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Foreword

I am indeed honored to write this foreword for this present volume
which is dedicated to Ambikeshwar Sharma, who was well known in
the world as a beloved teacher and research mathematician. He was
my dear and trusted friend and colleague for many, many years; we
first met, some fifty years ago, in the office of Professor Joseph L.
Walsh, my adviser at Harvard University. Little did I know how
much our lives would intertwine over the years.

Ambikeshwar had two well-recognized strengths which were
absolutely infectious to those near him. He loved mathematics and
he loved mathematical research with others, both with great vigor. I
can vividly recall working with him on some math paper (we wrote
13 papers together) when, at night, I would be exhausted, and he al-
ways was ready to continue onward! (I often wondered how much of
this came from his excellent and strict vegetarian diet.) His research
work was basically in complex function theory and approximation
theory, and he is probably best known for his work on splines, in-
terpolation theory, and Walsh over-convergence. On this last topic,
Walsh over-convergence, it was his dream to write the first and defini-
tive book on this topic, which would examine in detail all aspects of
this theory. Unfortunately, his health gave out before this book was
finished, and it was left to his circle of friends in mathematics to
complete this task.

This book, which follows, is dedicated to Ambikeshwar Sharma,
who will long be remembered for his mathematics, for his enthusiasm
for mathematical research, and for the overwhelming kindness and
understanding he showered on all who came in contact with him.

Richard S. Varga
Kent State University
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Preface

This monograph is a collection of papers in memory of
Professor Ambikeshwar Sharma who passed away on December 22,
2003 at his home in Edmonton, Alberta, Canada. Professor Sharma
was a leading mathematician whose research has spanned several
areas of approximation theory and classical analysis, including inter-
polation theory and approximation by spline functions. Interpolation
was a topic in which Professor Sharma was viewed as a world expert
by his collaborators and many other colleagues.

We invited outstanding mathematicians, friends and collabora-
tors of Professor Sharma to submit papers to be included in this
volume. This collection contains original research articles and com-
prehensive survey papers by 30 mathematicians from 11 countries.
All the papers were refereed. We hope that the papers will be of
interest both to graduate students as well as researchers in analysis
and approximation theory.

The paper of Babenko and Kroó deals with Markov inequalities
for multivariate polynomials. These inequalities estimate the supre-
mum norm of the derivatives of a polynomial in terms of the norm of
the polynomial itself. Babenko and Kroó establish such inequalities
for homogeneous polynomials on a nonsymmetric convex body in a
Euclidean space, possibly with cusps.

The paper by Brudnyi and Brudnyi studies the analogues of
Chebyshev and Bernstein inequalities for multivariate polynomials.
These inequalities estimate the norm of a polynomial on a set in a
Euclidean space in terms of its norm on a subset of this set.

The paper of Cavaretta and Fontes–Merz gives explicit formulas
in some cases for the norm of the operator Ln−1( · ; ζ) : H∞(D) → C,
where Ln−1( · ; ζ) represents the Lagrange interpolation polynomial
of degree n − 1, evaluated at a complex number ζ, and defined by
interpolating functions in H∞(D) at the zeros of zn − rn. Here,
0 < r < 1 and |ζ| > 1.

The paper of de Bruin is a survey of his joint work with Sharma
on interpolation, covering the period 1993–2003.

The paper of Deo and Maitra studies the conditions under which
a module of smooth splines on a subdivision of a simplex embedded
in a Euclidean space is free.
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The paper of Ditzian gives a survey of various measures of smooth-
ness of functions which are defined on the unit sphere Sd−1 ⊂ Rd.

The paper of Dryanov presents results on existence, uniqueness,
and explicit construction of quadrature formulae with maximal trigono-
metric degree of precision.

The paper of Erdélyi surveys recent results for exponential sums
and linear combinations of shifted Gaussians which were obtained
via interpolation. In particular, a Chebyshev type inequality and a
reverse Markov inequality is obtained in this setting.

The paper of Goodman and Lee investigates the optimality of the
uncertainty products for certain approximations to the Gaussian, and
the corresponding wavelets, when the refinement masks are polyno-
mials satisfying certain conditions on the locations of their zeros.

The paper of Govil, Qazi, and Rahman deals with some basic
facts about interpolation by classes of entire functions like algebraic
polynomials, trigonometric polynomials, and non-periodic transcen-
dental entire functions. The authors also explain what Hermite “re-
ally did” in his frequently quoted paper.

The paper of Hesse and Sloan describes several known results as
well as proves some new ones regarding the degree of approximation
by hyperinterpolation operators on the Euclidean sphere. The hy-
perinterpolation operator is a discretization of the Fourier projection
operator onto the space of spherical polynomials, obtained by using
a positive quadrature formula, exact for spherical polynomials of an
appropriate degree.

The paper of Jakimovski studies the connection between La-
grange and Hermite interpolatory polynomials, interpolating at a set
of roots of unity, and the corresponding polynomials interpolating at
different subsets of this set.

The paper of Keiner and Prestin presents a fast algorithm for
scattered data interpolation and approximation on the Euclidean
sphere with spherical radial basis functions of different spatial den-
sity.

The paper of Mastroianni and Szabados establishes the analogues
of certain classical polynomial inequalities, as well as direct and con-
verse approximation theorems in the context of weighted approxima-
tion on the whole line with respect to a generalized Freud weight.

xii



The paper of Mastroianni and Vértesi investigates the truncated
Fourier sums and Lagrange interpolation operators in weighted Lp

spaces on unbounded intervals (0,∞) and the whole line.
The paper of Mhaskar proposes alternatives to interpolation for

approximation of functions using values of the function at scattered
sites on the circle, the real line, the unit interval, and the unit sphere.
In particular, it proves the existence of bounded operators, yielding
entire functions of finite exponential type, that interpolate a Birkhoff
data for a function on a Euclidean space, where a finite number of
derivatives, of order not exceeding a fixed number, are prescribed at
each point.

The paper of Pai and Indira establishes the equivalence of Haus-
dorff continuity and pointwise Hausdorff Lipschitz continuity of a
restricted center multifunction.

The paper of Schmeisser describes methods to obtain estimates
on the zeros of polynomials, in terms of their coefficients in an or-
thogonal polynomial expansion. In particular, certain L2 inequalities
and lower bounds for Vandermonde type determinants of orthogonal
polynomials are proved.

The paper of Shekhtman defines a generalization of Chebyshev
spaces, ”ideal complements,” and demonstrates their uniqueness.
Various analogues of Chebyshev spaces (minimal interpolating sys-
tems) in several variables are also discussed.

It is a pleasure to express our gratitude to all the authors and ref-
erees without whose contributions this volume would not have been
possible. We would like to thank Richard Varga for accepting our in-
vitation to write the Foreword, Charles Chui for his encouragement,
Darrel Hankerson for his help with TEX issues, Gerhard Schmeisser
for modifying our style file, Larry Schumaker for allowing us to use
his micros, and Huajun Huang for his help in compiling and format-
ting some of the papers in this volume. Finally, our thanks are due
to the publisher for support and careful handling of the monograph.

N. K. Govil
H. N. Mhaskar

R. N. Mohapatra
Z. Nashed

J. Szabados
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Ambikeshwar Sharma
(1920-2003)

A. Jakimovski and J. Szabados

Ambikeshwar Sharma passed away on December 22, 2003, after
a long period of illness at his home in Edmonton, Alberta, Canada.
Sharma is survived by a daughter, Jyotsna Sharma-Srinivasan, and
two sons, Someshwar (Raja) Sharma and Yogi Sharma.

Ambikeshwar Sharma was born at Jobner, a small city in the state
of Rajasthan, India on July 2, 1920. He received his B.A. (1938) and
M.Sc. (1940) from the Maharaja’s College, Jaipur, and his Ph.D.
(1951) under A. N. Singh from Lucknow University, Lucknow, India.

Sharma held positions at Cornell, Rajasthan, Harvard, and UCLA
before joining the University of Alberta in 1962, where he remained
until his retirement, in 1985.

He had eight Ph.D. students: A. M. Chak (1956), R. B. Saxena
(1964), A. K. Varma (1964), J. Prasad (1968), D. J. Leeming (1969),
S. L. Lee (1974), Mario Botto (1975), and M. A. Bokhari (1986). In
addition, he co-advised H. M. Srivastava and K. K. Mathur before
leaving India.

Sharma worked in classical analysis, concentrating eventually on
lacunary polynomial and trigonometric interpolation, and on spline
functions, first cubic splines, then cardinal splines, trigonometric
splines, and even multivariate splines. In his final years, Sharma
focused on various aspects of the Walsh over-convergence theorem.

Sharma’s wide-ranging knowledge and intuition, his infectious en-
thusiasm and engaging personality are reflected in his many publica-
tions (more than 200 papers) and in the fact that 56 mathematicians
have written papers with him and have become his friends in the pro-
cess. Among his coauthors are G. Alexits, R. Askey, E. W. Cheney,
P. Erdös, G. Freud, C. A. Micchelli, T. S. Motzkin, I. J. Schoenberg,
R. S. Varga, J. L. Walsh, and H. Zassenhaus.

Although he was unable to visit the Mathematics Department
of the University of Alberta in his final years, his immobility did
not prevent him from doing mathematics. He was up-to-date in the
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literature of his chosen subject, approximation theory. Fortunately,
email enabled him to remain in contact with friends and colleagues.
He was very eager to stay mobile as long as possible.

The last conference he attended, and even gave a plenary talk,
was in the summer of 1999 in Budapest. He made the long trip
against the advice of family, doctors and friends, using a wheelchair
at airports, and delivered a successful talk. He even attended the
conference excursion, a further indication of his unflagging willpower.

He was an expert in the theory of interpolation. His dream for
many years was to write a monograph on his favorite subject, the
theory of over-convergence of complex polynomials. This theory is
based on the classic result of J. Walsh stating that the difference
of the partial sums of the Taylor series of an analytic function and
the Lagrange interpolation polynomials of the function based on the
roots of unity converges to zero in a circle larger than the domain of
analyticity, although both diverge there. The project started about
ten years ago, but his death prevented him from completing the
work. It is our duty now to finish the monograph and thus realize
his dream.

He was a person devoted to his profession and did not care much
for other worldly pleasures. At the same time, he was very sensitive
to his friends’ problems and did everything he could to help people.

In particular, he tried to help Ph.D. students and fresh Ph.D.s.
He was the most friendly person we have ever met. He was a credit
to mathematics and, especially, approximation theory.

Acknowledgment. Reprinted from Journal of Approximation
Theory, Vol. 131, No 1, 2004, pp. 1 - 2, with permission from Elsevier.

Scientific Papers of Ambikeshwar Sharma

1. On the minimal interval of ζ in the second mean-value theorem,
Proc. Benares Math. Soc. (N.S.) 7(2) (1945) 33–40.

2. On the zeros of a class of functions, Proc. Benares Math. Soc.
(N.S.) 8(2) (1946) 1–21.
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3. (with S. C. Mitra), On a generalization of Weber’s parabolic
cylinder functions, Proc. Benares Math. Soc. (N.S.) 9 (1947)
25–31.

4. On a generalization of Legendre polynomials, Bull. Calcutta
Math. Soc. 40 (1948) 195- -206.

5. (with S. C. Mitra), On a generalization of Weber’s parabolic
cylinder functions, Bull. Calcutta Math. Soc. 41 (1949)
87–91.

6. (with S. C. Mitra), On certain self-reciprocal functions, Ganita
1 (1950) 31–38.

7. On the properties of θ(x, h) in Mazzoni’s form of the mean-
value theorem, Math. Student 19 (1951) 37–43.

8. On certain relations between ultraspherical polynomials and
Bessel functions, Bull. Calcutta Math. Soc. 43 (1951) 61–66.

9. On an application of a method of Shohat to a problem of
Lukacs, Ganita 2 (1951) 9–22.

10. On the differentiability of the remainder of Mazzoni’s formula,
Ganita 2 (1951) 65–67.

11. On the remainder in two theorems of Kloosterman, Nederl.
Akad. Wetensch. Proc. Ser.A 54 = Indag. Math. 13 (1951)
418–425.

12. (with S. C. Mitra), On generating functions of polynomials. I.
Generalised parabolic cylinder functions of Weber, Bull. Cal-
cutta Math. Soc. 43 (1951) 46–50.

13. On the zeros of a certain polynomial, Proc. Nat. Inst. Sci. India
18 (1952) 491–493.

14. The zeros of a complex polynomial, Math. Student 21 (1953)
52–54.

15. (with A. M. Chak), The basic analogue of a class of polynomi-
als, Riv. Mat. Univ. Parma. 5 (1954) 325–337.

xxv



16. (with H. M. Srivastava), On certain functional relations and
a generalization of the Mk,m function, Ann. Polon. Math. 3
(1957) 76–86.

17. On Go lab’s contribution to Simpson’s formula, Ann. Polon.
Math. 3 (1957) 240–246.

18. q-Bernoulli and Euler numbers of higher order, Duke Math. J.
25 (1958) 343–354.

19. On Newton’s method of approximation, Ann. Polon. Math. 6
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endre polynomials, Acta Math. Acad. Sci. Hungar. 9 (1958)
345–358.
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245–252.
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polynomials, Acta Math. Acad. Sci. Hungar. 10 (1959)
157–175.

23. Remark on a paper of Cinquini, Acta Math. Acad. Sci. Hungar.
11 (1960) 93–96.

24. (with K. K. Mathur), Some interpolatory properties of Her-
mite polynomials, Acta Math. Acad. Sci. Hungar. 12 (1961)
193–207.

25. (with R. B. Saxena), Some inequalities on polynomials, J. In-
dian Math. Soc. (N.S.) 25 (1961) 63–102.
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Abstract

Let Hd
n be the set of homogeneous polynomials of degree n

and d variables. Consider a compact set K ⊂ R
d. Denote by

‖ · ‖K the usual sup norm on K. It was proved by Harris [4]
that if K is a 0-symmetric convex body then for every h ∈ Hd

n

with ‖h‖K ≤ 1 we have ‖Duh‖K ≤ Cn log n where Duh is the
derivative of h in the direction u ∈ Sd−1. In this paper we
extend Harris’ result for nonsymmetric star-like domains.

1 Introduction and New Results

Let K be a compact set in R
d, and F be a family of differentiable

functions on K. As usual, Sd−1 = {x ∈ R
d : |x| = 1} stands for

the unit sphere in R
d in Euclidean norm. (Here and in what follows

1



2 Babenko and Kroó

|x| denotes the Euclidean norm of x in R
d.) Denote by Duf the

derivative of f in direction u ∈ Sd−1. Let

‖f‖K = sup
x∈K
|f(x)|

be the usual sup norm on K.
Then the Markov Factor of F on K is given by

M(F, K) := sup
{
‖Duf‖K : f ∈ F, ‖f‖K ≤ 1, u ∈ Sd−1

}
. (1.1)

This quantity measures the size of the derivatives of functions in
F compared to their sup norms on K. The problem of estimating
M(F, K) originates from the classical Markov inequality which gives

M(P 1
n , [a, b]) =

2n2

b− a
, (1.2)

where

P d
n :=




∑
|k|1≤n

akxk : ak ∈ R


 , x ∈ R

d, d ≥ 1, n ≥ 1, (1.3)

is the space of polynomials of total degree at most n in d variables.
(Here | · |1 denotes the l1-norm.)

Numerous extensions of Markov inequality for various families of
univariate and multivariate polynomials are known. For an overview
of univariate inequalities see [2] or [3]; a survey of multivariate
Markov-type inequalities can be found in [6]. In particular, it is
known that for convex bodies K ⊂ R

d we have

M(P d
n , K) � n2, (1.4)

while for cuspidal domains in R
d the Markov Factors of P d

n are, in
general, of higher order. The size of the Markov Factors is essentially
different for the set of homogeneous polynomials of degree n defined
by

Hd
n :=




∑
|k|1=n

akxk : ak ∈ R


 , x ∈ R

d, d ≥ 2, n ≥ 1. (1.5)
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It was first shown by Harris [4] that for 0-symmetric convex bodies
K in R

d we have
M(Hd

n, K) ≤ Cn log n. (1.6)

For the sharpness of this upper bound see [5] and [7].
Thus, the rates of Markov Factors for homogeneous polynomials

are substantially smaller than for ordinary polynomials. It is also
shown in [5] that for smooth 0-symmetric convex bodies the log n
in (1.6) can be dropped, i.e., M(Hd

n, K) = O(n).
In all of the papers on homogeneous polynomials mentioned above

the symmetry of the domain played an essential role. The goal of the
present note consists of extending the results on Markov Factors for
homogeneous polynomials to nonsymmetric domains K for which 0 is
on the boundary ∂K of K, rather than inside K. The consideration
of nonsymmetric domains K will require a more delicate study of the
geometry of K around the origin. Also we shall relax the assumption
of convexity of the domain and replace it by the more general star-
like property. Since |h(x)| = |h(−x)| for h ∈ Hd

n, it is natural to
consider star-like domains contained in the half-space

R
d
+ :=

{
x = (x1, . . . , xd) ∈ R

d : x1 ≥ 0
}

.

Let
Sd−1

+ :=
{

x = (x1, . . . , xd) ∈ Sd−1 : x1 ≥ 0
}

be the upper halfsphere, r : Sd−1
+ → R+ be a continuous nonnegative

mapping. Then a star-like domain in the halfspace R
d
+ associated

with r is given by

Kr :=
{

tx : x ∈ Sd−1
+ , 0 ≤ t ≤ r(x)

}
. (1.7)

We shall need to impose some mild smoothness conditions on ∂Kr

at the origin.
Assume that there exist C1, C2 > 0, β > 0, and 0 < ε < 1 such

that for x = (x1, . . . , xd) ∈ Sd−1
+

C2e
−xε−1

1 ≤ r(x) ≤ C1x
β
1 . (1.8)
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The right inequality in (1.8) insures that r(x) tends to 0 (as x→ 0)
with a polynomial rate. On the other hand the left inequality requires
that r(x) does not vanish at 0 exponentially. Thus if, for example,

C2x
α
1 ≤ r(x) ≤ C1x

β
1

with some C1, C2 > 0, 0 < β < α (0 < x1 ≤ 1) then (1.8) will hold.
We shall also require that r ∈ LipMα on Sd−1

+ , for some 0 < α ≤ 1,
M > 0, i.e. for any x1, x2 ∈ Sd−1

+

|r(x1)− r(x2)| ≤M |x1 − x2|α.

Theorem 1.1 Let Kr be a star-like domain (1.7) with r ∈ LipMα,
0 < α ≤ 1, satisfying condition (1.8). Then for any n ≥ 2

M(Hd
n, Kr) ≤ C0ρα(n), (1.9)

where

ρα(n) :=
{

n1/α, α < 1;
n log n, α = 1,

(1.10)

and constant C0 > 0 depends only on Kr.

For α = 1 the above theorem is a generalization of Harris’ result
to nonsymmetric star-like domains without cusps. In particular, it
yields that M(Hd

n, Kr) = O(n log n) for a wide family of nonsymmet-
ric convex bodies. The cuspidal case (0 < α < 1) is new.

While we can not prove the necessity of condition (1.8) it can
be shown that some kind of smoothness at the origin is needed, in
general. Indeed, let

hn(x, y) := xnT̃n

(y

x

)
∈ H2

n,

where T̃n(t) = cos(n arccos(2t− 1)) is the Chebyshev polynomial on
[0, 1]. Consider the triangle

∆ := {(x, y) ∈ R
2 : 0 ≤ y ≤ x ≤ 1}.

Clearly, ‖hn‖∆ = 1, and

∂

∂y
hn(1, 1) = T̃ ′n(1) = 4n2.
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Thus, the O(n log n) bound does not hold for ∆. (Note that condition
(1.8) fails for this triangle.)

Now let us address the question of sharpness of estimate (1.9).
For α = 1, i.e. the n log n bound, the estimate is known to be sharp
even in 0-symmetric case (see [5], [7]). Consider now the domain

Dα := {(x, y) ∈ R
2 : x2 ≤ y ≤ 1− xα}, 0 < α.

Clearly, this star-like set satisfies (1.8), and the LipMα condition
holds for the function r associated with this set. Consider now
gn(x, y) := xyn ∈ H2

n+1. An easy calculation yields that

‖gn‖Dα ≤ ‖(1− |x|α)nx‖[−1,1] =
(

αn

αn + 1

)n 1
(1 + αn)1/α

≤ Cn−1/α.

On the other hand ‖∂gn

∂x ‖Dα = 1. Thus, M(H2
n, Dα) ≥ n1/α

C which is
also the rate of the upper bound of (1.9) for 0 < α < 1. Hence, the
estimate (1.9) is sharp, in general.

2 Proof of the Theorem 1.1 in the case d = 2

Let the star-like domain Kr ⊂ R
2, 0 ∈ ∂Kr, be parameterized by

polar coordinates:

x = ρ̃ cos φ, y = ρ̃ sinφ, 0 ≤ ρ̃ ≤ r(cos φ, sinφ), |φ| ≤ π

2
. (2.1)

Set

r̃(t) := r

(
1√

1 + t2
,

t√
1 + t2

)
, t = tan φ, t ∈ R.

Since r ∈ LipMα on S1, it immediately follows that r̃ ∈ LipMα on
R. Moreover, by (1.8) (with x1 = cos φ = 1/

√
1 + t2)

e−C3|t|1−ε ≤ r̃(t) ≤ C1|t|−β, t ∈ R, (2.2)

where C3 > 0 depends only on Kr. Suppose we have a homogeneous
polynomial p ∈ H2

n

p(x, y) =
n∑

k=0

akx
n−kyk = xn

n∑
k=0

ak

(y

x

)k
,
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satisfying
‖p‖Kr ≤ 1. (2.3)

Setting t = tan φ, |φ| ≤ π/2, we obtain a weighted univariate poly-
nomial on R

p(r(cos φ, sinφ) cos φ, r(cos φ, sinφ) sin φ) =
(

r̃(t)√
1 + t2

)n n∑
k=0

akt
k.

(2.4)

Denote qn(t) :=
n∑

k=0

akt
k. Then by (2.3) and (2.4)

∥∥∥∥
(

r̃(t)√
1 + t2

)n

qn(t)
∥∥∥∥
R

= ‖p‖∂Kr ≤ 1. (2.5)

Observe that for (x, y) ∈ ∂Kr

∂p(x, y)
∂x

= n
n∑

k=0

akx
n−k−1yk −

n∑
k=1

kakx
n−k−1yk

= n

(
r̃(t)√
1 + t2

)n−1

qn(t)−
(

r̃(t)√
1 + t2

)n−1

tq′n(t). (2.6)

and

∂p(x, y)
∂y

= xn−1
n∑

k=1

kak

(y

x

)k−1
=

(
r̃(t)√
1 + t2

)n−1

q′n(t). (2.7)

In order to estimate the weighted polynomials appearing in (2.6)
and (2.7) we shall need the following two lemmas.

Lemma 2.1 Let r̃ ∈ C(R), r̃ > 0, satisfy the right inequality in
(2.2) for some β > 0. Then there exists a t∗ > 0 depending only on
r̃ such that for any n ≥ 2 + 2/β and qn ∈ P 1

n we have∥∥∥∥∥
(

r̃(t)√
1 + t2

)n−1

qn(t)

∥∥∥∥∥
R

=

∥∥∥∥∥
(

r̃(t)√
1 + t2

)n−1

qn(t)

∥∥∥∥∥
[−t∗,t∗]

.
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Proof. Note that r̃(t) ≤ C1|t|−β and n ≥ 2 + 2/β ensure that∥∥∥∥∥
(

r̃(t)√
1 + t2

)n−1

qn(t)

∥∥∥∥∥
R

<∞.

Thus, without loss of generality we can assume∥∥∥∥∥
(

r̃(t)√
1 + t2

)n−1

qn(t)

∥∥∥∥∥
R

= 1.

It is known (for example, see [2] ) that for any qn(t) ∈ P 1
n

|qn(t)| ≤ ‖qn‖[−1,1]|Tn(t)|, |t| > 1, (2.8)

where
Tn(t) :=

1
2

(
(t +

√
t2 − 1)n + (t−

√
t2 − 1)n

)
is the Chebyshev polynomial. Evidently,

|Tn(t)| ≤ 2n|t|n, |t| > 1. (2.9)

To estimate the norm ‖qn‖[−1,1], observe that

inf
|t|≤1

r̃(t) > 0

and, hence,

|qn(t)| ≤
(√

1 + t2

r̃(t)

)n−1

≤ Cn−1
4 , |t| ≤ 1, (2.10)

with some positive constant C4 depending only on r̃. Therefore,
combining estimates (2.8), (2.9) and (2.10), we obtain that for |t| > 1

|qn(t)| ≤ 2n|t|nCn−1
4 = Cn

5 |t|n.

Taking into consideration that

r̃(t) ≤ C1|t|−β,
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we obtain for |t| > 1∣∣∣∣∣
(

r̃(t)√
1 + t2

)n−1

qn(t)

∣∣∣∣∣ ≤ r̃n−1(t)Cn
5 |t|n

|t|n−1
≤ Cn

6

|t|β(n−1)−1
,

where C6 depends only on r̃. Note that assumption n ≥ 2 + 2/β

yields that β(n − 1) − 1 ≥ βn/2. Thus, setting t∗ := C
2/β
6 + 1 we

obtain for |t| > t∗ > 1∣∣∣∣∣
(

r̃(t)√
1 + t2

)n−1

qn(t)

∣∣∣∣∣ ≤
(

C6

|t|β/2

)n

< 1.

Hence, the norm of the weighted polynomial is achieved on the finite
interval [−t∗, t∗]. �

In what follows Ck, k ∈ N will stand for constants depending
only on r̃.

Lemma 2.2 Let r̃ ∈ C(R) satisfy (2.2). Then for any qn ∈ P 1
n

satisfying (2.5) ∥∥∥∥∥
(

r̃(t)√
1 + t2

)n−1

q′n(t)|
∥∥∥∥∥
R

≤ C7ρα(n), (2.11)

where ρα(n) is defined in (1.10).

Proof.
First, observe that condition (2.5) can be rewritten in the follow-

ing form:
|e−nQ(t)qn(t)| ≤ 1 (2.12)

where

Q(t) := log Ω(t) and Ω(t) :=
√

1 + t2

r̃(t)
.

By a well-known inequality (see, for example, [1], p. 92) for any
ξ ∈ [−t∗, t∗], where t∗ is defined in Lemma 2.1, and any z = u+iv ∈ C

such that |z − ξ| ≤ ρ, 0 < ρ < 1/e,

log |qn(z)| ≤ |v|
π

∫
R

log |qn(t)|
(t− u)2 + v2

dt ≤ n|v|
π

∫
R

Q(t)
(t− u)2 + v2

dt
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=
n|v|
π

∫
R

Q(t1 + ξ)
(t1 − u1)2 + v2

dt1, (2.13)

where t1 := t− ξ, u1 := u− ξ. Note that |u1| = |u− ξ| ≤ ρ, |v| ≤ ρ.
Since ∫

R

1
(t− u1)2 + v2

dt =
π

|v| ,

we have that the last expression in (2.13) is equal to

n|v|
π

∫
R

Q(t + ξ)−Q(ξ)
(t− u1)2 + v2

dt + nQ(ξ).

Hence,

log(e−nQ(ξ)|qn(z)|) ≤ n|v|
π

∫
R

log Ω(t + ξ)− log Ω(ξ)
(t− u1)2 + v2

dt. (2.14)

The numerator in the integrand on the right-hand side can be rewrit-
ten as follows

log Ω(t + ξ)− log Ω(ξ) = log
Ω(t + ξ)

Ω(ξ)
= log(

Ω(t + ξ)− Ω(ξ)
Ω(ξ)

+ 1).

(2.15)
Let us introduce the following modulus of continuity of function

Ω:

ω̃(Ω, t) := max{|Ω(x1)−Ω(x2)| : x1 ∈ [−t∗, t∗], |x1−x2| ≤ t}, t > 0.

It has the following properties:
(i) ω̃(Ω, t) is an increasing function of t.
(ii) For |t| ≥ 1, by property (2.2), we have

ω̃(Ω, t) ≤ 2 max
x∈[−t∗−t,t∗+t]

|Ω(x)| ≤ eC8(t∗+t)1−ε
. (2.16)

This yields

log ω̃(Ω, t) = O(t1−ε), for |t| ≥ 1. (2.17)

(iii) ω̃(Ω, t) ≤ C9t
α for |t| ≤ 1, because Ω(t) :=

√
1+t2

r̃(t) , where
r̃(t) ∈ LipMα on R and r̃(t) ≥ C10 for |t| ≤ 1 + t∗ by property (2.2).



10 Babenko and Kroó

Thus, using (2.14) and substituting t = u1 + |v|y, t2 = ρ(1 + y),
we have

log(e−nQ(ξ)|qn(z)|)

≤ n|v|
π

∫
R

log
(

Ω(t+ξ)−Ω(ξ)
Ω(ξ) + 1

)
(t− u1)2 + v2

dt ≤ n|v|
π

∫
R

log
(

ω̃(Ω,|t|)
C11

+ 1
)

(t− u1)2 + v2
dt

=
n

π

∫
R

log
(

ω̃(Ω,|u1+|v|y|)
C11

+ 1
)

y2 + 1
dy ≤ 2n

π

∫ ∞
0

log
(

ω̃(Ω,ρ(1+y))
C11

+ 1
)

y2 + 1
dy

≤ 4n

π

∫ ∞
0

log( ω̃(Ω,ρ(1+y))
C11

+ 1)
(y + 1)2

dy =
4nρ

π

∫ ∞
ρ

log( ω̃(Ω,t2)
C11

+ 1)

t2
2

dt2

=
4nρ

π

∫ 1

ρ

log( ω̃(Ω,t2)
C11

+ 1)

t2
2

dt2 +
4nρ

π

∫ ∞
1

log( ω̃(Ω,t2)
C11

+ 1)

t2
2

dt2. (2.18)

We can estimate each integral as follows. Using property (iii) of
ω̃(Ω, t) we obtain for the first term in (2.18):

4nρ

π

∫ 1

ρ

log( ω̃(Ω,t)
C11

+ 1)
t2

dt ≤ C12nρ

∫ 1

ρ
tα−2dt ≤ C13nγα(ρ), (2.19)

where

γα(ρ) :=
{

ρα, α < 1;
ρ log 1

ρ , α = 1. (2.20)

To estimate the second term in (2.18) we use (ii) which yields

4nρ

π

∫ ∞
1

log( ω̃(Ω,t)
C11

+ 1)
t2

dt ≤ C14nρ

∫ ∞
1

t1−ε

t2
dt =

C14

ε
nρ. (2.21)

Therefore, by (2.19) and (2.21) for the whole sum in (2.18) we obtain:

log(e−nQ(ξ)|qn(z)|) ≤ C15n(γα(ρ) + ρ) ≤ 2C15nγα(ρ). (2.22)

Setting in (2.22) ρ := 1/ρα(n) where ρα(n) is defined in (1.10), we
obtain

log(e−nQ(ξ)|qn(z)|) ≤ C16. (2.23)
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Thus, by (2.23) for all z such that |z − ξ| ≤ ρ = 1/ρα(n)

|qn(z)| ≤ C17e
nQ(ξ). (2.24)

By the Cauchy Integral Formula

q′n(ξ) =
1

2πi

∫
|z−ξ|=ρ

qn(z)
(z − ξ)2

dz.

Estimating this integral using (2.24), we have

|q′n(ξ)| ≤ max
z:|z−ξ|≤ρ

|qn(z)|1
ρ
≤ C17e

nQ(ξ) 1
ρ

= C17e
nQ(ξ)ρα(n).

Hence,(
r̃(ξ)√
1 + ξ2

)n

|q′n(ξ)| = e−nQ(ξ)|q′n(ξ)| ≤ C17ρα(n). (2.25)

Recall that this estimate holds for ξ ∈ [−t∗, t∗], where t∗ is defined
in Lemma 2.1. Using Lemma 2.1∥∥∥∥∥

(
r̃(t)√
1 + t2

)n−1

q′n(t)

∥∥∥∥∥
R

=

∥∥∥∥∥
(

r̃(t)√
1 + t2

)n−1

q′n(t)

∥∥∥∥∥
[−t∗,t∗]

.

Furthermore, by (2.2)∥∥∥∥∥
√

1 + t2

r̃(t)

∥∥∥∥∥
[−t∗,t∗]

≤ C18. (2.26)

Finally, by last two estimates and (2.25)∥∥∥∥∥
(

r̃(t)√
1 + t2

)n−1

q′n(t)

∥∥∥∥∥
R

≤ C17ρα(n)

∥∥∥∥∥
√

1 + t2

r̃(t)

∥∥∥∥∥
[−t∗,t∗]

≤ C19ρα(n).

This completes the proof of Lemma 2.2.
�
Now in order to prove the statement of the Theorem for

d = 2 we need to estimate partial derivatives in (2.6) and (2.7) under
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the assumption (2.5). Note that for n < 2 + 2/β the statement of
the Theorem is obviously true by the equivalence of norms in finite-
dimensional spaces; i.e., we may assume that n ≥ 2+2/β and, hence,
Lemma 2.1 is applicable. Then using (2.6), (2.5) and (2.26) together
with Lemmas 2.1 and 2.2, we obtain∥∥∥∥∂p

∂x

∥∥∥∥
Kr

=
∥∥∥∥∂p

∂x

∥∥∥∥
∂Kr

≤ n

∥∥∥∥∥
(

r̃(t)√
1 + t2

)n−1

qn(t)

∥∥∥∥∥
[−t∗,t∗]

+ t∗
∥∥∥∥∥
(

r̃(t)√
1 + t2

)n−1

q′n(t)

∥∥∥∥∥
[−t∗,t∗]

≤ n

∥∥∥∥∥
√

1 + t2

r̃(t)

∥∥∥∥∥
[−t∗,t∗]

+ C19ρα(n) ≤ C18n + C19ρα(n) ≤ C20ρα(n).

Similarly, by (2.7), (2.5) and Lemma 2.2∥∥∥∥∂p

∂y

∥∥∥∥
Kr

=
∥∥∥∥∂p

∂y

∥∥∥∥
∂Kr

≤ C7ρα(n).

The last two estimates complete the proof of the Theorem 1.1 for
d = 2.

3 Proof of the Theorem 1.1 for d > 2

First let us observe that for any h ∈ Hd
n we have h(tx) = tnh(x),

t ∈ R, x ∈ R
d, i.e. Duh(0) = 0 for any u ∈ Sd−1. Thus, it suffices

to estimate Duh(x) for x ∈ ∂Kr \ {0}. Note that property (2.2) of
the star-like domain Kr yields that IntKr 
= ∅. Thus, there exists a
d-dimensional ball B ⊂ Kr, 0 /∈ B. Consider the quantity

η(K) := inf
u∈Sd−1

sup
w∈B
| < u, w > |.

We claim that η(K) > 0. Indeed, for any u ∈ Sd−1 we clearly have

τ(u) := sup
w∈B
| < u, w > | > 0.
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Since τ(u) is continuous on compact set Sd−1 the claim is obvious.
Thus, for every u ∈ Sd−1 there exists b ∈ B such that | < u, b > | ≥
η(K).

Let now h ∈ Hd
n satisfy ‖h‖Kr ≤ 1, and consider an arbitrary

x ∈ ∂Kr \ {0}. Denote

u :=
∇h(x)
|∇h(x)| ∈ Sd−1,

where ∇h is the gradient of h. By the above observation we can
choose b ∈ B so that | < u, b > | ≥ η(K). Set w := b/|b|. Then,
using that ∇h(x) = |∇h(x)|u, we have

|Dwh(x)| = | < ∇h(x), w > | = |∇h(x)|
|b| | < u, b > | ≥ η(K)

|b| |∇h(x)|.

In other words, with some constant C21 > 0 depending only on Kr

|∇h(x)| ≤ |b|
η(K)

|Dwh(x)| ≤ C21|Dwh(x)|. (3.1)

Thus, it suffices to estimate |Dwh(x)|, where w = b/|b| and b ∈ B.
Consider now the 2-dimensional plane Lb := span{x, b}. Then
K̃r := Kr ∩ Lb is a 2-dimensional star-like domain with x ∈ K̃r.
Moreover, by (2.26), if we estimate all directional derivatives of
p|Lb

∈ H2
n at x then this will yield an upper bound for |∇h(x)|.

Hence, our considerations can be reduced to the 2-dimensional plane
Lb and the star-like domain K̃r. Let r̃ := r|Lb∩Sd−1 be the corre-
sponding radial function associated with K̃r. In order to complete
the proof we need to show that r̃ satisfies condition (2.2) with some
constants independent of x. Let

l := Lb ∩
{

(0, x2, . . . , xd) : (x2, . . . , xd) ∈ R
d−1

}
be the line in Lb supporting K̃r at 0, and denote by y⊥ the orthog-
onal projection of y = (y1, . . . , yd) ∈ Lb to the line l. Clearly,

|y − y⊥| = dist(y, l) ≥ y1. (3.2)

Furthermore, set ỹ = (0, y2, . . . , yd), where y = (y1, y2, . . . , yd). Ob-
viously, y − y⊥ ∈ Lb is a normal direction to l in Lb, y − ỹ = te1,
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where t ∈ R, e1 = (1, 0, . . . , 0). This means that the angle between
y − y⊥ and y − ỹ is invariant of the choice of y ∈ Lb, and so is the
angle between ỹ − y⊥ and y − y⊥. Denote by α(u, v) the angle be-
tween u, v ∈ R

d. Then by the above observation using that b ∈ Lb

we have

sinα(ỹ − y⊥, y − y⊥) = sin α(b̃− b⊥, b− b⊥)

=
|b− b̃|
|b− b⊥| ≥

b1

|b| ≥
min
x∈B

x1

max
x∈B
|x| = C22 > 0.

(It was used above that B ⊂ Kr ⊂ R
d
+ and 0 /∈ B, i.e. min

x∈B
x1 > 0.)

Thus, for every y ∈ Lb

|y − y⊥| = |y − ỹ|
sinα(ỹ − y⊥, y − y⊥)

≤ y1

C22
.

This together with (3.2) implies that |y−y⊥| � |y1| whenever y ∈ Lb

with constants involved being independent of x. Thus, in conditions
(1.8) we can replace |y1| by |y − y⊥| = dist(y, l), where l is the
supporting line of K̃r at 0. Without loss of generality we can assume
that l is a coordinate axis (this can be achieved by a rotation); i.e.,
it remains to refer to the already verified case when d = 2. This
completes the proof of the Theorem 1.1.
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Abstract

In the present paper we discuss some generalizations of the
classical Chebyshev and Bernstein inequalities.

1 Introduction

In the present paper we discuss several multivariate generalizations
of the classical Chebyshev and Bernstein inequalities. The first of
these (in an equivalent form adapted to our exposition) states that
for every polynomial p(x) in x ∈ R of degree n and a pair of intervals
[c, d] ⊂ [a, b] the inequality

sup
[a,b]
|p| ≤ Tn

(
2 + λ

λ

)
sup
[c,d]
|p| (1.1)

holds with λ := d−c
b−a ; here Tn(x) := cos(n arccos x) is the Chebyshev

polynomial of degree n.

17
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Bernstein’s inequality concerns polynomials of a complex variable
z ∈ C of degree n. It states that for such a polynomial p and every
R > 1

sup
|z|≤R

|p(z)| ≤ Rn sup
|z|≤1
|p(z)| . (1.2)

Both of these inequalities are sharp. In his 1936 paper Remez [35]
generalizes the Chebyshev inequality replacing the subinterval [c, d]
by an arbitrary measurable subset S ⊂ [a, b]. The Remez inequality
has the same form as (1.1) with λ := |S|

b−a and is clearly sharp, as
well.

There is no Remez type generalization of Bernstein’s inequality:
Yu. Brudnyi-Ganzburg inequality which we describe below gives, for
this case, the inequality

sup
|z|≤R

|p(z)| ≤ (cR)n sup
S
|p|

provided S is a measurable subset of the disk {z ∈ C : |z| ≤ R} of
measure π and c is a constant independent of R and p.

Question 1.1 What is the optimal value of c?

There are also analogs of Chebyshev’s and Remez’ inequalities for
trigonometric polynomials proved by V. Videnski [38] and T. Erdelyi,
respectively; see the references in the book [3]. It is convenient for us
to think of these inequalities as results on the traces of polynomials
in x, y ∈ R

2 to the circle x2 + y2 = 1.

2 Related Problems

2.1. The results discussed pose several problems for multivariate
polynomials. Of course, it would be unlikely to establish such in-
equalities in a sharp form. So we are mostly looking for a sharp or-
der of growth as the relative measure tends to zero. Here the relative
measure of a d-measurable subset S of a convex body K ⊂ R

d is de-
fined as |S||K| . (Here and below |U | denotes the Lebesgue d-measure of
U ⊂ R

d.) According to the one-dimensional results exhibited above
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we have the following groups of problems for multivariate polynomi-
als. Throughout this paper Pn,d denotes the linear space of polyno-
mials in x ∈ R

d of degree n, and K stands for a bounded convex
body in R

d. We begin with a Chebyshev type problem. Let S be a
subset of K with |S| > 0.

Problem 2.1 Given K, find the optimal constant in the inequality

sup
K
|p| ≤ C sup

S
|p| , p ∈ Pn,d , (2.3)

where S runs over all convex subsets of K of relative measure λ > 0.

The required optimal constant is denoted by CK(n, λ). The next is
a Remez type problem formulated as follows.

Problem 2.2 (a) Find the optimal constant in (2.3) where S now
runs over all measurable subsets of K of relative measure λ > 0.
(b) The same in the case of an arbitrary K, i.e., (2.3) should hold for
all measurable S ⊂ K of relative measure λ and all bounded convex
bodies.

Let us denote the optimal constant in (a) by RK(n, λ) and that
in (b) by R(n, λ). It is clear that

CK(n, λ) ≤ RK(n, λ) ≤ R(n, λ) .

Conjecture 2.3 ([4, 1973]).

CK(n, λ) = RK(n, λ).

Comparing the Chebyshev and Remez inequalities shows that this is
the case for d = 1; the conjecture is also true for K a finite convex
cone; see [4]. Otherwise, the conjecture remains an open problem.
Let V ⊂ R

d be a real algebraic variety of pure dimension d̃ < d.
Equip V with the metric induced by the Euclidean metric of R

d and
denote by µV the measure induced on V by the Lebesgue measure of
R

d. Let now B ⊂ V be a (metric) ball and S ⊂ B be a measurable
subset of the relative measure µV (S)

µV (B) equals λ > 0.
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Problem 2.4 Find the optimal constant (or its asymptotic as
λ→ 0) in the inequality

sup
B
|p| ≤ C sup

S
|p| , p ∈ Pn,d|V . (2.4)

Let us denote the required optimal constant by CV (B, λ). Note that
the behaviour of this constant depends strongly on the structure of
V as can be seen in the case of the curve y3 = x2 in R

2 with the
cusp at (0, 0). Here for a ball centered at (0, 0) the asymptotics of
CV (B, λ) as λ → 0 are distinct in order from those for a ball cen-
tered at a smooth point of the curve and not containing (0, 0). But
for such varieties as the sphere S

d−1 ⊂ R
d or the upper sheet of the

hyperboloid H
d−1 = {x ∈ R

d : −x2
d +

∑d−1
i=1 x2

i = 1} this effect does
not exist, since all their points are smooth. Observe that Pn,d|Sd−1

is the space of spherical harmonics of degree n (trigonometric poly-
nomials if d = 1).

2.2. The problems presented have had a lot of generalizations
and variants. We mention only several of them. (a) In all the above
problems the uniform norms can be replaced by the corresponding
Lp-norms or some other rearrangement invariant norms. (b) Polyno-
mials can be replaced by entire functions on C

d of exponential type
whose Lp-norms are bounded on a subset S ⊂ R

d of density λ > 0.
The latter means that the relative d-measure of S ∩ B for every
closed ball centered at S is at least λ. One-dimensional prototypes
of this problem are those of Cartwright and of Plancherel-Polya. (c)
Polynomials can be replaced by real analytic or plurisubharmonic
functions. (d) Finally, one can replace the Lebesgue d-measure by
the Hausdorff α-measure. Of course, we should have

α > d− 1 , (2.5)

since the zero set of a polynomial p ∈ Pn,d has Hausdorff (d − 1)-
dimension zero and therefore inequality (2.3) cannot be true for a
subset S of Hausdorff measure d− 1.

3 Formulation of Main Results

3.1. In the sequel we briefly discuss some results related to the



Local Ineqalities for Multivariate Polynomials 21

problems posed above and their generalizations and prove a new
polynomial inequality for the case of Hausdorff α-measures satisfy-
ing (2.5). Unfortunately, it is absolutely unrealistic to present in this
short paper all the important results of this vast field. Therefore we
will restrict our consideration to some results studied in the authors
papers and results related to them.

3.2. Based on a simple geometric fact proved in [36] it is estab-
lished in [4] that the optimal constant of Problem 2.1 can be found
by the formula given below in which Π ⊂ R

d denotes a layer between
two parallel hyperplanes such that the relative d-measure of Π ∩K
is λ. Moreover, we set

ρK(Π) := sup
x∈K

inf
y∈Π
|x− y|

and denote by ν(Π) the width of Π (the metric of R
d is chosen to be

Euclidean). Under these notations we have

CK(n, λ) = sup
Π

Tn

(
2ρK(Π)
ν(Π)

+ 1
)

(3.6)

where, as above, Tn is the n-th Chebyshev polynomial. In some cases
equality (3.6) allows us to derive the sharp asymptotics of CK(n, λ).
For example, for K a d-dimensional ball

CK(n, λ) =
1
2

(cd

λ

)n
+ o(λ−n) , λ→ 0 ; (3.7)

here c1 = 8 and

cd = 4 ωd−1

(
1 +

1
d

) d+1
2

(
1− 1

d

) d−1
2

, d > 1 ,

where ωd−1 is the volume of the (d − 1)-dimensional unit ball. For-
mula (3.6) allows to derive sharp asymptotics for several other convex
bodies, e.g., cubes or ellipsoids, but a general result is unknown. In-
teresting new results on the multivariate Chebyshev’s constant CK

can be found in [28].
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3.3. Strikingly, the optimal constant of Problem 2.2 (b) is known
[4]. Namely,

R(n, λ) = Tn

(
1 + d
√

1− λ

1− d
√

1− λ

)
. (3.8)

Moreover, for this case

CK(n, λ) = RK(n, λ) = R(n, λ)

provided K is a convex cone with a flat base. Estimating the right-
hand side we, in particular, get

R(n, λ) ≤ 1
2

(
4d

λ

)n

. (3.9)

Comparing this with the asymptotic in (3.7) one can see that λ−n

is the sharp order of growth for R(n, λ) as λ→ 0. Estimate (3.9) is
applied in [4] to derive an inequality for the nondecreasing rearrange-
ment of a polynomial from Pn,d and in this way to obtain Remez type
inequalities for integral (or, more generally, rearrangement invariant)
metrics.

In particular, we have for every p ∈ Pn,d and S ⊂ K ⊂ R
d chosen

as above: (
1
|K|

∫
K
|p|a dx

)1/a

≤ C

(
1
|S|

∫
S
|p|b dx

)1/b

(3.10)

where 0 < a, b ≤ ∞ and C depends only on n, d and min(1, a, b).
Recently there has been a considerable interest in the behaviour of
the optimal constant C in (3.10), see [7], [27], [10], [12], [15], [19],
[31], [32]. In particular, the dimension d.

3.4. Before discussing the third problem on traces of polynomials
to algebraic varieties, we turn to a seemingly distant area of research
related to purisubharmonic functions; see [26] for the basic definitions
and facts. An inequality for such functions has a surprisingly wide
range of applications including for the problems presented in Section
2.2. To describe this inequality, proved in [9], we denote by B(x, ρ)
and Bc(x, ρ) the Euclidean balls with center x and radius ρ in R

d

and C
d, respectively. Set also Φ(x) := x +

√
x2 − 1, |x| ≥ 1.
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Theorem 3.1 Assume that f is a plurisubharmonic function on
Bc(0, ρ), ρ > 1, such that

sup
Bc(0,ρ)

f = 0 and sup
Bc(0,1)

f ≥ −1 .

Then there is a constant c = c(ρ) such that

sup
B(x,t)

f ≤ c log Φ
(

1 + d
√

1− λ

1− d
√

1− λ

)
+ sup

S
f (3.11)

for every measurable S ⊂ B(x, t) with λ = |S|
|B(x,t)| and every ball

B(x, t) ⊂ Bc(0, 1).

(In fact, in [9] a weaker version of (3.11) is obtained. The very same
proof gives inequality (3.11) if one replaces inequalities (2.31) and
(2.26) of [9] by their sharp forms presented in [4], see there Lem-
mas 3 and 1.) To explain the relation of (3.11) to the polynomial
inequalities under consideration it suffices to note that log |p(z)| is
plurisubharmonic if p is a (complex) polynomial in z ∈ C

d. Since
the same is true for a holomorphic function defined on a domain of
C

d, inequality (3.11) leads also to Remez type results for holomor-
phic functions. We present here only two such results referring the
interested reader to the papers [9]-[13], [15], [17]. The first of these
results gives a solution to Problem 2.4. So, suppose that V ⊂ R

d is
a real algebraic variety of pure dimension d̃ < d.

Theorem 3.2 ([9]) For every smooth point x ∈ V there is an open
neighbourhood N of x such that

sup
B
|p| ≤

(c0

λ

)c1ndeg(V )
sup

S
|p| , p ∈ Pn,d|V .

Here we use the notation of (2.4), and c0 = c0(d̃), while c1 is a
numerical constant.

Note that deg(V ), the degree of an algebraic variety, is defined,
e.g., by the Bezout theorem. In particular, for the sphere S

d−1 this
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equals 2. Moreover, the proof in [9] gives some information on the
size of N . In the special case of spherical harmonics we have

sup
Sd−1

|p| ≤
(c0

λ

)c2 n
sup

S
|p|, p ∈ Pn,d|V ,

where c2 is a numerical constant. The next result is a Remez type
inequality for a function f holomorphic in the ball Bc(0, ρ) with
ρ > 1. In this case we consider a convex body K ⊂ B(0, 1) ⊂ R

d

and a measurable subset S ⊂ K of relative measure λ > 0. Then the
following is true:

Theorem 3.3 ([10]) There is a constant n = n(f, r) such that the
inequality

sup
K
|f | ≤

(
4d

λ

)n

sup
S
|f |

holds.

In some cases the constant n can be effectively estimated, see
[10], [15], [17]. As in the case of inequality (3.11) the proof in [10]
with the above mentioned modification leads to a sharper inequality
with Φ

(
1+ d√1−λ

1− d√1−λ

)
instead of 4d

λ .

3.5. Finally, we present a result giving an answer to the question
on subsets of positive Hausdorff α-measure with α > d − 1 (see
Section 2.2.(d); its proof will be postponed to the final section). To its
formulation we require the notion of (upper) Ahlfors regular subsets
of R

d. In the next definition µα(S) stands for the Hausdorff α-
measure of a Borel subset S ⊂ R

d.

Definition 3.4 S is said to be α-regular, if there exist constants
r0 > 0 and γ+ > 0 such that for every ball B centered at a point of
S and of radius less than r0

µα(S ∩B) ≤ γ+|B|α/d . (3.12)

(Recall that |B| stands for the Lebesgue d-measure of B, so |B| =
µd(B).)
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Theorem 3.5 Assume that K ⊂ R
d is a bounded open set and S ⊂

K is α-regular with
α > d− 1 (3.13)

and with parameters γ+ and r0. Assume also that

γ− :=
µα(S)
|K|α/d

> 0 . (3.14)

Then there is a constant C > 1 such that for every p ∈ Pn,d(
1
|K|

∫
K
|p|r dx

)1/r

≤ C

(
1

µα(S)

∫
S
|p|q dµα

)1/q

. (3.15)

Here 0 < q, r ≤ ∞ and C depends on K, n, q, r, α, d, γ± and is
increasing in 1/γ−.

The first result of this type was proved in [16] for univariate polyno-
mials (and more generally for subharmonic functions) by a method
which gives a constructive constant C in (3.15). The proof of the
present paper is unconstructive (an existence theorem). In a forth-
coming paper we will give a constructive proof of this and a more
general result concerning plurisubharmonic and real analytic func-
tions.

4 Comments

Univariate inequalities for polynomials have appeared in Approxima-
tion Theory and for a long time have been considered as technical
tools for proofs of Bernstein’s type inverse theorems. At the present
time polynomial inequalities have been found a lot of important ap-
plications in areas which are well apart from Approximation The-
ory. We will only briefly mention several of these areas. The papers
[23], [7] and [27] apply polynomial inequalities with different integral
norms to study some problems of Convex Geometry (in particular,
the famous Slice Problem). In the papers [1], [2], [33] and [34] and
books [20] and [24]. Chebyshev-Bernstein and related Markov type
inequalities are used to explore a wide range of properties of the clas-
sical spaces of smooth functions including Sobolev type embeddings
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and trace theorems, extensions and differentiability. The papers [21]
and [22] on Bernstein’s type inequalities for traces of polynomials to
algebraic varieties were inspired by and would have important appli-
cations to some basic problems of the theory of subelliptic differential
equations. The paper [6] discovers a profound relation between the
exponents in the tangential Markov inequalities for restrictions of
polynomials to a smooth manifold M ⊂ R

d and the property of M
to be an algebraic manifold. An application of polynomial inequal-
ities to Cartwright type theorems for entire functions (see Section
2.2 (b)) is presented in [11] and [13], see also [29], [30], [25]. In
the papers [14] and [18] Chebyshev-Bernstein type inequalities are
used to prove some distributional inequalities for the number of ze-
ros of families of holomorphic functions depending holomorphically
on a multidimensional complex parameter. In the papers [31] and
[32] these inequalities are used to estimate the distribution of zeros
of certain families of random analytic functions. Finally, we men-
tion the application of polynomial inequalities to the second part of
Hilbert’s sixteenth problem concerning the number of limit cycles of
planar polynomial vector fields, see [37], [14] and [18]. In particular,
it was proved in the last paper that locally, the expected number
of limit cycles of a random polynomial vector field of degree d is
O(log d), a surprisingly small estimate in comparison with known
examples where the number of cycles is of polynomial growth.

5 Proof of Theorem 3.5

Proof. We set for brevity

||p; S||q =
(

1
µα(S)

∫
S
|p|q dµα

)1/q

and

||p; K||r =
(

1
|K|

∫
K
|p|r dx

)1/r

.

Let Σ(γ+, γ−), γ± > 0, be the class of µα-measurable subsets S of K
satisfying condition (3.12) and also

µα(S) ≥ γ− . (5.1)
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We require to show that there exists a positive constant
C = C(K, n, q, r, α, d, γ+, γ−) such that for every polynomial p ∈ Pn,d

||p; K||r ≤ C||p; S||q . (5.2)

Remark 5.1 Let C0 be the optimal constant in (5.2). Since the
class Σ(γ+, γ−) increases as γ− decreases, C0 increases in 1/γ−, as is
required in the theorem.

If, on the contrary, the constant in (5.2) does not exist, one can
find sequences of polynomials {pj} ⊂ Pn,d and sets {Sj} ⊂ Σ(γ+, γ−)
so that

||pj ; K||r = 1 for all j ∈ N , (5.3)

lim
j→∞

||pj ; Sj ||q = 0 . (5.4)

Since all (quasi-) norms on Pn,d are equivalent, (5.3) implies the
existence of a subsequence of {pj} that converges uniformly on K to
a polynomial p ∈ Pn,d. Assume without loss of generality that {pj}
itself converges uniformly to p. Then (5.3), (5.4) imply for this p
that

||p; K||r = 1 , (5.5)

lim
j→∞

||p; Sj ||q = 0 . (5.6)

From this we derive the next result, given below.

Lemma 5.2 There is a sequence of closed subsets {σj} ⊂ K such
that for every j bigger than a fixed j0 the following is true

µα(σj) ≥ 1
2

γ− . (5.7)

Moreover,
max

σj

|p| → 0 as j →∞ . (5.8)

Proof. Let first q <∞. By the (probabilistic) Chebyshev inequality

µα{x ∈ Sj : |p(x)| ≤ t} ≥ µα(Sj)− µα(Sj)
tq

||p; Sj ||qq .
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Pick here t = tj := ||p; Sj ||1/2
q . Then by (5.6) the left-hand side is at

least 1
2µα(Sj), for j sufficiently large. Denoting the closure of the set

in the braces by σj we also have

max
σj

|p| = tj → 0 as j →∞ .

If q =∞, simply set σj := Sj to produce (5.7) and (5.8). �

Apply now the Hausdorff compactness theorem to find a subse-
quence of {σj} converging to a closed subset σ ⊂ K in the Hausdorff
metric. We assume without loss of generality that {σj} → σ. By
(5.8) this limit set is a subset of the zero set for p. Since p is non-
trivial by (5.5), the dimension of its zero set is at most d− 1; hence
µα(σ) = 0 by (3.13). Then for every ε > 0 one can find a finite open
cover of σ by open balls Bi of radius at most r(ε) so that

∑
i

|Bi|α/d < ε . (5.9)

Let σδ be a δ-neighbourhood of σ such that

σδ ⊂
⋃
i

Bi and δ < r(ε) .

Pick j so large that σj ⊂ σδ. For every Bi intersecting σj choose a
point xi ∈ Bi ∩σj . Consider an open ball B̃i centered at xi of radius
twice that of Bi. Then Bi ⊂ B̃i and |B̃i| = 2d|Bi|. Moreover, {B̃i}
is an open cover of σj . Hence

µα(σj) ≤
∑

i

µα(σj ∩ B̃i) ≤ γ+

∑
i

|B̃i|α/d = 2dγ+

∑
i

|Bi|α/d ,

using assumption (3.12). Together with (5.7) and (5.9) this implies
that

1
2

γ− ≤ µα(σj) ≤ 2dγ+

∑
|Bi|α/d ≤ 2dγ+ε .

Letting ε→ 0 one gets a contradiction. �
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Abstract

In this paper we describe our attempts at calculating the
norm of the operator

Ln−1( · ; ζ) : H∞(D)→ C

where Ln−1( · ; ζ) represents the Lagrange interpolation poly-
nomial of degree n− 1, evaluated at a complex number ζ, and
defined by interpolating functions in H∞(D) at the zeros of
zn − rn. We assume that 0 < r < 1 and that |ζ| > 1.

Although our goal is to calculate the norm of the operator
for all values n ≥ 2 and all values of ζ satisfying |ζ| > 1, we
will find an explicit formula for the norm of the operator which
we can show to hold for n ≥ 3 and |ζ| > 1.36, for n = 2 and
|ζ| > 1, and for n = 3 and ζ = Re

iπ
3 k, where k = 1, 3, and 5

and R > 1.
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1 Introduction

Let B represent the unit ball of H∞(D) where H∞(D) is the Hardy
space consisting of functions which are bounded and analytic in the
open unit disk D. That is, let B := {f ∈ H∞(D) : ‖f‖L∞(D) ≤
1} where ‖f‖L∞(D) = supz∈D |f(z)|. Many mathematicians have
studied the norms of operators acting on this space.

In 1913, for example, Landau calculated the norm of Sn−1( · ; 1) :

H∞(D) → C where Sn−1(f ; 1) :=
n−1∑
k=0

f (k)(0)
k!

is the n− 1st partial

sum of the Taylor series of f , evaluated at 1 [5]. In 1918 Szász
considered a generalization of Landau’s problem. In particular, if
the Taylor series of f is given by f(z) =

∑∞
k=0 akz

k, then Szász
investigated the maximization of the linear functional

|c0a0 + · · ·+ cn−1an−1|

over all f ∈ B where c0, . . . , cn are given complex numbers [8]. When
cj = 1 we have the Landau case. When cj = Rj we have the n− 1st

partial sum of the Taylor series of f evaluated at R.
In a related problem, Sharma and Cavaretta calculated the norm

of the operator Ln−1( · ; R) : H∞(D) → C where Ln−1(f ; R) repre-
sents the Lagrange interpolation polynomial of degree n−1, evaluated
at R, and defined by interpolating f at the zeros of zn−rn [1]. Here,
we assume that 0 < r < 1 and that R > 1.

It is interesting to note that while the norm of the operator
Sn−1( · ; R) is invariant under rotations in that ‖Sn−1( · ; R)‖ =
‖Sn−1( · ; ζ)‖ where ζ is any complex number of modulus R, the
norm of the operator Ln−1( · ; R) is only invariant under rotations
ζ → ωjζ, j = 0, 1, . . . , n − 1 where ωj , j = 0, 1, . . . , n − 1 are the n
roots of unity, i.e., the n solutions of the equation zn = 1. In this
paper, we would like to investigate the problem of computing the
operator norm maxf∈B |Ln−1(f ; ζ)| where ζ is any complex number
of modulus R > 1 and where n ≥ 2. Although we will not solve the
problem completely, we will obtain results in the following cases:

CASE I: | ζ | > 1.36 and n ≥ 3
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CASE II: | ζ | > 1 and n = 2
CASE III: ζ = Re

iπ
3

k for k = 1, 3, 5 and n = 3

2 A Reduction of the Problem

In this section we wish to provide a formula for the norm of Ln−1( · ; ζ)
which will hold for various values of ζ and n under the condition that
a certain polynomial (which is dependent on ζ and n) has no zeros
in the unit disk. Throughout this section we may assume that ζ is
any complex number of modulus R greater than 1, and that n is any
integer greater than or equal to 2.

Define g(z) :=
(

ζn−rn

ζ−z

) 1
2 where we consider the square root of

ζn−rn

ζ−z to be the principle square root. Let p(z) := Ln−1(g; z) where
Ln−1(g; z) represents the polynomial of degree n− 1, evaluated at z,
which interpolates g at the zeros of zn − rn for 0 < r < 1.

Following Cavaretta and Sharma’s calculation of Ln−1(f ; R) [1],
we see that for any f ∈ B,

|Ln−1(f ; ζ)| =
∣∣∣ 1
2πi

∫
T

zn − ζn

(z − ζ)(zn − rn)
f(z) dz

∣∣∣
=

∣∣∣ 1
2πi

∫
T

(1− r2n)p2(z)
(zn − rn)(1− znrn)

f(z) dz
∣∣∣

≤ 1− r2n

2π

∫ 2π

0

|p2(eiθ)|
|einθ − rn|2 dθ,

where the second equality holds due to the fact that p2(rωj) = ζn−rn

ζ−rωj ,
which implies that the residues of each integrand are equal.

By expanding the factor (ζ − z)−
1
2 of g in a binomial series, and

by using the linearity of the operator Ln−1, we have that (see (3.1))

p(z) =
(ζn − rn

ζ

) 1
2

n−1∑
k=0

λk

(z

ζ

)k

where

λk =
∞∑
l=0

(−1)k+ln

( −1
2

k + ln

)(r

ζ

)ln
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for k = 0, . . . , n− 1. Therefore, Parseval’s relation gives us

1− r2n

2π

∫ 2π

0

|p2(eiθ)|
|einθ − rn|2 dθ =

|ζn − rn|
R

n−1∑
k=0

|λk|2
R2k

,

so that for any f ∈ B,

|Ln−1(f ; ζ)| ≤ |ζ
n − rn|

R

n−1∑
k=0

|λk|2
R2k

. (2.1)

If p has no zeros in the unit disk, then the function F (z) :=
zn−1p(1/z̄)

p(z)
is in B. Furthermore, if we replace f by F in inequality

(2.1) we will get equality, thus obtaining a formula for the norm of
Ln−1( · ; ζ). As the general theory states [3], the extremal function
F is a Blaschke product and |F (eiθ)| = 1 for all θ. We have the
following:

Theorem 2.1 Let 0 < r < 1 and let ζ be any complex number of
modulus R > 1. Let the operator Ln−1( · ; ζ) : H∞(D) → C be the
Lagrange interpolation polynomial of degree n−1, evaluated at ζ, and
defined by interpolating functions in H∞(D) at the zeros of zn − rn.

Define g(z) :=
(

ζn−rn

ζ−z

) 1
2 and let p(z) := Ln−1(g; z). If p has no

zeros in D, then

‖Ln−1( · ; ζ)‖ =
|ζn − rn|

R

n−1∑
k=0

|λk|2
R2k

(2.2)

where λk =
∞∑
l=0

(−1)k+ln

( −1
2

k + ln

)(r

ζ

)ln
. In other words, the norm

of this operator is equal to the square of the �2 norm of p, as long as
p has no zeros in D.

Our problem of calculating the norm of Ln−1( · ; ζ) thus reduces
to proving that p has no zeros in the unit disk. In the following
sections, we will prove that p has no zeros in D for various values of
ζ and n.
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3 n ≥ 3 and |ζ| > 1.36

In this section we wish to calculate the norm of Ln−1( · ; ζ) in the

case that n ≥ 3 and that |ζ| > 1.36. Again, let g(z) :=
(

ζn−rn

ζ−z

) 1
2

and let p(z) := Ln−1(g; z). In order to apply Theorem 2.1 we will
use Rouché’s theorem to show that p has no zeros in D.

Notice that g has no zeros in D and is analytic in D. Also, by
expanding the factor (ζ−z)−

1
2 of g in a binomial series, we have that

g(z) =
(ζn − rn

ζ

) 1
2
∞∑

k=0

(−1)k

(−1
2

k

)(z

ζ

)k

and, therefore, that

p(z) =
(ζn − rn

ζ

) 1
2
∞∑

k=0

(−1)k

(−1
2

k

)(1
ζ

)k
Ln−1(zk)

=
(ζn − rn

ζ

) 1
2
∞∑

j=0

(r

z

)jn
(j+1)n−1∑

k=jn

(−1)k

(−1
2

k

)(1
ζ

)k
zk.

(3.1)

Let T denote the unit circle. Then for any z ∈ T we obtain the
following inequality:

|g(z)− p(z)| =
∣∣∣(ζn − rn

ζ

) 1
2
( 2n−1∑

k=n

(−1)k

(−1
2

k

)(1
ζ

)k(
1− rn

zn

)
zk +

3n−1∑
k=2n

(−1)k

(−1
2

k

)(1
ζ

)k(
1− r2n

z2n

)
zk + · · ·

)∣∣∣
≤ |ζn − rn| 12

R
1
2

(
2 ·

∞∑
k=n

(−1)k

(−1
2

k

)
1

Rk

)

≤ 2
|ζn − rn| 12

R
1
2

((
1− 1

R

)−1
2 − 1− 1

2R
− 3

8R2

)
. (3.2)

In order to apply Rouché’s theorem, it would suffice to prove that

2
|ζn − rn| 12

R
1
2

((
1− 1

R

)− 1
2 − 1− 1

2R
− 3

8R2

)
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< min
z∈T
|g(z)| = |ζ

n − rn| 12
(R + 1)

1
2

,

so that |g(z) − p(z)| < |g(z)| for all z ∈ T. However, the inequality
holds if and only if

1
2

√
R

R + 1
+ 1 +

1
2R

+
3

8R2
−

√
R

R− 1
> 0. (3.3)

Inequality (3.3) can be proven to hold for values of R > 1.36 by

noticing that 1
2

√
R

R+1 +1+ 1
2R + 3

8R2−
√

R
R−1 has a zero approximately

at R = 1.355 and is increasing for values of R greater than 1.355.
Therefore, by Rouché’s theorem, p has no zeros in D. In the case

that |ζ| > 1.36 and n ≥ 3 we then have that the norm of Ln−1( · ; ζ)
is given by formula (2.2).

It should be noted that as n increases, we can prove that for
any z ∈ T the inequality |g(z)− p(z)| < minz∈T |g(z)| holds for even
smaller values of R. Notice that

2 · (−1)k

(−1
2

k

)
≤ 1

for any value of k. Therefore, by inequality (3.2) we have that

|g(z)− p(z)| ≤ |ζ
n − rn| 12

R
1
2

1
Rn−1

1
R− 1

,

which is smaller than

min
z∈T
|g(z)| = |ζ

n − rn| 12
(R + 1)

1
2

when

n >
ln

(√
R+1

R · 1
R−1

)
lnR

+ 1.

Therefore, for larger values of n, we are able to show that formula
(2.2) remains valid for even smaller values of R. For example, one
can verify that when n = 30 the estimate holds for R > 1.1.
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Our motivation for choosing to compare p to the function g when
applying Rouché’s Theorem is that p(z) = Ln−1(g; z). It seems that
the quantity |g(z)−Ln−1(g; z)| should not be too large for z ∈ T since
Ln−1(g; z) is a polynomial approximation to g(z) in the unit disk.
Therefore, it is plausible to expect that |g(z) − Ln−1(g; z)| < |g(z)|
for z ∈ T.

However, our choice of g was in some sense arbitrary in that there
are many analytic functions, h, which are free of zeros in the unit disk
and for which p(z) = Ln−1(h; z). If |h| has a larger minimum value
on the boundary of D, perhaps we could prove that |h(z) − p(z)| <
minz∈T |h(z)| for all values of ζ with modulus greater than one.

4 n = 2 and |ζ| > 1

In this section we wish to prove that the calculation of the norm of
Ln−1( · ; ζ) given by formula (2.2) holds in the case that n = 2 and
|ζ| > 1. Proving this case will show that our formula does not need
to be restricted by the condition that |ζ| > 1.36.

When n = 2 the polynomial defined in Theorem 2.1 is p(z) =

L1(g; z) where g(z) =
(ζ2 − r2

ζ − z

) 1
2 . Since p(z) is defined by the in-

terpolation conditions p(r) = g(r) and p(−r) = g(−r) we have that

p(z) =
(√ζ + r −√ζ − r

2r

)
z +

(√ζ + r +
√

ζ − r

2

)
.

In order to apply Theorem 2.1, we need to prove that the modulus
of the only zero of p, namely

|z0| := r ·
∣∣∣√ζ + r +

√
ζ − r√

ζ + r −√ζ − r

∣∣∣,
is larger than one when |ζ| = R > 1.

Let √
ζ + r := αei

θ1
2√

ζ − r := βei
θ2
2 .
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Then, by the half angle formula for cosine, we have that

|z0|2 =
r2

(
α2 + β2 + 2αβ

√
1+cos(θ2−θ1)

2

)
α2 + β2 − 2αβ

√
1+cos(θ2−θ1)

2

. (4.1)

In order to calculate cos(θ2 − θ1) we notice that θ2 − θ1 is the
angle between the vector connecting the origin to ζ − r and the
vector connecting the origin to ζ + r. These vectors have lengths β2

and α2 respectively. Also, the vector connecting ζ − r to ζ + r has
length 2r. Therefore, by the law of cosines, we have that

cos(θ2 − θ1) =
α4 + β4 − 4r2

2α2β2
.

Using this fact in conjunction with (4.1) gives us that |z0|2 ≥ 1
if and only if

r2[α2 + β2 +
√

(α2 + β2)2 − 4r2] ≥ α2 + β2 −
√

(α2 + β2)2 − 4r2,

which is equivalent to showing that√
(α2 + β2)2 − 4r2(r2 + 1) ≥ (α2 + β2)(1− r2).

By squaring both sides of the inequality, it can be seen that our
problem reduces to proving

(α2 + β2)2 ≥ (r2 + 1)2,

i.e. that
|ζ − r|+ |ζ + r| ≥ r2 + 1. (4.2)

However, by setting ζ = Reiθ and f(θ) := |ζ − r| + |ζ + r|, we
have

f
′
(θ) = Rr sin θ

|ζ + r| − |ζ − r|
|ζ − r||ζ + r| .

so that the critical values of f are θ = 0, π, and π
2 . Since f(0) = f(π)

and f(π
2 ) > f(0), f attains a minimum value of f(0) = 2R, which

implies that
|ζ − r|+ |ζ + r| ≥ 2R.
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Since R > 1 and 0 < r < 1 we have that 2R ≥ r2 + 1 . Thus,
we have proven inequality (4.2) and, therefore, that p has no zeros
in the unit disk.

By using Parseval’s relation to evaluate the quantity on the right-
hand side of equation (2.2) in the specific case that n = 2, we obtain
the following theorem:

Theorem 4.1 Let 0 < r < 1 and let ζ be any complex number of
modulus R > 1. Let the operator L1( · ; ζ) : H∞(D) → C be the
linear polynomial, evaluated at ζ, which is defined by interpolating
functions in H∞(D) at r and −r. Then

‖L1( · ; ζ)‖ =
|ζ2 − r2|

R

(
|λ0|2 +

|λ1|2
R2

)
where

λ0 =
√

ζ + r +
√

ζ − r

2
,

λ1 =
√

ζ + r −√ζ − r

2r
.

5 n = 3 and ζ = Reikπ
3 for k = 1, 3, 5 and R > 1

In this section we will sketch a proof of why calculation (2.2) holds
in the case that n = 3 and ζ = Rei kπ

3 for k = 1, 3, and 5, and for
R > 1.

As Cavaretta and Sharma explain in their paper [1], the calcu-
lation of the norm of Ln−1( · ; ζ) is invariant under rotations ζ →
ωjζ, j = 0, 1, . . . , n− 1 where ωj , j = 0, 1, . . . , n− 1 are the n roots
of unity, i.e., the n solutions of the equation zn = 1. Therefore,
their calculation of the norm of L2( · ; R) is proven to be the same
as the norm of L2( · ; ζ) in the case that ζ = Rei kπ

3 for k = 2, 4, and
6. The values of ζ that we wish to consider in this section are in
between these values in that their arguments are halfway between
the arguments of ζ = Rei kπ

3 for k = 2, 4, and 6.
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Since the norm of L2( · ; ζ) is invariant under rotations ζ →
ζωj , j = 0, 1, 2, we only need to calculate the norm of L2( · ;−R).
The norms of the operators L2( · ; Rei π

3 ) and L2( · ; Rei 5π
3 ) will then

be the same as the norm of L2( · ;−R).
When n = 3 and ζ = −R, the polynomial defined in Theorem 2.1

is p(z) = L2(g; z) where g(z) =
(R3 + r3

R + z

) 1
2 . Since p(z) is defined

by the interpolation conditions p(z) = g(z) for z = rωk, k = 0, 1, 2,
we have that

p(z) =
(R3 + r3

R

) 1
2

2∑
k=0

λkz
k

λk :=
∞∑
l=0

(−1)3l+k

( −1
2

3l + k

)
r3l

(−R)3l+k
.

In order to apply Theorem 2.1, we need to show that p has no
zeros in D. This can be proven by using Cauchy’s coefficient estimate
[7], which states that p has no zeros in D if its coefficients satisfy the
following condition:

|λ0| − |λ1| − |λ2| > 0.

By proving that λ0 > 0, λ1 < 0, and λ2 > 0, Cauchy’s coefficient
estimate can be reduced to

λ0 + λ1 − λ2 > 0.

After much calculation, this inequality can be proven to be true by
rearranging the terms of the infinite sum λ0 + λ1 − λ2 > 0 and by

relying on the fact that (−1)k+1

( −1
2

k + 1

)
= (−1)k

(−1
2

k

)(2k + 1
2k + 2

)
.
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Dedicated to the memory of Professor Ambikeshwar Sharma

Abstract

This paper gives a survey of Sharma’s work on interpolation
during the years 1993–2003 in cooperation with the author.

1 Introduction

This summary paper covers a time period of approximately 10 years
and started when A. Sharma invited the author to Edmonton (after
the conference in his honor) to work on interpolation linked to si-
multaneous rational approximation with common denominator; the
work included so called equiconvergence, overconvergence and the
concept of exceptional points; cf. §4.

After that the focus of interest turned to Birkhoff and Pál-type
interpolation problems, where Sharma was very interested in deter-
mining the thin line that seperated the regular problems from the
non-regular ones; cf.§2, §3.

The cooperation came to an end with his (for everybody,
untimely) death on December 22, 2003, around one month before
our last joint paper [9] was accepted for publication; it appeared
early Spring 2004.
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Interpolation has been studied for quite a long time and a rather
general definition of the problem can be given as follows

given m points {zi}mi=1 ∈ C (nodes),
given m order-sets Di ∈ N with number of elements |Di|,
given data ci,j ∈ C (1 ≤ j ≤ |Di|, 1 ≤ i ≤ m),
find Pn ∈ Πn, n = (

∑m
i=1 |Di|)− 1 with

P
(k)
n (zi) = ci,k, k ∈ Di, 1 ≤ i ≤ m.

Here Πn is the set of polynomials of degree at most n with com-
plex coefficients.

When Di = {0} for all i, we have the well-known Lagrange in-
terpolation problem, the case Di = {0, 1, . . . , ki} is referred to as
Hermite interpolation and if at least one set Di is a sequence of non-
negative integers containing a gap, the term Birkhoff interpolation is
used. This case also is sometimes referred to as lacunary interpola-
tion (for a survey on (0, 2)-interpolation, see [20]). The main source
for the theory on these problems is [13].

If the interpolation problem has a unique solution for all sets of
data, it is called regular (or well poised). Sometimes authors use the
concepts of real poised, circle poised or complex poised for a regular
problem where all nodes are real, all on the unit circle or not all
located in either of the previous locations respectively.

In regularity proofs (when the unique solution polynomial, as
function of the given data, is not needed) one often uses the following
equivalent formulation with n = (

∑m
i=1 |Di|)− 1 as before:

Pn ∈ Πn, P (k)
n (zi) = 0 (k ∈ Di, 1 ≤ i ≤ m)⇒ Pn ≡ 0.

Up to now, all problems mentioned used the same set of nodes
for each of the given order-sets. Another type of problem, referred to
as Pál-type interpolation, uses two sets of nodes Z1, Z2 and as orders
of derivative k = 0 and k = m (originally k = 0 and k = 1)):

P (zi) = ci for zi ∈ Z1, P ′(wj) = dj for wj ∈ Z2.
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This type of problem was introduced by L.G. Pál ([10]) in 1975 and
has been studied in a.o. [18], [23]. Extensions arise when one uses
q + 1, q ≥ 2 orders of derivatives kj , 0 = k0 < k1 < · · · < kq

(consecutive or ‘lacunary’) and sets of nodes which might be different
for each order of derivative kj .

Finally, there has to be distinguished between the cases that the
nodes are uniformly distributed or not. Interpolation on the roots of
unity (the zeros of zn − 1) for instance, clearly falls in the class of
uniformly distributed nodes, while interpolation on the zeros of the
Legendre polynomials obviously belongs to the class of nonuniformly
distributed nodes.

The layout of the paper is now as follows.
In section 2 the results on Birkhoff interpolation are covered, in

section 3 those on Pál-type interpolation and section 4 turns to the
two stage interpolation in the context of Hermite-Padé approxima-
tion.

Finally a (rather short) bibliography is given, containing a limited
set of the prolific literature on the subject of interpolation; the list is
not intended to give a survey of the entire field, but just displays the
papers by Sharma and the author, along with a few extra references.

2 Birkhoff-Type Interpolation

Let ΠN be the set of polynomials of degree at most N with complex
coefficients and consider for an arbitrary integer q ≥ 1 the following
problem:

given n different points {zi}ni=1, (nodes),
given q + 1 integers 0 = m0 < m1 · · · < mq (orders),
given numbers {c[j]

i } (1 ≤ i ≤ n, 0 ≤ j ≤ q) in C (data),
find PN ∈ ΠN , N = (q + 1)n− 1 with

P
(mj)
N (zi) = c

[j]
i (1 ≤ i ≤ n, 0 ≤ j ≤ q).

As stated in the introduction, the problem is called regular when
the solution PN (z) is unique for any set of data; or equivalently:
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all data are zero ⇒ PN (z) ≡ 0 is the unique solution.
After it has been established that a set of nodes leads to a regular

problem, it is (sometimes) possible to solve it explicitly, and the
unique polynomials PN (i, j; z) satisfying

P
(ms)
N (i, j; zr) =

{
1 (r, s) = (i, j)
0 (r, s) �= (i, j)

are referred to as fundamental polynomials. They generate the solu-
tion for arbitrary data by

PN (z) =
n∑

i=1

q∑
j=0

c[mj ](zi)P (i, j; z).

This type of problem is called Hermite-Birkhoff interpolation, a
well-known subject (cf. the excellent book [13]). The problem is
called lacunary when the orders of the derivatives are not consecu-
tive.

There are few examples of regular lacunary problems (see [11],
[22]) and in the papers [4]–[8] the attention has been focused on the
cases of (0, m), m ≥ 2 and (0, 1, . . . , r − 2, r), r ≥ 2 interpolation
problems.

2.1 Interpolation of type (0,m), m ≥ 2

Results by Chen and Sharma (cf. [21]) were generalised in the direc-
tion of:

Theorem 2.1 ([5], Theorem 1) The problem of (0, m) interpola-
tion on the zeros of (z3n + 1)(z − 1) is regular for m ≤ 3n + 1.

Theorem 2.2 ([5], Theorem 3) The problem of (0, m) interpola-
tion on the zeros of (z3n+1)(z2+z+1) is regular for 2 ≤ m ≤ 3n+2.

Remark. The polynomial z2 +z+1 can be replaced by (z−1)(z−
ω) or (z − 1)(z − ω2) with ω3 = 1, ω �= 1. In order to replace it by
z2 − 1, we have to require that n is even.

Theorem 2.3 ([5], Theorem 4) The problem of (0, m) interpola-
tion on the zeros of (z3n + 1)(z3 − 1) is regular for m ≤ 3n + 3.
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The ‘missing’ cases (zk +1)(z3−1) with k �≡ 0 mod 3 were treated
later. In those cases it is not possible to reduce the 18×18 systems for
n ≥ 3 to smaller and more manageable systems: another method of
proof was necessary, using MAPLE R© to handle the cases 2 ≤ m ≤ 5.

Theorem 2.4 ([7], Theorem 1) The problem of (0, m) interpola-
tion on the zeros of (z3n+1+1)(z3−1) is regular for m ≤ 3n+4, n ≥ 0.

Theorem 2.5 ([7], Theorem 2) The problem of (0, m) interpola-
tion on the zeros of (z3n+2+1)(z3−1) is regular for m ≤ 3n+5, n ≥ 0.

Remark. Taking Theorems 2.3–2.5 together, we see
(0, m) interpolation on the zeros of (zk + 1)(z3− 1) is regular for

m ≤ k + 3.
Finally, an ‘isolated result’ was found as spin-off in the study of

(0, 1, . . . , r − 2, r) interpolation.

Theorem 2.6 ([4], section 4) The problem of (0, 3) interpolation
on the zeros of (z + α)n+1 − (1 + αz)n+1, 0 < α < 1, is regular for
α < 1/

√
66.

Remark. A fundamental determinant for the problem is explicitly
calculated for n = 3, 4

∆n(α) =
{

c1(17 + 62α4 + 17α8), c1 > 0 for n = 3,
c2(11− 47α5 + 11α10), c2 > 0 for n = 4.

This leads to the conjecture: ∆n(α) > 0 for all 0 < α < 1 when
n is odd, but has only one zero for n even. This would imply that
the interpolation problem is regular for all α from (0, 1), with the
possible exception of one value in the case that n is even.

2.2 Interpolation of type (0, 1, . . . , r − 2, r), r ≥ 2

In the beginning of the 1990s some few papers on (0, 1, . . . , r − 2, r)
interpolation started to appear (compare [19], [17]). New contribu-
tions were given by Sharma et al. in the following direction.

Theorem 2.7 ([5], Theorem 1) The problem of (0, 1, . . . , r−2, r)
interpolation on the zeros of (z3n + 1)(z − 1) is regular for r ≥ 2.
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Theorem 2.8 ([6], Theorem 1) The problem of (0, 1, . . . , r−2, r)
interpolation on the zeros of ((z + α)n + (1 + αz)n) (z−1) is regular
for 0 < α < 1 and r ≥ 2.

Theorem 2.9 ([4], Theorem 2.1) The problem of (0, 1, . . . , r−2, r)
interpolation on the zeros of (z + α)n+1 − (1 + αz)n+1 is regular for
0 < α < 1 and r ≥ 2. Moreover, the fundamental polynomials can be
given explicitly.

Theorem 2.10 ([8], Theorem 1) The problem of (0, 1, . . . , r−2, r)
interpolation on the zeros of (z3n + 1)(z3 − 1) is regular for r ≥ 2.

3 Pál-Type Interpolation

As stated before, finding the location of nodes that lead to regular
interpolation problems is a problem that has not yet been solved in
full generality for (lacunary) problems that use the same set of nodes
for each order of derivative. Things get even more intricate when the
sets of nodes depend on the order of derivative used. Sharma studied
several situations of which the results from the references [4], [6] and
[9] will be given explicitly.

Let natural numbers 0 = m0 < m1 < · · · < mq be given and
q + 1 polynomials Aj(z) of degrees nj (0 ≤ j ≤ q) with simple
zeros (node generating polynomials), along with complex numbers
cj
k (1 ≤ k ≤ nj , 0 ≤ j ≤ q).

Then the (m0, m1, . . . , mq) Pál-type interpolation problem on the
polynomials {A0, A1, . . . , Aq} consists of finding a polynomial PN (z)

of degree at most N =
(∑q

j=0 nj

)
− 1 with

P
(mj)
N (zk) = cj

k, 1 ≤ k ≤ nj , 0 ≤ j ≤ q,

where the {zk} are the zeros of the polynomial Aj(z).

Theorem 3.1 ([4], §5) The (0, 1) Pál-type interpolation problem
on {(z + α)n+1 − (1 + αz)n+1, (z + α)n+1 + (1 + αz)n+1} is
regular.
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Theorem 3.2 ([6], Theorem 2) The (0, 1) Pál-type interpolation
problem on {(z + α)n+1− (1 + αz)n+1,

[
(z + α)n+1 + (1 + αz)n+1

]×
(z − 1)} is regular.

Theorem 3.3 ([9], Theorem 2.1) There exists a natural number
n0, such that the (m0, m1, . . . , mq) Pál-type interpolation problem on
{zn − αn

0 , zn − αn
1 , . . . , zn − αn

q } with 0 < α0 < α1 < · · · < αq is
regular for n ≥ n0.

Moreover, it is possible to give the asymptotic behavior of the
solution of the problem in the case that the data are derived from a
function f(z), analytic on the disk Dρ = {z ∈ C : |z| < ρ} but not
on its closure, where ρ > αq. Let

f(z) =
∞∑

k=0

fkz
k, lim sup

k→∞
k
√
|fk| = 1

ρ
. (3.1)

The data are given by

cj
k = f (mj)(αjω

k) with ω = e2πi/n (a primitive root of unity). (3.2)

The first result concerns the convergence of this interpolation
procedure.

Theorem 3.4 ([6], Theorem 2.2) Let PN (f ; z) be the unique so-
lution to the Pál-type interpolation problem stated in Theorem 3.3
using the data (3.2), then

lim
n→∞ PN (f ; z) = f(z)

uniformly on compact subsets of Dρ.

Just as in the case of Birkhoff interpolation on the roots of unity
(αj = 1, 0 ≤ j ≤ q, in Theorem 3.3; compare [11]) it is possible to
prove so-called overconvergence. First introduce the sections of the
series for f by

Sr(z) =
r∑

k=0

fkz
k, r ≥ 0. (3.3)



52 de Bruin

Theorem 3.5 ([6], Theorem 2.3) Let � ≥ 1 be a fixed natural
number. The interpolation process using the data (3.2) from the
function (3.1) exhibits overconvergence on the disk

|z| < ρ

(
ρ

αq

)�−1+ 1
q+1

. (3.4)

Thus, for z in the disk (3.4)

lim
n→∞ PN (f ; z)− PN (S(q+1)n�−1; z) = 0,

uniformly on compact subsets.

4 Simultaneous Hermite-Padé Interpolation

The study of this subject was started to extend results published in
[12], [15], [16] and on quantitative results by [14].

The interpolation process is now a two-stage method.
Let d, ν0, ν1, ν2, . . . , νd be natural numbers and let F1, F2, . . . , Fd

be d functions, meromorphic in the disc Dρ = {z ∈ C : |z| < ρ},
ρ > 1, given by

Fi(z) =
fi(z)
Bi(z)

, fi(z) =
∞∑

k=0

ai,k zk, lim sup
k→∞

|ai,k|1/k =
1
ρ
, (4.1)

where

Bi(z) =
µi∏

j=1

(z − zi,j)λi,j =
νi∑

k=0

αi,kz
k,

µi∑
j=1

λi,j = νi. (4.2)

Here it is assumed that the poles given all lie in Dρ and the poles
of Fi are disjoint from those of Fk, k �= i. Let � ≥ 1 be an integer
and put n = σ +1, where σ = ν0 + ν1 + ν2 + · · ·+ νd. It is important
for the sequel to remember that the νi with i = 1, . . . , d are fixed
(thus also σ − ν0 = n − ν0 − 1 fixed) and that ν0 will go to infinity
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(or, equivalently, n or σ). Let now α ∈ C \ {0} satisfy |α| < ρ, such
that the zeros of zn−αn are different from those of the Bi(z) for all
i. Finally r ≥ 1 is a natural number.

Then the Hermite-interpolant to the Taylor sections
∑n�r−1

k=0 ai,k zk

on the zeros of (zn − αn)r will be denoted by

f̃i,�(z) =
n−1∑
j=0

A�
i,j zj .

This is the first stage of the problem; explicit formulae for the A�
i,j

are easily derived (cf. [1]). When � = ∞, f̃i,0(z) is the full Taylor
series of f̃i(z).

For r = 1 we are actually considering Lagrange-interpolation.

The second, simultaneous, stage of the problem can be stated as:
find d rational functions U �

i (z)/B�(z) with a common denominator
and

1. with U �
i (z) =

∑σ−νi
s=0 p�

i,sz
s (1 ≤ i ≤ d), B�(z) =

∑n−ν0−1
k=0 γ�

kz
k,

2. that interpolate the d rationals f̃i,�(z)/Bi(z) on the zeros of
zn − αn,

3. and B�(z) is monic: γ�
n−ν0−1 = 1.

For r = 1 we have ordinary Hermite-Padé interpolation (see [1])
and for r > 1 the interpolation is using multiple nodes ([2])

The main result is now the following.

Theorem 4.1 ([1], Theorem 1; [2], §2) Let r, d, νi, fi, ρi, Bi,
zi,j and � be given as before. Then we have:
A. For n sufficiently large, the interpolation problem stated above,
has a unique solution that moreover satisfies

lim
n→∞ γ�

k = ζk, with
n−ν0−1∑

k=0

ζkz
k =

d∏
i=1

Bi(z); 1 ≤ � ≤ ∞.
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B. Let H be a compact subset of |z| < τ, τ > 0, that omits the
singularities of the functions Fi (1 ≤ i ≤ d), then

lim sup
n→∞

(
max
z∈H

∣∣∣∣U∞i (z)
B∞(z)

− U �
i (z)

B�(z)

∣∣∣∣
)1/n

≤
{

R(�−1)r+1(τ/ρi)r for τ ≥ ρi,
R(�−1)r+1 for τ < ρi,

with R = max1≤i≤d 1/ρi.
C. Specifically we have for |z| < ρiR

−(�−1+1/r):

lim
n→∞

U∞i (z)
B∞(z)

− U �
i (z)

B�(z)
= 0,

uniformly and geometrically in compact subsets omitting the singu-
larities.

The final result to be stated uses the case r = 1; i.e. in the first
stage of the process Lagrange interpolation is used.

Introducing

K(z) :=
( |α|

ρ

)� |z|
ρ

, |z| ≥ ρ; K(z) :=
( |α|

ρ

)�

, |z| < ρ, (4.3)

the results of Theorem 4.1 can be formulated as

lim
n→∞ γ�

k = α̃k with
n−ν0−1∑

k=0

α̃kz
k =

d∏
i=1

Bi(z), 1 ≤ � ≤ ∞, (4.4)

and

lim sup
n→∞

(
max
z∈H

∣∣∣∣U∞i (z)
B∞(z)

− U �
i (z)

B�(z)

∣∣∣∣
)1/n

≤ K(τ), (4.5)

for each compact subset H of |z| < τ (τ > 0), that omits the singu-
larities of the functions Fi(z), 1 ≤ i ≤ d.

The result (4.4) shows that the denominators of the simultaneous
interpolants converge to the product of the pole parts of the functions
and (4.5) shows the speed of convergence of the interpolating rational
functions: it follows that the difference converges to zero on compact
subsets (omitting singularities) of the disk |z| < ρ · ρ�/α� , a larger
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disk than that where the given functions were meromorphic! So
even when not working with full information, but rather only with
the n�− 1 Taylor section of each fi, the �-interpolant leads to good
results.

For further study of the upper bound it is necessary to reformu-
late (4.5); as it is more convenient to study the difference of poly-
nomials than that of rational functions, we can multiply by the de-
nominators – not changing the upper bound because of (4.5) – and
for reasons that will become clear later on, an extra factor Bi(z) is
thrown in.

Define for z not one of the singularities of the function Fi

∆�
i,ν0

(z) := Bi(z)B�(z)B∞(z)
(

U∞i (z)
B∞(z)

− U �
i (z)

B�(z)

)
, (4.6)

and the quantities

S�(z, Fi) := lim sup
n→∞

|∆�
i,ν0

(z)|1/n. (4.7)

Then (4.5) takes the form

S�(z, Fi) ≤ K(z) for z with Bi(z) �= 0. (4.8)

The question now arises, whether the upper bound K(z) is at-
tained for any z and, if so, whether this is a natural phenomenon or
not. For polynomial interpolation the problem has completely been
solved (cf. [14]).

Let us call a point z, |z| �= ρ, exceptional for the function Fi when

S�(z, Fi) < K(z). (4.9)

The results then are (cf. [14], [16]):

Theorem 4.2 ([3], Theorem 1) For each i ∈ {1, . . . , d} there are
at most �− 1 exceptional points for Fi in |z| < ρ.

Theorem 4.3 ([3], Theorem 2) For any set of d(�− 1) points ωj

in 0 < |z| < ρ, and any subdivision into d sets of � − 1 points—say
ωi,j (1 ≤ j ≤ �−1, 1 ≤ i ≤ d)—there exists a d-tuple of meromorphic
functions of the type (4.1),(4.2), such that for each i ∈ {1, . . . , d} the
points ωi,j (1 ≤ j ≤ �− 1) are exceptional for Fi.
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Theorem 4.4 ([3], Theorem 3) For each i ∈ {1, . . . , d} there are
at most σ − ν0 + � exceptional points for Fi in |z| > ρ.

Theorem 4.5 ([3], Theorem 4) For any set of d(�+1− (σ− ν0))
points ωj in |z| > ρ, and any subdivision into d sets of �+1−(σ−ν0)
points—say ωi,j (1 ≤ j ≤ � + 1 − (σ − ν0), 1 ≤ i ≤ d)—there exists
a d-tuple of meromorphic functions of the type (4.1),(4.2), such that
for each i ∈ {1, . . . , d} the points ωi,j (1 ≤ j ≤ � + 1− (σ − ν0)) are
exceptional for Fi.

The first 9 references given below have been written by A. Sharma
with co-authors M.G. de Bruin ([1]–[9]), H.P. Dikshit ([6]) and J.
Szabados ([4]).
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Abstract

Let ∆ be a simplicial d-complex, d ≥ 1. Let S = R[x1, x2,
. . . , xd] be the polynomial ring in d-variables and Cr(∆) denote
the S-module of all Cr-splines defined on ∆. Let ∆̂ ⊂ Rd+1

be the homogenization of ∆ ⊂ Rd (embedded in xd+1 = 1),
and ∆′ be any subdivision of ∆. In this paper we study the
following question: Suppose Cr(∆̂) is free over R, where R =
R[x1, x2, . . . , xd+1] is the polynomial ring in (d + 1)-variables.
Under what conditions can we say that the R-module Cr((∆′)̂)
is also free? We show that when r = 0, Cr(∆̂) is free imples
Cr((∆′)̂) is also free for any d-complex ∆. For d = 1, it is easy
to see that Cr(∆̂) is free implies Cr((∆′)̂) is also free for every
r ≥ 0, but for d ≥ 2, we give examples to show that Cr(∆̂) is
free need not imply that Cr((∆′)̂) is free, for any r ≥ 1.
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1 Introduction

Let ∆ be a simplicial d-complex; i.e., ∆ is a pure, d-dimensional,
strongly connected simplicial complex embedded in Rd. Let S =
R[x1, x2, . . . , xd] be the polynomial ring in variables x1, x2, . . . , xd.
For every integer k ≥ 0, let us define

Cr
k(∆) = {F : |∆| → R s.t. F |σ ∈ S is a polynomial of degree ≤ k

for every d-simplex σ ∈ ∆ and F is globally smooth
of order r on |∆|}

Then Cr
k(∆) is a finite dimensional vector space over R. To deter-

mine the R-dimension of the vector space Cr
k(∆) for a given r ≥ 0

and a given k ≥ 0 is fundamental unresolved problem of multivarate
spline theory. Alfeld and Schumaker ([1],[2]) are the first approxima-
tion theorists to obtain basic results on this problem using, of course,
the classical methods of a system of linear equations and determining
the number of independent real constants. In the planer case they
obtain a formula which essentially shows that for d = 2, the Hilbert
polynomial and the Hilbert function are equal if k = 3r+1. The fact
that this dimension depends upon the geometry of the triangulation
of the region makes the problem more difficult. L. Billera [3] intro-
duced the method of homological algebra to tackle this problem. He
considers the following set for any r ≥ 0;

Cr(∆) = {F : |∆| → R s.t. F |σ ∈ S for every σ ∈ ∆ and F is
globally smooth of order r on |∆|}

It is straightforward to see that Cr(∆) is a ring with pointwise opera-
tions and S is a subring of this ring. Thus Cr(∆) becomes a S-module
and is called the spline module of ∆. Billera-Rose [5] embedded
∆ into the hyperplane xd+1 = 1 of the space Rd+1 and considered
the simplicial complex ∆̂ = v ∗∆ where v is the origin of Rd+1. Let
R = R[x1, · · ·xd+1] be the polynomial ring in (d + 1) variables and
note that Cr(∆̂) is a graded R-module. A useful observation is that,
as a vector space over R,
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Cr
k(∆) ∼= (Cr(∆̂))k

i.e., the spline vector space Cr
k(∆) is isomorphic to the vector space

of homogenous elements of degree k of the graded R-module Cr(∆̂).
This result has proved very important for solving the dimension prob-
lem. They considered the Hilbert series of the graded module Cr(∆̂)
which is always of the form P (Cr(∆̂), t)/(1−t)d+1 where P (Cr(∆̂), t)
is a polynomial in Z[t]. This is indeed the generating function of the
dimension series

∑
k(dimR Cr

k(∆))λk of the spline modules [5].

In view of the preceding discussion, it is important to study the
R-module Cr(∆̂). Billera-Rose studied its freeness and the existence
of an R-basis in [6]. Schenck has obtained [13] important results on
Hilbert series of the spline module Cr(∆̂) and has shown that the co-
efficients of the three largest terms of the polynomial P (Cr(∆̂), t) are
determined by the combinatorics and local geometry of ∆ (Corollary
3.2 of [13]). The most important result on freeness in the form of nec-
essary and sufficient conditions has been given by Schenck (Theorem
4.10 of [13]). In [9], Deo and Mazumdar gave an algorithm to write
down a basis for the free spline module Cr(✷) for some polyhedral
complexes ✷. When it is not free, the projective dimension of this
module was studied in [8], [17].

Suppose ∆′ is a subdivision of ∆. Ruth Haas [11] and the authors
[10] studied the question as to how the S-modules Cr(∆) and Cr(∆′)
are related. In fact it was shown in the above-mentioned papers that
a generating set for the S-module Cr(∆) can always be extended to
a generating set of the S-module Cr(∆′) for certain subdivisions of
∆. Because finding an S-basis for the S-module Cr(∆) is a problem
of practical importance, it is natural to ask the following: If Cr(∆̂)
is free over R, then what can we say about the freeness of Cr((∆′)̂)
for any subdivision ∆′ of ∆? It is a consequence of results proved
in [4] that C0(∆̂) is free over R implies that C0((∆′)̂) is also free
over R for any d-complex ∆, but here we provide an explicit proof
of the result. For d = 1, it is trivial to see that Cr(∆̂) is free implies
Cr((∆′)̂) is free for any r ≥ 0. For d ≥ 2, we give examples to show
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that for any r ≥ 1, Cr(∆̂) is free need not imply that Cr((∆′)̂) is
free.

Results of [5], [6], [14], [15] are basic ingredients used in our
proofs of the above-mentioned results. We follow the notations of
above papers freely, as most of them are now in standard use.

2 Preliminaries

Let ∆ be a simplicial d-complex embedded in Rd and S = R[x1, x2,
. . . , xd] be the polynomial ring over the field of reals in d-variables
x1, x2, . . . , xd. For integers k ≥ 1 and r ≥ 0, let Cr

k(∆) denote the
R-vector space of all splines over the region ∆ which are of degree
≤ k and smooth up to order r. When we consider the set Cr(∆) of
all splines over ∆ of smoothness r, regardless of their degrees, Cr(∆)
becomes a module over the graded ring S. Determining the vector
space dimension of the vector spaces Cr

k(∆) for a given k, r and ∆
has been a basic problem of multivariate spline theory and is known
as the Dimension Problem. It is difficult because the dimension of
Cr
k(∆) does not depend only on k, r and ∆ but also on the geometry

of ∆ (see [3], [5] for details).

In this section we give some preliminary definitions and results
which are used in section 3. A simplicial complex ∆ is called pure if
all maximal faces are of the same dimension. A d-complex is a pure
d-dimensional simplicial complex embedded in Rd. For a d-complex
∆ and i ≤ d, we denote the set of i-dimensional faces of ∆ by ∆i and
the set of i-dimensional interior faces of ∆ by ∆0

i . The cardinality
of these sets is denoted by fi(∆) and f0

i (∆) respectively. A link of
a simplex σ in ∆ is the simplicial complex

lk∆(σ) = {τ ∈ ∆|τ ∪ σ ∈ ∆ and τ ∩ σ = φ} .
The star of σ is the simplicial complex

st∆(σ) =
{
τ ∪ τ ′|τ ∈ lk∆(σ) and τ ′ ⊂ σ

}
.

In other words, st∆(σ) is the smallest subcomplex of ∆ containing
all faces which contain σ.
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For a d-complex ∆, the graph G(∆) of ∆ is the graph whose
vertices correspond to the elements of ∆d and < v, v′ >, v, v′ ∈ ∆d is
an edge of G(∆) iff σ ∩ σ′ ∈ ∆d−1, where v corresponds to σ and v′

corresponds to σ′ respectively. A d-complex ∆ is said to be strongly
connected if the graph G(∆) is connected. In other words for any
two simplexes σ, σ′ ∈ ∆d there is a sequence σ1, σ2, . . . , σt ∈ ∆d such
that σ = σ1, σ

′ = σt and σi ∩ σi+1 ∈ ∆d−1 for i = 1, 2 . . . , (t− 1). A
connected complex ∆ is said to be hereditary if for all non-empty
σ ∈ ∆, st∆(σ) is strongly connected (equivalently lk∆(σ) is strongly
connected).

Billera-Rose initiated the study of freeness of the module Cr(∆)
in [6]. They proved the following results:

Proposition 2.1 ([6], Theorem 2.3) Let ∆ be a d-complex. Then
Cr(∆) is free if and only if Cr(st∆(v)) is free for all verices v of ∆.

Proposition 2.2 ([6], Theorem 3.1) Let ∆ be a d-complex. If
Cr(∆) is free then ∆ is a hereditary complex.

When ∆ is a 2-complex in R2, they characterized freeness of
Cr(∆) totally in terms of the topology of the complex ∆ viz.

Theorem 2.3 ([6], Theorem 3.5) Let ∆ be a 2-complex. Then
Cr(∆) is free if and only if ∆ is a manifold with boundary.

Let ∆ be a d-complex with n-vertices v1, v2, . . . , vn. Then ∆ is
said to be Cohen-Macaulay over a field k if the face ring A∆ =
A/I∆, where A = k[y1, y2, . . . , yn] and I∆ is the ideal in A gen-
erated by square-free monomials corresponding to the vertex sets
which are not faces of ∆, is a Cohen-Macaulay ring. A homological
characterization of Cohen-Macaulay complexes is given in Reisner
[12]. Billera and Rose have given a complete characterization for
freeness of C0(∆) in terms of combinatorial property of ∆ which is
independent of the embedding of ∆ in Rd as follows:

Theorem 2.4 (Theorem 4.5 of [6]) Let ∆ be a d-complex. Then
C0(∆) is free if and only if ∆ has Cohen-Macaulay links of vertices.
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Schenck-Stillman [14] considered the freeness of Cr(∆̂) when ∆
is a 2-complex by a somewhat different approach. We note that the
homogenization ∆̂ of a 2-complex ∆ is a 3-complex.

Let ∆ be a d-complex embedded in Rd and R be the polynomial
ring in (d + 1)-variables. Schenck-Stillman have defined a chain
complex F of R-modules on ∆0, the set of interior faces of ∆, as
follows:

(1) For each σ ∈ ∆0, there is an R-module F(σ), and
(2) For each i = 0, 1, 2, . . . , d, there is an R-module homomorphism

∂i : ⊕σi∈∆0
i
F(σi)→ ⊕σi−1∈∆0

i−1
F(σi−1)

such that ∂i−1 ◦ ∂i = 0. Thus the chain complex F is given by:

0 −→ ⊕σd∈∆d
F(σd)

∂d−→ ⊕σd−1∈∆0
d−1
F(σd−1)

∂d−1−→

· · · ∂1−→ ⊕σ0∈∆0
0
F(σ0) −→ 0

For example if we associate the ring R corresponding to every σ ∈ ∆0

and take ∂i to be the usual simplicial boundary map relative to ∂∆,
then it is a chain complex, called the constant complex, and is
denoted by R.

For another example, we fix an integer r ≥ 0, and corresponding
to every σ ∈ ∆0 we associate the homogenous ideal of σ̂ ⊂ R

d+1

which we denote by Iσ. Let J be the complex on ∆0 defined as
follows:

J (σ) = 0 for σ ∈ ∆d,

J (τ) = Ir+1
τ for τ ∈ ∆0

d−1,

J (ξ) =
∑
ξ∈τ

Ir+1
τ for ξ ∈ ∆0

d−2, τ ∈ ∆0
d−1

...
...

J (v) =
∑
v∈τ

Ir+1
τ for v ∈ ∆0

0, τ ∈ ∆0
d−1.
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Then the complex J is given by:

0 −→ ⊕τ∈∆0
d−1
J (τ)

∂d−1−→ ⊕ξ∈∆0
d−2
J (ξ) −→ · · · ∂1−→ ⊕v∈∆0

0
J (v) −→ 0.

Hence we can consider the quotient complex R/J viz.:

0→ ⊕σ∈∆d
R

∂d→ ⊕τ∈∆0
d−1

R/J (τ)
∂d−1→ ⊕ξ∈∆0

d−2
R/J (ξ)

· · · ∂1→ ⊕v∈∆0
0
R/J (v)→ 0

It turns out that the top homology module of the above quotient
complex R/J is the graded spline module Cr(∆̂). Schenck-Stillman
[14] have obtained following results for a 2-complex ∆ giving relation
between homology of the complex R, R/J and the freeness of the
spline module C(∆̂) over R = R[x1, x2, x3] in terms of one dimen-
sional homology of the quotient complex R/J .

Lemma 2.5 ([14], Lemma 3.7) Let ∆ be a 2-complex. If H1(R) �=
0 then H1(R/J ) �= 0.

Theorem 2.6 ([14], Theorem 4.1) Let ∆ be a 2-complex. Then
Cr(∆̂) is free if and only if H1(R/J ) = 0.

From the above results we find that if ∆ has genus greater than
zero, i.e., H1(R) �= 0, then Cr(∆̂) cannot be free. Hence for the
freeness of the spline module Cr(∆̂) we must have ∆ of genus zero;
i.e., ∆ is a 2-disk. But taking ∆ to be a disk in R2 does not guarentee
that spline module Cr(∆̂) is always free for all r ≥ 0. We explain
their nonfreeness result below.

Let ∆ be a triangulation of a 2-disk in the plane R2. An edge τ
of ∆ is said to be a totally interior if both of its end vertices are
interior. Let ∼ be a relation on the set of interior edges of ∆ defined
by τ ∼ τ ′ if τ and τ ′ share a vertex and have the same slope. Taking
the transitive closure of this relation gives us an equivalence relation
on interior edges. An edge τ is called a pseudoboundary edge if
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τ ∼ τ ′ for some not totally interior edge τ ′. In other words τ can be
extended to the boundary of ∆.

For each edge τ of ∆, let us define

sτ = max{number of slopes at v, v a vertex of an edge τ ′ and τ ′ ∼ τ}

and an integer s(∆) by

s(∆) = min{sτ | τ an edge which is not a pseudoboundary edge of ∆}.

Schenck-Stillman have obtained the following interesting geomet-
ric result. We will use this result besides the result of Billera-Rose
stated earlier.

Theorem 2.7 ([14], Theorem 5.3) If ∆ is a triangulation of a
disk in the plane, then

(a) If every edge of ∆ is a pseudoboundary edge, then Cr(∆̂) is free
for all r ≥ 0.

(b) If ∆ has at least one edge which is not a pseudoboundary, then
for each r ≥ s(∆)− 2, Cr(∆̂) is not free.

3 Homogenization, Subdivision, and Freeness

We note that if |∆| is a k-manifold with boundary then |∆̂| need not
be a (k + 1) manifold with boundary. For example, let ∆ be the
simplicial complex with a hole (interior of the center triangle is not
included) as in Figure 1. Then |∆̂| = |v ∗∆| is not a manifold with
boundary. However, if ∆ is a pseudomanifold with boundary, then
∆̂ is indeed a pseudomanifold with boundary.

Schenck and Stillman have given several examples (see section 6
of [14]) including Morgan-Scott 2-complex of 2-dimensional simplicial
complexes ∆, all of genus zero, such that Cr(∆̂) is not free for r ≥ 2.
Since all these 2-complexes are manifolds with boundary, Cr(∆) is
free by Theorem 2.3. Thus we conclude that Cr(∆) is free need not
imply that Cr(∆̂) is free.
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∆

Figure 1

What about the converse? The answer is yes. We have the fol-
lowing lemma.

Lemma 3.1 For a 2-complex ∆, Cr(∆̂) is free implies that Cr(∆)
is free.

Proof. Suppose Cr(∆̂) is free. Then by Proposition 2.2, it follows
that ∆̂ is hereditary; i.e., links of vertices are strongly connected.
This means ∆ is a 2-manifold with boundary. Hence by Theorem
2.3, Cr(∆) is free. ✷

Now if we take a d-complex ∆ and take its subdivision ∆′ then
what can we say about the freeness of Cr(∆) and Cr(∆′)? The
following interesting results give an answer of this question using
Billera-Rose criterion for d = 2.

Proposition 3.2 If ∆ is a 1-complex, then Cr(∆) is free if and only
if Cr(∆′) is free for all r ≥ 0.

Proof. See [6], page 491. ✷

Proposition 3.3 Let ∆ be a 2-complex. Then Cr(∆) is free if and
only if Cr(∆′) is free for all r ≥ 0.
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Proof. Cr(∆) is free. ⇐⇒ ∆ is a 2-manifold with boundary. ⇐⇒
∆′ is a 2-manifold with boundary. ⇐⇒ Cr(∆′) is free. ✷

Let us now consider homogenization of subdivided domains. In
view of our comments preceding Lemma 3.1 we observe that for a
2-complex ∆, the following implications break down only at the last
level.

(1) Cr(∆̂) is free. ⇒ Cr(∆) is free. ⇒ Cr(∆′) is free. ⇒ Cr((∆′)̂)
is free.

(2) Cr((∆′)̂) is free. ⇒ Cr(∆′) is free. ⇒ Cr(∆) is free. ⇒ Cr(∆̂)
is free.

Let us start with the following easy result which is true for all
r ≥ 0. This shows that for d = 1 the above implications are true
everywhere.

Proposition 3.4 Let ∆ be a 1-complex embedded in R. Then for
every r ≥ 0, Cr(∆̂) is free over R if and only if Cr((∆′)̂) is free
over R.

Proof. Since ∆ is a 1-complex, ∆ is an interval [a, b] with finite
number of interior vertices, say

a = v0 < v1 < · · · < vn = b.

Hence any subdivision ∆′ of ∆ will again be of the same type with
more interior vertices. Now, clearly ∆̂ and (∆′)̂ both are 2-complexes
which are disks; i.e., |∆̂| and |(∆′)̂| both are 2-manifolds with bound-
ary. Hence by Theorem 2.3 both Cr(∆̂) and Cr((∆′)̂) are free for
every r ≥ 0, proving the result. ✷

Proposition 3.5 Let ∆ be a d-complex. If ∆ is Cohen-Macaulay
then ∆̂ is Cohen-Macaulay.

Proof. We prove the proposition by induction on the number of
simplexes in ∆. If ∆ has only one simplex, i.e., ∆ is having only
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one vertex, then ∆̂ is an interval and so by the Reisner criterion
(Theorem 1 of [12]), ∆̂ is Cohen-Macaulay.

Let us assume that number of simplexes in ∆ is r and r > 1.
Now ∆ is Cohen-Macaulay implies that lk∆(v) is Cohen-Macaulay
for all vertices v of ∆, by Reisner criterion (Theorem 1 of [12]).
Suppose ∆̂ = w ∗∆, then lk∆̂(w) = ∆ which is Cohen-Macaulay. If
v is any vertex of ∆̂ other than w (i.e., v is an inside vertex), then
lk∆̂(v) = w ∗ lk∆(v) and w ∗ lk∆(v) is Cohen-Macaulay by induction
hypothesis. Since ∆̂ is acyclic, H̃i(∆̂) = 0 for all i ≥ 0, and so it
follows from Reisner criterion (Theorem 1 of [12]) that ∆̂ is Cohen-
Macaulay. ✷

Proposition 3.6 Let ∆ be d-complex. If ∆ is Cohen-Macaulay then
∆′ is a Cohen-Macaulay.

Proof.This follows from the fact that Cohen-Macaulayness of ∆
is a topolgical property. Since |∆| = |∆′|, the result follows from
Corollary 5.4.6 of [7].

Alternatively, we can prove this proposition as follows: If ∆
is Cohen-Macaulay, then by Reisner criterion (Theorem 1 of [12])
H̃i(∆) = 0 for all i < dim(∆), and lk∆(v) are Cohen-Macaulay for
all vertices v of ∆. This implies H̃i(∆′) = 0 for all i < dim(∆′) =
dim(∆). Hence it is sufficient to show that for every vertex w of ∆′,
lk∆′(w) is Cohen-Macaulay. If w is a new vertex of ∆′ (arising in the
subdivision), then lk∆′(w) ≈ Sd−1, and Sd−1 is Cohen-Macaulay. If
v is a vertex of ∆′ which is also a vertex of ∆ then lk∆′(v) ≈ lk∆(v).
Since lk∆(v) is Cohen-Macaulay and Cohen-Macaulayness is a topol-
gical property, it follows that lk∆′(v) is Cohen-Macaulay. Hence by
Reisner criterion (Theorem 1 of [12]) ∆′ is Cohen-Macaulay. ✷

For r = 0, we have the following general result concerning freeness
of the homogenized spline module over a subdivided domain.

Theorem 3.7 Let ∆ be a d-complex and let ∆′ be a subdivision of
∆. If C0(∆̂) is free over R = R[x1, x2, . . . , xd+1], then C0((∆′)̂) is
free over R.
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Proof. It is clear that ∆̂ and (∆′)̂ both are (d + 1)-complexes. If
C0(∆̂) is free over R then by Theorem 2.4, lk∆̂(v) is Cohen-Macaulay
for all vertices v of ∆̂. Suppose ∆̂ = v0 ∗∆ and call v0 as the outside
vertex of ∆̂ and other vertices as the inside vertices of ∆̂. Since
lk∆̂(v0) = ∆, we find that ∆ is a Cohen-Macaulay complex. Hence
by Proposition 3.6, we find that ∆′ is Cohen-Macaulay.

Now we show that links of vertices of (∆′)̂ are Cohen-Macaulay.
If v is outside vertex of (∆′)̂, then lk

(∆′ )̂(v) = ∆′ which is Cohen-

Macaulay. On the other hand if v is an inside vertex of (∆′)̂ then
lk

(∆′ )̂(v) = (lk∆′(v))̂. Since v is a vertex of ∆′ and ∆′ is Cohen-
Macaulay, it follows by Reisner criterion (Theorem 1 of [12]) that
lk∆′(v) is Cohen-Macaulay. Therefore by Proposition 3.5 we deduce
that (lk∆′(v))̂ is Cohen-Macaulay; i.e., lk

(∆′ )̂(v) is Cohen-Macaulay.

Hence, again by Theorem 2.4, C0((∆′)̂) is free. ✷

In the above theorem we have shown that for any d-complex ∆
if C0(∆̂) is free then C0((∆′)̂) is free. This is the continuous spline
case. Next we want to consider the smooth case, i.e., when r ≥ 1.
For d = 1, we have proved in Proposition 3.4 that Cr(∆̂) is free
iff Cr((∆′)̂) is free, for all r ≥ 1. However, as pointed out in the
beginning of this section, when d ≥ 2, and r ≥ 2 it is not necessarily
true that Cr(∆̂) is free implies Cr((∆′)̂) is free. We now give an
example for the case of a 2-complex ∆ which has the property that
for all r ≥ 1, Cr(∆̂) is free but Cr((∆′)̂) is not free. This example
is also of interest because it is used in [16] to show that Cr(∆̂′)2r
is not given by Alfeld-Schumaker formula, for all r. To verify this
example we will apply Theorem 2.7 for nonfreeness of Cr(∆̂) when
∆ is a 2-complex.

Example 3.8 Let ∆ be 2-complex as in Figure 2. We take ∆′ to be
the subdivision of ∆ as in Figure 2. Then ∆ and ∆′ are triangula-
tions of a disk in R2. Since all the edges in ∆ are pseudoboundary
by Theorem 2.7, Cr(∆̂) is free over R = R[x1, x2, x3] for all r ≥ 0.
Now in ∆′ we see that there is one edge, say τ , which is not a pseu-
doboundary. For this edge τ , we have
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∆

τ

∆

Figure 2

sτ = max{number of slopes at v1, number of slopes at v2}
= max{3, 3} = 3

Hence,
s(∆′) = min{sτ : τ is an edge which is not a pseudoboundary

edge of ∆′}
= 3

Thus s(∆′) = 3. Therefore, by Theorem 2.7, Cr((∆′)̂) is not free
for r ≥ s(∆′)− 2 = 3− 2 = 1, i.e., for r ≥ 1.
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Abstract

We survey various measures of smoothness of functions
which are defined on the unit sphere Sd−1 ⊂ Rd. Relations
among different measures will be given. Some open problems
will be indicated.

1 Introduction

Measures of smoothness of functions on a given domain and relations
among them play a significant role in approximation theory.

In this article we discuss measures of smoothness of functions on
the unit sphere Sd−1 given by

Sd−1 = {(x1, . . . , xd) : x2
1 + · · ·+ x2

d = 1}. (1.1)

We assume d ≥ 3, but most of the concepts and results (not all)
are valid for d = 2, that is, the circle (where they are much better
known).

In Section 2 we discuss measures using differences. In Sections
3 and 4 we discuss the most investigated measures of smoothness
on Sd−1, that is, using approximation of the function by its average
on the rim of a small cap or on the cap itself about the point. In
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Section 5 we describe appropriate K−functionals. In Section 6 we
relate the above to best harmonic polynomial approximation. In
Section 7 we describe various realization results. In Section 8 we
survey measuring smoothness by strong converse inequalities. Some
additional relations are given in Section 9.

We will define the various concepts and give many of the known
relations among them. We will mention advantages and disadvan-
tages of the concepts described. Some open problems will be indi-
cated.

2 Measures of Smoothness Using Differences

For functions on R = (−∞,∞) or T (the circle) the most common
moduli of smoothness are given by

ωr(f, t)X = sup
|h|≤t
‖∆r

hf‖X (2.1)

where

∆r
hf(x) = ∆h

(
∆r−1

h f(x)
)
, ∆hf(x) = f(x + h)− f(x) (2.2)

and ‖·‖X is a norm or quasi-norm usually (but not always) satisfying

‖f(·+ h)‖X = ‖f(·)‖X . (2.3)

For x ∈ Sd−1, x+h is not in Sd−1, and this is perhaps the reason for
the many investigations on and different approaches to the subject.

For a space X of functions on the sphere Sd−1 = {x ∈ Rd : |x|2 =
x2

1 + · · ·+ x2
d = 1} I introduced in [11] the moduli ωr(f, t)X given by

ωr(f, t)X = sup {‖∆r
ρf‖X : ρ ∈ Ot} (2.4)

where

Ot = {ρ ∈ SO(d) : ρx · x ≥ cos t for all x ∈ Sd−1} (2.5)

(recall that SO(d) is the collection of orthonormal matrices on Rd

whose determinants are equal to 1) and

∆r
ρf(x) = ∆ρ

(
∆r−1

ρ f(x)
)
, ∆ρf(x) = f(ρx)− f(x). (2.6)
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This definition is applicable to any space of functions for which

‖f(ρ ·)‖X = ‖f(·)‖X (2.7)

including Lp(Sd−1) and Hp(Sd−1), 0 < p ≤ ∞ and many others for
which ‖ ‖X is a norm or a quasinorm. We note that (2.7) is not a
necessary condition for (2.4) to be defined, just that work on (2.4)
was done under that assumption. The inequality ρx · x ≥ cos t for
all x ∈ Sd−1 is equivalent to ‖I − ρ‖ ≤ 2| sin t

2 | where I is the
identity matrix and the norm is the operator norm �2 → �2 for �2 of
(x1, . . . , xd). It should be noted that for r = 1 and X = L1(Sd−1)
(1.1) was already used in [4]. (I believe that in writing |ρ| < t for the
“rotation” ρ in definition (1.6) of [4], the authors meant ‖I−ρ‖ < t.)

For f ∈ L∞(Sd−1), Ragozin [24] introduced the measure of smooth-
ness

ωr
∗(f, t)∞ = sup

h≤t

x∈Sd−1

|∆r
hf(x)| (2.8)

with

∆r
hf(x) =

r∑
ν=0

(−1)ν

(
r
ν

)
f(xν)

where x0 = x and xν are equidistant points on a big circle containing
x with ‖xν − xν−1‖ = h. (Clearly ωr∗(f, t)∞ ≤ ωr(f, t)∞ and in fact
ωr∗(f, t)∞ ≈ ωr(f, t)∞.)

For 1 ≤ p < ∞ and f ∈ Lp(Sd−1) Fedorov [18] introduced the
following measure of smoothness:

ωr
∗(f, t)p =

sup
|h|≤t

{∫
Sd−1

∫
Sd−2(x)

∣∣∣ r∑
ν=0

(−1)ν

(
r
ν

)
f(x cos νt + ξ sin νt)

∣∣∣pdξ dx
}1/p

(2.9)
where Sd−2(x) = {ξ ∈ Sd−1 : ξ ⊥ x}. The concept (2.9) generalizes
(2.8) and is perhaps a hybrid between measures described in this and
the next section. (It is different from either.)
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3 Measures of Smoothness Using Average Sθf

In most articles on the subject it is not the transformation
Tρ : f(x) = f(ρx) given in the last section but the transformation
Sθf(x) that is used. Sθf(x) is given by

Sθf(x) =
1

m(θ)

∫
x·y=cos θ

f(y)dγ(y), Sθ1 = 1 (3.1)

where dγ(y) is the measure on the set {y : x·y = cos θ} induced by the
Lebesgue measure . The smoothness is described by Sθf(x) − f(x)
or combinations or iterations of it. It should be noted that because
of its symmetry Sθf −f corresponds to the second modulus (not the
first). It is not possible to mention all papers dealing with expres-
sions using Sθf for describing smoothness and proving its relation to
other concepts. (I believe there are at least three dozen.) I will high-
light several of the articles and some of the related concepts. The
description originated from works of Pawelke and Weherens students
of Butzer (see [23] and [29]) and continued in many works of Lizorkin,
Nikolskii, Teherin, Rustamov (see [20], [22], [25], [26] and [27]) and
other Russian mathematicians. In Chapter 5 of [28] a flaw in Rus-
tamov’s treatment is fixed. Some recent advances were made in [2],
[7] and [13]. I will try to itemize the main different possibilities.

For f ∈ Lp(Sd−1), 1 ≤ p ≤ ∞, one has

ω̃2r(f, t)p = sup
|θ|≤t

‖(I − Sθ)rf‖Lp(Sd−1) (3.2)

(see for r = 1 [29] and [23], and for integer r [22] and [20]). The
modulus (3.2) was also treated for non-integer r (see [25] and [28,
183-184]) using

(I − Sθ)rf =
∞∑

k=0

(−1)k

(
r
k

)
Sk

θ f.

As this latter concept requires an infinite sum of higher and higher
iterates of the transformation Sθ, I will not dwell on (3.2) with non-
integer r. The proofs using this concept (for any r > 0) usually treat
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(I − Sθ)r as a multiplier operator. A measure similar to ω̃2r(f, t)p is
given by

ω̃2r
I (f, t)p = sup

|θi|≤t
‖(Sθ1 − I) . . . (Sθr − I)f‖Lp(Sd−1) (3.3)

(see [29]). One can use combinations of Sjθ and obtain

ω̃r
II(f, t)p = sup

|θ|≤t

∥∥∥ r∑
k=0

(
r
k

)
(−1)kSkθ(f)

∥∥∥
p

(3.4)

(see [26, p. 236, (4)] where the first t on the right should be τ) or

ω̃2r
III(f, t)p = sup

|θ|≤t

∥∥∥(
2r
r

)
f + 2

r∑
j=1

(−1)j

(
2r

r − j

)
Sjθf

∥∥∥
p

(3.5)

(see [26, p. 236 (5)] where the first t on the right should be τ). The
advantage of (3.5) over (3.4) is that for the same number of terms
one may investigate a higher level of smoothness.

It was further proved in [2] that for 1 ≤ p ≤ ∞ and d ≥ 3

‖(St − I)rf‖p ≈ sup
|θ|≤t

‖(Sθ − I)rf‖Lp(Sd−1) = ω̃2r(f, t)p, (3.6)

and therefore the supremum in (3.2) is redundant, which is an amus-
ing fact since this is not true for d = 2 (where the sphere is the
circle). Later it was shown in [7] that for 1 ≤ p ≤ ∞ and d ≥ 3

∥∥∥(
2r
r

)
f + 2

r∑
j=1

(−1)j

(
2r

r − j

)
Sjtf

∥∥∥
p
≈ ω2r

III(f, t)p, (3.7)

and hence the supremum on θ is not necessary in (3.5) as well. One
may note that these facts, that is (3.6) and (3.7), would have simpli-
fied the proofs of earlier results if they had been known earlier. The
equivalences (3.6) and (3.7) are extended from Lp(Sd−1) to a general
class of spaces in [13].

We observe that for Lp, ωr(f, t)p of (2.4) is the closest analogue
to the classical modulus of smoothness on Rd or T d. Moreover, many
properties are much easier to prove (see [11]), and it is also applicable
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to Lp(Sd−1) when 0 < p and to Hp(Sd−1) when 0 < p, not just when
1 ≤ p. (So is ωr∗(f, t)p, for which the case p < 1 was not investigated.)
On the other hand, the measures of smoothness ω̃r, ω̃r

I etc. are
induced by multiplier operators, and while this prohibits p < 1 for
Lp(Sd−1), it makes results such as the Jackson-type inequality easier
to prove. For ωr(f, t)p, 1 ≤ p ≤ ∞ the Jackson-type inequality was
proved in [12], but it was more difficult to prove than with ω̃2r(f, t)p.

4 Measures of Smoothness Using the
Averages Bθf

In the last section we surveyed measures of smoothness involving the
averages of f(y) on the rim of a small cap about x given in (3.1)
and denoted by Sθf(x). In this section we describe the use of Bθf(x)
given by

Bθf(x) =
1

mθ

∫
x·y≥cos θ

f(y)dσ, Bθ1 = 1 (4.1)

which is an average of f(y) on a small cap about x. The measure of
smoothness is given by

˜̃ω2r(f, t)p = sup
|θ|≤t

‖(Bθ − I)rf‖Lp(Sd−1) (4.2)

where Bθ is given in (4.1). Somewhat simpler (for r > 1) is the use
of combinations of Bjθf rather than of Bj

θf (see [16]) given by

˜̃ω2r
I (f, t)p = sup

|h|≤t

∥∥∥ (
2r
r

)
f + 2

r∑
j=1

(−1)j

(
2r

r − j

)
Bjhf

∥∥∥
Lp(Sd−1)

.

(4.3)
In [16] a strong converse inequality of type B (in the sense of

[15]) was proved for (4.2) and (4.3), that is, the sup|h|≤t in both
was replaced by two terms using only Bj

t and Bj
Nt for some fixed

N in (4.2) and Btj and BNtj for some fixed N in (4.3). This was
superceded by [9] where it was proved that

‖(Bt − I)rf‖Lp(Sd−1) ≈ ˜̃ω2r(f, t)p (4.4)
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and∥∥∥ (
2r
r

)
f + 2

r∑
j=1

(−1)j

(
2r

r − j

)
Bjtf

∥∥∥
Lp(Sd−1)

≈ ˜̃ω2r
I (f, t)p (4.5)

which constitute a strong converse inequality of type A (in the sense
of [15]).

In fact, both the concepts in the last and the present section can
be defined on a class of Banach spaces of functions on Sd−1 (see [13]).
For Lp(Sd−1), 0 < p < 1 the moduli in Sections 3 and 4 were not
and cannot be defined.

5 K-Functionals

Another common way of describing smoothness is using Peetre K-
functionals . A K-functional commonly used for investigation of
smoothness of functions on the sphere is

K̃2r(f, t2r)B = inf (‖f − g‖B + t2r‖(−∆̃)rg‖B), r > 0 (5.1)

where ∆̃ is the Laplace–Beltrami operator (the tangential component
of the Laplacian ∆) given by

∆̃f(x) = ∆f
( x

|x|
)
, x ∈ Sd−1 (5.2)

and for integer r (−∆̃)r is its r−th iterate. For non-integer r (−∆̃)rg
is defined later in (6.4). Another possibility is

Kr(f, tr)B = inf
(
‖f−g‖B +tr

∥∥∥ max
ξ⊥x

∣∣∣∂rg

∂ξr
(x)

∣∣∣ ∥∥
B

)
, r = 1, 2, . . . .

(5.3)
We note that max

ξ⊥x
|∂rg
∂ξr (x)| is a generalization of the tangential gra-

dient.
For B = Lp(Sd−1) it was proved that for 1 ≤ p ≤ ∞ (see [20],

[22] and [26])

K̃2r(f, t2r)p ≈ ω̃2r(f, t)p ≈ ω̃2r
I (f, t)p

≈ ω̃2r
II (f, t)p ≈ ω̃2r

III(f, t)p.
(5.4)
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In fact it was shown in [2] that

K̃2r(f, t2r)p ≈ ‖(St − I)rf‖p (5.5)

and in [7] that

K̃2r(f, t2r)p ≈
∥∥∥(

2r
r

)
f + 2

r∑
j=1

(−1)j

(
2r

r − j

)
Sjtf

∥∥∥
Lp(Sd−1)

. (5.6)

See also [13] for (5.5) and (5.6) proved for some other Banach spaces.
It was shown in [12] that for 1 ≤ p ≤ ∞

ωr(f, t)p ≈ Kr(f, tr)p. (5.7)

Clearly,

K2r(f, t2r)p ≈ K̃2r(f, t2r)p for 1 < p <∞; (5.8)

however, for p = 1 and p = ∞ (5.8) does not hold. The situation
on the sphere, that is, (5.1), and (5.3) – (5.8) are a complete match
to corresponding theorems on Rd and T d. For non-integer r the K-
functional K̃2r(f, t2r)B was defined and discussed in [10] using the
fractional power of (−∆̃), that is (−∆̃)r, which will be defined in the
next section.

6 Best Harmonic Polynomial Approximation

The eigenspaces Hk of the Laplace-Beltrami operator ∆̃ given in (5.2)
on Sd−1 can be described by

∆̃ϕ = −k(k + d− 2)ϕ for ϕ ∈ Hk. (6.1)

Hk are the harmonic polynomials of degree k [1, Definition 9.1.1].
As the harmonic polynomials are dense in Lp(Sd−1) for 0 < p <∞,
C(Sd−1) and many other spaces and as Hk are finite-dimensional, we
may consider the best approximation to f by span

⋃
k<n

Hk given by

En(f)X = inf
(
‖f − ϕ‖X : ϕ ∈ span

⋃
k<n

Hk

)
, n = 1, 2, . . . .

(6.2)
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It clearly follows that this entity measures smoothness as well.
En(f)X in general and En(f)p in particular are non-linear enti-
ties and hence En(f)p is not and cannot be equivalent to the K-
functionals Kr(f, tr)p, K̃r(f, t2r)p or one of the various concepts

ω̃2r(f, t)p, ˜̃ω2r
(f, t)p, etc., which, as we will explain later (and fol-

lowing (3.6), (3.7), (4.3) and (5.4)), are equivalent to approximation
by linear operators (for 1 ≤ p ≤ ∞).

Moreover, K̃2r(f, t2r)p , K2r(f, t2r)p , ω2r(f, t)p , ω̃2r(f, t)p ,˜̃ω2r(f, t)p etc. are saturated with the order O(t2r) (for 1 ≤ p ≤ ∞),
and En(f)p does not have a saturation order. (ω2r(f, t)p having t2r

as its saturation order means that ω2r(f, t)p = O(t2r) as t → 0+
for a dense class of functions (for 1 ≤ p <∞) and ω2r(f, t)p = o(t2r)
as t→ 0+ implies that f is a constant.) The concept En(f)Lp(Sd−1)

like ω2r(f, t)p is defined for 0 < p < 1 as well, but while the modulus

ω2r(f, t)p, 0 < p < 1 has the saturation order t
2r+ 1

p
−1 (see [11]),

En(f)p does not have a saturation order.
The Jackson inequality, that is the relation between En(f)B and

the K−functionals K̃2r(f, t2r)B, is given by

En(f)B ≤ CK̃2r(f, n−2r)B (6.3)

for any Banach space of functions on Sd−1 for which some order of
the Cesàro summability of the expansion by Hk is bounded (see [5]).
Such B clearly include Lp(Sd−1) (see [3]). In [13] a class of such B is
given. The Jackson inequality (6.3) was extended to include a non-

integer r in [10] where g = (−∆̃)rf if g ∈ B with f ∈ B, f ∼
∞∑

k=0

Pkf

and

g ∼
∞∑

k=1

(
k(k + d− 2)

)r
Pkf. (6.4)

For Lp(Sd−1) results like (6.3) were known much earlier (see [23],
[29], [22], [26] and [28, Chapter 5]). As

K̃2r(f, t2r)p ≤ CK2r(f, t2r)p for r integer and, 1 ≤ p ≤ ∞,
(6.5)
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K2r(f, n−2r)p can replace K̃2r(f, t2r)p in (6.3). In fact, we have (see
[12]) for 1 ≤ p ≤ ∞

En(f)p ≤ Cωr
(
f,

1
n

)
p
. (6.6)

For 0 < p < 1, I believe that (6.6) is still valid, but this apparently
difficult result was not proved.

7 Realizations

Realizations or realization functionals are a family of concepts that
were introduced (not in the context of the sphere) by Hristov and
Ivanov in [19] in order to give a useful entity equivalent to K- func-
tionals and for convenience in proving relations between K- function-
als of different orders. As it turned out (see [14]), this concept is in
some cases useful when K-functionals do not yield any information.
(For instance, in the case 0 < p < 1 for which the K-functionals with
the differential operator Q = d

dx was proved in [14] to be zero for all
elements of Lp(T ).)

A function ϕn ∈ span
⋃

k<n

Hk is best approximant in the function

space X if
En(f)X = ‖f − ϕn‖X , n = 1, 2, . . . . (7.1)

For ϕn given in (7.1) realization functionals are given by

R̃2r(f, n−2r)X ≡ ‖f − ϕn‖X + n−2r‖(−∆̃)rϕn‖X (7.2)

for r > 0 and by

Rr(f, n−r)X ≡ ‖f − ϕn‖X + n−r
∥∥∥ sup

ξ⊥x

( ∂

∂ξ

)r
ϕn(x)

∥∥∥
X

(7.3)

for integer r.

We note that R̃2r(f, n−2r)X and Rr(f, n−r)X are meaningful for
X = Lp(Sd−1) 0 < p not just when p ≥ 1. For a Banach space X
for which the Cesàro summability with respect to the expansion by



Measures of Smoothness on the Sphere 85

projections on Hk is bounded (for example for Lp(Sd−1) 1 ≤ p ≤ ∞)
it was shown in [5] for integer r and in [10] for r > 0 that

R̃2r(f, n−2r)X ≈ K̃2r(f, n−2r)X . (7.4)

For X = Lp(Sd−1), 1 ≤ p ≤ ∞ it was shown [12] that for integer r

Rr(f, n−r)Lp(Sd−1) ≈ Kr(f, n−r)Lp(Sd−1) ≈ ωr(f, n−r)Lp(Sd−1).
(7.5)

I conjecture that for Lp(Sd−1), 0 < p < 1, we also have

Rr(f, n−r)Lp(Sd−1) ≈ ωr(f, n−r)Lp(Sd−1). (7.5)′

For a Banach space X for which (7.4) and (7.5) were given one can
have equivalent functionals to R̃2r(f, n−2r)X and Rr(f, n−r)Lp(Sd−1)

using Vnf instead of ϕn of (7.1) where Vnf is a delayed means or a
de la Vallée-Poussin type linear operator (see [5], [10] and [12]). We
remind the reader that such linear operators Vn satisfy

(I) Vn : X → span
⋃

k<Ln

Hk,

(II) Vnϕ = ϕ for ϕ ∈ ⋃
k<n

Hk

and

(III) ‖Vnf‖X ≤M‖f‖X .

Perhaps the simplest example of such a linear operator on f ∼∑
Pkf

is

Vnf =
∞∑

k=0

η
(k

n

)
Pkf (7.6)

where η ∈ C∞(0,∞), η(x) = 1 for 0 ≤ x ≤ 1 and η(x) = 0 for x ≥ 2
(in which case L of (I) is 2).

Such Vnf (given in (7.6)) is a delayed mean whenever the Cesàro
summability of some order � is bounded on X.
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8 Strong Converse Inequalities

For Lp(Sd−1) 1 ≤ p ≤ ∞ we have already dealt with a description
of smoothness that is given by strong converse inequalities in (3.6),
(3.7), (4.4) and (4.5), but those appeared as modifications and sim-
plifications (the drop of supremum) of other measures of smoothness.

The Cesàro summability of order � for f ∼∑
Pk(f) is given by

C�
n(f) =

n∑
k=0

(
1− k

n + 1

)
· · ·

(
1− k

n + �

)
Pkf. (8.1)

As mentioned earlier, a key condition is that for a given � and for
the space B

‖C�
n(f)‖B ≤ A‖f‖B (8.2)

with A = A(�, B) independent of n. For B = Lp(Sd−1) (8.2) is sat-
isfied for � > (d − 2) | 1

2 − 1
p |. Under this condition the Riesz means

given by

Rλ,α,�(f) =
∑

λ(k)<λ

(
1− (λ(k)

λ

)α
)�

Pkf, (8.3)

where α > 0 and λ(k) = k(k + d− 2), are bounded (see [10]), that is

‖Rλ,α,�(f)‖B ≤ A1‖f‖B. (8.4)

It was shown in [10] that under these conditions for some M > 1
we have

‖Rλ,α,�(f)− f‖B + ‖RMλ,α,�(f)− f‖B ≈ K̃2α(f, t2α)B (8.5)

with K̃2α(f, t2α)B given by (5.1) with (−∆̃)α of (6.4). F. Dai [6]
showed that for Lp(Sd−1) and � > d−2

2 the second term on the left
of (8.5) can be dropped, and his proof can be adapted to Banach
spaces and integers � satisfying (8.2). F. Dai described in [6] the
smoothness given by ‖C�

n(f) − f‖Lp(Sd−1) as equivalent to the K-
functional K̃1(f, 1/n)p (that is with α = 1/2).
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9 Some Recent Relations

The relation

ω̃2r(f, t)B ≤ 2r−kω̃2k(f, t)B, 1 ≤ p ≤ ∞, r > k (9.1)

follows whenever Sθf is a contraction on the Banach space B. (This
was one of the first properties to be proved for B = Lp, 1 ≤ p ≤ ∞.)
For ωr(f, t)X with X = B a Banach space satisfying (2.7) one has

ωr(f, t)B ≤ 2r−kωk(f, t)B, r > k (9.2)

and when X = Lp(Sd−1), 0 < p < 1

ωr(f, t)p ≤ 2(r−k)/pωk(f, t)p, r > k (9.3)

(see [11] for (9.2) and (9.3)). The converse of (9.2) and (9.3) was
given in the sharp-Marchaud inequality

ωr(f, t)p ≤ Ctr
( ∫ 1/2

t

ωr+1(f, u)q
p

urq+1
du + ‖f‖qp

)1/q
(9.4)

where p > 0 and q =

{
min(p, 2), p <∞
1 p =∞.

(It is known now that

the second term on the right of (9.4) is redundant.) Using En(f)p,
1 ≤ p ≤ ∞, we have (see [11])

ωr
(
f,

1
n

)
p
≤ Cn−r

( n∑
k=1

kqr−1Ek(f)q
p

)1/q
, q =

{
min(p, 2), p <∞
1, p =∞.

(9.5)
For other moduli such inequalities were known earlier for 1 ≤ p ≤
∞ and q = 1 (for all such p). For K-functionals we have (see [8,
Section 5])

K̃α(f, t2α)p ≤ Ct2α
{∫ 1

t

K̃β(f, u2β)q
p

u2qα+1
du

}1/q
, α < β (9.6)

and
K̃α(f, t2α)p ≤ Ct2α

( ∑
n≤1/t

n2qα−1En(f)q
p

)1/q
(9.7)
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where 1 < p < ∞, q = min(p, 2) and where Kα(f, t2α)p is given by
(5.1) for α and β with (−∆̃)αg given by (6.4) and En(f)p given by
(7.1). (Note that En(f) in (7.1) is only given for n ≥ 1.)

For a Banach space B on Sd−1 which satisfies ‖C�
nf‖B ≤ C‖f‖B

for some � one has (see [10, Theorems 6.4, 6.5 and Section 9A])

K̃α(f, t2α)B ≤ Ct2α
∑

n≤1/t

n2α−1En(f)B (9.8)

and

K̃α(f, t2α)B ≤ Ct2α

∫ 1

t

K̃β(f, u2β)B

u2α+1
du, α < β. (9.9)

We observe that special cases of the above were known much earlier.
For relations between K̃r(f, t2r)p with different p we have (see

[17, Section 10])

K̃α(f, t2r)q ≤ C
( ∫ t

0
u
−(d−1)( 1

p
− 1

q
)q1K̃α(f, t2α)q1

p

du

u

)1/q1

(9.10)

where 1 ≤ p < q ≤ ∞ and q1 =

{
q, q <∞
1, q =∞.

For En(f)p we have (see [17, Section 10])

En(f)q ≤ C
( ∞∑

k=n

k
(d−1)( 1

p
− 1

q
)q1−1

Ek(f)q1
p

)1/q1

(9.11)

for 0 < p < q ≤ ∞ and q1 =

{
q, q <∞
1, q =∞.

We note that in [17, Section 10] somewhat more restrictive ver-
sions of (9.10) and (9.11) are given, but (9.10) and (9.11) follow from
[17, Section 4].

10 Epilogue

I have attempted to show the main directions in describing smooth-
ness on the sphere and relations among them. I am sure that others
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would like to see different measures emphasized or different proper-
ties displayed. Because of lack of space I have emphasized the latest
most general results over important special cases proved earlier.

I would like to thank F. Dai for his helpful comments.
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[23] S. Pawelke, Über die Approximationsordnung bei Kugel funk-
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Abstract

We present results on existence, uniqueness, and explicit
construction of quadrature formulae with maximal trigonomet-
ric degree of precision. In Section 1 we discuss Turán type
quadrature formulae of maximal trigonometric degree of pre-
cision. Birkhoff type quadratures of maximal trigonometric
degree of precision are considered in Section 2.

1 Quadrature Formulae with Free Nodes
of Maximal Trigonometric Degree of
Precision

We discuss the problem of existence, uniqueness, and explicit con-
struction of formulas for approximate (numerical) integration of pe-
riodic functions based on fixed number of free nodes, fixed multiplici-
ties at each node, and having maximal trigonometric degree of preci-
sion. Formulas for approximate integration are usually called quadra-
ture formulae (quadratures). Why such extremal quadrature formu-
lae are useful in approximate integration? According to Weierstrass-
Jackson approximation result if f is 2π-periodic continuous function
then for each n natural, there exists trigonometric polynomial t of de-
gree at most n such that maxx∈R |f(x)−t(x)| = O (ω(f, 1/n)) , where

93
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ω(f, 1/n) = sup {|f(x1)− f(x2)| : |x1 − x2| ≤ 1/n} is the modulus
of continuity of f with parameter 1/n. As n increases, the approx-
imation will improve and the best approximation will tend to zero,
when n tends to infinity. Having a QF (quadrature formula) that
is exact for trigonometric polynomial of degree as higher as possi-
ble; i.e.,

∫ 2π
0 t(x)dx = QF (t) holds for trigonometric polynomials of

maximum degree, then the approximation to
∫ 2π

0 f(x)dx by QF (f)
will be in some sense the best possible. This approach to numerical
integration was initiated by Gauss [6] who studied quadrature for-
mulae of maximal algebraic degree of precision based on functional
values (the case of multiplicity 1 at each node). Turán [12] extended
the approach of Gauss by considering quadrature formulae of max-
imal degree of precision based on node-multiplicities greater than
one (case of equal multiplicities at each node). Turán’s extension
of Gaussian quadratures attracted considerable interest and still re-
main an area of active research. Existence, uniqueness, and explicit
construction of Gauss-Turán quadratures lead to non-linear extremal
problems which require non-standard methods from analysis, func-
tional analysis, optimization theory etc.

We study quadrature formulae of the form

∫ π

−π
f(x) dx ≈

l∑
j=0

2kj∑
λ=0

aj,λ f (λ)(xj), (1.1)

where f is 2π-periodic function, x0 ≤ x1 ≤ · · · ≤ xl, (xl− x0 ≤ 2π)
are l + 1 real free nodes. The number l + 1 of the nodes is fixed
and k0, k1, . . . , kl are fixed non-negative integers to determine the
multiplicities 2kj + 1 of the nodes xj for j = 0, 1, . . . , l.

Let T(l−1)/2 denote the linear space of all trigonometric polyno-
mials of integer or half-integer degree ≤ (l − 1)/2 (l = 1, 2, . . .).
Definition. A quadrature formula (QF) of a type (1.1) has trigono-
metric degree of precision (TDP) equal to n if it is exact for each
f ∈ Tn and there exists g ∈ Tn+1 for which the QF is not exact.
Problem formulation. Find a QF of type (1.1) with fixed num-
ber of nodes and fixed multiplicities at each node, such that the
trigonometric degree of precision of this formula is maximum. This
maximum is called maximal trigonometric degree of precision.
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Solution of this problem is given by the following theorem [4].

Theorem 1.1 There exists a quadrature formula of type (1.1) with
trigonometric degree of precision

p(k0, . . . , kl) := l +
l∑

j=0

kj

and this is the maximal trigonometric degree of precision. The quadra-
ture formula of maximal trigonometric degree of precision is uniquely
determined within a translation of the nodes with a real parameter.

Remark 1.1 There are 2l + 2 + 2
∑l

j=0 kj free parameters in (1.1);
the dimension of Tp(k0,...,kl) is 2l + 1 + 2

∑l
j=0 kj so, the algebraic

expectation is that the nodes and the coefficients of all quadratures
type (1.1) of maximal trigonometric degree of precision is a one-
parametric set. This is confirmed by Theorem 1.1. Moreover, if we
fix one of the nodes xj(j = 0, . . . , l) then the quadrature formula
with maximal trigonometric degree of precision is unique,i.e., each
of the nodes could serve as a parameter to obtain one-parametric
representation of the quadrature data (nodes and coefficients).
Remark 1.2 The trigonometric polynomial

t(x) :=
l∏

j=0

[
sin

x− xj

2

]2kj+2

∈ Tp(k0,...,kl)+1

shows that the QF obtained from (1.1) by adding the next (2kj+1)-th
(odd) derivative at the node xj

∫ π

−π
f(x) dx ≈

l∑
j=0

2kj+1∑
λ=0

aj,λ f (λ)(xj)

has degree of precision at most p(k0, . . . , kl). Hence, the degree of
precision of QF type (1.1) will not increase by adding the next (2kj +
1)-th derivative of f at some of the nodes xj (j = 0, 1, . . . , l) to the
data of a QF type (1.1).
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Remark 1.3 There are many QF of the form∫ π

−π
f(x) dx ≈

2k+1∑
λ=0

aλ

l∑
j=0

f (λ)(−π + 2jπ/(l + 1)),

with trigonometric degree of precision equal to p(k, . . . , k) = l +
(l + 1)k. If a2k+1 = 0 then the other coefficients aλ, λ = 0, . . . , 2k
are uniquely determined and the corresponding QF is unique. This
example helps to understand the limit of the theory presented here.
In the case l odd, it is a corollary from [2, Theorem 1]. For l even
the proof is similar.

Some basic facts on trigonometric polynomials of half-
integer degree. Let us start with the well-known fact that each
algebraic polynomial of degree n has exactly n zeros in the com-
plex plane counting their multiplicities. The example cos(nz) +
i sin(nz) (i2 = −1) indicates that a trigonometric polynomial of ar-
bitrary degree can be free of zeros (no zeros) in the complex plane.
Trigonometric polynomial with complex coefficients t(l+1)/2(z) of in-
teger or half-integer degree (l + 1)/2

t(l+1)/2(z) :=
l+1∑
k=0

c(l+1−2k)/2 exp
[
i
l + 1− 2k

2
z

]

= c(l+1)/2 exp
[
i
l + 1

2
z

]
+ c−(l+1)/2 exp

[
−i

l + 1
2

z

]
+ · · ·

has in each vertical stripe β ≤ Re(z) < β +2π exactly as many zeros
as the non-zero roots of the algebraic polynomial equation

pl+1(ζ) :=
l+1∑
k=0

c(l+1−2k)/2 ζ l+1−k = 0, ζ = exp(iz).

Denote the linear space of trigonometric polynomials of degree (l +
1)/2 by T(l+1)/2. Then T(l+1)/2 has dimension l +2 and each member
of T(l+1)/2 has at most l + 1 zeros in β ≤ Re(z) < β + 2π or it is
identically zero. The trigonometric polynomial

t(l+1)/2(z) :=
[(l+1)/2]∑

k=0

(
a(l+1−2k)/2 cos

l + 1− 2k

2
z
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+b(l+1−2k)/2 sin
l + 1− 2k

2
z

)

has exactly l + 1 zeros in β ≤ Re(z) < β + 2π if a2
(l+1−2k)/2 +

b2
(l+1−2k)/2 �= 0, counting their multiplicities. If

a2
(l+1−2k)/2 + b2

(l+1−2k)/2 = 0,

then t(l+1)/2 has less than l + 1 zeros in β ≤ Re(z) < β + 2π.
The above properties can be proved by using the representation
pl+1(ζ) = exp(i[(l + 1)/2]z) t(l+1)/2(z), ζ = exp(iz), where exp(iz)
maps the strip β ≤ Re(z) < β + 2π one to one onto the ζ-complex
plane without the origin (ζ ∈ C\{0}).

The proof of Theorem 1.1 uses two auxiliary results (Theorem
1.2 and Theorem 1.3), each of them of independent value. The proof
of the first one, given by the next theorem, is based on properties
of topological degree of a map with respect to an open bounded set
and a given point.

Some basic facts on topological degree theory [8], [9]. Let
D be an open bounded set in Rn with a closure D̄ and boundary
∂D. Let the map Φ : D̄ �→ Rn be continuous. For c ∈ Rn and
c /∈ Φ(∂D), the topological degree of Φ with respect to the open
set D and the point c is denoted by deg (Φ, D, c) and satisfies the
following properties.
Lemma A Let D be a bounded open subset of Rn and Φ be a
continuous map from t ∈ D to Rn. If c /∈ Φ(∂D) and deg (Φ, D, c) �=
0 then the vector equation Φ(t) = 0 has a solution in D.
Lemma B Let Φ(t, α) be continuous map defined on D̄× [0, 1] with
Φ(t, α) �= c for any t ∈ ∂D and 0 ≤ α ≤ 1. Then the topological de-
gree deg (Φ, D, c) does not depend on α (it is a constant independent
of α).
Lemma C Suppose Φ ∈ C1(D), c /∈ Φ(∂D) and the Jacobian
det (Φ′(x)) �= 0 for any x ∈ D such that Φ(x) = c (in other words
for any solution t = x of the system Φ(t) = c). Then there exist
only a finite set of points {xs} in D for which Φ(xs) = c ( in other
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words only finite number of solutions of the system Φ(t) = c) and

deg
(
Φ(., α), Dε/2,0

)
=
∑
{xs}

sign
[
det
(
Φ
′
(xs)
)]

.

Let α ∈ [0, 1], l positive integer, and k0, k1, . . . , kl non-negative
integers be given. Let us denote

Φ
(
t, α, r l−1

2

)
=
∫ π

−π

∣∣∣∣sin x + π

2

∣∣∣∣
2αk0+1 l∏

j=1

∣∣∣∣sin x− tj
2

∣∣∣∣
2αkj+1

× sign


sin

x + π

2

l∏
j=1

sin
x− tj

2


× r l−1

2
(x) dx ,

where t := (t1, t2, . . . , tl) belongs to the Rl simplex

D̄ := {t : −π ≤ t1 ≤ t2 ≤ · · · ≤ tl ≤ π}

and r l−1
2
∈ T(l−1)/2 is a trigonometric polynomial of degree (integer

or half-integer) (l − 1)/2.

Theorem 1.2 The problem to find all t ∈ D̄ such that

Φ
(
t, α, r l−1

2

)
= 0 (1.2)

for each trigonometric polynomial r l−1
2
∈ T(l−1)/2 has a unique so-

lution xα := (xα
1 , xα

2 , . . . , xα
l ) satisfying −π < xα

1 < xα
2 < · · · <

xα
l < π.

The proof of Theorem 1.2 is based on the following lemmas. De-
tails can be found in [4].
Lemma 1.1 Let α be fixed. Then each solution x := (x1, x2, . . . , xl)
of the problem (1.2) belongs to the interior

D := {t : −π < t1 < t2 < · · · < tl < π} .

of D̄.
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Lemma 1.2 There exists ε > 0 such that for every α ∈ [0, 1] all
solutions of (1.2) belong to the simplex

D̄ε := {ε ≤ t1 + π, ε ≤ t2 − t1, . . . , ε ≤ tl − tl−1, ε ≤ π − tl} ,

i.e., all solutions of (1.2) are ε-inside the simplex D̄, uniformly with
respect to α.

Let us denote

rq(t) :=
l∏

j=1,j �=q

sin
t− tj

2

for q = 1, 2, . . . , l. Evidently, rq ∈ T(l−1)/2. The next lemma is based
on simple interpolation formula in T(l−1)/2 with interpolation nodes,
the distinct t1 < · · · < tl. Let

Dε/2 := {ε/2 < t1 + π, ε/2 < t2 − t1, . . . , ε/2 < tl − tl−1, ε/2 < π − tl} .

Lemma 1.3 In the simplex Dε/2, the problems

a) Φ
(
t, α, r l−1

2

)
= 0

(
r l−1

2
∈ T l−1

2

)
and

b) Φ (t, α, rq) = 0 (q = 1, 2, . . . , l)

are equivalent; i.e., their solutions coincide.
Remark 1.4 Note that the two problems are not equivalent in D̄;
i.e., their solutions do not coincide. For example t1 = t2 = · · · = tl =
0 belongs to D̄ and it is a solution of the problem b), Lemma 1.3 but
is not a solution of the problem a), Lemma 1.3 as Lemma 1.2 shows.

The next Lemma describes properties of each solution of the non-
linear system b), Lemma 1.3 in terms of its Jacobian.
Lemma 1.4 Let Φq(t, α) := Φ (t, α, rq). Suppose that x = (x1, x2, . . . , xl)
is a solution of the problem

Φq(t, α) = 0 (q = 1, 2, . . . , l)

in the simplex Dε/2. Then

i.
∂Φq

∂tm
|t=x = 0 (q �= m, q, m = 1, 2, . . . , l ;
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ii. sign

(
∂Φq

∂tq
|t=x

)
= −1 (q = 1, 2, . . . , l ;

iii. sign

(
det

(
∂Φq

∂tm
|t=x

)l,l

q=1,m=1

)
= (−1)l .

The idea of the proof of Theorem 1.2. We shall make a sort
of extrapolation based on the next lemma and a topological degree of
a map with respect to an open bounded set and a given point. By
the above lemmas it is clear that instead of studding the problem of
Theorem 1.2 in D̄, we shall study its equivalent problem b), Lemma
1.3 in Dε/2. Note that the two problems are not equivalent in D̄, but
they are equivalent in Dε/2. On the other hand Lemma 1.2 states
that all solutions in D̄ of the problem (1.2) formulated in Theorem
1.2 must be uniformly (with respect to α ∈ [0, 1]) in D̄ε ⊂ Dε/2. In
other words all solutions of b), Lemma 1.3 in Dε/2 are in fact all
solutions of the problem (1.2) in D̄.
Lemma 1.5 The problem

Φq (t, 0) = 0 (q = 1, 2, . . . , l)

has a unique solution

x = (x1, x2, . . . , xl), xj = π

(
2j

l + 1
− 1
)

(j = 1, 2, . . . , l)

in the simplex Dε/2. According to the Lemma 1.3 it must be in D̄ε,
also.
Proof. We present the proof of Theorem 1.2 ( Topological
Degree Approach). Define a map

Φ(t, α) : Dε/2 × [0, 1] �→ Rl, t = (t1, t2, . . . , tl) ,

where
Φ(t, α) := (Φ1(t, α), Φ2(t, α), . . . ,Φl(t, α)) ,

t = (t1, t2, . . . , tl) ∈ Dε/2, α ∈ [0, 1], and Φq(t, α) = Φ(t, α, rq).
We study the topological degree of the map Φ(t, α) with respect to
the open bounded set Dε/2 and the point 0 := (0, 0, . . . , 0) (the zero
vector in l-dimensional space).
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By Lemma 1.2 it follows that all solutions of (1.2) in D̄ must be-
long to D̄ε. Hence, all solutions of (1.2) are in Dε/2. Now, by Lemma
1.3, finding all solutions of (1.2) in D̄ is equivalent to obtaining all
solutions of

Φ(t, α) = 0 (t ∈ Dε/2),

where α is a fixed number in [0, 1]. In other words to find all points
t ∈ Dε/2 which are mapped to 0 by Φ(t, α). All solutions must be
in D̄ε, uniformly with respect to α. Hence,

Φ(∂Dε/2, α) �= 0

for each α in [0, 1]. In other words, the solutions are uniformly with
respect to α far from the boundary of Dε/2. By Lemma B it follows
that the topological degree

deg
(
Φ(., α), Dε/2,0

)
is a constant not depending on parameter α. According to Lemma
1.4, Lemma A, and Lemma C, for each fixed α ∈ [0, 1], there is a finite
number of solutions (points in Rl) t = xs := (x1,s, x2,s, . . . , xl,s) in
Dε/2 to Φ(t, α) = 0, i.e., a finite number of solutions to the problem
(1.2) in D̄. By using the finite solution set {xs} for a fixed α and by
Lemma C, we have the following formula for the topological degree of
the map Φ(t, α) with respect to the open bounded set Dε/2 and the
point 0 := (0, 0, . . . , 0):

deg
(
Φ(., α), Dε/2,0

)
=
∑
{xs}

sign
[
det
(
Φ
′
(xs)

)]
.

By Lemma 1.4 and Lemma 1.5 we conclude that for (α = 0), the
topological degree deg

(
Φ(., 0), Dε/2,0

)
of the map Φ(t, 0) with respect

to the open bounded set Dε/2 and the point 0 := (0, 0, . . . , 0) is (−1)l;
i.e.,

deg
(
Φ(., 0), Dε/2,0

)
= (−1)l

and this is the initial step of the extrapolation procedure to the exis-
tence and the uniqueness of the solution from α = 0 to α = 1. Taking
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into account that the topological degree does not depend on α we
have

deg
(
Φ(., α), Dε/2,0

)
=
∑
{xs}

sign
[
det
(
Φ
′
(xs)
)]

= (−1)l,

where the solution set {xs} for a fixed α is a finite solution set,
according to Lemma C. By Lemma 1.4 there is one and only one
solution xs and from here, for a fixed α ∈ [0, 1], the problem b),
Lemma 1.3 has a unique solution in Dε/2. Hence, the problem (1.2)
has a unique solution in D̄. The proof of Theorem 1.2 is completed.
�

In order to prove our main result we shall need two more auxiliary
results. The first one is on Hermite Interpolation by Trigono-
metric Polynomials. Details are given in [4]. Let x0 < x1 < · · · <
xl be l+1 real interpolation nodes, xl−x0 < 2π and λ0, λ1, . . . , λl be
positive integer numbers. We consider Hermite interpolation prob-
lem (x, λ) with interpolation nodes x := (x0, x1, . . . , xl) and corre-
sponding multiplicities λ := (λ0, λ1, . . . , λl). Let s(u) := u/2 and
λ̃ = λ0 + λ1 + . . . + λl. In terms of these notation

s(λ̃) =
1
2

l∑
j=0

λj and s(λ · x) =
1
2

l∑
j=0

λj xj

and the result on Hermite trigonometric interpolation states the fol-
lowing:

Theorem 1.3 (a) If 2s(λ̃) is odd, then the interpolation problem
(x, λ) has a unique solution in the linear space Ts(λ̃)−1/2.

(b) If 2s(λ̃) is even and s(λ·x) = 0 then the interpolation problem
(x, λ) has a unique solution in the linear space

{
Ts(λ̃)−1, sin[s(λ̃)x]

}
.

(c) If 2s(λ̃) is even then the interpolation problem (x, λ) has a
unique solution in the linear space

{
Ts(λ̃)−1, sin[s(λ̃)x− s(λ · x)]

}
.

Remark 1.5 Obviously, the definite integral over a segment with
length 2π of the trigonometric interpolation solution in Theorem 1.3
(a), (c) is invariant with respect to an arbitrary real translation of
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the interpolating nodes (each interpolation node shifted by the same
real number).

Now we shall formulate an auxiliary result on long division by
trigonometric polynomials. With λ = (λ0, . . . , λl) and x = (x0, . . . , xl)
we define the trigonometric polynomial

ωλ,x(x) :=
l∏

j=0

(
sin

x− xj

2

)λj

∈ Ts(λ̃),

of degree s(λ̃) subject to the condition s(λ · x) = 0.
Lemma 1.6 Let tn(x) ∈ Tn and n ≥ s(λ̃). Then

tn(x) = ωλ,x(x) p(x) + r(x), p(x) ∈ Tn−s(λ̃).

In addition r(x) = β sin(s(λ̃)x) + q(x), q(x) ∈ Ts(λ̃)−1 if 2s(λ̃) is

even; and r(x) ∈ Ts(λ̃)−1/2 if 2s(λ̃) is odd.
Proof. We present the proof of Theorem 1.1. Evidently, the
trigonometric degree of precision of (1.1) does not change if we trans-
late the nodes with a real parameter. On the other hand the example

t(x) :=
l∏

j=0

[
sin

x− xj

2

]2kj+2

∈ Tp(k0,...,kl)+1

shows that (1.1) has TDP less than or equal to p(k0, . . . , kl).

A. Uniqueness of a quadrature formula of type (1.1) having
TDP equal to p(k0, . . . , kl). Assume to the contrary: There are at
least two QF of type (1.1)

∫ π

−π
f(x) dx ≈

l∑
j=0

2kj∑
λ=0

a
′
j,λ f (λ)(x

′
j); (1.3)

∫ π

−π
f(x) dx ≈

l∑
j=0

2kj∑
λ=0

a
′′
j,λ f (λ)(x

′′
j ) (1.4)

both with TDP = p(k0, . . . , kl). Construct by shifting the two node
sets (x

′
0, x

′
1, . . . , x

′
l), (x

′′
0 , x

′′
1 , . . . , x

′′
l ) another two node sets

(y
′
0, y

′
1, . . . , y

′
l), (y

′′
0 , y

′′
1 , . . . , y

′′
l )
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satisfying: y
′
0 = y

′′
0 = −π; y

′
j = x

′
j+α

′
, y

′′
j = x

′′
j +α

′′
for j = 0, . . . , l.

By construction −π = y
′
0 ≤ y

′
1 ≤ · · · ≤ y

′
l ≤ π, −π = y

′′
0 ≤ y

′′
1 ≤

· · · ≤ y
′′
l ≤ π, and from (1.3) and (1.4) we obtain the quadrature

formulae ∫ π

−π
f(x) dx ≈

l∑
j=0

2kj∑
λ=0

a
′
j,λ f (λ)(y

′
j);

∫ π

−π
f(x) dx ≈

l∑
j=0

2kj∑
λ=0

a
′′
j,λ f (λ)(y

′′
j )

having TDP equal to the maximal trigonometric degree of precision
p(k0, . . . , kl). Hence,

∫ π

−π

(
cos

x

2

)2k0+1
l∏

j=1

(
sin

x− y
′
j

2

)2kj+1

× r l−1
2

(x) dx = 0

and ∫ π

−π

(
cos

x

2

)2k0+1
l∏

j=1

(
sin

x− y
′′
j

2

)2kj+1

× r l−1
2

(x) dx = 0

for each r l−1
2
∈ T(l−1)/2. Now, by Theorem 1.2 y

′
j = y

′′
j , j =

1, 2, . . . , l and from here x
′
j = x

′′
j + α, j = 0, 1, 2, . . . , l, i.e., the

nodes are uniquely determined within a translation of a real
parameter.

B. Existence of a quadrature formula of type (1.1) having
TDP equal to p(k0, . . . , kl). First of all, if we show existence, from
here will follow that p(k0, . . . , kl) is the maximal trigonometric degree
of precision for the class of all QFe of type (1.1).

Let (−π, y1, . . . , yl) be the unique solution of the problem stated
by Theorem 1.2. We shift (−π, y1, . . . , yl) to obtain (x0, x1, . . . , xl)
satisfying

∑l
j=0(2kj + 1)xj = 0. Let the trigonometric polynomial

t(x) ∈ Tl/2+
∑l

j=0 kj
for l even and let

t(x) ∈

T(l−1)/2+

∑l
j=0 kj

, sin




(l + 1)/2 +

l∑
j=0

kj


x





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for l odd. By using Theorem 1.3 and by integrating the corresponding
Hermite interpolation representation for t(x) in terms of the basic
interpolating polynomials tj,λ(x)

t(x) =
l∑

j=0

2kj∑
λ=0

t(λ)(xj) tj,λ(x)

we obtain a QF

∫ π

−π
f(x) dx ≈

l∑
j=0

2kj∑
λ=0

a∗j,λ f (λ)(xj) (1.5)

which is exact in the corresponding interpolation trigonometric spaces,
given above.

Now, take an arbitrary trigonometric polynomial t∗(x) of degree
p(k0, . . . , kl). By Lemma 1.6, using a long division, the trigonometric
polynomial t∗(x) can be represented in the form

t∗(x) = ωk,x(x)P(l−1)/2(x) + r(x), k = (2k0 + 1, . . . , 2kl + 1)

and the QF (1.5) must be exact for r(x) because s(k̃) = (l + 1)/2 +∑l
j=0 kj .
On the other hand, by Theorem 1.2∫ π

−π
ωk,x(x)P(l−1)/2(x) dx = 0

and obviously

l∑
j=0

2kj∑
λ=0

a∗j,λ
[
ωk,x P(l−1)/2

](λ) (xj) = 0 .

In view of this

∫ π

−π
t∗(x) dx =

l∑
j=0

2kj∑
λ=0

a∗j,λ t
(λ)
∗ (xj)
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and from here the QF (1.5) has TDP = p(k0, . . . , kl); i.e., the inter-
polation QF (1.5) obtained by using as interpolation nodes an appro-
priate shift of the unique solution of the problem in Theorem 1.1 is
the unique within a real translation of the nodes QF of trigonomet-
ric degree precision p(k0, . . . , kl) which is the maximal trigonometric
degree of precision. The proof is completed. �

Remark 1.6 The affirmative answer to the question of existence
and uniqueness of a quadrature formulae with maximal degree of pre-
cision is not so useful by itself from a practical point of view if there
is no complete numerical characterization for the nodes and
the coefficients of the extremal quadratures . The next two
examples present explicit quadrature formulae of maximal trigono-
metric degree of precision. Details are given in [4].

Example 1.1 Let k0 = k1 = · · · = kl = k in (1.1); i.e., we
consider QF type (1.1) with equal multiplicities 2k +1 at each node.
Then the quadrature formula of maximal trigonometric degree of
precision equal to k(l + 1) + l is uniquely determined within a real
translation θ∗ of the nodes. The quadrature formula of maximal
trigonometric degree of precision has equally spaced nodes and it uses
only even order derivatives. In other words the extremal coefficients
before the odd order derivatives are zero; i.e., the extremal QFe pos-
sesses Birkhoff-type effect and the odd order derivatives do not con-
tribute to the extremal formula for numerical integration. Its explicit
form is the following.

∫ π

−π
f(x) dx ≈ 2π

l + 1

l∑
j=0

f

(
2jπ

l + 1
+ θ∗

)

+
2π

l + 1

k∑
λ=1

cλ

(l + 1)2λ

l∑
j=0

f (2λ)

(
2jπ

l + 1
+ θ∗

)
,

where
cλ =

∑
1≤ν1<···<νλ≤k

(ν1 · · · νλ)−2, λ = 1, . . . , k.

Remark 1.7 To the best of our knowledge the next Example gives
one of the few known cases of explicit Gaussian formula in the case
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of non-equal multiplicities at each node. It is an explicit formula
for the unique (up to a real shifting of the nodes) quadrature for-
mula having maximum degree of precision, in the case of 2-periodic
multiplicities,i.e., multiplicities satisfying kj = kj+2, 0 ≤ j ≤ l.

Example 1.2 If l +1 = 2n and {kj , j = 0, . . . , 2n−1} are two-
periodic sequences of non-equal multiplicities at each node, then the
unique quadrature formulae within a real node-shifting with maximal
trigonometric degree of precision equal to n(k0 + k1 + 2)− 1 is given
by

∫ π

−π
f(x) dx ≈ 2π

n

k0∑
λ=0

cλ

n2λ

n−1∑
j=0

f (2λ)(2jπ/n + θ∗)

+
2π

n

k1∑
λ=0

dλ

n2λ

n−1∑
j=0

f (2λ)((2j + 1)π/n + θ∗),

where the coefficients c0, . . . , ck0 and d0, . . . , dk1 are uniquely deter-
mined by the linear system of equations

c0 + d0 = 1
k0∑

λ=0

cλ(−1)λ ν2λ + (−1)ν
k1∑

λ=0

dλ(−1)λ ν2λ = 0

ν = 1, 2, . . . , k0 + k1 + 1 .

Example 1.3 In order to estimate the non-linear structure of the
complete constructive characterization of a QF type (1.1) of maximal
trigonometric degree of precision the reader may consult [3], where
a particular case of 4-periodic case of multiplicities is completely
characterized. For example the reader will see that in this case the
extremal nodes are not equally spaced.
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2 Birkhoff Type Quadrature Formulae of
Maximal Trigonometric Degree of
Precision

We present results on existence, uniqueness, and explicit character-
ization of Birkhoff type quadrature formulae on equidistant nodes
having maximal trigonometric degree of precision. Here the data
means lacunary data; i.e., the derivatives taken at a given node are
not necessarily consecutive [7]. The corresponding trigonometric in-
terpolation problem in the case of k-periodic data was first proposed
and solved in [11]. However, the necessary and sufficient conditions
for the existence and uniqueness of the trigonometric interpolant were
found in a simple form only for k = 1 [1] (equal multiplicities). In
the case of trigonometric interpolation with two-periodic multiplici-
ties data some special cases have been explicitly solved. Details can
be found in [10]. In view of this we found interesting to find explic-
itly quadrature formulae of maximal trigonometric degree of precision
based on two-periodic, Birkhoff type data, to study their existence and
uniqueness by making use of a direct method, without using any prior
knowledge of the corresponding interpolants that even may not exist
[2].

Let us remind that with Tn we denote the linear space of all
trigonometric polynomials t(x) :=

∑n
j=−n aj eijx, aj ∈ C of degree

at most n. Let k = (k0, k1, . . . , km−1), 0 = k0 < k1 < . . . < km−1,
and let k

′
= (k

′
0, k

′
1, . . . , k

′
m1−1), 0 ≤ k

′
0 < k

′
1 < . . . < k

′
m1−1

be two vectors whose components are non-negative distinct inte-
gers. Suppose that for a certain 2π-periodic function f we are given
the following Birkhoff type information: f (ks)(−π + 2νπ/n), ν =

0, 1, . . . , n− 1, s = 0, 1, . . . , m− 1 and f (k
′
j)(−π + (2ν + 1)π/n), ν =

0, 1, . . . , n−1, j = 0, 1, . . . , m1−1. We construct from the above data
a sort of discrete differential levels supposing that the coefficients of
the quadrature depend only on the parity (2ν even or (2ν + 1) odd)
of the nodes:

f (ks)
n,e :=

n−1∑
ν=0

f (ks)(−π + 2νπ/n) (s = 0, 1, . . . , m− 1)
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and

f
(k
′
j)

n,o :=
n−1∑
ν=0

f (k
′
j)(−π + (2ν + 1)π/n) (j = 0, 1, . . . , m1 − 1) .

Problem formulation. Find quadrature formulae of the type

∫ π

−π
f(x) dx ≈ 2π

n

m−1∑
s=0

cs

nks
f (ks)

n,e +
2π

n

m1−1∑
j=0

dj

nkj
′ f

(k
′
j)

n,o (2.1)

with maximal trigonometric degree of precision. The solution of the
problem depends on the number of even integers in the vectors k and
k
′
. In fact the odd-order derivatives participating in the quadrature

formula (2.1) do not influence the maximal degree of precision. Thus,
let ωe and ω

′
e denote the number of even integers in the sets {0 = k0 <

k1 < · · · < km−1} and {0 ≤ k
′
0 < k

′
1 < · · · < k

′
m1−1), respectively.

Let ωo and ω
′
o denote the cardinality of the odd integers in the above

sets so that ωe+ωo = m and ω
′
o+ω

′
e = m1. In terms of the notation,

the solution of the problem is given by the next theorem (see [2] for
details).

Theorem 2.1 A quadrature of the form (2.1) has maximal trigono-
metric degree of precision equal to n(ωe + ω

′
e) − 1. Concerning the

uniqueness and the explicit characterization of the quadrature with
maximal trigonometric degree of precision we have:

(a) If ωo+ω′o ≤ ωe+ω′e − 1, then the quadrature of type (2.1) with
maximal trigonometric degree of precision exists and it is unique.
Moreover, cs = 0 for ks odd (s = 1, . . . , m − 1) and dj = 0 for
k′j odd (j = 0, . . . , m1 − 1). The values of {cs, (ks even)}m−1

s=0 and
{dj , (k

′
j even)}m1−1

j=0 are uniquely determined by the linear system of
equations:

c0 + d0 = 1
m−1∑

s=0,ks even

cs(−1)ks/2νks + (−1)ν
m1−1∑

j=0,k′j even

dj(−1)k′j/2νk′j = 0

ν = 1, . . . , ωe + ω′e − 1;
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(b) If ωo +ω′o > ωe +ω′e−1, then there are many quadrature for-
mulae of type (2.1) with maximal trigonometric degree of precision.

(c) If in the quadrature formula (2.1) we are free to choose the
m − 1 derivatives {k1 < k2 < · · · < km−1} and the m1 derivatives
{k′0 < k

′
1 < k

′
2 < · · · < k

′
m1−1}, then the quadrature formula of

maximal trigonometric degree of precision is obtained when ωe = m,
and ω

′
e = m1 and in this case the maximal trigonometric degree of

precision is (m + m1)n− 1.

Remark 2.1 If k = k
′
we get a particular case of Birkoff (2.1)

type quadrature with maximal trigonometric degree of precision with
equidistant nodes and equal multiplicities at each node. In this form
the problem was proposed and solved in [5].

The proof of Theorem 2.1 can be seen as an application of Pois-
son summation formula . Let g be 2π-periodic function of bounded
variation and let g be regular; i.e., the value of g at any jump x0 is
(g(x0 + 0) + g(x0 − 0))/2. Then

g(x) ∼
∞∑

m=−∞
ĝ(m) eimx, ĝ(m) :=

1
2π

∫ 2π

0
g(x) e−imx dx,

where ĝ(m) is the mth Fourier coefficient of g. Applying this formula
to the function

g(x) =
n−1∑
j=0

f(x + 2jπ/n)

that is 2π/n-periodic we obtain a Poisson type summation formula

1
n

n−1∑
j=0

f(a + 2jπ/n) =
∞∑

ν=−∞
f̂(nν) einν a . (2.2)

By using the formula (2.2) with a = −π and f (ks) for f , we obtain

1
n

f (ks)
n,e =

∞∑
ν=−∞

̂f (ks)(nν)(−1)nν (2.3)

=
ω∑

ν=−ω

(−1)nν(nνi)ks f̂(nν) +
∑
|ν|≥ω+1

(−1)nν f̂ks(nν)
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and analogously, substituting a = −π + π/n in (2.2) we obtain

1
n

f
(k
′
j)

n,o =
∞∑

ν=−∞

̂
f (k
′
j)(nν)(−1)nν−ν (2.4)

=
ω∑

ν=−ω

(−1)nν−ν(nνi)k
′
j f̂(nν) +

∑
|ν|≥ω+1

(−1)nν−ν f̂k
′
j (nν).

Multiplying (2.3) by a complex number cs/nks and (2.4) by a complex

number dj/nk
′
j and summing them in s from 0 to m−1 and in j from

0 to m1 − 1, we get the following identity

2π

n

m−1∑
s=0

cs

nks
f (ks)

n,e +
2π

n

m1−1∑
j=0

dj

nk
′
j

f
(k
′
j)

n,o (2.5)

= 2π
m−1∑
s=0

cs

ω∑
ν=−ω

(−1)nν(iν)ks f̂(nν)

+ 2π

m1−1∑
j=0

dj

ω∑
ν=−ω

(−1)nν−ν(iν)k
′
j f̂(nν)

+ 2π
m−1∑
s=0

cs

nks

∑
|ν|≥ω+1

(−1)nν f̂ks(nν)

+ 2π

m1−1∑
j=0

dj

nk
′
j

∑
|ν|≥ω+1

(−1)nν−ν f̂k
′
j (nν) .

The method of the proof. The above formula holds for any c =
(c0, c1, . . . , cm−1) and d = (d0, d1, . . . , dm1−1) and each non-negative
integer ω. Our goal now is to find a formula of type (2.1) that holds
for all trigonometric polynomials f in T(ω+1)n−1 with maximal ω.
Lemma 2.1 Suppose that a quadrature formula of type (2.1) is exact
for each trigonometric polynomial f ∈ T(ω+1)n−1, where ω is non-
negative integer. There are three possible cases:

(1) If ω < ωe + ω′e − 1, then such a quadrature type (2.1) is not
unique.

(2) If ω > ωe + ω′e − 1, then such a quadrature of type (2.1) does
not exist.
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(3) If ω = ωe+ω′e−1, then such a quadrature type (2.1) is uniquely
determined if ωo + ω′o ≤ ωe + ω′e − 1, and in this case the uniquely
determined c and d are real. Moreover, if ωo + ω′o > ωe + ω′e − 1,
then there are many quadrature formulae type (2.1) which are exact
in T(ωe+ω′e)n−1.
Conclusion. The maximum ω such that a QF type (2.1) is exact in
T(ω+1)n−1 is ω = ωe + ω′e − 1. In other words the maximal trigono-
metric degree of precision of a QF type (2.1) is (ωe + ω′e)n− 1 and it
is determined by the cardinality of only the even integers in the data
k,k

′
.

Proof. We give the proof of Lemma 2.1. The proof of Lemma 2.1
requires a known result on determinants: Let m1 < m2 < · · · < mq

be distinct real numbers and let t1 < t2 < · · · < tq be positive
numbers. Then the determinant det[tmj

k ]qk=1
q

j=1
> 0. By the identity

(2.5) it follows that a QF type (2.1) holds for f ∈ T(ω+1)n−1 if and
only if the following equality holds for each f ∈ Tn(ω+1)−1:

∫ π

−π
f(t) dt =

m−1∑
s=0

cs

ω∑
ν=−ω

(iν)ks(−1)nν f̂(nν)

+
m1−1∑
j=0

dj

ω∑
ν=−ω

(iν)k′j (−1)nν−ν f̂(nν) .

The above is a linear equation with respect to f ; hence, it will hold
in Tn(ω+1)−1 if it holds for f(t) = eiqnt (q = 0,±1,±2, . . . ,±ω). This
leads to the following system of equations to determine c and d. In
case k′0 = 0 we have

c0 + d0 = 1 (2.6)
m−1∑
s=0

(iν)ks cs + (−1)ν
m1−1∑
j=0

(iν)k
′
j dj = 0 (ν = ±1, . . . ,±ω).

In the case k
′
0 > 0 the first equation of the system (2.6) becomes

c0 = 1 and the other equations remain the same. First we consider
the case k

′
0 = 0. Set cs = c

′
s+ic′′s s = 0, 1, . . . , m−1 and dj = d′j +id′′j

j = 0, 1, . . . , m1− 1 in (2.6) and separate the equations into real and
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imaginary parts. This leads to the following two systems of equations
that are coupled (mixed) with respect to the even and odd order
integers:

c′0 + d′0 = 1
m−1∑

s=0,ks even

c′s(−1)ks/2νks +
m−1∑

s=0,ks odd

c′′s(−1)(ks+1)/2νks

+(−1)ν
m1−1∑

j=0,k′j even

d
′
j(−1)k′j/2νk′j

+(−1)ν
m1−1∑

j=0,k′j odd

d′′j (−1)(k′j+1)/2νk′j = 0,

ν = ±1, . . . ,±ω.

and

c′′0 + d′′0 = 1
m−1∑

s=0,ks even

c′′s(−1)ks/2νks +
m−1∑

s=0,ks odd

c′s(−1)(ks−1)/2νks

+(−1)ν
m1−1∑

j=0,k′j even

d′′j (−1)k′j/2νk′j

+(−1)ν
m1−1∑

j=0,k′j odd

d′j(−1)(k′j−1)/2νk′j = 0

ν = ±1, . . . ,±ω.

The above two systems are coupled with respect to the even and the
odd components of k and k′. By simply adding and subtracting the
equations for ν and −ν, we uncoupled the above two systems in four
systems of linear equations for c′s, d′j , c

′′
s , d
′′
j :
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c′0 + d′0 = 1 (2.7)
m−1∑

s=0,ks even

c′s(−1)ks/2νks

+(−1)ν
m1−1∑

j=0,k′j even

d′j(−1)k′j/2νk′j = 0

ν = 1, . . . , ω ;

c′′0 + d′′0 = 0 (2.8)
m−1∑

s=0,ks even

c′′s(−1)ks/2νks

+(−1)ν
m1−1∑

j=0,k′j even

d′′j (−1)k′j/2νk′j = 0

ν = 1, . . . , ω ;

m−1∑
s=1,ks odd

c′s(−1)(ks−1)/2νks (2.9)

+(−1)ν
m1−1∑

j=1,k′jodd

d′j(−1)(k′j−1)/2νk′j = 0

ν = 1, . . . , ω ;

m−1∑
s=1,ks odd

c′′s(−1)(ks+1)/2νks (2.10)

+(−1)ν
m1−1∑

j=1,k′jodd

d′′j (−1)(k′j+1)/2νk′j = 0

ν = 1, . . . , ω ;
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The system (2.7) is non-homogeneous while the other three (2.8)–
(2.10) are homogeneous. The linear systems (2.7) and (2.8) have the
same coefficient matrix. If ωe and ω′e denote the number of even
integers in k and k′, respectively, it is clear that we have infinitely
many solutions in the case ω+1 < ωe+ω′e. However, if ω+1 = ωe+ω′e
then by using Laplace expansion with respect to the first ωe columns
of the square determinant ∆ of the coefficient matrix we obtain (see
[2] for details) sign(∆) = (−1)(l1 + 1)(l + 1)− l1(l1 + 1)/2 �= 0.
Thus, when ω = ωe + ω′e − 1 the system (2.7) has a unique solution.
Since the determinant of the coefficient matrix in (2.8) is also ∆, and
since (2.8) is homogeneous, we have c′′s = 0, s = 0, 1, . . . , m − 1 (ks

even) and d′′j = 0, j = 0, 1, . . . , m1 − 1 (k′j even). Thus, cs and dj

are real for ks and k′j even. On the other hand (2.9) and (2.10)
have the same coefficient matrix and if ωo + ω′o < ωe + ω′e − 1 = ω
then c′s = c′′s = 0, s = 1, . . . , m − 1 (ks odd) and d′j = d′′j = 0, j =
1, . . . , m1 − 1 (k′j odd). However, if ωo + ω′o > ωe + ω′e − 1 there are
infinitely many solutions. It remains to show that if ω > ωe + ω′e− 1
then a QF type (2.1) having degree of precision (ω+1)n−1 does not
exist. This follows easily, because if ω = ωe + ω′e, then the system
of equations (2.7) with ν = 1, . . . , ωe + ω′e is a homogeneous system
with ωe + ω

′
e unknowns and the determinant of its coefficient matrix

is nonzero. So, c′0 = d′0 = 0 which contradicts the first equation
c′0 + d′0 = 1. This completes the proof of Lemma 2.1 in the case
k′0 = 0. In the case k′0 > 0, the system of equations (2.7) becomes

c′0 = 1
m−1∑

s=0,ks even

c′s(−1)ks/2νks + (−1)ν
m1−1∑

j=0,k′j even

d′j(−1)k′j/2νk′j = 0

ν = 1, . . . , ω

and the proofs of (1), (2), and (3) remains unchanged. This com-
pletes the proof of Lemma 2.1. �

Proof. The proof of Theorem 2.1 follows directly from Lemma
2.1. �

Example 2.1 Let m = 1, m1 = 1, k0 = 0, and k
′
0 > 0 even. The cor-

responding Birkhoff (0, k
′
0) trigonometric interpolation problem was
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studied in [10]. In this case, the unique QF of maximal trigonometric
degree of precision is:

∫ π

−π
f(t)dt =

2π

n

(
f (0)

n,e +
(−1)k

′
0/2

nk
′
0

f
(k
′
0)

n,o

)

and the maximal trigonometric degree of precision is equal to 2n−1.
This QF can be verified by integration of the (0, k

′
0) interpolation

formula in [10].
Example 2.2 In the particular case k = k

′
the system of equa-

tions to determine the coefficients can be simplified and the maximal
trigonometric degree of precision is 2ωe − 1 (details can be found in
[5]).

Example 2.3 Let k
′
= (k1, k2, . . . , km−1) and k = (0, k1, k2, . . . , km−1).

In this case the systems of equations analogous to (2.7) and (2.8) are
as follows, provided k1, k2, . . . , kl are even and the rest are odd:

c
′
0 = 1, c

′
0 +

l∑
s=1

(c
′
s + d

′
s)(−1)ks/2(2ν)ks = 0

ν = 1, 2, . . . , ωe − 1 = l (ks even)

c
′
0 +

l∑
s=1

(c
′
s − d

′
s)(−1)ks/2(2ν + 1)ks = 0

ν = 0, 1, 2, . . . , l − 1 (ks even) .
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Abstract

Interpolation was a topic in which Sharma was viewed as
an almost uncontested world expert by his collaborators and
many other colleagues. We survey recent results for exponen-
tial sums and linear combinations of shifted Gaussians which
were obtained via interpolation. To illustrate the method ex-
ploiting the Pinkus-Smith Improvement Theorem for spans of
Descartes systems, we present the proof of a Chebyshev-type
inequality. Finally, in Section 6 we present three simply for-
mulated new results concerning Turán-type reverse Markov in-
equalities.

1 Introduction and Notation

In his book [2] Braess writes “The rational functions and exponen-
tial sums belong to those concrete families of functions which are
the most frequently used in nonlinear approximation theory. The
starting point of consideration of exponential sums is an approxima-
tion problem often encountered for the analysis of decay processes
in natural sciences. A given empirical function on a real interval

119
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is to be approximated by sums of the form
∑n

j=1 aje
λjt, where the

parameters aj and λj are to be determined, while n is fixed.” Let

En :=

{
f : f(t) = a0 +

n∑
j=1

aje
λjt , aj , λj ∈ R

}
.

So En is the collection of all n + 1 term exponential sums with con-
stant first term. Schmidt [21] proved that there is a constant c(n)
depending only on n so that

‖f ′‖[a+δ,b−δ] ≤ c(n)δ−1‖f‖[a,b]

for every f ∈ En and δ ∈ (
0, 1

2(b− a)
)
. Here, and in what follows,

‖·‖[a,b] denotes the uniform norm on [a, b]. The main result, Theorem
3.2, of [5] shows that Schmidt’s inequality holds with c(n) = 2n− 1.
That is,

sup
0�=f∈En

|f ′(y)|
‖f‖[a,b]

≤ 2n− 1
min{y − a, b− y} , y ∈ (a, b) . (1.1)

In this Bernstein-type inequality even the pointwise factor is sharp
up to a multiplicative absolute constant; the inequality

1
e− 1

n− 1
min{y − a, b− y} ≤ sup

0�=f∈En

|f ′(y)|
‖f‖[a,b]

, y ∈ (a, b) ,

is established by Theorem 3.3 in [5].
Bernstein-type inequalities play a central role in approximation

theory via a method developed by Bernstein himself, which turns
Bernstein-type inequalities into what are called inverse theorems of
approximation; see, for example, the books by Lorentz [16] and by
DeVore and Lorentz [8]. From (1.1) one can deduce in a standard
fashion that if there is a sequence (fn)∞n=1 of exponential sums with
fn ∈ En and

‖f − fn‖[a,b] = O(n−m(log n)−2) , n = 2, 3, . . . ,

where m ∈ N is a fixed integer, then f is m times continuously
differentiable on (a, b). Let Pn be the collection of all polynomials
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of degree at most n with real coefficients. Inequality (1.1) can be
extended to En replaced by Ẽn, where Ẽn is the collection of all
functions f of the form

f(t) = a0 +
N∑

j=1

Pmj (t)e
λjt ,

a0 , λj ∈ R , Pmj ∈ Pmj ,
N∑

j=1

(mj + 1) ≤ n .

In fact, it is well-known that Ẽn is the uniform closure of En on
any finite subinterval of the real number line. For a complex-valued
function f defined on a set A let

‖f‖A := ‖f‖L∞A := ‖f‖L∞(A) := sup
x∈A
{|f(x)|} ,

‖f‖LpA := ‖f‖Lp(A) :=
(∫

A
|f(x)|p dx

)1/p

, p > 0 ,

whenever the Lebesgue integral exists. We focus on the class

Gn :=

{
f : f(t) =

n∑
j=1

aje
−(t−λj)2

, aj , λj ∈ R

}
,

the class G̃n, the collection of all functions f of the form

f(t) =
N∑

j=1

Pmj (t)e
−(t−λj)2

,

λj ∈ R , Pmj ∈ Pmj ,
N∑

j=1

(mj + 1) ≤ n ,

and the class G̃∗n, the collection of all functions f of the form

f(t) =
N∑

j=1

Pmj (t)e
−(t−λj)2

,
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λj ∈ [−n1/2, n1/2] , Pmj ∈ Pmj ,
N∑

j=1

(mj + 1) ≤ n .

In other words, Gn is the collection of n term linear combinations
(over R) of shifted Gaussians. Note that G̃n is the uniform closure of
Gn on any finite subinterval of the real line. Let W (t) := exp(−t2).
Combining Corollaries 1.5 and 1.8 in [9] and recalling that for the
weight W the Mhaskar-Rachmanov-Saff number an defined by (1.4)
in [9] satisfies an ≤ c1n

1/2 with a constant c1 independent of n, we
obtain that

inf
P∈Pn

‖(P − g)W‖Lq(R) ≤ c2n
−m/2‖g(m)W‖Lq(R)

with a constant c2 independent of n, whenever the norm on the right-
hand side is finite for some m ∈ N and q ∈ [1,∞]. As a consequence

inf
f∈G̃∗n

‖f − gW‖Lq(R) ≤ c3n
−m/2

m∑
k=0

‖(1 + |t|)m−k(gW )(k)(t)‖Lq(R)

with a constant c3 independent of n whenever the norms on the right-
hand side are finite for each k = 0, 1, . . . , m with some q ∈ [1,∞].
Replacing gW by g, we conclude that

inf
f∈G̃∗n

‖f − g‖Lq(R) ≤ c3n
−m/2

m∑
k=0

‖(1 + |t|)m−kg(k)(t)‖Lq(R) (1.2)

with a constant c3 independent of n whenever the norms on the right-
hand side are finite for each k = 0, 1, . . . , m with some q ∈ [1,∞].

2 A Survey of Recent Results

Theorems 2.1–2.5 were proved in [12].

Theorem 2.1 There is an absolute constant c4 such that

|U ′n(0)| ≤ c4n
1/2 ‖Un‖R
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for all Un of the form Un = PnQn with Pn ∈ G̃n and an even Qn ∈
Pn. As a consequence

‖P ′n‖R ≤ c4n
1/2 ‖Pn‖R

for all Pn ∈ G̃n.

We remark that a closer look at the proof shows that c4 = 5 in the
above theorem is an appropriate choice in the theorem above.

Theorem 2.2 There is an absolute constant c5 such that

‖U ′n‖Lq(R) ≤ c
1+1/q
5 n1/2 ‖Un‖Lq(R)

for all Un ∈ G̃n and q ∈ (0,∞).

Theorem 2.3 There is an absolute constant c6 such that

‖U (m)
n ‖Lq(R) ≤ (c1+1/q

6 nm)m/2‖Un‖Lq(R)

for all Un ∈ G̃n, q ∈ (0,∞], and m = 1, 2, . . ..

We remark that a closer look at the proofs shows that c5 = 180π in
Theorem 2.2 and c6 = 180π in Theorem 2.3 are suitable choices.

Our next theorem may be viewed as a slightly weak version of
the right inverse theorem of approximation that can be coupled with
the direct theorem of approximation formulated in (1.2).

Theorem 2.4 Suppose q ∈ [1,∞], m is a positive integer, ε > 0,
and f is a function defined on R. Suppose also that

inf
fn∈G̃n

‖fn − f‖Lq(R) ≤ c7n
−m/2(log n)−1−ε , n = 2, 3, . . . ,

with a constant c7 independent of n. Then f is m times differentiable
almost everywhere in R. Also, if

inf
fn∈G̃∗n

‖fn − f‖Lq(R) = c7n
−m/2(log n)−1−ε , n = 2, 3, . . . ,

with a constant c7 independent of n, then, in addition to the fact that
f is m times differentiable almost everywhere in R, we also have

‖(1 + |t|)m−jf (j)(t)‖Lq(R) <∞ , k = 0, 1, . . . , m .
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Theorem 2.5 There is an absolute constant c8 such that

‖U ′n‖Lq [y−δ/2,y+δ/2] ≤ c
1+1/q
8

(n

δ

)
‖Un‖Lq [y−δ,y+δ]

for all Un ∈ G̃n, q ∈ (0,∞], y ∈ R, and δ ∈ (0, n1/2].

In [18] H. Mhaskar writes “Professor Ward at Texas A&M Univer-
sity has pointed out that our results implicitly contain an inequality,
known as Bernstein inequality, in terms of the number of neurons,
under some conditions on the minimal separation. Professor Erdélyi
at Texas A&M University has kindly sent us a manuscript in prepa-
ration, where he proves this inequality purely in terms of the number
of neurons, with no further conditions. This inequality leads to the
converse theorems in terms of the number of neurons, matching our
direct theorem in this theory. Our direct theorem in [17] is sharp
in the sense of n-widths. However, the converse theorem applies to
individual functions rather than a class of functions. In particular, it
appears that even if the cost of approximation is measured in terms
of the number of neurons, if the degrees of approximation of a par-
ticular function by Gaussian networks decay polynomially, then a
linear operator will yield the same order of magnitude in the error in
approximating this function. We find this astonishing, since many
people have told us based on numerical experiments that one can
achieve a better degree of approximation by non-linear procedures
by stacking the centers near the bad points of the target functions,”

Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. The
collection of all linear combinations of of eλ0t, eλ1t, . . . , eλnt over R

will be denoted by

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} .

Elements of E(Λn) are called exponential sums of n+1 terms. New-
man’s inequality (see [3] and [19]) is an essentially sharp Markov-
type inequality for E(Λn) on [0, 1] in the case when each λj is non-
negative.

Theorem 2.6 (Newman’s Inequality ) Let

Λn := {λ0 < λ1 < · · · < λn}



Inequalities for Exponential Sums 125

be a set of nonnegative real numbers. Then

2
3

n∑
j=0

λj ≤ sup
0�=P∈E(Λn)

‖P ′‖(−∞,0]

‖P‖(−∞,0]
≤ 9

n∑
j=0

λj .

An Lp version of this may be found in [3], [6], and [10].

Theorem 2.7 Let Λn := {λ0 < λ1 < · · · < λn} be a set of nonneg-
ative real numbers. Let 1 ≤ p ≤ ∞. Then

‖Q′‖Lp(−∞,0] ≤ 9


 n∑

j=0

λj


 ‖Q‖Lp(−∞,0]

for every Q ∈ E(Λn).

The following Lp[a, b] (1 ≤ p ≤ ∞) analogue of Theorem 2.7 has
been established in [1].

Theorem 2.8 Let Λn := {λ0 < λ1 < · · · < λn} be a set of real
numbers, a, b ∈ R , a < b, and 1 ≤ p ≤ ∞. There is a positive
constant c9 = c9(a, b) depending only on a and b such that

sup
0�=P∈E(Λn)

‖P ′‖Lp[a,b]

‖P‖Lp[a,b]
≤ c9


n2 +

n∑
j=0

|λj |

 .

Theorem 2.8 was proved earlier in [4] and [10] under the addi-
tional assumptions that λj ≥ δj for each j with a constant δ > 0
and with c9 = c9(a, b) replaced by c9 = c9(a, b, δ) depending only
on a, b, and δ. The novelty of Theorem 2.8 was the fact that
Λn := {λ0 < λ1 < · · · < λn} is an arbitrary set of real numbers;
not even the non-negativity of the exponents λj is needed.

In [11] the following Nikolskii-Markov type inequality has been
proved for E(Λn) on (−∞, 0].

Theorem 2.9 Let Λn := {λ0 < λ1 < · · · < λn} be a set of non-
negative real numbers. Suppose 0 < q ≤ p ≤ ∞. Let µ be a
non-negative integer. There are constants c10 = c10(p, q, µ) > 0
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and c11 = c11(p, q, µ) depending only on p, q, and µ such that for
A := (−∞, 0] we have

c10


 n∑

j=0

λj




µ+ 1
q
− 1

p

≤ sup
P∈E(Λn)

‖P (µ)‖LpA

‖P‖LqA
≤ c11


 n∑

j=0

λj




µ+ 1
q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞ and for all µ ≥ 0,
while the upper bound holds when µ = 0 and 0 < q ≤ p ≤ ∞, and
when µ ≥ 1, p ≥ 1, and 0 < q ≤ p ≤ ∞. Also, there are constants
c10 = c10(q, µ) > 0 and c11 = c11(q, µ) depending only on q and µ
such that

c10


 n∑

j=0

λj




µ+ 1
q

≤ sup
P∈E(Λn)

|P (µ)(y)|
‖P‖Lq(−∞,y]

≤ c11


 n∑

j=0

λj




µ+ 1
q

for every y ∈ R.

Motivated by a question of Michel Weber (Strasbourg) we proved
the following two theorems in [13].

Theorem 2.10 Let

Λn := {λ0 < λ1 < · · · < λn}

be a set of real numbers. Let a, b ∈ R , a < b, 0 < q ≤ p ≤ ∞, and

M(Λn, p, q) :=


n2 +

n∑
j=1

|λj |



1
q
− 1

p

.

There are constants c12 = c12(p, q, a, b) > 0 and c13 = c13(p, q, a, b)
depending only on p, q, a, and b such that

c12M(Λn, p, q) ≤ sup
P∈E(Λn)

‖P‖Lp[a,b]

‖P‖Lq [a,b]
≤ c13M(Λn, p, q) .
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Theorem 2.11 Let

Λn := {λ0 < λ1 < · · · < λn}
be a set of real numbers. Let a, b ∈ R , a < b, 0 < q ≤ p ≤ ∞ , and

M(Λn, p, q) :=


n2 +

n∑
j=0

|λj |



1
q
− 1

p

.

There are constants c14 = c14(p, q, a, b) > 0 and c15 = c15(p, q, a, b)
depending only on p, q, a, and b such that

c14M(Λn, p, q) ≤ sup
P∈E(Λn)

‖P ′‖Lp[a,b]

‖P‖Lq [a,b]
≤ c15M(Λn, p, q) ,

where the lower bound holds for all 0 < q ≤ p ≤ ∞, while the upper
bound holds when p ≥ 1 and 0 < q ≤ p ≤ ∞ .

The lower bounds in these inequalities were shown by a method
in which the Pinkus-Smith Improvement Theorem plays a central
role. We formulate the useful lemmas applied in the proofs of these
lower bounds. To emphasize the power of the technique of inter-
polation, we present the short proofs of these lemmas. Then these
lemmas are used to establish the Chebyshev-type inequality below
for exponential sums.

Theorem 2.12 We have

|f(y)| ≤ exp(γ(|y|+ δ))
(

2|y|
δ

)n

‖f‖[−δ,δ] , y ∈ R \ [−δ, δ] ,

for all f ∈ Ẽn of the form

f(t) = a0 +
N∑

j=1

Pmj (t)e
λjt ,

a0 ∈ R , λj ∈ [−γ, γ] , Pmj ∈ Pmj ,
N∑

j=1

(mj + 1) ≤ n ,

and for all γ > 0 .
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3 Lemmas

Our first lemma, which can be proved by a simple compactness ar-
gument, may be viewed as a simple exercise.

Lemma 3.1 Let ∆n := {δ0 < δ1 < · · · < δn} be a set of real num-
bers. Let a, b, c ∈ R , a < b. Let w �= 0 be a continuous function
defined on [a, b] . Let q ∈ (0,∞]. Then there exists a 0 �= T ∈ E(∆n)
such that |T (c)|

‖Tw‖Lq [a,b]
= sup

P∈E(∆n)

|P (c)|
‖Pw‖Lq [a,b]

,

and there exists a 0 �= S ∈ E(∆n) such that

|S′(c)|
‖Sw‖Lq [a,b]

= sup
P∈E(∆n)

|P ′(c)|
‖Pw‖Lq [a,b]

.

Our next result is an essential tool in proving our key lemmas,
Lemmas 3.3 and 3.4.

Lemma 3.2 Let ∆n := {δ0 < δ1 < · · · < δn} be a set of real num-
bers. Let a, b, c ∈ R , a < b < c. Let q ∈ (0,∞]. Let T and S be
the same as in Lemma 3.1. Then T has exactly n zeros in [a, b] by
counting multiplicities. If δn ≥ 0 , then S also has exactly n zeros in
[a, b] by counting multiplicities.

The heart of the proof of our theorems is the following pair of com-
parison lemmas. The proofs of these are based on basic properties
of Descartes systems, in particular on Descartes’ Rule of Signs, and
on a technique used earlier by P.W. Smith and Pinkus. Lorentz as-
cribes this result to Pinkus, although it was Smith [22] who published
it. I learned about the method of proofs of these lemmas from Pe-
ter Borwein, who also ascribes it to Pinkus. This is the proof we
present here. Section 3.2 of [3], for instance, gives an introduction to
Descartes systems. Descartes’ Rule of Signs is stated and proved on
page 102 of [3].

Lemma 3.3 Let

∆n := {δ0 < δ1 < · · · < δn} and Γn := {γ0 < γ1 < · · · < γn}



Inequalities for Exponential Sums 129

be sets of real numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n . Let
a, b, c ∈ R , a < b ≤ c. Let 0 �= w be a continuous function defined
on [a, b]. Let q ∈ (0,∞]. Then

sup
P∈E(∆n)

|(P (c)|
‖Pw‖Lq [a,b]

≤ sup
P∈E(Γn)

|P (c)|
‖Pw‖Lq [a,b]

.

Under the additional assumption δn ≥ 0, we also have

sup
P∈E(∆n)

|(P ′(c)|
‖Pw‖Lq [a,b]

≤ sup
P∈E(Γn)

|P ′(c)|
‖Pw‖Lq [a,b]

.

Lemma 3.4 Let

∆n := {δ0 < δ1 < · · · < δn} and Γn := {γ0 < γ1 < · · · < γn}
be sets of real numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n . Let
a, b, c ∈ R , c ≤ a < b . Let 0 �= w be a continuous function defined
on [a, b]. Let q ∈ (0,∞]. Then

sup
P∈E(∆n)

|(P (c)|
‖Pw‖Lq [a,b]

≥ sup
P∈E(Γn)

|P (c)|
‖Pw‖Lq [a,b]

.

Under the additional assumption γ0 ≤ 0, we also have

sup
P∈E(∆n)

|(Q′(c)|
‖Qw‖Lq [a,b]

≥ sup
P∈E(Γn)

|Q′(c)|
‖Qw‖Lq[a,b]

.

4 Proofs of the Lemmas

Proof of Lemma 3.1 Since ∆n is fixed, the proof is a standard
compactness argument. We omit the details. �

To prove Lemma 3.2 we need the following two facts: (a) Every
f ∈ E(∆n) has at most n real zeros by counting multiplicities. (b)
If t1 < t2 < · · · < tm are real numbers and k1, k2, . . . , km are positive
integers such that

∑m
j=1 kj = n, then there is a f ∈ E(∆n), f �= 0

having a zero at tj with multiplicity kj for each j = 1, 2, . . . , m.
Proof of Lemma 3.2 We prove the statement for T first. Suppose
to the contrary that

t1 < t2 < · · · < tm
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are real numbers in [a, b] such that tj is a zero of T with multiplicity
kj for each j = 1, 2, . . . , m, k :=

∑m
j=1 kj < n, and T has no other

zeros in [a, b] different from t1, t2, . . . , tm. Let tm+1 := c and km+1 :=
n − k ≥ 1. Choose an 0 �= R ∈ E(∆n) such that R has a zero at
tj with multiplicity kj for each j = 1, 2, . . . , m + 1, and normalize
so that T (t) and R(t) have the same sign at every t ∈ [a, b]. Let
Tε := T − εR. Note that T and R are of the form

T (t) = T̃ (t)
m∏

j=1

(t− tj)kj and R(t) = R̃(t)
m∏

j=1

(t− tj)kj ,

where both T̃ and R̃ are continuous functions on [a, b] having no zeros
on [a, b]. Hence, if ε > 0 is sufficiently small, then |Tε(t)| < |T (t)| at
every t ∈ [a, b] \ {t1, t2, . . . , tm}, so

‖Tεw‖Lq [a,b] < ‖Tw‖Lq [a,b] .

This, together with Tε(c) = T (c), contradicts the maximality of T .
Now we prove the statement for S. Without loss of generality we

may assume that S′(c) > 0. Suppose to the contrary that

t1 < t2 < · · · < tm

are real numbers in [a, b] such that tj is a zero of S with multiplicity
kj for each j = 1, 2, . . . , m, k :=

∑m
j=1 kj < n, and S has no other

zeros in [a, b] different from t1, t2, . . . , tm. Choose a

0 �= Q ∈ span{eδn−kt, eδn−k+1t, . . . , eδnt} ⊂ E(∆n) ,

such that Q has a zero at tj with multiplicity kj for each j =
1, 2, . . . , m, and normalize so that S(t) and Q(t) have the same sign
at every t ∈ [a, b]. Note that S and Q are of the form

S(t) = S̃(t)
m∏

j=1

(t− tj)kj and Q(t) = Q̃(t)
m∏

j=1

(t− tj)kj ,

where both S̃ and Q̃ are continuous functions on [a, b] having no
zeros on [a, b]. Let tm+1 := c and km+1 := 1. Choose an

0 �= R ∈ span{eδn−k−1t, eδn−kt, . . . , eδnt} ⊂ E(∆n)
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such that R has a zero at tj with multiplicity kj for each j =
1, 2, . . . , m + 1, and normalize so that S(t) and R(t) have the same
sign at every t ∈ [a, b]. Note that S and R are of the form

S(t) = S̃(t)
m∏

j=1

(t− tj)kj and R(t) = R̃(t)
m∏

j=1

(t− tj)kj ,

where both S̃ and R̃ are continuous functions on [a, b] having no
zeros on [a, b]. Since δn ≥ 0, it is easy to see that Q′(c)R′(c) < 0,
so the sign of Q′(c) is different from the sign of R′(c). Let U := Q
if Q′(c) < 0, and let U := R if R′(c) < 0. Let Sε := S − εU .
Hence, if ε > 0 is sufficiently small, then |Sε(t)| < |T (t)| at every
t ∈ [a, b] \ {t1, t2, . . . , tm}, so

‖Sεw‖Lq [a,b] < ‖Sw‖Lq[a,b] .

This, together with the inequalities S′ε(c) > S′(c) > 0, contradicts
the maximality of S. �

Proof of Lemma 3.3 We begin with the first inequality. We may
assume that a < b < c. The general case when a < b ≤ c follows by
a standard continuity argument. Let k ∈ {0, 1, . . . , n} be fixed and
let

γ0 < γ1 < · · · < γn , γj = δj , j �= k , and δk < γk < δk+1

(let δn+1 := ∞). To prove the lemma it is sufficient to study the
above cases since the general case follows from this by a finite number
of pairwise comparisons. By Lemmas 3.1 and 3.2, there is a 0 �= T ∈
E(∆n) such that

|T (c)|
‖Tw‖Lq [a,b]

= sup
P∈E(∆n)

|P (c)|
‖Pw‖Lq [a,b]

,

where T has exactly n zeros in [a, b] by counting multiplicities. De-
note the distinct zeros of T in [a, b] by t1 < t2 < · · · < tm, where tj is a
zero of T with multiplicity kj for each j = 1, 2, . . . , m, and

∑m
j=1 kj =

n. Then T has no other zeros in R different from t1, t2, . . . , tm. Let

T (t) =:
n∑

j=0

aje
δjt , aj ∈ R .
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Without loss of generality we may assume that T (c) > 0. We have
T (t) > 0 for every t > c; otherwise, in addition to its n zeros in [a, b]
(by counting multiplicities), T would have at least one more zero in
(c,∞), which is impossible. Hence

an := lim
t→∞T (t)e−δnt ≥ 0 .

Since E(∆n) is the span of a Descartes system on (−∞,∞), it follows
from Descartes’ Rule of Signs that

(−1)n−jaj > 0 , j = 0, 1, . . . , n .

Choose R ∈ E(Γn) of the form

R(t) =
n∑

j=0

bje
γjt , bj ∈ R ,

so that R has a zero at each tj with multiplicity kj for each j =
1, 2, . . . , m, and normalize so that R(c) = T (c)(> 0) (this R ∈ E(Γn)
is uniquely determined). Similarly to an ≥ 0 we have bn ≥ 0. Since
E(Γn) is the span of a Descartes system on (−∞,∞), Descartes’
Rule of Signs yields

(−1)n−jbj > 0 , j = 0, 1, . . . , n .

We have

(T −R)(t) = ake
δkt − bke

γkt +
n∑

j=0
j �=k

(aj − bj)eδjt .

Since T −R has altogether at least n+1 zeros at t1, t2, . . . , tm, and c
(by counting multiplicities), it does not have any zero in R different
from t1, t2, . . . , tm, and c. Since

(eδ0t, eδ1t, . . . , eδkt, eγkt, eδk+1t, . . . , eδnt)

is a Descartes system on (−∞,∞), Descartes’ Rule of Signs implies
that the sequence

(a0 − b0, a1 − b1, . . . , ak−1 − bk−1, ak,−bk, ak+1 − bk+1, . . . , an − bn)
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strictly alternates in sign. Since (−1)n−kak > 0, this implies that
an − bn < 0 if k < n, and −bn < 0 if k = n, so

(T −R)(t) < 0 , t > c .

Since each of T , R, and T −R has a zero at tj with multiplicity kj for
each j = 1, 2, . . . , m;

∑m
j=1 kj = n, and T − R has a sign change (a

zero with multiplicity 1) at c, we can deduce that each of T , R, and
T − R has the same sign on each of the intervals (tj , tj+1) for every
j = 0, 1, . . . , m with t0 := −∞ and tm+1 := c. Hence |R(t)| ≤ |T (t)|
holds for all t ∈ [a, b] ⊂ [a, c] with strict inequality at every t different
from t1, t2, . . . tm. Combining this with R(c) = T (c), we obtain

|R(c)|
‖Rw‖Lq [a,b]

≥ |T (c)|
‖Tw‖Lq [a,b]

= sup
P∈E(∆n)

|P (c)|
‖Pw‖Lq [a,b]

.

Since R ∈ E(Γn), the first conclusion of the lemma follows from this.
Now we start the proof of the second inequality of the lemma.

Although it is quite similar to that of the first inequality, we present
the details. We may assume that a < b < c and δn > 0. The general
case when a < b ≤ c and δn ≥ 0 follows by a standard continuity
argument. Let k ∈ {0, 1, . . . , n} be fixed and let

γ0 < γ1 < · · · < γn , γj = δj , j �= k , and δk < γk < δk+1

(let δn+1 := ∞). To prove the lemma it is sufficient to study the
above cases since the general case follows from this by a finite number
of pairwise comparisons. By Lemmas 3.1 and 3.2, there is an 0 �=
S ∈ E(∆n) such that

|S′(c)|
‖Sw‖Lq [a,b]

= sup
P∈E(∆n)

|P ′(c)|
‖Pw‖Lq [a,b]

,

where S has exactly n zeros in [a, b] by counting multiplicities. De-
note the distinct zeros of S in [a, b] by t1 < t2 < · · · < tm, where tj is a
zero of S with multiplicity kj for each j = 1, 2, . . . , m, and

∑m
j=1 kj =

n. Then S has no other zeros in R different from t1, t2, . . . , tm. Let

S(t) =:
n∑

j=0

aje
δjt , aj ∈ R .
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Without loss of generality we may assume that S(c) > 0. Since
δn > 0, we have limt→∞ S(t) = ∞; otherwise, in addition to its n
zeros in (a, b), S would have at least one more zero in (c,∞), which
is impossible.

Because of the extremal property of S, we have S′(c) �= 0. We
show that S′(c) > 0. To see this observe that Rolle’s Theorem implies
that S′ ∈ E(∆n) has at least n−1 zeros in [t1, tm]. If S′(c) < 0, then
S(tm) = 0 and limt→∞ S(t) = ∞ imply that S′ has at least 2 more
zeros in (tm,∞) (by counting multiplicities). Thus S′(c) < 0 would
imply that S′ has at least n + 1 zeros in [a,∞), which is impossible.
Hence S′(c) > 0, indeed. Also an := limt→∞ S(t)e−δnt ≥ 0 . Since
E(∆n) is the span of a Descartes system on (−∞.∞), it follows from
Descartes’ Rule of Signs that

(−1)n−jaj > 0 , j = 0, 1, . . . , n .

Choose R ∈ E(Γn) of the form

R(t) =
n∑

j=0

bje
γjt , bj ∈ R ,

so that R has a zero at each tj with multiplicity kj for each j =
1, 2, . . . , m, and normalize so that R(c) = S(c)(> 0) (this R ∈ E(Γn)
is uniquely determined). Similarly to an ≥ 0 we have bn ≥ 0. Since
E(Γn) is the span of a Descartes system on (−∞,∞), Descartes’
Rule of Signs implies that

(−1)n−jbj > 0 , j = 0, 1, . . . , n .

We have

(S −R)(t) = ake
δkt − bke

γkt +
n∑

j=0
j �=k

(aj − bj)eδjt .

Since S−R has altogether at least n+1 zeros at t1, t2, . . . , tm, and c
(by counting multiplicities), it does not have any zero in R different
from t1, t2, . . . , tm, and c. Since

(eδ0t, eδ1t, . . . , eδkt, eγkt, eδk+1t, . . . , eδnt)
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is a Descartes system on (−∞,∞), Descartes’ Rule of Signs implies
that the sequence

(a0 − b0, a1 − b1, . . . , ak−1 − bk−1, ak,−bk, ak+1 − bk+1, . . . , an − bn)

strictly alternates in sign. Since (−1)n−kak > 0, this implies that
an − bn < 0 if k < n and −bn < 0 if k = n, so

(S −R)(t) < 0 , t > c .

Since each of S, R, and S−R has a zero at tj with multiplicity kj for
each j = 1, 2, . . . , m;

∑m
j=1 kj = n, and S − R has a sign change (a

zero with multiplicity 1) at c, we can deduce that each of S, R, and
S − R has the same sign on each of the intervals (tj , tj+1) for every
j = 0, 1, . . . , m with t0 := −∞ and tm+1 := c. Hence |R(t)| ≤ |S(t)|
holds for all t ∈ [a, b] ⊂ [a, c] with strict inequality at every t different
from t1, t2, . . . tm. Combining this with 0 < S′(c) < R′(c) (recall that
R(c) = S(c) > 0), we obtain

|R′(c)|
‖Rw‖Lq [a,b]

≥ |S′(c)|
‖Sw‖Lq [a,b]

= sup
P∈E(∆n)

|P ′(c)|
‖Pw‖Lq [a,b]

.

Since R ∈ E(Γn), the second conclusion of the lemma follows from
this. �

Proof of Lemma 3.4 The lemma follows from Lemma 3.3 via the
substitution u = −t. �

5 Proof of the Theorem 2.12

Proof of Theorem 2.12 By a well-known and simple limiting
argument we may assume that

f(t) =
n∑

j=0

aje
λjt, −γ ≤ λ0 < λ1 < · · · < λn ≤ γ .

By reasons of symmetry it is sufficient to examine only the case y > δ.
By Lemmas 3.1 – 3.4 we may assume that

λj = γ − (n− j)ε , j = 0, 1, . . . , n ,



136 Erdélyi

for sufficiently small values of ε > 0, that is,

f(t) = eγtPn(e−εt) , Pn ∈ Pn .

Now Chebyshev’s inequality [8, Proposition 2.3, p. 101] implies that

|f(y)| = eγy|Pn(e−εy)| ≤ eγy

(
4e−εy

eεδ − e−εδ

)n

‖Pn(e−εt)‖[−δ,δ]

≤ eγy

(
4e−εy

eεδ − e−εδ

)n

eδy‖f‖[−δ,δ]

≤ eγ(y+δ)

(
4e−εy

eεδ − e−εδ

)n

‖f‖[−δ,δ] ,

and by taking the limit when ε > 0 tends to 0, the theorem follows.
�

6 Turán-Type Reverse Markov Inequalities
on Diamonds

Let ε ∈ [0, 1] and let Dε be the ellipse in the complex plane with
axes [−1, 1] and [−iε, iε]. Let Pc

n(Dε) denote the collection of all
polynomials of degree n with complex coefficients and with all their
zeros in Dε. Let

‖f‖A := sup
z∈A
|f(z)|

for complex-valued functions defined on A. Extending a result of
Turán [23], Erőd [14, III. tétel] claimed that there are absolute con-
stants c1 > 0 and c2 such that

c1(nε +
√

n) ≤ inf
p∈Pc

n(Dε)

‖p′‖Dε

‖p‖Dε

≤ c2(nε +
√

n) .

However, Erőd [14] presented a proof with only c1nε in the lower
bound. It was Levenberg and Poletcky [15] who first published a
correct proof of a result implying the lower bound claimed by Erőd.

Let ε ∈ [0, 1] and let Sε be the diamond in the complex plane
with diagonals [−1, 1] and [−iε, iε]. Let Pc

n(Sε) denote the collection
of all polynomials of degree n with complex coefficients and with all
their zeros in Sε.
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Theorem 6.1 There are absolute constants c1 > 0 and c2 such that

c1(nε +
√

n) ≤ inf
p

‖p′‖Sε

‖p‖Sε

≤ c2(nε +
√

n) ,

where the infimum is taken over all p ∈ Pc
n(Sε) with the property

|p(z)| = |p(−z)| , z ∈ C , (6.1)

or where the infimum is taken over all real p ∈ Pc
n(Sε).

It is an interesting question whether or not the lower bound in The-
orem 6.1 holds when the infimum is taken for all p ∈ Pc

n(ε). As our
next result shows this is the case at least when ε = 1.

Theorem 6.2 There are absolute constants c1 > 0 and c2 such that

c1n ≤ inf
p∈Pc

n(S1)

‖p′‖S1

‖p‖S1

≤ c2n .

The following lemma is the main tool we need for the proofs of the
theorems above.

Lemma 6.3 Let Γ(a, r) be the circle in the complex plane centered
at a with radius r. Let z0 ∈ Γ(a, r). Suppose p ∈ Pc

n has at least m
zeros in the disk D(a, r) bounded by Γ(a, r) and it has all its zeros
in the half-plane H(a, r, z0) containing a and bounded by the line
tangent to Γ(a, r) at z0. Then∣∣∣∣p′(z0)

p(z0)

∣∣∣∣ ≥ m

2r
.

Proof. Let p ∈ Pc
n be of the form

p(z) = c

n∏
k=1

(z − zk) , c , zk ∈ C .

Then

r

∣∣∣∣p′(z0)
p(z0)

∣∣∣∣ =
∣∣∣∣p′(z0)(z0 − a)

p(z0)

∣∣∣∣ =

∣∣∣∣∣
n∑

k=1

z0 − a

z0 − zk

∣∣∣∣∣
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=

∣∣∣∣∣
n∑

k=1

(
1− zk − a

z0 − a

)−1
∣∣∣∣∣

≥
∣∣∣∣∣Re

(
n∑

k=1

(
1− zk − a

z0 − a

)−1
)∣∣∣∣∣

≥
n∑

k=1

Re

((
1− zk − a

z0 − a

)−1
)

≥ m

2
,

since

Re

((
1− zk − a

z0 − a

)−1
)
≥ 1

2
, zk ∈ D(a, r) ,

and

Re

((
1− zk − a

z0 − a

)−1
)

= Re
(

z0 − zk

z0 − a

)
≥ 0 , zk ∈ H(a, r, z0) .

�

Proof of Theorem 6.1 The upper bound can be obtained by
considering

pn(z) := (z2 − 1)�n/2�(z − 1)n−2�n/2� .

We omit the simple calculation. To prove the lower bound we con-
sider three cases.
Case 1: Property (6.1) holds and ε ∈ [n−1/2, 1]. Choose a point z0

on the boundary of Sε such that

|p(z0)| = ‖p‖Sε . (6.2)

Property (6.1) implies that

|p(−z0)| = ‖p‖Sε . (6.3)

Without loss of generality we may assume that z0 ∈ [iε, 1]. A simple
calculation shows that there are disks D1 := D1(ε, c, z0) and D2 :=
D2(ε, c,−z0) in the complex plane such that D1 has radius r = cε−1
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and is tangent to [iε, 1] at z0, D2 has radius r = cε−1 and is tangent
to [−1,−iε] at −z0, and Sε ⊂ D1 ∪ D2 for every sufficiently large
absolute constant c > 0. Since p ∈ Pc

n has each of its zeros in Sε,
either p has at least n/2 zeros in D1 or p has at least n/2 zeros in
D2. In the first case Lemma 6.3 and (6.2) imply

‖p′‖Sε

‖p‖Sε

≥ |p
′(z0)|
‖p‖Sε

=
∣∣∣∣p′(z0)
p(z0)

∣∣∣∣ ≥ n

4r
=

1
4c

nε .

In the other case Lemma 6.3 and (6.3) imply

‖p′‖Sε

‖p‖Sε

≥ |p
′(−z0)|
‖p‖Sε

=
∣∣∣∣p′(−z0)
p(−z0)

∣∣∣∣ ≥ n

4r
=

1
4c

nε .

Case 2: p ∈ Pc
n(ε) is real and ε ∈ [n−1/2, 1]. Choose a point z0 on

the boundary of Sε such that

|p(z0)| = ‖p‖Sε . (6.4)

Without loss of generality we may assume that z0 ∈ [iε, 1] . Since
p ∈ Pc

n(ε) is real, we have

|p(z0)| = ‖p‖Sε . (6.5)

Let D1 := D1(ε, c, z0) and D2 := D2(ε, c, z0) be disks of the complex
plane such that D1 has radius r = cε−1 and is tangent to [iε, 1] at z0

from below, D2 has radius r = cε−1 and is tangent to [−1,−iε] at z0

from above. Denote the boundary of D1 by Γ1 and the boundary of
D2 by Γ2. A simple calculation shows that if the absolute constant
c > 0 is sufficiently large, then Γ1 intersects the boundary of Sε only
at a1 ∈ [−1, iε] and b1 ∈ [−iε, 1], while Γ2 intersects the boundary
of Sε only at a2 ∈ [−1,−iε] and b2 ∈ [iε, 1]. Also, if the absolute
constant c > 0 is sufficiently large, then

|a1−iε| ≤ 1
64

, |a2+iε| ≤ 1
64

, |b1−1| ≤ 1
64

, |b2−1| ≤ 1
64

. (6.6)

In the sequel let the absolute constant c > 0 be so large that inequal-
ities (6.6) hold. If p ∈ Pc

n(ε) has at least αn zeros in D1, then by
using Lemma 6.3 and (6.4), we deduce

‖p′‖Sε

‖p‖Sε

≥ |p
′(z0)|
‖p‖Sε

=
∣∣∣∣p′(z0)
p(z0)

∣∣∣∣ ≥ αn

2r
=

α

2c
nε .
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If p ∈ Pc
n(ε) has at least αn zeros in D2, then by using Lemma 6.3

and (6.5), we deduce

‖p′‖Sε

‖p‖Sε

≥ |p
′(z0)|
‖p‖Sε

=
∣∣∣∣p′(z0)
p(z0)

∣∣∣∣ ≥ αn

2r
=

α

2c
nε .

Hence we may assume that p ∈ Pc
n(ε) has at least (1− α)n zeros in

Sε \D1 and it has at least (1−α)n zeros in Sε \D2. Combining this
with (6.6), we obtain that p ∈ Pc

n(ε) has at least (1− 2α)n zeros in
the disk centered at 1 with radius 1/32. However, we show that this
situation cannot occur if the absolute constant α > 0 is sufficiently
small. Indeed, let p ∈ Pc

n(ε) be of the form p = fg with

f(z) =
n1∏

j=1

(z − uj) and g(z) =
n2∏

j=1

(z − vj) ,

where
uj ∈ C , j = 1, 2, . . . , n1 , n1 ≤ 2αn , (6.7)

and

|vj − 1| ≤ 1
32

, j = 1, 2, . . . , n2 , n2 ≥ (1− 2α)n . (6.8)

Let I be the subinterval of [−1, iε] with endpoint −1 and length
1/32. Let y0 ∈ I be chosen so that |f(y0)| = ‖f‖I . We show that
|p(z0)| < |p(y0)|, a contradiction. Indeed, by Chebyshev’s inequality
[8, Theorem 6.1, p. 75] and (6.7) we have

|f(y0)| ≥
(

1
128

)n1

≥
(

1
128

)2αn

,

hence ∣∣∣∣f(y0)
f(z0)

∣∣∣∣ ≥
(

1
256

)2αn

. (6.9)

Also, (6.8) implies

∣∣∣∣g(y0)
g(z0)

∣∣∣∣ ≥
(

31
16

)n2(√
2 + 1

32

)n2
≥

(
31
24

)(1−2α)n

. (6.10)
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By (6.9) and (6.10),∣∣∣∣p(y0)
p(z0)

∣∣∣∣ =
∣∣∣∣f(y0)
f(z0)

∣∣∣∣
∣∣∣∣g(y0)
g(z0)

∣∣∣∣ ≥
((

1
256

)2α (
31
24

)(1−2α)
)n

> 1 ,

if α > 0 is a sufficiently small absolute constant. This finishes the
proof in this case.
Case 3: ε ∈ [0, n−1/2]. The lower bound of the theorem follows
now from a result of Erőd [14, III. tétel] proved by Levenberg and
Poletcky [15]. �

Proof of Theorem 6.2 Choose a point z0 ∈ S1 such that |p(z0)| =
‖p‖S1 . Without loss of generality we may assume that z0 ∈[
1, 1

2(1 + i)
]
. A simple calculation shows that there is an absolute

constant r > 0 such that the circle Γ := Γ(r, z0) with radius r that
is tangent to [1, i] at z0 and intersects the boundary of S1 only at
a ∈ [−1, i] and b ∈ [−i, 1]. Moreover, if the r > 0 is sufficiently large,
then

|a− i| ≤
√

2
64

and |b− 1| ≤
√

2
64

. (6.11)

We denote the disk with boundary Γ by D := D(r, z0). If p ∈ Pc
n(1)

has at least αn zeros in D, then by Lemma 6.3 we deduce

‖p′‖S1

‖p‖S1

≥ |p
′(z0)|
‖p‖S1

=
∣∣∣∣p′(z0)
p(z0)

∣∣∣∣ ≥ αn

2r
.

Hence we may assume that p ∈ Pc
n(1) has at most αn zeros in D,

and hence that p ∈ Pc
n(1) has at least (1 − α)n zeros in S1 \ D.

However, we show that this situation cannot occur if the absolute
constant α > 0 is sufficiently small. Indeed, let p ∈ Pc

n(1) be of the
form p = fg with

f(z) =
n1∏

j=1

(z − uj) and g(z) =
n2∏

j=1

(z − vj) ,

where
uj ∈ C , j = 1, 2, . . . , n1 , n1 ≤ αn , (6.12)

and

vj ∈ S1 \D , j = 1, 2, . . . , n2 , n2 ≥ (1− α)n . (6.13)
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Let I be the subinterval of [−1,−i] with endpoint −1 and length√
2/4. Let y0 ∈ I be chosen so that |f(y0)| = ‖f‖I . We show that
|p(z0)| < |p(y0)|, a contradiction. Indeed, by Chebyshev’s inequality
[8, Theorem 6.1, p. 75] and (6.12) we have

|f(y0)| ≥
(√

2
16

)n1

≥
(√

2
16

)αn

,

hence ∣∣∣∣f(y0)
f(z0)

∣∣∣∣ ≥
(√

2
32

)αn

. (6.14)

Also, (6.11) and (6.13) imply

∣∣∣∣g(y0)
g(z0)

∣∣∣∣ ≥
(√

2
((

1− 1
64

)2 +
(

1
4

)2
)1/2

)n2

(√
2

(
1 +

(
1
64

)
2
)1/2

)n2

≥
(

66
65

)n2/2

≥
(

66
65

)(1/2−α)n

. (6.15)

By (6.14) and (6.15)∣∣∣∣p(y0)
p(z0)

∣∣∣∣ =
∣∣∣∣f(y0)
f(z0)

∣∣∣∣
∣∣∣∣g(y0)
g(z0)

∣∣∣∣ ≥
((√

2
32

)α (
66
65

)(1/2−α)
)n

> 1

if α > 0 is a sufficiently small absolute constant. �

Motivated by the initial results in this section, Sz. Révész [20]
established the right order Turán type converse Markov inequalities
on convex domains of the complex plane. His main theorem contains
the results in this section as special cases. Révész’s proof is also
elementary, but rather subtle. It is expected to appear in the Journal
of Approximation Theory soon.
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[13] T. Erdélyi, Markov-Nikolskii type inequalities for exponential
sums on finite intervals, Adv. in Math. to appear.



144 Erdélyi
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Abstract

For a triangular array of numbers an,j , n = 2, 3, . . . ,
j = 0, 1, . . . , n, the refinement equation with mask Pn(z) =∑n

j=0 an,jz
j , has for each n, a unique solution φn, which when

suitably normalized, converges to the Gaussian if Pn(z) has
all roots in a sector inside the left half-plane and satisfying
Pn(1) = 1, Pn(−1) = 0. The Gaussian, being the extremal
function that attains the optimal constant in the uncertainty
product, passes this characteristic to φn, whose uncertainty
product converges to the optimal constant. The object is to
analyse this phenomena for φn as well as for the corresponding
wavelets.
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1 Introduction

For n ≥ 2, let

Pn(z) =
n∑

j=0

an,jz
j , (1.1)

be a polynomial with all its roots in the left half-plane {z : � z ≤ 0}
and satisfying

Pn(1) = 1, Pn(−1) = 0. (1.2)

It is known that the refinement equation

φn(x) =
n∑

j=0

2an,jφn(2x− j), x ∈ R, (1.3)

has a unique solution satisfying
∫∞
−∞ φn = 1. Moreover it is shown

in [5] that φn is continuous, non-negative and has support in [0, n].
In the special case Pn(z) = 2−n(z + 1)n, φn is the uniform B-spline
of degree n − 1 with knots at 0, 1, . . . , n. We shall refer to φn as a
refinable function with symbol Pn.

Now suppose that the roots of Pn are −rn,j , j = 1, . . . , n. It is
shown in [2] that if we assume the stronger condition that for some
β in [0, π

2 ),

| arg rn,j | ≤ β, for j = 1, . . . , n, n = 2, 3, . . . ,

and furthermore

σ2
n :=

1
3

n∑
j=1

rn,j

(1 + rn,j)2
→∞ as n→∞, (1.4)

then a suitable shift and scaling of φn converges to the Gaussian
function G(x) := 1√

2π
e−x2/2. To be precise, let

µn :=
n∑

j=1

1
1 + rn,j

(1.5)

and
φ̃n(x) := σnφn(σnx + µn), x ∈ R. (1.6)
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Then φ̃n has mean zero and standard deviation 1 and limn→∞ φ̃n = G
in Lp(R), 1 ≤ p ≤ ∞. Moreover we have convergence in the frequency

domain, i.e., limn→∞
̂̃
φn(u) = Ĝ(u) = e−u2/2, where the convergence

is uniform on R.
The above properties are useful for many applications, e.g., sig-

nal processing, because the Gaussian function gives optimal time-
frequency localisation. Thus we may approximate the Gaussian func-
tion by a refinable function φn with compact support which has fast
algorithms for practical implementation. A natural choice is the uni-
form B-spline of degree n − 1, but it was shown in [2] that other
choices of φn give, in a sense, faster rates of convergence to the
Gaussian.

To make precise the optimal time-frequency localisation of the
Gaussian, we recall Heisenberg’s Uncertainty Principle. For an L2

function φ for which
∫∞
−∞ xj |φ(x)|2dx exists, j = 1, 2, we write

µφ :=

∫∞
−∞ x|φ(x)|2dx

‖φ‖22
(1.7)

and

∆φ :=

{∫∞
−∞(x− µφ)2|φ(x)|2dx

} 1
2

‖φ‖2 . (1.8)

Similarly if
∫∞
−∞ uj |φ̂(u)|2du exists, j = 1, 2, we may define µ

φ̂
and ∆

φ̂
. Thus ∆φ is the standard deviation of the density function

|φ|2/‖φ‖22 and gives a measure of the localisation of φ in the time

domain. Similarly ∆
φ̂

is the standard deviation of
∣∣∣φ̂∣∣∣2 /‖φ̂‖22 and

measures the localisation of φ in the frequency domain. The uncer-
tainty product ∆φ∆

φ̂
gives an overall measure of the time-frequency

localisation of φ. Clearly for any constants c, µ ∈ R, and σ > 0, the
function cφ(σ · −µ) has the same uncertainty product as φ. Heisen-
berg’s Uncertainty Principle states that for any φ as above,

∆φ∆
φ̂
≥ 1

2
, (1.9)

and equality holds if and only if φ = cG(σ · −µ) for some c, µ ∈ R,
and σ > 0 (see [4] for a general discussion). So for the sequence (φn)
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of refinable functions, as above, to approach optimal time-frequency
localisation, we would desire

lim
n→∞∆φn∆

φ̂n
=

1
2
.

This is proved in Section 3 under the further assumption P ′n(−1) = 0.

In applications such as signal processing it is also important to
have good time-frequency localisation for the wavelet corresponding
to the refinable function φn, as above, which is defined as follows.
Let

Φn(x) :=
∫ ∞
−∞

φn(x + y)φn(y)dy, x ∈ R, (1.10)

Qn(z) :=
n−1∑

j=−n+1

Φn(j)zj , z ∈ C \ {0}. (1.11)

Then the wavelet corresponding to φn is defined, up to multiplication
by a constant, as ψn(2 · −1), where ψn is defined by

ψ̂n(u) = einuQn(e−i(u+π))Pn(e−i(u+π))φ̂n(u), u ∈ R. (1.12)

We note that since Pn(−1) = 0, we have ψ̂n(0) = 0. For a
function ψ with ψ̂(0) = 0 (associated with a bandpass filter), the
definition of the uncertainty product is modified to reflect the fact
that ψ̂ treats positive and negative frequency bands separately. Let

µ+

ψ̂
:=

∫ ∞
0

u
∣∣∣ψ̂(u)

∣∣∣2 du

/∫ ∞
0

∣∣∣ψ̂(u)
∣∣∣2 du, (1.13)

∆+

ψ̂
:=

{∫ ∞
0

(u− µ+

ψ̂
)2

∣∣∣ψ̂(u)
∣∣∣2 du

/∫ ∞
0

∣∣∣ψ̂(u)
∣∣∣2 du

} 1
2

, (1.14)

where we assume these are well-defined. (Note that for a real-valued
function ψ, |ψ̂| is even and so

∫∞
0 |ψ̂(u)|2du = 1

2‖ψ̂‖22 and the def-
inition of ∆+

ψ̂
is unaltered by replacing

∫∞
0 by

∫ 0
−∞ in (1.13) and

(1.14).) Then a measure of the time-frequency localisation of ψ is
given by ∆ψ∆+

ψ̂
.
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It is shown in ([3], Theorem 1) that if ψ ∈ L2∩L1 is a real-valued
symmetric or anti-symmetric function that satisfies tψ(t) ∈ L2, ψ′ ∈
L2 and ψ̂(0) = 0, then

∆ψ∆+

ψ̂
>

1
2
,

and the lower bound cannot be improved or attained.
A sequence of functions which are asymptotically optimal are the

modulated Gaussians

Gn(x) := sin(λnx)G(x), n = 1, 2, . . . ,

where λn →∞ as n→∞. To see this we note that

2iĜn(u) = e−(u−λn)2/2 − e−(u+λn)2/2.

Thus µ+

Ĝn
− λn → 0 as n→∞ and so

lim
n→∞

(
∆+

Ĝn

)2
= lim

n→∞

∫∞
0 (u− λn)2e−(u−λn)2

du∫∞
0 e−(u−λn)2du

=

∫∞
−∞ u2e−u2

du∫∞
−∞ e−u2du

=
1
2
.

Also

∆2
Gn

=

∫∞
0

∣∣∣Ĝ′n(u)
∣∣∣2 du∫∞

0

∣∣∣Ĝn(u)
∣∣∣2 du

and so

lim
n→∞∆2

Gn
= lim

n→∞

∫∞
0 (u− λn)2e−(u−λn)2

du∫∞
0 e−(u−λn)2du

=
1
2
.

Thus
lim

n→∞∆Gn∆+
Gn

=
1
2
.

In Section 4, we consider the wavelets ψn, as above. We as-
sume further that Pn is reciprocal (which ensures ψn is symmetric
or anti-symmetric), the roots of Pn are real (and hence negative),
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and P ′n(−1) = 0. It is then proved that for certain kn, σn, αn with
σn →∞ as n→∞,

knψ̂n(u/σn)− e−
1
2

(u−σnαn)2 → 0

in Lp(0,∞), 1 ≤ p ≤ ∞. Taking inverse Fourier transforms shows
that the difference between |kn|ψn(σnx) and either 2 cos(σnαnx)G(x)
or 2 sin(σnαnx)G(x) converges to 0 in Lq(R), 2 ≤ q ≤ ∞.

Finally we deduce that if we also have P ′′n (−1) = 0, then

lim
n→∞∆ψn∆+

ψ̂n
=

1
2
,

and so the wavelets ψn have asymptotically optimal time-frequency
location.

In [6] it was shown that the uniform B-spline converged to the
Gaussian and the difference between the B-spline wavelets and mod-
ulated Gaussians converged to zero, both in time and frequency do-
mains. In [3] this was extended to more general scaling functions φn

and corresponding wavelets ψn and it was shown that the appropri-
ate uncertainty products converged to the optimal value as n → ∞
for both φn and ψn. It was assumed that the symbol Pn for φn was
reciprocal and had real roots. Moreover it was assumed that Pn(z)
had a factor (z + 1)mn where mn ≥ Cn for a constant C. These
assumptions allowed the use of similar techniques to those used for
the case of B-splines. In this paper we use the different techniques
in [2] to allow us to relax all of these conditions for the case of φn,
and for the case of ψn to relax the final condition to require Pn(z)
to have merely a factor of (z + 1)3. These together with the results
in [2] will provide a more complete undertsanding of the asymptotic
behaviour of scaling functions that approximate the Gaussian and
the asymptotic properties of the corresponding wavelets.

2 A Preliminary Result

In this section we state a result that will be needed later. Taking
Fourier transforms of (1.3) gives

φ̂n(u) = Pn(e−iu/2)φ̂n(u/2), u ∈ R, (2.1)
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and it follows that

φ̂n(u) =
∞∏

k=1

Pn(e−iu/2k
), u ∈ R, (2.2)

where the infinite product converges uniformly. Recalling (1.2) and
that the roots of Pn are −rn,j , j = 1, . . . , n gives

φ̂n(u) =
n∏

j=1

∞∏
k=1

e−iu/2k
+ rn,j

1 + rn,j
, u ∈ R. (2.3)

In order to consider the convergence of φ̂n(u) to e−u2/2, we need to
consider the covergence of products as in (2.3). The following result
actually covers more general products which will be encountered in
Section 4. It extends a corresponding result in [2] on asymptotic
normality and also gives convergence of derivatives. Although its
proof is of the same form as that of Theorem 1.2 of [2], we sketch it
here for completeness.

Theorem 2.1 For γ ∈ [0, π
2 ), let Dγ comprise all z ∈ C satisfying

the inequality ∣∣∣∣	 z

(1 + z)2

∣∣∣∣ ≤ tan γ � z

(1 + z)2
.

Suppose that for n = 1, 2, . . . , fn is defined by

fn(u) =
rn∏

j=1

e−iu + µn,j

1 + µn,j

sn∏
j=1

∞∏
k=1

e−iu/2k
+ λn,j

1 + λn,j
, u ∈ R, (2.4)

where µn,j, j = 1, . . . , rn, and λn,j, j = 1, . . . , sn, n = 1, 2, . . . , lie in
Dγ for some γ ∈ [0, π

2 ) and are bounded away from −1.
Suppose that for µn ∈ R and σn > 0, with σn →∞ as n→∞,

f̃n(u) := eiuµn/σnfn(u/σn) (2.5)

satisfies f̃ ′n(0) = 0 and f̃ ′′n(0) = −1. Then as n→∞,

f̃n(u)→ e−u2/2 f̃ ′n(u)→ −ue−u2/2,

locally uniformly on R.
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Proof. A simple calculation shows that

µn =
rn∑

j=1

1
1 + µn,j

+
sn∑

j=1

1
1 + λn,j

, (2.6)

σ2
n =

rn∑
j=1

µn,j

(1 + µn,j)2
+

1
3

sn∑
j=1

λn,j

(1 + λn,j)2
. (2.7)

Thus the condition limn→∞σn =∞ implies limn→∞(rn + sn) =∞.
As in the proof of Theorem 1.2 of [2] we write

log f̃n(u) =
iuµn

σn
+

rn∑
j=1

F (µn,j ,
−iu

σn
) +

sn∑
j=1

∞∑
k=1

F (λn,j ,
−iu

2kσn
),

where

F (µ, t) = log
(

et + µ

1 + µ

)
,

and expanding F (µ, t) in a Taylor series about t = 0 gives

log f̃n(u) = −u2

2
+
∞∑

ν=3

σ−ν
n (−iu)ν




rn∑
j=1

aν(µn,j) +
sn∑

j=1

aν(λn,j)
2ν − 1


 ,

(2.8)
where, under the conditions on µn,j , λn,j , there is a constant A > 0
with

|aν(µn,j)| ≤ Aν−2

ν
sec γ � µn,j

(1 + µn,j)2
,

|aν(λn,j)| ≤ Aν−2

ν
sec γ � λn,j

(1 + λn,j)2
.

Thus, from (2.8), (2.6) and (2.7),

∣∣∣∣log f̃n(u) +
u2

2

∣∣∣∣ ≤ sec γ

∞∑
ν=3

σ−ν
n |u|ν

ν
Aν−2

×



rn∑
j=1

� µn,j

(1 + µn,j)2
+

1
2ν − 1

sn∑
j=1

� λn,j

(1 + λn,j)2



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≤ sec γ
∞∑

ν=3

|u|ν
ν

(
A

σn

)ν−2

≤ sec γ
A|u|3
σn

(
1− A|u|

σn

)−1

whenever A|u| < σn. Since σn → ∞ as n → ∞, limn→∞ f̃n(u) =
e−u2/2 locally uniformly on R.

Differentiating (2.8) gives

f̃ ′n(u)

f̃n(u)
= −u− i

∞∑
ν=3

σ−ν
n (−iu)ν−1




rn∑
j=1

aν(µn,j) +
sn∑

j=1

aν(λn,j)
2ν − 1




and, as before,

∣∣∣∣∣ f̃
′
n(u)

f̃n(u)
+ u

∣∣∣∣∣ ≤ sec γ
∞∑

ν=3

σ−ν
n |u|ν−1Aν−2

×



rn∑
j=1

� µn,j

(1 + µn,j)2
+

1
2ν − 1

sn∑
j=1

� λn,j

(1 + λn,j)2




≤ sec γ

∞∑
ν=3

|u|ν−1

(
A

σn

)ν−2

= sec γ
A|u|2
σn

(
1− A|u|

σn

)−1

whenever A|u| < σn. Thus limn→∞f̃ ′n(u) = −ue−u2/2 locally uni-
formly in R. �

As noted in [2], the set Dγ contains the sector | arg z| ≤ γ and
for z = ±reiθ, r > 0, γ ≤ θ ≤ π, z lies in Dγ if and only if

sin( θ−γ
2 )

sin( θ+γ
2 )
≤ r ≤ sin( θ+γ

2 )

sin( θ−γ
2 )

.

In particular, Dγ contains the unit circle r = 1.
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3 Asymptotic Optimality of Refinable
Functions

We suppose that (φn) is a sequence of refinable functions as in Section
1.

Theorem 3.1 If P ′n(−1) = 0, then

lim
n→∞∆φn∆

φ̂n
=

1
2
. (3.1)

Proof. We recall that limn→∞ φ̃n = G in Lp(R), 1 ≤ p ≤ ∞. From
(1.6) we see that (3.1) is equivalent to

lim
n→∞∆

φ̃n
∆̂̃

φn

=
1
2
. (3.2)

We also recall that φ̃n is defined so that∫ ∞
−∞

x2φ̃n(x)dx =
∫ ∞
−∞

x2G(x)dx = 1. (3.3)

Firstly we shall show that

lim
n→∞

∫ ∞
−∞

x2φ̃n(x)2dx =
∫ ∞
−∞

x2G(x)2dx. (3.4)

Take ε > 0 and choose A > 1 so that∫
|x|>A

x2G(x)dx < ε. (3.5)

Choose N so that for all n > N and |x| ≤ A,

|x2φ̃n(x)k − x2G(x)k| < ε

2A
, k = 1, 2. (3.6)

Take any n > N . Then∣∣∣∣
∫ A

−A
x2φ̃n(x)dx−

∫ A

−A
x2G(x)dx

∣∣∣∣ < ε
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and so by (3.3),∣∣∣∣∣
∫
|x|>A

x2φ̃n(x)dx−
∫
|x|>A

x2G(x)dx

∣∣∣∣∣ < ε.

So by (3.5), ∫
|x|>A

x2φ̃n(x)dx < 2ε.

Thus for large enough n,∫
|x|>A

x2φ̃n(x)2dx <
1√
2π

∫
|x|>A

x2φ̃n(x)dx < ε,

and so ∣∣∣∣∣
∫
|x|>A

x2φ̃n(x)2dx−
∫
|x|>A

x2G(x)2dx

∣∣∣∣∣ < 2ε.

By (3.6), for all large enough n,

∣∣∣∣
∫ A

−A
x2φ̃n(x)2dx−

∫ A

−A
x2G(x)2dx

∣∣∣∣ < ε

and (3.4) follows.
Also for large enough n,

∣∣∣∣
∫ A

−A
xφ̃n(x)2dx−

∫ A

−A
xG(x)2dx

∣∣∣∣ < ε,

∫
|x|>A

|x|φ̃n(x)2dx <

∫
|x|>A

x2φ̃n(x)2dx < ε,

and as before,

lim
n→∞

∫ ∞
−∞

xφ̃n(x)2dx =
∫ ∞
−∞

xG(x)2dx = 0. (3.7)

Since

lim
n→∞

∫ ∞
−∞

φ̃n(x)2dx =
∫ ∞
−∞

G(x)2dx,
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(3.4) and (3.7) give

lim
n→∞∆

φ̃n
= ∆G =

1√
2
.

To complete the proof we need to show that limn→∞∆̂̃
φn

= ∆
Ĝ

and since |̂̃φn(u)|2 is even and limn→∞ ‖̂̃φn‖2 = ‖Ĝ‖2, it remains to
show that

lim
n→∞

∫ ∞
−∞

u2|̂̃φn(u)|2du =
∫ ∞
−∞

u2e−u2
du. (3.8)

Let Φ̂n(u) = |̂̃φn(u)|2 and f(x) = 1
2
√

π
e−x2/4, so that f̂(u) = e−u2

.
Then (3.8) is equivalent to

lim
n→∞Φ′′n(0) = f ′′(0). (3.9)

Recall that φn is the refinable function with symbol Pn(z), which we
may write as (z + 1)2pn(z). Then Φn is, up to scaling, the refinable
function with symbol Pn(z)Pn(z−1) = (z+1)2(z−1+1)2pn(z)pn(z−1).
It follows that

Φ′′n(x) = ηn(x + 1)− 2ηn(x) + ηn(x− 1),

where ηn mentioned above is the refinable function with symbol
(z + 1)(z−1 + 1)pn(z)pn(z−1), up to scaling. Since this polynomial
has all roots in the left half-plane, it follows from [5], and [1], that
ηn satisfies the following property: for any sequence (λj) in R, the
number of inflections of the function

∑∞
j=−∞ λjηn(· − j) is bounded

by the number of inflections in the polygonal arc with vertices (j, λj),
j ∈ Z. Thus the function Φ′′n has at most four inflections.

Now limn→∞
̂̃
φn(u) = e−u2/2 locally uniformly on R and so

limn→∞(Φ′′n)̂ (u) = (f ′′)̂ (u) locally uniformly on R. Now f ′′ has
exactly four inflections and it follows as in the proof of Lemma 5.1
of [2] that Φ′′n converges to f ′′ uniformly on a neighborhood of 0. So
(3.9) holds. �
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4 Asymptotic Optimality of Wavelets

Throughout this section we shall assume that the roots of Pn in (1.1)
are real and negative, and that Pn is reciprocal; i.e., the roots are
invariant under the transformation z → z−1. It follows that φn is
symmetric; i.e. φn(x) = φn(n− x), x ∈ R.

We define Φn and Qn as in (1.10) and (1.11). It is easily seen that
Φn is a refinable function with mask Pn(z)Pn(z−1). It follows that
Φn is continuous with support [−n, n] and satisfies Φn(−x) = Φn(x),
x ∈ R. The Laurent polynomial Qn is called the Euler-Frobenius
polynomial corresponding to φn. From the work of [5] we know that
Qn has real negative roots. As in (1.12) we define the wavelet, up to
multiplication by a constant as ψn(2 · −1), where ψn is defined by

ψ̂n(u) = einuQn(e−i(u+π))Pn(e−i(u+π))φ̂n(u), u ∈ R. (4.1)

Suppose that the roots of Pn are −λn,1, . . . ,−λn,n. By (1.2) we
may suppose λn,1 = 1. We write

λ̃n,j :=
1
2
(λn,j + λ−1

n,j), j = 1, . . . , n,

and for simplicity drop the first subscript n when it is unambiguous
to do so. Note that λ̃j ≥ 1, j = 1, . . . , n, and

(e−iu + λj)(e−iu + λ−1
j ) = 2e−iu(λ̃j + cos u) .

Also

e−iu + 1 = 2e−iu/2 cos
u

2
=
√

2e−iu/2(1 + cos u)1/2, −π ≤ u ≤ π,

and therefore

Pn(e−iu) = e−inu/2
n∏

j=1

(
λ̃j + cos u

λ̃j + 1

)1/2

, −π ≤ u ≤ π.

Similarly, if the roots of Qn are −µ1, . . . ,−µn−1,−µ−1
1 , . . . ,−µ−1

n−1,

and setting µ̃j := 1
2(µj + µ−1

j ), j = 1, . . . , n− 1, then for a constant
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An > 0,

Qn(e−iu) = An

n−1∏
j=1

(µ̃j + cos u).

So from (4.1) and (2.2),

ψ̂n(u) = Bne−inπ/2fn(u), u ∈ R, (4.2)

where Bn > 0, fn(u) is real,

|fn(u)| =
n−1∏
j=1

(µ̃j − cos u)
n∏

j=1

(λ̃j − cos u)1/2

×
∞∏

k=1

n∏
j=1

(
λ̃j + cos(2−ku)

λ̃j + 1

)1/2

, u ∈ R,(4.3)

fn(u) > 0, 0 < u < 2π, fn(0) = fn(2π) = 0, fn(−u) = (−1)nfn(u).
We shall make the following mild assumption on the growth rate

of λ̃n,j with n. There are constants K > 0 and 0 < σ ≤ 1 such that∣∣∣{j : λ̃n,j ≤ K}
∣∣∣ ≥ σn, n = 2, 3, . . . . (4.4)

This can be reformulated as follows.

Lemma 4.1 Condition (4.4) holds if and only if there is a constant
C > 0 with

n∑
j=1

1
(λ̃n,j + 1)2

≥ Cn, n = 2, 3, . . . . (4.5)

Proof. If (4.4) holds, then

n∑
j=1

1
(λ̃n,j + 1)2

≥ σn

(K + 1)2
, n = 2, 3, . . . ,

which gives (4.5).
Conversely, suppose that (4.4) does not hold. Take any ε > 0.

Then there exists n such that

|{j : λ̃n,j ≤ ε−1/2}| < εn.
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If λ̃n,j > ε−1/2, then (λ̃n,j + 1)−2 < ε and so

n∑
j=1

1
(λ̃n,j + 1)2

< 2nε.

Thus there is no constant C for which (4.5) holds. �

We can now study the shape of the graph of fn in [0, 2π], which
will lead to the asymptotic behaviour of ψ̂n.

Lemma 4.2 There is a number α > 0 such that fn in (4.2) has a
unique local maximum in [0, 2π] at αn with

2π

3
< αn < π − α, n = 2, 3, . . . .

Proof. For n = 2, 3, . . . , putting Fn(u) := log fn(u), 0 < u < 2π,
gives by (4.3),

F ′n(u) =
n−1∑
j=1

sin u

µ̃j − cos u
+

1
2

n∑
j=1

sinu

λ̃j − cos u
−1

2

n∑
j=1

∞∑
k=1

2−k sin(2−ku)
λ̃j + cos(2−ku)

.

(4.6)
For π ≤ u < 2π, all these terms are negative and so

F ′n(u) < 0, π ≤ u < 2π.

For 0 < u ≤ 2π
3 ,

F ′n(u) >
1
2

n∑
j=1

sinu

λ̃j − cos u
− 1

2

n∑
j=1

sin(u/2)
λ̃j + cos(u/2)

=
1
2

n∑
j=1

λ̃j(sin u− sin(u/2)) + sin(3u/2)
(λ̃j − cos u)(λ̃j + cos(u/2))

≥ 0,

since sin u ≥ sin(u/2).
Now by condition (4.4), for 0 < u ≤ π,

F ′n(u) ≤ 3n sinu

2(1− cos u)
− 1

4
σn

sin(u/2)
K + cos(u/2)

= nG(u),
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say. Since G(π) < 0, we can choose α > 0 with G(u) < 0 for
π − α ≤ u ≤ π. Thus for n = 2, 3, . . . ,

F ′n(u) < 0, π − α ≤ u ≤ π.

Finally we note that for π
2 ≤ u ≤ π,

F ′′n (u) =
n−1∑
j=1

µ̃j cos u− 1
(µ̃j − cos u)2

+
1
2

n∑
j=1

λ̃j cos u− 1
(λ̃j − cos u)2

−1
2

n∑
j=1

∞∑
k=1

λ̃j cos(2−ku) + 1
22k(λ̃j + cos(2−ku))2

< 0, (4.7)

since all terms are negative.
Thus we have shown that for n = 2, 3, . . . , F ′n(u) > 0, 0 < u ≤ 2π

3 ,
F ′n(u) < 0, π − α ≤ u < 2π, and F ′′n (u) < 0, π

2 ≤ u ≤ π. Hence Fn

has a unique local maximum in (0, 2π) at αn with 2π
3 < αn < π − α.

The result follows. �

It will be convenient to renormalise the wavelet ψn by defining

Ψn(x) =
(−1)[n/2]

Bnfn(αn)
ψn(x), x ∈ R,

where Bn is as in (4.2), from which it follows that for even n,

Ψ̂n(u) =
fn(u)
fn(αn)

, (4.8)

while for odd n,

Ψ̂n(u) =
fn(u)

ifn(αn)
.

We next define σn > 0 by

σ2
n = −F ′′n (αn). (4.9)

By (4.7) we see that

σ2
n >

n−1∑
j=1

1
(µ̃j + 1)2

+
2
3

n∑
j=1

1
(λ̃j + 1)2

.
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So by condition (4.4) and Lemma 4.1,

σn ≥ a
√

n, n = 2, 3, . . . , (4.10)

for some a > 0. Also from (4.7),

σn <
√

2n, n = 2, 3, . . . . (4.11)

Theorem 4.3 If jn denotes the number 1 or i as n is even or odd,
then

lim
n→∞ jnΨ̂n (u/σn + αn) = e−u2/2,

lim
n→∞

jn

σn
Ψ̂′n (u/σn + αn) = −ue−u2/2,

where the convergence is locally uniform on R.

Proof. We consider even n, the case for odd n differing only by
a factor of i. Putting f̃n(u) := Ψ̂n(u/σn + αn), we see from (4.8),
Lemma 4.2 and (4.9) that

f̃n(0) = 1, f̃ ′n(0) = 0, f̃ ′′n(0) = −1.

We also have from (4.1),

f̃n(u) = ei(2n−1)u/σn

n−1∏
j=1

(e−iu/σn − µje
iαn)(e−iu/σn − µ−1

j eiαn)

(1− µjeiαn)(1− µ−1
j eiαn)

×
n∏

j=1

e−iu/σn − λje
iαn

1− λjeiαn

n∏
j=1

∞∏
k=1

eiu/2kσn + λje
iαn/2k

1 + λjeiαn/2k ,

which is of form (2.5), (2.4) in Theorem 2.1. In order to apply
Theorem 2.1 we need that for n = 2, 3, . . ., −µje

iαn ,−µ−1
j eiαn , j =

1, . . . , n − 1, −λje
iαn , j = 1, . . . , n, λje

iαn/2k
, j = 1, . . . , n, k =

1, 2, . . ., all lie in Dγ for some γ in [0, π
2 ) and are bounded away from

−1. From Lemma 4.2, π − αn < π
3 and αn

2k < π
2 − α

2 , k = 1, 2, . . . ,
and hence all the above numbers lie in the sector | arg z| ≤ γ for
γ = max{π

3 , π
2 − α

2 }. Since Dγ contains this sector, the condition is
satisfied.



162 Goodman and Lee

We see from (4.10) that σn → ∞ as n → ∞. Then Theorem 2.1
gives the desired result. �

In Theorem 4.3 we consider convergence of Ψ̂′n because this will be
needed later for convergence of the uncertainty products. In order to
extend Theorem 4.3 to convergence in LP (R) we shall need to apply
the Dominated Convergence Theorem. For this we shall need the
further condition that Pn has a double root at −1, i.e. P ′n(−1) = 0.

Lemma 4.4 Let

µλ(u) =
∞∏

k=1

λ + cos(2−ku)
λ + 1

.

Then for any K > 1, there is a constant ρ < 1 such that µλ(u) ≤
ρµλ(π), |µ′λ(u)| ≤ ρµλ(π), for u ≥ 3π

2 and 1 ≤ λ ≤ K.

Proof. Fix λ ≥ 1 and let R(u) = λ+cos u
λ+1 . For π ≤ u ≤ 2π,

R(u/2k) ≤ R(π/2k), k = 1, 2, . . . , and so

µλ(u)
µλ(π)

=
∞∏

k=1

R(2−ku)
R(2−kπ)

≤ R(u/2)
R(π/2)

=
λ + cos(u/2)

λ
.

Thus
µλ(u) ≤ µλ(π), π ≤ u ≤ 2π, (4.12)

and

µλ(u) ≤
(

1− 1
λ
√

2

)
µλ(π),

3π

2
≤ u ≤ 2π.

For 2π ≤ u ≤ 3π,

µλ(u) = R(u/2)µλ(u/2) ≤ λ

λ + 1
µλ(π),

by (4.12). So for any K > 1 there is a constant ρ < 1 such that for
1 ≤ λ ≤ K, 3π

2 ≤ u ≤ 3π,

µλ(u) ≤ ρµλ(π). (4.13)

Now for all u ≥ 3π,

µλ(u) = R(u/2)µλ(u/2) ≤ µλ(u/2)
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and successive application of this gives (4.13) for all u ≥ 3π
2 .

Now µ′λ(u) = −∑∞
k=1 2−kνk(u), where

νk(u) :=
∞∏

j=1
j �=k

λ + cos(2−ju)
λ + 1

· sin(2−ku)
λ + 1

.

For k ≥ 1, π ≤ u ≤ 2π,

|νk(u)|
µλ(π)

=
∞∏

j=1
j �=k

R(2−ju)
R(2−jπ)

· sin(2−ku)
λ + cos(2−ku)

≤ 1
λ
≤ 1.

For 3π
2 ≤ u ≤ 2π,

|ν1(u)|
µλ(π)

≤ sin(3π/4)
λ

≤ 1√
2

.

So
|µ′λ(u)| ≤ µλ(π), π ≤ u ≤ 3π

2
,

|µ′λ(u)| ≤ ρµλ(π),
3π

2
≤ u ≤ 2π,

for a constant ρ < 1. Now since µλ(u) = R(u/2)µλ(u/2),

|µ′λ(u)| =
∣∣∣∣12R′(u/2)µλ(u/2) +

1
2
R(u/2)µ′λ(u/2)

∣∣∣∣
≤ 1

4
|µλ(u/2)|+ 1

2

∣∣µ′λ(u/2)
∣∣ .

So recalling (4.12),

|µ′λ(u)| ≤ 3
4
µλ(π), u ≥ 2π.

�

Lemma 4.5 If P ′n(−1) = 0, then for constants A > 0, 0 < ρ < 1,
0 < σ ≤ 1, u ≥ 3π

2 , n = 2, 3, . . . ,

|φ̂n(u)| ≤ Aρσnu−2|φ̂n(π)|,
|φ̂′n(u)| ≤ Anρσnu−2|φ̂n(π)|.
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Proof. We may write

Pn(e−iu) =
(n−m)/2∏

j=1

(
λ̃j + cos u

λ̃j + 1

)
cosm

(u

2

)
,

for m = 2 or 3. We note that
∞∏

k=1

cos
( u

2k+1

)
=
∞∏

k=1

sin(2−ku)
2 sin(2−k−1u)

= lim
n→∞

sin(u/2)
2n sin(2−n−1u)

=
sin(u/2)

u/2
.

Recalling (2.2), Lemma 4.4 and condition (4.4) give the result. �

Lemma 4.6 If P ′n(−1) = 0, then there is a constant C > 0 such
that for u ≥ σn(3π/2 − αn), n = 2, 3, . . . ,

∣∣∣Ψ̂n (u/σn + αn)
∣∣∣ and∣∣∣Ψ̂′n (u/σn + αn)

∣∣∣ are bounded by C(1 + u)−2.

Proof. For all u,

|Qn(e−i(u+π))Pn(e−i(u+π))| ≤ Qn(1)Pn(1),

and so by Lemma 4.5, on recalling (4.1), for u ≥ 3π
2 ,

|ψ̂n(u)| ≤ Aρσnu−2|ψ̂n(π)|.
Since |Ψ̂n(π)| ≤ |Ψ̂n(αn)| = 1, for u ≥ σn(3π

2 − αn),∣∣∣Ψ̂n (u/σn + αn)
∣∣∣ ≤ Aρσn (u/σn + αn)−2

≤ C(1 + u)−2,

for some C > 0, by (4.11).
Similarly we see that for a constant B > 0,∣∣∣Ψ̂′n (u/σn + αn)

∣∣∣ ≤ Bnρσn (u/σn + αn)−2

and the result follows. �

Remark
The above method of proof shows that if Pn has a root at z = −1
of multiplicity m, then Lemma 4.6 holds with (1 + u)−2 replaced by
(1 + u)−m.
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Lemma 4.7 There are constants a, b > 0 such that for −σnαn ≤
u ≤ σn(3π

2 −αn), n = 2, 3, . . . ,
∣∣∣Ψ̂n (u/σn + αn)

∣∣∣ and
∣∣∣ 1
σn

Ψ′n (u/σn + αn)
∣∣∣ ≤

ae−bu2
.

Proof. As in the proof of Lemma 4.2 we put Fn(u) = log fn(u),
0 < u < 2π. Recall from (4.7) that for π

2 ≤ u ≤ π,

|F ′′n (u)| =
n−1∑
j=1

1− µ̃j cos u

(µ̃j − cos u)2
+

1
2

n∑
j=1

1− λ̃j cos u

(λ̃j − cos u)2

+
1
2

n∑
j=1

∞∑
k=1

1 + λ̃j cos(2−ku)
22k(λ̃j + cos(2−ku))2

. (4.14)

We also recall condition (4.4) and note that for µ > K, π
2 ≤ u < π,

1− µ cos u

(µ− cos u)2
<

1−K cos u

(K − cos u)2
≤ 1

σn

n∑
j=1

λ̃j≤K

1− λ̃j cos u

(λ̃j − cos u)2
.

If Gn(u) denotes the right-hand side of (4.14) with the summa-
tions taken only for µ̃j ≤ K, λ̃j ≤ K, then for π

2 ≤ u ≤ π,

|F ′′n (u)| ≤
(

1 +
2
σ

)
Gn(u).

Since |Gn(u)| ≤ |F ′′n (u)|, π
2 ≤ u ≤ π, there is a constant C > 0 with

|F ′′n (u)|
|F ′′n (v)| ≤

(
1 +

2
σ

)
Gn(u)
Gn(v)

≤ C,
π

2
≤ u, v ≤ π,

since

(K + 1)−2 ≤ 1 + λx

(λ + x)2
≤ K + 1, 0 ≤ x ≤ 1, 1 ≤ λ ≤ K.

As F ′n(αn) = 0,

Fn(u) ≤ Fn(αn) +
1
2
C−1(u− αn)2F ′′n (αn),

π

2
≤ u ≤ π.
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Recalling that σ2
n = −F ′′n (αn) we have

fn(u) ≤ fn(αn) exp
(
−1

2
C−1(u− αn)2σ2

n

)
,

π

2
≤ u ≤ π,

and hence∣∣∣Ψ̂n (u/σn + αn)
∣∣∣ ≤ e−

1
2
C−1u2

, σn (π/2− αn) ≤ u ≤ σn(π − αn).
(4.15)

Also for π
2 ≤ u ≤ π,

|F ′n(u)| ≤ C|u− αn||F ′′n (αn)|

and so

|f ′n(u)| = |fn(u)||F ′n(u)| ≤ Cσ2
n|u− αn||fn(u)|,

which gives∣∣∣Ψ̂′n (u/σn + αn)
∣∣∣ ≤ C|u|

∣∣∣Ψ̂n (u/σn + αn)
∣∣∣ , σn

(π

2
− αn

)
≤ u ≤ σn(π−αn).

(4.16)
By Lemma 4.2 we may choose α, 0 < α < π

6 , with π − αn > α,
n = 2, 3, . . .. Let E(u) = exp(−α2u2/8Cπ2). For π ≤ u ≤ 3π

2 ,
fn(u) ≤ fn(π) and so for σn(π−αn) ≤ u ≤ σn(3π

2 −αn), (4.15) gives

Ψ̂n (u/σn + αn) ≤ exp
(
−1

2
C−1(π − αn)2σ2

n

)
= E(2πσnα−1(π − αn))
≤ E(2πσn) ≤ E(u), (4.17)

since π − αn ≥ α and u ≤ σn(3π
2 − αn) < 2πσn.

Now from (4.6) and (4.10), there is a constant A > 0 such that
for π ≤ u ≤ 3π

2 ,

|F ′n(u)| ≤ a2An ≤ Aσ2
n.

Thus

|f ′n(u)| ≤ Aσ2
nfn(u), π ≤ u ≤ 3π

2
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and so for σn(π − αn) ≤ u ≤ σn(3π
2 − αn),∣∣∣Ψ̂′n (u/σn + αn)

∣∣∣ ≤ Aσ2
n

∣∣∣Ψ̂n (u/σn + αn)
∣∣∣

≤ Aα−2u2
∣∣∣Ψ̂n (u/σn + αn)

∣∣∣ , (4.18)

since u ≥ σn(π − αn) > σnα.
For 0 ≤ u ≤ π

2 , fn(u) ≤ fn(π
2 ) and so for −σnαn ≤ u ≤ σn(π

2 −
αn), (4.15) gives∣∣∣Ψ̂n (u/σn + αn)

∣∣∣ ≤ exp
(
−1

2
C−1

(π

2
− αn

)2
σ2

n

)

= E
(
2πσnα−1

(π

2
− αn

))
≤ E(2πσn) ≤ E(u), (4.19)

since αn − π
2 ≥ π

6 ≥ α and |u| ≤ σnαn < 2πσn.
Now we see from (4.6) that for 0 ≤ u ≤ π

2 ,

|f ′n(u)| ≤



n−1∑
j=1

sinu

µ̃j − cos u
+

1
2

n∑
j=1

sinu

λ̃j − cos u


 fn(u).

Noting that

sinu

λ

∞∏
k=1

λ + cos(2−ku)
λ + 1

( ∞∏
k=1

λ + cos(2−k−1π)
λ + 1

)−1

is bounded for λ ≥ 1, 0 ≤ u ≤ π
2 , and recalling from Lemma 4.2 that

fn is increasing in [0, π
2 ], we see that for a constant K,

|f ′n(u)| ≤ Knfn (π/2) , 0 ≤ u ≤ π/2.

So by (4.10) there is a constant B such that for −σnαn ≤ u ≤
σn(π

2 − αn),∣∣∣Ψ̂′n (u/σn + αn)
∣∣∣ ≤ Bσ2

nΨ̂n (π/2σn + αn) ≤ B
36
π2

u2E(u), (4.20)

as in (4.19) and since |u| ≥ σn(αn − π
2 ) ≥ σnπ/6.

The result now follows from (4.15)−(4.20). �

Lemmas 4.6 and 4.7 allow us to apply the Dominated Conver-
gence Theorem to prove the following:
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Theorem 4.8 Suppose P ′n(−1) = 0. If jn denotes the number 1 or
i as n is even or odd, then as n→∞,

jnΨ̂n (u/σn)− e−
1
2

(u−σnαn)2 → 0,

jn

σn
Ψ̂′n(u/σn) + (u− σnαn)e−

1
2

(u−σnαn)2 → 0,

in Lp(0,∞), 1 ≤ p ≤ ∞.

Proof. We need consider only even n. Let

hn(u) =
{

Ψ̂n (u/σn + αn) , u ≥ −σnαn,
0, otherwise.

From Theorem 4.3, limn→∞ hn(u) = e−u2/2 and limn→∞ h′n(u) =
−ue−u2/2 locally uniformly. By Lemmas 4.5 and 4.7, hn and h′n are
dominated by

h(u) = max{C(1 + |u|)−2, ae−bu2}, u ∈ R.

So by the Dominated Convergence Theorem,

lim
n→∞hn(u) = e−u2/2, lim

n→∞h′n(u) = −ue−u2/2, (4.21)

in Lp(R), 1 ≤ p <∞. Also since h, e−u2/2 and ue−u2/2 all tend to 0
as u→ ±∞, it follows that the convergence in (4.21) is also uniform.
The result follows. �

Since Ψ̂n(−u) = (−1)nΨ̂n(u), u ∈ R, we have a corresponding
result on (−∞, 0). Adding these together and taking inverse Fourier
transforms gives the following:

Theorem 4.9 Suppose P ′n(−1) = 0. As n→∞, for even n,

σnΨn(σnx)− 2 cos(σnαnx)G(x)→ 0,

and for odd n,

σnΨn(σnx)− 2 sin(σnαnx)G(x)→ 0,

where the convergence is in Lq(R), 2 ≤ q ≤ ∞.
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Finally we show that the wavelets Ψn have asymptotically opti-
mal time-frequency localization, as deseribed in Section 1 (see (1.13),
(1.14)).

Theorem 4.10 If P ′n(−1) = 0, then

lim
n→∞∆Ψn∆+

Ψ̂n
=

1
2
.

Proof. Since Ψn(−x) = (−1)nΨn(x), x ∈ R, we see that µΨ, as in
(1.7), is 0 and so from (1.8),

∆2
Ψn

=

∫∞
−∞ x2|Ψn(x)|2dx∫∞
−∞ |Ψn(x)|2dx

=

∫∞
−∞ |Ψ̂′n(u)|2du∫∞
−∞ |Ψ̂n(u)|2du

=

∫∞
0 |Ψ̂′n(u)|2du∫∞
0 |Ψ̂n(u)|2du

.

By Theorem 4.8, as n→∞,∫ ∞
0

∣∣∣Ψ̂n (u/σn)
∣∣∣2 du−

∫ ∞
0

e−(u−σnαn)2
du→ 0

and so
σn

∫ ∞
0
|Ψ̂n(u)|2du→

∫ ∞
−∞

e−u2
du, (4.22)

since σn →∞. Also by Theorem 4.8, as n→∞,

1
σ2

n

∫ ∞
0

∣∣∣Ψ̂′n (u/σn)
∣∣∣2 du−

∫ ∞
0

(u− σnαn)2e−(u−σnαn)2
du→ 0

and so
1
σn

∫ ∞
0
|Ψ̂′n(u)|2du→

∫ ∞
−∞

u2e−u2
du.

Thus

lim
n→∞σ−2

n ∆2
Ψn

=

∫∞
−∞ u2e−u2

du∫∞
−∞ e−u2du

=
1
2
. (4.23)
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By Theorem 4.3 and Lemmas 4.6 and 4.7, for j = 1, 2,

(u− σnαn)j
∣∣∣Ψ̂n (u/σn)

∣∣∣2 − (u− σnαn)je−(u−σnαn)2 → 0 as n→∞

in L1(0,∞). Thus as n→∞,∫ ∞
0

(u− σnαn)
∣∣∣Ψ̂n (u/σn)

∣∣∣2 du→ 0, (4.24)

∫ ∞
0

(u− σnαn)2
∣∣∣Ψ̂n (u/σn)

∣∣∣2 du→
∫ ∞
−∞

u2e−u2
du. (4.25)

Now

∫ ∞
0

u
∣∣∣Ψ̂n(u)

∣∣∣2 du =
1
σ2

n

∫ ∞
0

u
∣∣∣Ψ̂n (u/σn)

∣∣∣2 du

=
1
σ2

n

∫ ∞
0

(u− σnαn)
∣∣∣Ψ̂n (u/σn)

∣∣∣2 du +
αn

σn

∫ ∞
0

∣∣∣Ψ̂n (u/σn)
∣∣∣2 du.

Thus from (1.13),

µ+

Ψ̂n
=

∫∞
0 (u− σnαn)|Ψ̂n(u/σn)|2du

σn

∫∞
0 |Ψ̂n(u/σn)|2du

+ αn

and hence from (4.22) and (4.24),

lim
n→∞σn(µ+

Ψ̂n
− αn) = 0. (4.26)

By (1.14),

σ2
n

(
∆+

Ψ̂n

)2
=

σ2
n

∫∞
0 (u− µ+

Ψ̂n
)2|Ψ̂n(u)|2du∫∞

0 |Ψ̂n(u)|2du

=

∫∞
0 (u− σnµ+

Ψ̂n
)2|Ψ̂n(u/σn)|2du∫∞

0 |Ψ̂n(u/σn)|2du

→
∫∞
−∞ u2e−u2

du∫∞
−∞ e−u2du

=
1
2
, (4.27)

as n→∞, by (4.26), (4.25) and (4.22). The result then follows from
(4.23) and (4.27). �
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Abstract

This paper deals with some basic facts about interpola-
tion by classes of entire functions like polynomials, trigonomet-
ric polynomials (= 2π-periodic entire functions of exponential
type), and non-periodic transcendental entire functions. The
results discussed here are closely related to the work of the late
Professor Ambikeshwar Sharma on interpolation. Some,like
the uniqueness theorems for (0 , m) interpolation by entire
functions of exponential type, were inspired by his work. Cer-
tain details presented in our discussion of Hermite interpola-
tion may be new and so of some special interest. We also
explain what Hermite really did in his often quoted paper.
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1 Preliminaries about Entire Functions

A function f : C→ C is said to be entire if it is analytic throughout
the complex plane. Polynomials

∑n
ν=0 aνz

ν are entire functions.
Entire functions which are not polynomials are called transcendental.
The exponential function

ez =
∞∑

ν=0

1
ν!

zν

is a transcendental entire function and so are cos z and sin z. In fact,
t(z) :=

∑n
ν=−n cνeiνz, cν ∈ C is an entire function. Since any trigono-

metric polynomial t can be written in the form t(x) =
∑n

ν=−n cνeiνx

for some n, we see that a trigonometric polynomial is the “restriction
of an entire function to the real axis.”

It is useful to have a notation for the class of all polynomials of
degree at most n. We shall use Pn to denote it, that is

Pn :=

{
p(z) :=

n∑
ν=0

aνz
ν : aν ∈ C for ν = 0, 1, . . . , n

}
.

Thus Pn ⊂ Pn+1 for n = 0, 1, 2, . . . .
For any entire function f set M(r) = Mf (r) := max|z|≤r |f(z)|.

Clearly, M(r) is a non-decreasing function of r. An entire function
f is a polynomial if and only if there exist C ≥ 0 and a non-negative
integer m, depending on f , such that

log Mf (rk) ≤ m log rk + C

for an increasing sequence r1, r2, r3, · · · → ∞. This inequality with
m = n characterizes the class Pn.

An entire function f is transcendental if and only if

lim
r→∞

log Mf (r)
log r

→∞ .

The order of an entire function f is defined to be

ρ := lim sup
r→∞

log log Mf (r)
log r

.



Interpolation by Entire Functions 175

All polynomials are of order 0, but not all entire functions of order
0 are polynomials. The order of an entire function can be ∞. As
an example we mention f(z) := eez

. The order of an entire func-
tion can be calculated from the coefficients in its Maclaurin series
development. If f(z) :=

∑∞
n=0 anzn, then

ρ = lim sup
n→∞

n log n

log(1/|an|) (0 ≤ ρ ≤ ∞) .

This formula for ρ shows that f(z) := 1+
∑∞

n=1 n−n/ρ zn is an entire
function of order ρ (0 < ρ <∞).

The type of an entire function f(z) :=
∑∞

n=0 anzn of finite posi-
tive order ρ is defined to be

T := lim sup
r→∞

log Mf (r)
rρ

= lim sup
n→∞

1
ρe

n|an|ρ/n .

For 0 < ρ < ∞ and 0 ≤ τ ≤ ∞ an entire function f is said
to be of growth (ρ , τ) if it is of order not exceeding ρ and of type
not exceeding τ if of order ρ. Let Cρ,τ denote the class of all entire
functions of growth (ρ , τ). Then

Cρ1,τ1 ⊂ Cρ2,τ2

if ρ1 < ρ2 whatever τ1 and τ2 may be, and also if ρ1 = ρ2 provided
that τ1 < τ2. Functions of order 0 belong to Cρ,τ for any ρ ∈ (0,∞)
and any τ ≥ 0.

Functions of growth (1, τ), τ < ∞, are said to be of exponential
type. This is because f is of growth (1, τ), τ < ∞ if and only if for
any given ε > 0 there exists a constant k = kε, depending on ε, such
that

|f(z)| ≤ k e(τ+ε)|z| (z ∈ C) .

Note that any entire function of order less than 1 is of exponential
type τ , and so is any entire function of order 1 type T not exceed-
ing τ . A trigonometric polynomial t(x) :=

∑n
ν=−n cνeiνx is an entire

function of exponential type n when x is allowed to vary in the com-
plex plane. Trigonometric polynomials are, of course, 2π-periodic. It
is known [9, p. 109 (Theorem 6.10.1)] that any entire function f of
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exponential type τ that is 2π-periodic is necessarily a trigonometric
polynomial of degree at most n := �τ�. However, not every entire
function of exponential type n is a trigonometric polynomial. For
example, the function f(z) := 1 +

∑∞
k=1 k−k/ρzk , 0 < ρ < 1, is of

exponential type n for any n ≥ 0 but is not 2π-periodic. Another
example is f(z) := (sinnz)/z, n ≥ 1.

2 Lagrange Interpolation by Polynomials and
Trigonometric Polynomials

For any given set of n distinct points z1, . . . , zn in the complex plane
and n values w1, . . . , wn in C, distinct or not, there exists a polyno-
mial p ∈ Pn−1 such that

p(zν) = wν (ν = 1, . . . , n) . (2.1)

This well-known result on polynomial interpolation is covered by
Cramer’s rule which may be stated as follows.

Lemma 2.1 Let the n×n matrix A = (aij) be non-singular, that is
its determinant |A| is different from zero. Then the system of linear
equations

a11 ζ1 + a12 ζ2 + · · · + a1n ζn = w1

.

.

.
an1 ζ1 + an2 ζ2 + · · · + ann ζn = wn




, (2.2)

in the unknowns ζ1, . . . , ζn, possesses a unique solution. The solution
is given by

ζν =

∣∣A(ν)
∣∣

|A| (ν = 1, . . . , n) , (2.3)

where A(ν) is the matrix obtained when the νth column of A, is re-
placed by the vector −→w = (w1, . . . , wn)T . �
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Existence of a polynomial p(z) := a0 +a1z+ · · ·+an−1z
n−1 of degree

at most n−1 satisfying (2.1) is the same as the system of n equations

1 · a0 + z1 · a1 + · · · + zn−1
1 · an−1 = w1

.

.

.
1 · a0 + zn · a1 + · · · + zn−1

n · an−1 = wn




, (2.1′)

in the unknowns a0, a1, . . . , an−1, having a solution. By Lemma 2.1,
applied with ajk = zk−1

j and ζν = aν−1, this system has a unique
solution if the determinant

V (z1, . . . , zn−1) :=

∣∣∣∣∣∣∣∣∣∣

1 z1 · · · zν
1 · · · zn−1

1

.

.

.
1 zn · · · zν

n · · · zn−1
n

∣∣∣∣∣∣∣∣∣∣
is different from zero provided that z1, . . . , zn are all distinct. This
is indeed the case since

V (z1, . . . , zn) =
∏

1≤ j < k≤n

(zk − zj) .

In order to determine the polynomial p of degree at most n−1 having
the interpolation property (2.1) we could always use (2.3) but it is
shorter to recognize that p must be of the form

p(z) =
n∑

ν=1

wν lν(z),

where lν is the polynomial of degree n− 1 which satisfies

lν(zµ) =
{

1 if µ = ν,
0 if µ 	= ν.

(2.4)

Setting ψ(z) :=
∏n

µ=1(z − zµ), we readily see that

lν(z) =
1

ψ′(zν)
ψ(z)

z − zν
(ν = 1, . . . , n).
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Thus

p(z) =
n∑

ν=1

wν

ψ′(zν)
ψ(z)

z − zν
=

n∑
ν=1

p(zν)
ψ′(zν)

ψ(z)
z − zν

. (2.5)

For an application of Lemma 2.1 it is important to decide whether
the determinant |A| of the matrix (aj k) is different from zero or not.
This could be hard if we always had to calculate |A|. The following
lemma can often be used to avoid this.

Lemma 2.2 ([30, p. 27]). A necessary and sufficient condition for
the existence of numbers ζ1, . . . , ζn, not all zero, satisfying the system
of equations

a11 ζ1 + a12 ζ2 + · · · + a1n ζn = 0
.
.
.

an1 ζ1 + an2 ζ2 + · · · + ann ζn = 0




, (2.6)

is that the determinant |A| = |aj k|n×n be zero. In other words,
|A| 	= 0 if and only if the homogeneous system (2.6) is satisfied only
for ζ1 = · · · = ζn = 0.

Since a polynomial p(z) :=
∑n−1

ν=0 aν zν of degree at most n − 1
cannot vanish at n different points z1, . . . , zn without being identi-
cally zero, we may apply Lemma 2.2 with ζν = aν−1 for ν = 1, . . . , n
to conclude that the system (2.1′) in the unknowns a0, a1, . . . , an−1

has a solution, without knowing the value of V (z1, . . . , zn).
For any ζ 	= 0 and any α ∈ R, the equation eiz = ζ has one and

only one solution in the strip

Sα := {z ∈ C : α ≤ 
 z < α + 2π} .

Hence, a trigonometric polynomial t(z) :=
∑n−1

ν=−n+1 cν eiνz of degree
not exceeding n − 1 cannot vanish at more than 2n − 2 points in
Sα unless c−n+1, . . . , c 0, . . . , cn−1 are all zero. Applying Lemma 2.2
with 2n−1 instead of n and c−n+1, . . . , c 0, . . . , cn−1 as the unknowns
we conclude that for any set of 2n − 1 distinct points z1, . . . , z2n−1

in the strip Sα and 2n − 1 values w1, . . . , w2n−1 in C, distinct or
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not, there exists a trigonometric polynomial t of degree at most n−1
such that

t(zν) = wν (ν = 1, . . . , 2n− 1) . (2.7)

Here we could have also calculated the underlying determinant and
seen that it was not zero.

As usual, let

Tk(x) :=
k

2

�k/2�∑
j=0

(−1)j (k − j − 1)!
j! (−2j)!

(2x)k−2j = cos (k arccos x)

be the Chebyshev polynomial of the first kind of degree k. Then,
cos kθ = Tk(cos θ). Hence, if C is an even trigonometric polynomial
of degree at most n, that is if C(θ) :=

∑n
k=0 ck cos kθ, then

C(θ) =
n∑

k=0

ckTk(cos θ) = p(cos θ) ,

where p(x) :=
∑n

ν=0 aνx
ν =

∑n
k=0 ckTk(x) is a polynomial of degree

at most n. Now note that cos θ decreases from 1 to −1 monotoni-
cally as θ increases from 0 to π. Hence, to any point xν ∈ [−1, 1]
there corresponds one and only one point θν in [−π, π] such that
xν = cos θν . Since p cannot have more than n zeros in [−1, 1] without
being identically zero, we conclude that C cannot have more than n
distinct zeros in [0, π] unless it is identically zero. Hence, Lemma 2.2
implies that for any set of n+1 distinct points θ0, θ1, . . . , θn in [0, π],
and any numbers w0, w1, . . . , wn, there exists a unique cosine poly-
nomial of degree at most n satisfying C(θν) = wν for ν = 0, 1, . . . , n.

Lemma 2.2 also implies that given any distinct points θ1, . . . , θn

in the open interval (0, 2π) and any n numbers w1, . . . , wn, there
is a unique sine polynomial S(θ) of degree at most n satisfying
S(θν) = wν for ν = 1, . . . , n.

Lemma 2.2 becomes almost indispensable as we move on to an-
other kind of interpolation.
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3 Hermite Interpolation by Polynomials and
Trigonometric Polynomials

Let α1, . . . , αn be any set of n positive integers. The problem is
to find the smallest N such that, for any set of n distinct points
z1, . . . , zn in the complex plane and α1 + · · · + αn arbitrarily pre-
scribed values

w0,ν , . . . , wαν−1,ν (ν = 1, . . . , n) ,

there exists a polynomial p(z) :=
∑N

ν=0 aν zν of degree not exceeding
N satisfying

p(j)(z1) = wj,1 (j = 0, . . . , α1 − 1)
.
.
.

p(j)(zn) = wj,n (j = 0, . . . , αn − 1)




. (3.1)

This is a system of α1 + · · · + αn equations in N + 1 unknowns
a0, . . . , aN . In order to apply Lemma 2.1 we should take
N = α1 + · · · + αn − 1, and then see if the determinant |A| of the
corresponding matrix is different from zero. It would be a formidable
job to calculate the value of the determinant in this case, but here
Lemma 2.2 comes in handy. We only need to show that if p ∈ PN ,
N = α1 + · · ·+ αn − 1, and

p(j)(zν) = 0 (j = 0, . . . , αν − 1; ν = 1, . . . , n) , (3.2)

then p must be identically zero. This is trivial since (3.2) implies that
p has zeros of multiplicities α1, . . . , αn at z1, . . . , zn, respectively.
Thus, counting each zero as many times as its multiplicity, we see
that p has at least α1 + · · · + αn = N + 1 zeros, and so must be
identically zero. Hence, by Lemma 2.2, the determinant of the matrix
corresponding to the system (3.1) of N = α1 + · · · + αn equations
in N + 1 unknowns (the coefficients of the interpolating polynomial
p of degree at most N) is different from zero, and so by Lemma 2.1
the system has a unique solution.
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In order to find a formula for the polynomial p of degree at most
N := α1 + · · · + αn − 1 satisfying (3.1), let us find for any given
µ ∈ {1, . . . , n} and k ∈ {0, . . . , αµ − 1} the “fundamental polyno-
mial” lk,µ of degree N such that

l
(j)
k,µ(zν) =




1 if ν = µ and j = k,
0 if ν = µ and j ∈ {0, . . . , αν − 1} \ {k} ,
0 if ν 	= µ and j = 0, . . . , αν − 1.

For this set ψ(z) :=
∏n

ν=1(z − zν)αν . Then clearly

lk,µ(z) =
ψ(z)

(z − zµ)αµ
ϕ(z),

where ϕ is a polynomial of degree αµ − 1. Developing ϕ in powers
of z− zµ and using the fact that l

(j)
k,µ(zµ) = 0 for j = 0, . . . , k− 1, we

may write

ϕ(z) = λk (z − zµ)k + · · ·+ λαµ−1 (z − zµ)αµ−1 ,

so that

lk,µ(z) =
ψ(z)

(z − zµ)αµ

{
λk (z − zµ)k + · · ·+ λαµ−1 (z − zµ)αµ−1

}
= bk(z − zµ)k + bk+1(z − zµ)k+1 + · · · .

Since

l
(j)
k,µ(zµ) =

{
1 if j = k,
0 if j ∈ {0, . . . , αµ − 1} \ {k} ,

we must have

bk =
1
k!

and b� = 0 for � ∈ {k, . . . , αµ − 1} \ {k} .

(Note that the set of values of � to which the statement “b� = 0”
applies is empty in the case where k = αµ − 1). Thus

λk + · · ·+ λαµ−1(z − zµ)αµ−k−1 ={
1
k!

+ bαµ(z − zµ)αµ−k + · · ·
}

(z − zµ)αµ

ψ(z)
. (3.3)
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The function (z − zµ)αµ/ψ(z) is holomorphic in the largest disk
|z − zµ| < ρ that does not contain any of the other zν ’s and so is
defined therein by a power series, say c0+c1(z−zµ)+c2(z−zµ)2+· · ·,
where

c� :=
1
�!

[
d �

dz�

{
(z − zµ)αµ

ψ(z)

}]
z=zµ

(� = 0, 1, 2, . . .) .

Since the left-hand side of (3.3) is a polynomial of degree αµ− k− 1,
we must have

λk + · · ·+ λαµ−1(z − zµ)αµ−k−1

=
1
k!

{
c0 + c1(z − zµ) + · · ·+ cαµ−k−1(z − zµ)αµ−k−1

}

=
1
k!

αµ−k−1∑
�=0

1
�!

[
d �

dz�

{
(z − zµ)αµ

ψ(z)

}]
z=zµ

(z − zµ)� .

Hence, for any µ ∈ {1, . . . , n} and k = 0, . . . , αµ−1, the fundamental
polynomial lk,µ is represented by

lk,µ(z) = ψ(z)(z − zµ)k−αµ ×
1
k!

αµ−k−1∑
�=0

1
�!

[
d �

dz�

{
(z − zµ)αµ

ψ(z)

}]
z=zµ

(z − zµ)� . (3.4)

Hence, the following result holds.

Theorem 3.1 Let z1, . . . , zn be n distinct points, and α1, . . . , αn

positive integers. Set ψ(z) :=
∏n

µ=1(z− zµ)αµ and for µ ∈ {1, . . . , n}
and k = 0, . . . , αµ−1 define lk,µ(z) by (3.4). Then the unique polyno-
mial p of degree at most α1 + · · ·+αn−1 satisfying the interpolation
conditions (3.1) is given by

p(z)=
α1−1∑
k=0

wk,1 lk,1(z)+
α2−1∑
k=0

wk,2 lk,2(z)+· · ·+
αn−1∑
k=0

wk,n lk,n(z) . (3.5)

�

NOTE. A reader familiar with the well-known book of P. J. Davis
[11] might wonder why our formula for lk,µ does not agree with the
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one appearing in that book on page 37 (see (2.5.25)). We believe
that the latter contains a misprint and is not correct as stated.

The study of “Hermite interpolation” was initiated by Ch. Her-
mite in a paper [23] entitled “Sur la formule d’interpolation de La-
grange.” The term “Hermite interpolation” was of course not coined
by him. By the way, he was not interested in a formula like (3.5).
Then, what exactly was his motivation? He considered a function f
holomorphic in a nonempty simply-connected open set D and took n
distinct points z1, . . . , zn in it; taking in addition n positive integers
α1, . . . , αn he proposed to himself (in his own words: “Je me suis pro-
posé ”) to find a polynomial p of degree not exceeding α1+· · ·+αn−1
satisfying the conditions:

p(j)(z1) = f (j)(z1) (j = 0, . . . , α1 − 1)
.
.
.

p(j)(zn) = f (j)(zn) (j = 0, . . . , αn − 1)




. (3.6)

He goes on to say: “En supposant α1 + · · · + αn = n la question
comme on voit est déterminée.” Thus, it was known to him when he
wrote the paper that a polynomial p satisfying (3.1), where the values
w0,ν , . . . , wαν−1,ν (ν = 1, . . . , n) are completely arbitrary, does exist
if its degree is allowed to be as large as α1 + · · · + αn − 1. He was
simply looking for an integral representation for p(z). His result may
be stated as follows.

Theorem 3.2 Let f be holomorphic in a region (open simply–connected
set D and let z1, · · · , zn be any set of n distinct points all lying in D.
In addition, let α1, . . . , αn be arbitrary integers, all positive, and set
ψ(ζ) :=

∏n
ν=1(ζ − zν)αν . Take any rectifiable Jordan curve Γ which

together with its “inside,” the bounded component of C\Γ, is con-
tained in D and contains the points z1, . . . , zn. Then, the polynomial
p satisfying (3.6) is given by the formula

p(z)=f(z)+
1

2πi
ψ(z)

∫
Γ

f(ζ)
(z − ζ)ψ(ζ)

dζ for all z inside Γ . (3.7)
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We shall discuss the motivation behind this theorem. The proof
as explained by Hermite in his paper is not particularly easy to grasp.
Davis [11, pp. 67–68] proves the result in the case where α1 = · · ·
= αn = 1, and gives a “brief indication” (see the proof of Corollary
3.6.3 on page 68) for the general case. There is no easily available
book, if there exists any, that contains a comprehensive proof of the
result in its full generality. So, we find it desirable to make the
necessary details available to the reader.

Proof of Theorem 3.2. It is well known (see for example [1,
p. 121]) that if ϕ(z) is continuous on an arc γ then the function∫

γ

ϕ(ζ)
z − ζ

dζ is analytic in each of the regions “determined” by γ. We

may apply this with ϕ(ζ) :=
f(ζ)
ψ(ζ)

to conclude that
∫

Γ

f(ζ)
(z − ζ)ψ(ζ)

dζ

defines a function of z that is analytic in D. Thus

I(z) :=
1

2πi
ψ(z)

∫
Γ

f(ζ)
(z − ζ)ψ(ζ)

dζ

is analytic inside Γ and for any ν ∈ {1, . . . , n},

I(j)(zν) = 0 for j = 0, . . . , αν − 1. (3.8)

Now, we only need to show that the expression on the right-
hand side of (3.7) is a polynomial whose degree does not exceed
α1 + · · ·+ αn − 1. Applying the residue theorem we see that

I(z) :=
ψ(z)
2πi

∫
Γ

f(ζ)
(z − ζ)ψ(ζ)

dζ = −f(z) + ψ(z)
n∑

ν=1

Rν(z) , (3.9)

where Rν(z) is the residue of the meromorphic function

F (z) :=
f(ζ)

(z − ζ)ψ(ζ)
at its pole zν . Let z 	= zν . Since the multiplic-

ity of the pole at zν does not exceed αν , the Laurent development of
F around zν has the form

F (ζ) =
αν∑

k=0

a−αν+k,ν

(ζ − zν)αν−k
+ a1,ν(ζ − zν) + a2,ν(ζ − zν)2 + · · · ,
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and so

Rν(z)= a−1,ν =a−1,ν(z)=
1

(αν − 1)!
[
Dαν−1 {(ζ − zν)αν F (ζ)}]

ζ=zν
.

Writing (ζ−zν)αν F (ζ) as the product of
1

z − ζ
and

f(ζ) (ζ − zν)αν

ψ(ζ)
,

both analytic in the immediate neighbourhood of the point zν , we
see that[
Dαν−1 {(ζ − zν)ανF (ζ)}]

ζ=zν

=


αν−1∑

j=0

(
αν − 1

j

)
(αν − j − 1)!
(z − ζ)αν−j

Dj

{
f(ζ)(ζ − zν)αν

ψ(ζ)

}
ζ=zν

=
αν−1∑
j=0

(αν − 1)!
j!

bj,ν
1

(z − zν)αν−j
,

with bj,ν :=
[
Dj

{
f(ζ)(ζ − zν)αν

ψ(ζ)

}]
ζ=zν

∈ C. Thus

ψ(z)Rν(z) =
αν−1∑
j=0

1
j!

bj,ν
ψ(z)

(z − zν)αν−j

=




αν−1∑
j=0

1
j!

bj,ν (z − zν)j


 ψ(z)

(z − zν)αν
,

which shows that ψ(z)Rν(z) is a polynomial whose degree cannot be
larger than (αν − 1)+ (α1 + · · ·+αn)−αν = α1 + · · ·+αn− 1. Since
this is true for ν = 1, . . . , n we conclude that ψ(z)

∑n
ν=1 Rν(z) is a

polynomial of degree at most α1 + · · ·+ αn− 1. In view of (3.8) and
(3.9) the polynomial

p(z) := ψ(z)
n∑

ν=1

Rν(z) = f(z) + I(z)

= f(z) +
1

2πi
ψ(z)

∫
Γ

f(ζ)
(z − ζ)ψ(ζ)

dζ
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has the desired interpolating property (3.6). �

Hermite’s motivation behind Theorem 3.2
Let f , D, z1, α1 and Γ be as in Theorem 3.2 . Furthermore, let ρ

be such that the closed disk {ζ ∈ C : |ζ − z1| ≤ ρ} lies inside γ and
denote by Cρ the positively oriented circle |ζ−z1| = ρ. It is standard
(see, for example [1 , p. 125]) that the familiar Taylor polynomial p
of degree at most α1 − 1 satisfying

p(z1) = f(z1), . . . , p (α1−1)(z1) = f (α1−1)(z1) (3.10)

is given by

f(z) = p(z) +
1

2πi
(z − z1)α1

∫
Cρ

f(ζ)
(ζ − z)(ζ − z1)α1

dζ

for |z − z1| < ρ. Since the integrand has no singularities in
D \ {|ζ − z1| < ρ }, the circle Cρ in this representation may be re-
placed by Γ. Thus

f(z) = p(z) +
1

2πi
(z − z1)α1

∫
Γ

f(ζ)
(ζ − z)(ζ − z1)α1

dζ (3.11)

for |z − z1| < ρ. The function f(ζ)/(ζ − z1)α1 is continuous on Γ,
and so the integral on the right-hand side of (3.11) defines [1, p. 121]
a function of z that is analytic throughout the bounded component
Γ(i) of Ĉ\Γ. Since the function f(z) appearing on the left-hand side
of (3.11) is also holomorphic in Γ(i), by analytic continuation, the
equality must hold not only for |z − z1| < ρ but throughout Γ(i).
Thus

p(z) = f(z)− 1
2πi

(z − z1)α1 ×∫
Γ

f(ζ)
(ζ − z)(ζ − z1)α1

dζ for all z inside Γ , (3.12)

which is what Theorem 3.2 says in the case where n = 1.

REMARK 1. If ∆ρ(z1) := {z ∈ C : |z − z1| ≤ ρ} ⊂ D, then the
Taylor polynomial p(z) satisfying (3.10) converges uniformly to f(z)
for z ∈ ∆ρ(z1) as α1 tends to infinity. Hermite pointed out that the
polynomial p satisfying the more general interpolation condition (3.6)
tends to f(z) as α1, . . . , αn tend to infinity, if the circles centered at
zν , ν = 1, . . . , n and passing through z lie inside Γ.
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4 Lagrange Interpolation versus Hermite
Interpolation

Let f : [−1, 1] → R be an arbitrary continuous function, let
pn(f ; ·) ∈ Pn be such that

pn

(
−1 +

2ν

n

)
= f

(
−1 +

2ν

n

)
(ν = 0, 1, . . . , n) .

It was observed by Runge [34] that the sequence {pn(f ; x)} may
not converge uniformly to f(x) as n → ∞. Subsequently, Bern-
stein (see [31, pp. 30–35] for details and pertinent remarks) noted
that the sequence {pn(|x|; ·)} converges to |x| at no point of [−1, 1]
other than −1, 0, 1. Does there exist a universal infinite triangular
matrix, whose n-th row consists of points x1,n, . . . , xn,n belonging
to [−1, 1], such that for any continuous function f : [−1, 1] → R

the sequence {pn−1(f ; ·)} of polynomials pn−1 ∈ Pn−1, satisfying
pn−1(xν,n) = f(xν,n) for ν = 1, · · · , n, converges uniformly to f ?
The famous theorem of Faber (see [13] ; also see [6]) says that the
answer to this question is “no.” Similarly, there does not exist a uni-
versal infinite triangular matrix, whose n-th row consists of points
θ0,n, θ1,n, . . . , θn,2n belonging to [−1, 1], such that for any continu-
ous 2π-periodic function f : [0, 2π] → R the sequence {Tn(f ; θ)}
of trigonometric polynomials Tn(f ; .) of degree at most n, satisfying
Tn(θν,2n) = f(θν,2n) for ν = 0, 1, · · · , 2n, converges uniformly to f(θ)
(see [38 , Chapter VIII]).

Fejér discovered that the situation changes if instead of Lagrange
interpolation we consider Hermite interpolation in the points

xν,n := cos
2ν − 1

2n
π , ν = 1, . . . , n. These points are the zeros of the

n-th Chebyshev polynomial of the first kind. The result of Fejér (see
[14 , 15]) may be stated as follows.

Theorem 4.1 Let xν,n := cos
2ν − 1

2n
π , ν = 1, . . . , n. For any con-

tinuous function f : [−1, 1]→ R, the sequence {H2n−1(f ; ·)} of poly-
nomials belonging to P2n−1 satisfying the conditions

H2n−1(f ; xν,n) = f(xν,n) and H ′2n−1(f ; xν,n) = y′ν,n
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converges uniformly to f on [−1, 1] provided that

lim
n→∞ max

1≤ν≤n

|y′ν,n| log n

n
= 0 . �

There is an analogous result about the convergence of Hermite
interpolating trigonometric polynomials. It has some instructional
value in connection with Hermite interpolation by non-periodic entire
functions of exponential type , and so we shall discuss it.

Note that the Fejér kernel

Kn(u) :=
2

n + 1

{
sin (n + 1)u/2

2 sinu/2

}2

is a trigonometric polynomial of degree n that vanishes at the points
tν := 2πν/(n + 1) for ν = 1, 2, . . . , n and equals (n + 1)/2 at t0 = 0.
Thus

Jn(x) = Jn(f ; x) :=
2

n + 1

n∑
ν=0

f(tν)Kn(x− tν) (4.1)

is a trigonometric polynomial (J for D. Jackson) of degree at most
n coinciding with f at the points t0, . . . , tn. It is interesting that
K ′n(2πν/(n + 1)) = 0 for ν = 0, 1, . . . , n and so Jn(f ; x) is a trigono-
metric polynomial of degree at most n coinciding with f at the points
t0, . . . , tn and having a vanishing derivative there, a fact first ob-
served by Bernstein [5]. A priori it might seem that Jn satisfies
2n+2(> 2n+1) conditions, but the conditions governing the deriva-
tive J ′n are not independent. In fact, for any trigonometric polyno-
mial S of degree at most n,

S′(x) =
n∑

ν=−n

dν eiνx where d0 = 0 .

Hence, using a well-known property of the primitive (n + 1)-st roots
of unity, namely

n∑
j=0

e2νπij/(n+1) = 0 (ν = ±1, . . . ,±n) ,
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we conclude that

0 = (n + 1) d0 =
n∑

j=0

S′
(

2jπ

n + 1

)
, (4.2)

i.e., the sum of the values, the derivative of a trigonometric poly-
nomial of degree at most n takes at the points t0, t1, . . . , tn, is al-
ways zero. It is not obvious but given any set of n + 1 numbers
y0, y1, . . . , yn and another set of n+1 numbers y′0, y′1, . . . , y′n satis-
fying the condition

∑n
ν=0 y′ν = 0 there exists a unique trigonometric

polynomial Sn of degree at most n such that

Sn(tν) = yν , S′n(tν) = y′ν (ν = 0, 1, . . . , n) . (4.3)

To see this, note that

τn+1(x) :=
n∑

µ=1

sinµx +
1
2

sin (n + 1)x

= {1− cos (n + 1)x}1
2

cot
x

2
(4.4)

is a trigonometric polynomial of degree n + 1 which vanishes at the
points tν = 2πν/(n + 1), ν = 0, 1, . . . , n. Its derivative also vanishes
at each of these points except at t0; in fact τ ′n+1(0) = (n + 1)2/2.
Hence

�n(x) = 2
1

(n + 1)2

n∑
ν=0

y′ν τn+1(x− tν)

= 2
1

(n + 1)2

n∑
ν=0

y′ν
n∑

µ=0

sinµ(x− tν) +

1
(n + 1)2

sin{(n + 1)(x− t0)}
n∑

ν=0

y′ν

= 2
1

(n + 1)2

n∑
ν=0

y′ν
n∑

µ=0

sinµ(x− tν) (4.5)

is a trigonometric polynomial of degree at most n vanishing at the
points tν and having derivatives y′ν there. Consequently, with Kn(u)
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as above,

Sn(x) :=
2

n + 1

n∑
ν=0

yνKn(x− tν) + �n(x) (4.6)

is a trigonometric polynomial of degree at most n that satisfies (4.3).
If there were more than one, the difference of two such S(x) would
have a double zero at each of the n + 1 points t0, t1, . . . , tn, and so
would vanish identically, giving us a contradiction.

Having discussed the relevant properties of the trigonometric
polynomials Jn and �n defined in (4.1) and (4.5), respectively, we
are ready to state the analogue of Theorem 4.1 for Hermite interpo-
lating trigonometric polynomials, we had alluded to above. Here we
must quote [42, p. 24] and also [42, p. 331] where Zygmund attributes
the result to Fejér [15].

Theorem 4.2 Let f(x) be any bounded periodic function with period
2π. Furthermore, for any given natural number n, define

tν,n :=
2πν

n + 1
(ν = 0, 1, . . . , n) .

Also, let y′0,n, y′1,n, . . . , y′n,n be an arbitrary set of n + 1 numbers
satisfying

n∑
ν=0

y′ν,n = 0 and max{|y′0,n|, |y′1,n|, . . . , |y′n,n|} = o

(
n

log n

)
.

Now, let Sn(f ; x) be the trigonometric polynomial of degree at most
n such that

Sn(f ; tν,n) = f(tν,n) , S′n(f ; tν,n) = y′ν,n (ν = 0, 1, . . . , n) .

Then limn→∞ Sn(f ; x) = f(x) at every point of continuity of f , and
the convergence is uniform over each closed interval of continuity.

�

The negative results of Faber and Bernstein about the uniform
convergence of Lagrange interpolating polynomials and of trigono-
metric polynomials notwithstanding, when it comes to convergence in



Interpolation by Entire Functions 191

the mean, Lagrange interpolating trigonometric polynomials which
interpolate a 2π-periodic function in uniformly distributed points
behave very well, as the following result of Marcinkiewicz [28] illus-
trates.

Theorem 4.3 Let f : R → C be any continuous 2π-periodic func-
tion, and for any n ∈ N, let

θν,n :=
2νπ

2n + 1
(ν = 0,±1, . . . ,±n) .

In addition, let Ln(.; f) be the trigonometric polynomial of degree at
most n with Ln(θν,n; f) = f(θν,n) for ν = 0,±1, . . . ,±n. Then

lim
n→∞

∫ 2π

0
|f(θ)− Ln(θν,n; f)|p dθ = 0 (p > 0) .

�

This is interesting since supn→∞ |Ln(θν,n; f)| = ∞ for every θ if
the continuous 2π-periodic function f is chosen appropriately ([22],
[29]). Theorem 4.3 and another analogous result due to Erdős and
Feldheim [12] have stimulated a lot of research on mean convergence.
Later in the paper, we shall mention an analogue of this theorem
for Lagrange interpolation of non-periodic functions f : R → C in
uniformly distributed points νπ/τ, ν = 0,±1,±2, . . ..

5 Lacunary Interpolation by Polynomials and
Trigonometric Polynomials

The theory of lacunary interpolation was greatly enriched by con-
tributions made by the late Professor Ambikeshwar Sharma and his
associates. His work with A. K. Varma on (lacunary) trigonomet-
ric interpolation motivated the third named author of this paper to
consider extending the notion of “(0, m) interpolation by trigono-
metric polynomials” to “(0, m) interpolation by entire functions of
exponential type” which will be discussed in a later section.

Lacunary interpolation by polynomials
Given n points {xν}nν=1, and corresponding to each xν a set of

non-negative integers m1,ν , . . . , mαν ,ν and arbitrary numbers
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w1,ν , . . . , wαν ,ν , we may ask if there always exists a polynomial p of
degree α1 + · · ·+αn−1 or less satisfying the α1 + · · ·+αn conditions

p(mk,ν)(xν) = wk,ν for k = 1, . . . , αν and ν = 1, . . . , n.

This is the central problem of lacunary interpolation, called “lacu-
nary” because there may be lacunae (gaps) in the sequence
m1,ν , . . . , mαν ,ν . It is also referred to as Birkhoff interpolation since
G. D. Birkhoff [8] was the first to consider this kind of interpola-
tion. It reduces to Hermite interpolation when mk,ν = k − 1 for
k = 1, . . . , αν .

In order to get some insight into the problem of lacunary in-
terpolation let us suppose that αν = 2 for ν = 1, . . . , n and that
m1,ν = 0, m2,ν = 2 for each ν. Then the question is: does there
always exist a polynomial p of degree 2n− 1 or less such that

p(xν) = w1,ν ,
p′′(xν) = w2,ν

}
(ν = 1, . . . , n) ? (5.1)

This kind of interpolation, also known as (0, 2) interpolation, is con-
siderably more complicated than the case (0, 1) of Hermite interpo-
lation. For example, there may be no polynomial p of degree 2n− 1
or less such that p(xν) = w1,ν and p′′(xν) = w2,ν for ν = 1, . . . , n;
it is also possible that there may be an infinity of polynomials of
degree not exceeding 2n− 1 satisfying (5.1); and then there are situ-
ations of considerable significance and interest where the interpola-
tion problem has one and only one solution. These claims need to be
substantiated. The following example serves to justify the first two.

Example. Opting for simplicity which adds to the clarity without
missing the point we take only three nodes x1 = 1, x2 = 0, x3 = −1,
that is n = 3, and see if there does or does not exist a polynomial p
of degree at most 5 (= 2n−1) that takes arbitrarily prescribed values
w1,1, w1,2, w1,3 at x1, x2, x3, respectively, and whose second derivative
p′′ can be assigned any three values w2,1, w2,2, w2,3 at these points.
Let us take w1,1 = w1,2 = w1,3 = 0. Then, writing p(x) :=

∑5
ν=0 aνx

ν

we see that the coefficients of p must satisfy the conditions

a0 = 0, a1 + a3 + a5 = 0, a2 + a4 = 0 .
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Let us also choose w2,2 to be 0. This forces a2 and a4 to be 0. Hence,
in view of the condition a1 +a3 +a5 = 0, we are led to conclude that
the polynomial p has to be of the form

p(x) = a1(x− x3) + a5(x5 − x3) ,

and so necessarily p′′(x3) = −p′′(x1). Indeed

p′′(x1) = p′′(1) = −2(3 a1 − 7 a5),
p′′(x3) = p′′(−1) = 2(3 a1 − 7 a5).

}
(5.2)

Thus, we can only choose p′′(1) or p′′(−1) freely but not both. In
particular we see that there is no polynomial p of degree 5 or less
satisfying the conditions

p(1) = p(0) = p(−1) = 0, p′′(1) = 1, p′′(0) = 0, p′′(−1) = 1 .

On the other hand, if we respect the restriction imposed by (5.2)
on the choice of w2,1 and w2,3, that is require p′′(−1) to be equal
to −w2,1, then we can certainly find polynomials p of degree not
exceeding 5 for which p(1) = p(0) = p(−1) = 0, p′′(1) = w2, 1,
p′′(0) = 0, p′′(−1) = −w2, 1 . Any polynomial of the form

p(x) = a1(x− x3)− 1
14

(w2,1 + 6a1)(x3 − x5) (a1 ∈ R)

has this property. In fact, any of the polynomials

p(x) = a1(x− x3)− 1
14

(w2,1 + 6a1)(x3 − x5) + c x(1− x2)(3x2 − 7),

where a1 and c are arbitrary real numbers, satisfies the specified
interpolation conditions.

The preceding aspect of (0, 2) interpolation was discussed from
a more general point of view by Surányi and Turán [36].

Let

Pm(x) :=
1

2m

�m/2�∑
µ=0

(−1)µ

(
m

µ

)(
2m− 2µ

m

)
xm−2µ

be the Legendre polynomial of degree m, normalized so that
Pm(1) = 1. It was observed by Surányi and Turán [36] that the
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zeros of the polynomial πn(x) := (1− x2)P ′n−1(x) are of special sig-
nificance in connection with the problem of (0, 2) interpolation by
polynomials. This is illustrated by the following result.

Theorem 5.1 Let ξ1 = 1 > · · · > ξn = −1 be the zeros of the
polynomial πn(x) := (1−x2)P ′n−1(x). Furthermore, let w1,n, . . . , wn,n

and y1,n, . . . , yn,n be two sets of n real numbers each. Then, if n is
even, there exists a polynomial f of degree not exceeding 2n− 1 such
that

f(ξν,n) = wν,n , f ′′(ξν,n) = yν,n (ν = 1, . . . , n) .

The same cannot be said in the case where n is odd.

Proof. Let us recall that Pn−1 satisfies the differential equation

[
(1− x2)P ′n−1(x)

]′ + n(n− 1)Pn−1(x) =
(1− x2)P ′′n−1(x)− 2xP ′n−1(x) + n(n− 1)Pn−1(x) = 0 ,

and so

(1− x2)
[
(1− x2)P ′n−1(x)

]′′ + n(n− 1)(1− x2)P ′n−1(x) = 0 .

Thus πn satisfies the differential equation

(1− x2)π′′n(x) + n(n− 1)πn(x) = 0 . (5.3)

Differentiating the two sides of (5.3) and putting x = 1, x = −1 we
find that

π′′n(1) =
n(n− 1)

2
π′n(1) and π′′n(−1) = −n(n− 1)

2
π′n(−1) . (5.4)

Let
−1 = ξn,n < ξn−1,n < · · · < ξ2,n < ξ1,n = 1

be the zeros of πn. Then from (5.3) it follows that

π′′n(ξν,n) = 0 (ν = 2, . . . , n− 1) . (5.5)
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We shall use this property of πn to determine all those polynomials
p in P2n−1 that satisfy

p(ξν,n) = 0
p′′(ξν,n) = 0

}
(ν = 1, . . . , n) . (5.6)

The identically zero polynomial certainly satisfies (5.6). So the
class Cn of all polynomials p in P2n−1 that satisfy (5.6) is not empty.
Now note that if p ∈ Cn, then p must be of the form

p(x) = πn(x)g(x) ,

where g ∈ Pn−1. Using (5.5) in

p′′(x) = π′′n(x)g(x) + 2π′n(x)g′(x) + πn(x)g′′(x)

we see that for ν = 2, . . . , n− 1, we have

0 = p′′(ξν,n) = 2π′n(ξν,n)g′(ξν,n) .

Since the zeros of πn are all simple, π′n(ξν,n) 	= 0 and so g′ and P ′n−1

have the same zeros. Hence, there exists a constant c such that
g′(x) ≡ cP ′n−1(x). This, in turn, implies that for some constant d,

g(x) = cPn−1(x) + d .

Thus
p(x) = πn(x){cPn−1(x) + d} . (5.7)

We have not as yet used the fact that p′′(x) vanishes at 1 and
−1. Since also πn(x) vanishes at 1 and −1, we have

0 = p′′(1) = π′′n(1)(c + d) + 2cπ′n(1)P ′n−1(1) ,

0 = p′′(−1) = π′′n(−1){c (−1)n−1 + d}+ 2cπ′n(−1)P ′n−1(−1) .

Using (5.4) we see that c and d satisfy the two equations

n(n− 1)
2

(c + d) + 2cP ′n−1(1) = 0

and
−n(n− 1)

2
{(−1)n−1c + d}+ 2cP ′n−1(−1) = 0 .
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From the differential equation for Pn−1 we deduce that

P ′n−1(1) =
n(n− 1)

2
, P ′n−1(−1) = (−1)n n(n− 1)

2
,

and consequently

3c + d = 0 and (−1)n · 3c− d = 0 . (5.8)

At this stage we should distinguish the case where n is even from
the case where n is odd. Let n be even. Then (5.8) reduces to

3c + d = 0 and 3c− d = 0 .

This is possible only if c and d both vanish. Returning to (5.7) we
see that p(x) is identically zero. Thus p = 0 is the only polynomial
p ∈ P2n−1 that satisfies (5.6).

In the case where n is odd, (5.7) in conjunction with (5.8) implies
that a polynomial p ∈ P2n−1 satisfies (5.6) if and only if
p(x) = c πn(x){Pn−1(x)− 3}. �

For a variety of further results about (0, 2) interpolation by poly-
nomials we refer the reader to [2], [3], [4], [32], [40] and to [37].

Lacunary interpolation by trigonometric polynomials
For any integer n let ϑν,N := 2πν/(N + 1) for ν = 0, . . . , N , and

denote by TN the class of all real trigonometric polynomials of degree
at most N . We start with the following result [37, Theorem 7.5].

Theorem 5.2 Let n and m be two positive integers. Also, in the
notation just introduced, let ϑν,n−1 := 2πν/n for ν = 0, . . . , n− 1.
Furthermore, let w0, . . . , wn−1 and y0, . . . , yn−1 be two sets of num-
bers subject only to the restriction that y0 + · · · + yn−1 = 0. Then,
there exists a unique trigonometric polynomial T ∈ Tn−1 such that

T (ϑν,n−1) = wν , T (m)(ϑν,n−1) = yν (ν = 0, . . . , n− 1) , (5.9)

if either m is odd and n is arbitrary or m is even and n is odd.
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NOTE. Analogously to (4.2) it can be shown that for any trigono-
metric polynomial S of degree at most n− 1,

n−1∑
ν=0

S(m)

(
2πν

n

)
= 0 , (4.2′)

i.e., the sum of the values the m-th derivative of a trigonometric
polynomial in Tn−1 takes at the points ϑ0,n−1, ϑ1,n−1, . . . , ϑn−1,n−1 is
always zero.

We shall deduce Theorem 5.2 from the following uniqueness the-
orem for entire functions of exponential type (see [16, Theorem 4],
also see [17, Lemma 2]).

Lemma 5.3 Let m be any positive integer, and λ an arbitrary num-
ber in [0, 1). Furthermore, let f(z) be an entire function of exponen-
tial type 2π such that

(i) |f(x)| ≤ A + B|x|λ for all real x and certain constants A, B,

(ii) f(k) = f (m)(k) = 0 for k = 0,±1,±2, . . ..

Then

f(z) =
{

c1 sin(πz) + c2 sin(2πz) if m is even,
c sin2(πz) if m is odd,

where c1, c2 and c are constants. Here λ cannot be allowed to be equal
to 1.

�

Proof of Theorem 5.2. In view of Lemma 2.2, it is enough to show
that if T ∈ Tn−1 and

T (ϑν,n−1) = T (m)(ϑν,n−1) = 0 (ν = 0, . . . , n− 1) , (5.10)

then T (θ) ≡ 0. For this note that f(z) := T

(
2π

n
z

)
is an entire

function of exponential type
(n− 1) 2π

n
and so of exponential type

less than 2π. Besides,

f(k) = f (m)(k) = 0 (k = 0,±1,±2, . . .) .
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Hence, by Lemma 5.3, f(z) is identically zero if m is odd. In the case
where m is even, there exists a constant c1 such that
f(z) := c1 sin πz. This implies that T is identically zero if m is
odd, whatever n may be. If m is even, then T must be of the form
T (θ) := c1 sin

(n

2
θ
)

for some constant c1. However, c1 must be zero

if n happens to be odd, since otherwise T (θ) would not be 2π-periodic
and so not a proper trigonometric polynomial. �

It was shown by Sharma and Varma (see [35, formula (4)]) that
if m is odd and n is arbitrary or if m is even and n is odd, then the
trigonometric polynomial

A0,m(θ) :=
1
n


1 + 2

n−1∑
j=1

(n− j)m cos jθ

(n− j)m − (−j)m


 ,

which is clearly of degree n− 1, satisfies

A0,m

(
2πν

n

)
=

{
1 if ν = 0,
0 if ν = 1, . . . , n− 1,

and A(m)
0,m

(
2πν
n

)
= 0 for ν = 0, 1, . . . , n− 1.

They also observed that if m is odd and n is arbitrary, then the
trigonometric polynomial

B0,m(θ) := (−1)(m−1)/2


 2

n

n−1∑
j=1

sin jθ

(n− j)m + jm
+

sin nθ

nm+1




satisfies

B(m)
0,m

(
2πν

n

)
=

{
1 if ν = 0,
0 if ν = 1, . . . , n− 1,

and B0,m

(
2πν
n

)
= 0 for ν = 0, 1, . . . , n−1. The degree of the trigono-

metric polynomial B0,m(θ) is n, but never mind. This is a situation
analogous to (4.4). For any set of n real numbers β0, . . . , βn−1, where∑n−1

ν=0 βν = 0, and any continuous 2π-periodic function f ,

Rn−1(θ) :=
n−1∑
ν=0

f

(
2πν

n

)
A0,m

(
θ − 2πν

n

)
+

n−1∑
ν=0

βνB0,m

(
θ − 2νπ

n

)
(5.11)
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is the unique trigonometric polynomial of degree not exceeding n−1
such that

Rn−1

(
2πν

n

)
=f

(
2πν

n

)
and R

(m)
n−1

(
2πν

n

)
=βν (ν = 0, 1, . . . , n− 1) .

In analogy with Theorem 4.2 they [35, Theorem 2] proved the fol-
lowing result.

Theorem 5.4 Let m be odd and n arbitrary. Also, let f be a contin-
uous 2π-periodic function, and β0, . . . , βn−1 real numbers such that

n−1∑
ν=0

βν = 0 and max{|β0|, . . . , |βn−1|} = o

(
nm

log n

)
.

In addition, let Rn−1(θ) be as in (5.11). Then Rn−1(θ) tends uni-
formly to f(θ) as n tends to ∞.

Sharma and Varma [35] also considered the case where m is even
and n is odd and obtained a slightly different result.

Due to limitation of time and space we shall not discuss this topic
any further and simply refer to [37] for relevant references. However,
we must quote [27] which does not appear in their list of references
but is quite interesting in our opinion.

6 Interpolation by Transcendental Entire
Functions

Looking back at Theorem 3.1, we ask if an analogous result holds
for an infinite set of interpolation points. Obviously, a polynomial
of degree n cannot assume prescribed values at more than n + 1
distinct points unless the prescribed values are the same. So, if we
are looking for functions which are “just as smooth” as polynomials,
we have to move on to transcendental entire functions. However, we
need to observe that an entire function f cannot assume the value 0
at an infinite set of points z1, z2, . . . , zn, . . . having a finite limit point
without being identically zero. For this reason, we shall require the
interpolation points to have no finite limit point. With this in mind,
the following result may be seen as “an analogue” of Theorem 3.1.
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Theorem 6.1 Let z1, . . . , zn, . . . be an infinite sequence of points in
the complex plane C such that zn 	= 0 and |zn| → ∞ as n → ∞.
Furthermore, for each n ∈ N, prescribe αn values

w0,n, . . . , wαn−1,n ,

not necessarily distinct. Then, there exists an entire function f such
that

f (j)(z1) = wj,1 (j = 0, . . . , α1 − 1)
.
.
.

f (j)(zn) = wj,n (j = 0, . . . , αn − 1)
.
.
.




. (6.1)

Proof. The idea of the proof is simply ingenious. Let z0 = 0 and
α0 ∈ N. Construct an entire function g with zeros of multiplicity
αν at zν for ν = 0, 1, 2, . . .. This is possible by a slightly modified
version of a classical theorem of Weierstrass (see [1, p. 194] or [39,
pp. 246–247]), stated and proved below as Lemma 6.2. Let

g(z) = aαν ,ν (z−zν)αν +· · ·+a2αν−1,ν (z−zν)2αν−1+· · · (aαν ,ν 	= 0)

be the Taylor series development of g at the point zν . Now construct
a meromorphic function χ(z) having a pole of multiplicity αν at zν

for each ν, and no other poles. This is not only possible but by a
theorem of Mittag-Leffler [1, p. 185], stated below as Lemma 6.3,
we can also arrange for χ(z) to have at each zν a “principal part” of
our choice. Clearly, f(z) := χ(z) g(z) is an entire function, and the
freedom in the choice of the principal part of χ(z) at each zν allows
us to arrange for f(z) to have the property (6.1), which means that
the Taylor series development of f(z) at zν should be of the form

f(z) =
αν−1∑
k=0

1
k!

wk,αν (z − zν)k +
∞∑

k=αν

ck (z − zν)k .
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Thus, considering the Laurent development

χ(z) =
b−αν ,ν

(z − zν)αν
+ · · ·+ b−1,ν

z − zν
+
∞∑

k=0

bk,ν(z − zν)k

of χ(z) at zν we see that the coefficients b−αν ,ν , . . . , b−1,ν of the
principal part

b−αν ,ν

(z − zν)αν
+ · · ·+ b−1,ν

z − zν

need to be chosen in such a manner that

χ(z) g(z) =
αν−1∑
k=0

1
k!

wk,αν (z − zν)k +
∞∑

k=αν

ck (z − zν)k .

This means that the the first αν terms of the product of{
b−αν ,ν

(z − zν)αν
+ · · ·+ b−1,ν

z − zν

}

and {
aαν ,ν (z − zν)αν + · · ·+ a2αν−1,ν (z − zν)2αν−1

}
should be

w0,αν +· · ·+ 1
k!

wk,αν (z−zν)k + · · ·+ 1
(αν−1)!

wαν−1,αν (z−zν)αν−1 .

This observation helps us determine the coefficients b−αν ,ν , . . . , b−1,ν

successively, as desired. Clearly,

b−αν ,ν =
w0,αν

aαν ,ν
, b−αν+1,ν =

1
aαν ,ν

(
1
1!

w1,αν−bαν ,ν aαν+1,ν

)
, et cetera .

�

Lemma 6.2 (K. Weierstrass). Let z1, z2, . . . , zn, . . . be an infinite
sequence of points in the complex plane C such that 0 < |zn| ≤ |zn+1|
for n = 1, 2, . . ., and |zn| → ∞ as n → ∞. Furthermore, for each
n ∈ N, let mn be a positive integer. Then, for any integer m0 ≥ 0,
there exists an entire function f , which has a zero of multiplicity mn

at zn for n = 1, 2, . . ., and a zero of multiplicity m0 at 0.
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Proof . For |u| ≤ 1
2 and pn := max{n, mn}, let

E(u; pn) := (1− u)mn exp

(
mn

pn∑
ν=1

1
ν

uν

)
.

Then

| log E(u; pn)| =

∣∣∣∣∣mn

{ ∞∑
ν=1

1
ν

uν −
pn∑

ν=1

1
ν

uν

}∣∣∣∣∣
≤ mn

pn + 1
(
upn+1 + upn+2 + · · ·)

≤ |u|pn+1 + |u|pn+2 + · · ·

≤ |u|pn+1

{
1 +

1
2

+
(

1
2

)2

+ · · ·
}

= 2 |u|pn+1 .

Now, let ρ be any given positive number. Then, for |zn| = rn > 2ρ,
we have ∣∣∣∣log E

(
z

zn
; pn

)∣∣∣∣ ≤ 2
(

ρ

rn

)pn+1

≤ 2
(

1
2

)n+1

,

that is
∑
|zn|>2ρ

∣∣∣∣log E

(
z

zn
; pn

)∣∣∣∣ ≤ 2. Hence, the series

∑
|zn|>2R

log E

(
z

zn
; pn

)

is uniformly convergent for |z| ≤ R, and so is the product

∏
|zn|>2R

E

(
z

zn
, pn

)
= exp




∑
|zn|>2R

log E

(
z

zn
, pn

)
 .

It follows that the function

f(z) := zm0

∞∏
n=1

E

(
z

zn
; pn

)
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is regular in |z| ≤ R, and by a well-known theorem of Hurwitz [39,
p. 119] its only zeros in this closed disc are those of

zm0
∏

|zn|≤2R

E

(
z

zn
, pn

)
,

i.e., the points 0, z1, z2, . . . with multiplicities m0, m1, m2, . . ., respec-
tively. Since R may be as large as we please, Lemma 6.2 is proved.

�

Lemma 6.3 (G. Mittag-Leffler). Let z0 = 0, z1, . . . , zn, . . . be an in-
finite sequence of points in the complex plane C such that
0 < |zn| ≤ |zn+1| for n = 1, 2, . . ., and |zn| → ∞ as n → ∞. Asso-
ciate with each n ∈ N a positive integer mn and with 0 a non-negative
integer m0. In addition, let

Gn(z) :=
mn∑
ν=1

aν,n

(z − zn)ν
(n = 1, 2, . . .) ,

and

G0(z) :=
m0∑
ν=0

aν,0

(z − z0)ν
.

Then there exists a meromorphic function f(z) whose poles coincide
with the points z0 = 0, z1, . . . , zn, . . ., and whose principal part at the
point zn equals Gn for n = 0, 1, 2, . . ..

�

Although there is a clear analogy between Theorem 5.2 and The-
orem 3.1, there is an important difference. In order to explain it,
we need to recall the notion of “growth” (ρ , τ) of an entire function
that was discussed in §1. We remind the reader that this notion has
the same significance for a transcendental entire function as the de-
gree has for a polynomial, and the class Cρ,τ of all entire functions
of growth (ρ , τ) is analogous to the class Pn of all polynomials of
degree at most n. When we say that a polynomial f is of degree at
most n we imply that |f(z)| ≤ C|z|n for some C > 0 and all z of suffi-
ciently large modulus. Similarly, when we say that an entire function
f is of growth (ρ, τ) we mean to indicate that |f(z)| < Ce(τ+ε)|z|ρ
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for any ε > 0, some C depending on ε, and all z of sufficiently large
modulus. Theorem 3.1 says that not only there is a polynomial that
satisfies (3.5) but that we can find one in PN , N := α1 + · · ·+αn−1,
that is one which does not grow faster than |z|N . Although we have
proved the existence of an entire function f satisfying (6.1) and have
also indicated how such a function can be constructed the result is
too general for us to be able to say anything about its order. It is
quite possible that there may be no entire function f of finite order
that satisfies (6.1). Even if we knew that the function f that has
been constructed is of growth (ρ′ , τ ′), we can rarely determine the
smallest class Cρ,τ that necessarily contains a function f with this
property. We need to know more about the distribution of the points
z1, . . . , zn, . . . and also about the values wj,n. For example, let

z1 := p1, z2 := p2 . . . , zn := pn, . . . ,

where p1 < p2 < · · · < pn < · · · are the primes arranged in increasing
order, and let wn := ppn

n for n = 1, 2, . . .. Then there does not exist
an entire function f of exponential type such that f(zn) = wn :=
epn log pn for n = 1, 2, . . . since for an entire function f exponential
type one can always find constants k and c such that |f(z)| < c ek|z|

for any z ∈ C. Then there is the question of uniqueness. It arises
when we know a function f to satisfy (6.1) and we know in addition
the smallest class Cρ,τ to which it belongs. We would then like to
specify some characteristic property of f so as to set it apart from
possibly other functions of the same class that satisfy (6.1). The
results that help us in this respect are called uniqueness theorems .
In order to illustrate this we shall give some examples.

The following two uniqueness theorems are relevant for Lagrange
interpolation in uniformly distributed points on the real line. Both
these results are due to Valiron [41]. We refer the reader to [9,
Chapter 9] for numerous other results of this nature.

Theorem 6.4 (Valiron) Let f(z) be an entire function of exponen-
tial type π such that f(z) = O(|z|p) eπ|z| as |z| → ∞. Furthermore,
let f(z) = 0 for z = 0,±1,±2, . . .. Then f(z) = P (z) sinπz, where
P (z) is a polynomial of degree not exceeding p.

�
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Clearly, (sinπz)/(z − n), n ∈ Z is an entire function of exponen-
tial type π that takes the value 1 at the point n and vanishes at any
other positive or negative integer. By the preceding theorem it is the
only such function that tends to zero as z → ∞ along the positive
real axis. So, this latter property sets this function apart from the
others of exponential type 2π which also take the value 1 at the point
n and vanish at all the other positive or negative integers, namely
the functions (sinπz)/(z − n) + c sinπz, c 	= 0. These others are
bounded on the real line but do not tend to zero as z →∞ along the
positive real axis.

Theorem 6.5 (Valiron) Let f(z) be an entire function of exponen-
tial type π such that zf(z) e−π|z| tends to zero uniformly as |z| → ∞
and vanishes at least once in each of the intervals [n, n + 1) for all
n ∈ Z. Then f(z) ≡ 0.

�

The case m = 1 of Lemma 5.3 is a uniqueness theorem useful
for Hermite interpolation in uniformly distributed points on the real
line. It may be noted that, ((sinπz)/(z − n))2 is an entire function
of exponential type 2π which takes the value 1 at the point n and
vanishes at any other positive or negative integer. Besides, its deriva-
tive vanishes at all the integers. By the case m = 1 of Lemma 5.3,
it is the only such function that tends to zero as z → ∞ along the
positive real axis. Similarly, (sinπz)2/(z − n) is an entire function
of exponential type 2π which vanishes at all the integers, positive or
negative, so does its derivative except at z = n where the derivative
takes the value 1. It is the only such function that tends to zero as
z →∞ along the positive real axis.

The reader may consult [24], [25] for some other uniqueness the-
orems relevant to Hermite interpolation by entire functions of expo-
nential type.

In addition to the above mentioned Lemma 5.3 the following three
uniqueness theorems also appear in [16]. They are all relevant to
lacunary interpolation in uniformly distributed points on the real
line.
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Theorem 6.6 Let f(z) be an entire function of exponential type τ <
2π such that

f(n) = f ′′(n) = 0 (n = 0,±1,±2, . . .) ,

then f(z) ≡ c sinπz, where c is a constant. Here τ = 2π is inadmis-
sible.

�

Let τ < 2π. By Theorem 6.6 if there exists an entire function
f of exponential type τ that takes prescribed values at the points
z = 0,±1,±2, . . . and whose second derivative also takes prescribed
values at the same set of points, then it has to be unique. However,
the existence of such a function is not guaranteed. It depends on the
prescribed values.

Theorem 6.7 Let k be an even integer ≥ 4. In addition let f(z) be
an entire function of exponential type τ < π sec(π/k) such that

f(n) = f (k)(n) = 0 (n = 0,±1,±2, . . .) .

Then f(z) ≡ c sinπz, where c is a constant. Here τ cannot be allowed
to be π sec(π/k).

�

Theorem 6.8 Let k be an odd integer ≥ 3. In addition let f(z) be
an entire function of exponential type τ < π sec(π/2k) such that

f(n) = f (k)(n) = 0 (n = 0,±1,±2, . . .) .

Then f(z) ≡ 0. Here τ cannot be allowed to be π sec(π/2k).
�

In his doctoral dissertation, R. Brück [10] obtained various exten-
sions of the uniqueness theorems presented in [16]. They all have di-
rect bearing on lacunary interpolation in uniformly distributed points
on the real line.

Approximation via interpolation
Any polynomial other than a constant does not remain bounded

on any ray. This can also be said about entire functions of growth
(1/2, 0). No non-constant entire function of growth (1, 0) is bounded
on a line. Hence functions that are continuous and bounded on the
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real axis cannot be approximated uniformly closely by functions in
the class C1,0. However, the class C1,τ does contain non-constant
entire functions that remain bounded on the real axis, provided that
τ is positive. This makes it reasonable to explore the “possibility”
if any bounded continuous function g : R→ R can be approximated
arbitrarily closely by an entire function of exponential type. S. Bern-
stein [7] proved that this was possible if and only if g was not only
bounded but also “uniformly continuous.” Could this be done via La-
grange interpolation? In view of the negative results of Faber and
Bernstein about the convergence properties of Lagrange interpolat-
ing polynomials and Lagrange interpolating trigonometric polynomi-
als one cannot be optimistic about the possibility. For a discussion
of this question we refer the reader to [18]. In that paper it is shown
that Hermite interpolation in uniformly distributed points on the real
line does lead to a proof of the fact that a bounded uniformly contin-
uous function g : R → R can be approximated arbitrarily closely by
entire functions entire functions of exponential type.

For results on uniform approximation on the whole real line via
lacunary interpolation by entire functions of exponential type we
refer the reader to [17], [18], [19], [20], [26] and [27]. We would
have liked to discuss some of those results here but due to certain
constraints we cannot.

Results on mean convergence of Lagrange interpolating entire
functions of exponential type, analogous to Theorem 4.3, appear in
[33] and [21].
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[13] G. Faber, Über die interpolatorische Darstellung stetiger Funk-
tionen, Deutsche Mathematiker–Vereinigung Jahresbericht, 23
(1914), 192–210.
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[34] C. Runge, Über empirische Funktionen und die Interpolation
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[36] J. Surányi and P. Turán, Notes on interpolation. I. (On some
interpolatorical properties of ultraspherical polynomials, Acta
Math. Acad. Sci. Hung., 6 (1955), 67–79.



Interpolation by Entire Functions 211
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Abstract

In this paper we survey hyperinterpolation on the sphere
S

d, d ≥ 2. The hyperinterpolation operator Ln is a linear pro-
jection onto the space Pn(Sd) of spherical polynomials of degree
≤ n, which is obtained from L2(Sd)-orthogonal projection onto
Pn(Sd) by discretizing the integrals in the L2(Sd) inner prod-
ucts by a positive-weight numerical integration rule of poly-
nomial degree of exactness 2n. Thus hyperinterpolation is a
kind of “discretized orthogonal projection” onto Pn(Sd), which
is relatively easy and inexpensive to compute. In contrast, the
L2(Sd)-orthogonal projection onto Pn(Sd) cannot generally be
computed without some discretization of the integrals in the
inner products; hyperinterpolation is a realization of such a
discretization. We compare hyperinterpolation with L2(Sd)-
orthogonal projection onto Pn(Sd) and with polynomial inter-
polation onto Pn(Sd): we discuss the properties, estimates of
the operator norms in terms of n, and estimates of the ap-
proximation error. We also present a new estimate of the ap-
proximation error of hyperinterpolation in the Sobolev space
setting, that is, Ln : Ht(Sd) → Hs(Sd), with t ≥ s ≥ 0 and
t > d

2 , where Hs(Sd) is for integer s roughly the Sobolev space
of those functions whose generalized derivatives up to the order
s are square-integrable.
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1 Introduction: Orthogonal Projection,
Polynomial Interpolation, and
Hyperinterpolation

Let S
d, with d ≥ 2, denote the unit sphere in R

d+1,

S
d :=

{
x ∈ R

d+1
∣∣∣ |x| = 1

}
,

where |x| := √x · x denotes the Euclidean norm in R
d+1, and x ·y is

the Euclidean inner product for x, y ∈ R
d+1. Let us further denote

by Pn(Sd) the space of all spherical polynomials of degree ≤ n on S
d,

that is, the space of the restrictions to S
d of all polynomials on R

d+1

of degree≤ n. Then L2(Sd)-orthogonal projection, interpolation, and
hyperinterpolation are all linear projections onto Pn(Sd). Hyperinter-
polation is, roughly speaking, obtained from L2(Sd)-orthogonal pro-
jection by discretizing the inner products in the L2(Sd)-orthogonal
projection onto Pn(Sd) with a positive-weight numerical integration
rule that has polynomial degree of exactness 2n.

This paper summarizes the known results on hyperinterpolation
and compares them with the corresponding results for orthogonal
projection and polynomial interpolation. Hyperinterpolation was in-
troduced by Sloan in [21]. We start by briefly summarizing all three
methods in this introductory section. Then in the next section we
show that while hyperinterpolation and interpolation onto Pn(Sd) are
essentially the same on S

1, they can never be the same on S
d for d ≥ 2

if n ≥ 3. In the third section we give estimates for the norm of the
hyperinterpolation operator, and also for the approximation error, in
terms of powers of n. In the last part of that section we present a
new estimate of the approximation error of hyperinterpolation in a
Sobolev space setting with certain assumptions on the indices. We
compare the estimates with known results for L2(Sd)-orthogonal pro-
jection and polynomial interpolation. In the last section we make
some concluding remarks about the advantages and disadvantages of
hyperinterpolation compared to orthogonal projection and polyno-
mial interpolation.
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1.1 Orthogonal projection onto Pn(Sd)

The space of continuous functions on S
d is denoted by C(Sd), and as

usual it is endowed with the supremum norm

‖f‖C(Sd) := sup
x∈Sd

|f(x)|.

Let us denote by L2(Sd) the Hilbert space of square-integrable
functions on S

d with the inner product

(f, g)L2(Sd) :=
∫
Sd

f(x) g(x) dωd(x)

and the induced norm ‖f‖L2(Sd) := (f, f)
1
2

L2(Sd)
, where dωd is the

Lebesgue surface measure on S
d. The surface area of S

d is denoted
by ωd,

ωd = |Sd| = 2 π
d+1

2

Γ
(

d+1
2

) .

The L2(Sd)-orthogonal projection Tn : L2(Sd) → Pn(Sd) is then
uniquely defined by

Tnf ∈ Pn(Sd) ∀f ∈ L2(Sd)

and

(Tnf, p)L2(Sd) = (f, p)L2(Sd) ∀f ∈ L2(Sd), ∀p ∈ Pn(Sd).

Clearly we have T 2
n = Tn.

From now on let d ≥ 2, unless specified otherwise.
The restriction of any real harmonic homogeneous polynomial on

R
d+1 of exact degree � to S

d is called a (real) spherical harmonic of
degree �. The space H�(Sd) of all (real) spherical harmonics of degree
� has the dimension

N(d, 0) := 1, N(d, �) :=
(2� + d− 1) (� + d− 2)!

(d− 1)! �!
, � ∈ N.

We denote by {
Y

(d)
�k

∣∣∣ k = 1, . . . , N(d, �)
}

(1.1)
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a fixed L2(Sd)-orthonormal system of real spherical harmonics of
degree �. Clearly (1.1) is an L2(Sd)-orthonormal basis for H�(Sd).
Moreover

Pn(Sd) =
n⊕

�=0

H�(Sd),

and

dn := dim(Pn(Sd)) =
n∑

�=0

N(d, �) = N(d + 1, n)

=
(2n + d) (n + d− 1)!

d! n!
.

Furthermore

L2(Sd) =
∞⊕

�=0

H�(Sd)

‖·‖
L2(Sd)

=
∞⋃

n=0

Pn(Sd)

‖·‖
L2(Sd)

.

Any two spherical harmonics of different degree are orthogonal, and
hence the union of the sets (1.1) over all � ∈ N0 is a complete or-
thonormal system in L2(Sd). Thus any function f ∈ L2(Sd) can be
represented in the L2(Sd) sense by its Fourier series (or Laplace se-
ries) with respect to this complete orthonormal system of spherical
harmonics:

f =
∞∑

�=0

N(d,�)∑
k=1

f̂
(d)
�k Y

(d)
�k ,

with the Fourier coefficients

f̂
(d)
�k :=

(
f, Y

(d)
�k

)
L2(Sd)

=
∫
Sd

f(x)Y
(d)
�k (x) dωd(x).

The orthogonal projection operator Tn : L2(Sd) → Pn(Sd) onto
Pn(Sd) can now be represented by

Tnf :=
n∑

�=0

N(d,�)∑
k=1

f̂
(d)
�k Y

(d)
�k =

n∑
�=0

N(d,�)∑
k=1

(
f, Y

(d)
�k

)
L2(Sd)

Y
(d)
�k . (1.2)

An alternative representation of Tn can be given with the help of
the reproducing kernel of Pn(Sd). The reproducing kernel of Pn(Sd)
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is the uniquely determined kernel Gn : S
d × S

d → R with the fol-
lowing properties: (i) Gn(x, ·) ∈ Pn(Sd) for every fixed x ∈ S

d,
(ii) Gn(x, y) = Gn(y, x) for all x, y ∈ S

d, and (iii) the reproduc-
ing property

(f, Gn(x, ·))L2(Sd) = f(x) ∀x ∈ S
d, ∀f ∈ Pn(Sd).

It can be easily seen that the reproducing kernel is given by

Gn(x, y) :=
n∑

�=0

N(d,�)∑
k=1

Y
(d)
�k (x)Y

(d)
�k (y)

=
1
ωd

n∑
�=0

N(d, �)
C

d−1
2

� (x · y)

C
d−1

2
� (1)

,

(1.3)

where in the last step we have applied the addition theorem for the
spherical harmonics of degree � ∈ N0: for any x, y ∈ S

d we have

N(d,�)∑
k=1

Y
(d)
�k (x)Y

(d)
�k (y) =

N(d, �)
ωd

C
d−1

2
� (x · y)

C
d−1

2
� (1)

. (1.4)

In (1.4) and (1.3) the function C
d−1

2
� is the ultraspherical (or Gegen-

bauer) polynomial Cλ
� of degree � with index λ = d−1

2 , where

Cλ
� (t) =

(2λ)�(
λ + 1

2

)
�

P
(λ− 1

2
,λ− 1

2
)

� (t), t ∈ [−1, 1], (1.5)

with

(a)0 := 1, (a)� := a(a + 1) · · · (a + �− 1), a ∈ R, � ∈ N,

and P
(λ− 1

2
,λ− 1

2
)

� : [−1, 1] → R is the Jacobi polynomial P
(α,β)
� of

degree � with indices α = β = λ − 1
2 . From (1.3), (1.5), and [25,

(4.5.3)] we obtain

Gn(x, y) =
1
ωd

(d)n(
d
2

)
n

P
( d

2
, d−2

2
)

n (x · y), (1.6)
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where P
( d

2
, d−2

2
)

n is the Jacobi polynomial of degree n with indices
α = d

2 and β = d−2
2 .

With the reproducing kernel Gn of Pn(Sd) we can write the
L2(Sd)-orthogonal projection Tn onto Pn(Sd) as

Tnf(x) =
∫
Sd

f(y)Gn(x, y) dωd(y) = (f, Gn(x, ·))L2(Sd) , (1.7)

x ∈ S
d. The formulas (1.2) and (1.7) are our starting point for the

discussion of hyperinterpolation.
Clearly the L2(Sd)-orthogonal projection Tn onto Pn(Sd) is the

“optimal” projection onto Pn(Sd) in the L2(Sd) sense. However, Tnf
cannot usually be computed exactly since the Fourier coefficients
f̂

(d)
�k = (f, Y

(d)
�k )L2(Sd) are not known. Instead we might only know f

at a discrete set of points X = {x1, . . . , xm} and want to compute a
projection of f onto Pn(Sd) which is a suitable approximation of f .
Two possible strategies come directly to mind: One option is to dis-
cretize the Fourier coefficients of f in (1.2) in a suitable way with the
help of a numerical integration rule; this is the idea behind hyperin-
terpolation. Another possible strategy, if m = dn, is to compute the
polynomial interpolant of f onto Pn(Sd) from the given data of f .
Both methods assume of course that the points {x1, . . . , xm} satisfy
certain assumptions.

1.2 Polynomial interpolation onto Pn(Sd)

Let {Φ1, . . . ,Φdn} be an arbitrary basis of Pn(Sd). Any point set
X = {x1, . . . , xdn} for which the matrix (Φi(xj))i,j=1,...,dn is invert-
ible is called a fundamental system. The definition of a fundamental
system is independent of the choice of the basis {Φ1, . . . ,Φdn}.

For a fundamental system X = {x1, . . . , xdn} the interpolation
problem in Pn(Sd) has a unique solution: for a given continuous
function f , there exists exactly one polynomial Λnf ∈ Pn(Sd) which
satisfies the interpolation conditions

Λnf(xj) = f(xj), j = 1, . . . , dn. (1.8)

The interpolation operator Λn : C(Sd)→ Pn(Sd) is a linear projection
operator onto Pn(Sd) because Λnp = p for all p ∈ Pn(Sd), and hence
Λ2

n = Λn.
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With respect to the basis {Φ1, . . . ,Φdn}, the polynomial inter-
polant Λnf of a given continuous function f has the form

Λnf =
dn∑
i=1

ai Φi

where the coefficients are the solutions of the linear system of equa-
tions

dn∑
i=1

ai Φi(xj) = f(xj), j = 1, . . . , dn.

The condition number of the matrix (Φi(xj)) i, j=1,...,dn depends
strongly on both the choice of basis and the quality of the fundamen-
tal system X = {x1, . . . , xdn}. There are many “bad” fundamental
systems for which the matrix (Φi(xj))i,j=1,...,dn is so close to singular
that the interpolation problem cannot be solved in practice.

Another representation of (1.8) can be obtained with the help of
the Lagrangians (or Lagrange polynomials) �1, . . . , �dn of the funda-
mental system X = {x1, . . . , xdn}. The Lagrangian �i, i∈{1, . . . , dn},
is defined as the uniquely determined polynomial �i ∈ Pn(Sd) with
the property that

�i(xj) = δi,j , j = 1, . . . , dn,

where δi,j is the Kronecker symbol, defined by δi,j = 1 if i = j
and δi,j = 0 if i �= j. In terms of the Lagrangians the polynomial
interpolant Λnf of a continuous function f can be written as

Λnf(x) =
dn∑
i=1

f(xi) �i(x), x ∈ S
d. (1.9)

The formulation (1.9) may appear to avoid the necessity to solve
a linear system, but this is misleading, because the computation of
even one individual Lagrangian �i demands the solution of a linear
system.

We observe that interpolation allows much freedom on the points
in which the data is given, as the only assumption is that the points
form a fundamental system. A number of explicit constructions of
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fundamental systems on S
2 are known (see [4, 7, 28, 29]). However,

for computational purposes it is also important that the interpolation
matrix should have a reasonable condition number, a requirement
which imposes a severe restriction.

Of particular interest among fundamental systems are the ex-
tremal (fundamental) systems, obtained by maximizing the deter-
minant of the matrix (Φi(xj))i,j=1,...,dn with respect to an arbitrary
basis {Φ1, . . . ,Φdn}. Properties of extremal systems are summarized
in [24].

1.3 Hyperinterpolation onto Pn(Sd)

Hyperinterpolation is a numerical discretization of the L2(Sd)-ortho-
gonal projection Tn : L2(Sd) → Pn(Sd) for continuous functions. It
was first introduced in [21] by Sloan for general regions, with the
sphere as one example.

Let Qm(n) be a positive-weight m(n)-point numerical integration
rule

Qm(n)f :=
m(n)∑
j=1

wj f(xj), f ∈ C(Sd), (1.10)

with points x1, . . . , xm(n) ∈ S
d and corresponding positive weights

w1, . . . , wm(n), which integrates all polynomials in P2n(Sd) exactly,
that is,

Qm(n)p = Ip :=
∫
Sd

p(x) dωd(x) ∀p ∈ P2n(Sd).

With the help of the numerical integration rule Qm(n) we can now
define a discrete (semi) inner product on C(Sd) by

(f, g)m(n) := Qm(n)(fg) =
m(n)∑
j=1

wj f(xj) g(xj), f, g ∈ C(Sd).

(1.11)
For any two spherical polynomials p, q ∈ Pn(Sd) the product p q is a
spherical polynomial in P2n(Sd). Thus it follows from the exactness
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of Qm(n) for polynomials of degree ≤ 2n that

(p, q)m(n) = (p, q)L2(Sd) =
∫
Sd

p(x) q(x) dω(x) ∀p, q ∈ Pn(Sd).

(1.12)
We remark that (1.11) does not have all the properties of an inner
product on C(Sd). In particular, for f a continuous function on S

d,
(f, f, )m(n) = 0 does not imply that f ≡ 0, since it is possible to
construct a function f which is not identically zero but vanishes at
all the nodes x1, . . . , xm(n) of the numerical integration rule Qm(n).

After these preparations we can define the hyperinterpolation op-
erator Ln : C(Sd) → Pn(Sd). For f ∈ C(Sd) the hyperinterpolant
Lnf is defined to be the projection of f onto Pn(Sd) obtained by
replacing the L2(Sd)-inner products in the L2(Sd)-orthogonal projec-
tion Tnf by the discrete inner products (1.11). Thus from (1.2)

Lnf(x) =
n∑

�=0

N(d,�)∑
k=1

(
f, Y

(d)
�k

)
m(n)

Y
(d)
�k (x), x ∈ S

d, (1.13)

or with respect to an arbitrary orthonormal basis {Φ1, . . . ,Φdn} of
Pn(Sd)

Lnf(x) =
dn∑
i=1

(f, Φi)m(n) Φi(x), x ∈ S
d. (1.14)

Corresponding to (1.7) we can write

Lnf(x) = (f, Gn(x, ·))m(n) =
m(n)∑
j=1

wj f(xj)Gn(x, xj), (1.15)

x ∈ S
d. The last representation (1.15) of the hyperinterpolant is the

easiest and usually least expensive to evaluate, since we have the nice
representation (1.6) of the reproducing kernel Gn of Pn(Sd).

From (1.12) we have for p ∈ Pn(Sd) that (p, Y
(d)
�k )m(n) = p̂

(d)
�k , and

hence
Lnp = Tnp = p ∀p ∈ Pn(Sd). (1.16)

In particular (1.16) implies that L2
n = Ln, that is, the hyperinterpo-

lation operator is a linear projector onto Pn(Sd).
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We mention that the hyperinterpolation operator and the discrete
inner product have also the following properties: for f in C(Sd)

(i) (f − Lnf, p)m(n) = 0 for all p ∈ Pn(Sd),

(ii) (Lnf, Lnf)m(n) + (f − Lnf, f − Lnf)m(n) = (f, f)m(n),

(iii) (Lnf, Lnf)m(n) ≤ (f, f)m(n), and

(iv) (f − Lnf, f − Lnf)m(n) = minp∈Pn(Sd)(f − p, f − p)m(n).

The property (i) shows that Ln is the orthogonal projection onto
Pn(Sd) with respect to the discrete inner product (·, ·)m(n). The
property (ii) is the corresponding Pythagoras theorem. The property
(iii) is a trivial consequence of (ii), and (iv) states that Lnf is the
best discrete least-squares approximation (weighted by the numerical
integration weights) of f at the nodes of the numerical integration
rule. The proofs of the properties (i) to (iv) can be found in [21,
Lemma 5].

Compared to polynomial interpolation, the hyperinterpolation
approximation Lnf can be much more easily and less expensively
computed than the polynomial interpolant Λnf , provided that we
know the function f in the points x1, . . . , xm(n) of the numerical
integration rule Qm(n).

2 Why Is Hyperinterpolation Different from
Polynomial Interpolation?

It is useful to consider first the case of the unit circle

S
1 := {(cos θ, sin θ) | 0 ≤ θ ≤ 2π} .

In this case Pn(S1) is the space of trigonometric polynomials of degree
≤ n,

Pn(S1) = span {1, cos(θ), . . . , cos(nθ), sin(θ), . . . , sin(nθ)} ,
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a space of dimension 2n + 1. Interpolation onto the space Pn(S1) at
the dn := 2n + 1 uniformly distributed points

xj :=
(

cos
(

j
2π

2n + 1

)
, sin

(
j

2π

2n + 1

))
, j = 1, . . . , 2n + 1,

(2.1)
has been well understood since at least the 1930s, see [30, Chapter
10]. For example, it is known classically that the interpolant Λnf
with respect to the set of equally spaced points (2.1) and the L2(S1)-
orthogonal projection Tnf of a continuous function f onto Pn(S1)
satisfy

‖Λnf‖L2(S1) ≤
√

2π ‖f‖C(S1), (2.2)

‖Tnf‖L2(S1) ≤
√

2π ‖f‖C(S1).

Neither result can be improved, since the inequalities are sharp for
f(x) ≡ 1.

The proof of (2.2) is simple but interesting, in that it uses quadra-
ture as a tool in the argument, despite the fact that the statement
itself has no direct relation to quadrature. The key is the easily
verified fact that the 2n + 1 equally spaced interpolation points xj ,
j = 1, . . . , 2n + 1, given by (2.1) form also the nodes of an equal-
weight quadrature rule

Q2n+1f :=
2π

2n + 1

2n+1∑
j=1

f(xj), (2.3)

which can easily be seen to have polynomial degree of exactness 2n.
The steps of the proof of (2.2) are

‖Λnf‖2L2(S1) :=
∫
S1

|Λnf(x)|2 dω(x)

=
2π

2n + 1

2n+1∑
j=1

|Λnf(xj)|2

=
2π

2n + 1

2n+1∑
j=1

|f(xj)|2

≤ 2π ‖f‖2C(S1),
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where in the second line we used the fact that |Λnf |2 is a trigono-
metric polynomial of degree ≤ 2n and is hence integrated exactly
by the equal-weight quadrature rule (2.3), and in the next that
Λnf(xj) = f(xj) for j = 1, . . . , 2n + 1 from the interpolation prop-
erty.

Now consider hyperinterpolation for the case of the circle S
1,

using the positive-weight quadrature rule (2.3) which, because it has
polynomial degree of exactness 2n, is a valid rule for generating the
hyperinterpolant Lnf by way of (1.13) or (1.15). But by replacing,
from the interpolation property, f(xj) by Λnf(xj) in (1.15) we find,
making use of the exactness of Q2n+1 on P2n(S1),

Lnf(x) =
2π

2n + 1

2n+1∑
j=1

Λnf(xj)Gn(x, xj)

=
∫
S1

Λnf(y)Gn(x, y) dω(y)

= Λnf(x).

Thus hyperinterpolation with the equal-weight quadrature rule (2.3)
on S

1 is just the same as interpolation with respect to the set of
uniformly distributed points (2.1), and there is no need for another
definition. This explains why hyperinterpolation does not arise in
the classical literature.

But for d ≥ 2 the situation is quite different, with hyperinter-
polation in general being distinct from interpolation. Specifically, in
1995 Sloan [21] showed, in the case of S

d with d ≥ 2, that for n ≥ 3
the hyperinterpolation operator Ln and the interpolation operator
Λn cannot be the same. More precisely the following theorem holds.

Theorem 2.1 Let d ≥ 2, and let Qm(n) be a positive-weight nu-
merical integration rule (1.10), with points x1, . . . , xm(n) ∈ S

d and
corresponding positive weights w1, . . . , wm(n), which has polynomial
degree of exactness 2n, that is, Qm(n)p = Ip for all p ∈ P2n(Sd). Let
Ln : C(Sd)→ Pn(Sd) be the hyperinterpolation operator defined with
the numerical integration rule Qm(n). Then

(i) m(n) ≥ dn.
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(ii) If m(n) = dn then the nodes of Qm(n) form a fundamental
system and we have Lnf = Λnf for all f ∈ C(Sd), where Λn is
the interpolation operator onto Pn(Sd) with respect to the nodes
of Qm(n).

(iii) If n ≥ 3 then m(n) > dn.

We show the proof from [21] below, because the proof gives rather
interesting insights, resting as it does on deep properties of spherical
designs. In the proof we will need some information about minimal
numerical integration rules and spherical t-designs.

First we observe that any positive-weight m(n)-point numerical
integration rule Qm(n) that satisfies Qm(n)p = Ip for all p ∈ P2n(Sd)
uses m(n) ≥ dn points. This can easily be seen as follows (see for
example [12, 13]): Let {Φ1, . . . ,Φdn} be an arbitrary orthonormal
basis of Pn(Sd). Then from the exactness of Qm(n) on P2n(Sd) we
have

m(n)∑
j=1

wj Φi(xj) Φk(xj) = (Φi, Φk)L2(Sd) = δi,k, i, k = 1, . . . , dn.

This implies that the m(n)× dn-matrix

A := (
√

wj Φi(xj))j=1,...,m(n); i=1,...,dn

satisfies AT A = IRdn , where IRdn is the identity matrix of R
dn . Thus

the columns of A are orthogonal, from which we deduce m(n) ≥ dn.
We speak of a minimal positive-weight numerical integration rule

Qm(n) on S
d if Qm(n) has polynomial degree of exactness 2n and uses

m(n) = dn points.
The notion of a spherical t-design was first introduced in [6] by

Delsarte, Goethals, and Seidel. A spherical t-design on S
d is a point

set X = {x1, . . . , xm} which gives rise to an equal-weight numerical
integration rule that is exact on Pt(Sd), that is, X = {x1, . . . , xm} is
a spherical t-design if

Qmp :=
ωd

m

m∑
j=1

p(xj) =
∫
Sd

p(x) dωd(x) ∀p ∈ Pt(Sd).
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Seymour and Zaslavsky showed in [20] that spherical t-designs exist
on S

d, for every d ≥ 1 and every value of t.
A spherical 2n-design X = {x1, . . . , xm} is called a tight spherical

2n-design if the number of points m satisfies m = dn, that is, if it is
a minimal numerical integration rule.

From the discussion of minimal positive-weight numerical inte-
gration rules we know that there are no spherical 2n-designs with
less than dn points. The key to the proof of the last part of Theo-
rem 2.1 is a deep result of Bannai and Damerell [1], that there are
no tight spherical 2n-designs on S

d with d ≥ 2 and n ≥ 3.
Now we can give the proof of Theorem 2.1.

Proof. In the discussion above we have seen that there are no
numerical integration rules Qm(n) that satisfy Qm(n)p = Ip for all
p ∈ P2n(Sd) with less than dn points. This verifies (i).

To prove (ii) and (iii), assume that the hyperinterpolation oper-
ator Ln is defined with a positive-weight numerical integration rule
Qm(n) that uses m(n) = dn points. Then the matrix A defined above
is now a square matrix, A = (√wj Φi(xj))j,i=1,...,dn , with (as noted
already) orthogonal columns. Therefore A is an orthogonal matrix.
In particular, A is invertible, implying that (Φi(xj))i,j=1,...,dn is also
invertible, and hence {Φ1, . . . ,Φdn} is a fundamental system. This
proves the first part of the statement (ii).

Now we prove the second part of (ii). Because A is orthogonal,
we deduce A AT = IRdn , that is,

dn∑
i=1

√
wj Φi(xj)

√
wk Φi(xk) = δj,k, j, k = 1, . . . , dn,

or
dn∑
i=1

Φi(xj) Φi(xk) = w−1
j δj,k, j, k = 1, . . . , dn. (2.4)

Using this in the definition of the hyperinterpolation operator (1.14),
we obtain for every f ∈ C(Sd)

Lnf(xk) =
dn∑
i=1


 dn∑

j=1

wj f(xj) Φi(xj)


 Φi(xk)
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=
dn∑
j=1

wj f(xj)
dn∑
i=1

Φi(xj) Φi(xk)

=
dn∑
j=1

wj f(xj)w−1
j δj,k

= f(xk), k = 1, . . . , dn.

This establishes the interpolation condition, and as the interpolant
in Pn(Sd) is uniquely determined, we conclude that Lnf = Λnf for
all f ∈ C(Sd). This verifies (ii).

Now we prove (iii), by showing a contradiction. We choose the
L2(Sd)-orthonormal basis {Φ1, . . . ,Φdn} in the definition of A above
to be the L2(Sd)-orthonormal basis{

Y
(d)
�k

∣∣∣ � = 0, . . . , n; k = 1, . . . , N(d, �)
}

of spherical harmonics of degree ≤ n. For this choice we have from
(2.4) together with the addition theorem (1.4)

n∑
�=0

N(d,�)∑
k=1

Y
(d)
�k (xi)Y

(d)
�k (xj) =

1
ωd

n∑
�=0

N(d, �)
C

d−1
2

� (xi · xj)

C
d−1

2
� (1)

=
1
wj

δi,j , i, j = 1, . . . , dn.

For i = j we obtain in particular

wj

ωd

n∑
�=0

N(d, �) = wj
dn

ωd
= 1, j = 1, . . . , dn,

or
wj =

ωd

dn
, j = 1, . . . , dn.

That is, the numerical integration rule Qm(n) has to have equal
weights. As it uses m(n) = dn points and has polynomial degree of
exactness 2n, the numerical integration rule Qm(n) is a tight spher-
ical 2n-design. As we have noted already, from [1] tight spherical
2n-designs do not exist for n ≥ 3, giving a contradiction, and prov-
ing (iii). �
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Remark 2.2 Note that the last part of the proof establishes that
any minimal positive-weight numerical integration rule on S

d (with
d ≥ 2) has equal weights. As tight spherical 2n-designs for S

d do
not exist for n ≥ 3, there are no minimal positive-weight numerical
integration rules on S

d with polynomial degree of exactness 2n ≥ 6.

3 Analysis of the Hyperinterpolation Error

In this section we discuss error estimates and estimates of the oper-
ator norm of the hyperinterpolation operator in the following set-
tings: Ln : C(Sd) → L2(Sd); Ln : C(Sd) → C(Sd); and finally
Ln : Ht(Sd) → Hs(Sd), where in the last case Hs(Sd) and Ht(Sd)
are Sobolev spaces with t ≥ s ≥ 0 and t > d

2 . In most cases we
will compare the estimates of the operator norms with estimates of
the norm of the L2(Sd)-orthogonal projection operator Tn and the
polynomial interpolation operator Λn.

3.1 Estimates in the L2(S
d)-norm

For the hyperinterpolation operator Ln : C(Sd) → L2(Sd), Sloan
proved in [21] the following result.

Theorem 3.1 Let Qm(n) be a positive-weight m(n)-point numeri-
cal integration rule with Qm(n)p = Ip for all p ∈ P2n(Sd), and let
Ln : C(Sd)→ L2(Sd) be the hyperinterpolation projection onto Pn(Sd)
defined with the rule Qm(n). Then

(i)
‖Ln‖C(Sd)→L2(Sd) =

√
ωd. (3.1)

(ii) For all f ∈ C(Sd)

‖Lnf − f‖L2(Sd) ≤ 2
√

ωd En

(
f ; C(Sd)

)
, (3.2)

where En(f ; C(Sd)) := minp∈Pn(Sd) ‖f − p‖C(Sd) is the error of
the best uniform approximation of f in Pn(Sd).
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The theorem and the proof in [21] are given for general regions, with
S

d as a special case. As the proof is rather short we show it for the
case of the region S

d.
Proof. Let us again denote by (f, g)m(n) := Qm(n)(fg) the discrete
inner product induced by the numerical integration rule Qm(n). Let
f ∈ C(Sd) be arbitrary. Then from Lnf ∈ Pn(Sd) together with the
exactness of Qm(n) on P2n(Sd) and the property (iii) of the discrete
inner product (·, ·)m(n), we find

‖Lnf‖2L2(Sd) = (Lnf, Lnf)m(n)

≤ (f, f)m(n)

=
m(n)∑
j=1

wj |f(xj)|2

≤
m(n)∑
j=1

wj ‖f‖2C(Sd)

= ωd ‖f‖2C(Sd).

This implies
‖Ln‖C(Sd)→L2(Sd) ≤

√
ωd.

It remains to show that we obtain equality. This is achieved by
choosing f ≡ 1, since then Lnf = 1, and

‖Lnf‖L2(Sd) =
(∫
Sd

1 dωd(x)
) 1

2

=
√

ωd =
√

ωd ‖f‖C(Sd),

implying ‖Ln‖C(Sd)→L2(Sd) ≥
√

ωd.
The statement (ii) follows by a standard trick: for any p ∈ Pn(Sd),

we have Lnp = p, and hence from the estimate (i)

‖Lnf − f‖L2(Sd) = ‖Ln(f − p)− (f − p)‖L2(Sd)

≤ ‖Ln(f − p)‖L2(Sd) + ‖f − p‖L2(Sd)

≤ √
ωd ‖f − p‖C(Sd) +

√
ωd ‖f − p‖C(Sd)

= 2
√

ωd ‖f − p‖C(Sd).

(3.3)
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As the estimate (3.3) is true for any p ∈ Pn(Sd), we can replace
‖f − p‖C(Sd) by En(f ; C(Sd)), obtaining (ii). �

Finally we compare the results in Theorem 3.1 with correspond-
ing results for Tn and Λn. First, for Tn : C(Sd) → L2(Sd) we have,
for any f ∈ C(Sd),

‖Tnf‖L2(Sd) ≤ ‖f‖L2(Sd) ≤
√

ωd ‖f‖C(Sd),

and again all inequalities are replaced by equalities for the case f ≡ 1.
Thus

‖Tn‖C(Sd)→L2(Sd) =
√

ωd,

which is the same value as for ‖Ln‖C(Sd)→L2(Sd). The same argument
as in (3.3) then yields

‖Tnf − f‖L2(Sd) ≤ 2
√

ωd En

(
f ; C(Sd)

)
, f ∈ C(Sd). (3.4)

Thus for Ln and Tn we have identical estimates for the approximation
error, from (3.2) and (3.4).

In contrast, Sloan in [22] showed that the interpolation operator
onto Pn(Sd) in the setting Λn : C(Sd)→ L2(Sd) satisfies

‖Λn‖C(Sd)→L2(Sd) ≥
√

ωd,

with strict inequality for d ≥ 2 and n ≥ 3. The strictness of
the inequality was proved by showing that equality for d ≥ 2 and
n ≥ 3 would contradict the previously mentioned non-existence of
tight spherical designs. As far as we know, there are no useful
estimates, either theoretical or empirical, of the minimal values of
‖Λn‖C(S2)→L2(Sd). It is not even known whether for a particular d,
say d = 2, the minimal norm approaches ∞ as n → ∞, or alterna-
tively is bounded as n→∞.

3.2 Estimates in the uniform norm

It is convenient to begin the discussion of the C(Sd) to C(Sd) setting
with the case of the orthogonal projection operator Tn. The L2(Sd)-
orthogonal projection Tn : C(Sd) → C(Sd) is the minimal norm
projection among all linear projection operators Pn : C(Sd)→ C(Sd)
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onto Pn(Sd). That is, if Pn : C(Sd) → C(Sd) is an arbitrary linear
projection onto Pn(Sd), then

‖Tn‖C(Sd)→C(Sd) ≤ ‖Pn‖C(Sd)→C(Sd). (3.5)

This result was originally proved by Berman in [2] for the case d = 1
and then generalized by Daugavet in [5] to general d. For a proof for
d ≥ 2 see also [17, Section 12]. The norm ‖Tn‖C(Sd)→C(Sd) satisfies

c̃1 n
d−1

2 ≤ ‖Tn‖C(Sd)→C(Sd) ≤ c̃2 n
d−1

2 , (3.6)

where the positive constants c̃1 and c̃2 are independent of n. The
estimate (3.6) was proved by Gronwall in [9] for d = 2, and a proof
of the generalization to arbitrary d ≥ 2 can be found in [17, Section
11].

Turning now to the hyperinterpolation operator Ln, we see al-
ready that the best result we can hope to obtain for the norm of Ln

in the C(Sd) to C(Sd) setting is growth of the order n
d−1

2 . The follow-
ing theorem shows that this best possible result is in fact achieved.
Sloan and Womersley in [23, Theorem 5.5.4] proved a modified ver-
sion of the following result, for the case d = 2, and that result was
extended to general d ≥ 2 by Le Gia and Sloan in [10, Theorem 6.2]
and by Reimer in [18]. The theorem was proved in the form stated
here by Reimer in [18, Theorem 1].

Theorem 3.2 There exist positive constants c̃ and c such that for
any hyperinterpolation operator Ln : C(S2)→ C(Sd) (defined with a
positive-weight numerical integration rule Qm(n) with Qm(n)p = Ip

for all p ∈ P2n(Sd))

c̃ n
d−1

2 ≤ ‖Ln‖C(Sd)→C(Sd) ≤ c n
d−1

2 . (3.7)

The positive constants c̃ and c are independent of n and of the partic-
ular positive-weight numerical integration rule Qm(n) which is used
in the definition of Ln.

In this paper c, c̃, and ĉ denote generic constants that may have
different values at different places, whereas c0, c1, . . ., c̃1, c̃2, . . ., and
ĉ1, ĉ2, . . . denote constants with fixed values.
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We sketch below the proof of the upper bound. The lower bound
follows trivially from (3.5) and (3.6).

Before we sketch the proof we need the following regularity prop-
erty of positive-weight numerical integration rules which is due to
Reimer [18, Lemma 1]. In the following S(x; φ) denotes the spheri-
cal cap on S

d with center x and angular radius φ,

S(x; φ) =
{

y ∈ S
d |y · x ≥ cos φ

}
.

The surface area of S(x; φ) is given by

|S(x; φ)| = ωd−1

∫ φ

0
(sin θ)d−1 dθ,

and has for φ ∈ [0, π
2 ] the upper and lower bound(

2
π

)d−1 ωd−1

d
φd ≤ |S(x; φ)| ≤ ωd−1

d
φd. (3.8)

Lemma 3.3 There exist positive constants c0 and c1 ≤ π
2 , such that

for any n ∈ N0 and for any positive-weight numerical integration rule
Qm(n), which satisfies Qm(n)p = Ip for all p ∈ P2n(Sd), the points xj

and corresponding weights wj, j = 1, . . . , m(n), satisfy

m(n)∑
j=1

wj χ
(
S

(
x;

c1

n

))
(xj) ≤ c0

∣∣∣S (
x;

c1

n

)∣∣∣ ∀x ∈ S
d. (3.9)

Here for a set U ⊂ S
d, χ(U), denotes the characteristic function of

the set U .

The regularity property (3.9) implies an analogous estimate for larger
spherical caps (see [10, Lemma 5.1], [18], [23, Assumption 1 and
Lemma 5.5.3] and also [3] for a particularly simple proof): under the
same assumptions as in Lemma 3.3 there exists a constant cd (which
depends only on the sphere dimension d) such that the weights and
points of the positive-weight numerical integration rule Qm(n) satisfy

m(n)∑
j=1

wj χ(S(x; θ))(xj) ≤ c0 cd |S(x, θ)| ∀x ∈ S
d, ∀θ with

c1

n
≤ θ ≤ π.

(3.10)
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After these preparations we can sketch the proof of Theorem 3.2.
Proof. From (1.15) we have for any f ∈ C(Sd) and any x ∈ S

d that

|Lnf(x)| ≤
m(n)∑
j=1

wj |f(xj)| |Gn(x, xj)| ≤
m(n)∑
j=1

wj |Gn(x, xj)| ‖f‖C(Sd).

This implies that

‖Lnf‖C(Sd) ≤ ‖f‖C(Sd) max
x∈Sd

m(n)∑
j=1

wj |Gn(x, xj)|.

Hence

‖Ln‖C(Sd)→C(Sd) ≤ max
x∈Sd

m(n)∑
j=1

wj |Gn(x, xj)|. (3.11)

To show that this is an equality, note first that there exists an x0 ∈ S
d

such that
m(n)∑
j=1

wj |Gn(x0, xj)| = max
x∈Sd

m(n)∑
j=1

wj |Gn(x, xj)|.

It is possible to construct a continuous function f∗ ∈ C(Sd), with
‖f∗‖C(Sd) = 1, such that

f∗(xj) = sign(Gn(x0, xj)), j = 1, . . . , m(n),

and for this f∗

‖Lnf∗‖C(Sd) ≥
∣∣∣∣∣∣
m(n)∑
j=1

wj f∗(xj)Gn(x0, xj)

∣∣∣∣∣∣ =
m(n)∑
j=1

wj |Gn(x0, xj)|.

Thus (3.11) is an equality, and

‖Ln‖C(Sd)→C(Sd) = max
x∈Sd

m(n)∑
j=1

wj |Gn(x, xj)|

=
m(n)∑
j=1

wj |Gn(x0, xj)|.
(3.12)
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To estimate ‖Ln‖C(Sd)→C(Sd) we estimate the right-most expres-
sion in (3.12). The reproducing kernel Gn(x, y) of Pn(Sd), given by
(1.6), satisfies from [25, (7.32.2)]

max
(x,y)∈Sd×Sd

|Gn(x, y)| =
1
ωd

(d)n(
d
2

)
n

P
( d

2
, d−2

2
)

n (1)

=
1
ωd

(d)n(
d
2

)
n

(
d+2

2

)
n

n!
(3.13)

≤ c3 nd

and from [25, Theorem 7.32.2 and (4.1.3)] and the elementary esti-
mate sin θ ≤ θ for all θ ∈ [0, π], for (x, y) ∈ S

d×S
d with x ·y = cos θ

and c1 n−1 ≤ θ ≤ π − c1 n−1

|Gn(x, y)| ≤ c4 n
d−1

2 (sin θ)−
d+1

2 , (3.14)

with positive constants c3 and c4 that depend only on d. Here the
constant c1 is the constant from the regularity property (3.9).

Now we split the sum in (3.12) into one sum over the weights cor-
responding to those points in the northern hemisphere with respect
to x0 as the north pole and one sum over the weights corresponding
to those points in the corresponding southern hemisphere, where we
count the equator arbitrarily to the northern hemisphere. Because
the estimate (3.14) “away” from x = ±y is clearly much better than
the global estimate (3.13), it is useful to split the points in each hemi-
sphere (with respect to x0 as north pole) further into those points
in the spherical cap S(x0; c1

n ) and S(−x0; c1
n ), respectively, and the

remaining points. Thus with the notation

H+ :=
{

y ∈ S
d
∣∣∣ y · x0 ≥ 0

}
, H− := S

d \H+,

we can rewrite (3.12) as

‖Ln‖C(Sd)→C(Sd) = D+ + D− + R+ + R−, (3.15)

where

D± :=
m(n)∑
j=1

wj χ
(
S

(
±x0;

c1

n

)
∩H±

)
(xj) |Gn(x0, xj)|,
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R± :=
m(n)∑
j=1

wj χ
(
H± \ S

(
±x0;

c1

n

))
(xj) |Gn(x0, xj)|.

The “diagonal” contributions D± can easily be estimated with
the help of (3.13), (3.9), and (3.8), and we obtain

D± ≤ c, (3.16)

with a constant c independent of n.
In order to estimate R± we define the angles θ±j ∈ [ c1

n , π − c1
n ]

by ±x0 · xj = cos θ±j for xj ∈ H± \ S(±x0; c1
n ), and use (3.14), thus

obtaining

R± ≤ c4 n
d−1

2

m(n)∑
j=1

wj χ
(
H± \ S

(
±x0;

c1

n

))
(xj) (sin θ±j )−

d+1
2 .

(3.17)
It should be noted that all the angles θ±j that actually occur in the
sum are in [ c1

n , π
2 ]. Defining the piecewise-constant functions g±,

given by g± : [ c1
n , π

2 ]→ R,

g±(θ) :=
m(n)∑
j=1

wj χ
(
S(±x0; θ) ∩

(
H± \ S

(
±x0;

c1

n

)))
(xj),

and the strictly monotonically declining function

h(θ) := (sin θ)−
d+1

2 , θ ∈
[c1

n
,
π

2

]
,

we can write the sum in (3.17) as a Riemann-Stieltjes integral,

R± ≤ c4 n
d−1

2

∫ π
2

c1
n

h(θ) dg±(θ).

With integration by parts and the estimate

g±(θ) ≤ c0 cd
ωd−1

d

(π

2

)d
(sin θ)d = c5 (sin θ)d, θ ∈

[c1

n
,
π

2

]
,
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(which follows from (3.10) and (3.8)), we find that

R± ≤ c n
d−1

2 , (3.18)

with a positive constant c independent of n. The formulas (3.15),
(3.16), and (3.18) imply now the upper bound in (3.7) in Theo-
rem 3.2. As previously mentioned, the lower bound in (3.7) follows
trivially from (3.5) and (3.6). �

Summarizing the results for hyperinterpolation and orthogonal
projection in the C(Sd) to C(Sd) setting, we find that the operator
norm ‖Ln‖C(Sd)→C(Sd) is of the same order as the operator norm
‖Tn‖C(Sd)→C(Sd) of the minimal norm projection operator, the best
result possible with respect to order.

With an analogous argument to that in (3.3) we obtain for the
hyperinterpolation approximation error from (3.7) the estimate

‖Lnf − f‖C(Sd) ≤
(
1 + ‖Ln‖C(Sd)→C(Sd)

)
En

(
f ; C(Sd)

)
≤ c n

d−1
2 En

(
f ; C(Sd)

)
,

where f ∈ C(Sd) and as before

En(f ; C(Sd)) := min
p∈Pn(Sd)

‖f − p‖C(Sd).

The same estimate holds for the error of the L2(Sd)-orthogonal pro-
jection Tnf .

Now we want to compare hyperinterpolation with polynomial in-
terpolation. From the formula (1.9) for the interpolant in terms of
the Lagrange polynomials, it can be relatively easily seen that

‖Λn‖C(Sd)→C(Sd) = max
x∈Sd

dn∑
j=1

|�j(x)|,

which is often called the Lebesgue constant for interpolation. For a
badly chosen fundamental system of interpolation points, the Lebes-
gue constant can be arbitrarily large, but how small can it become
for a nicely chosen fundamental system of interpolation points?
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For extremal (fundamental) systems (see Section 1.2 and [17, 24])
we obtain

‖Λn‖C(Sd)→C(Sd) ≤ dn (3.19)

because the properties of an extremal fundamental system imply that
‖�j‖C(Sd) = 1 for j = 1, . . . , dn.

Reimer showed in [16, Corollary 2] (see also [8, (7.2.21), (7.2.22)])
that

‖Λn‖C(Sd)→C(Sd) ≤ d
1
2
n

(
λavg

λmin

) 1
2

, (3.20)

where λmin is the smallest eigenvalue and λavg the average of all eigen-
values (counted with multiplicity) of the matrix (Gn(xi, xj))i,j=1,...,dn.
(This is the matrix of the interpolation problem if the interpolant is
represented as a linear combination of the linearly independent func-
tions Gn(·, x1), . . . , Gn(·, xdn).)

Whether either of the estimates (3.19) or (3.20) is optimal is not
known theoretically, although numerical evidence suggests (see [27])
that for S

2

‖Λn‖C(S2)→C(S2) ≤ c n ≤ c d
1
2
n .

In the other direction, that same numerical evidence also suggests
that it is most unlikely that interpolation can achieve the same order
O(
√

n) as hyperinterpolation or orthogonal projection in the setting
C(S2) to C(S2).

3.3 Estimates in Sobolev spaces

In this section we consider hyperinterpolation as a map from one
Sobolev space to another. Specifically, we consider Ln : Ht(Sd) →
Hs(Sd), where Hs(Sd) and Ht(Sd) are Sobolev spaces with the fol-
lowing assumptions on the indices: t ≥ s ≥ 0 and t > d

2 . The
second assumption t > d

2 guarantees that Ht(Sd) is embedded in
C(Sd) so that hyperinterpolation can be defined on Ht(Sd). Intu-
itively, Hs(Sd) can for integer s be thought of as the space of those
functions whose generalized (distributional) derivatives up to (and
including) the order s are square-integrable. Before we can formu-
late the theorem we need to introduce the spaces and state some of
their properties.
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The Sobolev space Hs(Sd), with s ≥ 0, is defined as the closure
of

⊕∞
�=0 H�(Sd) with respect to the norm

‖f‖Hs(Sd) :=


 ∞∑

�=0

(
� +

d− 1
2

)2s N(d,�)∑
k=1

∣∣∣f̂ (d)
�k

∣∣∣2



1
2

.

The space Hs(Sd) is a Hilbert space with the inner product

(f, g)Hs(Sd) :=
∞∑

�=0

(
� +

d− 1
2

)2s N(d,�)∑
k=1

f̂
(d)
�k ĝ

(d)
�k , f, g ∈ Hs(Sd),

which induces the norm ‖ · ‖Hs(Sd). For s > d
2 there exists a constant

cs such that

‖f‖C(Sd) ≤ cs ‖f‖Hs(Sd) ∀f ∈ Hs(Sd),

that is, Hs(Sd) is embedded in C(Sd). We mention also that for s > d
2

the space Hs(Sd) is a reproducing kernel Hilbert space, although this
fact is of no consequence for the result in this subsection. The spaces
Hs(Sd) are nested, that is, Ht(Sd) ⊂ Hs(Sd) whenever t ≥ s.

After these preparations we can formulate the result.

Theorem 3.4 Let d ≥ 2, and let s and t be fixed real numbers with
t ≥ s ≥ 0 and t > d

2 . There exists a positive constant c such that for
any hyperinterpolation operator Ln : Ht(Sd)→ Hs(Sd) (defined with
a positive-weight numerical integration rule Qm(n) with Qm(n)p = Ip

for all p ∈ P2n(Sd)) the following holds true:

(i) for any f ∈ Ht(Sd)

‖Lnf − f‖Hs(Sd) ≤ c

(
n +

d− 1
2

) d
2

+s−t

En

(
f ; Ht(Sd)

)
,

(3.21)
where En(f ; Ht(Sd)) := minp∈Pn(Sd) ‖f − p‖Ht(Sd), and

(ii) ‖Ln‖Ht(Sd)→Hs(Sd) ≤ c

(
n +

d− 1
2

) d
2

+s−t

+
(

d− 1
2

)s−t

.



Hyperinterpolation on the Sphere 239

The positive constant c is independent of n and of the particular
positive-weight numerical integration rule Qm(n) in the definition of
Ln.

Theorem 3.4 is new to the best knowledge of the authors. A much
weaker result than (3.21) was proved in [26] for S

2 and for the special
case of hyperinterpolation defined with a particular type of numerical
integration rule. We do not know if the estimates in Theorem 3.4
are the best possible.

As preparation for the proof of Theorem 3.4 we derive some es-
timates that are independently of interest.

First we observe that, because {Y (d)
�k | � ∈ N0; k = 1, . . . , N(d, �)}

is a complete orthogonal system with respect to both L2(Sd) and
Ht(Sd), the restriction Tn|Ht(Sd) of the L2(Sd)-orthogonal projection
Tn : L2(Sd) → Pn(Sd) to Ht(Sd) is just the Ht(Sd)-orthogonal pro-
jection onto Pn(Sd). This implies that

En

(
f ; Ht(Sd)

)
= ‖f − Tnf‖Ht(Sd), (3.22)

that is, the L2(Sd)-orthogonal projection Tnf of f ∈ Ht(Sd) is the
best approximation of f in Pn(Sd) in the Ht(Sd) sense. We denote
by

P
⊥
n (Sd) :=

{
f ∈ L2(Sd)

∣∣∣ (f, p)L2(Sd) = 0 ∀p ∈ Pn(Sd)
}

the orthogonal complement of Pn(Sd) in L2(Sd), that is, the space of
all those functions in L2(Sd) which are L2(Sd)-orthogonal to Pn(Sd).
From the definition of the inner product (·, ·)Ht(Sd), the orthogonal
complement of Pn(Sd) in Ht(Sd) is simply P

⊥
n (Sd) ∩Ht(Sd).

The elementary estimates that follow are either for functions in
Pn(Sd) or functions in P

⊥
n (Sd) ∩Ht(Sd).

Lemma 3.5 The following estimates are valid in the Sobolev spaces
Ht(Sd):

(i) Let t > d
2 . There exists a positive constant c̃ such that for all

n ∈ N0 and for any function f ∈ P
⊥
n (Sd) ∩Ht(Sd)

‖f‖C(Sd) ≤ c̃

(
n +

d− 1
2

) d
2
−t

‖f‖Ht(Sd). (3.23)
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(ii) Let t ≥ 0. For any f ∈ Pn(Sd)

‖f‖Ht(Sd) ≤
(

n +
d− 1

2

)t

‖f‖L2(Sd). (3.24)

(iii) Let t ≥ s ≥ 0. Then for any f ∈ P
⊥
n (Sd) ∩Ht(Sd)

‖f‖Hs(Sd) ≤
(

n +
d− 1

2

)s−t

‖f‖Ht(Sd). (3.25)

The estimates in Lemma 3.5 can certainly be found in several places.
Because they are rather useful in many contexts we show quickly the
proofs.
Proof. For any f ∈ P

⊥
n (Sd) ∩Ht(Sd) we have

f(x) =
∞∑

�=n+1

N(d,�)∑
k=1

f̂
(d)
�k Y

(d)
�k (x), x ∈ S

d, (3.26)

and it can be easily shown that for t > d
2 the Fourier series converges

uniformly, so that (3.26) is true in the pointwise sense. Hence, from
the Cauchy-Schwarz inequality and the addition theorem (1.4)

|f(x)| =
∣∣∣∣∣∣
∞∑

�=n+1

N(d,�)∑
k=1

f̂
(d)
�k Y

(d)
�k (x)

∣∣∣∣∣∣
≤

∞∑
�=n+1

N(d,�)∑
k=1

[(
� +

d− 1
2

)t ∣∣∣f̂ (d)
�k

∣∣∣
] [(

� +
d− 1

2

)−t ∣∣∣Y (d)
�k (x)

∣∣∣
]

≤ ‖f‖Ht(Sd)


 ∞∑

�=n+1

N(d,�)∑
k=1

(
� +

d− 1
2

)−2t ∣∣∣Y (d)
�k (x)

∣∣∣2



1
2

= ‖f‖Ht(Sd)

(
1
ωd

∞∑
�=n+1

N(d, �)(
� + d−1

2

)2t

) 1
2

.

As ĉ1 (�+ d−1
2 )d−1 ≤ N(d, �) ≤ ĉ2 (�+ d−1

2 )d−1 with positive constants
ĉ1 and ĉ2 independent of �, we see that the sum in the second term
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is finite if and only if d − 2t < 0, that is, t > d
2 . Furthermore, the

sum satisfies for t > d
2

ĉ3

(
n +

d− 1
2

)d−2t

≤ 1
ωd

∞∑
�=n+1

N(d, �)(
� + d−1

2

)2t ≤ ĉ4

(
n +

d− 1
2

)d−2t

,

with suitable positive constants ĉ3 and ĉ4 independent of n. Thus
for t > d

2 with the positive constant c̃ =
√

ĉ4

sup
x∈Sd

|f(x)| ≤ c̃

(
n +

d− 1
2

) d
2
−t

‖f‖Ht(Sd),

which proves (3.23).
For f ∈ Pn(Sd) we have, pointwise,

f(x) =
n∑

�=0

N(d,�)∑
k=1

f̂
(d)
�k Y

(d)
�k (x), x ∈ S

d,

and thus

‖f‖2Ht(Sd) =
n∑

�=0

(
� +

d− 1
2

)2t N(d,�)∑
k=1

∣∣∣f̂ (d)
�k

∣∣∣2

≤
(

n +
d− 1

2

)2t n∑
�=0

N(d,�)∑
k=1

∣∣∣f̂ (d)
�k

∣∣∣2

=
(

n +
d− 1

2

)2t

‖f‖2L2(Sd),

which proves (3.24).
For any f ∈ P

⊥
n (Sd) ∩Ht(Sd) we have for t ≥ s ≥ 0

‖f‖2Hs(Sd) =
∞∑

�=n+1

(
� +

d− 1
2

)2s N(d,�)∑
k=1

∣∣∣f̂ (d)
�k

∣∣∣2

≤
(

n + 1 +
d− 1

2

)2(s−t) ∞∑
�=n+1

(
� +

d− 1
2

)2t N(d,�)∑
k=1

∣∣∣f̂ (d)
�k

∣∣∣2

≤
(

n +
d− 1

2

)2(s−t)

‖f‖2Ht(Sd),
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which implies (3.25). �

After these preparations we can relatively easily prove Theo-
rem 3.4.
Proof. Let f ∈ Ht(Sd), where t ≥ s ≥ 0 and t > d

2 . Then
Ln(Tnf) = Tnf because Ln is a projection onto Pn(Sd) and Tnf is
in Pn(Sd). Hence

‖Lnf − f‖Hs(Sd) = ‖Ln(f − Tnf)− (f − Tnf)‖Hs(Sd)

=
(
‖Ln(f − Tnf)‖2Hs(Sd) + ‖f − Tnf‖2Hs(Sd)

)1/2
,

(3.27)

where we have made use of the fact that the functions f − Tnf ∈
P
⊥
n (Sd) ∩Ht(Sd) and Ln(f − Tnf) ∈ Pn(Sd) are Hs(Sd)-orthogonal.

Now we will estimate both quantities in (3.27) separately, making use
of the three estimates in Lemma 3.5 and also of (3.1) in Theorem 3.1.

First we consider the second term. As f−Tnf ∈ P
⊥
n (Sd)∩Ht(Sd),

we have from (3.25) in Lemma 3.5 that

‖f − Tnf‖2Hs(Sd) ≤
(

n +
d− 1

2

)2(s−t)

‖f − Tnf‖2Ht(Sd). (3.28)

Now we estimate the first term on the right-hand side of (3.27).
Since Ln(f − Tnf) is in Pn(Sd), the estimate (3.24) in Lemma 3.5
yields

‖Ln(f −Tnf)‖2Hs(Sd) ≤
(

n +
d− 1

2

)2s

‖Ln(f −Tnf)‖2L2(Sd). (3.29)

From (3.1) in Theorem 3.1 we get

‖Ln(f − Tnf)‖2L2(Sd) ≤ ωd ‖f − Tnf‖2C(Sd), (3.30)

and finally from (3.23) in Lemma 3.5

‖f − Tnf‖2C(Sd) ≤ c̃

(
n +

d− 1
2

)d−2t

‖f − Tnf‖2Ht(Sd). (3.31)

The combination of (3.29), (3.30), and (3.31) yields

‖Ln(f − Tnf)‖2Hs(Sd) ≤ c̃ ωd

(
n +

d− 1
2

)d+2(s−t)

‖f − Tnf‖2Ht(Sd).

(3.32)
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Now from (3.27), (3.28), and (3.32)

‖Lnf − f‖Hs(Sd)

≤
((

d− 1
2

)−d

+ c̃ ωd

) 1
2 (

n +
d− 1

2

) d
2

+s−t

‖f − Tnf‖Ht(Sd).

Finally we use, from (3.22), ‖f − Tnf‖Ht(Sd) = En(f ; Ht(Sd)) to
obtain

‖Lnf − f‖Hs(Sd) ≤ c

(
n +

d− 1
2

) d
2

+s−t

En

(
f ; Ht(Sd)

)
,

with

c =

((
d− 1

2

)−d

+ c̃ ωd

) 1
2

.

This proves (3.21), and we have proved (i) in Theorem 3.4.
To prove the estimate of the norm in (ii), let f ∈ Ht(Sd) with

t ≥ s ≥ 0 and t > d
2 . From the triangle inequality

‖Lnf‖Hs(Sd) ≤ ‖Lnf − f‖Hs(Sd) + ‖f‖Hs(Sd). (3.33)

The first part satisfies (3.21). From the identity (3.22) and the esti-
mate ‖f − Tnf‖Ht(Sd) ≤ ‖f‖Ht(Sd)

En

(
f ; Ht(Sd)

)
= ‖f − Tnf‖Ht(Sd) ≤ ‖f‖Ht(Sd),

and it follows from (3.21) that

‖Lnf − f‖Hs(Sd) ≤ c

(
n +

d− 1
2

) d
2

+s−t

‖f‖Ht(Sd). (3.34)

We only have to find a suitable estimate for the second part. As
by assumption t ≥ s, we find

‖f‖Hs(Sd) =


 ∞∑

�=0

(
� +

d− 1
2

)2s N(d,�)∑
k=1

∣∣∣f̂ (d)
�k

∣∣∣2



1
2
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≤
(

d− 1
2

)s−t

 ∞∑

�=0

(
� +

d− 1
2

)2t N(d,�)∑
k=1

∣∣∣f̂ (d)
�k

∣∣∣2



1
2

(3.35)

=
(

d− 1
2

)s−t

‖f‖Ht(Sd).

The combination of (3.33), (3.34), and (3.35) yields now the estimate
in (ii). �

Finally, in this Sobolev space setting we want to compare the
hyperinterpolation result with that for the L2(Sd)-orthogonal pro-
jection. (To our knowledge no Sobolev space estimates are known
for polynomial interpolation.) For the L2(Sd)-orthogonal projection
we have from (3.25) in Lemma 3.5 and (3.22) that for any f ∈ Ht(Sd),
where t ≥ s ≥ 0 and t > d

2 ,

‖Tnf − f‖Hs(Sd) ≤ c̃

(
n +

d− 1
2

)s−t

En

(
f ; Ht(Sd)

)
. (3.36)

For ‖Tnf‖Hs(Sd) we obtain from (3.35)

‖Tnf‖Hs(Sd) ≤ ‖f‖Hs(Sd) ≤
(

d− 1
2

)s−t

‖f‖Ht(Sd),

and hence

‖Tn‖Ht(Sd)→Hs(Sd) ≤
(

d− 1
2

)s−t

. (3.37)

As Tnf is the best approximation of f in Pn(Sd) in the Hs(Sd) sense
(see (3.22)), it is clear that ‖Tnf − f‖Hs(Sd) should satisfy the best
estimate. The estimate (3.21) for the approximation error of Lnf

is worse by the order (n + d−1
2 )

d
2 , while the estimate of the norm

‖Ln‖Ht(Sd)→Hs(Sd) in (ii) in Theorem 3.4 has compared with (3.37)

an additional additive term c (n + d−1
2 )

d
2

+s−t which is only bounded
as n → ∞ if t ≥ s + d

2 . We do not know whether the estimates in
Theorem 3.4 are optimal.
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4 Some Concluding Remarks

From the results summarized in this paper it is clear that the hy-
perinterpolation projection onto Pn(Sd) has good properties. The
L2(Sd)-orthogonal projection onto Pn(Sd) has better properties in
theory, but as it is not feasible for numerical computation, hyperin-
terpolation provides a reasonable practical alternative.

Hyperinterpolation is easy to compute. As a disadvantage, hyper-
interpolation needs function values at the given points of the positive-
weight numerical integration rule with degree of polynomial exact-
ness 2n in the definition of the hyperinterpolation operator. How-
ever, starting from scattered data, Mhaskar, Narcowich, and Ward
[11] (see also [14]) have proved that positive-weight numerical inte-
gration rules with polynomial exactness can be constructed which
use a subset of the points of the given set of scattered data as nodes.

Polynomial interpolation has, compared with hyperinterpolation,
the apparent advantage that it can work with scattered data, as
long as the data forms a fundamental system, but in practice the
advantage is illusory, since for scattered data the condition number is
typically very large. The computation of the polynomial interpolant
is rather expensive, and we have seen in Subsections 3.1 and 3.2 that
even with the best choice of points the norms of Λn seem to grow
faster than those of Ln and Tn.

The known results for hyperinterpolation (with the exception of
the new ones in the Sobolev space setting) have also been summarized
in much more detail in the thesis [15].

Finally, we note that all three of the polynomial approximations
considered here are linear projections onto Pn(Sd); thus we do not
consider polynomial approximations obtained by Cesaro summation
and similar methods. In particular, the generalized hyperinterpola-
tion method of Reimer (see [19]), which has this character, is outside
the scope of this review.
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1 Introduction

Assume that the finite complex function f(z) is defined on a set G
that includes the pairwise different points (wk)1≤k≤n . The (unique)
polynomial of degree at most n − 1, that takes the value f(zk) at
the points zk, i.e., Ln−1(f ; wk) = f(wk) for 1 ≤ k ≤ n is called the
Lagrange interpolant and is denoted by

Ln−1(f ; z) ≡ Ln−1(f ; z; (zk)n
k=1)

Applying the notation ωn(z) :=
∏n

k=1(z − zk), this Lagrange inter-
polant can be represented in the form

Ln−1(f ; z) =
n∑

k=1

f(wk)
z − wk

· ωn(z)
ω′n(wk)

. (1.1)

Suppose the set of points (zk)1≤k≤n is split into two disjoint sub-
sets (z(1)

k )1≤k≤n1 and (z(2)
k )1≤k≤n2 such that n1 + n2 = n . Then

the Lagrange polynomial Ln−1(f ; z; (zk)n
k=1) is the sum of the two

Lagrange polynomials, where the first polynomial Ln−1,∗(f ; z) in-
terpolates f(z) for z = z

(1)
k , 1 ≤ k ≤ n1 and takes the values 0

at all the points (z(2)
k )1≤k≤n2 and the second Lagrange polynomial

249
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Ln−1,∗∗(f ; z) takes the value 0 at all the points (zk)1≤k≤n and interpo-
lates the function f(z) at the points (z(2)

k )1≤k≤n2 . It will be of interest
to see the connections between properties of the Lagrange polynomial
Ln−1(f ; z) and the two polynomials Ln−1,∗(z) and Ln−1,∗∗(f ; z).

Properties of the Lagrange interpolation polynomials interpolat-
ing at the roots of unity were investigated in many papers. Here we
consider some properties of the Lagrange and Hermite interpolating
polynomials that interpolate a function at a real subset of the sets
of roots of unity.

The subsets of the sets of the roots of unity considered in this
paper will be chosen in the following way. For a given non-negative
integer n denote the sequence of zeros of the polynomial z3(n+1)−1 by
(w3(n+1),s)0≤s≤3(n+1)−1

. These zeros are given by w3(n+1),s = e
2πis

3(n+1) ,
where 0 ≤ s ≤ 3(n + 1)− 1 . From the factorization

z3(n+1) − 1 = (zn+1 − 1)(zn+1 − e
2πi
3 )(zn+1 − e

2πi
3
·2)

it follows that the sequence of zeros of z3(n+1) − 1 is the union of
three disjoint subsequences (w3(n+1),3k+j)0≤k≤n for j = 0, 1, 2, which

are, respectively, the zeros of the polynomials zn+1 − 1, zn+1 − e
2πi
3

and zn+1 − e
2πi
3
·2.

Write

ω0,3(n+1)(z) := z3(n+1)−1
zn+1−1

= (zn+1 − e
2πi
3 )(zn − e

2πi
3
·2) ,

ω1,3(n+1)(z) := z3(n+1)−1

zn+1−e
2πi
3

= (zn+1 − 1)(zn+1 − e
2πi
3
·2) ,

ω2,3(n+1)(z) := z3(n+1)−1

zn+1−e
2πi
3 ·2

= (zn+1 − 1)(zn+1 − e
2πi
3 ) ,

For each v = 0, 1, 2, the set of the roots of the polynomial ωv,2(n+1)(z)
can be looked upon in two ways. First as the union of the zeros of
two out of the three polynomials zn+1 − 1, zn+1 − e

2πi
3 and zn+1 −

e
2πi
3
·2 which is the union of two different rotations of the zeros of

zn+1− 1, or, as being obtained by deleting a third of the set of zeros
of z3(n+1)−1, i.e., the zeros of one of the three polynomials zn+1−1,

zn+1 − e
2πi
3 and zn+1 − e

2πi
3
·2 .
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Instead of investigating the Lagrange and Hermite interpolation
polynomials of a function associated at the zeros of the each of the
polynomials ωv,3(n+1)(z) , v = 0, 1, 2 we consider a slightly more
general case.

Assume 0 ≤ α < β < 3 . Let L2(n+1)−1;α;β(f ; z) denote the
Lagrange interpolating polynomial taking the values of a function
f(z) at the zeros of the polynomial

ω2(n+1);α;β(z) :=
(
zn+1 − e2πiα/3

) (
zn+1 − e2πiβ/3

)
(1.2)

= z2(n+1) −
(
e2πiα/3 + e2πiβ/3

)
zn+1 + e2πi(α+β)/3 ,

where the zeros of the polynomial zn+1 − e
2πiα

3 are w2(n+1);α;k =

e
2πi

3(n+1)
·(3k+α)

, 0 ≤ k ≤ n and the zeros of the polynomial zn+1 −
e2πiβ/3 are w2(n+1);β;k = e

2πi
3(n+1)

·(3k+β)
, 0 ≤ k ≤ n . Write also

ωn+1;α(z) := zn+1 − e2πiα/3. Let Ln+1;α(f ; z) denote the Lagrange
polynomial of degree n at most interpolating the function f(z) at the
zeros of ωn+1;α(z). Let L2(n+1)−1;α;∗(f ; z) denote the Lagrange poly-
nomial interpolating the function f(z) at the zeros of zn+1 − e2πiα/3

and taking the value zero at the zeros of zn+1−e2πiβ/3 and, similarly,
let L2(n+1)−1;∗;β(f ; z) denote the Lagrange polynomial interpolating
f(z) at the zeros of zn+1 − e2πiβ/3 and taking the value zero at the
zeros of zn+1 − e2πiα/3 .

2 The Main Results

For functions that are not necessarily analytic, we have the following
theorem.

Theorem 2.1 Let f(z) be Riemann integrable on the unit circle γ :=
{z : |z| = 1}. Then we have for each non-negative integer r

lim
n→∞ L

(r)
2(n+1)−1;α;β(f ; z) =

r!
2πi

∮
|t|=1

f(t)
(t− z)r+1

dt (2.1)

lim
n→∞ L

(r)
2(n+1)−1;α;∗(f ; z) =

e2πiβ/3

e2πiα/3 − e2πiβ/3

r!
2πi

∮
|t|=1

f(t)
(t− z)r+1

dt ,

(2.2)
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and

lim
n→∞ L

(r)
2(n+1)−1;∗;β(f ; z) =

e2πiα/3

e2πiβ/3 − e2πiα/3

r!
2πi

∮
|t|=1

f(t)
(t− z)r+1

dt

(2.3)
uniformly for |z| ≤ δ < 1 , 0 < δ < 1 .

Definition 2.2 A function f(z) is in Aρ , ρ > 1, if it is a regular
analytic function in the disk Dρ := {z : |z| < ρ} and not regular on
Dρ.

If it is assumed in Theorem 2.1 that f(z) ∈ Aρ , ρ > 1, then by
applying the the Cauchy formula

r!
2πi

∮
|t|=1

f(t)
(t−z)r+1 dt = f (r)(z) for each z , |z| < 1,

the conclusions of Theorem 2.1 take the form

limn→∞ L
(r)
2(n+1)−1;α;β(f ; z) = f (r)(z) ,

limn→∞ L
(r)
2(n+1)−1;α;∗(f ; z) = e2πiβ/3

e2πiα/3−e2πiβ/3 f (r)(z) ,

and

limn→∞ L
(r)
2(n+1)−1;∗;β(f ; z) = f (r)(z) e2πiα/3

e2πiβ/3−e2πiα/3 ,

uniformly for |z| ≤ δ < 1 , 0 < δ < 1 .
When f(z) ∈ Aρ, ρ > 1, we shall see by Corollary 2.4, stated

later in this paper, that we have the stronger result

limn→∞ L
(r)
2(n+1)−1;α;β(f ; z) = f (r)(z), uniformly for |z| ≤ δ

and 0 < δ < ρ .

We do not know what happens for 1 < |z| < ρ with the other two
conclusions of Theorem 2.1,

limn→∞ L
(r)
2(n+1)−1;α;∗(f ; z) and limn→∞ L

(r)
2(n+1)−1;∗;β(f ; z) .

When f(z) ∈ Aρ then the Taylor series
∑∞

k=0 akz
k (where for each R

with 0 < R < ρ the coefficients are given by ak = 1
2πi

∮
|t|=R

f(t)
tk+1 dt) is
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convergent for |z| < ρ and its sum is f(z), and the series is divergent
for each |z| > ρ. For the partial sums of the Taylor series sn(z) :=∑n

k=0 akz
k we have for each R , 0 < R < ρ,

sn(z) :=
n∑

k=0

akz
k =

1
2πi

∮
|t|=R

n∑
k=0

zk

tk+1
f(t)dt

=
1

2πi

∮
|t|=R

tn+1 − zn+1

tn+1

f(t)
t− z

dt. (2.4)

Assume f(z) ∈ Aρ , ρ > 1, further let n and r be positive integers,
and let z1, . . . , zn be pairwise different points in the disk Dρ := {z :
|z| < ρ}. Write ωn(z) :=

∏n
k=1(z−zk). Again, denote by hr,rn−1(f ; z)

the (unique) Hermite polynomial of degree rn−1 at most and of order
r that satisfies

h
(j)
r,rn−1(f ; zk) = f (j)(zk), k = 0, . . . , n− 1; j = 0, . . . , r − 1.

This polynomial can be represented in the form

hr,rn−1(f ; z) = 1
2πi

∮
|t|=R

ωn(t)r−ωn(z)r

ωn(t)r
f(t)
t−z dt,

where R is any number such that 1 < R < ρ and |zk| < R for
1 ≤ k ≤ n.

Theorem 2.3 Assume f(z) ∈ Aρ , ρ > 1. Let r be a positive integer.
Then for the Hermite interpolating polynomial hr,r·2(n+1)−1;α;β(f ; z)
interpolating f(z) at the zeros of ω2(n+1);α;β(z) we have

lim
n→∞

∣∣sr·2(n+1)−1(f ; z)− hr,r·2(n+1)−1(f ; z)
∣∣1/(n+1) ≤

≤
{ |z|2r−1

ρ2r when 1 < |z| < ρ
|z|2r

ρ2r+1 when |z| > ρ .
(2.5)

and for each non-negative integer p

lim
n→∞

(
s

(p)
r·2(n+1)−1(f ; z)− h

(p)
r,r·2(n+1)−1;α;β(z)

)
= 0 (2.6)

uniformly on each compact subset of the disk {z : |z| < ρ
2r+1

2r } .
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Since the Taylor series of a function f(z) ∈ Aρ is uniformly conver-
gent to f(z) on each compact subset of the disk {z : |z| < ρ } , we
obtain from Theorem 2.3 the following result.

Corollary 2.4 If the assumptions of Theorem 2.3 are satisfied then

limn→∞ h
(p)
r·2(n+1)−1;α;β(z) = f (p)(z),

uniformly on each compact subset of {z : |z| < ρ}.
Results similar to those given in this section for Ln+1;α(z) with α = 0
are given in Walsh [4, Ch. 7, Theorems 10 and 11], Walsh [4, Ch. 7,
Theorem 1]). Additional results for other operators are given in [2,
chapters 1 and 2].

3 Proof of Theorem 2.1

Proof of Theorem 2.1 (i) First we prove the theorem for r = 0 . We
have

L2(n+1)−1;α;∗(f ; z) =
∑n

k=0
f(e

2πi
3(n+1)

·(3k+α)
)

z−e
2πi

3(n+1)
·(3k+α)

×

× ω2(n+1);α;β(z)

(n+1)e
2πi

3(n+1)
·(3k+α)n

(
e

2πi
3(n+1)

·(3k+α)(n+1)−e2πiβ/3

)

= ω2(n+1);α;β(z)
∑n

k=0
f(e

2πi
3(n+1)

·(3k+α)
)

z−e
2πi

3(n+1)
·(3k+α)

×

× e
2πi

3(n+1)
·(3k+α)

(n+1)e2πiα/3

(
e2πiα/3−e2πiβ/3

)

= ω2(n+1);α;β(z)

(n+1)e2πiα/3

(
e2πiα/3−e2πiβ/3

) ×

×∑n
k=0

f(e
2πi

3(n+1)
·(3k+α)

)

z−e
2πi

3(n+1)
·(3k+α)

×

× e
2πi

3(n+1)
(3k+α)

e
2πi

3(n+1)
·3(k+1)−e

2πi
3(n+1)

·3k)
×
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×
(

e
2πi

3(n+1)
·3(k+1) − e

2πi
3(n+1)

·3k
)

= ω2(n+1);α;β(z)e
2πi

3(n+1)
·α

(n+1)

(
e

2πi
3(n+1)

·3−1

)
e2πiα/3

(
e2πiα/3−e2πiβ/3

) ×

×∑n
k=0

f(e
2πi

3(n+1)
·(3k+α)

)

z−e
2πi

3(n+1)
·(3k+α)

(
e

2πi
3(n+1)

·3(k+1) − e
2πi

3(n+1)
·3k

)

From the definition of the Riemann integral we have

limn→∞
∑n

k=0
f(e

2πi
3(n+1)

·(3k+α)
)

z−e
2πi

3(n+1)
·(3k+α)

(
e

2πi
3(n+1)

·3(k+1) − e
2πi

3(n+1)
·3k

)
=

=
∮
|t|=1

f(t)
z−tdt .

Hence we have uniformly in {z |z| ≤ δ }, 0 < δ < 1,

lim
n→∞L2(n+1);α;∗(f ; z) =

e2πiβ/3

e2πiα/3 − e2πiβ/3

1
2πi

∮
|t|=1

f(t)
z − t

dt .

Similarly we get that we have uniformly in {z |z| ≤ δ }, 0 < δ < 1,

lim
n→∞L2(n+1);∗;β(f ; z) =

e2πiα/3

e2πiβ/3 − e2πiα/3

1
2πi

∮
|t|=1

f(t)
z − t

dt .

By adding the last two results we see that we have uniformly in
{z : |z| ≤ δ }, 0 < δ < 1,

lim
n→∞ L2(n+1)−1;α;β(f ; z) =

1
2πi

∮
|t|=1

f(t)
t− z

dt .

This completes the proof of Theorem 2.1 for r = 0.
(ii) We prove now the theorem for r ≥ 1 . The functions

L2(n+1)−1;α;β(f ; z), L2(n+1)−1;α;∗(f ; z) and L2(n+1)−1;∗;β(f ; z) ,

are entire functions. The proof of Theorem 2.1 for r ≥ 1, follows by
applying the Weierstrass double-series theorem ([3, p.95, Sec.2.8])
and differentiating r times the formulas (2.1) , (2.2) and (2.3) for
r = 0 . �
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4 Proof of Theorem 2.3

Proof of Theorem 2.3 Assume |z| > 1. Choose R , 1 < R < ρ. We
have by (2.4)

sr·2(n+1)−1 =
1

2πi

∮
|t|=R

f(t)
t− z

(
1−

(
z

t

)r·2(n+1))
dt (4.1)

and

hr.·2(n+1)−1;α;β(f ; z) = 1
2πi

∮
|t|=R

f(t)
t−z

(
1− (ω2(n+1);α;β(z))r

(ω2(n+1);α;β(t))r

)
dt

= 1
2πi

∮
|t|=R

f(t)
t−z

(
1− (zn+1−e2πiα/3)r(zn+1−e2πiβ/3)r

(tn+1−e2πiα/3)r(tn+1−e2πiβ/3)r

)
dt

= 1
2πi

∮
|t|=R

f(t)
t−z

(
1− (

z
t

)r·2(n+1) (1− e2πiα/3

zn+1 )r(1− e2πiβ/3

zn+1 )r

(1− e2πiα/3

tn+1 )r(1− e2πiβ/3

tn+1 )r

)
dt

(4.2)

We have for |z| > 1 and |t| > 1

1− (
z
t

)r·2(n+1) (1− e2πiα/3

zn+1 )r(1− e2πiβ/3

zn+1 )r

(1− e2πiα/3

tn+1 )r(1− e2πiβ/3

tn+1 )r
=

= 1− (
z
t

)r·2(n+1)
(

1− re2πiα/3

zn+1 +O
(

1
z2(n+1)

))
×

×
(

1− re2πiβ/3

zn+1 +O
(

1
z2(n+1)

))
×

×
(

1 + re2πiα/3

tn+1 +O
(

1
t2(n+1)

))
×

×
(

1 + re2πiβ/3

tn+1 +O
(

1
t2(n+1)

))

=
(

z
t

)r·(2n+1)
(

1− r(e2πiα/3+e2πiβ/3)
zn+1 + r(e2πiα/3+e2πiβ/3)

tn+1

+O
(

1
z2(n+1)

)
+O

(
1

t2(n+1)

)
+O

(
1

(zt)n+1

))
(4.3)
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Combining (4.1), (4.2) and (4.3) we get

sr·2(n+1)−1 −hr.·2(n+1)−1;α;β(f ; z) = 1
2πi

∮
|t|=R

f(t)
t−z×

× (
z
t

)r·2(n+1) ×
(
− r(e2πiα/3+e2πiβ/3)

zn+1 + r(e2πiα/3+e2πiβ/3)
tn+1 +

+O( 1
z2(n+1)

)
+O

(
1

t2(n+1)

)
+O

(
1

(zt)n+1

))

Considering for 1 < R < ρ the cases 1 < |z| < R and |z| > R we find

lim supn→∞ |sr·2(n+1)−1(f ; z)− hr.·2(n+1)−1;α;β(f ; z)| 1
n+1 =

=
( |z|

R

)2r ·max
(

1
|z| ,

1
R

)
=

{ |z|2r−1

R2r when 1 < |z| < R and 1 < R < ρ
|z|2r

R2r+1 when |z| > R and 1 < R < ρ.

Letting R↗ ρ we get

lim supn→∞ |sr·2(n+1)−1(f ; z)− hr.·2(n+1)−1;α;β(f ; z)| 1
n+1 =

=

{ |z|2r−1

ρ2r when 1 < |z| < ρ ,
|z|2r

ρ2r+1 when |z| > ρ .

Now (2.6) follows from (2.5) and the maximum principle for analytic
functions. �
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Abstract

Radial basis functions appear in a wide field of applications
in numerical mathematics and computer science. We present
a fast algorithm for scattered data interpolation and approx-
imation on the sphere with spherical radial basis functions of
different spatial density. We discuss three settings, each lead-
ing to a special structure of the interpolation matrix allowing
for an efficient implementation using discrete Fourier trans-
forms. A numerical example is given to show the advantages
of spherical radial basis functions with different spatial densi-
ties.

1 Introduction

Radial basis functions have spread into a wide field of topics in nu-
merical mathematics and computer science. Applications can be
found in approximation of high dimensional and/or scattered data
and the modelling of partial differential equations, as well as in
neuroinformatics where so-called radial basis function networks are
prominent. Not only for the mentioned applications, these functions
are of special interest, since they show several features which make

259
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them well suited for a wide range of problems and, at the same time,
computationally attractive (cf. e.g. [3] and the references therein).

The characteristic property of radial basis functions is that their
value depends only on the “distance” of the argument to a fixed
element of the function’s domain. To be more exact, a radial basis
function f is given by

f : V 2 → C, f(x, y) := f̃ (‖x− y‖) , f̃ : [0,∞)→ C, x, y ∈ V,

where (V, ‖ · ‖) is a metric space. The definition shows clearly that
calculations are simplified since radial basis functions behave like
univariate functions, although their domain, in general, is multi-
dimensional. Especially for higher dimensions, this fact contributes
at a considerable amount to the effectiveness of algorithms which
utilise these functions.

Moreover, many radial basis functions have physical interpreta-
tions making them a reasonable choice for the modelling of many
physically motivated problems. The Poisson kernel for example, a
function we will study in this paper, can be viewed as a solution of a
potential problem, which makes it particularly useful for a range of
problems on spherical geometries.

From another point of view, the use of radial basis functions for
approximation problems becomes more clear: They can be used to
interpolate functions from a given set of scattered data points with-
out requiring a certain structure with respect to their distribution in
the domain. We can think of a set of these functions, where each of
them is associated with exactly one of the data points and models the
influence of it on a probabilistic model of the function to be approx-
imated. A model function can be derived as a linear combination of
these functions. For reasonable choices, they are often unimodal and
show exactly one global maximum at a certain point, often referred
to as their centre. Therefore, each function’s influence on the model
function decreases as one moves away from it’s centre, which, besides
from being somewhat reasonable in many cases, leads to a stability
property of the interpolating function. Deviations of a single data
point become visible only in its neighborhood.

In this paper, we deal with a setting where we like to describe
real-valued functions, defined on a two-dimensional sphere embedded
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in the Euclidean space R
3. Section 2 gives a quick introduction

to notational conventions used and special properties of spherical
geometry.

In Section 3 we review Legendre polynomials, associated Legendre
functions and spherical harmonics. These functions and the underly-
ing concepts form the classical basement for spherical approximation.

The following Section 4 introduces the concept of spherical basis
functions and in particular positive definite functions. They repre-
sent an entirely different approach compared to spherical harmonics,
which is well suited in cases where spherical harmonics tend to ex-
hibit unwanted ripple structures in the approximating function. This
can be often observed when somewhat smooth data with only a few
protruding peaks serves as input. As we will see, spherical basis
functions can master this situation quite well. For error estimates
and further applications we refer to [7, 6]. Moreover, we exploit
the idea of using different kinds of functions to represent regions of
different smoothness in the data. The geometry of the sphere itself
renders this uniform approach often useless by causing the same type
of problems. In conclusion, we show the linear independence of Pois-
son kernels of pairwise different parametrisation. For a more general
approach to multiscale kernels see [11].

Section 5 formulates some algorithmic aspects which arise in
spherical approximation with radial basis functions. We refer the
reader also to [8]. Some symmetry properties are derived and it is
shown how they can be exploited to reduce computational costs. But
as a warning, the amount of reduction that can be achieved, strongly
depends on the concrete distribution of the given data.

Finally, Section 6 shows applications of the concepts introduced
in the previous sections to real-life data from texture analysis in
crystallography (see [2]). We demonstrate that for these data sets, a
multiscale approach incorporating Poisson kernels or other radial ba-
sis functions of different “shape” is obligate for a good approximation
result.
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2 Basics

Every point x ∈ R
3 \ {0} given in Cartesian coordinates by the

vector (x1, x2, x3)
T can be described in spherical coordinates by a

vector (r, ϑ, ϕ)T with r > 0, ϑ ∈ [0, π] and ϕ ∈ [0, 2π) (see Figure 1).
We have

(x1, x2, x3)
T = (r sin ϑ cos ϕ, r sinϑ sinϕ, r cos ϑ)T ,

r =
√

x2
1 + x2

2 + x2
3 = ‖x‖2.

We denote by S
2 the unit sphere embedded into R

3; i.e.,

S
2 :=

{
x ∈ R

3 : ‖x‖2 = 1
}

and identify ξ ∈ S
2 with the vector (ϑ, ϕ)T. Let ξ = (ϑ, ϕ)T, η =

(ϑ′, ϕ′)T ∈ S
2 and α be the angle spanned by the origin, ξ and η.

Then the standard inner product ξ · η = cos α is given by

cos α = cos ϑ cos ϑ′ + sinϑ sinϑ′ cos(ϕ− ϕ′).

The space of homogeneous polynomials of degree k ∈ N0 in R
3

is denoted by Homk

(
R

3
)
, comprising all polynomials Qk ∈ Πk(R)

fulfilling Qk(α x) = αkQk(x) for arbitrary α ∈ R and x ∈ R
3. The

proper subspace of harmonic homogeneous polynomials of degree k
is defined by

Harmk

(
R

3
)

:=
{
Qk ∈ Homk

(
R

3
)

: ∆xQ = 0
}

, (2.1)

where ∆x is the Laplacian

∆x :=
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

. (2.2)

Furthermore, we have

dim
(
Homk

(
R

3
))

=
(k + 1)(k + 2)

2
, dim

(
Harmk

(
R

3
))

= 2k + 1.

To keep it short, we let Hk := Harmk

(
R

3
)∣∣
S2 . For further details

see [5] or [10].
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Figure 1: The spherical coordinate system in R
3. Every point ξ on

a sphere with radius r around the origin can be described by angles
ϑ, ϕ and the radius r. For ϑ = 0 or ϑ = π the point ξ coincides with
the North or the South pole, respectively.

The description of the spherical approximation problem starts
with a given finite dimensional space V with dimension K ∈ N of
square integrable functions ψ : S

2 → R ; hence∫
S2

|ψ(ξ)|2 dξ :=
∫ 2π

0

∫ π

0
|ψ(ϑ, ϕ)|2 sin ϑ dϑ dϕ <∞.

With respect to a basis {ψk}Kk=1 of V, every function f ∈ V has a
unique representation

f =
K∑

k=1

ak(f)ψk (ak ∈ R) .

In our setting, we are given data points (ξl, fl)
L
l=1, L ∈ N, with

ξl ∈ S
2 and fl ∈ R. We let

f := (f1, . . . , fL)T ∈ R
L, a := (a1, . . . , aK)T ∈ R

K

and

Ψ :=




ψ1 (ξ1) . . . ψK (ξ1)
...

. . .
...

ψ1 (ξL) . . . ψK (ξL)


 ∈ R

L×K . (2.3)
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The approximation problem on the sphere reads as follows:

Find ã ∈ R
K satisfying ã ∈ arg min

a∈RK
‖f −Ψ a‖2. (2.4)

Depending on which case holds, K ≤ L or K > L, the problem
can be viewed as a least-squares-problem or as a so-called special
optimisation problem. For the topics treated in this text, K = L
holds and Ψ will be assumed to be non-singular, so that the solution
can be explicitly written as

ã = Ψ−1f . (2.5)

For further information we refer the interested reader to [1].

3 Legendre Functions and Spherical
Harmonics

We briefly mention some facts on Legendre polynomials and the
closely related associated Legendre functions. Based on this foun-
dation, we describe the function space of spherical harmonics and
how it is related to spherical approximation.

The Legendre polynomials Pk : [−1, 1] → R, k ∈ N0, as classical
orthogonal polynomials are given by their corresponding Rodrigues
formula

Pk(t) :=
1

2kk!
dk

dtk
(
t2 − 1

)k
. (3.1)

The Formula of Laplace-Heine ([13, p. 194]) provides a classical
asymptotic approximation formula for Legendre polynomials: it says
that for k ∈ N and ϑ ∈ [ε, π − ε] with ε > 0 we have

Pk(cos ϑ) =

√
2

πk sinϑ
cos

((
k +

1
2

)
ϑ− π

4

)
+O

(
k−3/2

)
. (3.2)

Concerning the generating series of the Legendre polynomials

φ(h, t) :=
∞∑

k=0

Pk(t)hk (3.3)
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for arbitrary but fixed t ∈ [−1, 1], which is absolutely and uniformly
convergent for h ∈ (−1, 1), we have

∞∑
k=0

Pk(t)hk =
1√

1− 2ht + h2
. (3.4)

This representation follows from the ordinary differential equation

(
1 + h2 − 2ht

) (
∂

∂h
φ

)
(h, t) = (t− h)φ(h, t) (3.5)

obtained by differentiation with respect to h and comparing coeffi-
cients in line with (3.3). Using the initial condition φ(0, t) = 1 yields
the unique solution (3.4). From this result, the identity

∞∑
k=0

(2k + 1)Pk(t)hk =
1− h2

(1− 2ht + h2)3/2
(3.6)

follows easily.
When h is restricted to (0, 1), the function Qh : [−1, 1]→ R with

Qh(t) :=
1− h2

(1− 2ht + h2)3/2
(3.7)

is called Poisson kernel. We refer to Figure 2 and notice that the
parameter h allows for controlling the concentration of the function’s
energy around t = 1.

The Legendre polynomials can be viewed as a special case of a
more general set of orthogonal functions. Let k, n ∈ N0 with n ≤ k.
The functions Pn

k : [−1, 1]→ R, given by

Pn
k (t) :=

(
(k − n)!
(k + n)!

)1/2 (
1− t2

)n/2 dn

dtn
Pk(t),

are called associated Legendre functions.
Notice that the associated Legendre function P 0

k coincides with
the Legendre polynomial Pk. The associated Legendre functions
fulfill the orthogonality condition∫ 1

−1
Pn

k (t)Pn
l (t) dt =

2
2k + 1

δk,l (n ≤ min {k, l}) . (3.8)
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Figure 2: The Poisson kernel Qh(cos ϑ) for h = 0.5, 0.7, 0.8. The
energy concentrates more and more around ϑ = 0 as h increases.

We now introduce the function space of spherical harmonics, a
key to the treatment of spherical approximation problems. From
Laplace’s differential equation ∆f = 0 in R

3, one obtains in spherical
coordinates

∆f =
∂2f

∂r2
+

2
r

∂f

∂r
+

1
r2 sinϑ

∂

∂ϑ

(
sinϑ · ∂f

∂ϑ

)
+

1
r2 sinϑ

∂2f

∂ϕ2
= 0.

(3.9)
Using an ansatz based on separation of variables and taking into
account that r = 1 when restricting (3.9) to S

2, one obtains the
solutions

Y n
k : S

2 → C (k ∈ N0; n = −k,−k + 1, . . . , k) ,

Y n
k (ϑ, ϕ) :=

√
2k+1

4π P
|n|
k (cos ϑ)einϕ.

(3.10)

An important result is that these functions Y n
k are contained in Hk.

Owing to the separability, one proves easily that they also fulfill the
orthogonality condition

〈Y n
k , Y m

l 〉S2 = δk,l δn,m (3.11)
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with respect to the L2
(
S

2
)
-inner product

〈Y n
k , Y m

l 〉S2 :=
∫ 2π

0

∫ π

0
Y n

k (ϑ, ϕ)Y m
l (ϑ, ϕ) sinϑ dϑ dϕ. (3.12)

Since dimHk = 2k + 1, the set {Y n
k : n = −k,−k + 1, . . . , k} forms

an orthonormal basis of Hk for every k ∈ N0. Moreover, the spaces
Hk are orthogonal to each other and the set

{Y n
k : k = 0, 1, . . . , K; n = −k,−k + 1, . . . , k} (K ∈ N0)

provides an orthonormal basis for the direct sum of spaces
⊕K

k=0Hk

called the space of spherical harmonics of degree K.
At first glance, the restriction to homogeneous and harmonic

polynomials might exclude various functions from ΠK

(
S

2
)
. But as

a matter of fact, the spaces are identical (see [5, p. 29]), i.e.

ΠK

(
S

2
)

=
K⊕

k=0

Hk.

Finally, we mention the well known Addition Theorem that re-
lates any set of functions {Hn

k }kn=−k forming an orthonormal basis of
the space Hk to the Legendre polynomials Pk. It particularly holds
for the basis given in (3.10).

Proposition 3.1 (Addition Theorem) For every L2
(
S

2
)
-ortho-

normal basis {Hn
k }kn=−k of Hk, we have

k∑
n=−k

Hn
k (ξ)Hn

k (η) =
2k + 1

4π
Pk(ξ · η).

For a proof see [10] or [5, p. 37].

4 Spherical Basis Functions

In this section we introduce n suitable alternative class of functions
for approximation on the sphere, namely spherical basis functions.
Instead of providing a basis for a certain function space on the sphere
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directly, the space of spherical basis functions covers a wide range of
functions, where each of them generates a basis for an approxima-
tion space that is suited for a given set of data points. This allows to
adjust the used space to the properties of the given data in order to
achieve optimal results, making spherical basis functions more flexi-
ble and useful especially for scattered data. Strongly correlated with
spherical basis functions is the class of positive definite functions.

Definition 4.1 A continuous function G : [−1, 1] → R is called
positive definite, if and only if for every set of points {ξl}Ll=1 on
S

2, L ∈ N, the corresponding Gramian matrix A := (ai,j)
L
i,j=1 with

ai,j := G
(
ξi · ξj

)
is positive semi-definite. If A is even positive

definite, G is called a strictly positive definite function.

In general, it is hard to prove directly that a function is positive
definite according to Definition 4.1. A fundamental characterisation
is given in the following theorem due to Schoenberg (see [12]).

Proposition 4.2 Let G : [−1, 1] → R be a function of the form
G =

∑∞
k=0 akPk, with

∑∞
k=0 |ak| <∞. Then the following statements

are equivalent:

1. The function G is positive definite on S
2.

2. The coefficients ak fulfill ak ≥ 0 for all k ∈ N0.

For strictly positive definite functions a similar necessary and
sufficient condition was proved recently by Chen, Menegatto and
Sun in [4]: A function G is strictly positive definite if and only if all
coefficients ak are greater than or equal to zero and infinitely many
coefficients ak with odd k and infinitely many coefficients ak with
even k are greater than zero. Now, for our purpose spherical basis
functions are defined as follows:

Definition 4.3 Every function G : [−1, 1]→ R with

G(t) =
∞∑

k=0

akPk(t), (4.13)

satisfying ak > 0 for all k ∈ N0 and
∑∞

k=0 ak <∞ is called a spher-
ical basis function.
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The Poisson kernel Qh defined in (3.7), for example, is a spherical
basis function. This follows immediately taking into account that
(2k + 1) hk > 0 for all k ∈ N0 and

∑∞
k=0(2k+1)hk <∞ for h ∈ (0, 1).

Using spherical basis functions, we define the approximation space
and a basis in order to use the scheme from Section 2. Given data
points (ξl, fl)

L
l=1, L ∈ N and having chosen a spherical basis function

G, we obtain the functions Gl : S
2 
→ R by

Gl(ξ) := G (ξl · ξ) .

The values of the generated functions Gl solely depend on the
geodesic distance of the argument ξ to the fixed point ξl. For many
reasonable choices, the function value reaches a maximum at ξ = ξl

and decreases towards a minimum for ξ = −ξl. Figure 3 shows the
Poisson-kernel Qh

(
(0, 0)T · ξ)

centred at the North pole for different
values of h.

Now, the matrix Ψ introduced in (2.3) is in this setting identical
to the Gramian matrix from Definition 4.1, which is known to be pos-
itive definite, hence regular. Notice that this property immediately
implies the linear independence of the functions Gl.

From a more practical point of view, a drawback of the described
method becomes clear. Independent of the distribution of the points
ξl on the sphere, all data samples are represented by rotated ver-
sions of the same function with same spatial density generated from
a single spherical basis function G. As it is often the case in prac-
tical situations, the data do not need to be distributed uniformly.
Data points can be clustered in certain regions, while in others their
density might be low. This can cause problems in the quality of the
computed approximation result and leads to numerical instability.
Another aspect is that these functions can also be used for multi-
scale representations, where, depending on the required accuracy, a
subset of the basis functions is used to represent either a fine or a
coarse approximation. Here, the need for functions of different spa-
tial density is also essential.

As well as the use of this more flexible approach seems to be
working (see for example [9]), theoretic results ensuring the solvabil-
ity of the problem for sets of possibly different basis functions are



270 Keiner and Prestin

Figure 3: The Poisson kernel Qh

(
(0, 0)T · ξ)

centred at the North
pole as a function of ξ and evaluated on the sphere S

2 for different
values of h. Starting with h = 0.6 in the upper left picture, the value
increases in steps of 0.1 to h = 0.9 in the lower right picture.

not easy to obtain. In the next section, we will show the linear inde-
pendence of Poisson kernels for pairwise different parameter h. But
it will remain open whether the matrix Ψ still remains non-singular.

4.1 Extension to the Multiscale Case

In order to investigate the linear independence of Poisson kernels at
different scales; i.e., for different values of h, we first need some basic
results.

Lemma 4.4 Let ϑ ∈ [0, π] be fixed. There exists a constant c(ϑ) > 0
such that for arbitrary k ∈ N0 there exists an index k∗ ∈ N0 with
k∗ ≥ k and √

2k∗ + 1
4π

|Pk∗(cos ϑ)| > c(ϑ). (4.14)

Proof. The case k = 0 is trivial since P0 = 1. So let k > 0
and assume at first ϑ = 0 or ϑ = π. By observing |Pk(cos ϑ)| =
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|Pk(±1)| = 1, we obtain the estimate
√

2k + 1
4π

|Pk(cos ϑ)| =
√

2k + 1
4π

≥ 1
2
√

π
> 0. (4.15)

By choosing k∗ = k and c(ϑ) ∈ (0, 1
2
√

π
) arbitrary, assertion (4.14) is

fulfilled. Now fix ϑ ∈ (0, π). Employing the approximation formula
from (3.2) we conclude

√
2k + 1

4π
|Pk(cos ϑ)| = 1

π
√

sinϑ

∣∣∣∣∣cos

((
k +

1
2

)
ϑ− π

4

)∣∣∣∣∣ +O (
k−1

)
.

The asymptotic part O (
k−1

)
vanishes for k → ∞. The constant

1
π
√

sin ϑ
is strictly positive. So let us assume

cos

((
k +

1
2

)
ϑ− π

4

)
k→∞−→ 0.

We now immediately get a contradiction, since this would require ϑ
to be of the form ϑ = jπ for certain j ∈ Z \ {0} and would therefore
violate the assumption 0 < ϑ < π. �

Corollary 4.5 Let ξ = (ϑ, ϕ) ∈ S
2 be fixed. There exists a constant

c(ϑ) > 0 such that for arbitrary k ∈ N0 there exists an index k∗ ∈ N0

with k∗ ≥ k and ∣∣Y 0
k∗(ξ)

∣∣ > c(ϑ). (4.16)

Proof. We utilise the definition of the functions Y n
k in (3.10) with

Y n
k (ϑ, ϕ) =

√
2k + 1

4π
P
|n|
k (cos ϑ)einϕ, (4.17)

and close with the remark that for n = 0, the proof reduces to an
application of Lemma 4.4. �

Corollary 4.5 now allows for an investigation of the linear inde-
pendence of Poisson kernels Qh for pairwise different parameters h.
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Theorem 4.6 Let L ∈ N, 0 < h1 < h2 < . . . < hL < 1 and

ξl := (ϑl, ϕl) ∈ S
2 (l = 1, . . . , L) (4.18)

be L pairwise different points on the sphere. Then the functions
Gl : S

2 → R with

Gl(ξ) := Qhl
(ξl · ξ) =

∞∑
k=0

(2k + 1)Pk(ξl · ξ)hk
l (4.19)

are linearly independent.

Proof. We assume

L∑
l=1

λlGl(ξl · ξ) = 0
(
ξ ∈ S

2
)

(4.20)

for certain coefficients λi ∈ R and prove that λl = 0 holds for l =
1, . . . , L. Applying the definition of the Poisson kernel from (3.7) and
using the Addition Theorem from Proposition 3.1, we obtain

0 =
L∑

l=1

λlGl(ξl · ξ)

=
L∑

l=1

λl

∞∑
k=0

(2k + 1)Pk(ξl · ξ)hk
l

=
L∑

l=1

λl

∞∑
k=0

4π hk
l

k∑
n=−k

Y n
k (ξl)Y n

k (ξ)

=
∞∑

k=0

k∑
n=−k

(
L∑

l=1

λl 4π hk
l Y n

k (ξl)

)
Y n

k (ξ).

In view of the fact that the set
{
Y n

k

}
k∈N0,n=−k,...,k

forms a basis of
L2

(
S

2
)
, the following infinite set of equations

L∑
l=1

λl hk
l Y n

k (ξl) = 0 (k ∈ N0, n = −k, . . . , k) (4.21)
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must be fulfilled. So assume now that there exists at least one index
l such that λl �= 0 and define

lmax := max
l=1,...,L

‖l : λl �= 0} . (4.22)

Owing to the estimates∣∣∣∣(L− 1)λl

c1 λlmax

∣∣∣∣ = O(1),
(

hl

hlmax

)k

= O
(
c−k

2

)
,

∣∣Y 0
k (ξl)

∣∣ = O
(√

k
)

(4.23)
for l = 1, . . . , L, where c1 is an arbitrary and c2 a fixed positive
constant, we get

lim
k→∞

∣∣λl hk
l Y 0

k (ξl)
∣∣∣∣∣ c

L−1λlmax hk
lmax

∣∣∣ = lim
k→∞

∣∣∣∣(L− 1)λl

c λlmax

∣∣∣∣
(

hl

hlmax

)k ∣∣Y 0
k (ξl)

∣∣ = 0.

(4.24)
Now, using Corollary 4.5, let k∗ ∈ N0 be large enough such that∣∣Y 0

k∗
(
ξlmax

)∣∣ > c (ϑlmax) > 0 (4.25)

and∣∣∣λl hk∗
l Y 0

k∗ (ξl)
∣∣∣ <

∣∣∣∣c (ϑlmax)
L− 1

λlmax hk∗
lmax

∣∣∣∣ (l = 1, . . . , L; l �= lmax)

(4.26)
are simultaneously satisfied. We finally obtain∣∣∣∣∣

L∑
l=1

λl hk∗
l Y 0

k∗ (ξi)

∣∣∣∣∣
≥

∣∣∣λlmax hk∗
lmax

Y 0
k∗

(
ξlmax

)∣∣∣− L∑
l=1, l �=lmax

∣∣∣λl hk∗
l Y 0

k∗ (ξl)
∣∣∣

≥
∣∣∣λlmax hk∗

lmax
Y 0

k∗
(
ξlmax

)∣∣∣
−

L∑
l=1, l �=lmax

∣∣∣∣c (ϑlmax)
L− 1

λlmax hk∗
lmax

∣∣∣∣
=

∣∣∣λlmax hk∗
lmax

Y 0
k∗

(
ξlmax

)∣∣∣− ∣∣∣c (ϑlmax) λlmax hk∗
lmax

∣∣∣
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= (
∣∣Y 0

k∗
(
ξlmax

)∣∣− c (ϑlmax))
∣∣∣λlmax hk∗

lmax

∣∣∣
> 0,

which contradicts (4.21). �

5 Algorithmic Aspects

This section concentrates on facets in the numerical treatment of the
spherical approximation problem with radial basis functions. We
mention properties of the interpolation matrix Ψ, explain under
which conditions with respect to the data points they are present
and briefly discuss how they can be exploited to reduce computa-
tional costs. We finally give an algorithm for a certain class of grids
that achieves better asymptotic complexity than a naive approach.

When we talk about a spherical grid, we refer to a set of points
(ξL)L

l=1, L ∈ N, on the sphere, which, when viewed in the ϑ-ϕ-
plane, exhibits the structure of a rectangular grid consisting of rows
and columns aligned to the two principal axes ϑ and ϕ. In the
general case, we allow rows and columns to have different distances as
illustrated in Figure 4. In the most common case in practical settings,
the rows and columns are distributed uniformly in a certain domain
I ⊆ [0, π] × [0, 2π). We call a grid regular, if the distance between
adjacent columns is constant. Furthermore we call it complete if
its columns are even distributed uniformly on the torus 2π T

1 :=
2π(R/Z) identified with the interval [0, 2π). We number the nodes
row by row in increasing order where ϑ determines the row while ϕ
determines the column. Furthermore, we let m be the number of
rows and n the number of columns in a grid and we have therefore
Ψ ∈ R

mn×mn.
We now discuss three different setups of nodes and basis functions

and derive the properties of Ψ they imply.

• All basis functions are identical up to rotation.

This is the classical case for which the non-singularity of the
resulting interpolation matrix Ψ is assured. The nodes might
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Figure 4: Mapping of a two-dimensional grid to a sphere. Every
dot represents a node of the grid. Note that the distance between
adjacent rows and columns varies and that the radius of the arcs,
representing the rows of the grid, depends on the longitudinal angle
ϑ, while the arcs corresponding to grid-columns all have equal radius.
This is a direct consequence of the spherical coordinate system, we
use.

be distributed arbitrarily. Using the definition of the matrix Ψ
from (2.3) it follows

ψi

(
ξj

)
= G

(
ξi · ξj

)
= ψj (ξi) (1 ≤ i, j ≤ L) . (5.27)

Hence, Ψ is symmetric and allows one to roughly halve the
memory space needed to store the matrix.

• The grid is regular and the basis function is the same
for points in the same row.

This restriction allows for a decomposition of Ψ into quadratic
blocks. A sub-matrix Ψ(k,l) of Ψ, defined by

Ψ(k,l) :=
(
ψ

(k,l)
i,j

)n

i,j=1
∈ R

n×n (1 ≤ k, l ≤ m) (5.28)

and
ψ

(k,l)
i,j := ψ

(
ξ(k−1)n+i · ξ(l−1)n+j

)
(5.29)

contains all values that depend only on the inner products be-
tween all points in rows k and l. Therefore, the matrix Ψ has
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the representation

Ψ =




Ψ(1,1) Ψ(1,2) . . . Ψ(1,m)

Ψ(2,1) Ψ(2,2) . . . Ψ(2,m)

...
...

. . .
...

Ψ(m,1) Ψ(m,2) . . . Ψ(m,m)


 ∈ R

mn×mn. (5.30)

Note that generally the matrix Ψ is no longer symmetric. But
as a consequence of the data layout, the blocks Ψ(k,l) have a
very simple structure. Let ϑk, ϑl be the angles corresponding
to rows k, l and ϕi, ϕj be the angles corresponding to columns
i, j. Furthermore, we let δ > 0 be the fixed latitudinal angle
separating adjacent points in the same row. With Gk as the
basis function used for row k, we get for a component

ψ
(k,l)
(i,j) = Gk

(
(ϑk, ϕi)

T · (ϑl, ϕj)
T
)

of a block Ψ(k,l) and analogously ψ
(k,l)
i−1,j−1 with i, j > 1, the

identity

ψ
(k,l)
i−1,j−1

= Gk

(
(ϑk, ϕi − δ)T · (ϑl, ϕj − δ)T

)
= Gk (cos ϑk cos ϑl + sinϑk sinϑl cos (ϕi − δ − (ϕj − δ)))
= Gk (cos ϑk cos ϑl + sinϑk sinϑl cos (ϕi − ϕj))

= Gk

(
(ϑk, ϕi)

T · (ϑl, ϕj)
T
)

= ψ
(k,l)
i,j .

Therefore, every block Ψ(k,l) has the form of a Toeplitz matrix

Ψ(k,l) =




ψ
(k,l)
1,1 ψ

(k,l)
1,2 . . . ψ

(k,l)
1,n−1 ψ

(k,l)
1,n

ψ
(k,l)
2,1 ψ

(k,l)
1,1 . . . ψ

(k,l)
1,n−2 ψ

(k,l)
1,n−1

...
...

. . .
...

...

ψ
(k,l)
n−1,1 ψ

(k,l)
n−2,1 . . . ψ

(k,l)
1,1 ψ

(k,l)
1,2

ψ
(k,l)
n,1 ψ

(k,l)
n−1,1 . . . ψ

(k,l)
2,1 ψ

(k,l)
1,1




. (5.31)
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The first row and column completely determine all its entries.
Every Toeplitz matrix can be embedded into a circulant ma-
trix of almost twice the size for every dimension. Since circu-
lant matrices can be diagonalised by means of a multiplication
with two Fourier matrices, this allows for the computation of a
matrix-vector product with O (n log n) arithmetic operations.
Similarly, the solution of a linear system of equations, whose
matrix is circulant, can also be calculated with O (n log n) op-
erations.

• The grid is complete and the basis function is the same
for points in the same row.

This case is very similar to the last one, except that further
symmetries appear. We now require that also the angle that
separates the first and the last point in each row equals δ. First,
owing to the fact that the grid is now invariant to rotations
along the axis through North and South pole by angles which
are multiples of δ, each row of a block Ψ(k,l) is a circularly
shifted version of its successor:

Ψ(k,l) =




ψ
(k,l)
1,1 ψ

(k,l)
1,2 . . . ψ

(k,l)
1,n−1 ψ

(k,l)
1,n

ψ
(k,l)
1,n ψ

(k,l)
1,1 . . . ψ

(k,l)
1,n−2 ψ

(k,l)
1,n−1

...
...

. . .
...

...
ψ

(k,l)
1;3 ψ

(k,l)
1,4 . . . ψ

(k,l)
1,1 ψ

(k,l)
1,2

ψ
(k,l)
1;2 ψ

(k,l)
1,3 . . . ψ

(k,l)
1,n ψ

(k,l)
1,1




. (5.32)

Circulant matrices are completely determined by their first row
or column. Second, another symmetry can be exploited. Since
for every point the grid is also symmetric to the plane that
contains the point and the two poles, the first row of a matrix-
block Ψ(k,l) is also symmetric to its centre.

We have described three cases, where symmetry properties can be
used to reduce the storage space needed for Ψ. Especially the third
case is interesting, since there exist algorithms to treat the occurring
types of matrices efficiently. How these algorithms work is presented
in the following section.



278 Keiner and Prestin

5.1 Circulant Matrices and the Discrete Fourier
Transform

Circulant matrices can be multiplied with vectors efficiently. Let
A := (ai,j) ∈ R

n×n be a circulant matrix and x := (x1, x2, . . . , xn)T ∈
R

n be a column-vector of length n ∈ N. We have

(Ax)i =
n∑

j=1

ai,j xj (1 ≤ i ≤ n) . (5.33)

The circulant structure of A now gives ai,j = a(i−j mod n)+1,1 which
leads to

(Ax)i =
n∑

j=1

a(i−j mod n)+1,1 xj . (5.34)

If we now define the n-periodic sequences ã := (ãi)i∈Z, x̃ :=
(x̃i)i∈Z, containing the elements of the first column of A and the
elements of the vector x, respectively, by

ãi := a(i mod n)+1,1, x̃i := x(i mod n)+1, (5.35)

we can write the result of their discrete periodic convolution ã ∗ x̃ as

(ã ∗ x̃)i =
n−1∑
j=0

ãi−j x̃j

=
n−1∑
j=0

a(i−j mod n)+1,1 x(j mod n)+1

=
n−1∑
j=0

a(i−j mod n)+1,1 xj+1

=
n−1∑
j=1

a(i+1−j mod n)+1,1 xj = (Ax)i+1 (0 ≤ i ≤ n− 1) .

We can calculate the result of the matrix-vector product A x by a
discrete periodic convolution of the vectors a and x, where a is the
column-vector containing the first column of A. The Discrete Convo-
lution Theorem tells that a discrete periodic convolution corresponds
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to a component-wise multiplication in the frequency domain. If we
now denote an application of the discrete Fourier transform (DFT) to
a vector x by DFT (x) and analogously an application of the inverse
transform (IDFT) by IDFT (x), we therefore get

DFT (A x) = DFT (a)�DFT (x) (5.36)

and
A x = IDFT (DFT (a))�DFT (x) , (5.37)

where�means the component-wise multiplication or Hadamard prod-
uct. But there is more we can learn from (5.36): If we rewrite
the application of a DFT as a multiplication with a Fourier ma-
trix Fn, then the component-wise multiplication of DFT (a) = Fn a
and DFT (x) = Fn x can be written as diag (Fn a) Fn x. This yields

Fn A x = diag (Fn a) Fn x. (5.38)

Since Fourier matrices are orthogonal, i.e., I = F−1
n Fn = FH

n Fn with
I being the identity matrix, we obtain

Fn A FH
n Fn x = diag (Fn a) Fn x. (5.39)

We conclude Fn A FH
n = diag (Fn a), i.e., the matrix A can be diag-

onalised by two Fourier matrices Fn.
The component-wise multiplication of DFT (a) and DFT (x) can

be computed with O(n) arithmetic operations. The computational
complexity of the multiplication algorithm is therefore determined
by the application of DFT and IDFT. These steps require O(n log n)
floating point operations (flops), if a fast Fourier transform algorithm
(FFT) is used.

We now turn to systems of linear equations Ax = b whose system
matrix is circulant. We multiply with the Fourier matrix Fn from
the left and by recalling FH

n Fn = I we get

Fn A FH
n Fn x = Fn b. (5.40)

Using that FnAFH
n is a diagonal matrix whose main diagonal entries

can be computed with O(n log n) flops using an FFT, the system has
been transformed into a very simple form and we can solve it with
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O(n) arithmetic operations and obtain the vector Fn x. A final
application of the inverse FFT gives the sought solution x. In total,
we need O(n log n) flops.

Block matrices Ψ with circulant blocks can be handled by a re-
duction to the algorithm for circulant matrices. For example, we
write the system Ψ x = b as


Ψ(1,1) Ψ(1,2) . . . Ψ(1,m)

Ψ(2,1) Ψ(2,2) . . . Ψ(2,m)

...
...

. . .
...

Ψ(m,1) Ψ(m,2) . . . Ψ(m,m)







x(1)

x(2)

...
x(m)


 =




b(1)

b(2)

...
b(m)


 ,

(5.41)
with circulant blocks Ψ(i,j), where Ψ(i,j) ∈ R

n×n, x(i), b(i) ∈ R
n.

Using the results for circulant matrices and defining

Fm,n := Im ⊗ Fn,

with the usual Kronecker product ⊗, one can write

Fm,n Ψ FH
m,n Fm,n x = Fm,n b (5.42)

where Fm,n Ψ FH
m,n is a matrix consisting of m2 diagonal blocks.

By reordering rows and columns properly, which would correspond
to further multiplications with permutation matrices, we obtain a
system of linear equations with a block-diagonal matrix. Each of the
m blocks of dimension n × n represents an independent system of
linear equations.

For an asymptotic complexity analysis, we now require m to be of
comparable size as n; hence m = cn for some c ∈ R. In the algorithm,
one must first calculate m2 + m discrete Fourier transforms. Each
of these transforms has length n and therefore requires O(n log n)
flops. In total, this step accumulates to O (

m2n log n
)

flops. Next,
we must calculate m matrix-vector products or must solve m linear
systems of equations, in each case of dimension n × n. Depending
on the concrete algorithms used for these steps, we can count the
complexity for each of them by C(n). We know only that one can’t
get better than C(n) = O (

n2
)

and that C(n) = O (
n3

)
is always

possible. Together, this gives a complexity of O (mC(n)) for this
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Algorithm 1 Solving systems of linear equations with a block-
matrix with circulant blocks
Input: n, m ∈ N, for j, k = 1, . . . , m the block-matrix Ψ ∈

R
nm×nm with circulant blocks, represented by vectors

a(j,k) ∈ R
n containing the first column of each block, the

right-hand side b ∈ R
nm given by sub-vectors b(j) ∈ R

n

for j, 1, . . . , m.

for j = 1, . . . , m do
Compute b̂(j) := DFT (bj) by an FFT of length n.
for k = 1, . . . , m do

Compute â(j,k) := DFT
(
a(j,k)

)
by an FFT of length n.

end for
end for

for j = 1, . . . , m do
Compute x̂(j) as the solution of the m-th system of linear
equations.
Compute x(j) := IDFT

(
x̂(j)

)
by an inverse FFT.

end for

Output: x ∈ R
nm as solution of the system Ψ x = b.

Asymptotic complexity: O (
m2n log n + mC(n) + mn log n

)
flops.

step. The last step, the computation of IDFTs for each of the m
vector-blocks of the intermediate result, needs O (mn log n) flops. So
the described method requires in total

O (
m2n log n + mC(n) + mn log n

)
= O (

m3 log n + mC(m)
)

flops. In general, methods not exploiting the matrix structure have
a complexity of O (C(nm)) flops which is at least O (

m4
)

flops. Al-
gorithm 1 summarises the described method for systems of linear
equations whose system matrix consists of circulant blocks.
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6 An Application

In this final section, we present an application of the previously de-
scribed approximation schemes to real-life data.

For texture analysis in crystallography, spherical data on a reg-
ular grid are processed and reviewed. However, these measurements
today are still very time consuming, therefore limiting the affordable
resolution of the result.

On this basis, representations with Poisson kernels were calcu-
lated for a given data set. These representations can be viewed as
a stochastic model. Since we solve an interpolation problem, the
resulting function as a linear combination of rotated kernel func-
tions coincides with the measured data on the grid, regardless of the
parametrisation of the kernels. But from a numerical point of view,
a good adjustment of the parameters is the key. If a small value h
is used for all basis functions, the interpolation matrix Ψ becomes
nearly singular, since the kernels are close to constant functions. On
the other hand, the use of a value close to 1 pushes Ψ towards the
unity matrix, making the calculation more stable, but the model
represented might not be very reasonable. Therefore, the calculated
representation was evaluated at a refined resolution.

At first, only rotated versions of a single kernel with a fixed h were
used. Results for different values of h are shown in Figures 5 and 6.
One observes that, depending on h, the quality of the result strongly
differs comparing the equatorial and the polar regions. Clearly, due
to the topology of the sphere, a single basis function near the poles
has a noticeably higher impact on its neighbour points than one
located near the equator, a fact that causes numerical instabilities.
On the other hand, increasing h makes the effective support of the
basis functions in the equatorial region very small.

This leads to the idea of using kernels with different spatial den-
sities. According to [9, p. 933], a properly normalised Poisson kernel
Qh (η · ξ) as a function of ξ ∈ S

2 for fixed η ∈ S
2 can be regarded as

a probability density function and the variance σ is given by

σ2 =
(

1− h2

1 + h2

)
. (6.43)



A Fast Algorithm for Spherical Basis Approximation 283

This formula can be used to derive an automatic procedure that ad-
justs the parameter h for each row of a spherical grid, thereby control-
ling the overlap of the spherical basis functions Gl (ξ) = Qhl

(ξl · ξ)
for l = 1, . . . , L. Figure 7 shows the result after application of this
procedure.

This closes our investigation. For further improvements, the rep-
resentation of sharp peaks in the input data must be taken into
account. But therefore, one must leave the regular structure of the
interpolation matrix Ψ. Here it might be useful to compute a coarse
approximation on a regular grid with the proposed method and in-
corporate sharp peaks afterwards. For example, one could solve the
interpolation problem by using an iterative method for systems of
linear equations. The solution calculated first could here be used
as the initial solution, in order to reduce the number of iterations
needed.

Figure 5: The interpolated data evaluated on a grid with four-fold
resolution. The kernels were parametrised with h = 0.96. The result
shows ripple artifacts near the North pole and also negative values –
in this case not admissible from the application.
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Figure 6: The same data as in Figure 5 but now for h = 0.98. Arti-
facts near the pole are reduced but the spatial density of the spherical
basis functions is too low to provide a reasonable approximation far
from the pole.

Figure 7: The same data as in Figure 5 now using automatic spatial
density adjustment for the spherical basis functions. Some artifacts
remain near the pole but the overall approximation result is smooth.
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Abstract

We consider polynomial approximation problems on the
real line with generalized Freud weights. The generalization
means multiplying these weights by so-called generalized poly-
nomials which have finitely many roots on the corresponding
intervals. Analogues of classical polynomial inequalities, as
well as direct and converse approximation theorems, will be
proved.

1 Introduction

We consider polynomial approximation problems on the real line with
generalized Freud weights . The generalization means multiplying

287
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these weights by so-called generalized polynomials which have finitely
many roots on the corresponding intervals. Analogues of classical
polynomial inequalities, as well as direct and converse approximation
theorems will be proved.

In order to formulate our results, we introduce some general
notations. For an arbitrary weight u ≥ 0 in R let Lp

u(R), 1 ≤
p < ∞ be the set of all measurable functions f such that ‖uf‖pp =∫
R |fu|p(x) dx < ∞. When p = ∞ and u(x) > 0 (x �= 0), u(0) = 0,

let L∞u (R) denote the set of all continuous functions in (−∞, 0) ∪
(0,∞) (f ∈ C(R\{0})) with the further condition lim

x→0 or ±∞
(fu)(x)=

0. For smoother functions we define

W p
r,u(R) = {f ∈ Lp

u(R) : f (r−1) ∈ AC(R) and ‖uf (r)‖p <∞}
with 1 ≤ p ≤ ∞, r ≥ 1 where AC(R) is the collection of all absolutely
continuous functions in R. Let Pn be the set of polynomials of degree
at most n, and let

En(f)u,p = inf
P∈Pn

‖u(f − P )‖p, 1 ≤ p ≤ ∞

be the error of best polynomial approximation of f ∈ Lp
u(R).

2 Results

Let
uα(x) = e−|x|

α
, α > 1, x ∈ R (2.1)

be the Freud weight, and an be the corresponding Mhaskar-Rahmanov-
Saff number, i.e., a quantity for which ‖uαp‖∞ = ‖uαp‖L∞[−an,an] for
all p ∈ Pn. It is well known that

an ∼ n1/α.

Denote by V the set of continuous functions v which are even in R,
v(0) = 0, v′(x) > 0 in R+ and

A(v) := lim
x→0

xv′(x)
v(x)

<∞, B(v) := sup
x∈R+

xv′(x)
v(x)

<∞. (2.2)
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We will be concerned with the so-called generalized Freud weight

u(x) = v(x)uα(x) ∈ GF, x ∈ R.

It has an algebraic type zero at 0 which presents new phenomena
concerning polynomial inequalities and weighted polynomial approx-
imation. We could have considered more generally several (finitely
many) singularities instead of 0, but this would create only technical
difficulties but no theoretical novelties. Such weights were introduced
in [5], where its properties were investigated (cf. Lemma 2 there).

Theorem 2.1 Let u ∈ GF and 1 ≤ p ≤ ∞. Then, for any f ∈
W p

r,u(R), r ≥ 1, we have

En(f)u,p ≤ C
(an

n

)r ‖uαvnf (r)‖p, (2.3)

where vn(x) = v
(|x|+ an

n

)
.

In addition, if v ∈ A(p), then

En(f)u,p ≤ C
(an

n

)r ‖uf (r)‖p, 1 < p <∞. (2.4))

Remarks. 1. For v(x) = 1, the estimates (2.3)–(2.4) are equivalent,
and this case was proved in [3] (see also DT).

2. If u ∈ GF and 1 ≤ p ≤ ∞ then, in general, vn cannot be
replaced by v in (2.3). This can be seen similarly as in [6, Example
3.5 on p. 87]. Therefore the condition v ∈ A(p), 1 < p < ∞ is
necessary for (2.4).

To define a suitable modulus of smoothness, for an f ∈ Lp
uα , 1 ≤

p ≤ ∞ let

∆̃r
hf(x) =

r∑
j=0

(−1)j+1

(
r

j

)
f(x− jh sgn x)

be the so-called backward-forward difference . While this may be
a discontinuous function at x = 0 even if f is continuous, it still
keeps the important property of rth order differences that ∆̃r

hf(x) is
identically 0 if and only if f is a polynomial of degree at most r− 1.
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In order to establish Jackson type results, for the weight uα we
define the modulus of smoothness as

ωr(f, t)uα,p := sup
0<h≤t

‖uα(x)∆̃r
hf(x)‖p. (2.5)

Compared to other moduli of smoothness, (2.5) involves only the
smoothness properties of the function f and, in virtue of (3.3) of
Lemma 3.2 below, it is equivalent to the one defined in [2, p. 182].
Consequently, for f ∈ Lp

uα , the Jackson and Stechkin inequalities are
true with the modulus (2.5).

For the weight u the modulus (2.5) is useless. Namely, what we
expect would be a Jackson type theorem

En(f)u,p ≤ ω
(
f,

an

n

)
u,p

.

But this cannot hold. Namely, it would imply

En(f)u,p ≤ C
(an

n

)r ‖uf (r)‖p,
which contradicts Remark 2 made after Theorem 2.1.

Therefore first we define the so-called main part modulus

Ωr(f, t)u,p := sup
0<h≤t

‖u(x)∆̃r
hf(x)‖Lp(R\Ih) (2.6)

where Ih = [−4rh, 4rh], and then the full modulus will be

ωr(f, t)u,p = Ωr(f, t)u,p + inf
q∈Pr−1

‖u(f − q)‖Lp(It). (2.7)

The inconvenience of this modulus is that we must have some knowl-
edge about a fixed degree of polynomial approximation of the func-
tion on a small interval. Concerning this problem, see Lemma 3.3
below.

We can establish the following:

Theorem 2.2 Let α > 1 and f ∈ Lp
u(R), 1 ≤ p ≤ ∞. Then

En(f)u,p ≤ Cωr
(
f,

an

n

)
u,p

, n > r ≥ 1 (2.8)
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and

ωr(f, t)u,p ≤ Ctr

[
t

α
1−α

]∑
k=0

(k + 1)r(1−1/α)−1Ek(f)u,p. (2.9)

Remarks. 1. In particular, if f (r−1) ∈ AC(R \ {0}) and ‖uf (r)‖p <
∞ then by (2.7) it follows that

En(f)u,p ≤ C
(an

n

)r ‖uf (r)‖p + C inf
q∈Pr−1

‖u(f − q)‖Lp(ICan/n)

with some constant C > 0 depending on α.
2. We also observe that in the previous statements of this section

we assumed only v ∈ V.
In what follows we will say that pn is a “near best approximant”

polynomial of f ∈ Lp
u(R) if ‖u(f−pn)‖p ≤ CEn(f)u,p. The following

theorem estimates the derivatives of such polynomials. We recall the
definition of Ap weights; v ∈ Ap if

sup
(

1
b− a

∫ b

a
vp

)1/p

·
(

1
b− a

∫ b

a
v−q

)1/q

<∞,
1
p

+
1
q

= 1

where the sup is taken for all finite intervals [a, b] ⊂ R.

Theorem 2.3 Let pn be a near best polynomial approximant of de-
gree n of f ∈ Lp

u(R). Then we have

‖up(r)
n ‖p ≤




C
(

n
an

)r
ωr

(
f, an

n

)
u,p

,

if v ∈ Ap, 1 < p <∞,

C
((

n
an

)r
ωr

(
f, an

n

)
u,p

+ ‖uf‖p
)

,

if A(v) + 1/p �= 0, . . . , r; 1 ≤ p ≤ ∞.

Remark. Note that Theorems 2.1–2.2 hold for u = uα as well if we
replace ω in (2.7) by ω̄ in (2.5).
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3 Auxiliary Statements

First we establish some polynomial inequalities useful in several con-
texts. To this end let

Jn = [−an, an] \
[
−C

an

n
, C

an

n

]
where C is a fixed positive number. In what follows, C will always
denote a positive constant that may assume different values in dif-
ferent formulae, but it is always independent of n, p and f .

Lemma 3.1 Let u be as in (2.1), 0 < p ≤ ∞ and pn ∈ Pn. Then,
for n sufficiently large (say n > n0), we have

‖upn‖p ≤ C‖upn‖Lp(Jn)

and
‖up′n‖p ≤ C

n

an
‖upn‖p.

Proceeding as in the proofs of Lemmas 3–4 in [5], this lemma
follows by Theorem 5.1 in [8]. When the factor v of the weight u is
a generalized Jacobi weight, Lemma 3.1 was proved in [4].

Now we introduce the K-functional

Kr(f, tr)u,p = inf
g∈W p

r,u(R)
{‖u(f − g)‖p + tr‖ug(r)‖p}.

Lemma 3.2 For any function f ∈ Lp
u(R), with 1 ≤ p ≤ ∞, we have

Kr(f, tr)u,p ≤ Cωr(f, t)u,p (3.1)

and
Ωr(f, t)u,p ≤ CKr(f, tr)u,p. (3.2)

Moreover
ω̄r(f, t)uα,p ∼ Kr(f, tr)uα,p. (3.3)
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Remark. (3.3) shows that if the weight has no zero then the modu-
lus is completely equivalent to the K-functional (in contrast to (3.1)-
(3.2)). Moreover, it will be clear from the proof that (3.3) holds also
in the limiting case α = 1.

Proof of Lemma 3.2 Let

gt(x) =

rr

∫ 1/r

0
. . .

∫ 1/r

0

r∑
j=1

(−1)j+1

(
r

j

)
f


x− jt(

r∑
j=1

uj)sgn x


du1 . . . dur,

|x| ≥ 2rt,

and let qr−1(x) ∈ Pr−1 be the polynomial representing the infimum
in (2.7). Further it is easy to see that there exists an infinitely dif-
ferentiable function ψt(x) ≥ 0 such that

ψt(x)




= 1, if |x| ≥ 4rt,
= 0, if |x| ≤ 2rt,
≤ 1, if 2rt ≤ |x| ≤ 4rt

such that

|ψ(j)
t (x)| ≤ C

tj
, x ∈ R, j = 0, . . . , r. (3.4)

Now consider the function

Gt(x) = (1− ψt(x))qr−1(x) + ψt(x)gt(x), x ∈ R.

Evidently, Gt ∈W p
r,u(R), and

Gt(x) =
{

qr−1(x), if |x| ≤ 2rt,
gt(x), if |x| ≥ 4rt.

Thus, since

‖u(f − qr−1)‖Lp(|x|≤4rt) ≤ ωr(f, t)u,p

and
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‖u(f − gt)‖Lp(|x|≥4rt) ≤ sup
0<h≤t

‖u∆̃r
hf‖Lp(|x|≥4rt)

≤ sup
0<h≤t

‖u∆̃r
hf‖Lp(|x|≥4rh) ≤ ωr(f, t)u,p,

these inequalities show that

‖u(f −Gt)‖Lp(|x|≥4rt or |x|≤2rt) ≤ ωr(f, t)u,p.

The remaining intervals can be easily settled by using the above
estimates:

‖u(f −Gt)‖Lp(2rt≤|x|≤4rt) ≤ ‖u(f − qr−1)‖Lp(2rt≤|x|≤4rt)

+‖u(f − gt)‖Lp(2rt≤|x|≤4rt) ≤ 2ωr(f, t)u,p.

Summarizing
‖u(f −Gt)‖p ≤ 4ωr(f, t)u,p.

Now we estimate the rth derivative of Gt. Since qr−1 is a poly-
nomial of degree at most r−1, we may assume that |x| ≥ 2rt. When
|x| ≥ 4rt, then by the definition of gt,

g
(r)
t (x) = t−r∆̃r

tf(x),

and thus

‖uG
(r)
t ‖Lp(R\It) = ‖ug

(r)
t ‖Lp(R\It)

≤ Ct−r‖u sup
0<h≤t

∆̃r
hf‖ ≤ Ct−rωr(f, t)u,p.

Finally, for 2rt ≤ |x| ≤ 4rt we get

|G(r)
t | = |{ψt[qr−1 − gt]}(r)| ≤ C

r∑
j=0

|ψ(r−j)
t | · |[qr−1 − gt](j)| (3.5)

Here, using

|f(x)− gt(x)| = rr

∣∣∣∣∣
∫ 1/r

0
· · ·

∫ 1/r

0
∆̃r

t(u1+···+ur)f(x) du1 . . . dur

∣∣∣∣∣
≤ sup

0≤h≤t

∣∣∣∆̃r
hf(x)

∣∣∣
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and (2.5),

‖u(qr−1 − gt)‖Lp(2rt≤|x|≤4rt) ≤ ‖u(qr−1 − f)‖Lp(2rt≤|x|≤4rt)

+‖u(gt − f)Lp(2rt≤|x|≤4rt) ≤ 2ωr(f, t)u,p

and

‖u[qr−1 − gt](r)‖Lp(2rt≤|x|≤4rt) = ‖ug
(r)
t ‖Lp(2rt≤|x|≤4rt)

≤ Ct−rωr(f, t)u,p.

Using u(x) ∼ u(t) hence we get

‖qr−1(x)− gt(x)‖Lp(2rt≤|x|≤4rt) ≤ C
ωr(f, t)u,p

u(t)
,

‖[qr−1(x)− gt(x)](r)‖Lp(2rt≤|x|≤4rt) ≤ C
ωr(f, t)u,p

tru(t)
.

To estimate the intermediate derivatives we use an inequality of
Ditzian (cf. [2, formula (2.2.14)]) :

‖u(x)[qr−1(x)− gt(x)](j)‖Lp(2rt≤|x|≤4rt)

≤ Cu(t)‖[qr−1(x)− gt(x)](j)‖Lp(2rt≤|x|≤4rt)

≤ C
ωr(f, t)u,p

tj
, j = 0, . . . , r,

whence and from (3.4)-(3.5) we get

‖uG
(r)
t ‖Lp(2rt≤|x|≤4rt) ≤ Ct−rωr(f, t)u,p.

This completes the proof of (3.1).
As for (3.2), we take a function g ∈W p

r (uα)R such that

‖u(f − g)‖p + tr‖ug(r)‖p} ≤ 2Kr(f, tr)u,p.

Choosing an arbitrary 0 < h ≤ t, for |x| ≥ 4rh we obtain (since now
u(x) ∼ u(x± jh), j = 0, . . . , r using properties of the weight and the
presence of backward-forward differences)

‖u∆̃r
hf‖Lp(|x|≥4rh) ≤ ‖u∆̃r

h(f − g)‖Lp(|x|≥4rh) + ‖u∆̃r
hg‖Lp(|x|≥4rh)

(3.6)
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≤ ‖u(f−g)‖p+‖u∆̃r
hg‖Lp(|x|≥4rh) ≤ 2Kr(f, tr)u,p+‖u∆̃r

hg‖Lp(|x|≥4rh).

Here, because of symmetry, we may assume x ≥ 4rh and get (using
the generalized Minkowski inequality)

‖u∆̃r
hg‖Lp(4rh,∞)

≤ C

(∫ ∞
4rh

(∫ rh

0
u(x)g(r)(x− y)(rh− y)r−1 dy

)p

dx

)1/p

(3.7)

≤ Chr−1

∫ rh

0

(∫ ∞
3rh

u(x)p|g(r)(x)|p dx

)1/p

dy ≤ Ctr‖ug(r)‖p,

where we used the fact that

u(x)
u(x− y)

≤ C
u(x)

u(x− rh)
≤ C

u(x)
u(3

4x)
≤ C, 0 ≤ y ≤ rh ≤ x

4

(cf. Lemma 1 from [5]). This proves (3.2).
The proof of (3.3) is simpler, so we just outline the changes in

the above argument. Introduce the functions

gt,1(x) =

rr

∫ 1/r

0
. . .

∫ 1/r

0

r∑
j=1

(−1)j+1

(
r

j

)
f


x− jt(

r∑
j=1

uj)sgn x


du1 . . . dur,

gt,2(x) =

rr

∫ 1/r

0
. . .

∫ 1/r

0

r∑
j=1

(−1)j+1

(
r

j

)
f


x + jt(

r∑
j=1

uj)sgn x


du1 . . . dur,

and
Gt(x) := ψ(x)gt,1(x) + (1− ψ(x))gt,2(x)

where now ψ(x) ≥ 0 is an infinitely differentiable function such that

ψ(x)




= 0, if x ≤ −1,
≤ 1, if −1 ≤ x ≤ 1,
= 1, if x ≥ 1.
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Then, using that a forward rth order difference with step h at x is
the same as the backward rth order difference with step h at x+ rh,
we can see that

‖uα(f −Gt)‖p ≤ Cω̄r(f, t)uα,p

and
‖uαG

(r)
t ‖Lp(R) ≤ Ct−rω̄r(f, t)uα,p,

which shows that the K-functional is majorized by the modulus.
The opposite inequality in (3.3) can be seen like (3.6)-(3.7), the
interval [4rh,∞) and the limit of integration 4rh replaced by R+

and 0, respectively. The lemma is proved. In order to estimate

infq∈Pr−1 ‖(f − q)u‖p we can use the following lemma that is a slight
reformulation of Lemma 9 in [5], so we omit the proof.

Lemma 3.3 (a) Let a > 0. If f ∈ W p
r,uα(R) and v ∈ V is an Ap-

weight, 1 < p < ∞, then there exists a polynomial p ∈ Pr−1 such
that

‖v(f − p)‖Lp(−t,t) ≤ Ctr‖uf (r)‖Lp(−t,t), t ≤ a.

(b) Let f (r−1) ∈ AC(R \ {0}), 1 ≤ p ≤ ∞, r ≥ 1. If A(v) + 1
p > r

then

‖fv‖Lp(−t,t) ≤ Ctr(‖vf (r)‖Lp(−a,a) + ‖fv‖Lp(−a,a)), 0 < t ≤ a,

while if A(v) + 1
p ≤ r with A(v) + 1

p �= 1, . . . , r or A(v) = 0 for

p =∞, and f (r−τ−1)(0) with τ =
[
A(v) + 1

p

]
exists, then there exist

polynomials p ∈ Pr−1−τ such that

‖v(f−p)‖Lp(−t,t) ≤ Ctr[‖vf (r)‖Lp(−a,a)+‖vf‖Lp(−a,a)], 0 < t ≤ a.

Here the constants C depend on a.

Lemma 3.4 Let 1 ≤ p ≤ ∞. Then, for any polynomial P ∈ Pn we
have

inf
q∈Pr

‖u(P − q)‖[−4r an
n

,4r an
n ] ≤ C

(an

n

)r ‖uP (r)‖p.
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Proof Let Lr(P ) be a Lagrange polynomial that interpolates P at
r arbitrary points of [−αn, αn], αn := an

n 4r ∼ n1/α−1. Using Peano
Theorem we have

|P (x)− Lr(P, x)| ≤ Crα
r−1
n

∫ αn

−αn

|P (r)(t)| dt, |x| ≤ αn,

whence for 1 ≤ p < ∞, vn(t) = v
(
t + an

n

)
, using Cauchy–Schwarz

inequality

(∫ αn

−αn

up(x)|P (x)− Lr(P, x)|p dx

)1/p

≤ Crα
r−1
n

(∫ αn

−αn

up(x) dx

)1/p ∫ αn

−αn

|P (r)(t)| dt

≤ Crα
r−1+ 1

p
n

∫ αn

−αn

vn(t)|P (r)(t)|uα(t) dt

≤ Crα
r
n‖uαvnP (r)‖Lp(−αn,αn).

In the second inequality we used the doubling property of vn. Now
we extend the last norm to all R and then use the first inequality of
Lemma 2.1. Then the last norm is majorized by

C‖uαvnP (r)‖Lp(R\(−αn,αn) ∼ ‖uP (r)‖p
whence the assertion easily follows for 1 ≤ p < ∞. The case p = ∞
is simpler and we omit the details.

Let
ũα(x) = e−

|x|α
2A , (3.8)

with 2A ≥ 1 integer. Then, for the MRS number, an = an(ũα)
related to ũα we have an(ũα) = a2An(uα) = C(α)(2An)1/α.

Let {pn(ũα)} be the system of orthonormal polynomials with
positive leading coefficients and denote by x1 < . . . < xn the zeros
of pn(ũα). Then

∆xk = xk+1−xk ∼ n1/α−1 1
(
√

ψn(xk))1/4
, ψn(x) =

∣∣∣∣1− |x|an

∣∣∣∣+n−2/3.
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Now let x0 be such that |√ũα(x0)pn(ũα, x0)| = ‖
√

ũαpn(ũα)‖∞
and denote by lk(x) = ln+1,k(ũα, x), k = 0, 1, . . . , n+1 the k-th funda-
mental Lagrange polynomial based on the zeros −x0, x1, . . . , xn, x0.
For n sufficiently large define j = j(n) by

xj = max{xk : xk ≤ θan(ũα)} (3.9)

where θ ∈ (0, 1) is chosen such that ±x0 /∈ [−xj , xj ]. This is possible
since x0 is near xn.

The following lemma was proved in [7].

Lemma 3.5 Let |xk| ≤ xj, x∈ [−bn, bn] with bn = max(x0, an(ũα))
and x ∼ xi ∈ {−x0, x1, . . . , xn, x0}. Then

uα(x)l2A
k (x) ≤ C

uα(xk)
(|i− k|+ 1)2A

.

Lemma 3.6 For f ∈ Lp
u(R) and t2 > t1, we have

ωr(f, t2)u,p ≤




C
(

t2
t1

)r
ωr(f, t1)u,p

if v ∈ Ap and 1 < p <∞,

C
(

t2
t1

)r
[ωr(f, t1)u,p + tr1‖uf‖p] ,

if A(v) + 1/p is not an integer
and 1 ≤ p ≤ ∞,

Proof By the definition (2.7) of the modulus and (3.2),

ωr(f, t)u,p = Ωr(f, t)u,p + inf
q∈Pr−1

||u(f − q)||Lp(It) ≤

≤ CKr(f, tr)u,p + inf
q∈Pr−1

||u(g − q)||Lp(It),

where g ∈W p
r,u(R) is chosen such that

||u(f − g)||p + tr||ug(r)||p ≤ 2Kr(f, tr)u,p.

Using Lemma 3.3 we get
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inf
q∈Pr−1

||u(g − q)||Lp(It)

≤



Ctr||ug(r)||p, if v ∈ Ap and 1 < p <∞.
Ctr(||ug(r)||p + ||ug||p), if A(v) + 1/p is not an integer

and 1 ≤ p ≤ ∞,

Now using ||ug||p ≤ 2Kr(f, tr)u,p + ||uf ||p and (3.1) we obtain the
statements of the lemma.

4 Proof of the Theorems

Proof of Theorem 2.1 We follow the same procedure used in the
proof of Theorem 1 in [5]. Nevertheless we have to point out some
necessary changes and steps.

Proceeding as in Lemma 6 in [5], it is possible to prove the fol-
lowing relations:

vn(x) := v
(
|x|+ an

n

)
∼ n

an(ũα)

∫ x+ an
2n

x−an
2n

v(t) dt, x ∈ R (4.1)

where ũα is defined in (3.8) and∫ xi+1

xi−1

v(x) dx ≤ C(|k − i|+ 1)γ

∫ xk+1

xk−1

v(x) dx (4.2)

where −x0 ≤ xi, xk ≤ x0 and γ depends only on the weight v.
Finally, using the definition (3.9) of the index j,

v(x) ≤ C(|k − i|+ 1)γ+1/4vn(t) (4.3)

where x ∈ [xi−1, xi+1], xi ∈ {−x0, . . . , x0} and t ∈ [xk−1, xk], |xk| ≤
xj . (Here the constant C is independent of x, t, n, k, i.) Observe
that, for xk ∈ [−xj+1, xj+1],

∆xk ∼ an

n
and ũα(x) ∼ ũα(t), |x− t| ≤ C

an

n
. (4.4)
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These are the principal facts that appear in the proof of Theorem
2.1.

For any f ∈W p
1,uα

(R), consider the function

fj = fj(n) =




f(−xj) in (−∞,−xj ],
f in [−xj , xj ],
f(xj) in [xj ,∞)

(j(n) is defined in (3.9)). Obviously fj ∈W p
1,uα

(R) and

EM (f)u,p ≤ ‖u(f − fj)‖p + EM (fj)u,p

with M = 2A(n + 1), where 2A > γ + 2. The first term, using
Lemma 4.1 in [2], is majorized by C an

n ‖f ′u‖p, 1 ≤ p ≤ ∞. Then we
have to estimate E2An(fj)u,p. To this end the following two steps are
necessary:

First step. We introduce the functions

(S+fj)(x) = f(−xj) +
j∑

k=−j

(x− xk)0
+∆Mk

and

(S−fj)(x) = f(−xj) +
j∑

k=−j

(x− xk)0
+∆mk

where Mk = max[xk−1,xk] fj(x), mk = min[xk−1,xk] fj(x). ∆bk =
bk+1 − bk and

(x− xk)0
+ =

{
1 if xk < x,
0 if xk ≥ x.

Then it is simple to verify that S−fj ≤ fj ≤ S+fj and, since ∆Mk =
∆mk = 0, |k| > j, also

S−fj = fj = S+fj in (−∞,−xj ] ∪ [xj ,∞).

Moreover, proceeding as in the proof of Lemma 7 in [5] and using
(4.1)–(4.4), we prove that the norm

‖u(S+fj − S−fj)‖p = ‖u(S+fj − S−fj)‖Lp(−xj ,xj)
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is majorized by C an
n ‖uαvnf ′‖p, 1 ≤ p ≤ ∞ and by C an

n ‖uf ′‖p if
v ∈ Ap and 1 < p <∞.

Second step. Again proceeding as in Lemma 7 of [5] we construct
the polynomials p±k ∈ P2A(n+1), |k| < j such that

p−k (x) ≤ (x− xk)0
+ ≤ p+

k (x), x ∈ R

and

p+
k (x)− p−k (x) = l2A

k (x)

with lk the k-th fundamental Lagrange polynomial based on the
knots −x0, x1, . . . , xm, x0. With the previous polynomials we define

Q±n (x) =
∑

∆Mk>0

p±k (x)∆Mk +
∑

∆Mk<0

p∓k (x)∆Mk + f(−xj),

q±n (x) =
∑

∆mk>0

p±k ∆mk +
∑

∆mk<0

p∓k (x)∆mk + f(−xj).

From these definitions it follows that in R we have

q−n ≤ S−fj ≤ q+
n , Q−n ≤ S+fj ≤ Q+

n

and then

q−n ≤ S−fj ≤ fj ≤ S+fj ≤ Q+
n .

Consequently

E2An(fj)u,p ≤ ‖u(fj −Q+
n )‖p ≤ ‖u(Q+

n − q−n )‖p ≤

≤ ‖u()Q+
n −Q−n )‖p + ‖u(q+

n − q−n )‖p + ‖u(S+fj − S−fj)‖.

Here the third term was estimated above while the first two terms
can be estimated as in Lemma 8 of [5], using (4.1)–(4.4) and Lemma
3.5. The theorem easily follows.
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Proof of Theorem 2.2 We consider the function Gt defined in the
proof of Lemma 2 with t = an

n and set Gan
n

= Gn. Then for each
f ∈ Lp

u we have

En(f)u,p ≤ ‖u(f −Gn)‖p + En(Gn)u,p.

The first term is majorized by ωr
(
f, an

n

)
u,p

. For the second term
we use Theorem 2.1 and get

En(Gn)u,p ≤ C
(an

n

)r ‖uαvnG(r)
n ‖p.

Proceeding as in the previous proof and observing that, for x �∈[−4r an
n , 4r an

n

]
, we have vn ∼ v, it immediately follows that(an

n

)r ‖uαvnG(r)
n ‖p ≤ Cωr

(
f,

an

n

)
u,p

.

This proves (2.8).
In order to prove (2.9) we use (3.2) and, with pn the best approx-

imation of f ∈ Lp
u, we have

ωr
(
f,

an

n

)
u,p

≤ C
[
‖u(f − pn)‖p +

(an

n

)r ‖up(r)
n ‖p +

+ inf
q∈Pr−1

‖u(f − q)‖Lp([−4r an
n

,4r an
n ])

]

≤ C
[
‖u(f − pn)‖p +

(an

n

)r ‖up(r)
n ‖p+

inf
q∈Pr−1

‖u(pn − q)‖Lp([−4r an
n

,4r an
n ])

]
.

If we prove that the third term does not exceed a constant mul-
tiple of the second term, then (2.9) follows with a well-known proce-
dure using Bernstein inequality. To this end we can use Lemma 3.4
and the theorem is proved.

Proof of Theorem 2.3 Following an argument in [2], we first prove
that

‖up(r+1)
n ‖p ≤ C

(
n

an

)r+1 [
ωr

(
f,

an

n

)
u,p

+
(an

n

)r ‖uf‖p
]

.
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From the relation

pn − p0 = pn − p2l +
l−1∑
k=0

(p2k+1 − p2k),

where 2l ≤ m ≤ 2l+1, and with 1 ≤ p ≤ ∞ follows that

‖up(r+1)
n ‖p ≤ ‖u(pn − p2l)(r+1)‖p +

l−1∑
k=1

‖u(p2k+1 − p2k)(r+1)‖p

≤ C

[(
n

an

)r+1

‖u(pn − p2l)‖p

+
l−1∑
k=1

(
2k+1

a2k+1

)r+1

‖u(p2k+1 − p2k)‖p
]

≤ C
l+1∑
k=1

(
2k

a2k

)r+1

E2k(f)u,p ≤ C
l+1∑
k=1

(
2k

a2k

)r+1

ωr
(
f,

a2k

2k

)
u,p

.

Now suppose that A(v)+ 1
p is not an integer. Then, using Lemma

3.6 we have

ωr
(
f,

a2k

2k

)
u,p
≤ C

(
a2k

2k

2l+1

a2l+1

)r+1 (
ωr

(
f,

an

n

)
u,p

+
(an

n

)r ‖fu‖p
)

.

Thus

‖up(r+1)
n ‖p ≤ C

(
n

an

)r+1 [
ωr

(
f,

an

n

)
u,p

+
(an

n

)r ‖fu‖p
]

.

In case v ∈ Ap, 1 < p < ∞, the second term in the brackets is
omitted by Lemma 3.6.

Let Bn =
[−an,−4r an

n

] ∪ [
4r an

n , an

]
. Then

(an

n

)r ‖up(r)‖Lp(Bn)

≤
∥∥∥u

[(an

n

)r
p(r)

n − ∆̃r
an
n

pn

]∥∥∥
Lp(Bn)

+ ‖u∆̃r
an
n

pn‖Lp(Bn).
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Now we easily have

‖u∆̃r
an
n

pn‖Lp(Bn) ≤
∥∥∥u∆̃r

an
n

(f − pn)
∥∥∥

Lp(Bn)
+

∥∥∥u∆̃r
an
n

f
∥∥∥

Lp(Bn)
≤

≤ 2rEn(f)u,p + Ωr
(
f,

an

n

)
u,p
≤ Cωr

(
f,

an

n

)
u,p

.

Then,

u(x)
∣∣∣(an

n

)r
pn(x)r − ∆̃r

an
n

pn(x)
∣∣∣

= u(x)

∣∣∣∣∣
∫ an/n

0
. . .

∫ an/n

0
[p(r)

n (x)−

p(r)
n (x + (u1 + . . . + ur))]du1 . . . dur

∣∣∣
= u(x)

∣∣∣∣∣
∫ an/n

0
. . .

∫ an/n

0

∫ x+u1+...+ur

x
p(r+1)

n (z) dz du1 . . . dur

∣∣∣∣∣
≤

(an

n

)r+1
u(x)

n

an

∣∣∣∣∣
∫ x+r an

n

x
|p(r+1)

n (z)| dz

∣∣∣∣∣
≤

(an

n

)r+1 Cn

an

∫ x+r an
n

x
u(z)|p(r+1)

n (z)| dz.

Consequently

∥∥∥u
[(an

n

)r
p(r)

n − ∆̃r
an
n

pn

]∥∥∥
Lp(Bn)

≤ C
(an

n

)r+1 ‖up(r+1)
n ‖Lp(Bn)

using the boundedness of the maximal function for p ∈ (1,∞] and
Fubini theorem for p = 1. Now the theorem easily follows by observ-
ing that, by Lemma 3.1,

‖up(r)
n ‖p ≤ C‖up(r)

n ‖Lp(Bn).
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Abstract

In order to approximate functions on unbounded intervals,
the authors show the convergence of truncated Fourier Sums
and truncated Lagrange Polynomials.

1 Introduction

This paper concerns the approximation of functions on unbounded
intervals by means of orthogonal polynomials: Laguerre polynomials
on (0,∞) and Freud polynomials on (−∞, +∞). Unfortunately, the
behavior of the Fourier Sum, the interpolating polynomials or the
Gaussian quadrature rules related to the previous systems, is poor in
the sense that it can be applied only to a restricted class of functions
(see for instance [1, 16, 3, 12, 9]).
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On the other hand, the polynomial approximation of functions
defined on infinite intervals appears in several contexts.In order to
overcome this problem, we will modify the Fourier Sum and the
interpolating polynomials. Our results have many applications and
are analogous to results on finite intervals.

More precisely, starting from well known polynomial inequalities,
we propose to approximate a “finite section” of the function on a
special finite interval (see Proposition 2.1). This procedure is simple
and is convenient in many situations, especially in the numerical
treatment of integral equations.

2 Fourier Sums and Lagrange Interpolation
in (0, +∞)

Some preliminary results

Let Lp(a, b), 0 ≤ a < b ≤ +∞ the set of all measurable functions

f such that ‖f‖Lp(a,b) =
(∫ b

a
|f |p(x)dx

) 1
p

< +∞, 1 ≤ p < +∞.

If a = 0 and b = +∞ we write ‖f‖p instead of ‖f‖Lp(0,+∞), and
Lp = Lp(0, +∞). With u(x) = xγe−

x
2 , γ > −1

p , x > 0 a Laguerre
weight, we set f ∈ Lp

u if and only if fu ∈ Lp, 1 ≤ p < +∞. When
p = +∞ and γ > 0 we define

L∞u =
{

f ∈ C0(R+) : lim
x→0

(fu)(x) = 0 = lim
x→+∞(fu)(x)

}
,

where R
+ = (0, +∞) and C0(R+) is the set of all continuous func-

tions in R
+. In the case p = +∞ and γ = 0, Lp

u is the set of all con-
tinuous function in [0, +∞) with the condition limx→+∞(fu)(x) = 0.
In the sequel C denotes a positive constant. We write C �= C(a, b, . . .)
if C is independent of the parameters a, b, . . . Finally A ∼ B means
that there exists a constant C > 0, independent of the parameters of
A and B such that C−1A ≤ B ≤ CA.
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We recall the following polynomial inequality ( see [2] or [11]):

(∫ ∞
4m(1+δ)

|Pmu|p(x)dx

) 1
p

≤ Ce−Am

(∫ +∞

0
|Pmu|p(x)dx

) 1
p

, (2.1)

holding for 1 ≤ p ≤ +∞, where δ > 0 is fixed, Pm is an arbitrary
polynomial of degree m (Pm ∈ Pm), the positive constants C and A
depend on δ and are independent on Pm.

Now we establish a proposition to be used later. To this end
let θ ∈ (0, 1) fixed and m a positive integer sufficiently large (say
m > m0). We denote by ∆θ = ∆θ,m the characteristic function of

the interval [0, 4θm] and let M =
[

θ
1+θm

]
. Obviously, M ∼ m if

m ≥ m0(θ).

Proposition 2.1 Let f ∈ Lp
u and 1 ≤ p ≤ +∞. Then, for m > m0,

we have

‖f(1−∆θ)u‖p ≤ EM (f)u,p + Ce−Am‖fu‖p and (2.2)

‖fu‖p ≤ C(‖f∆θu‖p + EM (f)u,p), (2.3)

where EM (f)u,p = inf
P∈PM

‖(f − P )u‖p and the constants C and A are

independent on m and f .

Proof. For all PM ∈ PM and 1 ≤ p ≤ +∞ we have

‖f(1−∆θ)u‖p ≤ ‖(f − PM )u‖p + ‖PM (1−∆θ)u‖p.

By (2.1),
‖PM (1−∆θ)u‖p ≤ Ce−Am‖PMu‖p

and making the infimum on PM (2.2) easily follows. Now (2.3) follows
from the identity f = ∆θf + (1−∆θ)f and (2.2). �

From Proposition 2.1 follows that, if {Γm : Lp
u → Pm}m is a

sequence of linear operators, we can approximate a function f ∈ Lp
u

by the sequence {∆θ,mΓm(∆θ,mf)}m. Indeed, since

‖[f −∆θ,mΓm(∆θ,mf)]u‖p ≤ ‖[f − Γm(∆θ,mf)]∆θ,mu‖p
+ ‖(1−∆θ,m)fu‖p,



310 Mastroianni and Vértesi

the second term on the right, by (2.2), is small. Consequently it
is sufficient to consider only the first term or, in other words, ap-
proximate f by the sequence of polynomials {Γm(∆θ,mf)}m on the
interval [0, 4θm]. We will show that such procedure is much simpler
and more convenient than the ordinary polynomial approximation.

Fourier sums.

Let wα(x) = xαe−x, α > −1, x > 0, be a Laguerre weight and
{pm(wα)}m the correspondent sequence of orthonormal polynomials
with positive leading coefficient γm. With f ∈ Lp

u we consider the
Fourier sum

Sm(wα, f) =
m−1∑
k=0

ckpk(wα), ck =
∫ +∞

0
fpk(wα)wα.

By using Darboux kernel

Km(wα, x, y) =
γm−1

γm

pm(wα, x)pm−1(wα, y)− pm(wα, y)pm−1(wα, x)
x− t

we can write

Sm(wα, f, x) =
∫ +∞

0
Km(wα, x, y)f(y)wα(y)dy. (2.4)

In [1] (see also [16]) the following expression of Km(wα, x, y) is sug-
gested

Km(wα, x, y) = pm(wα, x)pm(wα, y) (2.5)

+ bmm

(
Fm(x)

pm(wα, y)
y − x

− pm(wα, x)Fm(y)
y − x

)

where Fm(z) = pm+1(wα, z)−pm−1(wα, z) and bm ∼ 1. Then we can
write the Fourier sum as follows

Sm(wα, f, x) = cmpm(wα, x) (2.6)
+ mbm [Fm(x)H(fwαpm(wα), x)− pm(wα, x)H(Fmfwα, x)]
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where H(g, z) =
∫ +∞

0

g(y)
y − z

dy, z > 0, is the Hilbert transform.

According with Proposition 2.1, we approximate in Lp the function
fu by means the sequence {Sm(wα, ∆θ,mf)u∆θ,m}m.

If vβ(x) = xβ , the following theorem holds.

Theorem 2.2 For any f ∈ Lp
u and 1 < p < +∞, we have

‖Sm(wα, ∆θ,mf)∆θ,mu‖p ≤ C‖f∆θ,mu‖p, C �= C(m, f) (2.7)

if and only if

vγ

√
vαϕ

∈ Lp(0, 1) and
vα

vγ
,

√
vα

ϕ

1
vγ
∈ Lq(0, 1), (2.8)

where ϕ(x) =
√

x and q = p
p−1 .

The previous theorem is the best possible in the following sense.

Proposition 2.3 The following equivalences are true

‖Sm(wα, f)u‖p ≤ C‖fu‖p ⇔ (2.8) holds with
4
3

< p < 4 (2.9)

‖Sm(wα, f)u‖p ≤ C




m
1
3 ‖fu‖p

or
‖fu(1 + ·) 1

3 ‖p
(2.10)

⇔ (2.8) holds with p ∈ (1,∞) \
(

4
3
, 4
)

‖Sm(wα, ∆θ,mf)u‖p ≤ C‖fu‖p ⇔ (2.8) holds with 1 < p < 4 (2.11)

‖Sm(wα, f)∆θ,mu‖p ≤ C‖fu‖p ⇔ (2.8) holds with p >
4
3
. (2.12)

The constants C > 0 are independent on m and f .

We will prove Theorem 2.2 and Proposition 2.3 in Section 4. Now
we establish
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Corollary 2.4 Under the assumptions of Theorem 2.2, for any f ∈
Lp

u and 1 < p < +∞, we have

‖[f −∆θ,mSm(wα, ∆θ,mf)]u‖p ≤ C[EM (f)u,p + e−Am‖fu‖p] (2.13)

where C and A are positive constants independent on m and f .

From Proposition 2.1 it is possible to deduce estimates similar to
(2.13). For example, if the parameters α and γ of the weights satisfy
(2.8), then

‖[f − Sm(wα, ∆θ,mf)]u‖p ≤ C[EM (f)u,p + e−Am‖fu‖p]

with 1 < p < 4 and

‖[f − Sm(wα, f)]u‖p ≤ CEm(f)u,p

with 4
3 < p < 4. If, in the last estimate, we put u =

√
wα, we

obtain the result of Askey and Wanger in [1]. Finally the equivalences
(2.11) and (2.12) are “essentially” Theorems 9-10 in [16], in which
the weight u(x) =

√
wα(x)

(
x

1+x

)a
(1 + x)b is considered.

Lagrange interpolation.

We denote by Lm(wα, f), f ∈ C0(R+), the Lagrange polynomial that
interpolates the function f on the zeros x1 < . . . < xm, (xk = xkm),
of pm(wα). Recalling (2.4), (2.5) and using the Gaussian rule, we
can write

Lm(wα, f, x) = mbm

m∑
k=1

pm(wα, x)λk(wα)
Fm(xk)
x− xk

f(xk) (2.14)

where λk(wα) = λkm(wα) = 1
Km(wα,xkm) is the k–th Christoffel num-

ber, Fm(x) = pm+1(wα, x) − pm−1(wα, x) and bm ∼ 1. In order to
study the behavior of Lm(wα, f) is useful to introduce the following
notation. Recalling that (see [19]): Cm ≤ x1 < xm < 4m− C 3

√
m, we

define the integer j = j(m) by

xj = min
k

(xk ≥ 4θm), θ ∈ (0, 1) fixed.
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Let ψ ∈ C∞(R), nondecreasing; moreover ψ(x) =
{

0 if x ≤ 0
1 if x ≥ 1

and

ψj(x) = ψ
(

x−xj

xj+1−xj

)
. For any f ∈ C0(R+), we define fj = (1−ψj)f .

Obviously fj = f in (0, xj ] and fj = 0 in [xj+1, +∞). Then we have

Lm(wα, fj , x) =
j∑

k=1

λk(wα)
pm(wα, x)

x− xk
Fm(xk)f(xk) (2.15)

by removing in (2.14) [cm] (0 < c < 1) terms. Finally with θ1 ∈ (θ, 1),
fixed and with ∆θ1 = ∆θ1,m (the characteristic function of [0, 4θ1m]),
we introduce the sequence {∆θ1,mLm(wα, fj)}m to approximate the
function f ∈ C0(R+) in Lp

u norm with u(x) = xγe−x/2. In order
to study the behaviour of the above mentioned sequence, we state a
lemma that will be useful in the sequel.

Lemma 2.5 Let 0 < θ < θ1 < 1 and let 1 ≤ p < +∞. Then, for an
arbitrary polynomial P ∈ Plm (with l fixed integer), we have

(
j∑

k=1

∆xk|Pu|p(xk)

) 1
p

≤ C
(∫ 4θ1m

x1

|Pu|p(x)dx

) 1
p

(2.16)

where ∆xk = xk+1 − xk, C is a positive constant independent on m,
P and p.

We can now state the following theorem, which is the main result of
this section. Letting vβ(x) = xβ , we have:

Theorem 2.6 Let 1 < p < +∞. Then, for all function f ∈ C0(R+),
we have

‖Lm(wα, fj)u∆θ1‖p ≤ C
(

j∑
k=1

∆xk|fu|p(xk)

) 1
p

, C �= C(m, f)

(2.17)
if and only if

vγ

√
vαϕ

∈ Lp(0, 1) and
√

vαϕ

vγ
∈ Lq(0, 1), ϕ(x) =

√
x, q =

p

p− 1
.

(2.18)
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Moreover, if we fix wα, u and p then the inequality

‖Lm(wα, f)u‖p ≤ C
(

m∑
i=1

∆xi|fu|p(xi)

) 1
p

(xm+1 = 4m) (2.19)

is not true for a proper f ∈ C0(R+) where C �= C(m, f).

The next lemma estimates the term on the right-hand side of
(2.17). To this end we recall (see [2])

Ωr
ϕ(f, t)u,p = sup

0<h≤t
‖u∆r

hϕf‖Irh
, r ≥ 1, ϕ(x) =

√
x

where Irh = [C(2rh)2, C/h2], C arbitrary fixed constant and

∆r
hϕf(x) =

r∑
i=0

(
r
i

)
(−1)if

(
x +

h

2
√

x(r − 2i)
)

,

t sufficiently small; i.e., t < t0.

Lemma 2.7 For all continuous function in R
+ we have

(
j∑

k=1

∆xk|fu|p(xk)

) 1
p

≤ C
[
‖fu‖Lp(0,xj) (2.20)

+
1

(
√

m)
1
p

∫ 1√
m

0

Ωr
ϕ(f, t)u,p

t
1+ 1

p

dt

]

with C �= C(m, f).

Now we can establish the following theorem:

Theorem 2.8 For all continuous function in R
+ and p ∈ (1, +∞)

we have:

‖[f −∆θ1Lm(wα, fj)]u‖p ≤ C
(

1

(
√

m)
1
p

∫ 1√
m

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt

+ e−Am‖fu‖p
)

(2.21)

with C �= C(m, f) if and only if relations (2.18) are true.
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In particular if we define the Zygmund space

Zp
s = Zp

s (u) =
{

f ∈ Lp
u : sup

t>0

Ωr
ϕ(f, t)u,p

ts
< +∞, r > s

}
,

where 1 < p < +∞, s ∈ R
+ and we introduce the usual norm

‖f‖Zp
s

= ‖fu‖p + sup
t>0

Ωr
ϕ(f, t)u,p

ts
,

then (2.21) becomes

‖[f −∆θ1Lm(wα, fj)]u‖p ≤ C
ms
‖f‖Zp

s
, s >

1
p
, 1 < p < +∞,

that has the same order of the error of best approximation of func-
tions in Zp

s , s > 1
p . Similar estimates about the interpolation in

(−1, 1) can be found in [15] and the special case p = 2 was consid-
ered in [12]. For completeness we note that theorems 2.6 and 2.8
hold true for 1 < p < 4 if the norms at the left-hand side of (2.17)
and (2.21) are replaced by ‖Lm(wα, fj)u‖p and ‖[f −Lm(wα, fj)]u‖p
respectively.

3 Fourier Sums and Lagrange Interpolation
in R

Some preliminary results

In this section we consider Freud weight of the form w(x) = e−Q(x),
where Q : R → R is even and continuous, Q′ > 0 in (0, +∞), Q′′ is
continuous in (0, +∞) and, for some Â, B̂ > 1 it results

Â ≤ (xQ′(x))′

Q′(x)
≤ B̂, x ∈ (0, +∞). (3.1)

Denote by {pm(w)}m the sequence of the polynomials that are or-
thonormal in R and whose leading coefficient γm := γm(w) is positive.
Since w is even, the related recurrence relation has the following form

xpk(w, x) = αk+1pk+1(w, x) + αkpk(w, x), k ≥ 1.
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For a wide class of the weights w, the coefficients {αm}m satisfy the
conditions

αm+1

αm
= 1 +O

(
1
m

)
,

αm

am
=

1
2
(1 +O(m−2/3)), (3.2)

where m→ 0 and am is the M-R-S number related to the weight
√

w
and it is uniquely defined by

u =
1
π

∫ 1

0
autQ′(aut)

dt√
1− t2

.

This class of weight has been considered by S.W. Jha and S.D. Lu-
binsky in [8]. Now we recall the well-known polynomial inequality
[4]∫

Γm

|Pm

√
w|p(x)dx ≤ Ce−Am

∫
R

|Pm

√
w|p(x)dx, 1 ≤ p ≤ +∞,

(3.3)
where Γm = {x ∈ R : |x| > (1 + δ)am}, δ ∈ (0, 1), C and A
are positive constant depending on δ and independent of m. As in
the Laguerre case, with θ ∈ (0, 1), we define ∆θ,m the characteristic

function of the interval [−θam, θam] and M =
[

θ
1+θm

]
. As before

M ∼ m. For all functions f ∈ Lp√
w
,

‖(1−∆θ,m)f
√

w‖p ≤ C
[
EM (f)√w,p + e−Am‖f√w‖p

]
, (3.4)

where C �= C(m, f), EM (f)√w,p = infP∈PM
‖(f − P )

√
w‖p and 1 ≤

p ≤ +∞ (see (2.2)).

Fourier Sums

For all f ∈ Lp√
w
, let

Sm(w, f) =
m−1∑
k=0

ckpk(w), ck = ck(f) =
∫
R

fpk(w)w,

be its m–th Fourier Sum with the respect to the system {pm(w)}m. In
the above mentioned paper [8] the authors, assuming (3.2), assigned
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necessary and sufficient conditions for the boundedness of the oper-
ator Sm(w) : Lp

σ1 → Lp
σ2 , where σ1(x) =

√
w(x)(1 + |x|)b, σ2(x) =√

w(x)(1 + |x|)β , b ≤ β, 1 < p < +∞. As a consequence of these
results the following equivalences hold

‖Sm(w, f)
√

w‖p ≤ C‖f
√

w‖p ⇔ 4
3

< p < 4 (3.5)

and
‖Sm(w, f)∆θ,m

√
w‖p ≤ C‖f∆θ,m

√
w‖p ⇔ p >

4
3
, (3.6)

where C �= C(m, f). Proceeding as in the Laguerre case, we consider
the sequence {∆θ,mSm(w, ∆θ,mf)}m and we state the following

Theorem 3.1 With the previous notation and without the assump-
tion (3.2), for all f ∈ Lp√

w
, 1 < p < +∞, we have

‖Sm(w, ∆θ,mf)∆θ,m

√
w‖p ≤ C‖f∆θ,m

√
w‖p (3.7)

and

‖[f −∆θ,mSm(w, ∆θ,mf)]
√

w‖p ≤ C
[
EM (f)√w,p + (3.8)

+ e−Am‖f√w‖∞
]

where C and A are independent of m and f.

In order to complete Theorem 3.1, (3.5) and (3.6), we can state the
following proposition

Proposition 3.2 For all f ∈ Lp√
w
, we have

‖Sm(w, ∆θ,mf)
√

w‖p ≤ C‖f
√

w∆θ,m‖p, C �= C(m, f), (3.9)

if and only if 1 < p < 4.

Of course an inequality similar to (3.8) can be easily stated for

‖[f − Sm(w, ∆θ,mf)]
√

w‖p, 1 < p < 4.

Finally we note that Theorem 3.1 and Proposition 3.2 hold true for
more general Freud weights w ∈ F (Lip1

2) (see for example [10] p.
12).
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Lagrange Interpolation

For convenience we introduce the following notations. We denote by
xk(= xkm) the nonnegative zeros of pm(w) (x0 = 0 if m is odd) and
we set x−k = −xk, 0 ≤ k ≤ [

m
2

]
. With f ∈ C0(R), let

Lm(w, f, x) =
[m

2 ]∑
k=−[m

2 ]
lk(x)f(xk), lk(x) =

pm(w, x)
p′m(w, xk)(x− xk)

be the Lagrange polynomial interpolating the function f on the knots
xk.

With θ ∈ (0, 1), let j = j(m) be defined as xj = min{xk ≥ θam},
let Ψj be the characteristic function of the interval [−xj , xj ] and set
fj = Ψjf. Then

Lm(w, fj , x) =
j∑

k=−j

lk(x)f(xk)

we want to study the behaviour of the sequences

{ΨjLm(w, fj)}m and {Lm(w, fj)}m
in Lp√

w
assuming f ∈ C0(R). To this end we state the following

lemmas.

Lemma 3.3 For all polynomials P ∈ Plm (l fixed integer) and for
all p ∈ [1, +∞) there exists δ, 0 < θ < δ < 1, such that


 j∑

i=−j

∆xi|P
√

w|p(xi)




1
p

≤ C
(∫ δam

−δam

|P√w|p(x)dx

) 1
p

,

with C �= C(m, f) and ∆xi = xi+1 − xi.

Lemma 3.4 Let f ∈ C0(R). Then for p ∈ (1, +∞), we have

‖Lm(w, fj)Ψj

√
w‖p ≤ C


 j∑

k=−j

∆xk|f
√

w|p(xk)




1
p

. (3.10)



Fourier Sums and Lagrange Interpolation 319

Moreover, for 1 < p < 4, it results

‖Lm(w, fj)
√

w‖p ≤ C

 j∑

k=−j

∆xk|f
√

w|p(xk)




1
p

. (3.11)

The constants C are independent of m and f . Finally, for every fixed
p ∈ (1, +∞) there exists a function f ∈ C0(R) such that

‖Lm(w, f)
√

w‖p ≤ C




[m
2 ]∑

k=−[m
2 ]

∆xk|f
√

w|p(xk)




1
p

,

(with C �= C(m, f)) does not hold.

Now following [5], p. 182, let t∗ = t∗(t) be uniquely defined by
tQ′(t∗) = 1 and define the following modulus of continuity

Ωk(f, t)√w,p = sup
0<h≤t

‖(∆k
hf)
√

w‖Lp(−Ch∗,Ch∗).

Lemma 3.5 Let f ∈ C0(R). Then, for 1 < p < +∞ we have


 j∑

k=−j

∆xk|f
√

w|p(xk)




1
p

≤ C
(
‖f√w‖Lp(−xj ,xj)+ (3.12)

+
(am

m

) 1
p

∫ am
m

0

Ωk(f, t)√w,p

t1+1/p
dt

)
,

where C is independent of m and f.

The following theorem comes from the previous lemmas.

Theorem 3.6 For all continuous function in R, we have

‖[f − Lm(w, fj)Ψj ]
√

w‖p ≤ C
{(am

m

) 1
p

∫ am
m

0

Ωk(f, t)√w,p

t1+1/p
dt+

+ e−Am‖f√w‖p
}

, (3.13)



320 Mastroianni and Vértesi

with 1 < p < +∞. Moreover, if 1 < p < 4 then it results

‖[f − Lm(w, fj)]
√

w‖p ≤ C
{(am

m

) 1
p

∫ am
m

0

Ωk(f, t)√w,p

t1+1/p
dt +

+ e−Am‖f√w‖p
}

. (3.14)

Here the constants C are independent of m and f.

Especially, if f (r−1) absolutely continuous on R and ‖f (r)√w‖p <
+∞, then

Ωk
ϕ(f, t)√w,p ≤ C‖f (r)√w‖p tr, k > r,

and the right-hand sides of (3.13) and (3.14) with the corresponding
value of p, are dominated by

(
am
m

)r (‖f√w‖p + ‖f (r)√w‖p
)
.

4 Proofs

Later we use the following:

Proposition 4.1 Let σ(x) = vβ(x)e−x/2, vβ(x) = xβ, θ ∈ (0, 1) and
1 ≤ p < +∞. Then

4
√

m‖pm(wα)σ‖Lp(0,4θm) ≥ C
∥∥∥∥ vβ

√
vαϕ

∥∥∥∥
Lp(0,1)

(4.1)

where ϕ(x) =
√

x and C is a positive constant independent of m.

Proof. With δ > 0 “small” we define δk = δ
8∆xk, k = 1, 2, . . . , m,

Im = [0, 4θm] ∩
(
∪m

k=1

[
xk − δk

2 , xk + δk
2

])
and CIm = [0, 4θm] \ Im.

Since (see [13]) for x ∈ [0, 4m] if xd = xdk
denotes the closest node

to x, it results

p2
m(wα, x)e−x

(
x +

1
m

)α+ 1
2
√

4m− x + (4m)
1
3 ∼

(
x− xd

∆xd

)2

,

(4.2)
we have

|pm(wα, x)σ(x)| ≥ Cxβ−α/2

4
√

xm
, x ∈ CIm.
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Consequently

4
√

m‖pm(wα)σ‖Lp(0,4θm) ≥ C
∥∥∥∥ vβ

√
vαϕ

∥∥∥∥
Lp(CIm)

.

Moreover∥∥∥∥ vβ

√
vαϕ

∥∥∥∥
Lp(CIm)

= (4mθ)β−α
2
− 1

4
+ 1

p

(∫ 1

0

∣∣∣∣ vβ

√
vαϕ

∣∣∣∣
p

(x)dx−

−
∫

I∗m

∣∣∣∣ vβ

√
vαϕ

∣∣∣∣
p

(x)dx

) 1
p

(4.3)

with I∗m = ∪m
k=1

(
xk

4mθ − δk
4mθ , xk

4mθ + δk
4mθ

)
∩ [0, 1]. By definition, the

measure of I∗m is bounded by Cδ. Then, for a suitable δ, the second
integral in the brackets is the half part of the first one. �

Proof of Theorem 2.2. First we prove that (2.7) implies (2.8).
Set f∗ = ∆θ,m−1f where ∆θ,m−1 denotes the characteristic function
of [0, 4θ(m− 1)]. By (2.7)

‖Sm(wα, ∆θ,mf∗)u∆θ,m‖p ≤ C‖f∗∆θ,mu‖p = C‖f∗u‖p.

Then

‖Sm−1(wα, ∆θ,mf∗)u∆θ,m‖p = ‖Sm−1(wα, ∆θ,m−1f)u∆θ,m‖p
≤ C‖Sm−1(wα, ∆θ,m−1f)u∆θ,m−1‖p ≤ C‖∆θ,m−1fu‖ = C‖f∗u‖p.

In the first inequality we used a Remez–type inequality applied to
the interval [0, 4θm] and we recall that, in the same interval, e−

x
2 ∼

Q ∈ Plm (l fixed) (see [2]). In the second inequality we used (2.7).
Getting together the previous inequalities we have

‖[Sm(wα, ∆θ,mf∗)− Sm−1(wα, ∆θ,mf∗)]u∆θ,m‖p ≤ 2C‖f∗u‖p.

Then

‖pm(wα)u∆θ,m‖p
∣∣∣∣
∫ 4θm

0
pm(wα, x)wα(x)∆θ,mf∗(x)dx

∣∣∣∣ ≤ 2C‖f∗u‖p
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and

‖pm(wα)u∆θ,m‖p sup
‖g‖Lp(0,4θm)=1

∣∣∣∣
∫ 4θm

0
pm(wα, x)

wα

u
(x)g(x)dx

∣∣∣∣ ≤ 2C

or equivalently

‖pm(wα)u∆θ,m‖p‖pm(wα)
wα

u
∆θ,m‖q ≤ C.

From boundedness of the second factor follows that vα

vγ ∈ Lq(0, 1)
and, by Proposition 4.1, follows the remaining part of (2.8). Now we
suppose that (2.8) is true. In order to obtain (2.7), we use (2.6) with
bm ∼ 1. We estimate

A1 := ‖pm(wα)u∆θ‖p
∣∣∣∣
∫ ∞

0
pm(wα, x)f(x)∆θ(x)wα(x)dx

∣∣∣∣
A2 := m‖FmuH(pm(wα)f∆θwα)∆θ‖Lp( Cm ,∞)
A3 := m‖pm(wα)u∆θH(Fmf∆θwα)‖Lp( c

m
,∞).

Since |(√wαpm(wα))(x)| ≤ Cx− 1
4 m−

1
4 , x ∈ ( C

m , 4θm
)
, we have

A1 ≤ C
m

1
4

∥∥∥∥ vγ

√
vαϕ

∆θ

∥∥∥∥
p

∥∥∥pm(wα)
wα

u
∆F θ

∥∥∥
q
‖∆θfu‖p ≤

≤ C√
m

∥∥∥∥ vγ∆θ√
vαϕ

∥∥∥∥
p

∥∥∥∥
√

vα

ϕ

1
u

∆θ

∥∥∥∥
q

‖∆θfu‖p =

= C
(∫ θ

0
t(γ−α

2
− 1

4)pdt

) 1
p
(∫ θ

0
t(

α
2
− 1

4
−γ)qdt

) 1
q

‖fu∆θ‖p ≤
≤ C‖f∆θu‖p.

The last estimate follows by (2.8). Moreover, since |(√wαFm)(x)| ≤
Cx 1

4 m−3/4 (see [16] p. 435), we have

A2 ≤ Cm 1
4

(∫ 4θm

C
m

∣∣∣∣x 1
4

+γ−α
2

∫ 4θm

0

(pm(wα)fwα)(y)
y − x

dy

∣∣∣∣
p

dx

) 1
p

≤ Cm 1
2

+γ−α
2

+ 1
p

(∫ θ

0

∣∣∣∣t( 1
4

+γ−α
2 )
∫ θ

0

(pm(wα)fwα)(4mz)
z − t

∣∣∣∣
p

dt

) 1
p

,



Fourier Sums and Lagrange Interpolation 323

where, in the first integral, we use y → 4mz. But relation (2.8)
implies that t

1
4

+γ−α
2 is an Ap weight in [0, 1] (see [14] p. 314) and

A2 ≤ Cm
1
2

+γ−α
2

+ 1
p

(∫ θ

0

∣∣∣tγ−α
2

+ 1
4 (pm(wα)fwα)(4mz)

∣∣∣p dt

) 1
p

= Cm 1
4

(∫ 4mθ

0

∣∣∣∣xγ−α
2

+ 1
4 pm(wα, x)

wα(x)
u(x)

(fu∆θ)(x)
∣∣∣∣
p

dt

) 1
p

≤ C
(∫ 4mθ

0
|fu∆θ|p(x)dx

) 1
p

since ∣∣∣∣pm(wα, x)
wα(x)
u(x)

∣∣∣∣ ≤ C√
1− θm

1
4

x
α
2
− 1

4
−γ , x ∈ (0, 4θm) .

I.e., we get ∣∣∣∣xγ−α
2

+ 1
4 pm(wα, x)

wα(x)
u(x)

∣∣∣∣ ≤ C
m

1
4

.

The estimate of A3 is similar to A2. �

Proof of Proposition 2.3. The proofs of the equivalences are
similar to the corresponding part of Theorem 2.2.

For the sake of brevity we prove only that (2.8) implies

‖Sm(wα, f)u‖p ≤ Cm 1
3 ‖fu‖p,

being the “⇒ ” very easy. For this end we recall the inequality [2]

‖Qu‖p ≤ C‖Qu‖Lp( a
m

,4m) (4.4)

which holds true for any Q ∈ Pm and u(x) = e−x/2xγ , γ > −1
p .

Then, since ‖Sm(wα, f)u‖p ≤ C‖Sm(wα, f)u‖Lp( a
m

,4m), by (2.6), it is
sufficiently to estimate the norms

B1 := |cm|‖pm(wα)u‖Lp( a
m

,4m)
B2 := m‖FmH(fpm(wα)wα)u‖Lp( a

m
,4m).
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Now, for x ∈ [
a
m , 4m

]
, by [13]

|pm(wα, x)
√

wα(x)| ≤ C
4

√
x(4m− x + m

1
3 )
≤ Cx− 1

4 m−
1
12 . (4.5)

Therefore, since vα

vγ ∈ Lq(0, 1), we have

B1 ≤ ‖fu‖p
∥∥∥pm(wα)

wα

u

∥∥∥
Lq(0,4m)

‖pm(wα)u‖Lp(0,4m).

Then we can write

‖pm(wα)u‖Lp(0,4m) ≤ Cm− 1
12

∥∥∥∥ vγ

√
vαϕ

∥∥∥∥
Lp(0,4m)

= Cm− 1
12

+γ−α
2
− 1

4
+ 1

p

∥∥∥∥ vγ

√
vαϕ

∥∥∥∥
Lp(0,1)

‖pm(wα)
wα

u
‖Lp(0,4m) ≤ Cm− 1

12

∥∥∥∥
√

vα

ϕ

1
vγ

∥∥∥∥
Lq(0,4m)

= Cm− 1
12
−γ+ α

2
− 1

4
+ 1

q

∥∥∥∥
√

vα

ϕ

1
u

∥∥∥∥
Lq(0,1)

and, consequently, recalling (2.8), B1 ≤ Cm 1
3 ‖fu‖p.

In order to estimate B2, with 0 < δ ≤ 1
2 , we can write

B2 ≤ m

(∫ 4m

0

∣∣∣∣∣Fm(t)u(t)
∫ 4m(1+δ)

0
pm(wα, x)wα(x)

f(x)
x− t

dx

∣∣∣∣∣
p

dt

) 1
p

+m

(∫ 4m

a
m

∣∣∣∣∣Fm(t)u(t)
∫ ∞

4m(1+δ)
pm(wα, x)wα(x)

f(x)
x− t

dx

∣∣∣∣∣
p

dt

) 1
p

=: I1 + I2.

In order to estimate I1, we observe that ([16, eq.(2.6)])

|Fm(t)u(t)| ≤ Cm−3/4t
1
4 m

1
12 , t ∈

( a

m
, 4m

)
.
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By G := pm(wα)wαf , we have

I1 ≤ Cm 1
4

+ 1
12

(∫ 4m(1+δ)

0

∣∣∣∣∣tγ−α
2

+ 1
4

∫ 4m(1+δ)

0

G(x)
x− t

dx

∣∣∣∣∣
p

dt

) 1
p

= Cm 1
4

+ 1
12 m

γ−α
2

+ 1
4

+ 1
p

(∫ 1+δ

0

∣∣∣∣zγ−α
2

+ 1
4

∫ 1+δ

0

G(4mz)
y − z

∣∣∣∣ dz

) 1
p

.

(2.8) results that zγ−α
2

+ 1
4 is an Ap–weight whence

I1 ≤ Cm 1
4

+ 1
12 ·mγ−α

2
+ 1

4
+ 1

p

(∫ 1+δ

0
|zγ−α

2
+ 1

4 G(4mz)|pdz

) 1
p

= Cm 1
4

+ 1
12

(∫ 4m(1+δ)

0

∣∣∣tγ−α
2

+ 1
4 pm(wα)

wα

u
(fu)(t)

∣∣∣p dt

) 1
p

.

In
(

a
m , 4m

)
(see [13])

|pm(wαx)
√

wα(x)| ≤ Cx− 1
4 m−

1
12 ,

moreover, in [4m, 4m(1 + δ)], 0 < δ ≤ 1
2 , we have

|pm(wα, x)
√

wα(x)| ≤ m−
1
4
− 1

12 (see [16] eq. (2.5)]

whence in both cases,

I1 ≤ C 4
√

m‖fu‖p.
Finally

I2 ≤ 1
δ
‖Fmu‖Lp( a

m
,4m)

∥∥∥pm(wα)
wα

u
(fu)

∥∥∥
Lq(4m(1+δ),∞)

≤ 1
δ
‖fu‖p‖Fmu‖Lp( a

m
,4m)

∥∥∥pm(wα)
wα

u

∥∥∥
Lq(4m(1+δ),∞)

,

from which, using (2.1), follows that I2 = o(1)‖fu‖p. The proof is
complete. �

Proof of Corollary 2.4. If P ∈ PM , M =
[

θ
1+θm

]
,

Rm(f) := f −∆θSm(wα, ∆θf) = (f − P ) + (1−∆θ)P +
+ ∆θSm(wα, (1−∆θ)P ) + ∆θSm(wα, (P − f)∆θ).



326 Mastroianni and Vértesi

Then

‖Rm(f)u‖p ≤ ‖(f − P )u‖p + ‖(1−∆θ)P‖+
+ ‖∆θSm(wα, (1−∆θ)P )u‖p + ‖Sm(wα, (P − f)∆θ)u∆θ‖p.

We may estimate the third term by (2.10) and the last one by The-
orem 2.2. Then, taking the infimum on P ∈ PM , we get

‖Rm(f)u‖p ≤ EM (f)u,p + C(1 + m
1
3 )‖(1−∆θ)Pu‖p + CEM (f)u,p.

By (2.1) the corollary follows. �

Proof of Lemma 2.5. Let k > 1 and P ∈ Plm. We start from the
identity

∆xkP (xk) =
∫ xk

xk−1

P (x)dx +
∫ xk

xk−1

(x− xk−1)P ′(x)dx.

Using Hölder inequality and u(x) ∼ u(xk) for x ∈ [xk−1, xk], we get
for k ≥ 2

∆xk|Pu|p(xk) ≤ 2p−1

[∫ xk

xk−1

|Pu|p(t)dt + (∆xk)p

∫ xk

xk−1

|P ′u|p(t)dt

]
.

(4.6)
If k = 1,

∆x1P (x1) =
∫ x2

x1

P (x)dx−
∫ x2

x1

(x2 − x)P ′(x)dx,

from which

∆x1|P (x1)u(x1)|p ≤ (4.7)

≤ 2p−1

[∫ x2

x1

|Pu|p(t)dt + (∆x1)p

∫ x2

x1

|P ′u|p(t)dt

]
.

Recalling that for k ≤ j, ∆xk ∼
√

xk
m ∼

√
t
m , we have

j∑
k=1

∆xk|Pu|p(xk) ≤ C
[∫ xj

x1

|Pu|p(t)dt+

+
1

(
√

m)p

∫ xj

x1

|P ′(t)√tu(t)|pdt

]
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with C �= C(m, P ). Since xj < 4θ1m, we have to prove only that
the second term on the right can be estimated by C‖Pu‖Lp(0,4θ1m).
To this end we recall that, for some fixed integer r, there exists a
polynomial Q ∈ Prm such that, in [0, 4m] (see [2]),

|Q(x)| ∼ e−
x
2 and

√
x

m
|Q′(x)| ≤ Ce−x

2 .

Therefore ∫ xj

0
|P ′(t)√tu(t)|pdt ∼

∫ xj

x1

|P ′(t)√ttγQ(t)|pdt

≤
∫ xj

x1

|(PQ)′(t)
√

ttγ |pdt +
∫ xj

x1

|P (t)
√

tQ′(t)tγ |pdt.

The last integral is dominated by C(√m)p

∫ xj

0
|P (t)u(t)|pdt. More-

over, ∫ xj

x1

|(PQ)′
√

ttγ |pdt ≤

≤ 1

(4θ1m− xj)
p
2

∫ 4mθ1

x1

|(PQ)′(t)
√

t(4mθ1 − t)tγ |pdt

∼ 1
(
√

m)p

∫ 4θ1m

x1

|(PQ)′(t)
√

t(4mθ1 − t)tγ |pdt.

Using Bernstein inequality in [x1, 4θ1m], the last integral is smaller
than

C(√m)p

∫ 4θ1m

x1

|P (t)Q(t)tγ |pdt ∼ (
√

m)p

∫ 4θ1m

0
|Pu|p(t)dt.

Lemma 2.5 easily follows. �

Proof of Theorem 2.6 We first prove that (2.18) implies (2.17).
We have

‖Lm(wα, fj)u∆θ1‖p ≤ C‖Lm(wα, fj)u‖Lp(x1,4θ1m) =

= C sup
‖g‖q=1

∫ 4θ1m

x1

Lm(wα, fj , x)u(x)g(x)dx =: C sup
‖g‖q=1

Am(g)
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where

Am(g) = mbm

j∑
k=1

λk(wα)Fm(xk)f(xk)
∫ 4θ1m

x1

pm(wα, x)
x− xk

g(x)u(x)dx.

If, for all Q ∈ Pm, Q > 0, we set

π(t)

=
∫ 4θ1m

x1

(Qpm(wα))(x)Fm(t)− (Qpm(wα))(t)Fm(x)
x− t

u(x)
Q(x)

g(x)dx,

then π ∈ P3m. Using π we have

Am(g) = mbm

j∑
k=1

λk(wα)f(xk)π(xk).

Since λk(wα) ∼ wα(xk)∆xk [13]

Am(g) ≤ C
(

j∑
k=1

∆xk|fu|p(xk)

) 1
p

m

(
j∑

k=1

∆xk

∣∣∣xα−γ
k e−

xk
2 π(xk)

∣∣∣q
) 1

q

.

By Lemma 2.5

m

(
j∑

k=1

∆xk

∣∣∣xα−γ
k e−

xk
2 π(xk)

∣∣∣q
) 1

q

≤

≤ Cm
(∫ 4θ1m

x1

∣∣∣tα
2
−γ
√

wα(t)π(t)
∣∣∣q)

1
q

=: CmB.

In order to prove that mB is bounded, we set

H(g, t) =
∫ 4θ1m

x1

g(x)
x− t

dx.

Then π(t) = Fm(t)H(pm(wα)ug, t) − Q(t)pm(wα, t)H
(
Fm

u
Qg, t

)
.

Now we choose Q such that Q(t) ∼ √t, t ∈ (x1, 4θ1m). Then we
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have

mB ≤ m

(∫ 4θ1m

x1

∣∣∣tα
2
−γ
√

wα(t)Fm(t)H(pm(wα)ug, t)
∣∣∣q dt

) 1
q

+ m

(∫ 4θ1m

x1

∣∣∣∣tα
2
−γ
√

wα(t)Q(t)pm(wα, t)H
(

Fm
u

Q
g, t

)∣∣∣∣
q

dt

) 1
q

:= I1 + I2.

To estimate I1, we observe that [16] |(√wαFm)(t)| ≤ Ct 1
4 m−

3
4 , x1 ≤

t ≤ 4θ1m. Therefore, if pm(wα)ug =: G, we have

I1 ≤ C 4
√

m

(∫ 4θ1m

x1

∣∣∣∣
√

vαϕ

vγ
(t)H(G, t)

∣∣∣∣
q

dt

) 1
q

= C 4
√

mm
α
2

+ 1
2
−γ+ 1

q

(∫ θ1

x1
4m

∣∣∣∣∣
√

vαϕ

vγ
(τ)

∫ θ1

x1
4m

G(4my)
y − τ

dy

∣∣∣∣∣
q

dτ

) 1
q

≤ C 4
√

mm
α
2

+ 1
2
−γ+ 1

q

(∫ θ1

x1
4m

∣∣∣∣
√

vαϕ

vγ
(τ)G(4mτ)

∣∣∣∣
q

dτ

) 1
q

.

By (2.18),
√

vαϕ
vγ is an Aq–weight in (0, 1). That means

I1 ≤ C 4
√

m

(∫ 4mθ1

x1

∣∣∣∣
√

vαϕ

vγ
(t)pm(wα, t)u(t)g(t)

∣∣∣∣
q

dt

) 1
q

≤ C
(∫ 4mθ1

0
|g(t)|qdt

) 1
q

= C

having used that u(t) =
√

wα(t)tγ−
α
2 and |pm(wα, t)

√
wα(t)| ≤ Ct−

1
4

4√m
,

t ∈ [x1, 4mθ1].
The estimate of I2 is similar. In fact, recalling that Q(t) ∼ t

1
2

and the estimate of pm(wα)
√

wα in [x1, 4θ1m], we have

∣∣∣tα
2
−γQ(t)

√
wα(t)pm(wα, t)

∣∣∣ ≤ C√vαϕ
4
√

mvγ
(t)
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that, for hypothesis, is an Aq–weight in (0, 1). Then

I2 ≤ Cm3/4

(∫ 4θ1m

x1

∣∣∣∣tα
2

+ 1
4
−γ u(t)

Q(t)
Fm(t)g(t)

∣∣∣∣
q

dx

) 1
q

≤ Cm3/4

(∫ 4θ1m

x1

∣∣∣∣∣tα
2

+ 1
4
−γ tγ−

α
2 t

1
4

t
1
2 m3/4

g(t)

∣∣∣∣∣
q

dx

) 1
q

= C
(∫ 4θ1m

x1

|g|q(t)dt

) 1
q

= C

and (2.18) implies (2.17).
Now we prove that (2.17) implies (2.18). Let g be a function such

that g(xk) = sgn [p
′
m(wα, xk)(x− xk)], xk ≤ 1, 0 < x < 1, g(xk) = 0,

xk ≥ 1 and |g(x)| ≤ 1. By (2.17)

‖Lm(wα, gj)∆θ1u‖p ≤ C
∫ ∞

0
up(x)dx =: M

whence

u(x)|Lm(wα, gj , x)| =
∑

x1≤xk≤1

|pm(wα, x)u(x)|
|x− xk||p′m(wα, xk)|

≥ |u(x)pm(wα, x)|
∑

x1≤xk≤1

1
|p′m(wα, xk)| .

Since [17]

1
|p′m(wα, xk)| =

√
xkλk(wα) ∼ 4

√
mx

α
2

+ 1
4

k e−
xk
2 ∆xk

≥ C 4
√

m

∫ xk

xk−1

t
α
2

+ 1
4 e−

t
2 dt, (x0 = 0),

we have
∑

x1≤xk≤1

1
|p′m(wα, xk)| ≥ C

4
√

m

∫ 1
2

0
t

α
2

+ 1
4 e−

t
2 dt ≥ C 4

√
m

and, by Proposition 4.1, we get:

1
C
∥∥∥∥ vγ

√
vαϕ

∥∥∥∥
Lp(0,1)

≤ ‖pm(wα)u∆θ1‖p 4
√

m ≤ C. (4.8)
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In order to prove that (2.17) implies the Lq–condition in (2.18), let g
be the continuous function defined as follows g(x1) = 1, g(0) = 0 =
g(x2), g is linear in [0, x1] ∪ [x1, x2] and g(x) = 0 elsewhere. Now by
(2.17) we have

‖l1(wα)u∆θ1‖p ≤ Cu(x1)(∆x1)
1
p , or∥∥∥∥pm(wα)u∆θ1

· − x1

∥∥∥∥√x1λ1(wα) ≤ Cxγ
1e−

x1
2 (∆x1)

1
p

and, since
√

x1λ1(wα) ∼ 4
√

mx
α
2

+ 1
4

1 e−
x1
2 (∆x1) and x1 ∼ ∆x1 ∼ 1

m ,
we can also write

4
√

m

∥∥∥∥pm(wα)u∆θ1

· − x1

∥∥∥∥
p

(
1
m

)α
2

+ 1
4
−γ+ 1

q

≤ C, (4.9)

from which

[
4
√

m‖pm(wα)u‖Lp(0,1)

]( 1
m

)α
2

+ 1
4
−γ+ 1

q

≤ C,

using that |x−x1| < 1 in (0, 1). Since we proved that the first factor
on the left of the inequality is bounded, we get that α

2 + 1
4−γ+ 1

q ≥ 0.
If α

2 + 1
4 − γ + 1

q = 0, by (4.9) we have that

4
√

m

(∫ 1

x2

∣∣∣∣pm(wα, x)u(x)
x

∣∣∣∣
p

dx

) 1
p

≤ C,

whence, by (4.1),

(∫ 1

x2

x(γ−1−α
2
− 1

4)pdx

) 1
p

=
(∫ 1

x2

dx

x

) 1
p

≤ C,

a contradiction. So α
2 + 1

4 − γ + 1
q > 0 i.e.

√
vαϕ
u ∈ Lq. In order to

prove that (2.19) is not true for all continuous functions, we proceed
by contradiction. Assume that (2.19) is true for every f ∈ C0(R+).
Define g as follows:

g(x) = 0 for x ∈ [0, xm−1] ∪ [4m,∞), g(xm) = 1
g is linear for x ∈ [xm−1, xm] ∪ [xm, 4m].
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Then (2.19) becomes

‖lm(wα)u‖p ≤ Cu(xm)(∆xm)
1
p , xm+1 = 4m

from which∥∥∥∥pm(wα)u
· − xm

∥∥∥∥
p

√
xmλm(wα) ≤ Cu(xm)(∆xm)

1
p .

Since √
xmλm(wα) ∼ 4

√
mx

α
2

+ 1
4

m e−
xm
2 ∆xm,

we get∥∥∥∥pm(wα)u
· − xm

∥∥∥∥
p

4
√

mx
α
2

+ 1
4
−γ

m (∆xm)1− 1
p ≤ C �= C(m). (4.10)

Now, with A =
[
xm + ∆xm

3 , 4m− ∆xm
3

]
, we have∥∥∥∥pm(wα)u

· − xm

∥∥∥∥
p

>

∥∥∥∥pm(wα)u
· − xm

∥∥∥∥
Lp(A)

≥ 3
∆xm

‖pm(wα)u‖Lp(A).

Using (4.2), we have

∥∥∥∥pm(wα)u
· − xm

∥∥∥∥
p

≥ C
m

1
12 (∆xm)

(∫
A

x(γ−α
2
− 1

4)pdx

) 1
p

∼ Cxγ−α
2
− 1

4
m

m
1
12 (∆xm)1− 1

p

.

Recalling (4.10), we get the contradiction m
1
6 ≤ C. The proof is

complete. �

Proof of Lemma 2.7. We recall the following inequality (see [7])

δ
1
p max

A
|f(x)| ≤ C

(
‖f‖Lp(A) + δ

1
p

∫ δ

0

ωr(f, t)Lp(A)

t
1+ 1

p

dt

)
,

that holds for any continuous function in A = [a, a + δ]. Above, ωk

the k–th ordinary modulus of continuity, 1 < p <∞ and C �= C(f, δ).
Then, with A = Ik = [xk, xk+1], δ = ∆xk ∼

√
xk
m , k = 1, 2, . . . , j, we

can write (we use ‖ · ‖Ik
= ‖ · ‖Lp(Ik))

(∆xk)
1
p |f(xk)| ≤ C

(
‖f‖Ik

+ (∆xk)
1
p

∫ ∆xk

0

ωr(f, t)Ik

t
1+ 1

p

dt

)
.
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Since u(t) ∼ u(xk) for t ∈ Ik, (see [2]), we have

u(xk)(∆xk)
1
p |f(xk)| ≤ C

(
‖fu‖Ik

+ (∆xk)
1
p

∫ ∆xk

0

ωr(f, t)u,Ik

t
1+ 1

p

dt

)

where ωr(f, t)u,Ik
= suph≤t

(∫ ∆xk−rh
0 |∆r

hf(x)|pup(x)dx
) 1

p
, with ∆r

h

r–th finite forward difference. Making a change of variables t →√
xkτ , we have

(∆xk)
1
p |fu|(xk) ≤ C

(
‖fu‖Ik

+
1

(
√

m)
1
p

∫ 1√
m

0

ωr(f, t
√

xk)u,Ik

t
1+ 1

p

dt

)
.

Now let g be a function such that g(r−1) is absolutely continuous in
R

+ (f (r−1) ∈ AC(R+)) and ‖g(r)ϕru‖p < ∞, ϕ(x) =
√

x. Then,
since

√
xk ∼

√
t = ϕ(t), t ∈ Ik,

ωr(f, t
√

xk)u,Ik
≤ ‖(f − g)u‖Ik

+ (t
√

xk)r‖f (r)u‖Ik
∼

∼ ‖(f − g)u‖Ik
+ tr‖f (r)ϕru‖Ik

=: Ak(t)

and

∆xk|fu|p(xk) ≤ 2p−1C‖fu‖pIk
+

1
(
√

m)

(∫ 1√
m

0

Ak(t)

t
1+ 1

p

dt

)p

.

Summing on k and using the Minkovski inequality ([6] p. 148) it
follows:

(
j∑

k=1

∆xk|fu|p(xk)

) 1
p

≤ C
(
‖fu‖Lp(x1,xj+1)+

+
1

(
√

m)
1
p

∫ 1√
m

0

(
∑j

k=1 Ap
k(t))

1
p

t
1+ 1

p

dt

)
.

Now

(
j∑

k=1

Ap
k(t)

) 1
p

≤ ‖(f − g)u‖Lp(x1,xj+1) + tr‖g(r)ϕru‖Lp(x1,xj+1).
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Now let 0 < h ≤ t. Since t ≤ 1√
m

, we get A
h2 ≥ 4m > xj+1 for

some constant A. Moreover, since x1 ∼ 1
m , for some C > 0 it results

C(2rh)2 ≤ Ct2 ≤ C
m . Then, setting Ih = ((2rh)2C, A/h2) we also have

(
j∑

k=1

Ap
k(t)

) 1
p

≤ sup
0<h≤t

{
‖(f − g)u‖Lp(Ih) + hr‖g(r)ϕru‖Lp(Ih)

}
.

Finally taking the infimum on g ∈ AC(R+) we have [2]

(
j∑

k=1

Ap
k(t)

) 1
p

≤ sup
0<h≤t

inf
g

{
‖(f − g)u‖Lp(Ih) + hr‖g(r)ϕru‖Lp(Ih)

}
∼ Ωr

ϕ(f, t)u,p.

The lemma follows. �

Proof of Theorem 2.8. We use the following decompositions:

[f −∆θ1Lm(wα, fj)]u = [f − Lm(wα, fj)]u∆θ1 + [f(1−∆θ1)]u∆θ1

= (f − P )∆θ1u + Lm(wα, P − fj)u∆θ1 + [f(1−∆θ1)]u =
= (f − P )∆θ1u + Lm(wα, ψjP )u∆θ1 + Lm(wα, (f − P )j)u∆θ1 +
+ f(1−∆θ1)u∆θ1 =: A1 + A2 + A3 + A4

where P = PM , M =
[

θ
1+θm

]
∼ m such that ‖(f − P )u‖p ≤

CEM (f)u,p, 0 < θ < θ1 < 1, fixed, ψj(x) = ψ
(

x−xj

xj+1−xj

)
. Above,

‖A1‖ ≤ CEM (f)u,p and by (2.2)

‖A4‖ ≤ EM (f)u,p + Ce−Am‖fu‖p.
Moreover, by Theorem 2.6 and Lemma 2.7, we have

‖A3‖ ≤ EM (f)u,p +
C

(
√

m)
1
p

∫ 1√
m

0

Ωr
ϕ(f − P, t)u,p

t
1+ 1

p

dt

≤ C
∫ 1√

m

0

Ωr
ϕ(f, t)u,p

t
dt +

C
(
√

m)
1
p

∫ 1√
m

0

Ωr
ϕ(f, t)u,p

t
1+ 1

p

dt

+
C

(
√

m)r
‖P (r)ϕru‖p,
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here the first integral is less than the second one. Moreover, following,
with some small changes, the proof in [5, Th. 8.3.1, pp. 98-100], we
can also get that

C
(
√

m)
1
p

‖P (r)ϕru‖p ≤ C
(
√

m)
1
p

∫ 1√
m

0

Ωr
ϕ(f, t)u,p

t1+ 1
p

dt.

In order to estimate ‖A2‖, we note that

max
0≤x≤4θm

|Lm(wα, ψjP, x)u(x)| ≤ C log m max
k≥j
|Pu|(xk) := |Pu|(xν).

Consequently
‖A2‖ ≤ Cm

1
p (log m)|Pu|(xν).

Moreover, by the identity
∫ xν+1

xν

(Pu)(x)dx = (Pu)(xν) +
∫ xν+1

xν

(xν + 1− x)(Pu)′(x)dx,

the Hölder inequality and with some simple computation

‖A2‖ ≤ Cm
1
p (log m)

[
‖Pu‖Lp(4θm,∞) +

1√
m
‖P ′ϕu‖Lp(4θm,∞)

]
.

Recalling that P ∈ PM , we apply first (2.1) to both terms in brackets
then the Bernstein inequality to the second one to obtain

‖A2‖ ≤ C(m log m)e−Am‖Pu‖p ≤ Ce−Am‖fu‖p.

The proof is complete. �

Now we consider the Freud weights. First we recall the following
polynomial inequality [10]:

‖pm

√
w‖p ≤ C‖pm

√
w‖

Lp
(
−am+ C

m2/3
, am− C

m2/3

). (4.11)

Moreover if

Km(w, x, t) =
γm−1

γm

pm(w, x)pm−1(w, t)− pm(w, t)pm−1(w, x)
x− t
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with γm = γm(w) is the Darboux kernel, then for f ∈ L1
w we have

Sm(w, f) =
m−1∑
k=0

ck(f)pk(w) =
∫
R

Km(w, x, t)f(t)w(t)dt

=
γm−1

γm
pm(w, x)H(pm−1(w)fw, x) +

+
γm−1

γm
pm−1(w, x)H(pm(w)fw, x) (4.12)

where

H(g, x) =
∫
R

g(t)
x− t

dt and ck(f, w) =
∫
R

pk(w, x)f(x)w(x)dx.

Proofs of Theorem 3.1 and Proposition 3.2. First we proof
(3.7). By using (4.11), (4.12) and recalling that γm−1

γm
∼ am, we can

write:

‖Sm(w, f∆θ)
√

w‖p ≤ Cam‖Sm(w, f∆θ)
√

w‖Lp(−am,am) (4.13)
≤ Cam‖pm(w)

√
wH(pm−1(w)wf∆θ)‖Lp(−am,am)

+ Cam‖pm−1(w)
√

wH(pm−1(w)wf∆θ)‖Lp(−am,am) =: I1 + I2.

We estimate only the first term because the second one is similar.
Since (see for instance [8] p. 351)√

w(x)|pm(w, x)| 4
√

a2
m − x2 ≤ C, x ∈ R, m ≥ 1, (4.14)

we have

I1 ≤ Cam

(∫ am

−am

∣∣∣∣(a2
m − x2)−

1
4

∫ am

−am

[pm−1(w)wf∆θ](t)
t− x

dt

∣∣∣∣
p) 1

p

= Ca
3
4

+ 1
p

m

(∫ 1

−1

∣∣∣∣(1− x2)−
1
4

∫ 1

−1

[pm−1(w)wf∆θ](amt)
t− x

dt

∣∣∣∣
p

dx

) 1
p

Since 1 < p < 4 (and only in this case), the function (1 − x2)−
1
4 is

an Ap−weight in (−1, 1), whence the Hilbert transform, is bounded.
We continue as follows.

I1 ≤ Ca
3
4

+ 1
p

m

(∫ 1

−1

∣∣∣(1− x2)−
1
4 (pm−1(w)wf∆θ)(amx)

∣∣∣p dx

) 1
p
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= Cam

(∫ am

−am

∣∣∣(a2
m − x2)−

1
4 (pm(w)

√
w)(x)(

√
wf∆θ)(x)

∣∣∣p dx

) 1
p

≤ Cam

(∫ am

−am

(
|√wf∆θ|(x)√

a2
m − x2

)p

dx

) 1
p

= Cam

(∫ θam

−θam

|f√w|p(x)
(
√

a2
m − x2)p

dx

) 1
p

≤ C√
1− θ

‖f∆θ

√
w‖p.

�

Let us see the cases p = 1 and p ≥ 4. If (3.9) were true with
C �= C(m, f) then

|cm(f∆θ, w)| ‖pm(w)
√

w‖p =
= ‖[Sm+1(w, f∆θ)− Sm(w, f∆θ)]

√
w‖p ≤ 2C‖f∆θ

√
w‖p.

Therefore

‖pm(w)
√

w‖p sup
‖f∆θ

√
w‖p=1

∣∣∣∣
∫
R

(
√

wf∆θ)(x)(pm(w)
√

w)(x)dx

∣∣∣∣ ≤ 2C.

Since the second factor on the left is equal to ‖pm(w)
√

w‖q, with
p−1 + q−1 = 1, it follows that

sup
m

(‖pm(w)
√

w‖p‖pm(w)
√

w‖q) ≤ 2C,

a contradiction, if p ≥ 4 and p = 1 (see [8, Lemma 4.3,4.5]).
The proof of (3.7) is simpler. The previous proof can be repeated

replacing the interval (−am, am) with (−θam, θam), θ ∈ (0, 1). But,
by (4.14), it results

|√wpm(w)|(x) ≤ C√
am

and therefore the restriction on p disappears. To prove (3.7) we use
the following lemma.

Lemma 4.2 Let 1 < p <∞ and P ∈ PM arbitrary. Then

‖Sm(w, (1−∆θ)P )
√

w‖p ≤ Ce−Am‖P√w‖p
where C and A dependent of θ and are independent of m and P .
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Proof. As in the proof of (3.9), we can write

‖Sm(w, (1−∆θ)P )
√

w‖p ≤
≤ Cam[‖pm−1(w)

√
wH(pm(w)(1−∆θ)Pw)‖Lp(−am,am)

+ ‖pm(w)
√

wH(pm−1(w)(1−∆θ)Pw)‖Lp(−am,am)] =: A1 + A2.

Here we estimate only the first term A1. To this end we use ([8, p.
351]) the relation

|√wpm(w)|(x) ≤ C m
1
6√

am
, x ∈ R, m ≥ 1

and the boundedness of the Hilbert transform in Lp, 1 < p <∞. We
get

A1 ≤ C√amm
1
6 ‖H(pm(w)(1−∆θ)Pw)‖Lp(Am)

≤ C√amm
1
6 ‖√wpm(w)(1−∆θ)P

√
w‖p

≤ Cm 1
3 ‖(1−∆θ)P

√
w‖p ≤ Cm 1

3 e−Am‖P√w‖p
≤ Ce−Am‖P√w‖p.

Now, the proof of (3.8) easily follows using the same argument as in
the proof of the Corollary 2.4. �

Proof of Lemma 3.3. By the inequality

(b− a)
{ |f(a)|p
|f(b)|p ≤ 2p−1

∫ b

a
|P (t)|pdt + (b− a)p

∫ b

a
|P ′(t)|pdt

with a < b and 1 < p <∞, setting ∆xk = xk+1 − xk it follows

∆xk|P (xk)|p ≤ 2p−1

∫ xk+1

xk

|P (t)|pdt + (∆xk)p

∫ xk+1

xk

|P ′(t)|pdt.

By monotonic property of the weight w, recalling that ∆xk ∼ am
m for

|xk| ≤ xj

j∑
k=−j

∆xk|P
√

w|p(xk) ≤ 2p−1

(∫ xj

−xj

|P√w|p(t)dt+

+
(am

m

)p
∫ xj

−xj

|P ′√w|p(t)dt

)
.
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We have to estimate only the last integral. To this end we recall that
in [−am, am] there is a polynomial Q ∈ Plm (l fixed integer) such
that

Q(t) ∼
√

w(t) and
am

m
|Q′(t)| ≤ C

√
w(t) (see [10, 18]).

Then
|P ′√w|(t) ∼ |P ′Q|(t) ≤ |PQ′|(t) + |(QP )′|(t)

and

am

m
‖P ′√w‖Lp(−xj ,xj) ≤ C‖P

√
w‖Lp(−xj ,xj) +

am

m
‖(QP )′‖Lp(−xj ,xj).

Setting xj = δ̄am, 0 < δ̄ < 1 and T = QP , we have:

(am

m

)p
∫ δ̄am

−δ̄am

|T ′(x)|pdx =
(am

m

)p am

ap
m

∫ δ̄

−δ̄

∣∣∣∣ d

dt
T (tam)

∣∣∣∣
p

dt.

Then with δ, δ̄ < δ < 1, the last integral is dominated by

1

(
√

δ2 − δ̄2)p

am

mp

∫ δ

−δ

∣∣∣∣ d

dt
T (tam)

√
δ2 − t2

∣∣∣∣
p

dt ≤

≤ C
(
√

δ2 − δ̄2)p

∫ δam

−δam

|PQ|p(t)dt ≤ C
(
√

δ2 − δ̄2)p

∫ δam

−δam

|P√w|p(t)dt.

In the first inequality we used the ordinary Bernstein inequality and
then we changed the variables. Finally

am

m
‖P ′√w‖Lp(−xj ,xj) ≤ C‖P

√
w‖[−δam,δam]

with (−δam, δam) ⊃ [−xj , xj ]. Lemma 3.3 easily follows. �

In order to prove Lemma 3.4 we have to introduce some prelimi-
nary relations. Let |x| ≤ δam, 0 < δ < 1. We have

4
√

a2
m − x2√
w(x)

∼
√

am
m
am

λm(
√

w, x)
=: R(x) and R ∈ P2m−2.

(4.15)
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If |xk| ≤ xj , using [10], we have

1
|p′m(w, xk)| ∼

√
w(xk)

a
3
2
m

m
=
√

w(xk) λm(
√

w, xk)
√

am
m
am

λm(
√

w, xk)

∼ w(xk)∆xkR(xk). (4.16)

On the other hand, it is easy to prove that there exists a polynomial
Q ∈ Plm (l fixed integer) such that

Q(t) ∼ 4
√

a2
m − t2, |t| ≤ am − am

m2
(4.17)

pointing out that am
m2 ≤ C

m
2
3
. �

Now we can prove Lemma 3.4.

Proof of Lemma 3.4. We only prove (3.11). By εm = am
m2

(
≤ C

m
2
3

)
,

we can write

‖Lm(w, fj)
√

w‖p ≤ sup
g

∫ am−εm

−am+εm

Lm(w, fj , x)
√

w(x)g(x)dx

=: sup
g

Am(g)

where ‖g‖Lq(−am+εm,am−εm) = 1. Recalling (4.15) we have

Am(g) ≤ C
j∑

k=−j

|f√w|(xk)∆xkR(xk)
√

w(xk)

·
∣∣∣∣
∫ am−εm

−am+εm

(pm(w)
√

wg)(x)
x− xk

dx

∣∣∣∣ .
Set

π(t) =
∫ am−εm

−am+εm

(pm(w)Q)(x)R(t)− (pm(w)Q)(t)R(x)
Q(x)(x− t)

(g
√

w)(x)dx

i.e.,

π(t) = R(t)H(pm(w)g
√

w, t)− pm(w, t)Q(t)H
(

R

Qg

√
w, t

)
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where Q and R are above defined and H is the Hilbert transform on
[−am + εm, am − εm]. π(t) is a polynomial of degree lm, for some
fixed integer l. By Hölder inequality, we deduce that

Am(g) ≤ C
j∑

k=−j

|f√w|(xk)∆xk|
√

wπ|(xk)

≤ C

 j∑

k=−j

∆xk|f
√

w|p(xk)




1
p

 j∑

k=−j

∆xk|
√

wπ|q(xk)




1
q

.

Now we prove that the second sum is bounded by C‖g‖q. Denote by
B the second sum. By using Lemma 3.5, for some δ < 1, we have:

B ≤ C‖√wπ‖Lq(−amδ,amδ) ≤ C‖
√

wRH(pm(w)
√

wg)‖Lq(−amδ,amδ)

+ C‖pm(w)Q
√

wH(R/Qg
√

w)‖Lq(−amδ,amδ) =: B1 + B2.

Now let ∆ the characteristic function of [−am+εm, am−εm]. Recalling

that in [−amδ, amδ] is R(t) ∼
4
√

a2
m−t2√
w(t)

we have

B1 ≤ C
(∫ amδ

−amδ

∣∣∣∣ 4
√

a2
m − t2

∫ am

−am

[pm(w)
√

wg∆](x)
dx

x− t

∣∣∣∣
q

dt

) 1
q

≤ C
(∫ am

−am

∣∣∣∣ 4
√

a2
m − t2

∫ am

−am

[pm(w)
√

wg∆](x)
dx

x− t

∣∣∣∣
q

dt

) 1
q

= Ca
1
2

+ 1
q

m

(∫ 1

−1

∣∣∣∣ 4
√

1− t2

∫ 1

−1
[pm(w)

√
wg∆]

(amx)
x− t

dx

∣∣∣∣
q

dt

) 1
q

.

Since 1 < p < 4, the function 4
√

1− t2 is an Aq−weight in (−1, 1) so
the Hilbert transform is bounded. Therefore

B1 ≤ Ca
1
2

+ 1
q

m

(∫ 1

−1
| 4
√

1− t2[pm(w)
√

wg∆](amt)|qdt

) 1
q

= C
(∫ am

−am

[
4
√

a2
m − t2|

√
w(t)pm(w, t)| |(g∆)(t)|

]q
) 1

q

≤ C‖g∆‖Lq(−am,am) = C,
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since | 4
√

a2
m − t2

√
w(t)pm(w, t)| ≤ C, t ∈ R, m > 1. In order to

estimate B2 we recall (4.17). Using the same notations we obtain

B2 ≤ C
(∫ am

−am

∣∣∣∣
∫ am

−am

(R/Q)(x)
√

w(x)(∆g)(x)
dx

x− t

∣∣∣∣
q

dt

) 1
q

≤ C
(∫ am−εm

−am+εm

∣∣∣∣R(t)
Q(t)

√
w(t)g(x)

∣∣∣∣
q

dt

) 1
q

≤ C
(∫ am−εm

−am+εm

|g(t)|qdt

) 1
q

= C,

by the boundedness of the Hilbert transform and the fact that, in

[−am + εm, am − εm], R(t) ∼
4
√

a2
m−t2√
w(t)

and Q(t) ∼ 4
√

a2
m − t2. The

last part of Lemma 3.4 can be proved by the same argument used to
prove (2.19) in Theorem 2.6. The proof is complete. �

We may omit the proof of Lemma 3.5 (in fact it is simpler than
Lemma 2.7).

Finally, in order to prove Theorem 3.6, we have to use only the
following inequality

‖Lm(w, ψjP )ψj

√
w‖p ≤ Ce−Am‖P√w‖p,

where P ∈ PM , M =
[

θ

1 + θ
m

]
. It can be proved with the same

procedure used to estimate ‖A2‖ in the proof of Theorem 2.8.
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Abstract

We discuss our recent work in the theory of approxima-
tion of functions using values of the function at scattered sites
on the circle, the real line, the unit interval, and the unit
sphere. As an alternative to interpolation, we present quasi-
interpolatory operators for this purpose. We also prove the
existence of bounded operators, yielding entire functions of
finite exponential type, that interpolate a Birkhoff data for a
function on a Euclidean space, where a finite number of deriva-
tives, of order not exceeding a fixed number, are prescribed at
each point.

1 Introduction

In most applications of approximation theory, one wishes to approx-
imate a function given its values at finitely many points. Typically,
the approximation is desired in the space C(Ω) comprising of uni-
formly continuous, bounded, real functions on a subset Ω of a Eu-
clidean space; the space being endowed with the supremum norm:
‖f‖Ω := supx∈Ω |f(x)|, f ∈ C(Ω). In the theoretical setup, one has
a nested sequence of subspaces Vn ⊂ Vn+1 ⊂ C(Ω), with the dimen-
sion of Vn being n. Given a data of the form {(xj , f(xj)}Nj=1, xj ∈ Ω,
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j = 1, · · · , N , the problem of interpolation consists of finding a func-
tion IN (f) ∈ VN , such that IN (f)(xj) = f(xj), j = 1, · · · , N . The
subject is studied in great detail in a variety of situations (cf. for
example, [24, 25, 3, 6]).

In the case of multivariate approximation, it is often not guar-
anteed that the interpolation problem from a given space will have
a solution. Even if a solution exists, its numerical computation in-
volves a matrix inversion and is, therefore, costly. Moreover, the
sequence of interpolants, {IN (f)} does not converge for every con-
tinuous function f . There are two ways to remedy the last problem.
One approach is to seek bounded operators taking values in VM for
some M > N which interpolate at the given data. This approach
has been explored in great detail in the univariate context in the
book [24, Chapter II] of Szabados and Vértesi. The other approach
is to abandon the requirement that the operators should interpolate
the data, and seek bounded operators taking values in VM for some
M < N , and constructed from the data in some other way.

The purpose of this paper is to survey some of our recent work
in both directions.

2 Bounded Interpolatory Operators

The motivation behind the work in this section is provided by the
following theorem (cf. [24, Chapter II, Theorem 2.7]), where we
denote the class of all univariate algebraic polynomials of degree at
most n by Πn. Throughout this paper, the symbols c, c1, · · · will
denote generic constants, depending only on the fixed parameters in
the discussion, and any other explicitly indicated parameters.

Theorem 2.1 Let xk,n = cos θk,n ∈ [−1, 1] be an arbitrary system
of nodes (0 ≤ θ1,n < · · · < θn,n ≤ π) and let

dn := min
1≤k≤n−1

θk+1,n − θk,n.

Then for any ε > 0, there exist linear polynomial operators Pn on
C([−1, 1]) with the following properties: (a) If m = �π(1 + ε)/dn�
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then Pn(P ) = P for all P ∈ Πm, (b) for f ∈ C([−1, 1]), Pn(f) ∈ ΠN

where N = (π/dn + 1)(1 + 3ε), (c) Pn(f, xk,n) = f(xk,n) for k =
1, · · · , n, and (d) ‖Pn(f)‖[−1,1] ≤ c(ε)‖f‖[−1,1].

We note that the conditions (a) and (d) imply that

‖f − Pn(f)‖[−1,1] ≤ c(ε) min
P∈Πm

‖f − P‖[−1,1].

Giving up the requirement that the operator should be linear,
we obtained a far reaching generalization of this result in [15]. The
following theorem of Narcowich and Ward [20, Proposition 3.1] is a
further generalization of the result in [15]. In the sequel, if Y is a
Banach space, V ⊂ Y , we will write ‖ · ‖Y to denote the norm on Y ,
and write

dist (Y ; f, V ) := dist (f, V ) := inf
g∈V
‖f − g‖Y , f ∈ Y. (2.1)

We note that our notation ‖f‖Ω for the supremum norm on C(Ω)
may be thought of as an abbreviation for ‖f‖C(Ω).

Theorem 2.2 Let Y be a (possibly complex) Banach space, V be a
subspace of Y, and Z∗ be a finite dimensional subspace of Y∗, the
dual of Y. If there exists β > 0 such that

‖z∗‖Y∗ ≤ β‖z∗|V‖V∗ , z∗ ∈ Z∗, (2.2)

then for every y ∈ Y, there exists v ∈ V, such that z∗(v) = z∗(y) for
every z∗ ∈ Z∗, and in addition, ‖y − v‖Y ≤ (1 + 2β) dist (y,V).

The main difference between this theorem and the correspond-
ing theorem in [15] is that the space V is not required to be finite
dimensional. This is accomplished by an appeal to the notion of lo-
cal reflexivity principle, rather than the fact that finite dimensional
spaces are reflexive. This principle is formulated as follows (cf., for
example, [7]), where the space Y is identified with a subspace of the
dual Y ∗∗ of the space Y ∗ in the standard way.

Proposition 2.3 Let Y be a Banach space, V ⊂ Y ∗∗ and W ⊂
Y ∗ be finite dimensional spaces. Given ε > 0, there exists a linear
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operator T : V → Y such that T (y) = y if y ∈ V ∩ Y , y∗(T (v)) =
v(y∗) for all v ∈ V , y∗ ∈ W , and (1 − ε)‖v‖Y ∗∗ ≤ ‖T (v)‖Y ≤
(1 + ε)‖v‖Y ∗∗, for all v ∈ V .

In [15], we showed that an analogue of Theorem 2.1 always holds
if a Jackson–type theorem holds. In particular, we obtained the ana-
logues in the case when the approximating spaces consist of spherical
polynomials and zonal function networks. Theorem 2.2 was used in
[20] to obtain the analogue of Theorem 2.1 in the case of approxima-
tion by entire functions of finite exponential type.

One restriction of all of the above theorems is that they require
interpolation at distinct points. It seems reasonable to expect that
a similar theorem will hold in the case of Birkhoff data ; i.e., where
the values of certain derivatives of the function are prescribed as
well, provided there are only finitely many such conditions at each
point, the number being independent of the number of points. In
this section, we explore this question further. The following theorem
gives a recipe for applying Theorem 2.2.

Theorem 2.4 Let Y be a (possibly complex) Banach space, V be
a subspace of Y, and Z∗ be a finite dimensional subspace of Y∗.
Suppose there exists a compact set K ⊂ Y such that

κ := sup
y∈K

dist (y,V) < inf
y∗∈Z∗,‖y∗‖Y∗=1

sup
y∈K
|y∗(y)| =: m. (2.3)

Let B := maxy∈K ‖y‖Y , and β := 2(2B + m + κ)/(m− κ). Then for
every y ∈ Y, there exists v ∈ V, such that z∗(v) = z∗(y) for every
z∗ ∈ Z∗, and in addition, ‖y − v‖Y ≤ (1 + 2β) dist (y,V).

Proof. We observe that (2.3) implies that

m = inf
y∗∈Z∗,‖y∗‖Y∗=1

sup
y∈K
|y∗(y)| > 0. (2.4)

Now, let y∗ ∈ Z∗, ‖y∗‖Y∗ = 1. In view of the fact that κ < m, we find
y ∈ K such that |y∗(y)| ≥ (3/4)m + (1/4)κ (cf. (2.4)). The estimate
(2.3) implies that there exists v ∈ V such that ‖y−v‖Y ≤ (m+κ)/2.
Then

|y∗(v)| ≥ |y∗(y)| − |y∗(y − v)| ≥ (3/4)m + (1/4)κ− (m + κ)/2
= (m− κ)/4.
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Also, ‖v‖Y ≤ ‖y‖Y + (m + κ)/2 ≤ (2B + m + κ)/2. Thus,

‖y∗‖Y∗ = 1 ≤ 2(2B + m + κ)
m− κ

|y∗(v)|
‖v‖Y ≤

2(2B + m + κ)
m− κ

‖y∗|V‖V∗ .

We may now apply Theorem 2.2 to complete the proof. �

One way to construct a compact set as in Theorem 2.4 is the
following. Let {y∗1, · · ·, y∗N} be a basis for Z∗, with each ‖y∗� ‖Y∗ = 1.
The Hahn–Banach theorem yields a set {x∗∗1 , · · · , x∗∗N } in the dual Y∗∗
of Y∗ such that each ‖x∗∗� ‖Y∗∗ = 1 and x∗∗� (y∗j ) = δ�,j , �, j = 1, · · · , N .
Let ε > 0. The principle of local reflexivity then implies the existence
of {x1, · · · , xN} ∈ Y such that 1 − ε ≤ ‖x�‖Y ≤ 1 + ε, 1 ≤ � ≤ N
and y∗j (x�) = δ�,j , �, j = 1, · · · , N . We may choose K to be the set
{∑N

�=1 a�x� : max1≤�≤N |aj | = 1}.

If y∗ =
∑N

j=1 bjy
∗
j , and ‖y∗‖Y∗ = 1, then

1 = ‖y∗‖Y∗ ≤
N∑

j=1

|bj | = y∗


 N∑

j=1

(sgn bj)xj


 ≤ sup

y∈K
|y∗(y)|.

Therefore, the conclusion of Theorem 2.4 holds if sup
y∈K

dist (y, V ) < 1.

We illustrate this process by giving a qualitative generalization
of [20, Theorem 3.5]. Thus, we will not have explicit constants as
in [20, Theorem 3.5], but our theorem will be valid when Birkhoff
interpolatory conditions are required on the approximation.

Let s ≥ 1 be a fixed integer. We will write x = (x1, · · · , xs),
|x| =

∑s
j=1 |xj |, |x|∞ = max1≤j≤s |xj |. The symbols k, m, n will

denote multiintegers with nonnegative components. We write Dj

for the derivative with respect to xj , f (k) := (
∏s

j=1 D
kj

j )f . For an
integer r ≥ 0, Cr(Rs) is defined to be the space of functions f such
that f (k) ∈ C(Rs) for all k with |k| ≤ r. For τ ≥ 0, we denote by
Mτ =Mτ,s the class of all entire functions g of s complex variables,
such that the restriction of g to R

s is real valued, and for some
A = A(g) > 0 and every (x1 + iy1, · · · , xs + iys) ∈ C

s,

|g(x1 + iy1, · · · , xs + iys)| ≤ A exp


τ

s∑
j=1

|yj |

 .
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We note that the class Mτ consists of entire functions of finite ex-
ponential type at most τ , that are bounded and real valued on R

s.
The Bernstein inequality [22, Section 3.2.2, eqn. (8)],

‖g(k)‖Rs ≤ τ |k|‖g‖Rs , g ∈Mτ , (2.5)

shows that Mτ ⊂ Cr(Rs) for all τ ≥ 0 and integer r ≥ 0.

Theorem 2.5 Let R ≥ 0 be an integer, xj, j = 1, · · · , N , be a set
of distinct points in R

s, and

η := min
j �=�
|xj − x�|∞, (2.6)

and Sj ⊆ {m : |m| ≤ R}, j = 1, · · · , N . Then there exists a constant
α with the following property. For any f ∈ CR(Rs), there exists
g ∈Mα/η such that

g(k)(xj) = f (k)(xj), k ∈ Sj , j = 1, · · · , N, (2.7)

and

max
|k|≤R

η|k|‖f (k) − g(k)‖Rs ≤ c(R) max
|m|≤R

η|m| inf
P∈Mα/(4η)

‖f (m) − P‖Rs .

(2.8)

In the rest of this section, R will be treated as a fixed parame-
ter, and the dependence of the various constants on R will not be
indicated explicitly.

In order to prove the theorem, we recall from [22, Section 8.6]
some facts regarding approximation by entire functions of finite ex-
ponential type. For τ > 0, x ∈ R

s, and f ∈ C(Rs), let

Vτ (x) :=
1
τ s

s∏
j=1

cos τxj − cos 2τxj

x2
j

, (2.9)

and

Fτ (f, x) :=
1
πs

∫
Rs

Vτ (x− y)f(y)dy. (2.10)
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Lemma 2.6 If g ∈ Mτ then Fτ (g) = g. For any f ∈ C(Rs),
Fτ (f) ∈M2τ , and

‖Fτ (f)‖Rs ≤ c‖f‖Rs , ‖f −Fτ (f)‖Rs ≤ c dist (f,Mτ ). (2.11)

Moreover, if r ≥ 1 is an integer, f ∈ Cr(Rs), g ∈ M2τ , and ‖f −
g‖Rs ≤ c dist (f,Mτ ), then for any multiinteger k with |k| ≤ r,

τ−|k|‖f (k) − g(k)‖Rs ≤ c(r)τ−r max
|m|=r

dist (f (m),Mτ/2). (2.12)

In particular,

max
|k|≤r

τ−|k|‖f (k) −Fτ (f)(k)‖Rs ≤ c(r)τ−r max
|m|=r

‖f (m)‖Rs , (2.13)

and

inf
P∈M2τ

max
|m|≤R

τ−|m|‖f (m) − P (m)‖Rs

≤ c max
|m|≤R

τ−|m| inf
P∈Mτ/2

‖f (m) − P‖Rs . (2.14)

Proof. The first two statements in the lemma and the estimates
(2.11) are proved in [22, Section 8.6]. Let f ∈ Cr(Rs), g ∈ M2τ ,
‖f−g‖Rs ≤ c dist (f,Mτ ), and k be a multiinteger with |k| ≤ r. The
second estimate in (2.11) implies that ‖g−Fτ (f)‖Rs ≤ c dist (f,Mτ ).
Since Fτ (f)− g ∈M2τ , the Bernstein inequality (2.5) shows that

‖Fτ (f (k))− g(k)‖Rs = ‖Fτ (f)(k) − g(k)‖Rs ≤ c(r)τ |k|‖Fτ (f)− g‖Rs

≤ c(r)τ |k| dist (f,Mτ ). (2.15)

In view of the direct theorem for approximation from Mτ (cf. [22,
Section 5.2.2, eqn. (4), Section 4.2, eqn. (15)]), it follows that

τ |k| dist (f,Mτ ) ≤ c(r)τ |k|−r
∑
|m|=r

‖f (m)‖Rs

≤ c(r)τ |k|−r max
|m|=r

‖f (m)‖Rs .
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Therefore, (2.11) leads to

dist (f,Mτ ) = dist (f −Fτ/2(f),Mτ )

≤ c(r)τ−r max
|m|=r

‖f (m) −Fτ/2(f)(m)‖Rs

= c(r)τ−r max
|m|=r

‖f (m) −Fτ/2(f
(m))‖Rs

≤ c(r)τ−r max
|m|=r

dist (f (m),Mτ/2). (2.16)

Using this estimate with f (k) in place of f , and r− |k| in place of r,
we obtain in view of (2.11) that

‖f (k) −Fτ (f (k))‖Rs ≤ c(r) dist (f (k),Mτ )
≤ c(r)τ |k|−r max

|m|=r
dist (f (m),Mτ/2).(2.17)

The estimates (2.17), (2.15), and (2.16) lead to

‖f (k) − g(k)‖Rs ≤ ‖f (k) −Fτ (f (k))‖Rs + ‖Fτ (f (k))− g(k)‖Rs

≤ c(r)τ |k|−r max
|m|=r

dist (f (m),Mτ/2).

This completes the proof of (2.12). The estimates (2.13) and (2.14)
follow from (2.11) and (2.12). �

Proof of Theorem 2.5. In this proof, for any integer r ≥ 0 and
a function f ∈ Cr(Rs), we write

‖f‖r := max
|k|=r

‖f (k)‖Rs . (2.18)

We will apply Theorem 2.4 with Y = CR(Rs), and for f ∈ Y , define

‖f‖Y := max
0≤r≤R

ηr‖f‖r. (2.19)

We will write τ = α/η for a constant α to be chosen later, and
take Mτ for the subspace V of Y . In the remainder of this proof,
dist (f, V ) is defined as in (2.1) with respect to the norm ‖ · ‖Y .

For multiinteger m and � = 1, · · · , N , let y∗m,� denote the functional
on Y defined by y∗m,�(f) = f (m)(x�). Let Z∗ be the subspace of
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Y ∗ spanned by {y∗m,� : m ∈ S�, � = 1, · · · , N}. We now construct
the compact set K as required in Theorem 2.4, following the ideas
outlined after the proof of that theorem. In this proof only, we find
it useful to retain the values of the constants c, c1, · · ·.

Let ψ : R → [0,∞) be an infinitely often differentible function
such that ψ(t) = 1 if |t| ≤ 1/6 and ψ(t) = 0 if |t| ≥ 1/3. For any
multiinteger k ≥ 0, let

φk(x) :=
s∏

�=1

ψ(x�/η)
xk�

�

k�!
,

and
Φk,j(x) = φk(x− xj), j = 1, · · · , N. (2.20)

We note that if |x− xj |∞ ≥ η/3, then Φk,j(x) = 0 for all k ≥ 0. In
particular, for any multiinteger m ≥ 0,

‖Φk,j
(m)‖Rs ≤ c1η

|k|−|m|. (2.21)

Since Φk,j(x) = (x−xj)k/k! for all x with |x−xj |∞ ≤ η/6, it follows
that

y∗m,�(Φk,j) = Φk,j
(m)(x�) =

{
1, if k = m, j = �,
0, otherwise.

(2.22)

We define

K := {
N∑

j=1

∑
k∈Sj

bk,jη
−|k|Φk,j : max

1≤j≤N, k∈Sj

|bk,j | ≤ 1}.

We now estimate the quantities B, m, κ appearing in (2.3).
Let g =

∑N
j=1

∑
k∈Sj

bk,jη
−|k|Φk,j ∈ K. Let r be any integer,

0 ≤ r ≤ R + 1, n be any multiinteger with |n| = r, and x ∈ R
s. If

|x− xj |∞ > η/3 for every j, then g(n)(x) = 0. Otherwise, there is a
unique j such that |x− xj |∞ ≤ η/3, and

g(n)(x) =
∑
k∈Sj

bk,jη
−|k|Φk,j

(n)(x).
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Since the number of elements in Sj is bounded independently of N ,
and maxk∈Sj |bk,j | ≤ 1, (2.21) implies that

|g(n)(x)| ≤
∑
k∈Sj

η−|k||Φk,j
(n)(x)| ≤ c2η

−|n|.

Thus, ‖g(n)‖Rs ≤ c2η
−r for all n with |n| = r; i.e.,

‖g‖r ≤ c2η
−r, g ∈ K, r ≥ 0. (2.23)

It follows that
B = sup

g∈K
‖g‖Y ≤ c2. (2.24)

Let y∗ =
∑N

�=1

∑
m∈S�

am,�y
∗
m,� ∈ Z∗, and g ∈ Y . Then

|y∗(g)| =
∣∣∣∣∣∣

N∑
�=1

∑
m∈S�

am,�g
(m)(x�)

∣∣∣∣∣∣ ≤ ‖g‖Y
N∑

�=1

∑
m∈S�

|am,�|η−|m|.

Therefore,

‖y∗‖Y ∗ ≤
N∑

�=1

∑
m∈S�

|am,�|η−|m|. (2.25)

Let gy∗ =
∑N

j=1

∑
k∈Sj

(sgn ak,j)η−|k|Φk,j ∈ K. It is easy to verify
using (2.22) that

y∗(gy∗) =
N∑

�=1

∑
m∈S�

|am,�|η−|m| ≥ ‖y∗‖Y ∗ .

Thus,
m = inf

y∗∈Z∗, ‖y∗‖Y ∗=1
sup
g∈K
|y∗(g)| ≥ 1. (2.26)

Next, let g ∈ K. For any multiinteger m ≥ 0, |m| ≤ R, (2.13)
implies that

‖g(m) −Fτ/2(g)(m)‖Rs ≤ c3

τR+1−|m| ‖g‖R+1. (2.27)
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Now, (2.23) with R + 1 in place of r implies that

η|m|‖g(m) −Fτ/2(g)(m)‖Rs ≤ c4

(τη)R+1−|m| .

Since this estimate holds for all m with 0 ≤ |m| ≤ R, we have

dist (g,Mτ ) ≤ ‖g −Fτ/2(g)‖Y
= max

0≤|m|≤R
η|m|‖g(m) −Fτ/2(g)(m)‖Rs ≤ c4

τη
. (2.28)

With the choice α = 2c4, we conclude from (2.28) and (2.26) that
(2.3) is satisfied for all τ ≥ α/η. In view of Theorem 2.4 and (2.14),
this completes the proof. �

Similar theorems can be obtained in a variety of other situa-
tions, where a sequence of simultaneously approximating operators
is known; for example, in approximation by trigonometric polynomi-
als [2], approximation by spherical polynomials [5], approximation
by periodic basis functions [12], and approximation by Gaussian net-
works [8, Chapter 11.2].

3 Quasi-Interpolatory Operators

In many practical applications, although one needs to construct an
approximation using point evaluations, interpolation is not necessar-
ily desirable. For example, the data may be noisy, or too large to
allow for an efficient computation of the interpolant. While the the-
orems in the previous section assert the existence of a bounded inter-
polatory operator, it is desirable to obtain explicit, computationally
efficient constructions for approximations, whether they interpolate
or not.

Given a sequence of subspaces {Vn} with Vn ⊂ Vn+1 ⊂ C(Ω),
n = 0, 1, · · ·, a quasi-interpolatory operator Tn,N is a linear operator
that is constructed from the N data points but has properties similar
to the operator Fτ as in Lemma 2.6; i.e., we require that Tn,N :
C(Ω) → Vn, ‖Tn,N (f)‖Ω ≤ c‖f‖Ω for some c > 0 independent of n
and N , and for some α > 0, Vαn is invariant under Tn,N . Here, and in
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the sequel, the symbol Vx denotes the space V�x�. These assumptions
imply that for any P ∈ Vαn,

‖f − Tn,N (f)‖Ω = ‖(f − P )− Tn,N (f − P )‖Ω ≤ c‖f − P‖Ω,

and hence,
‖f − Tn,N (f)‖Ω ≤ c dist (f,Vαn). (3.1)

Thus, if
⋃∞

n=0 Vn is dense in C(Ω), the sequence Tn,N (f) always con-
verges to f for every f ∈ C(Ω), and at a near optimal rate in the
sense of (3.1).

In [18], we have described a very general construction for quasi–
interpolatory operators. Let (Ω, Σ) be any measure space. We will
assume that all measures on Ω to be discussed below will be defined
for all the subsets A ∈ Σ. Let µ∗ be a sigma–finite measure on Ω,
ν be a signed measure (necessarily, with bounded variation) or a
positive, sigma–finite measure on Ω, |ν| denote ν if ν is a positive
measure, and its total variation measure if it is a signed measure. If
A ⊆ Ω is |ν|-measurable, and f : A→ R is |ν|-measurable, we write

‖f‖ν;p,A :=




{∫
A
|f(t)|pd|ν|(t)

}1/p

, if 1 ≤ p <∞,

|ν| − ess supt∈A|f(t)|, if p =∞.

The class of measurable functions f for which ‖f‖ν;p,A < ∞ is de-
noted by Lp(ν; A), with the standard convention that two functions
are considered equal if they are equal |ν|-almost everywhere on A.
We will work with a fixed orthonormal set {φk}∞k=0 ⊂ L2(µ∗; Ω); i.e.,∫

Ω
φk(t)φj(t)dµ∗(t) =

{
0, if k �= j,
1, if k = j,

(3.2)

and assume that it is complete in the space L2(µ∗; Ω). We as-
sume also that each φk ∈ L1(µ∗; Ω) ∩ L∞(µ∗; Ω). We will write
Pn := span {φ0, · · · , φn}, and the symbol Xp(Ω) will denote the
Lp(µ∗; Ω) – closure of

⋃∞
n=0 Pn.

We pause in the general discussion to give a few examples.

1. Ω = [−1, 1], µ∗ is the Jacobi measure (1−x)α(1+x)βdx, α, β ≥
−1/2, φk is the orthonormalized Jacobi polynomial p

(α,β)
k of

degree k with respect to µ∗ .
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2. Ω = R, µ∗ is the Lebesgue measure on Ω, φk is the orthonor-
malized weighted Freud polynomial φF

k = wQpk, where wQ

is a Freud weight (cf. [8, Definition 3.1.1]), and pk is the
degree k orthonormal polynomial such that for all integers
k, j = 0, 1, · · ·,∫

R

pk(x)pj(x)w2
Q(x)dx =

{
0, if k �= j,
1, if k = j.

3. Ω = [−π, π], µ∗ is the measure dx/π on Ω,

{φk} = {1/
√

2, cos x, sinx, · · · , cos kx, sin kx, · · ·}.

4. Ω is the unit sphere S
q embedded in the Euclidean space R

q+1,
µ∗ is the area measure on Ω, {φk} is the set of all orthonormal
spherical harmonics [19, 23].

A convenient way to define a quasi-interpolatory operator is the
following. Let h : [0,∞)→ [0,∞), h(x) = 1 if x ≤ 1/2, and h(x) = 0
if x > 1. We define the kernels

Φn(h; x, t) :=
n∑

k=0

h(k/n)φk(x)φk(t), (3.3)

and the operators

σn(ν; h, f, x) :=
∫

Ω
f(t)Φn(h; x, t)dν(t). (3.4)

We note that in the case when ν is a discrete measure, the op-
erator σn(ν; h, f) is defined in terms of the values of f at the points
in the support of ν. In this case, we may view σn(ν; h, f) as a dis-
cretization of the “continuous” operator σn(µ∗; h, f). It is clear that

‖σn(ν; h, f)‖µ∗;∞,Ω ≤ ‖f‖ν;∞,Ω sup
x∈Ω

∫
Ω
|Φn(h, x, t)|d|ν|(t). (3.5)

The quantity on the right hand side above is often uniformly bounded
for suitable choices of h for the case when ν = µ∗. The bounds in the
discrete case are then obtained using the Marcinkiewicz-Zygmund
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inequalities (3.6) . Formally, we say that ν is an M–Z measure of
order n if

‖P‖ν;p,Ω ≤ c‖P‖µ∗;p,Ω, P ∈ Pn, 1 ≤ p ≤ ∞. (3.6)

The property that σn(ν; h, P ) = P for P ∈ Pn/2 is ensured if

∫
Ω

P1P2dν =
∫

Ω
P1P2dµ∗, P1, P2 ∈ Pn. (3.7)

We say that ν is a quadrature measure of order n if (3.7) holds, and
that ν is an M–Z quadrature measure of order n if it is both an M–Z
measure of order n and a quadrature measure of order n.

M–Z quadrature measures based on equidistant data for the case
of trigonometric polynomials are given in [26, Chapter X, Theorems
7.5, 7.28]. Nevai [21, Theorem 25, p. 168] has given an example
of M–Z quadrature measures for the Jacobi weights. For m ≥ 1,
let {xk,m}mk=1 be the zeros of p

(α,β)
m , and λk,m be the corresponding

Cotes’ numbers. Nevai has proved that for m ≥ cn, the measure ν∗m
that associates the mass λk,m with each xk,m is an M–Z quadrature
measure of order n. Similar results in the context of Freud polyno-
mials are given in [16]. The analogues in the case of the sphere are
obtained in [13] based on an arbitrary set of points. In [11], we have
given an intrinsic characterization of M–Z measures on the sphere
S

q. Given a sequence of measures {νn} on S
q, we have shown that

each νn is an M–Z measure of order at least n if and only if for each
spherical cap C,

|νn|(C) ≤ c(µ∗q(C) + 1/nq),

where µ∗q is the surface area measure for S
q.

The following theorem explains the construction of
quasi-interpolatory operators from their “continuous” analogues us-
ing M–Z quadrature measures.

Theorem 3.1 Let {νn} be a sequence of signed or positive sigma-
finite measures, such that each νn is an M–Z quadrature measure
of order at least n. Then σn(νn; h, P ) = P for all P ∈ Pn/2. For
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f ∈ L1(µ∗; Ω), σn(νn; h, f) ∈ Pn. Let 1 ≤ p ≤ ∞. If

sup
n≥0, x∈Ω

∫
Ω
|Φn(h, x, t)|dµ∗(t) =: B <∞, (3.8)

then
‖σn(νn; h, f)‖µ∗;p,Ω ≤ B‖f‖νn;p,Ω. (3.9)

In particular, if ‖f‖νn;p,Ω ≤ c‖f‖µ∗;p,Ω for all f ∈ Lp(µ∗; Ω), then

‖σn(νn; h, f)‖µ∗;p,Ω ≤ B‖f‖µ∗;p,Ω, f ∈ Lp(µ∗; Ω). (3.10)

In [18], we have surveyed various conditions on the function h to
ensure that (3.8) is satisfied in each of the four examples listed above.
In each of these cases, a sufficient condition is that h should have
sufficiently many derivatives having bounded variation. In general,
the greater the smoothness of h, the more localized is the kernel. To
illustrate this phenomenon, we recall that for q ≥ 1, the cardinal
B-spline of order q is the function defined by (cf. [1, p. 131])

M1(x) :=
{

1, if 0 < x ≤ 1,
0, otherwise,

Mq(x) :=
1

q − 1
{xMq−1(x) + (q − x)Mq−1(x− 1)}, q ≥ 2.(3.11)

We consider the function h defined by

hq(x) =
q∑

j=−q

Mq(2qx− j), x ≥ 0.

The function hq is q − 2 times continuously differentiable on R, h
(q)
q

is a piecewise constant function, hq(x) = 1 if |x| < 1/2, and h(x) = 0
if |x| > 1. The kernel

Fq,n(x) := 1 +
n∑

k=1

hq(k/n) cos kx (3.12)

is the well-known de la Vallée Poussin kernel when q = 2. In Fig-
ure 1, we demonstrate the graphs of the kernels Fq,64 for the whole
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interval [−π, π] for q = 2 and q = 5. The graphs of the same kernels
on [π/2, π] in Figure 2 clearly illustrate the effect of the smoothness
of h on the localization. The mathematical details for the localiza-
tion properties depend upon the special function properties of the
orthogonal systems involved; we refer to [18] for further references
and details.
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Figure 1: The graph of the de la Vallée Poussin kernel F2,64 on the
left, the graph of F5,64 on the right.

We note that the most difficult part of these constructions is
the construction of quadrature measures of high orders. It is much
simpler to construct M–Z measures. For example, let N ≥ 2 be an
integer, and −π ≤ θ1 < · · · < θN ≤ π be points such that each
subinterval of [−π, π] of length 2π/N contains exactly one point θk.
It is not difficult to check using the Bernstein inequality (cf. [17,
Lemma 3.1]) that the measure νN that associates the mass 2π/N
with each of the points θk satisfies for all trigonometric polynomials
T of order at most n:∣∣‖T‖νN ;1,[−π,π] − ‖T‖µ∗;1,[−π,π]

∣∣ ≤ 2πn

N
‖T‖µ∗;1,[−π,π] . (3.13)

In [4], we have studied the construction of quasi-interpolatory oper-
ators based on M–Z measures satisfying an inequality analogous to
(3.13). The measures are constructed using scattered data on [0, π],
extended symmetrically to [−π, π], but are not necessarily quadra-
ture measures. Instead, we use orthogonal polynomials with respect
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Figure 2: The graph of the de la Vallée Poussin kernel F2,64 on
[π/2, π] on the left, the graph of F5,64 on [π/2, π] on the right. We
note that the maximum absolute value of the graph on the right is
nearly 10−3 times that for the graph on the left.

to the measures projected to [−1, 1] in the standard way, and prove a
perturbation theorem to estimate the norms of the resulting quasi–
interpolatory operators. The perturbation theorem is proved in a
very general setting. We apply our operators for approximation of
functions on the sphere using scattered, tensor-product data.

Finally, we note that quasi–interpolatory operators have been
used to prove theorems about approximation by neural networks
[9], zonal function networks [14], detection of singularities ([18] and
references therein), solution of pseudo–differential equations on the
sphere [5], and representation of smooth functions on the sphere us-
ing finitely many bits [10].
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Abstract

Given a finite dimensional subspace V and a certain fam-
ily F of nonempty closed and bounded subsets of C0(T ), in
an earlier paper, which is Part I of the paper with the same
title, lower semicontinuity of the restricted center multifunc-
tion CV from F into V and an intrinsic characterization of
the subspace V yielding both lower semicontinuity of CV as
well as Hausdorff strongly unique best simultaneous approxi-
mation property of the triplet (X,V,F) were investigated. In
the present paper, we complement our earlier study and are
mainly concerned in establishing the equivalence of Hausdorff
continuity and pointwise Hausdorff Lipschitz continuity of the
multifunction CV .

1 Introduction

Given a nonempty subset V of a metric space X and a function
I : X → (−∞,∞] which is a proper extended real-valued function,
consider well-posedness of the following abstract minimization prob-
lem:

min I(v), v ∈ V,

365



366 Pai and Indira

which we denote by (V, I). Let vV (I) := inf{I(v) : v ∈ V } denote
the optimal value function. We assume I to be lower bounded on
V, i.e., vV (I) > −∞, and let arg minV (I) denote the (possibly void)
set {v ∈ V : I(v) = vV (I)} of optimal solutions of problem (V, I).
For ε ≥ 0, let us also denote by ε- arg minV (I) the nonempty set
{v ∈ V : I(v) ≤ vV (I) + ε} of ε-approximate minimizers of I. Recall
(cf., e.g., [4], p.1) that problem (V, I) is said to be Tykhonov well-
posed if I has a unique global minimizer on V towards which every
minimizing sequence (i.e., a sequence {vn} ⊂ V, such that I(vn)→
vV (I)) converges. Put differently, there exists a point v0 ∈ V such
that arg minV (I) = {v0}, and whenever a sequence {vn} ⊂ V is such
that Ivn → Iv0, one has vn → v0. The concept of Tykhonov well-
posedness has been extended to minimization problems admitting
non-unique optimal solutions. For our purpose in this paper, the
most appropriate well-posedness notion for such problems is the one
introduced in Bednarczuk and Penot [2] (cf. also [4], p.26):

Problem (V, I) is called metrically well-set (or M-well set) if
arg minV (I) �= ∅ and for every minimizing sequence {vn}, one has

dist(vn, arg min
V

(I))→ 0 as n→∞.

(Here dist(v, S) denotes the distance of v from the set S.) Equiva-
lently, it is easily seen that problem (V, I) is M-well set if and only
if arg minV (I) �= ∅ and the multifunction

ε→→ ε- arg min
V

(I)

is upper Hausdorff semicontinuous (uHsc) at ε = 0. (For the relevant
definition, see Section 2.) In [4], p.46, problem (V, I) is also called
stable in this case.

Tykhonov well-posedness as well as M-well setness of problem
(V, I) are conveniently characterized in terms of the notion of a firm
function (or a forcing function). A function c : T → [0,∞) is called
a firm function or a forcing function if

0 ∈ T ⊂ [0,∞), c(0) = 0 and tn ∈ T, c(tn)→ 0⇒ tn → 0.

It is well known (cf., e.g., [4], p.6) that problem (V, I) is Tykhonov
well-posed if and only if there exists a firm function c and a point
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v0 ∈ V such that

I(v) ≥ I(v0) + c[d(v, v0)], for all v ∈ V.

Likewise, it is well known (cf. [2]) that if I is a proper lower semi-
continuous function then problem (V, I) is M-well set if and only if
arg minV (I) �= ∅ and I is firmly conditioned, i.e., there exists a firm
function c on R

+ := {x ∈ R : x ≥ 0} such that

I(v) ≥ vV (I) + c( dist(v, arg min
V

(I)), for all v ∈ V.

In the classical Chebyshev theory (cf.[13, 3, 12]) as well as in the
more recent theory of best approximants in normed linear spaces,
there has been a lot of interest in studying “strong unicity” of best
approximants: An element v0 ∈ V, a finite dimensional linear sub-
space of a normed linear space X, is called a strongly unique
best approximant (SUBA) to x in V if there exists a constant
λ = λ(x), 0 < λ < 1, such that

‖x− v‖ ≥ ‖x− v0‖+ λ‖v − v0‖, for all v ∈ V.

Put differently, the strong uniqueness of a best approximant v0 ∈
V to x is precisely the Tykhonov well-posedness of problem (V, Ix)
where Ix(v) := ‖x − v‖, v ∈ V, with the associated firm function
being linear: c(t) = λt, t ∈ T . The problem (V, Ix) is also said to be
linearly conditioned in this case.

Given a finite dimensional subspace V of a normed linear space
X and x ∈ X, let us denote by PV (x) the (nonempty) set {v0 ∈ V :
‖x−v0‖ = dist(x, V )} of best approximants to x in V. In this case
the multifunction X : x→→PV (x) of X into V is called the metric
projection multifunction. Recall (cf., e.g., [12], p.372) that V
is said to be Chebyshev if PV (x) �= ∅, for each x ∈ X. In case
V is non-Chebyshev, Li [11] introduced the following definition: The
metric projection multifunction PV : X→→V is said to be Hausdorff
strongly uniquely at x ∈ X if there exists a constant λ(x) > 0,
such that ‖x − v‖ ≥ dist(x, V ) + λ(x) dist(v, PV (x)), for all v ∈ V.
Note that Hausdorff strong uniqueness of the multifunction PV at x
is precisely M-well setness of the problem (V, Ix) with the associated
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firm function cx being linear: cx(t) = λ(x)t. In this case problem
(V, Ix) is also said to be linearly conditioned.

The problem of approximating simultaneously a data set in a
given space by a single element of an approximating family arises
naturally in many practical situations (cf., e.g., [6, 9]). One way to
do this is to cover the given data set (assumed to be bounded) by
a ball of minimal radius among those centered at the points of the
approximating family. The problem of best simultaneous approxi-
mation in this sense coincides with problem (V, IF ), where V, a finite
dimensional subspace of a normed linear space X, is the approximat-
ing family, and F, a nonempty bounded subset of X, is the data set.
The objective function in this problem is IF : V → R, which mea-
sures “worstness” of an element v ∈ V as a representer of F, defined
by

IF (v) = r(F ; v), where r(F ; v) := sup{‖f − v‖ : f ∈ F}.
The optimal value function vV (IF ) in this case is denoted rV (F ).

Thus the “intrinsic error” in the problem of approximating simulta-
neously all the elements f ∈ F by the elements of V is the number
rV (F ) := inf{r(F ; v) : v ∈ V }, called the Chebyshev radius of F
in V . It is the minimal radius of a ball (if one such exists) centered
at a point in V and covering F. The centers of all such balls are
precisely the elements of the set arg minV (IF ) which in this case will
be denoted by CV (F ). A typical element of the set

CV (F ) := {v0 ∈ V : r(F ; v0) = rV (F )}
is called a best simultaneous approximant or a restricted cen-
ter of F in V . When the bounded sets F are allowed to range over
a certain family F of nonempty closed and bounded subsets of X,
the multifunctions CV : F →→V, with values CV (F ), F ∈ F , is called
the restricted center multifunction. Note that in case F is a
singleton {x}, x ∈ X, rV (F ) is the distance of x from V, denoted by
dist(x, V ), and CV (F ) is precisely the set PV (x) of all best approxi-
mants to x in V.

Let F ∈ F . Analogously, as in the case of a SUBA, an element
v0 ∈ V is called a strongly unique best simultaneous approxi-
mant (SUBSA) to F in V if there exists a constant λ = λV (F ) > 0
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such that

r(F ; v) ≥ r(F ; v0) + λ‖v − v0‖, for all v ∈ V.

Likewise, in case CV (F ) is not a singleton, the set F is said to
admit Hausdorff strongly unique best simultaneous approx-
imant (H-SUBSA) in V if there exists a constant λ = λV (F )) > 0
such that for all v ∈ V,

r(F ; v) ≥ rV (F ) + λ dist(v, CV (F )).

Clearly, F admits a SUBSA (resp. a H-SUBSA) in V if and only
if problem (V, IF ) is Tykhonov well-posed (resp. M-well set) and
linearly conditioned. The triplet (X, V,F) is said to satisfy property
SUBSA (resp. property H-SUBSA) if F admits SUBSA (resp.
H-SUBSA) in V for every F ∈ F .

Although uniqueness of best simultaneous approximants was
studied previously in many articles (cf., e.g., [5, 8, 1, 16]), it is
surprising that strong uniqueness was not treated in these articles.
Apparently, in a general framework, strong uniqueness of best simul-
taneous approximation was explored for the first time in [10]. Triplets
(X, V,F) satisfying SUBSA and other related properties were inves-
tigated in [14], and in [15] certain well-posedness aspects of these no-
tions were studied. More recently in [7], Hausdorff strong uniqueness
of best simultaneous approximation was studied. Given a finite di-
mensional subspace V and a certain family F of nonempty closed and
bounded subsets of C0(T ) we mainly studied there the lower semi-
continuity of the restricted center multifunction CV : F →→V . We
also explored in [7] an intrinsic characterization of the subspace V
(called property (Li) which was introduced earlier in [11] for charac-
terizing lower semicontinuity of the metric projection multifunction)
which yields lower semicontinuity of CV as well as Hausdorff strong
uniqueness of best simultaneous approximants in V.

In the present paper which complements for the most part our
study in [7], we are mainly concerned in establishing the equiva-
lence of Hausdorff continuity and Hausdorff Lipschitz continuity of
the restricted center multifunction CV : F →→V, where V is a finite
dimensional subspace of C0(T ) and F is a certain family of nonempty
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closed and bounded subsets of C0(T ). This is presented in Section 3.
A similar investigation in [11] for the metric projection multifunc-
tion is extended here to the restricted center multifunction. Section
2 mainly describes the preliminaries required for this purpose.

2 Preliminaries

Throughout the following, X will be a (real) normed linear space
which for the most part will be the Banach space C0(T ), where T is a
locally compact Hausdorff space, and V will be a finite dimensional
subspace of X.

Let us recall that C0(T ) consists of all continuous function f :
T → R vanishing at infinity; i.e., a continuous function f is in
C0(T ) if and only if for each ε > 0, the set {t ∈ T : ‖f(t)‖ ≥ ε} is
compact. We endow C0(T ) with the norm:

‖f‖ := max{|f(t)| : t ∈ T}, f ∈ C0(T ).

With X as a normed linear space, we denote by CL(X) (resp.
CLB(X), resp. K(X)) the class of all nonempty closed (resp.
nonempty closed and bounded, resp. nonempty compact) subsets
of X. The lower (resp. upper) Vietoris topology τ−V (resp. τ+

V )
on CL(X) is the one generated by all sets of the form V − := {A ∈
CL(X) : A ∩ V �= ∅} (resp. V + := {A ∈ CL(X) : A ⊂ V }) as
V runs over all open subsets of X. If T is a topological space, by a
multifunction Γ : T →→X, we mean a set-valued function from T
to CL(X). A multifunction Γ : T →→X is said to be lower semi-
continuous (resp. upper semicontinuous) abbreviated lsc (resp.
usc) if it is continuous as a function from T to CL(X) equipped with
τ−V (resp. τ+

V ). The lower (resp. upper) Hausdorff topology τ−H
(resp. τ+

H ) on CL(X) is the one for which a neighbourhood base at
A0 ∈ CL(X) consists of classes of the type {A ∈ CL(X) : A0 ⊂
Bε(A)} (resp. {A ∈ CL(X) : A ⊂ Bε(A0)}). Here Bε(A0) denotes
the set {x ∈ X : dist(x, A0) < ε}. A multifunction Γ : T →→X is said
to be upper Hausdorff semicontinuous (resp. lower Hausdorff
semicontinuous), abbreviated uHsc (resp. lHsc), if it is continuous
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as a function from T to CL(X) equipped with τ+
H (resp. τ−H ). It is

said to be Hausdorff continuous if it is both uHsc as well as lHsc.
For the most part, we are concerned here with CLB(X) which is
equipped with the Hausdorff metric H defined by

H(A, B) := max{e(A, B), e(B, A)}, A, B ∈ CLB(X).

Here e(A, B) := sup{dist(a, B) : a ∈ A} denotes the excess of A over
B. Whenever F ⊂ CLB(X), we shall regard F as a metric space
endowed with the induced Hausdorff metric topology. We need to
recall the following result (cf. [15], Theorem 4.4.8) which is easy to
prove.

Theorem 2.1 Let X be a normed linear space, V be a finite di-
mensional subspace of X and F ⊂ CLB(X). If the triplet (X, V,F)
satisfies property H-SUBSA, then the multifunction CV : F →→V is
pointwise Lipschitz uHsc. More precisely at each F0 ∈ F , we have

e(CV (F ), CV (F0)) ≤ 2(λV (F0))−1H(F, F0), for all F ∈ F .

Now let X = C0(T ). Recall that a finite dimensional subspace V
of C0(T ) is called a Haar subspace if for each v ∈ V \ {0}, card
Z(v) ≤ dimV − 1. Here we use the notation card(A) to denote the
cardinality of A and Z(v) to denote the set of all zeros of v. Let

ΩV (X) := {F ∈ CLB(X) : rX(F ) < rV (F )}.

It is convenient to restate here the following theorem from [14]
which summarizes the main characteristizations of Haar subspaces
of C0(T ) in terms of best simultaneous approximants of sets.

Theorem 2.2 For a finite dimensional subspace V of C0(T ), the
following statements are equivalent.

(i) V is Haar.

(ii) The triplet (X, V, ΩV (X)) satisfies property SUBSA.
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(iii) For each F ∈ ΩV (X), CV (F ) is a singleton and the multifunc-
tion CV : ΩV (X)→→V is point-wise Hausdorff Lipschitz con-
tinuous, i.e., for each F ∈ ΩV (X), there exists β = β(F ) ≥ 2
such that

‖CV (F )− CV (G)‖ ≤ βH(F, G)

for every G ∈ ΩV (X). Here if CV (F ) is a singleton and
CV (F ) = {v0}, we simply write CV (F ) for the element v0.

Furthermore, if T is a connected metric space, then all the above
statements are equivalent to:

(iv) UV = SUV , where

UV := {F ∈ ΩV (X) : F has a unique best simultaneous approx-
imant in V } and

SUV := {F ∈ ΩV (X) : F has a SUBSA in V }.

Let us now recall the following extension of Haar property due
to W. Li [11].

Definition 2.3 [11] A finite dimensional subspace V of C0(T ) is said
to satisfy property (Li) if for every v ∈ V \ {0},

card (bd Z(v)) ≤ dim{p ∈ V : p|int Z(v) = 0} − 1.

(Here bd (A) (resp. int (A) denotes the boundary (resp. the interior)
of set A.)

Clearly, if T is connected, property (Li) coincides with the Haar
property. Li [11] has shown that the above property of V is equivalent
to Hausdorff Lipschitz continuity of the metric projection multifunc-
tion PV : X→→V. This result was extended in [7] to the restricted
center multifunction as follows. Denoting by KV (X) the class of sets

{F ∈ K(X) : rX(F ) < rV (F )},
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We have:

Theorem 2.4 [7] For a finite dimensional subspace V of C0(T ) the
following statements are equivalent.

(i) The multifunction CV : KV (X)→→V is lsc.

(ii) V satisfies property (Li).

Let us remark that Theorem 2.3 was established in [7] for a
slightly more general class of sets denoted by s-KV (X) there, which
consists of sets F in CLB(X) that are sup-compact w.r.t. V and
satisfy rV (F ) > rX(F ). However, throughout the sequel in this pa-
per, we shall confine ourselves to the class F = KV (X) equipped
with the Hausdorff metric H.

We also need to recall here the following theorem which was estab-
lished in [7]. This theorem extends to restricted center multifunction
a similar result due to W. Li [11] for metric projection multifunction.

Theorem 2.5 [7] Let V be a finite dimensional subspace of C0(T ). If
V satisfies property (Li) then the triplet (C0(T ), V, KV (X)) satisfies
property H-SUBSA.

3 Equivalence of Hausdorff Continuity and
Hausdorff Lipschitz Continuity of Restricted
Center Multifunction in C0(T)

We have seen in Theorem 2.1 that if V is a finite dimensional sub-
space of a normed linear space X and F ⊂ CLB(X), then H-SUBSA
property of the triplet (X, V,F) entails pointwise Lipschitz upper
Hausdorff semicontinuity of the restricted center multifunction CV .
Here we show that for a finite dimensional subspace V of C0(T ), prop-
erty (Li), in fact, ensures Lipschitz continuity of the multifunction
CV . Since by Theorem 2.4, property (Li) of V yields property H-
SUBSA of the triplet (C0(T ), V, KV (X)), which in turn, gives point-
wise Lipschitz upper Hausdorff semicontinuity of CV , it is enough to
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establish pointwise Lipschitz lower Hausdorff semicontinuity of the
multifunction CV in this case.

Lemma 3.1 The restricted center multifunction CV : KV (X)→→V
is pointwise Lipschitz continuous at F ∈ KV (X) if and only if there
exist constants λ > 0 and ε > 0 such that H(CV (F ), CV (G)) ≤
λH(F, G) for all G ∈ KV (X) with H(F, G) ≤ ε.

Proof. Suppose that there exist λ > 0 and ε > 0 such that for all
G ∈ KV (X) with H(F, G) ≤ ε, we have

H(CV (F ), CV (G)) ≤ λH(F, G). (3.1)

Consider G ∈ KV (X) with H(F, G) > ε. Let f0 ∈ F be arbitrary and
pick g0 ∈ G such that supg∈G ‖f0 − g‖ = ‖f0 − g0‖. Let f1 ∈ F be
such that ‖f1 − g0‖ < d(g0, F ) + δH(F, G) for a small δ > 0. Then,

‖f0 − g0‖ ≤ ‖f0‖+ ‖f1 − g0‖+ ‖f1‖
< 2 sup

f∈F
‖f‖+ H(F, G) + δH(F, G).

Now for any u ∈ CV (F ) and v ∈ CV (G), we have

‖u− v‖ ≤ ‖u‖+ ‖v‖ ≤ 2(sup
f∈F
‖f‖+ sup

g∈G
‖g‖)

≤ 2(sup
f∈F
‖f‖+ sup

g∈G
‖f0 − g‖+ ‖f0‖)

≤ 4 sup
f∈F
‖f‖+ 2 sup

g∈G
‖f0 − g‖

= 4 sup
f∈F
‖f‖+ 2‖f0 − g0‖

< 8 sup
f∈F
‖f‖+ 2(1 + δ)H(F, G).

Therefore,

‖u− v‖
H(F, G)

≤ 8 supf∈F ‖f‖+ 2(1 + δ)H(F, G)
H(F, G)

.

If H(F, G) ≥ supf∈F ‖f‖, then ‖u− v‖ ≤ (10 + 2δ)H(F, G).
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If H(F, G) < supf∈F ‖f‖ and H(F, G) > ε, then

‖u− v‖ ≤ ε−1(10 + 2δ)

(
sup
f∈F
‖f‖

)
H(F, G).

Hence,

H(CV (F ), CV (G))

≤ max

{
(10 + 2δ), ε−1(10 + 2δ) sup

f∈F
‖f‖

}
H(F, G).

Since this holds for δ > 0 arbitrary, we conclude that

H(CV (F ), CV (G)) ≤ max{10, 10ε−1 sup
f∈F
‖f‖}H(F, G).

This together with (3.1) gives the required Lipschitz continuity.
The converse part is obvious. �

Theorem 3.2 Let V be a finite dimensional subspace of C0(T ). If
V satisfies property (Li) then the restricted center multifunction CV :
KV (X)→→V is pointwise Hausdorff Lipschitz continuous on KV (X).

Proof. Since V satisfies property (Li) using Theorems 2.4 and 2.1,
we get pointwise Lipschitz upper Hausdorff semicontinuity of the
multifunction CV on KV (X) ; i.e., there exists λ(F ) > 0 such that
for every G ∈ KV (X),

e(CV (G), CV (F )) ≤ λ(F )H(F, G).

Denoting by GF the subspace span {v2−v1 : v1, v2 ∈ CV (F )}, we
have for any p ∈ CV (G) and v ∈ CV (F ).

d(p− v,GF ) ≤ d(p, CV (F )) ≤ λ(F )H(F, G).

Let q ∈ GF be such that ‖p− v − q‖ ≤ λ(F )H(F, G).
Let Z(GF ) :=

⋂
{Z(v1−v2) : v2, v2 ∈ CV (F )} and M = intZ(GF ).

For any v ∈ CV (F ), let

δ(v) = rV (F )−max
f∈F

max
t∈T\M

|f(t)− v(t)|.
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If δ(v) ≥ (λ(F ) + 2)H(F, G) then we claim that p + q ∈ CV (G).
Indeed, for any t ∈ T \M and g ∈ G,

|g(t)− p(t)− q(t)| ≤ |g(t)− f(t)|+ |f(t)− v(t)|+
|v(t)− p(t)− q(t)|

≤ ‖g − f‖+ rV (F )− (λ(F ) + 2)H(F, G)
+ λ(F )H(F, G)

≤ rV (F )−H(F, G) ≤ rV (G).

For t ∈M, q(t) = 0. Hence for all g ∈ G and t ∈M,

|g(t)− p(t)− q(t)| = |g(t)− p(t)| ≤ rV (G).

Hence, supg∈G ‖g − p− q‖ ≤ rV (G), i.e., p + q ∈ CV (G).
Therefore,

d(v, CV (G)) ≤ ‖v − p− q‖ ≤ λ(F )H(F, G).

Now for v ∈ CV (F ) with δ(v) ≤ (λ(F )+2)H(F, G) we will prove
that there exists k(F ) > 0 such that d(v, CV (G)) ≤ k(F )H(F, G)
whenever H(F, G) ≤ ε, for some ε > 0.

For any fixed relative interior point v0 of CV (F ), denote by δ the
value of δ(v0). Hence δ > 0. Let us take

ε = min
{

δ/4
αν

,
δ/4
α

}
,

where ν =

sup
v∈CV (F )

‖v − v0‖

δ/2
and α = λ(F ) + 2.

Now let v ∈ CV (F ) be such that

δ(v) ≤ (λ(F ) + 2)H(F, G) for H(F, G) ≤ ε.

Then

max
f∈F

max
t∈T\M

|f(t)− v(t)| = rV (F )− δ(v)

≥ rV (F )− αH(F, G)

≥ rV (F )− δ

2
.
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Hence the set W = {(f, t) ∈ F × (T \M) : |f(t)− v(t)| ≥ rV (F )− δ
2}

is nonempty. Also for (f, t) ∈W, if f(t)− v(t) ≥ 0, then

f(t)− v(t) ≥ rV (F )− δ

2
≥ f(t)− v0(t),

i.e., v0(t)− v(t) ≥ 0. If f(t)− v(t) ≤ 0, then

f(t)− v(t) ≤ δ

2
− rV (F ) ≤ f(t)− v0(t),

i.e., v0(t)− v(t) ≤ 0. Hence

(f(t)− v(t))(v0(t)− v(t)) ≥ 0 (3.2)

and

‖v − v0‖ ≥ |f(t)− v(t)| − |f(t)− v0(t)|
≥ rV (F )− δ

2
− rV (F ) + δ

=
δ

2
. (3.3)

Thus ν ≥ 1, and consequently ε = δ/4
αν . We now define µ = αH(F,G)

δ/2

so that 0 < µ < 1 and prove that v + µ(v0 − v) is an element of
CV (F ) satisfying δ(v + µ(v0 − v)) ≥ αH(F, G). For (f, t) ∈W, using
(3.2) and (3.3), we have

|f(t)− v(t)− µ(v0(t)− v(t))| = |f(t)− v(t)| − µ|v0(t)− v(t)|
≤ rV (F )− µδ

2
= rV (F )− αH(F, G).

For (f, t) ∈ F × (T \M) and (f, t) �∈W,

|f(t)− v(t)− µ(v0(t)− v(t))| ≤ |f(t)− v(t)|+ µ|v0(t)− v(t)|
≤ rV (F )− δ

2
+

αH(F, G)
δ/2

‖v0 − v‖
≤ rV (F )− 2ανH(F, G) +

ανH(F, G)
≤ rV (F )− αH(F, G).
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Hence, supf∈F ‖f − v − µ(v0 − v)‖T\M ≤ rV (F )− αH(F, G), i.e.,

δ(v + µ(v0 − v)) ≥ αH(F, G).

Thus, d(v + µ(v0 − v), CV (G)) ≤ λ(F )H(F, G). Therefore,

d(v, CV (G)) ≤ λ(F )H(F, G) + µ‖v0 − v‖
≤ λ(F )H(F, G) + ανH(F, G).

Hence, for H(F, G) ≤ ε,

d(v, CV (G)) ≤ min{α, (λ(F ) + αν)}H(F, G).

Now using Lemma 3.1, there exists k(F ) > 0 such that for every
v ∈ CV (F ),

d(v, CV (G)) ≤ k(F )H(F, G).

This proves the pointwise Lipschitz lower Hausdorff semicontinuity
of the multifunction CV .

�

We note that since for a finite dimensional subspace V of C0(T ),
the multifunction CV is compact-valued, lower semicontinuity is
equivalent to lower Hausdorff semicontinuity for CV . Hence we can
summarize Theorems 2.1, 2.3, 2.4 and 3.1 into the next theorem.

Theorem 3.3 Let V be an n-dimensional subspace of C0(T ). Then
the following statements are equivalent.

(i) V satisfies property (Li).

(ii) The multifunction CV : KV (X)→→V is Hausdorff continuous.

(iii) The triplet (X, V, KV (X)) satisfies property H-SUBSA.

(iv) The multifunction CV : KV (X)→→V is pointwise Hausdorff
Lipchitz continuous.
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Abstract

Let f(z) = a0P0(z) + · · · + anPn(z) be a polynomial of
degree n, given as an orthogonal expansion. There exist nu-
merous estimates for the imaginary parts of the zeros of f in
terms of the coefficients a0, . . . , an. We describe two methods
which give access to most of these results. The first method
is based on a simple invariance principle of a norm and ap-
plies to polynomials with arbitrary complex coefficients. The
second method, which we call division by inserting a weight,
applies to polynomials with real coefficients. As applications,
we establish certain L2 inequalities and lower bounds for Van-
dermonde type determinants of orthogonal polynomials. The
paper contains some new results as well as new proofs of known
results.

1 Introduction

Polynomials were one of the favorite subjects of the late Professor
Ambikeshwar Sharma. He particularly admired the work of P. Turán
who became one of his close friends.

This paper deals with a topic that was initiated by P. Turán [19].
In 1950, he asked for bounds for the imaginary parts of the zeros of
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a polynomial f . He pointed out that the moduli of the coefficients
of the standard representation (Maclaurin expansion)

f(z) = b0 + b1z + · · ·+ bnzn (bn �= 0) (1.1)

are not appropriate quantities for obtaining good results. His discus-
sion led him to the conclusion that the coefficients of an orthogonal
expansion

f(z) = a0P0(z) + a1P1(z) + · · ·+ anPn(z) (an �= 0) (1.2)

will be more suitable.
Utilizing the special properties of the Hermite polynomials

Hn(z) := (−1)nez2 dn

dzn

(
e−z2

)
(n ∈ N0),

Turán himself [19, 20, 21] obtained various results for the Hermite
expansion of a polynomial. Later Specht [14, 15, 16, 17] proved sev-
eral theorems for an arbitrary orthogonal expansion (1.2) with an
orthogonality relation supported on the real line. Further contribu-
tions to this topic were given by Giroux [4], Gol’berg–Malozemov
[5], Lajos [7], and later by the author [10, 11, 13]. In this article, we
describe two general methods which allow us a systematic approach
to most of these results. We also include some applications.

The paper is organized as follows. In Section 2, we recall some
basic facts about orthogonal polynomials and fix our notation. In
Section 3, we show that a number of known results on zeros of or-
thogonal expansions with arbitrary complex coefficients can be seen
as consequences of a simple invariance principle of the norm induced
by the orthogonality relation. In Section 4, we present a method that
applies to orthogonal expansions with real coefficients. The idea of
this method is a polynomial division by inserting a weight into the
orthogonality relation.

The results of Sections 3 and 4 lead to upper bounds that can
be expressed in terms of an L2 norm. Furthermore, the method
of inserting a weight leads to Vandermonde type determinants of
orthogonal polynomials. Therefore, in Section 5, we deduce new
lower bounds for L2 norms and for Vandermonde type determinants.
Some of these results are sharp.
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Finally, in Section 6 we discuss variants and refinements where
the role of the moduli of the imaginary parts, or equivalently, of the
distances from the real line, is taken by the distances from a finite
interval.

2 Notation

Now we introduce some notation and recall some facts about orthog-
onal polynomials referring to [1, 3, 18] for details and proofs.

Let σ be an m-distribution, that is, a non-decreasing bounded
function σ : R → R which attains infinitely many distinct values
and is such that the moments

µn :=
∫ ∞
−∞

xndσ(x) (n ∈ N0)

exist (see [3], where the term m-distribution seems to have been used
for the first time). Then there exists a uniquely determined sequence
of polynomials

P0(z), P1(z), . . . , Pn(z), . . . ,

called the system of monic orthogonal polynomials with respect to σ,
with the following properties:

(i) each Pn is a monic polynomial of degree n;

(ii)
∫∞
−∞ Pm(x)Pn(x) dσ(x) = 0 for m �= n.

The zeros of Pn, where n ∈ N, are real and those of any two
consecutive polynomials Pn and Pn+1 interlace. Furthermore, there
exists a recurrence formula

Pν(z) = (z − αν)Pν−1(z)− βν−1Pν−2(z) (ν = 1, 2, . . .), (2.1)

where P−1(z) ≡ 0, P0(z) ≡ 1, β0 := 1, and (αν)ν∈N is a sequence of
real numbers and (βν)ν∈N is a sequence of positive numbers. Con-
versely, if a sequence of polynomials (Pν)ν∈N0 is defined by such a
recurrence formula, then it is necessarily a monic orthogonal sys-
tem with respect to some m-distribution σ. This result is known as
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Favard’s theorem [2], [1, pp. 21–22] although equivalent forms were
stated earlier; see [9, p. 64] for a historical comment.

In some of our considerations, the coefficient of zn−1 in the poly-
nomial Pn will be needed. We denote it by

qn−1 :=
P

(n−1)
n (0)
(n− 1)!

. (2.2)

Clearly, qn−1 ∈ R.
For arbitrary polynomials f and g, we introduce the inner product

〈f, g〉 :=
∫ ∞
−∞

f(x)g(x) dσ(x) (2.3)

and consider the norm

‖f‖ := 〈f, f〉1/2 =
(∫ ∞
−∞
|f(x)|2 dσ(x)

)1/2

. (2.4)

In dealing with orthogonal expansions, important quantities are the
numbers

γν := ‖Pν‖2 (ν ∈ N0). (2.5)

Let us call them the metric constants of the orthogonal system. If f
is given by (1.2), then

‖f‖ =

(
n∑

ν=0

γν |aν |2
)1/2

. (2.6)

The numbers βν appearing in (2.1) and the numbers (2.5) are
related by the equations

βν =
γν

γν−1
(ν ∈ N). (2.7)

Further significant constants of an orthogonal system are the
numbers

Cm,k :=

max
{‖Qk‖2

γk
: Qk a monic divisor of Pm, deg Qk = k

}
,

(2.8)
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where k < m. They are always greater than 1 since amongst all monic
polynomials of degree k, the orthogonal polynomial Pk has smallest
norm.

The following statement will be of interest. For its proof, we may
refer to the considerations in [13, pp. 206–207].

Proposition 2.1 Let (Pν)ν∈N0 be a system of monic orthogonal
polynomials. Then, for n ∈ N and α ∈ R, there exists a sequence
of monic orthogonal polynomials (P̃ν)ν∈N0 with respect to some m-
distribution σ̃ such that P̃ν = Pν for ν = 0, . . . , n − 1 and P̃n =
Pn + αPn−1. Moreover, σ̃ can be chosen such that the metric con-
stants of the two systems are the same.

Thus, if we take α = �(an−1/an), then

f(z) =
n−2∑
ν=0

aνPν(z) + ian

(
	an−1

an

)
Pn−1(z) + anP̃n(z)

is an orthogonal expansion of (1.2) for which the corresponding norm
of f has decreased if α �= 0.

We also note that for k < m < n, the constants Cm,k of the two
orthogonal systems in Proposition 2.1 are the same.

3 Polynomials with Complex Coefficients

In [13], we established a unified approach to zeros of an orthogonal
expansion with arbitrary complex coefficients. Using the concept of
majorization [8] in conjunction with matrix theory [6], we proved the
following general theorem which includes most of the former results
as special cases.

Theorem 3.1 Let f be a polynomial given as an orthogonal ex-
pansion (1.2) with complex coefficients and denote by z1, . . . , zn the
zeros of f arranged in any order. Let φ be a non-decreasing convex
function on [0,∞) such that φ(0) = 0. Define

κ := 	an−1

an
, I(f) :=

√√√√κ2 +
n−2∑
ν=0

γν

γn−1

∣∣∣∣aν

an

∣∣∣∣
2

(3.1)
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and let c = −tκ for some t ∈ [0, 1/2]. Then,

|	z1 − c| ≤ I(f) + |κ + 2c|
2

(3.2)

and
k∑

j=1

φ
( |	zj − c|)

≤ φ

(
I(f) + |κ + 2c|

2

)
+ φ

(
I(f)− |κ + 2c|

2

)
(3.3)

+ (k − 2)φ(|c|) (k = 2, . . . , n).

Choosing φ(x) ≡ x and c = −κ/2, we obtain from (3.2) the fol-
lowing result by Specht [17, Satz 1] and, independently, by Gol’berg–
Malozemov [5, Theorem 1]. It also improves upon an earlier result
by Specht [14, Satz 3].

Corollary 3.2 In the notation of Theorem 3.1, we have∣∣∣	zν +
κ

2

∣∣∣ ≤ I(f)
2

(ν = 1, . . . , n) . (3.4)

Next, choosing φ(x) ≡ x, c = 0, and k = n, we obtain from (3.3)
the following slight improvement of a result by Giroux [4].

Corollary 3.3 In the notation of Theorem 3.1, we have
n∑

j=1

|	zj | ≤ I(f) . (3.5)

There is a relatively large family of polynomials for which equality
is attained in (3.5).

Proposition 3.4 In (3.5), equality occurs for all polynomials of the
form

f(z) = an−1Pn−1(z) + anPn(z) (an−1, an ∈ C, an �= 0) (3.6)

and for all polynomials that can be deduced from (3.6) by replacing
some of the zeros of f by their conjugates.
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Finally, choosing φ(x) ≡ x2 and k = n, and noting that
n∑

j=1

	zj = −κ,

we obtain from (3.3) the following result by Lajos [7].

Corollary 3.5 In the notation of Theorem 3.1, we have
n∑

j=1

(	zj

)2 ≤ κ2 + I(f)2

2
.

Amongst all of these results, Corollary 3.3 appears to be the
strongest as Proposition 3.4 suggests. We shall show that Corollar-
ies 3.2 and 3.5 are very easy consequences and even Theorem 3.1
in its full generality can be deduced from Corollary 3.3 without in-
volving any special tools apart from convexity properties. Moreover,
following Giroux [4], the proof of Corollary 3.3 can be based on a
simple and geometrically evident invariance principle of the norm
(2.4).

Proof of Corollary 3.3. By (2.6), we have

‖f‖2 ≥ |an|2
(

γn + γn−1

∣∣∣∣an−1

an

∣∣∣∣
2
)

. (3.7)

Using the notation (2.2), we conclude from the orthogonal expansion
of f that

f(z) = anzn +
(
anqn−1 + an−1

)
zn−1 + O(zn−2) as z →∞.

Hence, by the first formula of Viete,

qn−1 +
an−1

an
= −

n∑
j=1

zj , (3.8)

and so (3.7) may be rewritten as

‖f‖2 ≥ |an|2

γn + γn−1


(�an−1

an

)2

+


 n∑

j=1

	zj




2


 . (3.9)
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Now, as is geometrically evident, for x ∈ R, the value of |f(x)| does
not change if we replace one of the zeros of f by its conjugate. Hence
‖f‖ is invariant under a reflection of some of the zeros on the real
line and the same is true for �(an−1/an). Therefore (3.9) can be
strengthened to

‖f‖2 ≥ |an|2

γn + γn−1


(�an−1

an

)2

+


 n∑

j=1

|	zj |



2


 , (3.10)

which is an equivalent form of (3.5). �

Proof of Proposition 3.4. Clearly, for the polynomial (3.6)
equality holds in (3.7) and in (3.9). Consequently, it must also hold
in (3.10). Finally, we note that equality in (3.10) is preserved under
a reflection of some of the zeros of f on the real line although the
orthogonal expansion of the resulting new polynomial will have more
than two non-trivial terms. �

Proof of Corollary 3.2. By (3.8), we have

(
2	zν + κ

)2 =


2	zν −

n∑
j=1

	zj




2

≤

 n∑

j=1

|	zj |



2

,

which shows that Corollary 3.3 implies Corollary 3.2. �

Proof of Corollary 3.5. Using (3.8), we easily verify that

2
n∑

j=1

(	zj

)2 − (	an−1

an

)2

= 2
n∑

j=1

(	zj

)2 −

 n∑

j=1

	zj




2

≤

 n∑

j=1

|	zj |



2

,

which shows that Corollary 3.3 implies Corollary 3.5. �
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For the proof of Theorem 3.1, we need an auxiliary result which
may be seen as an exercise for students.

Lemma 3.6 Let y1, . . . , yn ∈ R and let Y := 1
2(y1 + · · ·+ yn). Then

k∑
j=1

|yj − Y | ≤
n∑

j=1

|yj |+ (k − 2) |Y | (k = 2, . . . , n). (3.11)

Proof. Take any k ∈ {2, . . . , n}. Let N1 be the set comprising the
indices of the non-negative differences amongst y1 − Y, . . . , yk − Y
and let N2 := {1, . . . , k} \N1.

If N1 = ∅ or N2 = ∅, then these differences all have the same sign
and therefore

k∑
j=1

|yj − Y | =

∣∣∣∣∣∣
k∑

j=1

(yj − Y )

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

j=k+1

yj + (k − 2)Y

∣∣∣∣∣∣ ,
which implies (3.11) for the chosen k.

Now, suppose that N1 �= ∅ and N2 �= ∅. Denote by n1 and n2 the
number of elements of N1 and N2, respectively. Then |n1 − n2| ≤
k − 2, and therefore

k∑
j=1

|yj − Y | =
∑
j∈N1

(yj − Y ) −
∑
j∈N2

(yj − Y )

=
∑
j∈N1

yj −
∑
j∈N2

yj − (n1 − n2)Y

≤
k∑

j=1

|yj |+ (k − 2) |Y | ,

which shows again that (3.11) holds for the chosen k. This completes
the proof. �

Proof of Theorem 3.1. From (3.4), we deduce that

|	z1| ≤ I(f) + |κ|
2

. (3.12)
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Since x �→ |	z1 + x| is a convex function, we find by a convex com-
bination of (3.4) for ν = 1 and (3.12) that

∣∣∣	z1 + λ
κ

2

∣∣∣ ≤ λ
∣∣∣	z1 +

κ

2

∣∣∣+ (1− λ) |	z1| ≤ I(f) + (1− λ) |κ|
2

for every λ ∈ [0, 1]. Substituting λ = 2t, we obtain (3.2).
Next, from Lemma 3.6 in conjunction with (3.5), we deduce that

k∑
j=1

∣∣∣	zj +
κ

2

∣∣∣ ≤ I(f) + (k − 2)
∣∣∣κ
2

∣∣∣ (k = 2, . . . , n).

Trivially, by (3.5), we also have

k∑
j=1

|	zj | ≤ I(f) (k = 2, . . . , n).

Now, a convex combination of these two inequalities for k = 2, . . . , n
leads to the inequalities (3.3) for φ(x) ≡ x.

The results obtained so far say equivalently that the vector( |	z1 − c| , . . . , |	zn − c|)
is weakly majorized by the vector(

I(f) + |κ + 2c|
2

,
I(f)− |κ + 2c|

2
, |c| , . . . , |c|

)
∈ R

n

(see the definition in [8, p. 10]). Since a weak majorization is pre-
served under application of a non-decreasing convex function (see [8,
p. 116, Theorem A.2]), we obtain (3.3) in its full generality. �

4 Polynomials with Real Coefficients

One of the most perfect and flexible results on estimating the mod-
uli of the zeros of the polynomial (1.1) in terms of the moduli of
its coefficients is the theorem of van Vleck–Montel–Ballieu [9, Theo-
rem 9.3.2]. The basic idea of its proof is a polynomial division (see
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[9, p. 5] for the principle). Let z1, . . . , zn be the zeros of f ordered
as |z1| ≤ · · · ≤ |zn|. Then f has a factorization

f(z) = g(z)
n∏

j=k

(z − zj) .

The coefficients of the standard representation of g can be expressed
in terms of zk, . . . , zn and some of the coefficients of f . From these
relations, an upper bound for |zk| can be deduced. Unfortunately, for
a given orthogonal system, there is no simple relation between the
zeros zk, . . . , zn and the coefficients of the orthogonal expansions of
f and g. However, in the case of polynomials with real coefficients,
the can proceed as follows.

Let z1, z1, . . . , z�, z� be 	 pairs of conjugate zeros of f including
the possibility that such a pair constitutes a real double zero. Then,
setting

w(z) :=
�∏

j=1

(z − zj)(z − zj), (4.1)

we have a factorization

f(z) := g(z)w(z). (4.2)

Clearly,

σ[w] : x �−→
∫ x

−∞
w(t) dσ(t)

is also an m-distribution which defines an inner product 〈·, ·〉w, say.
Furthermore, dσ[w](x) = w(x)dσ(x). Now it follows from (4.2) that
〈f, h〉 = 〈g, h〉w for any polynomial h. In other words, we can fac-
tor out w by letting it become a weight. In order to progress with
this idea, we have to study relations between our original orthogonal
system and the one with respect to σ[w].

From now on, we write ‖·‖w for the norm induced by σ[w]. Apart
from the norm and the inner product, we denote all quantities which
are associated with σ[w] by attaching a superscript [w] to the corre-
sponding quantities which are associated with σ. Thus, (P [w]

n )n∈N0
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is the monic orthogonal system with respect to σ[w] and

γ[w]
n =

〈
P [w]

n , P [w]
n

〉
w

=
∥∥∥P [w]

n

∥∥∥2

w

=
∫ ∞
−∞

(
P [w]

n (x)
)2

w(x) dσ(x) (n ∈ N0).

We now state a few auxiliary results involving the weight function
(4.1) or the polynomials P

[w]
n . For the first lemma, see [11, Lemma

2] or [9, Lemma 9.4.2] where a slightly different statement is proved.

Lemma 4.1 Let g be a polynomial of degree at most n with real
coefficients and let w be given by (4.1). Then the orthogonal expan-
sion g(z) =

∑n
ν=0 aνPν(z) of g has a continuation to a polynomial

f(z) =
∑n+2�

ν=0 aνPν(z) of degree at most n + 2	 with real coefficients
such that w is a divisor of f .

In the next lemma, it is remarkable that we have best possible
bounds for ‖P [w]

n ‖ which do not depend on w. For a reference, see
[11, Lemma 3] or [9, Lemma 9.4.4]. However, for the purpose of this
paper, it is desirable to have an independent proof for the upper
bound (see Remark 4.6 below).

Lemma 4.2 For w given by (4.1) and Cn+�,n defined by (2.8), we
have

γn ≤
∥∥∥P [w]

n

∥∥∥2 ≤ γnCn+�,n (n ∈ N0). (4.3)

These estimates are best possible. Equality is attained in the upper
estimate when w = (Pn+�/Qn)2, where Qn is the polynomial which
achieves the maximum in the definition of Cn+�,n.

Proof. We only need an alternative proof for (4.3). The first in-
equality is a simple consequence of a well-known extremal property
of orthogonal polynomials [18, Theorem 3.1.3].

Next, let g = P
[w]
n − Pn, which is a polynomial of degree at

most n− 1 with real coefficients. By Lemma 4.1 with n replaced by
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n− 1, there exists a polynomial h of degree at most n− 1 with real
coefficients such that

f(z) := h(z)w(z) =
n+2�−1∑

ν=0

aνPν(z)

and P
[w]
n (z)−Pn(z) =

∑n−1
ν=0 aνPν(z). Obviously, f has at most n−1

changes of sign on R. Denoting by ξ1, . . . , ξn+� the zeros of Pn+�, we
find by a short reflection that there exists a monic divisor Qn of
degree n of Pn+� such that

f(ξj)Qn(ξj) ≥ 0 (j = 1, . . . , n + 	);

see [9, proof of Theorem 9.4.3] where details of a similar argument
are given. Now, denote by λ1, . . . , λn+� the corresponding coefficients
of the Gaussian quadrature formula with nodes ξ1, . . . , ξn+�. This
quadrature formula is exact for polynomials up to degree 2n+2	− 1
and since its coefficients are positive, we infer that

0 ≤
n+�∑
j=1

λjf(ξj)Qn(ξj) =
∫ ∞
−∞

f(x)Qn(x) dσ(x)

=
n+2�−1∑

ν=0

aν

〈
Pν , Qn

〉
= anγn +

〈
P [w]

n − Pn, Qn

〉
= anγn +

〈
P [w]

n − Pn, Qn − Pn

〉
.

(4.4)

On the other hand, since h is of degree at most n− 1, we have

0 =
〈
h, P [w]

n

〉
w

=
〈
f, P [w]

n

〉
=

n+2�−1∑
ν=0

aν

〈
Pν , P

[w]
n

〉
= anγn +

〈
P [w]

n − Pn, P [w]
n

〉
= anγn +

∥∥∥P [w]
n − Pn

∥∥∥2
.

(4.5)

Combining (4.4) and (4.5), we find that

∥∥∥P [w]
n − Pn

∥∥∥2 ≤
〈
P [w]

n − Pn, Qn − Pn

〉
.
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Applying the Cauchy–Schwarz inequality on the right-hand side, we
deduce that ‖P [w]

n −Pn‖ ≤ ‖Qn−Pn‖, which leads to ‖P [w]
n ‖ ≤ ‖Qn‖.

Finally, recalling the definition of Cn+�,n, we readily complete the
proof of (4.3). �

Obviously, if u and v are two weight functions, then P
[uv]
n =

(P [u]
n )[v], that is, in the case of a product of weights, the factors can

be inserted successively. For this technique, the following lemma will
be helpful.

Lemma 4.3 Let

w0 := 1 and wk(z) :=
k∏

j=1

(z − zj)(z − zj) (k = 1, . . . , 	).

If |	zj | ≥ r ≥ 0 for j = 1, . . . , 	, then

∥∥∥P [wk]
n

∥∥∥2

wi

≥
∥∥∥P [wi−1]

n+1

∥∥∥2

wi−1

+ r2
∥∥∥P [wk]

n

∥∥∥2

wi−1

for 1 ≤ i ≤ k ≤ 	.

Proof. Let ξ1, . . . , ξn+1 be the zeros of P
[wi−1]
n+1 and let

∑n+1
ν=1 λνf(ξν)

be the Gaussian quadrature formula for the integral∫ ∞
−∞

f(x)wi−1(x)dσ(x).

This formula is exact for polynomials f up to degree 2n + 1. In the
following calculation, we apply it two times in order to conclude that∥∥∥P [wk]

n

∥∥∥2

wi

−
∥∥∥P [wi−1]

n+1

∥∥∥2

wi−1

=
∫ ∞
−∞

[(
P [wk]

n (x)
)2

wi(x) −
(
P

[wi−1]
n+1 (x)

)2
wi−1(x)

]
dσ(x)

=
n+1∑
ν=1

λν

[(
P [wk]

n (ξν)
)2 wi(ξν)

wi−1(ξν)
−
(
P

[wi−1]
n+1 (ξν)

)2
]
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≥ r2
n+1∑
ν=1

λν

(
P [wk]

n (ξν)
)2

= r2

∫ ∞
−∞

(
P [wk]

n (x)
)2

wi−1(x) dσ(x)

= r2
∥∥∥P [wk]

n

∥∥∥2

wi−1

.

This completes the proof. �

Lemma 4.3 can be used successively for constructing a lower
bound for γ

[w]
n := ‖P [w�]

n ‖2w�
. By Lemma 4.2,

∥∥∥P [wk]
n

∥∥∥2

w0

:=
∥∥∥P [wk]

n

∥∥∥2 ≥ γn

for k = 0, . . . , 	. Using this estimate, we can deduce from Lemma 4.3
the following result.

Lemma 4.4 Let w be given by (4.1), and suppose that |	zj | ≥ r,
where r ≥ 0 and j = 1, . . . , 	. Then

γ[w]
n ≥

�−1∑
j=0

(
	

j

)
γn+�−jr

2j + r2�
∥∥∥P [w]

n

∥∥∥2
. (4.6)

On the right-hand side of (4.6), all terms are non-negative. Hence
the estimate remains valid if we cancel some of these terms. More-
over, by Lemma 4.2, we may replace ‖P [w]

n ‖2 by γn.
Now we have collected all the auxiliary results for demonstrating

how the method of inserting a weight can be used for results on zeros.
Let f(z) =

∑n
ν=0 aνPν(z) be an othogonal expansion with real

coefficients. Suppose that f has less than k distinct real zeros of odd
multiplicity. Then there exists a factorization

f(z) = g(z)w(z), w(z) =
�∏

j=1

(z − zj)(z − zj), (4.7)
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where 	 = �(n − k)/2� + 1 and �x� denotes the greatest integer not
exceeding x. Since g will be of degree less than k, we have

0 =
〈
P

[w]
k , g

〉
w

=
〈
P

[w]
k , f

〉
= γkak +

k−1∑
ν=0

aν

〈
P

[w]
k , Pν

〉
.

From this, we conclude by using the Cauchy–Schwarz inequality and
Lemma 4.2 that

γ2
ka2

k ≤
k−1∑
ν=0

γνa
2
ν ·

k−1∑
ν=0

1
γν

〈
P

[w]
k , Pν

〉2

=
k−1∑
ν=0

γνa
2
ν ·
(∥∥∥P [w]

k

∥∥∥2 − γk

)

≤
k−1∑
ν=0

γνa
2
ν · γk

(
Ck+�,k − 1

)
.

Hence, if this inequality is violated, then f must have at least k
distinct real zeros of odd multiplicities. This leads us to the following
result.

Theorem 4.5 Let f(z) =
∑n

ν=0 aνPν(z) be a polynomial given as
an orthogonal expansion with real coefficients. Let 1 ≤ k ≤ n and
set 	 := �(n− k)/2�+ 1. If

γka
2
k >

(
Ck+�,k − 1

) k−1∑
ν=0

γνa
2
ν , (4.8)

then f has at least k distinct real zeros of odd multiplicities.

It can be shown that the constant Ck+�,k is best possible [9, The-
orem 9.4.3].

Remark 4.6 In [9, pp. 296–297], a different proof that does not
use Lemma 4.2 is given and afterwards Lemma 4.2 is obtained as a
consequence of Theorem 4.5.
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Now we turn to a second theorem. Suppose that we have again
the factorization (4.7) and let k := n− 2	 be the degree of g. Then g

has an expansion g(z) =
∑k

ν=0 cνP
[w]
ν (z). Comparing (4.7) with the

expansion of f , we infer that ck = an. Therefore,

anγ
[w]
k =

〈
P

[w]
k , g

〉
w

=
〈
P

[w]
k , f

〉
=

k∑
ν=0

aν

〈
P

[w]
k , Pν

〉
.

Using again the Cauchy–Schwarz inequality on the right-hand side,
we obtain (

anγ
[w]
k

)2 ≤
k∑

ν=0

γνa
2
ν ·
∥∥∥P [w]

k

∥∥∥2

and so

γ
[w]
k√

γk‖P [w]
k ‖

≤
√√√√ k∑

ν=0

γν

γk

∣∣∣∣aν

an

∣∣∣∣
2

=: Mk(f) . (4.9)

Now suppose that min1≤j≤� |	zj | = r while |	ζ| ≤ r for each zero ζ
of g. Employing Lemmas 4.2 and 4.4, we conclude that

γ
[w]
k√

γk‖P [w]
k ‖

≥ 1
γk

√
Ck+�,k

�−1∑
j=0

(
	

j

)
γk+�−jr

2j + r2�.

Combining this with (4.9), we arrive at

�−1∑
j=1

(
	

j

)
γk+�−jr

2j + γk

√
Ck+�,k r2�

≤ γk

√
Ck+�,k Mk(f)− γk+� .

(4.10)

It may happen that the right-hand side is negative. Then this in-
equality cannot be satisfied, which implies that f has at least k + 2
distinct real zeros of odd multiplicities. However, if the right-hand
side is non-negative, then equality in (4.10) defines a uniquely de-
termined positive r which is an upper bound for the moduli of the
imaginary parts of k + 2 zeros of f . This result may be formulated
as follows.
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Theorem 4.7 Let f(z) =
∑n

ν=0 aνPν(z) be a polynomial of degree
n given as an orthogonal expansion with real coefficients. Let k be
an integer such that n− k =: 2	 is even and positive. If

a2
n >

γkCk+�,k

γ2
k+�

k∑
ν=0

γνa
2
ν , (4.11)

then f has at least k+2 distinct real zeros of odd multiplicities. Oth-
erwise, f has at least k+2 zeros in the strip {z ∈ C : |	z| ≤ ρ−1/2},
where ρ is the uniquely determined positive root of the equation

Γk +
�−1∑
j=1

(
	

j

)
γk+jx

j =
(
ΓkMk(f)− γk+�

)
x� (4.12)

with Mk(f) defined by (4.9) and Γk := γk

√
Ck+�,k .

In (4.11), the constant Ck+�,k is again best possible [9, Theo-
rem 9.4.6]. In the case of the Hermite expansion, the criterion (4.11)
for k = n−2 was also obtained by Turán [21, Theorem III]; however,
it was not known that this criterion is best possible.

Remark 4.8 The positive root of an equation of the form (4.12)
has been extensively studied in the context of the Cauchy bound [9,
§ 8.1]. For example, defining Ak := ΓkMk(f) − γk+� and employing
[9, Proposition 8.1.6], we obtain

ρ ≥ max

{(
Γk

Ak

)1/�

,

(
γk+1

Ak

)1/(�−1)

, . . . ,
γk+�−1

Ak

}
.

If, instead of the maximum, we just take the first term in braces as
a lower bound for ρ, we obtain a result in [9, Theorem 9.4.6].

Each of Theorems 4.5 and 4.7 contains a criterion for real zeros.
If this criterion fails, then, in the case of Theorem 4.5, we have to go
away empty-handed, but, in the case of Theorem 4.7, we obtain at
least a bound for the imaginary parts of k + 2 zeros. This leads us
to the following question.
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Open Problem Can we extend Theorem 4.5 in such a way that, if
(4.8) fails, the data |a0/ak| , . . . , |ak−1/ak| still provides a bound for
the imaginary parts of k zeros?

An open problem by Turán [22, p. 70, Problem LXX] may be
seen as a special case of that problem.

5 Applications

5.1 Lower bounds for L2 norms

The upper bounds for the zeros of f obtained in Sections 3 and 4 can
be expressed in terms of ‖f‖2. Conversely, these results yield new
lower bounds for the L2 norm of a polynomial under side conditions
on the zeros.

As a consequence of Corollary 3.3 in conjunction with Proposi-
tion 3.4, or of (3.9) directly, we have the following lower bound.

Corollary 5.1 Let f(z) =
∏n

ν=1(z − zν). Then

‖f‖2 ≥ γn + γn−1



(

qn−1 +
n∑

ν=1

�zν

)2

+

(
n∑

ν=1

|	zν |
)2

 .

Equality is attained for all polynomials of the form

f(z) = Pn(z) + an−1Pn−1(z) (an−1 ∈ C) (5.1)

and for all polynomials that can be deduced from (5.1) by replacing
some of the zeros of f by their conjugates.

The inequality ‖f‖2 ≥ γn is a best possible estimate for monic
polynomials of degree n. Even if we restrict ourselves to polynomials
with real coefficients, there is no improvement since equality occurs
for f = Pn only. However, Pn has n distinct real zeros. Hence, for
real monic polynomials of degree n having less than n distinct real
zeros there should be an improvement. For k = n, Theorem 4.5
implies the following result.
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Corollary 5.2 Let f be a monic polynomial of degree n with real
coefficients. If f does not have n distinct real zeros, then

‖f‖2 ≥ γn
Cn+1,n

Cn+1,n − 1
.

Unfortunately, this estimate seems to be not sharp.
Now consider the inequality ‖f‖2 ≥ γn+γn−1 |an−1|2 . It holds for

monic polynomials of the form (1.2) and is sharp, even in the subclass
of polynomials with real coefficients. In the latter case, the extremal
polynomial has always n distinct real zeros as a consequence of the
Hermite–Kakeya theorem [9, Theorem 6.3.8]. Hence, there should be
an improvement if f has less than n distinct real zeros. The following
results are consequences of Theorems 4.5 and 4.7 for k = n− 1 and
k = n−2, respectively. Here we assume f to be given in the standard
representation since there is no need for an estimate of the norm when
the coefficients of the corresponding orthogonal expansion are known.
Note that in the first result, the improvement is by a multiplicative
correction while in the second it is by an additive correction.

Corollary 5.3 Let f(z) = zn + bn−1z
n−1 + · · ·+ b0 be a polynomial

with real coefficients. If f has less than n distinct real zeros, then
the following sharp estimate holds:

‖f‖2 ≥ γn + γn−1

(
bn−1 − qn−1

)2 Cn,n−1

Cn,n−1 − 1
.

Corollary 5.4 Let f(z) = zn + bn−1z
n−1 + · · ·+ b0 be a polynomial

with real coefficients. If f has less than n distinct real zeros, then
the following sharp estimate holds:

‖f‖2 ≥ γn + γn−1

(
bn−1 − qn−1

)2 +
γ2

n−1

γn−2Cn−1,n−2
.

Example To illustrate these corollaries, we may consider the Her-
mite expansion. In this case,

‖f‖2 =
∫ ∞
−∞

e−x2 |f(x)|2 dx
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and

qn−1 = 0, γn =
√

π
n!
2n

, Cn,n−1 = n (n ∈ N),

which makes the above bounds concrete.

It is clear that further estimates for ‖f‖2 under side conditions
on k of the zeros can be deduced from Theorems 4.5 and 4.7 but
the results will become somewhat complicated when k is small as
compared with the degree of f .

5.1.1 Lower bounds for Vandermonde type determinants
of orthogonal polynomials

In Section 4, we did not make any use of the fact that the orthogonal
polynomials P

[w]
n and their metric constants γ

[w]
n have explicit repre-

sentations in terms of Vandermonde type determinants of orthogonal
polynomials. Therefore, we can now use the results of Section 4 for
establishing lower bounds for this kind of determinants.

For any z1, . . . , zk ∈ C, define

Vn(z1, . . . , zk) := det




Pn(z1) . . . Pn+k−1(z1)
...

...
Pn(zk) . . . Pn+k−1(zk)


 . (5.2)

Let us now rewrite the weight function (4.1) as

w(z) =
2�∏

j=1

(z − zj), z�+j = zj for j = 1, . . . , 	. (5.3)

Then it is known [18, § 2.5] that

w(z)P [w]
n (z) = (−1)k Vn(z, z1, . . . , z2�)

Vn(z1, . . . , z2�)
(n ∈ N0) (5.4)

and [12, formula (3.2)]

γ[w]
n = γn

∣∣∣∣Vn+1(z1, . . . , z2�)
Vn(z1, . . . , z2�)

∣∣∣∣ . (5.5)
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In (5.4) and (5.5) we admit that some (or even all) of the points
z1, . . . , z2� may coalesce. In that case, we define the quotients by their
continuous continuation. More precisely, if zj0 = zj1 = · · · = zjm ,
then we replace the polynomials in the j1-st, j2-nd, . . . , jm-th row
in (5.2) by their first, second, . . . , m-th derivative.

Lemma 4.4 with ‖P [w]
n ‖2 replaced by γn, which is admissible by

Lemma 4.2, implies the following result.

Corollary 5.5 Let w be given by (5.3), and suppose that |	zj | ≥ r,
where r ≥ 0 and j = 1, . . . , 	. Then

∣∣∣∣Vn+1(z1, . . . , z2�)
Vn(z1, . . . , z2�)

∣∣∣∣ ≥ 1
γn

�∑
j=0

(
	

j

)
γn+�−j r2j . (5.6)

Note that the right-hand side remains positive as r → 0. Using
(5.6) repeatedly and noting that V0(z1, . . . , z2�) is equal to the clas-
sical Vandermonde determinant of z1, . . . , z2�, we can deduce a lower
bound for |Vn(z1, . . . , z2�)| itself. In fact, defining

φn(x) :=
1
γn

�∑
j=0

(
	

j

)
γn+�−j xj (n ∈ N0),

we find that

|Vn(z1, . . . , z2�)| ≥
n−1∏
ν=0

φν(r2) ·
∏

1≤i<j≤2�

|zj − zi| .

6 Variants and Refinements

Let Jn be the smallest interval containing the zeros of Pn and let J
be the smallest interval containing the support of dσ. Denote by

dn(z) := min
{ |z − ζ| : ζ ∈ Jn

}
the distance of z from Jn and by d(z) the distance of z from J . Then,
by a fundamental property of the zeros of orthogonal polynomials,
we have

d1(z) ≥ d2(z) ≥ · · · ≥ d(z) ≥ |	z| .
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The results of Sections 3–5 have analogues or refinements in which
the role of the imaginary parts of the zeros z1, . . . , zn is taken by
dm(z1), . . . dm(zn) for some m; see [9, Lemma 9.1.4] for a general tech-
nique. However, there is one difference. All the results in Sections 3
and 4 do not depend on �(an−1/an). The reason is that, instead of
the orthogonal system (Pν)ν∈N, we can tacitly set α = �(an−1/an)
and use the system (P̃ν)ν∈N, described in Proposition 2.1, when we
are only interested in the imaginary parts of the zeros. The situation
changes when we consider the distance function dm since, in general,
the interval J̃m associated with P̃m will be different from Jm.

A corresponding variant of (3.5) reads as [4], [9, Theorem 9.1.5]:

n∑
j=1

dn(zj) ≤
√√√√n−1∑

ν=0

γν

γn−1

∣∣∣∣aν

an

∣∣∣∣
2

.

For a variant of Theorem 4.7 in terms of the distance function dm,
where m = (n + k)/2− 1, see [11, Theorem 1]. Correspondingly, the
criterion of Theorem 4.5 for the existence k real zeros guarantees that
these zeros lie already in the interval Jm, where m = �(n+k+2)/2�;
see [9, Theorem 9.4.3].

For inequality (5.6) to hold, it is only needed that the points
z1, . . . , z2� have distances at least r from the interval Jn+�+1. More-
over, there is an extension which admits an odd number of points
z1, . . . , zk such that

∏k
j=1(z − zj) is a polynomial with real coeffi-

cients; see [12, Theorem 1.2].
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Abstract

In the first part of the paper we show that the space of poly-
nomials of degree n − 1 is the unique n-dimensional Tcheby-
cheff subspace of polynomials. We also define a generalization
of Tchebycheff spaces: “Ideal complements” and demonstrate
their uniqueness.

In the second part we discuss various analogues of Tcheby-
cheff spaces (minimal interpolating systems) in several vari-
ables.

Preface

I first met Professor Sharma twenty seven years ago. I was a young
graduate student, my head was filled with “ Bourbakisms,” my Ph.D.
thesis was about interpolation (in Banach spaces, of course) and I
was looking forward to learn more from the renowned expert in the
field. To my surprise Sharma told me that he didn’t understand what
a functional was and the only theorem worth knowing in analysis was
the Taylor formula and may be “integration by parts” although he
had his doubts about the latter. With typical modesty, he told me
that he wasn’t bright enough for the abstractions. The best he could
do was to compute a few “right” examples and hope to get lucky.
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That sent me for a spin, that lasted awhile. I tried to “compute”
with Sharma only to learn that there is no way for me to keep up
with his speed and accuracy. I believe that this was a lesson learned
by many of my colleagues. Fortunately “Maple” came about and like
“Colt 45,”equalized the playing field.

This paper is about solvability of various interpolation problems
and its generalizations, the topic that benefitted greatly by many
contributions of Sharma and his collaborators (cf. [4-7], [10], [12],
[16-19]).

The paper is divided into two parts. The aim of the first part is
to investigate the general form and uniqueness of Tchebycheff and
Extended Tchebycheff subspaces as well as “ideal complements” in
the spaces of polynomials. In particular we will show that the space
of complex polynomials of degree at most n − 1 is unique Tcheby-
cheff subspace of polynomials. We also introduce a new definition
of “an ideal complement” which is formally stronger than that of a
Tchebycheff and Extended Tchebycheff subspace and study the form
and uniqueness of ideal complements.

In the second part we discuss various generalizations of Tcheby-
cheff subspaces and ideal complements in several variables. In sec-
tion 2.1 we introduce “minimal k-interpolating spaces” as a gener-
alization of the notion of Tchebycheff spaces and “minimal k-ideal
complements.” We investigate the dimension of these spaces. In sec-
tion 2.2 we introduce another possible generalization of Tchebycheff
subspaces and ideal complements in several variables: namely “mini-
mal family of k-interpolating spaces” and “minimal family of k-ideal
complements.” While the investigation in section 2.1 has a distinct
topological nature, the methods used in this section 2.2 are mostly
of combinatorial type. Unlike the Tchebycheff spaces, their analogs
in several variables have not received much attention in the litera-
ture. Therefore it is not surprising that the ratio of the number of
theorems to open problems in this part is rather small.

Going back to my early years, I was convinced that the only
obstacle in generalizing results in one variable is unbearable notations
in several. By now I know better. Yet the original hindrance remains.
Given the survey style of this article, I will take “poetic license” not
to dwell on self-evident notations, hence saving trees and not trying
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the patience of a reader. For the same reason, I will customarily give
the simple proofs of a theorem and refer to an original article for
more complicated ones. As the wise man said: “a simple example
explains the situation much better.”

1 Interpolating Spaces in One Variable

All that being said, here are some notations:
Let F either be the field of real or that of the complex numbers

and F[x] be the ring of polynomials with coefficients in F. As such,
F[x] is a linear space over the field F. We use F<n[x] to denote the
space of polynomials of degree less than n; i.e.

F<n[x] := span[1, x, ..., xn−1] ⊂ F[x].

An n-dimensional subspace V ⊂ F[x] is called Tchebycheff (cf.
[13], [14]) if

f ∈ V and f(xj) = 0; j = 1, ..., n

for a distinct set of points ∆ := {x1, x2, ..., xn} ⊂ F implies f = 0.
That is every non-zero f ∈ V has at most n distinct zeroes.

Equivalently (cf. [13], [14]) an n-dimensional space V ⊂ F[x] is
Tchebycheff if and only if it is interpolating:

For any distinct set of points ∆ := {x1, x2, ..., xn} ⊂ F and any
set of values a1, a2, ..., an ∈ F there exists a unique function f ∈ V
such that f(xj) = aj .

Hence an n-dimensional space V ⊂ F[x] is Tchebycheff if and
only if for any distinct set of points ∆ := {x1, x2, ..., xn} ⊂ F , the
space V is complemented to an ideal

J(∆) := {f ∈ F[x] : f(x) = 0 for all x ∈ ∆}.

That is
F[x] = V ⊕ J(∆) (1.1)

for any ∆ ⊂ F with cardinality #∆ = n.
An n-dimensional subspace V ⊂ F[x] is called an Extended Tcheby-

cheff space (cf. [14], [15]) if every non-zero f ∈ V has at most n
zeroes, counting multiplicity.
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Equivalently (cf. [13]) an n-dimensional space V ⊂ F[x] is Ex-
tended Tchebycheff if and only if it is Hermite interpolating:

For any distinct set of m ≤ n points ∆ := {x1, x2, ..., xm} ⊂ F,
any set of integers N(m, n) = {n1, ...nm} with

∑m
j=1(nj − 1) = n

and any set of n values {a(k1)
1 , a

(k2)
2 , ..., a

(km)
m : kj = 0, ..., nj − 1} ⊂ F

there exists a unique function f ∈ V such that

f (kj)(xj) = a
(kj)
j ;

where f (k) denotes the k-th derivative of f .
Hence an n-dimensional space V ⊂ F[x] is Extended Tcheby-

cheff if and only if for any distinct set of m ≤ n points ∆ :=
{x1, x2, ..., xm} ⊂ F any set of integers N(m, n) = {n1, ...nm} with∑m

j=1(nj − 1) = n , the space V is complemented to an ideal

J(∆, N) := {f ∈ F[x] : f (kj)(xj) = 0 ; j = 1, ..., m; kj = 0, ..., nj}.

That is
F[x] = V ⊕ J(∆, N). (1.2)

The reformulations (1.1) and (1.2) of the definitions of Tcheby-
cheff and Extended Tchebycheff spaces motivate the definition of
Ideal Complements as the n-dimensional spaces V ⊂ F[x] which are
complemented to every ideal J ⊂ F[x] of codimension n.

An ideal J ⊂ F[x] is a subspace of F[x] such that

f ∈ F[x], g ∈ J =⇒ fg ∈ J .

Let J be the set of all ideals in F[x] and let Jn ⊂ J be the set of
all ideals of codimension n.

Definition 1.1 An n-dimensional space V ⊂ F[x] is called an ideal
complement if

F[x] = V ⊕ J (1.3)

for every ideal J ∈ Jn

Clearly every ideal complement is an Extended Tchebycheff space
and every Extended Tchebycheff space is Tchebycheff.
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Since F[x] is a principle ideal domain (cf. [1]),

J ∈ J iff J = pF[x] (1.4)

for some polynomial p ∈ F[x].

Theorem 1.2 We have

(1) If p is a polynomial of degree n. Then pF[x] ∈ Jn and

F[x] = F<n[x] ⊕ (pF[x]).

In particular F<n[x] is an ideal complement.

(2) An ideal J ∈ Jn iff J = pF[x] for some p ∈ F[x] with deg p = n.

In particular every ideal J ∈ J is of finite codimension.

Proof. If p is a polynomial of degree n, then every non-zero poly-
nomial in pF[x] has degree at least n. Hence F<n[x]∩ (pF[x]) = {0}.
On the other hand every f ∈ F[x] can be written as f = pq + r
with deg r < n. That proves the first part of the theorem. It also
shows that pF[x] is an ideal of codimension n. To verify the rest of
(2), assume that J ∈ Jn. Then there exists a polynomial q such that
J = qF[x]. If deg q �= n then, by part (1), codimJ �= n which gives
the contradiction. �

The last theorem shows that F<n[x] is an ideal complement. In
particular F<n[x] is an Extended Tchebycheff space. Of course this
is nothing new, except that the division algorithm used in the proof
of the theorem did not employ any determinants or complicated con-
struction of basic polynomials!

In the next section we show C<n[x] is the unique n-dimensional
Tchebycheff subspace in C[x] and therefore it is the unique ideal
complement in C[x]. In particular, Tchebycheff spaces, Extended
Tchebycheff spaces and ideal complements coincide.

In section 3, we show that for n > 1 the space R<n[x] is the
unique ideal complement in R[x] but not a unique Tchebycheff or
Extended Tchebycheff subspace.
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1.1 Complex Case

We start with the quick corollary of Theorem 1.2:

Theorem 1.3 The space V = C<n[x] is the unique subspace of C[x]
which complements every J ∈ Jn.

Proof. Let V �= C<n[x] be an n-dimensional subspace of C[x].
Then V contains a polynomial q of degree ≥ n. Hence q = pf with
deg p = n. Let J = pC[x]. By proposition J ∈ Jn and q ∈ V ∩ J .
Thus V is not complemented to J . �

For the Tchebycheff spaces we have:

Theorem 1.4 The space V = C<n[x] is the unique n-dimensional
Tchebycheff subspace of C[x].

Proof. Suppose that V �= C≤n[x] is an n-dimensional Tchebycheff
subspace of C[x]. Then V contains a polynomial f with deg f ≥ n.
Since V is Tchebycheff, f has at most n − 1 zeroes: ξ1, ..., ξk with
k < n. Once again, since V is Tchebycheff, there exists a polynomial
g ∈ V , such that g(ξj) = 1 for all j = 1, ..., k. Hence f and g are
relative primes and (f

g )′ is different from 0. For every c ∈ C, consider
a new polynomial q(c, x) = f(x) − cg(x). We now claim that for all,
but a finite many values of c ∈ C, the polynomial q(c, x) has only
simple zeroes. Indeed let ζ1, ..., ζN be all the zeroes of the polynomial
fg′ − gf ′ and assume that

c �= f(ζj)
g(ζj)

(1.5)

for those ζj , for which g(ζj) �= 0. Then if x0 is a multiple root of
f(x) − cg(x), we have{

f(x0) − cg(x0) = 0
f ′(x0) − cg′(x0) = 0

.

Since f and g are relative primes, g(x0) �= 0. From the first of
the equations above, we obtain c = f(x0)

g(x0) and substituting it into
the second equation, we have f(x0)g′(x0) − g(x0)f ′(x0) = 0, which
contradicts (1.5). �
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Corollary 1.5 The space V = C<n[x] is the unique n-dimensional
Extended Tchebycheff subspace of C[x].

1.2 Real Case

Real ideal complements have almost the same description as complex
ideal complements.

Theorem 1.6 Let V be an n-dimensional ideal complement. If n >
1 then V = R<n[x]. If n = 1, then V is the set of constant multiples
of any strictly positive polynomial; V = span{p}, p ∈ R[x] and p > 0.

Proof. Let n > 1 and let ξ1, ..., ξn be distinct points in R. Since
V is an ideal complement, in particular it is a Tchebycheff subspace.
Hence there are n polynomials p1, ..., pn ∈ V such that pk(ξj) = δj,k.
These polynomials are linearly independent and thus span the space
V . If max{deg p : p ∈ V } ≥ n then at least one of the polynomials,
say p1 has degree greater then n − 1. Since p1 has a linear factor, it
follows that p1 has a factor of degree n and hence V is not an ideal
complement. The case n = 1 is trivial. �

Corollary 1.7 For n = 1 an n-dimensional space V is Tchebycheff
if and only if it is an ideal complement. For n > 1 there exists
an n-dimensional Tchebycheff subspace of R[x] which is not an ideal
complement.

Proof. Any subspace V ⊂ R[x] which is of the form

V = r(x)R<n[s(x)] := span{r(x), r(x)s(x), ..., r(x)sn−1(x)} (1.6)

where r(x) is a strictly positive polynomial in R[x] and s is an injec-
tive polynomial mapping from R → R is clearly a Tchebycheff space.
Yet if deg r > 0 then, as follows from the previous Theorem, it is not
an ideal complement. �

This argument leads to the reasonable possibility that a subspace
V ⊂ R[x] is Tchebycheff if and only if V = r(x)R<n[s(x)] for some
strictly positive polynomial r(x) and an injective polynomial map-
ping s from R → R.
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This is clearly true for n = 1.
Unfortunately this is not so for n > 1. Indeed here is a coun-

terexample:
Let

V := span{1 + x2, x3}. (1.7)

We have

det
[

1 + x2 x3

1 + a2 a3

]
= − (x − a)

(
x2a2 + x2 + xa + a2

)
= − (x − a) (x2a2 +

1
2
(x2 + a2 + (x + a)2))

which is equal to zero if and only if x = a. Hence V is a Tchebycheff
space that is not of the form (1.6).

Furthermore

det
[

1 + x2 x3

2x 3x2

]
= 3x2 + x4 = 0 if x = 0.

Hence the Tchebycheff space V defined by (1.7) is not an Ex-
tended Tchebycheff space.

On the other hand the space

V = span{x2 + 1, x3 + 2x}

is an Extended Tchebycheff space. Indeed

det
[

x2 + 1 x3 + 2x
2x 3x2 + 2

]
= x4 + x2 + 1 > 0.

And if x �= a then

det
[

x2 + 1 x3 + 2x
a2 + 1 a3 + 2a

]
= − (x − a)

(
x2a2 + x2 − xa + a2 + 2

)
= − (x − a) (

1
4

(2x − a)2 + x2a2 +
3
4
a2 + 2)

�= 0.
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Conclusion 1.8 In R[x] there are Tchebycheff spaces which are not
Extended Tchebycheff spaces and there are Extended Tchebycheff
spaces which are not of the form (1.6).

Problem 1.9 What is the general form of Tchebycheff spaces in
R[x]? What is the general form of Extended Tchebycheff spaces in
R[x]?

Now suppose that 1 ∈ V and V is a Tchebycheff space. Does
that imply that

V = R<n[s(x)] ? (1.8)

For n = 2 it is so. Indeed if V = span{1, s(x)} then s is strictly
monotone and hence an injection.

Our next example shows that (1.8) fails for n = 3:
Let V = span{1, x, x4}. Then

det


 1 x x4

1 a a4

1 b b4


 = ab4 − a4b − xb4 + x4b + xa4 − x4a

=−1
2

(−b + a) (x − b) (x − a) ((x2 + a2 + b2) + (x + a + b)2)

Hence span{1, x, x4} is a Tchebycheff space that is not an ideal
complement.

2 Interpolation Systems in Several Variables

Let F[x1, ..., xd] = F[x] be the ring of polynomials of d variables and
let F≤m[x] be the space of polynomials of degree at most m. For an
ideal J ⊂ F[x] we define

Z(J) := {x ∈F
d : f(x) = 0 for all f ∈ J}.

If an ideal J ⊂ F is generated by polynomials f1, f2..., fn, we use
the standard notation:

J =< f1, f2..., fn >=< fj : j = 1, ..., n > .
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Let, once again, Jn denotes the family of ideals of codimension
n.

For ideal J ∈ Jn, the set Z(J) is finite and moreover

#Z(J) ≤ n

An ideal J ⊂ F is called radical if fm ∈ J implies f ∈ J . It is
well known (cf. [9]) that an ideal J ∈ Jn is radical if and only if
#Z(J) = n.

In several variables there are no Tchebycheff subspaces and there-
fore there are no ideal complements. For the real field this follows
from extremely cute “Mairhuber argument” (cf [15]):

Let V = span[f1, f2, ..., fn]. And let ∆ = {x1, x2, x3, ..., xn} be
distinct points in R

d with d ≥ 2. Position two points x1, x2 on
diametrically opposite ends of the unit circle and points x3, ..., xn

outside the circle. If the space V is Tchebycheff, that implies that
the determinant

D(∆) = det [fk(xj)] �= 0

for any ∆. As we rotate the diameter, the points x1 and x2 switch
positions and hence D(∆) changes sign. By the intermediate value
theorem, there exists a pair x1, x2 such that D(∆) = 0; hence V is
not interpolating at these points.

In the absence of an intermediate value theorem, the complex case
utilizes different tools. Since this article deals with polynomials, we
present an argument based on the attributes from algebraic geome-
try:

Let

Z := {(x1, x2, x3, ..., xn) ∈ C
n·d : D(∆) = det [fk(xj)] = 0}.

Let

Uj,k := {(x1, x2, x3, ..., xn) ∈ C
n·d : xj = xk} and U := ∪

j �=k
Uj,k

Since Z is the set of solutions of one equation D(∆) = 0 in C
nd,

Z is an algebraic variety of codimension one, thus dimZ = nd − 1.
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Each Uj,k is the zero locus of d equations: xj = xk, and hence it is a
variety of codimension d. We conclude that for d > 1:

dimU = max dimUj,k = nd − d < nd − 1 = dimZ.

Hence there exists an n-tuple (x1, x2, x3, ..., xn) ∈ Z which is not in
U . Thus the equation

D(∆) = det [fk(xj)] = 0

has a solution for some set ∆ of distinct points in C
d, which implies

that V is not a Tchebycheff space. In the absence of Tchebycheff
Spaces in several variables, we have to give something up. We pro-
pose two possible analogues of Tchebycheff spaces.

2.1 Interpolating Spaces

Definition 2.1 A subspace V ⊂ F[x] is called k-interpolating if for
every k distinct points x1, ..., xk in F

d and for every distinct values
α1, ..., αk there exists f ∈ V such that

f(xj) = αj ; j = 1, ..., k.

Clearly if V is k-interpolating then dimV ≥ k. If dimV = k
then V is k-interpolating if and only if V is Tchebycheff. As we
mentioned earlier for d > 1 Tchebycheff spaces do not exist. The k-
interpolating spaces do exist. That means that we give up uniqueness
of the interpolating function f ∈ V but still insist on the existence
of one. However we do not want to abandon uniqueness all together.
One way of doing so is to ask for a k-interpolating space of mini-
mal dimension. Therefore the problem in several variables can be
reformulated as follows:

Problem 2.2 What is the minimal dimension of k-interpolating
spaces in F[x]? What are the k-interpolating subspaces of F[x] of
minimal dimension?

Just as in the last section, we can observe that a space V is
k-interpolating if and only if for every radical ideal J ∈ F[x] of codi-
mension k there exists a subspace E ⊂ V such that

E ⊕ J = F[x].
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Hence it seems natural to extend this definition to all ideals.

Definition 2.3 A space V ⊂ F[x] is called a k−ideal complement
if for every ideal J of codimension k there exists a subspace E ⊂ V
such that

E ⊕ J = F[x].

Once again we have the problem:

Problem 2.4 What is the minimal dimension of a k−ideal comple-
ment? What are the k-ideal complements of minimal dimension?
Are the minimal k-ideal complements unique? Do the minimal k-
ideal complements coincide with the minimal k-interpolating spaces?

There are some results (cf. [8], [22], [23], [24], [25]) concerning the
minimal dimension of k-interpolating subspaces in R[x]. The most
stunning of these is due to F. Cohen and D. Handel [8] (cf. also [24]):

Theorem 2.5 Let a(k) be the minimal dimension of k-interpolating
subspaces in R[x, y]. Then

2k − η(k) ≤ a(k) ≤ 2k − 1,

where η(k) is the number of 1s in the binary representation of the
integer n.

In fact for k = 3 the value a(3) = 4 as the “unnatural” appearance
of η(k) in the lower bound would predict (cf[22]). A minimal 3-
interpolating subspace is spanned by polynomials {1, x, y, x2 + y2}.
For k = 4 the lower and the upper bounds coincide. Hence a(4) =
7. A minimal 4-interpolating subspace is spanned by polynomials
{1, x, y, x2 − y2, xy, x3 − 3xy2, y3 − 3x2y}.

To the best of my knowledge, the exact value for a(5) is not
known. The span of the first 2k − 1 harmonic polynomials always
forms a k-interpolating subspace in R[x, y]. For d > 2, the only
reasonable bound known to me (cf. [22], [23]) is

1
2
(d + 1)k ≤ a(k) ≤ d(k + 1).
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As far as I know there are no results on minimal k-dimensional
interpolating subspaces in the complex case. The ideal complements
of minimal dimension have not been studied in either field.

It follows from the Theorem 2.9 mentioned in the next section,
that the space F<k[x] is a k−ideal complement.

Now the standard transversality argument (cf. [21], [23]) gives us
a better estimate:

Theorem 2.6 There exists a k-ideal complement V ⊂ F<k[x] with
dimV ≤ (d + 1)k.

2.2 Interpolating Families in Several Variables

As we mentioned in the previous section, the four-dimensional space
spanned by polynomials {1, x, y, x2 +y2} is 3-interpolating in R[x, y].
Indeed if we have three points u1, u2, u3 ∈ R

2 that do not lie on
the same line, then the three-dimensional space spanned by {1, x, y}
interpolates at those points. On the other hand if three distinct
points u1, u2, u3 ∈ R

2 do lie on the same line, then either the space
spanned by {1, x, x2 + y2} or by {1, y, x2 + y2} interpolate at those
points. In other words in order to accomplish the interpolation at
arbitrary three points, we do not need all (infinitely many) three-
dimensional subspaces of span{1, x, y, x2 + y2}. It is sufficient to
consider three of them:

span{1, x, y}, span{1, x, x2 + y2} and span{1, y, x2 + y2}.
This consideration prompts the following definition:

Definition 2.7 A family F of k-dimensional subspaces of F[x] is
called a family of k−ideal complements, if for every ideal J ⊂ F[x]
of codimension k there exists a subspace E ∈ F such that

E ⊕ J = F[x].

A family F of k-dimensional subspaces of F[x] is called a
k−interpolating family if for every radical ideal J ⊂ F[x] of codi-
mension k there exists a subspace E ∈ F such that

E ⊕ J = F[x].
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With these definitions come apparent open questions:

Problem 2.8 What is the minimal number of subspaces in a family
of k−ideal complements? What is the minimal number of subspaces
in a k−interpolating family?

A subspace V ⊂ F[x1, ..., xd] = F[x] is called D-invariant if

f ∈ V =⇒ ∂

∂xj
f ∈ V, ∀j = 1, ..., d.

The next theorem was first proved in [11]. The introduction of Groeb-
ner bases made it a simple theorem (cf [3]):

Theorem 2.9 For every J ∈ Jn there exists a D-invariant subspace
V ⊂ F[x] spanned by monomials, such that

V ⊕ J = F[x].

A moment of reflection on D-invariance and monomial nature of
this space leads to the conclusion that every such space is a subspace
of F<n[x] and since there are only finitely many monomials in F<n[x],
there are only finitely many such spaces.

Corollary 2.10 There exist a finite k−ideal family.

It is convenient to use Young tables to visualize such subspaces.
For instance for n = 4 the five subspaces in question are given by
tables (staircases):

Γ1 =

∣∣∣∣∣∣∣∣
�
�
�
�

Γ2 =

∣∣∣∣∣∣∣∣
�
�
� �

Γ3 =

∣∣∣∣∣∣∣∣ � �
� �

Γ4 =

∣∣∣∣∣∣∣∣ �
� � �

Γ5 =

∣∣∣∣∣∣∣∣ � � � �
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These five tables represent all possible D-invariant complements
to ideals in J4. Thinking of the vertical axes as the number of mono-
mials in y, we can write all five gammas as

Γ1 = [1, y, y2, y3], Γ2 = [1, y, y2, x], Γ3 = [1, y, x, xy]
Γ4 = [1, y, x, x2], Γ5 = [1, x, x2, x3].

Now the spaces Gj := spanΓj represent the five complements.
Clearly no four of those subspaces can serve the same purpose,

for an ideal generated by, say < x4, y >∈ J4 is not complemented
to the first four subspaces. It is also easy to see that the minimal
2-interpolating and 2-ideal family is

F = {span{1, x}, span{1, y}},

since this family is 2-ideal, by the last theorem, and no one two-
dimensional subspace is 2-interpolating, by the results of the previous
section.

Theorem 2.11 The minimal number of subspaces in a family of 3-
ideal complements in C[x, y] is 3.

Proof. It follows from the Theorem 2.9, that the family F consist-
ing of three spaces:

span{1, x, x2}, span{1, x, y} and span{1, y, y2}

is a k-ideal family. Thus it remains to proof that no two three-
dimensional spaces form a family of k-ideal complements. Let the
subspaces V1 and V2 form such a family. Consider several cases:

Case 1: There exists a non-constant polynomial p ∈ C[x, y] and
polynomials fk ∈ Vk such that fk = hk · p. Then consider the set

Z := {(x, y) ∈ C
2 : p(x, y) = 0}.

This is an infinite set and hence contains three distinct points

(x1, y1), (x2, y2), (x3, y3) ∈ Z.
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Next consider the ideal

J := {f ∈ C[x, y] : f(xj , yj) = 0, j = 1, 2, 3}.

Clearly, J is a radical ideal in J3. Since for k = 1, 2 we have
fk(xj , yj) = 0 and since J is a radical, this implies that fk ∈ J
and hence fk ∈ Vk ∩ J �= {0}. In particular, neither V1 nor V2

complement J and {V1, V2} is not a k-ideal family.
Case 2.: Suppose that

N := max deg{f : f ∈ V1} · max deg{f : f ∈ V2} ≥ 3.

Let fk ∈ Vk be any polynomials, such that

deg fk = max deg{f : f ∈ Vk}, k = 1, 2,

then (by Case 1) they do not contain a common non-zero factor. By
Bezout’s Theorem (cf. [9]), there exist N ≥ 3 solutions (counting
multiplicity) to the set of equations

fk(x, y) = 0, k = 1, 2.

Hence, once again, there exist an ideal J ∈ J3 such that fk ∈
Vk ∩ J �= {0}.

Case 3. The last remaining case is when V1 consists of polyno-
mials of degree one and V2 consists of polynomials of degree two
and does not contain any non-constant linear polynomial. Since
dimVk = 3, hence V1 = span{1, x, y} and V2 is spanned by three
quadratic polynomials and does not contain a non-constant linear
function. We claim that at least one polynomial in V2 has a linear
factor, thus reducing this case to Case 1. Indeed, suppose that V2

is spanned by quadratic polynomials {fj(x, y), j = 1, 2, 3}. Consider
the polynomial

p(x) :=
3∑

j=1

ajfj(x, Ax + B) ∈ V2.

This is a quadratic polynomial with three coefficients that depend on
five parameters: A, B, aj . Setting these coefficients to zero, we obtain
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three equations in five unknowns, which clearly have a solution in C.
Thus the polynomial

3∑
j=1

ajfj(xy)

has a linear factor: y − Ax − B. �
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