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Preface

This is a textbook on geometric algebra with applications to physics and serves
also as an introduction to geometric algebra intended for research workers
in physics who are interested in the study of this modern artefact. As it is
extremely useful for all branches of physical science and very important for
the new frontiers of physics, physicists are very much getting interested in
this modern mathematical formalism.

The mathematical foundation of geometric algebra is based on Hamilton’s
and Grassmann’s works. Clifford then unified their works by showing how
Hamilton’s quaternion algebra could be included in Grassmann’s scheme
through the introduction of a new geometric product. The resulting algebra
is known as Clifford algebra (or geometric algebra) and was introduced to
physics by Hestenes. It is a combination of the algebraic structure of Clifford
algebra and the explicit geometric meaning of its mathematical elements at
its foundation. Formally, it is Clifford algebra endowed with geometrical
information of and physical interpretation to all mathematical elements of
the algebra.

It is the largest possible associative algebra that integrates all algebraic
systems (algebra of complex numbers, matrix algebra, quaternion algebra,
etc.) into a coherent mathematical language. Its potency lies in the fact that it
can be used to develop all branches of theoretical physics envisaging geomet-
rical meaning to all operations and physical interpretation to mathematical
elements. For instance, the spinor theory of rotations and rotational dynamics
can be formulated in a coherent manner with the help of geometric algebra.
One important fact is to develop the problem of rotations in real space-time
in terms of spinors, which are even multivectors of space-time algebra. This
fact is extremely important because it allows us to put tensors and spinors
on the same footing: a necessary thing when we, through torsion, introduce
spin in the general theory of relativity.

This later argument seems to be very important when we will try to con-
sider a quantum theory for gravity. Moreover, the problem of rotations in real
space-time allows us to explain the neutron interferometer experiments in
which we know that a fermion does not return to its initial state by a rotation
of 2π ; in fact, it takes a rotation of 4π to restore its state of initial condition.

Geometric algebra provides the most powerful artefact for dealing with
rotations and dilations. It generalizes the role of complex numbers in two
dimensions, and quaternions in three dimensions, to a wider scheme for
dealing with rotations in arbitrary dimensions in a simple and comprehensive
manner.
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The striking advantage of an entirely “real” formalism of the Dirac equa-
tion in space-time algebra (geometric algebra of “real” space-time) without
using complex numbers is that the internal phase rotations and space-time
rotations are considered in a single unifying frame characterizing them in an
identical manner.

However, other important physical interpretations are based on geometric
algebra as we will show in this book. For instance, geometric algebra (GA)
and electromagnetism, GA and polarization of electromagnetic waves, GA
and the Dirac equation in space-time algebra, GA and quantum gravity, and
also, GA in the case of the Majorana–Weyl equations, to mention only a few.

Venzo de Sabbata
Bidyut Kumar Datta
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Introduction

There are many competing views of the evolution of physics. Some hold the
perspective that advances in it come through great discoveries that suddenly
open vast new fields of study. Others see a very slow, continuous unfolding
of knowledge, with each step along the path only painstakingly following
its predecessor. Still others see great swings of the pendulum, with interest
moving almost collectively from the original edifice of classical physics to the
20th century dominance of quantum mechanics, and perhaps now back again
towards some intermediate ground held by nonlinear dynamics and theories
of chaos. Superimposed on all of this, of course, is the overriding theme of
unification, which most clearly manifests itself in the quest for a theory that
fully unifies the best descriptions of all the known forces of nature.

However, there is still another kind of evolution of thought and unification
of theory that has quietly yet effectively gone forward over the same scale
of time, and it has been in the very mathematics itself used to describe the
physical attributes of nature. Just as Newton and Leibniz introduced calculus
in order to provide a centralized, rigorous framework for the development
of mechanics, so have many others conceived of and applied ever-refined
mathematical techniques to the needs of advancing physical science. One
such development that is only now beginning to be truly appreciated is the
adaptation by Clifford of Hamilton’s quaternions to Grassmann’s algebraic
theory, which resulted in his creation of a geometric form of algebra. This
powerful approach uses the concepts of bivectors and multivectors to provide
a much simplified means of exploring and describing a wide range of physical
phenomena.

Although several modern authors have done a great deal to introduce
geometric algebra to the scientific community at large, there is still room for
efforts focused on bringing it more into the mainstream of physics pedagogy.
The first steps in that direction were originally taken by David Hestenes who
wrote what have become classic books and papers on the subject. As the
topic gets further incorporated into undergraduate and graduate curricula,
the need arises for the ongoing development of textbooks for use in covering
the material. Among the authors who have recognized this need and acted on
it are Venzo de Sabbata of the University of Bologna and Bidyut Kumar Datta
of Tripura University in India, and the publication of their book Geometric
Algebra and Its Applications to Physics is the satisfying result.

The authors are well known for their research in general relativity. The
roles of torsion and intrinsic spin in gravity have been recurring themes,
especially in the work of de Sabbata, and these topics have played a central
role in the interesting approaches that he, Datta, and others have taken to the
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quantization of gravity. He has served, since its founding, as the Director of
the International School of Cosmology and Gravitation held every two years
at the Ettore Majorana Centre for Scientific Culture in Erice, Sicily. It has
been at these schools that many of the best general relativists, mathematical
physicists, and experimentalists have explored the interplay between classical
and quantum physics, with emphasis on understanding the role of intrinsic
spin in relativistic theories of gravity. Datta, a mathematician, is a familiar
figure at these schools, and with de Sabbata has published several of the
seminal papers on the application of geometric algebra to general relativity.
The Proceedings of the Erice Schools contain a number of their relevant papers
on this subject, as well as interesting works in the area by others, including
the Cambridge group consisting of Lasenby, Doran, and colleagues.

The book seeks to not only present geometric algebra as a discipline within
mathematical physics in its own right but to show the student how it can be
applied to a large number of fundamental problems in physics, and especially
how it ties to experimental situations. The latter point may be one of the most
interesting and unique features of the book, and it will provide the student
with an important avenue for introducing these powerful mathematical tech-
niques into their research studies.

The structure of Geometric Algebra and Its Applications to Physics is very
straightforward and will lend itself nicely to the needs of the classroom. The
book is divided into two principal parts: the presentation of the mathematical
fundamentals, followed by a guided tour of their use in a number of everyday
physical scenarios.

Part I consists of six chapters. Chapter 1 lays out the essential features of
the postulates and the symbolic framework underlying them, thus providing
the reader with a working knowledge of the language of the subject and
the syntax for manipulation of quantities within it. Chapter 2 then provides
the first look at bivectors, multivectors, and the operators used on and with
them, thus giving the student a working knowledge of the main tools they will
need to develop all subsequent arguments. Chapter 3 eases the reader into
the use of those tools by considering their application in two dimensions, and
it presents the introductory discussion of the spinor. Chapter 4 is devoted to
the extension of those topics into three dimensions, whereas Chapter 5 opens
the door to relativistic geometric algebra by explaining spinor and Lorentz
rotations. Chapter 6 then devotes itself completely to a description of the full
form of the Clifford algebra itself, which combined the work of Hamilton and
Grassmann in its original formulation and was given its modern character by
Hestenes.

Part II of the book then provides the crucial sections on the application
of geometric algebra to everyday situations in physics, as well as providing
examples of how it can be adapted to examine topics at the frontiers.

It opens with Chapter 7, which shows how Maxwell’s equations can be
expressed and manipulated via space-time algebra, using the Minkowski
space-time and the Riemann and Riemann–Cartan manifolds. Chapter 8 then
shows the student how to write the equations for electromagnetic waves
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within that context, and it demonstrates how geometric algebra reveals their
states of polarization in natural and simple ways. There are two very help-
ful appendices to that chapter: one is on the role of complex numbers in
geometric algebra formulations of electrodynamics and other covers the de-
tails of generating the plane-wave solutions to Maxwell’s equations in this
form. Chapter 9 provides the interface between geometric algebra and quan-
tum theory. Its topics include the Dirac equation, wave functions, and fiber
bundles. With the proper tools in place, the authors then go about using
them to explore the fundamental aspects of intrinsic spin and charge conju-
gation and, their centerpiece, to interpret the phase shift of the neutron as
observed during neutron interferometry experiments carried out in magnetic
fields. It is during the latter discussion that the value of geometric algebra
as applied to experimental findings becomes quite evident. The book ends
with Chapter 10, a return to the original research interests of the authors: the
application of geometric algebra to problems central to the quantization of
gravity. Spin and torsion play key roles here, and the thought emerges that
geometric algebra may well be what is needed to usher in a new paradigm
of analysis that is capable of placing the essential mathematical features of
general relativity on a common setting with those of quantum theory.

As alluded to above, it is somehow very appealing that the great quest for
a unified description of the forces of nature, started by Maxwell, should have
evolved towards its goal over essentially the same period of time that the
mathematical unification embodied by Clifford algebra and its subsequent
evolution took place. This is more than just a serendipitous coincidence, in
that the past 150 years have seen a constant striving for improvements in the
mathematical tools of physics, and the deepest structure of nature itself has
come to be understandable only in terms of the pure mathematics of group
theory and topology. We should not be surprised, then, that the very natural
mathematical synthesis inherent to geometric algebra should cause it to fit
so well with all branches of physics, and we can be grateful to de Sabbata
and Datta for encapsulating this powerful methodology in a contemporary
textbook that should prove useful to generations of students.

George T. Gillies
University of Virginia

Charlottesville, Virginia
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Geometric Algebra Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
9.6 Fiber Bundle Picture of the Neutron Interferometer

Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
9.6.1 Multivector Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.6.2 Lorentz Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.7 Charge Conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

10 Quantum Gravity in Real Space-Time
(Commutators and Anticommutators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

10.1 Quantum Gravity and Geometric Algebra . . . . . . . . . . . . . . . . . . . . 137
10.2 Quantum Gravity and Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.3 Quantum Gravity in Real Space-Time . . . . . . . . . . . . . . . . . . . . . . . . .142
10.4 A Quadratic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
10.5 Spin Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.6 Some Remarks and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Appendix A: Commutator and Anticommutator . . . . . . . . . . . . . . . . . . . . 156
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



P1: Binaya Dash

November 1, 2006 10:2 C7729 C7729˙C000



P1: Binaya Dash

October 24, 2006 14:30 C7729 C7729˙C001

Part I



P1: Binaya Dash

October 24, 2006 14:30 C7729 C7729˙C001



P1: Binaya Dash

October 24, 2006 14:30 C7729 C7729˙C001

1
The Basis for Geometric Algebra

1.1 Introduction

Geometric algebra combines the algebraic structure of Clifford algebra with
the explicit geometric meaning of its mathematical elements at its foundation.
So, formally, it is Clifford algebra endowed with geometrical information
of and physical interpretation to all mathematical elements of the algebra.
This intrusion of geometric consideration into the abstract system of Clifford
algebra has enriched geometric algebra as a powerful mathematical theory.

Geometric algebra is, in fact, the largest possible associative division
algebra that integrates all algebraic systems (viz., algebra of complex num-
bers, vector algebra, matrix algebra, quaternion algebra, etc.) into a coherent
mathematical language that augments the powerful geometric intuition of the
human mind with the precision of an algebraic system. Its potency lies in the
fact that it develops all branches of theoretical physics, envisaging geomet-
rical meaning to all operations and physical interpretation to mathematical
elements, e.g., it integrates the ideas of axial vectors and pseudoscalars with
vectors and scalars at its foundation. The spinor theory of rotations and
rotational dynamics can be formulated in a coherent manner with the help of
geometric algebra.

1. Geometric algebra provides the most powerful artefact for dealing
with rotation and boosts. In fact, it generalizes the role of complex
numbers in two dimensions, and quaternions in three dimensions,
to a wider scheme for tackling rotations in arbitrary dimensions in
a simple and comprehensive manner.

2. The striking advantage of an entirely “real” formulation of the Dirac
equation in space-time algebra (geometric algebra of “real” space–
time) without using complex numbers is that the internal phase
rotations and space–time rotations are considered in a single unify-
ing frame characterizing them in an identical manner.

3. W.K. Clifford synthesized Grassmann’s algebra of extension and
Hamilton’s quaternion algebra by introducing a new type of prod-
uct ab of two proper (non-zero) vectors, called geometric product.
He constructed a powerful algebraic system, now popularly known

3
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as Clifford algebra, in which vectors are equipped with a single
associative product that is distributive with respect to addition.

Geometric algebra, developed by Hestenes [1, 2, 3] during the decades
1966–86, though serving as a powerful mathematical language for the devel-
opment of physics, is still not widely known.

1.2 Genesis of Geometric Algebra

An account of the concept of numbers and directed numbers that had been
evolving from antiquity to the 17th century, when symbolism of algebra had
been developed to a degree commensurate with Greek geometry, is given
with full historical background. The deficiencies in the concept of number
in Descartes’ time, however, were removed with the advent of calculus that
gave a clear idea of the “infinitely small.” A transparent idea of “infinity”
and of the “continuum of real numbers” was conceived in the later part of
the 19th century by Weierstrass, Cantor, and Dedekind when real numbers
were defined in terms of natural numbers and their arithmetic without taking
any recourse to geometric intuition of the “linear continuum.” However, the
evolution of the concept of number did not stop here as it would depend more
on the geometric notion than on the linear continuum.

With a proper symbolic expression for direction and dimension came the
broader concept of directed numbers — multivectors — which is a power-
ful mathematical language for physical theories, the sine qua non for future
direction.

Euclid made a systematic formulation of Greek geometry (310 B.C.) from a
handful of simple assumptions about the nature of physical objects. This, in
fact, provided the first comprehensive theory of the physical world that led
to the foundation for all subsequent advances in physics. In accordance with
Plato’s ideal world of mathematical concepts (360 B.C.), geometrical figures
were regarded as idealization of physical bodies. The great Greek philosopher
Plato (429–348 B.C.) seems to have foreseen some of the wonderful insights,
such as

1. Mathematics must be studied for its own sake and perceived by
the exercise of mathematical reasoning and insight; its completely
accurate applicability to the objects of the physical world must not
be demanded.

2. Physical theory, on the other hand, could ultimately be developed
and understood only in terms of precise mathematics [4, 5, 6].

The mathematical concepts of Plato’s ideal world were only approximately
realized in terms of the observed features of the physical world we live in.
The central theme of Greek geometry was the theory of congruent figures that
specified a set of rules to be used for classifying bodies with a proper notion
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of size and shape. The idea of measurement could have been conceived after
Greek geometry was created, though it was not created with the problem of
measurement in mind.

In this regard we would like to be more precise and question the usual
point of view according to which, in general, Hellenism appears to be a period
of decline [7].

On the contrary, the birth of “modern science” goes back 2000 years,
namely near the end of the 4th century B.C. The most known scientists of
that time, Euclid and Archimedes (Euclid with the ability of abstraction of
a thought devoted mostly to philosophical speculations, and Archimedes as
the inventor of burning glass) were not the isolated precursors of a form
of thought that would flourish later on only in the 17th century A.D. Instead,
they were two of a large group of outstanding scientists: Erofilo of Calcedonia
(around the first half of the 3rd century B.C.), founder of scientific medicine;
Eratostene of Cirene (around the second half of the 3rd century B.C.), the
first mathematician who gave a very precise measurement of the length of
the earthly (terrestrial) meridian; Aristarco of Samo (the same epoch of the
3rd century B.C.), founder of the heliocentric system; Ipparco of Nicea (in the
2nd century B.C.), precursor of the modern dynamics and gravitation theory;
Ctesibio of Alessandria (first half of the 3rd century B.C.) who developed the
science of compressible fluids, as well as many others who were protagonists
of a sort of scientific revolution that achieved very high levels of theoretical
elaboration together with experimental practice that was not inferior to that
of Galileo and Newton.

Strangely, the scientists involved in research from the Renaissance period
to date seem to ignore the testimony of this extraordinary phenomenon.
According to Lucio Russo [7], it appears that the Roman people destroyed
the Hellenistic states after the conquest of Syracuse, the killing of Archimedes
(212 B.C.) and the destruction of Corinto (146 B.C.). The indifference of Rome
to scientific culture accounted for most of the original texts being lost.
According to Russo [7], the birth of modern science was not an indepen-
dent or a casual event; “modern” scientists gradually took possession of the
branches of knowledge as they were brought to light by the discovery of the
Greek, Arab, and Byzantine manuscripts.

Euclid sharply distinguished between number and magnitude, associat-
ing the former with the operation of counting and the latter with a line seg-
ment. So, for Euclid, only integers were numbers; even the notion of fractions
as numbers had not yet been conceived of. He represented a whole number n
by a line segment that was n times the chosen unit line segment. However, the
opposite procedure of distinguishing all line segments by labeling them with
numerals representing counting numbers was not possible. Obviously, this
one-way correspondence of counting number with magnitude implies that
the latter concept was more general than the former. The sharp distinction be-
tween counting number and magnitude, made by Euclid, was an impediment
to the development of the concept of number. Even the quadratic equations
whose solutions are not integers or even rational numbers were regarded
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to have no solutions at all. The Hindus and Arabs were able to resolve the
problem of generalizing their notion of number by separating the concept
of number from that of geometry. By retaining the rigid distinction between
the two concepts, Euclid expressed problems of arithmetic and algebra into
problems of geometry and solved them for line segments instead of for num-
bers. Thus, he represented the product xx(= x2) by a square with each side
of magnitude x, and the product xy by a rectangle with sides of magnitude x
and y. Likewise, x3 is represented by a cube with each edge of magnitude x,
and xyz by a rectangular parallelepiped with edges of magnitude x, y, and z.
However, there being no corresponding representation xn for n > 3 in Greek
geometry, the Greek correspondence between algebra and geometry could
not be extended beyond n = 3. This breakdown of Euclid’s procedure of
expressing every algebraic problem into a geometric problem impeded the
development of algebraic methods. These “apparent” limitations of Greek
mathematics were, however, overcome in the 17th century by René Descartes
(1596–1650) who developed algebra as a symbolic system for representing
geometric notions. This, in fact, led to the understanding of how subtle the
far-reaching significance of Euclid’s work was.

Also, here we would like to stress that the fact that limitation of Greek
mathematics was only apparent and not real is shown by the works of
Pitagora (∼ 585–500 B.C.) after the development of mathematics by Talete
(640–546 B.C.) and their disciples (called “Pythagoreans”). In fact, in Pythagore-
ans one can find a strong correspondence between mathematics (numbers)
and geometry: he and the Pythagoreans have shown that the properties of
numbers (for Pitagora, number means integer number) were evident through
geometric disposition (observe for instance that 1, 4, 9, 16, etc., were called
“squared” numbers because, as points, they can be disposed in squares). The
Pythagoreans were also shocked by the discovery that some ratios (as for
instance the ratio between the hypotenuse and one of the catheti or the ratio
between the diagonal of a square with its side) could not be represented by in-
tegers. They were so shocked that they thought that this should not be brought
to light but must stay secret! It is the first evidence of the presence of numbers
with extra reason (beyond reason), and therefore called “irrational” numbers.
However, what we like to stress is that the correspondence between mathe-
matics (numbers) and geometry was already present in the old Greek science.

After the remarkable development of science and mathematics in ancient
Greece, there was a long scientific incubation until an explosion of scientific
knowledge in the 17th century gave birth to new science, known as
Renaissance science. The long hiatus between the Greek science of antiquity
and Renaissance science can plausibly be explained by its historical evolution.
The evolution of science is determined by its inherent laws. The advances of
the Renaissance had to wait for the development of an adequate number sys-
tem that could express the results of measurement and of a proper formulation
of an algebraic language to express relations among these results. During
this period of scientific incubation the decimal system of Arabic numerals
was invented and a comprehensive algebraic system began to take shape.
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In 250 A.D., Diophantes, the last of the great Greek mathematicians, accepted
fractions as numbers. In 1540, Vieta studied rules for manipulating numbers
in an abstract manner by introducing the idea of using letters to represent con-
stants as well as unknowns in algebraic equations. This, in fact, revealed the
dependence of the concept of number on the nature of algebraic operations.
Before Vieta’s innovations, the union of algebra and geometry could not have
been accomplished. This union could have been consummated only when the
concept of number and the symbolism of algebra had been developed to a
degree commensurate with Greek geometry. When the stage of development
in two fronts — the concept of number and the symbolism of algebra — had
just been achieved, René Descartes appeared on the scene.

Though from the very beginning algebra was associated with geometry,
Descartes first developed it systematically in geometric language. Three steps
are of fundamental importance in this development. First, he assumed that
every line segment could be uniquely represented by a number that endowed
the Greek notion of magnitude a symbolic form. Second, he labeled line seg-
ments by letters representing their numeral lengths. This resided in the fact
that the basic arithmetic operations of addition and subtraction could be de-
scribed in a completely analogous way as geometric operations on line seg-
ments. Third, in order to get rid of the apparent limitations of the Greek rule
for geometric multiplication, he invented a rule for multiplying line segments,
yielding a line segment in complete correspondence with the rule for multi-
plying numbers. By introducing a symbol such as

√
2 to designate a solution

of the equation x2 = 2, it was possible to recognize the reality of algebraic
numbers. By taking recourse to the above steps, Descartes accomplished the
task of uniting algebra and geometry started by the Greek mathematicians.
Moreover, Descartes was able to use algebraic equations to describe geometric
curves, which heralded the beginning of analytic geometry. Indeed, this was
a crucial step in the development of mathematical language for modern
physics. The assumption of a complete correspondence between numbers
and line segments was the basis of union of algebra and geometry achieved
by Descartes. Pierre de Fermat (1601–1665) independently obtained similar
results. But Descartes penetrated into the heart of the problem by uniting
his concept of number with the Greek notion of geometric magnitude, which
opened up new vistas of scientific knowledge unequalled in the history of the
Renaissance period.

In this context it is quite relevant to note what Descartes wrote to
Mersenne in 1637:

I begin the rules of my algebra with what Vieta
wrote at the very end of his book. . . .

Thus, I begin where he left off.

Vieta used letters to denote numbers, whereas Descartes introduced letters
to denote line segments. Vieta studied rules for manipulating numbers in
an abstract manner, and Descartes accepted the existence of similar rules for
manipulating line segments and greatly improved symbolism and algebraic
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technique. Thus, it seemed that numbers might be put into one-to-one
correspondence with points on a geometric line, leading to a significant step
in the evolution of the concept of number.

The deficiencies in the concept of number in Descartes’ time could be felt
with the advent of calculus, which gave a clear idea of the “infinitely small.”
A transparent idea of “infinity” and the “continuum of real numbers” was
conceived in the 19th century by Weierstrass, Cantor, and Dedekind when
real numbers were defined in terms of natural numbers and their arithmetic
without taking any recourse to geometric intuition of the continuum. This
arithmeticization of real numbers, in fact, imparted a precise symbolic
expression to the intuitive concept of a continuous line.

The far-reaching significance of Descartes’ union of number and geometric
length still resides in the fact that real numbers could be put into one-to-one
correspondence with points on a geometric line. The development of algebra
as a symbolic system for representing geometric notions was a great turning
point of Renaissance science. But the evolution of the concept of number did
not stop here, as it would depend more on the geometric notions than on the
linear continuum.

Descartes’ algebra could be used to classify line segments by length only.
The fundamental geometric notion of direction of a line segment finds no
expression in ordinary algebra. The modification of algebra to have a fuller
symbolic representation of geometric notions had to wait some 200 years after
Descartes, when the concept of number was generalized by Herman Grass-
mann to incorporate the geometric notion of direction as well as magnitude.
With a proper symbolic expression for direction and dimension came the
broader concept of directed numbers, now known as multivectors.

We have already mentioned that the theory of congruent figures was the
central theme of Greek geometry. Descartes designated two line segments
by the same positive real number, which we now call the positive scalar, if
one could be obtained from the other by a translation or a rotation or by a
combination of both. Conversely, every positive scalar was represented by
a line segment without any restriction to its position and direction, i.e., all
congruent line segments were regarded as one and the same.

In order to conceive of the idea of directed number, Herman Grassmann
generalized the concept of number by incorporating the geometric notion of
both direction and magnitude in his book Algebra of Extension in 1844. He
invented a rule for relating directed line segments to numbers. In contrast to
Descartes’ idea, he regarded two line segments as equivalent and designated
them by the same symbol, if and only if one could be obtained from the other
by a translation. On the other hand, he regarded two line segments as pos-
sessing different directions and designated them by different symbols, if and
only if one can be obtained from the other by a rotation or by a combination of
translation and rotation. Thus, Grassmann conceived of the idea of directed
line segment or directed number, called vector. A vector is graphically repre-
sented by a directed line segment and embodies the essential abstractions of
magnitude and direction without any restriction to its position.
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Through his revelation that the concept of number must be based on the
rules for combining two numbers to get a third, Grassmann invented the rules
for combining vectors, which would fully describe the geometrical properties
of directed line segments. Thus, he set down algebraic rules for addition and
multiplication of a vector by a scalar that must obey the commutative and
associative rules such as in Descartes’ algebra. The zero vector was regarded
as one and the same number as the zero scalar.

In order to endow the algebraic system for vectors with a complete
symbolic expression of the geometric notion of magnitude and direction,
Grassmann introduced two kinds of multiplication for vectors, viz., inner
and outer products. He defined the inner product of two vectors a and b,
denoted by a ·b, to be a scalar obtained by dilating the perpendicular projection
of a on b by the magnitude of b, or equivalently by dilating the perpendicular
projection of b on a by the magnitude of a :

a · b = |a | cos ϑ |b| = |b| cos ϑ |a | = b · a, (A)

where ϑ is the angle between a and b. The inner product can as well be
defined abstractly as a rule relating scalars to vectors that has all the basic
properties provided by the above definition of inner product in terms of per-
pendicular projection. The expression (A) abstractly calls for an independent
definition of the angle ϑ between vectors a and b. The magnitude of a vector
is related to the inner product by

a · a = |a |2 ≥ 0. (B)

In what follows, we shall show how the preceding arguments leading to
the invention of scalars and vectors can be continued in a natural way, which,
in turn, further extend the concept of number by the introduction of bivector
or outer product of two vectors a and b, denoted by the symbol a ∧ b. The
fundamental geometrical fact that two distinct lines intersecting at a point
determine a plane, or more specifically, that two noncollinear directed line
segments determine a parallelogram, was considered by Grassmann who
gave it a direct algebraic expression. For this purpose he regarded a paral-
lelogram as a kind of “geometrical product” of its sides. More specifically,
he introduced a new kind of directed number of dimension two — a plane-
like object — having both magnitude and orientation, such as an oriented
flat surface and the rotation in a plane. It is graphically represented by an
oriented parallelogram defined by two vectors a and b with the head of a
attached to the tail of b, and mathematically represented by the bivector a ∧b,
also called the outer product of a and b. A bivector represents the essential
abstractions of magnitude and planar orientation without any restriction to
the shape of the plane. It is to be noted that the bivector a ∧ b is different
from the usual vector product a × b, which is an axial vector in Gibbs’ vector
algebra.
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In 1884, just 40 years after the publication of Grassmann’s Algebra of Exten-
sion, Gibbs developed his vector algebra following the ideas of Grassmann by
replacing the concept of the outer product by a new kind of product known as
vector product and interpreted as an axial vector in an ad-hoc manner. This,
in fact, went against the run of natural development of directed numbers
started by Grassmann and completely changed the course of its development
in the other direction. Grassmann’s outer product reveals the fact that the
Greek distinction between number and magnitude has real geometric sig-
nificance. Greek magnitudes, in fact, added like scalars but multiplied like
vectors, asserting the geometric notions of direction and dimension to mul-
tiplication of Greek magnitudes. This revealing feature is a reminiscence of
the distinction, carefully made by Euclid, between multiplication of magni-
tudes and that of numbers. Thus, Herman Grassmann fully accomplished the
algebraic formulation of the basic ideas of Greek geometry begun by René
Descartes.

During 1966–86, David Hestenes [1–3] constructed an algebraic system
known as geometric algebra, which combined the algebraic structure of
Clifford algebra (1876) with the explicit geometric meaning of its mathemati-
cal elements — directed numbers of different dimensions — at its foundation.
He termed these directed numbers multivectors. Thus scalars are termed as
multivectors of grade 0, vectors as multivectors of grade 1, bivectors as mul-
tivectors of grade 2, trivectors as multivectors of grade 3, etc. A volume-like
object having magnitude as well as a choice of handedness is graphically
represented by an oriented parallelepiped with handedness defined by three
vectors a, b, and c, and mathematically represented by trivector a ∧ b ∧ c.
A trivector represents the essential abstraction of volume orientation with
handedness and magnitude without any restriction to the shape of the volume-
like object. For n-dimensional space, multivectors with grade greater than n
cannot be constructed and hence they cease to exist.

In contrast to Gibbs, Hestenes retained Grassmann’s concept of outer
product of vectors, extended it in a natural way to get multivectors of higher
grade and successfully developed geometric algebra — a powerful mathe-
matical language for physics.

1.3 Mathematical Elements of Geometric Algebra

Geometric algebra for three-dimensional space consists of four types of math-
ematical elements having correspondences with geometrical or physical
objects. So, the powerful geometric intuition of the human mind and the
physical objects are built into its very foundation. We give qualitative ideas
of these four types of elements of this algebra for three-dimensional space.
Details are provided in Reference[8].
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1. First, we consider physical objects having magnitude without any
spatial extent, such as mass, temperature, specific gravity, number
of objects, etc. They are mathematically represented by scalars or
real numbers. We call these objects multivectors of grade 0.

2. Second, we consider linelike physical objects having both magni-
tude and direction, such as displacement, velocity, etc. They are
mathematically represented by vectors ā , b̄, . . . and graphically by
directed line segments. A vector represents the essential abstractions
of magnitude and direction without any restriction to its position.
We call these linelike objects multivectors of grade 1.

3. Third, we consider planelike physical objects having both magni-
tude and orientation, such as an oriented flat surface area and the
rotation in a plane. It is graphically represented by an oriented paral-
lelogram defined by two vectors ā and b̄ with the head of ā attached
to the tail of b̄, and mathematically represented by the bivector ā ∧ b̄,
also called the outer product of ā and b̄. A bivector represents the
essential abstraction of planar orientation and magnitude without
any restriction to the shape of the plane. We call these planelike
objects multivectors of grade 2. It is to be noted that the bivector
ā ∧ b̄ is different from the usual product ā × b̄, which is an “axial”
vector in the usual vector algebra.

4. Last, we consider volume-like objects having magnitude as well as a
choice of handedness, such as an oriented parallelopiped with hand-
edness. It is graphically represented by an oriented parallelopiped
defined by three vectors ā , b̄, and c̄ with the head of ā attached to
the tail of b̄ and with the head of b̄ attached to the tail of c̄, and math-
ematically represented by trivectors ā ∧ b̄ ∧ c̄. The order of vectors
in ā ∧ b̄ ∧ c̄ determines the handedness and the sign of the oriented
parallelopiped. A trivector represents the essential abstraction of
volume orientation with handedness and magnitude without any
restriction to the shape of the volume. We call these volume-like
objects multivectors of grade 3 (see Figure 1.1).

As no mathematical elements with grades greater than 3 can be con-
structed in three-dimensional Euclidean space, the above-mentioned elements
constitute four independent mathematical objects of the geometric algebra for
a three-dimensional space. We write a multivector M of any grade as

M = |M|(unit of M),

where M is a real number representing the magnitude of M. In geometric
algebra for three-dimensional space, unit multivector may be scalar, vector,
bivector, or trivector. We take any set of three orthonormal vectors as a basis
for vectors. The three mutually orthogonal unit bivectors constructed out of
three orthonormal basis vectors are taken as a basis for bivectors. There is only
one unit scalar 1. Also, there is only one unit trivector, equal to the product
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FIGURE 1.1
Four mathematical elements of the geometric algebra for three-dimensional space are represented
graphically.

of the three orthonormal vectors considered because there is only one unit
volume with the orientation of a given handedness.

A generic multivector M is defined as a linear combination of four linearly
independent multivectors of different grades as

M = M0 + M1 + M2 + M3, (1.1)

where Mi (i = 0, 1, 2, 3) is a multivector of grade i. The addition of multi-
vectors of different grades may seem absurd at first look. The absurdity dis-
appears because one may justify Equation 1.1 in the abstract Grassmannian
way if the indicated relations and operations in mathematics are well defined.
For example, a complex number x is defined as a linear combination of a unit
scalar 1 and and a unit imaginary j as

x = 1x1 + j x2. (1.2)
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Equation 1.2 shows that x has two parts: real and imaginary; they are
linearly independent mathematical elements. Likewise, Equation 1.1 shows
that M has four parts: scalar (real numbers), vector, bivector, and trivector; all
are linearly independent mathematical elements. In the next section we shall
show that unit trivector and the unit imaginary have a close resemblance,
both being algebraically equal to

√−1. However, the unit trivector, being a
unit volume element with orientation of a given handedness, affords more
information, geometrical and physical.

Henceforth we call the multivector of any grade a simple multivector to
distinguish it from the generic multivector consisting of four parts: scalar,
vector, bivector, and trivector.

1.4 Geometric Algebra as a Symbolic System

Mathematical objects of geometric algebra have one kind of addition rule, dif-
ferent from Gibbs’ vector algebra, and one general kind of multiplicative rule,
known as the geometric product. The importance of the geometric product
of two vectors can be visualized in the fact that all other significant products
can be obtained from it. The inner and outer products seem to complement
one another by describing independent geometrical relations.

Noting the fact that the inner and outer products of two vectors have
opposite symmetries, we define a general kind of product ab (dropping the
convention of using overline for vectors) called the geometric product of the
vectors a and b, by

ab = a · b + a ∧ b. (1.3)

By the same mathematical argument given in the previous section we can
justify the addition of multivectors of different grades: a scalar (grade 0) and
a bivector (grade 2). One can give mathematical meaning to (1.3) by specifying
that the addition of scalars and bivectors satisfies the usual commutative and
associative rules.

As the inner product obeys commutative rule, we can obtain from (1.3)

ba = b · a + b ∧ a = a · b − a ∧ b. (1.4)

Here we assume that both the inner and outer products are bilinear in their
arguments. So, the geometric product defined by (1.3) is also bilinear in its
two arguments.

The geometric product is not generally commutative:

ab �= ba, (1.5)

unless a ∧ b = 0, for which

ab = a · b = b · a = ba, (1.6)
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nor is it anticommutative:

ab �= −ba, (1.7)

unless a · b = 0, for which

ab = a ∧ b = −b ∧ a = −ba . (1.8)

The product ab inherits a geometrical interpretation from those already
accorded to the inner and outer products. It is, in fact, an algebraic measure
of the relative direction of the vectors a and b as we note that

1. Equation 1.6 implies that the vectors are parallel if and only if their
geometric product is commutative.

2. Equation 1.8 implies that the vectors are orthogonal if and only if
their geometric product is anticommutative.

As the inner and outer products have opposite symmetries, they can be
extracted from (1.3) and (1.4):

a · b = (1/2)(ab + ba) (1.9)

and

a ∧ b = (1/2)(ab − ba). (1.10)

Now, instead of regarding (1.3) as the definition of the geometric product ab,
we consider it as a fundamental product and take (1.9) and (1.10), respectively,
as the definitions of the inner and the outer products of a and b in terms of
ab. Thus, in geometric algebra, the composite geometric product is the funda-
mental algebraic operation with its symmetric and antisymmetric parts being
endowed with prime geometrical or physical significance. In this connection
one must note that

1. The commutability of the inner product is imparted by the com-
mutability of addition.

2. The anticommutability of the outer product is imparted by the
anticommutability of subtraction.

Multiplication of the geometric product ab by a scalar λ gives

λ(ab) = (λa )b = a (λb), (1.11)

which follows from the bilinear property of the geometric product.
The above multiplications are mutually commutative and associative. If

the commutative rule is separated from the associative rule by dropping the
round brackets in (1.11) we get

λa = aλ, (1.12)

which is the conventional commutative product of a scalar and a vector.
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The geometric product obeys the left and right distributive rules:

a (b + c) = ab + ac, (1.13)
(b + c)a = ba + ca (1.14)

for any three vectors a, b, and c.
We give the proof of (1.13):

a (b + c) = a · (b + c) + a ∧ (b + c) [definition of geometric product]
= (a · b + a · c) + (a ∧ b + a ∧ c) [associative rules for addition]
= (a · b + a ∧ b) + (a · c + a ∧ c) [rearrangement of terms]
= ab + ac [definition of geometric product].

In the same way, we can prove (1.14). One must note that the distributive
rules (1.13) and (1.14) are independent of one another because the geometric
product is, in general, neither commutative nor anticommutative.

In any algebra the associative property is extremely useful in algebraic
manipulations. For this purpose we assume that for any three vectors a, b,
and c the geometric product is associative:

a (bc) = (ab)c = abc. (1.15)

Thus, we have ascertained all the basic algebraic properties of the geo-
metric product of vectors including the associative rule.

By exploiting these algebraic properties of the geometric product we will
show in what follows that for any three vectors a, b, and c the outer product
a ∧ b ∧ c is also associative (see the following Equation 1.22). This can be
visualized geometrically by the fact that the mathematical object a ∧ b ∧ c is a
volume element with orientation of a given handedness, independent of how
the factors of the object are grouped provided the order of the vectors in the
product is retained.

One can see easily that the outer product of a vector a and a bivector
A = b ∧ c is symmetric:

a ∧ A = a ∧ (b ∧ c) = (a ∧ b) ∧ c

= − (b ∧ a ) ∧ c = −b ∧ (a ∧ c)
= + b ∧ (c ∧ a ) = (b ∧ c) ∧ a

= A∧ a . (1.16a)

Now we are in a position to extract the inner and outer product of a vector
a and a bivector A = b ∧ c from the geometric product a A by using the
associative rule (1.15) and noting that a · A and a ∧ A must have opposite
symmetries, i.e.,

a ∧ A = A∧ a, (1.16a)
a · A = −A · a . (1.16b)
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The anticommutability of the inner product a · Amay be seen in the result

a · A = a · (b ∧ c) = (a · b)c − (a · c)b

calculated later (see the following Equation 1.23).
First we express the geometric product aA as a sum of symmetric and

antisymmetric parts:

aA = (1/2)(aA + aA) + (1/2)(Aa − Aa)

= (1/2)(aA − Aa) + (1/2)(aA + Aa) (1.17)

and write

aA = a · A+ a ∧ A, (1.18)

where we set in view of (1.16a, b)

a · A = (1/2)(aA − Aa) = −A · a (1.19)

and

a ∧ A = (1/2)(aA + Aa) = A∧ a . (1.20)

All these basic algebraic properties except the associativity of the outer
product have already been ascertained. In order to derive the associative rule
for the outer product of vectors, we consider the definitions (1.10) and (1.20)
and the associative rule (1.15) for the geometric product. Thus we have

(a ∧ b) ∧ c = (1/2)[(a ∧ b)c + c(a ∧ b)]

= (1/4)[(ab − ba)c + c(ab − ba)]

= (1/4)[abc − bac + cab − cba]. (1.21a)

Likewise,

a ∧ (b ∧ c) = (1/2)[a (b ∧ c) + (b ∧ c)a ]

= (1/4)[a (bc − cb) + (bc − cb)a ]

= (1/4)[abc − acb + bca − cba]. (1.21b)

From (1.21a, b) we get

(a ∧ b) ∧ c − a ∧ (b ∧ c) = (1/4)(cab + acb) − (1/4)(bac + bca)

= (1/4)(ca + ac)b − (1/4)b(ac + ca)

= (1/2)(c · a )b − (1/2)b(a · c)

= (1/2)(a · c)b − (1/2)(a · c)b

= 0.
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Thus we have

(a ∧ b) ∧ c = a ∧ (b ∧ c), (1.22)

which gives the associative rule for the outer product of vectors.
The symmetric part a ∧ Aof the geometric product aA in (1.18) is identified

with the outer product of a vector and a bivector, which is, in fact, a trivector
a ∧ b ∧ c, a multivector of grade 3.

The antisymmetric part a · Aof the geometric product aA in (1.18) is identi-
fied with the inner product of a vector and a bivector, which may be regarded
as a generalization of the inner product of vectors. In order to understand
the significance of the quantity a · A, one must expand it explicitly in terms
of the inner product of two vectors to exibit its grade for ascertaining the
mathematical object it represents.

By using the definitions (1.9), (1.10), (1.19) and the associative rule (1.15)
for the geometric product, one can write, taking A = b ∧ c:

a · A = (1/2)[a A− Aa ] = (1/2)[a (b ∧ c) − (b ∧ c)a ]

= (1/4)[a (bc − cb) − (bc − cb)a ]

= (1/4)[a (bc) − a (cb) − (bc − cb)a ]

= (1/4)[(ab)c − (ac)b − (bc − cb)a ]

= (1/4)[(2a · b − ba )c − (2a · c − ca )b − (bc − cb)a ]

{remember ab = (2a · b − ba ), etc.}
= (1/4)[(2a · b)c − (ba )c − (2a · c)b + (ca )b − (bc − cb)a ]

= (1/4)[(2a · b)c − b(ac) − (2a · c)b + c(ab) − (bc − cb)a ]

= (1/4)[(2a · b)c − b(2a · c − ca ) − (2a · c)b

+ c(2a · b − ba ) − (bc)a + (cb)a ]

= (1/4)[(2a · b)c − (2a · c)b + b(ca ) − (2a · c)b

+ (2a · b)c − c(ba ) − b(ca ) + c(ba )]

= (a · b)c − (a · c)b.

Thus we have

a · A = a · (b ∧ c) = (a · b)c − (a · c)b. (1.23)

This shows that the inner product of a vector and a bivector is anticommuta-
tive and represents a vector. In the derivation of the result (1.23) we first write
the expression simply in terms of geometric products and then repeatedly
use the associative rule for the geometric product and the inner product of
two vectors, written as ab = 2a · b − ba. This demonstrates that the composite
geometric product with its associative property is a fundamental algebraic
operation.
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Equations 1.9, 1.10 and 1.19, 1.20 demonstrate the general rules for the
inner and outer products, which may be stated as

1. The inner product by a vector lowers the grade of any simple mul-
tivector by one.

2. The outer product by a vector raises the grade of any simple multi-
vector by one.

One may note the following pattern of symmetry for the outer product
of a vector a and multivectors of different grades. It is antisymmetric for any
vector b(multivector of grade 1):

a ∧ b = −b ∧ a, (1.24)

and symmetric for any bivector (multivector of grade 2) A = b ∧ c:

a ∧ A = A∧ a, (1.25)

which shows that symmetry alternates with grade. The above symmetry may
be generalized by the rule

a ∧ M = (−1)g M ∧ a, (1.26)

where a is any vector and M is any multivector of grade “g”.
Also noting that the inner and outer product of a vector and any mul-

tivector of grade g must have opposite symmetries, and taking account of
the symmetry for the outer products as given by (1.26), we can express the
symmetry for the inner products by the rule:

a · M = −(−1)g M · a . (1.27)

This can also be obtained as the generalization of the results (1.9) and (1.23).

1.5 Geometric Algebra as an Axiomatic System (Axiom A . . .)

In Section 1.4 we have introduced geometric algebra for three-dimensional
space as a symbolic system that includes graded multivectors Mi (i = 0, 1, 2, 3),
called simple multivectors (scalar, vector, bivector, and trivector) to represent
the directional properties of points, lines, planes, and space (volume). Because
the graded multivectors Mi are linearly independent mathematical objects,
we define a generic multivector M, a mathematical object of “mixed” grades,
to be a linear combination of them as

M = M0 + M1 + M2 + M3. (1.28)

Any element of geometric algebra can be expressed in the form (1.28). In
this type of addition, multivectors of different grades do not mix; they are
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simply collected as separate parts under one heading called multivector. As
in the addition of real and imaginary numbers, numbers of different types
are collected as separate parts under the name of complex numbers.

We note in passing that the geometric product of vectors has, except for
commutativity, the same algebraic properties as the scalar multiplication of
vectors and bivectors. In particular, both products are associative as well as
distributive with respect to addition.

Now, in conformity with the development of geometric algebra for three-
dimensional space as a symbolic system, we develop the geometric algebra
for the space of an arbitrary dimension by introducing the following axioms
and definitions.

We denote by G the geometric algebra for a space of an arbitrary
dimension, and A, B, C, . . . are multivectors belonging to G.

Axiom 1 : G is closed under the addition of any two multivectors belonging
to G, i.e., for any two multivectors

A, B, ∈ G

there exists a unique multivector C ∈ G, such that

A+ B = C (A.1)

Axiom 2 : G is closed under the multiplication (geometric) of any two
multivectors A, B ∈ G, i.e., there exists a unique multivector C ∈ G, such that

AB = C. (A.2)

Axiom 3: Addition of multivectors A, B ∈ G is commutative, i.e.,

A+ B = B + A. (A.3)

Axiom 4: Addition is associative, i.e., for any three multivectors A, B, and
C ∈ G, we have

( A+ B) + C = A+ (B + C). (A.4)

Axiom 5: The geometric product of multivectors ∈ G is associative, i.e., for
any three multivectors A, B, C ∈ G,

( AB)C = A(BC). (A.5)

Axiom 6: The geometric product of multivectors ∈ G obeys the left and
right distributive rules with respect to addition, i.e., for any three multivectors
A, B, C ∈ G,

A(B + C) = AB + AC. (A.6)
(B + C) A = B A+ C A. (A.7)
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Note that the distributive rules (A.6) and (A.7) are independent of one
another because neither commutability nor anticommutability of the geo-
metric product of multivectors is axiomatized.

Axiom 7: There exists a unique multivector 0 ∈ G, called the additive
identity, such that

A+ 0 = A = 0 + A. (A.8)

Axiom 8: There exists a unique multivector I ∈ G, called the multiplicative
identity, such that

I A = A. (A.9)

Axiom 9: Every multivector A ∈ G has a unique multivector −A ∈ G,
called the additive inverse, such that

A+ (−A) = 0 = (−A) + A. (A.10)

Axiom 10: The set of scalars in the algebra are real numbers.
Axiom 11: The multiplication of a multivector A ∈ G by a scalar λ is

commutative:

λA = Aλ. (A.11)

Axiom 12: The square of any non-zero vector a is a unique position scalar
|a |2:

a2 = |a |2 > 0. (A.12)

Axiom 13: For every non-zero vector a ∈ G there exists a unique vector
a−1 ∈ G, called the multiplicative inverse, such that

aa−1 = I = a−1a, (A.13)

where

a−1 = a/a2. (A.14)

Axiom 14: For every vector a and a multivector Ar of grade r in an
r -dimensional space,

a ∧ Ar = 0. (A.15)

The left-hand member is a multivector of grade r + 1(see rules 1 and 2
of Section 1.4); this axiom is necessary because r -dimensional space does not
allow any multivector with grade greater than r.

On the other hand, from the geometrical point of view, we can say that
if a ∧ Ar is �= 0, we will be in a vector space that has a dimension not lower
than r + 1 because, being a ∧ Ar �= 0, a ∧ Ar is an (r + 1)-multivector that can
be only in an r + 1 space. Then, in an r -dimensional space, the outer product
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of a vector by any multivector of grade r must be 0, i.e., a ∧ Ar = 0. We can
say then in this manner: no mathematical objects with grade greater than r
can be constructed in an r -dimensional space (see also the proposition given
following Figure 1.1, which refers to a three-dimensional Euclidean space,
where it is said that no mathematical elements with grade greater than 3
can be constructed). So, for example, in three-dimensional physical space we
have

a ∧ A3 = 0. (1.29)

Next, we give some definitions. For a vector a and any multivector Ak of
grade k we define the inner product by

a · Ak = (1/2)(aAk − (−1)k Aka ) = −(−1)k Ak · a (1.30)

and the outer product by

a ∧ Ak = (1/2)(aAk + (−1)k Aka ) = (−1)k Ak ∧ a . (1.31)

Adding (1.30) and (1.31) we have the geometric product aAk as

aAk = a · Ak + a ∧ Ak (1.32)

Note:

1. (1.30) includes (1.9) and (1.19) as special cases.
2. (1.31) includes (1.10) and (1.20) as special cases.
3. (1.32) includes (1.3) and (1.18) as special cases.

From the definitions (1.30) and (1.31) we adopt the following rules in
accordance with the rules depicted in Section 1.4 for lowering and raising the
grades of any multivector by its inner and outer products with a vector:

1. a · Ak is a multivector of grade k − 1. (1.33)

2. a ∧ Ak is a multivector of grade k + 1. (1.34)

In particular, the inner product of a multivector λ of grade 0 by a vector,
following the rule 1, (1.33) has a grade 0–1, and then it is without any meaning
(and thus is not an element of geometric algebra).

By using the definition (1.31) one can write eq.(1.29) as

aA3 = A3a . (1.35)

We have given this example contained in Equation 1.35 because it will be
useful when we will consider the Pauli algebra.

Notice that axioms A.1 to A.9 implicitly define the operations of addition,
subtraction, and multiplication of mathematical elements of the geometric
algebra. Except for the commutative law for multiplication, they are identical
with the axioms of scalar algebra.
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We will give here the derivation of the associative rule for the outer product
of vectors:

a ∧ (b ∧ c) = (a ∧ b) ∧ c. (1.36)

We begin with the associative rule for the geometric product:

a (bc) = (ab)c (1.37)
a (b · c + b ∧ c) = (a · b + a ∧ b)c [definition] (1.38)
a (b · c) + a (b ∧ c) = (a · b)c + (a ∧ b)c [distributive law] (1.39)
a (b · c) + a · (b ∧ c) + a ∧ (b ∧ c)

= (a · b)c + (a ∧ b) · c + (a ∧ b) ∧ c [definition] (1.40)

By using rule (1.33) we identify the terms a (b ·c), a ·(b∧c), (a ·b)c, and (a ∧b) ·c
as vectors. Likewise, by using rule (1.34), the terms a ∧ (b ∧ c) and (a ∧ b) ∧ c
are identified as trivectors. By equating the trivector parts from both sides,
we get the associative rule for the outer product:

a ∧ (b ∧ c) = (a ∧ b) ∧ c. (1.41)

Also, by equating the vector parts, we get an algebraic identity:

a (b · c) + a · (b ∧ c) = (a · b)c + (a ∧ b) · c. (1.42)

Now we derive the distributive rules for the inner and outer products. By
using the left distributive rule (A.6) of the geometric product for a vector a
and r -grade multivectors Br and Cr we get

a (Br + Cr ) = aBr + aCr (1.43)
a · (Br + Cr ) + a ∧ (Br + Cr ) (1.44)
= a · Br + a ∧ Br + a · Cr + a ∧ Cr [using (1.32)].

By taking account of rules (1.33) and (1.34), we equate the multivectors of like
grades from both sides and get the left distributive rules for the inner and
outer products:

a · (Br + Cr ) = a · Br + a · Cr (1.45)

and

a ∧ (Br + Cr ) = a ∧ Br + a ∧ Cr . (1.46)

Similarly, by using the right distributive rule (A.7) we get the right dis-
tributive rules for the inner and outer product:

(Br + Cr ) · a = Br · a + Cr · a (1.47)

and

(Br + Cr ) ∧ a = Br ∧ a + Cr ∧ a . (1.48)
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A consequence of rule (1.33) is that if we take the inner product of a vector a
by a multivector λ of grade 0, we will find a multivector of grade −1. As this is
impossible, this kind of inner product is meaningless. Again, a consequence
of rule (1.34) is that if we take the outer product of a vector a by a multivector
λ of grade 0, we have a multivector of grade 1; in that case, aλ = λa is the
same as the conventional product of a scalar and a vector.

1.6 Some Essential Formulas and Definitions

According to definition (1.28) of Section 1.5, every multivector A in three-
dimensional Euclidean space can be expressed linearly in terms of graded
multivectors Ak(k = 0, 1, 2, 3) as

A = A0 + A1 + A2 + A3. (1.49)

Multivector A is said to be even if it contains only the even-graded multi-
vector parts A0 and A2, and odd if it contains only the odd-graded multivector
parts A1 and A3.

Denoting the even and odd multivector parts by A+ and A−, respectively,
we see that

A = A+ + A− (1.50)

where

A+ = A0 + A2 (1.51)

and

A− = A1 + A3. (1.52)

It is easy to show that even multivectors form an algebra by themselves,
which is a subalgebra of the full geometric algebra, but odd multivectors do
not.

In any multivector containing products of different kinds, we perform
the operations of multiplication in the following order: outer product, inner
product and, last, geometric product. This convention of preference order of
performing multiplications operations removes the ubiquitous use of paren-
thesis. The following are examples:

A∧ BC = ( A∧ B)C �= A∧ (BC) (1.53)
A · BC = ( A · B)C �= A · (BC) (1.54)
A · B ∧ C = A · (B ∧ C) �= ( A · B) ∧ C, (1.55)

where A, B, and C are graded multivectors.
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Now we present the following reduction formula and its expanded form
without proof. Their proofs are presented in Reference [3].

1. The general reduction formula:

a · a1 ∧ Cr−1 = a · a1Cr−1 − a1 ∧ (a · Cr−1), (1.56)

where a and a1 are vectors, and Cr−1 is a multivector of grade r − 1.
This is valid for any positive integral value of r ≥ 3.

2. By iterating a1 ∧ (a · Cr−1), we write it in the expanding form:

a1 ∧ (a · a2 ∧ a3 ∧ · · · ∧ ar )
= a · a2a1 ∧ a3 ∧ · · · ∧ ar −r a · a3a1 ∧ a2 ∧ a4 ∧ · · · ∧ a

+ · · · + (−1)r a · ar a1 ∧ a2 ∧ · · · ∧ ar−1. (1.57)

This is valid for any positive integral value of r ≥ 3. Particular case: if r = 3,
we get

a1 ∧ (a · a2 ∧ a3) = a · a2a1 ∧ a3 − a · a3a1 ∧ a2. (1.58)

This can be directly obtained by using the formula

a · a2 ∧ a3 = (a · a2)a3 − (a · a3)a2. (1.59)

In view of (1.57) the general reduction formula (1.56) can be expressed in
the following expanded form:

a · (a1 ∧ a2 ∧ · · · ∧ ar ) =
r∑

s=1

(−1)s+1a · asa1 ∧ a2 ∧ ăs · · · ∧ ar

= a · a1a2 ∧ a3 ∧ · · · ∧ ar − a · a2a1 ∧ a3 ∧ · · · ∧ ar + · · ·
+(−1)r+1a · ar a1 ∧ a2 ∧ · · · ∧ ar−1, (1.60)

where the invested circumflex in the product

a · asa1 ∧ a2 ∧ · · · ăs · · · ∧ ar (1.61)

means that the as factor is to be omitted.
Equation 1.60 determines the inner product of a vector a and an r -graded

multivector Ar = a1 ∧ a2 ∧ · · · ∧ ar . The general reduction formula (1.56)
has been referred to as the Laplace expansion of the inner product by
Hestenes [3].

Now, we generalize the reduction formulas (1.56) and (1.60) by taking a
multivector of any grade in place of vector a. For the sake of convenience, we
write ( A)r to denote the r -graded multivector part of a multivector A.

For any r -graded multivector Ar and s-graded multivector Bs , we define
the inner product Ar · Bs by

Ar · Bs ≡ ( Ar Bs)|r−s| (1.62)
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and the outer product Ar ∧ Bs by

Ar ∧ Bs ≡ ( Ar Bs)r+s . (1.63)

The inner product produces an |r − s|-graded multivector, whereas the outer
product produces an (r + s)-graded multivector.

In the following text we deduce three important formulas and the asso-
ciative rule for the generalized outer product.

We begin with the associative rule for the geometric product of an r -graded
multivector Ar , an s-graded multivector Cs, (0 < r < s), and a vector b:

( Ar b)Cs = Ar (bCs). (1.64)
( Ar · b + Ar ∧ b)Cs = Ar (b · Cs + b ∧ Cs) [definition]. (1.65)
( Ar · b)Cs + ( Ar ∧ b)Cs = Ar (b · Cs) + Ar (b ∧ Cs) [definition]. (1.66)
( Ar · b) · Cs + ( Ar · b) ∧ Cs + ( Ar ∧ b) · Cs + ( Ar ∧ b) ∧ Cs . (1.67)

= Ar · (b · Cs) + Ar ∧ (b · Cs) + Ar · (b ∧ Cs) + Ar ∧ (b ∧ Cs)
[definition]. (1.68)

Now we equate like graded multivector parts from both sides of
Equation 1.68.

1. Equating the (s + r + 1)-graded multivector parts we get the asso-
ciative rule for the generalized outer product:

( Ar ∧ b) ∧ Cs = Ar ∧ (b ∧ Cs). (1.69)

2. Equating the (s + r − 1)-graded multivector parts we get

( Ar · b) ∧ Cs = Ar ∧ (b · Cs). (1.70)

3. Equating the (s − r + 1)-graded multivector parts we get

( Ar · b) · Cs = Ar · (b ∧ Cs). (1.71)

4. Finally, equating the (s − r − 1)-graded multivector parts, we get

( Ar ∧ b) · Cs = Ar · (b · Cs). (1.72)

The factor (b · Cs) on the right-hand side of (1.70) or (1.72) can be reduced
to the expanded form of the general reduction formula (1.60) if Cs is expressed
as an outer product of s vectors.

We have some particular cases:

1. The equation relating the bivector parts:

( A2 · b) · C3 = A2 · (b ∧ C3) (1.73)

is a particular case of (1.71).
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2. The equations relating the scalar parts

(a ∧ b) · C2 = a · (b · C2) (1.74)

and

( A2 ∧ b) · C3 = A2 · (b · C3) (1.75)

and that relating the vector parts

(a ∧ b) · C3 = a · (b · C3) (1.76)

are particular cases of (1.72). Equation 1.74 is useful in three-dimensional
Euclidean space, whereas Equation 1.73, Equation 1.75, and Equation 1.76 are
useful in four-dimensional space-time in simplifying algebraic expressions.
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2
Multivectors

2.1 Geometric Product of Two Bivectors A and B

Expressing bivector A as a product of orthogonal vectors:

A = a ∧ b = ab, (2.1)

we can write

AB = abB = a (bB) = a (b · B + b ∧ B)
= a (b · B) + a (b ∧ B)
= a · (b · B) + a ∧ (b · B) + a · (b ∧ B) + a ∧ (b ∧ B)
= (a ∧ b) · B + a ∧ (b · B) + a · (b ∧ B) + (a ∧ b) ∧ B

[by using (1.74)]
= A · B + [a ∧ (b · B) + a · (b ∧ B)] + A∧ B

= (AB)o + (AB)2 + (AB)4, (2.2)

where

(AB)o = A · B = a · (b · B) = (BA)o , (2.3)
(AB)2 = a ∧ (b · B) + a · (b ∧ B) = −(BA)2, (2.4)
(AB)4 = A∧ B = a ∧ b ∧ B = (BA)4. (2.5)

We decompose the geometric product AB into symmetric and antisym-
metric part [1]:

AB = (1/2)(AB + BA) + (1/2)(AB − BA) (2.6)

Comparing (2.2) with (2.6) and noting the relations (2.3)–(2.5), we establish
that

(AB)o + (AB)4 = (1/2)(AB + BA) = (BA)o + (BA)4

and

(AB)2 = (1/2)(AB − BA) = −(BA)2.

27
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Stated more explicitly, we can write

A · B + A∧ B = (1/2)(AB + BA) = B · A+ B ∧ A, (2.7)

and

a ∧ (b · B) + a · (b ∧ B) = (1/2)(AB − BA). (2.8)

The expression (1/2)(AB − BA) is called the commutator or commutator
product of A and B. In three-dimensional space

A∧ B = 0

Equation 2.2 and Equation 2.7 become

AB = (AB)0 + (AB)2 = A · B + a ∧ (b · B) + a · (b ∧ B) (2.9)

and

A · B = (1/2)(AB + BA) = B · A. (2.10)

The geometric product of bivectors can be generalized to the geometric
product of multivectors of any grades, Ar Bs . For the geometric product

Ar Bs = a1a2 . . . ar Bs, (r ≤ s),

the term of the lowest grade will be

Ar · Bs = ( Ar Bs)s−r . (2.11)

Corollary: The geometric product Ar Bs can have a nonzero scalar part

Ar · Bs if r = s.

Factorization: In geometric algebra there is a type of factorizing an r -graded
multivector into an outer product of vectors.

We see how a nonzero bivector B can be factorized into an outer product
of vectors.

We take a unit vector a and a nonzero bivector B such that

a ∧ B = 0 (2.12)

This condition implies that the unit vector a lies in the plane of the bivector
B. Then we can write

aB = a · B ≡ b (2.13)

This defines a unique vector b. We can solve Equation 2.13 for B in terms of
a and b. For this purpose we multiply (2.13) on the left by a−1 = a ,

a−1aB = a−1b,

(a−1a )B = ab,

B = ab. (2.14)



P1: Binaya Dash

October 24, 2006 16:55 C7729 C7729˙C002

Multivectors 29

From 2.12 and 2.13 we get

a · b = a · (a · B)
= (a ∧ a ) · B [using (1.74)].

Thus we have

a · b = 0. (2.15)

So, b is orthogonal to a. Thus, from (2.14) and (2.15) we obtain

B = ab = a ∧ b. (2.16)

Equation 2.16 gives us a factorization of the bivector B into an outer product
of orthogonal vectors with the condition (2.12) that the unit vector a be a factor
of B. Equation 2.13 tells us that b is a unique factor of B orthogonal to a.

2.2 Operation of Reversion

In geometric algebra we introduce one kind of conjugation called reversion
[1]. The reverse of any multivector A, denoted by Ã, is defined to be the
expression obtained from A by reversing the order of all vector factors in all
simple multivectors making up A.

The reverse of a bivector B = a ∧ b is given by

B†̂ = (a ∧ b )̃ = b ∧ a = −a ∧ b = −B. (2.17)

The reverse of a trivector T = a ∧ b ∧ c is given by

T̃ = (a ∧ b ∧ c)=c ∧ b ∧ a = −(b ∧ c) ∧ a

= b ∧ (a ∧ c) = −a ∧ (b ∧ c) = −T. (2.18)

Thus reversion changes the signs of bivectors and trivectors. Scalars and vec-
tors, on the other hand, remain unchanged. So, the reverse of a general mul-
tivector A in the expanded form is given by

Ã = ( A0 + A1 + A2 + A3)̃ = A0 + A1 − A2 − A3. (2.19)

It follows from the definition that the reverse of a geometric product of mul-
tivectors is the reverse of the reversed multivectors:

( AB . . . C D)̃ = D̃C̃ . . . B̃ Ã. (2.20)

In particular, the reverse of a geometric product of vectors is given by

(a1a2 . . . ar )̃ = ar . . . a2a1. (2.21)
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Reversion corresponds to Hermitian conjugation in matrix algebra and
is very useful in the problems of rotation where pairs of bivectors, one the
reverse of the other, occur in the usual way.

2.3 Magnitude of a Multivector

To every multivector A there corresponds a unique scalar |A|, called the mag-
nitude or modulus of A, defined by the equation

|A| = ( ÃA)1/2
0 . (2.22)

To prove the existence of (2.22) we have to show that

|A|2 = ( A ↑ A)0 ≥ 0, (2.23)

where |A| = 0 if and only if A = 0.
Proof of the existence theorem (2.23):

First we observe that

|a1 . . . ar |2 = (a1 . . . ar )̃ (a1 . . . ar ) = |a1|2 . . . |ar |2 ≥ 0 (2.24)
if (a1 . . . ar ) �= 0.

If the vectors are orthogonal, they are factors of an r -graded multivector Ar :

Ar = a1a2 . . . ar = a1 ∧ a2 ∧ . . . ∧ ar . (2.25)

Then it follows that for any multivector of grade r

| Ar |2≥ 0, if Ar �= 0. (2.26)

In the expansion of the scalar part of the product (ÃA), the cross terms of
products of multivectors of different grades should be omitted as they have
no scalar parts. Thus we have

|A|2 = |ÃA|0 = |A0|2 + |A1|2 + · · · + |Ar |2 ≥ 0. (2.27)

Hence existence of theorem (2.23) is proved.

2.4 Directions and Projections

In geometric algebra the notion of “direction” is given a precise mathematical
representation by a “unit vector,” so the unit vectors themselves are referred
to as directions.

Consider the geometric product of two vectors a and b:

ab = a · b + a ∧ b. (2.28)
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a^b
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a
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a b||

FIGURE 2.1
a|| is collinear with b, and a⊥ is perpendicular to b.

The interpretations associated with the inner and outer products a ·b and a ∧b
imply that

1. Vectors a and b are collinear if and only if ab = ba.
2. They are orthogonal if and only if ab = −ba.

From the above implications the geometric product ab may be considered
to be an algebraic measure of the relative “directions” of vectors a and b
somewhere between these two extremes.

The resolved parts of vector a along and perpendicular to vector b can be
obtained by right multiplication of (2.28) by b−1as shown by [1]

abb−1 = a · bb−1 + a ∧ bb−1

or

a = a · bb−1 + a ∧ bb−1. (2.29)

The parts a ·bb−1 and a ∧bb−1 are, respectively, the resolved parts of the vector
a along and perpendicular to the vector b as shown in Figure 2.1.

Now, setting

a‖ = a · bb−1, (2.30a)

a⊥ = a ∧ bb−1, (2.30b)

we can write Equation 2.29 as

a = a‖ + a⊥. (2.31)

(2.30a, b) can be expressed by the equations

a||b = a · b = ba||, (2.32a)

a⊥b = a ∧ b = −ba⊥. (2.32b)
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(2.32b) expresses the directed area a ∧ b as the product of the altitude a⊥ and
base b of the (a, b)-parallelogram.

Similarly, the resolved parts b|| and b⊥, respectively, of vector b along and
perpendicular to vector a can be obtained by left multiplication of (2.28) by
a−1 as

a−1ab = a−1a · b + a−1a ∧ b

that is,

b = b|| + b⊥, (2.33)

where

b|| = a−1a · b, (2.34a)

b⊥ = a−1a ∧ b. (2.34b)

(2.34a, b) can be expressed by the equations

ab|| = a · b = b” a, (2.35a)

ab⊥ = a ∧ b = −b⊥a . (2.35b)

We have seen earlier that a bivector B determines a two-dimensional
vector space called B-space. The relative direction of B and some vector a
is completely characterized by the geometric product

aB = a · B + a ∧ B. (2.36)

As in the earlier case, vector a is uniquely resolved into a vector a|| in the
B-space and a vector a⊥ orthogonal to the B-space as given by

a = a|| + a⊥. (2.37)

where

a|| = a · BB−1, (2.38a)

a⊥ = a ∧ BB−1. (2.38b)

The relations (2.38a, b) are represented in Figure 2.2.
By using Equation 2.30 and Equation 2.31, the Equations 2.38a, b can be

expressed by the equations

a|| B = a · B = −Ba||, (2.39a)

a⊥ B = a ∧ B = Ba⊥. (2.39b)

The above equations imply that a vector is in the B-space (plane) if and
only if it anticommutes with B, and it is orthogonal to the B-space (plane) if
and only if it commutes with B.
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B-plane

a

a

a||

FIGURE 2.2
Projection and rejection of vector by a bivector B.

Next, we generalize the above case for a multivector M of an arbitrary
grade k, which determines the ak-dimensional vector space called M-space.
The relative direction of M and some vector a is completely characterized by
the geometric product

aM = a · M + a ∧ M. (2.40)

As in the above case, the vector a is uniquely resolved into a vector a” in the
M-space, and a vector a⊥orthogonal to the M-space as given by

a = a|| + a⊥, (2.41)

where

a|| = a · MM−1, (2.42a)

a⊥ = a ∧ MM−1. (2.42b)

By using Equation 2.30 and Equation 2.31, Equations (2.42a, b) can be
expressed by the equations

a||M = a · M = (−1)k+1 Ma||, (2.43a)

a⊥M = a ∧ M = (−1)k Ma⊥. (2.43b)

The above equations are the generalization of Equations (2.39a, b). The
vector a|| determined by Equation 2.42a is called the projection of vector a into
the M-space, whereas a⊥ determined by Equation (2.42b) is called the rejection
of vector a from the M-space.
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2.5 Angles and Exponential Functions (as Operators)

An angle is a relation between two directions. Now, following Hestenes [1],
we give a precise mathematical expression for this relation.

If ϑ is the angle between the direction a and b (unit vectors), then the cosine
and sine of the angle ϑ respectively, are defined by the equations

a · b = cos ϑ (2.44a)

a ∧ b = i sin ϑ (2.44b)

where i is the unit pseudoscalar of the a ∧ b-plane.

Now we can write, in view of (2.44 a, b),

z = ab = a · b + a ∧ b = cos ϑ + i sinϑ

giving

z = ab = eiϑ , (2.45)

where

eiϑ = cos ϑ + i sinϑ, (2.46)

|z| = 1. (2.47)

This shows that Equations (2.44.a, b) are just parts of the single fundamental
equation (2.45), which indicates that eiϑ is a spinor of the i-plane. Equation
2.46 may be regarded as a definition of the exponential function exp(iϑ) from
the operational point of view.

We use the radian measure of the angle ϑ almost exclusively because the
degree measure is not compatible with the fundamental definition (algebraic)
of the exponential function we discuss in the next section. Moreover, in what
follows, we represent angles by bivectors, where the “areal measure” is not
compatible with degree measure. The angle ϑ in Equation 2.45 is interpreted
as “radian measure” of the angle from a to b. This means that the numerical
magnitude of ϑ is equal to the length of the arc on the unit circle from a to b
as indicated in Figure 2.3. As an angle is a relation between two directions
that determine a plane, we represent angle by a bivector. So the angle from a
to b is represented by the bivector φ given by

φ = iϑ (2.48)

Here φ is the directed area of the circular sector OAB as follows.
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FIGURE 2.3
Linear and angular measure.

We know from the simple proportion that

directed area of circular sector (with unit radius)
arc length of the sector

= directed area of unit circle
circumference of circle

= π i
2π

= i
2
.

So, we can write that, in the case under consideration, the directed area of
circular sector OAB = (i/2)ϑ .

Then the bivector φ defined in (2.48) can be written as

�/2 = iϑ/2 = directed area of the circular sector OAB. (2.49)

Here i specifies the plane of the angle |�/2| and specifies “areal magnitude”
of the angle. The sign of ϑ in (2.49) is determined by the orientation assigned
to the unit pseudoscalar i as shown in Figure 2.4.

Using Equation 2.49 we can write Equation 2.45 as

z = ab = ±eφ/2, (2.50)

b

a

1

2

0

B

A

FIGURE 2.4
Angle and area of a circular sector.
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where φ/2 encodes the areal magnitude of the angle ϑ(in radian). This may
be regarded as a functional relation of the bivector φ to the vectors â and b̂.

We know that

z = ab = ±eiϑ (2.45)

is a spinor of the i-plane. Each spinor z (with |z| = 1) determines a rotation
in the i-plane. This is exemplified by the fact that the spinor z rotates each
vector a in the i-plane into a vector b according to the equation

b = az = aeiϑ . (2.51)

Thus the exponential function exp(iϑ) represents a rotation in the i-plane as
a function of the angle of rotation.

From the operational interpretation of exp(iϑ) one can obtain some
important properties of the exponential function without any reference to
its algebraic definition, which we discuss in the next section.

1. A rotation through a right angle (π/2) is represented by the unit
bivector i , and hence

eiπ/2 = i. (2.52)

2. A rotation through two right angles π reverses the direction of a
vector, and then

eiπ = −1. (2.53)

3. A rotation through four right angles 2π gives the identity transfor-
mation of vectors represented by the multiplicative identity 1.
Thus we may write

e2π i = 1. (2.54)

4. A rotation through an angle ϑ followed (or preceded) by a rotation
through an angle ϕ is equivalent to a rotation through (ϑ + ϕ) and
is expressed by

eiϑeiϕ = ei(ϑ+ϕ) = ei(ϕ+ϑ) = eiϕeiϑ . (2.55)

5. Thus, if we consider n equal rotations in succession, each being
through an angle ϑ , we get the well-known de Moivre’s theorem:

(eiϑ )n = eiϑeiϑ . . . eiϑ (n factors)
= eiϑ+iϑ+iϑ+···+iϑ (n terms)

= ein (2.56)

From the foregoing discussion it is evident that the exponential function
is a powerful means of describing rotations of vectors.
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2.6 Exponential Functions of Multivectors

The exponential function of a multivector A of any arbitrary grade is denoted
by exp( A) or e A and is defined algebraically by the series expansion

exp( A) = e A =
∞∑

k=0

Ak/k!

= 1 + A/1! + A2/2! + · · · + Ak/k! + · · · , (2.57)

if |A| has a definite magnitude.
The series (2.57) can be shown to be absolutely convergent for all values

of A provided |A| has a definite magnitude. So, it may be extended to general
multivectors.

The exponential function (2.57) is completely defined in terms of the basic
operations of addition and multiplication (geometric product), which deter-
mine all the properties of the function. By using the closure property of the
geometric algebra under the operations of addition and multiplication (geo-
metric product) it can be shown that exp( A) is a definite multivector.

In particular, if the multivector A be an element of any algebra or sub-
algebra, such as G3, G+

3 , G2, or G+
2 , then the multivector exp( A) must be an

element of the same algebra or subalgebra.
Now we prove a theorem demonstrating the additive rule for exponential

function.

THEOREM 2.1
Prove the additive rule

e Ae B = e A+B, (2.58)

if and only if AB = BA.

PROOF If AB = BA, then we have the identity

∞∑

m=0

( Am/m!)
∞∑

n=0

(Bn/n!) =
∞∑

n=0

n∑

k=0

( An−k Bk)/(n − k)!k! (2.59)

By using the above identity, we can write

e Ae B =
∞∑

n=0

n∑

k=0

( An−k Bk)/(n − k)!k! (2.60)

By the binomial expansion we have

( A+ B)n =
n∑

k=0

[n!/(n − k)!k!]( An−k Bk). (2.61)
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Thus, from (2.60) and (2.61) we can write

e Ae B =
∞∑

n=0

( A+ B)n/n! = e A+ B (2.62)

The hyperbolic cosine and sine functions are defined, respectively, by the
usual series expansion

coshA =
∞∑

k=0

A2k/(2k)!

= 1 + A2/2! + A4/4! + · · · , (2.63)

sinhA =
∞∑

k=0

A2k+1/(2k + 1)!

= A+ A3/3! + A5/5! + · · · , (2.64)

Adding (2.63) and (2.64) we obtain

exp( A) = coshA + sinhA. (2.65)

This shows that (2.63) and (2.64) are, respectively, “even” and “odd” parts of
the exponential series. The multivector A is called the argument of each of
the functions in (2.65).

The cosine and sine functions are defined, respectively, by the usual series
expansions:

cosA =
∞∑

k=0

(−1)k A2k/(2k)! = 1 − A2/2! + A4/4! − A6/6! + · · · , (2.66)

sinA =
∞∑

k=0

(−1)k A2k+1/(2k + 1)! = A− A3/3! + A5/5! − A7/7! + · · · (2.67)

If I is a multivector such that

I 2 = −1, IA = AI, (2.68)

then, replacing A by I A in (2.63) and (2.64), we can express

coshIA = cosA, (2.69)

sinhIA = IsinA, (2.70)

e I A = cosA + IsinA (2.71)

Equation 2.71 is a generalization of (2.46). If A is a multivector of grade
0 (i.e., scalar) the definitions (2.66) and (2.67) for the trigonometric functions
reduce, respectively, to the usual series expansions for cosine and sine of
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angles in radian measure. It is to be noted that the series expansions of expo-
nential functions require that the angles be measured in radians.

Taking iϑ for the multivector A in (2.57) and (2.71), we have from (2.45)
the following series expansion of the geometric product of two unit vectors â
and b̂ in terms of their relative angle ϑ :

ab = eiϑ =
∞∑

k=0

(iϑ)k/k! = 1 + iϑ − ϑ2/2! − iϑ3/3! + · · · , (2.72)
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3
Euclidean Plane

3.1 The Algebra of Euclidean Plane

Following David Hestenes [1] we start with the vector equation for an oriented
line. Every vector a determines a unique oriented line. This means that any
vector x that is a scalar multiple of the vector a lies on the oriented line
determined by a:

x = αa, (3.1)

where α is an arbitrary scalar. Equation 3.1 is said to be a parametric equation
for the a-line.

A vector x is said to be positively directed or negatively directed relative to
the vector a according as x · a > 0 or < 0. This distinction that defines the
positive and negative vectors is called the orientation or sense of the a-line.

The unit vector â = a |a |−1 is called the direction of the a-line, whereas â
gives the opposite orientation for the line.

The parametric equation for the a-line can as well be written as

x = β â , (3.2)

where β is an arbitrary scalar.
The outer multiplication of (3.1) by vector a gives

x ∧ a = 0. (3.3)

This is a nonparametric equation for the a-line. One can also write
Equation 3.3 as

x ∧ â = 0. (3.4)

Now we can prove the following theorem.

THEOREM 3.1
Prove that the equation

x ∧ a = 0

41
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has the solution set

x = αa .

PROOF By definition of the geometric product we have

xa = x · a + x ∧ a

= x · a . (because x ∧ a = 0)

Multiplying the above equation on the right by

a−1 = aa−1a−1 = aa−2,

we get

xaa−1 = x · aaa−2

= x · aa−2a (because aa−2 = a−2a )
= x · a−1a .

Then

x = (x · a−1)a
or x = αa

where we set α = x · a−1.

Hence the theorem.

1. Two-dimensional vector space
In an analogous way we pass on to the algebraic description of a
plane.

For a nonzero bivector B, the set of all vectors x that satisfy the
equation

x ∧ B = 0 (3.5)

is said to be a two-dimensional vector space, and Equation 3.5 is
referred to as representing the B-plane.

The unit bivector i given by

B = Bi, (3.6)

where B is a scalar and is called the direction of the B-plane. Then
i determines an orientation of the B-plane and i gives the opposite
orientation for the plane.

Substituting (3.6) into (3.5), we get

x ∧ i = 0. (3.7)
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This shows that every bivector that is a scalar (nonzero) multiple of
i determines the same plane as i with same or opposite orientation
according as the scalar is positive or negative.

2. Parametric equation for the i-plane
We express the equation for the i-plane

x ∧ i = 0 (3.7)

into the parametric form.
First, we factorize i as the product of two unit orthogonal vectors

σ1 and σ2:

i = σ1σ2 = σ1 ∧ σ2 = −σ2 ∧ σ1 = −σ2σ1, (3.8)

where

σ1 · σ2 = 0, σ 2
1 = σ 2

2 = 1. (3.9)

By the definition of the geometric product and using Equation 3.7,
we obtain

xi = x · i

= x · (σ1 ∧ σ2) [by using (3.8)]

= (x · σ1)σ2 − (x · σ2)σ1 [by using (1.23)].

Multiplying the above equation on the right by the reverse of i, i.e.,
by ĩ = σ2σ1, we get

xi ĩ = (x · σ1)σ2σ2σ1 − (x · σ2)σ1σ2σ1

= (x · σ1)σ1 + (x · σ2)σ2σ1σ1 [by using (3.8, 9)]

and being

i ĩ = σ1σ2σ2σ1 = σ1σ1 = 1,

we have

x = (x · σ1)σ1 + (x · σ2)σ2. (3.10)

By setting

x1 = (x · σ1), and x2 = (x · σ2), (3.11)

Equation 3.10 can be written as

x = x1σ1 + x2σ2. (3.12)

Equation 3.12 represents the parametric equation for the i-plane, where the
scalars x1 and x2 are the rectangular components of the vector x with respect to
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x'= xi = 2z
x1 2

x = 1z

12x 1 0 1
x1 1

2

x2 2

i

FIGURE 3.1
Diagram of the i-plane of vectors (real plane).

the basis {σ1, σ2}. Orthogonal vectors σ1, σ2 are represented by perpendicular
line segments as shown in the Figure 3.1. A typical vector x is represented
by a directed line segment, whereas the unit pseudoscalar i is represented
by a plane segment of unit-directed area. So, one can sum up that i is the
directed area of the plane segment and that the directed area of every plane
segment in the i-plane is a scalar multiple of i.

3.2 Geometric Interpretation of a Bivector of Euclidean Plane

Now we shall show that the unit bivector i has two distinct geometric inter-
pretations corresponding to two basic properties of the plane:

1. First, as stated earlier, it is the unit of a directed area representing
the direction of the plane.

2. Second, it is the generator of rotations in the plane. The first inter-
pretation is exemplified by Equation 3.8, which expresses that i is
the product of two orthogonal unit vectors σ1 and σ2.

Next, in order to exhibit the second interpretation, we multiply
Equation 3.8 on the left by σ1 and σ2, respectively, to obtain

σ1i = σ1σ1σ2 = (σ1σ1)σ2 = σ2, (3.13)

σ2i = σ2σ1σ2 = −σ1(σ2σ2) = −σ1. (3.14)

Equation (3.13) tells us that the multiplication of σ1 on the right by the unit
bivector i, also called the unit pseudoscalar, transforms σ1 into σ2. Because σ1
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and σ2 are two unit orthogonal vectors, this transformation is a pure rotation
of σ1 through a right angle. Similarly, Equation 3.14 exemplifies a pure rotation
of σ2 through a right angle into −σ1.

Substitution of (3.13) into (3.14) gives

(σ1i)i = −σ1

or

σ1i2 = −σ1, (3.15)

which states that two consecutive rotations through right angles reverse the
direction of a vector. This explicity provides a geometric interpretation for the
equation

i2 = −1 (3.16)

when i and −1 are both regarded as multiplicative operators on vectors.
The multiplication of any vector x in the i-plane on the right by i rotates x

by a right angle into the vector x′ given by

x′ = xi = (x1σ1 + x2σ2)i = x1σ1i + x2σ2i

or

x′ = x1σ2 − x2σ1 [by using (3.13) and (3.14)]. (3.17)

The relation between x and x′ is represented in the Figure 3.1.
We note in passing that the right multiplication by i rotates vectors

counterclockwise by a right angle. A positive orientation of a plane
corresponds to a counterclockwise rotation, whereas a negative orientation
corresponds to a clockwise rotation.

3.3 Spinor i-Plane

The geometric interpretation for the equation

i2 = −1 (3.16)

gives rise to the construction of a spinor i-plane as given below.
We define a spinor of the i-plane to be a quantity obtained by the geometric

product of two vectors in the i-plane.
Thus, from (3.8) and (3.9) we obtain a spinor z defined by the geometric

product of σ1 and x:

z = σ1(x1σ1 + x2σ2) = x1σ
2
1 + x2σ1σ2. (3.17)
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Then,

z = x1 + i x2, (3.18)

which is commonly called complex number.
It is to be noted that besides the algebraic property

i2 = −1

ascribed to the traditional unit imaginary, our i is a bivector, also known as the
unit pseudoscalar for the i-plane. So, it has geometric and algebraic properties
beyond those traditionally accorded to imaginary numbers.

Analogously with the Argand diagram of the complex plane we construct
the diagram of the spinor i-plane with two perpendicular axes, scalar and
pseudoscalar.

As the unit pseudoscalar i is more than the unit imaginary
√−1, so, also

the spinor z represented by (3.18) is more than a complex number.
The set of all spinors of the form (3.18) is a two-dimensional plane called

the spinor plane. The elements of a spinor plane can be represented by directed
line segments or points in the diagram as shown in Figure 3.2.

Here we choose the vector σ1 in the vector plane to construct a unique
spinor z in the spinor plane (Figure 3.2) formed by the geometric product of
σ1 with each vector x given by (3.18). This, in fact, means that σ1 distinguishes
a line on the vector plane that is associated with the scalar axis in the spinor
plane.

Pseudoscalar axis

ix2
z= 1x

Scalar axisx1

-i

i

1-1

FIGURE 3.2
Diagram for the spinor i-plane. Each point in the spinor plane represents a rotation–dilation.
Points on the unit circle represent pure rotations, whereas points on the positive scalar axis
represent pure dilations.
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3.3.1 Correspondence between the i-Plane of Vectors
and the Spinor Plane

From the foregoing, one notices that each vector x in the i-plane of vectors
determines a unique spinor z in the spinor plane as given by

z = σ1x = σ1(x1σ1 + x2σ2) = x1 + i x2. (3.19)

Conversely, each spinor z in the spinor plane determines a unique vector
x in the vector plane as follows:

σ1x = z,

σ 2
1 x = σ1z

x = σ1z. (3.20)

3.4 Distinction between Vector and Spinor Planes

The elements of the vector and spinor planes have different algebraic prop-
erties because of two distinct interpretations of i in them, which endow
different geometric significance to each of the planes. The different inter-
pretations of i that distinguish the two planes are stated below:

1. First, the interpretation of i as the unit directed area represent-
ing the direction of the vector plane is indicated in Figure 3.1 and
Figure 3.2.

2. Second, the operator interpretation of i as a rotation of vectors
through a right angle is indicated in Figure 3.2 by the right angle
that the i-axis (pseudoscalar axis) makes with the scalar axis. This
leads to an operator interpretation for all spinors as exemplified by
Equation 3.20 (see Figure 3.2). So, the operator i may quite plausibly
be called the generator of rotations.

Now we elaborate the interpretation of the equation

x = σ1z (3.20)

and its representation as given in Figure 3.1 and Figure 3.2. Operating by
right multiplication on the vector σ1, the spinor z transforms σ1 into a vector
x, yielding a rotation of σ1 through an angle

ϑ = tan−1(x2/x1)

together with a dilation of σ1 by an amount

|z| = (
x2

1 + x2
2

)1/2
.
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As our choice of σ1 is arbitrary, we can conclude that the spinor z must have
the same effect on every vector on the i-plane. So, each spinor of the spinor
plane can be regarded as an algebraic representation of a rotation–dilation.

Next, we discuss in detail the algebraic representation of spinors as
rotation–dilation.

Let us consider a vector x and spinor z given by

x = α1σ1 + α2σ2, (3.21)
z = β1 + β2i, (3.22)

where α1, β1, α2, β2 are positive scalars. By the right multiplication on the
vector x by the spinor z, we get

xz = (α1σ1 + α2σ2)(β1 + β2i)
= (α1β1 − α2β2)σ1 + (α1β2 + α2β1)σ2. (3.23)

|xz| = [(α1β1 − α2β2)2 + (α1β2 +1/2 α2β1)2]

= [(
α2

1 + α2
2

)(
β2

1 + β2
2

)]1/2 = |x||z|. (3.24)

The above equations show that the spinor z transforms x into a vector xz,
yielding a rotation of x through an angle ϑ given by

ϑ = tan−1[(α1β2 + α2β1)/(α1β1 − α2β2)] − tan−1(α2/α1) (3.25)

together with a dilation of x by an amount

|z| = (
β2

1 + β2
2

)1/2
. (3.26)

Case 1: For points on the scalar axis excluding the points (1, 0) and (−1, 0),
we have α2 = β2 = 0.

In this case

x = ±α1σ1, z = ±β1, xz = α1β1σ1. (3.27)

Equation 3.27 show that whereas the points on the positive scalar axis rep-
resent pure dilation by an amount |z| = β1, those on the negative scalar axis
represent rotation through an angle π together with dilation by an amount
|z| = β1.

Case 2: For points on the pseudoscalar axis excluding the points (0, i) and
(0, −i), we have α1 = β1 = 0. In this case

x = ±α2σ2, z = ±β2i, xz = −α2β2σ1. (3.28)

Equation 3.28 shows that whereas the points on the positive pseudoscalar
axis represent rotation through an angle π/2 together with dilation by an
amount |z| = β2, those on the negative pseudoscalar axis represent rotation
through an angle 3π/2 together with dilation by an amount |z| = β2.
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Case 3: For points on the unit circle excluding the points (1, 0), (−1, 0), and
(0 − i), we have

α2
1 + α2

2 = 1 = β2
1 + β2

2 and |xz| = 1 = |x|. (3.29)

This shows that spinors in this case yield a rotation of x through an angle ϑ

given by

ϑ = tan−1[(α1β2 + α2β1)/(α1β1 − α2β2)] − tan−1(α2/α1), (3.30)

but no dilation of x, i.e., the corresponding points on the unit circle represent
pure rotations.

Case 4: For points (1, 0) and (−1, 0) where the scalar axis meets the unit
circle, we have

x = ±σ1, z = ±1, xz = σ1. (3.31)

This tells us that the point (1, 0) represents no rotation–dilation, whereas the
point (−1, 0) represents a pure rotation through an angle π .

Case 5: For the points (0, i) and (0,−i) where the pseudoscalar axis meets
the unit circle, we have

x = ±σ2, z = ±i, xz = −σ1. (3.32)

This tells us that the points (0, i) and (0, −i) represent pure rotations through
angles π/2 and 3π/2, respectively.

3.4.1 Some Observations

1. It is important to note that the reversion of a spinor corresponds to
complex conjugation as shown below:

z̃ = (σ1x)̃ = xσ1 = (x1σ1 + x2σ2)σ1

= x1σ
2
1 + x2σ2σ1 = x1σ

2
1 − x2σ1σ2

z̃ = x1 − x2i. (3.33)

2. The notation representing the modulus of the spinor z agrees with
the conventional notation for the modulus of a complex number,
i.e.,

|z|2 = zz̃ = z̃z = x2
1 + x2

2 . (3.34)

3. The separation of a spinor into scalar and pseudoscalar parts can
be done analogously to separating a complex number into real and
imaginary parts:

x1 = Re{z} = (z + z̃)/2, (3.35a)

x2 = I m{z} = (z − z̃)/2i. (3.35b)
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3.5 The Geometric Algebra of a Plane

In the foregoing text we have the concept of vector space and spinor space
with different geometric significances. Both the spaces are linear spaces; the
vector space is a linear space of vectors, and the spinor space is a linear space
of spinors. Unlike conventional mathematics, the term vector space is not
synonymous with linear space in geometric algebra. This can be traced in the
following arguments. Geometric algebra ascribes some special properties to
vectors by introducing (1) the geometric product of vectors with associative
property and (2) the outer product of vectors defining a pseudoscalar for
the plane, regarded as a generator of rotations in the plane. This, in fact,
restricts the use of vectors in geometric algebra to some precise sense. As
geometric algebra consists of two kinds of quantities, i.e., vectors, which are
odd multivectors, and spinors, which are even multivectors, the linear space
is constructed out of vectors and spinors. Thus, the linear space is the sum of
two linear spaces, vector and spinor. So, we restrict the term vector space to
a linear space of vectors in geometric algebra. The total linear space is not a
vector space.

Now, we develop the geometric algebra of a plane. First, we introduce the
concept of linear space in its usual general sense.

A set of quantities A1, A2, . . . , An is said to be linearly dependent if there
exist n scalars α1, α2, . . . , αn, not all zero, such that

α1 A1 + α2 A2 + · · · + αn An = 0. (3.36)

Otherwise the set is linearly independent.
If the Ak(k = 1, 2, . . . , n) are linearly independent, then the set of all linear

combinations of the Ak is said to constitute an n-dimensional linear space,
and the {Ak} is said to be a basis for the linear space.

Consider the equation for the i-plane

x = x1σ1 + x2σ2, (3.12)

where the orthonormal vectors σ1 and σ2 form a basis for the plane. In
geometric algebra, the geometric product of the vectors σ1 and σ2 generates
two more basis elements, namely, the unit scalar 1 = σ 2

1 = σ 2
2 and the unit

pseudoscalar i = σ1σ2. Thus, the geometric algebra of the i-plane is generated
by two orhtonormal vectors σ1 and σ2 and is spanned by four linearly inde-
pendent quantities {1, σ1, σ2, i}. So, every multivector A can be expressed as
a linear combination

A = α01 + α1σ1 + α2σ2 + α3i (3.37)

with scalar coefficients α0, α1, α2, and α3.
The set of all multivectors generated from the vectors of the i-plane by the

addition of vectors and by the addition of the geometric product of vectors
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is the geometric algebra of the i-plane and it is denoted by G2(i) or simply
by G2.

The subscript “2” refers both to the dimension of the plane and the grade
of the pseudoscalar. As the four unit multivectors {1, σ1, σ2, i} make up a basis
for this space, the algebra G2 is a four-dimensional linear space.

It is obvious from (3.37) that any multivector A in G2 can be expressed as
the sum of a vector a = α1σ1 + α2σ2 and a spinor z = α0 + α3i , i.e.,

A = a + z. (3.38)

The vectors are odd multivectors, and spinors are even multivectors. So,
G2 can be expressed as the sum of two linear spaces

G2 = G−
2 + G+

2 , (3.39)

where G−
2 is the two-dimensional linear space of vectors, and G+

2 is the two-
dimensional linear space of spinors, both being closed under multiplication.
Of the two linear spaces G−

2 and G+
2 , only G−

2 is a vector space. G2 is a four-
dimensional linear space but not a vector space.

The two-dimensional vector spaceG−
2 is also the i-plane itself. As the scalar

product is defined in it, this vector space is Euclidean and is denoted by E2.
The dimension of a linear space is the number of linearly independent

elements of the space. However, for a vector space and its algebra, its
dimension is synonymous with the grade of its pseudoscalar. A vector space
of dimension “2” is determined by a pseudoscalar of grade “2” and vice versa.

We note in passing that the algebra of complex numbers appears with a
geometric interpretation as the subalgebra G+

2 of even multivectors in G2.

References

1. D. Hestenes, New Foundations for Classical Mechanics (Reidel, Boston, 1986).



P1: Binaya Dash

October 24, 2006 14:12 C7729 C7729˙C003



P1: Binaya Dash

October 24, 2006 14:14 C7729 C7729˙C004

4
The Pseudoscalar and Imaginary Unit

4.1 The Geometric Algebra of Euclidean 3-Space

Following D.Hestenes [1] we develop and analyze the algebra of Euclidean
3-space. This can be done in the same way as in the analysis of the algebra of
E2 in the previous chapters.

Let i be a unit trivector in E3, preferably called a unit pseudoscalar for E3.
The set of all vectors x that satisfies the equation

x ∧ i = 0 (4.1)

is the Euclidean three-dimensional vector space E3. Scalar multiples of i are
called pseudoscalars for E3.

One can factorize i as a product of three orthonormal vectors σ1, σ2,
and σ3:

i = σ1σ2σ3 = σ1 ∧ σ2 ∧ σ3, (4.2)

where

σ 2
1 = σ 2

2 = σ 2
3 = 1, (4.3)

σi · σ j = 0 if i �= j (i, j = 1, 2, 3). (4.4)

We assume that the orthonormal vectors σ1, σ2, and σ3 form a right-handed
or dextral set of vectors forming a basis for E3. Equation 4.2 specifies a definite
relation of the pseudoscalar i to the dextral set of vectors. This signifies that i
is the dextral or right-handed unit pseudoscalar. By reversing the directions
of the vector σk we get a left-handed set of vectors {−σk} and the left-handed
unit pseudoscalar (−σ1)(−σ2)(−σ3) = −i .

From Equation 4.3 and Equation 4.4 we can also write

σiσ j = σi ∧ σ j = −σ j ∧ σi = −σ jσi if i �= j. (4.5)

We deduce the parametric equation for E3 from Equation 4.1. By the
definition of the geometric product we have from (4.1),

xi = x · i.

53
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By using (4.2), this can be written as

xσ1σ2σ3 = x · (σ1 ∧ σ2 ∧ σ3).

Then, by applying the reduction formula (1.60) to the right-hand side of the
above equation, we obtain

xi = xσ1σ2σ3 = x · σ1σ2 ∧ σ3 − x · σ2σ1 ∧ σ3 + x · σ3σ1 ∧2 σ.

Multiplying the above on the right by ĩ = σ3σ2σ1, we get, by using (4.3) and
(4.5)

xi ĩ = x · σ1σ2σ3σ3σ2σ1 − x · σ2σ1σ3σ3σ2σ1 + x · σ3σ1σ2σ3σ2σ1

= x · σ1σ2σ2σ1 − x · σ2σ1σ2σ1 − x · σ3σ1σ2σ2σ3σ1

= x · σ1σ1 + x · σ2σ1σ1σ2 − x · σ3σ1σ3σ1

= x · σ1σ1 + x · σ2σ2 + x · σ3σ1σ1σ3

= x · σ1σ1 + x · σ2σ2 + x · σ3σ3.

Thus, we have

x = (x · σ1)σ1 + (x · σ2)σ2 + (x · σ3)σ3,

which may be expressed as

x = x1σ1 + x2σ2 + x3σ3, (4.6)

where xk = x ·σk , k = 1, 2, 3. The scalars xk are the rectangular components of
the vector x with respect to the basis {σ1, σ2, σ3}. Equation 4.6 represents the
parametric equation for E3.

Orthogonal vectors σ1, σ2 and σ3 are represented by perpendicular line
segments as shown in Figure 4.1. The right-handed unit pseudoscalar i is
represented in the figure by the oriented unit cube.

Multiplication of (4.2) by σ1, σ2 and σ3 in succession on the left and also
on the right gives three linearly independent bivectors, which we denote by
i1, i2 and i3:

i1 = σ1i = σ1σ1σ2σ3 = σ2σ3 = iσ1. (4.7a)

i2 = σ2i = σ2σ1σ2σ3 = −σ1σ2σ2σ3 = −σ1σ3 = σ3σ1 = iσ2. (4.7b)

i3 = σ3i = σ3σ1σ2σ3 = −σ1σ3σ2σ3 = σ1σ2σ3σ3 = σ1σ2 = iσ3. (4.7c)

Equations 4.7a, b, c imply that the unit pseudoscalar i commutes with all
vectors of E3. The unit bivectors i1, i2, and i3 are represented in the Figure 4.1
by the oriented-plane segments.

The set of all multivectors generated from the vectors of E3 by the addition
of vectors and by the addition of the geometric products of vectors is the
geometric algebra of E3, and it is denoted by G3(i) or simply by G3. The
subscript ‘3’ refers both to the dimension of the space and the grade of the
pseudoscalar of E3.
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3

1

2

i^
3 1 = i2

2 3 = i1

1 2 = i3

FIGURE 4.1
Orthonormal basis for E3. Directed line segments represent unit vectors. Directed plane segments
represent unit bivectors.The oriented cube represents the right-handed unit pseudoscalar i.

In the foregoing we have seen that in G3 the geometric product of the
vectors σ1, σ2 and σ3 generates five more basis elements, namely, the unit
scalar 1 = σ 2

1 = σ 2
2 = σ 2

3 , the unit pseudoscalar i = σ1σ2σ3, and three linearly
independent unit bivectors σ2σ3, σ3σ1 and σ1σ2. So, the geometric algebra of
E3 is generated by the vectors σ1, σ2, and σ3 and is spanned by eight linearly
independent quantities

1, {σ1, σ2, σ3}, {σ2σ3, σ3σ1, σ1σ2}, i.

(scalar — 1) (vectors — 3) (bivectors — 3) (pseudoscalar — 1)
(4.8)

The algebra G3 is a linear space of eight dimensions. As iσk (k = 1, 2, 3)
are the only linearly independent bivectors that can be obtained from σk

by geometric product, any bivector B in G3 can be expressed as a linear
combination:

B = B1iσ1 + B2iσ2 + B3i3σ

= i(B1σ1 + B2σ2 + B3σ3), (4.9)

with scalar coefficients Bk . Thus, the set of all bivectors in G3 is a three-
dimensional linear space with a basis {iσ1, iσ2, iσ3}.

From Equation 4.9 we notice that every bivector B in G3 is uniquely
related to a vector

b = B1σ1 + B2σ2 + B3σ3 (4.10)
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by the equation

B = ib (4.11)

This relation is expressed by saying that the bivector B is the dual of the
vector b.

In general we define the dual of any multivector M in G3 as the product
i M, where i is the dextral unit pseudoscalar of E3.

In view of the Axiom A.15 of Chapter 1, it follows from Equation 4.1 that
G3 contains no nonzero k-vectors for k ≥ 4. So, by definition (1.28), every
multivector M in G3 can be written in the expanded form

M = M0 + M1 + M2 + M3, (4.12)

where Mg (g = 0, 1, 2, 3) denotes a multivector of grade g. Thus, in this case
we have

M0 = α, the scalar part of M,

M1 = a, the vector part of M,

M2 = ib, the bivector part of M expressed
as a dual of a vector b, and

M3 = iβ, the pseudoscalar part of M.

Then, (4.12) can be put in the form

M = α + a + ib + iβ. (4.13)

The eight unit multivectors {1, σk , iσk , i} with k = 1, 2, 3 make up a basis for
the algebra G3 defined by (4.8).

Denoting by Gk
3 the subspace of k-vectors in G3, we may write:

G1
3 = a three-dimensional space of vectors,

G2
3 = a three-dimensional space of bivectors,

G3
3 = a one-dimensional space of trivectors.

4.1.1 The Pseudoscalar of E 3

The pseudoscalar i that plays an important role in G3 has the following basic
properties:

i2 = −1 (4.14a)
ĩ = −i (4.14b)
i M = Mi for every multivector M in G3 (4.14c)
a ∧ b ∧ c = λi (4.14d)

for any set of linearly independent vectors a, b, and c in G3 and any scalar λ.
One must note that the scalar λ is positive if and only if the vectors make up a
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dextral set in the order given. Here the reversion of i corresponds to complex
conjugation.

4.2 Complex Conjugation

As the properties (4.14) of the unit pseudoscalar are similar to those usually
attributed to the unit imaginary in mathematics, the unit pseudoscalar in G3 is
denoted by the symbol i. Nevertheless, there is not just one root of minus one
in geometric algebra but many. The elements in a basis of the algebra endowed
with geometric interpretations indicate that in G3 there are two distinct kinds
of solutions of the equation x2 = −1:

1. x is a pseudoscalar, whence x = ±i, or
2. x is a bivector, whence x = i1 or i2 or i3.

Appendix A: Some Important Results

1. Vector identities

(a) (a ∧ b) · (c ∧ d) = b · ca · d − b · da · c = b · (c ∧ d) · a .

(b) a · (σ1 ∧ σ2 ∧ σ3) = a · σ1σ2 ∧ σ3 − a · σ2σ1 ∧ σ3 + a · σ3σ1 ∧ σ2.

2. a ∧ b ∧ c = 0 if and only if a, b, c, are linearly dependent.
3. Jacobi identity for vectors:

a · (b ∧ c) + b · (c ∧ a ) + c · (a ∧ b) = 0

4. If Ar is a multivector of grade r , then

A−1
r = Ã/|Ar |2.

5. If A, B are multivectors, then

(a ) (AB)0 = (BA)0.

(b) (AB)+ = ( A)+(B)+ + ( A)−(B)−
(c) (AB)− = ( A)+(B)− + ( A)−(B)+
(d) ( Ã)r = (−1)(r/2)(r−1)( A)r .

6. If A = α + iβ + a + ib, where α, β are scalars and a, b are vectors,
then

Ã = α − iβ + a − ib

|Ã|2 = α2 + β2 + a2 + b2 = |A|2.
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7. If a and b are vectors in the plane of i = σ1σ2, then

a ∧ b = i
∣∣∣∣
a · σ1 b · σ1
a · σ2 b · σ2

∣∣∣∣

8. The expansion of a vector b in terms of its components bk = b · σk is
given by

b = bkσk = b1σ1 + b2σ2 + b3σ3.

By this convention, the expansion of a bivector B in terms of its
components

Bi j = σi · B · σ j = (σ j ∧ σi ) · B = −B j i

can be written as

B = (1/2)Bi jσ j ∧ σi = B12σ2 ∧ σ1 + B23σ3 ∧ σ2 + B31σ1 ∧ σ3.

9. The product rule for Pauli matrices σk(k = 1, 2, 3, ) is

σkσl = δkl + iεklmσm.

Likewise, the product (geometric) rule for bivectors in Pauli algebra
(see (4.7a, 7b, 7c)) ik (k = 1, 2, 3,) is

ikil = δkl + εklmim.
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5.1 Geometric Significance of the Dirac Matrices γµ

Before developing the geometric algebra of space-time or space-time algebra
(STA) it would be in order for us to discuss the algebra of Dirac matrices γµ

(µ = 0, 1, 2, 3), endowing the geometric significance of the matrices γµ. This
is so because, in Section 9.1 of Chapter 9 of this book, the Dirac equation is
reformulated in STA without any reference to the complex number where the
four Dirac γµ are considered to be linearly independent vectors belonging to
an associative noncommutative division algebra.

The four gamma matrices of the Dirac theory over the complex numbers
generate the complete algebra of 4×4 matrices. The 4×4 matrix algebra with
the geometric interpretation induced by the conditions

(1/2)(γµγν + γνγµ) = gµν I, (5.1a)

(1/4)Tr (γµγν) = gµν , (5.1b)

where the gµν(µ, ν = 0, 1, 2, 3) are the components of space-time metric tensor
and I is the four-dimensional unit matrix, is called the algebra of Dirac
matrices. Condition (5.1b) implies that the matrices γµ are irreducible.
Conditions (5.1a, b) show that the matrices are traceless:

(1/4)Trγµ = 0. (5.2)

In the conventional approach, the full geometric significance of the γµ

can be understood only with the specification of their relation to the Dirac
spinor. Essentially, the relation (5.1a) is independent on the assumption that
the γµ are matrices. This can be realized by considering that the γµ belong
to an associative noncommutative division algebra. This has been achieved
by David Hestenes [1–5] by interpreting the γµ as vectors of a space-time
frame with γ0 the reference frame’s 4-velocity, instead of as matrices. So the
conditions (5.1a, b) for matrices correspond to the single equation

(1/2)(γµγν + γνγµ) = γµ · γν = gµν (5.3)

for vectors.

59
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The vectors γµ generate an associative algebra over the reals, which pro-
vides a direct and complete algebraic characterization of the geometric prop-
erties of Minkowski space-time. This associative algebra has been dubbed by
Hestenes [1] as ‘space-time algebra’.

As the geometric interpretation of the γµ of space-time algebra is inde-
pendent of the notion of spinor, the γµ assumes a central position in the
mathematical description of all physical systems in space-time, including the
relativistic quantum theory.

5.2 Geometric Algebra of Space-Time

Earlier we have stated that the geometric algebra combines the algebraic struc-
ture of Clifford algebra with the explicit geometric meaning of its mathemat-
ical elements at its foundation. So, formally, it is Clifford algebra endowed
with geometrical information of and physical interpretation to all mathemat-
ical elements of the algebra.

With the usual choice (+ - - -) for the metric of space-time, we consider
four orthonormal vectors {γ0, γ1, γ2, γ3} where

γ 2
0 = −γ 2

k = 1, (k = 1, 2, 3). (5.3a)

The Clifford algebra of ‘real’ four-dimensional space-time is generated by
four orthonormal vectors {γµ} and spanned by

1, {γµ}, {σk , iσk}, {iγµ}, i,

1 scalar 4 vectors 6 bivectors 4 trivectors 1 quadrivector
grade 0 grade 1 grade 2 (or pseudovectors) (or pseudoscalar)

grade 3 grade 4 (5.4)

(µ = 0, 1, 2, 3; k = 1, 2, 3),

where i is the unit pseudoscalar for space-time:

i = γ0γ1γ2γ3 = σ1σ2σ3, (5.5a)
σk = γkγ0, (5.5b)
i2 = −1. (5.5c)

In accordance with the notation adopted in current literature, we have
taken i as the unit pseudoscalar for space-time. It will be shown later that,
because of the relation (5.5a, b), i can also be taken as the unit pseudoscalar
for three-dimensional Euclidean space. There could be no confusion for i
representing two different geometric entities because the geometric meaning
of i would be explicit from the context, whether it belongs to space-time or
three-dimensional Euclidean space.
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The algebra (5.4) is the space-time algebra (i.e., geometric algebra for
space-time) or ‘real Dirac algebra’ having 16 components, and so is a
16-dimensional linear space. Real Dirac algebra is isomorphic to the algebra
of Dirac matrices over the ‘real’ numbers.

In Dirac algebra,

iγµ = −γµi. (5.6)

A multivector M in Dirac algebra can be written (putting in evidence the
parts with different grades) as

M = α + a + B + ib + iβ, (5.7)

where α and β are scalars, a and b are vectors, and B is a bivector:

B = (1/2)Bµνγµ ∧ γν. (5.8)

In order to facilitate the decomposition of a multivector with respect to
the basis {γµ}, it is convenient to introduce a reciprocal basis {γ µ}, defined, as
usual, by the relation

γ µ · γν = δµ
ν . (5.9)

From the foregoing, one can have the unique relation

gµν = (1/2)(γµγν + γνγµ) = γµ · γν , (5.10)

where gµν is the Minkowski metric (See Reference [1]).
The contravariant components of a vector a = a νγν are given, in view of

(5.9), by

aµ = a · γ µ. (5.11a)

Likewise, the covariant components of the vector a are given by

aµ = a · γµ = gµνa ν . (5.11b)

Analogously, the components Bµν = −Bνµ of the bivector B in (5.8) are given
by (see Equation 1.74)

Bµν = (γ µ ∧ γ ν) · B = γ µ · (γ ν · B). (5.12)

One may note in passing that the pseudovectors iγµ of Dirac algebra,
which are dual of the vectors γµ, are trivectors as, for example, one can see
that

iγ3 = γ0γ1γ2γ3γ3 = −γ0γ1γ2. (5.13)

In fact, the unit pseudoscalar i has the role of a multiplicative operator
that determines the dual element of a proper multivector.
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Multivector M in (5.7) of Dirac algebra can be decomposed as the sum of an
even part M+[grade 0 (scalar), grade 2 (bivector), and grade 4 (pseudoscalar)]
and an odd part M−[grade 1 (vector) and grade 3 (trivector)] as

M = M+ + M− (5.14)

where

M+ = α + B + iβ
(scalar) (bivector) (pseudoscalar) (5.15)

M− = a + ib
(vector) (pseudovector). (5.16)

The even multivectors or spinors (i.e., the sum of Clifford objects of even
grade) form a subalgebra (of 8-dimensional linear space) of Dirac algebra,
which is isomorphic to Pauli algebra. This is evident from the fact that even
the Clifford objects of the basis (5.4) of Dirac algebra

1, {σk , iσk}, i (5.17)

coincide with the basis of Pauli algebra because of the relation (5.5b), which
in turn satisfies

σkσ j = (1/2)(σkσ j + σ jσk) = −(1/2)(γkγ j + γ jγk) = δk j , (5.18)

the requirement of a basis in three-dimensional Euclidean space [6–10].
It is important to note that in Pauli algebra, because of the relation (5.5a)i
becomes the unit pseudoscalar for three-dimensional Euclidean space and
that i commutes with σk :

iσk = σki, (5.19)

indicating its similarity in character with the unit imaginary.
In geometric algebra, the three Pauli σk are no longer viewed as three

matrix-valued components

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 − j
j 0

)
, σ̂3 =

(
1 0
0 −1

)
,

( j = √−1, the unit imaginary)

of a single isospace vector, but as three orthonormal basis vectors for three-
dimensional Euclidean space (see Reference [3]). Likewise, the {γk}, {σk} are
to be interpreted geometrically as spatial vectors (space-time bivectors) and
not as operators in an abstract spin space. ‘Real’ Pauli algebra is isomorphic
to the algebra of Pauli matrices.

A new and important geometric significance, and interesting at that, can
be assigned to the foregoing [8, 9, 11–14]. In space-time algebra, the four Dirac
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γµ are no longer viewed as four matrix-valued components

γ̂0 =
(

I 0
0 − I

)
, γ̂k =

(
0 −σ̂k

σ̂k 0

)
,

(σ̂1σ̂2σ̂3 = √−1 I, where I is the 2 × 2 unit matrix and
σ̂k are the usual 2 × 2 Pauli matrices)

of a single isospace vector but as four orthonormal basis vectors for real
space-time. Stated more explicitly, γ0 is the unit vector in the forward light
cone and γk (k = 1, 2, 3) is a dextral set of space-like vectors. The future-
pointing timelike vector γ0 characterizes an observer’s rest frame and maps
the space-time bivectors {σk} (i.e., {γkγ0}) into the orthonormal basis vectors
in Pauli algebra. Thus Pauli algebra is identified with the algebra for the rest
space relative to the timelike vector γ0. Also the γ0 vector determines a map
of any space-time vector a = aµγµ as

aγ0 = a · γ0 + a ∧ γ0. (5.20)

Then the scalar part a · γ0 is the γ0-time component of the vector a , and the
bivector part a ∧ γ0 can be decomposed into the {σk}-frame and shown to
represent a spatial vector relative to an observer in the γ0-frame.

The above fact can be visualized as follows: to an observer in the
γ0-frame, any vector appears to be a line segment that exists for some time,
so its natural representation in space-time is a bivector. This important and
novel feature is embodied by Equation 5.20, which, in fact, demonstrates that
the algebraic properties of vectors in relative space, identified in this case by
Pauli algebra, are completely determined by those of the relativistic space-
time Dirac algebra.

We note that in the transition from Dirac to Pauli algebra the six space-
time bivectors {σk , iσk} with i representing the unit pseudoscalar for Dirac
algebra are split up into relative vectors {σk} and relative bivectors {iσk}
(i.e., relative to γ0 observer) with i representing the unit pseudoscalar for Pauli
algebra. This split of space-time bivectors is a frame-dependent operation. By
this transition from Dirac to Pauli algebra, one can have the observables in a
given frame from relativistic quantities in a simple way.

Denoting by D
k the subspace of multivectors of grade k in Dirac algebra

D, we may write

D
1 = a four-dimensional space of vectors,

D
2 = a six-dimensional space of bivectors,

D
3 = a four-dimensional space of trivectors

(or pseudovectors),

D
4 = a one-dimensional space of quadrivectors.
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We know that any vector a of space-time algebra anticommutes with i :

ai = −ia . (5.21)

From (1.30) and (1.31) we can write, by using (5.21),

a ∧ i = (1/2)(ai + ia ) = 0, (5.22)
a · i = (1/2)(ai − ia ) = ai = −ia . (5.23)

a · i or ai is a trivector called the dual of a . Earlier we have seen that in D

every trivector T is the dual of some vector a :

T = ai. (5.24)

Multiplying on the right by i ,we obtain from (5.24)

Ti = −a (5.25)

So, the dual of a trivector T is a unique vector −a . This establishes an isomor-
phism of the linear space D

3 to the vector space D
1. So, trivectors of D are

often called pseudovectors.
It is important to note that in D, i commutes with bivectors but anticom-

mutes with vectors and trivectors, whereas in Pauli algebra i commutes with
vectors and bivectors.

5.3 Conjugations

Following Hestenes [2, 7, 12], we define four types of conjugation operators
in real Dirac algebra D. Any multivector M in D can be written as

M = MS + MV + MB + MT + MP , (5.26)

where the subscripts S, V, B, T , and P mean, respectively, scalar, vector, bivec-
tor, trivector (pseudovector), and pseudoscalar parts of the multivector M.

5.3.1 Conjugate Multivectors (Reversion)

The conjugate multivector or reversion of M of D is denoted by M̃ and is
defined by the reversion of the order of products of all vectors of M. In accor-
dance with the notation adopted in current literature, we use the tilde over
M to denote the operation of reversion. Thus, the operation of conjugation or
reversion takes M into M̃ as

M̃ = M̃S + M̃V + M̃B + M̃T + M̃P

= MS + MV − MB − MT + MP . (5.27)
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As it is independent of any basis in the algebra, it is an invariant type
of conjugation (see also Chapter 2, Section 2.2, Equation 2.17, Equation 2.18,
Equation 2.19, and Equation 2.20), and as for pseudoscalar, see Chapter 4,
Equation (4.14b).

5.3.2 Space-Time Conjugation

We introduce the space-time conjugation of M of D denoted by M̄ and defined
by

M̄ = −i Mi. (5.28)

This operation maps M into M̄ as

M̄ = −i MSi − i MVi − i MBi − i MT i − i MPi

= MS − MV + MB − MT + MP . (5.29)

In other words, the space-time conjugation of M is the operation that reverses
the direction of all vectors in space-time. From (5.29) we note that the multi-
vector M is even, if M̄ = +M, and odd, if M̄ = −M.

5.3.3 Space Conjugation

Next, we introduce the space conjugation of M of D denoted by M∗ and
defined by

M∗ = γ0 Mγ0. (5.30)

This operation depends on the choice of γ0 and changes {σk} and {γk},
(k = 1, 2, 3), from right-handed to left-handed frames without affecting γ0:

σ ∗
k = γ0σkγ0 = −σk , (5.31)

γ ∗
µ = γ0γµγ0 = (γ0, −γk). (5.32)

As this operation depends on the choice of γ0, it is not an invariant type of
conjugation.

5.3.4 Hermitian Conjugation

Finally, we introduce the Hermitian conjugation of M of D, conventionally
denoted by M† and defined by

M† = γ0 M̃γ0. (5.33)

The operation M† corresponds to the Hermitian conjugate of M in the
usual matrix representations of the Dirac algebra of matrices. As M† depends
on the choice of γ0, it is not an invariant type of conjugation.
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5.4 Lorentz Rotations

In the algebra of Dirac matrices, the conditions (5.1a, b) do not determine
the Dirac matrices uniquely. Any two sets of Dirac matrices {γk} and {γ ′

k} are
related by a similarity transformation

γµ
′ = Rγµ R−1, (5.34)

where R is a nonsingular matrix. This, in fact, gives a change in the represen-
tation of the Dirac matrices.

What does Equation 5.34 mean in space-time algebra where the γµ are
vectors? The geometrical requirement that the γµ in (5.34) must be vectors
implies that they can be expressed as

γµ
′ = a ν

µγν. (5.35)

This means that (5.34) must be invariant under reversion

(γ
′
µ R)∼ = (Rγµ)∼,

that is,

R̃γµ

′ = γµ R̃. (5.36)

By using (5.34), (5.36) can be written as

R̃Rγµ R−1 = γµ R−1. (5.37)

So, one may choose R such that

R̃R = 1 (5.38a)

giving

R−1 = R̃. (5.38b)

Then, in view of (5.35) and (5.38b), (5.34) assumes the form

γµ
′ = a ν

µγν = Rγµ R̃, (5.39)

describing a Lorentz transformation from a frame of vectors {γµ} into a frame
{γ ′

µ}. Furthermore one can solve (5.39) for R as a function of γµ and γ
′
µ only.

This implies that R is a multivector and that every Lorentz transformation
can be expressed in that form.

Hestenes [1] has shown that (5.39) is a proper Lorentz transformation
(i.e., transformations continuously connected to the identity) if and only if
R is an even multivector satisfying

RR̃ = 1, (5.40)
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FIGURE 5.1
NO is perpendicular to the hyperplane AOB. v is the incident vector, r is the reflected vector, and
b̂ is the unit vector along NO. In geometric algebra, r is related to v and b̂ by r = − b̂vb̂.

from which one can write

R = ± exp(ϕ/2), (5.41)

where ϕ is a bivector. R is often referred to as a Lorentz rotation.
In fact, R is a ‘real’ spinor field in space-time algebra.

Now we will show that R can be obtained directly as the geometric
product of two unit vectors â and b̂ that specify the plane of rotation. For
this purpose we consider an incident vector v denoted by L O reflected along
OM by hyperplane AOB perpendicular to the unit vector b̂ (see Figure 5.1).
Let r be the reflected vector denoted by OM. As |v| = |r |, the diagonal ON
of the parallelogram LOMN is perpendicular to the hyperplane AOB. So, we
can write

ON = −2v · b̂b̂. (5.42)

Then, the reflected vector r can be written by using (5.42) as

r = OM = L N = L O + ON = v − 2v · b̂b̂

= v − (vb̂ + b̂v)b̂.
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This simplifies to

r = −b̂vb̂ (5.43)

The relation (5.43) is unique to geometric algebra. Next, we apply a reflection
of the vector r in the hyperplane perpendicular to a second unit vector â . Then,
by applying the formula (5.43), the final reflected vector v′ can be written as

v′ = −âr â

= â (b̂vb̂)â [by using (5.43)]
= â b̂vb̂â

= (â b̂)v(â b̂ )̃ . (5.44)

The combination of two reflections is a rotation in the plane determined by
the reflection axes â and b̂. So, Equation 5.44 indicates that the vector v is
rotated through an angle defined by the directions â and b̂ to the vector v′.
The formulation (5.44) for encoding rotations can be expressed in the compact
form:

v �⇒ v′ = RvR̃, (5.45)

where

R = â b̂ (5.46)

The spinor R defined by (5.46) has the fundamental property

RR̃ = â b̂b̂â = 1. (5.47)

From Equation 2.45 and Equation 2.46 we can express (5.46) in the form

R = eiϑ = cos ϑ + i sin ϑ, (5.48)

where the angle ϑ is expressed in radians. Equation 5.48 shows that R is an
even multivector or spinor consisting of scalar and bivector parts.

By using (2.50) we can express (5.48) as

R = ±eϕ/2, (5.49)

where ϕ is a bivector given by

ϕ = iϑ. (5.50)

Here ϕ/2 encodes the areal magnitude of the angle ϑ (in radian measure) from
a to b (see Figure 2.3 and Figure 2.4). The sign of ϑ in (5.50) is determined
by the orientation assigned to the unit pseudoscalar i as shown in Figure 2.3
and Figure 2.4. Equation 5.49 is a natural generalization of the complex rep-
resentation used in two dimensions.
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We see that the spinor R, which is often referred to as a Lorentz rotation,
is given by

R = exp(ϕ/2), (5.51)

where the bivector ϕ is expressed as a linear combination of six linearly inde-
pendent bivectors {σk , iσk}. So, we can write

R = exp(µ/2 + iλ/2), (5.52)

where µ and λ are bivectors satisfying

µ∗ = −µ, (5.53a)

λ∗ = −λ. (5.53b)

Then, (5.52) can be expressed as

R = R2 R1, (5.54)

where

R1 = exp(iλ/2), (5.55a)

R2 = exp(µ/2), (5.55b)

such that

R1 = R∗
1 , (5.56a)

R2 = R∗
2 . (5.56b)

The spinor R1 in (5.55a) satisfying the condition (5.56a) is called a spatial
rotation, whereas the spinor R2 in (5.55b) satisfying the condition (5.56b) is
called a special timelike rotation (see References [2, 7, 14]). Equation 5.52
implies that any Lorentz rotation can be expressed as a spatial rotation
followed by a special timelike rotation.

In Pauli algebra the space-time bivectors µ and λ become vectors, and iλ
is the bivector with respect to the γ0-frame, i being the unit pseudoscalar for
Pauli algebra. So, the spinor R in Pauli algebra can be expressed as

R = exp(iλ/2). (5.57)

5.5 Spinor Theory of Rotations in Three-Dimensional
Euclidean Space

As already stated in Section 5.2, that Equation 5.20 demonstrates that
the algebraic properties of vectors in the relative space of Pauli algebra
(i.e., three-dimensional Euclidean space) are completely determined by those
of space-time algebra, we are in a position to develop the general theory of
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FIGURE 5.2
The schematic diagram of a rigid body rotating about a point O with the paths of all points of
it parallel to a plane represented by a bivector in, where n is the unit vector that specifies the
rotation axis ON. ϑ is an angle of infinitesimal rotation from point A to point B, where OA = a
and OB = b. Then, we have δa = b − a = i(n ∧ a )(ϑ) up to the first order of ϑ .

rotations in three-dimensional Euclidean space by means of the Lorentz
rotation R, which is a real spinor field in space-time algebra.

In Section 5.4 we have seen that the spinor R in Pauli algebra can be
expressed as

R = exp(iλ/2), (5.58)

where λ is a vector and i is the unit pseudoscalar for Pauli algebra. So, iλ is a
bivector.

Now we consider a rigid body rotating about a reference point O with the
paths of all points of it parallel to some plane. We can represent this plane
by a bivector of unit modulus in, where n is the unit vector that specifies the
rotation axis ON (see Figure 5.2).

Then, the bivector iλ in Equation 5.58 can be expressed as [11, 12]:

iλ = inϑ, (5.59)

where ϑ is the angle of rotation about the n-direction. So, the spinor R in (5.58)
can be written as

R = exp(inϑ/2) = cos(ϑ/2) + in sin(ϑ/2), (5.60)

which satisfies the condition (5.40).
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The action of the spinor R on a vector a is written as (see Equation 5.39)

b = Ra R̃. (5.61)

Thus, the vector a in relative space is rotated through an angle ϑ to the
vector b by the above action of R on a . In view of Equation 5.60 and Equation
5.61, we notice that the vector b can be obtained via the geometric product of
the vector a and unit vector n as

b = exp(inϑ/2)a exp(−inϑ/2)
= [cos(ϑ/2) + in sin(ϑ/2)]a [cos(ϑ/2) − in sin(ϑ/2)]. (5.62)

For infinitesimal rotation, we have from (5.62), retaining terms only up to the
first order of ϑ ,

b = [1 + (inϑ/2)]a [1 − (inϑ/2)]
= a + (inϑ/2)a − a (inϑ/2)
= a + i(na − an)(ϑ/2)
= a + i(n ∧ a )ϑ. (5.63)

In the above computation we note that in Pauli algebra i commutes with
vectors, indicating its similarity in character with the unit imaginary. Thus,
we have from (5.63) the variation of the vector a up to the first order of ϑ :

δa = (b − a ) = i(n ∧ a )ϑ, (5.64)

which shows that δa is orthogonal to both n and a .
We have seen from Equation 5.61 that by the action of the spinor R on the

vector a in Pauli algebra, the vector a is rotated through an angleϑ to the vector
b corresponding to the spatial rotation of ϑ/2 of the spinor in the ‘real’ phase
space. So, spatial rotation R can be identified with the generalized phase ϕ of
a neutron spin state (an abstract space) of quantum theory. Mathematically,
this is represented by

rotation angle ϑ of the vector = 2ϕ(mod 3600), (5.65)

where ϕ is the generalized phase angle (spatial rotation). This, in fact, demon-
strates the well-known change of sign of a fermion spin for rotation of 2π in
quantum theory whose mathematical counterpart is the one-sidedness of the
Möbius strip.

For further elucidation of the above discussion we consider the composi-
tion of rotations. If we perform a rotation of the vector b with another spinor
R′, we obtain a vector c given by

c = R
′
b R̃

′ = (R
′
R)a ( R̃R̃

′
) = (R

′
R)a (R

′
R)̃ . (5.66)

Here we use Equation 5.61 and note that the geometric product is associative.
Equation 5.66 implies that the composition R′ R of rotations is also a rotation
that corresponds to the rotation from the vector a to the vector c.
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It represents the law of left composition of rotation group such that R′

operates on R from the left without touching the vector a .
For a rotation of the vector b through an angle 2π , the spinor R′ becomes

R′ = R̃′ = −1, (5.67a)

which gives

R′ R = −R. (5.67b)

Equation 5.66 in this case turns out to be

c = b = (−R)a (−R̃), (5.68)

The first part of Equation 5.68 means that the vector b remains unchanged
for a rotation through an angle 2π under the action of R′, whereas the
second part, together with Equation 5.61, tells us that either R or −R rotates
the vector a to the vector b, i.e., both represent the same rotation. We know
that R and −R are two distinct elements of the geometric algebra. So, the
correspondence between spinors and rotations is 2 to 1. This is the well-known
relation between the matrices of the unitary group SU(2) and the matrices of
the orthogonal group SO(3).

Thus, we note that the well-known change of sign of a fermion spin for
a rotation of 2π in quantum theory is due to the fact that the spinor R′ acts
on one side of the spinor R (see Equation 5.67a, b). On the other hand, for
a vector, as shown previously (see Equation 5.68), the spinor R′ acts on
both sides and thus exibits no change of sign of the vector for a rotation of 2π

under the action of R′.
Later we will show that the rotation angle ϑ , described by the vector a

about the n-direction, can be related via spatial rotation R in (5.68) to the
generalized phase of a neutron spin state represented by some point in the
total space of the fiber bundle of a neutron spin rotation.
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6
Spinor and Quaternion Algebra

6.1 Spinor Algebra: Quaternion Algebra

In Section 3.5 of Chapter 3, we have shown that the algebra of complex num-
bers appears with a geometric intepretation as the even subalgebra G+

2 of G2.
In the same way, we can express G3 as the sum of an odd multivector part G−

3
and an even multivector part G+

3 :

G3 = G−
3 + G+

3 . (6.1)

Then, it follows from Equation 4.13 that a multivector M in G3 can be put
in the form:

M = M− + M+, (6.2)

where

M− = a + iβ, (6.3)

M+ = α + ib. (6.4)

One can show that G+
3 is closed under multiplication, so it is a subalgebra

of G3, but G−
3 is not. This even subalgebra G+

3 may plausibly be called spinor
algebra to emphasize the geometric significance of its elements. In Section 3.4
of Chapter 3 we have shown that every spinor in G+

2 represents a rotation–
dilation in two-dimensional Euclidean plane. In the same way, one can show
that every spinor in G+

3 represents a rotation–dilation in three-dimensional
Euclidean space E3, which represents a subspace G1

3 of vectors in G3.
In what follows, we shall show that the spinor algebra G+

3 is isomorphic
to the quaternion algebra developed by William Rowan Hamilton in 1843.

For this purpose we express Equation 6.4, using Equation 4.7a, b, c,
Equation 4.9 and Equation 4.11, in the form

M+ = α1 + B1i1 + B2i2 + B3i3. (6.5)

This shows that the set of four unit multivectors {1, i1, i2, i3} makes up a basis
for G+

3 . Thus, G+
3 is a linear space of four dimensions. The elements of G+

3 were
first introduced and called quaternions by Hamilton. So, the spinor algebra
G+

3 and the quaternion algebra of Hamilton are identical.

75
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Quaternions and spinors have equivalent algebraic properties as well as
the same geometric significance. So, quaternions are spinors. Hamilton, in
fact, found a way to describe geometry by algebra by introducing a system
of quantities to represent rotations in three dimensions by generalizing the
concept of complex numbers.

In this connection a brief digression of quaternion algebra will be in order.
W. R. Hamilton developed the concept of directed numbers to emphasize the
operational interpretation, and constructed quaternions in 1843 by general-
izing the concept of complex numbers. By introducing a system of imaginary
units î , ĵ , k̂ to represent rotations in three-dimensional Euclidean space, he
defined a quaternion q as

q = α + î x + ĵ y + k̂z (6.6)

(here “ ˆ ” indicates the quaternion units) where α, x, y, z are scalars, and î , ĵ , k̂
satisfy the following defining relations:

î2 = ĵ2 = k̂2 = î ĵ k̂ = −1. (6.7)

The set of four quantities {1, î , ĵ , k̂} makes up a basis for the quaternion
algebra.

The quaternion q defined above can also be described in terms of the basis
{I, j σ̂1, j σ̂2, j σ̂3}, where I is the 2 × 2 identity matrix, j is the unit imaginary√−1, and σ̂k (k = 1, 2, 3) are the Pauli matrices. This formulation of the
quaternions in the guise of Pauli matrices provides a great resurgence of the
quaternions depicting their essential role in the quantum theory of spin and
quantum field theory.

Moreover, the preceding discussion shows that quaternion algebra is not
only isomorphic with spinor algebra G+

3 but also identical with it. In fact,
both have equivalent algebraic properties as well as the same geometric sig-
nificance. So, quaternions are spinors.

The embedding of quaternion algebra in the geometric algebra of three-
dimensional Euclidean space exhibits that quaternions are bivectors (see
Equation 4.7a, b, c). Thus, the roles of vectors and quaternions (bivectors) are
explicitly distinguished because vector algebra and quaternion algebra are
subalgebras G1

3 and G+
3 of geometric algebra G3. So, the two systems comple-

ment each other.
We note in passing that the bivectors {i1, i2, i3} in Equation 6.5 of spinor

algebra satisfy equations

i2
1 = i2

2 = i2
3 = −1

and

i1i2i3 = iσ1iσ2iσ3 = iσ1σ2i iσ3 = −i3σ1σ2σ3

= −i i = 1.
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Thus, we have

i2
1 = i2

2 = i2
3 = −i1i2i3 = −1. (6.8)

The difference in sign between î ĵ k̂(of Hamilton) and i1 i2 i3 (of Hestenes)
can be done away by making the following correspondence:

î = i1 = iσ1

ĵ = −i2 = −iσ2 (6.9)
k̂ = i3 = iσ3.

6.2 Vector Algebra

Now we show that vector algebra as developed by J. Willard Gibbs in 1884
fits naturally into G3. For this purpose we first obtain the relation between the
outer product a ∧ b and the cross product a × b as introduced by Gibbs.

From (4.7c) we can write

ασ1 ∧ βσ2 = iαβσ3, (6.10)

where α, β are scalars. This implies that the bivector ασ1 ∧ βσ2 is the dual of
the vector αβσ3, which is perpendicular to the oriented rectangle described
by the bivector. Moreover,

|ασ1 ∧ βσ2| = |αβσ3|. (6.11)

This is well exemplified by the following relation between the outer product
a ∧ b and the cross product a × b [1–3]:

a ∧ b = ia × b (6.12)

or equivalently,

a × b = −ia ∧ b. (6.13)

In Figure 6.1 the sign of the duality is chosen such that the vectors a, b, a ×b
form a dextral set in agreement with our convention for the handedness of
the dextral pseudoscalar i . This is evident from (4.7c) and (6.10) as shown
below:

σ1 ∧ σ2 = iσ3 �⇒ iσ1 × σ2 = iσ3 �⇒ σ1 × σ2 = σ3. (6.14)

Finally, we note from (6.12) or (6.13) that the magnitude of the vector a ×b
is equal to the area of the parallelogram in Figure 6.1, which can be identified
with | a ∧ b |.

In Gibbs’ vector algebra, the cross product a × b is termed an axial vector
if a and b are polar vectors. In geometric algebra, an axial vector appears as a
bivector disguised as the dual of a vector. According to the relation (6.12), the
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a b

a b

a

b

FIGURE 6.1
Duality of the cross product and the outer product.

cross product a × b is a vector in exactly the same sense as a and b are vectors,
which removes the so-called distinction between axial and polar vectors. So,
we see that Gibbs’ vector algebra fits naturally into G3.

6.3 Clifford Algebra: Grand Synthesis of Algebra of Grassmann
and Hamilton and the Geometric Algebra of Hestenes

In an ingenious way William Rowan Hamilton described quaternion algebra
by introducing a system of quantities to represent rotations in three-
dimensional Euclidean space. In fact, he developed the concept of directed
numbers to emphasize the operational interpretation, and constructed
quaternions in 1843 by generalizing the concept of complex numbers. We
have seen in the previous section that quaternion algebra is identical with
spinor algebra G+

3 , which is an even subalgebra of geometric algebra G3.
So, quaternion are spinors. It is well known that quaternions have reappeared
in the guise of Pauli matrices and played an important role in describing
quantum mechanics and quantum field theory.

One year later, in 1844, Herman Grassmann developed his “algebra of
extension” based on the inner and outer products of vectors. In fact, he
developed the concept of directed numbers from the quantitative point of
view. In his later life, Grassmann realized that Hamilton algebra was related
to his, and quaternions could be derived simply by the introduction of the
geometric product ab of vectors defined by ab = a · b + a ∧ b. However, it was
too late for him to pursue the far-reaching implications of the grand mixture
of geometric and algebraic ideas.
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Soon afterwards the English mathematician William Kingdon Clifford
took up the problem as realized by Grassmann. By virtue of his powerful
geometric insight he realized that both Grassmann and Hamilton were devel-
oping the same subject from different points of view; Grassmann developed
the concept of directed numbers from the quantitative standpoint, whereas
Hamilton developed it with emphasis on the operational interpretation. In
1876, Clifford synthesized the algebraic ideas of Grassmann and Hamilton
by developing the concept of the geometric product of vectors and was
able to construct the structure of a general algebraic system now known as
Clifford algebra. Unfortunately for the mathematical world, death claimed
his life before he could complete the delineation of the potential combination
of geometric and algebraic ideas.

After about nine decades, David Hestenes [1–3] developed geometric
algebra during the decades 1966–86, by combining the algebraic structure
of Clifford algebra with the explicit geometric meaning of its mathematical
elements at its foundation, and accomplished fully the delineation of the
grand combination of geometric and algebraic ideas. So, formally, it is
Clifford algebra endowed with geometric information of and physical
interpretation to all mathematical elements of the algebra. As it stands, it
is the largest possible associative division algebra that integrates all algebraic
systems (i.e., algebra of complex numbers, vector algebra, matrix algebra,
quaternion algebra, etc.) into a coherent mathematical language that
augments the powerful geometric intuition of the human mind with the pre-
cision of an algebraic system. Hestenes first signified that two different inter-
pretation of numbers could be distinguished: quantitative and operational. In
Chapter 3, Sections 3.2, 3.3 and 3.4, this distinction is explicitly illustrated by
the interpretations given to a unit bivector i, called the unit pseudoscalar for
the i-plane. Interpreted quantitatively, i is a measure of a directed area, and op-
erationally interpreted, i signifies a rotation in the i-plane. Either a quantitative
or an operational interpretation can be given to any number, called a multivec-
tor in geometric algebra. Thus, vectors are usually interpreted quantitatively,
whereas spinors, which are even multivectors, are usually interpreted
operationally.

A lively controversy arose in the last two decades of the 19th century
as to which system was more suitable for the development of theoretical
physics: quaternion formulation due to Hamilton or the newer vector algebra
of Josiah Willard Gibbs and Oliver Heaviside. As vectors were tailored by
Gibbs and Heaviside independently to each other, to formulate the electro-
magnetic theory in an elegant way, they proved to be easier and more useful
than quaternions. Nevertheless, the reappearance of the quaternions in the
guise of Pauli matrices in the 20th century provides a great resurgence of
the quaternions, depicting their essential role in quantum mechanics and
quantum field theory.
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Geometric algebra explicitly exhibits that the statement

vectors versus quaternions

is devoid of any meaning. In the foregoing discussion it is shown that Gibbs’
vector algebra and Hamilton’s quaternion algebra are, respectively, the
subalgebras G3 and G+

3 of geometric algebra G3. Thus, the two systems
complement each other, both being united in geometric algebra G3, and the
vector–quaternion controversy recedes into the shadows.

References

1. D. Hestenes, Space-Time Algebra (Gordon and Breach, New York, 1967).
2. D. Hestenes and G. Sobczyck, Clifford Algebra to Geometric Calculus (Reidel,

Boston, 1984).
3. D. Hestenes, New Foundations for Classical Mechanics (Reidel, Boston, 1986).



P1: Binaya Dash

October 24, 2006 14:17 C7729 C7729˙C007

Part II



P1: Binaya Dash

October 24, 2006 14:17 C7729 C7729˙C007



P1: Binaya Dash

October 24, 2006 14:17 C7729 C7729˙C007

7
Maxwell Equations

7.1 Maxwell Equations in Minkowski Space-Time

As an example, we like to write the Maxwell equations in the formalism of
geometric algebra. Start with the Maxwell equations written in Gauss units
(where the electric field E , the chargeρ, and the current density j are expressed
in electrostatic unit [esu] or [CGS] esu, whereas the magnetic field is measured
in electromagnetic unit [emu] or [CGS] emu):

(7.1){
rotE + (1/c)(∂ H/∂t) = 0
divH = 0 (7.2)

(7.3){
rotH − (1/c)(∂ E/∂t) = (4π/c) j

divE = 4πρ (7.4)

or

∇ × E + (1/c)Ḣ = 0 (7.5)

∇ · H = 0 (7.6)

∇ × H − (1/c) Ė = (4π/c) j (7.7)

∇ · E = 4πρ (7.8)

where

∇ 	⇒ (∂/∂x) + (∂/∂y) + (∂/∂z)
∇ϕ = grad ϕ

∇ · A = div A

∇ × A = rot A

∇ · ∇ × A = div rot A = 0
∇ × ∇ϕ = rot grad ϕ = 0
∇ × (∇ × A) = (∇ · A)∇ − (∇ · ∇) A 	⇒ rot rot A

= grad div A − div grad A, etc.

83
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Put

H = rotA (7.9)

Substituting (7.9) in (7.1) we have

E + (1/c)(∂ A/∂t) = −grad V (7.10)

i.e., E = −grad V − (1/c)(∂ A/∂t) (7.11)

The vector potential A and the scalar potential V are not uniquely defined. In
fact, the vector potential is determined to within the gradient of an arbitrary
function ϕ, and the scalar potential to within the time derivative of the same
function ϕ; that is, if instead of A and V we take Ao and Vo , where

Ao 	⇒ A+ grad ϕ; Vo 	⇒ V − (1/c)(∂ϕ/∂t), (7.12)

we see that Ao and Vo satisfy Equation 7.9 and Equation 7.11;

i.e., H = rot Ao ; E = −grad Vo − (1/c)(∂ Ao/∂t) (7.13)

The fields are invariant with respect to the transformation (7.12) of the poten-
tials; this invariance is called “gauge invariance.”

This nonuniqueness of the potentials allows us to choose V in a way that
the so-called Lorentz condition (a gauge condition)

div A+ (1/c)(∂V/∂t) = 0 (7.14)

be satisfied. Moreover, we have the continuity equation

div j + ∂ρ/∂t = 0 (7.15)

In Minkowski space-time, as it is well known, one introduces the tetra-
potential

Ax 	⇒ φ1, Ay 	⇒ φ2, Az 	⇒ φ3, iV 	⇒ φ4. (7.16)

Then, the electromagnetic field tensor is

Fµν = (∂φν/∂xµ) − (∂φµ/∂xν) (7.17)

where

Fµν

∣∣∣∣∣∣∣∣∣

0 Hz −Hy −i Ex

−Hz 0 Hx −i Ey

Hy −Hx 0 −i Ez

i Ex i Ey i Ez 0

∣∣∣∣∣∣∣∣∣

(7.18)
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The first pair of Maxwell Equations 7.1 and 7.2 becomes

(∂ Fµν/∂xλ) + (∂ Fλµ/∂xν) + (∂ Fνλ/∂xµ) = 0 (7.19)

(with µ, ν, λ = (1, 2, 3), (2, 3, 4), (1, 3, 4), (1, 2, 4))
and the second pair of Maxwell Equations 7.3 and 7.4

∂Fµν/∂xν = (4π/c) jµ (7.20)

(where jµ ≡ ( j1, j2, j3, icρ) is the four-dimensional current vector). The equa-
tion for the tetra-potential φµ is

φµ = −(4π/c) jµ (7.21)

with the Lorentz condition

∂φµ/∂xµ = 0 (7.22)

where

≡ (∂2/∂x2) + (∂2/∂y2) + (∂2/∂z2) − (1/c2)(∂2/∂t2) (7.23)

7.2 Maxwell Equations in Riemann Space-Time (V4 Manifold)

If we introduce the coupling between electromagnetic and gravitational fields
according to the minimal coupling procedure (i.e., replacing partial deriva-
tives with covariant ones, and the flat Minkowski metric with the metric in
presence of the gravitational field: ∂ 	⇒ ∇ and ηµν 	⇒ gµν), then the first
couple of Maxwell equations is unchanged [1], i.e.,

(∂Fµν/∂xλ) + (∂Fλµ/∂x)ν + (∂Fνλ/∂xµ) = 0 (7.24)

due to the identity

∂[µFαβ] = ∂[µ∂αφβ] = 0 (7.25)

whereas the second pair becomes

F µν
;ν = (4π/c) j ′µ (7.26)

where

j ′µ = jµ/
√−g (7.27)

(semi-colon “;” stands for covariant derivative).
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7.3 Maxwell Equations in Riemann–Cartan Space-Time
(U4 Manifold)

If we introduce torsion in the Einstein general theory of relativity (a problem
that was primarily considered by Cartan, and that, in physical sense, means
the introduction of spin in gravity theory [2, 3, 4, 5]), we can try to write
Maxwell equations in the Einstein–Cartan space-time (U4 manifold).

In general, one says that the electromagnetic field cannot be coupled to
torsion in order to preserve local gauge invariance; in other words, one cannot
apply the minimal coupling principle

ηµν 	⇒ gµν , ∂µ 	⇒ ∇µ (7.28)

that is, one cannot replace the flat with curved metric and the partial derivative
with covariant derivative in the presence of torsion to the special relativistic
photon Lagrangian without breaking the gauge invariance of the theory.

This result finds a natural justification in the framework of the Poincaré
gauge field theory of gravitation (see Reference [6] for an extensive biblio-
graphy on this subject).

Several attempts have been made in order to apply minimal coupling
without breaking gauge invariance; they are successful, however, only at
the cost of imposing arbitrary geometrical constraints upon torsion [7], or
introducing a modified definition of gauge transformation [8].

Therefore, these attempts lie beyond the limits of the Einstein–Cartan
theory.

In order to preserve the gauge invariance in the Einstein theory, the most
simple hypothesis is to assume that ([9, 10, 11])

photons neither produce nor feel torsion (7.29)

i.e., that Maxwell equations in a Riemann–Cartan space U4 are identical to the
same equations written in the Riemann space V4 obtained from U4 putting
torsion to zero.

We like to emphasize that the statement (7.29) can be assumed to be strictly
valid only as long as the electromagnetic (e.m.) field is treated as a classical, not
quantized, field. When a quantum point of view is adopted, however, (7.29)
is recovered only as a first approximation because, in general, according to a
quantum description of the e.m. field in a space with torsion, one may always
expect an interaction between the photons and the torsionic background.

In fact, a photon, with a process of the second order in the perturbative
development of the e.m. interaction, can virtually disintegrate into an
electron–positron pair (vacuum polarization effect); because these particles
are massive fermions, which couple to torsion, they feel the presence of a
torsionic background. As a consequence, the e.m. field is also affected by
torsion (see Figure 7.1); even if torsion does not directly interact with the
photon field, it does interact with the virtual pairs produced in vacuum by a
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FIGURE 7.1
The dashed lines represent the interaction of the virtual pair with the external torsionic back-
ground.

“physical” photon. This interaction preserves the gauge invariance, and the
Maxwell equations are modified by a quantum contribution of the second
order, so that, to the zeroth order, i.e., in the classical field approximation,
the coupling with torsion disappears and we recover the usual form as the
Maxwell equations.

We will not go through the calculation (see [12–18]); we will note only
that the virtual pair production induces in vacuum a current density propor-
tional to the field intensity. The resulting Maxwell equations are, then, in the
presence of torsion (see Reference [15]):

∂µF νµ = 4π jν + (2α/3π )ηνµρσ Fµρ Qσ .

∂[ν Fσµ] = 0.

}
(7.30)

The Equation 7.30 can be derived from a Lagrangian where the photon–
torsion interaction term LI is given by ([16, 17, 18])

LI = (−g)1/2αηµναβφµFνα Qβ , (7.31)

with Fνµ = 2∂[ν Aµ]. α is the fine-structure constant α = e2/h̄c (remem-
ber that the fine-structure constant enters in the photon–torsion interaction
Lagrangian when an explicit computation is carried out that takes into account
the interaction between torsion and the virtual pairs e+ − e−associated to a
propagating electromagnetic field; see, for instance, References [15, 16, 17],
and [1] on page 268) and Qσ is an axial vector related to the torsion tensor
Qρ

µν = �
ρ

[µν] by

Qσ = (1/16)ηµνρσ Kµνρ = (1/16)ηµνρσ (Qνρµ − Qµνρ − Qρµν), (7.32)

where ηµνρσ is the totally antisymmetric tensor. This lowest-order photon–
torsion interaction has been obtained through an explicit perturbative
calculation.
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In the case of propagating torsion we can write (see Reference [16]):

F µν
;ν = 4π jµ + (1/8π )αηµναβ Fναϕ,β (7.33)

where ϕ,µ = (16/3)Qµ.

7.4 Maxwell Equations in Terms of Space-Time Algebra (STA)

Now we would like to discuss the Maxwell equations in terms of geometric
algebra formalism.

We have seen in Chapter 5 that every multivector M can be written as a
linear combination “over the reals” of the 16 elements of STA, i.e.,

1 γµ {σk , iσk} iγµ i
1 − scalar 4 − vectors 6 − bivectors 4 − pseudovectors 1 − pseudoscalar

grade 0 grade 1 grade 2 grade 3 grade 4
(7.34)

where σk ≡ γkγ0, k = 1, 2, 3, and the unit pseudoscalar of space-time is

i ≡ γ0 ∧ γ1 ∧ γ2 ∧ γ3 = γ0γ1γ2γ3 = σ1σ2σ3 (7.35)

and

γ0i = γ1γ2γ3 (7.36)

Then, the multivector M can be written (putting in evidence the parts with
different ‘grade’) as

M = α + a + B + bi + βi (7.37)

where α and β are scalars, a and b are vectors, and B is a bivector:

B = (1/2)Bµνγµ ∧ γν (7.38)

In order to facilitate the decomposition of a multivector with respect to the
basis {γµ}, it is convenient to introduce a reciprocal basis system {γ µ} defined,
as usual, by the conditions

γ µ · γν = δµ
ν (7.39)

This implies

γ 0 = γ0 and γ k = −γk , (7.40)

from which it comes out that in terms of that basis (with signature (+ - - -))
we have

γ 2
0 = −γ 2

k = 1 (k = 1, 2, 3) and γµ · γν = 0 (µ �= ν) (7.41)
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that can be assembled in the unique relation

gµν = (1/2)(γµγν + γνγµ), (7.42)

where gµν ≡ γµ · γν coincides with the Minkowski metric tensor.
For instance, the components of a vector a are the scalar quantities aµ =

a · γ µ, and then a = aµγµ. These correspond to the usual controvariant
components, whereas the covariant components are given by aµ = a · γµ

= a νgνµ. Analogously, the components Bµν = −Bνµ of a bivector are (see
Equation 7.38):

Bµν = (γ µ ∧ γ ν) · B = γ µ · (γ ν · B) (7.43)

The expression (7.43) can be verified using

(γ µ ∧ γ ν) · (γα ∧ γβ) = δ
µ
β δν

α − δµ
α δν

β , (7.44)

which is a particular case of the identity found in the geometric algebra:

(a ∧ b) · (c ∧ d) = (a · d)(b · c) − (a · c)(b · d) (7.45)

If we make the inversion operation (denoted by ˜) on the generic multivector
(7.37), we have

M̃ = α + a − B − bi + βi (7.46)

that is, the bivector and the pseudovector change their sign.
(Remember, in fact, that for a vector of grade “r”, we have < Ã >r=
(−1)(r/2)(r−1) A).

Remember also that, due to the associative property of geometric product,
i.e.,

a (bc) = (ab)c, (7.47)

we have the associative rule

a ∧ (b ∧ c) = (a ∧ b) ∧ c (7.48)

and the algebric identity

a (b · c) + a · (b ∧ c) = (a · b)c + (a ∧ b) · c. (7.49)

We have also

a · (b ∧ c) = (a · b)c − (a · c)b (7.50)

(for the inner product between a vector and a bivector) and

a ∧ b ∧ c = −b ∧ a ∧ c = b ∧ c ∧ a (7.51)

(for the outer product between a vector and a bivector).
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More, in general, for the geometric product of a vector a and an s-vector
B, one has

aB = a · B + a ∧ B (7.52)

where

a · B = (1/2)(aB − (−1)sBa) (7.53)

and

a ∧ B = (1/2)(aB + (−1)sBa) (7.54)

Notice also that the pseudovectors are the duals of vectors: they are trivectors
and are nothing else than the product of operator i (the pseudoscalar unit) by
a vector. In other words, the pseudoscalar unit has the role of a multiplicative
operator that determines the dual element of a multivector; in particular, the
trivectors can be written as the duals of vectors and are also called pseudo-
vectors. For instance,

γ0i = γ1γ2γ3 (7.55)

is a trivector, or the dual of the γ0 vector.
Returning to the multivector (7.37), we can say that a multivector can

always be decomposed into an even part M+ [grade 0 (scalar), grade 2 (bi-
vector), and grade 4 (pseudoscalar)] and an odd part M− [grade 1 (vector)
and grade 3 (trivector)], i.e.,

M+ = α + B + βi
(scalar) (bivector) (pseudoscalar). (7.56)

M− = a + bi
(vector) (pseudovector). (7.57)

The even multivectors or spinors (the sum of a scalar, a bivector, and a pseudo-
scalar) form a subalgebra (8-dimension), that is isomorphic to the Pauli
algebra (see Chapter 5). More, in general, a multivector is said to be even
if it is expressed as a sum of Clifford objects of even grade.

Going back to the Maxwell equations, we have seen that the electromag-
netic field can be described by eight equations for six scalars (Ex, Ey, Ez, Hx,
Hy, Hz) or two equations for an antisymmetric tensor (Fµν = −Fνµ). Now,
with the geometric algebra, we can describe the electromagnetic field by a
single equation for a single multivector F , and this last possibility is simpler
because multivector calculus has a more comprehensive geometric signifi-
cance than the usual vector or tensor calculus.

We can see better this point with the consideration of the role of complex
numbers in electrodynamics.

It is well known that the description of the electromagnetic waves is well
done with complex numbers; for that reason the e.m. field is represented by
complex quantities that are ‘ad hoc’: it is ‘ad hoc’ because only the real part
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of a complex quantity has physical significance. On the other hand, when
the e.m. field is described by multivector calculus, complex quantities arise
naturally with geometric and physical meanings.

It is, in fact, possible to write the Maxwell equations completely in terms
of STA. Given the bivector of the e.m. field:

F = (1/2)F µνγµ ∧ γν (7.58)

it is possible to substitute the two equations in tensorial form (7.19) and (7.20),
by the two equations in multivector form (using also the rule (7.50) for the
inner product and the rule (7.51) for the outer product):

∇ · F = (4π/c) j (7.59)
∇ ∧ F = 0 (7.60)

where ∇ = γ µ∂µ, which can be assembled in the unique equation

∇F = (4π/c) j (7.61)
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8
Electromagnetic Field in Space and Time
(Polarization of Electromagnetic Waves)

8.1 Electromagnetic (e.m.) Waves and Geometric Algebra

In order to see the description of e.m. waves in terms of geometric algebra, it
is useful to express the bivector F of e.m. field in terms of the even subalgebra
of the space-time algebra (STA) (formed by the scalar, bivector, and pseudo-
scalar). We remember that Equation (7.61) allows us to write F in terms of the
current j (due to the fact that the ∇ operator, the same ∇ = γ µ∂µ that appears
in the Dirac equation, is invertible; see, for instance, Reference [1], in which
it is given that the Green function allows to solve F in terms of j). We have,
in fact, from (7.60):

F = ∇ ∧ A, (8.1)

where A is the vector potential of the e.m. field, which is invariant through a
gauge transformation

A′(x) = A(x) + ∇α(x), (8.2)

where α(x) is an arbitrary scalar function. Using the γ0 frame, i.e., the labora-
tory system, we can write the bivector F in terms of the more familiar electric
and magnetic fields E and B. In fact, Maxwell equations can be written as [2]:

(c−1∂i + ∇)F = 0, (8.3)

where

F = E + iB, (8.4)

where E = Ekσk and B = Bkσk are the relative vectors. Multiplying the bivec-
tor F by itself, we have the two Lorentz-invariant quantities (one scalar and
one pseudoscalar):

F 2 = (|E |2 − |B|2) + i(E · B) (8.5)

In particular, for a plane e.m. wave that propagates in vacuum, we have
F 2 = 0 and, then, F can be considered a light-type bivector. Notice that the

93
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expression (8.4) is actually more than a complex vector; in fact, “i” is more
than a unit imaginary; it is the unit pseudoscalar that we have introduced
(see Equation 7.35, where i = σ1σ2σ3 = σ1 ∧ σ2 ∧ σ3), and it appears in
Equation 8.4 because the magnetic field is correctly described by the bivector
iB and not by its dual B.

It is easy to see that the relative vectors E = Ekσk and B = Bkσk are given
explicity by

E = Ekσk = (1/2)(F − γ0 F γ0) (8.6)

and

iB = iBkσk = (1/2)(F + γ0 F γ0), (8.7)

where

Ek = F k0, F i j = −εijk Bk (summation over k). (8.8)

With the geometric significance of “i”, the physical separation of F into
electric and magnetic parts corresponds exactly to the geometric separation
into vector and bivector parts. However, the usual form of vector calculus
has preserved an artificial separation of electric and magnetic fields, though
it was known that they compose a single physical entity. This has helped to
disguise the significance of complex numbers in electrodynamics.

Electric and magnetic fields are in general represented as complex vectors
without it being realized that the real part of one can be related to the imag-
inary part of the other so that only the single complex vector (8.4) is needed
for a complete description of the field.

8.2 Polarization of Electromagnetic Waves

The compact description of the e.m. field (8.3) also yields a solution with
more direct geometric significance as we will demonstrate in this section. The
Maxwell equation admits a solution [3, 4]

F+ = f exp[i(ωt − k · r )] (8.9)

that describes a monochromatic plane wave with frequency ω > 0 and prop-
agation vector k. However, one may be surprised to learn that this wave
is necessarily right circularly polarized, because that follows unequivocally
only from the geometric meaning of multivector algebra.

To establish this property, we substitute Equation 8.9 in the Equation 8.3
using the fact that f, ω, and k are constant, so we have the Maxwell equation
in the form

[(ω/c) − k]F = 0. (8.10)
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Multiplying by [(ω/c) + k] we have

[(ω2/c2) − k2]F = 0. (8.11)

Because F is not zero, this implies that |z| = ω/c, as expected. So, Equation
8.10 can be written in the simpler form

k̂ F = F (8.12)

where

k̂ = k/|k| = k/(ω/c) (8.13)

Then, substituting the Equation (8.4) in (8.12) we have that both even and odd
parts of (8.12) give the same relation among the vector k̂, E , and B, namely,

k̂ E = iB. (8.14)

By using this equation (8.14) we can eliminate the magnetic field from
Equation 8.4. In fact, remember that (see Equation 8.6 and Equation 8.7)

E = (1/2)(F − γ0 F γ0) (8.6)

and

iB = (1/2)(F + γ0 F γ0) (8.7)

where E represents the odd part of F and iB the even part:

F = (1/2)(F − γ0 F γ0) + (1/2)(F + γ0 F γ0). (8.15)
E + iB

We have

k̂ E = (1/2)(k̂ F − k̂γ0 F γ0) = (1/2)(F + γ0k̂ F γ0)
= (1/2)(F + γ0 F γ0) = iB, (8.16)

i.e., (8.14). It follows that we can eliminate the magnetic field from Equation
(8.4) putting k̂ E in the place of iB:

F = E + k̂ E = (1 + k̂)E = E(1 − k̂) (8.17)

The square of (8.12) gives E2 = B2, and we can write (8.14) in the form

ÊB̂k̂ = i (8.18)

The symbol ( ̂ ) stands for unit vector.
We can say that E B k, in that order, compose a right-handed orthonormal

frame of vectors.
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To make the time dependence of the field explicit, note that from Equation
(8.9) and Equation (8.17) we get

F (0, 0) = f = E0 + iB0 = E0(1 − k̂). (8.19)

Then, taking note of the fact that Equation 8.9 can also be written in this case
as (see Appendix B)

F+(r, t) = E(t) + iB(t) = E0(1 − k̂) exp[−i k̂(ωt − k · r )]
= f exp[−i k̂(ωt − k · r )] (8.20)

so that at any point on the plane k · r = 0 the field is

F = E(t) + iB(t) = E0(1 − k̂) exp[−(i k̂ωt)]. (8.21)

The vector part of this expression is

E(t) = E0 exp[−(i k̂ωt)] (8.22)

= E0(cos ωt − i k̂ sin ωt), (8.23)

and, using (8.14), having i k̂ E0 = −B0, we have

E(t) = E0 cos ωt − B0 sin ωt (8.24)

= E0 cos ωt + B0 cos[(π/2) + ωt], (8.25)

and this shows explicitly that as t increases, the electric vector rotates clock-
wise in the plane as viewed by an observer facing the oncoming wave train,
whereas the magnetic field vector follows 90◦ behind and the usual picture
of a circularly polarized wave arises (see Figure 8.1) [5].

As regards the bivector part, we have

iB(t) = −E0k̂ exp[−(i k̂ωt)] (8.26)

= −E0k̂(cos ωt − i k̂ sin ωt), (8.27)

FIGURE 8.1
A graphic representation of a right circularly polarized electromagnetic wave as viewed by an
observer facing the oncoming wave train.
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that is, by using (8.14),

= iB0 cos ωt + iE0 sin ωt (8.28)
= iB0 cos ωt + iE0 cos[(3π/2) + ωt], (8.29)

which one can read also as

B(t) = B0 cos ωt + E0 sin ωt. (8.30)

This shows that, as t increases, the magnetic bivector field iB also rotates
clockwise along with the electric vector, whereas the electric bivector field
follows 270◦ behind. Equation 8.25 and Equation 8.29 show that the electric
vector field and the magnetic bivector field are in phase, whereas the mag-
netic vector field and the electric bivector field are in opposite phases (see
Figure 8.1).

We note in passing that in the usual vector calculus the unit imaginary
in the complex solution of the field equations generates rotation of E and B
only [5].

8.3 Quaternion Form of Maxwell Equations from
the Spinor Form of STA

In Chapter 7, Section 7.4, we have shown that Maxwell equations in STA can
be assembled in the unique equation (see Eq. 7.61)

∇F = (4π/c) j, (8.31)

where ∇ = γµ∂µ(summation over µ), and F is the electromagnetic bivector:

F = (1/2)F µνγµ/γν. (8.32)

Equation 8.31 can be written as

[γ0(∂/∂t) + γk(∂/∂xk)]F = (4π/c) j (8.33)
(summation over k; k = 1, 2, 3)

Left multiplication (geometric) by γ0 of both sides of the above equation gives

[γ0γ0(∂/∂t) + γ0γk(∂/∂xk)]F = (4π/c)γ0 j

or

[(∂/∂t) − γkγ0(∂/∂xk)]F = −(4π/c)( j · γ0 + j ∧ γ0)

or

[(∂/∂t) − σk(∂/∂xk)]F = −(4π/c)(cρ + j), (8.34)
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where ρ is the charge density and j the current density vector. Here, the scalar
part j ·γ0 is the γ0-time component of the vector j (i.e., the charge density), and
the bivector j ∧ γ0 is decomposed into the σk frame and shown to represent
a spatial vector (i.e., the current density in 3-space) relative to an observer in
the γ0-frame (see also Chapter 5, Section 5.2, Equation 5.20).

In the γ0-frame (i.e., in the laboratory system [5]) the electromagnetic field
F can be expressed in the more familiar electric and magnetic fields E and B
as (see Appendix A):

F = E + iB (8.35)

where

E = F koσk = Ekσk (8.36)
iB = iBkσk , (8.37)

Bk being given by

F ij = −εijk Bk (summation over k), (8.38)

εijk being the alternating tensor with ε123 = 1.
By using Equation 8.36 and Equation 8.37, Equation 8.35 can be written

as

F = (Ek + iBk)σk . (8.39)

By setting

ψk = Ek + iBk, (8.40)

Equation 8.39 can be written as

F = ψkσk = ψ. (8.41)

By virtue of (8.41), the Maxwell Equation 8.34 assumes the form

[(∂/∂t) − σk(∂/∂xk)]ψ lσl = −(4π/c)(cρ + j) (8.42a)

or

[(∂/∂t) − σk(∂/∂xk)]σlψ
l = −(4π/c)(cρ + j). (8.42b)

Equation 8.42b can be written in expanded form:

[(∂/∂t) − σk(∂/∂xk)] · (σlψ
l) + [(∂/∂t) − σk(∂/∂xk)] ∧ σlψ̃

l

= −(4π/c)(cρ + j). (8.43)

In order to maintain the exact correspondence between Hamilton’s quater-
nions and Hestenes’ spinors, it is necessary to replace ψ i by ψ̃ l in the above
outer product.
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Equation 8.43 can be separated into two independent equations:

[(∂/∂t) − σk(∂/∂xk)] · (σlψ
l) = −4πρ. (8.44)

[(∂/∂t) − σk(∂/∂xk)] ∧ σlψ̃
l = −(4π/c) j. (8.45)

This spinor form of Maxwell equations in geometric algebra corresponds
to the quaternion form that was originally considered by Maxwell [6]. In fact,
Maxwell obtained spinor equations by using Hamilton’s quaternions.

8.4 Maxwell Equations in Vector Algebra from the
Quaternion (Spinor) Formalism

We consider the spinor (quaternion) form of Maxwell Equation 8.44 and
Equation 8.45 of the previous section (with units adopted such that c = G
= h̄ = 1):

[(∂/∂t) − σk(∂/∂xk)] · (E + iB) = −4πρ (8.46)

and

[(∂/∂t) − σk(∂/∂xk)] ∧ (E − iB) = −4π j, (8.47)

where

E + iB = (σlψ
l) = ψ (8.48)

E − iB = (σlψ̃
l) = ψ̃. (8.49)

Equation 8.46 gives

−σk(∂/∂xk) · E − σk(∂/∂xk) · iB = −4πρ ,

that is,

divE + idivB = 4πρ , (8.50)

from which we get

divE = 4πρ (M 4)

divB = 0 (M 2)

Next, Equation 8.47 gives

(∂E/∂t) − i(∂B/∂t) − σk(∂/∂xk) ∧ E + iσk(∂/∂xk) ∧ B = −4π j

or

(∂E/∂t) − i(∂B/∂t) − iσk(∂/∂xk) × E + i iσk(∂/∂xk) × B = −4π j

(using the formula a ∧ b = ia × b)
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or

(∂E/∂t) − i(∂B/∂t) − iσk(rotE)k − σk(rotB)k = −4π j

or

(∂E/∂t) − i(∂B/∂t) − irotE − rotB = −4π j.

Finally, changing signs on both sides, we get

(rotB − ∂E/∂t) + i(rotE + ∂B/∂t) = 4π j,

from which we get

rotB − (∂E/∂t) = 4π j (M 3)

rotE + (∂B/∂t) = 0 (M 1)

Thus, we obtain the standard form of Maxwell equations describing electro-
magnetic field in the usual vector algebra

rotE + (∂B/∂t) = 0 (M 1)

divB = 0 (M 2)

rotB − (∂E/∂t) = 4π j (M 3)

divE = 4πρ (M 4)

The subtlety of the spinor (quaternion) form for developing electro-
dynamics with integral spin is lost in the above formulation in vector algebra.

8.5 Majorana–Weyl Equations from the Quaternion (Spinor)
Formalism of Maxwell Equations

In 1928, H. Weyl [7] represented the Dirac equation by a pair of equations

[(∂/∂t) + σ̄ (∂/∂ x̄)]ψR + imψL = 0 (8.51a)

[(∂/∂t) − σ̄ (∂/∂ x̄)]ψL + imψR = 0 (8.51b)

where σk(k = 1, 2, 3) are the Pauli matrices, and �R, ψLare 2-component
spinors. In the limit m �⇒ 0, Equation (8.51a, b) transform into the Weyl
equations [8]

[(∂/∂t) + σ̄ (∂/∂ x̄)]ψR = 0 (8.52a)

[(∂/∂t) − σ̄ (∂/∂ x̄)]ψL = 0. (8.52b)

These equations are similar in nature to the Maxwell equations in quaternion
form.
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Ettore Majorana first noted the quantum mechanical nature of the
Maxwell equations. This is evident from his unpublished manuscript [9, 10]
(kept in Domus Galilaeana in Pisa), in which he clarified the reason for the
similarity in nature of the Maxwell and Weyl equations by introducing the
transformation law for the vectors ψ̄ R and ψ̄ L (one should not get confused
with spinors ψR, ψL and vectors ψ̄ R, ψ̄ L used by Majorana; vectors are made
distinct from spinors by putting a “bar” overhead) under a rotation of in-
finitesimal angle ϕ̄

ψ̄
′
R, L = ψ̄ R, L − [ϕ̄, ψ̄ R, L ]. (8.53)

Dropping the labels R and L , we can write this as

ψ
′
k = ψk − εkil ϕiψl

= ψk + εikl ϕiψl , (8.54)

where εikl is the alternating tensor with ε123 = 1. Equation 8.54 can be put in
the form

ψ
′
k = ψk + i (Si )kl ϕiψl (8.55)

by setting

(Si )kl = −iεikl . (8.56)

The quantities (Si )kl , defined by (8.56), are spin angular momentum
operators. By using them, one can represent Maxwell equations as given by
Majorana:

[(∂/∂t) + S̄(∂/∂ x̄)]ψR = 0, div ψ̄ R = 0, (8.57a)

[(∂/∂t) − S̄(∂/∂ x̄)]ψL = 0. div ψ̄ L = 0. (8.57b)

These are of the same form as the Weyl equations supplemented by the equa-
tions div ψ̄ R = div ψ̄ L = 0.

Now, we derive the spinor form of Maxwell equations in geometric algebra
that corresponds to the Weyl form of Maxwell equations. For this purpose we
consider a rigid body rotating about a reference point O with the paths of all
points of it parallel to some plane. We can represent this plane by a bivector
of unit modulus ‘in’, where n is the unit vector that specifies the rotation
axis ON (see Figure 5.2). If a vector a in the Euclidean space E3 is rotated
through an infinitesimal angle ϑ about the n-direction to the vector a ′, then
we have

a ′ = Ra R̃, (8.58)

where R is a spinor given by (see Equation 5.60 and Equation 5.61)

R = exp(inϑ/2). (8.59)
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For infinitesimal rotation, retaining terms up to the first order in ϑ , we have
from Equation 8.58 and Equation 8.59 (see Equation 5.63)

a ′ = Ra R̃ = a + i(nϑ ∧ a ) (8.60)

that is,

a ′ = a − nϑ × a, (8.61)

that is,

a
′
k = ak − εkilϑi al , (8.62)

where εkil is the alternating tensor with ε123 = 1, and ϑi are the covariant
components of the vector nϑ (n is the unit vector).

Now, we set

(Si )kl = −iεikl = iεkil, (8.63)

that is,

i(Si )kl = −εkil. (8.64)

By virtue of (8.64) we can write (8.62) as

a
′
k = ak + i(Si )klϑi al . (8.65)

We note that the above transformation law is identical with the transformation
law (8.55) for the vector ψ̄ R and ψ̄ L under rotation of an infinitesimal angle ϕ̄.
So, (Si )kl defined by (8.63) are interpreted as spin angular momentum
operators in this case.

In Section 8.3 we noted that in vacuum the spinor form of Maxwell equa-
tions are (see Equation 8.44 and Equation 8.45)

[(∂/∂t) − σk(∂/∂xk)] · ψ = 0 (8.66a)

[(∂/∂t) − σk(∂/∂xk)] ∧ ψ̃ = 0 (8.66b)

where

ψ = σlψ
l = E + iH (8.67a)

ψ̃ = σlψ̃
l = E − iH (8.67b)

By using the operators (Si )kl we can write Equation (8.66a, b) in the form

[(∂/∂t) − (Si )kl(∂/∂xk)] · ψ = 0 (8.68a)

[(∂/∂t) − (Si )kl(∂/∂xk)] ∧ ψ̃ = 0 (8.68b)

This spinor form of Maxwell equations in geometric algebra corresponds
to the Majorana–Weyl form of Maxwell equations. We note in passing that
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unlike Equations 8.57a, b, the equations just assumed at are not to be sup-
plemented by the divergence relations separately, as they are contained in
Equation 8.68a.

Note that if we compare the Weyl Equations 8.52a, b and Maxwell equa-
tions as given by Majorana (8.57a, b) or (8.68a, b), they are found to be similar
in nature. Now, Weyl equations refer to the particle of half spin, whereas
Maxwell equations refer to particle of integral spin. This seems to give some
hint of the problem of supersymmetry.

Appendix A: Complex Numbers in Electrodynamics

Electromagnetic Field: Transition from STA to Pauli Algebra

As the relation

σk = γkγ0, (k = 1, 2, 3) (A.1)

satisfies

(1/2)(σiσ j + σ jσi ) = −(1/2)(γiγ j + γ jγi ) = δi j , (A.2)

the three space-time bivectors {σk} generate the Pauli algebra spanned by the
eight independent basis elements [5, 11, 12, 13]

1, {σk}, {iσk}, i, (A.3)

which is an even subalgebra of STA. Because of the relation (A.1), the Pauli
algebra (A.3) is identified with the algebra for the three-dimensional
Euclidean space relative to the timelike vector γ0. It is evident from the above
fact that the separation of the six space-time bivector {σk , iσk} into relative vec-
tors {σk} and relative bivectors {iσk} of three-dimensional Euclidean space is a
frame-dependent operation. The operation enables one to translate relativistic
quantities into observables in a given three-dimensional frame. In what
follows, we find the separation of the space-time bivector F representing
the electromagnetic field into relative vectors and relative bivectors.

The electromagnetic field in space-time is given by the bivector

F = (1/2)F µνγµ ∧ γν , F µν = −F νµ. (A.4)

Expanding F in (A.4), we may write

F = [
F 10γ1γ0 + F 20γ2γ0 + F 30γ3γ0

] + [
F 32γ3γ2 + F 13γ1γ3 + F 21γ2γ1

]
(A.5)

The γ0 vector maps F into F γ0, which can be separated into antisymmetric
and symmetric parts as

F γ0 = F · γ0 + F ∧ γ0, (A.6)
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where

F · γ0 = (1/2)(F γ0 − γ0 F ) (A.7a)

F ∧ γ0 = (1/2)(F γ0 + γ0 F ) (A.7b)

In view of (A.5), one may express (A.7a) and (A.7b) as

F · γ0 = (1/2)(F γ0 − γ0 F ) = F 10γ1 + F 20γ2 + F 30γ3, (A.8a)

F ∧ γ0 = (1/2)(F γ0 + γ0 F ) = i
[
F 32γ1 + F 13γ2 + F 21γ3

]
. (A.8b)

Now, the relative vector (electric) and relative bivector (magnetic field)
are given, respectively, by

(1/2)(F − γ0 F γ0) = Ekσk = E, (A.9a)

where

Ek = F k0 (A.9b)

and

(1/2)(F + γ0 F γ0) = iBkσk = iB, (A.10a)

where

F i j = −εijk Bk (summation over k), (A.10b)

εijk being the alternating tensor with ε123 = 1.
Thus, the separation of the space-time bivector F representing the elec-

tromagnetic field into the γ0-system is given by

F = (F γ0)γ0 = E + iB, (A.11)

where the electric vector E and the magnetic vector B are both spatial vectors
as given, respectively, by (A.9a) and (A.10a), and iB is a spatial bivector
representing the magnetic field (see Reference [5]).

Of course, one may write the result (A.11) directly from (A.5) without
having the important relations

E = (1/2)(F − γ0 F γ0), (A.12)
iB = (1/2)(F + γ0 F γ0). (A.13)

From the foregoing we have

Eγ0 = −γ0 E, iBγ0 = γ0(iB), (A.14)

i.e., γ0 anticommutes with E but commutes with iB. Also, the space conjuga-
tion of the electric vector E and magnetic bivector iB exhibits that

γ0 Eγ0 = −E, (A.15)
γ0(i B)γ0 = iB, (A.16)
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which show that the electric vector changes sign whereas the magnetic
bivector remains invariant under space conjugation.

Appendix B: Plane-Wave Solutions to Maxwell
Equations — Polarization of e.m. Waves

Compare the geometric products of (E0 + k̂ E0) with exp[−i k̂(ωt − k · x)] and
with exp[i(ωt − k · x)], where the former has only scalar and bivector parts
and the latter, which has only scalar and pseudoscalar parts, may be treated
as “formally complex.”

First, consider the product (E0 + k̂ E0) exp[−i k̂(ωt − k · x)]:

E0 exp[−i k̂(ωt − k · x)] = vector part only.

k̂ E0 exp[−i k̂(ωt − k · x)] = bivector part only.

Summing up together, we have

(E0 + k̂ E0) exp[−i k̂(ωt − k · x)]

= [E0 cos(ωt − k · x) − B0 sin(ωt − k · x)] (vector part) (B.1)

+[iB0 cos(ωt − k · x) + iE0 sin(ωt − k · x)] (bivector part).

Next, consider the product (E0 + k̂ E0) exp[i(ωt − k · x)]:

E0 exp[i(ωt − k · x)] = vector part + bivector part

k̂ E0 exp[i(ωt − k · x)] = vector part + bivector part

Summing up together, we get

(E0 + k̂ E0) exp[i(ωt − k · x)]

= [E0 cos(ωt − k · x) − B0 sin(ωt − k · x)] (vector part) (B.2)

+[iB0 cos(ωt − k · x) + iE0 sin(ωt − k · x)] (bivector part).

Equations B.1 and B.2 show that both the products give the same result. This
is because, in this case, the Maxwell equation in multivector algebra assumes
the form

k̂ F = F, (B.3)

which in turn yields

k̂ E = iB. (B.4)

So, for our consideration, we may take any one of the above products. Thus,
for a simple circularly polarized wave F+(x, t) with constant frequency ω > 0
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and propagating vector k, we can write

F+(x, t) = f exp[i(ωt − k · x)]
= f exp[iω(t − k · x/ω)]
= f exp[iω(t − k̂ · x/c)] {being k = k̂|k| = k̂(ω/c)}
= (1 + k̂)E0 exp(iωs)
= (1 + k̂)E0z(s), (B.5)

where

f = (1 + k̂)E0 (B.5a)

s = t − k̂ · x/c (B.5b)

z(s) = exp(iωs). (B.5c)

Similarly, by changing the orientation of the “generator” in (B.5), we can
express the left circularly polarized wave F−(x, t) as

F−(x, t) = (1 + k̂)E0z(s) (B.6)

where

z(s) = exp(−iωs) (B.6a)

In both the solutions (B.5) and (B.6), the frequency is considered to be positive.
In the general case, we consider the frequency to take both positive and neg-
ative values by associating its sign with the polarization of the wave, F+(x, t)
and F−(x, t), being, respectively, positive and negative frequency solutions.

For a wave packet propagating in the direction of k̂, one may write F (x, t)
in the general form

F (x, t) = f z(s) (B.7)

where

f = (1 + k̂)e (B.8)

s = t − k̂ · x/c, (B.9)

e being a constant unit vector orthogonal to k̂. Function z(s) is the Fourier
transform of the function α(ω) that satisfies the Dirichlet’s conditions, i.e.,

z(s) =
∫ ∞

−∞
α(ω)eiωsdω, (B.10)

where exp(iωs) is the kernel of the transform. Equation B.10 can be expressed
as

z(s) =
∫ ∞

−∞
[α+(ω)eiωs + α−(ω)e−iωs]dω (B.11)



P1: Binaya Dash

September 21, 2006 16:59 C7729 C7729˙C008

Electromagnetic Field in Space and Time 107

where

α±(ω) = α(±ω). (B.12)

The functions α+(ω) and α−(ω) are the components of the wave packet
and describe, respectively, the right and left circular polarization. The overall
phase of α(ω) depends on the selection of the constant unit vector e in the
plane orthogonal to the propagating vector k. Equation B.7 and Equation B.11
exhibit that the “formally complex” function z(s) describes the properties of
the wave packet.

From Equation B.8 we have

| f |2 = 2. (B.13)

So, the energy-density of the field is given by

|z|2 = (1/2)|F |2 = (1/2)(E2 + B2). (B.14)
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9
General Observations and Generators
of Rotations (Neutron Interferometer
Experiment)

9.1 Review of Space-Time Algebra (STA)

We give a brief resumé of STA as developed by Hestenes [1, 2, 3]. STA is
the Clifford algebra of real four-dimensional space-time with a thoroughgo-
ing geometric interpretation. It is built out of objects with direct geometric
interpretations; the properties of these objects are specified by introducing
algebraic operations that directly determine their interrelations. Furthermore,
STA derives its potency from the fact that both the elements and the operations
of the algebra are endowed with direct geometric intepretation.

The geometric product of a generic proper vector a with itself is a scalar
quantity describing the metric of space-time:

a2 > 0 iff a is a timelike vector, (9.1a)

a2 = 0 iff a is a lightlike vector, (9.1b)

a2 < 0 iff a is a space-like vector. (9.1c)

The geometric product ab of two proper vectors a and b can be understood
geometrically by separating it into symmetric and antisymmetric parts:

ab = a · b + a ∧ b, (9.2a)

where

a · b ≡ (1/2)(ab + ba ) = b · a, (9.2b)

a ∧ b ≡ (1/2)(ab − ba ) = −b ∧ a . (9.2c)

Equation 9.1 tells us that a · b is a scalar quantity, the usual inner product of
space-time vectors. Here ‘scalar’ means ‘real number’.

The quantity a ∧b, called the “outer product” of a, b, is a (proper) bivector
or 2-vector. The geometric product obeys the associative rule.

109
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The inner and outer product of a vector a and a bivector B are defined
respectively, by

a · B ≡ (1/2)(a B − Ba ) = −B · a, (9.3a)

a ∧ B ≡ (1/2)(a B + Ba ) = B ∧ a . (9.3b)

Then, we have

aB = a · B + a ∧ B. (9.3c)

Equation (9.3a) and Equation (9.2b, c) give

a · (b ∧ c) = a · bc − a · cb = −(b ∧ c) · a . (9.4)

9.1.1 Note

1. a · B is a vector.
2. a ∧ B is a trivector or 3-vector.
3. Every trivector in STA can be factored into an outer product of three

vectors.

The inner and outer product of a vector a and a trivector T are defined,
respectively, by

a · T ≡ (1/2)(a T + Ta ) = T · a, (9.5a)

and

a ∧ T ≡ (1/2)(a T − Ta ) = −T ∧ a . (9.5b)

Thus

a T = a · T + a ∧ T. (9.5c)

Equation (9.5a), Equation (9.3c) and Equation 9.2 give

a · (b ∧ B) = a · (b B − b · B) = a · b B − a · (b · B)

= a · b B − a ∧ b · B, (9.6)

where a, b are vectors and B is a bivector. a ∧ T is a 4-vector or pseudoscalar.
Unit pseudoscalar, denoted by i , assigns an orientation to space-time. Every
pseudoscalar is a scalar multiple of i . It can be shown that

i2 = −1, (9.7a)

ai = −ia . (9.7b)

From the above it follows that

a ∧ i ≡ (1/2)(ai + ia ) = 0, (9.8a)

a · i ≡ (1/2)(ai − ia ) = ai. (9.8b)



P1: Binaya Dash

October 24, 2006 14:19 C7729 C7729˙C009

General Observations and Generators of Rotations 111

ai is a trivector, called the dual of a . Every trivector T is the dual of some
vector t:

T = ti. (9.9a)

Multiplying on the right by i and using (9.7a), we get

Ti = −t. (9.9b)

So, the dual of a trivector T is a unique vector. This establishes an isomorphism
of the linear space of all trivectors to the space of all vectors. So, trivectors are
often called pseudovectors.

9.1.2 Multivectors

A generic element of STA is called a (proper) multivector. Every proper mul-
tivector M is a sum of Clifford objects of arbitrary grade (grade zero = scalar,
grade 1 = vector, grade 2 = bivector or 2-vector, grade 3 = trivector or
3-vector, grade 4 = 4-vector or pseudoscalar). Thus, M can be expressed as

M =< M >0 + < M >1 + < M >2 + < M >3 + < M >4, (9.10)

where < M >k is a Clifford object of grade k or denotes the k-vector part
of M.

A multivector M in STA is said to be even if

< M >1 = < M >3 = 0.

The even multivectors constitute a subalgebra of the full STA.

9.1.3 Reversion

The reverse of M, denoted by M̃, is defined by

M̃ = < M >0 + < M >1 − < M >2 − < M >3 + < M >4 (9.11)

The reverse of a product equals the product of the reverse:

( AB)∼ = B̃ Ã (9.12)

9.1.4 Lorentz Rotation R

Any Lorentz rotation R, which maps a generic proper vector a into the vector
a ′, can be written in the canonical form

a 
⇒ a
′ = R(a ) = RaR̃. (9.13a)

Here, R is an even multivector, unique except for sign, with the property

RR̃ = 1. (9.13b)

R is called a spinor.
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9.1.5 Two Special Classes of Lorentz Rotations: Boosts
and Spatial Rotations

A Lorentz rotation L(a ) = La L̃ , which takes a unit timelike vector u into the
vector v, is said to be a boost of u into v if it leaves the vectors orthogonal to
the v ∧ u-plane invariant.

Any vector a can be expressed as the sum

a = a‖ + a⊥ (9.14a)

with the component a‖ in the v ∧ u-plane given by

a‖ = a · (v ∧ u)(v ∧ u)−1, (9.14b)

a⊥ = a ∧ (v ∧ u)(v ∧ u)−1, (9.14c)

A Lorentz rotation U(a ) = UaŨ is said to be spatial rotation if it leaves a
timelike vector u invariant:

UuŨ = u (9.15a)

or equivalently,

UU† = 1, U† ≡ uŨu. (9.15b)

The set of all Lorentz rotations satisfying (9.15) is the group of spatial
rotations in the spacelike hypersurface with normal u, called the little group
of u.

Any Lorentz rotation can be uniquely expressed as a spatial rotation fol-
lowed by a boost of a given timelike vector u:

R = LU. (9.16)

9.1.6 Magnitude

The magnitude (or modulus) of a multivector M is determined by

|M| = [< MM̃ >o]1/2 (9.17)

The inverse M−1 of a multivector M is defined by

MM−1 = 1 (9.18)

If MM̃ = |M|2, the inverse of M exists and can be expressed as

M−1 = M̃/|M|2 (9.19)

It follows that every vector has an inverse, so it is possible to divide by vectors.
The vector division is made possible by (9.2a, b, c). So, the STA is an associative
division algebra.
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9.1.7 The Algebra of a Euclidean Plane

The Clifford algebra for two-dimensional Euclidean space is generated by
two orthonormal vectors {σk}, (k = 1, 2), and is spanned by

1, {σk}, i, (9.20)

where i is the unit pseudoscalar (highest grade multivector) for the space.
The basic properties of i are

i2 = −1 
⇒ i = √−1, (9.21a)

ĩ = −i, (9.21b)

i M = Mi (9.21c)

for every multivector M in the space, and

a ∧ b = λi (9.21d)

for any vector in the Euclidean plane. The scalar λ is positive if and only if
the vectors make up a right-handed set in the order given.

Besides the property (9.21a) ascribed to the traditional unit imaginary, our
i is a bivector. So, it has geometric and algebraic properties:

1. It is the unit of directed area.
2. It is also the generator of rotations in the plane.

In view of (9.20), any multivector M can be expressed as

M = a0 + a1σ1 + a2σ2 + a3i (9.22)

with scalar coefficients a0, a1, a2, a3. The algebra (9.20) is the geometric algebra
of the i-plane and is denoted by G2(i). Obviously, the G2 algebra is a four-
dimensional linear space. We can write (9.22) as

M =< M >+ + < M >−, (9.23)

where the even multivector part < M >+ represents the plane spinor

< M >+ = a0 + ia3 (9.24)

and the odd multivector part < M >− represents the vector in the i-plane

< M >− = a1σ1 + a2σ2. (9.25)

So, G2 can be expressed as the sum of two linear spaces

G2 = G+
2 + G−

2 , (9.26)

where G+
2 is the two-dimensional linear space of spinors, and G−

2 is the two-
dimensional vector space.. The algebra (9.24) is an even subalgebra G+

2 of
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G2 or spinor algebra. Likewise, the algebra (9.25) is an odd subalgebra G−
2

of G2 or vector algebra. Every spinor in G+
2 represents a rotation–dilation in

two-dimensional plane.

9.1.8 The Algebra of Euclidean 3-Space

The Clifford algebra for three-dimensional Euclidean space is generated by
three orthonormal vectors {σk} and is spanned by

1, {σk}, {iσk}, i, (9.27)

where i = σ1σ2σ3 is the unit pseudoscalar (highest grade multivector) for the
space. The basic properties of i are

i2 = −1, (9.28a)

ĩ = −i, (9.28b)

iM = Mi (9.28c)

for every multivector M in the space, and

a ∧ b ∧ c = λi (9.28d)

for every vector in the Euclidean 3-space. The scalar λ is positive if and only
if the vectors make up a right-handed set in the order given. The unit i is the
dextral unit pseudoscalar (trivector) giving the unit-oriented cube.

In view of (9.27), any multivector M of the space can be expressed as

M =< M >0 + < M >1 + < M >2 + < M >3 (9.29)

with

< M >0 = α, the scalar part of M,
< M >1 = a, the vector part of M,
< M >2 = ib, the bivector part of M expressed

as a dual of a vector, and
< M >3 = iβ, the pseudoscalar part of M.

So, (9.29) can be put in the form

M = α + a + ib + iβ (9.30)

with scalar coefficient α and β. The algebra (9.27) is the geometric alge-
bra of the i-space and is denoted by G3. It is also called the Pauli algebra,
but in geometric algebra the three Pauli σk are no longer viewed as three
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matrix-valued components∗ of a single isospace vector but as three
independent-basis vectors for real space.

Obviously, the G3 algebra or the Pauli algebra is an eight-dimensional
linear space. We can write (9.30) as

M =< M >+ + < M >−, (9.31)

where the even multivector part < M >+ represents the spinor space

< M >+= α + ib, (9.32)

and the odd multivector part < M >− is given by

< M >−= a + iβ (9.33)

So, G3 can be expressed as the sum of an even part G+
3 and an odd part G−

3 :

G3 = G+
3 + G−

3 . (9.34)

G+
3 is closed under multiplication, so it is a subalgebra of G3, but G−

3 is not.
G+

3 may be referred to as spinor algebra or even the subalgebra of G3(Pauli) al-
gebra. Every spinor in G+

3 represents a rotation–dilation in three-dimensional
space.
We have three linearly independent bivectors given by

i1 = σ2σ3 = iσ1, i2 = σ3σ1 = iσ2, i3 = σ1σ2 = iσ3. (9.35)

So, any bivector B in G3 can be expressed as

B = R1i1 + R2i2 + R3i3 (9.36)

with scalar coefficient Rk . Thus, the set of all bivectors in G3 is a three-
dimensional linear space with basis {i1, i2, i3}. By using (9.35), the
equation 9.36 can be expressed as

B = i(R1σ1 + R2σ2 + R3σ3) = ib, (9.37)

where b is a vector defined by

b = R1σ1 + R2σ2 + R3σ3. (9.38)

The bivector B is called the dual of the vector b. By using (9.36) and (9.37),
one can express (9.32) as

< M >+ = α + R1i1 + R2i2 + R3i3, (9.39)

∗ σ̂1 =
∣∣∣0 1
1 0

∣∣∣ , σ̂2 =
∣∣∣0 − j

j 0

∣∣∣ , σ̂3 =
∣∣∣1 0
0 −1

∣∣∣, where j is the unit imaginary
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This shows that {1, i1, i2, i3} make up a basis forG+
3 . Thus,G+

3 is a linear space of
four dimensions. As the elements of G+

3 were called quaternions by Hamilton,
G+

3 may also be referred to as quaternion algebra.

9.1.9 The Algebra of Space-Time

The Clifford algebra of real four-dimesional space-time is generated by four
orthonormal vectors {γµ} and is spanned by

1, {γµ}, {σk , iσk}, {iγµ}, i
scalar vectors bivectors pseudovectors pseudoscalar (9.40)

(µ = 0, 1, 2, 3; k = 1, 2, 3)

where i is the unit pseudoscalar (4-vector) for the space-time

i ≡ γ0γ1γ2γ3 = σ1σ2σ3 = γ5, (9.41a)

σk ≡ γkγ0. (9.41b)

The even elements of the basis (9.40) for the space-time

1, {σk , iσk}, i (9.42)

coincides with Pauli algebra because of the relation (9.41b). Thus, vectors in
Pauli algebra become bivectors as viewed from (real) Dirac algebra. In STA
the four Dirac γµ are no longer viewed as four matrix-valued components of
a single isospace vector but as four independent basis vectors for real space-
time. The pseudoscalar i anticommutes with the space-time vectors γµ.

In STA the reversion changes the sign of bivectors, leaving scalars and
vectors unchanged. So, the reversion of an even multivector can be obtained
by changing the sign of the bivectors.

The algebra (9.40) is the STA or real Dirac algebra, having 16 components,
and is a 16-dimensional linear space. The algebra (9.42) is an even subalgebra
of STA or real Dirac algebra with respect to the selection of the timelike vector
γ0, and is an eight-dimensional linear space of spinors.

9.2 The Dirac Equation without Complex Numbers

A Dirac spinor � is represented by

� =





ψ1
ψ2
ψ3
ψ4



 =





α1 + jβ1
α2 + jβ2
α3 + jβ3
α4 + jβ4



 , (9.43)

where α’s and β’s are real numbers, and j = √−1 is the unit imaginary of
the matrix algebra. The representation (9.43) in terms of the components
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ψ1, ψ2, ψ3, ψ4 presumes a specific representation of the Dirac matrices:

γ̂0 =
[

I 0
0 −I

]
, γ̂0 =

[
0 −σ̂k

σ̂k 0

]
, (9.44a)

where I is a 2×2 unit matrix and σ̂k are the Pauli matrices, which are traceless
Hermitian matrices satisfying

σ̂1σ̂2σ̂3 = j I. (9.44b)

We introduce in the spinor space a basis [4]:

u1 =





1
0
0
0



 , u2 =





0
1
0
0



 , u3 =





0
0
1
0



 , u4 =





0
0
0
1



 , (9.45)

such that

γ0u1 = u1, (9.46a)

iσ3u1 = γ2γ1u1 = iu1, (9.46b)

u2 = −iσ2u1, u3 = σ3u1, u4 = σ1u1 (9.46c)

Supposing (9.43) refers to this representation, one can write any Dirac spinor
� in the form

� = ψu1 (9.47)

where

ψ = α1 + (α4γ1γ0 + β4γ2γ0 + α3γ3γ0 + β2γ3γ2 + α2γ3γ1 + β1γ2γ1)
(scalar) (bivectors)

+γ5β3
(pseudoscalar).

(9.48)

The important thing is that the unit imaginary j = √−1 has been eliminated,
and the ψ given by (9.48) is an even multivector that can be expressed as an
element of STA by interpreting the γ ’s as vectors.

Dirac’s equation for an electron with charge e and mass m in an external
electromagnetic field is expressed by

( jh̄ − (e/c) A)� = mc�, (9.49)

where

≡ γ µ∂µ, ∂µ ≡ ∂/∂xµ, (9.50a)

and

A = Aµγ µ = Aµγµ. (9.50b)
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Replacing j = √−1 by the bivector γ2γ1 and using (9.47), we can write (9.49)
in the form

(h̄ ψγ2γ1 − (e/c) Aψ)γ0u1 = mcψu1, (9.51)

with the help of (9.46a).
The coefficient of u1 in (9.47) is an even multivector. (9.46c) implies that

even a multivector operating on u1 generates a complete basis for Dirac
spinors; so, the coefficients of u1 in (9.51) can be equated, although u1 does
not have an inverse. Therefore, Equation 9.51 yields

(h̄ ψγ2γ1 − (e/c) Aψ)γ0 = mcψ (9.52a)

or, equivalently,

h̄ ψγ2γ1 − (e/c) Aψ = mcψγ0. (9.52b)

This is the Dirac equation in STA without unit imaginary j = √−1. By
using Equation 9.47, a solution of one equation can be expressed as a solution
of the other.

9.3 Observables and the Wave Function

In order to determine the geometrical significance of the wave function � in
Dirac’s theory, it is required that certain bilinear functions of � be tensors.
The interpretation of these tensors as observables determines the physical
significance of �.

As ĩ = i, ψ̃ can be obtained from ψ by changing the sign of its bivector part.
As ψ is an even multivector, so is ψψ̃ . However, ψψ̃ is invariant under re-
version. So, its bivector part must vanish. Furthermore, because i2 = −1, ψψ̃

can be put in the “polar form”

ψψ̃ = ρ exp(iβ) = ρ cos β + iρ sin β, (9.53)

where ρ and β are scalars.
Also we know that

RR̃ = 1. (9.54a)

Thus, one can define R by the equation

R = [ρ exp(iβ)]−1/2ψ (9.54b)

or one may write

ψ = [ρ exp(iβ)]1/2 R. (9.54c)
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The quantity R in (9.54) determines a proper Lorentz transformation of a
frame {γµ} into a frame {eµ} according to the equation

eµ = Rγµ R̃. (9.55)

R = R(x) is a differentiable function of the space-time point x. Thus,
Equation 9.55 specifies a differentiable set of four vector fields with values
eµ = eµ(x) at each point x determined by a proper Lorentz transformation of a
fixed frame {γµ}. This completely describes the geometrical significance of R.
By virtue of Equation 9.55, the spinor R can be regarded as a representation
of a Lorentz transformation.

Equation 9.54c and Equation 9.55 give

ψγµψ̃ = ρeµ. (9.56)

Treating (9.56) as a generalization of (9.55), one may interpret the multi-
plication of eµ by ρ as a dilation.

The spinor ψ represents a Lorentz transformation because, by Equation
9.56 it determines a rotation–dilation of the frame {γµ} into the frame {ρeµ}.

It is to be noted that ψ does not operate in some abstract spin-space
detached from space-time; it transforms space-time vectors into space-time
vectors.

The physical interpretations of ρ and R are fixed by specifying the inter-
pretations for the eµ.

The quantity [4]

ρv ≡ ρe0 = ψγ0ψ̃ (9.57a)

may be identified with the probability current of the Dirac theory. So, the
timelike vector

v ≡ e0 = Rγ0 R̃ (9.57b)

can be interpreted as the (local) “world velocity” of a Dirac particle, whereas
ρ is the probability density in the local rest frame determined by v.

The tensor components of the probability current with respect to the frame
{γµ} are

ρvµ = ρv · γ µ = (ψγ0ψ̃γ µ)0. (9.57c)

The conservation of probability is given by

· (ρv) = ∂µ(ρvµ) = 0. (9.58)

The spacelike vector

s ≡ (h̄/2)e3 = (h̄/2)Rγ3 R̃ (9.59a)
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can be identified as the (local) spin vector of the Dirac theory. The correspond-
ing “current”

ρs ≡ ρ(h̄/2)e3 = (h̄/2)ψγ3ψ̃ (9.59b)

has components

ρsµ = ρs · γµ = (h̄/2)(ψγ3ψ̃γµ)0. (9.59c)

The “proper spin density” of the electron is ρS, where S is the (local) spin
bivector:

S ≡ (h̄/2)e2e1 = (h̄/2)Rγ2γ1 R̃ = (h̄/2)Riσ3 R̃ = isv. (9.60a)

The tensor components of S are given by

Sαβ = (Sγ βγ α)0 = is ∧ v ∧ γ β ∧ γ α = sµvνε
µναβ , (9.60b)

where the alternating tensor εµναβ is defined by

εµναβ = −iγ µ ∧ γ ν ∧ γ α ∧ γ β = −(γ5γ
µγ νγ αγ β)0. (9.60c)

So, we we may write

S = (1/2)Sαβγαγβ = (1/2)Sαβσαβ , (9.60d)

where σαβ are the generators of rotations:

σαβ = (1/2)(γαγβ − γβγα). (9.60e)

9.4 Generators of Rotations in Space-Time: Intrinsic Spin

Equation 9.53, Equation 9.54a and Equation 9.60a yield

Sψ = (h̄/2)ψγ2γ1 (9.61)

Interpreting this as a matrix equation, we can write, by using (9.46a, b) [4, 5]:

Sψu1 = i(h̄/2)ψu1, (9.62)

or in terms of Dirac spinor � (by relation (9.47)),

S� = i(h̄/2)�. (9.63)

This implies that i(h̄/2) is an eigenvalue of the bivector S describing
the spin. So, i(h̄/2) is a representation of the spin bivector S by one of its
eigenvalues.

In the two-dimensional i-plane of vectors, the unit pseudoscalar i = √−1
is a unit bivector. It is a generator of rotations in the plane as well as the
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‘intrinsic’ rotation represented by σ1 ∧ σ2 in the spinor i-plane. The spinor
plane is not detached from the real vector plane as depicted in Figure 3.1 and
Figure 3.2. There is a one-to-one correspondence between them. This feature
gives geometric algebra a great advantage over matrix algebra, in which
abstract spin space is detached from space-time.

If we extend from two-dimensional space to four-dimensional space-time,
the spin bivectors S is defined by

S = (h̄/2)Rγ2γ1 R̃, i(h̄/2) being an eigenvalue of S.

We note the following points:

1. The algebra of the i-plane is a subalgebra of the algebra of
space-time.

2. There is an automorphism of the linear space of all bivectors to itself.

Thus, in conformity with the description of bivectors in two-dimensional
space, one may state that γα ∧γβ are generators of rotations in space-time. The√−1 of the Dirac theory can be interpreted geometrically as the generators of
rotations in the e2 ∧ e1-plane with (h̄/2) γ2 ∧ γ1 representing the intrinsic spin
in real Dirac algebra in conventionally used labeling.

9.4.1 General Observations

Interpreting the γµ in the Riemann–Cartan space-time as vectors instead of
matrices, the geometric product γµγν can be understood geometrically by
separating it into symmetric and antisymmetric parts [2]

γµγν = γµ · γν + γµ ∧ γν , (9.64a)

where

γµ · γν = (1/2)(γµγν + γνγµ) ≡ gµν , (9.64b)

γµ ∧ γν = (1/2)(γµγν − γνγµ) ≡ σµν. (9.64c)

It has been pointed out [6] that in the gauge theory of gravity as well as
in supergravity, if supersymmetric action contains the graviton (ek

µ) and the
gravitino (ψα

µ), the affine connection is nonsymmetric because of the presence
of a fermion field that is a source of torsion according to the Einstein–Cartan
theory.

The equation

γµγν = gµν + σµν (9.65)

suggests that supersymmetry is inherited from it because of the simultaneous
existence of the commutator (fermionic field) and anticommutator (bosonic
field): gµν is connected with bosons and σµν with fermions.
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Next, the covariant differential of a spinor field is (see, for instance, [6])

Dψ = dxk∂kψ + (1/2)(ωikγ
[iγ k]ψ) (9.66)

yields dilation and rotation simultaneously, which, in turn, indicate the pres-
ence of both curvature and torsion.

Furthermore, in References [7–10] it has been shown that curvature R and
torsion Q may play the role of conjugate variables of the geometry, giving the
commutation relation

[Q, R] = (h̄G/c3)−3/2 (9.67)

9.5 Fiber Bundles and Quantum Theory vis-à-vis
the Geometric Algebra Approach

According to quantum theory, a fermion does not return to its initial state
by a rotation of 2π , but it takes a rotation of 4π to restore its state of initial
condition. First, we schematically give the well-known fiber bundle picture
of the neutron interferometer experiments [11,12] in quantum theory. This,
indeed, throws light on the role of gravitation in quantum mechanics [13].

The way in which a phase difference is induced between two particle rays
depends, in the first case, on a magnetic field [11] and, in the second case, on
the terrestrial gravitational field [13]; the results are similar in both cases in
the sense that one observes the usual peaks of interference pattern. In order to
see how the magnetic field can change the phase of a spinor, one has to observe
the precession of the spin vector. This, in fact, allows a novel application of
geometric algebra [14].

In this context we discuss multivector algebra and show how the gener-
alized phase shifts in the abstract neutron state space of the quantum theory
can be associated with the rotation angle in the real phase space by means of
multivector calculus in real space-time [15].

9.6 Fiber Bundle Picture of the Neutron
Interferometer Experiment

Neutron interferometer experiments [11, 12] show what happens when neu-
trons are rotated 360◦ by a magnetic field and demonstrate how a fiber bundle
can arise in quantum theory. In the neutron-rotation experiment, which in fact
concerns the topology of the fiber bundle, the global structure of the fiber bun-
dle is significant. Furthermore, the experiment demonstrates a highly coun-
terintuitive effect whose mathematical counterpart is the one-sidedness of a
Möbius strip.
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FIGURE 9.1a
Classical model of the path of precession of spin vector of a neutron. As a spin measurement
along any given axis gives only the values +h̄/2 or −h̄/2, the classical model cannot consistently
represent the geometry of the precession. (Adapted from H. J. Bernstein and A. V. Phillips, Sci.
Am. 245, 94–109 (1981).)

The spin vector of a neutron in a magnetic field can precess, but the ge-
ometry of the precession cannot be consistently constructed by the classical
model because a spin measurement assumes only the values +h̄/2 (spin-up)
or −h̄/2 (spin-down) along any given axis (Figure 9.1a).

In quantum mechanics, precession is considered to be a manifestation
as a change in the probability of finding a neutron with spin +h̄/2 or with
spin −h̄/2. The two amplitudes that determine the probability can be consid-
ered coordinates in the abstract neutron state space with two perpendicular
axes labeled “up” and “down” (Figure 9.1b). After a precession of 90◦ from
the z-axis, the spin vector points neither up nor down (Figure 9.1a, b). If
one measures the z-axis component of the vector, one finds spin-up half of
the time and spin-down half of the time. The average value of the spin is
zero, in agreement with the classical result. As the probabilities are equal, the
probability amplitudes can be chosen to be equal; the corresponding point
in neutron-state space (an abstract space) is rotated 45◦ from the up-axis. So,
physical precession through any angle ϑ causes a generalized phase shift ϑ/2,
represented as a rotation in the neutron-state space (Figure 9.1b).

Now, we give the fiber bundle model (see, for instance, Reference [14]) of
the phase shift as the generalized phase of the neutron spin state (Figure 9.2).
The fiber bundle model of the phase shift shows the relation between the
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FIGURE 9.1b
Quantum mechanical picture of the neutron interferometer experiment. Two perpendicular axes
labeled “up” (corresponding to the z-axis of the classical model) and “down” are constructed in
the abstract neutron-state space, which is a unit circle. The coordinates in the abstract space can
quite plausibly represent the two amplitudes that determine the probability of finding a neutron
with spin +h̄/2 and −h̄/2. So, the precession of a spin vector of a neutron is manifested as a change
in the probability of finding a neutron with spin-up or spin-down. Physical precession through
any angle ϑ (see Figure 9.1a) can cause a generalized phase shift ϑ/2, which is represented as
a rotation in the neutron-state space. Thus a precession of 90◦ from the z-axis, where the spin
vector points neither up nor down, corresponds to the point in the neutron-state space rotated
through 45◦ from the “up” axis. (Adapted from H. J. Bernstein and A. V. Phillips, Sci. Am. 245,
94–109 (1981).)

angular precession of a neutron and the shift in the generalized phase of
the neutron spin state. Points in the base space of the bundle represent the
orientation of the spin vector of a neutron. Points in the total space repre-
sent the relative phase shifts in the neutron-state space that correspond to a
given orientation. For instance, the projection map of the bundle assigns the
points 45◦ and 225◦ in the total space to the point 90◦ in the base space. This
means that generalized phase angles of 45◦ and 225◦ both correspond to an
orientation of the vector 90◦ from the z-axis. The underlying geometric prin-
ciple for the above correspondence is that the point on the phase circle moves
continuously in such a way that it always remains above the point on the
orientation circle. Thus, the topological structure of the bundle, together with
the above geometric principle, accounts for the sign change of the neutron
state as an effect of a phase reversal, the total space and the base space both
being topologically equivalent to a circle. One complete rotation in the base
circle must shift the generalized phase to the opposite of what it was before.
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FIGURE 9.2
Fiber bundle picture of a neutron spin rotation. The correspondence between the angular preces-
sion of a neutron and the shift in the generalized phase of the neutron spin state is depicted by
the fiber bundle picture of phase shifts. Points in the base space of the bundle represent the orien-
tation of the spin vector of a neutron, whereas those in the total space represent the relative phase
shifts in the neutron-state space that correspond to a given orientation. As the orientation angle ϑ

equals twice the generalized phase angle φ (modulo 360◦), the projection map p of the bundle
assigns the points 45◦ and 225◦ in the total space to the point 90◦ in the base. The total space and
the base space are topologically equivalent to a circle. The projection map corresponds to the
way the edge of a Möbius strip would project onto a circle at the center of the strip. (Adapted
from H. J. Bernstein and A. V. Philips, Sci. Am. 245, 94–109 (1981).)

This is why the projection map corresponds to the way the edge of a Möbius
strip would project onto a circle at the center of the strip.

9.6.1 Multivector Algebra

Now, we will use some aspects of multivector algebra (see Chapter 5) in order
to show its potency in physical applications, and, in particular, through the
definition of the geometric product of vectors in four-dimensional space-time,
which provides a geometrical interpretation of the imaginary numbers and
the reinterpretation of the Dirac equation in real space-time without imaginary
numbers [16].

In this regard, Yu Xin [17] shows that the concept of internal and external
spaces are just two different representations of a single primitive structure —
the spinorial space-time; in other words, the spinor structure represents the in-
ternal abstract space and external space-time, depending on its representation.

In fact, we have seen that in order to take into account both mass and
spin, it seems at first sight that we have to do with two different spaces: a real
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space-time where we describe the curvature, due to the mass, with tensors;
and a complex space-time, where we describe torsion, due to the spin, with
spinors. But this is not completely satisfactory; one would like to describe
these two fundamental physical properties, mass and spin, in a unique man-
ifold (see Reference [17]), the real space-time, and this can be done through
Hestenes algebra [5,18].

In fact, for studying problems, in the early universe we have to deal both
with elementary particle physics using quantum theory and with cosmol-
ogy using general relativity; however, general relativity is developed in real
space-time, whereas quantum theory needs a complex manifold. How can
we conciliate general relativity with quantum theory? This difficulty could
be overcome by describing spinors in real space-time.

For this reason we consider the geometric algebra that, with the multivec-
tor concept and the interpretation of imaginary units as generator of rotations,
places tensors and spinors on the same footing: both are described in a real
space-time [16].

We see that the Hestenes STA [5,18] automatically incorporates the geo-
metric structure of space-time.

This can be done introducing, first of all, the outer product a ∧ b, which
is different from the usual cross product in the sense that it has magnitude
|a ||b| sin ϑ and shares its skew property a ∧ b = −b ∧ a , but is not a scalar or
a vector; it is a directed area, or bivector, oriented in the plane containing a and
b. One can visualize the outer product as the area swept out by displacing a
along b with the orientation given by traversing the so-formed parallelogram
first along the a vector and then along the b vector.

One can generalize this notion to products of objects with higher dimen-
sionality or grade [19] in the sense that if the bivector a ∧ b, which has grade
2, is swept along another vector c of grade 1, one obtains the directed volume
(a ∧ b) ∧ c, which is a trivector of grade 3. Thus, we are led to the notion of a
multivector.

We are now in a position to define the geometric product: it is the sum
of the inner and outer product, that is (dropping the convention of using the
bold-face type for vectors),

ab = a · b + a ∧ b. (9.68)

Now, one can proceed to reformulate Dirac’s theory in terms of space-
time geometric calculus without any complex number. We can write the Dirac
equation as [20, 21, 22]

h̄∇ψγ2γ1 − (e/c) Aψ = mcψγ0 (9.69)

where ∇ is the four-dimensional generalization of the gradient operator,
which, taking into account the metric, is

∇ ≡ γ µ∂µ, ∂µ ≡ ∂/∂xµ, A = Aµγ µ = Aµγµ, (9.70)

and ψ is connected with Dirac column spinor � by � = ψu, u being the unit
column spinor.
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9.6.2 Lorentz Rotations

Now, we proceed to find the Lorentz rotation as a multivector [22]. In the
algebra of Dirac matrices the conditions

(1/2)(γµγν + γνγµ) = gµν I, (9.71)
(1/4)Trγµγν = gµν , (9.72)

where the gµν(µ, ν = 0, 1, 2, 3) is the space-time metric tensor and I is the
unit matrix, do not determine the Dirac matrices uniquely. Any two sets of
Dirac matrices {γµ} and {γ ′

µ} are related by a similarity transformation

γ
′
µ = Rγµ R−1, (9.73)

where R is a nonsingular matrix. This, in fact, gives a change in representation
of the Dirac matrices. In STA the geometrical requirement thatγ ′

µ in (9.73) must
be vectors implies that they can be expressed as

γ ′
µ = a ν

µγν (9.74)

This means that (9.73) must be invariant under reversion

R̃γ ′
µ = γµ R̃, (9.75)

where we define conjugate multivector M̃(reversion of M) of M of the real
Dirac algebra by reversing the order of the product of all vectors of M. As it is
independent of any basis of the algebra, it is an invariant type of conjugation.
Now, from (9.73) and (9.75) we obtain

R̃Rγµ R−1 = γµ R̃. (9.76)

So, one may choose R such that

R̃R = 1 or R−1 = R̃. (9.77)

Then, (9.73) assumes the form

γ ′
µ = a ν

µγν = Rγµ R̃, (9.78)

which represents a Lorentz transformation from a frame {γµ} into a frame {γ ′
µ}.

Furthermore, one can solve Equation 9.78 for R as a function of γµ and γ ′
µ only.

This implies that R is an even multivector (remember that an even multivector
is a spinor in geometric algebra) and that every Lorentz transformation can
be expressed in this form.

Equation 9.78 represents a proper Lorentz transformation (i.e., transfor-
mations continuously connected to the identity) if and only if R is an even
multivector satisfying Equation 9.77 [15]. From this consideration one can
write:

R = exp[−φ/2], (9.79)
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where φ is a bivector. R is referred to as a Lorentz rotation. In fact, R is a real
spinor field in STA.

We can apply the general theory of rotation in three-dimensional space as
seen in the algebra of a plane [15]. The number of the parameters that define a
rotation is equal to the number of the base bivectors, i.e., three. We can write
any bivector of unit modulus as in, where n is the unit vector (n2 = 1) that
specifies the rotation axis. So, φ can be expressed as

φ = in ϑ, (9.80)

where ϑ is the rotation angle around the n-direction. Then, the spinor Rin
(9.79) can be written as

R = exp(−inϑ/2) = cos(ϑ/2) − in sin(ϑ/2), (9.81)

which satisfies the condition (9.77). The action of R on a vector a is written as

b = Ra R̃ (9.82)

This relation allows us to calculate b algebraically through the geometric prod-
uct between a and n. If the rotation is infinitesimal, developing the exponential
up to the first order R = 1 − (inϑ/2), we have, from (9.82),

b = [1 − (in ϑ/2)]a [1 + (in ϑ/2)]
= a − (in ϑ/2)a + a (in ϑ/2) (9.83)

up to the first order. Thus, we have for the variation of a

δa = b − a = [(ain − ina)/2]ϑ = i(a ∧ n)ϑ (9.84)

(remember that (a ∧ n) = (1/2)(an−na), and that in Pauli algebra i commutes
with all vectors indicating its similarity in character with the unit imaginary).
Then δa , the variation of a, is orthogonal to both a and n. As regards the
composition of rotations, we have (rotating the vector b with the spinor R′)

c = R′b R̃′ = (R′ R)a ( R̃R̃′) = (R′ R)a (R′ R)̃ , (9.85)

so that, comparing the two equations, one can see that R′ R is also a rotation
(the transformation from a to c corresponds to the transformation R 
⇒ R′ R);
it represents the law of left composition of rotation group so that R′ operates
on R with a left action without touching a. If with R′ we perform a rotation
of 360◦, b stays invariant but R 
⇒ −R (in fact, R′ = R̃

′ = −1; see (9.81),
and then R′ R = −R, i.e., R 
⇒ −R). Now, either R or −R transforms a to b,
i.e., they represent the same rotation but obviously are two distinct elements
of the algebra. The correspondence between spinors and rotations is 2 to 1.
This is the well-known relation between the matrices of the unitary group
SU(2) and the matrices of the orthogonal group SO(3).

Thus, we note that the well-known change of sign of a fermion spin for a
rotation of 360◦ in quantum theory is due to the fact that R′ acts only on one
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side of the spinor; on the contrary, for a vector, as shown on the foregoing, it
acts on both sides (a 
⇒ R′a R̃′ and then a 
⇒ a ′ for R′ = −1) and exhibits
no change of sign for a rotation of 360◦.

From the foregoing discussion we note that the rotation angle around the
n-direction for the real spinor R in (9.81) is, in fact, the generalized phase φ

of a neutron spin state represented by a point in the total space of the fiber
bundle of a neutron spin rotation (see Figure 9.2 of Section 9.6). For further
elucidation of the above consideration, we pass on to the STA in the next
section (Section 9.7).

9.6.3 Conclusion

One may have a transparent picture of the earlier section if viewed from STA.
As the geometric interpretation of the γµ of the STA is independent of the
notion of Dirac spinor, the γµ assumes a central position in the mathemat-
ical description of all physical systems in space-time, including relativistic
quantum theory.

The future-pointing timelike vector γo characterizes an observer’s rest
frame and maps the space-time bivectors {σk} into the orthonormal basis
vectors in the Pauli algebra. The γ0 vector determines a map of any space-
time vector a = aµγ as

aγ0 = a · γ0 + a ∧ γo (9.86)

Then, a ∧ γo can be decomposed into the {σk}-frame and shown to repre-
sent a spatial vector relative to an observer in the γo-frame. This important
and novel feature embodied by Equation 9.86 demonstrates that the alge-
braic properties of vectors in relative space are completely determined by the
properties of the relativistic STA.

One may note that the unit bivector γ2γ1 plays the role of the unit ima-
ginary

√−1 in the Dirac theory. It is a generator of rotations as well as
the intrinsic spin in the real spin plane represented by γ2γ1 (see References
[21], [22], [23]).

At that proposal we would like to emphasize a more general expression
for the Dirac matrices when viewed through the representation with vectors
in geometric algebra. In fact, considering the geometric product of the γ ′

µs,
we can write [24, 25]

γµγν = γµ · γν + γµ ∧ γν , (9.87)

and then, besides the expressions (9.64b), we have

γµ ∧ γν = (1/2)(γµγν − γνγµ), (9.88)

which represents both the generator of rotations as well as the spin orientation.
We give a very brief sketch in order to illustrate the probable importance

of that argument implied by Equation 9.87 and Equation 9.88.
Consider, in fact, the Dirac equation in gravitational field in Riemann–

Cartan space-time (and this is necessary if we like to describe bosons and
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fermions); we know that the contorsion tensor is completely antisymmet-
ric (see, for instance, Reference [25]). In fact, if we consider the term in the
Lagrangian for the Dirac equation in U4 that contains the interaction between
spinor and torsion, we find Kabcψ̄γ [aγ bγ c]ψ (see [25]) (where Kabc is the con-
torsion tensor defined through torsion tensor as = −Qabc − Qcab + Qbca), and
the spin density tensor is given by

Sabc = (1/
√−g)

[
∂
√−g Lm/∂Kbca

]

= −( j/4)ψ̄γ [aγ bγ c]ψ = S[abc], (9.89)

that is, the spin density tensor is totally antisymmetric. The same result of the
complete antisymmetry of the torsion tensor is found by Yu [17], imposing
the equivalence principle on the space-time structure. Moreover, we know
that the transformation law for the spinor field is written as

ψ ′(x′) = U(�)ψ(x), (9.90)

where U(�) is the usual 4×4 constant matrix representing the Lorentz trans-
formation (the spinor indices are not written explicity). � is the Lorentz ma-
trix involved in the vector Lorentz transformation in the flat tangent space
x′i = �i

k xk . The Dirac equation ( jγ k∂kψ − mψ = 0) is transformed as

jγ i(∂ψ ′(x′)/∂x′i ) − mψ ′(x′) = jγ i�k
i ∂kUψ − mUψ = 0 (9.91)

It is well known that multiplying from the left by U−1 and imposing on
the Dirac equation form invariance under a Lorentz transformation we obtain
the condition for the matrix U:

U−1γ iU = γ k�i
k (9.92)

Considering an infinitesimal transformation

�ik � ηik + ωik , (9.93)

(where ωik = ω[ik]), we have

U = 1 + (1/2)ωik Sik (9.94)

The ωik are six constant infinitesimal parameters, and Sikare the generators
of the infinitesimal Lorentz transformation, which, in order that (9.92) be
fulfilled, must satisfy

Sik = γ [iγ k] = (1/2)(γ iγ k − γ kγ i ) (9.95)
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Here, we can observe that, considering the Dirac equation in Riemann–Cartan
space-time, we have the relation

gµν = (1/2)(γµγν + γνγµ) = γµ · γν (9.96)

where γµ are the Dirac vectors. Moreover, Equation 9.95 is connected with spin
[17,18]. In fact, we have seen in Equation 4.5 that σ1σ2 = σ1∧σ2 is the generator
of rotation in 2-space and we know also that in 3-space, σ1σ2, σ2σ3, σ3σ1 (see
Equation 9.35 and also Equation 4.7a,b,c) are connected with spin. So, we
have that in space-time γµ ∧ γν are the generators of rotations (Equation 9.88
and Equation 9.95), and then are also connected with spin! So, writing

σµν = (1/2)(γµγν − γνγµ), (9.97)

as from the Hestenes geometric product, we have

γµγν = γµ · γν + γµ ∧ γν , (9.98)

and we can also write

γµγν = gµν + σµν (9.99)

Equation 9.99 seems to include automatically supersymmetry because we
have the commutator (fermionic field) and the anticommutator (bosonic field):
gµν is connected with bosons and σµν is connected with fermions, and they
are given simultaneously. In other words, Hestenes geometric algebra [5]
with the concept of multivectors and with the precise geometrical interpre-
tation of imaginary numbers seems to be very important; the unit imaginary
j appearing in the Dirac, Pauli, and Schrödinger equations has a geometrical
interpretation in terms of rotation in real space-time [5], so one has to do with
real space-time, with spinors and tensors treated in a unified way (and this
allows us to write Equation 9.99) (see also Reference [16]).

As a last comment, we can observe that the relation

iσ3 = iγ3γ0 = γ2γ1 (9.100)

shows that the phase giving the magnitude of a rotation in the spin plane (real
plane in STA) and the spin describing the orientation of the spin plane are
inextricably unified. This, in fact, demonstrates the well-known change of sign
of a fermion spin for a rotation of 360◦ in quantum theory whose mathematical
counterpart is the one-sidedness of the Möbius strip. So, one may state that
the generalized phase φ of the neutron-spin state represented by a point in the
total space (corresponding to the edge of a Möbius strip) of the fiber bundle
of a neutron spin rotation can be described by the rotation in the Pauli algebra
via the real spinor R (see Equation 9.81).
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9.7 Charge Conjugation

The Dirac equation for an electron can be written in Hestenes algebra as
[1, 2, 23] (see also Equation 9.52b)

ψ = (mψγ0 + e Aψ)γ2γ1 (h̄ = c = 1), (9.101)

where ψ(x) is the wave function, m is the mass, e is the charge of electron, and
A is the electromagnetic vector potential. We discuss here certain symmetries
of the spinor field ψ(x) that map the field ψ(x) onto itself, preserving the wave
equation (9.101) or changing it in a definite and physically meaningful way.

The wave function ψ uniquely determines a frame of tangent vectors

Jµ(x) = ψγµψ̃ = ρeµ (9.102)

(because ρ0 > 0, J0 is a timelike vector in the forward light cone and is equiv-
alent to the probability current density of the Dirac theory, so ρ may be in-
terpreted as the proper probability density) at each point of space-time, and
inversely, except for a factor eγµβ , the tangent vectors Jµ determine ψ . In view
of the above, one can give a geometric interpretation to the transformation
of ψ because any transformation of the tangent vectors can be interpreted
geometrically (β is a scalar).

Symmetries of a spinor field can be interpreted geometrically as some
combination of two distinct types of geometrical transformations:

1. A transformation of the tangent vectors Jµ(x) at a point x of the
space-time into a new set of tangent vectors J ′

µ(x) at the same point x

2. A point transformation

x = xµγµ 
⇒ x′ = x′µγµ (9.103)

wherein the tangent vectors Jµ at a point x of space-time are mapped into
equivalent vectors at a different point x′.

The transformation C , known as the Charge conjugation, changes the sign
of electromagnetic coupling, leaving the rest of the Dirac equation invariant.
This can be achieved if we take the charge conjugation as (see [23])

C : ψ 
⇒ ψC = ψγ2γ0 (9.104)

or

C : ψ 
⇒ ψC = ψγ1γ0 (9.105)

It is easy to see that under charge conjugation (9.104) or (9.105) the Dirac
equation (9.101) becomes

ψ = (mψγ0 − e Aψ)γ2γ1. (9.106)
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The above conjugation (9.104) induces a rotation of π of J1 around the J2 axis:

J0 
⇒ J0, J1 
⇒ −J1, J2 
⇒ J2, J3 
⇒ −J3, (9.107)

whereas the charge conjugation (9.105) induces a rotation of π of J2 around
the J1 axis:

J0 
⇒ J0, J1 
⇒ J1, J2 
⇒ −J2, J3 
⇒ −J3 (9.108)

Physically, this means that in both the cases the spin remains invariant.
Moreover, under charge conjugation (9.104) or (9.105), the bilinear function

of ψ changes sign:

ψC ψ̃C = −ψψ̃ = −ρeγµβ (9.109)

So, the scalar part of the bilinear function of the wave function also changes
sign:

(ψC ψ̃C )0 = −(ψψ̃)0 = −ρ cos β (9.110)

and can plausibly be interpreted as the proper particle density of the spinor
field ψ . So, a negative value given by (9.110) would mean the likelihood of
observing an antiparticle [23].

Appendix A

The vectors γ0, γ1, γ2, appearing in the Dirac equation (9.52a,b), belong to a
set of arbitrarily chosen orthonormal vectors γµ(µ = 0, 1, 2, 3). The choice of
a coordinate frame {γµ} with γ0, the reference frame’s 4-velocity, corresponds
to the standard matrix representation of the Dirac theory for which γ0 is
Hermitian and the γk (k = 1, 2, 3) are anti-Hermitian. Furthermore, the stan-
dard matrix representation

γ̂0 =
[

I 0
0 −I

]
, γ̂k =

[
0 −σ̂k

σ̂k 0

]
,

with

σ̂1σ̂2σ̂3 = √−1 I

(Where I is the 2 × 2 unit matrix and the σ̂k are the usual 2 × 2 Pauli matrices)
associates the unit imaginary

√−1 or the matrix representation with the bivec-
tor γ2γ1 (9.52). So, the Hermitian conjugation and the complex numbers of the
standard matrix representation can be related to some intrinsic features of the
Dirac equation.
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10
Quantum Gravity in Real Space-Time
(Commutators and Anticommutators)

10.1 Quantum Gravity and Geometric Algebra

In this chapter we will develop the problem of quantum gravity and will
show, in this regard, how it is important in the consideration of geometric
algebra.

For this purpose we will discuss, first, the introduction of spin in the
Einstein equations of general relativity. For that reason we begin by consid-
ering the Einstein–Cartan theory, i.e., general relativity plus torsion, which,
from the physical point of view, means the introduction of spin in the theory
of gravity.

Now, we know that the Einstein theory of gravity, that is, General Rel-
ativity, takes into account only the mass. This is good for the macroscopic
body; the mass is the source of gravity in the sense that the mass is responsi-
ble for the curvature of space-time. We know also that the general theory of
relativity is the best and the simplest gravitation theory that is in agreement
with all experimental facts in the domain of macrophysics, including the more
recent experiment on time-delay, with radar on Mercury and Venus and other
sophisticated experiments in the solar system.

However, when we consider the early universe, we know that the cosmo-
logical problem is strictly connected with elementary particle physics. Then,
we must pay attention to this question: when we consider together general
relativity and elementary particle physics, the latter described by the quan-
tum field theory, we are obliged to take into account not only the mass of
elementary particles but also the spin. In fact, elementary particles are char-
acterized not only by mass but also by the spin that occurs in units of h̄/2. Mass
and spin are two elementary and independent original concepts: as a mass
distribution in a space-time is described by the energy–momentum tensor,
so a spin distribution is described in a field theory by a spin density tensor.
As the mass is connected with the curvature of space-time, the spin will be
connected with another geometrical property of space-time so that we must
consequently modify the general theory of relativity in order to connect this
new geometrical property with the spin density tensor. In this way we are led
to the notion of torsion. In fact, all elementary particles can be classified by
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means of the irreducible unitary representation of the Poincaré group and can
be labeled with the translational part of the Poincaré group, whereas spin is
connected with the rotational part. In a classical field theory, mass corresponds
to a canonical stress–energy–momentum tensor, and spin to a canonical spin
tensor. The dynamical relation between the stress–energy–momentum tensor
and curvature is expressed in general relativity by the Einstein equations;
one feels here a need for an analogous dynamical relation including the spin
density tensor. As this is impossible in the framework of general relativity,
we are forced to introduce this new geometrical property we call torsion. We
can say that as the mass is responsible for curvature, spin is responsible for
torsion. We now will see, from a formal point of view, in what way we must
modify the general relativity theory: the main point is to assume an affine
asymmetric connection instead of the symmetric connection we have in the
Einstein theory (the Christoffel symbols). Torsion is, in fact, connected with
the antisymmetric part of the affine connection, as we shall see.

In this way we are led to a generalization of a Riemann space-time. This
generalization was proposed in 1922 [1] by Cartan. He relates the torsion
tensor to the density of intrinsic angular momentum well before the introduc-
tion of the modern concept of spin. According to Trautman, “the Einstein–
Cartan theory is the simplest and the most natural modification of the original
Einstein theory of gravitation” [2].

From the geometrical point of view, torsion is simply the antisymmetric
part of an asymmetric affine connection �

µ
αβ , that is,

Qαβ.µ = (1/2)
(
�

µ
αβ − �

µ
βα

) ≡ �
µ

[αβ] (10.1)

and has a tensor character. In the presence of torsion, space-time is called
the Riemann–Cartan manifold and is denoted by U4 (the Riemann space is
denoted by V4).

We will not go into the Einstein–Cartan theory as all the development
will follow close to the structure of general relativity, but we will emphasize
the fundamental fact that one of the most important geometrical properties
of torsion is that a closed contour in an U4 manifold becomes, in general, a
nonclosed contour in the flat space-time V4. This nonclosure property, that is,
the fact that the integral [3, 4, 5]

lα =
∮

Qα
βγ dSβγ �= 0 (10.2)

(where dSβγ = dxβ ∧ dxγ is the area element enclosed by the loop) over a
closed infinitesimal contour is different from zero, can be treated as defects in
space-time in analogy to the geometrical description of dislocations (defects)
in crystals; this can constitute a way to move toward the quantization of
gravity, which means quantization of space-time itself.

We will see that with torsion we can try the quantization of gravity. In
fact, to quantize gravity, we need to find some geometric objects that behave
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as independent variables from which we can form the uncertainty relations.
For instance, in general relativity, if we consider the metric tensor gµν and
the affine connection �ρ

µν , we cannot form any relation analogous to the
uncertainty relations because gµν and �ρ

µν are not independent variables and
�ρ

µν is not a tensor; in a moment we will have a better picture of these concepts
and will also see how both of these difficulties disappear if we consider
torsion. That is, this problem may not arise if torsion is considered because,
in this case, the antisymmetric part of the connection �α

[βγ ], i.e., the torsion
tensor Qα

βγ , is a true tensorial quantity, and further, torsion Q and curvature
R are two independent geometrical variables. As we have said, with torsion
one can define distances in this sense. If we consider a small closed circuit
and write

lα =
∮

Qα
βγ dSβγ ,

where dSβγ = dxβ ∧ dxγ is the area element enclosed by the loop, then lα

represents the so-called “closure failure,” i.e., torsion has an intrinsic geo-
metric meaning: it represents the failure of the loop to close, lα having the
dimension of length. (Qα

βγ has the dimension of inverse length, and dA is
area.) We will see in the following text that with curvature and torsion we can
form uncertainty relations or commutation relations, as

[Q, R] = i(h̄G/c3)−3/2 (10.3)

At this point let us remember the important works of Treder and
Borzeszkowski [6, 7, 8] who consider the Einstein–Schrödinger affine theory
in which the field coordinates are the Einstein affine tensors Ui = �i − �rδi

r ,
and conjugate momenta are given by the tensor Rklδo

i , where �i
[kl] �= 0 and

Rkl �= Rlk . So, in the purely affine theory of Einstein and Schrödinger we have
(see [7, 8])

[
Ua , Rklδ0

i

] = −iδakl
bciδ

3(x),

where Rkl �= Rlk is again the Einstein tensor, and Ui
kl = �i

kl−�r
krδ

i
l the Einstein’s

affine tensor with Ui
[kl] �= 0.

In particular, the conclusion drawn in Reference [6] was that the inequality
relations gik L2

0 ≥ h̄G/c3 and �i L3
0 ≥ h̄G/c3 (L0 denotes the dimension of the

spatial region over which the value of gik and �i
kl is measured) should not be

expected to follow commutation rules because the quantities “field strength”
and “length” appearing in these relations cannot be defined independently of
each other. Therefore, these inequalities do not have the status of uncertainty
relations. Moreover, �i

kl is not a tensor. As we have said, these difficulties
disappear if we use torsion and curvature because these are independent
quantities and, moreover, tensors.
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10.2 Quantum Gravity and Torsion

For all the reasons said in the foregoing text, from now on we will work with
torsion. We would like to say that torsion may constitute a way toward quan-
tization of gravity. In fact, we will show that introducing torsion in General
Relativity, that is, considering the effect of spin and linking torsion to defects
in space-time topology, we can have a minimal unit of length and a minimal
unit of time.

In the relation (10.3), we know that torsion can be related to the intrinsic
spin h̄, and, as the spin is quantized, we can say that the defect in space-time
topology should occur in multiples of the Planck length (h̄G/c3)1/2, i.e.,

∮
Qα

βγ dxβ ∧ dxγ = n(h̄G/c3)1/2nα (10.4)

(n is an integer, and nα = unit point vector).
This is analogous to the well-known

∮
pdq= nh̄, i.e., the Bohr–Sommerfeld

relation. So, distance has been defined independently of gik . In fact, Equation
10.4 would define a minimal fundamental length, i.e., the Planck length en-
tering through the minimal unit of spin or action h̄. So, h̄ has to deal with
the intrinsic defect built into the torsion structure of space-time through
lα = ∮

Qα
βγ dxβ ∧ dxγ .

Therefore, the Einstein–Cartan theory of gravitation should, in contrast
to Einstein’s General Relativity Theory, provide genuine quantum–gravity
effects. We can also observe that from relation (10.4), considering the fourth
component, time, can be defined in the quantum geometric level through
torsion as

t = (1/c)
∮

Qd A = n(h̄G/c5)1/2. (10.5)

So, torsion is essential to have a minimum unit of time �= 0!
This would give us the smallest definable unit of time as (h̄G/c5)1/2 ∼=

10−43s. In the limit of h̄ ⇒ 0 (classical geometry of general relativity) or
c ⇒ ∞ (Newtonian case), we would recover the unphysical t ⇒ 0 of classical
cosmology or physics. So, both h̄ and c must be finite to give a geometric
unit for time (i.e., h̄ ⇒ 0 and c ⇒ ∞ are equivalent). The fact that h̄ is
related to a quantized timelike vector discretizes time. This quantum of time
or minimal unit of time also correspondingly implies a limiting frequency of
fmax ≈ (c5/h̄G)1/2. This would have consequences even for perturbative QED
in estimating the self energies of electrons and other particles, i.e., the self
energy integral (in momentum space) taken over the momenta of all virtual
photons. To make the integral converge, Feynman, in his paper on QED [8],
multiplied the photon propagator k−2 by the ad hoc factor − f 2/(k2 − f 2),
where k is the frequency (momentum) of the virtual photon. This convergence
factor, although it preserves relativistic invariance, is objectionable because of
its ad hoc character without any theoretical justification. Feynman considers
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f to be arbitrarily large without definite theoretical basis. Here, the presence
of space-time defects associated with torsion due to intrinsic spin would give
a natural basis for the maximal value for f 2

max as (from 10.5)

f 2
max ≈ c5/Gh̄ ≈ 1086, (10.6)

(and extremely large as required by Feynman), giving the finite result (instead
of ∞) for the self energy. This makes fmax another fundamental constant for
particle physics, serving as a high frequency cut off that is not arbitrary.

We can start from these considerations (see, for instance, Reference [3]): if
we wish to connect the initial and final positions of one and the same particle,
we cannot avoid uncertainty associated with torsion, i.e., for a sufficiently
small area element dS, uncertainty in distance between the initial and final
position would be �lµ = QµdS, and this would induce fluctuations in dis-
tance in the metric through �l = √

gµνdxµdxν . So, what is important is not
the point, themselves but the “fluctuations” in their position, i.e., the interval
between them caused by a deformation of space itself through torsion. Note
that plastic deformations are induced by torsion and are different from elas-
tic deformations considered by Sacharov (which depend only on curvature).
With quantized values, these fluctuations would also manifest as metric fluc-
tuations. Because curvature causes relative acceleration between neighboring
test particles, we have the momentum uncertainty related to curvature as

maµds = �pµ = mRµ
αβγ

dxα

ds
dxβ

ηγ = mc RµdS, (10.7)

(where ηγ is the separation vector between neighboring geodesics). So, as
position fluctuations are given by torsion, momentum fluctuations are due
to curvature, and we can interpret quantum effects (and then uncertainty
principle) as consequences of space-time deformation, i.e.,

�pµ · �xµ ≥ h̄

where

�xµ = QµdS (10.8)

and

�pµ = mc RµdS (10.9)

We see that Q (torsion) and curvature (R) play the role of conjugate vari-
ables of the geometry (gravitational field), thus enabling us to write com-
mutation relations between curvature and torsion (analogous to [x, p] = ih̄)
as

[Q, R] = i(h̄G/c3)−3/2 = i L−3
Pl (10.10)
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Relation (10.10) can also be written as

�Q�R ≥ L−3
Pl , (10.11)

where L Pl is the Planck length.
We stress the fact that in the papers [4, 5] we are working with “non-

canonical” commutation rules between ordinary space-coordinates xi and,
respectively, the torsion Qi

kl and the curvature Ri
kml where these coordinates

are not conjugate to Q and R and then these commutation rules are not
founded canonically but only by geometrical hypothesis, in analogy to the
(semiclassical) quantization of Bohr and Sommerfeld.

On the contrary, in Section 10.4 (see also the papers of Borzeszkowski and
Treder [6, 7]) we will show that it is possible to consider torsion and curvature
as canonically conjugate variables.

10.3 Quantum Gravity in Real Space-Time

Yu Xin [9] shows that the concept of internal and external spaces are just two
different representations of a single primitive structure: the spinorial space-
time; in other words, the spinor structure represents the internal abstract space
and external space-time, depending on its representation.

In fact, we have seen that in order to take into account both mass and spin,
it seems at first sight that we have to do with two different spaces: a real space-
time where we describe the curvature, due to the mass, with tensors, and a
complex space-time where we describe torsion due to the spin, with spinors.
However, this is not completely satisfactory; one would like to describe these
two fundamental physical properties, mass and spin, in a unique manifold,
the real space-time, and this can be done through Hestenes algebra [10].

In other words, we can describe, at the same time, bosons and fermions:
curvature and torsion must be given in the same real space-time. We know
that when we introduce the Dirac equation in Riemann–Cartan space-time
(and this is necessary if we would like to describe bosons and fermions),
we find that the contorsion tensor is completely antisymmetric. In fact, if we
consider the term in the Lagrangian for the Dirac equation in U4 that contains
the interaction between spinor and torsion, we find Kabcψ̄γ [aγ bγ c]ψ (see
[11] ) (where Kabc is the contorsion tensor defined through torsion tensor as
= −Qabc − Qcab + Qbca), and the spin density tensor is given by

Sabc = (1/
√−g)[∂

√−gLm/∂Kbca] = −(i/4)ψ̄γ [aγ bγ c]ψ = S[abc], (10.12)

that is, the spin density tensor is totally antisymmetric. At this point I would
like to anticipate that Xin Yu [9] had found that this result could be achieved
directly from the equivalence principle (see preprint in Reference [9]).
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Moreover, we know that the transformation law for the spinor field is
written as

ψ ′(x′) = U(�)ψ(x), (10.13)

where U(�) is the usual 4×4 constant matrix representing the Lorentz trans-
formation (the spinor indices are not written explicity). � is the Lorentz
matrix involved in the vector Lorentz transformation in the flat tangent space
x′i = �i

k xk .
Dirac equation (iγ k∂kψ − mψ = 0) is transformed as

iγ i (∂ψ ′(x′)/∂x′ i ) − mψ ′(x′) = iγ i�k
i ∂kUψ − mUψ = 0 (10.14)

It is well known that multiplying from the left by U−1 and imposing on the
Dirac equation to be invariant in form under a Lorentz transformation, we
obtain the condition for the matrix U

U−1γ iU = γ k�i
k (10.15)

Considering an infinitesimal transformation

�ik � ηik + ωik (10.16)

(where ωik = ω[ik]), we have

U = 1 + (1/2)ωik Sik . (10.17)

The ωik are six constant infinitesimal parameters and Sik are the generators
of the infinitesimal Lorentz transformation, which, in order that (10.15) be
fulfilled, must satisfy

Sik = γ [iγ k] = (1/2)(γ iγ k − γ kγ i ) (10.18)

Here, we can observe that considering the Dirac equation in Riemann–
Cartan space-time we have the relation

gµν = (1/2)(γµγν + γνγµ), (10.19)

where γ are the Dirac matrices. However, we have also

σµν = (1/2)(γµγν − γνγµ) (10.20)

We see that Equation 10.18 and Equation 10.20 are formally identical, and it
seems that we can pass from one to another with the help of Hestenes algebra
[10].

We also have

γ µγ ν = gµν + σµν (10.21)

Equation 10.21 seems to include automatically supersymmetry because we
have the commutator (fermionic field) and the anticommutator (bosonic field):
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gµν is connected with bosons and σµν is connected with fermions, and they
are given simultaneously. Notice that Equation 10.18 follows directly from
the Hestenes geometric product

γµγν = γµ · γν + γµ ∧ γν (10.22)

where

γµ · γν = gµν (10.23)

and

γµ ∧ γν = σµν (10.24)

Moreover, the infinitesimal variation of a spinor under the Lorentz transfor-
mation is

δψ = ψ ′ − ψ = (1/2)ωik Sikψ = (1/2)ωikγ
[iγ k]ψ (10.25)

The covariant differential for a spinor field is

Dψ = dxk∇kψ = ψ ′(x2) − ψ(x1), (10.26)

which can be written as

Dψ = ψ(x2) − ψ(x1) − [ψ(x2) − ψ ′(x2)], (10.27)

where we have separated the term due to translation, ψ(x2) − ψ(x1) from the
part relative to a local rotation of the tetrad ψ ′(x2) − ψ(x2). It seems that from
Equation 10.27 we have, simultaneously, curvature and torsion (or, in terms
of Hestenes algebra, dilation and rotation [10]).

Considering the geometric algebra in the four-dimensional space-time
(see Chapter 9) and noticing that in Dirac theory we have a totally antisym-
metric spin density, we are in a position to introduce the torsion trivector

Q = Qαβγ γα ∧ γβ ∧ γγ (10.28)

as element of STA, where {γα} are the base vectors for which we have

γαγβ = gαβ + γα ∧ γβ. (10.29)

Moreover, given the curvature bivector

�αβ = (1/2)Rαβµνγµ ∧ γν , (10.30)

one can form the curvature trivectors

Rα = �αβ ∧ γβ. (10.31)

We have seen that torsion and curvature are to be considered as conjugate
variables, and now we are in position to write Dirac’s equation in a real form
(see, for instance, Reference [12] and Reference [13]).



P1: Binaya Dash

September 21, 2006 17:7 C7729 C7729˙C010

Quantum Gravity in Real Space-Time (Commutators and Anticommutators) 145

We have the trivectors Q and Rα . Consider now the antisymmetric part of
the geometric product

[Q, Rα] = (1/2)(QRα − Rα Q) (10.32)

This type of product between two trivectors gives a bivector for example, it
is easy to verify

[γ0 ∧ γ1 ∧ γ2, γ0 ∧ γ1 ∧ γ3] = γ2 ∧ γ3, (10.33)

remembering that γ0γ1γ2 = iγ3 where i indicates the pseudoscalar unit. In
the language of geometric algebra, the imaginary unit of complex numbers is
substituted by a bivector; then we can have commutation relations of canonic
type from Equation 10.28, Equation 10.30, Equation 10.31, and Equation 10.32:

[Q, Ra ] ≡ (1/2)(QRα − Rα Q)
= (1/2) = [Qµνβγµ ∧ γν ∧ γβ , Rατνβγν ∧ γβ ∧ γτ ]
= (1/4)(Qµνβ Rατ

νβ − Rαµ
νβ Qτνβ)γµ ∧ γτ = γ2 ∧ γ1L−3

Pl (10.34)

for every α, where, the first member being a bivector, the second member also
is a bivector, coherently with the fact that the imaginary unit in Dirac equation
is substituted by the bivector γ2 ∧ γ1 (see, for instance, Reference [4]).

As we must be in a spin plane, we have to consider the case of µ, τ = 1, 2.
In order that the commutation relation may have this form, the following

six conditions should be satisfied, considering that the left-handed member
of the commutation relation (10.34) is the summation of six bivector parts,
(such as γ1 ∧ γ2, γ2 ∧ γ3, γ3 ∧ γ1, γ0 ∧ γ1, γ0 ∧ γ2, γ0 ∧ γ3) :

(1/2)Q1νβ Rα2
νβγ[1γ2] = γ1 ∧ γ2L−3

Pl . (10.34a)

Qµνβ Rατ γ[µγτ ] = 0. (10.34b)

Equation 10.34a corresponding to the bivector γ1 ∧ γ2 gives one relation, and
Equation 10.34b corresponding to the bivectors

γ2 ∧ γ3, γ3 ∧ γ1, γ0 ∧ γ1, γ0 ∧ γ2, γ0 ∧ γ3

gives five relations.
In conclusion, the six conditions represent a “choice of gauge” with respect

to the local Lorentz rotations, according to the fact that the choice of the spin
plane is arbitrary.
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10.4 A Quadratic Hamiltonian

In order to give a stronger basis to the consideration of torsion and curva-
ture as canonical conjugate variables, we try to see if it is possible to improve
the theory introducing a quadratic Hamiltonian function of torsion and cur-
vature. We use as conjugate variables the torsion and curvature trivectors
because the first Bianchi identity (see [19]) guarantees that it is different from
zero only in the presence of torsion. Because the commutation relations be-
tween Q and Ra are defined in geometric algebra, we need to modify the
usual Lagrangian field theory.

We start from the results of Reference [15]: the field equation for the multi-
vector ψ can be written in the manifestly invariant way:

∇
(

∂L
∂(∇ψ)

)
= ∂L

∂ψ
, (10.35)

where the gradient operator ∇ = γµ∂µ acts as the geometric product.
The presence of ∇ or, in other words, the peculiarity of the intrinsic geo-

metric calculus, suggests that we can define the conjugate momentum field
as

� = ∂L
∂(∇ψ)

(10.36)

and the Hamiltonian

H = (∇ψ)� − L (10.37)

This is different from the usual H = �ψ̇ −L formula, but, following Equation
10.35 for the Lagrangian, we propose also a modified Hamiltonian that is
manifestly invariant, such as Equation 10.35, so we cannot work with ∂ψ/∂x0

because it depends on the choice of the time-coordinate x0. So, � = ∂L
∂(∇ψ) is

the natural choice; in fact, Equation 10.35 generalizes the Lagrangian equation
(d/dt)(∂L/∂ q̇ − ∂L/∂q ) = 0, simply substituting d/dt with ∇.

Notice that Equation 10.35 allows for vectors, tensors, and spinors vari-
ables to be handled in a single equation, a considerable unification (see [15]).

So, we have the Hamilton equations
{

∇ψ = ∂H/∂�

∇� = −∂H/∂ψ
. (10.38)

For example, we have the Maxwell equations in vacuum, taking L = F 2/8π ,
where the vector potential A = Aµγµ and the bivector F = ∇∧ Aare conjugate
variables (remembering that the geometric product gives F = ∇ A = ∇ · A+
∇ ∧ A and Lorentz condition ∇ · A = 0).

Moreover, because we use the curved U4 manifold in agreement with the
minimal coupling principle, we substitute the covariant operator D for ∇
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defining

D ≡ ∇ + γa [ωa , ], (10.39)

where the {γa } is an orthonormal frame of tetrads, (for which

γaγb = ηab + γa ∧ γb), (10.40)

(related with the coordinate system γµ = ea
µγa )

and ωa = (1/2)ωabcγb ∧ γc is the connection bivectors.
If in Equation 10.35 we put D instead of ∇, we have

D
(

∂L
∂(Dψ)

)
= ∂L

∂ψ
.

We remember that in the tetrad basis the connection is

ωabc = ωa[bc] = Ccba − Cbac − Cacb − K abc (10.41)

(where C c
ab = eµ

a eν
b∂[µe c

ν] , the Ricci connection coefficients, give the Rieman-
nian part, and K abc is the contorsion tensor that is = −Qabc because, in this
case, we are considering the totally antisymmetric torsion).

Further, it is possible to define the covariant derivative in the direction of
a vector v putting

Dv ≡ v · D = va∂a + va [ωa , ] (10.42)

In geometric algebra the commutation product with bivector leaves un-
changed the grade of multivectors [8], and then, in particular, we have
(γa · D)γb = ωabγc as we expect. We can separate the interior and exterior
covariant derivative, putting D ≡ DI + DE , where

DI = ∇ · + γa · [ωa , ] (10.43)
DE = ∇ ∧ + γa ∧ [ωa , ], (10.44)

which, respectively, through the inner and outer product, lowers and raises
the grade of the multivector on which they operate.

The DE operator acts like the exterior covariant derivative in the language
of exterior forms, so we have the Cartan structure equations

DEγa = Qbcγb ∧ γc ≡ Qa (10.45)
DE

(
ωibaγi

) = (1/2)Rcdabγc ∧ γd ≡ �ab (10.46)

and the Bianchi identities

DE Qa = �ab ∧ γb ≡ Ra (10.47)
DE�ab = 0. (10.48)
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Now we are able to introduce the following Lagrangian in order to have
the usual expression for conjugate variables in a quantum theory:

L = (h̄c/2)Ra Ra − (c4/2G)Qa Qa (10.49)
L = (h̄c/2)

(
Ra Ra − Qa Qa/L2

Pl

)
, (10.50)

where Qa and Ra are the bivectors and trivectors,

Qa = Qaµνγµ ∧ γν ; R = Raµνδγµ ∧ γν ∧ γδ

respectively, formed by means of the base vectors γµ, satisfying the relation

γαγβ = gαβ + σµν (10.22)

See also Equation 10.21 and Reference [5], where it is argued that Equation
10.22 and also the fact that the canonical conjugate variables Qa and Ra are
connected with the commutator and anticommutator rules seems to indicate
that one can treat simultaneously fermions fields as well a bosonic field.

In agreement with the Bianchi identities, the momenta conjugate to the
torsion bivectors are the trivectors

�a = ∂L/∂(DQa ) = h̄c Ra (10.51)

(in natural unit h̄ = c = 1, we can write �a or Ra without distinction).
The Hamiltonian results:

H = DQa�a − L = (h̄c/2)
(

Ra Ra + Qa Qa/L2
Pl

)
(10.52)

Then we have the Hamilton equations

{
DQa = ∂H/∂Ra = Ra

DRa = −∂H/∂Qa = −Qa/L2
Pl

(10.53)

that we can write

DDQa = −Qa/L2
PL, (10.54)

or, equivalently for Ra ,

DDRa = −Ra/L2
Pl (10.55)

Separating in Equations 10.53 the exterior and interior parts of different
grades, we have the identities

{
DE Qa = Ra

DE Ra = 0
(10.56)
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(the second equation is a consequence of Equation 10.48 when the torsion is
totally antisymmetric) and the field equations

{
DI Qa = 0
DI DE Qa = −Qa/L2

Pl
(10.57)

10.5 Spin Fluctuations

Lagrangians quadratic in curvature and torsion are nothing new (see, for in-
stance, Reference [16–19]), but there is an interesting reason supporting the
choice made here of the Hamiltonian density (10.52): it seems to describe
directly the quantum fluctuations at the Planck scale of space-time points
as harmonic oscillators. In fact (see Equation 10.8 and Equation 10.9) we
can take Ra dS ≈ �pa/mPlc and Qa dS ≈ �xa as uncertainties, and taking
(dS)2L−1

Pl � dx3, we have Hdx3 � (�p)2/2mPl + (1/2)mPlω
2
Pl(�x)2, that is, just

the Hamiltonian of a harmonic oscillator with Planck frequency ωPl = c/LPl

and Planck mass mPl = h̄/LPlc (notice that we always consider energy fluctu-
ation at the Planck scale).

The wave Equation 10.54 for torsion — formally a Klein–Gordon type
equation for a mPl particle — could describe the propagation of the fluctuation
of the background geometry due to the torsion itself; in fact, this equation is
not linear because the connection also contains the torsion and then acts on
itself.

In this quantum physical context, propagating torsion is not in contra-
diction with the Einstein–Cartan theory — for which it is zero in vacuum —
because we have to do with vacuum polarization as the source through spin
fluctuations.

The quadratic LagrangianL is incomplete for a gravitation theory because
it does not give the Einstein equations, and we know that a quantum theory of
gravity must be reduced to the classical theory when one considers gravitation
far away from the Planck scale.

In other words, the problem with such quadratic Lagrangian is that one
has to add to them the Einstein–Hilbert Lagrangian in order to obtain, in the
Newtonian approximation, the Laplace equation.

The Lagrangian (10.50) completed by the Einstein–Hilbert term (the usual
linear Lagrangian −°R/2χ ) is

L′ = L − °R/2χ ,

i.e.,

L′ = (h̄c/2)
(

Ra Ra − Qa Qa/L2
Pl

) + °R/2χ (10.58)

where °R is the scalar curvature related to the Riemannian part of the con-
nection and χ = 8πG/c4 (i.e., L2

Pl = h̄cχ/8π ), reminding us of an early
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approach to quantum electrodynamics considered by Heisenberg, Euler, and
Kockel [20].

To describe quantum corrections to classical electrodynamics, these
authors had added the Larmor Lagrangian �0 = Fik F ik of the classical theory
by quadratic invariants such as (Fik F ik)2.

It was shown that, to some extent, these corrections represent a pheno-
meno-logical approximation to the exact quantum theory (see [21]). At first
sight, the Lagrangian (10.58) is a gravitational analog of the electrodynamic
Heisenberg–Euler–Kockel Ansatz. However, in contrast to the electrodynam-
ics, the quadratic gravitational terms are not formed from only those field
quantities that occur in the R-item of the Lagrangian; besides the metric,
there the connection comes into the game. This is in accordance with the fact
we have mentioned — that there are no genuine quantum effects in a purely
metric theory. Thus, quadratic terms formed only from the metric cannot be
related to quantum effects. Genuine quantum terms must contain additional
fields such as torsion.

The theory given by the Lagrangian (10.58) couples two types of gravity, —
metric and torsional gravity — in which the first one dominates at large and
the second at small distances. Its canonical structure should turn out to be
of such a type that it recovers canonical quantum GRT (which is essentially
classical in the above-discussed sense) for weak fields and canonical quantum
gravity given by the Lagrangian (10.50) for strong fields. In terms of a cos-
mological scenario, in early universe one had a strong gravity era described
by Riemann–Cartan geometry that later goes over into a weak gravity era
described by Riemann geometry. Strong gravity can also dominate in super-
dense matter, e.g., in neutron stars. To found an exact theory of quantum
gravity on this basis one had to construct a Hamiltonian formalism starting
from the Lagrangian (10.58).

Now, with the tetrad field (10.40) as variables, we can write

−°R = °R
ab

γaγb − (1/2)γaγ
a °R, (10.59)

where °Rab is the Ricci tensor (and γaγ
a = 4), but here it is a function of γ a .

In that way, neglecting the quadratic terms of L′, we can have the Einstein
equations using Equation 10.59:

(1/2)(∂ °R/∂γa ) = °R
ab

γb − (1/2)γ a °R = χ∂Lm/∂γa , (10.60)

where Lm = Lm(ψ, γ a , Qa ) is the matter Lagrangian, and ∂Lm/∂γa defines the
energy-momentum tensor Ta = Tabγb (see Equation 10.35 with D in place of
∇, and Equation 10.45).

Moreover, we can have the Einstein–Cartan equations simply taking γa

and Qa as variables and neglecting in L′ only the term quadratic in curvature:

Ga = χTa , (10.61)
Qa = χ∂Lm/∂ Qa , (10.62)
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where Ga = (Rab + ηab R)γb is the nonsymmetric Einstein tensor, and
∂Lm/∂ Qa defines the spin density of the matter field as torsion source.

To give, Equation 10.61 and Equation 10. 62, note that [19]

R(ab) = °Rab + Qacd Qcd
b = °Rab + Qa · Qb, (10.63)

with Qabc totally antisymmetric, i.e., Qabc = Q[abc] as in our theory, and by
calculation,

R[ab]γ
b = DI Qa . (10.64)

Equation 10.64 implies R = Ra
a = °R + Qa · Qa therefore,

L′ = −R/2χ.

Consider now Equation 10.54 or Equation 10.57 without executing
explicity all the geometric products (inner, outer, commutator); we can achieve
qualitatively important results that reveal the physical content of the
equation. We write the operator D as the sum of three parts: D = ∇+C+Q, i.e.,
differential (flat), Riemannian, and torsionic parts, respectively [see Equation
10.39 and Equation 10.41]. We have

(∇ + C + Q)(∇ + C + Q)Q = −Q/L2
Pl (10.65)

and, evaluating all different terms, we have equations of the type

Q + (∇C)Q + C(∇Q) + C2 Q + C Q2 + (∇Q)Q

+Q∇Q + QC Q + Q3 + Q/L2
Pl = 0 (10.66)

(where = ∇2).
At the lower grade of approximation this gives for quantum propagating

torsion the Klein–Gordon equation in Minkowski space-time:

Q + Q/L2
Pl = 0, (10.67)

and we expect plane wave solutions

Q = Q0 cos[(ωPl/c)k · x], (10.68)

where ωPl/c = 1/L Pl , and k is the wave vector (k2 = 1).
Now, we consider the first equation that we can have that is different from

the Klein–Gordon type, i.e., we neglect in Equation 10.66 the Riemannian part
(i.e., C) and Q3:

Q + Q∇Q + (∇Q)Q + Q/L2
Pl = 0. (10.69)

If we pretend that plane wave solutions are still valid, a condition is needed;
moreover, we note that the term with derivatives of Q is shifted in phase of
π/2 with respect to Q, so ∇Q = 0 implies

k · x/L Pl = nπ (n integer). (10.70)
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With k0 = 1 (Q only time dependent) we have the quantization of time
t = nτPl , and then (if we consider the light motion), also the quantization
of distances l = nL Pl as we have already suggested introducing space-time
defects due to torsion. In fact, taking �l ≈ Q�S in Equation 10.67, we have
just the harmonic oscillator equation

�l̈ + ω2
Pl�l = 0 (10.71)

that describes the fluctuations of space-time points and its confinement at the
Planck length scale.

This is analogous to the quantum concept of Zitterbewegung as fluctuation
of the order of the Compton length of the position of the electron (see Reference
[4]). Like torsion, Zitterbewegung seems strictly related to the spin, so we can
consider ωPl in Equation 10.71 as the analogous of the Compton frequency
ωc = c/rc see in particular Equation 9.3 in Reference [4], which reads:

�θ/�x0 = RdS/Q0dS = 1/rc , (10.72)

rc being the Compton radius, showing that the frequency ω can be interpreted
as the ratio between these two incertitudes, i.e., the quantum length rccan be
considered as the ratio between torsion and curvature, and this fact suggests
again that Q and R can be considered as conjugate variables. Notice also that
as the torsion is responsible for the fluctuation of the position �xµ ∼= Qµd S,
the curvature is responsible for the defect angle �ϑ ∼= RdS (see Equation
10.51 in Reference [20]). In other words, torsion, as we have seen, can be
treated as defects in space-time in analogy to the geometrical description of
“dislocations” in crystals whereas curvature can be treated as defects in angles
in analogy to “disclination,” so that we can write:

ωPl/c = 1/L Pl (10.73)

Note that the modified harmonic oscillator equation corresponding to Equa-
tion 10.69,

�l̈ + (1 + �l̇/c)ω2
Pl�l = 0, (10.74)

leads us to the same consideration and implies quantization of time.
One could consider Equation 10.71 just as the limit condition that in quan-

tum mechanics problems gives the quantization of energy, but here we work
on space-time geometry itself. Moreover, Equation 10.71 implies that, at these
points, Q fluctuates between +Q0 and −Q0 (see Equation 10.69). This fact,
in agreement with the Cartan theory, can be interpreted as spin fluctuation
between ±h̄/2 and could explain why spin can only have these two values.
Then, the propagation of this torsion waves gives a background of quantized
space-time and spin, and is rich in consequences that are to be investigated.

In this regard we can observe that spin fluctuation is in agreement with
the Pauli exclusion principle. The point is that fluctuations of the order of
the Planck length render undistinguishable the extremes of fluctuation and,
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introducing the spin, this means that we associate the spin to the Q-wave so
that we have that close extremes have opposite spin (in agreement with Pauli
principle); in fact, near spins (every wavelength) are ever opposite. Then, the
mean value of Q over one period is always null, but this is not true for Q
squared; it is typical for all wave phenomena, and we know that the square
of amplitude is related to the energy. These considerations, together with the
geometric identity (10.63) suggest that the torsionic part of the curvature could
be converted into the Riemannian part connected with the energy-momentum
tensor through the Einstein equation

Rab = Qa · Qb = χTab (10.75)

In fact, Qa · Qb can be interpreted as spin–spin interaction energy:

Qa · Qb/χ = Tab (10.76)

This means that where there is torsion there is also curvature, and so,
mass. It is clear that Equation 10.75 represents the self-interaction energy of
the field Q but, because of the quantized values of spin, we can consider, as
fundamental objects, the pairs of spins (with interaction S1 · S2) to describe
better what happens at the Planck scale in our picture of space-time and
matter. As we will see, this leads us to new topics about the uncertainty
relation between energy and time.

We take a volume V small enough inside a particle (a nucleon) because we
need to consider a particle as an extended body (notice that L Pl ∼ 1020 times
smaller than the typical hadron dimension r ∼ 10−13cm). Using Equation
10.75 and Equation 10.76 we can write, for the energy density ε,

ε = �E/�V = Q0 · Q0/χ � L2
Plh̄cn2, (10.77)

where Q0 � L2
Pln, and n is the number of spins per unit volume: n = N/�V.

It follows that

�E�V � L2
Plh̄cN2, (10.78)

or, if we consider the volume that contains only one spin (n = 1/�V),

�E�V � L2
Plh̄c, (10.79)

where �E is the energy inside �V.
Now, if we take two interacting spins separated by a distance �d (where d

is less than the Compton length but greater than the Planck length), because
L Pl is the minimal length and the time �t needed to connect them causally is
�d/c, then putting �V = L2

Plc�t in Equation 10.79, we find �E�t � h̄
(remember that we are always in the situation where the spins are anti-
parallel), i.e., the well-known uncertainty relation. We give this interpretation:
if the spins interact for a time �t, there is a fluctuation in energy �E that is
“virtual”; if the interaction is stationary, we have inside �V an energy that can
constitute a real particle (see Equation 10.79). For example, we consider the
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nucleon mass and suppose that its energy can be made by N parts �E , which
obey Equation 10.79: putting E = N�E and r3 = N�V, we find N � 1020

and n = N/r3 = 1059cm−3. This value gives very high torsion (Q = L2
Pln),

but if we consider the wave equation for Q inside the nucleon as a whole,
then the just mentioned spin fluctuations occur, for which < Q >= 0 and
< Q2 > /χ � ε � mc2/r3. Note that N is just the ratio r/L Pl ; this seems in
agreement with wave interpretation, i.e., there is one spin for every wave-
length L Pl inside r.

In other words, we can say that with spin fluctuations one can determine
the mass of the nucleon through the number N � 1020, which represents,
geometrically, the ratio between Compton wave length and Planck length.
As Q is confined inside the nucleon, we can take as starting point the num-
ber N � 1020 arriving in that way to the determination of the mass of a
nucleon.

10.6 Some Remarks and Conclusions

We have seen that, with the real multivector calculus, it is possible to rewrite
the Dirac equation. This fact has an important physical meaning; it is well
known that for a spinor a rotation of it is necessary 4π in order that a spinor,
which describes a quantum state of a fermion, comes back on itself, whereas
a rotation of 2π will change the sign.

Now, in geometric algebra, a spinor is really a rotation, and its expression
(see Equation 10.85), shows clearly what we have said. In fact, it transforms
itself by composition: if one performs the rotation R′, one finds R 
⇒ R′ R,
and for a rotation of 2π, R′ = −1, and then R 
⇒ −R. Therefore, the famous
change of the sign is due to the fact that R′ acts only on one side of R, whereas
for the vectors it acts on both sides (i.e., a 
⇒ R′a R̃′, and then, a 
⇒ a for
R′ = −1). This behavior of fermions has been verified experimentally through
neutron interferometry [11, 12]. This is important because experiments such
as this throw light also on the role of gravitation in quantum mechanics [13].
The way in which a phase difference is induced between the two particle rays
depends, in the first case, by it being induced from a magnetic field [11], and, in
the second case, from the earthly gravitational field [13]; the result is similar
in both cases, that is, one observes the usual peaks of interference pattern.
In order to see how a magnetic field can change the phase of a spinor, one
has to look at the precession of the spin, which, moreover, allows a beautiful
application of geometric algebra.

Further, in Reference [14], it is shown that, in the context of the Dirac theory
rewritten with the multivector algebra, the phase of the wave function shows
an intrinsic geometrical meaning that leads to some considerations regarding
the zitterbewegung. The free particle Dirac equation admits the plane waves
solution:

ψ = R0 exp[−γ2γ1 p · x/h̄], (10.80)
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where R0 is a constant Lorentz rotation and p the four momentum of the
particle. Hence, the dependence on the coordinates is exclusively in the phase
factor that in geometric algebra is a rotation spinor in the space-plane γ1 ∧ γ2.
Consider now the system of the currents: because γ0 and γ3 are perpendicular
to the plane γ2γ1, the velocity e0 = v = p/mc and the spin direction e3 are
constants (i.e., determined by R0). This is not true for the vectors e1(x) and
e2(x) that, on the other hand, have no analogy in the usual Dirac theory.
Because

e2e1 = R0γ2γ1 R̃0 (10.81)

we can also write

ψ = exp[−e2e1 p · x/h̄]R0 (10.82)

In that way we have shown a local rotation in the constant plane of the spin
e2e1 that one can also call the “phase plane.” In conclusion, one has that the
vectors e1(0) = R0γ1 R̃0 and e2(0) rotate in the spin plane in a way that it is
possible to define the phase of the wave

e1(τ ) = exp[−e2e1ωτ/2]e1(0) exp[e2e1ωτ/2] = exp[−e2e1ωτ ]e1(0), (10.83)

(notice that e1(0) anticommutes with the exp[ ])
where τ is the proper time of the electron ( p · x = mc2τ ) and

ω = 2mc2/h̄ = 1.6 × 1021 Hz (10.84)

is the rotation frequency. This geometric fact can be interpreted as a manifes-
tation of the zitterbewegung, the word with which Schrödinger [15] indicates
the fluctuations (of the order of the Compton length) of the position of the
electron. In that ambit the Compton length comes out as the typical length
associated with the electron in a natural relativistic way; in fact, ω, as a rota-
tion frequency, defines the limiting distance r (i.e., a real body cannot realize
a rigid rotating system with frequency � for distance greater than c/� in the
rotation plane) or the Compton radius

rC = c/ω = h̄/2mc = 1.9 × 10−11cm (10.85)

that we interpret as the ratio between spin and mass, the two fundamental
dynamical quantities.

We have seen [1] that torsion is responsible for the fluctuation of the
position �xµ ∼= Qµd S, whereas the defect angle is due to curvature
�ϑ ∼= RdS [16]. Because the curvature is linked to the mass and the torsion
to the spin, we find, taking the time component

�ϑ/�x0 � RdS/Q0dS = (χ p mc2)/(cχ p h̄/2)
= 2mc2/ch̄ = ω/c = 1/r, (10.86)

that the frequency ω, can be interpreted as the ratio between these two incer-
titudes. In conclusion, the quantum length rC can be considered as the ratio
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between torsion and curvature, and this fact suggests, again, that Q and R
can be considered as conjugate variables.

Appendix A: Commutator and Anticommutator

Now we must modify the commutation relations found in Section 10.3
(see equation 10.34) because, in that equation we have considered torsion and
curvature trivectors, whereas in Quadratic Hamiltonian (see Section 10.4) we
have to do with a bivector Qα(torsion) and a trivector Rα(curvature), which
are our canonical conjugate variables.

In other words, we try to improve the theory and we find important de-
velopments regarding the possibility to have commutation relations between
torsion and curvature with some consequences regarding considerations
about supersymmetry.

As we have seen, the commutators in Equation 10.34 allow a simple inter-
pretation in agreement with the geometric content of the Dirac equation, but
they are not entirely satisfactory because, in the Lagrangian (10.50) (and then
in the Hamiltonian 10.52) the conjugate variables are the torsion bivector Qα

and the curvature trivector Rα , whereas in Equation 10.34 the commutation
is made between trivectors.

In fact, working with geometric algebra, it is possible to have commuta-
tion relations between multivectors of different grades and not only between
geometric objects of the same type. Yet, Equation 10.34 has meaning, and it
is not to be rejected because we have started with a totally antisymmetric
torsion, and then, the torsion trivector Q is the complete and single object of
geometric algebra that contains the torsion field.

Now, the geometric product between a grade-r multivector Ar and a
grade-s multivector Bs can be decomposed as (see Reference [10], page 10,
Equation 1.36)

Ar Bs = ( Ar Bs)r+s + ( Ar Bs)r+s−2 . . . + ( AB)|r−s|. (A.1)

If r = 2 and s = 3, being in four-dimensional space-time, we are left with two
terms: ( AB)1 and ( AB)3. In other words, the geometric product BT, where
B is a generic bivector and T a generic trivector, can be easily calculated
remembering that every trivector T is the dual of some vector A (see Reference
[13], page 107, Equations B1 and B2), i.e.,

T = iA, (A.2)

where i = γ0γ1γ2γ3 is the unit pseudoscalar, and then, A is the vector dual of
T (remember that the dual application, the multiplication by i , transforms an
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r -vector in (4-r) vector). Moreover,

BA = B · A+ B ∧ A, (A.3)

where the inner product

B · A = (1/2)/(BA − AB) ≡ [B, A] (A.4)

has grade 1, and the outer product

B ∧ A = (1/2)/(BA + AB) ≡ {B, A} (A.5)

has grade 3.
Then, using also iB = Bi, one finds that

BT = BiA = iBA = i[B, A] + i{B, A} = [B, T] + {B, T}, (A.6)

where the commutator between B and T has grade 3 (trivector), and the
anticommutator has grade 1 (vector).

Finally, we can write:

Qα Rα = [Qα , Rα] + {Qα , Rα}, (A.7)

where

[Qα , Rα] = (1/2)Qαµν R σρ
αµ γν ∧ γσ ∧ γρ (A.8)

and

{Qα , Rα} = (1/2)Qαµν Rρ
αµνγρ. (A.9)

As in Equation 10.15, in agreement with the uncertainty relation �Q�R ≥
L−3

Pl , we can put

[Qα , Rα] = L−3
Pl iu, (A.10)

{Qα , Rα} = L−3
Pl v, (A.11)

where u and v are unit vectors.
Therefore, given the conjugate variables Qα and Rα , we have both com-

mutator and anticommutator; we believe that this fact can be related to
supersymmetry in the sense that one can treat simultaneously fermionic fields
and bosonic fields if one considers, as in the second quantization procedure,
the development of the fields in terms of creation and annihilation operators,
which present analogies with the relations (A.10 and A.11) between torsion
and curvature. However, this is an argument for future works.
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Maxwell equations, 98
multivector algebra, 126
neutron interferometer experiment,

131
quantum gravity, 142–144
spinor and quaternion algebra, 77
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Hindus, 6
Historical developments, 4–10
Hyperbolic cosine and sine functions, 38
Hyperplanes, 67–68

I

Imaginary units and numbers, 19, see also
Pseudoscalar and imaginary unit

”Infinitely small” concept, 4, 8
Infinitesimal rotation

Lorentz rotations, 128
Majorana-Weyl equations, 101–102
rotations, spinor theory, 71

Infinitesimal transformation, 143
”Infinity” concept, 4, 8
Inner products

axiomatic system, 21–23
Clifford algebra, 78
directions and projections, 31
geometrical product, 13–16, 18
historical developments, 9
Laplace expansion, 24
Maxwell equations, 89, 91
quadratic Hamiltonian, 147
quantum gravity, 157
space-time algebra, 110

Integral spin, 100
Interior covariant derivative, 147
Intrinsic spin, 120–122
Inversion, 89
i-planes

angles and exponential functions, 34, 36
Euclidean plane algebra, 113
parametric equations, 43–44
pseudoscalar properties, 58
spinor, 45–47, 46
vector vs. spinor, 47–49

Ipparco of Nicea, 5
Irrational numbers, 6
Isomorphism

space-time algebra, 61–62, 64, 111
spinor and quaternion algebra, 76

Isospace vectors, 62–63

J

Jacobi identity, 57

K

Klein-Gordon equation, 149, 151
Kockel studies, 150

L

Lagrangian
Maxwell equations, 87
neutron interferometer experiment,

130
quadratic Hamiltonian, 146, 148
quantum gravity, 142, 156

Laplace expansion, 24
Larmor Lagrangian, 150
Left composition law, 72
Left multiplication, see Multiplication
”Linear continuum” concept, 4
Linear independence

Dirac matrices, 59
Euclidean 3-space, 55
pseudoscalar properties, 57

Linear spaces, 50–51
Linelike physical elements, 11
Lorentz rotations and properties, see also

Rotations
boosts and spatial rotations, 111–112,

125, 127–129
Maxwell equations, 84–85
neutron interferometer experiment, 130
quadratic Hamiltonian, 146
quantum gravity, 143–145, 155
real dirac algebra, 66–69, 67
rotations, spinor theory, 70
wave function, 119

M

Magnetic field vectors, 96–97
Magnitude

elements, 11
generators of rotations, 112
multivectors, 30
vector algebra, 77
vector vs. spinor planes, 49

Majorana-Weyl equations, 100–103
Mathematical elements, 10–13, 12
Matrices significance, 59–60
Matrix algebra, 30
Maxwell equations

electromagnetic field, space and time,
97–103, 105–107

electromagnetic wave polarization, 94
Minkowski space-time, 83–85
quadratic Hamiltonian, 146
Riemann-Cartan space-time, 86–88, 87
Riemann space-time, 85
space-time algebra, 88–91
U4 manifold, 86–88, 87
V4 manifold, 85
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Measurements, 5
Mersenne, Marin, 7
Metric tensor, 139
Minkowski metric

Maxwell equations, 89
space-time algebra, 61

Minkowski space-time
Dirac matrices, 60
Maxwell equations, 83–85
spin fluctuations, 151

Mixed grades, axiomatic system, 18–19
Möbius strip

neutron interferometer experiment, 122,
125, 131

rotations, spinor theory, 71
Modern science, 5
Modulus, see Magnitude
Monochromatic plane waves, 94
Multiplication

axiomatic system, 19, 21
bivector of Euclidean plane, 44–45
directions and projections, 31–32
Euclidean 3-space, 54
exponential functions, 37
formulas and definitions, 23
Maxwell equations, 97
spinor and quaternion algebra, 75
vector vs. spinor planes, 47

Multiplicative identity, 20
Multiplicative inverse, 20
Multiplicative rule, 13–14
Multivectors, see also Graded multivectors

angles, 34–36, 35
axiomatic system, 19, 21
bivectors, 27–29
Clifford algebra, 79
conjugations, 64
directions, 30–33, 31
Euclidean plane algebra, 113
Euclidean 3-space, 56
exponential functions, 34–39
fundamentals, 4
generators of rotations, 111, 125–126
geometrical product, 17–18
historical developments, 8, 10
Lorentz rotations, 66, 68, 127
magnitude, 30, 112
mathematical elements, 11–13
Maxwell equations, 91
operation of reversion, 29–30
planes, geometric algebra, 50–51
projections, 30–33, 33
pseudoscalar properties, 57
quadratic Hamiltonian, 147
reversion operation, 29–30

space-time algebra, 61
spinor and quaternion algebra, 75

N

Negative direction, 41
Neutron interferometer experiment,

122–131, 123–125, see also
Generators of rotations

Neutron spin rotation, 72, 131
Neutron spin state, 71
Neutron-state space, 123
Newton, Issac, 5
Newtonian case, 140
Nonparametric equations, 41
Nonsymmetries, 151, see also

Antisymmetries
Nonzero bivectors, 28, 42
Nonzero vectors, 20
Number vs. magnitude, 5

O

Observables, 118–120
Odd parts, exponential series, 38
Operational interpretation, 79
Operation of reversion, 29–30, see also

Conjugations
Order of operations, 23
Orientation, 41
Orthogonal vectors, see also Vectors and

vector parts
directions and projections, 31–32
Euclidean plane algebra, 44
Euclidean 3-space, 54
geometric product, bivectors, 27, 29
Lorentz rotations, 128
multivector magnitude, 30
planes, geometric algebra, 50

Orthonormal tetrads, 147
Orthonormal vectors

Euclidean 3-space, 53
rotations, 133
space-time algebra, 62–63

Outer products
axiomatic system, 20–23
Clifford algebra, 78
directions and projections, 31
formulas and definitions, 25
geometric product, 13–16, 18, 28–29
historical developments, 9–10
Maxwell equations, 89, 91, 98–99
multivector algebra, 126
quadratic Hamiltonian, 147
quantum gravity, 157
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space-time algebra, 109–110
vector algebra, 77

P

Parallelograms
directions and projections, 32
historical developments, 9
Lorentz rotations, 67
vector algebra, 77

Parametric equations
Euclidean plane algebra, 41, 43
Euclidean 3-space, 53–54
i-plane, 43–44

Parentheses, 23
Pauli algebra and matrices

Clifford algebra, 78–79
complex numbers, electrodynamics, 103
Dirac equation, 117
electromagnetic field, space and time,

103–104
Euclidean 3-space, 114–115
Lorentz rotations, 69, 128
Majorana-Weyl equations, 100
Maxwell equations, 90
neutron interferometer experiment, 129,

131
pseudoscalar properties, 58
rotations, spinor theory, 69–71
space-time algebra, 62–64, 116
spin fluctuations, 152
spinor and quaternion algebra, 76

Perturbative QED, 140
Phase plane, 155
Photons, 86–87
Physical elements, 11
Pitagora, Talete, 6
Planck frequency and length

quantum gravity, 140, 142
spin fluctuations, 149, 152–154

Planelike physical elements, 11
Plane-wave solutions, 105–107
Plastic deformations, 141
Plato (philosopher), 4
Poincaré theory, 86, 138
Polar form, 118
Polarization, 94–97, 96, 105–107
Polar vectors, 77–78
Positive direction, 41
Product (geometric) rule, 58
Projections, 30–33, 33
Proper spin density, 120
Pseudoscalar and imaginary unit

angles and exponential functions, 34–35
bivector of Euclidean plane, 44

complex conjugation, 57
conjugations, 64
Dirac equation, 116
Euclidean plane algebra, 44
Euclidean 3-space, 53–57, 55
intrinsic spin, 120
Lorentz rotations, 68–69
Maxwell equations, 88, 90
quantum gravity, 156
results, 57–58
space-time algebra, 60, 62–63, 110,

116
spinor i-planes, 46
vector algebra, 77
vector vs. spinor planes, 47–49

Pseudovectors
conjugations, 64
Maxwell equations, 88–90
space-time algebra, 61, 111

Pythagoreans, 6

Q

Quadratic equations, 5–6
Quadratic Hamiltonian, 146–148
Quantitative interpretation, 79
Quantum gravity, 141

anticommutator, 156–157
commutator, 156–157
fundamentals, 154–155
geometric algebra, 137–139
quadratic Hamiltonian, 146–148
real space-time, 142–145
spin fluctuations, 149–154
torsion, 140–142

Quantum mechanics and quantum field
theory, 78–79, 123

Quantum theory
generators of rotations, 122
Lorentz rotations, 128–129
multivector algebra, 126
quadratic Hamiltonian, 148

Quaternion form, 97–103, see also
Hamilton, William Rowan and
Hamilton’s quaternions

Quaternion-vector controversy, 80

R

Radian measure
angles and exponential functions,

34
exponential functions, 39
Lorentz rotations, 68

r -dimensional space, 20–21
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Real Dirac algebra, see also Dirac equation,
matrices, and theory

conjugations, 64–65
fundamentals, 3
Hermitian conjugation, 65
Lorentz rotations, 66–69, 67
matrices significance, 59–60
reversion, 64–65
space conjugation, 65
space-time, 60–65, 116
spinor theory, rotations, 69–72, 70
three-dimensional Euclidean space,

69–72, 70
Real numbers, see also Scalars and scalar

parts
axiomatic system, 19–20
Dirac equation, 116
space-time algebra, 109
vector vs. spinor planes, 49

Real space-time, 126, 142–145
Reciprocal basis, 61
Rectangles, 77
Reduction formula, 24–25, 54
Rejection, vectors, 33
Relativity theory

Maxwell equations, 86
quantum gravity, 137, 140

Renaissance period, 5–6
Reversion

generators of rotations, 111
Lorentz rotations, 66
pseudoscalar, E3, 57
real dirac algebra, 64–65
space-time algebra, 116
vector vs. spinor planes, 49

Reversion operation, 29–30
r -graded multivectors

formulas and definitions, 24–25
geometric product, bivectors, 28
multivector magnitude, 30

Ricci connection coefficients, 147
Ricci tensor, 150
Riemann-Cartan geometry, 150
Riemann-Cartan manifold, 138
Riemann-Cartan space-time

intrinsic spin, 121
Maxwell equations, 86–88, 87
neutron interferometer experiment,

129–131
quantum gravity, 142–143

Riemannian part
quadratic Hamiltonian, 147
spin fluctuations, 149, 151, 153

Riemann space-time, 85
Right multiplication, see Multiplication

Rotation-dilations
Euclidean plane algebra, 114
Euclidean 3-space, 115
spinor and quaternion algebra, 75
wave function, 119

Rotations, see also Lorentz rotations and
properties; Spinors

angles and exponential functions, 36
bivector of Euclidean plane, 44–45
charge conjugation, 133
Clifford algebra, 78
operation of reversion, 30
spinor theory, 69–72, 70
vector vs. spinor planes, 47–48

Russo studies, 5

S

Sacharov studies, 141
Scalar algebra, axiomatic system, 21
Scalars and scalar parts

axiomatic system, 18, 20, 23
charge conjugation, 133
conjugations, 64
formulas and definitions, 26
geometrical product, 14
historical developments, 9
Lorentz rotations, 68
mathematical elements, 13
Maxwell equations, 84, 88, 98
multivector magnitude, 30
operation of reversion, 29
pseudoscalar properties, 57
space-time algebra, 61–63, 109, 116
spinor i-planes, 46
vector algebra, 77
vector vs. spinor planes, 48
wave function, 118

Schrödinger equation, 131, 155
Series expansions, 38–39
s-graded multivectors, 24–25
Sign change

charge conjugation, 133
Lorentz rotations, 128
Maxwell equations, 100
rotations, spinor theory, 72

Sine function, 34, 38–39
16-dimensional linear space, 116
Sommerfeld, Bohr and, studies, 142
Space conjugation, 65
Space-time and space-time algebra

conjugation, real dirac algebra, 65
deformations, quantum gravity, 141
Dirac equation and matrices, 59–60,

117–118
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generators of rotations, 109–116,
120–122

Lorentz rotations, 127–128
Maxwell equations, 88–91
metric tensor, 59
neutron interferometer experiment, 129
real dirac algebra, 60–64
transition, electromagnetic field,

103–104
Spatial extent, 11
Spatial rotations, 112
Spatial vectors, 98
Spin angular momentum operators,

101–102
Spin density tensor, 130
Spin fluctuations, 149–154
Spinor and quaternion algebra

Clifford algebra, 78–80
fundamentals, 3, 75–77
vector algebra, 77–78, 78

Spinor i-plane
angles and exponential functions, 34, 36
Euclidean plane, 45–47, 46

Spinor R
Lorentz rotations, 68–69, 127–129
Majorana-Weyl equations, 101
neutron interferometer experiment, 131
rotations, spinor theory, 70–72
space-time algebra, 111
wave function, 118–119

Spinors, see also Rotations
charge conjugation, 132
Clifford algebra, 79
Dirac equation, 116–118
electromagnetic field, space and time,

97–103
Majorana-Weyl equations, 100
Maxwell equations, 90, 98–99
neutron interferometer experiment, 130
quantum gravity, 142–143, 154
space-time algebra, 62
theory, rotations, 69–72, 70

Spinor vs. vector planes, 47–49
Spin plane, 145
Spin-spin interaction energy, 153
Stress-energy-momentum tensor, 138
Subalgebra

Euclidean plane algebra, 113–114
space-time algebra, 111, 116
spinor and quaternion algebra, 75

Subtraction, axiomatic system, 21
Supersymmetry

intrinsic spin, 121
Majorana-Weyl equations, 103
quantum gravity, 143–144

Symbolic system, 13–18
Symmetries

charge conjugation, 132
complex numbers, electrodynamics,

103
geometrical product, 13–18
geometric product, bivectors, 27
space-time algebra, 109

T

Tangent vectors, 132
Tensors

complex numbers, electrodynamics,
104

Majorana-Weyl equations, 102
Maxwell equations, 91, 98
neutron interferometer experiment, 130
wave function, 118, 120

Tetrads, 147
Tetra-potential, 84–85
Theory of relativity, 86, 137, 140
Three-dimensional Euclidean space

Clifford algebra, 78
Euclidean 3-space, 114
formulas and definitions, 23, 26
mathematical elements, 11
space-time algebra, 60, 62–63
spinor and quaternion algebra, 75–76
spinor theory of rotations, 69–72, 70

Three-dimensional spaces, 28, 115
Three-dimensional vector space, 53
Time dependence, 96
Timelike rotations, 69
Torsion

Maxwell equations, 87–88
neutron interferometer experiment, 130
quadratic Hamiltonian, 146, 149
quantum gravity, 139–142, 156
spin fluctuations, 149–150

Transformation law, 101–102
Trautman studies, 138
Treder, Borzeszkowski and, studies, 142
Treder and Borzeszkowski studies, 139
Trivectors

axiomatic system, 18, 22
conjugations, 64
Euclidean 3-space, 53
geometrical product, 17
mathematical elements, 13
Maxwell equations, 90
operation of reversion, 29
quadratic Hamiltonian, 148
quantum gravity, 145, 157
space-time algebra, 62, 64, 110–111
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Two-dimensional spaces
directions and projections, 32
intrinsic spin, 121
spinor i-planes, 46

Two-dimensional vector spaces, 42, 51

U

U4 manifold, 86–88, 87
Unique position scalars, 20
Unit vectors, see Directions

V

Vacuum and vacuum polarization
Majorana-Weyl equations, 102
Maxwell equations, 86–87
spin fluctuations, 149

Vector algebra
Clifford algebra, 3–4
electromagnetic field, space and time,

99–100
historical developments, 8–9
spinor and quaternion algebra, 77–78

Vectors and vector parts, see also
Orthogonal vectors

angles and exponential functions, 36
axiomatic system, 18–19, 21–23
charge conjugation, 132
Clifford algebra, 78–79
compared to spinor planes, 47–49
conjugations, 64
directions and projections, 30–32
electromagnetic wave polarization,

95–97
Euclidean 3-space, 115
formulas and definitions, 26

geometrical product, 13–14, 17
intrinsic spin, 120
Lorentz rotations, 66, 69
Majorana-Weyl equations, 102
mathematical elements, 13
Maxwell equations, 84, 88–90, 98
multivector algebra, 126
operation of reversion, 29
pseudoscalar properties, 57–58
quadratic Hamiltonian, 148
quantum gravity, 144
quaternion controversy, 80
space-time algebra, 61–62, 64, 109, 116
spinor i-planes, 46–47
vector algebra, 77–78

Vieta studies, 7
V4 manifold, 85
Volume-like physical elements, 11

W

Wave function, 118–120
Wave trains, 96–97
Weierstrass studies, 4, 8
Weyl, H., 100, see also Majorana-Weyl

equations
World velocity, 119

X

Xin, Yu, 125, 142

Z

Z-axis, 123–124
Zitterbewegung, 152
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