and simulation, 3-12
ontology for scientific domains, 3-11

causality-based classification, 3-9
classification based on determinism, 3-9
discrete-event simulation (DeSO), conceptual

basis for, 3-4 to 3-6
entity, 3-4
event, 3-4
force case, 3-6
force, 3-5
no force case, 3-6
space, 3-4
state, 3-5
time, 3-4

mathematical models, types of, 3-6 to 3-9, See also
under Mathematical models

relevant issues, 3-2 to 3-4
semantic Web languages, 3-4
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Semantic Web rule language (SWRL), 3-3
Semantics, 1-4 to 1-5, 1-7 to 1-10

functional semantic mappings, 1-7
in temporal logic, 20-5 to 20-6
meaning in, 1-8, See also under Meaning
semantic Web, 1-10

Semiconjugacy, 18-14 to 18-17
Semiotics, 1-4
Sensor network component-based simulator, 35-1 to

35-16
component-oriented simulation toolkit (COST),

35-3 to 35-7, See also separate entry
currently available components and simulation

engines, 35-2 to 35-3
need for, 35-1 to 35-3
SENSE, features of, 35-2
wireless sensor network simulation, 35-7 to 35-15,

See also separate entry
Sequential simulation, 10-2
Shrinking gradients problem, 22-8
Sign

formation, triangular relationship in, 1-4
Simple pendulum, 17-1
Simulation interconnection, theory and practice for,

16-1 to 16-9
composition issue, 16-2
configuration issue, 16-2
integration issue, 16-2
interoperation issue, 16-2
simulation composability, 16-6 to 16-9

composability and complexity, 16-6 to 16-7:
composability, formalisms for, 16-8;
composability, restricting the scope of,
16-8 to 16-9

history of, 16-6
simulation interoperability, 16-2 to 16-5

aggregate level simulation protocol, 16-4 to 16-5
distributed interactive simulation, 16-4
entity-level simulation, 16-4
high level architecture, 16-5
simulator networking, 16-3

Simulation models
adding semantics to, 3-10 to 3-12

Simulink® models for model-based design,
simulation, 37-1 to 37-19

case study, 37-3 to 37-4
computational models for control design, 37-12 to

37-16
designing a controller, 37-14 to 37-16
designing controllers through modeling and

simulation, 37-12 to 37-13
linearizing models for control system design,

37-13 to 37-14
optimization technique, 37-16
SISO design plots, 37-15

computational models, obtaining, 37-4 to 37-7
modeling from first principles, 37-5 to 37-7
using data and simulation to obtain or tune

models, 37-7
designing with simulation, 37-4
model-based design, testing with, 37-16

to 37-19
rapid prototyping control design process, 37-17

to 37-18
requirements-based testing through simulation,

37-17
simulation with hardware and implemented

designs, 37-17 to 37-18
pendulum model, 37-5
robotic arm model, 37-7 to 37-12, See also separate

entry
robotic arm, 37-2
SimMechanics models, 37-6

Single degree of freedom (SDOF) dynamic analysis,
13-17 to 13-19

S-invariant concept, 24-8
‘Slipnet,’ a semantic network, 2-8 to 2-9
Spatio-temporal connectionist networks (SCNs),

22-1 to 22-9
applications, 22-8 to 22-9
basic approach, 22-4 to 22-5
connectionist networks (CNs), 22-2 to 22-4, See

also separate entry
learning, 22-6 to 22-8
mathematical and numerical modeling approaches

to, 21-1
popular SCNs, 22-5

Elman network, 22-5
Giles et al network, 22-5
Williams and Zipser network, 22-5

representational power, 22-6
unfolding an, 22-7

Static models, 3-8
Stella diagram, 27-2
Stochastic models, 25-2
Stochastic timed Petri net (STPN), 23-10 to 23-11
Stokes–Dirac structure, 26-14
Symbols, in energy systems language

categories, 28-6
circles, 28-6
composite symbols, 28-6
price-controlled flow symbol, 28-7
rectangle, 28-7
storage symbol, 28-6
two-way interaction symbol, 28-7

within the system boundary, 28-6 to 28-7
Symplectic gyrator (SGY), 26-12
Symplectic integration methods, 17-18 to 17-19
Synchronous input property, 14-16
Synchronous languages, 36-10
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TimWinfree, 1-6

Systems engineering, 4-1 to 4-9
definition, 4-6
levels for, 4-2
life cycles, 4-3, 4-5
phases, 4-5
process-oriented view of, 4-5
systems engineering life cycles (SELC), 4-7

analysis and assessment of the alternatives, 4-7
formulation of the issue, 4-7
interpretation and selection, 4-7

technical direction and systems management,
importance, 4-4 to 4-8

inactive, 4-4
interactive, 4-4
proactive, 4-4
reactive, 4-4

T

Tabletop program, 2-12 to 2-13
semantic memory used in, 2-14

Taylor methods, 17-4, 17-5 to 17-6
Temporal logic, 20-1 to 20-14

introducing, 20-3 to 20-5
models of time, 20-6 to 20-10

boundedness, 20-9
combinations of properties, 20-10
density and discreteness, 20-9 to 20-10
irreflexivity, 20-7 to 20-8
linearity, 20-8 to 20-9
reflexivity, 20-7
transitivity, 20-7

propositional logic, 20-1 to 20-3
syntax and semantics, 20-5 to 20-6

Timed Petri nets, 24-12 to 12-16
deterministictimed Petri nets (DTPNs), 24-12,

24-13 to 24-14
stochastic timed Petri nets (STPNs), 24-12, 24-14

to 24-16
topological structure of, 24-12

Time-stepped simulation method, 10-2
T-invariant concept, 24-8
Traffic flow model, 34-17 to 34-18
Transformity principle

of diagram layout, 28-5
overall effect of transformity on, 28-6
sources arrangement, 28-5 to 28-6

Transition firing, 24-3 to 24-4
enabling rule, 24-3
firing rule, 24-3
self-loop transition, 24-3
sink transition, 24-3
source transition, 24-3

Transitivity, 20-7
Two-point integration schemes, 11-19 to 11-21

V

Validation process, 1-2
Vensim diagram, 27-2 to 27-4
Verbal event graphs, 23-6
Verification process, 1-2

W

Web Ontology Language (OWL), 30-1
Williams and Zipser network, 22-5
Wireless sensor network simulation, 35-7 to 35-15

running the simulation, 35-14 to 35-15

Z

Zero-crossing detection, 15-17 to 15-18
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