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Preface

With the increasing number of empirical studies on a question of interest, the
topic of systematic reviews and meta-analysis is becoming of sustainable inter-
est. Ideally, all studies involved in a meta-analysis should have all individual
patient data available. This situation is sometimes also called meta-analysis
of pooled data. On the other extreme only an effect measure such as the odds
ratio is available from published studies. Clearly, in the latter situation fewer
options are available. For example, the effect measure cannot be changed in the
meta-analysis. This book considers a compromise situation that is frequently
available: from the published literature a 2 × 2 table is available containing
the successes and failures in the treatment arm as well as the successes and
failures in the control arm. Although also in this situation individual patient
data are not available, there is considerably more information present than
in a meta-analysis based entirely on reported effect measures. We call this
situation a meta-analysis with individually pooled data (MAIPD). In MAIPD
different effect measures can be computed such as the odds ratio, risk ratio,
or risk difference accompanied by a standard error, which is more reliably
computed than the one conventionally available in a meta-analysis from pub-
lished effect measures. The book is devoted to the analysis and modeling of a
MAIPD.

The book is outlined as follows. In chapter 1, the meta-analytic situation of
a MAIPD is introduced and illustrated with several examples. In chapter 2
the basic model is introduced including the profile likelihood method and a
discussion of it under homogeneity. In section 3, the model is extended to
cope with unobserved heterogeneity, which is captured by means of a non-
parametric mixture leading to the nonparametric mixture profile likelihood.
The gradient function is introduced and the nonparametric profile maximum
likelihood estimator (PNMLE) is characterized. The latter can be computed
by means of the EM algorithm with gradient function update (EMGFU). This
ends section 3. Section 4 provides modeling of covariate information. Elements
of log-linear modeling are used and ways for finding the profile maximum
likelihood estimator, including standard errors, are provided. In chapter 5 al-
ternative approaches to the profile likelihood method are discussed including
an approximated likelihood model on the basis of the normal distribution as
well as the multilevel approach. Chapter 6 discusses ways to model covariate
information and unobserved heterogeneity simultaneously. Chapter 7 gives an

xi
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illustration of the program CAMAP, which has been developed for the analy-
sis of a MAIPD and is accompanying and supplementing this book as freely
downloadable software. Chapter 9 approaches the problem of quantifying het-
erogeneity in a MAIPD. Not only it is important to decide whether there is
or there is not heterogeneity, but also, if there is, how large is the amount
of heterogeneity in the MAIPD. Chapter 10 shows that the methodology can
also be applied to a surveillance problem, here the surveillance of scrapie in
Europe, and is not restricted to clinical trials.

The idea for this book started while Dankmar Böhning was still professor
at the Charité Medical School Berlin (Germany) where he had been exposed
over many years to the problems of meta-analysis and systematic reviews. The
various chapters that are contained in this book grew over time in which the
various ways of modeling were explored. It should be mentioned that vari-
ous projects were supported and generously funded by the German Research
Foundation (DFG), which accompanied the principal investigator over many
years with interest and support. The coauthors of this book, Sasivimol Rat-
tanasiri and Ronny Kuhnert, developed their dissertational projects out of
the theme of this book, in fact, their dissertations became part of it. Clearly,
not all aspects of meta-analysis could be covered. The problem of publication
bias is not discussed. We felt that publication bias is more relevant for meta-
analysis based upon published literature, whereas clinical trials with planned
and registered studies included in the meta-analysis are less prone to this form
of bias. Also, Bayesian methods are used only in an empirical Bayesian sense,
for example when using the maximum posterior allocation rule for allocation
of the individual studies into their associated clusters. We felt that a full
Bayesian approach would have increased complexity, size, and timeframe of
the book (as well as the associated software) considerably, which we preferred
to avoid.

The book should be of interest for almost everyone interested in meta-analysis.
Many chapters contain new developments not available in the current litera-
ture. This is particularly true for chapters 4, 6, 8, and 10. The book might
be well used as a supplementary textbook in any graduate course on meta-
analysis with emphasis on applied statistics.

Finally, we, Dankmar Böhning, Ronny Kuhnert, Sasivimol Rattanasiri, would
like to thank deeply:

• the German Research Foundation (DFG) for its enormous financial and
academic support,

• professor em. Dr. Frank-Peter Schelp for generously supporting this project
while we were working under his leadership in the Institute for International
Health of the Charité Medical School Berlin,

• Victor Del Rio Vilas (Veterinary Laboratory Agency, UK) for pointing
out the potential in using the methodology of a MAIPD in surveillance
problems,
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• professor Heinz Holling (Münster, Germany) for his long-lasting interest
and cooperation in many areas of applied statistics, but in particular in
meta-analysis,

• professors Anne and John Whitehead (Lancaster, UK) for the many dis-
cussions we had on meta-analysis and other questions of interest,

• Dr Mike Dennett (Reading, UK) for taking the burden of head of section,
• the publisher Chapman & Hall/CRC, in particular, Rob Calver and his

team for his challenged patience with the delivery of this book,
• our children, Anna-Siglinde and Laura, for the play time we took away from

them,
• our spouses Tan, Katja, and Prasan for their tolerance they showed with

this seemingly endless project,
• and our parents for their love.

Dankmar Böhning (Reading, UK)

Ronny Kuhnert (Berlin, Germany)

Sasivimol Rattanasiri (Bangkok, Thailand)

February 2008
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CHAPTER 1

Introduction

1.1 The occurrence of meta-analytic studies with binary outcome

The present contribution aims to provide a unifying approach to modeling
treatment effect in a meta-analysis of clinical trials with binary outcome.
In recent years, meta-analysis has become an essential method used to pro-
vide more reliable information on an intervention effect. Additionally, it has
been demonstrated to provide a powerful statistical tool to analyze and po-
tentially combine the results from individual studies. Numerous international
publications have demonstrated the quality and the common practicability
of meta-analysis (see for example Cooper and Hedges (1994), Sutton et al.
(2000), DuMouchel and Normand (2000), Jones (1992), or Greenland (1994)).
Important for our situation here is the availability of the number of events
xT

i (xC
i ) and the person-time under risk nT

i (nC
i ) (total of time every person

spent under risk) in the treatment arm (control arm) for each clinical trial i
involved in the meta-analysis of a total of k studies. If all persons spend iden-
tical time under risk nT

i is equivalent to the sample size, and the same is true
for the control arm. We call this situation of meta-analysis a meta-analysis
using individually pooled data (MAIPD). Table 1.1 shows the principal layout
of the required information.

Table 1.1 Principal layout of the required information in a MAIPD for study i

Arm Number of Deaths Person-Time

Treatment xT
i nT

i

Control xC
i nC

i

Frequently, data in the format of Table 1.1 are presented on the basis of trial
sizes (so that each person contributes the identical person-time). However, we
believe that the concept of person-time is far more general and we prefer to
lay out the concept for situations that cover varying person-times.

For illustration, consider the data given in Table 1.2 taken from Petitti (1994).
The table contains outcome data from a large randomized clinical trial of
antiplatelet treatment for patients with a transient ischemic attack or ischemic

1



2 INTRODUCTION

stroke identified by the Antiplatelet Trialists’ Collaboration (1988) as eligible
for their meta-analysis. An event was defined as first myocardial infarction,
stroke, or vascular failure. In this case, all patients had a similar study period
as their time being under risk so that the person-time n of each trial arm
corresponds to the number of patients under risk, here 1,250. The data shown
in Table 1.2 came from the European Stroke Prevention Study Group (1987).

Table 1.2 Data from a randomized trial of antiplatelet therapy for treatment of tran-
sient ischemic attack of stroke

Arm Number of Deaths Number at Risk

Treatment 182 1,250
Control 264 1,250

A quick analysis with the package STATA (StataCorp. (2005)) shows that the
estimate of the risk ratio, defined as the ratio of xT /nT to xC/nC , is given as
182/1,250
264/1,250 = 0.6894 with a 95% confidence interval of 0.5806− 0.8186, indicat-
ing a significant preventive effect of the treatment. If Table 1.2 contains all the
evidence available for assessing the question of the effect of treatment, then
this is all that could be done on this level of information. However, Petitti
(1994) provides data from a second randomized trial containing the outcome
date from the United Kingdom Transient Ischemic Attack Aspirin Trial (un-
published), which we provide here as Table 1.3.

Table 1.3 Data from a second randomized trial of antiplatelet therapy for treatment
of transient ischemic attack of stroke

Arm Number of Deaths Number at Risk

Treatment 348 1,621
Control 204 814

An analysis of the data of Table 1.3 similar to the analysis of Table 1.2 delivers
an estimate of the risk ratio 348/1,621

204/1814 = 0.8566 with a 95% confidence interval
of 0.7366− 0.9962, indicating a significant, but more borderline preventive ef-
fect of the treatment. This change of effect size might have substantial reasons
or might be purely due to chance. It definitely required further and deeper
analysis.

Hence, having simply another trial available raises already several questions:

• a) How can the trial-specific risk ratio estimates be combined?
• b) Is the combination an efficient use of information?
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• c) Is the combination itself valid?

Table 1.4 shows the results of an analysis of these data using the package
STATA (StataCorp. (2005)). A Mantel-Haenszel estimate is calculated as

θ̂MH =
∑

i

wiθ̂i/
∑

i

wi,

where θ̂i are the study-specifc risk ratio estimates of studies i = 1, 2 and the
Mantel-Haenszel weights are given as wi = nT

i xC
i /(nT

i + nC
i ). The Mantel-

Haenszel approach is a well-known approach (see Woodward (1999)) and, as
it will be established later, a reasonably efficient approach. To provide a better
intuitive understanding we write the Mantel-Haenszel estimator as

θ̂MH =
∑

i xT
i nC

i /(nT
i + nC

i )∑
i xC

i nT
i /(nT

i + nC
i )

,

which follows the Mantel-Haenszel construction rule of taking sums before
ratios. The estimator is remarkably robust against the occurrences of zero
events in the individual studies. As Table 1.4 shows, adjusting for a study effect
by means of stratifying over studies will prevent a confounding effect which
could occur when simply considering the pooled estimate of both studies.
Comparing the crude (0.8142) and study-adjusted effects (0.7742) we observe
a very small confounding effect of study showing the simply pooled estimate
of relative risk would underestimate the true underlying relative risk.

Table 1.4 STATA-output (StataCorp. (2005)) from the two randomized trials of an-
tiplatelet therapy for treatment of transient ischemic attack of stroke

Study RR 95% Conf. Interval M-H Weight

Table 1.2 0.6894 0.5806 - 0.8186 132.00
Table 1.3 0.8566 0.7366 - 0.9962 135.80

Crude 0.8142 0.7288 - 0.9095
M-H combined 0.7742 0.6912 - 0.8672

Test of homogeneity (M-H) χ2(1) =3.478 Pr> χ2(1) = 0.0622

The final issue raised above was if the study-specific relative risk estimates
can be validly combined via the Mantel-Haenszel method. This is approached
by the test of homogeneity which compares the study-specific estimates of
relative risk and is found in Table 1.4 to be 3.478 which is not significant on
a chi-square distribution with 1 degree of freedom. We conclude that there is
no evidence for rejecting a relative risk common to the two studies so that the
Mantel-Haenszel summary measure appears reasonable.
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A more modeling-type approach would consider a log-linear model for the
observed number of events Xt

s such as

E(Xt
s) = exp{nt

s + α + βt + γs} (1.1)

where β is the treatment effect and t is a binary variate indicating treatment
(t = 1) or control (t = 0) and s is a binary variate indicating study two (s = 1)
or study one (s = 0). One of the specific characteristics is that the person-
time nt

s occurs as an offset term in (1.1). Estimation by means of maximum
likelihood could be handled by considering (1.1) as a generalized linear model
where a Poisson is taken as an error distribution for the number of events
Xt

s. Many modern packages such as STATA (StataCorp. (2005)) and SAS
among many others offer these procedures nowadays in a user-friendly way.
The model (1.1) could be extended to include a further interaction term (βγ)

E(Xt
s) = exp{nt

s + α + βt + γs + (βγ)st} (1.2)

so that the hypothesis of effect homogeneity could be more elegantly ap-
proached by considering a likelihood-ratio test in forming a ratio of likeli-
hoods of models (1.2) and (1.1), respectively. If the test is significant, then
this simply means that the treatment effect changes when the study changes.
As a result, the treatment effect will depend on which study is considered.
Therefore, where is the problem the reader may ask?

The situation becomes more complicated if there are more and more studies
considered. Technically, it is easily possible to introduce for every new study
a further indicator variable. However, this masks a more structural problem,
namely the fact that each new study also requires at least one additional
parameter in the model. If the number of studies is considered as sample size,
then the number of parameters in the model increases linearly with the sample
size. This introduces a Neyman-Scott problem which raises the question of
parameter estimation in the presence of infinitely many nuisance parameters
(see Neyman and Scott (1948)). For our situation the model (1.3) could be
generalized to

E(Xt
j) = exp{nt

j + α + βt + γjsj} (1.3)

where sj are now binary variables indicating that the data are from study j,
j = 1, · · · , k. To avoid overparameterization we set γ1 = 0. Note that the k
parameters α, γ2, · · · , γk correspond to the baseline risks in k studies.

Kiefer and Wolfowitz (1956) provide a solution to the Neyman-Scott problem
by considering the sequence of nuisance parameters to arise from a distribution
in which case a consistent estimation of this distribution becomes possible. In
a simple parametric approach, this leads to assume a normal random effect
for the study effects, γ2, · · · , γk ∼ N(0, σ2

s). Other parametric distributions
such as the Gamma-distribution are also possible as random effects distri-
bution (see Biggerstaff and Tweedie (1997) or Berry (1998)). If the outcome
variable is a normal response we are in the area of mixed models, see for ex-
ample Brown and Prescott (1999); Demidenko (2004). If the random effects
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distribution is left unspecified, a nonparametric maximum likelihood estimator
can be constructed, an approach followed by several authors including Aitkin
(1999a); Aitkin (1999b); Böhning (2000); Lindsay (1995).

In this setting of several, potentially numerous studies of treatment effect on
binary outcome a different approach will be followed. Instead of estimating
the distribution of nuisance parameters (risk baseline parameters), the nui-
sance parameters are eliminated before further modeling on the treatment
effect parameter is considered (see also Aitkin (1998)). The benefit of the ap-
proach - as will be worked out in Chapter 5 - lies in focusing the inference on
the parameter of interest, hence, providing a more powerful approach in com-
parison to other methods that simultaneously model nuisance and treatment
effect parameters. Murphy and Van der Vaart (2000) provide arguments that
profile likelihoods can be treated just as likelihoods, despite earlier critics on
the profile likelihood method who focused on the fact that the variability due
to replacing the nuisance parameters by estimates is not adjusted for in the
construction of the profile likelihood. We will demonstrate these arguments
and show in Chapter 5 that the profile likelihood method works best, at least
for the setting of this monograph, among all other methods considered, and
currently we see more the difficulties of the profile likelihood in its applica-
tion in models where the profile likelihood is technically more elaborate in its
construction.

Suppose we now have the number of events xT
i and xC

i for treatment and
control arm, respectively, in study i available, i = 1, · · · , k with associated
person-times nT

i and nC
i . As an example we consider the MAIPD of the ef-

fect of beta-blockers for reducing mortality after myocardial infarction (Yusuf
et al. (1985)). The individual-study pooled patient data for 22 studies are
provided in Table 1.5. The effects (expressed as log-relative risks) with their
associated 95% confidence intervals are given in Figure 1.1. Several aspects
can be explored from this graph.

• It can easily be seen which of the studies have positive and which have
negative effects.

• Significant positive effects can be easily identified by finding those studies
with confidence intervals above the no-effect line, the horizontal line at zero.
Here, there are none.

• Significant negative effects can also be easily identified by finding those
studies with confidence intervals below the no-effect line. These are the
four studies: 7, 10, 21, and 22.

• Some studies show strong negative effects (stronger than the studies 7 and
10 which had a significant negative efffect) but are not significant, since
there is a large variance associated with these studies due to a small size.
This refers to studies 2, 3, 6, and 13.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Study

0

1

2

-1

-2

Log-Relative Risk

Figure 1.1 Effect of beta-blocker for reducing mortality after myocardial infarction
(Yusuf et al. (1985)) in 22 studies expressed as log-relative risk with 95% CI

These aspects become visible when constructing graphs such as Figure 1.1
which are important explorative tools. These need to be analyzed deeper by
appropriate statistical methods.

Note that frequently a MAIPD could only be done on the basis of the pub-
lished literature (for a collection of numerous meta-analyses of this type see
Kuhnert (2005)). However, individual patient data are typically not available
from a MAIPD and are difficult, not to say usually impossible to retrieve. This
usually does not allow modeling on the individual patient or person level. Note
further that in contrast to conventional meta-analysis where typically an ef-
fect measure accompanied by a variance estimate is available (see, for example
van Houwelingen et al. (2002)), a MAIPD offers more choices for the analyst,
for example in choosing different effect measures such as relative risk, risk
difference, and number-needed-to-treat with accompanying variances. In this
contribution we will exploit another option of MAIPD, namely we will use the
profile likelihood method to eliminate the nuisance baseline parameter and
consecutively will base inference on the profile likelihood. In particular, the
method is able to cope with the two forms of heterogeneity that can occur in
a MAIPD: the baseline heterogeneity that arises in the control arm and the
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effect heterogeneity that arises from potentially different treatment effects in
the various centers.

1.2 Meta-analytic and multicenter studies

Another issue concerns the connection of MAIPD to the analysis of multicen-
ter studies, frequently mentioned in the literature. Note that in a multicenter
clinical trial the methodology used in MAIPD is validly applicable as well.
However, in the multicenter setting individual patient data are usually avail-
able and will offer more analysis options. On the other hand, multicenter study
data are often neither published, nor are they made available to the inter-
ested reader for numerous reasons, though center-specific information might
be found in the corresponding publication. Therefore, the methodology of
MAIPD might be very useful in this situation as well. Consequently, MAIPD is
a common situation in multicenter clinical trials (see also Aitkin (1999b)) and
all models discussed here are also applicable in multicenter studies. Bearing
this in mind, one should see the clear differences between MAIPD in general
on the one hand and a multicenter trial on the other hand. For example, one
difference between the two is the usually stronger protocol restrictions in the
case of multicenter studies. Therefore, the baseline heterogeneity in a MAIPD
can be expected to be larger.

In this contribution the focus is on binary outcome of the trial such as survival
(yes/no), improvement of health status (yes/no), occurrence of side effects
(yes/no) to mention a few potential binary outcomes. Even if the outcome
measure is continuous (such as blood pressure) it is often categorized into two
possible values. Frequently, analysis in a clinical trial is done on a time-to-
event basis. Although this might be a desirable objective, most MAIPD we
looked at presented a binary outcome measure. Therefore, for the time being,
we will concentrate here on modeling binary outcomes.

Other examples include diagnostic procedures that frequently result in contin-
uous measures. However, the outcome is almost uniquely represented in terms
of positive result or negative result.

Multicenter studies occur in numerous ways and are executed quite frequently.
It is said that “there are currently thousands of active multicenter trials de-
signed to evaluate treatment or prevention strategies” (Bryant et al. (1998)).
Among the reasons for mounting a multicenter study are the need to recruit
patients at a faster rate, the need to find patients with a rare disease or condi-
tion, or the desire to increase the generalizability of effect, because multicen-
ter studies will more likely include heterogenous populations. Pocock (1997)
points out that the collaboration of clinical scientists in a multicenter study
should lead to increased standards in the design, conduct, and interpretation
of the trial. Often the center represents a clinical, medical, or public health
institution in which the clinical trial takes place.
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Furthermore, it is assumed that each trial is competitive in that it compares
two (or more) trial arms, here denoted as treatment and control arm. A typical
setting is provided in Table 1.5 in which the data of a MAIPD of clinical trials
are presented to study the effect of beta-blockers for reducing mortality after
myocardial infarction (Yusuf et al. (1985)). A manifold collection of MAIPDs
in various application fields is provided in the Cochrane Library (2005).

Table 1.5 Data illustration of a MAIPD for studying the effect of beta-blocker for
reducing mortality after myocardial infarction (Yusuf et al. (1985)), data contain
number of deaths xi and person-time ni for treatment (T ) and control arm (C) as
well as risk ratio estimate (last column)

Trial Treatment Control Relative Risk

i xT
i nT

i xC
i nC

i θ̂i (95%CI)

1 3 38 3 39 1.0263 (0.2207–4.7716)
2 7 114 14 116 0.5088 (0.2132–1.2140)
3 5 69 11 93 0.6127 (0.2231–1.6825)
4 102 1533 127 1520 0.7963 (0.6197–1.0233)
5 28 355 27 365 1.0663 (0.6415–1.7722)
6 4 59 6 52 0.5876 (0.1754–1.9684)
7 98 945 152 939 0.6406 (0.5053–0.8122)
8 60 632 48 471 0.9316 (0.6497–1.3357)
9 25 278 37 282 0.6854 (0.4243–1.1072)

10 138 1916 188 1921 0.7360 (0.5963–0.9083)
11 64 873 52 583 0.8219 (0.5789–1.1671)
12 45 263 47 266 0.9684 (0.6678–1.4041)
13 9 291 16 293 0.5664 (0.2544–1.2610)
14 57 858 45 883 1.3036 (0.8920–1.9050)
15 25 154 31 147 0.7698 (0.4783–1.2390)
16 33 207 38 213 0.8936 (0.5840–1.3673)
17 28 251 12 122 1.1341 (0.5976–2.1524)
18 8 151 6 154 1.3598 (0.4833–3.8259)
19 6 174 3 134 1.5402 (0.3924–6.0462)
20 32 209 40 218 0.8345 (0.5459–1.2756)
21 27 391 43 364 0.5846 (0.3692–0.9256)
22 22 680 39 674 0.5591 (0.3352–0.9326)

Interest lies in measuring the effect of treatment, frequently accomplished by
means of the risk ratio θ = pT /pC where pT and pC are the risks of an event
under treatment and control, respectively. Nowadays, it is widely accepted
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that a simple, overall estimate of the crude risk ratio estimate

θ̂crude =

(∑k
i=1 xT

i

)
/

(∑k
i=1 nT

i

)
(∑k

i=1 xC
i

)
/

(∑k
i=1 nC

i

)

is by no means a sufficient description of the available data - unless effect
homogeneity is established. Mainly, three reasons are responsible for this per-
spective.

• a) The simple estimate ignores a potential center effect. In Table 1.5 most
trials show a beneficial effect of treatment with an overall beneficial estimate
of treatment effect as θ̂crude = 0.79, though treatment effect is not always
protective as can be seen in trials 14, 18, or 19. Note also that most of the
trials experience a nonsignificant effect.

• b) To avoid confounding by trial (the center effect) a stratified analysis is
usually recommended. Then, the question arises, which sources are respon-
sible for the deviations of trial-specific estimates of treatment effect from
the adjusted overall estimate. Are these pure sources of random error or do
other sources such as unobserved covariates, here summarized under unob-
served heterogeneity, also contribute to the observed error. A controversial
example and discussion on effect heterogeneity is given in Horwitz et al.
(1996) in which 21 centers show beneficial and 10 centers harmful effects
(see also Table 1.12).

• c) Finally, the simple estimate ignores potentially observed covariate in-
formation which should be taken into account. Maybe age and gender dis-
tributions varied from trial to trial. Maybe randomization failed in some
trials. Maybe the background population was different from trial to trial.

This contribution aims to achieve a solid modeling of the three before men-
tioned situations accompanied by easy-to-use inferences and algorithms which
will allow the clinician to analyze MAIPDs in an up-to-date method.

1.3 Center or study effect

It might be tempting to ignore the fact that study data are available for
different centers. Indeed, it is possible to collapse data over all centers to
achieve a simple two-by-two table from which the effect estimate could be

computed simply as θ̂crude = (∑k
i=1 xT

i )/(∑k
i=1 nT

i )
(∑k

i=1 xC
i )/(∑k

i=1 nC
i ) .

Though this is tempting, past experiences have shown that calculating a crude
risk ratio as above may lead to quite biased estimates. In fact, various con-
founding situations can arise: the true effect might be overestimated (inflation)
or underestimated (masking), or the center might work as an effect modifier.
Hence, it is advisable to take the center effect as a potential confounder into
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account. In Table 1.6 the crude risk ratio is 1.74, well in the range of the
center-specific risk ratios, and the center does not appear to be a confounder
for this multicenter study. In another application, Arends et al. (2000) investi-
gated the treatment of cholesterol lowering levels on mortality from coronary
heart disease (see Table 1.6). Here, the crude risk ratio is 1.0770, whereas the

Mantel-Haenszel adjusted risk ratio, θ̂MH =
∑k

i=1 xT
i nC

i /ni∑k
i=1 xC

i nT
i /ni

with ni = nT
i +nC

i ,
is 0.9708. This moves an elevated risk ratio to the preventive side, as can
be expected from the nature of the treatment. This example underlines the
importance of considering the center effect in all analyses.

In addition, another aspect might be worth mentioning. Whereas none of
the center-specific risk ratio estimates in the Lidocaine trial (see Table 1.7)
confirms significantly the damaging effect of prophylactic use of Lidocaine, a
center-adjusting estimator like the Mantel-Haenszel estimator will provide a
significant effect θ̂MH = 1.73 with a 95% CI (1.03, 2.92). Hence, it is desirable
to seek optimal and valid ways to combine available information.

1.4 Sparsity

Another aspect concerns sparsity. Frequently, in a MAIPD the observed data
experience sparsity. The data are called sparse if the observed event counts
are close to zero, occasionally in fact identical to zero. This can occur because
the event risks are very small, so that even with a large trial sparsity has to be
expected. Or, the center sizes are so small (potentially because patient recruit-
ment is extremely difficult) that even with large event risks the occurrences of
low frequency counts including zero counts are likely. An example of this na-
ture is provided in Table 1.8 where data on a MAIPD investigating treatment
in cancer patients (Cancer and Leukemia Group, Cooper et al. (1993)) are
provided. The data in Table 1.8 are from the Cancer and Leukemia Group B
(CALGB) randomized clinical trial comparing two chemotherapy treatments
with respect to survival (lived/died by the end of the study) in patients with
multiple myeloma (Cooper et al. (1993)). A total of 156 eligible patients was
accrued in the 21 centers. In contrast to Table 1.5, the data in Table 1.8 are
experiencing sparsity, meaning that the number of events and/or the number
under risk is small, leading to potentially many zero events in the centers as
happens in centers 5, 10, 12, and 20.

In a sparse MAIPD, the investigation of center-effect heterogeneity is particu-
larly difficult, since center-specific risk ratio estimators can only be estimated
with large uncertainty. In addition, the construction of a risk ratio estima-
tor under homogeneity needs to be done with careful consideration. Here, the
profile method turns out to be beneficial.
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Table 1.6 Outcome data of a meta-analysis of Davey Smith et al. (1993) on the effect
of cholesterol lowering treatment on mortality from coronary heart disease (following
Arends et al. (2000))

Trial Treatment Control

i xT
i nT

i xC
i nC

i

1 28 380 51 350
2 70 1250 38 640
3 37 690 40 500
4 2 90 3 30
5 0 30 3 30
6 61 1240 82 1180
7 41 1930 55 890
8 20 340 24 350
9 111 1930 113 1920
10 81 1240 27 410
11 31 1140 51 1140
12 17 210 12 220
13 23 210 20 230
14 0 90 4 170
15 1450 38620 723 19420
16 174 1350 178 1330
17 28 890 31 860
18 42 1970 48 2060
19 4 150 5 150
20 37 2150 48 2100
21 39 1010 28 1120
22 8 100 1 50
23 5 340 7 340
24 269 4410 248 4390
25 49 3850 62 3740
26 0 190 1 190
27 19 1510 12 1560
28 68 13850 71 13800
29 46 10140 43 10040
30 33 5910 3 1500
31 236 27630 181 27590
32 0 100 1 100
33 1 20 2 30
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Table 1.7 Outcome data for prophylactic use of Lidocaine after heart attack (AMI)
(Hine et al. (1989), following Normand (1999))

Trial Treatment Control Relative Risk

i xT
i nT

i xC
i nC

i θ̂i(95%CI)

1 2 39 1 43 2.21 (0.21–23.4)
2 4 44 4 44 1.00 (0.27–3.75)
3 6 107 4 110 1.54 (0.45–5.31)
4 7 103 5 100 1.36 (0.45–4.14)
5 7 110 3 106 2.25 (0.60–8.47)
6 11 154 4 146 2.61 (0.85–8.01)

1.5 Some examples of MAIPDs

In this section, we present a few more examples to illustrate the manifold
applications of meta-analytic studies with binary outcome.

1.5.1 Selective decontamination of the digestive tract and risk of respiratory
tract infection

Turner et al. (2000) use a MAIPD on the effect of selective decontamination
of the digestive tract on the risk of respiratory tract infection (see Table 1.9).
Patients in intensive care units were randomized to receive treatment by a
combination of nonabsorbable antibiotics or to receive no treatment (Selec-
tive Decontamination of the Digestive Tract Trialists’ Collaborative Group
(1993)).

1.5.2 Hypertension and cardiovascular mortality

Hoes et al. (1995) published a meta-analysis of clinical trials (see Table 1.10)
in which a drug treatment was compared to either a placebo or to no treat-
ment with respect to (cardiovascular) mortality in middle-aged patients with
mild to moderate hypertension. In this MAIPD, varying person-times occur.
Therefore, the nT

i and nC
i no longer correspond to the trial size.

1.5.3 Multifarm study on Neospora infection

The data in Table 1.11 stem from a multifarm study on cows with and without
Neospora infection. A case is defined to be a cow with a history of calf-abort.
The importance lies in the fact the infection is rather widespread and the
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Table 1.8 Outcome data for treatment group of a multicenter clinical trial (with high
sparsity) (Cancer and Leukemia Group, Cooper et al. (1993))

Trial Treatment Control

i xT
i nT

i xC
i nC

i

1 1 3 3 4
2 8 11 3 4
3 2 3 2 2
4 2 2 2 2
5 0 3 2 2
6 2 3 1 3
7 2 3 2 2
8 4 4 1 5
9 2 3 2 2
10 2 3 0 2
11 3 3 3 3
12 0 2 2 2
13 1 5 1 4
14 2 4 2 3
15 4 6 2 4
16 3 9 4 12
17 2 3 1 2
18 1 4 3 3
19 2 3 1 4
20 0 2 0 3
21 1 5 2 4

establishment of an effect of the infection onto the outcome could have quite
an impact for the health of herds on farms.

1.5.4 Beta-Blocker Heart Attack Trial (BHAT)

The authors Horwitz et al. (1996) were interested to illustrate some of the
considerable heterogeneity among the 31 centers in the BHAT study (see Ta-
ble 1.12). Distinct from the comparison of mortality rates between groups of
centers is the wide range in mortality by treatment group across the centers.
Among 21 centers (the 1st to the 21st center) whose results favored propra-
nolol, mortality rates in patients randomized to propranolol ranged from 0 to
13%, and from 6 to 21% in the patients randomized to receive a placebo. A
similar wide variation in mortality rates was noted for patients randomized to
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Table 1.9 Respiratory tract infections in treatment and control group of 22 trials
following Turner et al. (2000)

Trial Treatment Control

i xT
i nT

i xC
i nC

i

1 7 47 25 54
2 4 38 24 41
3 20 96 37 95
4 1 14 11 17
5 10 48 26 49
6 2 101 13 84
7 12 161 38 170
8 1 28 29 60
9 1 19 9 20

10 22 49 44 47
11 25 162 30 160
12 31 200 40 185
13 9 39 10 41
14 22 193 40 185
15 0 45 4 46
16 31 131 60 140
17 4 75 12 75
18 31 220 42 225
19 7 55 26 57
20 3 91 17 92
21 14 25 23 23
22 3 65 6 68

placebo and propranolol in the last 10 centers (the 22nd to the 31st center)
favoring placebo.

1.6 Choice of effect measure

Frequently, medical statisticians engage in the question of which measure
should be chosen to evaluate the effect of treatment (or exposure). Although
there seems no ultimate data-driven solution for this question, potential ev-
idence for a measure can be found in the following way. Suppose that one
agrees with the paradigm that a model is “better” if it has higher agreement
with the observed data than another model. In fact, one wants to avoid the
artifact to search for an explanation of heterogeneity in the effect if this effect
is due to the choice of a wrong effect measure. To illustrate consider the situ-
ation of Figure 1.2 where a case is made for constant risk ratio, but increasing
risk difference.
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Table 1.10 Number of deaths and total number of person-years for treatment and
control of 12 randomized trials in mild to moderate hypertension in the meta-analysis
of Hoes et al. (1995)

Trial Treatment Control

i xT
i nT

i xC
i nC

i

1 10 595.2 21 640.2
2 2 762.0 0 756.0
3 54 5635.0 70 5600.0
4 47 5135.0 63 4960.0
5 53 3760.0 62 4210.0
6 10 2233.0 9 2084.5
7 25 7056.1 35 6824.0
8 47 8099.0 31 8267.0
9 43 5810.0 39 5922.0
10 25 5397.0 45 5173.0
11 157 22162.7 182 22172.5
12 92 20885.0 72 20645.0

Table 1.11 Data from multifarm study on abort history of cows with and without
Neospora infection, “T” serologic positive, “C” negative (Greiner (2000))

Trial Treatment Control

i xT
i nT

i xC
i nC

i

1 6 19 0 14
2 4 9 0 6
3 2 2 1 6
4 6 15 3 34
5 4 8 1 33
6 3 7 1 18
7 3 4 1 27

Now, the simplest model in the setting of Chapter 1 is the homogeneity model
that is for the relative risk

pT
i /pC

i = θ for all i or pT
i = pC

i θ,

a straight line in the (pT
i , pC

i )′-plane through the origin with slope θ. For the
risk difference, homogeneity implies that pT

i − pC
i = ϑ for all i, a straight line

with slope 1 and intercept ϑ:

pT
i = pC

i + ϑ for all i.
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Table 1.12 Data from the multicenter Beta-Blocker Heart Attack Trial (BHAT) com-
paring propranolol with placebo (Horwitz et al. (1996))

Trial Treatment Control

i xT
i nT

i xC
i nC

i

1 0 49 3 48
2 1 57 7 58
3 1 56 5 57
4 1 42 4 42
5 3 65 10 65
6 3 70 8 71
7 2 65 5 66
8 3 55 7 55
9 3 55 7 56
10 2 44 4 44
11 4 77 8 78
12 2 58 4 59
13 4 70 7 70
14 7 98 12 98
15 3 48 5 48
16 7 52 11 53
17 5 64 7 65
18 3 42 4 42
19 5 47 6 47
20 4 62 5 63
21 5 59 6 60
22 5 59 1 59
23 8 63 3 64
24 7 55 4 55
25 8 75 5 75
26 7 91 6 92
27 8 70 7 70
28 3 44 3 44
29 4 32 4 33
30 10 57 10 58
31 10 125 10 126
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Figure 1.2 Artificial heterogeneity of effect due to wrong effect measure: pT
i has been

generated using θpC
i with θ = 2 and pC

i = 0.01, 0.02, ..., 0.50 leading to constant
θi = 2, but increasing risk difference ϑi

Finally, for the odds ratio the simplest model is pT
i /(1−pT

i )

pC
i /(1−pC

i )
= κ for all i, or

pT
i /(1− pT

i ) = pC
i /(1− pC

i )κ for all i,

a straight line through the origin with slope κ in the (pT
i /(1 − pT

i ), pC
i /(1 −

pC
i ))′-plane. Figure 1.3 gives an illustration for the relative risk and the risk

difference at hand of the data of Table 1.5. The points (circles) in Figure 1.3
correspond to the observed pairs (xC

i /nC
i , xT

i /nT
i )′, whereas the two straight

lines correspond to the relative risk model (dotted) and the risk difference
(dashed). These lines were found by regressing yi = xT

i /nT
i on zi = xC

i /nC
i , in

the case of the relative risk model without intercept, and in the case of the risk
difference with free intercept and slope equals one. The solid line in Figure
1.3 corresponds to the best line with free intercept and free slope parameter.
In the case of the data of Table 1.5, the relative risk model is closer to the
best line.
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1.6.1 Relative risk line

The least squares estimate of yi = θzi for i = 1, ...., k is given as

θ̂ls =
∑k

i=1 yizi∑k
i=1 z2

i

=
∑k

i=1(x
T
i /nT

i )(xC
i /nC

i )∑k
i=1(x

C
i /nC

i )2
. (1.4)

Though this estimate is intuitively appealing it has the disadvantage to weigh
each of the centers equally. We prefer to use the Mantel-Haenszel estimate in
this setting (Woodward (1999)). Let us write the center-specific relative risk
as xT

i /nT
i

xC
i /nC

i
= xT

i nC
i /(nT

i +nC
i )

xC
i nT

i /(nT
i +nC

i )
. Now the Mantel-Haenszel estimate occurs if we

take summation before taking ratios:

θ̂MH =
∑k

i=1 xT
i nC

i /(nT
i + nC

i )∑k
i=1 xC

i nT
i /(nT

i + nC
i )

(1.5)

Note that (1.4) and (1.5) agree if k = 1. The Mantel-Haenszel estimate is a
weighted estimator

∑
i wi

xT
i nC

i

xC
i nT

i
/

∑
wi with weights wi = xC

i nT
i /(nT

i + nC
i ).

It is popular with epidemiologists since it experiences stability under sparsity
such as being less affected by zero events in the centers.

1.6.2 Risk difference line

Similarly, the least squares estimate of yi = ϑ + zi for i = 1, ...., k is given as

ϑ̂ls =
1
k

k∑

i=1

yi − 1
k

k∑

i=1

zi =
1
k

k∑

i=1

(xT
i /nT

i )− 1
k

k∑

i=1

(xC
i /nC

i ). (1.6)

Again, we prefer to use the Mantel-Haenszel estimate in this setting (Böhning
(2000)). Let us write the center-specific risk difference as xT

i /nT
i − xC

i /nC
i =

(xT
i nC

i −xC
i nC

i )/ni

(nT
i nC

i /ni)
, where ni = nT

i + nC
i . Now the Mantel-Haenszel estimate

occurs if we take summation before taking ratios:

ϑ̂MH =
∑k

i=1(x
T
i nC

i − xC
i nT

i )/ni∑k
i=1(n

T
i nC

i )/ni

(1.7)

Note that (1.6) and (1.7) agree if k = 1. The Mantel-Haenszel estimate is
again a weighted estimator

∑
i wi(xT

i /nT
i − xC

i /nC
i )/

∑
wi with weights wi =

nC
i nT

i /ni.
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1.6.3 Odds ratio line

The least squares estimate of yi = κzi for i = 1, ...., k is given as

κ̂ls =
∑k

i=1 yizi∑k
i=1 z2

i

=

∑k
i=1(

xT
i /nT

i

1−xT
i /nT

i
)( xC

i /nC
i

1−xC
i /nC

i
)

∑k
i=1(

xC
i /nC

i

1−xC
i /nC

i
)2

. (1.8)

Note that yi = xT
i /nT

i

1−xT
i /nT

i
, the odds in the treatment arm, and zi = xC

i /nC
i

1−xC
i /nC

i

in the control arm. In other words, we are considering now the straight
line through the origin in the odds plane. Though this estimate is intu-
itively appealing it has several disadvantages including weighing each center
equally. We prefer to use the Mantel-Haenszel estimate in this setting (Wood-
ward (1999)). Let us write the center-specific odds ratio as xT

i /(nT
i −xT

i )

xC
i /(nC

i −xC
i )

=
xT

i (nC
i −xC

i )/(nT
i +nC

i )

xC
i (nT

i −xT
i )/(nT

i +nC
i )

. Now the Mantel-Haenszel estimate occurs if we take sum-
mation before taking ratios:

κ̂MH =
∑k

i=1 xT
i (nC

i − xC
i )/(nT

i + nC
i )∑k

i=1 xC
i (nT

i − xT
i )/(nT

i + nC
i )

(1.9)

Note that (1.8) and (1.9) agree if k = 1. The Mantel-Haenszel estimate
is a weighted estimator

∑
i wi

xT
i (nC

i −xC
i )/(nT

i +nC
i )

xC
i (nT

i −xT
i )/(nT

i +nC
i )

/
∑

wi with weights wi =

xC
i (nT

i − xT
i )/(nT

i + nC
i ).

1.6.4 Assessment of effect measure for the homogeneity case

We now consider a more formal assessment for the three models of homo-
geneity: risk difference, risk ratio, and odds ratio. Consider the Poisson log-
likelihood

k∑

i=1

−nT
i pT

i + xT
i log(pT

i )− nC
i pC

i + xC
i log(pC

i ). (1.10)

If pC
i is estimated by xC

i /nC
i , then the three likelihoods will differ only with

respect to
k∑

i=1

−nT
i p̂T

i + xT
i log(p̂T

i ) (1.11)

where p̂T
i = p̂C

i + ϑ̂MH , p̂T
i = p̂C

i θ̂MH , and p̂T
i

1−pT
i

= p̂C
i

1−pC
i

κ̂MH , respectively.

In the following we will look at various MAIPDs and their associated log-
likelihoods (1.11). Table 1.13 shows the corresponding log-likelihoods. Often
the measure of relative risk provides the largest log-likelihood.
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Figure 1.3 Relative risk (dotted line) and risk difference model (dashed line) in com-
parison to the best (regression) line for data of Table 1.5

Table 1.13 Assessment of effect measure for the homogeneity case by means of the
log-likelihood

MAIPD Log-likelihood

Table θ̂MH ϑ̂MH κ̂MH

1.5 -2883.0950 -2907.7720 -2883.6310
1.6 -13329.4600 -13348.0300 -13329.7300
1.7 -139.0275 -137.6152 -138.8530
1.8 -77.0129 -78.7789 -78.0682
1.9 -1264.721 -1222.849 -1252.038
1.10 -3666.9060 -3668.8850 -3666.9230
1.11 -54.3502 -51.0569 -51.797
1.12 -648.6063 -634.8513 -647.4781

Table 1.14 provides the associated Mantel-Haenszel estimators for the MAIPDs
presented in Tables 1.5 to 1.12. As an additional analysis tool we consider the
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Table 1.14 The results of MH-estimator

MAIPD MH-estimator

Table θ̂MH ϑ̂MH κ̂MH

1.5 0.7908 -0.0209 0.7702
1.6 0.9708 -0.0007 0.9695
1.7 1.7345 .0281 1.7893
1.8 0.8991 -0.0572 0.7883
1.9 2.1238 0.1531 2.8225
1.10 1.1079 0.0007 1.1088
1.11 10.0428 0.4160 20.0626
1.12 1.3506 0.0254 1.3903

χ2-test of homogeneity∗ defined as

χ2
hom =

∑

i

(θ̂i − θ̂MH)2

v̂ar(θi)
,

here for the risk ratio and similarly for the other effect measures. We em-
phasize in Table 1.15 on the comparison of relative risk and risk difference.
The χ2−test statistic is here used in a descriptive statistical sense, not as an
inferential statistical tool, since its distributional properties are in doubt (Har-
tung et al. (2003), Hartung and Knapp (2003), Knapp et al. (2006), Jackson
(2006)). As Table 1.15 shows in most cases the relative risk provides the better
fitting model. These considerations underline the importance of the choice of
the effect measure and provide empirical evidence for the relative risk as an
appropriate choice as an effect measure.

∗ The χ2-test of homogeneity measures the degree of heterogeneity (variation between
studies) of the study-specific relative risks. The statistical package STATA (Tables for
Epidemiologists) (StataCorp. (2005)) was used to calculate the values of the test statis-
tics. For the MAIPD of Table 1.10, there is only a risk ratio, so that a comparison of
different effect measures was not possible.
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Table 1.15 χ2
hom-test of homogeneity (M-H)

MAIPD RR OR

Table χ2
hom p-value χ2

hom p-value

1.5 23.041 0.3418 76.671 0.0000
1.6 76.380 0.0000 76.671 0.0000
1.7 1.580 0.9037 1.515 0.9113
1.8 11.682 0.8632 4.671 0.9946
1.9 40.783 0.0040 57.493 0.0000
1.10 - - - -
1.11 2.641 0.6195 2.821 0.4201
1.12 25.508 0.6517 25.899 0.6309



CHAPTER 2

The basic model

Modeling effects in meta-analysis of trials is of interest and has been under
investigation for quite some time. For an overview see Agresti and Hartzel
(2000). In this section we would like to follow a strict likelihood approach. In
the likelihood theory, when dealing with nuisance parameters, one approach
(see Murphy and Van der Vaart (2000) or Pawitan (2001)) uses the profile
likelihood method to eliminate the nuisance parameters. We will show in this
section that this approach for a MAIPD leads to a very simple and easy to
handle profile likelihood which can be used in more elaborate developments
later on.

Let xT
i and xC

i again denote the number of events in treatment and control
arms, respectively, with nT

i the person-time in the treatment arm and nC
i

denoting the person-time in the control arm. Let the number of trials be k,
so that i = 1, ..., k. Also, let pT

i and pC
i denote the risk of an event in the

treatment and control arm, respectively. Typically, we will be interested in
effect measures of treatment like the risk ratio θi = pT

i /pC
i .

2.1 Likelihood

We are interested in the inference on θi = pT
i /pC

i , the ratio of the two event
probabilities pT

i for the treatment arm and pC
i for the control arm. In contrast

to the single study settings, we have to investigate the variation of the risk
ratio between studies in the case of MAIPD. If homogeneity of effect can be
established, the results are more supportive of the effect. If heterogeneity is
present, an appropriate modeling is required and sources for its occurrence
should be investigated.

For each trial and for each arm there is a Poisson likelihood, so that for the
i-th trial the contribution to the likelihood of the treatment arm is

exp(−nT
i pT

i )(nT
i pT

i )xT
i /xT

i ! (2.1)

and for the i-th trial the contribution to the likelihood of the control arm is

exp(−nC
i pC

i )(nC
i pC

i )xC
i /xC

i ! (2.2)

23
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so that the product likelihood over all trials becomes
k∏

i=1

(
exp(−nT

i pT
i )(nT

i pT
i )xT

i /xT
i !× exp(−nC

i pC
i )(nC

i pC
i )xC

i /xC
i !

)
(2.3)

and the log-likelihood takes the form∗ (ignoring the only data-dependent terms)

k∑

i=1

{−nT
i pT

i + xT
i log(pT

i )− nC
i pC

i + xC
i log(pC

i )
}

. (2.4)

2.2 Estimation of relative risk in meta-analytic studies using the
profile likelihood

Rewrite pT
i as pC

i θi and (2.4) becomes

k∑

i=1

{−nT
i pC

i θi + xT
i log(pC

i θi)− nC
i pC

i + xC
i log(pC

i )
}

(2.5)

Note that in the log-likelihood (2.5), there occurs two kinds of parameters: the
effect measuring parameter θi or the parameter of interest; and the baseline
parameter pC

i or the nuisance parameter. In general, let the log-likelihood
L(p,q) depend on a vector p of parameters of interest and a vector q of
nuisance parameters. Let L(q|p) = L(p,q) be the log-likelihood for arbitrary
but fixed p, and let qp be such that L(qp|p) ≥ L(q|p) for all q, then

L∗(p) = L(qp|p) (2.6)

is called the profile log-likelihood. Note that the profile log-likelihood is now
depending only on the parameters of interest and, thus, the method of profile
log-likelihood can be viewed as a method to deal with nuisance parameters.

Let us determine the profile log-likelihood on the basis of (2.5), which we now
consider as a function of pC for arbitrary, but fixed θ = (θ1, ..., θk)′:

L(pC |θ) =
k∑

i=1

{−nT
i pC

i θi + xT
i log(θi)− nC

i pC
i + (xC

i + xT
i )log(pC

i )
}

(2.7)

=
k∑

i=1

{−(nC
i + nT

i θi)pC
i + xT

i log(θi) + (xC
i + xT

i )log(pC
i )

}
.

To determine pC
θ (which maximizes (2.7)) we calculate the partial derivatives

∂

∂pC
j

L(pC |θ) = −(nC
j + nT

j θj) + (xT
j + xT

j )/pC
j (2.8)

∗ log we always denote the natural logarithm, e.g., with respect to base e
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which can be readily solved for pC
j as

pC
jθ

=
xC

j + xT
j

nC
j + θjnT

j

. (2.9)

Inserting (2.9) into (2.7) leads to

k∑

i=1

{
−(nC

i + θin
T
i )(

xC
i + xT

i

nC
i + θinT

i

) + xT
i log(θi) + (xC

i + xT
i ) log(

xC
i + xT

i

nC
i + θinT

i

)
}

(2.10)
which simplifies to (if we only consider parameter-dependent terms)

L∗(θ) =
k∑

i=1

{
xT

i log(θi)− (xC
i + xT

i ) log(nC
i + θin

T
i )

}
. (2.11)

The above expression L∗(θ) is the profile log-likelihood for the risk ratio and
all inference will be based upon this log-likelihood.

2.3 The profile likelihood under effect homogeneity

This section investigates the profile likelihood method for the situation of
homogeneity and shows its connection to the Mantel-Haenszel approach, and,
thus, is of interest in itself. To illustrate the simplicity and usefulness of the
profile method consider the situation of homogeneity of effect: θ1 = θ2 = ... =
θk = θ. Then, taking the derivative of (2.11) w.r.t. θ, yields

k∑

i=1

(
xT

i /θ − (xC
i + xT

i )nT
i /(nC

i + θnT
i )

)
= 0, (2.12)

or, equivalently

k∑

i=1

wi(θ)
θ

(
xT

i nC
i − xC

i nT
i θ)

)
= 0, (2.13)

where wi(θ) = 1/(nC
i + θnT

i ). Equation (2.13) is an implicit feature of the
maximum profile likelihood estimator of relative risk which can be further
written as

θ =
∑k

i=1 wi(θ)xT
i nC

i∑k
i=1 wi(θ)xC

i nT
i

, (2.14)

which can be used to iteratively construct the maximum likelihood estimator.
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2.3.1 Score of profile likelihood

Let us consider now the profile likelihood in more detail. The profile log-
likelihood (2.11) becomes

L∗(θ) =
k∑

i=1

xT
i log(θ)−

k∑

i=1

(xC
i + xT

i )log(nC
i + θnT

i ). (2.15)

The log-likelihood (2.15) has no closed form maximum likelihood solution.
The first derivative is

L∗
′
(θ) =

∑k
i=1 xT

i

θ
−

k∑

i=1

(xC
i + xT

i )nT
i

nC
i + θnT

i

. (2.16)

We first show the existence of a solution for the score equation of the profile
maximum likelihood estimator, then its uniqueness, and, finally, that it is
indeed a maximum.

2.3.2 Existence

We write (2.16) as f(θ)/θ where f(θ) =
∑k

i=1 xT
i −

∑k
i=1

(xC
i +xT

i )θnT
i

nC
i +θnT

i
since,

for positive θ, the zeros of f(θ)/θ are identical to the zeros of f(θ). Now,
f(θ) approaches

∑k
i=1 xT

i if θ approaches 0 and f(θ) approaches
∑k

i=1 xT
i −∑k

i=1(x
C
i + xT

i ) = −∑k
i=1 xC

i if θ goes to ∞. In other words, f(θ) changes its
sign, from positive to negative if θ moves from 0 to ∞. Therefore, (2.16) must
have at least one zero. If we equate (2.16) to zero, then we have the score
equation for the profile maximum likelihood estimator.

2.3.3 Uniqueness of solution of score equation

The score (2.16) equals 0, if and only if f(θ) = 0. Now,

f ′(θ) = −
k∑

i=1

(xC
i + xT

i )nT
i (nC

i + nT
i θ)− nT

i (xC
i + xT

i )θnT
i

(nC
i + θnT

i )2
(2.17)

= −
k∑

i=1

(xC
i + xT

i )nT
i nC

i

(nC
i + θnT

i )2
< 0.

for all θ. Therefore, f(θ) is strictly monotone decreasing in θ and can have at
most one zero.

2.3.4 Solution of score equation is maximum

A solution of (2.16) is not necessarily a maximum. Let θ̂ be any solution
of (2.16). We show that the profile log-likelihood is locally concave at θ̂ by
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Figure 2.1 Graph of Φ(θ) for the data of Table 1.5

proving that its second derivative is nonpositive at θ̂. Consider the second
derivative

L∗
′′
(θ) = −

∑k
i=1 xT

i

θ2
+

k∑

i=1

(xC
i + xT

i )(nT
i )2

(nC
i + θnT

i )2
(2.18)

= −
∑k

i=1 xT
i

θ2
+

1
θ2

k∑

i=1

(xC
i + xT

i )(θnT
i )2

(nC
i + θnT

i )2
.

Furthermore, at the solution of the score equation we have that
∑k

i=1 xT
i

θ̂
=

∑k
i=1

(xC
i +xT

i )nT
i

nC
i +θ̂nT

i

, so that (2.18) at θ̂ becomes

L∗
′′
(θ̂) = − 1

θ̂2

k∑

i=1

(xC
i + xT

i )(θ̂nT
i )

(nC
i + θ̂nT

i )
+

1

θ̂2

k∑

i=1

(xC
i + xT

i )(θ̂nT
i )2

(nC
i + θ̂nT

i )2
(2.19)

which can be written as

L∗
′′
(θ̂) = − 1

θ̂2

k∑

i=1

(xC
i + xT

i )αi(1− αi) ≤ 0 (2.20)

since αi = θ̂nT
i

nC
i +θ̂nT

i

< 1 for all i.
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2.4 Reliable construction of the profile MLE

The score equation leads to f(θ) =
∑k

i=1 xT
i −

∑k
i=1

(xC
i +xT

i )θnT
i

nC
i +θnT

i
= 0 or

k∑

i=1

xT
i =

k∑

i=1

(xC
i + xT

i )θnT
i

nC
i + θnT

i

(2.21)

which can be equivalently written as

θ =
∑k

i=1 xT
i∑k

i=1
(xC

i +xT
i )nT

i

nC
i +θnT

i

=: Φ(θ) (2.22)

where we take the right-hand side of (2.22) as a definition of the mapping Φ(θ).
Evidently, the score equation has been equivalently transferred to a fixed point
equation Φ(θ) = θ. A graph of this fixed point mapping is provided in Figure
2.1 for the data of Table 1.5.

The benefit of this equivalence can be seen in the fact that the fixed point
mapping can be used in a constructive way to generate the profile maximum
likelihood estimator. Start with some initial value θ(0) and use Φ to yield
θ(1) = Φ(θ(0)), in general, θ(n) = Φ(θ(n−1)) for n = 1, 2, 3, .... The question
arises under which conditions this sequence (θ(n)) will converge to the profile
maximum likelihood estimator (θ̂PMLE)? To answer this question with a clear
yes we need a result from fixed point theory.

Lemma 4.1 Let Φ(θ) be a real-value mapping. If there exist values θL and
θU such that

1. θL < θU

2. Φ(θL) ≥ θL and Φ(θU ) ≤ θU

3. Φ is monotone, e.g., θ1 ≤ θ2 implies Φ(θ1) ≤ Φ(θ2)

then any sequence (θn) constructed by θ(n) = Φ(θ(n−1)) with θL ≤ θ(0) ≤ θU

converges to a fixed point of Φ.

We now verify that Φ defined in (2.22) fulfills the conditions of Lemma 4.1. To
verify monotonicity we show that the first derivative of Φ is positive. Indeed,

Φ′(θ) =

∑k
i=1 xT

i

∑k
i=1

(xC
i +xT

i )(nT
i )2

(nC
i +θnT

i )2

(
∑k

i=1
(xC

i +xT
i )nT

i

nC
i +θnT

i
)2

> 0

for all θ ≥ 0. This proves monotonicity. To find θL and θU note that Φ(0) =∑k
i=1 xT

i
∑k

i=1
(xC

i
+xT

i
)nT

i
nC

i

> 0. In other words, we can take θL = 0. To prove the exis-

tence of a θU , we will show that limθ→∞Φ(θ)/θ < 1. Now,

Φ(θ)/θ =
∑k

i=1 xT
i∑k

i=1
(xC

i +xT
i )θnT

i

nC
i +θnT

i

= (2.23)
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=
∑k

i=1 xT
i∑k

i=1
(xC

i +xT
i )

nC
i /θnT

i +1

→θ→∞

∑k
i=1 xT

i∑k
i=1(x

C
i + xT

i )
< 1

which is the desired result. Since θL and θU correspond to the left and right
endpoints of (0,∞), so we have that the fixed point procedure is guaranteed
to converge from any initial value in (0,∞).

2.4.1 Numerical illustration

We illustrate this method with the data we have discussed in Chapter 1.
Using the data from Table 1.5 we can calculate the result in Table 2.1 which
illustrates the convergent behavior of the fixed point sequence. The sequence
has been started at θ(0) = 1 corresponding to the situation of no effect. The
sequence stopped when |θ(n−1) − θ(n)| ≤ 0.00001. Thirteen iterations were
required to reach this stop rule. To measure the rate of convergence it is
customary to look at the ratios of differences rn = |θ(n+1)−θ(n)|

|θ(n−1)−θ(n)| . This can be
constructed from column 4 of Table 2.1 and is approximately rn = 0.4595 for
all n. Evidently, the ratio rn is constant for all n and this case is called linear
convergence. In theoretical terms the linear convergence rate is provided by
the first derivative of the fixed point mapping at θPMLE . Clearly, the smaller
this value is in absolute terms, the faster is the convergence. The best would be
a situation in which Φ′(θPMLE) ≈ 0. This corresponds to a mapping, which is
almost horizontally tangent at the fixed point. Consider Figure 2.1: the slope
of the tangent at the fixed point is not close to zero at all.

However, things can become worse. Consider Figure 2.2: the slope of the tan-
gent at the fixed point is closer to one than in Figure 2.1. Consequently, the
convergence rate is bad, and the sequence needs considerable time to reach
the fixed point.

2.5 A fast converging sequence

Let us consider again (2.21)
k∑

i=1

xT
i =

k∑

i=1

(xC
i + xT

i )θnT
i

nC
i + θnT

i

which we write as
k∑

i=1

xT
i (nC

i + θnT
i )

nC
i + θnT

i

=
k∑

i=1

(xC
i + xT

i )θnT
i

nC
i + θnT

i

(2.24)

or equivalently,
k∑

i=1

xT
i nC

i wi(θ) =
k∑

i=1

xC
i nT

i wi(θ)θ
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Figure 2.2 Graph of Φ(θ) for the data of table 1.11

with wi(θ) = 1/(nC
i + θnT

i ). (2.24) can be solved for θ such that

θ =
∑k

i=1 xT
i nC

i wi(θ)∑k
i=1 xC

i nT
i wi(θ)

:= Γ(θ). (2.25)

(2.25) has the feature that for θ = 1 the Mantel-Haenszel estimate of relative
risk occurs:

θ̂MH =
∑k

i=1 xT
i nC

i wi(1)∑k
i=1 xC

i nT
i wi(1)

=
∑k

i=1 xT
i nC

i /(nC
i + nT

i )∑k
i=1 xC

i nT
i /(nC

i + nT
i )

.

Also the fixed point iteration based upon Γ(θ) provides a fast converging
sequence θ(n) = Γ(θ(n−1). In Figure 2.3, the slope of Γ(θ) at the fixed point
is horizontal, providing a faster converging sequence. This sequence is called
quadratically convergent to θ̂ if |θ(n+1)−θ̂|

|θ(n)−θ̂|2 ≤ C for some constant C and all
n. It follows that a sequence based upon the fixed point mapping Γ(θ) is
quadratically convergent if Γ′(θ)|θ̂ = 0 †. It appears that this is the case for the
data of Table (1.5) as demonstrated in Figure 2.3. Consider the data of Table
1.11 where the sequence based upon Φ has been converging very slowly. For
those data the fixed point mapping Γ is given in Figure 2.4. Again, convergent

† This follows from a second order Taylor expansion of Γ(θ) around θ̂: Γ(θ(n)) ≈ Γ(θ̂) +

Γ′(θ̂)(θ(n) − θ̂) + Γ′′(θ̂)(θ(n) − θ̂)2/2 = Γ(θ̂) + Γ′′(θ̂)(θ(n) − θ̂)2/2. We assume that

θ(n+1) − θ̂ ≤ (θ(n) − θ̂)2 × C which serves as boundedness of the second derivative.
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Figure 2.3 Graph of Γ(θ) for the data of Table 1.5

behavior appears to be quadratic (a general proof is still outstanding), and
it can be expected that the iteration will only need a few steps. Indeed, for
this case iteration based upon Γ stops only after 5 steps, whereas the iteration
based upon Φ stops after 60 steps.

2.5.1 Comparing two fixed point iterations

A more complete comparison of the fixed point mappings of Φ and Γ is pro-
vided in Table 2.4. Here, both iterative schemes are compared with respect to
the question of which of the two uses fewer steps to reach the stop rule that
two consecutive iterations are smaller than 0.00001. In all cases considered
in Table 2.4 the fixed point procedure Γ using the Mantel-Haenszel weights
requires considerably fewer steps to complete computation in comparison to
the fixed point procedure Φ. This makes the iteration (2.25) more suitable
for practical use. On the other hand, there is no proof of convergence for the
iteration (2.25). In fact, the fixed point mapping is not monotone as Figure
2.4 shows. Although nonconvergence of a sequence based upon the iteration
(2.25) was never observed in practice, more analysis and experience with this
mapping should be collected. However, we would like to mention one possi-
ble explanation for the excellent convergent behavior of the sequence based
upon the iteration (2.25). In the balanced case, e.g., nT

i = nC
i for all i, the

iteration based on (2.25) converges in one step. This also means that in this
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case there exists a closed form solution for the profile maximum likelihood
estimator. Since often multicenter trials are balanced or nearly balanced, only
a few steps are required with this iteration.

Figure 2.4 Graph of Γ(θ) for the data of Table 1.11

If iteration is started with θ = 1, the first iteration using (2.26) leads to the
well-known Mantel-Haenszel estimator of the risk ratio:

θ =
∑k

i=1 wi(1)xT
i nC

i∑k
i=1 wi(1)xC

i nT
i

=
∑k

i=1 xT
i nC

i /ni∑k
i=1 xC

i nT
i /ni

, (2.26)

where ni = nT
i + nC

i is the total person-time of the i-th center. For the
time being, we remain with the Mantel-Haenszel estimator (MHE) θ̂MH =∑k

i=1 xT
i nC

i /ni∑k
i=1 xC

i nT
i /ni

and compare it with the PMLE under effect homogeneity. Clearly,

if the trial is completely balanced nT
i = nC

i for all centers i, then the parameter-
dependent weights cancel out, and PMLE and MHE are identical. Typically,
MHE and PMLE are close and the loss of efficiency in using the MHE is not
high. However, the exception is the situation of sparsity. Simulation studies
provide some evidence that in this case there is considerable loss of efficiency,
in particular, when θ is bounded away from 1. To demonstrate this find-
ing a simulation experiment was conducted. Since differences between PMLE
and MHE can only be expected for highly unbalanced and sparse multicenter
studies, nT

i and nC
i were generated from Poisson distributions with Poisson

parameters 3 and 6, where the arm allocation of the Poisson parameters were
random to guarantee that the trial is unbalanced. The baseline parameter pC

i
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was chosen from a uniform distribution with parameters [0.1,0.3]. The risk
ratio parameter was kept fixed for each simulation (replication size 10,000)
and risk ratio values which ranged from 0.00001 to 3.3333 were considered.
The number of centers k was chosen to be 5. The results for the two estima-
tors are provided in Figure 2.5 for the bias and in Figure 2.6 for the variance
indicating a superior behavior of the PMLE with respect to both criteria.

Figure 2.5 A comparison of the profile maximum likelihood estimator (PL) and the
Mantel-Haenszel estimator (MH) for the sparse multicenter trial with respect to bias
based upon a simulation

2.6 Inference under effect homogeneity

2.6.1 Variance estimate of the PMLE

Another beneficial aspect of the profile likelihood method lies in the fact that
it easily provides an estimate of the variance of the PMLE. We will use a
standard result from likelihood theory (see, for example Le (1992), p. 72–73)
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Figure 2.6 A comparison of the profile maximum likelihood estimator (PL) and the
Mantel-Haenszel estimator (MH) for the sparse multicenter trial with respect to vari-
ance based upon a simulation

that the variance of the maximum likelihood estimate can be approximated
by the negative inverse of the second derivative of the log-likelihood function
which is evaluated at the maximum likelihood estimate. We apply this result
to the profile likelihood situation. In our case we have that

L∗′′(θ) = {[
k∑

i=1

xT
i ]log(θ)−

k∑

i=1

(xC
i + xT

i )log(nC
i + θnT

i )} (2.27)

= −
∑k

i=1 xT
i

θ2
+

k∑

i=1

(xC
i + xT

i )(nT
i )2

(nC
i + θnT

i )2
.
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It was shown in (2.20) that L∗′′(θ̂) < 0 at the profile maximum likelihood
estimate θ̂ = θ̂PMLE . This will guarantee that the estimated variance

v̂ar(θ̂) = −1/L∗′′(θ̂) = {
∑k

i=1 xT
i

θ̂2
−

k∑

i=1

(xC
i + xT

i )(nT
i )2

(nC
i + θ̂nT

i )2
}−1 (2.28)

is positive at the PMLE. (2.28) was further simplified in (2.20) to

v̂ar(θ̂) = θ̂2{
k∑

i=1

xiαi(θ̂)(1− αi(θ̂))}−1 (2.29)

with xi = xC
i + xT

i and αi(θ̂) = θ̂nT
i

nC
i +

ˆ̂
θnT

i

.

2.6.2 Variance estimate of the Mantel-Haenszel estimate

The Mantel-Haenszel estimate of the common relative risk is given as θ̂MH =∑
i xT

i nC
i /ni∑

i xC
i nC

i /ni
with ni = nC

i +nT
i . Although the formula for the Mantel-Haenszel

relative risk estimate is quite elementary, a widely accepted expression for its
variance has been only given recently (Greenland and Robins (1985), see also
Woodward (1999)). We have that

v̂ar(log(θ̂MH)) =
∑

i(n
T
i nC

i xi − xT
i xC

i ni)/(ni)2

(
∑

i xT
i nC

i /ni)(
∑

i xC
i nT

i /ni)
(2.30)

where xi = xC
i + xT

i as before.

2.6.3 Comparing the two variance approximations

Since the Mantel-Haenszel estimator is very popular it appears valuable to
compare both variance approximations, namely based upon the profile like-
lihood (2.29) and the one based upon the Greenland-Robins formula (2.34).
Here, one problem occurs, namely that the variance (2.29) is given on the
relative risk scale whereas (2.34) is given on the log-relative risk scale. One
could use the δ-method, so that v̂ar(θ̂MH) ≈ (eθ̂MH )2v̂ar(log(θ̂MH)), though
we prefer to give a more direct comparison.

Let us write the profile log-likelihood (2.11) using φ = log(θ)

L∗(φ) = [
k∑

i=1

xT
i ]φ−

k∑

i=1

(xC
i + xT

i )log(nC
i + eφnT

i ), (2.31)

with a second derivative

L∗
′′
(φ) = −

k∑

i=1

xin
T
i nC

i eφ

(nC
i + eφnT

i )2
= −

k∑

i=1

xin
T
i nC

i θ

(nC
i + θnT

i )2
= −

k∑

i=1

xiαi(1− αi),

(2.32)
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so that an estimate of the variance of the PMLE of φ is provided as

v̂ar(φ̂) = ̂var(log θ̂) =

(
k∑

i=1

xiαi(1− αi)

)−1

, (2.33)

where αi = θ̂nT
i

nC
i +θ̂nT

i

. The Mantel-Haenszel estimate of the common relative

risk is given as θ̂MH =
∑

i xT
i nC

i /ni∑
i xC

i nT
i /ni

with ni = nC
i +nT

i (Greenland and Robins
(1985), see also Woodward (1999)). We have the Greenland-Robins formula
for the variance of the logarithm of the Mantel-Haenszel estimator as

v̂ar(log(θ̂MH)) =
∑

i(n
T
i nC

i xi − xT
i xC

i ni)/(ni)2

(
∑

i xT
i nC

i /ni)(
∑

i xC
i nT

i /ni)
(2.34)

where xi = xC
i +xT

i as before. We note that (2.34) has been developed for the
situation of identical person-times in the centers reflecting a binomial sampling
plan. Breslow (1984) provided a robust variance formula for the situation of
person-specific observation times.

Typically, not only MHE and PMLE, but also the variances of the MHE (2.34)
and of the PMLE (2.33) are close. However, the exception is the situation of
sparsity. Simulation studies provide some evidence that in this case the vari-
ance estimator (2.33) is behaving better than in (2.34). To demonstrate this
fact the following simulation experiment was conducted. In the balanced trial
PMLE and MHE are identical, so that direct comparability of (2.33) and
(2.34) are possible. A sparse balanced multicenter trial was simulated, with
nT

i = nC
i being generated from a Poisson distribution with Poisson parameter

5. The baseline parameter pC
i was chosen from a uniform with parameters

[0.1,0.3]. The risk ratio parameter was kept fixed for each simulation (repli-
cation size 10,000) and risk ratio values which ranged from 0.00001 to 3.3333
were considered. The number of centers k was chosen to be 20. The results for
the two variance estimators are provided in Figure 2.7 for the bias of the vari-
ance estimators and in Figure 2.8 for the variance of the variance estimators
indicating a slightly better behavior for (2.33) with respect to both criteria.
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Figure 2.7 A comparison of variance formulas provided by (2.33) (PML) and Green-
land and Robins (2.34) (Green) for the sparse multicenter trial with respect to bias
based upon a simulation
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Table 2.1 Illustration of convergence of the fixed point procedure based upon the
mapping Φ(θ) for the data of table 1.5

Iteration n θ(n−1) θ(n) |θ(n−1) − θ(n)|
1 1.00000000 .88705370 .11294630
2 .88705370 .83522160 .05183208
3 .83522160 .81141940 .02380222
4 .81141940 .80048530 .01093411
5 .80048530 .79546170 .00502360
6 .79546170 .79315330 .00230843
7 .79315330 .79209270 .00106061
8 .79209270 .79160520 .00048751
9 .79160520 .79138110 .00022405
10 .79138110 .79127820 .00010288
11 .79127820 .79123100 .00004721
12 .79123100 .79120920 .00002182
13 .79120920 .79119930 .00000989
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Table 2.2 Illustration of convergence of the fixed point procedure based upon the
mapping Φ(θ) for the data of Table 1.11

Iteration n θ(n−1) θ(n) |θ(n−1) − θ(n)|
1 1.00000000 2.33891000 1.33891000
2 2.33891000 3.57786500 1.23895500
3 3.57786500 4.65437100 1.07650600
4 4.65437100 5.56571300 .91134170
5 5.56571300 6.32706400 .76135060
6 6.32706400 6.95822100 .63115790
7 6.95822100 7.47889400 .52067230
8 7.47889400 7.90700600 .42811250
9 7.90700600 8.25819800 .35119150
10 8.25819800 8.54580400 .28760620
11 8.54580400 8.78104100 .23523710
... ... ... ...
50 9.82232500 9.82240500 .00008011
51 9.82240500 9.82247000 .00006485
52 9.82247000 9.82252200 .00005245
53 9.82252200 9.82256500 .00004292
54 9.82256500 9.82259900 .00003433
55 9.82259900 9.82262700 .00002766
56 9.82262700 9.82265000 .00002289
57 9.82265000 9.82266800 .00001812
58 9.82266800 9.82268400 .00001621
59 9.82268400 9.82269800 .00001335
60 9.82269800 9.82270700 .00000954

Table 2.3 Illustration of convergence of the fixed point procedure based upon the
mapping Γ(θ) for the data of Table 1.11

Iteration n θ(n−1) θ(n) |θ(n−1) − θ(n)|
1 1.00000000 10.04283000 9.04283000
2 10.04283000 9.82654800 .21628280
3 9.82654800 9.82281700 .00373077
4 9.82281700 9.82275400 .00006294
5 9.82275400 9.82275200 .00000191
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Table 2.4 Number of steps needed for reaching the stop rule for the fixed mapping
Γ(θ) and Φ(θ)

Data Using Γ(θ) Using Φ(θ)

Table 1.5 3 13
Table 1.8 4 15
Table 1.9 4 11
Table 1.10 3 13
Table 1.11 5 63
Table 1.12 2 2

Figure 2.8 A comparison of variance formulas provided by (2.33) (PML) and Green-
land and Robins (2.34) (Green) for the sparse multicenter trial with respect to vari-
ance based upon a simulation



CHAPTER 3

Modeling unobserved heterogeneity

In this chapter the focus is on coping with unobserved heterogeneity. This
problem has received considerable attention in the literature. There appears
to be a common understanding that unobserved heterogeneity is abundant in
most meta-analyses. Engels et al. (2000) investigate 125 meta-analyses and
conclude that

heterogeneity was common regardless of whether treatment effects were measured
by odds ratios or risk differences.

Approaches differ in the way they cope with this important problem. In the
simplest approach, the variance of the pooled estimator is supplemented by
an additional variance term, the heterogeneity variance. This heterogeneity
variance can be estimated in various ways such as the moment approach
(DerSimonian and Laird (1986), Malzahn et al. (2000), Böhning et al. (2002),
Böhning et al. (2002) or Sidik and Jonkman (2005) or the maximum likelihood
method (Hardy and Thompson (1996) or Whitehead and Whitehead (1991)).
After the heterogeneity variance has been estimated the pooled estimator is
recomputed using weights that incorporate the heterogeneity variance and a
- usually enlarged - confidence interval is computed on basis of the incorpo-
rated heterogeneity variance. In addition, the random effects approach might
be supplemented by a more complete modeling (see also Hardy and Thomp-
son (1998) and Hedges and Vevea (1998)). A latent variable, an unobserved
covariate might be supposed to be the source of this form of heterogeneity.
Parametric approaches assume a parametric distribution for the latent vari-
able (see Hardy and Thompson (1998), Martuzzi and Hills (1995)), and the
approaches differ usually in the kind of parametric distribution that is as-
sumed for the latent variable such as normal or Gamma. This latent variable
might be a missing covariate (see Section 4) such as a treatment modification
or different patient population, although other sources such as correlation of
observations might be a source for this kind of heterogeneity. It is also dis-
cussed frequently whether the underlying risk is a source of heterogeneity
for the relative risk (see Sharp et al. (1996), Sharp and Thompson (2000),
Brensen et al. (1999), Egger and Smith (1995), van Houwelingen and Senn
(1999), Thompson (1994), Arends et al. (2000)). It is pointed out here that
the profile likelihood approach has the advantage of eliminating the effect of
the baseline parameter before considering heterogeneity in the relative risk. In

41
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the following we develop a nonparametric random effects approach for mod-
eling unobserved heterogeneity.

3.1 Unobserved covariate and the marginal profile likelihood

In this section, a general approach for coping with center-effect heterogeneity
is proposed. Assume that the population of all centers consists of m subpopu-
lations with weights qj and subpopulation risk ratio θj . Let us consider again
the likelihood (2.3) where we - for simplicity of presentation - consider only a
single center:

Po(xT , nT pCθ)× Po(xC , nCpC) (3.1)

which becomes - after replacing pC by their conditional maximum likelihood
estimates xC+xT

nC+θnT

L(x|θ) = Po(xT , nT xC + xT

nC + θnT
θ)× Po(xC , nC xC + xT

nC + θnT
), (3.2)

where Po(u, λ) = exp(−λ)λu/u!. Consider next the situation that for each
observation x = (xT , nT , xC , nC)′ there is an unobserved m-vector yj with a
1 in the j−th position (and 0 otherwise) assigning the component population
j to which the observation belongs to. Consider the joint density f(x,yj) of
x and yj which can be written as

f(x,yj) = f(x|yj)f(yj) =
m∏

j=1

(L(x|θj)qj)
yj (3.3)

where qj is the probability, that observation x comes from component pop-
ulation yj where the relative risk θj is valid. For details see McLachlan and
Krishnan (1997) or McLachlan and Peel (2000). Note that (3.3) is an unob-
served or latent likelihood. In these instances, the margin over the unobserved
vector yj is taken, leading to

∑
yj

m∏

j=1

(L(x|θj)qj)
yj =

m∑

j=1

L(x|θj)qj . (3.4)

In detail, the margin over the unobserved vector yj leads to the marginal
density

∑m
j=1 Po(xT , nT xC+xT

nC+θnT θj)× Po(xC , nC xC+xT

nC+θjnT )qj (3.5)

where qj is the weight, that the j−th population with parameter value θj

receives. Taking now the log-likelihood over all centers and ignoring terms
that do not involve the parameters the following mixture profile log-likelihood
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is achieved:
∑k

i=1 log
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− xin

T
i θj

nC
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=
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i=1 log
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i=1 log

[∑m
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xT
i

j

(
1

nC
i +θjnT

i

)xi

qj

]
= L∗(Q)

(3.6)
which we may sometimes write as

L∗(Q) =
k∑

i=1

log




m∑

j=1

fi(θj)qj


 (3.7)

where fi(θj) =
θ

xT
i

j

(nC
i +θjnT

i )xi
and xi = xC

i + xT
i . Also, Q denotes the discrete

probability distribution Q =
(

θ1 ... θm

q1 ... qm

)
giving weights qj to the risk ratio

θj in subpopulation j, also called the mixing distribution.

3.2 Concavity, the gradient function and the PNMLE

It is easy to verify that L∗(Q) is a concave function in the set Ω of all dis-
crete probability distributions, though this is not necessarily the case for Ωm,
the set of all discrete probability distributions with exactly m support points
(subpopulations). Hence, a global profile mixture maximum likelihood esti-
mator (PNMLE) exists, but the number of support points is itself part of
the estimation process. Let us propose the gradient function as an impor-
tant tool for finding the PNMLE. In particular, set for arbitrary, but fixed

Q =
(

θ1 ... θm

q1 ... qm

)
and any θ > 0, the gradient function is

d(θ,Q) =
1
k

k∑

i=1

fi(θ)∑m
j=1 fi(θj)qj

(3.8)

We can define the gradient function (3.8) by means of the concept of the di-
rectional derivative where it is contained as the essential part (for details see
Lindsay (1983), Lindsay (1995), Böhning (2000)). A first major application
arises in the general mixture maximum likelihood theorem which states that

Q̂ =
(

θ̂1 ... θ̂m

q̂1 ... q̂m

)
is PNMLE if and only if d(θ, Q̂) ≤ 1 for all θ > 0. In

addition, for the support points of Q̂ we have that the upper bound becomes
sharp, e.g., d(θ̂j , Q̂) = 1. From this result, we can identify effect homogene-
ity without further testing. Indeed, let θ̂PMLE denote the profile maximum
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Figure 3.1 Gradient function d(θ, θ̂PMLE) for Lidocaine trial (see also Table 1.7)

likelihood estimator under homogeneity. If

d(θ, θ̂PMLE) =
1
k

k∑

i=1

fi(θ)

fi(θ̂PMLE)
≤ 1,

for all θ > 0, then θ̂PMLE must be the PNMLE, and no further search for
heterogeneity is necessary.

Lidocaine trial. We come back to the multicenter study presented in Ta-
ble 1.7. A graph of the gradient function θ → d(θ, θ̂PMLE) for the maximum
likelihood estimator θ̂PMLE of θ under homogeneity (more precisely, the one-
point probability measure giving all weight to θ̂PMLE) is provided in Figure
3.1 showing clear evidence of homogeneity, making further testing for hetero-
geneity unnecessary.

3.2.1 Cholesterol lowering treatment and coronary heart disease

Let us consider again the multicenter study presented in Table 1.6. Here,
the graph (see Figure 3.2) of the gradient function θ → d(θ, θ̂PMLE) for the
maximum likelihood estimator θ̂PMLE of θ under homogeneity indicates clear
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Figure 3.2 Gradient function d(θ, θ̂PMLE) for cholesterol lowering trial (see also
Table 1.6)

evidence of heterogeneity. The upper bound one is violated (see Figure 3.2)
and θ̂PMLE cannot be the PNMLE. In fact, it is clear that the PNMLE will
have more than one support point.

For the general construction of the PNMLE, numerical algorithms are re-
quired.

3.3 The PNMLE via the EM algorithm

A major tool for constructing the maximum likelihood estimates is the EM al-
gorithm (Dempster et al. (1977), McLachlan and Krishnan (1997)). It requires
the specification of a suitable complete data likelihood, which for mixtures is
conventionally taken as

k∏

i=1

m∏

j=1

(
Po(xT

i , nT
i

xC
i + xT

i

nC
i + θjnT

i

θj)× Po(xC
i , nC

i

xC
i + xT

i

nC
i + θjnT

i

)× qj

)yij

, (3.9)

where yij = 1, if center i belongs to subpopulation j, and 0 otherwise. Since
yij are unobserved, they are replaced in the E-step of the EM algorithm by
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their expected values

eij = E(Yij |Q, data )

=
Po(xT

i ,nT
i
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i +xT

i
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+θjnT
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(3.10)

Replacing yij in (3.9) by their expected values leads to the expected complete
data likelihood

k∏

i=1

m∏

j=1

(
Po(xT

i , nT
i

xC
i + xT

i

nC
i + θjnT

i

θj)× Po(xC
i , nC

i

xC
i + xT

i

nC
i + θjnT

i

)× qj

)eij

, (3.11)

which can be maximized in θj and qj , separately. This established the M-step
of the EM algorithm. In fact, we find easily that

q̂j =
1
k

k∑

i=1

eij .

Furthermore, θ̂j can be found from the equation

k∑

i=1

eijx
T
i

θj
− eijxin

T
i

nC
i + θjnT

i

= 0

by using the iteration

θ̂j =
∑k

i=1 eijx
T
i nC

i wi(θ̂j)∑k
i=1 eijxC

i nT
i wi(θ̂j)

(3.12)

with wi(θ) = 1/(nT
i θ + nC

i ), in analogy to the homogenous case (2.14).

3.4 The EMGFU for the profile likelihood mixture

When the gradient function indicates heterogeneity, usually the number of
components adequate to model this heterogeneity will be unknown and sev-
eral values for m need to be considered. Hence, it appears appropriate to
consider all possible values of m, starting from m = 1 to the number of com-
ponents involved in the PNMLE. The following algorithm is similar to the EM
algorithm with a gradient function update (EMGFU) (Böhning (2003)).

The initial step starts with the case of homogeneity (m = 1) and the com-
putation of the profile maximum likelihood estimator under homogeneity. If
the gradient function violates the upper bound, e.g., d(θmax, θPMLE) > 1,
then the number of components is increased to m = 2 and the EM algorithm
of the previous section is utilized with initial values for the two components
θ1 = θPMLE and θ2 = θmax to compute a discrete two-support point proba-
bility distribution Q(2). Otherwise (if the gradient function does not violate
the upper bound), the algorithm is stopped.
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Now, suppose that the EM algorithm has generated a current value of m for
a discrete probability distribution Q(m) which has support points θ1, ..., θm. If
the gradient function violates the upper bound, e.g., d(θmax, Q(m)) > 1, then
the number of components is increased to m = m + 1 and the EM algorithm
of the previous section is utilized with initial values for the m + 1 compo-
nents θ1, ..., θm and θm+1 = θmax to compute a discrete (m+1)-support point
probability distribution Q(m+1). Otherwise (if the gradient function does not
violate the upper bound), the algorithm is stopped. This step is repeated until
the PNMLE is reached. The advantage of the EMGFU lies in the fact that it
combines a strategy for generating the nonparametric profile maximum likeli-
hood estimator with a search for the best local mixture maximum likelihood
estimator with exactly m components.

3.4.1 Cholesterol lowering treatment and coronary heart disease.

We would like to demonstrate the EMGFU for the multicenter trial given in
Table 1.6). In this case, we had found clear evidence of heterogeneity (see Sec-
tion 3.2). Table 3.1 provides details on this analysis. The EMGFU algorithm
starts with homogeneity and provides θPMLE = 0.9716, then increases the
number of support points stepwise by means of the gradient function until the
nonparametric profile maximum likelihood estimator with m = 4 components
is reached. Indeed, from the gradient function plot (Figure 3.3), it is evident,
that the global nonparametric profile maximum likelihood estimator has been
reached.

3.5 Likelihood ratio testing and model evaluation

Profile likelihoods behave similarly to likelihoods. However, for mixture mod-
els this just means that we have to face the same problems. Profile likelihood
ratios will not have standard χ2 distributions, so that choices for the number
of components, solely based upon the likelihood ratio, might be misleading.
Then should be accompanied by other selection criteria such as the Bayesian
Information Criterion (BIC) which has proved to be a valuable selection crite-
rion in other settings. McLachlan and Peel (2000) discuss and compare various
selection criteria. Within the simpler criteria, the Akaike Information Crite-
ria (AIC) shows a tendency to select too many components (overestimate m),
whereas the BIC, though not always correct, behaves better. In Table 3.1,
it can be seen that the best model according to BIC is the model with two
components.



48 MODELING UNOBSERVED HETEROGENEITY

Table 3.1 Results of the mixture model fitting for the trials of cholesterol lower-
ing treatment and coronary heart disease given in Table 1.6; Q̂(m) is the mixture
maximum profile likelihood estimate with m components

m θ̂j q̂j d(θmax, Q̂(m)) L∗(Q̂(m)) BIC

1 0.9716 1 10,518.11 −50, 172.01 −100, 347.52

2 1.0058 0.8901 1.7856 −50, 161.54 −100, 333.57
0.4401 0.1099

3 0.9776 0.8029 1.2998 −50, 160.62 −100, 338.72
0.4283 0.1013
1.2827 0.0958

4 1.0016 0.6546 1.0000 −50, 159.66 −100, 343.79
PNMLE 0.3665 0.0558

0.6962 0.1916
1.2793 0.0980

3.6 Classification of centers

Note that for i fixed, eij , as given in (3.10), is a probability distribution. In
fact, eij is the posterior probability for center i belonging to subpopulation
j. This enables classification of center i into that subpopulation j where the
posterior probability is the largest. In the cholesterol lowering trial there was
a PNMLE found consisting of four subpopulations (see Table 3.1. However,
according to the BIC, only two subpopulations are required. Table 3.2 provides
the posterior probabilities for each of the 33 centers including a classification
of each center into the component, associated with the highest posterior.

3.7 A reanalysis on the effect of beta-blocker after myocardial
infarction

Returning to the MAIPD for studying the effect of beta-blockers treatment
for reducing mortality after myocardial infarction (Yusuf et al. (1985)) is pre-
sented in Table 1.5 in Chapter 1. A few important aspects were already men-
tioned in Chapter 1:

• It can be easily seen which of the studies have positive and which have
negative effects.

• Significant positive effects can be easily identified by finding those studies
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Figure 3.3 Gradient function d(θ, Q̂PNMLE) (see also Table 3.1) for cholesterol low-
ering trial (see also Table 1.6)

with confidence intervals above the no-effect line, the horizontal line at zero.
Here, there are none.

• Significant negative effects can also be easily identified by finding those
studies with confidence intervals below the no-effect line. These are the
four studies: 7, 10, 21, and 22.

• Some studies show strong negative effects (stronger than the studies 7 and
10 which had a significant negative effect) but are not significant, since
there is a large variance associated with these studies due to small sizes.
This refers to studies 2, 3, 6, and 13.

These points cause three questions of interest to arise:

• a) Is there an effect of treatment?

• b) Is this effect homogeneous? In particular, does study 14 with its border-
line significant harmful effect provide enough empirical evidence to create
a positive effect cluster, potentially including also other studies such as
numbers 5, 17, 18, and 19?

– b1) If it is homogeneous, how large is its effect size?
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– b2) If the effect is heterogeneous, what are the clusters involved?

An analysis of unobserved heterogeneity shows a very mild form of hetero-
geneity: a mixture model with two components provides the nonparametric
maximum likelihood estimate. The results are provided in Table 3.3. If we com-
pare the log-likelihoods for the homogeneity model and the two-component
mixture model we find a value for the difference of 0.4 and a considerably
higher BIC value for the homogeneity model. We can conclude that there is a
clear and significant beneficial effect of beta-blockers therapy, at least on the
basis of those data. See also Figure 3.4 for an illustration.

Although there appears to be no significant second cluster, it might be inter-
esting to see which studies would have been allocated to the second cluster
using the MAP rule. We find only study 14 would have been allocated to the
second component. This underlines the clarity of the resulting analysis.
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Figure 3.4 Effect of beta-blockers for reducing mortality after myocardial infarction
(Yusuf et al. (1985)) in 22 studies expressed as log-relative risk with 95% confidence
interval and MLE as summary measure with 95% confidence interval
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Table 3.2 Classification of centers for the cholesterol lowering treatment trials given
in Table 1.6 according to the posterior distribution when using the two-component
mixture Q̂(2) (see Table 3.1)

posterior of component classified as
Center 1 2 belonging to

1 0.09775 0.902248 2
2 0.99993 0.000069 1
3 0.8994 0.100599 1
4 0.73118 0.268823 1
5 0.78973 0.21027 1
6 0.97666 0.023345 1
7 0.00002 0.999979 2
8 0.98652 0.01348 1
9 1 0 1
10 0.99993 0.000068 1
11 0.63296 0.367043 1
12 0.99889 0.001115 1
13 0.99951 0.000493 1
14 0.82041 0.179595 1
15 1 0 1
16 1 0 1
17 0.99498 0.005023 1
18 0.99958 0.000422 1
19 0.91806 0.081936 1
20 0.98398 0.016024 1
21 1 0.000001 1
22 0.98862 0.011379 1
23 0.90455 0.09545 1
24 1 0 1
25 0.99441 0.005587 1
26 0.88153 0.118473 1
27 0.99956 0.000443 1
28 1 0.000005 1
29 0.99997 0.000029 1
30 0.99963 0.000369 1
31 1 0 1
32 0.88138 0.118618 1
33 0.89578 0.104223 1
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Table 3.3 Results of the mixture model fitted for the MAIPD on the effect of beta-
blockers treatment for reducing mortality after myocardial infarction (Yusuf et al.
(1985)). Q̂(m) is the mixture maximum profile likelihood estimate with m compo-
nents

m θ̂j q̂j L∗(Q̂(m)) BIC

1 0.7912 1 −12, 979.3 −25, 961.7

2 0.7685 0.9054 −12, 978.9 −25, 967.2
PNMLE 1.1290 0.0946





CHAPTER 4

Modeling covariate information

The modeling of unobserved heterogeneity may be useful when heterogeneity
of treatment effect is present, but it cannot obviously unmask the possible
reasons for heterogeneity between study results. In particular, understanding
the reasons for some heterogeneity is more important than the evidence for
its existence.

This chapter provides a review of classical methods for investigating the rea-
sons for heterogeneity of the treatment effects and points out some potential
problems related to them. Additionally, this chapter presents a novel model for
incorporating covariate information which is modeling of covariate information
using the profile likelihood approach and the applications of this model.

4.1 Classical methods

Recent methods have been suggested to incorporate modeling of covariate
information to investigate the reasons for heterogeneity and to estimate the
treatment effect based upon the significant covariates. More recently, there has
been discussion on the choice of appropriate statistical methods to address this
issue. This section provides a review of classical methods and points out some
potential problems related to them at the end of the section.

4.1.1 Weighted regression

These methods use the idea of a generalized linear model to explain the vari-
ation of treatment effects by covariate information (for example, see Hedges
(1994b), Raudenbush (1994), Berkey et al. (1995), Stram (1996), Thompson
and Sharp (1999)). Let yi be the observed treatment effect in the i-th study,
for i = 1, . . . , k. The yi can be the observed log-odds ratio or log-relative
risk in a trial with binary outcome or the observed mean difference in a trial
with continuous outcome. In our case, yi is the observed log-relative risk. It
is assumed that yi are independently distributed as

yi ∼ N(θi, vi) (4.1)

55
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where θi is the true log-relative risk in the i-th study and vi is the variance of
the log-relative risk in the i-th study.

For the fixed-effects model, it is supposed that there are p known covariates
z1, . . . , zp which are presumed to account completely for variation in the true
log-relative risk, so θi is specified by β′zi, where β is a column vector of
regression coefficients (β0, β1, . . . , βp)′ and zi is a column vector that contains
the values of p covariates for study i.

yi ∼ N(β′zi, vi) (4.2)

and the fixed-effects regression model for log-relative risk estimate becomes:

yi = β′zi + ei (4.3)

where ei is the error of estimation of study i. Each ei is statistically indepen-
dent with a mean of zero and variance of vi.

For the random-effects model, it is assumed that the true log-relative risk θi

vary randomly across studies and are independently distributed as:

θi ∼ N(µ, τ2) (4.4)

where µ is the mean of the distribution of θi across studies, and τ2 is the
variance of the distribution of θi across studies. To incorporate the covariates
and thus account for heterogeneity among studies, µ can be specified by β′zi

θi ∼ N(β′zi, τ
2). (4.5)

The random-effects regression model for log-relative risk estimate becomes:

yi = β′zi + δi + ei (4.6)

where δi are the random effects of study i, that is the deviation of study
i’s true treatment effect from the true mean of all studies having the same
covariate values. Each random effect, δi, is assumed to be independent with
a mean of zero and variance τ2, and ei is the error of estimation of study i.
Each ei is statistically independent with a mean of zero and variance of vi.
The design vector zi and within-study variance vi are assumed to be known.
Additionally, regression coefficient vector β and between-study variance τ2

are estimated from the data. Notice that equation (4.6) has two components
in its error term, δi + ei, which are assumed to be independent, leading to a
covariance equals zero, so that the marginal variance of yi is

v∗i = V ar(δi + ei) = τ2 + vi. (4.7)

The statistical literature describes equation (4.6) as a mixed effects linear
model with fixed effects β and random effects δi.

A particular disadvantage of this modeling is the inappropriate identity link
which is used to link covariate information to relative risk, since it does not
guarantee that the relative risk estimates are positive which would be an
essential requirement for a relative risk. This problem is overcome by using
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the canonical link which guarantees that relative risk estimates are positive.
The second disadvantage is a potential violation of the normality assumption
of both the observed treatment effects and the random effects. For example, it
has been assumed that the log-relative risk is normally distributed, however,
this may not be appropriate for small studies or small number of events.
Moreover, in practice, the vi are rather estimated from the data than known,
so the correlation between estimates of log-relative risk and their variance
estimates may produce bias in the estimates of regression coefficients (Berkey
et al. (1995)). These problems are overcome by directly using the structure of
the binary data, binomial or Poisson.

4.1.2 Logistic regression

Another classical method uses directly the binomial structure for the binary
data (for example, see Aitkin (1999b), Thompson and Sharp (1999), Turner
et al. (2000)). Let yij be the number of events in the j-th group (j = 0 control,
j = 1 treated) of study i and nij be the number of subjects in the j-th group
of study i. Also let πij denote the risk (probability) of an event in the j-th
group of study i. It is assumed that yij is independently distributed as:

yij ∼ Binomial(πij , nij). (4.8)

Suppose there are p known covariates z1, . . . , zp which might be the sources of
variation between studies. Let zij be a column vector that contains the values
of p covariates in the j-th group of study i, and uj be an indicator variable for
the treatment group (0 for control, 1 for treated). The conventional logistic
regression model can be written as:

logit(πij) = αi + β∗uj + β′zij (4.9)

where αi is the intercept parameter in study i, β∗ is the overall average value of
log-odds ratio adjusted for covariates, and β is a column vector that contains
the log-odds ratio per unit change for p covariates. For the conventional logistic
regression model, it is assumed that αi is a fixed parameter and β∗ is a fixed
effects parameter. However, there is no allowance for heterogeneity effect in
this model.

One method to incorporate heterogeneity effect into the models is the multi-
level approach. An appropriate model can be written as

logit(πij) = αi + β∗i uj + β′zij (4.10)

where αi is the fixed intercept parameter in study i, and β∗i is the log-odds
ratio in study i which varies randomly across studies and has an independent
normal distribution as:

β∗i ∼ N(β∗, τ2) (4.11)

Notice that in equations (4.9) and (4.10), it is assumed that αi is a fixed pa-
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rameter. However, the number of αi parameters increases with the number of
centers, leading to the Neyman-Scott problem (see Neyman and Scott (1948)).

An alternative multilevel model in which intercept parameters αi are regarded
as random rather than fixed is written as follows:

logit(πij) = αi + β∗i uj + β′zij (4.12)

where the αi are independently distributed as:

αi ∼ N(α, τ2
α) (4.13)

and where the β∗i are independently distributed as:

β∗i ∼ N(β∗, τ2
β). (4.14)

and also cov(αi, β
∗
i ) = ρτατβ , where ρ is the correlation coefficient. An alter-

native formula of equation (4.12) can be written as:

logit(πij) = α + γi + β∗uj + δiuj + β′zij (4.15)

where the γi are independently distributed as

γi ∼ N(0, τ2
α) (4.16)

and where the δi are independently distributed as

δi ∼ N(0, τ2
β). (4.17)

This is the simplest and most conventional multilevel model together with
the random-effects model for β∗i which could lead to an extension of the uni-
variate random effects model to a bivariate normal model. It is important to
consider the covariance between the αi and β∗i in a bivariate normal model. If
cov(αi, β

∗
i ) is assumed to be zero, the between-study variance of the log-odds

across control groups is equal to τ2
α. Meanwhile, that across treatment groups

is equal to τ2
β + τ2

α. The between-study variation in control groups is thereby
forced to be less than or equal to the between-study variation in treatment
groups. This assumption may not be appropriate for the general situation.
When cov(αi, β

∗
i ) is estimated rather than assumed to be zero, the variance-

covariance matrix of the bivariate log-odds parameter estimates is modeled
by a combination of the three parameters τα, τβ , and ρ. This nonzero co-
variance assumption allows the model to investigate a relationship between
baseline risk and treatment effect. However, this alternative model presents
an extended complexity in the multilevel approach. The above issue has been
discussed in Turner et al. (2000).

Notice that in equations (4.9), (4.10), and (4.12), two kinds of parameters
occur. The first type is the parameter of interest, that is the coefficient of
indicator variable β∗ and the coefficients of covariates β. The second type
is the nuisance parameter, that is the intercept parameter αi. However, the
nuisance parameter is not our main parameter of interest, but it is a parameter
that gives a complete description of the model while complicating it. All these
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models, based on the binomial structure of data, suffer from dealing with the
nuisance parameter αi.

4.2 Profile likelihood method

For the reasons mentioned above, the profile likelihood method which is a
traditional method of dealing with nuisance parameters, (see, for example,
Aitkin (1998), Murphy and Van der Vaart (2000), or Pawitan (2001)) becomes
attractive for modeling of covariate information. A novel model for modeling
of covariate information based upon a modification of the generalized linear
model using the profile likelihood method is presented in this section.

4.2.1 A generalized linear model

The theory of generalized linear model was first developed by Nelder and
Wedderburn (1972). In our case, a generalized linear model (McCullagh and
Nelder (1989)) has been applied to explain the variation of treatment effect
by means of covariate information. Let zij be the value of the j-th covariate
in the i-th center, for i = 1, . . . , k and j = 1, . . . , p. The linear predictor ηi for
covariate information in the i-th center can be defined as:

ηi = β0 + β1zi1 + β2zi2 + . . . + βpzip (4.18)

where β0, β1, . . . , βp are the parameters of the model. We consider again the
profile log-likelihood for the relative risk estimator:

L∗(θ) =
k∑

i=1

xT
i log(θi)− (xC

i + xT
i )log(nC

i + θin
T
i ). (4.19)

Here we use the canonical link θi = exp(ηi) to link the linear predictor (4.18)
to the relative risk parameter θi in (4.19) which guarantees that θi ≥ 0 which
is an essential requirement for a relative risk. With the canonical link, the
profile log-likelihood for covariate information becomes

L∗(β) =
k∑

i=1

xT
i ηi − (xC

i + xT
i )log(nC

i + exp(ηi)nT
i ) (4.20)

with ηi = β0 + β1zi1 + β2zi2 + . . . + βpzip.

4.2.2 Finding maximum likelihood estimates

We now estimate the parameters of model βj , for j = 0, 1, . . . , p. To find
the maximum likelihood estimate of βj we need to maximize the profile log-
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likelihood (4.20). For this purpose, consider the partial derivative w.r.t βj

∂L∗

∂βj
(β) =

k∑

i=1

xT
i zij − xin

T
i

exp(ηi)
nC

i + exp(ηi)nT
i

zij (4.21)

where xi = xT
i + xC

i , and the corresponding vector of partial derivatives, the
gradient is:

∇L∗(β) = (
∂L∗

∂β0
, · · · ,

∂L∗

∂βp
)′. (4.22)

Furthermore, Hesse matrix of second derivatives is:

∂2L∗

∂βh∂βj
(β) = −

k∑

i=1

xin
T
i nC

i exp(ηi)
(nC

i + exp(ηi)nT
i )2

zijzih (4.23)

so that (4.23) becomes in matrix form:

∇2L∗(β) =
(

∂2L∗

∂βh∂βj
(β)

)
= −Z ′W (β)Z (4.24)

where Z is the design matrix of covariate information defined as:

Z =




z10 z11 z12 . . . z1p

z20 z21 z22 . . . z2p

. . . . . . .
zk0 zk1 zk2 . . . zkp




k×(p+1)

with
k is the number of centers,
p is the number of covariates,
zi0 is the constant value of coefficient in the i-th center, zi0 = 1,
zi1, . . . , zip is value of covariates in the i-th center,

and W (β) is a diagonal matrix defined as:

W (β) =




w11 w12 w13 . . . w1k

w21 w22 w23 . . . w2k

. . . . . . .
wk1 wk2 wk3 . . . wkk




k×k

with wij = 0, if i 6= j and

wii =
xin

T
i nC

i exp(ηi)
(nC

i + exp(ηi)nT
i )2

.

Then, we used the Newton-Raphson procedure to iteratively construct the
maximum likelihood estimates of βj . Choose some β(0) as initial values (for
example β(0) = 0) and then update β according to:

β(n+1) = β(n) −∇2L∗(β(n))−1∇L∗(β(n)) (4.25)

until convergence.
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4.2.3 Finding standard errors of effect estimates

We can estimate variances of maximum likelihood estimates from the negative
inverse of the information matrix (4.24). The variances estimate equals:

ˆvar(β̂j) = (Z ′W (β̂)Z)−1
jj (4.26)

so that the standard errors become:

ˆs.e.(β̂j) =
√

ˆvar(β̂j) (4.27)

and significance of individual effects can be consequently obtained by means
of a Wald-test defined as:

Tj =
β̂j

ˆs.e.(β̂j)
(4.28)

so that the P-value of Wald-test under the null hypothesis of no effect of the
j-th covariate, can be found as:

P-value = 1− F (Tj) , Tj ≥ 0

with F (Tj) as the cumulative function of the standard normal distribution.

4.2.4 Finding relative risk and 95% CI for covariate information

After finding standard errors of effect estimates, we compute the relative risk
and 95% CI for covariate information as follows:

We consider again the linear predictor model (4.18):

ηi = β0 + β1zi1 + . . . + βpzip. (4.29)

If zi1, zi2, . . . , zip = 0, then ηi = β0, and the relative risk for the i-th center is
estimated as:

θ̂i = exp(β̂0). (4.30)
The associated 95% CI can be defined as:

exp{β̂0 ± 1.96× ˆs.e.(β̂0)}. (4.31)

If zi1, zi2, . . . , zip 6= 0, then ηi = β0 + β1zi1 + . . . + βpzip, and the relative risk
for the i-th center is estimated as:

θ̂i = exp(η̂i) (4.32)

where η̂i = β̂0 + β̂1zi1 + . . . + β̂pzip. The associated 95% CI can be defined as:

exp{η̂i ± 1.96× ˆs.e.(η̂i)} (4.33)

where ˆs.e.(η̂i) can be defined as

ˆs.e.(η̂i) =
√

z′iĈOV (β̂)zi (4.34)

where zi = (zi0, zi1, zi2, . . . , zip)′, with zi0 = 1, and ĈOV (β̂) = (Z ′W (β̂)Z)−1.
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4.3 Applications of the model

Frequently, a MAIPD or a multicenter trial does not only provide information
on treatment and control arms, outcome and sample size. However, it also
includes potentially important coinformation. This might show some joint
variation with the treatment effect. This section illustrates the applications of
the modeling of covariate information using the profile likelihood approach to
two examples of meta-analysis of clinical trials and one sample of a multicenter
trial.

4.3.1 Quitting smoking

The first example is the meta-analysis of 59 trials that evaluates the effect
of nicotine replacement therapy known as NRT on quitting smoking. These
data are taken from DuMouchel and Normand (2000). It is of interest to
find out whether NRT helps a person quit smoking. However, there are two
different forms of NRT (patch and gum) and two different types of support
(high support and low support) in the quitting smoking study. The data of
quitting smoking study in 59 trials are displayed in Table 4.1. It has been
determined that NRT is the binary covariate to describe the form of NRT;
patch (NRT=1) or gum (NRT=0); and Support is the binary covariate to
describe the type of support; high (Support=1) or low (Support=0).

The results of fitting the various models to the quitting smoking data are
presented in Table 4.2. A forward selection procedure and profile likelihood
ratio test (PLRT) have been applied to select the significant covariates. The
critical value (5% level) of PLRT with 1 df, which is 3.841, has been used
for selecting among possible models. The results indicate that the form of
NRT yields the only significant change for the treatment effect of quitting
smoking. The estimation of relative risk and 95% CI are presented in Table
4.3. According to the model without covariates, the relative risk equals 1.57,
it means that the treatment can increase the success of quitting smoking by
an average of 57%. Referring to the model with covariate the form of NRT,
the relative risk equals 1.85 if a patch treatment is used and the relative risk
equals 1.47 if a gum treatment is used. This suggests that there is an increase
of quitting smoking of 85% in patch groups and an increase of quitting smoking
of 47% in gum groups. This shows that simply combining the results from a
meta-analysis or multicenter trial into an overall estimate is misleading.
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Table 4.1 Count data and characteristics of 59 trials on the efficacy of nicotine
replacement therapy on quitting smoking

Study Name Year xT nT xC nC NRT Support

1 Puska 1979 29 116 21 113 0 1
2 Malcom 1980 6 73 3 121 0 1
3 Fagerstrom 1982 30 50 23 50 0 1
4 Fee 1982 23 180 15 172 0 1
5 Jarvis 1982 22 58 9 58 0 1
6 Hjalmarson 1984 31 106 16 100 0 1
7 Killen 1984 16 44 6 20 0 1
8 Schneider 1985 9 30 6 30 0 1
9 Hall 1987 30 71 14 68 0 1

10 Tonnesen 1988 23 60 12 53 0 1
11 Blondal 1989 37 92 24 90 0 1
12 Garcia 1989 21 68 5 38 0 1
13 Killen 1990 129 600 112 617 0 1
14 Nakamura 1990 13 30 5 30 0 1
15 Campbell 1991 21 107 21 105 0 1
16 Jensen 1991 90 211 28 82 0 1
17 McGovern 1992 51 146 40 127 0 1
18 Pirie 1992 75 206 50 211 0 1
19 Zelman 1992 23 58 18 58 0 1
20 Herrera-1 1995 37 76 17 78 0 1
21 Buchkremer 1981 11 42 16 89 1 1
22 Hurt 1990 8 31 6 31 1 1
23 Ehrsam 1991 7 56 2 56 1 1
24 Tnsg 1991 111 537 31 271 1 1
25 Sachs 1993 28 113 10 107 1 1
26 Westman 1993 16 78 2 80 1 1
27 Fiore-1 1994 15 44 9 43 1 1
28 Fiore-2 1994 10 57 4 55 1 1
29 Hurt 1994 33 120 17 120 1 1

Note. xT =number of smokers who quit smoking in the treatment group,
nT =number of smokers in the treatment group,
xC=number of smokers who quit smoking in the control group,
nC=number of smokers in the control group.
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Table 4.1 Count data and characteristics of 59 trials on the efficacy of nicotine
replacement therapy on quitting smoking

Study Name Year xT nT xC nC NRT Support

30 ICRF 1994 76 842 53 844 1 1
31 Richmond 1994 40 160 19 157 1 1
32 Kornitzer 1995 19 150 10 75 1 1
33 Stapleton 1995 77 800 19 400 1 1
34 Campbell 1996 24 115 17 119 1 1
35 BR SOCIETY 1983 39 410 111 1208 0 0
36 Russell 1983 81 729 78 1377 0 0
37 Fagerstrom 1984 28 106 5 49 0 0
38 Jamrozik 1984 10 101 8 99 0 0
39 Jarvik 1984 7 25 4 23 0 0
40 Clavel-Chapel 1985 24 205 6 222 0 0
41 Schneidera 1985 2 13 2 23 0 0
42 Page 1986 9 93 13 182 0 0
43 Campbell 1987 13 424 9 412 0 0
44 Sutton 1987 21 270 1 64 0 0
45 Areechon 1988 56 99 37 101 0 0
46 Harackiewicz 1988 12 99 7 52 0 0
47 Llivina 1988 61 113 28 103 0 0
48 Sutton 1988 5 79 2 82 0 0
49 Gilbert 1989 11 112 9 111 0 0
50 Hughes 1989 23 210 6 105 0 0
51 Hughes 1990 15 59 5 19 0 0
52 Mori 1992 30 178 22 186 0 0
53 Nebot 1992 5 106 13 319 0 0
54 Fortmann 1995 44 262 42 261 0 0
55 Abelin 1989 17 100 11 99 1 0
56 Daughton 1991 28 106 4 52 1 0
57 Tonneson 1991 17 145 2 144 1 0
58 Burton 1992 29 115 22 119 1 0
59 Paoletti 1996 15 60 4 60 1 0

Note. xT =number of smokers who quit smoking in the treatment group,
nT =number of smokers in the treatment group,
xC=number of smokers who quit smoking in the control group,
nC=number of smokers in the control group.
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Table 4.2 Results of fitting various models to the meta-analysis of quitting smoking
study

L∗(β̂) Covariates β̂j S.E. P-value LR-Test

−17218.8100 Intercept 0.4483 0.0392 0.0000

−17215.4000d Intercept 0.3850 0.0459 0.0000 6.8200a

NRT 0.2301 0.0887 0.0047

−17218.7300 Intercept 0.4700 0.0647 0.0000 0.1600a

Support −0.0343 0.0813 0.3367

−17214.8400 Intercept 0.4356 0.0661 0.0000 1.1200b

NRT 0.2526 0.0912 0.0028
Support −0.0893 0.0838 0.1434

−17214.6500 Intercept 0.4222 0.0697 0.0000 0.3800c

NRT 0.3558 0.1950 0.0340
Support −0.0657 0.0926 0.2391
NRT*Support −0.1328 0.2207 0.2738

a Comparison of the current model with the model without covariates.
b Comparison of the current model with the model with the covariate NRT.
c Comparison of the current model with the model with both covariates NRT

and support.
d Selected model for the meta-analysis of quitting smoking study.

Table 4.3 Results of estimation of RR and 95% CI of the meta-analysis of quitting
smoking study

S.E. RR (95% CI)

No covariates 0.0392 1.5656 (1.4500, 1.6905)
Form of NRT

Patch 0.0759 1.8499 (1.5942, 2.1466)
Gum 0.0459 1.4697 (1.3431, 1.6081)
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4.3.2 Prevention of tuberculosis

The second example is the meta-analysis of 13 clinical trials to assess the
efficacy of Bacillus Calmette-Guérin (BCG) vaccine for the prevention of tu-
berculosis (TB), which was originally reported by Colditz et al. (1994) and
with further details of methodology discussed in Berkey et al. (1995), Sutton
et al. (2000), van Houwelingen et al. (2002). We have extracted data on co-
variates that might explain the heterogeneity among study results from those
articles.

The investigators compared two arms. The treatment arm is defined as re-
ceiving BCG vaccine, and the control arm as not receiving BCG vaccine. All
trials have equivalent surveillance procedures and similar lengths of follow-
up among the vaccinated and non vaccinated group. The focus of interest is
the occurrence of TB. Latitude is one of several factors which is historically
suspected of being associated with the efficacy of BCG vaccine. Latitude rep-
resents the variation in rainfall, humidity, environmental mycobacteria that
may produce the level of natural immunity against TB, and other factors that
may have an influence on the efficacy of BCG vaccine. In the literature, there
are a variety of methods of allocation of treatment which could be used as co-
variates that might explain the heterogeneity of study results. The method of
treatment allocation consists of random, alternate, and systematic. However,
the 13 reviewed studies have been conducted over a period of more than 60
years, so the year of publication could also be used as one covariate in our
analysis.

Therefore, we have applied the modeling of covariate information using the
profile likelihood to find out whether distance of each trial from the equator
(absolute latitude), direction of latitude from equation, method of treatment
allocation, and year of publication are associated with the efficacy of BCG
vaccine. The count data and characteristics of the 13 studies on the efficacy of
BCG vaccine for the prevention of TB are presented in Table 4.4. It has been
determined that Latitude is a continuous covariate to describe distance of each
trial from the equator; Direct is the binary covariate to describe direction of
latitude from the equator; North (Direct=0) or South (Direct=1); Alloc is the
categorical covariate to describe the method of allocation of subjects to BCG
vaccine and control groups; random allocation (Alloc=1) or alternate allo-
cation (Alloc=2) or systematic allocation (Alloc=3); and Year is continuous
covariate to describe the year of publication.

The results of fitting the various profile likelihood models to the meta-analysis
of the efficacy of BCG vaccine study are presented in Table 4.5. Also, a for-
ward selection procedure and PLRT have been applied to select the significant
covariates. The critical value (5% level) of PLRT with 1 df, which is 3.841, has
been used for comparison among possible models. However, the critical value
(5% level) of PLRT with 2 df, which is 5.991, has been used for comparison
of the model with categorical covariate allocation. The results in Table 4.5
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indicate that the only covariate latitude is significantly associated with the
efficacy of BCG vaccine for prevention of TB. The estimation of RR and 95%
CI are presented in Table 4.6. It is clear that the efficacy of BCG vaccination
increases with increasing distance from the equator.

Table 4.4 Count data and characteristics of 13 studies on the efficacy of BCG vac-
cine for the prevention of TB

Trial xT nT xC nC Latitude Direct Alloc Year

1 4 123 11 139 44 0 1 48
2 6 306 29 303 55 0 1 49
3 3 231 11 220 42 0 1 60
4 62 13598 248 12867 52 0 1 77
5 33 5069 47 5808 13 0 2 73
6 180 1541 372 1451 44 0 2 53
7 8 2545 10 629 19 0 1 73
8 505 88391 499 88391 13 0 1 80
9 29 7499 45 7277 27 1 1 68

10 17 1716 65 1665 42 0 3 61
11 186 50634 141 27338 18 0 3 74
12 5 2498 3 2341 33 0 3 69
13 27 16913 29 17854 33 0 3 76

Note. xT =number of TB cases in the vaccinated group,
nT =number of persons in the vaccinated group,
xC=number of TB cases in the unvaccinated group,
nC=number of persons in the unvaccinated group.
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Table 4.5 Results of fitting various single-covariate models to the multicenter trial
of BCG vaccine

L∗(β̂) Covariates β̂j S.E. P-value LR-Test

−26636.7200 Intercept −0.4551 0.0403 0.0000

−26570.8200c Intercept 0.3571 0.0814 0.0000 131.8000a

Latitude −0.0301 0.0027 0.0000

−26636.7200 Intercept −0.4547 0.0409 0.0000 0.0000a

Direct −0.0147 0.2416 0.4757

−26630.0600 Intercept −0.3530 0.0530 0.0000 13.3200a

Alloc-2 −0.3596 0.0995 0.0002
Alloc-3 −0.0876 0.1069 0.2064

−26612.9500 Intercept −2.3085 0.2787 0.0000 47.5400a

Year 0.0260 0.0038 0.0000

−26568.7200 Intercept 0.3925 0.0857 0.0000 4.2000b

Latitude −0.0331 0.0031 0.0000
Alloc-2 0.2112 0.1162 0.0346
Alloc-3 −0.0476 0.1105 0.3335

−26569.7900 Intercept 1.0288 0.4802 0.0161 2.0600b

Latitude −0.0341 0.0039 0.0000
Year −0.0079 0.0056 0.0775

a Comparison of the current model with the model without covariates.
b Comparison of the current model with the model with the covariate latitude.
c Selected model of the multicenter trial of BCG vaccine.
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Table 4.6 The results of estimation of RR and 95% CI of the meta-analysis of BCG
vaccine

Latitude S.E. RR (95% CI)

13 0.0543 0.9659 (0.8684, 1.0743)
18 0.0467 0.8307 (0.7581, 0.9104)
19 0.0455 0.8061 (0.7373, 0.8813)
27 0.0415 0.6334 (0.5839, 0.6871)
33 0.0456 0.5286 (0.4834, 0.5779)
42 0.0599 0.4030 (0.3584, 0.4532)
44 0.0639 0.3794 (0.3348, 0.4300)
52 0.0815 0.2981 (0.2541, 0.3497)
55 0.0886 0.2723 (0.2290, 0.3240)
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4.3.3 Ischaemic heart disease

The third example is the multicenter study of 28 trials that study the effect
of the average reduction in serum cholesterol on the reduction of the risk
of ischaemic heart disease (IHD). These data are taken from Thompson and
Sharp (1999). The cholesterol reduction is determined as the reduction in
the treated group minus that in the control group, averaged over the follow-
up period of the trial. This average extent of cholesterol reduction varied
widely across the trials, from 0.3 to 1.5 mmol/l. In these trials, cholesterol
was reduced by a variety of interventions. They consist of diets, drugs, and, in
one case, surgery. Furthermore, the duration of trials varied widely across the
trials, from 0.3 to 12 years. Trial-specific count data and study characteristics
of 28 trials are given in Table 4.7. It has been determined that Chol is the
continuous covariate to describe the reduction in serum cholesterol; Treat is the
categorical covariate to describe the type of intervention: dietary (Treat=1),
drugs (Treat=2), and surgery (Treat=3); and Time is the categorical covariate
to describe the duration of the trials: less than 2 years (Time=1), between 2.1
and 5 years (Time=2), and between 5.1 and 12 years (Time=3).

The results of fitting the various profile likelihood models to the IHD data are
presented in Table 4.8. Also, a forward selection procedure and PLRT have
been applied to select the significant covariates. The critical value (5% level)
of PLRT with 1 df, which is 3.841, has been used for comparison between the
model without covariates and the model with continuous covariate cholesterol.
Furthermore, the critical value (5% level) of PLRT with 2 df, which is 5.991,
has been used for comparison among the rest of the possible models. The
results from Table 4.8 indicate that only cholesterol reduction has a significant
effect on the risk of IHD. In addition, the estimate of β̂ for cholesterol reduction
covariate was negative, meaning that the reduction in the risk of IHD actually
increases according to the extent of cholesterol reduction. The estimation of
RR and 95% CI are presented in Table 4.9.
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Table 4.7 Count data and study characteristics of 28 clinical trials on the serum
cholesterol reduction to reduce the risk of IHD

Trial xT nT xC nC Chol Treat Time

1 173 5331 210 5296 0.55 2 3
2 54 244 85 253 0.68 2 2
3 54 350 75 367 0.85 2 2
4 676 2222 936 2789 0.55 2 2
5 42 145 69 284 0.59 2 2
6 73 279 101 276 0.84 2 2
7 157 1906 193 1900 0.65 2 3
8 6 71 11 72 0.85 2 3
9 36 1149 42 1129 0.49 2 2

10 2 88 2 30 0.68 2 1
11 56 2051 84 2030 0.69 2 3
12 1 94 5 94 1.35 2 1
13 131 4541 121 4516 0.70 1 2
14 52 424 65 422 0.87 1 3
15 45 199 52 194 0.95 1 3
16 61 229 81 229 1.13 1 2
17 37 221 24 237 0.31 1 2
18 8 28 11 52 0.61 1 1
19 47 130 50 134 0.57 1 2
20 82 421 125 417 1.43 3 3
21 62 6582 20 1663 1.08 2 1
22 2 94 0 52 1.48 2 1
23 1 23 0 29 0.56 2 1
24 3 60 5 30 1.06 1 2
25 132 1018 144 1015 0.26 1 1
26 35 311 24 317 0.76 2 2
27 3 79 4 78 0.54 2 1
28 7 76 19 79 0.68 2 2

Note. xT =number of patients with IHD in the treatment group,
nT =number of patients in the treatment group,
xC=number of patients with IHD in the control group,
nC=number of patients in the control group.
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Table 4.8 Results of fitting various models to the multicenter trial of IHD

L∗(β̂) Covariates β̂j S.E. P-value LR-Test

−35905.3200 Intercept −0.1541 0.0299 0.0000

−35900.6600c Intercept 0.0921 0.0861 0.1424 9.3200a

Chol −0.3717 0.1222 0.0012

−35902.1900 Intercept −0.0619 0.0613 0.1563 6.2600a

Treat-2 −0.1053 0.0707 0.0683
Treat-3 −0.3693 0.1548 0.0085

−35902.4200 Intercept −0.1152 0.1044 0.1348 5.8000a

Time-2 0.0079 0.1109 0.4716
Time-3 −0.1515 0.1183 0.1001

−35899.2600 Intercept 0.1995 0.1241 0.0540 2.8000b

Chol −0.4014 0.1658 0.0077
Treat-2 −0.1186 0.0710 0.0474
Treat-3 −0.0566 0.2016 0.3894

−35899.3900 Intercept 0.0290 0.1192 0.4038 2.5400b

Chol −0.3270 0.1327 0.0069
Time-2 0.0704 0.1128 0.2663
Time-3 −0.0373 0.1259 0.3836

a Comparison of the current model with the model without covariates.
b Comparison of the current model with the model with the covariate chol.
c Selected model for the multicenter trial of IHD.
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Table 4.9 Results of estimation of RR and 95% CI of the multicenter trials of IHD

Cholesterol S.E. RR (95% CI)

0.26 0.0574 0.9955 (0.8895, 1.1140)
0.31 0.0523 0.9771 (0.8820, 1.0826)
0.49 0.0365 0.9139 (0.8508, 0.9816)
0.54 0.0333 0.8971 (0.8403, 0.9577)
0.55 0.0328 0.8937 (0.8381, 0.9531)
0.56 0.0323 0.8904 (0.8357, 0.9487)
0.57 0.0319 0.8871 (0.8334, 0.9443)
0.59 0.0311 0.8805 (0.8284, 0.9359)
0.61 0.0305 0.8740 (0.8233, 0.9279)
0.65 0.0299 0.8611 (0.8121, 0.9131)
0.68 0.0300 0.8516 (0.8030, 0.9031)
0.69 0.0301 0.8484 (0.7998, 0.8999)
0.70 0.0302 0.8453 (0.7966, 0.8969)
0.76 0.0322 0.8266 (0.7760, 0.8805)
0.84 0.0370 0.8024 (0.7463, 0.8628)
0.85 0.0377 0.7994 (0.7424, 0.8608)
0.87 0.0393 0.7935 (0.7347, 0.8570)
0.95 0.0462 0.7703 (0.7035, 0.8433)
1.06 0.0571 0.7394 (0.6611, 0.8270)
1.08 0.0592 0.7339 (0.6535, 0.8243)
1.13 0.0646 0.7204 (0.6347, 0.8176)
1.35 0.0893 0.6638 (0.5573, 0.7908)
1.43 0.0985 0.6444 (0.5312, 0.7817)
1.48 0.1044 0.6325 (0.5155, 0.7761)
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4.4 Summary

To summarize, the modeling of covariate information using the profile likeli-
hood approach becomes attractive in the analysis of meta-analysis of clinical
trials as well as in multicenter studies when only covariates on the study level
have been considered.

First, the model that has been developed in this chapter, is based upon the
Poisson distribution which is appropriate for the structure of binary outcome.

Second, the canonical link has been applied to link the linear predictor to the
relative risk which guarantees that the relative risk estimate is positive which
is an essential requirement.

Third, the nuisance parameter has been eliminated before dealing with the
inference for the parameter of interest, thereby keeping the dimensionality of
the approach low. This will lead to more precision in the estimator for the
parameter of interest.

Fourth, the software tool that has been developed in this study, is available
to compute and deal with this approach.

However, the model that has been developed in this study, does not include
the unobserved heterogeneity of the treatment effects in the model. The model
for incorporating covariate information with unobserved heterogeneity of the
treatment effects is developed in Chapter 6.



CHAPTER 5

Alternative approaches

Besides the profile approach there are other methods to estimate the treatment
effect in a MAIPD. A conventional approach is the approximate likelihood
(AL) method and another is the multilevel (ML) approach. Both methods are
introduced in the next two sections.

5.1 Approximate likelihood model

This approach considers the logarithmic relative risk φi = log(θi), which can
be estimated as

φ̂i = log
(

xT
i

nT
i

)
− log

(
xC

i

nC
i

)
,

assuming nonzero events in both arms of trial i. Frequently, it is assumed that -
conditional upon study i - the distribution of φ̂i might be validly approximated
by a normal distribution with unknown mean φi and known standard deviation
σi, though it is sufficient to assume that the log-likelihood is well approximated
by a quadratic, see van Houwelingen et al. (2002) and Aitkin (1999b).

Therefore, the associated kernel f(xi|θj) in the mixture model is the normal
density, written as

fAL(φ̂i|θi, σ
2
i ) =

1√
2πσi

e
− (φ̂i−log(θi))

2

2σ2
i . (5.1)

Note that φ̂i is the log-relative risk, a scalar, and the individually pooled
counts for trial i are not used. In the most general case, the variance is un-
known and must be estimated. Under the assumption of Poisson distributed
observations, the variance of the log-relative risk in the i−th study can be
estimated using the delta method (see also Woodward (1999)) as

v̂ar(φ̂i) = σ̂2
i =

1
xT

i

+
1

xC
i

, (5.2)

so that σ̂2
i is used as a known parameter in (5.1). However, this simple formula

has a number of drawbacks. Firstly, (5.2) is not defined if any of the trials has
0 successes. Secondly, for small trials, the normal approximation might not
be satisfactory. Thirdly, the variance approximation used in the delta method

75



76 ALTERNATIVE APPROACHES

might be too crude to give a good approximation of the true variance of the
log-relative risk, especially if the event rate is different from 0.5. Nevertheless,
the approach is quite popular, see Whitehead and Whitehead (1991) and
Thompson (1993) - likely due to its simplicity and lack of alternatives. To
capture heterogeneity, the density (5.1) is used as a kernel in the mixture
distribution leading to

f(xi|P ) =
m∑

j=1

fAL(φ̂i|θj , σ̂
2
i )qj . (5.3)

The AL model was originally named the fixed-effects model by DerSimonian
and Laird (1986) and later by Whitehead (2002) for the case of homogene-
ity to distinguish it from the random-effects model. DerSimonian and Laird
(1986) suggested to adjust for unobserved heterogeneity. The latter can be
viewed as being further modeled with the above discrete mixture following
Laird (1978). Here, we prefer to use the term AL model focusing on the fact
the normal kernel in the mixture can be viewed as an approximating likeli-
hood. Modeling covariate information for this situation has been discussed in
Hedges (1994a), and more generally in Cooper and Hedges (1994), Thompson
and Sharp (1999), Brockwell and Gordon (2001), and Böhning (2000) among
others. A general introduction is also given by van Houwelingen et al. (2002).

5.2 Multilevel model

The ML model has become very popular in the biometrical literature (see
Aitkin (1999a)) and captures the hierarchical structure of the data used in
the meta-analysis. The first level (within study) can be modeled by means of
the log-linear regression, with

log(pC
i ) = αi

log(pT
i ) = αi + βi.

αi is in this case the baseline parameter and βi = φi = log
(
pT

i /pC
i

)
is the effect

parameter, the log-relative risk.∗ Under the assumption that the observations
are Poisson distributed, the likelihood for trial i is given as

fML(xi|pC
i , pT

i ) = e−nT
i pT

i

(
nT

i pT
i

)xT
i

xT
i !

× e−nC
i pC

i

(
nC

i pC
i

)xC
i

xC
i !

, (5.4)

where xi is the vector (xT
i , nT

i , xC
i , nC

i )′. The rates pC
i and pT

i can be replaced
by their model associated parameters, namely

pC
i = eαi

pT
i = eαi+βi .

∗ We use for this model the notation β to keep the similarity with the existing literature.
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This leads to the following likelihood in trial i

fML(xi|αi, βi) = e−nT
i eαi+βi

(
nT

i eαi+βi
)xT

i

xT
i !

× e−nC
i eαi

(
nC

i eαi
)xC

i

xC
i !

. (5.5)

The second level is modeled by means of a nonparametric mixture distribu-
tion - as has been discussed and done previously. The most complex form of
heterogeneity is considered, allowing baseline and effect heterogeneity, that
is each component in the mixing distribution has its own baseline and effect
parameter. The mixture distribution has the form:

f(xi|P ) =
m∑

j=1

fML(xi|αj , βj)qj , (5.6)

with P =




α1 ... αm

β1 ... βm

q1 ... qm


 .

5.3 Comparing profile and approximate likelihood

Here, we elaborate on the similarities and differences between the approximate
likelihood developed in Section 5.1 and the profile likelihood of Section 2. Let
us consider the approximate log-likelihood which is given for the i-th study -
up to an additive constant - as

ALi(φi) = −1
2
(φi − φ̂i)2/σ̂2

i (5.7)

where φ̂i = log
(

xT
i

nT
i

)
− log

(
xC

i

nC
i

)
is the estimated log-relative risk in the i-th

study and σ̂2
i = 1/xT

i + 1/xC
i the associated estimated variance. The profile

log-likelihood in the i-th study is provided as

PLi(φi) = xT
i φi − (xT

i + xC
i ) log(nT

i eφi + nC
i ) (5.8)

where again φi = log(θ) is the log-relative risk in the i-th study.

5.3.1 The likelihoods for center-specific parameters

Comparing both log-likelihoods for center-specific parameters φi is in principle
identical in doing so for only one center. Therefore, we can drop the index i.
We have that

PL(φ) ≈ PL(φ̂) + (φ− φ̂)PL′(φ̂) +
1
2
(φ− φ̂)2PL′′(φ̂) (5.9)

= PL(φ̂) +
1
2
(φ− φ̂)2PL′′(φ̂) (5.10)
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using a second-order Taylor expansion around φ̂ and that PL′(φ̂) = 0. One
easily verifies that PL′′(φ̂) = − xT xT

xT +xC = − 1
σ̂2

i
, showing that

PL(φ) ≈ PL(φ̂) + AL(φ) (5.11)

so that profile and approximate log-likelihood become identical in a neighbor-
hood of the maximum likelihood estimator with both log-likelihoods sharing
the same curvature. Of course, both log-likelihoods are maximized by the same
estimator.

5.3.2 The likelihoods for restricted parameters

Comparison of log-likelihoods starts to become different when parameters are
restricted such as in the situation of the hypothesis of homogeneity, for exam-
ple φ1 = φ2... = φk = φ. Using independence of the k studies, the approximate
log-likelihood becomes

AL(φ) =
∑

i

ALi(φ) = −1
2

∑

i

(φ− φ̂i)2/σ̂2
i , (5.12)

and the profile log-likelihood takes the form

PL(φ) =
∑

i

PLi(φ) =
∑

i

xT
i φ− (xT

i + xC
i ) log(nT

i eφ + nC
i ) (5.13)

Figure 5.1 shows both log-likelihoods from the example in Table 1.9. Note that
AL(φ) is maximized for φ̂w =

∑
i φ̂i/σ̂2

i∑
i 1/σ̂2

i
, see van Houwelingen et al. (2002). In

addition, the curvature is given as

AL′′(φ) = −
∑

i

1/σ̂2
i = −

∑

i

xT
i xC

i

xT
i + xC

i

. (5.14)

The profile log-likelihood is maximized for θ̂ = exp(φ̂) satisfying

θ̂ =
∑

i xT
i nC

i /(nT
i θ̂ + nC

i )∑
i xC

i nT
i /(nT

i θ̂ + nC
i )

(5.15)

and has curvature

PL′′(φ) =
∑

i

−(xT
i + xC

i )
nT

i nC
i eφ

(nT
i eφ + nC

i )2
. (5.16)

Approximate and profile log-likelihood are not only maximized at different
parameter values, the curvature of the profile log-likelihood at the maximum
likelihood estimate is different from the curvature of the approximate log-
likelihood. To explore this point in more detail, let us assume that the trial
is balanced, that is nT

i = nC
i for all i. Then, the profile maximum likelihood

estimator is available in closed form θ̂ =
∑

i xT
i∑

i xC
i

and the curvature at φ̂ is
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Figure 5.1 Comparison of the profile and approximate log-likelihood from the meta-
analysis Table 5.2

simply

PL′′(φ̂) =
∑

i

−(xT
i + xC

i )

∑
i xT

i∑
i xC

i

(
∑

i xT
i∑

i xC
i

+ 1)2

= −
∑

i xT
i

∑
i xC

i∑
i(x

T
i + xC

i )
. (5.17)

It is remarkable that a general comparison between these two curvatures is
possible, indicating a more precise estimator based upon the profile likelihood.

Theorem. Let all the centers involved in the MAIPD be balanced, that is
nT

i = nC
i for all i. Then,

PL′′(φ̂) ≤ AL′′(φ)

and

v̂ar(φ̂AL) ≤ v̂ar(φ̂PL).

Proof. We show ∑
i xT

i

∑
i xC

i∑
i(x

T
i + xC

i )
≥

∑

i

xT
i xC

i

xT
i + xC

i
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Table 5.1 Results of MAIPD (Table 1.9) from the approximate and profile likelihood
model (H is number of studies that belong to the respective component).

Profile Likelihood Model Approximate Likelihood Model

Comp. 1.
θ .474
q 1.000
H 22

Log-L.= −116.606
maxGF = 2.157
BIC= −236.304

Comp. 1.
θ .501
q 1.000
H 22

Log-L.= −20.639
max GF = 1.389
BIC= −44.368

Comp. 1. 2.
θ .563 .231
q .615 .385
H 12 10

Log-L.= −113.360
maxGF = 1.000
BIC= −235.992

Comp. 1. 2.
θ .559 .258
q .678 .322
H 13 9

Log-L.= −19.419
max GF = 1.000
BIC= −48.111

or equivalently
1
k

∑
i xT

i
1
k

∑
i xC

i
1
k

∑
i(x

T
i + xC

i )
≥ 1

k

∑

i

xT
i xC

i

xT
i + xC

i

.

This follows from the fact that the function g(y, z) = yz
y+z , defined for y > 0,

z > 0 is concave which is proved by showing that the Hessian of g(y, z)
( −2z y − z

z − y −2y

)
/(y + z)3

is negative definite. This ends the proof.

5.4 Analysis for the MAIPD on selective tract decontamination

In this section our objective is to analyze the relative risk structure of the
MAIPD provided in Table (1.9). For this meta-analysis, 22 trials were included
to investigate the effect of selective decontamination of the digestive tract
on the risk of respiratory tract infection (Selective Decontamination of the
Digestive Tract Trialists’ Collaborative Group (1993)), described in Section
1.5. The results from the AL and PL models are given in Table (5.1). Both
methods give two mixture components as the largest number of components.

The PL classified 12 studies and the AL 13 studies to the first component
with an estimated relative risk of 0.56. Consequently, in these studies the risk
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of respiratory infection is almost halved in comparison to the control group.
The second component estimated a relative risk of 0.23 (PL) and 0.25 (AL).
Apparently, the estimators from both models are very close together. One
difference lies in the BIC. In the fixed-effect model the BIC estimated only
one component, whereas in the PL model two components were chosen. In

Table 5.2 Results of MAIPD (Table 1.9) using the ML model (H is number of studies
that belong to the respective component).

Multilevel Model

Comp. 1.
α −1.228
θ .468
q 1.000
H 22

Log-L.= −243.586
max GF = 2.78× 1012

BIC= −493.353

Comp. 1. 2.
α −1.660 −.660
θ .549 .418
q .502 .498
H 11 11

Log-L.= −171.326
max GF = 6344.888
BIC= −358.106

Comp. 1. 2. 3. 4.
α −1.577 −.778 −.044 −1.945
θ .635 .379 .508 .230
q .274 .414 .091 .222
H 6 9 2 5

Log-L.= −140.834
max GF = 2.207
BIC= −315.670

Comp. 1. 2. 3. 4. 5. 6.
α −1.593 −.835 −.044 −1.957 −.686 −1.528
θ .698 .475 .508 .228 .213 .343
q .224 .202 .091 .212 .213 .058
H 5 3 2 5 6 1

Log-L.= −138.958
max GF = 1.000
BIC= −330.463
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Figure 5.2 Study allocation to the components for the multilevel model (circle = 1.
comp., cross = 2. comp.).

the ML many more components were found (Table 5.2). In this approach a
maximum of six components were observed. The fourth and fifth component
estimate nearly the same relative risk, only the baseline is different. With the
BIC, four components were selected as appropriate number of components.
One important difference between the ML model and the PL and AL model is
found in the way the classification of studies into the associated components is
done, see Figure 5.2 and 5.3. The study allocation of the AL model is similar
to the PL model, only the first study is allocated differently. In Figure 5.2, it
can be seen that, for example the third and the 16th study are very close to the
first component line. This means that these studies have the same or similar
relative risk as the first component in the ML model, although the studies
are classified into the second component. The reason for this misallocation
lies in the influence of the baseline heterogeneity on the estimation of effect
heterogeneity. In contrast, Figure 5.3 shows that all studies are allocated on
the basis of the treatment effect in the PL and AL model (which is the major
interest of the practitioner).

5.5 Simulation study

In this section, all three models are compared by means of simulation studies.

5.5.1 Two-component effect and baseline heterogeneity

It is assumed that in the first simulation experiment the population of interest
consists of two clusters. The clusters are represented by the mixing distribu-
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Figure 5.3 Study allocation to components for the profile likelihood model (circle =
1. comp., cross = 2. comp.).

tion P =
(

0.5 1.5
0.5 0.5

)
. Both components receive an identical weight of 0.5.

The first component has a relative risk of 0.5 and the second of 1.5. To mimic
baseline variation, the baseline risks pC

1 , ...pC
k were generated from a uniform

distribution from 0.1 to 0.66. The parameter pT
i depends on the component

the i-th study belongs to. If the i-th study belongs to the first component,
then pT

i = θ1p
C
i = 0.5pC

i , otherwise pT
i = θ2p

C
i = 1.5pC

i . In this case the
weights are equal, so that component membership of each study is generated
by means of a Bernoulli distribution with 0.5 event probability. The sample
size nT

i and nC
i were generated from a Poisson distribution with parameter

100. Poisson variates XT
i with parameters nT

i and pT
i and Poisson variates

XC
i with parameters nC

i and pC
i were drawn for each study i, i = 1, ..., k. In

this case the number of studies was chosen to be k = 100. For reasons of com-
parability only a two-component mixture was estimated for all three models.
The procedure was replicated 1,000 times. From this replication the mean and
variance of each component were computed. The results of this constellation
are provided in Figure 5.4. The first component of the ML model is consider-
ably overestimated. Note that actually the true relative risk is not captured by
the confidence interval. In contrast the second component is underestimated.
In the other two models the true distribution is discovered.

5.5.2 Two-component effect heterogeneity under baseline homogeneity

The second simulation study shows the extent of influence of the baseline
parameter. All settings have been taken over from the previous simulation
study, besides a pC

i = 0.3 assumption. Now it can be observed in Figure
5.5 that the ML model is much more capable of recovering the true mixture
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Figure 5.4 Results of a simulation study of a two-component mixture (with baseline
heterogeneity) for the three models AL, PL, ML to estimate the predetermined mix-
ing components {0.5, 1.5} with weights {0.5, 0.5}. The means with 95% CI for each
estimated component are displayed.

Figure 5.5 Results of the simulation study of a two-component mixture model (with
baseline homogeneity) for the three models AL, PL, ML to estimate the predeter-
mined mixing components {0.5, 1.5} with weights {0.5, 0.5}. The means with 95% CI
of each estimated component are displayed.

distribution. The confidence intervals from the three models are of the same
dimension.

5.5.3 Under effect homogeneity

The next simulation study investigated the situation of effect homogeneity. In
this case we used a bootstrap simulation, see Efron (1993). The differences are
expected in the sparsity case, where the number of observations and partici-
pants are rare. For this we used the sparsity meta-analysis, namely CALGB
study adopted from Lipsitz et al. (1998) in Table 1.8. The main settings for the
simulation: pC

i , nT
i , and nC

i stem from the sparsity study; θ is predetermined
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and fixed for all studies i = 1, ..., k; XT
i with parameters nT

i × θpC
i and XC

i

with parameters nC
i × pC

i were generated from a Poisson distribution. Note
that if any zeros occur in the treatment or control arm, 0.5 is added to each
cell. Figure 5.6 shows the bias of 30 values for θ in the interval from 0.1 to
0.99 for all the three models. In this figure the PL-model estimator has the
smallest bias. In contrast, the true value is significantly overestimated by the
other two models. One reason could be that the estimator of the ML model,
here the crude risk ratio estimator

θ̂crude =
∑k

i=1 xT
i

∑k
i=1 nC

i∑k
i=1 nT

i

∑k
i=1 xC

i

,

does not adjust for a potential center effect. Also, the weighted estimator used
in the AL model, where the weight originates from the inverse of the variance
of the log-relative risk which might not be appropriate in this situation.

Drawing attention to the variance (Figure 5.7), the AL estimator has a slightly
larger value than the ML and PL estimators (which is consistent with the
theorem of Section 5.3), whereas the values of the variance of ML and PL
models are very close, see Aitkin (1998).

5.6 Discussion of this comparison

One important difference between these three models lies in the way the nui-
sance or baseline parameter is treated. In the AL model the baseline is in-
tegrated into the individual log-relative risk. The specific aspect of the PL
approach is that the nuisance parameter is integrated into the likelihood in
such a way that the occurring likelihood, the profile likelihood, depends only
on the parameter of interest. In contrast, the ML method does not elimi-
nate the nuisance parameter, but estimates it as a separate parameter. The
results in Table 5.2 and the simulation study in Figure 5.4 show that this
model loses power when estimating baseline heterogeneity. Furthermore, the
allocation of studies or centers to the mixed components is also dependent
on the baseline parameter. In other words, the baseline parameter has a very
strong influence on estimating the treatment effect. In the situation of an in-
creased baseline heterogeneity it can happen, like in the simulation study in
Figure 5.4, that the result of estimating the treatment effect heterogeneity
is confounded by the existing strong baseline heterogeneity. Consequently, a
substantial disadvantage of the ML model can be seen in the handling of the
baseline parameter.

It should be mentioned that the profile method is a conventional way to deal
with nuisance parameters, but by no means the only way. In the ideal case,
see Pawitan (2001), parameter of interest and nuisance parameter are or-
thogonal, that is, the joint likelihood £(θ, pC) = £1(θ)£2(pC) factors into
likelihood depending only on θ and pC , respectively. For the ease of discussion
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Figure 5.6 The bias of ML, PL and AL models in a simulation study under effect
homogeneity

Figure 5.7 The variance of ML, PL and AL model estimators in a simulation study
under effect homogeneity
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only one trial is considered, though generalizations are straightforward. Write
the joint likelihood exp(−pT nT )(pT nT )xT ×exp(−pCnC)(pCnC)xC

as product

of £1(θ) =
(

nT θ
nC+nT θ

)xT (
nC

nC+nT θ

)xC

and £2(ηn) = exp(−ηn)ηxT +xC

n , where

θ is the risk ratio and ηn = nT pT + nCpC . In case that the trial is balanced
ηn = nT pT +nCpC = η(nT +nC), and θ and η = pT +pC are orthogonal. In the
case of orthogonality, one can solely base inference on £1(θ), and the profile
likelihood is identical to £1(θ) which is also a true likelihood. If the trial is
unbalanced, the transformation ηn = nT pT + nCpC necessarily incorporates
the known, trial-specific sample size parameters, but £1(θ) will remain iden-
tical. Alternatively, one may base inference on the likelihood conditional on
the sufficient statistic x = xT +xC for the nuisance parameter, and, although
this is by no means in generality the case, it does turn out again to be £1(η),
see for a more general discussion Pawitan (2001) or McCullagh and Nelder
(1989). Yet, another way in dealing with the nuisance parameter is suggested
in van Houwelingen et al. (1993). It is suggested to use as effect measure the
odds ratio and base inference on the distribution of XC - conditional upon the
margins being fixed. The occurring noncentral hypergeometric distribution is
a function of the odds ratio only, so that the associated likelihood is free of the
nuisance parameter. This appears to be an attractive approach and - despite
the complex character of the noncentral hypergeometric likelihood - should be
analyzed in further depth and compared with the profile approach in future
work.

5.7 Binomial profile likelihood

One clear alternative to the Poisson profile likelihood is the binomial profile
likelihood. In some MAIPD it is realistic to assume a binomial distribution
of the observations, especially when nT and nC are numbers of patients. The
profile likelihood framework is analog applicable for the binomial likelihood
function like the Poisson likelihood. The binomial product likelihood over all
trials becomes

k∏

i=1

(
nT

i

xT
i

) (
pT

i

)xT
i (1− pT

i )nT
i −xT

i ×
(

nC
i

xC
i

) (
pC

i

)xC
i (1− pC

i )nC
i −xC

i

and taking the logarithm the log-likelihood (ignoring the only data-dependent
term) takes the form

k∑

i=1

xT
i log

(
pT

i

)
+ (nT

i − xT
i ) log(1− pT

i )

+ xC
i log

(
pC

i

)
+

(
nC

i − xC
i

)
log(1− pC

i ). (5.18)
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5.7.1 Estimation of relative risk in meta-analytic studies using the binomial
profile likelihood

In the same way as in Section 2.2 pT
i is rewritten as θip

C
i . This leads to

k∑

i=1

xT
i log (θi) +

(
xT

i + xC
i

)
log

(
pC

i

)

+ (nT
i − xT

i ) log(1− θip
C
i ) +

(
nC

i − xC
i

)
log(1− pC

i ) (5.19)

and the binomial profile likelihood as function of pC for arbitrary, but fixed
θ = (θ1, ..., θk)′ is

LBIN (pC |θ) =
k∑

i=1

xT
i log (θi) +

(
xT

i + xC
i

)
log

(
pC

i

)

+ (nT
i − xT

i ) log(1− θip
C
i ) +

(
nC

i − xC
i

)
log(1− pC

i ). (5.20)

The pC that maximizes (5.20) can be found by solving the partial derivatives,
equated to zero, as follows:

∂

∂pC
LBIN (pC |θ) =

k∑

i=1

xT
i + xC

i

pC
i

+
nC

i − xC
i

1− pC
i

+

(
nT

i − xT
i

)
θi

1− θipC
i

(5.21)

The solution pC - found by setting (5.21) to zero - is by far not as easy as in
the case of the Poisson profile likelihood. Here, two solutions are possible:

(p̂C
i )1 =

nC
i + nT

i θ + θxC
i + xT

i −
√(

nC
i + θ

(
nT

i + xC
i

)
+ xT

i

)2 − 4θxini

2θni

:= pC
i (θ)1 (5.22)

(
p̂C

i

)
2

=
nC

i + nT
i θ + θxC

i + xT
i +

√(
nC

i + θ
(
nT

i + xC
i

)
+ xT

i

)2 − 4θxini

2θni

:= pC
i (θ)2 (5.23)

with ni = nC
i + nT

i and xi = xC
i + xT

i

Now, these two solutions may be understood as a function of θ. If θ = 1, then
(5.22) is equal xi

ni
. In contrast (5.23) is equal 1, a nonfeasible solution in this

situation, because the term log(1 − θip
C
i ) and log(1 − pC

i ) in the likelihood
function (5.20) attain −∞. Consequently, (5.23) can be excluded from this
analysis. In the following only (5.22), denoted simply as pC

i (θ), is considered.
To proceed further, the profile likelihood procedure replaces pC in (5.19) by
pC(θ). This leads to

LBIN (θ) =
k∑

i=1

xT
i log (θi) + (nT

i − xT
i ) log(1− θip

C
i (θi))

+
(
xT

i + xC
i

)
log

(
pC

i (θi)
)

+
(
nC

i − xC
i

)
log(1− pC

i (θi)). (5.24)
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In comparison to the Poisson profile log-likelihood (5.24) is more complicated.

To avoid the division by zero we have to exclude three scenarios. These are
pC

i (θ) = 0, 1− pC
i (θ) = 0, and 1− θpC

i (θ) = 0. The first case occurs if xT = 0
and xC = 0, then we have

pC
i (θ) =

nC
i + nT

i θ −
√(

nC
i + θnT

i

)2

2θni

= 0.

The second case occurs if xC = nC . In this case, it is

pC
i (θ) =

nC
i + nT

i θ + θnC
i + xT

i −
√(

nC
i (−1 + θ) + θnT

i − xT
i

)2

2θni
.

Here we have to distinguish between nC
i (−1+θ)+θnT

i −xT
i ≥ 0 and nC

i (−1+
θ) + θnT

i − xT
i < 0. If nC

i (−1 + θ) + θnT
i − xT

i ≥ 0, then

pC
i (θ) =

nC
i + nT

i θ + θnC
i + xT

i − nC
i (−1 + θ)− θnT

i + xT
i

2θni

=
nC

i + xT
i

θ(nT
i + nC

i )

and if nC
i (−1 + θ) + θnT

i − xT
i < 0, then

pC
i (θ) =

θnT
i + θnC

i + θnC
i + θnT

i

2θni
= 1.

The last case occurs if xT = nT . In this case, we have

θpC
i (θ) = θ


nC

i + nT
i θ + θxC

i + nT
i −

√(
nC

i − θ
(
nT

i + xC
i

)
+ nT

i

)2

2θni




Again we have to distinguish between nC
i − θ

(
nT

i + xC
i

)
+ nT

i ≥ 0 and nC
i −

θ
(
nT

i + xC
i

)
+ nT

i < 0. If nC
i − θ

(
nT

i + xC
i

)
+ nT

i ≥ 0, then

θpC
i (θ) = θ

(
nT

i + xC
i

nT
i + nC

i

)

and if nC
i − θ

(
nT

i + xC
i

)
+ nT

i < 0, then

θpC
i (θ) = θ

(
nC

i + nT
i + nC

i + nT
i

2θni

)
= 1.

Consequently, in the case of xT and xC being both equal to zero, or if xT = nT
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or xC = nC we add 0.5 to xT or xC and add 1 to nT or nC , respectively.
In comparison to the Poisson profile likelihood it was not necessary here to
consider (and exclude) the possibility of dividing by zero.

5.7.2 The binomial profile likelihood under effect homogeneity

In this section we assume homogeneity in the effect parameter, with θ1 =
θ2 = ... = θk. To accomplish maximum likelihood estimation we consider the
derivative of (5.24). In this case the derivative is more complex, but it can be
written as

∂

∂θ
LBIN (θ) =

k∑

i=1

xT
i

θ
+

(
xT

i + xC
i

) (
pC

i

)′ (θ)
pC

i (θ)
−

(
nC

i − xC
i

) (
pC

i

)′ (θ)
1− pC

i (θ)

− (nT
i − xT

i )(pC
i (θ) + θ

(
pC

i

)′ (θ))
1− θpC

i (θ)
(5.25)

In (5.25) we write only
(
pC

i

)′ (θ) as a function of θ. The interested reader may
find full details on derivative calculations in the appendix A.1. No closed form
solution for θ̂ is available. Possible is an iterative construction such as

θPMLE =

k∑

i=1

xT
i

ti(θPMLE)
(5.26)

ti(θ) =
k∑

i=1

(
nC

i − xC
i

) (
pC

i

)′ (θ)
1− pC

i (θ)

+
(nT

i − xT
i )(pC

i (θ) + θ
(
pC

i

)′ (θ))
1− θpC

i (θ)

−
(
xT

i + xC
i

) (
pC

i

)′ (θ)
pC

i (θ)

The first disadvantage is that the same proof of existence, uniqueness of the
solution is not available as it was achieved for the iteration (2.22) in Section
2.4. The second disadvantage is the increased complexity of this approach.

5.7.3 Comparison of the Poisson and binomial likelihood in an example

For this comparison we take the beta-blocker (Table 1.5) study as an example.
The point estimate of the relative risk is 0.791191 for the Poisson and 0.790892
for binomial profile likelihood. Both estimates are very close together as the
log-likelihood function of binomial and Poisson profile likelihood in Figure 5.8
indicate.
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Figure 5.8 Comparison of the binomial and Poisson profile likelihood from the beta-
blocker study (Table 1.5)

In the sparsity case it is frequently necessary to add 0.5 when using the bi-
nomial profile likelihood. If we compare then both likelihoods, the differences
are becoming more substantial than before (see Figure 5.9 for illustration).
Note that we don’t need to add 0.5 to the data when using the Poisson pro-
file likelihood, so that the differences notable in Figure 5.9 are mostly due to
this addition of 0.5. Again, both likelihoods become more similar when the
same constant 0.5 is also added to the data when constructing the Poisson
likelihood.

It is also possible for the binomial profile likelihood to include unobserved
heterogeneity and observed heterogeneity in the form of covariate information
into the modeling. However, this seems not necessary at this stage, because the
Poisson profile likelihood can be considered as an appropriated approximation
of the binomial profile likelihood. For the sake of completeness we provide an
estimation of the variance in the next section.

5.7.4 Variance estimate of the PMLE

Similarly to Section 2.6.1 the variance of the maximum likelihood estima-
tor can be approximated by the negative inverse of the second derivative of
the profile log-likelihood function. In this case the second derivative is rather
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Figure 5.9 Comparison of the binomial and Poisson profile likelihood from the cancer
and leukemia group data (1.8)

complex and only for completeness given here as

∂2

∂θ2
LBIN (θ) =

k∑

i=1

xT
i

θ2
+

(
xT

i + xC
i

)
(
−

(
pC

i

)′ (θ)2
pC

i (θ)2
+

(
pC

i

)′′ (θ)
pC

i (θ)

)

− (
nC

i − xC
i

)
( (

pC
i

)′ (θ)2
(
1− pC

i (θ)
)2 +

(
pC

i

)′′ (θ)
1− pC

i (θ)

)

− (nT
i − xT

i )

(
(−pC

i (θ)− θ
(
pC

i

)′ (θ))2
(
1− θpC

i (θ)
)2 − −2

(
pC

i

)′ (θ)− θ
(
pC

i

)′′ (θ)
1− θpC

i (θ)

)
.

(5.27)

Details on the derivatives of
(
pC

i

)′′ (θ) are placed in the appendix A.1.



CHAPTER 6

Incorporating covariate information
and unobserved heterogeneity

6.1 The model for observed and unobserved covariates

This chapter brings both models of unobserved heterogeneity (see Chapter 3)
and observed heterogeneity in the form of covariate information (see Chapter
4) together. Let us start with the common nonparametric mixture distribution
given as

fi(Q) =
m∑

j=1

fi(θj)qj (6.1)

where fi(θj) and Q are as defined in formula (3.8) in Chapter 3. On the other
hand, we have modeled available covariate information in Chapter 4 by means
of a log-linear model

log θ = η = β0 + β1z1 + ... + βpzp,

where z1, · · · , zp are covariates expressing information on the study level such
as the date of study, the treatment modification, or the location of study.
These form via η = β0 + β1z1 + ... + βpzp the linear predictor. It is clear
from (6.1) that in the case of m subpopulations with subpopulation-specific
relative risks θj , we will have m equations linking the mean structure to the
linear predictor:

log θj = ηj = β0j + β1jz1 + ... + βpjzp. (6.2)

Note that there are now m coefficient vectors (β0j , · · · , βpj) which create some
complexities in making choices for them.

To illustrate, let us look at the simple example of one covariate z and m = 2.
The most general form is

log θ1 = η1 = β01 + β11z (6.3)
log θ2 = η2 = β02 + β12z (6.4)

where there are no restrictions on the parameter space and two straight lines
are fitted to the two component populations. This is illustrated in Figure 6.1.
Alternatively, one might consider models with restrictions on the parameters.

93
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Figure 6.1 Illustration of a mixture of two log-linear regression models with free
intercept and slope

A model that would be quite meaningful since it has only one common pa-
rameter for the covariate effect is

log θ1 = η1 = β01 + β1z (6.5)
log θ2 = η2 = β02 + β1z (6.6)

An illustration is provided in Figure 6.2.

Let us consider the more general situation firstly. For study i we have that

ηij = β0j + β1jzi1 + ... + βpjzip.

Since θj is linked via log(θj) = ηj = β0j + β1jz1 + ... + βpjzp, the discrete
mixing distribution Q is now giving weights qj to coefficient vectors βj =
(β0j , β1j , · · · , βpj)T . This leads to the discrete probability distribution

Q(B) =
(

β1 ... βm

q1 ... qm

)
(6.7)

and B =




β01 ... βp1

... ... ...
β0m ... βpm


 (6.8)

Note that we allow here different β1, ..., βp for each mixture component j =
1, ...,m.
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Figure 6.2 Illustration of a mixture of two log-linear regression models with free
intercept and common slope

The likelihood function over all centers is given as

L(Q(B)) =
k∏

i=1

m∑

j=1

fi(exp(ηij))qj . (6.9)

6.1.1 Finding the maximum likelihood estimator

One way to find the maximum likelihood estimator is accomplished by using
the EM algorithm with the Newton-Raphson algorithm nested in the M-step
of the EM algorithm. To be more specific, let us start with the complete data
likelihood as

L(Q(B)) =
k∏

i=1

m∏

j=1

(fi(exp(ηij))qj)
yij , (6.10)

where yij = 1, if center i belongs to subpopulation j, and 0 otherwise. To
proceed as in Chapter 3 we replace the unobserved yij by their expected
values as the E-step

eij =
fi(exp(ηij))qj∑m

j=1 fi(exp(ηij))qj
. (6.11)
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This leads to the expected complete data likelihood

L(Q(B)) =
k∏

i=1

m∏

j=1

(fi(exp(ηij))qj)
eij

. (6.12)

Maximizing with respect to qj is easily done to provide

q̂j =
1
k

k∑

i=1

eij .

More challenging is the maximization with respect to B. The log-likelihood
function is

L(Q(B)) =
k∑

i=1

m∑

j=1

eij log fi(exp(ηij)) + eij log(qj)

=
k∑

i=1

m∑

j=1

eij

(
xT ηij − (xC

i + xT
i ) log(nC

i + exp(ηij)nT
i )

)
+ eij log(qj)

=
m∑

j=1

k∑

i=1

eij

(
xT ηij − (xC

i + xT
i ) log(nC

i + exp(ηij)nT
i )

)
+ eij log(qj).

(6.13)

Maximization can be completed by noting that βj occurs only in L(βj) =∑k
i=1 eij

(
xT ηij − (xC

i + xT
i ) log(nC

i + exp(ηij)nT
i )

)
, so that L(Q(B)) is max-

imized by doing m maximizations of L(βj) for j = 1, ..., m.

The gradient ∇L(βj) for the j-th component has elements

∂

∂βlj
L(βj) =

k∑

i=1

eij

(
xT zil − (xC

i + xT
i )nT

i

exp(ηij)
nC

i + exp(ηij)nT
i

zil

)
,

with the gradient being

∇L(βj) =
(

∂

∂β1j
L(Q(B)), ...,

∂

∂βpj
L(Q(B))

)′
. (6.14)

For each component the Hesse matrix has the form

∇2L(βj) =
(

∂2

∂βlj∂βhj
L(βj)

)
= −

k∑

i=1

eij

(
(xC

i + xT
i )nT

i exp(ηij)(
nC

i + exp(ηij)nT
i

)2 zilzih

)
.

In matrix notation

∇2L(βj) = −Z ′W ∗(βj)Z (6.15)

where Z is the design matrix containing the information on the p covariates
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and W ∗(βj) is a diagonal matrix defined as

W ∗(βj) =




w1(βj) 0 ... 0 0
0 w2(βj) ... 0 0
... ... ... ... ...
0 0 ... wp−1(βj 0
0 0 ... 0 wp(βj)




with

wi(βj) = eij
(xC

i + xT
i )nT

i exp(ηij)(
nC

i + exp(ηij)nT
i

)2 .

The Newton-Raphson procedure is applicable for each component, as

β
(n+1)
j = β

(n)
j −∇2L(β(n)

j )−1∇L(β(n)
j ). (6.16)

This completes the M-step in the EM algorithm.

Additionally, we can use eij for classification of the centers using the MAP
rule (see also Section 3.5).

6.1.2 Improving computational efficiency and reliable convergence

The convergence of the sequence (6.16) is not guaranteed. We would like to
point out an important possible simple modification called the lower bound
method which could improve the algorithmic situation considerably. The lower
bound method has at least two important properties:

• reliable convergence toward the maximum likelihood estimate

• savings in terms of computational effort.

Since in this case the weights, which occur in the second derivative matrix,
have the property that

wi(βj) = eij
(xC

i + xT
i )nT

i exp(ηij)(
nC

i + exp(ηij)nT
i

)2 ≤ eij(xT
i + xC

i )
1
4

for all values of ηij (see also the appendix for a proof of this inequality), it is
possible to replace the Newton-Raphson step by the lower bound procedure
(Böhning and Lindsay (1988), Lange (2004)). The key idea here is to use
a global matrix bound for the Hesse matrix if it is available. Suppose that
∇2L(βj) ≥ Bj for all βj , where Bj is a negative definite matrix,∗ then it can
be verified that the iteration

β
(n+1)
j = β

(n)
j + B−1

j ∇L(β(n)
j )

∗ Here A ≥ B means that A−B is nonnegative definite matrix.
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is gradually decreasing in the sense that L(β(n+1)
j ) ≥ L(β(n)

j ) where L(βj) is
the expected, complete log-likelihood.

β(n+1) = β(n) + B−1
j ∇L(β(n)) (6.17)

Note that in the equation (6.17) Bj can be written as Z ′ΛjZ, where Λj is a
diagonal matrix with Λjii = eij(xT

i + xC
i ) 1

4 , independent of η. Bj represents
a global upper bound for −∇2L(βj), e.g. −∇2L(βj) ≤ Bj for all βj , where
“≤” denotes the matrix ordering. Also it is guaranteed to convergence to the
maximum. The equation (6.17) has the advantage to need the global bound
matrix to be inverted only once (for details see Böhning and Lindsay (1988),
Böhning (1992)). Suppose that n0 is the average number of iterations required
in the Newton-Raphson iteration, the lower bound procedure will save about
n0 − 1 matrix inversions.

6.1.3 Finding the standard errors of estimates

In this situation it is a larger challenge to estimate the variance of the maxi-
mum likelihood estimators of βj although it is possible. In fact, it can be seen
as one of the benefits of the profile likelihood method to work with a reduced
number of parameters, so that the dimensionality of the problem remains low.
We note in passing that correct approximations of the standard errors are not
obtained as a byproduct of the estimation process as in Section 4.2.3, because
the expected, complete likelihood function (6.12) usually has a different cur-
vature in comparison to the observed log-likelihood and is therefore not the
appropriate basis for developing estimates of the standard errors.

We will briefly describe two general ways for constructing an approximation of
the (expected) information matrix i(ψ) with elements −E

(
∂2

∂ψj1∂ψj2
LL(ψ)

)

where ψ is now a vector of size m× p + m− 1 having firstly m× p elements
through the vector of regression coefficients

β = (β1, ..., βm)′ with βj = (β0j , ..., βpj)′

and finally m − 1 free parameters through the weights q1, ..., qm−1. If p = 3
and m = 4 there are 12 β-parameters and 3 weight parameters involved and
the information matrix would have a dimension of 15.

• McLachlan and Peel (2000) give an interesting approximation of the infor-
mation matrix using the gradient only. Consider

LL(ψ) =
k∑

i=1

log
m∑

j=1

fi(exp(ηij))qj

which we write as

LL(ψ) =
k∑

i=1

log Li(ψ).
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Now,

∇ log L(ψ)∇ log L(ψ)′ =
k∑

i=1

∇ log Li(ψ)∇ log Li(ψ)′

provides an approximation of i(ψ) since

E

(
k∑

i=1

∇ log Li(ψ)∇ log Li(ψ)′
)

= i(ψ).

A proof of this result is given in McLachlan and Peel (2000). Note that∑k
i=1∇ log Li(ψ)∇ log Li(ψ)′ is nonnegative definite, since

h′
(

k∑

i=1

∇ log Li(ψ)∇ log Li(ψ)′
)

h =
k∑

i=1

(∇ log Li(ψ)′h)2 ≥ 0

for any h 6= 0.
• A second approach would more directly consider the observed information

matrix, namely the Hesse matrix of LL(ψ)

I(ψ) = −
(

∂2

∂ψj1∂ψj2
LL(ψ)

)
.

Let us now consider the observed mixture log-likelihood

LL(ψ) =
k∑

i=1

log
m∑

j=1

fi(exp(ηij))qj , (6.18)

where we take only the logarithm of (6.9). The first partial derivative with
respect to βj,d1 is given as

∂

∂βj,d1
log Li(ψ) =

∂
∂βj,d1

fi(exp(ηij))qj∑m
j∗=1 fi(exp(ηij∗))qj∗

, (6.19)

where

fi(exp(ηij)) =
exp(ηij)xT

i

(
nC

i + nT
i exp(ηij)

)xT
i +xC

i

qj

and

∂

∂βj,d1
fi(exp(ηij))qj =

zid1 exp(ηij)xT
i (− exp(ηij)nT

i xC
i + nC

i xT
i )

(
nC

i + nT
i exp(ηij)

)xT
i +xC

i +1
qj .

For example, in establishing the partial derivative with respect to the weight
qj we have to keep in mind that

∑m
j=1 qj = 1, so that qm = 1 − ∑m−1

j=1 qj .
Hence, the log-likelihood (6.18) can be equivalently written as

k∑

i=1

log




m−1∑

j=1

{fi(exp(ηij))− fi(exp(ηim))}qj


 =

k∑

i=1

log Li(ψ),
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Table 6.1 Results of the analysis of the effect of nicotine replacement therapy (NRT)
on quitting smoking without consideration of covariate information (H is the number
of trials that belong to the respective component).

Comp. 1. 2. 3.

θj 1.760 1.301 5.316
95% CI (1.446 - 2.142) (1.032 - 1.640) (1.154 - 24.490)
qj 0.6418 0.3342 0.0240
H 52 7 0

Log-L.=− 17, 216.9
BIC =− 34, 454.1
max GF = 1.000000

so that the partial derivative with respect to qj is simply

∂

∂qj
log Li(ψ) =

fi(exp(ηij))− fi(exp(ηim))∑m
j∗=1 fi(exp(ηij∗))qj∗

. (6.20)

The diagonal elements of the inverse of
∑k

i=1∇ log Li(ψ)∇ log Li(ψ)′ provide
estimates for the variances of ψ̂ by plugging in the maximum likelihood esti-
mate ψ̂ for ψ

ŝ.e.(ψ̂i)2 =

(
k∑

i∗=1

∇ log Li∗(ψ̂)∇ log Li∗(ψ̂)′
)−1

i

.

From here, the estimated standard error for the linear predictor η̂ij follows
easily as

s.e.(η̂ij) =

√√√√√z′i

(
k∑

i∗=1

∇ log Li∗(ψ̂)∇ log Li∗(ψ̂)′
)−1

j

zi.

6.2 Application of the model

As illustration of the model we will use the data of the quitting smoking study
(see also Table 4.1). Without covariate information three mixture components
can be found in the 59 trials (see Table 6.1). This is in fact the nonparametric
profile maximum likelihood estimator, since the associated maximum of the
gradient function is bounded by one.

In Table 6.2 we consider the covariate NRT (patch vs. gum) and assume that
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Table 6.2 Does treatment modification change the effect of NRT on quitting smoking?
Results of fitting a mixture of two components of regression model on the effect of
type of NRT on quitting smoking

Mixed Component weight qj Covariates β̂j S.E. P-value

1 0.8488 Intercept1 0.3357 0.0688 0.0000

NRT1 0.2253 0.1001 0.0122

2 0.1512 Intercept2 0.6607 0.1660 0.0000

NRT2 1.0701 0.6632 0.0533

Log-Likelihood = −17, 214.1
BIC = −34, 444.5

Table 6.3 Does treatment modification change the effect of NRT on quitting smoking?
Results of fitting a mixture of three components of regression model on the effect of
type of NRT on quitting smoking

Mixed Component weight qj Covariates β̂j S.E. P-value

1 0.5244 Intercept1 0.2564 0.1023 0.0061

NRT1 0.3145 0.1804 0.0406

2 0.0994 Intercept2 0.5701 0.3497 0.0515

NRT2 1.2734 0.7680 0.0486

3 0.3762 Intercept3 1.8435 0.1567 0.0001
NRT3 0.0008 0.2468 0.4987

Log-Likelihood = −17, 213.5
BIC = −34, 451.4

the mixture of two components exist in this MAIPD of 59 trials. The covari-
ate NRT is only significant in the first component. In the second component
the treatment effect is larger than in the first component. If we consider the
mixture of three components in Table 6.3 the gradient function is less than
one in the parameter space, so that this solution already provides the non-
parametric maximum likelihood estimator. A comparison of the BIC values
shows that the mixture of two components of regression model provide the
preferred statistical model.

The theory of the general mixture maximum likelihood theorem is also appli-
cable here but the gradient function is multidimensional. With one covariable,
the gradient function has two dimensions.
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6.3 Simplification of the model for observed and unobserved
covariates

The result in Table 6.3 shows that the effects of the covariate vary from
component to component in the mixture model. However, the model will be
simple if the effects of covariates are identical over all trials. The idea is to
estimate a homogeneous effect of the covariates and allow different intercepts
(heterogeneity) for the various mixture components.

Let us rewrite the likelihood function from (6.9) as

L(Q(B∗)) =
k∏

i=1

m∑

j=1

fi(exp(ηij))qj ., (6.21)

with the linear predictor

ηij = β0j + β1zi1 + ... + βpzip

and where Q(B∗) is identical with 6.7 and

B∗ =




β01 β1... βp

... ... ...
β0m β1... βp


 .

Note that β1, ..., βp are the same in each mixture component whereas β01, ..., β0m

are the possible different intercepts in the m mixture components. The model
now has m + p regression coefficients and q weights.

6.3.1 Finding the maximum likelihood estimator

The estimation process goes the same way as Section 6.1.1 up to the maxi-
mization of the expected complete data log-likelihood (6.13), given as

L(Q(B)) =
k∑

i=1

m∑

j=1

eij log fi(exp(ηij)) + eij log(qj)

=
k∑

i=1

m∑

j=1

eij

(
xT ηij − (xC

i + xT
i ) log(nC

i + exp(ηij)nT
i )

)
+ eij log(qj)

=
m∑

j=1

k∑

i=1

eij

(
xT

i ηij − (xC
i + xT

i ) log(nC
i + exp(ηij)nT

i )
)

+ eij log(qj).

(6.22)

Maximizing of (6.22) with respect to qj is easily done as previously to provide

q̂j =
1
k

k∑

i=1

eij .
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Maximization for
m∑

j=1

k∑

i=1

eij

(
xT

i ηij − (xC
i + xT

i ) log(nC
i + exp(ηij)nT

i )
)

can be completed in two steps.

• Step 1. Assume that the common slopes β1, ..., βp are given. Then max-
imization of (6.22) can be completed via the Newton-Raphson iteration.
This can be accomplished by maximizing separately for each component

L(β0j) =
k∑

i=1

eij

(
xT

i ηij − (xC
i + xT

i ) log(nC
i + exp(ηij)nT

i )
)
,

so that Step 1 is completed by doing m maximizations of L(β0j) for j =
1, ..., m by means of m univariate Newton-Raphson iteration

β
(n+1)
0j = β

(n)
0j − L′(β(n)

0j )

L′′(β(n)
0j )

which has to be iterated until convergence. Note that these derivatives are
easily available as

L′(β0j) =
k∑

i=1

eij

(
xT

i − (xC
i + xT

i )nT
i

exp(ηij)
nC

i + exp(ηij)nT
i

)
(6.23)

and

L′′(β0j) = −
k∑

i=1

eij

(
(xC

i + xT
i )nT

i exp(ηij)(
nC

i + exp(ηij)nT
i

)2

)
. (6.24)

• Step 2. Now assume that β01, ..., β0m is given. Then the expected, com-
plete data log-likelihood no longer separates into components, since each
component contains the common slopes β1, ..., βp:

∂

∂βd1
L(β1, ..., βp) =

k∑

i=1

m∑

j=1

eij

(
xT

i − (xC
i + xT

i )nT
i

exp(ηij)
nC

i + exp(ηij)nT
i

)
zi,d1

(6.25)
∂2

∂βd2∂βd1
L(β1, ..., βp) = −

k∑

i=1

m∑

j=1

eij
(xC

i + xT
i )nT

i exp(ηij)(
nC

i + exp(ηij)nT
i

)2 zi,d1zi,d2.

These elements form the gradient

∇L(β) =
(

∂

∂βd1
L(β1, ..., βp)

)

and the Hessian matrix

∇2L(β) =
(

∂2

∂βd2∂βd1
L(β1, ..., βp)

)
.
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Table 6.4 Does treatment modification change the effect of NRT on quitting smoking?
Results of fitting a mixture of two components of regression model with a common
slope on the effect of type of NRT on quitting smoking

Mixed Component weight qj Covariates β̂j S.E. P-value

1 0.6067 Intercept1 0.2803 0.3167 0.1881

NRT 0.2447 0.2873 0.1972

2 0.3933 Intercept2 0.5815 0.3745 0.0602

NRT 0.2447 1.3511 0.4281

Log-Likelihood = −17, 214.4
BIC = −34, 445.1

so that the Newton-Raphson iteration β(n+1) = β(n)−∇2L(β(n))−1∇L(β(n))
can be employed. Note also that lower bound methods are possible as in
the section on separate component slopes which leads to

β(n+1) = β(n) + B−1∇L(β(n)) (6.26)

where B can be written as Z ′ΛZ, where Λ is a diagonal matrix with Λii =∑m
j=1 eij(xT

i + xC
i ) 1

4 , independent of η. B represents a global upper bound
for −∇2L(β).

Standard errors can be found in a very similar way as outlined in Section 6.1.3.
Let us illustrate the model with the MAIPD on the effect of NRT on quitting
smoking as presented in Table 6.4. Note that the BIC value of −34, 444.5
is very close to the BIC value of −34, 445.1 for the two-component model
allowing for different slopes (see Table 6.2). Since a common slope has clear
interpretative advantages, and given the similar empirical support for both
models, the common slope model might be the preferred choice in this case.



CHAPTER 7

Working with CAMAP

The profile log-likelihoods that have been developed and used in this book
are nonstandard log-likelihoods. They are neither a Poisson log-likelihood nor
any of the log-likelihoods available in the standard generalized linear model
family. This makes them less attractive to use one of the existing statistical
packages such as STATA, S-plus, MINITAB, or any other package that offers
macro-like programming.

The purpose of the present chapter is to provide a very flexible tool for esti-
mating the relative risk based upon the profile log-likelihood models. It was
decided to use the Microsoft Fortran Power Station to develop a software
tool. This software tool is called CAMAP (Computer Assisted Analysis of
Meta-Analysis using the Profile Likelihood Model). The reason for this is the
Microsoft Fortran Power Station has many features that make development
easy and efficient. The following features have been developed:

• The first feature is to calculate relative risk based upon the basis of the
profile log-likelihood model. This feature enables calculation of relative risk
based upon the situation of homogeneity effect.

• The second feature is to calculate relative risk based upon the modeling of
unobserved heterogeneity. This feature enables calculation of relative risk
based upon the mixture of profile log-likelihood model without covariate
information.

• The third feature is to calculate relative risk based upon the modeling
of covariate information. This feature enables incorporation of covariate
information based upon a modification of the generalized linear model in
order to estimate the relative risk based upon the significant covariates.

• The fourth feature is to calculate relative risk based upon the modeling of
the covariate information to allow for unobserved heterogeneity.

We will give some examples that demonstrate how to work with CAMAP to
analyze the data from the meta-analysis of 59 trials that evaluate the effect of
nicotine replacement therapy (NRT) on quitting smoking given by DuMouchel
and Normand (2000). The data are displayed in Table 4.1. There are two
covariates with values defined for each study; the forms of NRT (patch and
gum) and the types of support (high support and low support) that might
explain the heterogeneity among trials.

105
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7.1 Getting started with CAMAP

7.1.1 Starting

When you execute CAMAP, the following display, shown in Figure 7.1, will
appear on your screen. In the header bar at the top of the screen is a list of
topics: File, Calculation, and Settings. There are two windows.

• Start window: displays the data set from the input file and shows the output
from the analysis.

• Status window: displays the steps of computation.

7.1.2 Importing data

• You can import data into CAMAP in the form of ASCII files saved from a
spreadsheet.

• An example of an ASCII file for the meta-analysis to evaluate the effect
of NRT on quitting smoking is shown in Figure 7.2. The meaning of each
column is:

– The first column is the number of centers.
– The second column is the number of smokers who quit smoking in the

treatment arm.
– The third column is the number of smokers in the treatment arm.
– The fourth column is the number of smokers who quit smoking in the

control arm.
– The fifth column is the number of smokers in the control arm.
– The sixth column is the binary covariate that describes the forms of

NRT.
– The seventh column is the binary covariate that describes the types of

support.

• To import your data file into CAMAP, click on the File menu in the header
bar and select the Open Data item.

• Having selected a data file from the Input Data File dialog box, a Read Data
dialog box will appear with a place for specifying the number of covariates.

• By clicking on the counting check box on the first line, you can tell the
program that you record the number of centers in the first column.

• Suppose we opened the previous ASCII file for the meta-analysis to evaluate
the effect of NRT on quitting smoking, we filled in the number of covariates
as two and clicked on the counting check box. The Read Data dialog box
of this example is shown in Figure 7.3 and the data are shown on the Start
window screen in Figure 7.4.
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7.1.3 Creating a log file for your own work

• It is generally advisable to keep a log of your work session because you can
then review what you have done.

• To create a log file in which your outputs are recorded, click on the File
menu in the header bar and select the Start Log-Session item. A Start
Log-Session dialog box will appear with a place for a filename which is
shown in Figure 7.5. A filename is any name you wish to give your log file.

• Having finished the computations, click on the File menu in the header bar
and select the Close Log-Session item. This action will close your log file
and all of your outputs will be saved in a text format.

• By clicking on the check box for the Output in LaTeX Format, you can
tell the program that you want to record your output in a LaTeX format
instead of text format.

• Reviewing the log file can be done with any editor. You can use Wordpad,
Notepad, etc., to open and read it.

7.1.4 Exiting CAMAP

When you exit CAMAP, your log file will be automatically saved. You click
on the File menu in the header bar and click on the Exit item. CAMAP exits
by this action.
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Figure 7.1 CAMAP window layout
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Figure 7.2 Example of ASCII file of the meta-analysis for evaluating the effect of
NRT on quitting smoking

Figure 7.3 Example of Read Data Dialog Box of the meta-analysis for evaluating the
effect of NRT on quitting smoking
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Figure 7.4 Example of output for importing the data from the meta-analysis for
evaluating the effect of NRT on quitting smoking

Figure 7.5 Start Log-Session Dialog Box
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7.2 Analysis of modeling

• All the features are available from the Calculation menu and its associated
dialogs.

• To estimate the relative risk based upon any profile likelihood models that
are described in this book, click on the Calculating Relative Risk item
on the Calculation menu.

• A modeling dialog box will appear, giving you a place to enter the stop
criteria for the EM algorithm. The default stop criteria is 0.00000000001.

• The criteria for selecting the appropriate number of components; a) NPMLE
b) BIC or c) specific maximum number of mixed components, needs to be
specified in the modeling dialog box.

– The NPMLE and BIC are usually used when the number of components
is estimated.

– The specific maximum number of mixed components is usually used
when you want to specify the number of components.

• If you have covariates in your data file, the name of the covariates shows
in the option–Select included Covariates.

• When the computations are complete, CAMAP displays the output in the
Results Window.

• Any profile likelihood models that are described in this book can be ex-
ecuted by CAMAP. We will start with the profile likelihood model for
the situation of the homogeneity effect, and then we will demonstrate the
more complicated profile likelihood models; the modeling of unobserved
heterogeneity, the modeling of covariate information, and the modeling of
covariate information to allow for unobserved heterogeneity, respectively.

7.2.1 Modeling of the homogeneity effect

This feature enables calculation of the relative risk based upon the profile
likelihood model for the situation of the homogeneity which is described in
Chapter 2.

• In the modeling dialog box, you click on the radio button for the MAX
Number of Mixed Components and enter the maximum number of mixed
components as one.

• The completed modeling dialog box for the modeling of homogeneity effect
of the meta-analysis for evaluating the effect of NRT on quitting smoking
is shown in Figure 7.6.

• The results of pressing the OK button with this setup are shown in Figure
7.7.
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• The estimate of the effect parameter is equal to 0.4483 with a standard
error equal to 0.0392. This corresponds to an estimate of 1.5656 with a
95% confidence interval from 1.4500 to 1.6905 for the relative risk itself.

7.2.2 Modeling of the unobserved heterogeneity

This feature enables calculation of the relative risk based upon the mixture of
profile log-likelihood model without covariate information which is described
in Chapter 3. First, we try the common approach of a mixture model that
uses NPMLE for estimating the number of components.

• The completed modeling dialog box to compute the relative risk based
upon the modeling of unobserved heterogeneity using the NPMLE of the
meta-analysis for evaluating the effect of NRT on quitting smoking is shown
in Figure 7.8.

• The results of pressing the OK button with this setup are shown in Figure
7.9.

• The results provide some evidence of heterogeneity consisting of three com-
ponents.

– The estimate of the effect parameter in the first component is equal to
0.5654 with a standard error equal to 0.0668.

– The estimate of the effect parameter in the second component is equal
to 0.2633 with a standard error equal to 0.0749.

– The estimate of the effect parameter in the third component is equal to
1.6707 with a standard error equal to 0.7410.

• Having found the mixing distribution and its estimate parameters, the next
step is to classify the effect parameter for each trial into one of the com-
ponents of the mixing distribution which is described in 3.6 of Chapter
3.

• Fifty-two trials are classified into the first component with an estimated
relative risk of 1.7601 and a 95% confidence interval from 1.5440 to 2.0065.
Seven trials are classified into the second component with an estimated
relative risk of 1.3012 and a 95% confidence interval from 1.1234 to 1.5071.
However, nontrials are classified into the third component.

However, the result from this example is unsatisfactory, a better result can
be obtained by computing the relative risk based upon the modeling of unob-
served heterogeneity by specifying the maximum number of mixed components
as two.

• The completed modeling dialog box to compute the relative risk based
upon the modeling of unobserved heterogeneity by specifying the number
of components as two of the meta-analysis for evaluating the effect of NRT
on quitting smoking is shown in Figure 7.10.
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Figure 7.6 The setup screen of the modeling of homogeneity effect for the meta-
analysis evaluating the effect of NRT on quitting smoking

Figure 7.7 The results screen of the modeling of homogeneity effect for the meta-
analysis evaluating the effect of NRT on quitting smoking
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Figure 7.8 The setup screen of the modeling of unobserved heterogeneity for the
meta-analysis evaluating the effect of NRT on quitting smoking

Figure 7.9 The results screen of the modeling of unobserved heterogeneity for the
meta-analysis evaluating the effect of NRT on quitting smoking
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• The results of pressing the OK button with this setup are shown in Figure
7.11.

– The estimate of the effect parameter in the first component is equal to
0.5654 with a standard error equal to 0.0668.

– The estimate of the effect parameter in the second component is equal
to 0.2633 with a standard error equal to 0.0749.

• Forty-nine trials are classified into the first component with an estimated
relative risk of 1.8010 and a 95% confidence interval from 1.4900 to 2.1771.
Ten trials are classified into the second component with an estimated rela-
tive risk of 1.3030 and a 95% confidence interval from 1.0406 to 1.6315.

7.2.3 Modeling of the covariate information

This feature enables incorporation of covariate information based upon a mod-
ification of the generalized linear model using the profile likelihood approach
in order to estimate the relative risk based upon the significant covariates that
is described in Chapter 4.

• In the modeling dialog box, you click on the radio button for the MAX
Number of Mixed Components and enter the maximum number of mixed
components as one in this case.

• You will then need to select covariates that you want to consider from the
option– Select included covariate.

• The completed modeling dialog box for computing the relative risk based
upon the forms of NRT and the types of support using the profile likelihood
approach is shown in Figure 7.12.

• The results of pressing the OK button with this setup are shown in Figure
7.13.

• The estimate of the effect parameter is equal to 0.2633 with a standard
error equal to 0.0749 for the forms of NRT, and the estimate of the effect
parameter is equal to 0.2633 with a standard error equal to 0.0749 for the
types of support.

• These correspond to an estimated relative risk as follows:

– An estimated relative risk of 1.4138 with a 95% confidence interval from
1.2608 to 1.5854 for gum and high support groups.

– An estimated relative risk of 1.8201 with a 95% confidence interval from
1.5640 to 2.1181 for patch and high support groups.

– An estimated relative risk of 1.5458 with a 95% confidence interval from
1.3581 to 1.7596 for gum and low support groups.

– An estimated relative risk of 1.9900 with a 95% confidence interval from
1.6282 to 2.4323 for patch and low support groups.
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Figure 7.10 The setup screen of the modeling of unobserved heterogeneity for the
meta-analysis evaluating the effect of NRT on quitting smoking

Figure 7.11 The results screen of the modeling of unobserved heterogeneity for the
meta-analysis evaluating the effect of NRT on quitting smoking
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• However, the results indicate that the forms of NRT yield the only signif-
icant change for the treatment effect of quitting smoking. A better result
can be obtained from estimating the relative risk based only upon the forms
of NRT that are shown in Table 4.3.

7.2.4 Modeling of the covariate information to allow for unobserved
heterogeneity

This feature enables calculation of relative risk based upon the modeling of
covariate information to allow for unobserved heterogeneity which is described
in Chapter 6. First, we consider the more general situation that both effects of
treatment and covariates vary from component to component in the mixture
model.

• In the modeling dialog box, you have to specify the criteria for selecting
the appropriate number of components.

• You will then need to select covariates that you want to consider from the
option–Select included covariate.

• The completed modeling dialog box to compute the relative risk based
upon modeling of the forms of NRT to allow for unobserved heterogeneity
by using NPMLE is shown in Figure 7.14.

• The results of pressing the OK button with this setup are shown in Figure
7.15.

Alternatively, the model will be simple if the effects of covariates are identical
over all trials. The idea is to estimate the relative risk based upon a homo-
geneity effect of the covariates and allow for the heterogeneity effect of the
treatment which is described in 6.3 of Chapter 6.

• In the modeling dialog box, you have to specify the criteria for selecting
the appropriate number of components and select covariates that you want
to consider as in the previous model.

• You will then need to click on the simplify model check box.
• The completed modeling dialog box to compute the relative risk based

upon the simple modeling of the forms of NRT to allow for unobserved
heterogeneity by using NPMLE is shown in Figure 7.16.

• The results of pressing the OK button with this setup are shown in Figure
7.17.
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Figure 7.12 The setup screen of the modeling of covariate information for the meta-
analysis evaluating the effect of NRT on quitting smoking

Figure 7.13 The results screen of the modeling of covariate information for the meta-
analysis evaluating the effect of NRT on quitting smoking
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Figure 7.14 The setup screen of the modeling of covariate information to allow for
unobserved heterogeneity of the meta-analysis for evaluating the effect of NRT on
quitting smoking

Figure 7.15 The results screen of the modeling of covariate information to allow for
unobserved heterogeneity of the meta-analysis for evaluating the effect of NRT on
quitting smoking
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Figure 7.16 The setup screen of the simple modeling of covariate information to
allow for unobserved heterogeneity of the meta-analysis for evaluating the effect of
NRT on quitting smoking

Figure 7.17 The results screen of the simple modeling of covariate information to
allow for unobserved heterogeneity of the meta-analysis for evaluating the effect of
NRT on quitting smoking
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7.3 Conclusion

The meta-analysis and meta-regression analysis have been demonstrated to
provide a powerful statistical tool to analyze and potentially combine the re-
sults from individual studies. However, they have some deficiencies and disad-
vantages in combining the results from individual studies that we mentioned
in the previous chapters. The profile likelihood approach as an alternative
approach overcomes some of these deficiencies and provides more reliable in-
formation on an intervention effect.

However, computation by using this approach is not available in the existing
statistical packages. The software tool provided here should allow researchers
to accommodate all of the profile likelihood approaches that we explained in
this book in a straightforward manner.

The software CAMAP can be downloaded with no costs from:

www.reading.ac.uk/sns05dab/software.html





CHAPTER 8

Estimation of odds ratio using the
profile likelihood

Besides the relative risk the Odds Ratio (OR) is frequently used in epidemi-
ology as another measure of effect. The OR has been mentioned already in
Section 1.6.3. The profile likelihood framework can be developed very much
the same way as in the previous chapters. The OR is defined as

κi =
qT
i

qC
i

,

where qT
i = pT

i /(1−pT
i ) and qC

i = pC
i /(1−pC

i ). For the framework of the odds
ratio it is assumed that the observations are binomially distributed. Therefore,
the log binomial likelihood is given as (ignoring the only data-dependent term)

ll(pT
i , pC

i ) = xT
i log(pT

i ) + (nT
i − xT

i ) log(1− pT
i )

+ xC
i log(pC

i ) + (nC
i − xC

i ) log(1− pC
i ). (8.1)

In the first step pT
i and pC

i are replaced by qT
i and qC

i . From the condition
qT
i = pT

i

1−pT
i

it follows that pT
i = qT

i

1+qT
i

(for qC
i similarly) so that the log-

likelihood function becomes

ll(qT
i , qC

i ) = xT
i log(

qT
i

1 + qT
i

) + (nT
i − xT

i ) log(1− qT
i

1 + qT
i

)

+ xC
i log(

qC
i

1 + qC
i

) + (nC
i − xC

i ) log(1− qC
i

1 + qC
i

)

= xT
i log(qT

i )− nT
i log(1 + qT

i ) + xC
i log(qC

i )− nC
i log(1 + qC

i ).
(8.2)

In the next step, the parameter of interest κi is inserted in (8.2) for qT
i as

κiq
C
i leading to

ll(qT
i , κi) = xT

i log(κi)−nT
i log(1+κiq

C
i )+(xT

i +xC
i ) log(qC

i )−nC
i log(1+qC

i ).
(8.3)

Now it is possible to eliminate the nuisance parameter qC
i by maximizing (8.3).
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The partial derivative of (8.3) with respect to qC
i is given as

∂

∂qC
i

ll(qT
i , κi) =

xT
i + xC

i

qC
i

− nC
i

1 + qC
i

− nT
i κi

1 + κiqC
i

.

If the partial derivative of (8.3) is set to zero and solved for qC
i , two solutions

are found as

qC
i [κi]1 = − 2(xT

i + xC
i )

xT
i + xC

i − nC
i + (xT

i + xC
i − nT

i )κi −
√

ri(κi)
(8.4)

qC
i [κi]2 = − 2(xT

i + xC
i )

xT
i + xC

i − nC
i + (xT

i + xC
i − nT

i )κi +
√

ri(κi)
(8.5)

ri(κ) = −4(xT
i + xC

i )(xT
i + xC

i − nT
i − nC

i )κ

+ (xT
i + xC

i − nC
i + (xT

i + xC
i − nT

i )κ)2. (8.6)

The second solution qC
i [κi]2 is negative for every κi, for example qC

i [1]2 =
−1. Only qC

i [κi]1 := qC
i [κi] provides a feasible solution in this situation. The

resulting profile likelihood function takes the form

llPL(κi) = xT
i log(κi)− nT

i log(1 + κiq
C
i [κi])

+ (xT
i + xC

i ) log(qC
i [κi])− nC

i log(1 + qC
i [κi]). (8.7)

To avoid mathematical problems qC
i [κi] has to be positive. If we consider the

fraction of qC
i [κi] it is easy to see that this situation occurs if xT

i = 0 and
xC

i = 0. Although this scenario is rare in medical studies, it can occur in
MAIPDs with high sparsity data. In the CALGB study (Table 1.8), this case
appears in the 20-th center. The other setting that can cause mathematical
problems might occur if the denominator of qC

i [κi] equals zero. This occurs if
xT

i = nT
i and xC

i = nC
i . Consequently, in both cases we add 0.5 to each cell

of the associated 2×2 table.

8.1 Profile likelihood under effect homogeneity

The assumption of a common, fixed effect for all centers leads to the profile
likelihood function as

llPL(κ) =
k∑

i=1

xT
i log(κ)− nT

i log(1 + κ× qC
i [κ])

+ (xT
i + xC

i ) log(qC
i [κ])− nC

i log(1 + qC
i [κ]). (8.8)

The maximum of (8.8) coincides with the desired profile maximum likelihood
estimator (PMLE). Just like in the Poisson profile likelihood, the first deriva-
tive of (8.8) equated to zero provides an approximate fixed-point iteration for
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the PMLE. The first derivate of (8.8) is

ll′PL(κ) =
k∑

i=1

xT
i

κ
− nT

i (κ× (
qC
i

)′ [κ] + qC
i [κ])

1 + κ× qC
i [κ]

+
(xT
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i )

(
qC
i

)′ [κ]
qC
i [κ]

− nC
i

(
qC
i

)′ [κ]
1 + qC

i [κ]
(8.9)

with associated fixed-point iteration

κ =
∑k

i=1 xT
i

∑k
i=1

nT
i (κ×(qC

i )′[κ]+qC
i [κ])
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i [κ]
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i [κ]

− (xT
i +xC

i )(qC
i )′[κ]

qC
i [κ]

:= ΦOR(κ).

(8.10)
From (8.9) we can derive an iteration with convergence rate considerably faster
than (8.10). Adding the term

k∑

i=1

(nC
i − xC

i )xT
i − xT

i

√
ri(κ)

κ
√

ri(κ)

to both sides of the score equation, e.g., (8.9) set to zero, we find that

κ =

∑k
i=1

(nC
i −xC

i )xT
i√

ri(κ)∑k
i=1 ti(κ)

:= ΓOR(κ) (8.11)

where ti(κ) =
nT

i (κ× (
qC
i

)′ [κ] + qC
i [κ])

1 + κ× qC
i [κ]

+
nC

i

(
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i

)′ [κ]
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− (xT
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κ
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.

We show in the appendix A.3 the interesting fact that (8.11), if considered as
an algorithmic construction rule, delivers in the first iteration step Γ(1) the
common Mantel-Haenszel estimator, namely

κ̂MH =

∑k
i=1

(nC
i −xC

i )xT
i

nT
i +nC

i∑k
i=1

(nT
i −xT

i )xC
i

nT
i +nC

i

.

As illustration both fixed point iterations are compared in Figure 8.1. ΓOR(κ)
is clearly faster than ΦOR(κ). To get an accuracy of ε = 10−8 four steps
are necessary with ΓOR(κ) and 26 steps are necessary with ΦOR(κ) using an
initial value of κ = 1. For the sake of brevity we do not address the question
of convergence and uniqueness for both iteration rules at this stage.
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Figure 8.1 Graph of ΓOR(κ) (It1) and graph of ΦOR(κ) (It2) for the data of Table
1.5

8.2 Modeling covariate information

Analogously to Chapter 4.2 we are interested in the modeling covariate infor-
mation and use for this purpose the linear predictor ηi =β0+β1zi1+...+βpzip,
see also 4.18. Using the canonical link κi = exp(ηi) leads to the profile log-
likelihood function

llcov(ηi) = llPL(exp(ηi)) =
k∑

i=1

xT
i ηi − nT

i log(1 + exp(ηi)× pC
i [exp(ηi)])

+ (xT
i + xC

i ) log(pC
i [exp(ηi)])− nC

i log(1 + pC
i [exp(ηi)]). (8.12)

Here β0 corresponds to the log(OR) without any covariates in the model. For
the estimation it is necessary to maximize (8.12) in β0, ..., βp. This can be
accomplished using the Newton-Raphson iteration.
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8.2.1 The profile likelihood function with covariate information

The derivatives are more complex here, but closed form expressions are pos-
sible. The first partial derivative of (8.12) is given as

∇L(βj) =
∂

∂βj
llcov(ηi) =

k∑

i=1

xT
i zij+

zij exp(ηi)
(−nT

i t1i − nC
i t2i + (xT

i + xC
i )t3i

)
(8.13)

where
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(exp(ηi)×

(
qC
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i [exp(ηi)])

1 + exp(ηi)× qC
i [exp(ηi)]
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i
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(
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i
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and the corresponding gradient is

∇L(β) =
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∂
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∂

∂βp
llcov(ηi)

)T

. (8.14)

The Hesse matrix is derived from (8.14) as

∇2L(β)ih =
∂

∂βjβh
llcov(ηi) =
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zijzih exp(ηi)
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and as matrix form

∇2L(β) = ZT WZ
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with

Z =




z10 ... z1p

... ... ...
zk0 ... zkp




W =




w1 ... 0 ... 0
0 ... wi ... 0
0 ... 0 ... wk




where wi = exp(ηi)
(−nT

i

(
t1i − t1∗i

)− nC
i

(
t2i − t2∗i

)
+ (xT

i + xC
i )

(
t3i − t3∗i

))
.

The iterative construction of the maximum likelihood estimates for β follows
the iteration

β(n+1) = β(n) −∇2L(β(n))−1∇L(β) (8.15)

As a byproduct of the Newton-Raphson iteration (8.15), estimates of the vari-
ance of β̂i are available from the i−th diagonal element of the covariance
matrix

var(β̂i) = −
(
∇2L(β̂)

)−1

ii

and an associated 95% confidence interval for βi is achieved from

exp{β̂i ± 1.96×
√

var(β̂i)}.

8.2.2 Quitting smoking example

As an application of the profile likelihood method for estimating the Odds
Ratio we are using the data of the quitting smoking meta-analysis in Table
4.1.

Table 8.1 Results of fitting various models to the meta-analysis of quitting smoking

L∗(β̂) Covariates β̂j S.E. P-value

−7464.64 Intercept 0.5679 0.0439 0.

−7462.13 Intercept 0.50399 0.0523 0.
NRT −0.3717 0.2167 0.0128

−7464.64 Intercept 0.5699 0.0711 0.
Support −0.0033 0.0904 0.4856

−7461.91 Intercept 0.5373 0.0726 0.
NRT 0.2345 0.1007 0.0099
Support −0.0624 0.0940 0.2536
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The results of Table 8.1 are comparable with the results of Table 4.2. NRT
is the one covariate with a significant influence on the treatment effect. The
variance of the parameters seems to be a little bit higher than the parame-
ters in Table 4.2. Secondly, the P-values are slightly higher in the odds ratio
estimation process. Finally, both models are coincided in the model selection
and in the treatment predication.

Table 8.2 Results of estimating the odds ratio with 95% CI in the meta-analysis of
quitting smoking

S.E. OR (95% CI)

No covariates 0.0439 1.7645 (1.6191, 1.9230)
Form of NRT

Patch 0.0818 2.0558 (1.7512, 2.4134)
Gum 0.0523 1.6552 (1.4940, 1.8340)





CHAPTER 9

Quantification of heterogeneity in a
MAIPD

9.1 The problem

In many systematic reviews and meta-analyses statistical heterogeneity oc-
curs. This means that the effect measure differs between trials more than it
could be expected under homogeneity of effect. However, the question might
be not if there is heterogeneity but more how its amount could be quantified.
As Higgins and Thompson (2002) put it:

Addressing statistical heterogeneity is one of the most troublesome aspects of
many systematic reviews. The interpretative problems depend on how substan-
tial the heterogeneity is, since this determines the extent to which it might influ-
ence the conclusions of the meta-analysis. It is therefore important to be able to
quantify the extent of heterogeneity among a collection of studies.

A small amount of heterogeneity in a MAIPD might lead to a valid analysis
similar to an analysis under complete homogeneity, whereas a large amount of
heterogeneity might require larger efforts in coping with it including a more
substantial way of modeling it, as has been suggested in previous chapters. One
historic form of quantifying heterogeneity is the Q-statistic usually attributed
to Cochran (1954) (see also Whitehead and Whitehead (1991) or Normand
(1999)). It is defined in our setting as

Q =
k∑

i=1

wi(φ̂i − φ̄)2 (9.1)

where wi = 1/V ar(φ̂i) for φi = log θi and

φ̄ =
∑k

i=1 wiφ̂∑k
i=1 wi

.

The statistic Q is also the basis for estimating the between-studies variance
τ2
φ = V ar(φ) with the moment estimator suggested by DerSimonian and Laird

(1986)

τ2
DL =

Q− (k − 1)
∑

i wi −
∑

i w2
i∑

i wi
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if Q > (k − 1), and 0 otherwise.

The statistic Q has a χ2-distribution with (k − 1) degree of freedom if φ̂i is
normally distributed with mean φ and variance σ2

i . However, in our situation
some problems arise in using Q as a test statistic:

• The variance of φ̂i is usually unknown and is estimated as σ̂2
i = 1/xT

i +
1/xC

i .

• The number of events in both trial arms is more realistically assumed to
be Poisson rather than normal, so that large number of events are required
to have a reasonable approximation to the normal.

• For high sparsity trials zero events are likely to occur and will require some
modification of the variance estimate, often achieved by adding 0.5 in both
arms.

For a more general discussion of homogeneity tests see Hartung et al. (2003)
and for alternative test procedures Hartung and Knapp (2003).

Two issues need to be distinguished:

• First, the asymptotic χ2−result occurs if the number of trials k is kept
fixed and the trial sizes ni become large.

• Second, if the individual trial size remains small while k increases, Q will
only have a χ2−distribution with k−1 df under special circumstances such
as characterized by Potthoff and Whittinghill (1966).

Higgins and Thompson (2002) suggest to consider Q as a measure of hetero-
geneity and define two measures on the basis of Q:

H2 =
Q

k − 1
and

I2 =
H2 − 1

H2
.

Leaving inferential issues aside for the time being, several aspects of these
measures should be noted:

• H2 takes values from 0 to ∞ and reflects that Q is not bounded above. It
is therefore an absolute measure. Higgins and Thompson (2002) suggest to
truncate values of H2 smaller than 1 at 1, since the expected value of a χ2

with k − 1 df is k − 1.

• This will then make I2 nonnegative and also bound above by 1. Hence, I2 is
a relative measure. However, this bound will never be attained in practice,
since it would require limiting values for Q.

It can be expected that any of these measures, Q, H2, or I2, are rather unstable
when used in a high sparsity trial as in the following example.
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9.1.1 A sparse multicenter hypertension trial

This example is taken from Brown and Prescott (1999). The trial was a ran-
domized double blind comparison of three treatments for hypertension and
has been reported in Hall et al. (1991). One treatment was a new drug (A
= Carvedilol) and the other two (B = Nifedipine and C = Atenolol) were
standard drugs for controlling hypertension. A number of centers participated
in the trial and patients were randomized in order of entry. We concentrate
here on the adverse event of developing the symptom of cold feet during the
treatment (for details see Brown and Prescott (1999), p. 137). The data are
provided in Table 9.1.

Table 9.1 Data illustration of a MAIPD for studying the effect of developing cold
feet during treatment for hypertension (Hall et al. (1991)); data contain number of
patients xT

i , xC1
i , xC2

i developing cold feet and number of patients recruited nT
i , nC1

i ,
nC2

i in the treatment (T ) and control arms (C1 and C2), respectively

Center Treatment Control 1 Control 2

i xT
i nT

i xC1
i nC1

i xC2
i nC2

i

1 3 13 5 14 1 12
2 2 3 0 4 0 3
3 0 3 0 3 0 2
4 1 4 1 4 0 4
5 1 4 3 5 0 2
6 0 2 1 1 1 2
7 0 6 1 6 0 6
8 1 2 0 1 1 2
9 0 4 1 4 0 4

10 0 3 1 3 0 4
11 1 1 0 1 0 2
12 0 8 2 8 1 8
13 1 4 0 4 0 3
14 0 2 0 2 0 2
15 0 3 0 2 0 2
16 0 3 1 4 0 3
17 0 1 0 2 0 2
18 0 12 0 12 0 12
19 1 2 0 1 0 1
20 0 9 5 6 0 8
21 0 2 0 1 1 2
22 0 2 0 1 0 1

In a MAIPD with high sparsity such as in Table 9.1 the application of Q or any
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other measure based upon Q would be problematic. The estimated weights
ŵi = xT

i xC
i

xT
i +xC

i
would be not defined in many cases where xT

i = 0 or xC
i = 0

and the required modification ŵi = (xT
i +0.5)(xC

i +0.5)

xT
i +xC

i +1
would leave any measure

involving these highly unstable. In the following we develop an alternative
approach for measuring heterogeneity in a MAIPD.

9.2 The profile likelihood as binomial likelihood

In Chapter 2 we have developed the profile log-likelihood (2.11) for study i

L∗(θ) =
k∑

i=1

{
xT

i log(θi)− (xC
i + xT

i ) log(nC
i + θin

T
i )

}

which corresponds to a profile likelihood

(nT θ)xT

(nC + θnT )xT +xC , (9.2)

where we have ignored the index for the study. It is quite interesting to observe
that (9.2) is proportional to a binomial likelihood

(
N
y

)
py(1− p)N−y, (9.3)

with p = θnT

nC+θnT and N = xT + xC , y = xT . Note that when the trial is
balanced (nT = nC = n), p and θ are related simply by p = θ/(1 + θ).

9.3 The unconditional variance and its estimation

It is appropriate to recall a few facts about the binomial distribution with

density f(y|p) =
(

N
y

)
py(1− p)(N−y). The binomial has mean E(Y |p) = Np

and variance V ar(Y |p) = Np(1−p). Note that these moments are conditional
on the value of p. Suppose now that p itself is random with density f(p) so
that the joint and marginal density of Y are given as

f(y, p) = f(y|p)f(p) (9.4)

f(y) =
∫ 1

0
f(y|p)f(p)dp, (9.5)

respectively. We will also denote the mean and variance of p with

E(p) =
∫ 1

0

pf(p)dp = µ and V ar(p) =
∫ 1

0

(p− µ)2f(p)dp = τ2.
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It follows that the marginal mean and variance of Y are provided as

E(Y ) = E[E(Y |p)] = Nµ (9.6)
V ar(Y ) = E[V ar(Y |p)] + V ar[E(Y |p)]. (9.7)

Equation (9.7) can be further developed to become

V ar(Y ) = E[Np(1− p)] + V ar(Np)

which provides a variance decomposition of the marginal variance into a part
reflecting the variance within a study E[Np(1 − p)] and a variance due to
the heterogeneity of studies which is V ar(p) = τ2. Note that in case of ho-
mogeneity where the distribution of p is reduced to a one-point distribution
with all mass at p, the marginal variance reduces to the conventional binomial
variance V ar(Y ) = Np(1− p). We can develop (9.7) even more:

V ar(Y ) = Nµ−NE(p2) + N2τ2 = N [µ(1− µ)− τ2] + N2τ2, (9.8)

where E[p(1− p)] = µ(1− µ)− τ2 is the population-averaged variance due to
within study variation. Since p(1− p) ≥ 0 for 0 ≤ p ≤ 1, it follows that

E[p(1− p)] = µ(1− µ)− τ2 ≥ 0

or, equivalently

τ2 ≤ µ(1− µ) ≤ 1
4
,

where the inequality becomes sharp for µ = 1
2 (see also Figure 9.1). Let

the distribution of p be concentrated with equal weights at 0 and 1 so that
V ar(p) = 1

4 and all inequalities become sharp. This shows that the maximum
value for τ2 is achieved with τ2 = 1

4 and suggests to define a measure of
heterogeneity as follows:

ω = 4× τ2. (9.9)

The measure ω as defined in (9.9) is easy to interpret since

• it attains the value zero if there is no heterogeneity (τ2 = 0) and

• it attains the value 1 if there is maximum heterogeneity (τ2 = 1
4 ).

Alternatively, one could relate τ2 to the total variance V ar(Y ) and define

Ω =
N2τ2

V ar(Y )
=

N2τ2

[µ(1− µ)− τ2]N + N2τ2
.

This measure has favorable properties as well including

• 0 ≤ Ω ≤ 1

• with the extremes being attained for τ2 = 0 and τ2 = µ(1− µ).

In particular Ω ≥ 0, since µ(1− µ)− τ2 ≥ 0.

One disadvantage of Ω is that it involves N which might be different from
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Figure 9.1 Graph of µ(1− µ)

study to study and some way of allowing for a distribution of N must be
incorporated. In case N is different from study to study we suggest replacing
N by its expected values so that

Ω =
E(N2)τ2

[µ(1− µ)− τ2]E(N) + E(N2)τ2

for the more general case.

9.3.1 Estimation

Estimates of µ and τ2 must be provided. We suggest the Mantel-Haenszel
estimator µ̂ =

∑
i yi∑
i Ni

which is known to behave well even in high sparsity
cases. To estimation of τ2 we consider (9.8) and conclude that

E(Yi −Niµ)2 = Niµ(1− µ) + Ni(Ni − 1)τ2, or (9.10)
k∑

i=1

E(Yi −Niµ)2 =
(∑k

i=1 Ni

)
µ(1− µ) +

(∑k
i=1 Ni(Ni − 1)

)
τ2,(9.11)

so that a moment estimator for τ2 can be constructed as

τ̂2 =

∑k
i=1(yi −Niµ)2 −

(∑k
i=1 Ni

)
µ(1− µ)

∑k
i=1 Ni(Ni − 1)

. (9.12)
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Clearly, the estimate τ̂2 is unbiased, since E(τ̂2) = τ2, but involves the un-
known mean parameter µ which is replaced by µ =

∑
i yi∑
i Ni

so that an applicable
version of (9.12) is provided as

τ̂2 =

∑k
i=1(yi −Niµ̂)2 −

(∑k
i=1 Ni

)
µ̂(1− µ̂)

(∑k
i=1 Ni(Ni − 1)

) .

Note that the estimator (9.12) is also defined in the extreme case Ni = 0 for
some i which occurs when there are no events in both treatment arms. This
is in contrast to the estimator defined in (Böhning (2000)) where (9.10) is
rewritten as

E(Yi −Niµ)2

Ni(Ni − 1)
=

1
Ni − 1

µ(1− µ) + τ2,

so that the estimator follows,

τ̂2
B =

1
k

∑

i

(yi −Niµ̂)2

Ni(Ni − 1)
− 1

k

(∑

i

1
Ni − 1

)
µ̂(1− µ̂), (9.13)

which is also asymptotically unbiased but suffers from the obvious disadvan-
tage of being undefined if Ni ≤ 1. Similarly for the estimator

τ̂2
M =

∑k
i=1(yi −Niµ̂)2/Ni − kµ̂(1− µ̂)∑k

i=1(Ni − 1)
, (9.14)

suggested and discussed in Lachin (2000)(p. 324-325) and Marshall (1991),
where studies with Ni = 0 need to be removed (which seems to be no large
restriction). Also, a number of estimators have been compared in Böhning
et al. (2004), where it was found by empirical evidence that the estimator
(9.14) behaved very well in many cases in comparison to others. Note that all
estimators are truncated at 0 if they become negative.

9.3.2 Estimating the heterogeneity variance of θ

We have provided ways of estimating V ar(p) = τ2
p , now indexed with p to

avoid ambiguities in notation. However, original interest lies in estimating
V ar(θ) = τ2

θ . Now, theta and p are connected by means of p = p(θ) = θ/(1+θ)
or inversely by θ = θ(p) = p/(1 − p). We use the δ-method to calculate
V ar(θ). In summary, the δ-method provides a general technique to calculate
the variance of a transformation T (X) for a random variable X with given
variance V ar(X). Use a first order Taylor series expansion around E(X)

T (X) ≈ T (E(X)) + T ′(E(X))(X − E(X))

and the result V ar(T (X)) ≈ T ′(E(X))2E(X − E(X))2 = T ′(E(X))2V ar(X)
follows. In our case, the transformation is p/(1−p) with derivative [p/(1−p)]′ =
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(1−p)2 . Hence,

τ2
θ = V ar(θ) ≈ 1

(1− µ)4
V ar(p) =

1
(1− µ)4

τ2
p (9.15)

and an estimator for τ2
θ is given as

τ̂2
θ =

τ̂2
p

(1− µ̂)4
,

where we use for µ̂ =
∑

i yi∑
i Ni

, and τ̂2
p is estimated by (9.12).

Frequently, interest is in φ = log θ so that an expression for τ2
φ is desired. Since

log θ = log[p/(1− p)] = log(p)− log(1− p) we achieve

τ2
φ = V ar(φ) ≈

(
1
µ

+
1

(1− µ)

)2

V ar(p) =
1

µ2(1− µ)2
τ2
p (9.16)

and an estimator for τ2
φ is given as

τ̂2
φ =

τ̂2
p

µ̂2(1− µ̂)2
.

An estimator for Ω can be found by plugging in estimates for µ and τ2 and
replacing E(N) and E(N2) by their sample averages:

Ω̂ =

(∑
i N2

i

)
τ̂2

[µ̂(1− µ̂)− τ̂2] (
∑

i Ni) + (
∑

i N2
i ) τ̂2

(9.17)

9.3.3 Unbalanced trials

Although in many cases the trial arms are designed to be balanced, they
turn out to be not balanced for a variety of reasons. In such situations the
transformation p = θnT

nC+θnT will involve the different sizes of the trial arms
and heterogeneity in p can no longer be entirely attributed to θ. To cope
with this problem we suggest to internally standardize the trial to achieve
equal trial arm sizes: ni = (nT

i + nC
i )/2 with an associated “pseudo-number”

of events x̃T
i = xT

i

nT
i

ni and x̃C
i = xC

i

nC
i

ni. This procedure is similar to indirect
standardization well-known in epidemiology and demography (see, for example
Woodward (1999)) where expected counts are constructed on the basis of a
common reference population. Note that we have chosen ni such that their
sum corresponds to the sum of the original sizes: 2ni = nT

i + nC
i , so that

the available information appears to be neither diminished nor inflated, just
differently allocated.
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Table 9.2 MAIPD for studying the effect of developing cold feet during treatment for
hypertension (Hall et al. (1991)); data contain number of patients xT

i , xC1
i developing

cold feet and number of patients recruited nT
i , nC1

i in the treatment (T ) and first
control arm (C1), respectively, as well as ni = (nT

i + nC1
i )/2 and pseudo-events x̃T

i

and x̃C1
i

Center i xT
i nT

i xC1
i nC1

i ni x̃T
i x̃C1

i

1 3 13 5 14 13.5 3.11538 4.82143
2 2 3 0 4 3.5 2.33333 0.00000
3 0 3 0 3 3.0 0.00000 0.00000
4 1 4 1 4 4.0 1.00000 1.00000
5 1 4 3 5 4.5 1.12500 2.70000
6 0 2 1 1 1.5 0.00000 1.50000
7 0 6 1 6 6.0 0.00000 1.00000
8 1 2 0 1 1.5 0.75000 0.00000
9 0 4 1 4 4.0 0.00000 1.00000

10 0 3 1 3 3.0 0.00000 1.00000
11 1 1 0 1 1.0 1.00000 0.00000
12 0 8 2 8 8.0 0.00000 2.00000
13 1 4 0 4 4.0 1.00000 0.00000
14 0 2 0 2 2.0 0.00000 0.00000
15 0 3 0 2 2.5 0.00000 0.00000
16 0 3 1 4 3.5 0.00000 0.87500
17 0 1 0 2 1.5 0.00000 0.00000
18 0 12 0 12 12.0 0.00000 0.00000
19 1 2 0 1 1.5 0.75000 0.00000
20 0 9 5 6 7.5 0.00000 6.25000
21 0 2 0 1 1.5 0.00000 0.00000
22 0 2 0 1 1.5 0.00000 0.00000

9.3.4 Application to the sparse multicenter hypertension trial

Based on the last two columns of Table 9.2 we find that µ̂ =
∑

i yi∑
Ni

= 0.3333
with Ni = x̃T

i + x̃C1
i and yi = x̃T

i . This corresponds to a relative risk of
θ = µ/(1−µ) = 0.5 which implies that the risk of developing cold feet during
treatment is half the size as for the first control treatment. We use (9.12) to
estimate τ2 (with µ replaced by µ̂) and find a value of 0.0211, corresponding
to ω̂ = 0.0843, a minor value for the heterogeneity variance and associated
heterogeneity measure.

We are now looking at the risk of developing cold feet for treatment versus
the second control treatment. Based on the last two columns of Table 9.3
we find that µ̂ =

∑
i yi∑
Ni

= 0.6809 with Ni = x̃T
i + x̃C1

i and yi = x̃T
i which
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Table 9.3 MAIPD for studying the effect of developing cold feet during treatment for
hypertension (Hall et al. (1991)); data contain number of patients xT

i , xC2
i developing

cold feet and number of patients recruited nT
i , nC2

i in the treatment (T ) and second
control arm (C2), respectively, as well as ni = (nT

i + nC2
i )/2 and pseudo-events x̃T

i

and x̃C2
i

Center i xT
i nT

i xC2
i nC2

i ni x̃T
i x̃C2

i

1 3 13 1 12 12.5 2.88462 1.04167
2 2 3 0 3 3.0 2.00000 0.00000
3 0 3 0 2 2.5 0.00000 0.00000
4 1 4 0 4 4.0 1.00000 0.00000
5 1 4 0 2 3.0 0.75000 0.00000
6 0 2 1 2 2.0 0.00000 1.00000
7 0 6 0 6 6.0 0.00000 0.00000
8 1 2 1 2 2.0 1.00000 1.00000
9 0 4 0 4 4.0 0.00000 0.00000

10 0 3 0 4 3.5 0.00000 0.00000
11 1 1 0 2 1.5 1.50000 0.00000
12 0 8 1 8 8.0 0.00000 1.00000
13 1 4 0 3 3.5 0.87500 0.00000
14 0 2 0 2 2.0 0.00000 0.00000
15 0 3 0 2 2.5 0.00000 0.00000
16 0 3 0 3 3.0 0.00000 0.00000
17 0 1 0 2 1.5 0.00000 0.00000
18 0 12 0 12 12.0 0.00000 0.00000
19 1 2 0 1 1.5 0.75000 0.00000
20 0 9 0 8 8.5 0.00000 0.00000
21 0 2 1 2 2.0 0.00000 1.00000
22 0 2 0 1 1.5 0.00000 0.00000

corresponds to a relative risk of θ̂ = µ̂/(1− µ̂) = 2.1341. Evidently, treatment
establishes an elevated risk when compared to the second control treatment.
We use (9.12) to estimate τ2 (with µ replaced by µ̂) and find a value of 0 (a
negative variance estimate is truncated to 0).

9.4 Testing for heterogeneity in a MAIPD

As has been discussed in Section 9.3.1 heterogeneity can be estimated involv-
ing

∑k
i=1(Yi − Niµ̂)2 leading to various versions for estimating τ2. How can

the hypothesis of homogeneity, namely τ2 = 0, be tested? It is tempting to
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Figure 9.2 Empirical distribution function and distribution of a χ2 with 19 degrees
of freedom

consider

Q =
k∑

i=1

(Yi −Niµ̂)2

Niµ̂(1− µ̂)
, (9.18)

where µ̂ is estimated by
∑

i yi/
∑

i Ni. Q has been studied in detail by Potthoff
and Whittinghill (1966). Usually, the approximation to a χ2 with (k − 1) df
is not good. However, they found that Q is well-behaved with increasing k in
the sense that the χ2−distribution can be used as an asymptotic distribution,
even if the Ni remains small. However, for k < 60 the approximation is not
good. We have simulated the distribution function of Q for k = 20 and Ni

sampled from a distribution with mean E(Ni) = 3 with µ being chosen to be
0.3. The resulting empirical distribution function is shown in Figure 9.2 and is
compared with the χ2 with 19 degrees of freedom. Both distributions do not
match exactly. The means agree reasonably well, but the true distribution of
Q has a smaller variance than the comparable χ2 with 19 df.

In coping with this problem Potthoff and Whittinghill (1966) refer to work
by Nass (1959) who suggested a technique that seems to handle this latter
problem and thereby provides the most accurate way of utilizing Q. Nass’s
refinement consists in taking

cQ ∼ χ2
ν′ (9.19)

where c and the fractional degrees of freedom ν′ are chosen by Nass (1959)
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Figure 9.3 Empirical distribution function and distribution of a χ2 with 24.3 degrees
of freedom

such that χ2
ν′/c has the same first two moments as Q. Nass (1959) sets

c = 2E(Q)/V ar(Q)

where E(Q) = k − 1 and V ar(Q) = 2(k − 1) +
(

1
µ(1−µ) − 6

) ∑k
i=1

1
Ni

. Then,

under the null hypothesis, the statistic cQ follows approximately a χ2
ν′ distri-

bution with fractional degrees of freedom

ν′ = cE(Q) = 2[E(Q)]2/V ar(Q).

With these choices, we have that V ar(cQ) = 2E(cQ) = 2ν′. It remains to find
estimates for V ar(Q) which can be simply given as

̂V ar(Q) = 2(k − 1) +
(

1
µ̂(1− µ̂)

− 6
) k∑

i=1

1
Ni

.

With these modifications of Q we get excellent agreements of the distribution
function of cQ and a χ2−distribution with ν′ degrees of freedom. Figure 9.3
shows both distribution functions for the simulation study as outlined above:
k = 20, µ = 0.3 and mean of the Ni being 3. The degrees of freedom were
estimated from ν̂′ = ĉE(Q) = 2[k − 1]2/ ̂V ar(Q).

To illustrate the application of the test statistic let us consider again the
sparse multicenter hypertension trial. We compare again treatment with the
first control treatment. Note that there are seven centers with Ni = 0 which
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are not considered for this analysis, hence k = 15. We find that

Q = 18.88, ĉ = 2.59, ν′ = 36.23, and ĉQ = 48.85,

corresponding to a P−value of 0.08 which confirms our previous impression
of minor heterogeneity in this MAIPD.

Finally, we compare treatment with the second control treatment. Note that
there are 11 centers with Ni = 0 which are not considered for this analysis,
hence k = 11. We find that

Q = 9.98, ĉ = 3.12, ν′ = 31.23, and ĉQ = 31.16,

corresponding to a P−value larger than 0.4699 which confirms that there is
no heterogeneity in this MAIPD.

9.5 An analysis of the amount of heterogeneity in MAIPDs: a case
study

In the following we will apply the developed concept of measuring heterogene-
ity to the MAIPDs previously used, in particular as presented in the eight
Tables 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, and 1.12. The results including esti-
mates of τ2, Ω, and the value of ĉQ with associated P-value are provided in
Table 9.4.

Table 9.4 Assessment of the amount of heterogeneity in MAIPDs

MAIPD Amount of Heterogeneity

Table τ̂2
θ Ω̂ ĉQ P-value

1.5 0.0022 0.1235 22.4940 0.4186
1.6 0.0046 0.5571 99.1111 0.0000
1.7 0.0000 0.0000 1.7487 0.9315
1.8 0.0000 0.0000 18.4277 0.8955
1.9 0.0152 0.4456 43.2867 0.0044
1.10 0.0137 0.4197 25.3067 0.0118
1.11 0.0000 0.0000 1.6955 0.7518
1.12 0.0000 0.0000 32.7539 0.5202

The MAIPDs in 1.7, 1.8, 1.11, and 1.12 show no heterogeneity at all which
is supported by all Nass-modified χ2−statistics which show all four MAIPDs
having large P-values. For MAIPDs 1.6 and 1.10 we have τ2−estimates of
0.0046 and 0.0137, respectively, which appear rather small. However, if the
relative measure (Ω) is computed we find rather large estimates with values
of 0.5571 and 0.4197 both accompanied by Nass-modified χ2−statistics with
small and significant P-values. This supports the importance of the relative
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heterogeneity measure Ω. Finally, we consider the MAIPDs 1.5 and 1.9 with
estimates of τ2 of 0.0022 and 0.0152, respectively. The first one has an Ω−value
of 0.1235 with a nonsignificant and moderately large P-value, whereas the
second one has an Ω−value of 0.4456, which is associated with a significant
P-value indicating the presence of considerable heterogeneity.

9.6 A simulation study comparing the new estimate and the
DerSimonian-Laird estimate of heterogeneity variance

In this section we compare the new estimate of heterogeneity variance with
the DerSimonian-Laird estimate by means of a simulation study. The main
settings of the simulation were described in detail in Chapter 5.5. In short, we
generate the baseline risk pC

i as uniformly distributed in the interval of 0.3 to
0.4. pT

i = θjp
C
i depends on the chosen mixing distribution P and the index

j denotes the component of the discrete distribution P which gives weight qj

to θj , whereas the index i denotes the study number. The sample sizes nT
i

and nC
i are generated from a Poisson distribution with parameters µT

i and
µC

i , respectively. The parameter µT
i = µC

i was chosen from {5, 10, 20, 30, 40}.
xT

i is a binomial variate with parameters nT
i and pT

i , and xC
i is a binomial

variate with parameters nC
i and pC

i . The number of studies was set to be
k = 100. The parameter log(θ) can be considered as a random variable with
distribution according to the mixing distribution P and its variance is readily
available as

τ2 = V ar(log(θ)) =
m∑

i=1

qi(log(θi)− log(θ))2,

with log(θ) =
m∑

i=1

qi log(θi).

We use different values for heterogeneity variance, namely τ2
1 = 0.3, τ2

2 = 0.5,
τ2
3 = 0.8, τ2

4 = 1.0. The corresponding mixing distributions are given in Table
9.5. For each condition we used 1,000 replications to compute the mean and
variance of the two variance estimators.

The results of the simulation study in Figure 9.4 show that especially in the
high sparsity case, if there are 5–10 participants per center in treatment or con-
trol arm, the new variance estimate has a smaller bias than the DerSimonian-
Laird variance estimator. For large heterogeneity such as with a heterogeneity
variance of 0.8–1.0, the DerSimonian-Laird estimator seems to be better than
the new variance approach if there are more than 20 participants per cen-
ter. The variance of both variance estimations is shown in Figure 9.5. Here
it seems that the new variance estimator has higher variation if the number
of participants per center in treatment or control arm is small. However, the
low variance of the DerSimonian-Laird estimator is an artificial effect, because
very frequently the DerSimonian-Laird estimator provides a negative variance
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Table 9.5 Heterogeneity and mixing distributions P with associated variances τ2

τ2 P

0.3
(

0.3 0.897154
0.5 0.5

)

0.5
(

0.3 1.23398
0.5 0.5

)

0.8
(

0.3 1.79478
0.5 0.5

)

1.0
(

0.3 2.21672
0.5 0.5

)

Figure 9.4 Bias of the DerSimonian-Laird estimator (solid) and of the new variance
estimator (dotted) computed by means of a simulation experiment for four values of
heterogeneity variance var = τ2
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Figure 9.5 Variance of the DerSimonian-Laird estimator (solid) and of the new vari-
ance estimator (dotted) computed by means of a simulation experiment for four val-
ues of heterogeneity variance var = τ2 as indicated with their values next to the lines
in the graph

value which needs to be truncated to zero. Indeed, with a mean of five par-
ticipants per center the mean estimated variance of the DerSimonian-Laird
estimator goes to zero. This implies that in most of the simulation replica-
tions the estimated variance is set to zero (if the mean is exactly zero then all
variance estimates have to be zero) and the variation is consequently small.
This aspect is illustrated with the help of a simulation in which the nontrun-
cated variance estimators are computed (negative variances can occur here).
The mean of the variance estimator is presented for various combinations of
heterogeneity variance and number of participants per study. The results are
provided in Figure 9.6. The larger variance for the new variance estimator
and the more meaningful inverse relationship with increasing size per center
is an advantage of the new estimator. If the number of participants per center
increases, both variance estimators behave similarly.
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Figure 9.6 Mean of the DerSimonian-Laird variance estimator (solid) and of the
new variance estimator (dotted) computed by means of a simulation experiment for
four values of heterogeneity variance var = τ2 as indicated with their values next to
the lines in the graph

9.6.1 A simulation study comparing the conventional Q-test with the
Nass-modified Q-test

Here we compare the modified Q-statistic (9.19) with the original and con-
ventional Q-statistic (9.18). At first, we look at the null distribution. In Table
9.6 we report how often the two test statistics reject out of 1,000 replications.

From Table 9.6 we find the well-known result that the conventional Q-statistic
does not behave like a χ2 distributed random variable. Only when the individ-
ual study sizes increase considerably does the conventional Q-statistic start to
reject occasionally. The Nass-modified Q-test does also not reach the desired
rejection level of 50 in 1,000. However, it behaves superior to the conventional
Q-test in all cases.

Now we look at the power of the two tests for the following scenario. The con-
trol arm has risk pC

i as before. For the treatment arm, 50% of the observations
arise from pT

i , the other half from pC
i . There are again k studies in the trial

and nT
i = nC

i participants in each trial arm. The results are shown in Table
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Table 9.6 Comparison of rejection proportions for both heterogeneity tests under
homogeneity

Design Details Rejection Counts out of 1,000

k nT
i (= nC

i ) pT
i pC

i cQ in (9.19) Q in (9.18)

10 10 0.2 0.1 22 0
10 20 0.1 0.1 40 0
20 10 0.1 0.1 35 0
20 20 0.1 0.1 30 0
20 50 0.1 0.1 31 17
20 100 0.1 0.1 25 25
50 20 0.1 0.1 21 0

Table 9.7 Comparison of rejection proportions for both heterogeneity tests under
heterogeneity

Design Details Rejection Counts out of 1,000

k nT
i (= nC

i ) pT
i pC

i cQ in (9.19) Q in (9.18)

20 10 0.2 0.1 43 0
20 20 0.2 0.1 77 0
20 20 0.3 0.1 248 7
20 50 0.3 0.1 706 688
50 20 0.3 0.1 399 2
100 20 0.3 0.1 614 0

9.7. In all cases, the Nass-modified Q-test (9.19) has larger power than the
conventional one (9.18). The latter appears to be without any power unless
the number of participants per study becomes large. The remarkable benefit
of (9.19) appears to be that it behaves well with increasing number of studies
k while the number of participants per study, nT

i and nC
i , remains small. This

makes it more suitable for sparse MAIPDs. Finally, these results are promising
and illustrate a potential for a new and better test for homogeneity. However,
we also feel that a deeper and more complete study on the behavior of the
new test statistic is needed.



CHAPTER 10

Scrapie in Europe: a multicountry
surveillance study as a MAIPD

10.1 The problem

In this chapter we would like to show that the methodology associated with the
profile likelihood approach is not restricted to clinical trials but can be used
successfully in other areas. Here, we consider a quite typical situation arising
in disease surveillance with data arising from an observational study frame-
work. The following introduction to the issue and problems of scrapie follows
closely the recent work of Del Rio Vilas et al. (2007). Scrapie is a fatal neu-
rological disease affecting small ruminants belonging to the group of diseases
known as transmissible spongiform encephalopathies (TSE) that among others
include bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-
Jakob disease (CJD) in humans. BSE was first detected in 1986 and was
shown to spread between cattle by contaminated concentrate, see Wilesmith
et al. (1988). In 1996 it became evident and likely that BSE transmits to hu-
mans and gives variant CJD (Will et al. (1996)). Throughout Europe, scrapie
has acquired increased interest because it is considered a potential threat to
public health after the successful experimental transmission of BSE to sheep,
see Foster et al. (2001) and the likely exposure of sheep to concentrate feed
contaminated with the BSE agent, see Hunter (2003). In order to obtain bet-
ter estimates of the scrapie prevalence throughout the EU, active surveillance
for scrapie in small ruminants was introduced in 2002. The surveillance com-
prised both slaughtered and found-dead animals, namely the abattoir (AS)
and fallen stock (FS) surveys respectively, with the target numbers calculated
for each country based on the adult sheep and goat populations (European
Commission (2001)).

In 2003 the EU Commission Report on the monitoring for the presence of
scrapie (European Commission (2004)) reported large variation in the fre-
quency estimates of the two surveys between countries. In most of the coun-
tries the frequency estimates from the FS were larger than those of the AS. In
other countries, however, the FS seemed to detect less scrapie than the AS.
This pattern is inconsistent with other works that reported the increased risk
of scrapie among the dead on farm animals (Wilesmith et al. (2004) and Del
Rio Vilas et al. (2005)) and suggests the occurrence of heterogeneity in the

149
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Table 10.1 Comparison of the fallen stock and abattoir survey in their ability to
detect scrapie

Fallen Stock Abattoir S.

Country xT
i nT

i xC
i nC

i logR̂R

Belgium 2 494 0 2,376 3.18
Denmark 0 1,320 0 871 −0.42
Germany 13 48,616 9 20,107 −0.53
Greece 13 780 49 22,564 2.07
Spain 8 12,942 19 49,921 0.52
France 34 18,955 46 44,641 0.56
Ireland 18 2,830 9 51,579 3.57
Italy 13 5011 14 35260 1.88
Luxembourg 0 244 0 213 −0.14
Netherlands 6 3,994 45 21,095 −0.28
Austria 0 3,255 0 4,225 2.48
Portugal 0 243 6 10,697 1.22
Finland 0 683 0 1,990 1.07
Sweden 0 2,849 2 5,175 −1.01
UK 13 5,113 45 72,473 1.44
Czech Rep. 0 2,528 1 425 −2.88
Slovakia 1 213 1 3,923 2.91
Norway 8 3,359 5 33,519 2.74

implementation of the surveys between countries; surveys may be reflecting ei-
ther different situations (e.g., different risks affecting the target individuals by
the surveys, tests with different characteristics) or differences in their method-
ological implementation. There is a need to inform any comparisons between
the detected prevalences in the individual surveillance streams. There have
been previous attempts to inform these comparisons. Bird (2003) compared
the surveillance performance of the two active surveillance sources among EU
countries for BSE and scrapie in cattle and sheep respectively. Bird used the
test results from 2001 and 2002, as reported by the EU Commission, to cal-
culate the BSE and TSE rate ratios for each country to describe differences
and anomalies in the implementation of the surveys. Bird also produced an
EU-pooled measure of the rate ratios between surveillance streams: the me-
dian TSE prevalence rate ratio (fallen sheep vs. slaughtered). For the period
April to August 2002, Bird reported a rate ratio of seven which indicated some
conformity with the reported 10 times higher prevalence in the fallen stock
group for cattle, see Scientific Steering Committee (2001). This increased “ef-
ficacy”of the FS is consistent with other works on sheep scrapie (Wilesmith
et al. (2004) and Del Rio Vilas et al. (2005)). Following an approach similar
to that of Bird (2003), the comparison of some form of risk ratio between the
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Figure 10.1 Effect of type of survey (fallen stock vs. abattoir) for detecting scrapie
by European country or 18 countries expressed as log-relative risk (AS is reference)
with 95% confidence interval

two surveys throughout the EU, under the standard conditions that apply to
the surveys’ operations, appears as an adequate methodology to assess the
comparability of the scrapie surveillance across Europe. Exploring any differ-
ences in the ratios is important because it might help in the understanding of
the performance of the surveillance programs.

The objective of this chapter is to demonstrate how the methodology devel-
oped so far for a MAIPD can be used to the apparent heterogeneity in the
behavior of surveillance of scrapie across Europe and to investigate the sources
of this heterogeneity by taking into account available country-level covariates.

10.2 The data on scrapie surveillance without covariates

Data on the number of sheep tested and confirmed by each surveillance source
(AS and FS) were collected from the EU’s annual report on the monitoring
of transmissible spongiform encephalopathy (TSE) in ruminants in 2003, see
European Commission (2004). Data from 18 European countries were available
for the study (see Table 10.1). The number xT (xC) of positive samples out of
nT (nC) samples tested for the fallen stock survey (abattoir survey) are listed
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Table 10.2 Mixture model assessment for the data on scrapie in Europe: no covari-
ates considered

Number of components Log-Likelihood BIC Gradient function

1 −4069.1 −8141.1
2 −4041.0 −8090.7 2.7476
3 −4034.9 −8084.2 1.3253
4 −4033.5 −8087.2 1

in Table 10.1 for each European country. If pT denotes the risk of scrapie
detection in the FS and if pC denotes the risk of scrapie detection in the AS,
then the rate ratio RR = pT /pC expresses the amount of ability with which
the FS can better detect scrapie than the AS. For example, if RR = 2 there
is two times higher ability to detect scrapie for the FS in comparison to the
AS. Hence, the rate ratio has become a common effect measure in this field.
The RR is simply estimated as R̂R = xT /nT

xC/nC . It is not surprising that there

is considerable variation of the R̂R across Europe (see also Figure 10.1).

10.3 Analysis and results

As can be seen from the last column of Table 10.1 the logarithmic risk ratios,
relating the detection risk of the FS surveillance source to the detection risk
of the AS surveillance source, are experiencing considerable heterogeneity. In
the following we will try to explore this heterogeneity in more detail.

To avoid computational abnormalities, we have added 0.5 only if xT = 0 to
the fallen stock’s arm or if xC = 0 to the abattoir stock’s arm. For the data
in Table 10.1 we find a measure of heterogeneity Ω (developed in Section
9.3) as 0.939, indicating a clear presence of heterogeneity in the effect. The
overall relative risk is 3 with 95% confidence interval of (2.358–3.793) under
the assumption of homogeneity. This result indicates a clear advantage for the
fallen stock survey.

However, as the high measure of heterogeneity indicates, we need to consider
modeling heterogeneity. Using the profile mixture likelihood approach, the
EMGFU algorithm finds a global maximum of four mixture components. The
result is shown in Table 10.3 and the classification into the mixture compo-
nents is presented in Table 10.4. Using the Bayesian Information Criterion as
a model selection device three-mixture components appear more appropriate,
as Table 10.2 shows. The details for the three-component mixture model are
provided in Table 10.5.

It is worth noting that in the three-component solution the estimate for the
second mixtures component is nonsignificant. In this component are most of
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Table 10.3 Results for the scrapie MAIPD with four mixture components

Comp. Weights N Cov. β̂i S.E. P-value

1 0.1221 1 Intercept 3.423 0.412 0.000

2 0.2419 2 Intercept 0.513 0.234 0.014

3 0.3775 9 Intercept 1.804 0.202 0.000

4 0.2585 6 Intercept −0.393 0.350 0.131

Log-Likelihood −4033.5
BIC −8087.2
Max of G.-function 1.0000

the countries. Ireland is classified as the only country in component one with a
relative risk of 30. The third component classified six countries with a relative
risk of six.

Even the four-component solution has one component with six countries where
the relative risk is not significant. France, Spain, Austria, Finland, and Por-
tugal change from the nonsignificant relative risk component to a significant
component.

In summary and for the overall picture, it seems that there is sufficient evi-
dence that the data can be classified into three components (see Table 10.6):

• a majority cluster consisting of 11 countries with a slightly increased, but
nonsignificant risk ratio. Here the FS seems to be able not to detect a lot
more scrapie than the AS.

• a cluster consisting of six countries with significantly increased risk ratio.
In this cluster the ability for detecting scrapie is six times as high for the
FS in comparison to the AS.

• and, finally, there is one country cluster consisting of Ireland with a largely
increased risk ratio.

10.4 The data with covariate information on representativeness

Additional covariate information was available in form of the proportion of the
country population sampled by the fallen stock (RP-FS) and the proportion of
the population sampled by the abattoir survey (RP-AS) which were taken as
measures of representativeness in Del Rio Vilas et al. (2007). The additional
data are provided in Table 10.7.

As Figure 10.2 indicates, it cannot be excluded that these two covariates are
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Table 10.4 Classification of the countries into the four mixture components

Mixture Component Trial R̂R (95% CI)

1 Ireland 30.6620 (13.6733–68.7588)

2
France
Spain 1.6702 (1.0559–2.6419)

3

Austria
Belgium
Finland
Greece
Italy

Norway
Portugal
Slovakia

UK

6.0738 (4.0858–9.0291)

4

Czech Rep.
Denmark
Germany

Luxembourg
Netherlands

Sweden

0.6748 (0.3397–1.3405)

Table 10.5 Results for the scrapie MAIPD with three mixture components

Comp. Weights N Cov. β̂i S.E. P-value

1 0.1216 1 Intercept 3.423 0.412 0.000

2 0.4997 11 Intercept 0.219 0.169 0.097

3 0.3787 6 Intercept 1.798 0.198 0.000

Log-Likelihood −4034.9
BIC −8084.2
Max of G.-function 1.3253

associated with the log-relative risk. Hence, they must be considered appro-
priately as potential covariates in the modeling.
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Table 10.6 Classification of the countries into the three mixture components

Component Trial R̂R (95% CI)

1 Ireland 30.6556 (13.6839–68.6770)

2

Austria
Czech Rep.
Denmark
Finland
France

Germany
Luxembourg
Netherlands

Portugal
Spain

Sweden

1.2449 (0.8942–1.7330)

3

Belgium
Greece
Italy

Norway
Slovakia

UK

6.0363 (4.0967–8.8944)

10.4.1 Analysis of data on scrapie in Europe under incorporation of
covariates

We consider first the more general model that allows mixing simultaneously on
intercept and the two slopes for the two covariates. In Chapter 6 the following
mixture model was discussed:

log θj = ηj = β0j + β1jz1 + β2jz2.

This is equation (6.2) with the two (p = 2) covariates for representativeness.
The index j is the mixture component and mixing goes from j = 1, ..., m where
m is the number of mixture components. Note that this model has coefficients
for the covariates that are allowed to vary from mixture component to mixture
component. Table 10.8 provides an evaluation of the mixture model from one
to four components, the latter being the NPMLE. There is a clear support for
the three-component model on the basis of the BIC. Table 10.9 provides details
on the model estimates for the three-component mixture model. Note that
there is considerable variation in the slope estimates for the three components.

Table 10.10 shows the classification of the countries in Europe into the three-
mixture components using the MAP allocation rule. Finally, it might be valu-
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Table 10.7 Comparison of the fallen stock and abattoir survey in their ability to
detect scrapie

Fallen Stock Abattoir S. Repres.

Country xT
i nT

i xC
i nC

i RP-FS RP-AS

Belgium 2 494 0 2,376 0.34 1.63
Denmark 0 1,320 0 871 1.26 0.83
Germany 13 48,616 9 20,107 1.84 0.76
Greece 13 780 49 22,564 0.01 0.25
Spain 8 12,942 19 49,921 0.06 0.22
France 34 18,955 46 44,641 0.21 0.50
Ireland 18 2,830 9 51,579 0.05 0.87
Italy 13 5011 14 35260 0.06 0.44
Luxembourg 0 244 0 213 3.49 3.04
Netherlands 6 3,994 45 21,095 0.31 1.66
Austria 0 3,255 0 4,225 1.07 1.39
Portugal 0 243 6 10,697 0.01 0.31
Finland 0 683 0 1,990 1.02 2.97
Sweden 0 2,849 2 5,175 0.63 1.15
UK 13 5,113 45 72,473 0.02 0.30
Czech Rep. 0 2,528 1 425 2.45 0.41
Slovakia 1 213 1 3,923 0.07 1.21
Norway 8 3,359 5 33,519 0.36 3.61

Table 10.8 Mixture model assessment for the data on scrapie in Europe under in-
clusion of two covariates (RP-FS and RP-AS)

Number of components Log-Likelihood BIC Gradient function

1 −4054.4 −8117.5
2 −4030.9 −8076.2 5.7074
3 −4026.2 −8072.6 1.1569
4 −4026.1 −8078.6 1

able to consider the four-component mixture model as an alternative since it
is based upon the nonparametric maximum likelihood. Here, the maximum
of gradient function attains the value one, so that not more than four com-
ponents can exist. Table 10.11 contains the details of the model fit for the
four-component mixture model and Table 10.12 shows the allocation of the
European countries into the four-mixture components using the MAP alloca-
tion rule. Figure 10.3 contains a scatterplot of the observed log-relative risk
against the fitted values of the log-relative risk for the three and four compo-
nents. Both fits appear reasonable with the only difference between the two
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Figure 10.2 Scatterplot of log-relative risk and proportion sampled for fallen stock
survey and abattoir survey (with LOWESS-smoother for each group)

models being in the two countries Belgium and Slovakia. This might provide
further evidence why the BIC criterion selected the three-component model.
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Table 10.9 Results of the MAIPD on scrapie with three-mixture components (BIC
criterion) and included covariates RP-FS and RP-AS

Comp. Weights S.E. of W N Cov. β̂i S.E. P-value

1 0.2673 .1725 3 Intercept 2.3032 0.4157 0.0000
RP-FS −1.0165 0.5113 0.0234
RP-AS −1.3682 0.4164 0.0005

2 0.2185 .1725 2 Intercept 0.4450 0.8591 0.3022
RP-FS −2.0532 0.5313 0.0001
RP-AS 3.5852 1.3400 0.0037

3 0.5142 13 Intercept 0.4276 0.2833 0.0656
RP-FS −0.9131 0.3400 0.0036
RP-AS 0.7549 0.1897 0.0000

Log-Likelihood −4026.2
BIC −8072.6
Max of G.-function 1.1569

10.4.2 Analysis of scrapie in Europe with covariates in a simplified model

We consider the general model that allows mixing simultaneously on intercept
and the two slopes for the two covariates. In Chapter 6 the following simplified
mixture model was discussed:

log θj = ηj = β0j + β1z1 + β2z2,

where z1 and z2 are the two covariates for representativeness. The index j
for the mixture component is now dropped for the slope of the covariates of
interest and mixing takes place only over the intercept β0j . Note that this
model assumes a common coefficient for each covariate in the model. Table
10.13 provides an evaluation of the mixture model from one to four compo-
nents, the latter being again the NPMLE. There is a clear support for the
three-component model on the basis of the BIC.

Table 10.14 provides details on the model estimates for the three-component
mixture model. Table 10.15 gives an allocation of the countries in Europe into
the three components.

Again finally, it might be valuable to consider the four-component mixture
model as an alternative since it is based upon the NPMLE. It is the most
complex model achievable in this simplified class. Table 10.16 contains the
details of the model fit for the four-component mixture models, and Table
10.17 shows the allocation of the European countries into the four-mixture
components using the MAP allocation rule.
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Table 10.10 Classification of the countries in Europe into the three-mixture compo-
nents (BIC criterion) using a mixture model that incorporates the covariates RP-FS
and RP-AS

Mixture Component Trial R̂R (95% CI)

3 Belgium 3.8480 (2.3938–6.1855)
3 Denmark 0.9081 (0.4650–1.7736)
3 Germany 0.5072 (0.1835–1.4023)
1 Greece 7.0353 (3.5684–13.8703)
3 Spain 1.7141 (1.0406–2.8233)
3 France 1.8464 (1.2084–2.8214)
2 Ireland 31.8624 (13.2397–76.6794)
1 Italy 5.1559 (2.8641–9.2814)
3 Luxembourg 0.6286 (0.0768–5.1458)
1 Netherlands 0.7533 (0.3230–1.7571)
3 Austria 1.6485 (0.9282–2.9277)
3 Portugal 1.9202 (1.1630–3.1706)
3 Finland 5.6870 (2.3323–13.8668)
3 Sweden 2.0553 (1.3716–3.0799)
2 UK 4.3906 (1.6587–11.6221)
3 Czech Rep. 0.2231 (0.0533–0.9341)
3 Slovakia 3.5860 (2.2350–5.7538)
3 Norway 16.8428 (5.6939–49.8214)

Figure 10.4 contains a scatterplot of the observed log-relative risk against
the fitted values of the log-relative risk for the three-component models in full
and simplified version. Both fits appear reasonable. The simplified model with
common slope for all mixture components might be preferable here since it
has fewer parameters and is easier to interpret and communicate.

In summary, we find that

• the proportion of sampled sheep in the fallen stock survey is negatively
related to the ability ratio in detecting scrapie.

• the proportion of sampled sheep in the abattoir survey is positively related
to the ability ratio in detecting scrapie.

This tendency has been visible already in Figure 10.1 and is now confirmed.
In addition, we have seen that European countries can be grouped into three
levels according to their detection ability ratio: a few countries with high
relative risk, many countries with a moderately enlarged relative risk, and
one with a decreased relative risk value.
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Table 10.11 Results of the MAIPD on scrapie using a mixture model with four com-
ponents (NPMLE criterion) and included covariates RP-FS and RP-AS

Comp. Weights S.E. of W N Cov. β̂i S.E. P-value

1 0.1900 0.1666 1 Intercept 2.2456 0.7068 0.0007
RP-FS −0.9925 0.6362 0.0594
RP-AS −1.3559 0.5208 0.0046

2 0.1658 0.1512 2 Intercept 0.2730 0.8821 0.3785
RP-FS −2.0588 0.6026 0.0003
RP-AS 3.8598 1.3008 0.0015

3 0.3761 0.2324 11 Intercept 0.3965 0.2820 0.0798
RP-FS −0.8992 0.3990 0.0121
RP-AS 0.7587 0.2410 0.0008

4 0.2681 4 Intercept 1.6861 0.5355 0.0008
RP-FS −1.4064 0.4914 0.0021
RP-AS 0.4626 0.3055 0.0650

Log-Likelihood −4026.3
BIC −8078.6
Max of G.-function 1.0000



THE DATA WITH COVARIATE INFORMATION 161

Table 10.12 Classification of the countries in Europe into the four-mixture compo-
nents (NPMLE criterion) with incorporated covariates RP-FS and RP-AS

Mixture Component Trial R̂R(95% CI)

4 Belgium 7.1126 (3.1664–15.9768)
3 Denmark 0.8988 (0.4068–1.9862)
3 Germany 0.5060 (0.1502–1.7050)
4 Greece 5.9753 (2.2720–15.7152)
3 Spain 1.6645 (1.0219–2.7110)
3 France 1.7987 (1.1923–2.7135)
2 Ireland 34.0577 (14.7559–78.6080)
4 Italy 6.0812 (2.4811–14.9054)
3 Luxembourg 0.6473 (.0540–7.7543)
1 Netherlands 0.7313 (.3125–1.7113)
3 Austria 1.6308 (0.8173–3.2542)
3 Portugal 1.8641 (1.1417–3.0435)
3 Finland 5.6568 (1.8104–17.6754)
3 Sweden 2.0190 (1.2714–3.2062)
2 UK 4.0138 (1.4123–11.4073)
3 Czech Rep. 0.2242 (0.0403–1.2457)
4 Slovakia 8.5619 (3.7262–19.6733)
3 Norway 16.6416 (4.0435–68.4911)

Table 10.13 Mixture model assessment for the data on scrapie in Europe under in-
clusion of two covariates (RP-FS and RP-AS) in the simplified model

Number of components Log-Likelihood BIC Gradient function

1 −4054.4 −8117.5
2 −4034.5 −8083.5 2.3605
3 −4031.1 −8082.5 1.1973
4 −4029.2 −8084.3 1
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Figure 10.3 Scatterplot of the fitted log-relative risk (log(RR3) is for the three-
component model, log(RR4) is for the four-component model) against the observed
log-relative risk
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Table 10.14 Details of model estimation for the MAIPD on scrapie for a mixture
model with three-components (BIC criterion) using the simplified model and includ-
ing the covariates RP-FS and RP-AS

Comp. Weights S.E. of W N Cov. β̂i S.E. P-value

1 0.4484 .1736 7 Intercept 2.0350 0.2635 0.0000
RP-FS −1.7369 0.2647 0.0000
RP-AS 0.8415 0.1993 0.0000

2 0.4667 .1770 10 Intercept 0.6558 0.2325 0.0024
RP-FS −1.7369 0.2647 0.0000
RP-AS 0.8415 0.1993 0.0000

3 0.0849 1 Intercept −1.1694 0.5374 0.0148
RP-FS −1.7369 0.2647 0.0000
RP-AS .8415 0.1993 0.0000

Log-Likelihood −4031.1
BIC −8082.5
Max of G.-function 1.1973
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Table 10.15 Classification of the European countries into the three-mixture compo-
nents (BIC criterion) using the simplified model and including the covariates RP-FS
and RP-AS

Mixture Component Trial R̂R(95% CI)

1 Belgium 16.7128 (11.9195–23.4336)
2 Denmark 0.4342 (0.2474–0.7620)
1 Germany 0.5938 (0.2579–1.3669)
1 Greece 9.2815 (5.9481–14.4829)
2 Spain 2.0891 (1.4401–3.0304)
2 France 2.0377 (1.5595–2.6626)
1 Ireland 14.5894 (10.5380–20.198 3)
1 Italy 9.9848 (6.7559–14.7569)
1 Luxembourg 0.2303 (.0447–1.1874)
3 Netherlands 0.7328 (0.3123–1.7199)
2 Austria 0.9676 (0.6419–1.4587)
2 Portugal 2.4579 (1.7446–3.4628)
2 Finland 3.9891 (1.9280–8.2536)
2 Sweden 1.6978 (1.3904–2.0732)
2 UK 2.3953 (1.6957–3.3836)
2 Czech Rep. 0.0386 (0.0113–.1324)
1 Slovakia 18.7591 (13.5885–25.8972)
2 Norway 21.5088 (8.3750–55.2397)
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Table 10.16 Details of model estimation for the MAIPD on scrapie for a mixture
model with four-components (NPMLE criterion) using the simplified model and in-
cluding the covariates RP-FS and RP-AS

Comp. Weights S.E. of W N Cov. β̂i S.E. P-value

1 0.0888 0.0855 1 Intercept 3.1586 0.4707 0.0000
RP-FS −1.3515 0.2721 0.0000
RP-AS 0.5354 0.2692 0.0234

2 0.2601 0.1814 3 Intercept 0.5997 0.2362 0.0056
RP-FS −1.3515 0.2721 0.0000
RP-AS 0.5354 0.2692 0.0234

3 0.0918 0.0880 1 Intercept −0.7726 0.6338 0.1114
RP-FS −1.3515 0.2721 0.0000
RP-AS 0.5354 0.2692 0.0234

4 0.5593 13 Intercept 1.5734 0.2505 0.0000
RP-FS −1.3515 0.2721 0.0000
RP-AS 0.5354 0.2692 0.0234

Log-Likelihood −4029.2
BIC −8084.3
Max of G.-function 1.0000



166 SCRAPIE IN EUROPE

Table 10.17 Classification of the countries into the four-mixture components
(NPMLE criterion) using the simplified model and including the covariates RP-FS
and RP-AS

Mixture Component Trial R̂R (95% CI)

4 Belgium 7.2903 (3.8268–13.8885)
4 Denmark 1.3701 (0.7676–2.4456)
4 Germany 0.6026 (0.2589–1.4026)
4 Greece 5.4398 (3.5461–8.3448)
2 Spain 1.8896 (1.2485–2.8599)
2 France 1.7924 (1.2162–2.6416)
1 Ireland 35.0493 (15.0026–81.8824)
4 Italy 5.6287 (3.7979–8.3422)
4 Luxembourg 0.2196 (0.0335–1.4385)
3 Netherlands 0.7387 (0.2425–2.2505)
4 Austria 2.3904 (1.3138–4.3494)
4 Portugal 5.6174 (3.6985–8.5318)
4 Finland 5.9590 (1.6915–20.9933)
2 Sweden 1.4389 (0.8450–2.4502)
4 UK 5.5124 (3.6309–8.3687)
4 Czech Rep. 0.2191 (0.0666–0.7207)
4 Slovakia 8.3863 (4.9741–14.1393)
4 Norway 20.4817 (4.0534–103.4946)
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Figure 10.4 Scatterplot of the fitted log-relative risk for the full three-component
model (log RR3) and for the simplified three-component model against the observed
log-relative risk





APPENDIX A

A.1 Derivatives of the binomial profile likelihood

We provide details involved in the derivation of the function:
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The derivative of pC
i (θ) is essential to compute the fixed-point iteration (5.26).
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The variance estimation of θ is based upon the second derivative of (A.1),
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The second derivative of pC
i (θ) is of the following form:
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with wi(θ) =
√(

nC
i + θ

(
nT

i + xC
i

)
+ xT

i

)2 − 4θxini.

A.2 The lower bound procedure for an objective function with a
bounded Hesse matrix

In section 6.1 a modification of the conventional Newton-Raphson procedure
was mentioned that we would like to study now in more detail. Consider an
objective function L(β), which is supposed to be maximized in β. Let ∇L(β)
denote the gradient, the vector of first derivatives. If the second derivate matrix
∇2L(β) of L(β) is bounded below by some matrix B

∇2L(β) ≥ B, (A.4)

where A ≥ C means that A−C is nonnegative definite, then the iteration

βnew = β0 −∇2L(β0)−1∇L(β0) (A.5)

will have the property that

L(βnew) ≥ L(β0). (A.6)

This is because we have in the second order expansion for any β and some
β∗ = (1− α)β0 + αβ and α ∈ [0, 1]

L(β) = L(β0) +∇L(β0)′(β − β0) + (β − β0)′∇2L(β∗)(β − β0) (A.7)

≥ L(β0) +∇L(β0)′(β − β0) + (β − β0)′B(β − β0).

The right-hand side of the inequality (A.7) is maximized for β given in (A.5).
Hence we have the monotonicity property (A.6). More details are provided
in Böhning and Lindsay (1988), Böhning (1992), Böhning (2000), or Lange
(2004).
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A.2.1 The lower bound procedure for the profile log-likelihood

In chapter 4, the following second derivative matrix of the profile log-likelihood
was found in section 4.2:

∂2L∗

∂βh∂βj
(β) = −

k∑

i=1

xin
T
i nC

i exp(ηi)
(nC

i + exp(ηi)nT
i )2

zijzih (A.8)

so that (A.8) becomes in matrix form:

∇2L∗(β) =
(

∂2L∗

∂βh∂βj
(β)

)
= −Z ′W (β)Z (A.9)

where Z is the design matrix of covariate information defined as:

Z =




z10 z11 z12 . . . z1p

z20 z21 z22 . . . z2p

. . . . . . .
zk0 zk1 zk2 . . . zkp




k×(p+1)

with

k is the number of centers,
p is the number of covariates,
zi0 is the constant value of coefficient in the i-th center, zi0 = 1,
zi1, . . . , zip is value of covariates in the i-th center,

and W (β) is a diagonal matrix defined as:

W (β) =




w11 w12 w13 . . . w1k

w21 w22 w23 . . . w2k

. . . . . . .
wk1 wk2 wk3 . . . wkk




k×k

with wij = 0, if i 6= j and

wii =
xin

T
i nC

i exp(ηi)
(nC

i + exp(ηi)nT
i )2

. (A.10)

To show that (A.9) has a global lower bound it is sufficient to prove that
(A.10) is bounded above. We show (and ignore indeces for simplification)

nT nC exp(η)
(nC + exp(η)nT )2

≤ 1
4
. (A.11)

We do this by writing the left-hand side of (A.11) as

nT nC exp(η)
(nC + exp(η)nT )2

= p(1− p)

with p = nT exp(η)
nC+exp(η)nT and note that the proof is complete since p(1−p) is the

variance of a Bernoulli variable that is maximized for p = 0.5.
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A.3 Connection between the profile likelihood odds ratio
estimation and the Mantel-Haenszel estimator

The iteration (8.11) in Section 8.1:

ΓOR(κ) :=

∑k
i=1
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i )xT
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is started with θ = 1 and the result of the first iteration step is identical with
the Mantel-Haenszel estimator, since
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