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Preface

During the last decade, international financial market regulation has had a notable impact
on the business of financial intermediaries worldwide. Today, this process is ongoing as
regulation as well as research impacts continuously find their way to trading and financial
risk management departments. For financial institutions the Basel Accord, BIS (2001), is
one of the major driving forces behind regulation and credit risk intermediation. While the
accord sets the fundamental framework, each institution will need a sound understanding
of its portfolio of credit risks before devising an implemented risk management system.
Also, product innovations in credit risk transfer need a basis for sound applications in
practice. This requires the choice of a set of suitable models together with the derivation of
reliable empirical results on the validity of these models, before a system is implemented.

The present volume provides insights with respect to these questions. It provides 26
chapters in the areas of applied credit risk modeling, implementation, and management
written by experts in the field with unique academic and industry backgrounds. The
volume is structured along six main parts (Parts I–VI) covering aspects of credit risk
management, pricing, and the uses of derivative products. The remainder of this preface
first gives a current view on the credit risk topic and then points out the particular
contributions of the volume, whose chapters address various challenging fields within
the area.

A VIEW ON CREDIT RISK—RESEARCH AND ANALYSIS
While relevant to academics in finance for decades, the development of new methods, the
appearance of new products, and their increased application in the financial services
industry have heavily fostered research in the area of credit risk. Hence, for academics
and practitioners alike, credit risk has grown to become an enormous field during the last
decade, while it is still in a state of rapid expansion.

In fact, credit risk has long been of academic interest in the business and finance
communities. For example, rigid statistical analysis of corporate default was carried out
by Edward Altman starting in the 1960s. The structural credit risk modeling approach
follows the celebrated option-pricing framework of Black, Scholes, and Merton. Also,
among others, we may trace back intensity-based credit risk models to results from
statistical renewal theory, about which Cox (1962) wrote an early monograph. Given
these roots, the 1990s were a period that brought about intensified research in the area
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of credit risk modeling and pricing.* In the present volume, Parts II–IV cover the
traditional credit risk perspective, which includes credit risk models, pricing issues, default
prediction, and empirical findings.

It took some time for comprehensive treatments of credit risk appeared, making the field
available to a broader audience. Some of today’s state-of-the-art treatments with a focus on
riskmodels include, for example, Bielecki and Rutkowski (2002), Bluhm et al. (2003), Cossin
and Pirotte (2001), Duffie and Singleton (2003), Giesecke (2004), Lando (2004),McNeil et al.
(2005, Chapters 8 and 9), and Schönbucher (2003), among many others that appeared
between the year 2000 and today.y Saunders and Allen (2002) offer a discussion of the
regulatory context and explain industry benchmarkmodels. Fong (2005) is an edited volume
with a focus on advancedmodeling issues. Altman andHotchkiss (2006) is a state-of-the-art
volume that covers corporate analysis and bankruptcy prediction.

A VIEW ON CREDIT RISK—DERIVATIVES MARKETS
AND APPLICATIONS
Increased industry interest in credit risk emerged parallel to the development of academic
research. As such, starting in the mid-1990s, credit risk management using credit deriva-
tives gained much attention in practice. Advances in bank regulation and banks’ capital
requirements, and also the—then largely unmet—trading and speculation needs of various
other market participants (including, e.g., hedge funds) created enormous growth in the
market for credit derivatives.

Credit default swaps (CDSs) whose payoff is contingent on the default of a single obligor
have now become the most important and liquid class of credit derivatives. These
instruments provide insurance against obligor default and hence allow for elimination of
individual risks in a lender’s credit portfolio. With the emergence of the credit derivatives
market, growth in outstanding credit derivatives notional was outstanding. Global notional
in CDS reached $4.5 trillion at the end of June 2004 (see BIS 2005, p. 116), which is
amazing for a market that had just emerged with the end of the 1990s. According to
surveys of the International Swaps and Derivatives Association (ISDA),z during the period
June 2001 to June 2006, growth in CDSs was in a range between 50% and 128% annually.
Comprehensive details on the derivatives markets and a perspective on risk management
can be found, for example, in Anson et al. (2003), Batten and Hogan (2002), and Chaplin
(2005), among several others. In the present volume, Parts I–III address the topic of CDSs.

More recently, portfolio products such as baskets and collateralized debt obligations
(CDOs) have gained much practical attention. CDOs, whose payoff is contingent on the
loss of a predefined portfolio of obligors, can help banks and other lenders to structure their
credit risk profiles. In detail, the tranching of portfolio loss distributions enables market

* See Altman and Saunders (1997) for a detailed review and a discussion on how the academic assessment of what
was perceived as credit risk has changed.
y For an in-depth review of three of the books mentioned above, namely Duffie and Singleton (2003), Lando (2004),
and Schönbucher (2003), see Schuermann (2005).
z See the ISDA summaries of midyear market survey results at www.isda.org.
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participants to buy or sell protection for a given range of percentage portfolio losses, called
‘‘tranches.’’ Hence, as an example, a bank may keep ‘‘regular’’ credit risks in its credit
portfolio, while it may buy protection for tail risks, i.e., any percentage portfolio losses
exceeding a given threshold, via trading CDO tranches with a reference portfolio identical
(or similar) to the bank’s credit portfolio.* Other typical applications include the release of
regulatory capital, funding improvements, rating arbitrage, and finally speculation.

To ease trading and improve liquidity, standardized portfolio products are frequently
based on established indices of liquid single-name CDSs. Important index examples are two
credit risk benchmark indices, namely the Dow Jones CDX North America Investment
Grade (DJ CDX.NA.IG) index for the U.S. index and the Dow Jones iTraxx Europe (DJ
iTraxx Europe) index. Both market indices comprise 125 equally weighted large-cap
investment-grade obligors, which have their individual default risks traded in a liquid
CDS market. Several subindices cover, for example, sectors (e.g., DJ iTraxx Europe energy)
or high-volatility index members (e.g., DJ CDX.NA.IG.HVol). Further indices cover regions
(e.g., DJ iTraxx Asia) or subinvestment-grade obligors (e.g., DJ CDX.NA.HY).y Given such
CDS indices, a special class of CDOs is index tranches, where the underlying reference
portfolio is given by a standardized index portfolio.

Bluhm and Overbeck (2007) provide a comprehensive overview on credit portfolio
products and models. A crucial concept for portfolio products is dependence modeling,
which is outlined in the finance context, for example, in Cherubini et al. (2004). Elizalde
(2006) reviews CDOs and their pricing. In the present volume, Parts V and VI address the
emerging field of credit portfolio risk.

RECENT TOPICS IN CREDIT RISK—MODELS, DERIVATIVES,
AND MANAGEMENT
The recent development in the markets for corporate credit makes it obvious that credit
risk modeling and management are being confronted with a variety of challenges. The
present volume addresses the gap between theory and new theoretical developments on
one side and empirical findings and model implementation on the other.

Part I of the volume offers a view on the quickly developing area of credit derivative
products. In Chapter 1, Anouk Claes and Marc De Ceuster review the mechanics of the
single-name CDS market, the essential building block for any type of credit derivative
product. By definition, the CDS is a contract in which a protection seller insures a
protection buyer for a well-specified credit event on a notional amount for a specified
period and for a specified portfolio of reference assets. As the risk of counterparty default
is inherent in nearly all financial transactions, including credit derivatives, Volker
Läger, Andreas Oehler, Marco Rummer, and Dirk Schiefer point out methods of treating

* While such a transaction takes place in an established derivatives market, it much resembles the situation of an
insurance company that buys protection from a reinsurance company.
y For index product details refer to www.djindexes.com, www.indexco.com, and www.markit.com. In general, www.
defaultrisk.com proves to be a useful Web resource for an overview on recent working papers as well as publications
in the credit risk area.
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counterparty risk in the pricing of CDSs. In Chapter 2, they consider valuation models
based on observable market data, a structural model approach, an intensity model, as well
as a rating-based approach. Jochen Felsenheimer and Philip Gisdakis take a view on future
developments in integrated credit portfolio management in Chapter 3. They assess a broad
range of structured credit instruments and their optimal uses, including new instruments
such as iTraxx Futures, iTraxx default swaptions, and constant proportion debt obligations
(CPDOs). Development in the CDS markets offers opportunities for additional products in
banking and risk insurance. In Chapter 4, Rachel Campbell and Christian Wiehenkamp
propose a new CDS instrument for commercial banks that use alternative assets such as art
works as collateral, yielding art-backed loans. A CDS then transfers undesirable art price
risk from banks to third parties who are willing to buy the art held as collateral at a
guaranteed price in the case of default.

Part II of the volume addresses credit risk and credit spreads. CDSs represent traded
credit spreads, which depend on a variety of economic state variables. In Chapter 5, Hans
Byström analyzes the DJ iTraxx CDS index and its relation with the stock market. He finds
that index spreads narrow when stock prices rise; the stock market leads the CDS market
and index spreads tend to increase with increasing stock market volatility. In Chapter 6,
Danielle Sougné, Cédric Heuchenne, and Georges Hübner study the relationship between
CDS spreads and macroeconomic factors constructing synthetic time series of sector
spreads for the automobile, consumer, energy, and industrial sectors. Confirming the
results of Byström, they find that the spread exposure to a stock market index is negative.
They also document that the exposure to the consumer price index and to a bond index is
positive, while the main sources of systematic risk exposures generally tend to be tempor-
ary and unstable. Kannan Thuraisamy, Gerry Gannon, and Jonathan Batten examine the
recent behavior of credit spreads on sovereign issuers from Latin America in Chapter 7.
They find that credit spread changes are driven by interest rate and asset factors with both
factors negatively related to changes in yield spreads. In Chapter 8, Umberto Cherubini
discusses recent famous cases of corporate bankruptcy, namely Tyco (bankruptcy filed in
2002), WorldCom (bankruptcy filed in 2002), Enron (bankruptcy filed in 2001), and
Parmalat (bankruptcy filed in 2003). These crises were typically announced by an inversion
of the term structure of CDS spreads, while the values of equity and debt tend to co-move,
while evidence of causality between both categories appears weak. He concludes that the
financial scandals surveyed share many common features, including management’s philo-
sophy that transparency is a cost to evade rather than an opportunity to reduce the firm’s
cost of capital. As an example of a sovereign crisis, Chapter 9 examines the 2002 debt crisis
in Argentina. Jorge Chan-Lau proposes to take a closer look at the maximum recovery rate
that is compatible with observed CDS prices. Using such measures, he suggests construct-
ing early warning indicators of financial distress.

Single-name credit risk models are focused on in Part III. While the structural modeling
approach following Merton is very intuitive and elegant, there is wide consensus that
structural models are difficult to implement. Gurdip Bakshi, Dilip Madan, and Frank
Zhang (Chapter 10) empirically investigate systematic and firm-specific default risk fac-
tors. They analyze a set of three-factor credit risk models, where two factors cover interest
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rate risk and a third factor covers firm-specific distress (proxied for, e.g., by firm leverage,
book-to-market, profitability, equity-volatility, or distance-to-default). Among other
findings, they point out that the mis-pricing of low-grade bonds indeed significantly
tends to decline when taking leverage into account. Starting also from the structural
model intuition, Christian Stewart and Niklas Wagner consider the pricing of CDSs in
Chapter 11. They use CDSs from the DJ CDX.NA.IG index universe and compare the
pricing results from the CreditGrades industry benchmark to a trinomial tree approach.
Their results indicate that the models’ pricing performances can be relatively poor, while
the trinomial model outperforms CreditGrades. Company-specific variables hardly explain
cross-sectional differences in model performance, while applying the trinomial model to
companies with above average R2 characteristics yields improved pricing performance. In
Chapter 12, the Hull–White intensity-based model is applied to the pricing of names again
from the CDX index universe. Bastian Hofberger and Niklas Wagner obtained satisfying
pricing results subject to the base condition that liquid bonds with appropriate maturities
are available for the respective issuers. Testing for co-integration of model and market
spreads confirms a generally stable pricing relationship, while in several cases the model
fails. While the cross-sections and time series of the CDS quotes in Chapters 11 and 12
overlap only partly (given constrained respective data availability), the results also provide
some tentative indication that, on average, Hull–White pricing results are not dominated
by those obtained in Chapter 11.

Part IV of the volume covers default and recovery risks, credit ratings, and applications
within the Basel II framework. In Chapter 13, Edward Altman, Brooks Brady, Andrea
Resti, and Andrea Sironi analyze aggregate default and recovery rates on corporate bond
defaults over a 20-year period. In principle, default rates should increase during periods of
economic stress, which also causes the value of assets of distressed companies to decrease.
However, the statistical relationship is less significant than one might expect. Hence, the
authors argue that recovery rates are a function of supply and demand for defaulted
securities. Supply is driven predominantly by default rates and demand by alternative
investment managers who act as purchasers of defaulted securities. Their empirical results
have important implications for credit risk models and for Basel II implementations. As
default rates increase during periods of economic stress and vice versa, risk models need to
consider determinants of default probability changes. In Chapter 14, Fabien Couderc,
Olivier Renault, and Olivier Scaillet investigate common determinants of default probabil-
ity changes of individual firms by analyzing the responses of hazard rates to changes in a
set of economic variables which should describe the state of the default cycle. They find
that, in comparison to market factors (stock and bond market indicators), business cycle
and credit risk factors become dominant as the issuer quality decreases. Past economic
conditions are important in explaining probability changes, where lagged stock volatility is
an overall significant determinant. In Chapter 15, Gabriele Sabato considers low-default
portfolios that face the statistical problem that the number of defaults is low or equal to
zero. He considers several methodologies and argues that generic scoring models are
neither the only way nor the most accurate to solve the problem. The proposed logit
model predicts the 1-year probability of default through several credit customer attributes.
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It is shown to be a suitable model that may facilitate risk assessment in the absence of
sufficient historical default data in the Basel II context. Chapter 16 outlines tests on the
accuracy of the Basel II framework, considering two of its crucial assumptions, namely that
the risk of individual credit exposures is driven by one systematic factor only and that the
bank’s credit portfolio is fully diversified. Using a ratings-based credit risk model, which
accounts for multiple risk factors and portfolio concentration, Simone Varotto shows that
these Basel assumptions may yield substantial biases and can well have an economically
significant impact on risk assessments.

The topic of credit risk and default dependence is addressed in Part V of the volume.
Today’s market benchmark models of implied credit correlation risk surely have draw-
backs. In Chapter 17, Vineer Bhansali analyzes the market situation saying, ‘‘What the
Market Is Telling Us and Does It Make Sense?’’ He points out that—based on a very
probably mis-specified Gaussian copula model, which is frequently used in practice—
compound correlations (base correlations) implied by tranche prices typically appear to
have a ‘‘correlation smile’’ (correlation skew). Additionally, equity tranches typically have
positive correlation sensitivity, i.e., as correlation rises the equity tranche rises in value,
whereas more senior tranches exhibit negative correlation sensitivity. Chapter 18 deals
with copula-based default dependence concepts. Elisa Luciano reviews the state-of-the-art
and points out open modeling issues in structural and intensity models. Starting from the
well-known Li model, she points out dynamic inconsistencies, in that structural models
with diffusive asset values do not have an intensity-based representation. This in turn
allows for a calibration under the historical measure only, since historical equity returns
are usually taken as asset return proxies. To calibrate dependence under a risk-neutral
measure, the so-called factor copula is then presented. An empirical investigation of the fit
of various copula models is provided in Chapter 19. Here, Sanjiv Das and Gary Geng
model, simulate, and assess the joint default process of a broad cross-section of U.S.
corporate issuers during the period 1987–2000. Default dependence has several character-
istics that can be accounted for when using copula functions, namely level, asymmetry, and
extreme behavior. They find that the skewed double-exponential distribution is a suitable
choice for the marginal distribution of each issuer’s hazard rate process. In dependence
modeling, the Gumbel, Clayton, and Student-t copula functions in fact allow for improve-
ments over the standard Gaussian copula. In Chapter 20, Sofiane Aboura and Niklas
Wagner discuss a common factor model of systematic credit risk and analyze credit risk
factor sensitivities and extreme dependence. They do this under the risk-neutral measure
by relating single-name CDS spread changes to those of an observable factor, namely the
DJ CDX index. The empirical results suggest pronounced time variation and asymmetry in
factor dependence, where upward factor jumps matter. The latter finding is in line with
models of infectious default and supports the result of Chapter 19 that portfolio credit
models should consider asymmetric dependence.

As pointed out above, the market for credit derivatives has been innovative recently.
Options and futures on index spreads and index tranches (e.g., with the DJ CDX or DJ
iTraxx index serving as underlying) are at the edge of this development. Part VI of the
volume considers options, credit portfolios, and the pricing of loss distribution tranches.
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In Chapter 21, Damiano Brigo presents models for the pricing of options on single-name
CDSs, the so-called swaptions, where he takes the perspective of the LIBOR (London
interbank offered rate) market model into account. He considers standard CDS payoffs as
well as alternatives and approximates CDS options via defaultable callable notes. He
derives a Black-type pricing formula as well as an analytical formula for options under a
CIR (Cox–Ingersoll–Ross)-type stochastic-intensity model. In Chapter 22, Siu Lam Ho and
Lixin Wu discuss the pricing of credit derivatives from a general perspective. Like Damiano
Brigo in Chapter 21, they suggest using a unified, LIBOR market model-type framework.
They price single-name CDS options as well as portfolio credit derivatives such as CDOs.
Pricing is based on forward credit spreads, which are implied by observable CDS rates, as
well as on CDS rate correlations, and on implied swaption volatilities. Single-name
swaptions are priced via a Black-type model, while prices of portfolio credit derivatives
are derived via Monte Carlo simulation. In Chapter 23, Vincent Leijdekker, Martijn van
der Voort, and Ton Vorst conduct an empirical analysis of CDO price data, using the mis-
specified base correlation benchmark method as a starting point. The authors perform an
empirical analysis of market prices for CDO tranches on the iTraxx and CDX indices by
filtering out the effect of the portfolio credit risk by means of a simple regression analysis,
which shows that correlation matters. Also, the evolution of the base correlation over time
and three different mapping methodologies are investigated. The latter can be used to
determine correlations for nonstandard tranches, given base correlations derived from the
index market.

Manuel Moreno, Juan Peña, and Pedro Serrano devote their contribution (Chapter 24)
to the pricing of CDO tranches with generalized multifactor models, where the Vasicek
one-factor structural model forms the starting point. Their model extensions include (1)
the relaxation of the asset homogeneity assumption, (2) the introduction of a second,
industry-specific systematic risk factor, which adds to the business cycle factor, and (3) the
relaxation of the factor normality assumption via considering Student-t distributions.
Their empirical factor model specifications use six explanatory variables to explain a set
of historical default rates, namely the real gross domestic product (GDP), the consumer
price index, the annual return on the S&P500 index, its annualized volatility, the 10-year
treasury yield, and the index of industrial production. In Chapter 25, Jean-Michel
Bourdoux, Georges Hübner and, Jean-Roch Sibille study applications of the Gaussian
and the Student-t copula functions in an intensity-based pricing approach for iTraxx
index tranches. They attest that correlation has a major impact on the prices of CDOs.
They also verify Vineer Bhansali’s statement from Chapter 17 that the correlation smile
mirrors the fact that the Gaussian copula is not an exact distribution yielding the well-
known correlation smile and that correlation effects are opposite between the equity
tranche and the rest of the tranches. The authors further emphasize that the introduction
of a random recovery rate should be seriously considered. Their tests on the Gaussian and
the Student-t copulas document an equally poor job in describing the CDO correlation
structure, although the Student-t copula can in principle accommodate tail effects, which
the Gaussian cannot. In the volume’s final contribution, in Chapter 26, Manuel Moreno
and Pedro Serrano study the pricing of CDOs via Monte Carlo simulation. Their approach
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is also motivated by intensity-based modeling, in which they consider different multifactor
specifications, jumps in the default intensity process, and random default losses. Their
simulation analysis shows that a three-factor model with constant loss impact is flexible
enough to reproduce the spreads given by the market, where modeling random losses can
be helpful when dealing with one- or two-factor models.

As a final point to this preface, I would like to mention that credit risk will prevail as a
challenging topic after this book is published. Reports on subprime mortgage loan and
CDO-related credit problems accumulated recently. The current U.S. subprime mortgage
loan crisis, CDO-related credit problems, several bankruptcies of low-grade lending insti-
tutions, and the related substantial financial problems of major financial institutions
worldwide are an indication of the ongoing relevancy of thoughtful credit risk modeling
and management. Also at this point, I would like to thank all contributors, Darrell Duffie
and Greg Gregoriou as well as Sunil Nair and Jessica Vakili, both of Taylor & Francis
group, for their kind respective support of the book.

Niklas Wagner
Munich and Passau
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A View on Credit Derivatives
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Default Swap Valuation:
A Review
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The potential of credit derivatives is immense. There are hundreds of possible
applications: for commercial banks which want to change the risk profile of their
loan books; for investment banks managing huge bond and derivatives portfolios;
for manufacturing companies over-exposed to a single customer; for equity inves-
tors in project finance deals with unacceptable sovereign risk; for institutional
investors that have unusual risk appetites (or just want to speculate); even for
employees worried about the safety of their deferred remuneration. The potential
uses are so wide spread that some market participants argue that credit derivatives
could eventually outstrip all other derivative products in size and importance.

(EUROMONEY, MARCH 1996)

1.1 PRODUCT
A credit default swap (CDS) is a bilateral and privately negotiated contract in which a
protection seller (the insurer, the risk taker) insures a protection buyer (the risk shedder)
for a well-specified credit event on a notional amount for a specified period and for a
specified (portfolio of) reference asset(s). The protection buyer periodically pays (in
arrears) a fixed fee (a CDS premium) to the protection seller as long as no credit event
occurs. In case the credit event occurs, the buyer or the seller can send a credit event notice
to the other party, after which the seller has to pay compensation to the protection buyer.
The buyer often still has to pay a final accrual payment.

1.1.1 Settlement

Depending on the contract specifications, the default event allows the protection buyer:

. To settle physically, which means that the defaulted bond (i.e., the deliverable
obligation) will be delivered at par. Physical delivery is still the most common way
of settling, according to the 2006 BBA credit derivatives report, representing 75% of
the settlements. Delivery normally takes place within 30 days after the credit event.
The Delphi bankruptcy case in 2005, however, illustrated a disadvantage of physical

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C001 Final Proof page 4 8.4.2008 6:05pm Compositor Name: VBalamugundan

4 & Credit Risk: Models, Derivatives, and Management



settlement. The demand from protection buyers looking to source bonds and specul-
ators anticipating a short squeeze pushed the Delphi bond price severely upwards
immediately after the bankruptcy. Pool and Mettler (2007) observed that this caused
a disorder in the cash and the derivatives market. Very large—relative to the
deliverable bonds outstanding—notional (single name) CDSs’ exposures put protec-
tion buyers at risk of not receiving their contingent payment due to the difficulties
they experienced in sourcing deliverable bonds.

. To settle in cash, i.e., to receive the difference between par and the bond’s recovery
value. Since obtaining quotes for a distressed reference asset is not trivial, cash
settlement is less common. If chosen, settlement normally takes place within 5
business days after the credit event. A calculation agent then polls dealers to deter-
mine a mid-market price of the reference obligation.

. To receive a preagreed fixed payoff, irrespective of the recovery rate (fixed amount
settlement or digital CDS structure) (Figure 1.1).

1.1.2 Positions

Market terminology relies on the fact that the traded asset in a CDS is the default
protection. Consequently, the protection buyer is considered to be long in the CDS
whereas the protection seller is considered to be short. Alternatively, one can also refer
to the position taken with respect to credit risk. The CDS buyer (seller), who is long (short)
in the CDS, will be short (long) in the credit.

1.1.3 CDS Rate

Since a CDS is designed as a swap, the parties do not exchange money when entering the
contract, but determine the periodic payments in such a way to enter the CDS at zero
value. The premium paid is often called the CDS spread. Note that contrary to what the
name might suggest, the CDS spread is not quoted vis-à-vis a risk free benchmark such as
yield spreads. The term ‘‘CDS rate’’ would therefore be more appropriate. This CDS rate, s,
is quoted in basis points per annum of the contract’s notional value. The premiums are
usually paid quarterly.

Since the protection buyer can deliver the defaulted bond at a prespecified price when
the credit event occurred, the CDS rate can be interpreted as a put option premium, paid
over the term of the contract. If you have to pay 160 bps for a 5 year CDS on a notional of

Protection buyer
Risk shedder

Long CDS
Short credit

Protection seller
Risk taker
Short CDS
Long credit

Periodic CDS
premium

Contingent
(default) payment

FIGURE 1.1 Basic credit default swap structure.
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$10 million on Ford, you pay 40 bps (i.e., $40.000) every quarter to insure yourself against
the default of Ford.

A bid of 150 bps on a CDS means that the bidder is willing to enter into a long CDS at a
rate of 150 bps. An offer of 180 bps represents a seller willing to enter into a short CDS at
180 bps. As always, the offer quotes will exceed the bid quotes.

1.1.4 Reference Credit and the Reference Asset

The reference credit (credit entity, reference entity) is one (or several) issuer(s) whose
default triggers the credit event. This can be one or several (basket structure) defaultable
issuers. In case of multiple defaultable issuers, the credit event is triggered by the default of
m-of-n credit entities.

The reference asset is one (or a set of) asset(s) issued by the reference credit (loans,
bonds), needed to determine the credit event and the recovery rate.

Using this terminology, Daimler Chrysler could be the reference credit. All senior
unsecured bonds issued by Daimler Chrysler with an issue size of minimum e10 million
would be an example of the reference asset.

1.1.5 Credit Event

The ISDA’s Master Agreement launched in 1999, and revised in 2002 and 2003, provides
six potential trigger events:

1. Bankruptcy

2. Failure to pay

3. Repudiations=moratorium

4. Obligation acceleration

5. Obligation default

6. Restructuring

In practice, (1), (2), and (6) are most common. Bankruptcy occurs if the reference entity
becomes insolvent or when it is unable to repay debt. The precise bankruptcy event needs
to be specified in the contract. Failure to pay occurs when the reference entity, after a
certain grace period, fails to pay any interest claim or the principal. Restructuring refers to
a change in terms of the debt contracts of the reference entity that are adverse to the
creditors. This credit event also needs to be specified further in the contract.

1.1.6 Example

Consider a 3 year CDS with annual payments represented in Table 1.1. The CDS rate is set
at s per annum on a notional of e1. The time grid in the table is biannual. In case no
default occurs during the maturity of the CDS, the protection buyer has to pay s at the end
of every year. In case default would take place at t¼ 3, i.e., after 1.5 years, a terminal cash
flow would be paid to the protection buyer.
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. This terminal cash flow equals the F(1 � R) where F denotes the notional and R the
recovery rate.

. Alternatively, the recovery rate can be expressed as a percentage of the market value.
In doing so, we take into account the accrued interest earned, AI, on the reference
asset and the terminal cash flow becomes (FþAI)(1�R).

. Finally, CDS contracts often state that the last premium will be due pro rata temporis
(i.e., an accrued fee, AF). The accrued fee is netted with the recovery value. Hence the
terminal cash flow would become (FþAI)(1�R)�AF.

1.2 MARKET
Credit derivatives were first introduced at the annual meeting of the International Swaps
and Derivatives Association in 1992 (Houweling and Vorst, 2005). Figure 1.2 shows that
the growth of the global market has been overwhelming. From 1996 to 2004, the market
size doubled biannually. Over the (last) 2004–2006 period the market even quadrupled to
over US $20 trillion.

The market is organized as an OTC market. On the basis of Fitch 2005 data, Pool and
Mettler (2007) indicate that Morgan Stanley, Deutsche Bank, Goldman Sachs, and JP
Morgan have consistently been the top four OTC market makers. The interdealer market
has been facilitated with the development of electronic trading systems such as the

TABLE 1.1 Credit Default Swap with an Annual Premium on a Notional of e1

Time Index (t) 0 1 2 3 4 5 6

Time (in years) 0 0.5 1 1.5 2 2.5 3

Cash flows in case of no credit event 0 �s 0 �s 0 �s
Cash flows in case of default at time 1.5 0 �s (FþAI) (1�R)�AF 0 0 0

0

5,000

10,000

15,000

20,000

25,000

1996 1998 2000 2002 2004 2006

FIGURE 1.2 Global credit derivatives market (in billions of U.S. dollars). (From Barrett, R. and
J. Ewan, 2006,BBACredit Derivatives Report 2006, British Bankers Association, London, p. 39.)
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Creditex RealTime Platform. These platforms provide price and trade transparency as
well as operational efficiencies. Over 35% of all European Credit Derivatives are now
being traded electronically, with North America in hot pursuit (http:==www.creditex.
com=web=electronic-trading.html).

Figures 1.3 and 1.4 summarize the results of the 2006 BBA survey (Barrett and Ewan,
2006). Banks still constitute the major market players both on the buy and the sell side of
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FIGURE 1.3 Distribution of the buyers of credit protection. (From Barrett, R. and J. Ewan,
2006, BBA Credit Derivatives Report 2006, British Bankers Association, London, p. 39.)
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FIGURE 1.4 Distribution of the sellers of credit protection. (From Barrett, R. and J. Ewan,
2006, BBA Credit Derivatives Report 2006, British Bankers Association, London, p. 39.)
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the market, although their market share has been decreasing on both sides over the past
years. They use credit derivatives for trading purposes (2=3) and for managing their own
loan books (1=3). During the last years, hedge funds have mainly become a driving source
of market expansion.

Insurers, however, typically sell credit protection. The figures clearly show that corpor-
ates still have to discover the CDS market. ‘‘Other’’ includes among others, mutual funds
and pension funds.

Although the market growth is fierce, the evolution of the market is still hampered by
legal issues (e.g., the precise credit event definition) and by the backlog of unconfirmed
trades (Pool and Mettler, 2007). The 2006 BBA survey, for example, reports that 10% of the
trades had more than 2 month delays in confirmation. Demand for standardized
exchange-traded alternatives is clearly growing and is giving rise to the development of
products such as credit futures and credit index options.

Although the variety of credit derivatives has proliferated quickly, in 2006 the BBA
estimated single name credit default swaps still constitute one third of the market (Barrett
and Ewan, 2006).

1.3 ITS USE
CDSs can be used both from an investment angle and from a risk management pers-
pective. Moreover, they have been recognized as leading indicators of bond and equity
markets.

. By definition the CDS can be used to ‘‘insure’’ a long corporate bond (portfolio)
against credit risk. Adding long CDSs transforms the corporate bond portfolio into a
credit risk free portfolio.

. Alternatively, the CDS allows all parties involved to take bidirectional positions in
pure credit risk. They can go long and short in credit risk without an initial funding
requirement. A CDS can be entered into even if the cash bond of the reference entity
of a specified maturity is illiquid or even unavailable.

. The CDS market has been recognized as a leading indicator for equity and bond
markets (Hull, Predescu, and White, 2004).

. Backshall (2004) argues that CDSs can also be used to estimate (or speculate) on the
timing of the default. If a 5 year single name CDS is traded at 2000 bps, we would
have to pay US $2 million per year for a US $10 million position. Hence the market
expects the single name to default within roughly 2.5 years.

1.4 CDS REPLICATION
Whenever a product is complex, one can try to decompose it into known building blocks in
order to replicate its cash flows. Several ‘‘quasi’’ replication strategies have been presented
(Cossin and Pirotte, 2001; Schonbucher, 2003). We will consider two strategies, a fixed
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coupon bond strategy and an asset swap strategy, that both approximately replicate the
CDS payoffs.

1.4.1 Fixed Coupon Bond Strategy

Consider on the one hand a long CDS on the defaultable bond with CDS rate s and
notional amount F.

Consider on the other hand a portfolio consisting out of

. Short position in a T year defaultable coupon bond, B, with coupon c and face
value F

. Long position in a T year default free coupon bond B* with coupon c� s and face
value F

The coupon rate of the default free bond is adjusted in such a way that the initial bond
prices equal.

. Assume for example, two 3 year coupon bonds both with a face value of 100. The risk
free coupon bond pays a coupon, c� s, of 5%. If the yield to maturity of this bond
(y*) is 6%, the risk free bond prices at 97.32699. The yield to maturity of the risky
bond (y) is assumed to be 7%. In order to price the risky bond at 97.32699 as well, a
coupon (c) of 5.9814% needs to be paid. This implicitly defines s¼ 0.9775.

In case of default at time tj, the portfolio is unwound and a recovery rate, R, is recovered of
the face value.

The value of a bond at time t is denoted B(t).
The cash flows of these two portfolios are presented in Table 1.2.
In case no default takes place, the cash flows of the portfolios are identical. Con-

sequently, if (and only if) also the cash flows in the default state coincide, the initial
prices of the two bonds should be exactly the same. A perfect replication therefore
requires that the default free bond B*(j) should be priced at par at the time of default
(tj). This makes the replication based on fixed coupon bonds, in general, only an approxi-
mate one.

TABLE 1.2 Replicating the Credit Default Swap as a Defaultable
Coupon Bond

Time Portfolio 1 Portfolio 2

No Default Defaultable Bond Default Free Bond CDS

t¼ 0 B(0) �B*(0) 0

t¼ ti �c c� s �s
t¼T �(Fþ c) Fþ c� s �s
Default

t¼ tj �RF B*( j) (1�R)F
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If the replication would be perfect, the CDS could be replicated by:

B(0) ¼
X

PV( y*)(c� s)þ PV( y*)(F)

¼
X

PV( y*)(c)�
X

PV( y*)(s)þ PV( y*)(F)

¼ cA( y*) � sA( y*) þ PV( y*)(F)

s ¼
PV( y*)(F)� B(0)þ cA( y*)

A( y*)

with PV( y*) (F) the present value of the face value at the default free bond’s yield, y*, B(0)
the price of the defaultable bond, c the coupon of the defaultable bond, and A( y*) the
annuity factor for the default free bond.

In our example, s ¼ 83:9619� 97:3270þ 15:9885
2:6730

¼ 0:9814

In the real world, s �
PV( y*)(F)� B(0)þ cA( y*)

A( y*)

For small probabilities of default, this approximation should work well. It becomes an
empirical question: what the impact of imperfect replication in the default state is on the
CDS rate.

If both bonds would be priced at par, the yields would equal the coupon rates so that
the CDS rate can easily be approximated by the differences in the yields (Houweling and
Vorst, 2005). Duffie (1999) shows that this relationship also holds exactly for par floating
rate notes.

The rough approximation of CDS rates by the difference of two yields crucially depends
on the chosen y* and hence on the matching of a risk free bond to the underlying risky
bond. Houweling and Vorst (2005) show that the treasury yield curve is no longer used as
the risk free benchmark. Market practitioners clearly preferred to use swap rates as proxy
for the risk free rate, for liquidity reasons.

1.4.2 Asset Swap Strategy

An alternative to approximately replicate the CDS is a portfolio of risky bonds and an
interest rate swap. The key idea is to hedge the interest rate risk of the risky bond and to
remain with a credit risk exposure. Suppose we want to replicate a short position in the
CDS. In order to create a synthetic exposure to credit risk, the protection seller first would
need to borrow money in the repo market and invest in a defaultable par bond, with the
defaultable bond as collateral. The periodic cost of borrowing in the repo market would
equal Libor, L, minus a spread on the repo, rs. On the other hand, he would receive the
interest on the bond which is made up by the ‘‘risk free rate,’’ Rf, and a credit spread, cs.
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The interest rate risk in the bond can be hedged by entering in an interest rate swap
receiving floating for fixed. The construction is visualized in Figure 1.5. The package of a
defaultable bond (the asset) and an interest rate swap that swaps the (fixed) coupon
(c¼Rf þ cs) of the bond into Libor, L, is called an asset swap.

Table 1.3 shows that the CDS rate, s, can be computed as cs� ssþ rs.
Unfortunately, there is a gap between the theory and the practical implementation of

this asset swap based strategy.

1. First, the risky bond that we have to buy has to be a par bond. The maturity of the
CDS and the bond coincide so that the repayment of the principal of the loan can be
financed by the received terminal value of the bond. This value should be the face
value due to the pull to par phenomenon. The existence of par bonds in the market is
obviously far from guaranteed.

2. Secondly, a repo contract on risky collateral has to be found providing money. If such a
contract is available, it is unlikely that the full value of the bondwill be received. Typically
a haircut will be applied. Of course the credit risk, inherent in the repo, is ignored.

Defaultable
bond

market

Swap market

Repo market

Protection seller
Short CDS
Long credit

L

Rf + cs

R
f+

c s
L

−r
s

B
(0

)=
F

B
(0

)=
F

FIGURE 1.5 Asset swap replication of a credit default swap.

TABLE 1.3 Replicating the Credit Default Swap Based on an Asset Swap

Protection Seller No Default Default

t¼ 0 t¼ ti t¼T t¼ tj
Repo F �(L� rs) �F �F
Swap 0 þL � (Rfþ ss) 0 Mtm loss=gain on swap

Bond �F Rfþ cs F F R

Total 0 cs� ssþ rs 0 �F(1�R)þ loss=gain on swap

CDS 0 s 0 �F(1�R)

Note: Mtm¼marked to market.
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3. Swap market might be very liquid, but we assume in this strategy that it efficiently
prices credit risk. For investment grade fixed coupons this might be acceptable, for
speculative grade bonds, however, it will be rather questionable.

4. Contract specifications of the CDSmust be exactly as pointed out. Other schemes such as
a final premium payment in case of default only make the replication less perfect.

1.5 RISK NEUTRAL PRICING
Nowadays, financial products are valued as the discounted value the expected cash flows
under a risk neutral probability measure. We can discount the payments at the risk free
rate using risk neutral valuation in the lines of Jarrow and Turnbull (1995). This implies
that the default probabilities in the risk neutral world will be relevant.

1.5.1 Default Status Tree

We discretize the remaining time to maturity of the CDS, i.e., the time interval [0 T ], into
n intervals with equal distance Dt between the grid points. For n¼ 3, Figure 1.6 pictures
the evolution of the default status of the reference bond.

At t0 the company is alive (nondefault, ND) with probability 1. At t1, the company can
default (D) or survive (ND). If it defaults, this state remains the same for the future. If the
firm did not default, the tree will further branch out with two possible states (D and ND
at t2). Default at any ti acts as an ‘‘absorbing state’’ for the rest of the tree.

1.5.2 CDS Cash Flows

Let us refer back to our example in Table 1.1, where the cash flows for the buyer of a 3 year
CDS with annual payments were summarized. Time was discretized in n¼ 6 steps of 0.5
years. Bankruptcy can occur on every node (column). In case of ND at time T, the last
payment occurs at t4 or at T depending on the contract specification.

In case of D, the payment of the premium payments stops but a last accrued premium
may contractually be due at the time of default. This accrued fee is netted with the payment
the protection seller has to pay in case of D. For the buyer, the t3-value of the settlement of
the CDS is F(1�R). Depending on the contract specifications the par value can be
augmented with the accrued interest from t2 to t3. In most general terms, the payment
becomes (FþAI)(1�R)�AF.

t0 t1 t2 t3

ND D

ND D

ND D

ND

FIGURE 1.6 Default status tree.
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1.5.3 Default Probabilities
1.5.3.1 Discrete Time Default Process
The default status tree (Figure 1.6) neglected the probabilities. The definition of the various
default and survival probabilities makes the literature not very transparent. Deciphering
notation is most of the time the hardest part of understanding the model.

First let us define the probability of default at each node in the tree, p(i), as the
probability to default during period i. The firm still was alive at ti�1, it defaults at ti.
Whenever the default probabilities are kept constant over time, such as in Figure 1.7, we
will drop the subscript. In Figure 1.7 p¼ 5%.

These default probabilities define a number of conditional probabilities characterizing
the various states of the default process.

For the first period the marginal probabilities apply:

P(D1)¼ p(1)¼ 5%
P(ND1)¼ (1� p(1))¼ 95%

For the second period,

P(D2jND1)¼ (1� p(1)) p(2)¼ 4.75%
P(ND2jND1)¼ (1� p(1)) (1� p(2))¼ 90.25%

For the third period, we get

P(D3jND2)¼ (1� p(1)) (1� p(2)) p(3)¼ 4.51%
P(ND3jND2)¼ (1� p(1)) (1� p(2)) (1� p(3))¼ 85.74%

Two series of probabilities emerge:

. On the one hand, we find the probabilities of survival until time ti, which we will
denote pi: 95%, 90.25%, and 85.74%.

. On the other hand, we obtain the probability of default at time ti, conditional upon
survival until the previous period: 5%, 4.75%, and 4.51%. We will denote these
probabilities by pi.

t0 t1 t2 t3

5%
ND D

5%
ND D

D
5%95%

ND
95%

ND
95%

FIGURE 1.7 Default probabilities.
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In general, we can express these conditional probabilities for ti as

p1 ¼ p(1)

pi ¼ P(DijNDi�1) ¼ p(i)
Qi
j¼2

(1� p( j�1)) for i ¼ 2, 3, . . . , n

8><
>:

pi ¼ P(NDijNDi�1) ¼
Yi
j¼1

(1� p( j)) for i ¼ 1, 2, . . . , n

If the default probability is constant over the tree, these formulas for i¼ 1, 2, . . . , n collapse to

pi ¼ P(DijNDi�1) ¼ p(1� p)i�1

pi ¼ P(NDijNDi�1) ¼ (1� p)i

Note that the following relationships hold:

. Probability of survival until time ti is equal to 1 minus the sum of the conditional

probabilities of default in the previous periods: pi ¼ 1�Pi
j¼1 pj.

. Probability of survival until time ti is equal to the probability of survival until the
previous time minus the conditional probability to default in period i: pi¼pi�1� pi.

. Probability to survival until time ti is equal to the probability of survival until the
previous period multiplied by the factor 1 minus the default probability (given that
the default probability is constant): pi¼pi�1(1� p) or even more general pi¼pi�j
(1� p)j with j< i and j 2 N.

1.5.3.2 Continuous Time Default Process: Hazard Rate
In continuous time we relate the survival probability until period 2 to the survival
probability until period 1 by expressing the probability to default as ldt:

p2 ¼ p1(1� l dt)

where l represents the probability of default during period dt. l is called the hazard rate.
(1� l dt) is the probability of survival in the next time interval dt.

In general, piþ1 ¼ pi(1� l dt)

or piþ1 ¼ pi � pi l dt

or dp ¼ �lp dt

or
dp

dt
¼ �lp

The solution of this differential equation is pt¼ e�lt.
Hence the survival probability can be modeled conveniently as an exponentially declin-

ing function of l.
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In order to choose the continuous hazard rate consistent with the constant discrete
default probability p, the following relationships hold:

l ¼ �ln (1� p)
t

or p ¼ 1� e�lt

We notice that a hazard rate of 5.13% corresponds to a constant default probability
of 5%.

1.5.4 Basic Assumptions
. We assume that default rates are constant throughout the tree, and that interest rates

and recovery rates are nonstochastic or at least mutually independent.

. Claim in the event of default is the face value augmented with the accrued interest.

. No premium or accrued premium is due in case of default.

. Default can occur on every node of the grid: t1, t2, t3, . . . , tn.

. Dt¼ the time step in the grid.

. Let g be number of nodes between two payment datesþ1. In our example g¼ 2.
Consequently, there are n=g payment dates which occur on tg, t2g, t3g, . . . , tn.

1.5.5 Risk Neutral Pricing of the CDS

The periodic premium payments are generally labeled in the literature as the floating leg.
The contingent terminal payment is known as the fixed leg of the CDS.

1.5.5.1 Under the Discrete Default Process
1.5.5.1.1 Floating Leg At the payment dates tg, t2g, . . . , tn the protection buyer pays
the premium P¼ sF (gDt), until (and not including) default.

The expected payment for time ti, seen today, is P(NDijNDi�1)Pþ P(DijNDi�1)0¼piP.

Consequently, the present value of the expected payments is
Pn=g

i¼1 dfig pig P where dfi
denotes the discount factor for the time tig cash flow.

1. Note that the discount function can be expressed in various ways:

. Cheng (2001) uses the general zero bond price formulation: B(t0,tn) i.e., the time t0
value of a default free zero bond maturing at tn.

. Brooks and Yan (1998) use simple one period forward rates: dfi ¼ dfi�1
1þ rfw

NADi
NTD

. NAD

is the number of accrued days and NTD the total number of days, defining the
applicable day count convention.

. Continuous interest rates would yield: e�riti :

. Scott (1998), Aonuma and Nakagawa (1998), Houweling and Vorst (2005),
Longstaff, Mithal and Neis (2005) use the stochastic interest formulation:

e
�
Ð t
0
r(u)du

:
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2. Also with the probabilities we can juggle a bit. Note that, as Figure 1.8 illustrates, the
survival probability, pi, i< n equals the sum of the survival probability at the end of
the contract, pn, plus the sum of the probabilities of defaulting between ti and tn.

pi ¼ pn þ
Xn
j¼i

pj

Xn=g
i¼1

dfig pig P then becomes
Xn=g
i¼1

dfig pn=g þ
Xn=g
j¼iþ1

pj

 !
P

which is a formulation Brooks and Yan (1998) use.

1.5.5.1.2 Fixed Leg Upon default, the protection buyer receives (1�R)F where R is
the constant recovery rate on the reference bond.

The present value of these cash flows is (1� R)F
Pn

i¼1 (pi dfi).

1.5.5.1.3 CDS Rate In order to initiate the swap with zero value, the CDS rate, s, is set
in such a way that the present value of the expected cash flows received by the buyer equals
the present value of the expected cash flows paid by the buyer.

We get
Xn=g
i¼1

dfig pig P ¼ (1� R)F
Xn
i¼1

(pi dfi): Consequently, P ¼
(1� R)F

Pn
i¼1

(pi dfi)

Pn=g
i¼1

dfig pig

p2

p3 p3

π3 π3 π3

PV (P1) PV (P2) PV (P3)

Probability π1 to get PV (P1)

Probability π2 to get PV (P2)

Probability π3 to get PV (P3)

Cash flows

P
ro

ba
bi

lit
y

FIGURE 1.8 Redistribution of the default probabilities.
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Recall P ¼ s F(g Dt) so that s ¼
(1�R)

Pn
i¼1

(pi dfi)

gDt
Pn=g
i¼1

dfigpig

1.5.5.2 Under the Continuous Default Process Formulation
1.5.5.2.1 Floating Leg In the continuous world we defined pt¼ e�lt, so we can
rewrite the present value of the expected payments the buyer has to make asPn=g

i¼1 e
�rtig tige�ltig P or

Pn=g
i¼1 e

�(rtigþl)tig P.

1.5.5.2.2 Fixed Leg In the discrete case, the present value of these cash flows isPn
i¼1 pi e

�riti(1� R)F.
Note that pi¼pi�1�pi can use the definition of the hazard rate to obtain

Xn
i¼1

(e�lti�1 � e�lti)e�riti
" #

(1� R)F

Note that (e�lti�1 � e�lti) can be written as (e�l(ti�dt) � e�lti) since ti�1¼ ti� dt.
Rearranging gives e�lti(eldt�1).
We know that ln(1� «)� « for small values of «. This implies that (1� «)¼ e« and that

e«� 1¼ «.
Hence e�lt(i)(eldt � 1) ¼ l dt e�lti .

The present value of the cash flows becomes

Xn
i¼1

l dt e�ltie�riti
" #

(1� R)F or
Xn
i¼1

e�(ritiþlti)
" #

(1� R)F l dt

1.5.5.3 CDS Rate
In the swap we equate

Xn
i¼1

e�lt(i)e�riti
" #

(1� R)F l dt to
Xn=g
i¼1

e�(r(tig )þl)tig P

Substitution P¼ s F g Dt and solving for s gives

s ¼
Pn
i¼1

e�(ritiþlti)
� �

(1� R) l dt

Pn=g
i¼1

e
�(rtigþl)tig g dt
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Note that if all default dates are payment dates as well, g¼ 1, the formula for the CDS rate
shrinks to s¼ (1�R)l.

1.6 CONCLUSION
In this note we introduce the reader to credit default swaps and their pricing. The key
drivers of the CDS rate are identified as the (risk neutral) default probability or the (risk
neutral) hazard rate and the recovery rate. The basic model presented can be refined by
making the default probabilities, the recovery rate, and the interest rates stochastic.
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2.1 INTRODUCTION
The valuation of credit derivatives has for a long time been based on default-free counter-
parties (i.e., contractual partners), as this allows a risk-free valuation of the payments made
under credit derivatives. Even though financial institutions own subsidiaries, which could
act as counterparties in OTC derivatives (over-the-counter derivatives), and reach strong
ratings of ‘‘AAA’’, Ammann (2001) shows that less than half of the market participants
have a rating of ‘‘A’’ or above. Moreover, no exchange traded credit derivatives exist up to
now. Following these arguments, the consideration of counterparty risk is essential for a
correct and consistent valuation of credit derivatives.

Given the stated findings and reasoning, this chapter discusses the valuation of credit
derivatives with defaultable counterparties.* Especially, we focus on the modeling of joint
default risks of risk buyers and reference parties. The following section concentrates on the
valuation of standard credit derivatives, i.e., credit default swaps (CDSs). As described in
Hull and White (2000), a CDS is a contract that provides protection against the default of a
particular company. This company is referred to as reference entity and the default of the
reference entity is the credit event. The buyer of protection has the right to sell to the
protection seller at par a specified bond issued by the reference entity when a credit event
occurs. That bond is commonly referred to as the reference obligation and the total volume
of the bond that can be sold is the notional of the CDS.

The most important aspect of modeling counterparty risk is the treatment of correl-
ations between the credit risk of the underlying asset and the credit risk of the counter-
party. If, for example, perfect correlation is assumed, one can easily see the importance of
correlation for valuation purposes. If a financial institution with an AAA-rating sells CDSs
(risk buyer, protection seller) and the reference asset is its own bond, then the swap with
an assumed recovery rate of zero is worthless. This is due to the fact that in the event
of default of the reference entity, which triggers the credit event under the CDS, the
risk buyer—being identical to the reference entity—defaults as well. If, in contrast,
the risk buyer is solvent, i.e., no credit event occurs, the risk buyer will not be drawn on.
Tavakoli (2001) summarizes these results as follows: ‘‘Counterintuitive as it may seem, it is
better to buy credit protection from an uncorrelated lower-rated protection seller than
from a protection seller that is highly correlated with the reference asset one is trying to
hedge’’ (Tavakoli 2001, p. 25).

This chapter is organized as follows: Section 2.2 presents the approach of Hull and
White (2001). The authors define variables that are directly or indirectly observable from
market data as endogenous and all other variables as exogenous. In Section 2.3, we review
how defaultable CDSs can be evaluated based on Merton (1974). Sections 2.4 and 2.5
present the models of Jarrow and Yu (2001) and Lando (2000), respectively. Both
approaches focus on a joint default process, which explicitly incorporates the reciprocal
action between both obligors. Therefore, the latter concepts abandon the conditional
independencies of default events. Section 2.6 concludes the chapter.

* For the valuation of credit derivatives with risk-less counterparties, see Läger (2002), Chapter 7.
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2.2 VALUATION BASED ON OBSERVABLE MARKET DATA
The approach of Hull and White (2001) defines both directly and indirectly observable
market data as exogenous. Because of this approach, the model is commonly considered as
rather practical and applicable. The valuation of CDSs follows a three-stage procedure:

1. Calculation of risk-neutral default probabilities of the relevant contractual agents (i.e.,
protection seller and reference entity). To accomplish this, one can either draw on
listed bonds issued by the reference entity or bonds from companies with the same
risk of default as the reference entity.

2. Calculation of the default correlation between the protection seller and the reference
entity. Hull and White (2001) suggest the usage of market data.

3. Calculation of the expected future stream of payments, which are linked with the
default swap (i.e., premium payments and loss compensations at default).

It should be noted that the model of Hull and White (2001) cannot be solved analyti-
cally. Instead, one has to use a simulation-based approach, e.g., Monte Carlo simulation.

2.2.1 Assumptions

Hull and White (2001) base the modeling of the default on a first-passage-time approach.
Given this methodology, the default occurs, if the (obligor-specific) default barrier variable
~Gj
t (where j represents the index of the analysed obligor) reaches the default barrier ~g j

t : ~G
j
t

is referred to as the credit index for company j at time t. Hull and White (2001) propose
two different interpretations of this variable. First, they define this variable as a function of
the value of the total firm assets and second as a discrete credit rating. A more specific
valuation is not important as the default probability will not be calculated within this
model. Instead, it is an exogenous input parameter taken from observable market data. The
risk-neutral default probability is used to calibrate the default barrier ~g j

t .
To determine the correct default barrier ~g j

t , the following assumptions have to be
considered. First, it has to be assumed that the risk-neutral process for ~Gj

t follows a
geometric Brownian motion with zero drift and variance of one per year. Second, the
default occurs at discrete points of time referred to as ti (where 1� i� n). Therefore, the
cumulative default probability of company j till time ti could be expressed as follows, if no
default occurs before ti�1:

P*{tj ¼ tijtj > ti�1} ¼ 1�
ð1
~g j
i

f ji (x) dx

where
tj is the default time of the company j
f ji is the (conditional) density function of the credit index ~Gj

t with tj> ti�1

If the (unconditional) default probability p j
i ¼ P*{tj ¼ ti} is known, the conditional

density function, f j1 (x), and default barrier, p j
i , can be calculated as follows:
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For i¼ 1

f j1 (x) ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2pD1
p e�x

2=2D1

p j
1 ¼ F

~g j
1ffiffiffiffiffiffi
D1
p

 !
(2:1)

with Di¼ ti� ti�1, 1� i� n and t0¼ 0. F is the standard normal distribution function.
From Equation 2.1 and ~g j

1 ¼
ffiffiffiffiffiffi
D1
p

F�1(p j
1), the default barrier for i¼ 1 can be deter-

mined. On the basis of this result, the default barrier for 2� i� n can be calculated as
follows:

p j
i ¼

ð1
~g j
i�1

f ji�1(x)F
~g j
i � xffiffiffiffiffiffi
D1
p

 !
dx

The conditional density function f ji (x), x>~g j
i can be calculated by solving the following

equation:

f ji (x) ¼
ð1
~g j
i�1

f ji�1(u)
1ffiffiffiffiffiffiffiffiffiffi
2pDi
p e�(x�u)

2=2Didu

The inductive calculated default barriers ~g j
i are not constant over time, but are time

dependent. This is due to the usage of observable (risk-neutral) default probabilities for
the calibration process.

As a proxy for the correlation coefficient rjk between company j and k, Hull and White
(2001) use the correlation between the respective equities.* The required default correl-
ation coefficient ~rjk(T) can be derived from the following equation, if the correlation
coefficient rjk is known:

~rjk(T) ¼
~Fjk(T)� F j(T)Fk(T)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F j(T)� (F j(T))2½ � Fk(T)� (Fk(T))2½ �
p

with ~Fjk(T) ¼ P*{t j � T ; tk � T} and Fl(T) ¼ P*{tl � T}, l ¼ j, k.
The cumulative default probability Fl(T) is based on the risk-neutral default observable

from market data. On the contrary, the joint default probability ~Fjk(T) has to be estimated
through simulations of default processes of company j and company k by using rjk.

The above outlined steps allow investigation of the data. The valuation based on
discounted expected payment streams is presented in the next section. Moreover,
additional assumptions have to be made such as the independence of the recovery rate

* For a description of the methodology applied for private companies or debtors, who are not publicly traded see Hull
and White (2001). Hull and White (2001) note that the commonly used methodology results in rather imprecise
estimates.
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from risk-less interest rates and from default events. Additionally, the independence of
default events from risk-less interest rates has to be assumed.

2.2.2 Valuation of Credit Default Swaps

Hull and White (2001) focus on CDSs with periodical risk-free premium payments in
arrear. Moreover, the protection buyer is regarded as a risk-free agent and therefore the
payments of the buyer are risk-free as well.

The following swap payment streams are considered for our analysis:

1. Risk seller A pays the swap rate till maturity T. If the first default occurs before T then
A terminates his regular payments and

a. pays a final accrual payment* of e, if the defaulted party is the reference obligator
R, otherwise

b. pays no final accrual payment, if the risk buyer B defaults.

2. If R defaults during the duration of the swap and before B, then B pays the difference
between the face value of the debt claim of A against R and the recovery rate. The
recovery rate is calculated as the face value of the bond including accrued interests.

3. If B defaults before R during the duration, then no payment will be made and the
swap is going to be terminated.

At t¼ 0 the present value of the expected premium paid by A is calculated as follows:

_€k0rv ¼ _€k0
ðT
0

f R
�B

t [ut þmt(ew
�1)]þ f B

�R
t ut

n o
dt þ GBR

T uT

� �
(2:2)

where, w represents the annual payments of the premium calculated as a proportion of the
face value of the swaps, f R�Bt is the default density of R under the condition that B did not
default until t¼ 0,y f B�Rt stands for the default density function of B under the assumption
that R do not default until t¼ 0,z ut represents the present value of the annuity factor for
annuity payments of 1 within the period [0; t], mt(ew

�1) describes the present value factor
of an one-off final payment of ew�1 in t, and GBR

T is the probability that the counterparty B
and the reference entity R do not default until T.

The value of the swap for A is calculated as the present value of the expected payments
generated by the swap as follows:

€̂ 00 ¼
ðT
0

1� E dRt
� �

(1þ ct)
� �

f R
�B

t mt(1) dt (2:3)

* The final accrued payment represents a fraction of the premium that has been paid between the last payment and
the default event.
y Under the assumption that no default of B has occurred so far, f R�Bt Dt represents the risk-neutral default probability
of R within the time horizon Dt.
z Under the assumption that no default of R has occurred so far f B�Rt Dt represents a risk-neutral default probability of
B within a time horizon Dt.
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where dRt is the expected recovery rate at the default of R and ct represents the interest
accruals until t is calculated as a percentage of the face value on the debt claims.

Hull and White (2001) calculate the fair swap-rate _€k0rn drawing on Equations 2.2 and 2.3
through using a Monte Carlo simulation. They use different sets of parameters first for the
quality of the risk buyer and second for the correlation between the risk buyer and the
reference entity. This fair swap rate equals w, from which it follows that €̂ 00 ¼ _€k0rn. High
correlations between the risk buyer and the reference entity as well as low ratings of the
swap seller show a significant impact on the swap rate.

2.3 VALUATION BASED ON MERTON’S APPROACH
The value of a CDS equals the value of a put option on the assets of the company. The
strike price is equivalent to the representative receivables. The writer of this put option is
the risk buyer (i.e., swap seller). In an event as described in the last section in which the
credit risk of the protection buyer is neglectable (i.e., because the lump-sum swap rate is
paid up front) the valuation of a CDS with a defaultable counterparty equalizes the
valuation of a vulnerable put.*

2.3.1 Assumptions

To evaluate vulnerable puts, different methods (e.g., Johnson and Stulz 1987, Klein 1996,
Klein and Inglis 1999) based on Merton’s (1974) credit risk model have been proposed.y

Looking at defaultable CDSs, both credit risks have to be considered explicitly: First, the
credit risk of the reference asset and second the credit risk of the risk buyer have to
be evaluated. It should be noted that the valuation of these credit risks does not have to be
based on an identical methodology. For the purpose of this review chapter, we assume a
standard Merton (1974) firm value model:

. Firm value of the risk buyer VB
t follows a lognormal distribution. The process of VB

t

can be expressed as follows: dVR
t ¼ VB

t mVBdt þ VB
t sVB dWVB

t .

. Firm value of the reference party VR
t follows a lognormal distribution. We are

therefore able to use the following expression:

dVR
t ¼ VR

t mVR dt þ VR
t sVR dWVR

t

The correlation coefficient between the firm values B and R, both of which follow a
Brownian motion, is denoted as rBR.

* Ammann (2001) suggests an alternative model for the valuation of defaultable credit derivatives. This approach is
based on Merton’s firm value model. Within this framework, credit derivatives are modeled as exchange options. It
should be noted that the equation for the valuation of exchange options was developed by Margrabe, who describes
an exchange option as an option ‘‘ . . . to exchange one risky asset for another.’’ (Margrabe 1978).
y For the presentation of the models see Johnson and Stulz (1987), Klein (1996), Klein and Inglis (1999), and Klein
and Inglis (2001). A summary can be found in Läger (2002).
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. Risk buyer B defaults only at T. The default occurs, if the firm’s value VB
t drops below

an assessed fixed default barrier. This threshold level differs, as shown below, between
the various models used to evaluate vulnerable puts:

a. Option (a): The claim of the swap can be used as the default barrier. This is
equivalent to the assumption that the default swap is the sole liability of the option
writer and therefore this follows Johnson and Stulz (1987).

b. Option (b): Alternatively, the total amount of all liabilities of the risk buyer can be
drawn on as the default barrier. If the liabilities are assumed to be constant over
time, then this is equivalent to the assumption that the claim of the swap is
negligibly small. This is based on the model of Klein (1996) and Klein and Inglis
(1999).*

c. Option (c): Moreover, the threshold level can be set equivalent to the sum of all
other liabilities of the option writer additional to the claim on the swap. This is
based on the approach of Klein and Inglis (2001).

. Reference party R can only default at T. The default occurs, if the firm value VR
T drops

below the value of the liabilities.

. At default, the recovery rate dBT VB
T

� �
of the risk taker B is calculated as the ratio of the

firm value VB
T and the total sum of all liabilities multiplied with the factor (1�a).

The latter factor represents the dead-weighted costs associated with the default.

. At default, the recovery rate of R corresponds to the ratio of VR
T to the overall

liabilities.

The default swap is constructed as follows:

. Reference bond of the swap is a zero-coupon-bond of the reference party R with
maturity T and face value F. This bond is the only liability of R.

. Maturity of the swap is T and this maturity equals the maturity of the reference bond.

. At the default of the reference party, the creditor A receives—given the above-stated
assumptions as well as the fact that the zero-coupon bond is the only liability—a
payment equivalent to the total firm value VR

T . Owing to this, the creditor has a claim
of a deficiency payment against the protection seller, which is equivalent to F�VR

T .

a. If the risk buyer B has not (yet) defaulted at the time of the default of R, the total
deficiency payment has to be paid.

b. If B defaults at the same time as R, the risk seller or the creditor receives only a
fraction of his claim, which is equivalent to dBT F � VR

T

� �
.

* To be more precise, both references differ from each other in the threshold level D* and the (higher) value of the
liabilities D. Both D* and D are assumed to be constant over time from which it follows that the overall statement
about the assumed delectability of the writer’s option does not have to be changed.
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2.3.2 Valuation of Credit Default Swaps

The value of the CDS, €̂ 0, can be derived from the discounted expected stream of
payments. The expected values each depending on the default barrier of B can be expressed
as follows:

€̂ 00 ¼ EP* B�1T F � VR
T

� �þ
1 VB

T�F�VR
Tf g þ VB

T 1 VB
T<F�VR

Tf g
h in o

€̂ 0
00 ¼ EP* B�1T F � VR

T

� �þ
1 VB

T�DBf g þ (1� a)
VB
T

D*
F � VR

T

� �þ 1 VB
T<DBf g

� 	
 �

€̂ 0
000 ¼ EP* B�1T

 
F � VR

T

� �þ
1 VB

T�DBþF�VR
Tf g

"

þ (1� a)
VB
T

D*þ F � VR
T

� � F � VR
T

� �þ
1 VB

T<DBþF�VR
Tf g
!#

(2:4)

The expressions €̂ 00 to €̂ 0
000 represent the above described options (a) to (c), respectively.

The CDS equals considering its payout-structure a defaultable put option, which is
expressed as ~P0(F,VR

t ). Owing to this, the equations for European put options derived by
Johnson and Stulz (1987), Klein (1996), and Klein and Inglis (2001) can be used to
determine the expected rate of return in Equation 2.4. We use €̂ 0

00 below as illustrative
example:

€̂ t
00 ¼ � VR

t F2(�d1,b1,�p)þ Fe�r(T�t)F2(�d2,b2,�p)

� (1� a)
VB
t

D*
VR
t e

psvB
s

vR
(T�t)

er(T�t)F2(�~d1,~b1,p)

þ (1� a)
VB
t

D*
FF2(�~d2,~b2,p)

where F2(�) is the function with a standard bivariate normal distribution and d1, d2, b1, b2,
t*, and p are give by:

d1 ¼
ln (VR

t =F)þ r þ 1
2s

2
VR

� �
t*

sVR

ffiffiffiffi
t*
p ¼ d1 t*,VR

t

� �
, ~d1 ¼ d1 þ psVB

ffiffiffiffi
t*
p

d2 ¼ d1 � sVR

ffiffiffiffi
t*
p

, ~d2 ¼ d2 þ psVB

ffiffiffiffi
t*
p

b1 ¼
ln (VB

t =D*)þ r � 1
2s

2
VB þ psVBsVR

� �
t*

sVB

ffiffiffiffi
t*
p ¼ b1 t*,VB

t

� �
, ~b1 ¼ �b1 � sVB

ffiffiffiffi
t*
p

b2 ¼ b1 � psVR

ffiffiffiffi
t*
p

, ~b2 ¼ �b2 � sVB

ffiffiffiffi
t*
p

t* ¼ T � t

r ¼ rBR

This equation follows directly from Klein’s (1996) equation for European put options with
a defaultable option writer and a constant interest rate. Within this framework, the firm
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value V of the option writer, the value of the underlying U, and the strike price K are
specified as follows:*

Vt ¼ VB
t

Ut ¼ VR
t

K ¼ F

In the case of stochastic interest rates, the equation framework of Klein and Inglis (1999)
has to be used instead of Klein’s framework.y

2.4 VALUATION BASED ON TWO-STATE INTENSITY MODEL
The coherence on default risk between the protection buyer and the protection seller plays
a significant role in the valuation of defaultable credit derivatives. The assumption of
conditional independence leads to a simplification in mathematical terms and therefore
eases the valuation. It should be noted that the dependence between two contractual parties
is only created through similar reactions of both parties on conjoint state variables. A
statement on the specific dependence of one contractual partner cannot be made as the
underlying relationship remains concealed as a black box. Especially, when it comes to
modeling of default probabilities of financial institutions, this assumption must be pointed
out as being a major disadvantage. The drawback is based on the fact that financial
institutions depend regarding the financial solvency on the non-default of their creditors.

Jarrow and Yu (2001) recommend a framework based on Lando (1998a) in which the
default probability of one creditor is influenced by the default of a third party. The main
aspect in terms of modeling the default process will be outlined in Section 2.4.1. On this
basis, we discuss the usage of defaultable credit derivatives in the context of adjusted
reduced-form models.

2.4.1 Assumptions

The main assumptions and specifications of the framework of Jarrow and Yu (2001) are as
follows:

. Default is modeled using Cox-processes from which it follows that the default is
triggered if the default process H j

t jumps. The stochastic intensity of the Cox-
processes is considered as being dependent on the d-dimensional state variable Yt.

. Jarrow and Yu (2001) assume equivalent recovery after the default.z This recovery
rate expressed as dj2 [0;1] depends on the obligor and is constant over time.

. Process of the short rate is not specified but every arbitrage free (riskless) term
structure model can be drawn on.

* For a general specification of the equation used to evaluate vulnerable puts see Equation (12) by Klein 1996 at
page 1221.
y See proposition 2, Equation (12) in Klein and Inglis (1996).
z An overview of different models can be found in Läger (2002).
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Under the assumption that no default of the obligor has been occurred so far, the price of a
default-free zero bond with maturity T can be expressed at time t as follows:

Dj(t,T) ¼ d jB(t,T)þ (1� d j)EQ* e
�
Ð T
t
(rsþl j

s Þds
� �

, T � t (2:5)

Equation 2.5 can only be used for debtors if their default probability is solely influenced by
the macroeconomic state variables Yt. In cases in which the likelihood of the default of a
debtor depends on his counterparties or another third party, Equation 2.5 is not valid. To
model firm-specific dependencies, two distinct methodologies are being discussed in the
literature: unilateral or bilateral. In the latter case, A influences the default probability of B,
which itself influences the default probability of A (i.e., looping default). One explanation
for this would be if an interlocking participation exists between two counterparties. This
kind of dependency in terms of modeling is rather difficult to handle but for the primary
objective namely the modeling of a default of financial institutions not necessary.* Given
this, Jarrow and Yu (2001) focus in their analysis on a one-sided dependency, which they
label primary–secondary framework.

For the above-described purpose, the set of firms J is being separated into two different
subsets S1 and S2:

. S1� J contains all primary firms. The default probabilities of those companies
depend solely on state variables Yt.

. S2� J contains all secondary firms. The default probabilities of these companies are
affected by Yt as well as the default process of the above-described primary firms.

For the intensity of secondary firms, the following structure is assumed:

l
j
t ¼ a j

0,t þ
Xmj

k¼1
a j
k,t1{tik�t}, 8j 2 S2 (2:6)

where
i represents the index of primary firms
j stands for the index of secondary firms
mj is the number of primary firms that influence the default probability of j

Thereby, it is assumed that the secondary firm j influences the primary firms i1, i2, . . . ,
imj, and therefore, for example, the secondary firm holds equity of debt stakes of the
primary firm. The impact of the defaults of primary firms depends on the sign of a j

k,t . In
cases in which a j

k,t>0, the default of the primary firm will increase the default probability
of the secondary firms. On the other side in cases in which a j

k,t< 0, the probability of
default is going to decrease given the dependency between both groups.

* Even if it seems plausible to assume that financial institution will face financial difficulties after the default of one of
its major customers, it seems also reasonable to assume that the default of a financial institution will not show such
an impact on its major customer.
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The equation for the valuation of zero-coupon bonds is used below to state an example.
For simplicity we assume that intensities do not depend on state variables. Moreover, we
assume that primary firms R exhibit a constant intensity of lR. From Equation 2.5, it
follows that the price of a zero bond can be expressed as

DR(t,T) ¼ dRB(t,T)þ (1� dR)B(t,T)e�l
R(T�t)

Furthermore, we consider a secondary firm B with the intensity lBt . The intensity lBt is
specified as follows while facilitating Equation 2.6:

lBt ¼ b0 þ 1{t�tR}b1

where tR represents the default time of the primary firm R.
Following Jarrow and Yu (2001), Equation 2.5 can be simplified for B as follows:

DB(t,T) ¼ dBB(t,T)þ (1� dB)B(t,T)
b1e�(l

Rþb0)(T�t) � lRe�(b0þb1)(T�t)

b1 � lR

with b1 6¼ lR.

2.4.2 Valuation of Credit Default Swaps

Following Jarrow and Yu (2001), we consider for our analysis a CDS inheriting the
following properties:

. Zero bond of the reference party R with maturity T 0 and face value 1 is considered as
reference bond of the swap. From R2 S1 follows that the reference party is a primary
firm.

. Maturity date of the swap is expressed as T, with T<T 0.

. Risk seller A pays a periodical fixed swap-rate _k00 until the maturity of the swap. This
payment has to be paid even if a default of the reference party or the risk buyer B has
occurred.

. If the reference party defaults till T, B sets off the loss A. This payment is due at the
maturity of the swap. Furthermore, zero recovery is assumed for R as recovery rate.
From this it follows that R faces a loss of 100% of his claims in the event of default.

. If during the duration, the risk buyer defaults before or at the same time as R, B does
not pay in the event of the default of R, which is equivalent to a zero recovery rate of
B. From B2 S2 follows that the risk buyer is a secondary firm.

. If the risk seller defaults during the duration, the payment of the swap rates is going
to be suspended (i.e., zero recovery rate). For simplicity it is assumed that at the
default of A, the swap is not going to be terminated. From this it follows that in cases
in which R defaults during the duration of the swap at a later stage, B has to pay the
agreed compensation.

Each participating party (A, B, and R) is assumed to be inheriting a likelihood of default.
The expected value of the premium payments can be calculated as follows:
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EQ*

ðT
0
_k001{tA>s}e

�
Ð s
0
ru duds

� �
¼ _k00

ðT
0
DA(0,s) ds

From the risk seller’s perspective (i.e., A), the price of the swap is equivalent to the expected
rate of return of the discounted payment stream received by A at t = 0:

€̂ 0
00 ¼ EQ* 1{tR�T}1{tB>T}e

�
Ð T

0
ru du

� �
(2:7)

This leads to the following solution for the expected rate of return:*

€̂ 0
00 ¼ DB(0,T)� e

�
Ð T
0
(rsþlBs þlRs ) ds

2.5 VALUATION DRAWN FROM A RATING-BASED MODEL
To describe the joint loss distribution of several loans, a concentration on the above-
described correlations is not sufficient.y The limitations of a correlation analysis with
regard to expressiveness also matters for modeling the joint distribution of defaults of
several loans. Lando (2000) shows, using different examples, that the possible distribution
of defaults can vary considerably despite identical default correlations. Given this finding,
it is not sufficient to obtain information on the correlation between two agents. Moreover,
information about the structure and the mechanism that cause the dependence between
the issuer and the seller on defaultable bonds is essential for a sophisticated analysis. To
examine the impact of different ways of modeling dependencies, Lando uses defaultable
swaps. Especially, he models the joint default of reference seller and risk buyer and its
impact on the swap in various ways.

Section 2.5.1 states briefly the underlying rating-based model. On the basis of this
section, Section 2.5.2 presents selective illustrative results while drawing on Lando (2000).

2.5.1 Assumptions and Valuation

The rating-based model, which is described further in this section, is based on Huge and
Lando (1999) as well as Lando (1998a,b).z For the joint development of the rating of two
obligors, a two-dimensional stochastic process described by At ¼

�
AB
t ,A

R
t

�
is assumed.§

The state space with a continuous-time process is given by

K
K ¼ {1, . . . ,K}� {1, . . . ,K}

* See Equation (42) in Jarrow and Yu (2001) for details.
y A discussion about the limitations of correlations can be found in Embrechts et al. (1999), Frey et al. (2001) as well
as Huschens (2000).
z See Huge and Lando (1999) and Lando (1998a,b). A summary can be found in Läger (2002).
§ For details see Lando (2000).
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Denote K as default state. The intensity of the joint rating-transition from pair (iB , iR ) 2
K to pair ( jB , jR )2K is denoted by l[(iB , iR ), ( j B , j R )]. These intensities are combined in
the K2�K2-intensity matrix L. Furthermore, the subset of the state space is denoted as
D¼K

K=KK�1, in which at least one of the two firms is subject to default.
The price of a financial security is denoted by S(t, rt,At). This financial security consists

of a stream of payments, which are due to at fixed dates Tn or at those points of times
where transitions in the Markov-chain take place. The maturity of the security is TN¼T. It
is imperative that At2D: S(t, rt,At)¼ 0 because in the case of default, a final payment
ensues and the contract will be ceased prematurely.

Assume a point of time just before maturity with t2 [TN�1; T) but after the last fixed
payment. The K2-dimensional vector S(t, rt) consists of all S(t, rt, i), i2KK and can be given
by the solution of the subsequent stochastic differential equation:

@S(t,rt)
@t

þ mr
@S(t,rt)

@r
þ 1
2
sr

@2S(t,rt)
@r2

þLS(t,rt)þ diag(LXT
t )� rtS(t,rt) ¼ 0 (2:8)

where
diag(.) represents the vector of the diagonal elements
L is an intensity matrix
� stands for a K2�K2 matrix

The side condition of the stochastic differential equation (Equation 2.8) is S(T, rt, i)¼
d(T, rT, i), i2KK. The elements of the matrixX correspond to the payments ^̂ (t, rt ,At�,At)

which are going to be paid at the time of rating-transitions from At� to At. The valuation at
time t<TN�1 is based on Equation 2.8 and was done by Lando (2000) in a recursive way.
Equation 2.8 is the basis for a numerical valuation of defaultable CDSs.

2.5.2 Credit Default Swap with Different Correlations Structures

Following Lando (2000), we now focus on CDSs with the following contract specifications:

. Initiation at date t¼ 0, maturity at T¼ 5 (years).

. Risk seller A pays a semiannual swap rate of 12 c. If the first default occurs between two
dates of payment, which is equivalent to min (tB;tR) 2 (Tn�1;Tn) then A has to pay
either

a. the fraction of the swap rate for the period between the last coupon payment and
default (hence (tR�Tn�1)c), if the reference party R defaults or

b. nothing, if the risk buyer B defaults.

The swap premiumpaymentswill be ceased irrespective of the identity of the defaultable party.
Therefore, the protection buyerA and his coupon payments will be regarded as being risk-free.

. If R defaults during the duration, A receives a payment from B to offset his losses. As
equivalent recovery is assumed for R, the payment received by A is equivalent to
(1� dR) B(tR,T). This is generally referred to as default swap.
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. If B defaults before R during the duration, the two-way payment rule for the
settlement of this financial contract is applied. Under this rule, the protection
buyer A has to pay the entire value of the swap to B, if the predefault swap value of
the contract is positive for B. On the other side, A gets only partly compensated with
dB of the predefault swap value from B, if the value is positive for A.*

Lando analyzes three possibilities of modeling correlations between B and R, which are as
follows:

1. Correlation of rating migrations between B and R is generated through the
dependency on joint state variables, i.e., the short rate. This is the weakest form of
dependency between B and R. The stream of payments to A is given by:

^̂ (t, rt ,At�) ¼ 1{t¼tB} dB1 _€̂ 0t�>0f g_€̂ 0t�þ1 _€̂ 0t�<0f g_€̂ 0t�
h i

þ1 t¼tRf g

� (1� dR)B(t,T)� (t�Tn�1)c
� �

where t¼min(tB;tR) represents the date of first default and _€̂ 0t� is the value of a
default swap for A just before default.

2. Default of R increases the default probability of B without triggering the default. After
the default of the reference party R, the protection buyer B is not going to receive the
compensation for these losses immediately. The payment will be made at a later point of
time. This implies thatAwill probably not receive his promised (entire) compensation as
B can also default during this period between the event of default of the reference party
and the settlement of the compensation. The longer the period between the default of R
and the payment of B, the higher the default probability will be. The default windowwith
a constant default intensity of B ultimately equals an increase of the default intensity
without such a window. Therefore, this is equivalent to the modeling of default correl-
ations (correlation-like effect). The payment stream to A is as follows:

^̂ (t, rt,At�) ¼ 1 t¼tBf g dB1 _€̂ 0t�>0f g_€̂ 0t�þ1 _ €̂ 0t�<0f g_€̂ 0t�
h i

þ1 t¼tRf g (1� dR)B(t,T)� (t � Tn�1)c
� �

DB(t,t þ DT)

where DB(t,tþDT) is the value of a zero bond of issuer B with maturity tþDT and
face value 1.

3. Modeling simultaneously the defaults of R and B. If R defaults, it seems rather likely
that B defaults at the same time and vice versa. The maximum probability depends on
the initiated rating of both parties.y This is considered as being the strongest form of
default correlation. The payment stream for A equals

* For a description of the full two-way payment rule and the alternative limited two-way payment rule see Läger
(2002).
y For example, the default of the reference party with a rating of BBB will not trigger a default of the risk buyer rated
‘‘AAA’’ at a probability of one as this will simply not be compatible with its rating.
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^̂ (t,rt ,At�) ¼ 1{t¼tB<tR}[d
B1{_€̂ 0t�>0}_€̂

0
t� þ 1{_€̂ 0t�<0}_€̂

0
t�]

þ 1{t¼tR<tB}[(1� dR)B(t,T)� (t � Tn�1)c]

þ 1{t¼tB<tR}d
B[(1� dR)B(t,T)� (t � Tn�1)c]

The impact of the first two variations on the swap value is negligible (Lando 2000). This
statement is still valid for cases in which a longer default window is implemented, i.e.,
1 month as stated in the second alternative. Only the assumption implemented in the third
approach (i.e., simultaneous defaults) reduces the value of the swap tremendously—
especially for lower-rated risk buyer.

2.6 CONCLUSION
The modeling of default correlations has a decisive meaning in the above outlined
valuation of credit derivatives as at least two different credit risks are involved, i.e., the
credit risk of the underlying asset and the credit risk of the counterparty. We focus our
review on CDSs with uni- and bilateral default risks. The simple structure of default swaps
enables us to focus on questions about the best-suitable modeling methodology without the
difficulties of complex product structures. Besides the presentation of an equation for the
valuation of defaultable CDSs, which is based on Merton (1974), other results of alternative
approaches are being reviewed. First, the pure numerical valuation process by Hull and
White (2000, 2001), the intensity approach by Jarrow and Yu (2001), and the rating-based
model by Lando (2000). The latter examines the impact of default correlation between the
risk buyer and the risk seller on the value of swaps.

Despite the widespread and active research, no generally accepted approach for the
valuation of credit risks and credit derivatives has been presented so far. Given the current
debate, it seems rather unlikely that this will happen in the near future for the following
reasons.

Modeling credit risk is more complex than modeling market risk. For example, if one
compares interest rate models with intensity models, it can be seen that the intensity
models are expanded interest rate models. Therefore, questions concerning the modeling
of credit risk have to be added on top of the questions about the term structure.

The most commonly stated hazard with regard to the valuation of credit risk models is
the limited availability of data. Especially, credit events are rather rare and therefore
information is only available at lower frequencies than market data (Huschens and
Locarek-Junge 2002). This leads to the usage of Poisson processes to model default events.

As systematic data gathering and storage were started only a few years ago, only limited
databases in terms of period are available up to now. Nevertheless, such time series are
essential for the calibration and backtesting of credit risk models (see Stahl et al. 2002 as
well as Bühler et al. 2002).

Both problems regarding the data should be solvable in the long run, as more and more
data are going to be gathered and stored. Moreover, the growing usage of credit derivatives
enhances the data collection as these instruments (for the first time) are subject to a regular
marking-to-market and due to this (relatively), high frequent data are available.
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Consequently, further research should integrate counterparty risk in the valuation of
credit derivatives as the isolated modeling of credit risk as discussed above is inadequate in
the long run. All these developments should enable us to achieve a more complete
approximation of the reality. Finally, it should be noted that a separate analysis of credit
and market risk is not sufficient. Therefore, from both a theoretical as well as practical
point of view, an integrated approach for the valuation of credit derivatives is urgently
needed (Oehler and Unser 2002).
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3.1 INTRODUCTION
The recent development in credit markets is characterized by a flood of innovative
credit risky structures. State-of-the-art portfolios contain derivative instruments ranging
from simple, nearly commoditized contracts such as credit default swap (CDS), to first-
generation portfolio derivatives such as first-to-default (FTD) baskets and collateralized
debt obligation (CDO) tranches, up to complex structures involving spread options and
different asset classes (hybrids). These new structures allow portfolio managers to imple-
ment multidimensional investment strategies, which seamlessly conform to their market
view. Moreover, the exploding liquidity in credit markets makes tactical (short-term)
overlay management very cost efficient. While the outperformance potential of an active
portfolio management will put old-school investment strategies (such as buy-and-hold)
under enormous pressure, managing a highly complex credit portfolio requires the
introduction of new optimization technologies (Bluhm and Overbeck, 2007; Felsenheimer
et al., 2005).

New derivatives allow the decoupling of business processes in the risk management
industry (in banking, as well as in asset management), since credit treasury units are now
able to manage specific parts of credit risk actively and independently. The traditional
feedback loop between risk management and sales, which was needed to structure the
desired portfolio characteristics only by selective business acquisition, is now outdated.
Strategic cross asset management will gain in importance, as a cost-efficient overlay
management can now be implemented by combining liquid instruments from the credit
universe, e.g., the iTraxx Future, with well-established instruments, like the DAX Future.

In any case, all these developments force portfolio managers to adopt an integrated
approach. All involved risk factors (spread term structures including curve effects, spread
correlations, implied default correlations, and implied spread volatilities) have to be
captured and integrated into appropriate risk figures. In this chapter, we present an idea
how such an integrated portfolio approach can be achieved. We have a look on the iTraxx
Future as the core investment, constant proportion debt obligations (CPDOs) as a lever-
aged exposure on credit indices, constant proportion portfolio insurance (CPPI) as a
capital guaranteed instrument, CDO tranches to tap the correlation market, and equity
futures to include exposure to stock markets in the portfolio (Brommundt et al., 2006).

For an integrated credit portfolio management approach, it is of central importance to
aggregate risks over various instruments with different payoff characteristics. In this chapter,
we will see that a state-of-the-art credit portfolio contains not only linear risks (CDS and CDS
index contracts, such as the iTraxx and the CDX) but also nonlinear risks (such as FTD
baskets, CDO tranches, or credit default swaptions). From a practitioner’s point of view there
is a simple solution for this risk aggregation problem, namely delta-gamma management. In
such a framework, one approximates the risks of all instruments in a portfolio by its first- and
second-order sensitivities and aggregates these sensitivities to the portfolio level. Apparently,
for a proper aggregation of risk factors, one has to take the correlation of these risk factors
into account. However, for credit risky portfolios, a simplistic sensitivity approach will be
inappropriate, as the following list of key characteristics of credit portfolio risks shows:
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. Credit risky portfolios usually involve a larger number of reference entities. Hence,
one has to take a large number of sensitivities into account. However, this is a
phenomenon that is already well known from the management of stock portfolios.
The solution is to split the risk for each constituent into a systematic risk (e.g., a beta
with a portfolio hedging tool, such as the iTraxx) and an alpha component which
reflects the idiosyncratic part of the risk.

. However, in contrast to equities, credit risk is not one dimensional (i.e., one risky
security per issuer) but at least two dimensional (i.e., a set of instruments with
different maturities). This is reflected in the fact that there is a whole term structure
of credit spreads. Moreover, taking also different subordination levels (with different
average recovery rates) into account, credit risk becomes a multidimensional object
for each reference entity.

. While most market risks can be satisfactorily approximated by diffusion processes,
for credit risk the consideration of events (i.e., jumps) is imperative. The most
apparent reason for this is that the dominating element of credit risk is event risk.
However, in a market perspective, there are more events than the ultimate default
event that have to be captured. Since one of the main drivers of credit spreads is the
structure of the underlying balance sheet, a change (or the risk of a change) in this
structure usually triggers a large movement in credit spreads. The best-known
example for such an event is a leveraged buyout (LBO).

. For credit market players, correlation is a very special topic, as a central pricing
parameter is named implied correlation. However, before we jump into implied
correlation, we should mention that there are two kinds of correlation parameters
that impact a credit portfolio: price correlation and event correlation. While the
former simply deals with the dependency between two price (i.e., spread) time series
under normal market conditions, the latter aims at describing the dependency
between two price time series in case of an event. In its simplest form, event
correlation can be seen as default correlation: what is the risk that company B defaults
given that company A has defaulted? While it is already very difficult to model this
default correlation (note that there are numerous models that deal with this topic),
for practitioners event correlation is even more complex, since there are other events
than just the default event, as already mentioned above. Hence, we can modify the
question above: what is the risk that spreads of company B blow out given that
spreads of company A have blown out? In addition, the notion of event correlation
can also be used to capture the risk in capital structure arbitrage trades (i.e., trading
stock versus bonds of one company). In this example, the question might be: what is
the risk that the stock price of company A jumps given that its bond spreads have
blown out? The complicated task in this respect is that we do not only have to model
the joint event probability but also the direction of the jumps. A brief example
highlights why this is important. In case of a default event, spreads will blow out
accompanied by a significant drop in the stock price. This means that there is a
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negative correlation between spreads and stock prices. However, in case of an LBO
event, spreads will blow out (reflecting the deteriorated credit quality because of the
higher leverage), while stock prices rally (because of the fact that the acquirer usually
pays a premium to buy a majority of outstanding shares). In this example, there is a
positive correlation between spreads and stocks.

This list shows that a simple sensitivity approach—e.g., calculate and tabulate all deltas
and gammas and let a portfolio manager play with this list—is not appropriate. Further
risk aggregation (e.g., beta management) and risk factors that capture the event risk are
needed. For the latter, a quick solution is the so-called instantaneous default loss (IDL).
The IDL expresses the loss incurred in a credit risk instrument in case of a credit event. For
single-name CDS, this is simply the loss given default (LGD). However, for a portfolio
derivative such as a mezzanine tranche, this figure does not directly refer to the LGD of
the defaulted item, but to the changed subordination of the tranche because of the default.
Hence, this figure allows one to aggregate various instruments with respect to credit events.
Moreover, taking also the time horizon into account—i.e., the term structure of the IDL—
we can obtain very valuable information about the timing problem of a credit event.

A simple example will shed some light. Let us assume that we have an FTD basket in our
portfolio that, among others, refers to company A and has a remaining time to maturity of
5 years. In addition, we also have a forward CDS contract in our portfolio, which refers to
buying protection in company A. The forward CDS contract has a forward start date in
1 year and an expiry date in 6 years. By aggregating both IDLs under the assumption that
both contracts refer to the same notional amount, we can show that our portfolio is only
prone to default risk of company A for one more year. Thereafter, we hedged against a
default event for the following 4 years, and even over-hedged between 5 and 6 years.

3.2 INSTRUMENTS
3.2.1 Single-Name CDS and Corporate Bonds

Single-name CDSs can be considered as highly commoditized credit risk instruments
which enjoy an even higher liquidity than the underlying bonds. In an integrated credit
portfolio management approach, these instruments are the nuclei of the risk portfolio.
They serve as underlyings of structured portfolio derivatives, such as CDS index contracts
(iTraxx and CDX), FTD baskets, and CDO tranches, and as hedging tools for managing
the idiosyncratic risks within credit portfolio derivatives.

A CDS is a bilateral over-the-counter (OTC) contract which transfers the credit risk
from the protection buyer to the protection seller. As compensation for taking the credit
risk, the protection seller usually receives quarterly premium payments. It is important to
note that in liquid markets, CDS contracts can easily be terminated before maturity which
involves a termination fee, reflecting the fair value at the closing date, comparable to
interest rate swaps. Hence, a CDS contract is not only a buy-and-hold contract, but one
which allows active trading, even with shorter time horizons. Current markets are so
liquid—which means that bid=ask spreads are so narrow—that a trading time horizon of a
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few days may already offer attractive opportunities, especially in more volatile markets,
such as the crossovers. As a consequence, the CDS instruments can be used to implement
an active management style which does not only focus on buy-and-hold investments, but
also on more active strategies in which credit risky positions are managed on a shorter time
horizon. This also means that the underlying risk perspective has to be adapted. While in a
pure buy-and-hold portfolio default risk is the major focus, active credit portfolio man-
agement concentrates more on the mark-to-market risk.

3.2.2 iTraxx Future

In March 2007, the Eurex introduced credit future contracts referring to the iTraxx EUR
indices. Also, the Chicago Board of Trade (CBOT) and the Chicago Mercantile Exchange
(CME) are currently thinking about the introduction of exchange traded credit derivatives
contracts. The first and most important aspect about the iTraxx Futures contract is that it
is not a futures contract in the usual sense, as it does not have a forward payoff profile. It
can be viewed as a standardized exchange traded total return index on an unfunded
underlying. In contrast to a forward CDS contract, the iTraxx Futures involves during
the holding period premium payments (however, not as real cash flows but as accruals),
and default risk (forward CDS is usually knock-out-on-default contracts).

The iTraxx Futures contract is quoted in (dirty) price terms, which reflects the following:

. Accrued premium (referring to the deal spread of the underlying swap contract)

. Value change in the underlying iTraxx swap contract (because of spread changes)

. Losses owing to a credit event (including the recovery rate)

Regarding the CDS premium, it is important to note that there will be no real payments
booked during the lifetime of the contract. Hence, in contrast to the iTraxx swap contract,
in which premiums are paid quarterly, the future contract accounts for premiums only by
accruing them over the entire lifetime. In technical terms, the underlying of the future can
be viewed as a swap contract with a long first coupon where the pay-date of the premium is
the expiry date of the future.

The future price consists of four components.

. Basis: The basis of the futures contract is given by the sum of the weightings of the
non-defaulted underlyings. In case of no defaults, the basis is 100. In case of a default
event, it will be reduced.

. Accrued premium: The premium of the futures contract starts to accrue from the
effective date of the underlying iTraxx contract.

. (Clean) Value: The clean value component of the futures contract reflects the present
value change in the contract owing to spread changes in the underlying iTraxx. It can
be approximated by: Spreadchange�DV01.

. Recovery rate: In case of a default event, the recovery rate for the defaulted entity has
to be reflected in the iTraxx Futures price.
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The valuation formula used for the iTraxx Futures can be summarized as follows:

(Basisþ Recovery)þ CleanPV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
clean

þ Accrued

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dirty

(3:1)

Credit futures contracts are ideal instruments to buy systematic credit risk in a cost-
efficient way. We view it as a core investment in our portfolio construction process.

3.2.3 CPDOs

The CPDO hype in 2006 raised some questions about the basic construction principles,
risk factors, and potential improvements. In respect of the construction principle, the
leverage mechanism was a major concern regarding first-generation CPDOs. At a first
glance, these structures will come under pressure in case the positive carry and roll-down
effects will be offset by wider spreads and hence the net asset value of the structure declines.
However, back-testing showed that CPDOs even survived 2001=2002 scenarios as a
dramatic widening was offset by the following strong tightening which more than offset
the widening as leverage increased. Consequently, cash-in events of potential CPDO
transactions issued before 2001=2002 took place within the maturity of the structures.

In addition, the assumption of a normally shaped credit curve has a strong impact on
the expected performance of CPDOs. Assuming a roll-down of 2.5 bp for half a year, the
performance impact, e.g., based on an initial average spread level of 25 bp (CDX and
iTraxx), amounts to around 11 bp. However, in case of curve inversion, this positive
performance contribution could move into negative terrain. The assumption of rolling
down the curve is closely coupled with the assumption of a positive roll spread. A positive
roll spread triggers increasing spread income at every roll-date, just by extending the
maturity of the underlying contract. A positive roll spread is obviously based on the idea
that no distressed debt emerges in the on-the-run period of a series. Assuming some
names drop from investment grade to the sub-investment grade area, the roll spread
might be negative. This means that leverage has to be higher in the new series to generate
enough carry.

The leverage mechanism in a CPDO is constructed in a way that the relation between
leverage (as a multiple of the underlying credit indices) and the net asset value of the
portfolio remains constant.

One of the major concerns regarding the CPDO structures remains static, purely
formula-based character with respect to the exposure to the risky underlying. As a result,
the structure may underperform when rolling the underlying CDS index positions from an
old series to a new one, as markets might adapt to this forced-to-roll behavior. Another
negative effect of the purely rules-based trading strategy is that the CPDO might suffer in a
falling angel scenario. In this case, the underlying risky asset incurs mark-to-market losses
(because of the spread widening in the old series driven by the falling angels), which
cannot be offset by a higher carry income in the new series, as the downgraded high
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spread names were excluded from the new index. The next generation of CPDO
structures is trying to cope with the potential weaknesses of the transactions we have
seen in 2006. The second generation of CPDOs can be divided into adjusted rules-based
and managed deals.

A CPDO is designed to take a leveraged long exposure on credit markets, with mark-to-
market risk clearly dominating default risk. That said, we can use CPDOs as a satellite
investment which allows us to take a leveraged view on directional moves in the credit
market.

3.2.4 CDO Tranches

The iTraxx Europe universe comprises a series of tradable and standardized tranches
offering leveraged exposure to the European high-grade credit market. Besides long
positions, shorting tranches is also possible.

The tranches are split up to 0%–3% (equity), 3%–6% (BBB), 6%–9% (AAA), 9%–12%
(junior super senior low), 12%–22% (junior super senior high), and 3%–100% (investment
grade), with the percentage related to total loss. This means that in case 10% of all index
constituents have a credit event and a recovery value of 80%, the first-loss-piece is still
intact as total loss is only 2%. A new series will be launched every 6 months, while future
attachment points could change in line with the risk profile of the underlying index. From
a risk and return profile, iTraxx tranches equal other investment grade CDOs. The most
important difference is high liquidity in iTraxx tranche products, while cash CDOs and
bespoke transactions are rather a buy-and-hold investment. While all tranches above the
equity piece are quoted in standard spread terms, the price quotation for the 0%–3%
tranche is quite different. An iTraxx equity tranche always pays a constant spread of 500 bp
on the (remaining) notional amount, while market makers quote a percentage of the
notional amount that has to be paid as an up-front payment when entering into such a
contract as a protection buyer. As tranche pricing is highly complex and directly linked to
several risk factors (directional market moves, implied correlation, recovery assumptions,
spread volatility, etc.), iTraxx tranches offer an attractive opportunity for pure credit
derivative players rather than for credit portfolio managers.

The main risk factor in the tranched iTraxx universe—besides the underlying credit
spreads—is default correlation among the reference entities. A high default correlation
indicates a higher risk of joint defaults, which may erode higher protected tranches of the
capital structure. The value of the tranches and, accordingly, the spread paid to investors
are highly sensitive to default correlation. Therefore, trading CDO tranches is often
referred to as correlation trading. An unhedged position in a CDO tranche indicates a
market view on individual credit spreads and default risk in the underlying credits and a
view on joint default risk in the pool. Usually, default correlation is an input parameter
for a complex model, which results in a price. For iTraxx tranches, it is the other way
around. Because of high liquidity in the market, prices (i.e., tranche spreads) are driven
by supply and demand. Consequently, the level of default correlation can be extracted
from these prices. Thus, the name of the game is price discovery (implied correlation)
rather than model-based pricing.
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By eliminating spread risk (delta hedging), a tranche position is primarily sensitive to
changes in the implied correlation. Delta-hedging means that we enter the opposite
position in the underlying index to immunize the tranche position (ignoring gamma)
against spread moves in the underlying market. Hence, an investment in iTraxx tranches
allows us to take exposure to default correlation.

3.2.5 Credit Default Swaptions

Liquid iTraxx default swaptions allow investors to implement simple hedging strategies
(portfolio insurance=protective put), and also more complex strategies (straddles, strangles,
butterflies, etc.). Standardized spread options are available for the iTraxx Europe and the
iTraxx Crossover. There are payer options (calls) and receiver options (puts), with different
strike prices, as well as straddles (combining receiver and payer options). The expiration
dates are scheduled for 3, 6, and 9 months at the introduction date of a new series.
Spread options are quoted in basis point, with implied at-the-money volatility being
quoted, as well.

Credit default swaptions can be traded on a single-name and on an index basis. A single-
name credit default swaption is an option to enter into a standard single-name CDS
contract, while its index counterpart is an option to enter into a CDS index contract,
such as the iTraxx. Both instruments are quite similar, but there is an important difference.
While standard single-name swaptions do not offer default protection until the option’s
expiration (knock-out feature), options on credit indices are not knocked out by a default
event in the underlying basket, and hence provide default protection also during the
lifetime of the option.

The designation of the option type (call or put) is a bit confusing. Market participants
use the same notation as for interest rate swaptions, by referring to the premium leg of the
CDS. A payer credit default swaption refers to an option to buy protection at a fixed CDS
spread at maturity, i.e., it is a put option on the value of the credit risk. It is named payer
default swaption because the investor has to pay the premium in the underlying CDS.
A receiver swaption refers to selling protection. The analogy to stock options can be
somehow misleading when we use the common perspective of an investor who sells
protection (and receives the premium payments). The value of such a CDS position
declines if the CDS spread increases. Hence, a receiver option offers a positive payoff in
case the spread increases. However, for increasing spreads, the value of the CDS decreases.
A receiver swaption can therefore be considered a put option on the credit risk.

Because of the knock-out feature, credit default swaptions have to be European-style
rather than American or Bermudan. Think of an American-style spread option, one which
can be exercised at any time. The owner of a payer option, which refers to buying
protection, can—and surely will—exercise his option shortly before default when financial
distress of the reference credit has already become apparent. Hence, an American-style
option is one that includes default protection owing to technical reasons, unless there are
strict rules that circumvent the aforementioned exercise strategy. For receiver default
swaptions (selling protection), the knock-out-on-default feature is not required. The
holder of the option will not exercise it in case of a default event, as this would mean
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selling protection on an already defaulted name. A receiver default option will only be
exercised if the reference spread is tighter than the strike spread.

Credit default swaption is sensitive to spread volatility. By using the concept of delta-
hedging (entering the delta-adjusted opposite position in the underlying index), we can
extract spread volatility from credit default swaption. Therefore, we can use this instru-
ment to take exposure to spread volatility without being exposed to directional spread risk.

3.2.6 First-to-Trigger Baskets

An equity default swap (EDS) is similar to a CDS contract from the construction principle,
except for a major difference. The trigger event is not a classical credit event (default,
failure-to-pay, and restructuring) but a certain drop of the share price. Most of
the contracts are standardized with the threshold levels being fixed at 30% (a drop of the
share price by 70%, respectively). The standardized recovery rate is 50%.

The payoff structure of an EDS contract is closely related to that of a CDS contract. The
protection seller receives the EDS premium payments until a trigger event occurs, which
triggers the conditional payment—the so-called default payment—by the protection seller
to the protection buyer. However, there are two differences between EDS and CDS
contracts: the trigger event and the recovery payment. An EDS default is triggered if the
share price hits a prespecified default barrier—usually 30% of the initial share price. This is
in contrast to a plain-vanilla CDS where default is triggered on the occurrence of a credit
event, i.e., bankruptcy, failure-to-pay, and restructuring. However, as the probability that
the company’s stock price drops more than 70% in case a credit event occurs is quite large,
the EDS can be viewed as a kind of CDS-plus.

The EDS provides protection against a significant drop in the share price and against
credit risk (through the correlation between the risk of a jump in stock prices and default
events). Hence, the EDS payoff resembles an American-style far out-of-the-money put
option with swap-styled premium payments. Nevertheless, from a contractual point of
view, a credit event may occur without an accompanied dip in the share price, triggering
the CDS contract, but leaving the EDS contract intact, which is however unlikely. On the
other hand, the EDS barrier can be triggered without the occurrence of a credit event.
Another difference between EDS and CDS contracts is that the conditional payment in an
EDS contract is fixed—usually 50% of the contract’s notional amount—while the loss-
given-default for a standard CDS is unknown in advance, as it is determined by the
recovery value of the reference asset.

All the well-known instruments of the credit derivatives world can be translated into the
EDS framework. The most basic correlation product in the credit world is an FTD basket,
while its pendant in the equity EDS methodology is a first-to-trigger basket (FTT). The
underlying mechanism of an FTT is similar to an FTD, except for the trigger event and the
fixed recovery assumption. An FTT offers access to correlation within the equity universe.

By imposing the nth-to-default concept on EDS, we can implement equity-linked risks
in a credit portfolio, which allows us to take a view on the capital structure of specific
companies, which brings us back to Merton’s (1974) initial idea of how to link equity and
debt markets. An FTT is sensitive not only to a dramatic slump of share prices but also to
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the correlation (comovement) of stock prices. As mentioned above, a more pronounced
drop of share prices should be directly linked to default probability.

3.3 IMPLICATIONS FOR CREDIT PORTFOLIO MANAGEMENT
3.3.1 Sensitivity Analysis

The major problem is that we do not have only one risk parameter (e.g., volatility), but
several sensitivities which, additionally, are correlated. We assume a portfolio consisting of
iTraxx Futures as a core investment. Our satellites in these portfolios are CPDOs (highly
spread-sensitive), correlation sensitive single-tranche CDOs (STCDOs), credit default
swaptions (spread volatility), and FTTs (indirectly default sensitive). To optimize a port-
folio including structured instruments, basic risk-return optimization will fail to generate
satisfying results. The major problem is that we do not have only one risk parameter (e.g.,
volatility), but also several sensitivities which, additionally, are correlated. The first step of
analyzing a structured portfolio is to extract sensitivities, shown in Table 3.1.

3.3.2 Optimization Process

A pure risk-return approach as introduced by Markowitz does not fit with such a
multidimensional optimization problem. To cope with such complex portfolios, we have
to take into account not only that the portfolio as a whole is sensitive to specific risk
factors, but also that sensitivities are correlated. Rising default rates, e.g., do not only have
an impact on default-risk instruments as such a scenario will be accompanied by wider
credit spreads, but also affect primarily spread-sensitive instruments. That said, the
portfolio of optimization is directly linked to the instruments included in the portfolio.
The instruments introduced above argue against the efficiency of the implementation of

TABLE 3.1 Sensitivities of Different Credit Risky Instruments

Risk Type Single-Name Portfolio

Linear spread risk . Credit default swap (CDS) . CDS indices (iTraxx, CDX) and Futures
. Digital default swap (DDS) . Bespoke linear baskets (e.g., U.S. banks)
. Forward CDS . Leverage note (e.g., CPDO)
. Constant maturity CDS . Dynamic CPPI structures

Default correlation . First-to-default (FTD) baskets
. Standard tranches (iTraxx, CDX)
. Bespoke collateralized debt obligation (CDO)
. CDO^2
. Equity tranches (POETs), tranchelets, etc.

Spread volatility . Credit default swaptions . Credit default swaptions, variance swaps
. Options on Futures and total return locks

Hybrid risk . Hybrid capital
(financial=nonfinancials)

. First-to-trigger baskets (FTTs) on equity default
swaps (EDS)

. Subordinated CDS . Collateralized fund obligations (CFO)

. Capital structure arbitrage
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a traditional CAPM (capital asset pricing model) approach to generate individually
optimized portfolios.

3.3.3 Replacement of the CAPM Regime by the CFO Regime

Recent developments in the credit derivatives universe not only have a limited impact on
the credit arena itself, but will also affect investment behavior in other market segments.
In the long term, we think that the well-established CAPM regime will be succeeded by the
CFO (collateralized fund obligation) regime. The replacement of the CAPM regime by
the CFO regime has a significant impact on portfolio management, on product develop-
ment, and on the mainstream view on correlation.

A major trend with respect to product development is to impose credit derivatives
technology on other asset classes. CDOs on EDS, collateralized commodity obligation
(CCO, commodity swap CDOs), or foreign exchange CDO (CFXO) have already been
introduced, reflecting the trend toward pricing established asset classes in a new and innova-
tive format. We think that this will be a lasting trend rather than a short-lived one. In the long
term, this so-called CFO regime is expected to replace old-fashioned risk-return optimization.

In the CAPM world, the risk-return optimization is already implemented in the market
portfolio ‘‘M’’ which is defined as being efficient, while correlation between the portfolio
constituents is simply the comovement of asset prices. The individual risk perception is
simple, reflected by the investment share of the market portfolio and the risk-free asset
(RF). In a CFO, the underlying portfolio is selectable without m=s—constraints, and there
is no investment in RF. Correlation is rather joint default probability, while the specific
tranche investment is done in line with the individual risk perception (Figure 3.1).

CFOs are smoothing the volatility of assets, while correlation as defined as comovement
of assets (volatility-driven CAPM regime) will be replaced by a correlation of tail events
(event-risk-driven CFO regime). How are tail events correlated? Obviously, systematic
shocks will be a crucial risk factor to a CFO, while market fluctuations and cyclical moves

s

mm

The allocation
decision

RF

Capital market line

The market
portfolio

AAA
AA
A

BBB
E 

Pi

Investment
universe

CAPM regime CFO regime 

s

FIGURE 3.1 CAPM versus CFO regime.
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are of minor importance for the performance of a CFO. Idiosyncratic risk factors are losing
in importance versus systematic risk factors. The risk and return profile of CFO tranches
differs significantly from the risk and return profile of the underlying assets, shifting risk
away from pure volatility toward default. The effect on asset management is obvious: pure
risk-return optimization will lose in importance versus structured investment portfolios, as,
e.g., managed by Credit Derivatives Product Company (CDPC).

3.4 LATEST DEVELOPMENTS IN THE SYNTHETIC CREDIT MARKET
The structural change in the structured credit universe continues to accelerate. While the
market for synthetic structures is already pretty well established, many real money
accounts remain outsiders owing to regulatory hurdles and technical limitations, e.g., to
participate in the correlation market. Therefore, banks are continuously establishing new
products to provide real money accounts with access to the structured market, with
CPDOs recently having been the most popular example. Against this background, three
vehicles which offer easy access to structured products for these investors have gained in
importance: CDPCs, PCVs (permanent capital vehicle), and SIVs (structured investment
vehicles).

A CDPC is a rated company which buys credit risk via all types of credit derivative
instruments, primarily super senior tranches, and sells this risk to investors via preferred
shares (equity) or subordinated notes (debt). Hence, the vehicle uses super senior risk to
create equity risk. The investment strategy is a buy-and-hold approach, while the aim is to
offer high returns to investors and keep default risk limited. Investors are primarily
exposed to rating migration risk, to mark-to-market risk, and, finally, to the capability of
the external manager. The rating agencies assign, in general, an AAA-rating on the
business model of the CDPC, which is a bankruptcy remote vehicle (special purpose
vehicle [SPV]). The business models of specific CDPCs are different from each other in
terms of investments and thresholds given to the manager. The preferred asset classes
CDPC invested in are predominantly single-name CDS, bespoke synthetic tranches, ABS
(asset-backed security), and all kinds of CDOs. So far, CDPCs main investments are
allocated to corporate credits, but CDPCs are extending their universe to ABS and CDO
products, which provide further opportunities in an overall tight spread environment. The
implemented leverage is given through the vehicle and can be in the range of 15–60x. On
average, the return target was typically around a 15% return on equity, paid in the form of
dividends to the shareholders.

In contrast to CDPCs, PCVs do not invest in the top of the capital structure, but in
equity pieces (mostly CDO equity pieces). The leverage is not implemented in the vehicle
itself as it is directly related to the underlying instruments. PCVs are also set up as SPVs
and listed on a stock exchange. They use the equity they receive from investors to
purchase the assets, while the return on their investment is allocated to the shareholders
via dividends. The target return amounts, in general, to around 10%. The portfolio is
managed by an external manager and is marked-to-market. The share price of the

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C003 Final Proof page 50 7.4.2008 7:37pm Compositor Name: VBalamugundan

50 & Credit Risk: Models, Derivatives, and Management



company depends on the net asset value (NAV) of the portfolio and on the expected
dividend payments.

In general, an SIV invests in the top of the capital structure of structured credits and
ABS in line with CDPCs. In addition, SIVs also buy subordinated debt of financial
institutions, and the portfolio is marked-to-market. SIVs are leveraged credit investment
companies and bankruptcy remote. The vehicle issues typically investment-grade rated
commercial paper, MTNs (medium term notes), and capital notes to its investors.
The leverage depends on the character of the issued note and the underlying assets,
ranging from 3 to 5 (bank loans) up to 14 (structured credits).
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4.1 INTRODUCTION
Wealthy individuals are often asset rich and cash poor. With their capital tied up in assets
they tend to want access to loans backed by assets. Asset-backed securities (ABS) were first
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introduced in the United States in the 1970s in the form of Mortgage backed securities.
More recent forms are Automobile backed securities and Credit-Card sacked
securities. These loans all have the underlying asset as the collateral in the case of credit
default. However, the move toward loans backed by artworks has been much slower in
evolving. This is mainly due to the inability to correctly assess the risk from changes in the
price movements of art. Since the collection of a number of price indices this is now
becoming easier. Price movements may be more easily tracked for the art market in
general. However, the art market is made up from heterogeneous goods, where the value
of an individual artwork is still very difficult to evaluate.

In the arts sector a famous example of securitization was the issuance of loans using
royalties as cash flows, consequently named Bowie Bonds after singer David Bowie who
securitized 10 years worth of royalties. Another example is the recent move by some
private banks to make loans against yachts as collateral.

The major problem for banks in the introduction of plain vanilla art-backed securities is
the management of the art risk. At present the market is highly illiquid, which makes daily
management of art risk almost impossible at market prices; a requirement of the Basel
accord for banks’ capital requirements.

However, through the introduction of art credit default swap contracts (ACDS) banks
can transfer undesirable art risk from holding artworks on the banks’ balance sheet to a
third party that is willing to hold the art price risk. In return for doing so, a premium is
received. The risk from incorrectly pricing the derivative contract is substantially smaller
than the risk from holding the underlying art risk, providing an efficient solution to
transferring risk for the banking sector. We explore this concept in this chapter.

The outline of the chapter is as follows. In the following section we introduce art as an
alternative asset class, and the characteristic risk and return profile of art. In Section 4.3 we
discuss art lending and the inefficient nature of the current practice. In Section 4.4 we show
how risk management tools can be adopted to transfer undesirable art price risk from
banks to third parties who are willing to protect the bank against the credit default risk on
art-backed loans because they are willing to buy the art held as collateral at a guaranteed
price in the case of default. This insures the bank against adverse movements on art
markets, in times of high credit default probabilities. The introduction of this financing
structure would result in a more efficient market for lending against art. The mechanism
behind the trilateral financing structure is addressed in Section 4.5, with the introduction
of ACDS contracts. Pricing equations for these ACDSs are introduced in Section 4.6 and an
example is given. Conclusions are then drawn in the final section, Section 4.7.

4.2 ART AS AN ASSET CLASS
There have been a variety of studies devoted to the estimation of art indices to gauge
average returns in the art market. Data goes back as far as the seventeenth century. ‘‘Art’’ is
far too general a term to generate any meaningful analysis, therefore, much as traditional
assets are categorized, we limit the discussion of art to visual fine art: paintings, drawings,
and sculpture rather than the performing arts.
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Art price indices have been created using three main methodologies: average prices,
repeat sales regression, and hedonic regression. Chanel, Gerard-Varet, and Ginsburgh’s
study indicates that over long periods the respective methodologies are closely correlated
(Chanel et al. 1996). Also see Ginsburgh, Mei, and Moses (2006) who look at the
differences in the modeling processes of the various types of index construction. Goetzman
(1993) points out the selection bias derived from looking only at repeat sales on auction
house data. Repeat sales regressions require artworks to put on the block at least more than
once to be included as a repeat sale. It is thought that artworks which fall drastically in
value tend not to be resold at auction.

The information from databases that collect art sales information is problematic for a
number of reasons (Ashenfelter and Graddy, 2003). Ashenfelter and Graddy’s (2003) study
contends that an empirical discrepancy in one year can materially alter the overall rate of
return by up to 5%. Campbell and Pullan (2005) also find evidence of this phenomenon for
the more recent Mei & Moses All Art Index compared to the General Art Index of Art
Market Research for the period 1976–2004.

In Table 4.1 we have provided a summary of the approaches to data collection, extended
from an excellent survey by Ashenfelter and Graddy (2003). Average real returns are

TABLE 4.1 Estimated Art Returns and Standard Deviation as Reported by Various Papers

Author Sample Period Method

Nominal
Return
(%)

Real
Return
(%)

Standard
Deviation

(%)

Baumol (1986) Paintings in
general

1652–1961 RSR 0.60

Frey and
Pommerehne (1989)

Paintings in
general

1635–1949
1653–1987
1950–1987

Hedonic
Hedonic
Hedonic

1.40
1.50
1.70

5.00

Buelens and
Ginsburgh (1992)

Paintings in
general

1700–1961 Hedonic 0.91

Paintings in
general

1780–1970 RSR 3.70 3.00a

Goetzmann (1993) Paintings in
general

1716–1986
1850–1986
1900–1986

RSR
RSR
RSR

3.20
6.20
17.50

2.00a

3.80
13.3

5.65
6.50
5.19

Anderson (1974) Paintings in
general

1780–1960
1780–1970

Hedonic
RSR

3.30
3.70

2.60a

3.00a

Chanel, Gerard-
Varet and
Ginsburgh (1996)

Paintings in
general

1855–1969
1855–1969

Hedonic
Repeat
sales

4.90
5.00

Mei and Moses
(2002)

American,
impressionist,
and old
masters

1875–1999
1900–1986
1900–1999
1950–1999
1977–1991

RSR
RSR
RSR
RSR
RSR

4.90
5.20
5.20
8.20
7.80

4.28
3.72
3.55
2.13
2.11

(continued)
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generally regarded to be significantly lower than for stocks, but higher than inflation and
government bonds. Table 4.1 provides an overview of the average returns and standard
deviations for the main studies cited in the literature for art price indices which have been
constructed.

Behavioral aspects have implications for the cyclicality of the indices. In a boom,
artworks sell quickly at prices above their reserve prices and often far above price estimates.
In periods of downturn or in bust, artworks not reaching reserve prices are ‘‘bought in’’
without sale. These observations result in prices being less flexible downwards than buyer’s
offers. McAndrew and Thompson (2007) try and model the left hand tail of the distribu-
tion to produce a continuous distribution for modeling art risk for risk management
purposes. The resulting illiquidity observed at times on the market has resulted in a lack
of loans being provided using art as collateral. However, are the extremely high spreads
observed reflective of this high liquidity risk observed in the market?

TABLE 4.1 (continued) Estimated Art Returns and Standard Deviation as Reported by Various Papers

Author Sample Period Method

Nominal
Return
(%)

Real
Return
(%)

Standard
Deviation

(%)

Goetzmann (1996) Paintings in
general

1907–1977 RSR 5.00

Fase (1996) Nineteenth
century

1946–1966
1972–1992

11.00
10.60

7.50
1.10

Stein (1977) Paintings in
general

1946–1968 Geometric
mean

10.47

Barre, Docclo
and Ginsburgh
(1996)

Great
impressionist
Other
impressionist

1962–1991

1962–1991

Hedonic

Hedonic

12.0

8.00

5.00a

1.00a

Czujack (1997) Picasso
paintings

1966–1994 Hedonic 8.30

Deutschman (1991) Old masters 1971–1991 12.30 6.04

Angnello and
Pierce (1996)

Nineteenth
century United States

1971–1992 9.30 3.25

Campbell (2005) Paintings
in general

1976–2004 Average
prices

5.73 1.44 8.27

U.S. paintings 1976–2004 Average
prices

7.94 3.66 8.73

Pesando (1993) Modern prints 1977–1992 RSR 1.51 19.94

Pesando and
Shum (1996)

Picasso prints 1977–1992 RSR 12.00 2.10 23.38

Frey and
Serna (1990)

Old masters 1981–1988 Hedonic 10.59 3.20

Candela and
Scorcu (1997)

Modern
contemporary
paintings

1983–1994 3.89 0.21

a Real returns estimated additionally by Ashenfelder & Graddy.
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4.3 ART LENDING
At present the market for lending against art is relatively inefficient. This is partly due to
the inefficient nature of the art market, and naturally the lack of liquidity in the market.
This means that the use of art-backed loans is a highly risky form of loan securitization,
with a low percentage of the artworks value being used as a guarantee for the loan, and also
large spreads appointed to credit. In a bilateral agreement for the case of a loan using art as
collateral, the bank would normally assign a higher interest rate on the loan as compen-
sation for holding the art price risk stemming from holding art as collateral on its books.
Given the highly volatile, illiquid, and transparency lacking global art market, the rate of
interest on the loan would certainly occur at a premium. For an overview of art lending
practices currently on offer, see Table 4.2.

TABLE 4.2 Art Lending Practices

Company Rates Terms Caveat

Art Capital Group Inc. 8%–12% for bridge
loans. Rates are in
mid-teens where
artwork is only
collateral

Offers nonrecourse
or pawn-shop deals,
where art is used as
sole collateral. Loan
can be for 3 months
or 3 years, depending
on the situation. Loan
is typically up to 50%
of the low auction
estimate

Art Capital Group
must have verified
ownership and
reliable auction
estimate

Sotheby’s Prime þ300 bp
with some flexibility

Loan is 40% of the low
auction value of art
or collection

Minimum loan is
$1 million. With few
exceptions, the
company no longer
gives loans to
customers unless
they plan to sell the
art through Sotheby’s

Christie’s Varies by client Loan is up to 50%
of the estimated
auction value. Requires
collateral of 2–2.5 times
the amount of the loan

Company offers
service to long-term
clients and borrowers
who intend to sell
through Christie’s

Citigroup Private
Bank

Average is 225 bp
above London
Interbank offered
rate, depending on
the client

Loan is 50% of the value
of the artwork. Prefers
loans of more than
$5 million

Bank typically requires
the borrower to be
current or potential
client of the bank.
Usually requires other
assets as collateral

Bank of America
Private Bank

150 to 300 bp over
London Interbank
offered rate

Value of loan is up to
50% of the value of
artwork

Bank loans mainly to
existing customers or
prospects of the
private bank
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For example Art Capital Group appoints rates in the mid-teens for loans using art as
collateral. The large spread covers the additional risk of holding art on the balance sheet,
and the associated art price risk.* A risk has to be correctly accounted for in daily risk
management purposes, as set out in the Basel accords. A further consequence of the greater
risk inherent in art prices is that the price at which the art is valued for as collateral is likely
to be significantly lower than its market value. Due to inefficient pricing in the art market, a
sub-optimal amount of lending occurs in the market for asset-backed loans, when art is
used as collateral. The inefficiencies from the art market are likely to be carried over to the
financial sector resulting in an inefficient market for asset-backed loans incorporating art
as the reference asset in the loan.

By entering into a trilateral agreement, banks are able to transfer the risk of fluctuations
in the price of art—art price risk. Therefore, additional capital is not required for Basel
requirements, and the only risk which the bank holds on its books is the default risk on the
ACDS. The structure is conditional on the bank only entering into an agreement with a
credit worthy party. Such a structure would then result in greater efficiency in the capital
market for asset-backed loans.

4.4 RISK MANAGEMENT TO TRANSFER ART RISK
In managing the art risk for loans using art as collateral, there is a role for a third party to
create greater efficiency in the market. As with all financial engineering, and the resulting
products, there is a benefit of transferring risk away from the party not willing to hold the
risk, to the party who is willing to hold this risk. One way of transferring the art risk off the
banks’ balance sheets is through the introduction of a credit option on the art loan.

At present the new regulations on risk management practices, from the Basel accord
and Basel II mean that banks need to be able to adequately estimate all risks associated
with changes in asset prices. The difficulty in being able to estimate and monitor risks
associated with art price changes means that banks are unwilling to hold art price risk on
their balance sheets. Since the introduction of the Basel accords, banks prefer to
remove liabilities, which require a high allocation of capital. At present banks are required
to hold 8% of their liabilities as capital. For more risky positions then a higher percentage
is required.

4.5 ART CREDIT DEFAULT SWAPS
Credit default swaps (CDS) are contracts which provide protection on the par value of a
specified reference asset, where a protection buyer pays a periodic fixed fee or a one off
premium to a protection seller, in return for which the seller will make a payment on the
occurrence of a specified credit event (Hull and White 2000; Chaudhry 2004). In this
particular case the bank is the protection buyer and another third party, who has an interest

* Citigroup and Bank of America offer existing highly valued private clients a lower spread, often with other assets
also required as collateral. Up to 50% of the value of the artwork is adopted as collateral.
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in buying the reference asset, is the protection seller.* In this case the underlying asset is a
specific asset, the artwork or the art collection held as collateral on the loan, commonly
known as the reference asset. The third party is willing to accept the art price risk for a
premium and enters into a contract with the bank which entitles him to also buy the
reference asset at a set price if a credit event is triggered. Here this is the case if the
reference entity, the art collector, defaults on the loan. On occurrence of the credit event,
the swap contract is terminated and a settlement payment is made by the protection seller
to the protection buyer. The settlement payment in this case is the exchange of the
reference asset for a set termination price as specified in the contract from the third
party to the bank.

Since the lender has covered his loan with his artwork as collateral, the credit event
being triggered is also contingent on the price of the artwork falling below the outstanding
loan payments. At the beginning of the loan agreement the value of the artwork to the
bank, used as a guarantee, is the current value of the loan. This is likely to be set as a
percentage of the current market valuation of the artwork.y Only if the artwork falls below
this guaranteed price and the lender defaults on the loan is the credit event triggered and
the protection seller has the obligation to buy the artwork at the set price. Since the value of
the loan must be less than the market price for the artwork, in order for the credit event to
be triggered, the bank with the long position in the ACDS is necessarily out-of-the-money.
This is a necessary requirement for the third party to be obliged to fulfill his obligation on
the contract and buy the artwork for the guaranteed price. The risk is transferred from the
bank as long as the termination price for the artwork is set at least equal to the outstanding
value of the loan.

An ACDS can be used to enable banks to transfer unwanted credit risk exposure to a
third party. In this case the use of risk management techniques transfers the default risk
from the loan backed by art off the balance sheet. Since the art is held as collateral the
bank’s assets are subject to changes in the value of the artwork, and the bank carries the art
price risk. The benefit is that the bank can make a loan using the art as collateral, but could
transfer the risk from holding the art as collateral. By writing a CDS on the loan, if default
occurs, the bank removes the risk of carrying the art price change on its books. The bank is
not required to monitor the underlying value of the art and importantly is not required to
be tracked for risk management regulations stipulated in the Basel accords for capital
requirements.

The basic premise is of course that the bank is able to find a counterparty for the ACDS.
At present parties who would be willing to hold such a derivatives contract would be art
funds, (or in the form in which they are more likely to emerge in future, art mutual fundsz),
art museums, or from a more speculative disposition, by hedge funds, institutional
investors, or wealthy individuals wanting to expose themselves to art price risk; willing

* In a credit default swap ‘‘going long’’ is to buy the swap, where the buyer purchases protection and pays the
premium. The buyer of the CDS is frequently referred to in the market as ‘‘shorting’’ the reference asset.
y Such guarantees are commonly used by auction houses as percentages of the market value in auction sales,
commonly referred to as the reserve price.
z See Campbell and Pullan (2005) for an overview of the potential for the mutual art fund industry.
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to pay a low premium for the small probability of being able to buy a wealthy artwork or
collection at a fraction of the cost.

The main steps for the financing structure introduced here are as follows:

1. Bank issues a loan to the art collector, with the artwork as collateral. The value of the
artwork is estimated, and as is currently the practice, a price is guaranteed on the art
as a percentage of the current value. The bank carries the art risk on its books in lieu
for giving the loan. Commonly the uncertainty in the value of the art would be
reflected in a high interest rate on the loan, manifesting itself in an inefficient market
for asset-backed lending.

2. Bank, not wanting to hold the risk of art price fluctuations on its books, issues an
ACDS to a third party. If the reference entity (art collector) defaults on the loan the
bank has the right to deliver the reference entity to the seller in exchange for its face
value. This is set at the face value of the loan.

3. Bank buys protection by taking a long position in the ACDS, but actually shorts the
reference asset. The bank therefore transfers the risk of holding the art as collateral in
exchange for the credit risk on the ACDS. If the third party is not sufficiently rated,
the bank may want to enter into a funded credit agreement, and therefore mitigate all
risk on the banks books; otherwise if the party is creditworthy it is likely that the bank
will be willing to carry the credit default risk of the ACDS.*

4. On the credit event being triggered the ACDS is terminated and the protection seller
(third party) makes a payment to the protection buyer. In this case the bank sells the
artwork(s) at the termination value, calculated at the time the contract was specified,
to the third party. See Figure 4.1 for an example of the art finance structure. The
default occurring is contingent on the market price of the artwork falling below
the outstanding loan payments. Otherwise the art is used by the bank in its primary
role as collateral, its market price able to cover the value of the outstanding loan.

Another premise for the structure to work is that the ACDS is priced correctly. The risk
to the bank is now the correct pricing of the ACDS, which is substantially lower than the
risk from holding the artworks on the banks books. In the following section we shall
discuss pricing the ACDS.

4.6 PRICING ART CREDIT DEFAULT SWAP DERIVATIVES
In order to correctly price the ACDS, we need to determine the credit spread so that the
present value of the total fee payments made by the bank equals the expected credit loss in
today’s terms. As is common in the literature, default probabilities and interest rates are
assumed to be independent. FollowingHull andWhite (2000), the expected loss is a function
of the default probability at time t and the amount by which the face value of the loan exceeds
the value of the collateral at a particular instant in time, calculated in present terms.

* Many art museums have issued a variety of tax exempt bonds for financing solutions, requiring credit status to be
acknowledged.
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As an example, consider a loan whose face value is set to x% of the value of the art piece
or art collection at t¼ 0. At present the common practice is to use a maximum of 50% of
the current market price of the artwork to back the loan. The idea of this financing
structure using the ACDS is to mitigate the risk of the art price falling below the loan
value. We could therefore use a much higher percentage, x, even up to the full value of the
artwork if the collector is of high credit quality. Equation 4.1 shows this relation,

PLoan
t¼0 ¼ x% PArt

t¼0 (4:1)

where PLoan
t¼0 and PArt

t¼0 are the prices of the loan and art work at t¼ 0, respectively.
Default is contingent on the full price of the artwork at time, t, falling below the

outstanding value of the loan at time t as shown in Equation 4.2.

PArt
t � PLoan

t (4:2)

From Equation 4.1 the price of the artwork is simply equal to the guaranteed percentage on
the initial value of the artwork, assuming bullet repayment as shown in Equation 4.3.*

PArt
t � x% PArt

t¼0 (4:3)

The probability density function of default at time t required for the expected loss
determination is the probability that the price of the artwork falls below the percentage
of the artwork guaranteed at the initial market value of the artwork at time 0. Formally this
distribution function is expressed in Equation 4.4 as q(t).

q(t) ¼ Prob PArt
t � x% PArt

t¼0
� �

(4:4)

In the case of default, the protection seller will be required to pay the difference between
the face value of the loan and current market value of the collateral plus any accrued
interest to the bank. Assuming (4) to represent a risk-neutral probability density function,
this can be discounted at the risk-free rate. Setting

v(t) ¼ e�rf t x% PArt
t¼0 � PArt

t

� �þ y � dt � PLoan
t¼0

� �
if PArt

t � x% PArt
t¼0

0 if PArt
t > x% PArt

t¼0

(
(4:5)

where dt is the year expressed as a fraction of time between 0 and 1, since the last interest
payment and y is the interest rate charged on the loan to the art collector, the expected loss
can be expressed by Equation 4.6.

ECL ¼
ðT
0

q(t) � v(t) dt (4:6)

* If this happens the borrower would rationally default on the loan. Status in holding the art and reputation may
result in him not actually defaulting.
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As noted above, the expected credit loss (ECL) should equal the present value of the fee
payments. With payments being made until default or maturity of the ACDS, whichever
occurs earlier, the costs of default can be expressed as a weighted average of the two. For a
maturity of T years and v payments per year, it is straightforward to see that, in the case of
no default, the present value of these payments is

s � u(K) ¼
XK
k¼1

s � 1
ˆ
� x% � PArt

t¼0
� � � e�rf Tk (4:7)

where
s is the credit spread quoted on an annual basis
T1, . . . , TK are the fee payment dates

The probability weight corresponding to no credit event is one minus the probability of
the art price falling below the face value of the loan during the duration of the ACDS and is
given as p in Equation 4.8:

p ¼ 1�
ðT
0

q(t) dt (4:8)

If default occurs before maturity at time t, the present value of the payments is the sum of
the fees paid at payment dates before default and the accrued value since the last payment
date Tn and the time of default:

s � g(t) ¼
Xn(t)
k¼1

s � 1
ˆ
� x% � PArt

t¼0
� � � e�rf Tk þ s � d0t � x% � PArt

t¼0
� � � e�rf t (4:9)

with d0t being the year fraction since Tn.
Putting the equations together, we obtain the value of the fee payments:

s �
ðT
0

q(t)g(t) dt þ p � u(K)
0
@

1
A (4:10)

which gives, after equating fee payments in Equation 4.10 and expected credit loss in
Equation 4.6, the credit spread of the ACDS, s:

s ¼

ÐT
0
q(t) � v(t) dt

ÐT
0
q(t)g(t) dt þ p � u(K)

: (4:11)

A numerical example will clarify the concept. The initial value of the art piece is assumed
to be e125,000. The loan granted is set at 80% of the value of the art (Pt

Art) at time, t¼ 0.
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The maturity of the loan is set to 5 years at a continuously compounded interest rate of 5%,
which is 200 basis points above the risk-free rate. Interest is assumed to be paid at the end
of each year. The ACDS is further assumed to match the loan with respect to maturity and
payment dates. For the purpose of this example, suppose that annual art returns follow a
normal distribution with mean 6% and a standard deviation of 15%.

In a Monte Carlo simulation 10,000 art price realizations using daily returns based on
the distributional assumption are obtained. We compute the expected credit loss using
Equation 4.6 and the value of the fee payments in Equation 4.10 by averaging over the
credit losses and fee payments for all realizations, respectively. Dividing the former by the
latter gives an ACDS spread of 20.92 basis points. This is the fair value for the protection
that the bank will have to pay in order to transfer the credit risk stemming from the loan.

The spread is a positive function of the assumed variability of the art return. Figure 4.2
shows this relationship.

We assume a very simple example using an art price which is normally distributed. In
this case, even with volatility at 25%, Figure 4.2 shows that simulated spreads are as low as
71 basis points. Consequently, the current spreads do not seem to be justified and point to
a highly inefficient market for both banks and borrowers. To reconcile modeled credit
spreads with market spreads at present, the liquidity premium must be substantial which is
not accounted for in the presented model. By assuming the ratio of illiquid and liquid
prices to be a fraction depending on a random number of available buyers, in line with
Ericsson and Renault (2006), the model could, however, easily be extended to incorporate
liquidity risk. This is an avenue for further research.

The sensitivity of the spread to changes in the maturity of the loan and ACDS contract is
depicted in Table 4.3. The spread declines with increasing maturities. This can be attributed
to credit events usually occurring at the beginning of the term of the loan when a negative
return is more likely to cause a drop of the art price below the face value of the loan.

Spread as a function of art price volatility
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FIGURE 4.2 Credit spread as a function of art price volatility.
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4.7 CONCLUSION
Art lending and art finance are both in their infancy. However, with the demand for more
asset-backed loans, involving art as collateral, and the willingness of a credit worthy third
party to carry art price risk, such as through the emergence of art funds, and museums,
banks are now able to transfer undesirable art price risk off its balance sheets through the
use of ACDS derivative contracts. The structure presented in this chapter outlines the
concept and highlights the necessary requirements for the introduction of lending against
art in practice. Financial engineering improves efficiency in the banking sector, resulting in
risk transfer and lower spreads paid for loans using art as collateral.

At present the market for pricing ACDSs is anywhere from mature. The simulation
results have shown that the spread associated with credit risk is much lower than current
practice which highlights the presence of a nonnegligible liquidity premium. This issue
needs to be investigated in much greater detail. Other pricing problems which may occur
due to dependent default functions are not yet relevant, however, are likely to become an
issue once the market becomes more established.

Moreover, the derivatives market for art may bring the necessary liquidity to the art
market which would deregulate the market and in turn fuel the move toward greater
investment in art as an alternative asset class.
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Part II
Credit Risk, Spreads, and Spread Determinants
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5.1 INTRODUCTION
Credit risk is the major source of risk for most commercial banks and it can be defined as
the risk of loss resulting from failures of counterparties or borrowers to fulfill their
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obligations. Credit risk appears in almost all financial activities, and it is therefore
important to measure, price, and manage accurately.

Credit derivatives, a recent innovation in the credit risk market, can help investors with
these issues. Credit derivatives are financial contracts that transfer the (credit) risk and
return of an underlying asset from one counterparty to another without actually trans-
ferring the underlying asset. The credit derivatives market is growing rapidly and in June
2004 notional amounts for credit derivatives amounted to $4.5 trillion, compared to
$0.7 trillion 3 years earlier (BIS 2004). Furthermore, the fact that global markets have
much larger exposures to credit risk than to interest rate or currency risk indicates an
almost unlimited growth potential for the credit derivatives market.*

Contracts similar to credit derivatives, such as letters of credit and credit guarantees,
have been around for centuries, but credit derivatives are different in the sense that they are
traded separately from the underlying assets; in contrast, the earlier arrangements were
contracts between an issuer and a guarantor. Credit derivatives are therefore ideal risk
reduction tools for any investor who wants to reduce the exposure to a particular counter-
party but finds it costly to sell outright the claims on that counterparty. A related feature of
credit derivatives is that credit risk is transferred without any funding actually changing
hands. Only in case a credit event occurs does the buyer of credit risk provide funds ex post
to the seller. This way of allowing financial institutions to manage credit risk separately
from funding is an example of how modern financial markets divide financial claims into
various building blocks (credit, interest rate, exchange rate, etc.) that each can be traded in
a standardized wholesale market that better meets the needs of investors.

The use of credit derivatives is not limited to commercial banks’ risk management
departments; commercial banks also use them for regulatory arbitrage, hedge funds are
active users to hedge other trades, nonfinancial firms use credit derivatives to buy protec-
tion against credit extended to customers or suppliers, and many investment banks bring
together their various trading desks to encourage traders to identify arbitrage opportunities
that arise between credit derivatives markets and their underlying bond and stock markets.

The value of any credit derivative is linked to the probability of the underlying reference
entity being exposed to a credit event (delayed payment, restructuring, bankruptcy, etc.) at
some point in the future, and for entities with traded equity the probability is often
estimated using information from the stock market.y The (theoretical) link between
stock prices and credit derivatives prices raises the question of whether there might be
arbitrage possibilities available for investors who successfully exploit the link between the
two markets. This is an example of a popular new line of business called capital structure
arbitrage, or capital structure inbreeding (Currie and Morris 2002).

Currently, the most important credit derivative is the credit default swap (CDS). A CDS
is essentially an insurance contract providing protection against losses arising from a

* The credit derivatives market is of course still small compared to the largest OTC (over-the-counter) derivatives
markets in the world. Interest rate related OTC derivatives contracts constitute around $177 trillion in notional
amounts and foreign exchange related OTC derivatives make up about $32 trillion (BIS 2004).
y The most well-known approach of calculating these probabilities using stock market information is the Merton
(1974) model.
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credit event, and with CDSs, investors can go both long and short in a particular credit
without having to find the underlying asset. This makes them more accessible and easier
to trade than their underlying reference entities. Recently, tradable CDS indexes have also
been introduced that allow investors quick and easy ways to buy and sell market-wide or
sectoral credit risk. In June 21, 2004, the two main CDS indexes, iBoxx and Trac-x,
were merged into the Dow Jones iTraxx index that since has set a new standard when it
comes to liquidity, transparency, and diversification. Large exposures (negative or positive)
to a diversified pool of credit risks are now much easier to gain and the liquidity of the
iTraxx market has attracted new participants such as hedge funds and capital structure
arbitrageurs.

This chapter discusses the link between CDS spreads and equity prices as well as
volatilities in the iTraxx market. The link between stock prices and CDS spreads has
been studied before but as far as we know this is one of the first papers looking at the link
between stock return volatilities and CDS spreads. Earlier literature has studied either the
link between corporate bond yields and stock prices (Kwan 1996) or between single-name
CDS spread changes and stock returns (Longstaff et al. 2003, Norden and Weber 2004,
Blanco et al. 2005, Yu 2006). A few papers have discussed the important link between
equity volatility and bond spreads (Collin-Dufresne et al. 2001, Campbell and Taksler
2003) and Blanco et al. (2005) investigate the link in the CDS market. Knowledge about the
link between stock volatilities and CDS spreads is crucial to arbitrageurs in the CDS market
and in this chapter, we provide early evidence of such a link in the quickly growing iTraxx
CDS index market.

The rest of this chapter is organized as follows. Section 5.2 gives a brief introduction to
CDSs and the iTraxx CDS indexes. Section 5.3 discusses the link between the equity
markets and the CDS markets. Section 5.4 describes the data and Section 5.5 presents
the results. Section 5.6 concludes the chapter.

5.2 CDS INDEX MARKET
A CDS is an insurance contract that protects against losses arising from some kind
of predefined credit event involving a reference entity. In a CDS contract, the credit
protection buyer pays the protection seller a periodic fee, the CDS spread, which is
analogous to the spread between the yield on a typical defaultable bond and the risk-free
interest rate. In case a credit event does strike the reference entity, the buyer typically
delivers debt owed by the reference entity to the seller in return for a sum equal to the face
value of the debt.

With the development of the CDS market, a new credit-linked instrument without
many of the problems in the traditional credit market was created. CDSs allow investors to
buy pure credit risk because the CDS isolates the credit risk component from other possible
risks, such as interest rate risk and foreign exchange risk. Furthermore, liquidity in the
CDS market is promoted through the use of standardized contracts concentrated around
certain maturities, as well as through the ease with which short positions can be taken.
Finally, investors in the CDS market can buy or sell arbitrarily large positions in a
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particular credit for reasons of speculation, arbitrage, or hedging without having direct
exposure to the underlying reference entity. Therefore, investors are less constrained by
whether the underlying entity decides to issue debt or not and by the readiness of other
debt holders to sell their debt.

For speculators, taking long positions in CDSs without exposures to the underlying
reference entity offers good upside potential in the case of a deterioration of the under-
lying credit. Arbitrageurs can exploit unjustified spread differentials between the bond and
the CDS market. And finally, for credit risk managers, one of the main contributions of the
CDS market is to provide accurate credit quality assessments using readily available market
data. In this context, somemarket participants even refer to the CDSmarket as an additional
rating agency (CreditMagazine 2004) and a study by the Bank for International Settlements
(BIS) shows that CDS spreads tend to widen well before rating actions (BIS 2004).

Similar to the way a stock index is created as a portfolio of individual stocks, a
CDS index is a portfolio of single-name CDSs. CDS indexes are fairly new instruments
that provide investors with market-wide credit risk exposure. With the announcement
of a merger between the two CDS indexes, iBoxx and Trac-x, into the Dow Jones iTraxx
index in June 2004, it has become even more straightforward to gain exposure to a
diversified portfolio of credits. The iTraxx index family consists of various indexes of
the most liquid CDS contracts in Europe and Asia (in the United States, since April 2004,
a similar family of indexes is called Dow Jones CDX). In Europe, an index called
iTraxx Europe, which is made up of 125 equally weighted European names selected by a
dealer poll based on CDS volume traded over the previous 6 months, is used
as a benchmark index. The European index is further split up into several sector indexes
(autos, financials, etc.), a corporate index comprised of the largest nonfinancial names
(from the 125 names), a crossover index comprising the 25 most liquid sub-investment
grade nonfinancial names, and a HiVol index that consists of the 30 names with the widest
CDS spreads. The iTraxx indexes typically trade with 5 as well as 10 year maturities and
new series are issued every 6 months. The indexes are managed and administrated by a
newly created company called International Index Company that is owned by a group of
the largest global investment banks.

Thanks to the different iTraxx indexes it is now easy to exploit market beliefs
by executing relative-value trades between sectors, buying single-names versus their sector,
or perhaps construct tailored synthetic credit risky portfolios using risk-free covered
bonds together with a position in a suitable iTraxx CDS index. Credit index trades can
also be performed to reflect the slope of the credit spread term structure since 5 as well as
10 year maturities are traded. Various arbitrage strategies involving the CDS index,
the constituent CDS, and corresponding stock and bonds are also possible. Overall, the
introduction of liquid and easily tradable CDS indexes has opened the door for a new
generation of credit derivatives products based on these indexes and it is quite likely
that the iTraxx CDS index could outperform standard single-name CDSs in popularity
in the near future.
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5.3 CDS INDEX SPREADS AND EQUITY PRICES
A crucial parameter in CDS pricing is the amount of credit risk associated with the
underlying reference entity and to quantify this amount an investor can follow different
paths. One is to rely on rating agencies that rate individual firms’ capability of servicing
and repaying their obligations (Moody’s and Standard & Poor’s are two of the better
known rating agencies). Another is to rely on traditional scoring models that typically
attempt to measure the amount of credit risk using accounting information. A third
alternative is to extract information about credit risk from the market; if credit risk
is acknowledged by the market then there must be ways of filtering the information
contained in market prices to get measures of credit risk.

The most well-known stock market based credit risk model is the Merton (1974) model.
This model views a firm’s liabilities (equity and debt) as contingent claims issued
against the firm’s underlying assets. By backing out asset values and volatilities from
quoted stock prices and balance sheet information, the Merton (1974) model produces
instantaneous updates of a firm’s default probability. The default probability in the Merton
(1974) model is a nonlinear function (where the default probability has to be solved
for iteratively) of the firm’s stock price, stock price volatility, and leverage ratio. Further-
more, in 2002, the risk management firm RiskMetrics presented CreditGrades, a commer-
cial (but free) stock market based tool for default probability calculations that add
simplifying assumptions to the standard Merton (1974) model. In the simplified model,
the default probability is a simple function of the stock price volatility and the leverage
ratio and Byström (2006) shows how the CreditGrades model can be deduced from the
Merton (1974) model. A further simplification of the default probability expression in
CreditGrades can actually be found in the earlier papers by Hall and Miles (1990) and
Clare and Priestley (2002). In the Hall and Miles (1990) framework, the default probability
is a simple function of the stock price volatility. For the link between these three stock
market based default probability models we refer to Byström (2006).

Since the most important determinant of the CDS price is the likelihood that a
credit event involving the underlying reference entity occurs, and since theory (Merton
1974) tells us that this probability should be linked to the stock market valuation as well
as the stock return volatility of the reference entity, it is natural to investigate empirically
the link between the stock market and the CDS market. As mentioned, one group
of investors that are particularly interested in this link are those involved in capital
structure arbitrage (Currie and Morris 2002). Basically, capital structure arbitrageurs
try to detect inconsistencies between the stock market, the corporate bond market, and
the credit derivatives market. Those who can price the credits and credit sensitive
derivatives accurately, i.e., those who are able to calculate default probabilities accurately,
can then earn substantial arbitrage profits by taking positions in the CDS market and
hedging them in the stock market or vice versa. Such a strategy is only the simplest
example of capital structure arbitrage where accurate modeling of the linkage between
stock markets and CDS markets is essential.
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There are several earlier studies dealing with related issues. Fama and French (1993),
for instance, find some commonality in risk factors affecting the stock and the bond
market. Kwan (1996) studies the relationship between the corporate bond market and
the stock market and finds a negative correlation between bond yield changes and stock
returns and indications of stocks leading bonds in reflecting firm-specific information.
The U.S. CDS market and its relationship with the U.S. stock market are investigated in
Longstaff et al. (2003) where both the CDS market and the stock market are found to
lead the bond market. No clear lead–lag relationship is found between the stock market
and the CDS market, however. Norden and Weber (2004) investigate the European CDS
market and find CDS spread changes to be negatively correlated with stock returns.
Furthermore, stock returns seem to lead CDS spread changes. Campbell and Taksler
(2003) are one of the first papers to look at the relationship between stock return volatilities
and bond yields and it shows that firm-level volatility can explain much of the variation in
U.S. corporate bond yields.

The purpose of this chapter is to study iTraxx CDS indexes and their relationship with
the stock price movements of the underlying entities making up the indexes. The size of the
CDS index spread (the level) and its empirical relationship with the value and volatility of
the underlying stock portfolio are interesting because of the Merton (1974) model predic-
tions. One would expect a large CDS index spread when the stock market valuation is low
and the volatility is high and vice versa. Any relationship between CDS index spread
changes (first differences) and stock portfolio returns, on the other hand, is interesting
since it is a signal of profit possibilities arising from trading strategies involving the various
markets.

We look at iTraxx indexes covering the European market, and the seven sectoral
indexes that we include in our study are as follows: industrials, autos, energy, technol-
ogy-media-telecommunications (TMT), consumers, senior financials, and subordinated
financials. Each index contains between 10 and 30 individual names. Corresponding
portfolios of stocks are formed and both ordinary Pearson correlations and Spearman’s
rank correlations between the various CDS spreads, stock prices, and stock volatilities
are computed. We also estimate the degree of contemporaneous and cross–serial correl-
ations between the iTraxx market and the stock market by estimating the following
empirical model:*

rCDSt ¼ a0,t þ a1,trCDSt�1 þ a2,trt þ a3,trt�1 þ «t (5:1)

* As opposed to earlier studies on bond markets, we do not include the risk-free interest rate as an independent
variable in the OLS (ordinary least squares) regressions. The reason is that credit default swaps (CDSs) are pure
credit exposures without interest rate risk. This minimizes the effect of noncredit related components of the spread
between the treasury market and the credit risky market on the regression. Essentially, macronews are expected to
have limited impact on CDS prices. However, just like the stock market, we expect the CDS market to react firmly to
firm-specific information.
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where rCDSt is the change in iTraxx CDS index spread from t�1 to t (in %), rt is the stock
index return from t�1 to t (in %), ai,t is the regression coefficients, and «t is the normally
distributed error term.

Stock indexes and CDS indexes are expected to be contemporaneously but not cross–
serially correlated if information is simultaneously embedded into security prices in the
two markets. This is probably true for public information, but with private information
informed traders could systematically prefer to trade in either the stock or the CDS market.
It the private information is not simultaneously embedded into the stock and CDS
markets, a lead–lag relationship between the prices in the two markets can be observed.
The contemporaneous correlations therefore reflect the degree of common firm-specific
information driving the stock portfolios and corresponding iTraxx indexes, and the cross–
serial correlations reflect which of the two markets is more likely to be used by informed
traders and to what degree one of the markets might drive the other.

5.4 DATASET
The data used in this study consists of daily closing quotes (the midpoints between quoted
bid and ask quotes) for seven sectoral iTraxx CDS Europe indexes.* Each index is
traded with 5 as well as 10 year maturities and is denominated in Euro.y The period
covered is June 21, 2004 to April 18, 2005, which is the very first 10 months in the history
of the iTraxx market. The total number of midpoint CDS spread quotes in the panel is
1484. Compared to previous studies using CDS quotes our data series are very clean in the
sense that all observations are market quotes, that all quotes are directly comparable to
each other and that the quotes consistently are updated on a daily basis. Furthermore, no
quote staleness is observed for any of the indexes.

Most of the 125 names in the indexes are large multinationals and all have traded
equity.z This makes it possible to construct sectoral stock indexes comprising the same
names as the reference portfolios behind the sectoral iTraxx indexes. Since the iTraxx
indexes are equally weighted in its underlying single-name CDS contracts, the stock
indexes are also constructed as equally weighted indexes. All stocks are converted into
euros on a daily basis and are adjusted for stock splits. The first day in the sample we
construct equally weighted indexes (we invest equal amounts in each stock) and thereafter
we do no rebalancing of our index portfolios. The actual weights of the individual stocks in
the portfolios therefore change slightly over time, but this investment strategy is more
realistic than a daily rebalancing of the reference portfolios. Nevertheless, over our fairly
short period, the weight drift was very limited. Finally, the way the iTraxx indexes are

* All index quotes have been made available by the International Index Company.
y We only present results for the 5 year maturity iTraxx indexes. However, an initial study of the 10 year maturities
indicates very similar results to those presented for the 5 year maturities.
z An exception is Vattenfall AB that is a government owned group with a tightly held nontraded stock. Also, for some
names (never more than 10% of the total number of names in each sector, respectively) there was no stock price
data available in the EcoWin database.
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defined means that slightly updated iTraxx reference portfolios are introduced every
6 months (IIC 2004).

5.5 EMPIRICAL INVESTIGATIONS
This section presents our empirical findings. Since this is one of the first studies dealing
with the iTraxx market, we start with some descriptive statistics.

5.5.1 Descriptive Statistics

To investigate the link between the CDS market and the stock market, we look at levels as
well as percentage changes of CDS index spreads and stock prices. We start by applying the
Phillips Perron test to our data series to find out whether the data is stationary or not. In
Table 5.1 we present the results for iTraxx CDS indexes, stock indexes, and stock index
volatilities and most series are found to be stationary (with the exception of the stock
index series that, not surprisingly, are stationary around a trend). Among the CDS index
spreads, the ‘‘autos’’ sector stands out and the reason is the deterioration of the entire
sector in the wake of the problems faced by General Motors (GM) toward the very end of
the sample.* In fact, the autos CDS index series becomes stationary if only the last three
observations (out of 212) were removed.

The size of the CDS spread, in basis points, varies somewhat over the time period as well
as across the seven sectors. All the sectoral iTraxx indexes demonstrate a general narrow-
ing of the spread over the first 9 months of the 10 month sample period, however, followed
by a sharp widening of the spread over the last month or so. Among the sectors, the
consumers sector (supermarkets, airlines, clothing, etc.) has the widest average spread and
the senior financials sector (secured CDS contracts issued by financial firms) has the
narrowest average spread as can be seen in Table 5.1. To the extent that the spread is a
compensation for credit risk, this indicates that the European consumers products and
services sector of 2004–2005 was considered riskier by the market than the other European
sectors. The variability of the spread is also much larger for the consumers sector than
for the tranquil senior financials sector. Finally, the largest quoted spread of any index
(87.2 bp) is quoted for the autos sector the very last day of the sample.

Turning to the (unconditional) distribution of daily CDS index spread changes and
stock price returns, we find the distribution of CDS index spread changes to be much more
skewed and leptokurtic than the stock index return distribution. The iTraxx index is also at
least two to three times as volatile (with a standard deviation equal to 30%–40% on an
annual basis) as the corresponding stock portfolio (with a standard deviation equal to
10%–15% on an annual basis). The largest positive spread changes observed from 1 day to
the next are as high as 20%–25% for some of the iTraxx indexes and a mere 2%–2.5% for
the stock index returns. The same holds for the largest negative changes, but while extreme

* A downgrade of the giant automobile manufacturer General Motors’ (GM’s) credit rating was expected for many
weeks in April 2005 and finally GM’s debt, together with Ford’s, was downgraded to junk status on May 5 (2 weeks
after the last day of our sample). Much of this turbulence seems to have been spread across the Atlantic ocean to the
European autos sector.
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TABLE 5.1 Descriptive Statistics for 5 Year iTraxx CDS Index Spreads (Levels and Changes), Stock Indexes
(Levels and Changes), and 3 Month Stock Index Return Volatilities

Industrials Autos TMT Energy Consumers
Senior

Financials
Subordinated
Financials

CDS Index Spreads (Basis Points)

Mean 38.1 46.0 39.3 26.6 51.0 18.2 30.9

Stdev 6.2 6.1 6.4 3.2 5.8 2.0 4.5

Max 56.8 87.2 52.4 34.3 64.9 22.6 39.5

Min 27.3 37.0 27.4 20.7 38.9 14.0 24.3

PP (no trend) �1.6 9.5 �5.0*** �6.2*** �5.5*** �5.2*** �4.5***

CDS Index Spread Changes (Daily Log-Returns)

Mean � 102 0.080 0.231 �0.036 �0.014 0.016 0.005 �0.005
Stdev � 102 2.63 2.99 2.52 2.22 1.97 1.91 2.11

Max � 102 26.1 19.0 19.0 13.5 11.5 11.5 11.6

Min � 102 �4.7 �15.8 �7.9 �5.9 �5.3 �6.8 �7.7
Skew 5.3 2.3 2.4 2.4 1.5 1.7 1.7

Kurt 46.9 18.9 17.6 11.7 6.6 9.5 9.0

PP (no trend) �154.1*** �227.0*** �146.8*** �170.2*** �153.9*** �175.5*** �129.2***
Q(6) 26.7*** 24.4*** 20.7*** 17.9*** 33.8*** 30.5*** 39.9***

Q(12) 34.8*** 39.7*** 22.7** 30.9*** 41.2*** 36.3*** 43.3***

Stock Index Levels (Normalized to Start at One)

Mean 1.05 1.02 1.01 1.06 0.97 1.04 1.04

Stdev 0.06 0.05 0.05 0.05 0.04 0.07 0.07

Max 1.18 1.14 1.10 1.16 1.05 1.15 1.15

Min 0.96 0.94 0.90 0.98 0.90 0.92 0.92

PP (no trend) �2.0 �3.8*** �2.2 �1.8 �3.0 �1.1 �1.1
PP (trend) �15.3*** �9.7*** �9.8*** �19.0*** �7.7*** �14.0*** �14.0***

Stock Index Returns (Daily Log-Returns)

Mean � 102 0.048 0.023 0.017 0.052 0.005 0.046 0.046

Stdev � 102 0.75 0.90 0.74 0.62 0.64 0.71 0.71

Max � 102 2.5 2.1 2.5 1.6 1.8 1.8 1.8

Min � 102 �3.1 �2.9 �2.6 �2.8 �2.5 �2.1 �2.1
Skew �0.4 �0.2 0.1 �0.7 �0.4 �0.5 �0.5
Kurt 1.4 0.2 0.6 2.4 0.7 0.4 0.4

PP (no trend) �206.9*** �189.3*** �197.8*** �187.6*** �188.4*** �198.0*** �198.0***
Q(6) 5.2 3.1 3.8 5.9 6.5 2.6 2.6

Q(12) 10.1 8.3 12.2 11.0 8.8 5.0 5.0

Stock Index Return Volatility (3 Months, on a Daily Basis)

Mean � 102 0.79 0.92 0.78 0.59 0.66 0.73 0.73

Stdev � 102 0.15 0.13 0.12 0.09 0.08 0.13 0.13

Max � 102 1.2 1.2 1.1 0.8 0.9 1.0 1.0

Min � 102 0.58 0.69 0.60 0.45 0.53 0.53 0.53

PP (no trend) �4.5*** �2.8 �4.2*** �2.6 �4.9*** �3.0 �3.0

Note: Period—June 21, 2004 to April 18, 2005. Skew indicates skewness and Kurt indicates excess kurtosis. PP
indicates the Phillips Perron test for stationarity (with or without a trend and with four lags). Q(6) and
Q(12) are Ljung-Box tests for autocorrelation. 1% and 5% significance levels are indicated by *** and **,
respectively.
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positive and negative stock returns in this particular sample are of the same magnitude, the
most extreme positive CDS index spread changes are many times larger than the corre-
sponding extreme negative changes. This observation, together with the much larger
skewness for the iTraxx spread change distribution, is a possible indication of the CDS
market reacting relatively more strongly to credit deteriorations than credit improvements
compared to the stock market.

Last, but not least, we look at possible serial correlation in the CDS series. We find that
while stock returns show no autocorrelation, as indicated by the small Ljung-Box test
statistics in Table 5.1, the iTraxx CDS indexes all demonstrate significant (positive)
autocorrelation. This is interesting since it indicates an inefficient CDS index market
where predictable index changes could mean large profit possibilities for large investors.
We investigate the magnitude of the autocorrelation further in the regression study below.

5.5.2 Correlations and Rank Correlations

In Table 5.2, we present correlations between stock index prices, CDS index spreads, and
stock volatilities. Correlations between spread changes and stock returns are also pre-
sented. In the latter case, we also include cross–serial (lead–lag) correlations. In addition to
ordinary (Pearson) correlations, we compute Spearman rank correlations. Rank correl-
ations look at the similarity of rankings, from the smallest to the largest observation, in two
data series, and we present rank correlation coefficients because various data comes from
very different (non-normal) distributions.

Stock index volatilities are calculated using various windows of historical stock returns
and in this chapter, we present results for 1 month (1M), 3 month (3M), and 1 year (1Y)
windows.*

The large negative correlations, around �0.5 for both the ordinary correlations and the
rank correlations, between levels in the upper part of Table 5.2 indicate a strong negative
relationship between CDS spread levels and stock price valuations; the spread of the CDS
index is large when the value of the stock portfolio is low and vice versa. This is what we would
expect from theory (Merton 1974) and the results are robust across the various sectors.

Furthermore, a significant positive relationship between historical volatilities and CDS
spread levels can also be found from inspection of the correlations in Table 5.2. The
(positive) correlations between CDS spread levels and stock volatilities, particularly
3 month volatilities, are all highly significant. For some iTraxx sectors, the correlations
are as high as 0.6–0.8. Although the link is strongest for volatility estimated using the
3 month window, the results are similar for the other two window sizes. For some reason,
the link is weakest for the 1 month window and the only explanation we have is that
window sizes as short as 1 month are too short for accurate volatility estimates, and that
the majority of the investors therefore use at least 3 months of historical observations to
estimate their volatilities. Overall, the positive relationship between CDS spreads and stock

* We have also redone all calculations using 1 week, 2 month, 6 month, and 3 year windows for a subsample covering
the first 5 months of the sample. The results we get when we use these volatility estimates are overall similar to those
presented in this chapter.
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volatilities is in accordance with theory (Merton 1974) and it is consistent across all the
various sectors. Finally, throughout the study the rank correlations and the ordinary
correlations in Table 5.2 are very similar to each other.

In Figure 5.1, we present results for the data averaged across all seven sectors (normal-
ized to start at one) and the strong negative relationship between CDS spread levels
and stock price valuations seen in Table 5.2 can also be observed in Figure 5.1. Stock
prices clearly have a tendency to increase when CDS spreads decrease and vice versa. The
significant link between the CDS spread levels and the stock index volatility (the 3 month
historical volatility) is also demonstrated in Figure 5.1. It is fairly clear that the spread
widens with an increasing stock volatility and vice versa. The close relationships between
the CDS spreads, on one hand, and the stock prices and the stock return volatilities, on the
other hand, are partly broken toward the last month of the sample where we can observe a
significant widening of all the CDS spreads. The widening is most significant in the autos
sector, but all sectors suffer to various degrees. Both the stock price and the stock return
volatility react in the expected way, compared to the CDS spread, but the size of the reaction
is slightly delayed and much more modest. The lagged reaction in the case of the stock
volatility is of course partly caused by the use of up to 3 month old observations and it is

TABLE 5.2 Correlations between 5 Year iTraxx CDS Index Spreads (Levels and Changes), Stock Indexes
(Levels and Changes), and Stock Index Return Volatilities

Industrials Autos TMT Energy Consumers
Senior

Financials
Subordinated
Financials

Levels
Correlation

CDS-stock �0.50*** �0.28*** �0.63*** �0.35*** �0.33*** �0.40*** �0.60***
CDS-1MVol 0.15** 0.15** 0.26*** �0.12** 0.24*** 0.57*** 0.69***

CDS-3MVol 0.68*** 0.45*** 0.78*** 0.60*** 0.74*** 0.58*** 0.76***

CDS-1YVol 0.52*** 0.27*** 0.59*** 0.42*** 0.46*** 0.43*** 0.64***

Rank Correlation

CDS-stock �0.56*** �0.38*** �0.59*** �0.39*** �0.26*** �0.42*** �0.59***
CDS-1MVol 0.20*** 0.22*** 0.26*** �0.01 0.24*** 0.62*** 0.74***

CDS-3MVol 0.65*** 0.60*** 0.71*** 0.42*** 0.69*** 0.54*** 0.71***

CDS-1YVol 0.53*** 0.44*** 0.61*** 0.11** 0.51*** 0.43*** 0.60***

Changes
Correlation

CDS-stock �0.29*** �0.27*** �0.23*** �0.17*** �0.22*** �0.24*** �0.29***
CDS-stock (lagged) �0.19*** �0.23*** �0.27*** �0.09 �0.17*** �0.16** �0.28***
CDS (lagged)-stock 0.02 �0.03 �0.09 �0.03 �0.01 �0.09 �0.05

Rank Correlation

CDS-stock �0.32*** �0.26*** �0.21*** �0.20*** �0.20*** �0.21*** �0.21***
CDS-stock (lagged) �0.30*** �0.27*** �0.26*** �0.15** �0.19*** �0.17*** �0.24***
CDS (lagged)-stock �0.04 0.08 �0.17** �0.05 �0.09 �0.06 �0.03

Note: Period—June 21, 2004 to April 18, 2005. Correlation indicates ordinary Pearson correlation and rank
correlation indicates Spearman rank correlation. 1% and 5% significance levels are indicated by *** and
**, respectively.
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possible that implied volatilities from stock options markets would react much faster and
much more distinctly to the apparent credit deterioration in the European CDS market.

If we turn to CDS spread changes, they are found in the lower part of Table 5.2 to be
negatively correlated, at an average level of around �0.25, with contemporaneous stock
index returns (Figure 5.1 shows further evidence of this). Furthermore, under the null
hypothesis that the stock market and the CDS market are equally quick to incorporate
firm-specific information, we would expect the cross–serial (as opposed to contemporan-
eous) correlations to be equal to zero. However, lagged (1 day) stock returns are found to
be almost as significantly (negatively) correlated with current CDS spread changes as
current stock returns. Lagged CDS spread changes, on the other hand, are not at all related
to current stock price changes. This one-way cross–serial correlation is interesting since it
is a possible indication of information flowing from the stock market to the CDS market
and not vice versa.

Overall, the patterns for the various sectors are very similar. One slight but interesting
exception to this, though, is the consistently larger correlation between the subordinate
financials CDS index and the stock market than between the senior financials index and
the stock market. This, we think, is in line with subordinate CDSs being more equity-like in
their character than senior ones.

5.5.3 OLS Regressions

In addition to correlation estimates, we also regress daily CDS spread changes on yester-
day’s CDS spread changes and on today’s and yesterday’s stock returns. The regres-
sion results are presented in Table 5.3 and the earlier correlation-based results are
further strengthened. All the contemporaneous stock return coefficients are significant,
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indicating a strong negative link between CDS spread changes and stock returns, while
roughly half of the lagged stock return coefficients are significant. This at least partly
supports the earlier evidence from the correlation study of the stock market driving the
CDS market, and this is important information for arbitrageurs and other cross-market
investors. The F[3,d.f.] statistic is significant for all the sector regressions and the degree of
explanation, R2, varies between 0.07 and 0.25 with most R2s lying in the range between 0.10
and 0.20.

When it comes to the possible autocorrelation in the CDS market, the regressions in
Table 5.3 seem to confirm the earlier evidence given by the significant Ljung-Box statistics
in Table 5.1. While the Ljung-Box statistics, Q(6) and Q(12), look at the entire correlation
structure up to 6 and 12 lags, respectively, the regressions in Table 5.3 indicate significant
positive first-order autocorrelation in the European CDS market. Only for one sector, the
autos sector is the otherwise consistent pattern broken. Again, this is caused by the sudden
and very significant spread widening in this sector toward the end of the sample. The
significant positive autocorrelation across the various sectors is interesting since it is an
indication of an inefficient European CDS market; predictable CDS spreads could mean
large profit opportunities for investors who can take positions large enough to cover the
transaction costs.

We can compare our results regarding the link between the CDS market and the stock
market with those from earlier studies looking at single-name CDS contracts. Norden and
Weber (2004), looking at CDSs from 58 firms from Europe, the United States, and Asia,
also find stock returns to be negatively associated with CDS spread changes. Furthermore,
they also find stock returns to lead CDS spread changes. Longstaff et al. (2003) look at U.S.
firms and find both the CDS market and the stock market to lead the bond market. They
find no clear cut lead–lag relationship between the stock and the CDS market, however.
The latter result can be a consequence of the U.S. CDS market being more efficient than the
European and Asian CDS markets. Blanco et al. (2005) also investigate the determinants of
CDS spreads and find that stock returns have more of an impact on CDS spreads than they
have on corporate bond spreads.

TABLE 5.3 OLS Regressions: 5 Year iTraxx CDS Index Spread Changes Regressed on Lagged iTraxx CDS
Index Spread Changes and Current and Lagged Stock Index Returns

Industrials Autos TMT Energy Consumers
Senior

Financials
Subordinated
Financials

a0,t 0.0015 0.0026 0.0001 0.0004 0.0003 0.0005 0.0008

a1,t 0.28*** 0.07 0.25*** 0.19*** 0.28*** 0.20*** 0.35***

a2,t �1.02*** �0.84*** �0.69*** �0.58** �0.64*** �0.58*** �0.75***
a3,t �0.42* �0.63*** �0.72*** �0.20 �0.33 �0.27 �0.55***
R2 0.18 0.12 0.17 0.07 0.15 0.11 0.25

F[3,d.f.] 15.3*** 9.3*** 14.4*** 5.5*** 11.7*** 8.9*** 22.6***

Note: Period—June 21, 2004 to April 18, 2005. 1%, 5%, and 10% significance levels are indicated by ***, **,
and *, respectively.

rCDSt ¼ a0,t þ a1,trCDSt�1 þ a2,trt þ a3,trt�1 þ «t .
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Our results are also similar to those of Kwan (1996) in their study of the relationship
between corporate bonds and stocks. Kwan (1996) finds the same relationship between
bonds and stocks that we find between CDSs and stocks; contemporaneous and lagged
stock returns have a significant negative impact on credit spread changes.

The relationship between stock return volatilities and credit spreads was first investi-
gated by Campbell and Taksler (2003) who find that firm-level volatility can explain much
of the variation in bond yields in the United States. We dare claim that we find the same
thing for historical volatilities in the European iTraxx CDS index market despite relying
solely on sample correlations between stock return volatilities and CDS spread levels.
Investigating credit markets in Europe and in the United States, Blanco et al. (2005) also
find a significant link between implied stock volatilities and CDS spreads, but no link
between implied volatilities and bond spreads. The latter is also found by Collin-Dufresne
et al. (2001) who find only weak evidence of implied equity volatility (VIX) explaining
corporate bond spreads in the United States. Finally, touching at the issue of stock
volatilities and CDS spreads, Berndt et al. (2004) find that KMV Expected Default
Frequencies (that are functions of stock volatilities) explain a large share of the cross-
sectional variation in CDS spreads.

5.6 CONCLUSION
In this chapter, we have studied the European iTraxx CDS index market, particularly
the relationship between iTraxx sectoral indexes and corresponding sectoral stock indexes.
We believe knowledge regarding the link between the CDS market and the stock market
to be important for anyone involved in hedging, speculation, or arbitrage activities in the
CDS market.

One interesting finding in this chapter is the significant positive autocorrelation present
in all the studied iTraxx indexes. This is possibly an indication of an inefficient iTraxx CDS
index market where index changes are predictable. The economical significance of profits
from trading strategies exploiting such regularities, however, is an interesting issue left for
future research.

Moreover, significant correlations between iTraxx CDS index spreads and spread
changes on the one hand and stock prices and stock returns on the other hand reveal a
close link between the two markets. CDS spreads have a strong tendency to widen when
stock prices fall and vice versa. Furthermore, in OLS regressions, both current and lagged
stock returns are found to explain much of the variability in CDS spreads. This suggests
that firm-specific information is embedded into stock prices before it is embedded into
CDS spreads. Hence, the stock market seems to lead the CDS market in transmitting firm-
specific information and this is important information for arbitrageurs and others. Again,
it is a possible indication of an inefficient European CDS market.

Stock index return volatility is also found to be significantly correlated with iTraxx CDS
index spreads; the spreads are found to increase (decrease) with increasing (decreasing)
stock volatilities. The link is particularly strong for 3 month historical volatilities. These
results are in line with the theoretical literature on credit risk that emphasizes the
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importance of stock volatility for default probability predictions and it is further evidence
of the importance of volatility forecasting in credit risk modeling.
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The Determinants of Credit
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6.1 INTRODUCTION
Since its birth in 1996, the credit derivatives market has been experiencing an expo-
nential growth with a compound growth rate of ~46% per year. According to the British
Bankers’ Association, a trend growth is likely to be sustained until at least 2008 (Barrett
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and Ewan, 2007). Among credit derivatives, the credit default swap (CDS) is the most
widely traded instrument.

The CDS is an agreement between a protection buyer and a protection seller whereby
the buyer pays a periodic fee in return for a contingent payment by the seller upon a credit
event (such a certain default) happening in the reference entity. The periodic fee (also
known as premium price or default swap spread) is quoted in basis points per annum
of the contract’s notional value. Usually, predetermined premiums are paid by the buyer of
protection to the seller on a quarterly basis, with the contract terminating either at
maturity or at the time of a credit event occurring.*

The size of the single-name CDS market accounted for 33% of the total credit derivatives
market in 2006. Nevertheless, index-linked instruments are expected to match the single-
name CDS by 2008, with an estimated equal 29% proportion of the total market by 2008.

Meanwhile, gross market values, which measure the cost of replacing all existing
contracts and thus represent a better measure of market risk at a given point in time
than notional amounts, had experienced a year-to-date (YTD) increase of 3%, to $10
trillion at the end of June 2006.

In parallel with the market growth, the recent years have experienced a shift in the
average quality of underlying issuers in CDS and indices. The share of investment grade
names (rated BBB and above by Standard and Poor’s) fell by 6%, from 65% to 59%, from
2004 to 2006, with a sustained trend. As Figure 6.1 indicates, the degradation of the credit
quality of issuers is witnessed both in the upper tier (BB-B) and the lower tier (below B) of
speculative-grade issuers. This tendency can mostly be explained by the increased attention
paid by hedge fund investors toward the high-yield market (Anson, 2006). This evolution
partly explains not only the increase in notional amounts but also a greater focus toward
high-risk instruments, which are able to generate extra returns.

Even though the CDS is a very standard and liquid type of contract, and considering the
recent evolution toward a higher average credit risk premium, little empirical work has
been done on the determinants of the observed premia, and most of this literature
has focused on issuer-specific determinants.

Cossin and Hricko (2001) test for the influence of the theoretical factors predicted by
the reduced and the structural form literature by using a cross-section of CDS rates on a
variety of underlyings. The determinants they considered are credit ratings, interest rate,
slope of the yield curve, time to maturity, stock prices, variance or volatility of the firm’s
assets, leverage, index returns, and idiosyncratic factors. They show that ratings are the
single most important source of information on credit risk. Nonetheless, all the other
factors tested add significant information to ratings.

Ericsson, Jacobs, and Oviedo (2007) investigate the relationship between theoretical
determinants of default risk and CDS premia. They find that leverage, volatility, and the
spot interest rate are economically important. For instance, a 1% increase in annualized

* In the case of those distressed credits in which the CDS market remains open, however, it has become more usual
for sellers of credit protection to demand the payment of an up-front premium as opposed to the standard running
spread.
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equity volatility raises the CDS premium by 1–2 basis points. A 1% change in the leverage
ratio raises the CDS premium by approximately 5–10 basis points.

Zhu (2006) compares credit spreads between the bond market and the CDS market.
He extends the existing studies by also looking into the underlying factors that explain
the price differentials and exploring the short-term dynamic linkages between the two
markets. His results suggest that the CDS market often moves ahead of the bond market in
price adjustment, in particular for U.S. entities. Liquidity also matters for their role in price
discovery. But the terms of CDS contracts and the short-sale restriction in the cash market
only have a very small impact.

For Amato (2005), CDS spreads contain a risk premium related to investors’ aversion to
default risk. The empirical findings confirm that CDS risk premia and default risk aversion
are related to fundamental macroeconomic factors such as the stance of monetary policy
and technical market factors, such as the issuance of collateralized debt obligations.

In this chapter, we examine the empirical relationship between CDS spreads and a
set of macroeconomic factors. Although these types of factors have not yet been
exploited to explain CDS premia, several past studies have examined the empirical
relationship between variables accounting for default risk at large and macroeconomic
conditions.

Duffie, Saita, and Wang (2007) show there is a countercyclical relationship between
corporate default risk and macroeconomic covariates. In their study on default and
recovery rates, Altman, Brady, Resti, and Sironi (2005) estimate negative correlations
between default rates, loss given default, and the business cycle. More recently, Amato
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FIGURE 6.1 Evolution of credit default swap (CDS) issuer quality 1999–2008. Historical
evolution of CDS issuer quality per credit rating during the period 1999–2008 (estimated).
(From Barrett, R. and Ewan, J., 2007, British Bankers Association Credit Derivative Report
2006, Research report.)
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and Luisi (2006) provide new evidence on the impact of macroeconomic conditions on
corporate bond spreads. They find that spreads are strongly related to real economic
activity and financial conditions and are less related to inflation. Moreover, spreads on
lower-rated debt are affected more by macroeconomic variables than those on investment
grade bonds.

But apart from a few studies, the relationship between CDS spreads and macro-
economic variables has been left largely unexamined. In this chapter, we specifically
analyze the influence of macroeconomic variables on a homogeneous cross-section
of CDS quotes. We model time-varying exposures of CDS spreads to several macro-
economic factors, using a Kalman filter procedure. The main innovation of our approach
is that the state vector is comprised of observable macroeconomic variables, and we
can identify how these factors dynamically influence the exposures of CDS premia.
Through our approach, we identify three factors influencing CDS spreads: the
Dow Jones Stoxx 600 (or alternatively S&P 500 Composite), which proxies for the stock
market behavior; the Consumer Price Index (CPI); and the Lehman Euro Aggregate Bond
Index. More importantly, our results outline the superiority of a Kalman filtering approach
over a multifactor model with constant coefficients. This finding confirms a well-grounded,
but loosely validated market perception that the determinants of CDS premia vary over
time and that the main sources of systematic risk exposures tend to be temporary
and unstable.

Our study begins by presenting our dataset. We then discuss the dynamic state space
model to identify time-varying exposures of CDS spreads. Finally, we analyze the results of
our empirical investigation.

6.2 DATASET
6.2.1 Credit Default Swap Data

We construct a historical daily time series of spreads for a fixed set of firms using data from
Bloomberg. The groups of firms we consider are themembers of the iTraxx Europe Series 3.*

The Dow Jones iTraxx comprises 125 issuers. The highest ranking issuers in each sector
below are selected: 10 autos, 30 consumers, 20 energy, 20 industrial, 20 technology, media,
telecommunications (TMT), and 25 financials. A new series of issuers is reset every
6 months (March and September). Standard maturities are 5 and 10 years for the swap
contracts. Our study focuses on four sectors: auto, consumer, energy, and industrial. The
underlying reference entities are senior single-name contracts. Each quote is a mid 5 year
price. Synthetic daily time series of sector spreads are constructed as equal-weighted
averages of returns on single-name contracts for the period January 2002 to September
2005 included.

As most of macroeconomic variables are reported in monthly time series, we must
aggregate CDS returns on a monthly basis as simple arithmetic averages of individual

* The constituents of this index can be found on Markit’s Web site at http:==www.markit.com.
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returns within each category. Descriptive statistics for the monthly time series of CDS
returns in each sector are reported in Table 6.1.

6.2.2 Macroeconomic Factors

Table 6.2 presents the set of 17 factors we use in our analysis that could impact CDS returns.
These factors are selected according to the previously tested variables for credit risk.

TABLE 6.1 Descriptive Statistics of the Credit Default Swap Returns

Auto Consumer Energy Industrial

Observations 45 45 45 45

Mean �0.0002 0.1906 0.0006 0.0003

Median �0.0009 0.0126 �0.0007 �0.0014
Maximum 0.0196 2.0828 0.0238 0.0227

Minimum �0.0141 �0.2835 �0.0115 �0.0155
Standard deviation 0.0059 0.4585 0.0068 0.00734

Skewness 0.7216 2.1574 1.5754 0.93493

Kurtosis 4.6992 8.0942 6.3214 4.9678

Note: All observations are monthly from January 2002 to September 2006. The returns are
calculated from the equally weighted index of aggregated CDS premia of issuers
belonging to the same sector.

TABLE 6.2 Set of Macroeconomic Factors

Type Index

Equity markets Dow Jones Stoxx 600

S&P 500 composite

Vix

Money Exchange rate euro=$

Cash interest rate Euribor 3 months

Treasury bills 3 months

Yield curves Treasury bonds 5 years minus treasury bills 3 months

Treasury bonds 20 years minus treasury bonds 5 years

Germany bonds 5 years minus euribor 3 months

Germany bonds 20 years minus Germany bonds 5 years

Bond markets Lehman U.S. Aggregate

Lehman Euro Aggregate

Real activity Goldman Sachs Commodity Index Consumer Price Index U.S.

Consumer Price Index Europe

Financial activity M3

High-yield debt issue (value)

Global bond debt issue (value)

Note: All factors are measured with a monthly frequency.
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6.3 METHODOLOGY
We use a dynamic state space model similar to the model proposed by Swinkels and Van
der Sluis (2006) to identify time-varying exposures of CDS returns. A more classical
estimation procedure could be the standard ordinary least squares (OLS) regression
techniques to decompose the CDS returns. But one of the implicit assumptions of this
method is that the exposures stay constant over time. This contradicts the market
perception of CDS credit exposures, which are in no way considered as stationary for
long periods. Alternatively, time variation is sometimes implicitly accounted for by using
rolling regressions. However, the ad hoc chosen window size of the rolling regression
period is subjective and causes conceptual problems. The main advantage of the Kalman
filter procedure is the more efficient use of available data, while allowing for time variation
in exposures.

We model style exposures as a random walk and estimate the coefficient corresponding
to the kth factor at time t, denoted bk,t with the Kalman filter.

Here, we adapt the linear k-factor model by allowing the beta to vary through time. No
restrictions are imposed on the betas. Our state space model estimated by the Kalman filter
procedure is the following:

Rt ¼ aþ
XK
k¼1

bk,tFk,t þ vt measurement equation

bk,t ¼ bk,t�1 þ wk,t�1 transition equation

For k¼ 1, . . . ,K, where Rt is return on CDS spreads, K is the number of factors, Fk,t is factor
k at time t, bk,t is the exposure to factor k at time t, and at is the unexplained systematic
part of the return.

This intercept is set equal to 0 to avoid time variation of at, which should not take place
as CDS contracts are not actively managed portfolios and thus should not earn abnormal
returns.

The random variables wk,t and vt represent the process and measurement noise,
respectively. They are assumed to be independent (of each other), white, and normally
distributed with joint pdf:

p(w) � N(0,Q)

p(v) � N(0,R)

6.4 EMPIRICAL INVESTIGATION
The R2 of the stepwise OLS regression is used as a goodness-of-fit statistic to select the
most significant factors and initialize the Kalman filter. Our procedure involves starting
with no variables in the model, trying out the models one by one, and including the
uncorrelated variables which increase R2 in an important way.
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Tables 6.3 through 6.6 report the results using the stepwise OLS procedure as well as the
average loading computed with the Kalman filter, for the four sectors considered. The first
column reports the adjusted R2 obtained with stepwise OLS. The next columns present the
t-stat of the factor coefficient and its p-value. The last four columns report the average,
minimum, and maximum bs computed with the Kalman filter equation as well as the
standard deviation of the time series of betas.

Overall, the most significant factors of CDS spreads are Dow Jones Stoxx (or S&P 500
composite), i.e., a proxy for the stock market return, the Consumer Price Index, and the
Lehman Euro Aggregate Bond Index.

During the whole period, the exposure to Dow Jones Stoxx was negative. Thus, when the
equity market is bullish, CDS spreads tend to decrease. It is not surprising that aversion to
risk tends to decline during good times. The exposure to CPI and Lehman Euro Aggregate
is positive. CDS spreads are closely and positively related to default risk aversion, consumer
price index, the stance of monetary policy, and the risk premia in bond market.

For the auto, consumer, and energy sectors, risk exposures do not vary much over time.
In general, the bk,t�1 seems to be a good estimator of bk,t because bk,t has a very small
variation compared to its previous value. Consequently, a weak time variation in exposures
makes it possible to strongly increase R2. Nonetheless, for each sector, there exists a
significant variation in one beta: the CPI for auto and industrial sectors, the high-yield
debt issue for the consumer sector, and the Lehman Euro Aggregate Bond Index for the
energy sector. Figures 6.2 through 6.4 display the evolution of the corresponding betas.

From Figure 6.2a and b, there appears to be a large degree of harmony between the
time variations of the CPI beta and the values of returns. This behavior is quite natural
due to the small variability of the CPI. The risk exposure shows two peaks, namely in

TABLE 6.3 Results of the Stepwise Ordinary Least Squares and Kalman Regressions—Auto Sector

OLS Kalman

R2 t-Stat p-Value Mean b Min b Max b SD

Dow Jones Stoxx 600 19.91% �3.27 0.0021 �0.5679 �0.5802 �0.5628 0.0048

Consumer Price Index U.S. 25.48% 1.77 0.0838 0.0018 �0.0086 0.0229 0.0058

M3 35.36% �2.51 0.0164 0.562 0.5578 0.5688 0.0025

Lehman Euro Aggregate 41.69% 2.09 0.0435 �0.6115 �0.6176 �0.6065 0.0027

German bond 5 years� euribor
3 months

41.70% 0.05 0.9619 4.592 4.591 4.593 0.0006

TABLE 6.4 Results of the Stepwise Ordinary Least Squares and Kalman Regressions—Consumer Sector

OLS Kalman

R2 t-Stat p-Value Average b Min b Max b SD

Lehman Euro Aggregate 9.36% 2.11 0.0410 80.1 80.1 80.1 1.19e-09

Consumer Price Index
Europe

10.93% 0.86 0.3937 411 411 411 1.93e-10

High-yield debt issue 41.11% �4.85 0.0000 3.0e-05 �4.8e-05 0.00081 0.00014
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months 10 and 40. The second one (May 2005) corresponds to the downgrade of GM and
Ford, which could not be anticipated with constant betas as it appeared to trigger a fear of
increased inflation risk.

From Figure 6.3, we observe much less variability corresponding to the Consumer
sector. Without the single peak in month 8 (April 2003), there would be hardly any
need for a time variability in betas. This result suggests that effectiveness of the Kalman
filter approach may be limited in this class of CDS. Nevertheless, the predictive ability of
time-varying betas still represents a substantial improvement over constant betas.

Figure 6.5a and b shows the time-varying betas for the industrial sector.
For the industrial sector, all exposures vary much more over time. The CPI beta closely

follows the pattern of returns, as for the auto sector CDS, mostly because of the low
variability of this index. Meanwhile, the bond market exposure appears very volatile, with
an 8 month period of very strong negative values. This period roughly corresponds to a
tightening of credit spreads in industrial countries, which may explain a much higher
sensitivity of CDS returns to the bond market at that particular period, which abruptly
ended with the GM–Ford downgrade event.

6.5 SUMMARY AND FUTURE WORKS
Using state space model and Kalman filter procedure, we examine the empirical
relationship between CDS spreads and macroeconomic factors during the period 2002–
2005. Evidence points to links to macroeconomic variables Dow Jones Stoxx, Consumer
Price Index, and Lehman Euro Aggregate. However, the procedure appears to be best
suited for the industrial sector. For the other three studied indexes (auto, consumer, and
energy), only one macroeconomic beta appears to display some variability.

TABLE 6.5 Results of the Stepwise Ordinary Least Squares and Kalman Regressions—Energy Sector

OLS Kalman

R2 (%) t-Stat p-Value Average b Min b Max b SD

S&P 500 11.01 �2.31 0.0260 �0.4887 �0.4893 �0.4879 0.0005

Lehman Euro Aggregate 14.08 1.23 0.2271 0.0019 �0.0027 0.0108 0.0024

Consumer Price Index
U.S.

15.41 0.80 0.4260 0.2556 0.2552 0.256 0.0002

M3 25.29 �2.30 0.0268 �0.9181 �0.9189 �0.9172 0.0006

Euribor 27.84 1.17 0.2474 4.545 4.545 4.545 0.0001

TABLE 6.6 Results of the Stepwise Ordinary Least Squares and Kalman Regressions—Industrial Sector

OLS Kalman

R2 (%) t-Stat p-Value Average b Min b Max b SD

Dow Jones Stoxx 600 27.90 �4.08 0.0002 �1.047 �3.92 1.757 1.642

Consumer Price Index U.S. 29.36 0.93 0.3573 �0.2742 �6.601 4.531 1.838

Lehman Euro Aggregate 30.84 0.94 0.3541 �1.663 �11.28 5.965 5.068
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FIGURE 6.2 (a) Time variation of the Consumer Price Index (CPI) beta for the auto sector.
(b) Real versus estimated credit default swap (CDS) returns with the ordinary least squares
(OLS) regression for the auto sector. For each figure, the horizontal axis represents the
month on the observation (start: Jan 2002—end: Sept 2006).
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FIGURE 6.3 (a) Time variation of the high-yield debt issue beta for the consumer sector.
(continued )

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C006 Final Proof page 93 7.4.2008 7:38pm Compositor Name: VBalamugundan

The Determinants of Credit Default Swap Prices: An Industry-Based Investigation & 93



0

(b)

�1

0

1

2

3

5 10 15 20 25

Time

Real Y (continuous) – estimated Y (crosses) (simple regression)

30 35 40 45

FIGURE 6.3 (continued) (b) Real versus estimated credit default swap (CDS) returns with
the ordinary least squares (OLS) regression for the consumer sector. For each figure, the
horizontal axis represents the month on the observation (start: Jan 2002–end: Sept 2006).
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FIGURE 6.4 (a) Time variation of the Lehman Euro Aggregate Bond index beta for the
energy sector. (b) Real versus estimated credit default swap (CDS) returns with the
ordinary least squares (OLS) regression for the energy sector. For each figure, the hori-
zontal axis represents the month on the observation (start: Jan 2002–end: Sept 2006).
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There are several avenues to explore in future research. First, a more careful analysis
would require constructing measures of firm’s value as leverage, interest coverage, cash
flow, assets volatility, and stock prices. Furthermore, factors that proxy for financial activity
should be developed further.

Second, using the Kalman filter to forecast exposures to a wider set of variables would be
beneficial for applications in CDS spreads analysis. Instead, the improvement of the
predicted intercept would be largest when the exposures change slowly over time.
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7.1 INTRODUCTION
Fixed income instruments as an asset class play an integral role in portfolios where they
substitute, or are held alongside, cash, stocks, and occasionally commodities. However, one
key segment of this market—the market for risky and in particular noninvestment grade
bonds—is characterized in secondary market trading by a relative lack of liquidity.
Consequently, in order to make effective investment decisions, it is necessary for any
analyst, or investor, to determine the fair price of these instruments. This requires an
understanding of the complex dynamic relationships that exist between markets more
generally and those factors that determine the pricing of bonds more specifically. In
comparison with stocks, bonds have a well-defined set of cash flows over their term to
maturity. However, these cash flows are subject to default, liquidity, and interest rate risks,
which need to be considered when pricing the individual security.

The addition of a yield spread (or credit spread) over the equivalent near-maturity, risk-free
benchmark, such as the on-the-run U.S. Treasury bond, or note, for U.S. dollar issues, is the
industry approach to reflect the issuer’s credit worthiness and the associated default and
liquidity risks pertinent to the risky instrument being priced (De Almeida, Duarte, and
Fernandes 1998). Structural models of default, such as the model proposed by Longstaff and
Schwartz (1995), provide a simple and intuitive framework to capture the factors that drive
yield spreads. Empirical evidence from the mature markets of the United States and Japan
among others (Collin-Dufresne, Goldstein, and Martin 2001) points to two main factors—the
asset factor and the interest rate factor—as the key drivers of changes in credit spreads.
However, the generality of the developed market evidence to emerging markets and the
understanding of the factors that drive these credit spreads, which are structurally and
otherwise different from those in mature markets, is limited.

Emerging markets in general and Latin American markets in particular have witnessed a
persistent decline in credit spreads over the last several years, yet the economic justification for
this behavior remains largely unanswered. The objective of this chapter is to critically examine
the economic reasons for the behavior of credit spreads in a key segment of the emerging bond
market—the sovereign issues by Latin American issuers in the international bondmarket. The
Bank for International Settlements (BIS 2007) reports that Latin American issuers comprise
the largest single region (35% in 2006) of developing countries in these markets which
comprised a total of US $994 billion in outstandings in 2006, followed by the Asia-Pacific
(29%), European (26%), and Africa and the Middle East (10%) regions. Emerging market
credit spreads also continued to decline prior to and after the near collapse of Long-Term
Capital Management (LTCM) and the Asian financial crisis in 1997. The post-LTCM crisis
also witnessed a declining trend on the credit spreads of other emerging market issuers.

In order to understand the behavior of emerging market credit spreads and to empir-
ically establish the economic reasons for the persistent decline in credit spreads, we
investigate the following important questions in this chapter predicted by the structural
models of Longstaff and Schwartz (1995):

. Are the changes in credit spreads of U.S. dollar denominated Eurobonds of Latin
America sovereigns driven by key asset and interest rate factors?

. Are the changes in credit spreads of U.S. dollar denominated sovereign Eurobonds of
Latin America negatively related to changes in asset, and interest rate factors?
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This study seeks to answer these empirical questions in a regional setting using the yield
spreads between U.S. dollar sovereign Eurobonds by major Latin American issuers (Brazil,
Chile, Colombia, Mexico, and Venezuela). The economic reasons underpinning the behav-
ior of emerging market credit spreads are best understood by only investigating sovereign
bonds, which have the benefit of being the most liquid and actively traded. Therefore, this
study is limited to sovereign spreads and to a region that is likely representative of the
behavior of credit spreads by other emerging market issuers. The sample period covers
the daily yields from 25 February 2000 to 13 January 2006 of the Eurobonds issued by the
governments of the above mentioned five countries, consisting of 1483 observation for
each of the 18 bonds. Consequently, in addition to investigating the credit spread drivers in
Latin American markets, we also investigate the change in behavior of these factors around
the Argentine default which occurred in December 2001.

The chapter is organized as follows. In Section 7.2, we present some of the key issues
surrounding the Latin American fixed income market. Section 7.3 presents the pricing
issues related to credit spread and then Section 7.4 outlines data and methods. Empirical
results are presented in Section 7.5, while Section 7.6 concludes the chapter.

7.2 PERSPECTIVE ON LATIN AMERICAN BOND MARKET
7.2.1 Introduction

Following the Asian financial crisis that began in 1997 emerging market spreads experi-
enced a sharp increase, which continued up to the Russian financial crisis of July 1998. This
is clearly evident from the JP Morgan Emerging Market Bond Index (EMBI) which rose to
nearly 1600 basis points. After this sharp increase spreads stabilized and from the end of
1998 there was a systematic decline until 2007, where the EMBI is now around 200 basis
points. Data provided by the BIS (2006) highlight the persistent reduction in emerging
market credit spreads and comments that in first 2 months of 2006 there was a 70 basis
point reduction in credit spreads of dollar denominated Latin American high yield bonds,
while the European and Asian spreads declined by 20 basis points for the same period.

7.2.2 Financing Trends in the Latin American Region

The history of economic activities and the political leadership of the countries in the Latin
American region are replete with economic mismanagement, inappropriate policy adop-
tions, and inappropriate allocation of funds. Bank intermediated financing and direct
financing through the issuance of debt securities in the domestic and international markets
are the two major sources that finance the activities of many emerging market govern-
ments and corporations.

Traditionally, Latin American governments rely more on the direct issuance of inter-
national bonds than their Asian or European counterparts. In fact excessive short-term
financing from the international bank community was one of the key contributing reasons
behind the 1997 Asian financial crisis, where nearly 60% of financing had a maturity of less
than 1 year in 1997 (BIS 1999). Latin America, however, remains the major emerging
market issuer in the international bond markets, which Jeanne and Guscina (2006)
attribute to the absence of domestic savings. The structure of the fixed income markets
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in the region also favors U.S. dollar denominated floating rate (short-term) instruments
and consequently makes these economies more vulnerable to changes both in the financial
conditions in the United States and contagion from U.S. dollar issuers in other markets.
These features have contributed to the exacerbation of several crises in these economies
(Turner 2002, Mihaljek, Scatigna, and Villar 2002).

Excess volatility in the financial markets is an inherent feature of the countries in the
region. Weak international financial links and underdeveloped domestic financial markets
are the prime candidates behind such excess volatility (Caballero 2000). Turner (2002)
attributes the switching from international debt securities to domestic securities by emer-
ging market issuers (especially in the Asia-Pacific region) to two main reasons: First,
conscious efforts to improve the market infrastructure for bond trading by way of
enhancing secondary market activities, taxation reform, and tailoring insurance policies
have been undertaken. Second, the attractiveness of the domestic currency has been
enhanced due to lower domestic inflation and declining domestic interest rates.

Classens, Klingebiel, and Schmukler (2003) survey of the government bond markets of
24 developed markets and 12 emerging markets found that the total size of the government
sector amounted to $19.1 trillion, with 95% of this total comprising issues by governments
in developed markets and only 5% is attributable to governments in emerging markets. Their
analysis shows that greater importance is placed on foreign currency denominated bonds by
emerging economies compared with those developed economies investigated. This finding is
consistent with countries with larger economies, a larger domestic investor base and more
flexible exchange rate regimes having a larger domestic currency bond market. In contrast,
smaller economies with less flexible exchange rate regimes, weak economic fundamentals,
and inadequate institutional frameworks rely more on foreign currency denominated bonds.
The authors also show that countries that improve their institutional framework and
economic fundamentals can enhance their domestic currency bond market.

7.2.2.1 Domestic Bond Market in Latin America
Economies in Latin America until recently have relied heavily on the foreign currency
denominated international bonds as the main vehicle to finance their economic activities,
with less reliance placed sourcing funds in domestic bond markets. On the other hand,
lessons from other developed markets point to the importance of having an active and
vibrant domestic bond market for the maintenance of a stable and healthy capital market.
Progress has been made most by Mexico and Brazil where domestic bond markets have
increased from $40.4 and $390.8 billion in 1998 to $251.5 and $623.5 billion, respectively.
This increase, in excess of 100%, has resulted from key improvements in bond trading and
clearing infrastructure as well as institutional changes, including a greater role for institu-
tional investors.

It is notable that the significant portion of this growth in the domestic bond market is
due to issues by the government sector. Jeanne and Guscina (2006) studied the government
debt of 19 emerging markets including Latin American countries between 1980 and 2002
and find striking facts about Latin American domestic bond market. Their analysis reveals
that domestic bond markets in Asia have a similar structure to that of more advanced
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countries, where an overwhelming share is concentrated in local currency bonds with a
fixed interest rate and a medium- to long-term maturity.

This, however, is strikingly different to the Latin America markets where the structure of
the domestic debt is more concentrated in variable interest rate instruments. Fixed and
variable interest rate long-term domestic currency denominated bonds are around 10%
and 5% of the total domestic debt respectively. Similarly, long-term foreign currency
denominated variable interest rate debt is around 10% of the total domestic market
while the fixed rate foreign currency denominated bonds account for only around 2.5%.
In addition, they also find that there has been a decline in the number of issues with a
medium- to long-term maturity. This is attributed to weak economic fundamentals and
monetary instability in Latin America.

The domestic debt structure between individual countries also reveals a diverse pattern.
For example, the majority of Argentine domestic debt is denominated in foreign currency
due to its economic and financial circumstances and stands out as country that relies
heavily on foreign currency denominated bonds among the emerging market economies.
Brazil, on the other hand, stands out as a nation with the largest domestic currency bond
market in the region with 35% of its domestic debt denominated in local currency (variable
interest). A substantial portion of domestic debt in Venezuela is denominated in local
currency with a variable interest rate. Mexico, on the other hand, has a minor proportion
of foreign currency denominated debt while spreading equal proportion across medium- to
long-term fixed interest rate debt denominated in local currency.

7.2.2.2 International Bank Financing
Rapid structural reforms have been undertaken in the banking sector in Latin America in
the recent past to overcome the shortcoming in the sector and to bring about a banking and
financial system that is efficient and resilient. Compared to other emerging market regions,
Latin America accounts for only 15% of the total international bank lending to emerging
markets, with between 40% and 50% of this lending attributed to short-term financing
(BIS, 2006). The Asia-Pacific region historically has been the major focus of international
bank financing up until 2004 when Eastern Europe became the major beneficiary.

7.2.2.3 International Bond Issues
Table 7.1 provides information on the scale of international bonds issued by emerging
market regions. Attention is drawn to the Latin American countries. The Latin American
region was the single major issuer in the international bond market, occupying nearly 54%
of the total size. However, this position of dominance is maintained by Latin American
countries in 2006, but with the relative position of only 35% of the total outstanding of
international bonds belonging to emerging markets for the last quarter of 2006. The data
provided by the BIS (2007) show that the overall issues by Latin America in the inter-
national bond market have remained stable over the last 8 years. Emerging markets in the
European region have increased their issues in the international bond market catching up
with the Asian region. Brazil, Mexico, and Argentina are the sizable issuers that stand out
in the Latin American region in terms of size.
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7.3 PRICING ISSUES
The building block of risky debt valuation consists of the interest rate and default cum asset
recovery process. The term structure of interest rates defines the future evolution of
interest rates through a probabilistic description. It essentially measures the relationship
among the yields on default-free interest instruments that differ only in their terms to
maturity. Vasicek (1977), Cox, Ingersoll, and Ross (1985), Ho and Lee (1986), Hull and
White (1990), and Heath, Jarrow, and Morton (1992) are some of the popular studies that
attempt to model interest rate process. The model by Vasicek* (1977) proposes that the
interest rate follows a mean reverting Ornstein–Uhlenbeck process. Adopting the property
of mean reversion, the short rate r rises when it is below the long-term mean, and falls
when it is above the long-term mean. As far as the rate dependence on volatility is
concerned, Vasicek (1977) assumes it to be constant, while Cox, Ingersoll, and Ross
(1985) treat rate dependent volatility as proportional to the square root of the short rate.
One of the theoretical problems associated with Vasicek’s model is that it can generate
negative interest rates. The key advantage is that it can be employed in a systematic
manner to price interest rate sensitive interments.

The second building block of credit-risk pricing is the default process, which attempts to
capture the possible implications of a credit-risk event. Sundaresan (2000) categorizes the
literature on credit-risk pricing into three areas—structural models or firm value approach,
reduced form models, and structural models with strategic behavior. The first category of
structural models of default, or firm value approach, to credit-risk pricing assumes that
default takes place as the forcing process reaches a reorganization boundary where the
allocation of residual values takes place exogenously. Black and Scholes (1973), Merton
(1974), Black and Cox (1976), Ingersoll (1977), Brennan and Schwartz (1980), John (1993),
Kim, Ramaswamy, and Sundaresan (1993), and Longstaff and Schwartz (1995) are key
authors that adopt this approach.

The second category of models examine the exogenous specification of default outcomes
and recovery rates based on an arbitrage-free valuation by assigning probability of
default and recovery rates exogenously while deriving pricing formula, which can be
calibrated to data. Key examples include Jarrow and Turnbull (1995), Jarrow, Lando,
and Turnbull (1997), and Duffie and Singleton (1999). The third category of models
utilizes structural models together with game theory to study the strategic behavior. Leland
(1994), Leland and Toft (1996), Anderson and Sundaresan (1996), and Mella-Barral and
Perraudin (1997) are some of the studies that endogenise the lower reorganization
boundary while accommodating the behavior of firms in distress situations.

7.3.1 Structural Models

The structural framework captures credit risk based on the economic and financial
fundamentals of the risky bond issuers by treating the equity of the firm as a call option

* dr(t)¼ (aþ br(t))dtþsdW(t) where the interest rate follows an Ornstein–Uhlenbeck process and a, b, and s are
parameters of the process and W(t) is the standard Brownian motion.
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on the assets of the issuers. These models exogenously specify a particular firm value
process and assume that default is triggered when the firm value falls to some explicit
threshold. The structural approach views risky debt as a contingent claim on the value of
the issuer. Interest rates are assumed to be constant and an option-pricing framework was
used to model default risk for bonds. Merton (1974) formalized this theoretical base and
developed a model for pricing risky debt by introducing the theory of a risk structure of
interest rates. This perspective views the value of a risky debt as dependent upon (1) the
required rate of return on the risk-free debt, (2) provisions on the debt and restrictions
contained in the indenture, and (3) the probability of default.

Although the structural framework was widely used by subsequent researchers (Geske
1977, Ingersoll 1977), the major problem was the assumption concerning the occurrence of
the default event. A default event is conditioned to take place only when the firm exhausts
all its assets while in practice firms usually default long before assets are exhausted. Black
and Cox (1976) significantly extended the previous work of Merton (1974) by explicitly
modeling the effects of safety covenants, subordination arrangements, and restrictions on
financing of interest and dividend payments. One of the important aspects of the Black and
Cox (1976) study is that it conditions the default event to occur before the firm exhausts its
assets. Longstaff and Schwartz (1995) incorporate many distinguishing features of the
structural framework and formulate a dynamic continuous-time valuation framework
which provides a simple closed form model. They relax the restrictive assumptions relating
to the interest rate process and the default threshold through a dynamic interest rate
process and by allowing an early default.

They make six important assumptions relating to the firm value process, the interest rate
process, the capital structure of the issuer, the default process, the payoff in the event of
default, and the market settings. The dynamic of the total value of the assets of the issuer
(dV) is captured through a standard Weiner process: dV¼mVdtþsVdZ1, where s is a
constant and Z1 is a standard Weiner process.

The dynamics of the short-term interest rate (r) is accommodated through a Vasicek
type of interest rate process and is given by dr¼ (z � br)dtþhdZ2, where z, b, and h are
constants and Z2 is a standard Weiner process. They assume that the firm value V is
independent of the capital structure of the firm and is in line with the Modigliani–Miller
proposition (1958). This assumption implies that any cash outflows arising from existing
debts are financed by issuing new debt and therefore the firm value is independent of the
capital structure.

Solvency ratio X which is the ratio of threshold value K to firm value V takes care of the
default process. The issuing firm is solvent when the firm value is above the threshold point
and the firm enters bankruptcy if the ratio reaches 1 where K¼V. Once the firm reaches
insolvency position all debt contracts concurrently enter the default status. Longstaff and
Schwartz (1995) assume that debt holders receive 1�w times the face value of the debt at
maturity where w represents the written down value of the bond.

Longstaff and Schwartz (1995) specify the price of a risky bond with maturity T as an
explicit function of solvency ratio X, interest rate r, and maturity T where the price of the
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risky bond is an increasing function of the solvency ratio X and a decreasing function of
r and T.

P(X,r,T) ¼ D(r,T)� wD(r,T)Q(X,r,T) (7:1)

The first term D(r,T) in the above equation represents the value of a benchmark risk-free
bond and wD(r,T) represents the present value of the loss to the risky bond holder in the
event of distress. Q(X,r,T) represents the risk-neutral probability of default. The above
equation can be rearranged to represent the credit spread as the yield difference between a
risky bond P(X,r,T) and a risk-free bond D(r,T).

Using the simple closed form model of Longstaff and Schwartz (1995), Batten and
Hogan (2002) provide the following platform to test yield spread empirically. They
differentiate Equation 7.1 and substitute the yield on a risk-free bond of �ln(D(r,T))=T
to obtain the yield of a risky bond. The yield difference between the risky bond and the
risk-free bond is the credit spread and is given by Equation 7.2,

S ¼ � ln (1� wQ(X,r,T))
T

(7:2)

with the first difference of S, DS

¼ wQ� X
T(1� wQ(X,r,T))

DX
X
þ wQr
T(1� wQ(X,r,T))

Dr

þ wQr
T(1� wQ(X,r,T))

� ln (1� wQ(X,r,T))
T2

� �
DT (7:3)

Having obtained the first difference of the credit spread (S) the regression form of Longstaff
and Schwartz (1995) is given by simple Equation 7.4,

DSt ¼ aþ bDYt þ cDIt þ «t (7:4)

where DSt¼ St� St�1 is the change in credit spread between a risky bond and a risk-free
U.S. T-bond with the same maturity. DYt¼Yt�Yt�1 is defined as the change in interest
rate factor. DIt¼ It� It�1 is the change in the asset factor which is proxied by the return
on the broader stock market index. Regression coefficients are represented by a, b, and c.

7.4 DATA AND METHODS
We use daily yield series belonging to five sovereign issuers in Latin America. For the
purpose of this study only U.S. dollar denominated sovereign issues without a call
provision are used. Latin American sovereign issues were searched in the Reuters fixed
income database, with 18 bonds identified that fit this criteria. The sample period covers
February 2000–January 2006 (1483 observations). The U.S. benchmark bonds with a
similar maturity were used as the risk-free bonds to generate the spreads.
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Following Longstaff and Schwartz (1995) and Batten, Fetherston, and Hoontrakul
(2006) we proxy the change in the asset factor DIt by the return on the stock market
indices of Brazil, Chile, Colombia, Mexico, and Venezuela. Specifically, the Bovespa index
for Brazil, the IPSA index for Chile, HSBC JCLACOL for Colombia, the Mexican Bolsa
Index for Mexico, and the IBC index for Venezuela were used in this study. The Bovaspa
index was chosen since it is a total return index and comprises the most liquid stocks from
the Sao Paulo Stock Exchange. The Chilean IPSA index incorporates 40 actively traded
stocks from the Santiago Stock Exchange and is regarded as the most popular market
index. The IGBC index, from the Colombia Stock Exchange, commences on July 2001 and
so could not be used given the February 2000 start date of our sample period. Instead, we
utilize the HSBC JCLACOL index as the proxy for the Colombian asset factor. The
Mexican Bolsa index from the Mexican Stock Exchange is the capitalization weighted
index comprising of leading stocks, while the IBC index from the Caracas Stock Exchange
of Venezuela comprises the most liquid and capitalized stocks.

The credit spread DSt and interest rate variable DYt were determined by first matching
each of the sovereign bonds with a near maturity U.S. Treasury bonds, with the following
bonds selected:

1. 6.25% coupon maturing on February 15, 2007

2. 6.625% coupon maturing on May 15, 2007

3. 5.625% coupon maturing on May 15, 2008

4. 9.125% coupon maturing on May 15, 2009

5. 6.0% coupon maturing on August 15, 2009

6. 7.5% coupon maturing on November 15, 2016

7. 8.5% coupon maturing on February 15, 2020

8. 6.75% coupon maturing on August 15, 2026

9. 6.625% coupon maturing on February 15, 2027

10. 6.375% coupon maturing on August 15, 2027

11. 6.25% coupon maturing on May 15, 2030

Table 7.2 reports the summary statistics for the spreads between the respective Latin
American sovereign Eurobonds and the benchmark U.S. Treasury bonds. The mean spread
for Brazil and Venezuela is higher than the Chilean and the Mexican spreads. Colombian
spreads fall in between these two groups. The standard deviation of the spreads also reveals
a similar pattern with higher volatility being associated with Brazilian and Venezuelan
series. Higher spreads and higher volatility reflect the economic conditions that prevailed
in Brazil and Venezuela during the sample period. The mean spread for Brazil ranges from
6.91% to 7.81%; on the other hand, the mean spreads for Mexican issues are in the range of
1.69%–2.68%. Similar to Brazilian spreads, the mean spreads for Venezuelan issues are in
the range of 6.91%–7.9%. Colombian spreads are in the range of 4.27%–5.74%, which lies
between the Brazilian and Venezuelan range. It should be noted that all of the mean
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spreads increase with maturity—that is the longer the maturity of the bond, the higher the
mean credit spread for each country. There is also excess kurtosis on Brazilian spreads
compared to other spread series in this study. A common feature that we observe in the
descriptive statistics is that the standard deviations within each market consistently tend to
decrease with increasing maturity.

During our sample period the capital reserves of Argentina were depleted (23rd of
December 2001) and the country declared a moratorium on international debt repay-
ments. Therefore, for the purposes of this study we choose the official default date as 23rd
of December 2001. We then divide the sample into two subperiods—pre-Argentine default
period and post-Argentine default period—in addition to the analysis comprising all
observations for the full sample period. Accordingly our sample is subdivided as precrisis
period (25 February 2000–23 December 2001) and postcrisis period (24 December 2001–
13 January 2006) consisting of 457 and 1027 observations, respectively.

7.4.1 Changes in Credit Spreads

An important implication of Longstaff and Schwartz (1995) model is that credit spread, the
yield difference between a risky bond and a risk-free benchmark bond, is driven by two
major factors—an asset factor and an interest rate factor. Given the problems of hetero-
skedasticity and autocorrelation associated with the data in our sample we employ the
Bollerslev (1986) GARCH(1,1) specification within an autoregressive moving average
(ARMA) framework, with Equation 7.4 now specified as

DSt ¼ aþ bDYt þ cDIt þ AR(1)þMA(1)þ «

s2 ¼ aþ b«2t�1 þ gs2
t�1 (7:5)

where DSt¼ St� St�1 is the change in credit spread between the risky Latin American
bond and the risk-free U.S. T-bond with the same maturity. DYt¼Yt�Yt�1 is defined as
the change in the interest rate factor. DIt¼ It� It�1 is the change in the asset factor which
is proxied by the return on the broader stock market index of individual countries in our
sample. a, b, and c are the regression coefficients of the mean equation. In line with the
theory, we expect the regression coefficients b and c representing interest rate factor and
asset factor to be inversely related to the dependent variable, DSt. The conditional variance
term (s2) in the variance equation is a function of the mean a; the ARCH term b«2t�1
which is measured as the lag of the squared residuals from the mean equation effectively
represents the information about the volatility from the previous period; and the GARCH
term gs2

t�1 representing the last period’s forecast variance. The Bollerslev and Wooldridge
(1992) procedure was applied to ensure that the statistical significance of the results was
not affected by non-normally distributed residuals.

7.5 EMPIRICAL RESULTS
To provide an insight into the applicability of structural models in market settings that are
often described as immature, highly volatile, and a region replete with default events,
we investigate five important bond markets in Latin America in this study. We examine the
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spreads between 18 sovereign issues matched with their U.S. benchmark bonds of the same
maturity structure. For simplicity this study focuses only on sovereign Eurobond issues
with no embedded options such as callable, puttable, and convertible bonds. Given the
problems of heteroskedasticity and autocorrelation we employ a GARCH(1,1) specification
within an ARMA framework, ARMA(1,1), to accommodate the time varying volatility
structure of the return series and autocorrelation in the regression residuals at lag one. The
regression tested the change in credit spread as a function of well-established asset factor
and interest rate factor with AR(1) and MA(1) terms.

The theory on credit risk suggests that credit spreads are inversely related to interest rate
factor and asset factor. Our regression of changes in credit spreads on changes in asset and
interest rate factor confirms this theoretical proposition and the coefficients are highly
significant (beyond 99.9%). Table 7.3 outlines the results for the whole sample (1483
observations), with the inverse relationship between the changes in credit spread and the
interest rate factor clearly evident for all of the 18 bonds in our sample.

Argentina officially defaulted on the 23rd of December 2001 and to account for this
credit event we divide the data into two subperiods with the analysis conducted for the
whole period as well as subperiods. For the sake of brevity the results from this
additional analysis are not reported. With the exception of two cases, the coefficient
for the asset factor for the whole sample as well as the pre- and post-Argentine default
period were negative as predicted by the model. This is consistent with the existing
evidence both in emerging and developed markets. The ARMA terms were also found to
be significant in most cases suggesting that there was pricing inefficiency in the market.
The coefficients on the lagged squared error and lagged conditional variance in the
conditional variance equation are also highly statistically significant (beyond 99.9%). In
addition, the sum of the coefficients of the lagged squared error and lagged conditional
variance is very close to unity which implies that the shock to the conditional variance
will be highly persistent.

7.6 CONCLUSION
We test the Longstaff and Schwartz (1995) model in an emerging market setting using the
spread between 18 sovereign issues matched with a U.S. benchmark bond of equivalent
maturity. Brazil, Chile, Colombia, Mexico, and Venezuela were the specific markets in the
emerging Latin American region that were included in this study. The purpose of this
investigation was to provide an insight into the valuation issues surrounding emerging
Latin American fixed income markets and the efficacy of Longstaff and Schwartz (1995)
type structural model in market settings that are often described as immature and
excessively volatile. Given the problems of heteroskedasticity and autocorrelation associ-
ated with the data we employ a GARCH(1,1) specification within an ARMA(1,1) frame-
work. Tests were conducted for the whole sample as well as the subsample for the 2001
pre- and post-Argentine crisis periods. As predicted by structural models, changes in credit
spreads of emerging Latin American markets were driven by interest rate and asset factors
with these two factors negatively related to changes in yield spreads.

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C007 Final Proof page 109 7.4.2008 7:40pm Compositor Name: VBalamugundan

Credit Spread Dynamics: Evidence from Latin America & 109



TA
B
LE

7.
3

R
eg
re
ss
io
n
of

C
ha
ng
es

in
C
re
di
t
Sp
re
ad
s
on

C
ha
ng
es

in
In
te
re
st
R
at
e
Fa
ct
or

an
d
A
ss
et

Fa
ct
or
—
W
ho

le
Sa
m
pl
e

D
S
t
¼

a
þ
b
D
Y
t
þ
cD

I t
þ
A
R
(1
)
þ
M
A
(1
)
þ
«
,s

2
¼

a
þ
b
«
2 t�

1
þ
g
s

2 t�
1

a
b

c
A
R
(1
)

M
A
(1
)

a
b

g
A
R
2

F
SS

E

B
ra
zi
l

�0
.0
09

�0
.7
38

�2
.0
54

�0
.9
91

0.
99
2

0.
00
0

0.
14
6

0.
87
0

0.
03
1

7.
80
1

21
2.
88
6

B
R
A
08

�2
.7
37

�1
1.
08
8

�7
.7
40

�1
25
.1
70

12
1.
03
0

1.
52
6

5.
09
0

34
.3
49

(0
.0
06
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.1
27
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

�0
.0
06

�0
.6
20

�2
.5
45

�0
.9
94

0.
99
4

0.
00
0

0.
10
7

0.
91
2

0.
03
8

9.
34
8

17
7.
37
7

B
R
A
09

�2
.0
67

�1
0.
10
9

�1
3.
38
2

�5
0.
02
5

54
.7
24

0.
29
1

3.
80
0

52
.5
92

(0
.0
39
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.7
71
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

B
R
A
20

�0
.0
07

�0
.5
60

�2
.2
55

�0
.8
94

0.
91
2

0.
00
0

0.
15
3

0.
87
0

0.
03
0

7.
50
0

14
7.
52
3

�2
.6
26

�1
0.
81
8

�1
2.
92
9

�9
.4
72

10
.6
16

1.
17
3

2.
89
0

25
.2
69

(0
.0
09
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.2
41
)

(0
.0
04
)

(0
.0
00
)

(0
.0
00
)

�0
.0
05

�0
.5
04

�2
.5
56

0.
99
4

�0
.9
97

0.
00
3

0.
24
4

0.
68
0

0.
03
0

7.
60
6

13
9.
83
8

B
R
A
27

�3
.1
50

�5
.3
29

�8
.1
18

14
8.
10
7

�1
90
.2
55

4.
79
6

3.
12
6

11
.3
82

(0
.0
02
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
02
)

(0
.0
00
)

(0
.0
00
)

�0
.0
03

�0
.5
40

�2
.4
49

0.
20
9

�0
.2
35

0.
00
0

0.
12
9

0.
88
5

0.
03
4

8.
45
0

13
7.
50
7

B
R
A
30

�1
.1
76

�9
.5
39

�1
0.
75
2

0.
16
5

�0
.1
86

1.
67
9

4.
04
2

39
.0
12

(0
.2
40
)

(0
.0
00
)

(0
.0
00
)

(0
.8
69
)

(0
.8
52
)

(0
.0
93
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

C
hi
le

�0
.0
01

�0
.2
17

�0
.2
35

�0
.0
14

�0
.3
00

0.
00
0

0.
17
5

0.
85
5

0.
19
7

52
.9
91

4.
39
0

C
H
I
09

�0
.9
79

�1
2.
92
9

�1
.1
34

�0
.0
89

�2
.0
80

1.
50
8

4.
41
9

36
.9
41

(0
.3
28
)

(0
.0
00
)

(0
.2
57
)

(0
.9
29
)

(0
.0
38
)

(0
.1
32
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C007 Final Proof page 110 7.4.2008 7:40pm Compositor Name: VBalamugundan

110 & Credit Risk: Models, Derivatives, and Management



C
ol
om

bi
a

C
O
L
07

�0
.0
09

�0
.8
63

�0
.1
54

0.
20
3

�0
.3
85

0.
00
0

0.
24
9

0.
80
1

0.
08
8

21
.3
83

57
.8
36

�2
.9
33

�1
6.
90
3

�0
.7
43

0.
96
7

�1
.7
38

1.
78
4

5.
27
3

33
.4
39

(0
.0
03
)

(0
.0
00
)

(0
.4
58
)

(0
.3
34
)

(0
.0
82
)

(0
.0
75
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

�0
.0
06

�0
.7
56

�0
.4
87

�0
.9
94

0.
99
3

0.
00
0

0.
19
5

0.
84
1

0.
06
8

16
.4
21

56
.9
01

C
O
L
08

�2
.2
02

�1
5.
23
7

�1
.5
96

�4
3.
54
6

39
.6
54

1.
27
2

5.
99
7

28
.6
52

(0
.0
28
)

(0
.0
00
)

(0
.1
10
)

(0
.0
00
)

(0
.0
00
)

(0
.2
03
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

�0
.0
10

�0
.6
95

�0
.4
08

�0
.8
09

0.
85
8

0.
00
0

0.
22
3

0.
83
0

0.
01
3

3.
73
4

82
.0
16

C
O
L
09

�4
.0
35

�1
6.
99
3

�2
.2
26

�6
.6
39

9.
07
1

1.
01
7

3.
39
1

19
.3
59

(0
.0
00
)

(0
.0
00
)

(0
.0
26
)

(0
.0
00
)

(0
.0
00
)

(0
.3
09
)

(0
.0
01
)

(0
.0
00
)

(0
.0
01
)

�0
.0
11

�0
.7
10

�0
.6
86

�0
.2
41

0.
40
4

0.
00
0

0.
26
1

0.
81
0

0.
07
3

17
.6
35

36
.7
40

C
O
L
20

�4
.5
16

�8
.7
54

�2
.6
48

�0
.9
62

1.
73
1

2.
37
2

2.
53
7

22
.3
95

(0
.0
00
)

(0
.0
00
)

(0
.0
08
)

(0
.3
36
)

(0
.0
84
)

(0
.0
18
)

(0
.0
11
)

(0
.0
00
)

(0
.0
00
)

M
ex
ic
o

�0
.0
01

�0
.6
14

�0
.8
39

0.
18
1

�0
.2
34

0.
00
0

0.
07
2

0.
91
7

0.
29
2

88
.3
48

8.
28
1

M
E
X
07

�0
.2
98

�1
5.
79
2

�4
.2
04

0.
50
6

�0
.6
57

1.
76
7

3.
39
2

36
.5
18

(0
.7
66
)

(0
.0
00
)

(0
.0
00
)

(0
.6
13
)

(0
.5
11
)

(0
.0
77
)

(0
.0
01
)

(0
.0
00
)

(0
.0
00
)

�0
.0
01

�0
.5
85

�0
.7
44

�0
.2
75

0.
22
6

0.
00
0

0.
11
8

0.
88
3

0.
31
6

98
.6
57

6.
90
8

M
E
X
08

�0
.7
20

�2
2.
87
6

�4
.8
21

�0
.5
33

0.
43
2

2.
41
0

4.
99
0

46
.3
63

(0
.4
72
)

(0
.0
00
)

(0
.0
00
)

(0
.5
94
)

(0
.6
66
)

(0
.0
16
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

�0
.0
01

�0
.5
05

�0
.9
69

�0
.2
31

0.
18
6

0.
00
0

0.
11
4

0.
88
7

0.
25
4

73
.0
51

8.
10
5

M
E
X
09

�0
.9
03

�2
0.
77
2

�7
.1
13

�0
.7
52

0.
59
2

2.
40
1

3.
65
7

31
.9
70

(0
.3
67
)

(0
.0
00
)

(0
.0
00
)

(0
.4
52
)

(0
.5
54
)

(0
.0
16
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

�0
.0
02

�0
.5
19

�0
.7
63

0.
66
3

�0
.6
14

0.
00
0

0.
14
3

0.
84
2

0.
27
6

81
.4
49

5.
78
3

(c
on
ti
nu

ed
)

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C007 Final Proof page 111 7.4.2008 7:40pm Compositor Name: VBalamugundan

Credit Spread Dynamics: Evidence from Latin America & 111



TA
B
LE

7.
3
(c
on

tin
ue

d
)

R
eg
re
ss
io
n
of

C
ha
ng
es

in
C
re
di
t
Sp
re
ad
s
on

C
ha
ng
es

in
In
te
re
st
R
at
e
Fa
ct
or

an
d
A
ss
et

Fa
ct
or
—
W
ho

le
Sa
m
pl
e

D
S
t
¼

a
þ
b
D
Y
t
þ
cD

I t
þ
A
R
(1
)
þ
M
A
(1
)
þ
«
,
s

2
¼

a
þ
b
«
2 t�

1
þ
g
s

2 t�
1

a
b

c
A
R
(1
)

M
A
(1
)

a
b

g
A
R
2

F
SS

E

M
E
X
16

�1
.2
33

�1
6.
90
9

�5
.7
30

3.
71
5

�3
.2
53

3.
86
7

3.
72
2

25
.5
89

(0
.2
18
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
01
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

�0
.0
02

�0
.5
07

�1
.1
37

�0
.9
20

0.
98
4

0.
00
0

0.
21
8

0.
82
5

0.
10
8

26
.5
54

9.
66
9

M
E
X
26

�1
.0
77

�1
7.
55
8

�5
.2
73

�2
2.
23
2

43
4.
26
3

1.
42
2

4.
33
9

36
.7
84

(0
.2
82
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.1
55
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

V
en
ez
ue
la

V
E
N

07
0.
07
3

�0
.9
15

�0
.0
08

0.
07
6

�0
.3
53

0.
02
9

0.
25
1

0.
52
3

0.
06
0

14
.5
18

15
2.
96
6

1.
09
6

�1
0.
00
2

�1
.2
10

0.
47
9

�2
.2
21

1.
33
4

1.
95
7

3.
86
2

(0
.2
73
)

(0
.0
00
)

(0
.2
26
)

(0
.6
32
)

(0
.0
26
)

(0
.1
82
)

(0
.0
50
)

(0
.0
00
)

(0
.0
00
)

�0
.0
08

�0
.7
58

�0
.2
25

0.
91
3

�0
.8
83

0.
00
0

0.
11
8

0.
88
9

0.
09
8

23
.8
61

30
.3
89

V
E
N

18
�3

.0
74

�1
7.
46
0

�1
.2
46

14
.0
85

�1
1.
64
3

2.
25
2

4.
97
9

51
.3
65

(0
.0
02
)

(0
.0
00
)

(0
.2
13
)

(0
.0
00
)

(0
.0
00
)

(0
.0
24
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

�0
.0
06

�0
.6
25

�0
.4
58

0.
27
5

�0
.1
82

0.
00
0

0.
14
0

0.
86
6

0.
07
7

18
.7
22

21
.1
89

V
E
N

27
�2

.5
93

�1
3.
67
5

�2
.6
41

0.
87
6

�0
.5
68

2.
59
3

6.
88
6

56
.3
17

(0
.0
10
)

(0
.0
00
)

(0
.0
08
)

(0
.3
81
)

(0
.5
70
)

(0
.0
10
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

N
ot
e:

Fo
r
ea
ch

of
th
e
18

La
ti
n
A
m
er
ic
an

bo
nd

s
w
e
es
ti
m
at
e
th
e
fo
llo

w
in
g
G
A
R
C
H
(1
,1
)
sp
ec
ifi
ca
ti
on

of
th
e
re
gr
es
si
on

D
S t
¼

a
þ
bD

Y
t
þ
cD

I t
þ
A
R
(1
)
þ
M
A
(1
)
þ
«
,

s
2
¼

a
þ
b
«
2 t�

1
þ
g
s
2 t�

1
.T

he
te
rm

D
S
is
th
e
ch
an
ge

in
cr
ed
it
sp
re
ad

(s
pr
ea
ds

ar
e
ge
ne
ra
te
d
by

co
m
pa
ri
ng

th
e
yi
el
ds

of
ri
sk
y
La
ti
n
A
m
er
ic
an

so
ve
re
ig
n
w
it
h
th
e

yi
el
ds

of
U
.S
.b
en
ch

m
ar
k
bo

nd
of

th
e
sa
m
e
m
at
ur
it
y)
,D

Y
is
th
e
ch
an
ge

in
th
e
da
ily

yi
el
d
of

U
.S
.g
ov
er
nm

en
t
T
re
as
ur
y
bo

nd
s
w
it
h
th
e
sa
m
e
m
at
ur
it
y,
D
I t
is
th
e

da
ily

lo
ga
ri
th
m
ic

re
tu
rn

of
B
ra
zi
l
(B
R
A
),

C
hi
le

(C
H
I)
,
C
ol
om

bi
a
(C
O
L)
,
M
ex
ic
o

(M
E
X
),

an
d

V
en
ez
ue
la

(V
E
N
)
st
oc
k
m
ar
ke
ts
,
A
R
(1
)
an
d

M
A
(1
)
ar
e

au
to
re
gr
es
si
ve

an
d
m
ov
in
g
av
er
ag
e
te
rm

s
at

la
g
on

e.
R
eg
re
ss
io
n
co
effi

ci
en
ts
to
ge
th
er

w
it
h
Z
-s
ta
ti
st
ic
s
an
d
th
ei
r
as
so
ci
at
ed

p
va
lu
es

ar
e
re
po

rt
ed
.

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C007 Final Proof page 112 7.4.2008 7:40pm Compositor Name: VBalamugundan

112 & Credit Risk: Models, Derivatives, and Management



REFERENCES
Anderson, R. and S. Sundaresan, 1996, A design and valuation of debt. Contracts Review of

Financial Studies, 9, 37–68.
Bank for International Settlements, 1997–2007, The BIS statistics on international banking and

financial market activity (The BIS Quarterly Review), Monetary and Economic Department,
Basle November.

Batten, J. and H. Hogan, 2002, A perspective on credit derivatives. International Review of Financial
Analysis, 9, 389–404.

Batten, J., T. Fetherston, and P. Hoontrakul, 2006, Factors affecting the yields of Asian issues in
international bond markets. Journal of International Financial Markets, Institutions and
Money, 16(1), 57–60.

BIS International Financial Statistics—Securities (Table 15 B), Bank of International Settlements,
available online at http:==www.bis.org=publ=qtrpdf=r_qa0703.pdf

Black, F. and J.C. Cox, 1976, Valuing corporate securities: Some effects of bond indenture provi-
sions. Journal of Finance, 31, 351–367.

Black, F. and M. Scholes, 1973, The pricing of options and corporate liabilities. Journal of Political
Economy, 81, 637–659.

Bollerslev, T., 1986, Generalised autoregressive conditional heteroskedasticity. Journal of Econo-
metrics, 31, 307–327.

Bollerslev, T. and J. Wooldridge, 1992, Quasi-maximum likelihood estimation and inference in
dynamic models with time varying covariances. Econometric Reviews, 11, 143–172.

Brennan, M.J. and E. Schwartz, 1980, Conditional prediction of bond prices and returns. Journal of
Finance, 35, 405–417.

Caballero, R., 2000, Aggregate volatility in modern Latin America: Causes and cures, MIT Depart-
ment of Economics Working Paper.

Classens, S., D. Klingebiel, and S. Schmukler, 2003, Government bonds in domestic and foreign
currency: The role of institutional factors. Policy Research Working Paper Series 2986, The
World Bank.

Collin-Dufresne, P., R. Goldstein, and S. Martin, 2001, The determinants of credit spreads changes.
Journal of Finance, 56, 2177–2207.

Cox, J.C., J.E. Ingersoll, Jr., and S.A. Ross, 1985, A theory of term structure of interest rates
Economitrica 53, 385–408.

De Almeida, C., A. Duarte, and C. Fernandes, 1998, Decomposing and simulating the movements
of term structures of interest rates in emerging Eurobond markets. Journal of Fixed Income,
8, 21–31.

Duffie, D. and K. Singleton, 1999, Modeling term structures of defaultable bonds. Review of
Financial Studies, 12(4), 687–720.

Geske, R., 1977, The valuation of corporate liabilities as compound options. Journal of Financial
and Quantitative Analysis, 12, 541–552.

Heath, D., R. Jarrow, and A. Morton, 1992, Bond pricing and the term structure of interest rates:
A new methodology for contingent claim valuation. Econometrica, 60, 77–105.

Ho, T.S.Y. and S.B. Lee, 1986, Term structure movements and pricing interest rate contingent
claims. Journal of Finance, 41, 1011–1029.

Hull, J.C. and A. White, 1990, Pricing interest rate derivative securities. Review of Financial Studies,
3, 573–592.

Ingersoll, J., 1977, An examination of corporate call policies on convertible securities. Journal of
Finance, 32, 463–478.

Jarrow, R.A., D. Lando, and S. Turnbull, 1997, A Markov model for the term structure of credit risk
spreads. Review of Financial Studies, 10, 481–522.

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C007 Final Proof page 113 7.4.2008 7:40pm Compositor Name: VBalamugundan

Credit Spread Dynamics: Evidence from Latin America & 113



Jarrow, R. and S. Turnbull, 1995, Pricing derivatives on financial securities subject to credit risk.
Journal of Finance, 50, 53–85.

John, K., 1993, Managing financial distress and valuing distressed securities: A survey and a
research agenda, financial management, Special Issues on Financial Distress.

Jeanne, O. and A. Guscina, 2006, Government debt in emerging market countries: A new data set.
IMF Working Paper WP=06=98.

Kim, J., K. Ramaswamy, and S. Sundaresan, 1993, Does default risk affect the valuation of corporate
bonds? A contingent claims model. Financial Management, 22, 117–131.

Leland, H.E., 1994, Corporate debt value, bond covenants, and optimal capital structure. Journal of
Finance, 49, 1213–1252.

Leland, H.E. and B.K. Toft, 1996, Optimal capital structure, endogenous bankruptcy, and the term
structure of credit spreads. Journal of Finance, 51, 987–1019.

Longstaff, F. and E. Schwartz, 1995, A simple approach to valuing risky fixed and floating rate debt.
Journal of Finance, 50, 789–819.

Mella-Barral, P. and W. Perraudin, 1997, Strategic debt services. Journal of Finance, 52, 531–556.
Mihaljek, D., M. Scatigna, and A. Villar, 2002, The development of bond market in emerging

economies, BIS Papers No. 11 June.
Merton, R.C., 1974, On the pricing of corporate debt: The risk structure of interest rates. Journal of

Finance, 29, 449–470.
Modigliani, F. and M. Miller, 1958, The cost of capital, corporation finance and the theory of

investment. American Economic Review, June, 261–297.
Sundaresan, S.M., 2000, Continuous-time methods in finance: A review and an assessment. Journal

of Finance, 55, 1569–1622.
Turner, P. 2002, The development of bond market in emerging economies, BIS Papers No. 11 June.
Vasicek, O., 1977, An equilibrium characterisation of the term structure. Journal of Financial

Economics, 5, 177–188.

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C007 Final Proof page 114 7.4.2008 7:40pm Compositor Name: VBalamugundan

114 & Credit Risk: Models, Derivatives, and Management



CHAPTER 8

Accounting Data Transparency
and Credit Spreads:
Clinical Studies

Umberto Cherubini

CONTENTS

8.1 Introduction .............................................................................................116

8.2 Credit Spread Puzzle................................................................................117

8.3 Estimating Credit Risk under Incomplete Accounting Information...........118

8.4 Dataset .....................................................................................................120
8.4.1 Tyco ............................................................................................ 121
8.4.2 WorldCom................................................................................... 124
8.4.3 Enron ........................................................................................... 125
8.4.4 Parmalat ...................................................................................... 130

8.5 Empirical Investigation.............................................................................131

8.6 Conclusion...............................................................................................135

Acknowledgment..............................................................................................136

References ........................................................................................................136

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C008 Final Proof page 115 7.4.2008 7:39pm Compositor Name: VBalamugundan

115



8.1 INTRODUCTION
In a statement released in 2007, the U.S. Treasury secretary complained about the huge
number of accounting data revisions in the U.S. market. He claimed that some 1500 firms
revise their balance sheet figures every year, and that means, he claimed, that there must be
something wrong with the system.

So, the debate on accounting transparency that arose at the beginning of the century is
still open. Recent literature has focused on the impact of these events on the evaluation of
corporate liabilities, namely equity and bonds. On theoretical grounds, Duffie and Lando
(2001) were the first to attempt to model the impact of accounting noise on the credit
spread term structure. On empirical grounds, Yu (2005) proved that accounting noise is
actually priced in the market: a risk premium is charged to the credit spreads of firms that
adopt less transparency. Fraud events that took place both in the United States (World-
Com, Tyco, Enron, etc.) and in Europe (Cirio, Marconi, Parmalat, etc.) in the first years of
the century raised the issue of distinguishing between unbiased noise owing to measure-
ment errors and cases of deliberate fraud. Inspired by these cases, Baglioni and Cherubini
(2006) proposed a model adding the risk of deliberate fraud to measurement errors in
accounting figures. The empirical issue whether the risk of running into a case of fraud is
actually accounted for in prices, and how it impacts on the values of equity and debt
remains an open question.

In this chapter, we begin to gather evidence to provide hints to the solution of this
problem, and we do so by performing a sort of clinical studies on some of the cases quoted
above. The analysis also provides material to go over the debate that followed those cases.
That debate was (and still is) centered on two questions. Did the market know about, and
care for, accounting data transparency? How did it perceive the problem? And what was
the impact on equity and debt values? Structural models would predict that if lack of
transparency results in an increase in noise, that would only redistribute value from
bondholders to stockholders, while fears of deliberate misreporting would cause loss of
value for both of them. The second question is whether someone in the market knew
more than others. More precisely, were banks and professional investors endowed with
superior information on the event of fraud, with respect to retail investors? A natural test to
provide an answer to this question can be found in the dynamic relationship of the credit
derivatives markets and the stock market. The credit derivatives markets, and in particular
the CDS (credit default swap) market, are in fact reserved to financial institutions and
professional investors, while the stock market is open to the general public of investors. If
this is the case, some information advantage of the professional investors would result in
misalignment of the two markets, and possibly in a lead–lag relationship between the two.

The plan of the chapter is as follows. In Section 8.2, we provide a brief review of the
structural credit models’ literature with particular focus on the contributions addressing
the problem of accounting transparency. In Section 8.3, we discuss the empirical implica-
tions that one would expect to find if he allows for biases and noise in accounting data. In
Section 8.4, we describe the data set and go over the chronicle of the transparency cases
under study. In Section 8.5, we provide evidence of the joint dynamics of the value of
equity and debt. Section 8.6 concludes the chapter.
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8.2 CREDIT SPREAD PUZZLE
Credit risk models have in common the goal of explaining two figures, default probability
and loss given default, whose product yields the expected loss figure. This represents credit
risk in the evaluation of corporate bonds, credit derivatives written on the name of the
issuer, counterparty risk in derivatives transactions against him, and so on. The main
difference in the approach to this problem is in the pricing tool used. The general and well-
known taxonomy of credit risk models denotes ‘‘structural models,’’ those using option
pricing theory to evaluate credit risk and ‘‘reduced form models,’’ those using term
structure theory to explain credit spread behavior. Reduced form models, that are now-
adays largely used in credit risk pricing, own their development to the inadequacy of
structural models to explain the observed behavior of credit spreads in the market.

In structural models, corporate liabilities are evaluated by decomposing their payoffs in
linear and nonlinear products, and using standard option pricing theory to price them. The
seminal work in this literature is due to Merton (1974), even though the world famous
Black and Scholes (1973) were already targeted at the pricing of corporate liabilities.
Default risk turns into a nonlinearity in the payoff

D(T ,T) ¼ B�max [B� V(T),0] (8:1)

where
D(T,T) is the value of defaultable debt, assumed to be a zero coupon bond, at maturity
B is the nominal value of debt
V(T) is the value of the firm

So, the value of the defaultable zero coupon bond at any time t would be given by

D(t,T) ¼ P(t,T)B� PUT(V ,t :B,T) (8:2)

where P(t,T) denotes the risk-free discount factor and PUT(�) denotes a put option written
on the value of the firm, with strike price equal to the face value of debt: the default put
option. As for equity, it is easy to see that its value ought to be equal to that of a call option
with same underlying, strike price, and exercise date.

S(t) ¼ CALL(V ,t :B,T) (8:3)

Structural models are particularly elegant and informative, mainly because they impose an
arbitrage relationship between equity and debt. From this point of view, they provide a
natural guideline for relative value trades between the stock market and the credit
derivatives market which is of utmost practical interest. Unfortunately, these models result
in a generally poor fit to market data (see, Jones et al., 1984; Huang and Huang, 2003; Eom
et al., 2004). This shows up in three main empirical regularities:

. Typically, reasonable values for leverage of the firm and volatility of assets produce
lower credit spreads than those observed on the market.

. Undervaluation is particularly relevant for short-term maturities: a typical credit term
structure in structural models shows a hump and zero intercept.

. Undervaluation is particularly relevant for high credit standing obligors.
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Several answers have been proposed as possible solutions to these problems. Anderson and
Sundaresan (1996) suggest that the owner of the firm may engage in a strategic debt
rescheduling process to exploit the bankruptcy costs at the expense of bondholders. Along
the same lines, Leland (1994) and Leland and Toft (1996) allow the owner of the firm to
terminate the investment in such a way as to optimize the value of equity, again at the
expense of debt. An alternative explanation for the failure of structural models to fit
the data stems from the fact that the value of the firm is not directly observed and this
lack of transparency may affect the prices in the market. This route was first followed by
Duffie and Lando (2001), who propose a model with endogenous bankruptcy in which the
market is assumed to observe a noisy signal of the value of the firm at discrete times.
Several extensions have been provided to this model. Coculescu et al. (2006) generalize the
approach by incorporating noise in a continuous time model that precludes arbitrage from
insiders. Herkommer (2006) introduces correlation between the value of the firm and
noise, and finds evidence of negative correlation. Other approaches based on imperfect
information, concerning both the value of the firm and the default thresholds, have been
proposed (CreditGrades, 2001; Giesecke and Goldberg, 2004). Cetin et al. (2004) and Guo
et al. (2006) propose a different approach in which the market is assumed to only partially
observe, and possibly with a lag, relevant information concerning the state of the firm.

Other models have proposed a distinction between noise and deliberate misreporting from
managers and accountants. Baglioni and Cherubini (2006) model the bias in the signal as a
hidden state to which the market attributes some probability. Differently from the Duffie and
Lando approach, allowing for biased accounting information in addition to noise enables to
explain undervaluation of credit spread of high credit grade obligors. Furthermore, while noise
results in a transfer of wealth frombondholders to equity holders, biased information leads to a
general reduction of the value of the firm. The goal of this literature is to explore the relevance
of corporate governance and other institutional features to explain credit spread behavior.
Along these lines, Capponi (2007) extends the model by making misreporting endogenous.

8.3 ESTIMATING CREDIT RISK UNDER INCOMPLETE
ACCOUNTING INFORMATION

A key claim of the literature on accounting transparency surveyed above is that incomplete
information may have a relevant impact on the evaluation of credit risk and corporate
liabilities in general. To illustrate the topic in an orderly fashion, consider first the standard
case with perfect accounting information. Assume balance sheet data to be truthfully reported
atmarket value. Then, innovations on such values should be immediately reflected in the value
of equity and bonds, and should result in movements in the same direction. Changes in the
volatility of assets would instead cause a transfer of wealth from bondholders to shareholders
or vice versa. This should be reflected in prices and returns on the most liquid markets for the
corporate liabilities issued by the obligor and contingent claims written on its name. Now-
adays, the markets that are considered for their liquidity the most are as follows:

. Stock market

. CDS market
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These markets are used to back out information about credit risk of the firm. As for the
stock market, two main strategies are available. One follows the so called KMV approach,
which is based on the idea of extracting information about the value of the firm and its
volatility from a system of two equations, one determining the value of equity and the
other the corresponding volatility. If one assumes that volatility of assets does not change
much across the sample, a more efficient way to estimate volatility and the value of the firm
is to use the maximum likelihood approach on transformed data proposed by Duan (1994,
2000). Further elaborations on this subject were provided by Brockman and Turtle (2003),
Duan et al. (2004), and Bruche (2004).

The CDS alternative uses the premia of contracts arranged in an increasing maturity
order to recover the term structure of the probability of default maturity by maturity. This
technique is called bootstrapping, a term borrowed from the estimation of the term
structure in the fixed income market. Namely, the formula that we are going to use in
the analysis below is

Q(tn) ¼ Q(tn�1) 1� CDS(tn)
LGD

� �
� CDS(tn)� CDS(tn�1)

LGD

Xn�1
i¼1

P(t, ti)Q(ti�1) (8:4)

where
DS(ti) is the CDS spread for maturity ti paid on a running basis
LGD is the loss given default figure
Q(ti) is the survival probability beyond time ti

Actually, the formula is based on the simplified assumption that the premium is paid at
the end of a period even if the underlying name has defaulted in that period. However,
accounting for payment of the accrued premium and payment of protection at the exact time
of default (which is the market practice) would have a very limited impact on the estimates.

In the idealmarked-to-market world depicted above, extracting implied credit risk figures
either from the stock market or the CDSmarket would lead to the same answers, apart from
frictions and institutional features. Even though the CDSmarket is made of institutional and
professional investors, which represent a subset of the pool of investors pouring money on
the stock market, nevertheless inconsistent implied probabilities in these markets would be
arbitraged out by them. If they are not, some other mechanism must be in place.

The presence of incomplete accounting information may impact on this representation
in two ways:

1. Unbiased noise information may cause further redistribution of wealth from bond-
holders to stockholders. In fact, the impact of noise on the dynamics of the value of
the firm may be simply considered as an increase in the volatility of assets.

2. Probability of fraud and deliberately biased reporting leads instead to underreaction
of both stocks and debt securities. If the accounting data were totally reported at
market value of the assets, we would observe a discount of the sum of debt and equity
with respect to the reported value of assets.
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So, unbiased accounting noise would predict debt and equity to move in opposite direc-
tion, while market perception of a strong bias in the reporting would affect debt and equity
in the same direction. Adding to that, it may be that in front of a situation in which the
market fears the possibility of fraud, the insiders could engage in asset substitution. They
may do so by increasing volatility of assets, even at the cost of lower expected returns,
trying to rescue the firm with a ‘‘go for broke’’ strategy: this would actually result in the
presence of both the effects of reduction of value for both equity and debt, with some
redistribution from debt to equity, and this chance would be more likely in the presence of
massive stock option plans for the managers.

A straightforward strategy to find evidence of the impact of accounting distortions
would then be to evaluate equity and debt at market value and to analyze their stochastic
dynamics, possibly along with their relationship to the dynamics of the value of the firm.
This of course would require finding acceptable proxies for the market value of the firm, as
well as for equity and debt. The only piece of information that we may be sure to recover
for all the relevant obligors, at least those that have gone public, is the market value of
equity. Evaluating debt at market value is more complex, as it would require finding
information about the technical form of debt, which is generally very difficult to collect,
and to allow for different liquidity of different tranches of debt. The development of the
credit derivatives market, and particularly of the most liquid instrument, the CDS, suggests
a way to address these problems and come up with a fair price of debt independently of
frictions and liquidity issues. This is due to the fact that the underlying asset of a CDS is the
name of the obligor, and any debt issue, independently of its liquidity and other features, is
available for physical delivery in fulfillment of the contract.

In this chapter, we proxy the market value of debt by discounting it by the risk-free rate
plus the CDS spread. The market value of debt computed in this way is subtracted
from the quasi-value of debt, which is the value of debt discounted using the risk-free
rate alone, to evaluate how much of the market value of debt is due to credit risk. This
figure is compared with information embedded in the stock price. The task is to discover
whether the two variables react at the same time and in the same direction.

8.4 DATASET
Here, we present the data on a set of some world famous cases of fraud. The main task is to
compare the information content of the CDS market and the equity market, and to
translate that in value of equity and debt. The cases we will investigate are Tyco, World-
Com, Enron, and Parmalat. For every case, we will use the following data set:

. Stock prices and number of pieces of stock available

. CDS quotes for different maturities (where available)

. Balance sheet data concerning short-term and long-term debt

Using this data, we compute the fair values of equity and debt, and the market value of the
firm. The value of equity is computed as the number of pieces of stocks times the stock
price. As for debt, we compute the value of quasi-debt by discounting short-term debt by
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the 1 year risk-free rate and long-term debt by the 5 year risk-free rate. The fair value of
debt is then computed adding the 1 and 5 year CDS premia to the discount rates for the
short- and long-term debt, respectively. Only in the Parmalat case, in which the term
structure of credit spread was not available, all debt was discounted applying the 5 year
CDS figure.

In Section 8.4.1 we provide a brief sketch of the history of the cases, accompanying it
with the data of equity and CDS collected and elaborated.

8.4.1 Tyco

Tyco is a diversified manufacturer and servicer of industrial and commercial products.
Tyco failed to show transparency in its accounting documents. The crisis initiated when the
company completed its acquisitions between fiscal year 1999 and 2001. Such acquisitions
were valued at 30.5 billion dollars. Tyco dropped plenty of cash for those acquisitions,
about 17.5 billion in all. The company was largely financed by debt as it is explained on its
balance sheet. Long-term debt in 1998 was 5 billion, or about 26% of its revenues that year.
By fiscal year 2001, long-term debt was 38 billion for the consolidated balance sheet, or 6%
more than its revenues. This huge increase in debt was motivated by the need to fund the
largest ever acquisition operated by Tyco: on March 13, 2001 Tyco announced a 9.2 billion
cash and stock deal to take over the CIT group, a commercial finance company.

It was the CIT deal that also led to sudden discovery of management misconduct.
Tyco shares dropped sharply at the end of January 2002, as a proxy report was filed with
the Securities and Exchange Commission disclosing that Tyco CFO (chief financial
officer) got a 10 million dollars fee on the CIT group deal, and that another 10 million
went to a charity where he was a director. That was just the beginning: on January 30,
2002, The New York Times reported that Tyco CEO (chief executive officer) and CFO
had sold more than 100 million dollars of their Tyco stock in the previous fiscal year
despite public statements that they would not be selling their stock. The scandal became
highly apparent on June 3, 2002, when CEO Kozlowski resigned unexpectedly as The
New York Times reported he was the subject of a sales tax evasion investigation; the day
after a criminal indictment accused him of conspiring to evade more than one million in
state and city sales tax on fine art purchases. And that was not the end of the story:
from 1996 to 2002, Kozlowski took more than 46 million dollars in interest-free
relocation loans intended to assist Tyco employees who were required to relocate
when Tyco moved its corporate offices from New Hampshire to New York city, and,
subsequently, to Boca Raton, Florida. Kozlowski used at least 28 millions of those
relocation loans to purchase, among other things, luxury properties in New Hampshire,
Nantucket, and Connecticut as well as a 7 million dollars Park Avenue apartment. These
loans had not been disclosed to shareholders, contrary to the requirements of the federal
securities laws.

Figure 8.1 reports the CDS quotes for Tyco in the years 2001–2002. The crisis of end of
January 2002 appears very clear.

A closer look at the data reveals an interesting behavior of the CDS term structure. The
level of the CDS spread suddenly increased, from less than 80 bp for the 1 year maturity to
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a double figure. The 1 year CDS spread rose again in the first quarter of 2002 to an average
value of 570 bp. Furthermore, the term structure of the CDS spreads changed to an
inverted shape, so that the 3 year CDS was quoting on average about 100 bp less than
the 1 year contract, and the 5 year contract was quoting about 190 bp lower. The inverted
shape persisted across all of year 2002 (the all year average 1 year CDS was 1000 bp, the
3 year 210 bp lower, and the 5 year 300 bp lower), and was only reversed in late 2003. An
inverted structure of the CDS spread is indeed typical of periods of particular stress. This
means that the market prices a very high probability of default in the first year, while the
probability is lower for the years further in the future. This is confirmed in the data of
the cumulative default probability which are portrayed in Figure 8.2.

To report some number, the probability of default in 1 year was 1.39% on average in the
last quarter of 2001, while default probability in 5 years was more than five times, i.e.,
7.51%. In the first quarter of 2004, the probability of default in 1 year climbed to 9.56%
while the same figure on a 5 year horizon grew up to 22.90%, about twice as much as the
1 year figure. Furthermore, the probability of default in 3 years was very close to the 5 year
figure, i.e., 21%. So, the market was implying a probability of default between years 2005
and 2007 of about 1.90%, somewhat consistent with the precrisis figure (if anything,
precrisis figures were actually higher).

Figure 8.3 depicts the story of Tyco crisis in terms of the market value of balance sheet
figures in 2001 and 2002. We see that the crisis was actually driven by a major fall in the
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value of equity. The picture seems to suggest that most of the action in the market was
driven by the stock market rather than the CDS market. The crisis became particularly
severe since June, following the resignation of the CEO, when the value of equity
approached the value of quasi-debt: in those days, the CDS premia climbed up to 15%
and beyond, while the stock price tumbled toward a floor between 10 and 15 dollars.

8.4.2 WorldCom

WorldCom was the biggest corporate bankruptcy in the history of the United
States. WorldCom was a giant leading the telecommunication industry at the end of
last century and was handling 50% of the U.S. Internet traffic and 50% of e-mails
worldwide. WorldCom was deeply involved in acquisitions by purchasing over 60 firms
in the second half of the 1990s, including the U.S. long-distance telephone company
MCI, considered to be the largest acquisition, for an amount of 37 billion dollars.

Prosecutors say that the fraud began when it was discovered that the former CFO at
WorldCom had directed employees to falsify balance sheets to hide more than 3.8 billion
dollars expenses. In particular, WorldCom accounting executives were forced to record
billions in operating expenses as capital expenses.

The fraud was discovered in March 2002, when the internal audit found accounting
irregularities consisting of 400 million dollars that had been set aside to boost WorldCom’s
income. They started digging into that and found 2 billion dollars that the company
announced for capital expenditures that were never authorized and an additional undocu-
mented 500 million in computer expenses that were recorded as assets. Among other
things, it was discovered that the CEO Bernard Ebbers had borrowed 366 billion dollars to
cover losses on stock which was not repaid, and secured loans from WorldCom to fund
personal investments including a 100 million Canada ranch, 658 million in Mississippi
timberlands, and a 14 million Georgia shipyard.

After asking for documents supporting capital expenditures and discovering that no
supporting accounting standards existed, the internal audit explained irregularities to the
Audit Committee on June 20, 2002. Few days later, stock trading halted and the company
was delisted by Nasdaq. WorldCom’s story came to an end on July 21, 2002, when it filed
for bankruptcy.

Figure 8.4 reports the CDS term structure in the year of crisis. The CDS spreads climbed
up about at the same time as the Tyco crisis. Namely, the 1 year CDS spread averaged
around 139 bp in January, with a positive slope of 15 bp for the 3 year maturity, and about
20 bp for the 5 year one.

At the end of the month, the spreads increased substantially, and the term structure of
the spread became inverted. In the next 2 months, the 1 year CDS quoted 608 on average,
and the 3 and 5 year maturities quoted 147 and 194 bp less than that, respectively. Again,
this corresponds to a massive increase of default probability in the first year horizon, which
does not seem to spread out to the years that follow. In January, the average default
probability figure in 1 year was 2.30%, it was 6.30% over a 3 year horizon, and 12.60% over
the 5 year one. So, the probability that WorldCom defaulted in the second and third year
was 4%, and the probability of default in the next 2 years was the same as default in the first
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3 years, which is 6.30%. In the following 2 months, the crisis brought about an increase in 1
year default probability up to more than 10%, while the probability over the 3 and 5 year
horizons climbed to 22.66% and 27.95%, respectively. As in the Tyco case, the probability
that the company defaulted between years 2005 and 2007 was about 5.30%, i.e., even less
than in the precrisis period. Differently from Tyco, however, WorldCom did not manage to
reach year 2005 alive.

As reported in Figure 8.5, the probability of default climbed in April and May, leading to
the default of the company in June. Figure 8.6 finally reports the values of the balance sheet
in the crisis in the first quarter of 2002.

The same regularities observed above apply to the WorldCom case as well. Namely,
equity seems to start the crisis before the CDS market. While the CDS market was still calm
in January, the stock undertook a progressive decline. The credit risk in the debt position
began to rise when the value of equity reached the value of quasi-debt.

8.4.3 Enron

Enron was a large player in the natural gas and energy supply. In its traditional business, the
company was running a gas and electricity transmission business, as well as a retail supply
arm for end energy users. The company moved from this standard kind of business to a
more innovative business strategy of trading power and communication commodities as
well as the related derivatives products. The main event of this change of business was the
creation of EnronOnline, a web-based transaction system that allowed buyers and sellers to
trade commodities globally. The main commodities offered were natural gas and electricity
although many others were traded. Thanks to this strategy Enron was prized as ‘‘America’s
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Most Innovative Company’’ by Fortune magazine for 6 years in a row, from 1996 to 2001.
The keywords of this way of doing business were ‘‘asset lite’’ company or ‘‘virtual integra-
tion,’’ describing a kind of synthetic business holding production and assets in small
quantities (meaning low fixed costs) and substituting that with derivative transactions
and trading (Deakin and Konzelmann, 2003). Accounting was synthetic as well. Enron
was raising off balance sheet debt by resorting to almost a thousands of special purpose
entities (SPE) funded by banks and outside investors. This practice allowed Enron to exploit
a loophole in the United States generally accepted accounting principles (U.S. GAAP) to
circumvent the principle of consolidation. Under the GAAP, the balance sheet of an SPE
need not be consolidated with the originator if two conditions hold: outside investors must
supply at least 3% of the funds, and the originator cannot control the disposition of the
assets under control of the SPE. This technique enabled to increase leverage in the asset of
Enron, without reporting this stock of debt in the company accounting data. Both from the
economic and the accounting point of view, this had the same effect as synthetically
creating a derivative contract on the assets of the firm. This leverage effect boosted growth
of the company when the fundamentals of its business were good, but by the same token
accelerated the crisis when the market turned against Enron. That happened between 2000
and 2001, following the unsuccessful attempt of Enron to move into the broadband
communication business, and the reputation problems that the company faced in the
California energy crisis of 1999 and 2000, where it was blamed to have gamed the market
in the aftermath of deregulation. The rules had been accepted by the auditors, Arthur
Andersen, even though they were to be considered on the edge of the acceptable practices.
When they required the company to set back from that, it was too late, and the crisis
reached and devastated Arthur Andersen as well.

Signals of crisis began when the CEO Skilling announced he was resigning from his
position which he had held just 6 months, after having exercised stock options for several
million dollars. Attempts by the former CEO and chairman Kenneth Lay to reassure the
market and substitute the CEO did not succeed in bringing transparency to the market. On
October 17, Enron announced a downward revision of its third quarter results by more
than 1 billion dollars, and that were mainly due to investment losses, along with about 180
million dollars losses in the broadband unit. On October 22, the stock fell by about 25% in
1 day following the SEC (Securities and Exchange Commission) announcement that it was
investigating several suspicious deals struck by Enron. Lay strove to convince the market of
the availability of cash and liquidity both in words and in facts: he removed the CFO, and
started a buy-back program of the commercial paper of the company, supported by banks.
The move was not successful, and 2 days later a rumor spread that Enron was seeking
further 1–2 billion funds from banks. The day after, Moody’s lowered Enron credit rating to
the lowest level of the investment grade scale, followed by Standard & Poor’s. In November,
Enron looked for a white knight to help it out of trouble. A Texas-based competitor,
Dynegy, accepted and placed an offer for Enron. Bad news came however concerning debt
and losses from the SPEs, such as JEDI (Joint Energy Development Project) and Chewco,
and later on a disclosure that the company was facing repayment obligations in the range of
9 billion dollars by the end of 2002. The SEC also announced it had filed civil fraud
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FIGURE 8.7 Enron CDS (credit default swap) quotes: Values in percentage points.

complains against Arthur Andersen, Enron’s auditor. Following these events, Dynegy and
Enron renegotiated the terms of the take over deal, with no success, and on November 28
Dynegy disengaged from the deal and Enron was downgraded to junk bond status. That
was the end. Enron filed for Chapter 11 on December 2.

Figure 8.7 reports the history of CDS written on Enron’s name. Even in this case, the
crisis was announced by the inversion of the CDS spread term structure, which took place
in mid-October 2001. In particular, corresponding to the SEC announcement on October
22 the 3 year maturity was trading at a price 44 bp lower than the 1 year maturity, and the
5 year one was quoted 243 bp lower. It was the first time when inversion of the CDS term
structure took place, and it was the first day in which the 1 year CDS climbed 500 bp
higher. In the first three quarters of the year, the 1 year CDS had remained between 100
and 150 bp, the 3 year CDS was about 22–25 bp higher, and the 5 year CDS in a range a
little wider (between 20 and 30 bp higher).

Bootstrapped default probabilities remain between 1.6% and 2.4% for the 1 year,
between 6% and 8% for the 3 year, and between 10% and 12% for the 5 year horizons
(Figure 8.8). In particular, the probability of default between 3 and 5 years is very close
to 4%. On the day of the crisis, October 22, the probability of default in 1 year climbed to
8.47%, while for the 3 year horizon was 20.8% and the 5 year one was 24.94%, with a
probability of default between 3 and 5 year again stuck very close to 4%.

Finally, Figure 8.9 reports the values of the balance sheet items in the last year of
operations of Enron. The figure shows that the crisis came at the end of a long period of
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decrease of the stock price. The crisis began to involve the credit risk premium in the debt
stock when the value of equity crossed the quasi-value of debt.

8.4.4 Parmalat

Parmalat is an Italian firm, located near Parma, which became a global player in the food
industry. The trouble for Parmalat began in February 2003, when Parmalat announced
issuance of a 300 million euros bond, despite the fact that the balance sheet was reporting a
huge amount of liquidity available and that was not used. As a result of the announcement of
the bond issue, the company stock fell by about 9% and the launch of the bond was
withdrawn. In March, Assogestioni, the association of Italian fund managers, publicly
complained against Parmalat for the lack of transparency of its accounts and reports.
Following this, and the bond issue case, the company’s CFO Fausto Tonna was removed,
even though he was required to remain in the board of directors. Nevertheless, despite its
reported liquidity, the company disclosed proposal to issue new capital to repay a large bond
issue due in the end of 2003. On April 10, Parmalat spoke out (or claimed to do so) on its
financial situation in a presentation in front of investors inMilan. In June, a debt issue of 300
million (the same amount as February’s attempt) was privately placedwithNextra, an Italian
fund manager. In September, the group announced a buy-back program for debt and at the
same time went for a new private placement of a 350 million bond with Deutsche Bank. In
the same day, September 15, Standard & Poor’s revised its outlook on the company from
positive to stable. In November, following the Cirio scandal, Commissione Nazionale per le
Società e la Borsa (CONSOB), the Italian market supervisory authority, asked Parmalat to
make clear how it was planning to repay the bonds coming due by 2004. The company’s
answer was that it would have resorted to liquidity cash. But existence of such liquidity buffer
was going to be put into question just few days later. On November 11, Deloitte and Touche
expressed doubts on Parmalat investment in Epicurum, a Cayman Islands-based hedge
fund. Parmalat announced that it was going to unwind such investment. Even though such
unwinding was approved by the end of November, it seems that the proceedings never
arrived in Parmalat pockets. In fact, when in December 8 a bond for a principal value of 150
million dollars was not repaid, Parmalat explained to CONSOB that the proceedings from
Epicurum, which were due by December 4, had not arrived. As a result of the failure to pay,
Standard & Poor’s downgraded Parmalat to junk status. The bond was repaid on December
12, thanks to the help of banks, for about 25million. The plenty of cash and liquidity claimed
to be available finally turned into a dismal mirage when on December 18 the negotiation
with Epicurum went to a stop, and more so when on December 19, Bank of America denied
existence of 3.9 million euros of cash that Parmalat claimed on behalf of one subsidiary. By
then, fraud was clear and the company went through a reorganization procedure that took
about 3 years to complete.

A specific feature of the Parmalat case is a conflict of interest within the banking system.
Bank of Italy has recently disclosed that banks had reduced their holdings of Parmalat
bonds and their exposure to the company before the crisis, while at the same time placing
Parmalat bonds with retail investors. So, the argument is that they disposed of part of the
trouble at the expense of retail investors.
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For Parmalat, we do not have the term structure of CDS. In Figure 8.10, we report the
dynamics of stock price and the 5 year CDS premium in the 2 years before Parmalat crisis.

The figure seems to suggest that the stock market leads crisis in the debt market as it
happens in the U.S. cases, even though the evidence is less clear. Some difference in the
Parmalat case can be gleaned from the analysis of the balance sheet items reported in
Figure 8.11.

A look at the figure and comparison with the corresponding graphs for the U.S. cases
shows that the credit premium in the debt is much more relevant that in former cases. It
looks like bondholders participate in the crisis with losses similar to those of the stock-
holders. A possible explanation for this finding could be found in the different structure of
the financial system in continental Europe, where investment in stocks is not diffused
among retail investors as it is in Anglo-Saxon countries. Further discussion of such cross-
country differences is however beyond the scope of this chapter.

8.5 EMPIRICAL INVESTIGATION
Using information on stock prices and CDS quotes, we computed the fair value of equity
and debt for the companies in our sample throughout the period of financial crisis.
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Of course, this representation of the balance sheet is simply a proxy, particularly as far
as the value of debt is concerned. Nevertheless, it seems fair to believe that it may capture
the fundamental dynamics of equity and debt. As for debt, we focus on the part of its
value which is due to changes in the perception of credit risk. We consider the difference
between the quasi-debt, i.e., the value of debt discounted by the risk-free rate, and the fair
value of debt computed discounting debt with the risk-free rate plus the credit spread: this
difference is actually a proxy for the default put option which is meant to represent credit
risk in structural models.

In this section, we analyze the joint dynamics of equity, a call option, and the default put
option representing credit risk. To make comparison easier, the variables were measured
using a common numeraire, and the natural choice was quasi-debt. Summary statistics for
the two variables are reported in Tables 8.1 and 8.2.
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TABLE 8.1 Descriptive Statistics Value of Equity, as a Percentage of Quasi-Debt

Tyco WorldCom Enron Parmalat

Mean 4.273 1.148 2.805 0.493

Maximum 8.899 1.806 5.905 0.770

Minimum 0.801 0.761 0.020 0.018

Standard deviation 2.380 0.349 1.548 0.144

Skewness 0.055 0.747 �0.307 �0.233
Kurtosis �1.393 �1.055 �0.749 0.446
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A comparison at a glance shows the huge difference between the American cases and the
Parmalat. Parmalat appears to be much less capitalized than the others: the value of equity
capital is about half of quasi-debt, and if one considers that much of the debt was hidden
from the books, that makes the evidence even more striking. As for the other cases, the
same figure ranges from about one and a half up to more that four times as much as quasi-
debt. Moreover, the average relevance of credit risk is highest for Parmalat, scoring more
than 15% of the value of quasi-debt, while the same figure is around 9% and 10% for Enron
and WorldCom and reaches almost 14% for Tyco.

Using the data series described above, we look for evidence to answer two questions.
The first refers to the contemporaneous relationship of equity and the default put option.
The second is about Granger causality between the two series, i.e., whether one of the two
is able to predict the future dynamics of the other in a statistically significant way.

The question of the dependence structure between the value of equity and the credit risk
enables us to speak out both on the structural determinants of credit risk and on the nature
of the accounting opacity in the cases at hand. More specifically, a change in the value of
the firm affects equity and credit risk in opposite ways—equivalently, it affects in the same
direction as the value of equity and debt. This means that ominous prospects for the value
of the firm as well as the scent of a possible upward bias in accounting figures should
impact on the value of equity and debt in the same direction. On the other side, changes in
volatility of the value of the firm impact the call option representing equity and the put
option representing credit risk in the same direction: equivalently, changes in volatility
redistribute wealth between bondholders and shareholders. This means that either (i)
accounting figures are perceived as unbiased, but distorted by plenty of noise; (ii) or the
market fears that in bad times the managers may be induced to select more volatile
business lines; (iii) or the presence of stock option plans may provide a further incentive
to make such a choice: in all these cases, the value of debt would be expected to decrease at
the expense of the value of equity. Tables 8.3 and 8.4 provide answers to this question.

TABLE 8.2 Descriptive Statistics Value of Default Put Option, as a Percentage of Quasi-Debt

Tyco WorldCom Enron Parmalat

Mean 0.138 0.108 0.089 0.154

Maximum change 0.501 0.203 0.376 0.641

Minimum change 0.024 0.035 0.032 0.099

Standard deviation 0.130 0.053 0.097 0.082

Skewness 0.870 �0.286 2.495 3.722

Kurtosis �0.535 �1.395 4.759 17.848

TABLE 8.3 Dependence Structure of Equity and Default Put: Levels

Tyco WorldCom Enron Parmalat

Correlation (%) �87.21 �94.70 �66.74 �73.79
Spearman r (%) �83.42 �93.08 �31.65 �79.08
Kendall t (%) �62.60 �79.00 �21.00 �61.90
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Table 8.3 reports correlation and associationmeasures of the equity and credit risk. As we
are trying to measure the co-movement of two options, a call and a put, it is well known that
linear correlation may be subject to severe flaws. For this reason, we also report rank
correlation measures such as Spearman’s r and Kendall’s t. These measures of association
are in fact nonparametric and robust to nonlinear relationships between the variables. The
statistics concerning the levels provide strong evidence of negative co-movement of equity
and the value of credit risk (and so positive co-movement of the value of equity and debt).
The figures are very high, particularly forWorldCom, Tyco, and Parmalat. Enron also shows
negative correlation between equity and credit risk, even though the values, particularly for
the nonparametric measures, are much lower. In Table 8.4, the same analysis is applied to
the first difference of the series. In this way, we want to check whether the evidence found is
only due to changes in the trend or it is also present in short-run movements in the market.
The evidence of co-movement for changes of equity and the default put option is actually
much weaker, particularly for Tyco and Enron. The latter case is particularly interesting
because the linear correlation figure turns actually positive, even though it remains pretty
weak. Overall, we may say that there is evidence of negative association of the value of equity
and credit risk in the value of debt, but most of the effect is due to the long-run components.

As most of the variation of the changes in equity and the default put remains to be
explained, we proceed to investigate their relationship from a dynamic viewpoint. Namely,
we ask whether there is some lead–lag relationship so that it would be possible to predict
the future values of one variable given the current value of the other. The economic
relevance of this question has to do with the degree of informational efficiency of the
equity and CDS market. The topic has particularly important implications for regulators,
mainly those in charge of defending fair and transparent behavior of institutional investors
and intermediaries. Actually, if institutional investors may have some informational
advantage over retail investors, one would expect that the CDS market should react to
news more promptly than the equity market does. In other terms, if banks get to know that
there is something wrong with the balance sheet of a firm, this would be expected to show
up immediately in the quotes at which they buy and sell protection from each other on that
‘‘name,’’ and this change in quotes would in turn induce a signal of crisis to the equity
market. So, such informational advantage should result in the evidence that movements of
the CDS market would help to predict future movements in the equity market. To provide
an answer to this question, Table 8.5 reports Granger causality tests between the value of
the default put option and that of equity.

The test was carried out considering lagged values up to 1 week. We ran vector
autoregressions (VAR) estimates of the two variables with respect to five-lagged variables

TABLE 8.4 Dependence Structure of Equity and Default Put: First Differences

Tyco WorldCom Enron Parmalat

Correlation (%) �1.24 �43.12 11.49 �71.86
Spearman r (%) �9.18 �48.02 �9.25 �23.07
Kendall t (%) �5.90 �35.10 �5.90 �15.20
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for Tyco, WorldCom, and Enron, for which we have daily data, and one-lagged variable for
Parmalat for which we have weekly data. The tests refer to the joint statistical significance
of the lagged values of a variable in the regression predicting the other. The tests are
asymptotically chi-square distributed with a number of degrees of freedom equal to the
number of lagged variables. The data reported in parenthesis below the test are the p-values
denoting statistical significance, and asterisks denote cases in which Granger causality is
statistically significant. A glance at the table shows that evidence against Granger causality
from the default put option to equity, and so from the CDS market to the stock market is
particularly clear-cut in all cases. On the contrary, there seems to be some evidence of
Granger causality running in the opposite direction. In the Tyco and WorldCom cases,
lagged changes in the equity market seem to predict future changes in the CDS market. So,
this direction of Granger causality does not seem to support evidence of informational
advantage of agents in the CDS market over those in the stock market, but rather some
difference of liquidity may persist between the two markets.

8.6 CONCLUSION
The world famous financial scandals surveyed in this chapter share many common
features. They are all inspired by the philosophy that transparency is a cost to evade rather
than an opportunity to reduce the cost of capital. They are all more or less cooked with the
same ingredients, even though in different proportions: management reluctant to disclose
the plans of the firm, in terms of lines of business and the way to fund them, not to
mention any information concerning management compensation schemes and exercise of
stock options; accountants in conflict of interests; and banks facing the trade-off of losing
money lent to the firm against losing reputation with the investors.

Histories of transparency crises also show many similar features. They typically start
with rumors concerning some private interests of the management in some deal, or with
the news that they have exercised stock options, or with some analyst reports. They
continue with the firm changing some faces of the management, and trying to send
some signal to the market, typically announcing some buyback of debt. Of course, the
only way to end a confidence crisis would be to speak out on the accounting data and the
business of the firm, but that is not an option, because a confidence crisis always intervenes
on the background of some fundamental crises. In fact, it is lack of transparency itself that
prevents any timely intervention to fix the problems.

Many of these features can be found in the cases of transparency crises that were
surveyed in this chapter. The analysis of market data in these crises helped us to discover
their main empirical regularities, as perceived by the market itself, and to answer
some policy questions. We used data from the stock market and the CDS market.

TABLE 8.5 Granger Causality the Dynamic Relationship between Equity and Debt

Tyco WorldCom Enron Parmalat

Debt ! Equity 2.52 (0.77) 2.89 (0.72) 6.38 (0.27) 1.62 (0.20)

Equity ! Debt 41.43* (8E–08) 21.95* (0.0005) 8.11 (0.15) 0.55 (0.46)

Note: * denotes statistical significance at 5% probability level.
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The crisis is typically announced by some sudden drop in the equity market and by the
inversion of the term structure of the CDS spread: the cost of protection increases for the
short-term contracts, much more that for long-term contracts. The procedure of boot-
strapping default probabilities from CDS spreads shows that this evidence means that the
increase of default probabilities mainly affects the first year, or the first couple of years,
while the probability of default in years further in the future remains unaffected.

Using CDS data, we computed a fair value of debt that may be subtracted from debt
evaluated at the risk-free rate to provide an estimate of credit risk. We studied the joint
dynamics of the value of equity and credit risk, built in this way. We found evidence of
negative co-movement of equity and credit risk, and so positive co-movement of equity
and debt, even though this was mainly due to co-movement of the long-term components
of the variables. This suggests that most of the long-term, so to speak structural, innov-
ations in these transparency cases have to do with the perception of changes in the value of
the firm, rather than its volatility, and with biases in accounting data, rather than
measurement errors and accounting noise. We finally provided a test of differential
information content between the two variables to check whether the CDS market, limited
to banks and professional investors, was reacting to news more promptly than the stock
market, opened to the general public of investors. Actually this is a question that in one of
the cases, Parmalat has been the main subject of legal litigation. We provide evidence that
not only the CDS marked does not Granger cause the stock market, but also in two cases it
is the other way around: in the Tyco and WorldCom cases, it is the stock market that
Granger-causes the CDS market, probably because of better liquidity.
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CHAPTER 9

Anticipating Credit Events
Using Credit Default Swaps:
An Application to Sovereign
Debt Crises
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9.1 INTRODUCTION
Credit derivatives are derivative securities with payoffs contingent on the realization of a
credit event, such as default on a reference bond or a ratings downgrade of a reference
entity below a threshold level agreed in the contract. Because these instruments isolate
credit risk from other sources of risk, such as market risk and operational risk, they can
be used for transferring credit risk from one party to another at a relatively low cost.
Market prices of these instruments, especially credit default swaps (CDS), should reflect
market assessments of the likelihood of the credit event and the expected value of the
reference security after the credit event.

Conceptually, a CDS can be interpreted as purchasing insurance against the risk of default
on a reference security. Hence, the price of a CDS is a function of both the probability of
default of the issuer and the post-default expected recovery value. In reduced-form pricing
models it is usually assumed that the recovery rate is equal to a fixed fraction of par value or
market value of the reference security. Given a cross-section of CDS prices for different
maturities and a fixed recovery rate, it is possible to extract the corresponding default
probabilities by reverse engineering the pricing model.

This chapter proposes an alternative risk measure: the maximum recovery rate or upper
bound on feasible recovery rates that match the cross-section of CDS spreads. For policy-
making and risk management purposes, the use of the maximum recovery rate provides
the most conservative estimate of the probability that the issuer will default on the
reference security. Indeed, CDS spreads are uniquely determined by the magnitude of
expected losses. For a given CDS spread, higher recovery rates imply higher default
probabilities. Using the maximum recovery rate, hence, delivers the maximum default
probability.

When the maximum recovery rate methodology is applied to cross-sectional time
series data on CDS prices on Argentina’s sovereign bonds, a remarkable empirical
pattern emerges. During normal periods, the maximum recovery rate and implied default
probabilities exhibit positive correlation. However, the correlation turns sharply negative
in advance of the default event. This finding suggests that the joint behavior of
the maximum recovery rate and implied default probabilities can be used to anticipate
credit events.

The rest of the chapter is structured as follows. Section 9.2 provides useful background
information on the credit derivatives market and CDSs, and explains how default swaps’
spreads may help to forecast credit events. This section may be skipped by the reader
already familiar with the credit derivatives market and the instruments. Section 9.3
explains how to obtain the maximum recovery rate and corresponding default probabilities
with cross-section data on CDSs. While this method is tailored to a specific pricing model
(Duffie 1999), it can be easily adapted to different CDS pricing models. Section 9.4 applies
the maximum recovery rate methodology to the recent Argentina debt crisis. It also
analyzes contagion in Latin America during the crisis episode. Section 9.5 compares the
behavior of CDS spreads and bond spreads during the Argentina debt crisis. Section 9.6
concludes the chapter.
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9.2 BACKGROUND
This section introduces some facts about the credit derivatives market and describes in
detail the main characteristics of CDSs. Although CDSs are not the only credit derivatives
available in the market, their relative simplicity and increased contract standardization
have rapidly made them the ‘‘plain vanilla’’ contract in the credit derivatives universe.*
Furthermore, standardization makes prices comparable across issuers and sectors at
different aggregation levels, facilitating relative credit risk assessment.

9.2.1 Credit Derivatives Market

Credit derivatives provide corporations, financial institutions, and institutional investors
with flexible tools to create synthetic risk exposure tailored to their specific needs. It is not
surprising, then, that the use of credit derivatives has accelerated since the market
inception in 1993. By the end of 2002, the credit derivatives market accounted for only
2%–3% of the $100 trillion derivatives market. However, its growth has been nothing but
spectacular.

According to the British Bankers’ Association’s 2002 survey,y the credit derivatives
market increased more than fivefold to $1189 billion by the end of 2001 from $180 billion
by the end of 1997. The BBA survey suggests that the market has doubled to $1952
billion by end 2002, in line with recent estimates reported in the 2002 International
Swaps and Derivatives Association (ISDA) survey, and that will grow to $4799 billion by
end 2004. Emerging market issuers comprised a small share of the global credit derivatives
market. As of mid-2001, estimates range from a low of $40 billion to $200–$300 billion,
roughly between 4% and 20% of the credit derivatives market.z

9.2.2 Credit Default Swaps

Credit default swaps are the most liquid instruments in the credit derivatives markets,
accounting for nearly half of the total outstanding notional worldwide, and up to 85%
of total outstanding notional of contracts with reference to emerging market issuers. In
a CDS, the protection buyer pays a premium to the protection seller in exchange for a
contingent payment in case a credit event involving a reference security occurs during the
contract period (Figure 9.1).§

The premium (default swap spread) reflects the credit risk of the bond issuer, and is
usually quoted as a spread over a reference rate such as LIBOR or the swap rate, to be paid
either up front, quarterly, or semiannually. The contingent payment can be settled either

* See Tavakoli (1998) for descriptions and examples of other credit derivatives contracts such as total return swaps,
credit spread options, and credit-linked notes, among others.
y British Bankers’ Association, 2002, Credit Derivatives Report 2001=2002.
z See IMF (2002b), Chapter 4, for a comprehensive discussion of derivatives markets in emerging markets, including
credit derivatives.

§ The 1999 ISDA credit derivatives definitions include the following six types of credit events: (1) bankruptcy,
(2) failure to pay, (3) restructuring, (4) repudiation=moratorium (for a sovereign entity), (5) obligation default, and
(6) obligation acceleration.
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by physical delivery of the reference security or an equivalent asset, or in cash. With
physical settlement, the protection buyer delivers the reference security (or equivalent one)
to the protection seller and receives the par amount. With cash settlement, the protection
buyer receives a payment equal to the difference between par and the recovery value of the
reference security, the latter determined from a dealer poll or from price quote services.
Contracts are typically subject to physical settlement. This allows protection sellers to
benefit from any rebound in prices caused by the rush to purchase deliverable bonds by
protection buyers after the realization of the credit event.

In mature markets, trading is highly concentrated on 5 year contracts, and to certain
extent, market participants consider these contracts a ‘‘commodity.’’ For emerging market
issuers, CDS is available for a relatively large number of sovereigns and some selected
corporations. Usual contract maturities are 1, 2, 5, and 10 years.

9.2.3 Default Swap Basis

The coexistence of markets for default swaps and bonds raises the issue on whether prices
in the former merely mirrors market expectations already reflected in bond prices.* If
credit risk were the only factor affecting the CDS spread, with credit risk characterized by
the probability of default and the expected loss given default, the CDS spread and the bond
spread should be approximately similar, as a portfolio of a default swap contract and a
defaultable bond is essentially a risk-free asset.y

However, market frictions and some embedded options in the CDS contract, such as the
cheapest-to-deliver option, cause CDS spreads and bond spreads to diverge. The difference
between these two spreads is referred to as the default swap basis. The default swap basis
is positive when the CDS spread trades at a premium relative to the bond spread, and
negative when the CDS spread trades at a discount. For ease of reference, the text will refer
to the default swap basis simply as basis henceforth. Reasons behind movements in the
basis are explained in detail next.

Several factors contribute to the widening of the basis, either by widening the CDS
spread or tightening the bond spread. Factors that tend to widen the CDS spread include:
(1) the cheapest-to-deliver option, since protection sellers must charge a higher premium to
account for the possibility of being delivered a less valuable asset in physically settled

Protection
buyer

Protection
seller

Default swap premium 

Payment if reference entity defaults

FIGURE 9.1 Credit default swap (CDS).

* See Marsh (2002) for an in-depth discussion of the default swap basis. Rieu (2001) conducts an empirical
investigation of what factors underlie basis changes for France Telecom both in time and along the term structure.
Rule (2001) and IMF (2002a) analyze the financial stability implications of credit derivatives markets.
y Duffie (1999) and Hull and White (2000) formalize these arguments for floating par notes and analyze several
extensions.
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contracts;* (2) the issuance of new bonds and=or loans, as increased hedging by market
makers in the bond market pushes up the price of protection, and the number of potential
cheapest-to-deliver assets increases; (3) the ability to short default swaps rather than bonds
when the bond issuer’s credit quality deteriorates, leading to increased protection buying in
the market; and (4) bond prices trading less than par, since the protection seller is
guaranteeing the recovery of the par amount rather than the lower current bond price.

Factors that tend to tighten bond spreads include: (1) bond clauses allowing the coupon
to step up if the issue is downgraded, as they provide additional benefits to the bondholder
not enjoyed by the protection buyer and (2) the zero-lower bound for default swap
premiums causes the basis to be positive when bond issuers can trade below the Libor
curve, as is often the case for higher rated issues.

Similarly, factors that contribute to the tightening of the basis include: (1) existence of
greater counterparty risk to the protection buyer than to the protection seller, so buyers
are compensated by paying less than the bond spread; (2) the removal of funding risk for
the protection seller, as selling protection is equivalent to funding the asset at Libor. Less
risk demands less compensation and hence, a tightening in the basis; and (3) the increased
supply of structured products such as CDS-backed collateralized debt obligations (CDOs),
as they increase the supply of protection in the market.

Movements in the basis depend also on whether the market is mainly dominated by
high cost investors or low cost investors. A long credit position, i.e., holding the credit
risk, can be obtained either by selling protection or by financing the purchase of the risky
asset. The CDS remains a viable alternative if its premium does not exceed the difference
between the asset yield and the funding cost. The higher the funding cost, the lower the
premium and hence, the tighter the basis. Thus, when the market share of low cost
investors is relatively high and the average funding costs are below Libor, the basis tends
to widen.

Finally, relative liquidity also plays a role in determining whether the basis narrows or
widens, as investors need to be compensated by wider spreads in the less liquid market.
Hence, if the CDS market is more liquid than the corresponding underlying bond market
(cash market), the basis will narrow and vice versa.

9.2.4 Credit Default Swap Spreads and Credit Events

An analysis of the factors affecting the default swap basis provides an understanding on
why CDS spreads react more strongly than bond spreads to a perceived deterioration of the
credit quality of the issuer. For example, if shorting the bond is difficult, the buildup of
short positions on the credit takes place in the CDS market through increased protection
buying. In consequence, the price of protection, as measured by the CDS spread, rises.
Coupon step-up clauses also become active when the credit deteriorates, and could further
widen the CDS spread. If there is market segmentation, relative value trading between the
CDS market and the bond market may not take place to arbitrage the basis widening away.

* This option ameliorates the pricing abnormalities that may arise when the number of CDS contracts outstanding
exceeds the number of the reference bond in the contract.
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During periods of distress, for mature markets liquidity in the underlying bond market
may dry out while trading in the CDS market continues. Indeed, as noted by Fleming and
Garbade (2002), in the aftermath of the events of September 11, 2001, price discovery
migrated from the bond market to the CDS market, as a result of the serious disruption
in the underlying bond market clearing mechanisms.* For emerging market issuers, the
number of protection buyers increases relative to the number of protection sellers in
the CDS market. Excess demand leads to higher CDS spreads. In the underlying bond
market, imbalances between demand and supply are not as pronounced, so bond spreads
do not increase as much as CDS spreads.

When CDSs with different maturities are traded in the same date, it is possible to
construct a CDS term structure or CDS spread curve, a plot of CDS spreads against
maturities. The CDS spread curve is normally upward sloping for creditworthy bond
issuers: credit risk for a high quality issuer is not likely to deteriorate in the near term
and explains why CDS spreads are low for relatively short maturities. As time passes, credit
quality deterioration is more likely than credit quality improvements, i.e., the only rating
movement for an AAA-rated issuer is downwards, and this is reflected in higher CDS
spreads as maturity increases.

For lower-rated bond issuers, or bond issuers undergoing severe distress, the CDS
spread curve can invert with short-term CDS spreads higher than long-term CDS spreads.
Merton (1974) was among the first to explain this behavior, modeling it formally in an
option-based framework. The intuition behind the curve inversion is simple: default risk
for this class of issuers is very high in the near term, but it is believed that once the current
difficulties are overcome, chances are that the bond issuer would be able to meet its
obligations. Hence, default risk in the medium and long term is lower than in the near
term, and is reflected in the downward slope of the CDS spread curve.

In 2002–2003, the behavior of CDS spreads on Venezuela, U.S. dollar-denominated
sovereign debt, is illustrative of the points discussed above (Figure 9.2). While the 5 year
CDS spread and the EMBIþ spread for Venezuela exhibit high correlation, the response of
the CDS spread response to instability episodes in July 2002 and October 2002, and
especially in January 2003, was stronger than the EMBIþ spread response.

During early 2002, the CDS spread curve shown in this figure exhibited an upward
sloping shape. Increased market concerns about sovereign default risk caused the CDS
spreads to widen all along the curve, but even more in the short end of the curve. As a
result, the curve inverted in July 2002. The second half of 2002, though, was a relatively
tranquil period, both bond spreads and CDS spreads compressed by around 300–500 basis
points. Fears that Venezuela could default in the immediate future diminished, as reflected

* A widening of spreads does not necessarily reflect a fundamental deterioration of the credit quality of the bond
issuer. Investment policy constraints requiring institutional investors to hold only investment-grade issues may
cause speculators to build up substantial short positions on an investment-grade reference issue, either through the
cash market or the CDS market, in the expectation that the ensuing widening of spreads and decline in equity prices
would prompt a rating downgrade to noninvestment grade. Once the reference issue is downgraded, the forced sell-
off allows short-sellers to cover their positions profitably.
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in the fact that most of the compression took place in the short end of the curve. However,
tranquility did not last long, as the political landscape in Venezuela deteriorated rapidly in
January 2003. Again, there was a substantial widening of spreads, and the CDS swap curve
inverted again.

More specific information on markets’ expectations of default can be extracted from
CDS prices. Namely, CDS pricing models can be used to recover default probabilities and
recovery rates, providing an intuitive metric to assess an issuer’s creditworthiness. The next
section describes a methodology to extract two credit risk measures, the maximum
recovery rate and its implied default probabilities, from CDS spreads.
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FIGURE 9.2 Venezuela: Developments in the CDS market (in bp).
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9.3 MAXIMUM RECOVERY RATES AND IMPLIED DEFAULT
PROBABILITIES

While some CDS pricing models are relatively complex, they rely on a simple foundation:
at inception, the value of the default swap should be the same for both the buyer and seller
of protection. The premium leg of the contract, payable to the protection seller, is the
expected present value of premium payments either until the contract matures or the issuer
defaults, whichever comes first. The default leg, payable to the protection buyer in case of
default, is the expected present value of the loss given default before the maturity of the
contract. The CDS spread is such that both legs are equally valued. Clearly, the terms
structure of default probabilities and the recovery rate are important inputs to price both
legs of the contract.

The interrelationship between these two elements is described in the context of the CDS
pricing model of Duffie (1999). His model assumes that the time to maturity of the CDS, T,
is equally divided into n periods with length T=n. The CDS spread, S, is paid at the end
of every period at time t(i)¼ iT=n, i¼ 1, . . . , n. Default can take place at any time. In
case of default between times t(i) and t(iþ 1), the CDS is settled in period t(iþ 1), with the
protection seller paying the loss value of the defaulted security F(1�RR), where F is
the notional value of the CDS contract, and RR is the recovery rate. For simplicity, it
is assumed that the notional value of the contract, F, is unity.

The probability of survival is summarized by the term structure of hazard rates or
default intensities, l¼ {l(i)}, i¼ 1, . . . , n. Thus, the probability of surviving until period
t(i) given no default in period t(I� 1) is given by exp[�l(i)�(t(i)� t(i� 1))], and the
probability of survival until period t(i) is simply

p(t(i)) ¼ exp �
Xi
k¼1

l(k)� (t(k)� t(k� 1))

 !
¼exp

1
i
�
Xi
k¼1

l(k)

 !
t(i)

" #
(9:1)

Denote by a(i) the value at time 0 of receiving one unit at time t(i) when default occurs at
t> t(i). This value is equal to the probability of surviving until time t(i) discounted to time
0 by the default-free yield y(i) corresponding to time t(i):

a(i) ¼ exp � 1
i

Xi
k¼1

l(k)þ y(i)

 !
t(i)

" #
(9:2)

The premium leg, then, can be expressed as

A(l,T)S ¼ S
Xn
i¼1

a(i) (9:3)

Similarly, denote by b(i) the value at time 0 of receiving one unit at time t(i) if default occurs
between times t(i� 1) and t(i). Let t be the default time. The probability of default in the
interval [t(i� 1), t(i)] is given by
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P(t(i� 1) < t < t(i))

¼ exp � 1
i� 1

Xi�1
k¼1

l(k)

 !
t(i� 1)

" #
� exp � 1

i

Xi
k¼1

l(k)

 !
t(i)

" #
(9:4)

and the value of b(i) at time 0 is

b(i) ¼ exp (�y(i)t(i))� P(t(i�1) < t < t(i)) (9:5)

The default leg can be expressed as

B(l,T)(1�RR) ¼ (1�RR)
Xn
i¼1

b(i) (9:6)

Equalizing the values of the premium and default legs yields the following formula for the
CDS spread, S, given the term structure of default intensities, time to maturity, and
recovery rate:

S(l,T ,RR) ¼ B(l,T)(1�RR)=A(l,T) (9:7)

Equation 9.7 allows reverse engineering the term structure of default intensities l given a
fixed recovery rate if the term structure of CDS spreads, or CDS spread curve, is known.
Once l is known, other defaultable contracts can be priced upon assuming a given
recovery rate. Though it should be noted that different recovery rates imply different
default probabilities, i.e., l¼ l(RR), an indeterminacy problem arises if the recovery rate
is not fixed a priori. This problem is usually dealt with by using historical data on recovery
rates. For example, Moody’s reports periodically average 1 year default rates and
recovery rates for corporate obligors grouped by credit rating.

This study approaches the problem of determining the recovery rate and implied
default probabilities from a different perspective. Rather than trying to pin down the
recovery rate, the focus is placed on extracting the maximum recovery rate, the upper
bound of feasible recovery rates, and their implied default probabilities from the CDS
spread curve. Intuition suggests that using the maximum recovery rate provides conser-
vative estimates of the probability that the issuer will default on the reference security.
Because CDS spreads are uniquely determined by the magnitude of expected losses,
higher recovery rates imply higher default probabilities. Thus, the maximum recovery
rate delivers the highest feasible default probability. Intuition also suggests that the
maximum recovery rate is likely to decline when the credit quality of the bond issuer is
undergoing a serious deterioration. Indeed, the application of this methodology to histo-
rical data on CDS spread curves for Argentina, as described in the next section, validates
this intuition.
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Formally, the maximum recovery rate is defined as follows:
Definition (Maximum Recovery Rate). Given the CDS spread curve and the default-free

yield curve for a set of maturities T, the maximum recovery rate, RRmax, is defined as

RRmax ¼ sup RR : S(l(RR), t,RR) ¼ B(l(RR), t)(1�RR)
A(l(RR), t)

, 8t 2 T

� �
(9:8)

where l(RRmax) is its associated term structure of default intensities. Equation 9.8 can be
solved using numerical methods. The default intensities can then be used for estimating
the term structure of default probabilities using Equation 9.1.

9.4 APPLICATIONS
9.4.1 Anticipating Sovereign Debt Crises: Argentina (2001–2002)

The recent default of Argentina on its sovereign debt in January 2002 provides an
interesting case study for assessing the behavior of the maximum recovery rate and its
associated default probabilities. The data used in this study include daily mid-point
quotes of CDS spreads on Argentina sovereign debt for 1, 2, 3, 5, 7, and 10 year
maturities during the period August 3, 1998–December 12, 2001, and do not necessarily
reflect transaction prices. Daily data on U.S. dollar swap rates were obtained from
Primark Datastream.

The maximum recovery rate and the associated term structure of default intensities were
obtained solving Equation 9.8 using the CDS spread curve for each date in the sample. The
day-to-day estimation approach is conceptually equivalent to the extraction of daily
implied volatilities from cross-section of options at any given date. Therefore, it does not
account explicitly for the possible interaction between CDS spreads and the default-free
short rate, or the dynamic behavior of the recovery rate. Figure 9.3 shows the maximum
recovery rate, the 1 year forward default probability obtained from the term structure of
default intensities, and the correlation between these two quantities. Some observations are
worth discussing in detail.

The first panel in Figure 9.3 shows the behavior of the maximum recovery rate for the
sample period analyzed. The average maximum recovery rate was 62%, with a standard
deviation of 16%. These estimates seem to be justified by past historical experience. For
example, Beloreshki (2003) noted that countries that completed their Brady plan restruc-
turing between 1989 and 2000 were forgiven 30% to 35% of their debts, or equivalently, the
recovery rate was about 65% to 70%. In some instances, though, the debt write-off was
around 50% (Poland in 1991 and 1994, and Bulgaria in 1994). Hurt and Felsovalyi (1998)
estimated that, for the period 1970–1996, the average loss in the event of default for Latin
American defaulted loans was on average 32% that corresponds to an average recovery rate
of 68%. On the other hand, the maximum recovery rate appears to overestimate the
recovery rate of 25% of market value usually assumed by market participants in their
estimates of credit risk (Beloreshki 2003).
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The second panel in Figure 9.3 shows the evolution of 1 year forward default probabil-
ities. Increased concerns about Argentina’s ability to roll over its maturing debt were
evident by the end of 2000. Indeed, default probabilities increased above the average
level of 1998–1999, though the provision of IMF assistance helped to allay markets’
negative sentiment. After the second half of 2001, default probabilities increased steadily,
though there was a brief respite during September–October 2001. However, the continued
fiscal deterioration and a lack of credible economic programs pulled the country
towards the brink of default by the end of 2001. In January 2002, Argentina defaulted
on its external debt.

The relationship between the maximum recovery rate and the 1 year forward
default probability is illustrated in the last panel of Figure 9.3. Overall, the correlation
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tends to be positive during normal periods, and is inversely related to the level of
default probability. Both the 120 day and 250 day correlations fell sharply starting
October 2000, but they rebounded after the approval of the IMF aid package to
Argentina in December 2000. However, correlations declined steadily from July 2001.
The 250 day correlation turned negative as early as September 2001, well in advance of the
sovereign default.

9.4.2 Contagion

One year default probabilities associated to maximum recovery rate values can also be
used to measure the degree of contagion between sovereign countries. Contagion in this
context is defined as the extent to which credit events affecting one sovereign can influence
market views on the creditworthiness of other sovereigns. Figure 9.4 shows 1 year default
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FIGURE 9.4 Cross-country correlations with Argentina: 1 year default probability.
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probability cross-country rolling correlations with Argentina of different Latin American
countries, including Brazil, Mexico, and Venezuela. The rolling correlations show that
Brazil and Mexico experienced some spillovers from Argentina in the last quarter of 2000.
The decoupling of Mexico and Brazil from Argentina occurred in early 2001 and the third
quarter of 2001, respectively. Spillovers from Argentina to Venezuela were insignificant.

9.5 CDS SPREADS VERSUS BOND SPREADS
It is natural to inquire whether bond spreads and CDS spreads, and hence, the
implied maximum recovery rate and default probabilities, contain the same informa-
tion. Figure 9.5 shows that the EMBIþ stripped spread for Argentina was highly
correlated during the sample period, with an average correlation of 0.94. However, the
spread correlation declined substantially during the first half of 2000, and only
returned to its average level in early 2001. Hence, it appears that CDS spreads contain
some information beyond that already contained in bond spreads. Note that the
additional information is not necessarily related to credit risk. Several of the technical
factors affecting the basis described before may have caused the correlation breakdown
without changes in default risk. Nevertheless, for both risk management and surveil-
lance purposes, it is important to assess what factors underlie the breakdown of
historical patterns.

Comparing spillover effects provides an alternative way to evaluate the information
content in the bond and the CDS markets. Figure 9.6 shows the cross-country rolling
correlations with Argentina for EMBIþ stripped spreads, 5 year CDS spreads, and 1 year
default probabilities of Brazil, Mexico, and Venezuela. The 5 year CDS spread correlation
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FIGURE 9.5 Argentina: Correlation between EMBI stripped spread and 5 year CDS spread.
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tracks the EMBIþ stripped spread correlation very closely. The only exception is Mexico in
the second half of 1999, when the 5 year CDS spread correlation was substantially lower
than the EMBIþ stripped spread correlation. The 1 year default probability correlation is,
on average, lower than the both the CDS and EMBIþ spread correlation. More import-
antly, in many instances, probability correlations turned negative in advance of CDS and
EMBIþ spread correlations. Thus, probability correlations may signal decoupling between
countries faster than the other measures analyzed.*
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FIGURE 9.6 Cross-country correlations with Argentina: Spreads and default probability.

* See Chan-Lau and Kim (2005) for a detailed analysis of price discovery across CDS and bond markets in emerging
market countries.
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9.6 CONCLUSION
Credit default swaps contain useful information about market views on the expected loss
given default faced by a bondholder. However, in reduced-form pricing models, it is
difficult to disentangle the contributions of the probability of the credit event and the
recovery value in determining the expected loss given default.

This chapter suggests an alternative way to think about recovery values by introducing
the notion of maximum recovery rate, i.e., the maximum recovery rate consistent with a
given CDS curve in any given date, and its implied term structure of hazard rates (or
default probabilities). The recent sovereign default of Argentina in January 2002 was
analyzed using the maximum recovery rate methodology. The results indicate that the
correlation between the maximum recovery rate and default probabilities turn negative in
advance of the credit event, and can be used for constructing early warning indicators of
debt default.

In addition, this chapter finds important differences between the information embedded
in bond prices and CDS spreads that may be helpful to analyze credit events. This issue has
been analyzed in more detail in Chan-Lau and Kim (2005).
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Credit Risk Modeling and Pricing
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CHAPTER 1 0

Investigating the Role
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Lessons from Empirically
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Gurdip Bakshi, Dilip Madan, and Frank Xiaoling Zhang

CONTENTS

10.1 Introduction ...........................................................................................158

10.2 Single-Name Defaultable Coupon Bonds ..............................................160

10.3 Models and Estimation ..........................................................................161
10.3.1 Estimation of Interest Rate Process .......................................... 161
10.3.2 Estimation of Single-Name Defaultable Process ...................... 161

10.4 Measures of Model Misspecification and Performance .........................164
10.4.1 Determinants of Credit Risk ..................................................... 164
10.4.2 Generalized Method of Moments Test of Model

Comparisons and Specification Tests ...................................... 169
10.4.3 Hedging Dynamic Credit Exposures ........................................ 173

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C010 Final Proof page 157 7.4.2008 7:38pm Compositor Name: VBalamugundan

157



10.5 Conclusions ...........................................................................................175

Appendix: Reduced-Form Defaultable Coupon Bond Models..........................175

References ........................................................................................................178

10.1 INTRODUCTION
The paradigm that default occurs when a continuous process such as firm value reaches a
default boundary has long-standing in finance (see Merton 1974 and the refinements in
Longstaff and Schwartz 1995 and Collin-Dufresne and Goldstein 2001). In this conceptu-
ally elegant structural approach, default is modeled using a predictable stopping time, and
default probabilities are systematically connected to firm leverage. There is wide consensus,
however, that structural models are difficult to implement. One, the capital structure of the
firm is often far too complex to specify recovery to all claimants in the event of default.
Two, at the empirical level, structural models generate counterfactually low short-term
credit spreads for high quality borrowers (Duffee 1999, Collin-Dufresne and Goldstein
2001, and Longstaff and Schwartz 1995).

Building credit risk models as the basis for evaluating default exposures remains a
fundamental issue. Theoretical research continues to shed wisdom on the qualitative nature
of credit spreads and their dependencies on essential features of the defaultable contract such
as credit rating of the participating parties and firm-specific=systematic default character-
istics. For instance, Jarrow and Turnbull (1995) propose a framework where the underlying
asset or the counterparty may default. Duffie and Singleton (1997, 1999), Lando (1998), and
Collin-Dufresne, Goldstein, and Hugonnier (2004) treat default as an unpredictable event
governed by the instantaneous probability of default; Madan and Unal (1998) analytically
decompose the risk of default into components related to timing and recovery. Each of these
contributions view default as occurring at a surprise stopping time. In a related work, Jarrow,
Lando, and Turnbull (1997) develop theoretical models where the bankruptcy process obeys
a discrete-state space Markov chain in credit rating.

While theoretical advances have been made in interpreting credit risks and in para-
meterizing the price of credit sensitive securities, there is a relative paucity of empirical
studies that investigate the relevance of leverage, distance-to-default, and other system-
atic=firm-specific factors in the surprise stopping time default approach. Which
characteristics capture variations in default risk? Which credit risk model is suitable for
marking-to-market defaultable securities? Which model performs the best in hedging
dynamic credit exposures? Are single-name valuation errors correlated, and, if so, what
is the possible source of this covariation? Empirical investigations of credit risk models
attempting to analytically capture patterns of structural dependencies on theoretically
interpretable grounds have become even more desirable in light of Basle committee
recommendations on managing default risk.

The class of credit risk models we empirically analyze shares some features in common.
One, our characterization of credit risk relies on the Duffie–Singleton (1999) assumption
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that recovery is proportional to the predefaultable debt value. Two, complementing the
empirical studies of Duffee (1999), Driessen (2005), and Jacobs and Li (2004), we develop a
set of three-factor credit risk models that depend on systematic and firm-specific distress
characteristics. In one specific model, we link the instantaneous likelihood of default to the
short interest-rate, the stochastic long-run interest rate, and firm-specific leverage where
the leverage dynamics is modeled in both level and logs. These models are empirically
tractable and account for both interest rate risk and firm-specific default risk. The latter
appealing feature inherits the flavor of the structural models of Longstaff and Schwartz
(1995) and Collin-Dufresne and Goldstein (2001). To broaden the empirical content,
we adopt alternative plausible models for firm-specific distress based on book-to-market,
profitability, distance-to-default, and equity–volatility, and consider a general risk
premium specification for the interest rate as in Duffee (2002). Having firm-specific
characteristics in a default model, in theory, offers flexibility in explaining the behavior
of single-name credit spreads.

Econometric implementation of default-theoretic models provides crucial insights into
the sources of firm-level credit risk. First, incorporating a stochastic mean interest-rate
feature into the working of credit risk models leads to more realistic credit curves. Thus,
substantial care must be taken in specifying the factor structure of default-free bonds.
Second, our decomposition shows that interest-rate risk captures the first-order impact of
movements up to BBB-rated corporate credit yields. Third, controlling for interest-rate
considerations in a credit risk model, the incremental pricing improvement with leverage is
economically large and statistically significant for low-grade bonds. Differentiating our
work from existing studies, the leverage generalization produces a 30% reduction in
absolute yield errors relative to a model that excludes leverage. The estimation strategy
shows that the credit risk model with leverage appears to be least misspecified among our
three-factor default risk models. Overall, these conclusions hold irrespective of whether the
performance of credit risk models is based on defaultable yields or on credit spreads. On
balance, credit risk models have quantitative pricing performance that could be adequate
for marking risk exposures. In the spirit of Collin-Dufresne, Goldstein, and Martin (2001),
we investigate the relationship between default model mispricing and a set of economy-
wide systematic factors, and find their joint explanatory power to be fairly small for the
majority of single names.

Hedge portfolios that combine a short-position in the defaultable bond and a long-
position in the risk-free bond of the same maturity using two Treasury discount bonds and
the firm’s equity remains sensitive to changes in debt and book values. Consistent with the
pricing exercise, we observe that systematic risk exposures are crucial to the profit=loss
accounts of the hedger. Given the mapping that exists between the price of corporate
bonds, Treasury bonds and credit default swaps, our analysis potentially suggests that, for
our sample of firms, the price of credit protection can be effectively hedged using Treasury
bonds. This hedge is possible when credit exposures are tied to the Treasury markets.

The exact description of the models is given in the work by Bakshi et al. (2006) and in
the Appendix. The defaultable coupon bond sample and empirical issues are described
in Section 10.2. Section 10.3 employs a maximum-likelihood procedure jointly consistent
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with risk-neutral and physical dynamics of firm-specific distress and the cross-correlation
between bonds of distinct maturities. In Section 10.4, we present the pricing and hedging
results and conduct specification diagnostics and generalized method of moments (GMM)
tests. Concluding remarks are provided in Section 10.5.

10.2 SINGLE-NAME DEFAULTABLE COUPON BONDS
For this study, we use nonconvertible coupon debt with principal in excess of $1 million
taken from Lehman Brothers Fixed Income Database. This database contains the amount
of coupon and principal, the month-end flat price, the accrued interest, and the maturity
date. Each bond is assigned a credit rating and debt issues are classified as callable, putable,
subordinated, and by sinking fund provisions.

Several exclusion filters are imposed to construct the single-name bond sample.
First, trader bid quotes are used (ask quotes are not recorded) and matrix quotes are
eliminated. Second, we delete pass-through, asset-backed securities and debt with embed-
ded options. Next, we include noncallable bonds with semiannual coupons that have
maturity greater than 1 year. As few noncallable bonds were issued before March 1989,
we limit attention to the sample between March 1989 and March 1998. Bonds with time-
to-maturity closest to 2, 7, and 15 years are selected to represent short-term, medium-term,
and long-term bonds and this classification produces a time-series of monthly bond prices.
One hundred and eighty three firms satisfy all the above requirements with no missing
observations.

To test the credit risk models outlined in the Appendix, five distress factor proxies are
constructed:

Leverage: LEVn(t), is long-term book value of debt (COMPUSTAT quarterly item 51)
divided by firm value. The firm value is the sum of long-term debt and the market
capitalization of common equity, M.

Book-to-market: Bn(t)=Mn(t), is computed as the book value of equity (COMPUSTAT
quarterly item 59) divided by the market value of equity.

Profitability: PROFITn(t), is one minus operating income (COMPUSTAT quarterly
item 21) divided by net sales (COMPUSTAT quarterly item 2).

Volatility: To avoid overlapping observations, VOLn(t), is the standard deviation of the
daily stock returns during the month.

Distance-to-default: is based on estimates of asset value, default point, and asset
volatility. The exact KMV procedure for constructing distance-to-default is propri-
etary, so we appeal to the measure in Vassalou and Xing (2004). The data is kindly
made available to us by Yuhang Xing.

While matching firm sample with CRSP and COMPUSTAT, 80 firms did not have data
on equity prices and 27 firms have missing data on leverage, book-to-market, or profit-
ability. The final sample of 76 firms consists of 16,518 coupon bond observations with no
violation of absolute priority rules.
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Long-term debt and book values are recorded at the quarterly frequency while leverage
and book-to-market series are monthly. To circumvent any look-ahead biases, we use
debt and book values from the previous quarter to proxy leverage and book-to-market for
the next 3 months. A cubic spline is used to approximate quarterly profitability measure
into a monthly profitability measure.

Bonds are classified into credit rating categories using Standard and Poor’s ratings:
bonds with (numerical) rating score up to 9 are designated as A-rated and with score
higher than 9 are designated as BBB-rated (or below). Since the fraction of bonds rated
above BBB is 69%, our bond sample is skewed toward high-grade bonds.

10.3 MODELS AND ESTIMATION
10.3.1 Estimation of Interest Rate Process

On the basis of several considerations, Kalman filtering technique and a panel of Treasury
yields are chosen to estimate the interest rate process. First, the unobservable nature of the
instantaneous interest rate and its long-run drift makes Kalman filtering estimation
appropriate for the task at hand. Second, the pricing equation (Equation 10.A3) and
Bakshi, Madan, and Zhang (2006) suggest that interest rate parameters can be estimated
using defaultable coupon bonds. However, Dai and Singleton (2003) and Duffee (1999)
reason that the joint estimation of default and default-free process across individual firms
can make the overall dimensionality of the optimization problem rather large, making
estimation computationally difficult. Third, the full parameter set can be estimated separ-
ately for each firm but has the undesirable implication that the interest-rate process is
different in the firm cross-section. The Kalman filter estimation procedure and empirical
results can be found in Bakshi et al. (2006).

10.3.2 Estimation of Single-Name Defaultable Process

In the spirit of Chen and Scott (2003), Duffee (2002), Duffie and Singleton (1997), Duffie,
et al. (2003), and Pearson and Sun (1994), we suppose that for each bond, the model
price deviates from the true market price and pricing errors are correlated in the cross-
section of bond maturities. To incorporate these restrictions into our econometric
procedure, assume, under the physical probability measure, that the firm-specific distress
variable Sn(t) is governed by dynamics (Equation 10.A6) with ls � 0:

dSn (t) ¼ ks [ms � Sn(t)] dt þ ss dvs(t) (10:1)

where, vs is a standard Brownian motion. Since Sn(t) is normally distributed conditional
on Sn(t� 1), the transition density of Sn(t) satisfies

f (Sn(t)jSn(t � 1)) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pQn(t)
p exp � (Sn(t)� mn(t))

2

2Qn(t)

� �
(10:2)

where, mn(t) and Qn(t) represent the first and second conditional moment of Sn(t).
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Recall by selection that there are three corporate coupon bonds outstanding each month
with time-to-maturity close to 2, 7, and 15 years, respectively. Let the 3�1 vector

«n*(t; q) � Yn*(t)� Yn*(t; qn) (10:3)

be the difference between the market bond yields and model-determined yields of single-
name bond n at time t and

qn � (L0,Lr ,Ls,ks,ls,ms,ss, rr,s) (10:4)

denote the parameter vector characterizing the default process. Suppose «n*(t; q) is serially
uncorrelated but jointly normally distributed with zero mean and variance–covariance
matrix V«. Under these assumptions, the log-likelihood function for a sample of observa-
tions on corporate coupon bond prices for t¼ 2, . . . , T is

max
qn,Cn

L* ¼�2(T � 1) log (2p)� 1
2

XT
t¼2

log (Qn(t))� 1
2

XT
t¼2

(Sn(t)� mn(t))
2

Qn(t)

� T � 1
2

log jV«j � 1
2

XT
t¼2

«n*(t; q)
0V�1« «n*(t; q) (10:5)

To ensure that the variance–covariance matrix V« is positive semi-definite assume,
following Duffee (2002), that V« satisfies the Cholesky decomposition V« ¼ CnC0n where
Cn is a 3�3 matrix with non zero elements C11, C22, C33, C21, and C32.

The estimation procedure (Equation 10.5) is applied to credit risk models with defaul-
table discount rate specification for firm n given by

1. Interest Rate Model Rn(t) ¼ L0,n þ Lr,nr(t)

2. Leverage Model Rn(t) ¼ L0,n þ Lr,nr(t)þ Ls,n LEVn(t)

3. B=M Model Rn(t) ¼ L0,n þ Lr,nr(t)þ Ls,n
Bn(t)
Mn(t)

4. Profitability Model Rn(t) ¼ L0,n þ Lr,nr(t)þ Ls,n PROFITn(t)

5. Stock Volatility Model Rn(t) ¼ L0,n þ Lr,nr(t)þ Ls,n VOLn(t)

6. Distance-to-Default Model Rn(t) ¼ L0,n þ Lr,nr(t)þ Ls,n Distance-to-Defaultn(t)

For each model, the corporate discount (coupon) bond price can be determined from
Equation 10.A7 (Equation 10.A3). The econometric approach, thus, uses the desired
information in the cross-section of corporate bond prices and the underlying transition
density of Sn (t). For each firm we omit the last 12 months in the estimation to conduct
out-of-sample inference. Motivated by the approach of Collin-Dufresne and Goldstein
(2001), we also implement credit risk models that depend on the logarithmic transform-
ation of leverage, B=M, and volatility.

Table 10.1 reports the results from applying the estimation procedure to the firm-
sample and presents the average parameters for BBB-rated and A-rated bonds. Let us focus
on the leverage model (in level) where the average Ls is 0.033 (0.015) with BBB-rated
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(A-rated) bonds. Hence, consistent with the work of Merton (1974), Longstaff and
Schwartz (1995), and Collin-Dufresne and Goldstein (2001), the marginal impact of
leverage is to enhance the magnitude of Rn(t) and credit spreads and this effect is stronger
for lower-rated debt.

We can observe that introducing leverage as an additional factor into the interest rate
model tends to lower the magnitude of Lr: for BBB-rated and A-rated bonds the estimates

TABLE 10.1 Estimation of Defaultable Bond Models

Model Sample L0 Lr Ls ks ss ms ls rr,s L *=T 1x2

Interest rate BBB 0.013 1.018 10.28

(base model) A 0.008 0.985 10.84

Leverage BBB 0.006 0.799 0.033 0.465 0.100 0.345 �0.275 0.238 12.85 100

(level) A 0.004 0.955 0.015 1.016 0.112 0.321 �0.631 �0.080 12.77 96

Leverage BBB 0.010 0.890 0.013 0.376 0.125 0.227 �0.185 0.418 12.68 96

(logs) A 0.007 0.969 0.001 0.806 0.090 0.307 �0.243 0.272 12.93 100

B=M BBB 0.007 0.800 0.023 1.078 0.553 0.680 �0.956 0.022 11.15 75

(level) A 0.006 0.902 0.010 1.175 0.609 0.630 �0.793 �0.116 11.56 76

B=M BBB 0.005 0.836 0.026 0.406 0.111 0.373 �0.171 0.250 12.46 100

(logs) A 0.005 0.952 0.007 0.859 0.094 0.449 �0.394 0.172 12.80 100

Profitability BBB 0.007 0.840 0.012 0.983 0.148 0.709 �0.634 0.125 12.38 92

A 0.005 0.961 0.005 0.889 0.061 0.710 �0.541 0.002 13.09 98

Volatility BBB 0.010 0.851 0.036 2.084 0.244 0.171 �1.360 �0.068 11.63 96

(level) A 0.007 0.927 0.026 2.887 0.299 0.245 �0.998 �0.056 11.18 86

Volatility BBB 0.014 0.910 0.008 2.266 0.959 0.421 �1.509 �0.023 11.46 89

(logs) A 0.007 0.964 0.003 2.238 0.961 0.289 �1.637 0.131 11.15 86

Distance-to-
Default

BBB 0.006 0.767 0.032 0.268 0.097 0.325 �0.162 0.188 10.93 94
A 0.005 0.966 0.006 0.879 0.091 0.371 �0.312 0.230 11.33 88

Note: This estimation procedure uses three corporate coupon bonds with maturity close to 2, 7, and 15 years.
Let 3�1 vector «n*(t) � �Yn*(t)� Yn*(t; q) measure the difference between the market observed corporate
bond yields and the model-determined yields of firm n in month t. It is assumed that «n(t) are (1) jointly
normally distributed with zero mean and variance–covariance matrix V« and (2) the pricing errors are
serially uncorrelated over time. The log-likelihood function to be maximized is

maxL* ��2(T � 1) log (2p)� 1
2

XT
t¼2

log (Qn(t))� 1
2

XT
t¼2

(Sn(t)� mn(t))
2

Qn(t)

� T � 1
2

log jV«j � 1
2

XT
t¼2

«n*(t)
0V�1« «n*(t)

where mn(t) and Qn(t) represent the first two conditional moments of the distress factor Sn(t). For each
credit risk model with parameter vector q, the reported values are the respective averages across BBB-
rated bonds and A-rated bonds. 1x2 is the fraction of firms (in percent) for which the model restriction
Ls¼ 0 is rejected based on a likelihood ratio test (distributed x2(6)). The average log-likelihood value is
shown as L*=T . The construction of distance-to-default is as outlined in Section 10.3. Results for (1)
leverage model, (2) B=M model, and (3) stock volatility model are reported for both the level (denoted
Level) and the logarithmic (denoted Logs) specification.
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become 0.799 and 0.955 versus 1.018 and 0.985 with the interest rate model. As observed
in Duffee (1999), the positive estimates substantiate the notion that an upward shift in the
short-rate raises the defaultable discount rate (Longstaff and Schwartz 1995). The near-
unity sensitivity coefficients suggest that bond yields are sensitive to r(t) and more so for
high-grade debt. With average L0 close to 0.6% for BBB-rated and 0.4% for A-rated bonds,
the instantaneous credit yield is higher with worsening credit quality.

Reported ks indicates that leverage is a mean-reverting stochastic process and ls< 0 has
the interpretation that mean-reversion in leverage is stronger under the physical probabil-
ity measure. Our estimates imply that the negative leverage risk premium increases the
long-run drift of Sn(t), which lowers corporate bond prices and increases credit spreads.
Not at odds with intuition, the estimate of long-run leverage, ms, under the physical
measure is 34.5% for BBB-rated bonds and 32.1% for A-rated bonds. Finally, the correl-
ation coefficient rr,s is estimated as 0.238 for BBB-rated bonds. This estimate implies that
leverage-induced distress is more severe in a rising interest rate environment possibly due
to the impact of declining equity values.

In the last column, we examine the restriction that Ls¼ 0 via a likelihood ratio
test computed as twice the difference between the unrestricted and the restricted
model log-likelihood. This test statistic is distributed x2(6) and the reported 1x2 is the
fraction of firms for which the likelihood ratio test is rejected. Providing support for
the inclusion of leverage in the defaultable discount rate specification, our results indicate
that the restriction Ls¼ 0 is rejected for 100% (96%) of BBB-rated (A-rated) single-
name firms.

When distress is proxied by competing factors such as book-to-market, profitability,
stock volatility, and distance-to-default, the parameter estimates have an interpretation
similar to that described in the case of the leverage model. However, based on a compari-
son of average log-likelihood across models, leverage provides a superior fit to the objective
function (Equation 10.5) and especially improves log-likelihood relative to interest rate and
distance-to-default models. Fixing the distress factor, the log-likelihood values are typically
higher with the level specification for BBB-rated firms while the log specification yields a
slightly better description of A-rated firms.

10.4 MEASURES OF MODEL MISSPECIFICATION
AND PERFORMANCE

10.4.1 Determinants of Credit Risk

Because credit risk models are often employed in marking-to-market other illiquid secur-
ities, evaluating model performance is of broad interest (Dai and Singleton 2003). Does a
three-factor credit risk model with leverage improve upon a two-factor counterpart with
firm-specific distress considerations absent? Is a credit risk model based on leverage less
misspecified compared to the alternatives of book-to-market, profitability, volatility, and
distance-to-default?

To address these questions and to model credit risk determinants, Table 10.2 presents
four measures of performance for each model: (1) the absolute yield valuation errors
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(in basis points), (2) the absolute percentage valuation errors (in percent), (3) the Schwarz–
Bayes information criterion, and (4) the absolute credit spread errors (in basis points) for
maturity-matched spread of corporate over Treasury. Each measure provides a perspective
on the effectiveness of a model to explain the term structure of defaultable yields and credit
spreads.

On the basis of the results for yield errors on BBB-rated bonds, a three-factor model
with leverage (in level) is attractive relative to the two-factor interest rate model. In the row
labeled ‘‘ALL’’ note that incorporating leverage in the defaultable discount rate specifica-
tion leads to yield errors of 36 bp with leverage (level) model compared to 45 bp with
interest rate model. This strong improvement over the base model is, in fact, observed at all
maturities with each model performing slightly worse at the short-end of the defaultable
yield curve. From a different angle, the documented fitting errors suggest that systematic
variables have a first-order impact on defaultable term structures with leverage providing a
sizeable next-order explanatory ability.

Compared with the three-factor setting of Duffee (1999) and the single-factor intensity
process specification of Longstaff, Mittal, and Neis (2005), the average yield error is �7 bp
(not reported in the table to save on space) making the leverage model reasonably accurate
for marking-to-market credit risks. Although the focus of academic work has mostly been
on default factors and our results are encouraging, realize that omitted nondefault attri-
butes such as illiquidity of corporate bonds and actual spread volatility can cause model
prices to systematically deviate from observed market prices even in the presence of
properly specified default factors (see the practitioner perspective outlined in Dignan
2003 and Kao 2000).

Table 10.2 imparts the insight that the interest rate model and the leverage (in level
or logs) model are virtually indistinguishable for high-grade bonds at all maturities.
This seemingly counterintuitive result can be understood to mean that high-rated bonds
are mostly determined by systematic factors and rather insensitive to variations in firm-
specific leverage. Although Ls has the theoretically correct positive sign in the leverage
model that raises default probability for firms with higher leverage, the estimated magni-
tude is insufficiently strong to impact the pricing performance for high-grade bonds.
Consistent with L0 and Lr of the interest rate model, we may write defaultable discount
rate Rn(t)¼ 0.8%þ 0.985 r(t) implying that fixed-income markets value high-grade bonds
using a translated default-free process. Thus, a more complex model that accounts for
firm-specific distress need not necessarily perform better for high-grade bonds. As would
be expected, each credit risk model (in particular the interest rate model) is less misspe-
cified for high-grade bonds than its low-grade counterpart. Shifts in interest rate risk play a
fundamental role in the valuation of single-name high-grade bonds (Kwan 1996 and
Collin-Dufresne et al. 2001).

According to empirical results for BBB-rated bonds, the leverage (in level) model
performs the best followed in turn by the B=M (in level) model, the profitability model,
the stock volatility model, and the distance-to-default model. The interest rate model is the
last place performer. To fix main ideas, consider long-term bonds and the level specifica-
tion: the percentage pricing errors (yield errors) are 2.66% (33 bp), 3.07% (39 bp), 3.24%
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(41 bp), 3.18% (40 bp), 3.20% (39 bp), and 3.37% (42 bp), respectively, for the leverage,
B=M, profitability, volatility, distance-to-default, and interest rate models. It must be noted
that this model rank-ordering does not perfectly coincide with the average log-likelihood
ratio based ordering presented in Table 10.1. The reason is that the objective function in
the estimation is not to minimize the sum-of-squared pricing errors; instead it is derived
from the conditional density of Sn(t) and the assumed cross-correlation structure of the
valuation errors to give realistic single-name empirical moments. Given the large notional
value of fixed income securities, the documented superiority of the leverage model is
economically meaningful.

Another way to judge performance is to compare the Schwarz-Bayes information
criterion (SIC) statistic, which rewards goodness-of-fit while penalizing the dimensionality
of the model. Across most maturities, the SIC of the interest rate model exceeds the SIC of
the leverage model for BBB-rated bonds while the reverse is true for high-grade bonds.
This empirical yardstick thus favors the more heavily parameterized leverage model over
the interest rate model for BBB-rated bonds. However, for high-grade bonds, simplicity is a
more desirable modeling element. It is worth noting that in the case of BBB-rated firms, the
SIC of the B=M and distance-to-default models exceed the SIC of the leverage model and
therefore perform no better. Issues related to model differentiation based on statistical
significance are formalized in the next subsection.

Relevant to our findings on high-grade bonds, Collin-Dufresne, Goldstein, and Martin
(2001) argue that while variation in corporate yields is predominantly due to Treasury
yields, the credit spread is a much harder entity to predict. Are credit spreads mainly
driven by the short interest rate or firm-specific distress variables? To answer this question,
we provide additional information on the absolute difference between the observed and
model generated credit spreads and report them as ACE in Table 10.2. The chief result that
emerges from this exercise is that absolute credit spread errors have a large interest rate
component, and accounting for leverage and other firm-specific distress is important.
Consider BBB-rated bonds where the credit spread errors can be reduced from 40 bp in
the case of interest rate model to 33 bp in the case of leverage model (in level). Sharing this
feature with AYE, adding a firm-specific distress variable to the credit risk model does not
help to lessen absolute credit spread errors for high-grade bonds. Thus, the performance
metrics that rely on yields (i.e., AYE) and credit spreads (i.e., ACE) provide similar
conclusions.

To gauge the robustness of the findings, Table 10.3 displays valuation results based on a
holdout sample of 1 year. The standard argument favoring such an exercise is that model
performance need not improve out-of-sample for a more complex valuation model: Extra
parameters have identification problems and may penalize accuracy. In implementation,
we compute theoretical prices evaluated at the Kalman filter forecast of r(tþ 1) and z(tþ 1)
and the optimal forecast of Sn(tþ 1) based on the parametric model (Equation 10.1).
The results are more striking in the out-of-sample context for BBB-rated bonds. First,
comparing the entries in Tables 10.2 and 10.3, there is a general deterioration in the
performance of credit risk models and, particularly, the interest rate model. Thus, the
interest rate model is most misspecified out-of-sample especially at the short-end of
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the low-grade yield curve. Second, the leverage model enhances the overall effectiveness of
the interest rate model by 16 bp, and the B=M (distance-to-default) model by 8 (9) bp.
Third, the results tell us that the relative ranking between credit risk models is unaltered
in-sample versus out-of-sample.

On the basis of the in-sample and out-of-sample absolute yield errors and the SIC
statistic, we generally observe that the model relying on the distress variable specified in
level does slightly better than the long counterpart. For instance, the absolute yield error
in Table 10.3 for BBB firms with leverage (in level) is 40 versus 49 bp with leverage (in
logs). Similar improvement is documented for SIC in Table 10.3 which is �7.53 for
leverage (level) and �7.32 for leverage (logs). To confirm whether the level or the log of
leverage is more consistent with the assumed Gaussian physical dynamics, we also com-
puted the Shapiro–Wilk normality statistic applied to firm-level leverage series. This test
shows that moving from level of leverage to the logarithmic of leverage improves the
Shapiro–Wilk statistic for 31% of the firms, but worsens for 69% of the firms. In summary,
the level of leverage conforms to the normality hypothesis better than the log of leverage.
However, the log B=M appears more consistent with the Gaussian dynamics for 63% of
the firms.

10.4.2 Generalized Method of Moments Test of Model Comparisons
and Specification Tests

The ask price is not reported in the Lehman database so we are unable to assess the extent
of the improvement relative to the bid-ask spreads. However, for any two defaultable
coupon bond models, define the disturbance terms

W t(m
int,mleu) �

1
3

X3
i¼1

«inti (t)
�� ��� mint

1
3

X3
i¼1

«levi (t)
�� ��� mlev

0
BBBB@

1
CCCCA (10:6)

and

E W t(m
int,mlev)

� � ¼ 0 (10:7)

where mint and mlev represent the mean monthly absolute yield errors (averaged across
short, medium, and long) for the interest rate model and the leverage model (in level).

Statistics presented in Table 10.4 are helpful for judging whether incremental explana-
tory power of a model is statistically significant relative to other models. First, we report the
rejection rate for the null hypothesis mint¼mlev versus the alternative mint 6¼ mlev. Taking
the weighting matrix from the unconstrained estimation this test is done by performing a
restricted estimation with mint¼mlev. Then, T times difference in the restricted and the
unrestricted criterion functions is asymptotically x2(1)�distributed. Second, we present
the rejection rate for the one-sided test mint>mlev using the Newey–West method to adjust
for heteroskedasticity and autocorrelation. Last, we compute Ft � j«

int(t)j�j«lev(t)j
j«int(t)j (or, �Ft),
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which reflects the average absolute yield error (credit spread error) reduction in moving
from the interest rate model (the base model) to the leverage model.

Consider low-grade bonds: valuation improvement is statistically large by adding
leverage (in level) to the defaultable discount rate specification of the interest rate model.
Overall, leverage results in a 30.1%, 14.3%, 25.2%, 33.8%, and 15.2% relative improvement
over the interest rate, the B=M, profitability, volatility, and distance-to-default models.
Between leverage and interest rate models, the two-sided (one-sided) rejection rate is 70%
(67%) implying statistical improvement for the majority of the single-names (and likewise
for credit spreads).

The B=M (log) generalization to the interest rate model also delivers economically and
statistically significant performance enhancement, albeit by a lesser extent relative to the
leverage model (we focus on log as it is more consistent with the Gaussian hypothesis
although the result is similar with level). The relative improvement is 18.4% over the
interest rate model with a oneside rejection rate of 46%. With high-grade bonds,
however, there is no discernible improvement over the interest rate model with either
leverage or B=M. In this regard, Agarwal, Elton, Gruber, and Mann (2001) reason that
differences in default are insufficient to explain yield spreads observed across rating
classes. Such a result also parallels a calibration-based finding of Huang and Huang
(2003) that default risk accounts for only a small fraction of aggregate credit spreads,
and this result can now be extended to high-grade single-name credit spreads. Allowing
for a richer stochastic structure beyond the interest rate model in the firm-specific
dimension is of greater relevance for yield errors and credit spread error of low-grade
bonds.

To further study properties ofmodelmispricing, we appeal to Collin-Dufresne, Goldstein,
and Martin (2001) and investigate whether pricing-errors from the leverage model are
contemporaneously correlated. Specifically, we focus on four systematic factors: (1) default
spread between low-rated and high-rated corporate bonds (denoted DEFAULT), (2) spread
between the 10 year and 2 year Treasury yield (denoted SLOPE), (3) size premium (SMB),
and (4) VIX volatility index fromCBOE. The following regression is performed for each firm�
letting «levn (t) � 1

3

P3
i¼1 j«levn,i (t)j

�
:

«levn (t) ¼ a0 þ a1 DEFAULT (t)þ a2 SLOPE (t)

þ a3VIX (t)þ a4 SMB (t)þ e(t), n ¼ 1, . . . ,N (10:8)

Three findings are relevant to our modeling approach. First, we find that the average
adjusted-R2 across our sample of firms is 9%, implying that single-name pricing-errors
show little time-covariation with the chosen systematic factors (50% of the firms had
R2 < 5%). Second, the sensitivity coefficients are typically positive. In economic terms,
this means that model mispricing tends to be greater during periods of widening default
spreads or steepening Treasury-curves (or equivalently when VIX=size premium is high).
Third, the t-statistics (corrected for heteroskedasticity and autocovariance) are greater for
2 for at most 19% of the firms. For the majority of the firms, the pricing-errors are,
thus, statistically unrelated to the systematic factors. Extant research has found that
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corporate bond markets are subject to high transaction cost and low volume. Therefore, it
appears likely that bond market illiquidity has contributed to model mispricing. More
empirical work is needed to study the role of bond market liquidity along the lines of
Collin-Dufresne, Goldstein, and Martin (2001). If there are market-wide default and
liquidity factors, these are perhaps not adequately captured by the set of included system-
atic variables.

Additionally, we performed a principal component analysis of absolute yield errors
and credit spread errors of each model by binning the data into nine groups (by short,
medium, long, and by AA, A, and BBB credit rating). The results establish that there is a
dominant component for each of the models, with first two components explaining the
bulk of the variation. Take the leverage model as an example, where the first component
explains 83.6% of the total variation. Together, the first two components capture 92.7% of
the variation. As shown by the regression analysis, none of the systematic variables
appear to be a good proxy for the predominant factors. Tables 10.2 and 10.3 have the
unfortunate implication that credit risk models are misspecified albeit to various degrees.
One key issue that remains to be addressed is whether cross-sectional variations in model
misspecification are related to excluded firm-specific distress risk? Indeed, there is no
theoretical basis for picking a firm-specific distress variable successively in a default
model. In doing so, we were guided by parsimony and ease of implementation: a four-
factor generalization driven by Equation 10.1 has four additional parameters and two
correlation terms requiring the estimation of 22 parameters (plus five Cholesky decom-
position constants). How can a four-factor credit risk model with two firm-specific
factors expected to fare relative to a three-factor credit risk model? To informally attend
to this concern, two regression specifications are explored using the entire cross-section.
First, we regress the absolute yield errors of the leverage model on B=M (n¼ 1, . . . , N)
and obtained:

AYEnjLev ¼ 0:262þ 0:08
Bn

Mn
þ en, R2 ¼ 2:7%

(15:2) (4:86)

where the reported coefficients are time-series pooled averages and the t-statistics are based
on GMM. Second, we regress B=M mispricing on leverage:

AYEnjB=M ¼ 0:288þ 0:098 LEVn þ en, R2 ¼ 0:4%

(14:7) (3:13)

On the basis of the sensitivity coefficients, one may conjecture that it is possible to lower
the pricing errors of defaultable bonds: the valuation errors of B=M model are statistically
higher for firms with high leverage even after accounting for B=M (and vice versa). Owing
to burdensome MLE implementation of higher-dimensional models and the rather low R2

explanatory power of Bn
Mn

and LEVn in the aforementioned cross-sectional estimations, we
leave a formal analysis of four-factor credit risk models to a later study.
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10.4.3 Hedging Dynamic Credit Exposures

This subsection concentrates on hedging a portfolio consisting of a short-position in a
corporate bond and a long-position in a Treasury bond withmatchedmaturity. Notice there
is an arbitrage link between the corporate bond market, the Treasury market, and the credit
default swapmarket. According to Duffie (1999), Duffie and Liu (2001), and Houweling and
Vorst (2005), holding a t-period par corporate bond and buying credit protection through a
credit default swap are approximately risk free (adjusting forfloating-rate feature and coupon
equivalence). For this reason, the price of single-name credit protection is the same as
reference entity credit spread. Our approach, as shown, can be useful in understanding
which traded fixed-income instruments canmost effectively hedge dynamic credit exposures
and, to first-order, potentially hedge the risks of writing credit protection. This connection
arises since sellers of credit default swaps can hedge their exposure by shorting corporate
bonds (Longstaff et al. 2005, p. 21 and Chen et al. 2005) or vice versa.

Fix the credit risk model as the interest rate model. In this case, the combined position
can be written as

� 1
t log [P(t,t)=B(t,t)]þ [w0(t)þ w1(t)B(t,t1)þ w2(t)B(t,t2)] (10:9)

which hedges credit exposure using two risk-free discount bonds with short-maturity t1
and long-maturity t2. Taking the target as the log relative of the corporate coupon bond
price to the Treasury bond price and normalizing it by t imparts it a yield interpretation.
To dynamically hedge r(t) and z(t) risks, we take the required partial derivatives and derive
the positioning as

w1(t) ¼
1
t

Dz(t,t)
P(t,t) � 1

B(t,t)
@B(t,t)
@z

h i
� @B(t,t2)

@r
� 1

t
Dr(t,t)
P(t,t) � 1

B(t,t)
@B(t,t)
@r

h i
� @B(t,t2)

@z

@B(t,t1)
@z
� @B(t,t2)

@r
� @B(t,t1)

@r
� @B(t,t2)

@z

(10:10)

w2(t) ¼
1
t

Dz(t,t)
P(t,t) � 1

B(t,t)
@B(t,t)
@z

h i
� @B(t,t1)

@r
� 1

t
Dr(t,t)
P(t,t) � 1

B(t,t)
@B(t,t)
@r

h i
� @B(t,t1)

@z

@B(t,t1)
@r
� @B(t,t2)

@z
� @B(t,t1)

@z
� @B(t,t2)

@r

(10:11)

with @B(t,t)
@r

and @B(t,t)
@z

determined from the default-free bond pricing formula (Equation
10.A16). The hedge portfolio is made self-financing by setting w0(t) ¼ 1

t log

[P(t,t)=B(t,t)]� w1(t)B(t,t1)� w2(t)B(t,t2). Local risk exposures for the defaultable cou-
pon bond are the aggregated face and coupon exposures:

Dr(t,t) � FDr*(t,t)þ
ðt
0
c(t þ u)Dr*(t,u) du (10:12)

Dz(t,t) � FDz*(t,t)þ
ðt
0
c(t þ u)Dz*(t,u) du (10:13)

where Dr*(t,t) and Dz*(t,t) are displayed in Equations 10.A12 and 10.A13. The combined
position in the defaultable bond and the replicating portfolio is liquidated at time tþDt.
Dollar hedging errors are defined as
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H(t þ Dt) ¼ w0(t)e
r(t)Dt þ w1(t)B(t þ Dt, t1 � Dt)þ w2(t)B(t þ Dt, t2 � Dt)

� 1
t
log [P(t þ Dt, t � Dt)=B(t þ Dt, t � Dt)] (10:14)

Selecting t as 2 and 7 years, the hedging strategy is executed each month and for each
single-name bond. We compute absolute dollar hedging errors each month as

AHE(t þ Dt) � 1
K

XK
k¼1
jHk(t þ Dt)j (10:15)

and absolute percentage hedging errors as

PHE(t þ Dt) � 1
K

XK
k¼1

Hk(t þ Dt)
1
t log [P(t,t)=B(t,t)]

�����
����� (10:16)

Implementing a dynamic hedging strategy based on leverage and B=M models involves
non-traded leverage and book values and only a partial hedge is feasible. To hedge r(t), z(t)
risks we employ two Treasury discount bonds and single-name equity to dynamically hedge
the market component of leverage. However, this leaves the long-term debt component of
leverage unhedged. Notice that we can write leverage asLEV(t) ¼ D(t)=q0

M (t)þD(t)=q0 where q0 is the
number of shares outstanding andD(t) is debt value. Assuming the stock price,M (t) follows
geometric Brownian motion we derive v1(t) and v2(t) as shown in Equations 10.10 and
10.11 and w3(t) ¼ � 1

tDs � D(t)=q
[M (t)þD(t)=q]2 where Ds(t,t) � FDs*(t,t)þ

R t
0 c(t þ u) Ds*(t,u) du.

The results reported in Panel A and Panel B of Table 10.5 reveal that leaving the debt
(book) component of leverage (B=M) unaccounted in the hedging strategy can impair

TABLE 10.5 Hedging Credit Exposures

Interest Rate Leverage Model B=M Model

BBB A BBB A BBB A

Panel A: 2 year credit exposures

AHE $0.106 $0.099 $0.107 $0.100 $0.107 $0.100

PHE 4.18% 4.07% 4.20% 4.09% 4.19% 4.09%

Panel B: 7 year credit exposures

AHE $0.033 $0.057 $0.034 $0.057 $0.034 $0.057

PHE 4.76% 8.14% 4.87% 8.26% 4.87% 8.26%

Note: In what follows we fix the maturity, t, of the target to be hedged as either 2 or 7 years. Choose
the interest rate model and the target as 1

t log [P(t,t)=B(t,t)]. In the hedging strategy, as many
instruments as sources of risks are employed to create a hedge in all dimensions, which leads to w1(t) ¼
1
t

Dz (t,t)
P(t,t) � 1

B(t,t)
@B(t,t)
@z½ �� @B(t,t2 )

@r
� 1

t
Dr (t,t)
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B(t,t)
@B(t,t)
@r½ �� @B(t,t2 )

@z
@B(t,t1 )

@z
� @B(t,t2 )

@r
� @B(t,t1 )

@r
� @B(t,t2 )

@z

and w2(t) ¼
1
t

Dz (t,t)
P(t,t) � 1

B(t,t)
@B(t,t)
@z½ � � @B(t,t1 )

@r
� 1

t
Dr (t,t)
P(t,t) � 1

B(t,t)
@B(t,t)
@r½ �� @B(t,t1 )

@z
@B(t,t1 )

@r
� @B(t,t2 )

@z
� @B(t,t1 )

@z
� @B(t,t2 )

@r

and

w0(t) ¼ 1
t log [

�P(t,t)=�B(t,t)]� w1(t)B(t,t1)� w2(t)B(t,t2). For each credit risk model and single-

name bond, compute the absolute dollar hedging errors (AHE) as jw0(t)er(t)Dt þ w1(t)
B(t þ Dt, t1 � Dt)þ w2(t) B(t þ Dt, t2 � Dt)� 1

t log [
�P(t þ Dt, t � Dt)=�B(t þ Dt, t � Dt)]j and a

similar calculation applies to absolute percentage hedging errors (PHE). In the leverage model and
the B=M model, the debt component and the book component of leverage and B=M are left unhedged for
1 month. All results are based on the face value amount of $100.
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dynamic ability of three-factor credit risk models. Despite the flexibility of an additional
instrument, the absolute hedging errors from the leverage model and the B=M model are
no better than that of the two-factor interest rate model. From the perspective of absolute
hedging errors, interest rate movements are dominant. When averaged over BBB-rated
single-name bonds, the absolute hedging error with the leverage (book-to-market) model is
$0.107 ($0.107) compared to $0.106 with the interest rate model (assuming $100 face value
and for t¼ 2 years). Credit risk models relying on purely traded factor tend to produce
better hedging effectiveness. Regardless of maturity, the two Treasury instruments do a
fairly reasonable job neutralizing dynamic movements in single-name credit exposures for
firms in our sample. We also investigated the relation of single-name hedging-errors using
Equation 10.8 and found these to be characterized by a lack of covariation.

Although not reported, a robustness check shows that the same conclusion applies
when the target is a short-position in a corporate bond. Our results open up the wider
implication that short-positions in credit default swaps could be equivalently hedged using
Treasury instruments up to BBB-rated single-name reference entities.

10.5 CONCLUSIONS
Relying on a sample of single-name defaultable coupon bonds, the empirical investigation
posed two questions of economic interest: Which credit risk models are suitable for
marking-to-market default risks and for hedging credit exposures? What type of default
factors (systematic or firm-specific) are relevant for explaining credit risk? Under appro-
priate assumptions on the interest rate process, the default process, and the market price of
risks, our estimation strategy leads to several new insights. First, interest-rate consideration
is of first-order prominence in explaining credit curves for our sample of investment grade
bonds. Second, accounting for the impact of interest rates, the incremental pricing
improvement from modeling leverage is economically large and statistically significant
for low-grade bonds. Third, the credit risk model with leverage appears least misspecified
and has pricing performance adequate for marking risk exposures. Last, the hedging
analysis opens up the possibility that traded Treasury bonds may be effective in hedging
dynamic credit exposures.

APPENDIX: REDUCED-FORM DEFAULTABLE COUPON BOND
MODELS

Following the standard approach, the price of the defaultable coupon bond is

P(t,t) ¼ EQ
ðtþt
t

exp �
ðtþu
t

{r(s)þ h(s)[1� n(s)]}ds

0
@

1
AdC(u)

2
4

þ F exp �
ðtþt
t

{r(s)þ h(s)[1� n(s)]}ds

0
@

1
AjGt

3
5 (10:A1)

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C010 Final Proof page 175 7.4.2008 7:38pm Compositor Name: VBalamugundan

Investigating the Role of Systematic and Firm-Specific Factors in Default Risk & 175



In the Duffie–Singleton approach, the effects of the hazard rate process h(t) cannot be
separated from that of the loss process [1� n(t)], they define the aggregate defaultable
discount rate as

R(t) � r(t)þ h(t)[1� n(t)] (10:A2)

With deterministic and continuous coupon rate c(t), the debt equation can be simplified as

P(t,t) ¼
ðt
0

c(t þ u)� P*(t,u) duþ F � P*(t,t) (10:A3)

where

P*(t,u) ¼ EQ exp �
ðtþu
t

R(s) ds

2
4

3
5jGt

8<
:

9=
; (10:A4)

is the price of the unit face defaultable zero-coupon bond with maturity tþ u.
For the empirical investigation, we consider the family of aggregate defaultable discount

rate models shown below:

Rn(t) ¼ L0,n þ Lr,nr(t)þ Ls,n Sn(t), n ¼ 1, . . . ,N (10:A5)

where Sn(t) surrogates firm-specific distress indexed by n and postulated either as the level
or the logarithmic of the variable. We assume, under the risk-neutral measure, that the
distress factor obeys

dSn(t) ¼ [ksms � (ks þ ls)Sn(t)] dt þ ss d~vs(t) (10:A6)

where
~vs is a standard Brownian motions under the risk-neutral measure
lsS(t) is the risk premium for S(t)

Let rr,s � Covt(~vr ,~vs) and Covt(~vs,~vz) ¼ 0.
Consider the price of a unit face defaultable discount bond with t periods to maturity.

Using the risk-neutral dynamics of r(t) and Sn(t) and solving Equation 10.A4, we have:

P*(t,t) ¼ exp [�a(t)� b(t)r(t)� g(t)z(t)� u(t)S(t)] (10:A7)

where

b(t) � Lr[1� e�(krþlr)t]
kr þ lr

(10:A8)
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g(t) � krLr[1� e�(kzþlz)t]
(kr þ lr)(kz þ lz)

þ krLr[e
�(kzþlz)t � e�(krþlr)t]

(kr þ lr)[(kz þ lz)� (kr þ lr)]
(10:A9)

u(t) � Ls[1� e�(ksþls)t]
ks þ ls

(10:A10)

and

a(t) � L0t � 1
2
s2
r

ðt
0

b2(s) dsþ ksms

ðt
0

u(s) ds� 1
2
s2
z

ðt
0

g2(s) ds� 1
2
s2
s

ðt
0

u2(s) ds

þ kzmz

ðt
0

g(s) ds� rr,ssrss

ðt
0

b(s)u(s) ds� rr,zsrsz

ðt
0

b(s)g(s) ds (10:A11)

We first observe that P*(t, t) is exponential affine in three state variables: the short
interest rate, the stochastic long-run mean interest rate, and the firm-specific distress factor.
The bond price is driven by 18 structural parameters: there are 3 parameters in the
defaultable discount rate specification, 10 in the interest rate process, and 5 associated
with the dynamics of firm-specific distress. Second, under the positivity ofLr, the defaultable
discount bond price is negatively related to r(t) and z(t):

Dr*(t,t) � @P*(t,t)

@r
¼ �b(t)P*(t,t) < 0 (10:A12)

Dz*(t,t) � @P*(t,t)

@z
¼ �g(t)P*(t,t) < 0 (10:A13)

The bond price is also negatively associated with the distress factor, as seen by

Ds*(t,t) � @P*(t,t)

@S
¼ �u(t)P*(t,t) < 0 (10:A14)

provided Ls> 0. The expressions for the local risk exposures can be employed to develop
hedges for marked-to-market risks.

Five candidates for Sn(t) are selected for their empirical plausibility:

1. Assume Sn is the level or the logarithmic offirm-leverage. Leverage is also a key ingredient
in the structural models of Merton (1974), Longstaff and Schwartz (1995), and Collin-
Dufresne and Goldstein (2001).We will refer to this model as the leveragemodel.

2. Let Sn be the firm’s book value divided by market value (i.e., book-to-market) or its
logarithmic transformation. According to Fama and French (1992), firms with high
book-to-market are relatively more distressed with poor cash flow prospects. This is
the B=M model.

3. Next candidate for Sn is one minus profitability ratio and reflects the firms’ ability to
honor debt obligations out of its operating income (Titman and Wessels 1988).
Credit risk models that incorporate profitability concerns are the profitability models.
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4. For the fourth model, Sn is the level or the logarithmic of stock volatility and proxies
asset volatility. Based on Merton (1974) this measure of business risk is included in
practitioner models of default prediction such as KMV (i.e., credit spreads rise with
volatility in Merton). Campbell and Taksler (2003) show that equity volatility
explains cross-sectional variation in corporate bond yields. The resulting credit risk
model is the stock volatility model.

5. Finally, Sn is distance-to-default model of KMV. It captures the number of standard
deviations the firm asset-value is away from the default boundary (Crossby and Bohn
2003). KMV defines distance-to-default as net asset-value normalized by asset-volatility,
where the default event is identified as the first time the firm asset-value falls below the
default boundary. We call this credit risk model as the distance-to-default model.

Turning to default-free bond modeling, let z(t) represent the long-run mean of the short
rate and X(t)� 	 r(t)

z(t)



. The two-factor model is adopted on empirical and theoretical

grounds:

dX(t) ¼ P*[Q*� X(t)]dt þ sd eW(t) (10:A15)

where P* � 	
kr þ lr �kr

0 kz þ lz



, Q* �

kr(kzmz�l0,z)
(krþlr)(kzþlz)�

l0,r
(krþlr

kzmz�l0,z
(kzþlz)

 !
, s � 	

sr 0
0 sz



, and eW(t) � (~vr ,~vz)

0

are standard Brownian motions under the risk-neutral measure with correlation rr,z.
kr(kz) is the mean-reversion rate for r(t) (z(t)) and mz is the long-run mean for z(t).
The risk-neutral dynamics (Equation 10.15) results by assuming that the risk premium
associated with X(t) is

	
l0,r
l0,z



þ
	
lr 0
0 lz



X(t), and the X(t) dynamics under the physical measure.

Solving a standard valuation equation, the price of default-free discount bond is

B(t,t) � EQ exp �
ðtþt
t

r(s) ds

0
@

1
A

8<
:

9=
; ¼ exp [� �a(t)� b(t)r(t)� g(t)z(t)] (10:A16)

where �b(t) � 1�exp [�(krþlr)t]
krþlr , g(t) � kr�kr exp [�(kzþlz)t]

(krþlr)(kzþlz) þ kr exp [�(kzþlz)t]�kr exp [�(krþlr)t]
(krþlr)(kzþlz�kr�lr)

and a(t) � � 1
2s

2
r

R t
0
�b2(u) du� 1

2s
2
z

R t
0 g

2(u) duþ (kzmz � l0,z)
R t
0 g(u) du� rr,zsrszR t

0 b(u)g(u) du� l0,r
R t
0 b(u) du.
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11.1 INTRODUCTION
With the bond markets topping the stock market in total size, debt financing is the number
one instrument used in corporate finance. In one of its purest forms, the heavyweight
contract in the credit derivatives world is the credit default swap (CDS). It can be seen, very
simplistically, as an insurance against the default of a corporation.

The present contribution discusses empirical issues in the pricing of CDSs from the
Dow Jones CDX North America Investment Grade (DJ CDX.NA.IG) index universe. We
focus on the debt–equity linkage, which is a major driver in explaining credit spreads by
structural models. So far, only a few empirical studies focus on CDS pricing (Aunon-Nerin
et al. 2002, Ericsson et al. 2004, and Houweling and Vorst 2005).

We perform a CDS pricing model comparison and consider ways of selecting companies
where structural models perform above average. Model performance is measured by
spread change correlation, Kendall’s t(tau), mean absolute mispricing as well as the
standard deviation of price differences. Our approach of model comparison and out-
of-sample performance testing is based on a broad data set. It applies identical input
factors to both model approaches. We find that the trinomial model outperforms the
CreditGrades model on average, while both structural models perform mediocre over our
overall selection of companies. Applying the models to names that correlate above average
with a market proxy (i.e., have above average R2 in the sense of Roll 1988) yields vastly
improved pricing results. This methodology is new to empirical credit derivatives model
comparisons.

The remainder of this contribution is organized as follows. Section 11.2 describes the
data set. The models are reviewed and their implementation is discussed in Section 11.3.
Section 11.4 contains the empirical pricing results and considers the question of the drivers
of model performance. Section 11.5 concludes the chapter.

11.2 CDS DATA
The data used in the empirical part of the paper come from the Open Bloomberg system.
As a basis, the DJ CDX.NA.IG universe is used, which consists of 125 U.S. companies where
CDSs are actively quoted.* The CDX index universe was used as a starting point to have
companies where, on the one hand, credit spreads are traded, and on the other, a satisfying

* The DJ CDX.NA.IG index is recreated every 6 months, because of continuous market changes in the credit risk level
of the index companies. Sixteen major international banks define the index and create a market with bid-ask
spreads in the low 1=2 to 1=4 bp range (Jakola 2006).
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level of liquidity is present.* Once available, stock prices and at-the-money implied stock
volatilities are retrieved. In selecting the sample, we considered the length of the available data
series as well as the resulting overall number of companies. Finally, the 125 index companies
were reduced to a subset of 54 companies, as this was the number of companies where all the
necessary data were available.y

The industry allocation by the number of companies in our sample is as follows:
31.5%—Basic Industrials, 27.8%—Consumer Products and Retail, 11.1%—Energy,
20.4%—Financials, and 9.3%—Telecommunication, Media and Technology. From the
market capitalization point of view, the picture changes slightly. The total market capital-
ization of $2.14 trillion as of July 7, 2006 for the 54 companies is split up in the following
industries. Basic Industrials are 19.0% or $408 billion, Consumer Products and Retail
account for 29.5% or $632 billion, Energy captures 6.2% or $133 billion, Financials with
33.4% or $717 billion are the largest group, and finally Telecommunication, Media and
Technology take the remaining 11.8% or $254 billion. The average company market
capitalization is $39.7 billion, where the standard deviation is rather high with $57.9
billion. To shed more light on the sample, the top 10% mean is $138 billion market
capitalization and the bottom 10% mean is $5.3 billion market capitalization. All currency
related data (e.g., stock prices) are quoted in U.S. dollars.

Our sample consists of 540 trading days during the period May 14, 2004 to July 7, 2006.
With CDS, stock, and volatility quotes, an overall of 87,480market data points results. There
were days of missing CDS data, although this was rare in the sample. Approximately 0.2% of
the data were missing, mostly 1 or 2 days in a row, so data accuracy can be assured and there
was no need to apply more advanced fitting methods like curves or splines. The missing data
were linearly interpolated. Stock price and volatility data were obtained as complete series.

11.3 MODELS
Our first model follows the Merton (1974) structural approach, which has become a
market standard. The simplified implementation that we use is the CreditGrades bench-
mark model as developed by the RiskMetrics group and published in Finger (2002). Our
second model is a binomial pricing approach as commonly seen in equity option analysis,
but with the added feature of a third branch representing the default of the company (Das
and Sundaram 2000). This trinomial tree approach models the default probability via
a three-parameter hazard rate function. In the following, we describe our method of model
implementation, where the focus is on the less widespread trinomial tree model.

* We use the 5 year CDS spreads, as those are the ones traded the most frequently. There are 1, 3, 5, and 10 year CDS
spreads quoted, although not all are liquid. It is worth noting that the CDS spreads used do not represent actual (i.e.,
traded) CDS contracts, but they are averaged from available bids and offers from institutional trades. Because of the
fact that the CDS market is an OTC (over-the counter) market, the actual transactions are not publicly available.
Nevertheless, the CDS data quality is decent and is the only continuous CDS data available in the open market. The
data were all reported at trading days only. Weekends and U.S. holidays were left out and were not interpolated.
This applies to all data used.
y In fact, there is selection bias in the sample using a specific index and then even reducing the number of companies.
Although this chapter does not claim to fully represent the CDS universe, it represents the U.S. investment grade
sector and goes well beyond calibration approaches that consider a few names only.
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11.3.1 Trinomial Model

The trinomial model is originally based on the work of Das and Sundaram (2000) who
formulate a discrete-time approach for valuing credit derivatives in an arbitrage-free
setting. To implement the model, a modified version following Bandreddi et al. (2006) is
used. Strictly speaking, the model is neither purely structural nor intensity based. The input
data show close resemblance to a structural model. This is why calling the trinomial model
‘‘structural’’ refers to the data input and makes it in this sense directly comparable to the
CreditGrades model. The trinomial model mainly differs from the CreditGrades model in
that it uses an intensity model-type hazard function with three input parameters.

The trinomial model is built along the following steps. First, the stock price is modeled.
The starting stock price S0 is multiplied with up and down factors, which depend on the
volatility of the stock as in the Cox et al. (1979) model: u¼ es

ffiffi
h
p

and d¼ 1=u. The next step
is the calculation of the probability of each branch:

Stþh ¼
uSt with probability: q(1� lt)
dSt with probability: (1� q)(1� lt)
0 with probability: lt

8<
:

9=
; (11:1)

The probability that the company defaults in the interval from t to tþh is lt, which is
specified as

lt ¼ 1� exp (�jth) (11:2)

Here, jt is the default intensity and three model parameters, namely a, b, and g, come into
play. The parameters are related to the level, slope, and curvature of the CDS spread curve

jt ¼ exp (aþ gt)S�bt (11:3)

Since the discounted stock price will follow a martingale under the risk-neutral measure,
we have

E(Stþh) ¼ erhSt (11:4)

Using Equation 11.1, it follows

q ¼ e(rþj)h � d
u� d

(11:5)

Each nondefaulted endpoint of the tree gets equipped with a coupon of one currency unit
which is discounted back to time zero using the risk-free interest rate and the correspond-
ing probabilities. For defaulted branches, the time zero risk-neutral expected losses can be
calculated. Finally, the discounted expected losses are divided by the discounted expected
coupons to get the CDS spread.
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11.3.2 Model Sensitivity

Understanding model sensitivities helps to judge how a model reacts to input changes. This
is true for market-driven as well as for nonobservable model parameters. The following
facts are noteworthy: (i) changes in stock price and stock price volatility exhibit a nonlinear
effect on the CDS spread, (ii) the risk-free interest rate has a very small, nonlinear effect on
the CDS spread, and (iii) the recovery rate exhibits a linear relationship to the CDS spread.

A comparison of the sensitivities of the two models to the stock price and its volatility is
illustrated in Figure 11.1. For the stock price, the sensitivities are similar. However, the Credit-
Grades model shows a higher sensitivity to changes in volatility than the trinomial model.

11.3.3 Model Calibration

Every single company must run through the same model calibration process to ensure that
each company is treated identically and that no bias arises. Both models, CreditGrades and
the trinomial model, use the same market input data, namely stock prices, at-the-money
implied stock price volatility, and the risk-free interest rate. Note that both models use the
recovery rate as an input, which is not observable.

The calibration process for both models is conducted over the first 50 trading days of
our sample, which is the fitting period as shown in Figure 11.2. In the calibration, we
minimize squared differences between the model and the market spread.* An alternative
way of fitting would correlate model and market spreads, but a main purpose here is to
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FIGURE 11.1 Parameter sensitivity of CreditGrades and the trinomial tree models.

* Model calibration uses the Solver Tool in Microsoft Excel as implemented in a macro to generate an automated
process. For the optimizations, the following options were set: iterations¼ 1000, precision¼ 0.00001%, toler-
ance¼ 5, convergence¼ 0.0001. The estimates were tangent solutions in a Newton search pattern approach. In
every case, convergence was given.
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establish the level of spreads. The length of the calibration period surely has an impact on
the quality of the out-of-sample model fit. To see the impact, the fitting period was
extended to 100 trading days. Results, unreported here, show a hardly notable, marginal
improvement in the overall out-of-sample fit of the models. The calibration process for the
trinomial model additionally includes the parameters of the hazard rate function. When
the calibration procedure for the models is completed, the values for all parameters are
kept constant for any further analysis.

11.4 EMPIRICAL RESULTS
With our empirical results, we want to shed light on the connection of equity input factors
to the market pricing of credit risk. We do this over a period of 490 trading days, i.e.,
roughly 2 years, which is an extent period for measuring out-of-sample model perform-
ance. Asking for the models’ ability to adjust CDS model prices to new input data, our
evaluation focus in Section 11.4.1 is on the correlation between changes in market and
model spreads. We additionally consider mean absolute pricing error as well as mean
squared pricing error. In the second part, in Section 11.4.2, we then focus on the question
of how to explain the vast cross-sectional differences in the models’ pricing performance.
Finally, Section 11.4.3 discusses the CDS pricing of three example companies as taken from
our sample.

11.4.1 Model Performance Evaluation
11.4.1.1 Correlation of Spread Changes
Our main focus in the credit models’ evaluation is on spread change correlation between
model prices and market quotes. An overview of the correlation results for the 54
companies is given in Table 11.1. Overall, the mean correlation is 0.496 for the trinomial
model, and 0.454 for the CreditGrades model, i.e., in a similar range. The results show
that there is a wide cross-sectional variability in the results with a range of company
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FIGURE 11.2 Pricing process: 50 days model fitting, 490 days out-of-sample analysis.
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correlations between �0.3 and 0.9. This suggests that there are companies for which the
models perform well while at the same time there are companies for which the models do
not give reasonable results at all.

When it comes to the distribution of the correlation results, for the trinomial model
the median is 0.599, and hence larger than the mean of 0.496 suggesting a skewed
distribution. This is not observed for the CreditGrades model results, as median and
mean almost match.

When we look at the distribution of model correlation results in Figure 11.3, obvious
differences between the two models appear. The CreditGrades model has most (16 out of
54) companies in the correlation range between 0.25 and 0.5. For the trinomial model,
most companies (17 out of 54) fall in the correlation range larger than 0.75. One can also
see that for the CreditGrades model 24 out of 54 companies fall into the category of 0.5
correlation or above, while for the trinomial model this number is higher with 30 out of 54
companies.

TABLE 11.1 Spread Change Correlation, Trinomial Model
and CreditGrades Model versus Market

Trinomial CreditGrades

Median 0.599 0.424

Standard deviation 0.337 0.312

Mean 0.496 0.454

Minimum �0.373 �0.354
Maximum 0.924 0.925
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FIGURE 11.3 Spread change correlation distributions.
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An alternative measure of the co-movement of the credit-spread changes is given by
Kendall’s t (see Kendall 1976). The measure is based on ordinal scaling and helps us to
evaluate if the model and market movements of the CDS spreads follow the same direction.
Table 11.2 shows the results for both models. The results confirm those from the correl-
ation measures. The trinomial model slightly outperforms the CreditGrades model.

11.4.1.2 Pricing Error Statistics
This section considers the differences between model and market spreads. Two measures of
out-of-sample fit are used. We calculate MAPE, which takes absolute mis-pricings into
account. We also calculate the standard deviation of the pricing error (SDPE), which
accounts for mis-pricing variability only and reacts with higher sensitivity to potential
outliers (e.g., a company where a pricing model fails). The results are reported in Table 11.3.

The statistics in Table 11.3 provide us with an understanding of how well the models are
able to mimic the market spread over our 490 days analysis period. One can see that the
average absolute mis-pricing of the trinomial model is lower than that of the CreditGrades
model on average, considering both, the cross-sectional mean and the median measures.
Also, pricing errors show lower variability in the case of the trinomial model. The mean
overall standard deviation is 0.184 for the trinomial model and 0.325 for the CreditGrades
model. This suggests that the trinomial model’s deviations are relatively stable.

11.4.2 What Drives Model Performance?
11.4.2.1 Company-Specific Variables
Here we now consider the above mentioned cross-sectional differences in the models’
pricing performance. We ask for company-specific variables that coincide with improved
or weakened model performance. To clarify this question, we set up a regression analysis to
explain the model-to-market correlation for the trinomial and the CreditGrades models.

TABLE 11.2 Kendall’s t for Spread Changes, Trinomial
Model and CreditGrades Model versus Market

Kendall’s t Trinomial CreditGrades

Median 0.356 0.307

Standard deviation 0.249 0.222

Mean 0.348 0.319

Minimum �0.246 �0.197
Maximum 0.762 0.702

TABLE 11.3 Mean Absolute Pricing Error (MAPE) and Standard Deviation of the Pricing Error (SDPE),
Trinomial Model and CreditGrades Model versus Market

Trinomial MAPE Trinomial SDPE CreditGrades MAPE CreditGrades SDPE

Median 0.272 0.168 0.352 0.231

Standard deviation 0.147 0.074 0.274 0.341

Mean 0.315 0.184 0.413 0.325
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The explanatory variables that we use should affect, in theory, the company’s CDS spread.
We choose the following six explanatory variables:

1. The ‘‘leverage’’ of the company measured by the debt-to-equity ratio as reported by
the end of the second quarter of 2006.

2. The ‘‘debt-to-asset’’ ratio of the company as reported by the end of the second
quarter of 2006. This number is closely related to the expected recovery as the assets
are used to pay the debtors in the case of liquidation.

3. The ‘‘size’’ of the company as measured by market capitalization as of July 7, 2006.
This is used as a proxy to see if larger companies might be less prone to speculative
movements in CDS spreads.

4. The company’s ‘‘average spread level’’ during the analysis period. This variable
addresses the question whether a higher (lower) spread level yields better (worse)
model performance.

5. The ‘‘rating’’ of the company as taken from Standard & Poor’s (if not available, the
implied rating is used). The rating varies from AAA to B and is numbered from 1 to 6
for the regression.

6. Finally, the annualized ‘‘stock market performance’’ of the company over the analysis
period is used to see if, for good performing companies, the models work better or not.

The results of the regression analysis are presented in Table 11.4. We first point out the
adjusted R2 values. The explanatory variables explain 7.2% (11.5%) of the variability of the
model performance as measured by correlation for the CreditGrades (trinomial) model.

TABLE 11.4 Regression Results for Company-Specific Variables

Coefficient Significance Level T-Value

Dependent Variable Correlation: CreditGrades Model

Constant 0.618 0.017 2.464

Debt-to-equity �0.133 0.041 �2.102
Debt-to-assets 0.451 0.337 0.970

Market capitalization 0.000 0.869 0.166

Average spread level �0.002 0.540 �0.618
Rating 0.012 0.865 0.171

Performance (per annum) 0.026 0.863 0.174

Dependent Variable Correlation: Trinomial Model

Constant 0.644 0.027 2.291

Debt-to-equity �0.106 0.141 �1.498
Debt-to-assets 0.218 0.678 0.418

Market capitalization 0.000 0.970 0.038

Average spread level �0.001 0.828 �0.219
Rating 0.009 0.911 0.112

Performance (per annum) 0.057 0.738 0.337
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Both regression models unfortunately lack significance. This leads us to the conclusion that
our company-specific variables hardly help to explain the models’ accuracy in explaining
the market CDS spread evolution.

In Table 11.4, the regression constant yields the highest significance for both models.
Apart from one case, all variables are insignificant at the 5% level. The exception is
the debt-to-equity ratio, which yields significance at the 5% level for the CreditGrades
model. The coefficient is negative, indicating that a lower ratio may correspond to a better
performance of the model. Interestingly, the average level of spreads or the company
ratings, i.e., the implied risk class, shows no significance.

11.4.2.2 Cross-Sectional Correlation Clustering
The above findings demonstrate that the identification of company-specific variables that
may yield superior model performance remains an open question. To improve our
understanding of what drives credit-spread pricing performance, our goal is to identify
homogenous groups, i.e. clusters, within the given CDS data set. To this aim, we propose a
method of clustering according to R2 measures with a market proxy. We thereby follow the
idea of Roll (1988) who uses the R2 measure to examine to what extent individual stock
price movements are related to the market.

In the following, the correlation coefficient is used as a measurement tool as, in the
simple regression case, the correlation is equal to R. We consider the following question: Is
the individual CDS data correlated to each other via a synthetic market index proxy? The
idea behind this is to find the relevant drivers of the credit risk of a company.* Note that
there is never a clear separation between market risk (price volatility) and credit risk
(default) of a company (Duffie and Singleton 2003). Here, we consider the index correl-
ation of credit risk using CDS spread as well as stock price data.

Analyzing the correlation of the CDS data, we start with the correlation against a
synthetic CDS index generated from the 54 companies in our data sample. We use three
different kinds of indices. The first index equally weights the CDS data and generates an
aggregated number for every trading day. The second index version normalizes the CDS
data by using the average over the 540 sample period. This should ensure that companies
having extremely high spreads do not bias the index too much. The third index version is
weighted by the market capitalization of the respective companies. We neglect daily
changes in market capitalization and use the fixed weights as of July 7, 2006 (the last
day of the sample period) instead.

The mean correlation of the 54 companies to the equal-weighted index is 0.61 with a
standard deviation of 0.28. The normalized index has a mean correlation of 0.63 and
a standard deviation of 0.32. Finally, the cap-weighted index has a mean correlation of 0.57
and a standard deviation of 0.42. Standing alone, these numbers suggest that the CDS

* Of course, several spread components are reflected in the CDS quotes: (i) the default or credit risk, (ii) counterparty
risk, a veritable issue in an over-the-counter (OTC) market, and (iii) the risk premium for taking on default risk. For
example, Amato (2005) argues that CDS spreads in his sample include a risk premium of 1.42 bp. Finally, a liquidity
premium may be considered. These components are not considered here. This is due to practical reasons and as
they do not deliver the major driver of CDS spreads.
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spread is not only solely dependent on the company but also on the other companies.
This does not contradict structural theory, since the CDS spreads should be related to
(correlated) stock prices and asset volatilities.

The second step is now to run the same correlation analysis using the stock prices. If the
structural models do not fall short of their promise, the correlation should approximately
match the CDS correlation for the models to work. This implies that the amount of index
correlation in the CDS spreads should be roughly equal, in level, with the stock
price correlation. The correlation of the stock prices using the same three indices as in
the CDS correlation analysis results in the following numbers. The mean correlation of the
54 companies to the equal-weighted index is 0.56 with a standard deviation of 0.53. The
normalized index has a mean correlation of 0.56 and a standard deviation of 0.53. Finally
the cap-weighted index has a mean correlation of 0.55 and a standard deviation of 0.49.

As the CDS correlation data and the stock price correlation data do not result in
any major improvement in understanding the valuation of credit risk, combining this
information should yield new information. There are manifold clustering options.
We propose a simple clustering of the cross-section of CDS names according to the
following scheme.

11.4.2.2.1 Names in Correlation Cluster 1 (CC1) Both the correlation of the CDS
spread with the index and the correlation of the stock price are positive and furthermore
both correlations are above the average within the sample. In such a scenario, a structural
model where the CDS spread of a company is based on its stock price and its volatility is
reasonable. However, with such a high amount of market correlation, single-name CDS
analysis might not be the perfect choice, because of the fact that not only the company-
specific risk seems to be part of the CDS spread but also the overall market risk level.

11.4.2.2.2 Names in Correlation Cluster 2 (CC2) The correlation of the stock price
is above the sample average, but the correlation of the CDS spread is not. In this scenario,
the implications are more straightforward. When the stock price shows above average
index correlation, but the CDS spread shows below average correlation with its peer group,
then a structural model is quite difficult to imagine. The stock price movement can be
based on a different market expectation than the CDS spread on the one side, or the price
discoveries in the different markets move at different speeds. This means that, e.g., the issue
of a new bond might not have an immediate effect on the stock price, while the additional
debt burden makes the CDS spread move immediately.

11.4.2.2.3 Names in Correlation Cluster 3 (CC3) The CDS spread moves with the
peer group while the stock does not, which may be the case if the CDS spread moves with
the overall risk in the market and the stock price trades on different information. At first
sight this scenario looks quite similar to CC2. Generally, the stock price and the CDS
spread are decoupled, but in a different way. This can, e.g., happen when the stock price is
increasing beyond high levels and the credit spread is already on a very low level and does
not reach zero because of embedded various additional risks. For example, the CDS spread
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may approach the one-digit range and then correlates with the market (as the stock price
does not affect the spread any more).

11.4.2.2.4 Names in Correlation Cluster 4 (CC4) Both the correlation of the CDS
spread with the index as well as the stock price with the index are below the average index
correlation. Here, structural credit risk valuation seems neither supported as in the CC1
case nor questionable as in the CC2 and CC3 cases. Hence, model performance prediction
in this case is vague.

Table 11.5 shows the distribution of the four clusters in our sample. Roughly 50% of our
54 companies fall into the first cluster, CC1. CC2 is the second most probable classification
and the remainder clusters account for less than 30% of the companies.

The pricing results for the correlation clusters CC1 to CC4 based on spread change
correlations are given in Table 11.6 for the CreditGrades model and in Table 11.7 for the
trinomial tree approach. The results show that pricing performance vastly increases to

TABLE 11.5 Distribution of Correlation Clusters CC1 to CC4
within the Credit Default Swap (CDS) Data Sample

Equal-Weighted
(%)

Normalized
(%)

Cap-Weighted
(%)

CC1 54 52 48

CC2 20 22 24

CC3 13 13 15

CC4 13 13 13

TABLE 11.6 Spread Change Correlation According to Correlation
Clusters CC1 to CC4, CreditGrades Model
versus Market

CreditGrades
CC1 CC2 CC3 CC4

Equal-Weighted Index

Mean 0.640 0.189 0.280 0.300

Standard deviation 0.217 0.328 0.244 0.212

Median 0.720 0.236 0.280 0.329

# (out of 54) 29 11 7 7

Normalized Index

Mean 0.660 0.178 0.280 0.300

Standard deviation 0.191 0.313 0.244 0.212

Median 0.722 0.202 0.280 0.329

# (out of 54) 28 12 7 7

Cap-Weighted Index

Mean 0.686 0.165 0.325 0.300

Standard deviation 0.183 0.259 0.259 0.212

Median 0.753 0.223 0.338 0.329

# (out of 54) 26 13 8 7
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above 70% average correlation for the cluster CC1, where both models now show similar
performance. This finding indicates that, in cases with above average index correlation on
the stock and on the CDS sides, the structural pricing approach is most appropriate.

As expected from our discussion above, both structural models indeed show weak
pricing performance for the clusters CC2 and CC3. In cluster CC2, the mean pricing
correlation is at a low level ranging from 15% to 22%. In cluster CC3, the results are
somewhat better. Interestingly, Tables 11.6 and 11.7 show that the trinomial model
performs better than the CreditGrades model particularly in cluster CC4, which may
explain its overall superior performance as documented in Table 11.2. We may argue
that the additional degrees of freedom in model calibration as given by the parameters of
the hazard rate are especially advantageous in a setting where index correlation is weak.

11.4.3 CDS Pricing Examples

This section discusses the CDS pricing of three examples as taken from our overall sample
of 54 companies. We consider these examples in the context of the correlation clustering
results of Section 11.4.2 and provide a graphical inspection. The examples underline the
practicability of our correlation clustering approach, which helps to preselect companies
for which structural pricing models may prove to be suitable.

The first example is taken from the first correlation cluster, CC1, where the CDS and the
stock price follow the synthetic index well. The company is Halliburton (HAL), a member of
the energy sector with about $36 billion in market capitalization. From the given discussion,
this indicates that the models’ performance should typically be good. The results are a

TABLE 11.7 Spread Change Correlation According to Correlation
Clusters CC1 to CC4, Trinomial Model
versus Market

Trinomial
CC1 CC2 CC3 CC4

Equal-Weighted Index

Mean 0.647 0.221 0.245 0.544

Standard deviation 0.234 0.353 0.384 0.272

Median 0.719 0.239 0.311 0.651

# (out of 54) 29 11 7 7

Normalized Index

Mean 0.684 0.171 0.245 0.544

Standard deviation 0.181 0.321 0.384 0.272

Median 0.736 0.192 0.311 0.651

# (out of 54) 28 12 7 7

Cap-Weighted Index

Mean 0.717 0.147 0.295 0.544

Standard deviation 0.160 0.252 0.383 0.272

Median 0.757 0.205 0.338 0.651

# (out of 54) 26 13 8 7
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correlation of 0.909 and a Kendall’s t of 0.673 for the trinomial model and a correlation of
0.925 and a Kendall’s t of 0.623 for the CreditGrades model. Figure 11.4 shows that the
model spread follows themarket spread rather well, where the latter declines from around 80
bp to as low as 20 bp during the sample period.

The second example is a company from the second cluster, CC2. The company is
Autozone Inc. (AZO), a member of the retail sector (about $6 billion in market capital-
ization). From the given discussion, model performance should be weak. The results for the
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trinomial model (correlation: 0.205, Kendall’s t: 0.194) and for the CreditGrades model
(correlation: 0.172, Kendall’s t: 0.195) are indeed disappointing. Figure 11.5 shows that
models and market spreads do not exhibit synchronous moves, sometimes not even
movement in the same direction is given.

The third and final example is part of the fourth cluster, CC4, where the CDS and the
stock price do not follow the synthetic index. The company chosen is Supervalue Inc.
(SVU), a company from the retail sector with about $6 billion in market capitalization.
From the given results, we would predict average model performance. The results for the
trinomial model (correlation: 0.156, Kendall’s t: 0.209) and for the CreditGrades model
(correlation: 0.137, Kendall’s t: 0.200) are indeed mixed. Figure 11.6 illustrates that the
model spread does not closely follow the market in the second-half of the out-of-sample
period. The market CDS spread increases to over 200 bp, but the model CDS stays below
100 bp not capturing information obviously available to the market.

11.5 CONCLUSION
When compared to models based on historical default probabilities, structural credit risk
models are in the unique position to use current market data. The possibility to calculate
credit risk measures from equity market data—namely, stock prices and volatilities—is an
opportunity for credit analysis, which should not be missed.

Unfortunately, we find that the degree to which two prominent model candidates are
able to explain the given market spread is fairly limited. Admittedly, one could make a less
strict judgment by reducing the length of our 2 year out-of-sample period and allow for a
readjustment of the model parameters. Nevertheless, we go one step further in addressing
the question of what are the drivers behind our observation that structural credit risk
models in some cases work well and in others do not. Our main observation is that
when companies’ stock prices and CDS prices correlate with the overall CDS market,
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FIGURE 11.6 Supervalue: Market, trinomial, and CreditGrades spreads.
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the resulting model spreads for such companies confirm better to market spreads. This
idea is puzzling to some extent as one would assume that an assessment of credit risk is
mainly related to the performance and the financial standing of a single company, rather
than to the correlation with the overall CDS market. Our findings would suggest that
structural model spreads fit better to market spreads given that less company-specific
credit risk is involved.
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12.1 INTRODUCTION
The market for credit default swaps (CDSs) shows an enormous growth as documented by
the International Swaps and Derivatives Association (ISDA) in mid-2006. This is in line
with the exponential growth of the market since the early years of this century. Taking a
closer look on the structure of the various products, we see that two-third of the notional
amount outstanding are products on single-name entities, while the remainder are multi-
name instruments. Most single-name CDSs are traded on investment grade companies
(84%), with a relatively large proportion (23%) referenced to sovereigns. The average rating
for the underlying firms is BBB. The dominant maturity is 5 years, covering 80% of the
market. The growth in the credit derivatives market since the year 2000 makes obvious
that researchers like Hull and White (2000) not even had the chance to perform a
reliable testing of their timely theory. Probably due to a lack in sufficient data, a broad
empirical testing of CDS pricing models has not yet been conducted in the literature.
Houweling and Vorst (2005) represent one of the largest studies of a reduced form model
so far, with about 23,000 CDS quotes used, but the study includes CDS data only up to
January 2001, when the CDS market was not yet fully developed. The last few years with
increased bond market liquidity and a well-developed CDS market now provide sufficient
time-series data for a comprehensive empirical study of CDS pricing models.

To our knowledge, this contribution is the first to study the Hull and White (2000)
model’s empirical performance based on a broad sample of liquid CDS-spread quotes. The
model’s attractiveness as a reduced form approach is that it can be implemented based on
observable market data. We use both the standard and the approximate Hull–White
pricing approach. The standard intensity-based no-arbitrage approach requires data
from at least three corresponding liquid corporate bonds. The approximate no-arbitrage
approach requires data from two corresponding liquid corporate bonds. Using an overall
of 63,460 quotes during the period January 1, 2002 to July 7, 2006, we study 47 names in
the standard pricing approach and 64 names in the approximate pricing approach, all from
the Dow Jones CDX North America Investment Grade (DJ CDX.NA.IG) index universe.
We evaluate the pricing performance using spread change correlations and squared relative
pricing errors. Given that liquid bond data with appropriate maturities are available for the
respective companies, both approaches provide satisfying result as measured by spread
change correlations and squared relative pricing errors. Confirming previous results by
Houweling and Vorst (2005), we find that swap rather than Treasury rates should be used
as a proxy for the risk-free rate. Tests on cointegration of Hull–White model and market
spreads show that a stable pricing relationship is present for about 75% of our sample
companies, while the model faces seriously weak performance for the remainder cases.

The literature on CDS valuation can be divided into three major groups: Theory and
models that started with the implementation of structural models, the later developed
intensity-based models, and, finally, empirical evidence including commercial implemen-
tations of credit pricing models. The family of intensity-based models, also known as
reduced form models, assumes that default is an unpredictable event, which is driven by
some latent default intensity process. Well-known representatives are, for example, the
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Jarrow and Turnbull (1995), the Duffie and Singleton (1999), and the Hull and White
(2000) model, denoted as ‘‘Hull–White’’ hereafter. Intensity-based models show several
attractive features. A great benefit lies in their flexibility and mathematical tractability.
Also, Jarrow and Protter (2004) point out that while structural models assume complete
information, they are in fact suffering a lack of information concerning default points and
expected recovery. Furthermore, a modeler who investigates CDS spreads is unlikely to
have superior information with respect to the market, so again reduced form models seem
more appropriate. However, flexibility, which may be an advantage in that a model can be
well fitted to some given data sample, may also prove to be a weakness. Many papers
demonstrate that their approach yields decent pricing results, using one or a few sample
companies. However, in-sample flexibility for some examples, of course, does not predict
how a model will perform out-of-sample and for a broader cross-section of cases.

The rest of the contribution is as follows. Section 12.2 describes our data set. In
Section 12.3, we sketch important ingredients and results of the Hull–White model.
Section 12.4 contains our empirical pricing results for both Hull–White valuation
approaches. Section 12.5 concludes the chapter.

12.2 CREDIT DEFAULT SWAP DATA SET
We pick suitable CDS names from the 125 companies universe of the sixth revision of the
Dow Jones CDX North America Investment Grade Index. This provides us with a broad
coverage of the U.S. market, with mostly liquid CDSs. For our sample, we downloaded
CDS quotes from Open Bloomberg. The remainder data, including bond, treasury, and
swap data, are from Thomson Financial Datastream.

Model implementation requires market data for at least two actively traded bonds for
each obligor name. This reduces our sample to 47 names for the standard Hull–White
valuation approach and to 64 names for the approximate valuation approach. After this
reduction, there are still 63,460 quotes of CDSs remaining, namely 31,860 quotes for the
standard and 41,576 quotes for the approximate valuation method. The data cover the
period from January 1, 2002 to July 7, 2006. Given this, the study is one of the broadest
empirical studies on the applicability of intensity-based models for the pricing of CDS
spreads.

Our data represent U.S. investment grade issuers. The sectors Consumer Products and
Retail together with Basic Industrials represent somewhat more than 55% of the market
capitalization of our sample. These sectors are followed by Financials (21%), Technology,
Media & Telecommunication (15%), and finally Energy (8%). This is quite in line with the
overall composition of the CDX-index and demonstrates that the choice of our sample
does not yield a substantial bias with respect to industry composition. Concerning the
rating classes, most of our sample obligors fall in the A and BBB rating category, which is
in line with the rating of the majority of the indexed companies. In detail, 30% of our
obligors have an A rating and nearly 65% have a BBB rating. The 5% remainder is rated
AAA or AA, while lower rating classes are negligible (as they are removed half-annually
due to the fact that the index is based on investment grade companies only). Table 12.1
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shows the CDS quotes’ rating categories in the overall sample as well as by sample year. We
see that the AA-rating class somewhat loses in share while the other rating classes remain
pretty stable. Quote availability raises remarkably from 2002 to 2003. Note that a lower
number of quotes in the year 2006 result due to the fact that we cover less than half of that
year within our sample.

Since our sample commences with relatively recent data, starting as late as January 1,
2002, the problem of missing CDS-quotes was rather negligible. Less than 0.2% of the data
were missing, normally not more than 1 or 2 days in a row, so we could use linear
interpolation to close these minor gaps. Weekends and holidays are not contained in the
sample as only trading days are reported. Note that the CDS data represent averages
between quoted bid and ask prices since actual transaction is not publicly available.* For
the default-free interest rates, we choose treasury rates as well as swap rates as provided by
Thomson Financial Datastream. The data were complete and hence no interpolation was
needed. The same holds for the corporate bond data. We choose bonds with complete time
series within our sample period, neither with any data missing nor any obvious data errors
appearing.

12.3 HULL–WHITE CREDIT DEFAULT SWAP VALUATION
For the valuation of CDSs, we will use the Hull–White model. This includes the Hull–
White standard intensity no-arbitrage pricing approach as well as their approximate
no-arbitrage pricing approach. Skipping most of the derivation, we give a brief review of
both valuation approaches.

12.3.1 Hull–White Intensity Model Valuation

In the Hull–White intensity model, the set of assumptions contains that default events,
treasury rates, and recovery rates are all mutually independent and that the claim made in
the event of a default is the face value plus the accrued interest. The notional principal is
one currency unit. The maturity of the CDS is T, and q(t) describes the risk-neutral
probability of default at any given point of time t as determined in time zero. Subsequently,
p describes the risk-neutral probability of no credit event occurring between time 0 and

TABLE 12.1 Credit Default Swap Quotes’ Rating Categories during the Period
January 1, 2002 to July 7, 2006

Rating 2002 2003 2004 2005 2006 Avg.

AAA 208 261 262 260 135 1,126

AA 192 522 524 520 270 2,028

A 2,304 4,452 4,978 4,940 2,565 19,239

BBB 3,972 9,196 10,914 11,180 5,805 41,067

6,676 14,431 16,678 16,900 8,775 63,460

* For some additional details on the data, see Stewart and Wagner (2008) in Chapter 11 of this volume who start from
the same initial CDS universe.
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time T. The expected recovery rate in a risk-neutral world R̂ is independent of the default
time and is the same for all bonds of an issuer. The present value of payments at the rate of
one currency unit per year on payment dates between time 0 and time t is u(t). The term
e(t) represents the present value of an accrual payment with a payment date immediately
preceding time t. The present value of one currency unit received at time t will be v(t). The
total payments per year made by a CDS buyer (i.e., the insurance buyer) are denoted as w.
The payments last until maturity T or a credit event, whichever occurs sooner. Finally, A(t)
is the time t accrued interest on the reference obligation.

Collecting all payment streams that a CDS will expectedly provide, the present value of
the expected payoffs minus the present value of the expected payments is

ðT
0

[1� R̂� A(t)R̂]q(t)u(t)dt � w
ðT
0

q(t)[u(t)þ e(t)]dt � wpu(T)

The fair spread of the CDS, s, is the value of w that makes this expression equal to zero, i.e.,

s ¼

ÐT
0
[1� R̂� A(t)R̂]q(t)v(t)dt

ÐT
0
q(t)[u(t)þ e(t)]dt þ pu(T)

(12:1)

The spread s represents the total sum of payments per year for a newly issued CDS as a
relative of the swap’s notional principal.

12.3.2 Hull–White Approximate Valuation

Put very simple, a portfolio consisting of a CDS and an underlying bond of the same obligor
both having maturity T should be risk-free. It should, therefore, have the same payoff as a
treasury bond with maturity T. Assuming for simplicity that the treasury curve is flat and
that interest rates are constant, a simple no-arbitrage argument then results in the spread

s*¼maturity-T corporate bond yield—maturity-T treasury bond yield,

which will typically overestimate the true spread s (Hull and White 2000). However, we are
able to close most of the gap between s* and s. Let A*(t) represent the time-t accrued
interest as a percentage of the face value on a T-year par yield bond that is issued at time
zero by the reference entity with the same payment dates as the swap. We may refer to this
bond as the underlying par yield corporate bond. As an approximation, use a(t) as the
average value for A(t) under the integral in Equation 12.1 and analogously define a*(t) as
the average value for A*(t), 0< t<T. This yields an approximate formula for s, where

s ¼ s*(1� R̂� aR̂)

(1� R̂)(1þ a*)
(12:2)
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12.4 EMPIRICAL RESULTS
This section summarizes our empirical results from an analysis of the data set previously
described in Section 12.2. We calculate the theoretical CDS spread for both Hull–White
pricing approaches as given in Section 12.3 and then evaluate the results from various
perspectives.

In their paper, Hull and White come to the conclusion that the approximate valuation
(Equation 12.2) ends up with results only differing marginally from the intensity model
spread (Equation 12.1). This would constitute a quick and simple method for the applied
valuation of CDSs. Hence, we address both, respective model performance as compared to
the market as well as relative pricing performance of the two Hull–White approaches.
Additionally, we consider the swap rate as a proxy for the risk-free interest rate as an
alternative to the treasury rate, which may be a bad proxy due to tax and other reasons
(Elton et al. 2001). We start our exposition with the approximate approach, then turn to the
standard intensity-based approach, and finally discuss some model sensitivity examples.

12.4.1 Approximate Valuation Results

We start with the calculation of CDS spreads with the Hull–White approximate valuation
first using the treasury rate as a proxy for the risk-free interest rate. For our calculations, we
need the 5 year CDS spread and, in theory, a 5 year corporate bond. As this is rather
unlikely to find, we decided to interpolate and hence require at least one bond maturing in
between 1 and 5 years and one bond maturing in 5–10 years. We decline shorter maturities
as we find prices obviously not to reflect usual market spread. Also, we decline bonds that
would fit the maturity range, but obviously show not to be liquid as their prices are subject
to infrequent and large daily price jumps. This results in a data sample of 64 companies
and 41,567 quotes.

We find that using the treasury rate misestimates the CDS spread while using the swap
rate gives better results. We calculate mean squared relative pricing errors (MSRPE) via
deriving model versus market spreads for each quote and setting them relative to the
observed market spread before taking squares. We sum up the MSRPE results for the
whole sample in Table 12.2. It becomes obvious from the relatively large MSRPE statistic of
0.874 versus 0.273 that using the treasury rate yields inferior, i.e., biased, CDS spreads.*

In a further investigation on the performance of the models, we consider whether model
and market spreads tend to move together and if they do, to what extent. To this aim, the
average correlation between model and market spread changes is reported in Table 12.2 as
well. We see a slight but obvious advantage of the performance again under the swap rate.

Table 12.2 allows us to have a closer look at the cross-sectional variation of the spread
change correlations and MSRPE statistics in our sample. It turns out that the correlation
statistics end up in a large corridor between zero or even negative correlation and a nearly
perfect correlation of more than 97%. The same results for the spread of the squared
differences. The overall outcome with a mean correlation of nearly 60% and median in

* Unreported results show that this holds throughout all industry sectors where the treasury rate performance is
between 2.3 and 5.1 times worse.
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MSRPE of 23.2% (i.e., a root-MSRPE of 48.2%) is not an excellent, but a satisfying result
for the simple model (under the swap rate). Note however that the numbers have to be
seen in the context of declining spreads and a sample that is completely in the investment
grade sector. On July 7, 2006, 60% of our sample obligors end up with a market CDS
spread of less than 40 bp, where small absolute spread changes, which may be related to
market issues other than credit risk, imply large relative changes.

12.4.2 Intensity Model Valuation Results

We now implement the Hull–White intensity-based model and calculate theoretical CDS
spreads. Since we discussed above that the swap rate is the appropriate proxy for the risk-free
rate, we perform all calculations using only the swap rate. As it is not possible to observe the
default intensity q(t) of Section 3.1, we use discrete data of all available bonds and interpolate
in-between. Therefore, we need liquid bonds to get an appropriate estimate for the yield and
default intensity curves. Theminimumnumber is three bonds. Again, we require at least one
bond with maturity less than 5 years and one bond with maturity beyond 5 years.We always
include all outstanding bonds of the respective obligor. The beneficial effect is that we avoid
bias by not choosing only some bonds, while, as an adverse effect, wemay also include bonds,
which more or less obviously lack liquidity. As a result, 47 companies providing 31,860
quotes are included in our sample. We point out that 46 of the 47 companies were contained
in our study of the approximate Hull–White approach. Hence, our samples largely overlap
and we now basically study a subset of the previous names.

We start by taking a look at the correlation coefficient between our model spreads and
the market spread changes. The results are presented in Table 12.3. Once the results are put
in contrast to our results from the approximate valuation above, it turns out that the
intensity model valuation, in fact, yields higher average spread change correlation results
(65.6%) than the simple approximate valuation approach (58.7%). A median correlation of

TABLE 12.2 Correlation and MSRPE Statistics for
Hull–White Approximate Valuation
Based on Treasury and Swap Rates

Treasury Swap

Correlation

Median 0.549 0.632

Mean 0.526 0.586

Standard deviation 0.325 0.294

Minimum �0.236 �0.062
Maximum 0.973 0.970

MSRPE

Median 0.797 0.232

Mean 0.874 0.273

Standard deviation 0.367 0.132

Minimum 0.135 0.108

Maximum 1.878 0.706
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71.2% is a highly satisfactory result with a standard deviation, which is remarkably smaller
(21.9% versus 29.4%).*

However, the situation changes once we consider the squared relative pricing errors in
Table 12.3. In this case, a mean error of 27.3% for the approximate valuation approach
clearly dominates a mis-pricing measure of 43.8% for the intensity approach. Also, the
results on cross-sectional pricing stability here do not seem to support the intensity
approach. As it occurs, the intensity-based approach seems to be more prone to pricing
bias than the approximate approach.

Given the above results, we may conclude that there is no clear answer to the question
whether intensity valuation dominates approximate valuation or vice versa. Still we have to
point out that, to some extend, our results may relate to sample selection bias. With the
approximate pricing, we choose the most liquid and perfect-fitting bonds only, while with
intensity pricing we always use the whole set of available bonds to derive the default
intensity curve. It could be that pricing bias in the intensity approach is related to the use of
mis-priced low liquidity bonds. To investigate this issue, we next consider our pricing
statistics for different sectors and rating classes in Tables 12.4 and 12.5.

In Table 12.4, the spread correlation results clearly favor the Basic Industrials and the
Technology, Media & Telecommunication sectors which, due to intensity modeling, show
absolute improvements in correlation of 15.4% and 9.2%, respectively. We point out that
that these sector companies often have a wide range of bonds outstanding, giving us plenty
of data for calculating default density curves. On the rating side, lower ratings improve

TABLE 12.3 Correlation and MSRPE Statistics for
Hull–White Approximate and Intensity-
Based Valuation Using Swap Rates

Approximate Intensity

Correlation

Median 0.632 0.712

Mean 0.587 0.656

Standard deviation 0.294 0.219

Minimum �0.062 0.114

Maximum 0.970 0.948

MSRPE

Median 0.232 0.372

Mean 0.273 0.438

Standard deviation 0.132 0.212

Minimum 0.108 0.167

Maximum 0.706 1.014

* Looking at single cross-sectional spread change correlations, we observe that in some cases one model approach
obviously fails while the other provides excellent results. Apparently, this was a matter of one bond being seriously
mis-priced due to liquidity problems or other factors we could not monitor.
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their performance under intensity modeling especially with the BBB-rating now reaching
67.6% spread change correlation.*

The MSRPE results of Table 12.5 confirm the bias issue with the intensity model
approach. For the sectors, best performance now is in Consumer Products and Retail as
well as in Energy sectors. Basic Industrials and Technology, Media & Telecommunication
sectors now perform mediocre when compared to the approximate pricing approach.
Hence, this supports the hypothesis that a large number of available bonds may be to
improve spread correlation while it does not reduce pricing bias. In Table 12.5, lower-rated
bonds appear to be the best performers for intensity valuation.

TABLE 12.4 Correlation Statistics for Hull–White
Approximate and Intensity-Based Valuation
According to Sectors and Ratings

Approximate Intensity

Correlation

Consumer Products 0.575 0.580

Energy 0.698 0.636

Financials 0.544 0.606

Basic Industrials 0.563 0.717

Technology 0.653 0.744

AAA 0.847 0.533

AA 0.550 0.576

A 0.477 0.613

BBB 0.627 0.676

Mean 0.526 0.656

TABLE 12.5 MSRPE Statistics for Hull–White Approximate
and Intensity-Based Valuation According to
Sectors and Ratings

Approximate Intensity

MSRPE

Consumer Products 0.258 0.369

Energy 0.180 0.368

Financials 0.274 0.489

Basic Industrials 0.266 0.462

Technology 0.310 0.484

AAA 0.528 1.014

AA 0.195 0.763

A 0.337 0.571

BBB 0.230 0.368

Mean 0.273 0.438

* The decline in the AAA category has to be considered as random due to the fact that only one company is contained
in that subsample.
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12.4.3 Spread Cointegration: Are There Stable Pricing Relationships?

The results of Sections 4.1 and 4.2 show relatively satisfying pricing results based on average
spread change correlations and squared pricing errors. We now examine cointegration in
market versus Hull–White approximate model spreads. In case we find cointegration being
present, this confirms a stable pricing relationship and supports a potential use of the model
for trading and arbitrage strategies. Differences between model spread and market spread
then have a stationary distribution during time, including constant mean and variance.

We test the null hypothesis that there is cointegration including a constant term on the
10%, 5%, and 1% signification level. The estimation is done using the classical Dickey–
Fuller test for a unit-root on the differences between market and model spread. Once we
run the test over the 64 obligors sample, we find that for 75% of our obligors we can
confirm the existence of cointegration at the 95% or even 99% confidence level.* This result
supports the general validity of the pricing model. However, it also points out that the
Hull–White approximate model (due to various disturbing factors as given during our
sample period) fundamentally fails for the remainder 25% of our 64 obligors.

We observe that spread cointegration is supported especially for companies providing
sufficient bond data. In such individual cases, trading strategies could be derived given
that the market spread deviates from the model spread. The spreads of AutoZone Inc. in
Figure 12.1 may serve as an example, where price deviations appear stable during time and
occasionally vanish over the longer run.

12.4.4 Sensitivities for Credit Default Swap Valuation Examples

In this section, we briefly present three companies that turned out to provide a decent
model fit with a spread change correlation of more than 90%. We consider high, medium,
and low CDS market spread levels and chose Walt Disney Co., Clear Channel Inc., and
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FIGURE 12.1 AutoZone Inc., Market and Hull–White approximate CDS spreads.

* These results go in hand with the previous results. Once we find individual spread change correlations reaching
levels of 80% or more, we can in most cases confirm cointegration at least at the 5% level.
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Supervalu Inc. as example companies. On September 28, 2006, these had CDS spreads of
27.7, 116.3, and 185.3 bp, respectively.

We perform an analysis of the sensitivity of the Hull–White approximate model with
respect to the main input-parameters, namely the recovery rate (Figure 12.2) and the risk-free
interest rate (Figure 12.3). In Figure 12.2, the recovery rate is shown to be of subordinated
importance, at least as long as it does not exceed values of 65% to 70%, a scenario, which
normally seems rather unlikely. Inside this range, assuming recovery rates from 0% to 60%,
the impact on the estimated CDS spreads is in the range of 1 to 5 bp, i.e., less than 5% of the
respective absolute CDS spreads. In contrast to that, the level of the risk-free interest rate has a
remarkable influence on the calculated CDS spreads in Figure 12.3. An interest rate reduction
of 50 bp results in a spread increase of around 48 bp for Clear Channel Inc. and Supervalu Inc.
This result is intuitive, since—ceteris baribus—CDS model spreads are proportional to bond
minus risk-free rates. As can also be seen from Figure 12.3, a lower barrier is present in that the
interest rate sensitivity shrinks to zero as the spread approaches zero.
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FIGURE 12.2 Sensitivity of the model spread with respect to the recovery rate: three
examples.
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FIGURE 12.3 Sensitivity of the model spread with respect to the risk-free rate: three examples.
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12.5 CONCLUSION
Although the calibration of an intensity model may provide brilliant results for several
specific obligors, the present study shows that CDS pricing faces problems when applied to
a broader cross-section of names. These problems start with liquidity issues and the
availability of input variables and continue with a large cross-sectional dispersion of the
pricing performance of a given model. We suggest that an important factor, which
determines Hull–White pricing performance, is first of all the input data, while other
factors such as sector specification and rating class may also play a role. This could be
addressed in future research.

Despite these shortcomings, we stress that even the approximate Hull–White valuation
approach can indeed produce satisfactory results. This is a remarkable result as pricing is
achieved without any in-sample fitting. Especially in the BBB rating class, the approximate
approach competes very well to the intensity approach, which requires a larger number of
input data. The latter approach may achieve superior pricing results especially for the high-
quality AAA to A rating classes. All in all, both Hull–White approaches represent powerful
pricing tools, ready to calculate fair CDS spreads.

Given partly overlapping CDX samples, we may compare the results of this study to
those of Stewart and Wagner (2008) in Chapter 11. Using percentage median spread
change correlations as the aggregate pricing performance measure indicates that a tentative
performance ranking would imply the following order: Hull–White intensity (71%) �
Hull–White approximate (63%) � trinomial trees (60%) � CreditGrades (42%). This
suggests that Hull–White pricing may on average well compete with structural pricing
approaches such as CreditGrades or with hybrid valuation via trinomial trees. Future
research may address CDS pricing models and their performance in more detail.
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Part IV
Default Risk, Recovery Risk, and Rating
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13.1 INTRODUCTION
Credit risk affects virtually every financial contract. Therefore, the measurement, pricing,
and management of credit risk have received much attention from financial economists,
bank supervisors and regulators, and from financial market practitioners. Following the
recent attempts of the Basel Committee on Banking Supervision (1999, 2001) to reform the
capital adequacy framework by introducing risk-sensitive capital requirements, significant
additional attention has been devoted to the subject of credit-risk measurement by the
international regulatory, academic, and banking communities.

This chapter analyzes and measures the association between aggregate default and
recovery rates on corporate bonds, and seeks to empirically explain this critical relation-
ship. After a brief review of the way credit-risk models explicitly or implicitly treat the
recovery rate variable, Section 13.2 examines the recovery rates on corporate bond defaults
over the period 1982–2002. We attempt to explain recovery rates by specifying rather
straightforward linear, logarithmic, and logistic regression models. The central thesis is
that aggregate recovery rates are basically a function of supply and demand for the
securities. Our econometric univariate and multivariate time-series models explain a
significant portion of the variance in bond recovery rates aggregated across all seniority
and collateral levels. In Sections 13.3 and 13.4 we briefly examine the effects of the
relationship between defaults and recoveries on credit VaR (value at risk) models as well
as on the procyclicality effects of the new capital requirements proposed by the Basel
Committee, and then conclude with some remarks on the general relevance of our results.

13.2 RELATIONSHIP BETWEEN DEFAULT RATES AND RECOVERY
RATES IN CREDIT-RISK MODELING:
A REVIEW OF THE LITERATURE

Credit-risk models can be divided into three main categories: (1) first generation struc-
tural-form models, (2) second generation structural-form models, and (3) reduced-form
models. Rather than going through a discussion of each of these well-known approaches
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and their advocates in the literature, we refer the reader to our earlier report for ISDA
(2001) which carefully reviews the literature on the conceptual relationship between the
firm’s probability of default (PD) and the recovery rate (RR) after default to creditors.*

During the last few years, new approaches explicitly modeling and empirically investi-
gating the relationship between PD and RR have been developed. These include Frye
(2000a,b), Jokivuolle and Peura (2003), and Jarrow (2001). The model proposed by Frye
draws from the conditional approach suggested by Finger (1999) and Gordy (2000). In
these models, defaults are driven by a single systematic factor—the state of the economy—
rather than by a multitude of correlation parameters. The same economic conditions are
assumed to cause default to rise, for example, and RRs to decline. The correlation between
these two variables therefore derives from their common dependence on the systematic
factor. The intuition behind Frye’s theoretical model is relatively simple: If a borrower
defaults on a loan, a bank’s recovery may depend on the value of the loan collateral. The
value of the collateral, like the value of other assets, depends on economic conditions.
If the economy experiences a recession, RRs may decrease just as default rates tend to
increase. This gives rise to a negative correlation between default rates and RRs. The model
originally developed by Frye (2000a) implied recovery from an equation that deter-
mines collateral. His evidence is consistent with the most recent U.S. bond market data,
indicating a simultaneous increase in default rates and losses given default (LGDs)y in
1999–2001.z Frye’s (2000b,c) empirical analysis allows him to conclude that in a severe
economic downturn, bond recoveries might decline 20%–25% points from their normal-
year average. Loan recoveries may decline by a similar amount, but from a higher level.

Jarrow (2001) presents a new methodology for estimating RRs and PDs implicit in both
debt and equity prices. As in Frye (2000a,b), RRs and PDs are correlated and depend on the
state of the economy. However, Jarrow’s methodology explicitly incorporates equity prices
in the estimation procedure, allowing the separate identification of RRs and PDs and the use
of an expanded and relevant dataset. In addition, the methodology explicitly incorporates a
liquidity premium in the estimation procedure, which is considered essential in the light of
the high variability in the yield spreads between risky debt and U.S. Treasury securities.

A rather different approach is the one proposed by Jokivuolle and Peura (2003). The
authors present a model for bank loans in which collateral value is correlated with the PD.
They use the option pricing framework for modeling risky debt: The borrowing firm’s total
asset value determines the event of default. However, the firm’s asset value does not
determine the RR. Rather, the collateral value is in turn assumed to be the only stochastic
element determining recovery. Because of this assumption, the model can be implemented
using an exogenous PD, so that the firm’s asset value parameters need not be estimated. In
this respect, the model combines features of both structural- and reduced-form models.
Assuming a positive correlation between a firm’s asset value and collateral value, the

* See Altman et al. (2001) for a formal discussion of this relationship.
y LGD indicates the amount actually lost (by an investor or a bank) for each dollar lent to a defaulted borrower.
Accordingly, LGD and RR always add to one. One may also factor into the loss calculation of the last coupon
payment that is usually not realized when a default occurs (Altman 1989).
z Gupton et al. (2001) provide clear empirical evidence of this phenomenon.
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authors obtain a similar result as that of Frye’s (2000a): realized default rates and recovery
rates have an inverse relationship.

Using Moody’s historical bond market data, Hu and Perraudin (2002) examine the
dependence between recovery rates and default rates. They first standardize the quarterly
recovery data in order to filter out the volatility of recovery rates given by the variation over
time in the pool of borrowers rated by Moody’s. They find that correlations between
quarterly recovery rates and default rates for bonds issued by U.S.-domiciled obligors are
0.22 for post 1982 data (1983–2000) and 0.19 for the 1971–2000 period. Using extreme
value theory and other nonparametric techniques, they also examine the impact of this
negative correlation on credit VaR measures and find that the increase is statistically
significant when confidence levels exceed 99%.

Bakshi et al. (2001) enhance the reduced-form models briefly presented above to allow
for a flexible correlation between the risk-free rate, the default probability, and the recovery
rate. On the basis of some preliminary evidence published by rating agencies, they force
recovery rates to be negatively associated with default probability. They find some strong
support for this hypothesis through the analysis of a sample of BBB-rated corporate bonds:
More precisely, their empirical results show that, on average, a 4% worsening in the (risk-
neutral) hazard rate is associated with a 1% decline in (risk-neutral) recovery rates.

Compared to the above mentioned contributions, this study extends the existing
literature in three main directions. First, the determinants of defaulted bonds’ recovery
rates are empirically investigated. While most of the above mentioned recent studies
concluded in favor of an inverse relationship between these two variables, based on the
common dependence on the state of the economy, none of them empirically analyzed the
specific determinants of recovery rates. While our analysis shows empirical results that
appear consistent with the intuition of a negative correlation between default rates and
RRs, we find that a single systematic risk factor—i.e., the performance of the economy—is
less predictive than the above mentioned theoretical models would suggest.

Second, our study is the first one to examine, both theoretically and empirically, the role
played by supply and demand of defaulted bonds in determining aggregate recovery rates.
Our econometric univariate and multivariate models assign a key role to the supply of
defaulted bonds and show that these variables together with variables that proxy the size of
the high yield bond market explain a substantial proportion of the variance in bond
recovery rates aggregated across all seniority and collateral levels.

Third, our simulations show the consequences that the negative correlation between default
and recovery would have onVaRmodels and on the procyclicality effect of the capital require-
ments recentlyproposedby theBaselCommittee. Indeed,whileour results on the impact of this
correlation on credit-risk measures (such as unexpected loss and value at risk) are in line with
the ones obtained by Hu and Perraudin (2002), they show that, if a positive correlation
highlighted by bond data were to be confirmed by bank data, the procyclicality effects of
‘‘Basel 2’’ might be even more severe than expected if banks use their own estimates of LGD
(as in the ‘‘advanced’’ internal ratings-based approach, also known as the ‘‘IRB approach’’).

As concerns specifically the Hu and Perraudin paper, it should be pointed out that they
correlate recovery rates (or percentage of par which is the same thing) with issuer-based
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default rates. Our models assess the relationship between dollar-denominated default and
recovery rates and, as such, can assess directly the supply=demand aspects of the defaulted
debt market. Moreover, besides assessing the relationship between default and recovery
using ex post default rates, we explore the effect of using ex ante estimates of the future
default rates (i.e., default probabilities) instead of actual, realized defaults. As will be
shown, however, while the negative relationship between RR and both ex post and
ex ante default rates is empirically confirmed, probabilities of default show a considerably
lower explanatory power. Finally, it should be emphasized that while our chapter and the
one by Hu and Perraudin reach similar conclusions, albeit from very different approaches
and tests, it is important that these results become accepted and are subsequently reflected
in future credit-risk models and public-policy debates and regulations. For these reasons,
concurrent confirming evidence from several sources are beneficial, especially if they are
helpful in specifying fairly precisely the default rate=recovery rate nexus.

13.3 EXPLAINING AGGREGATE RECOVERY RATES ON
CORPORATE BOND DEFAULTS: EMPIRICAL RESULTS

The average loss experience on credit assets is well documented in studies by the various
rating agencies (Moody’s, S&P, and Fitch) as well as by academics.* Recovery rates have
been observed for bonds, stratified by seniority, as well as for bank loans. The latter asset
class can be further stratified by capital structure and collateral type (Van de Castle and
Keisman 2000). While quite informative, these studies say nothing about the recovery
versus default correlation. The purpose of this section is to empirically test this relationship
with actual default data from the U.S. corporate bond market over the last two decades. As
pointed out in Section 13.1, there is strong intuition suggesting that default and recovery
rates might be correlated. Accordingly, this section of our study attempts to explain the
link between the two variables, by specifying rather straightforward statistical models.y

We measure aggregate annual bond recovery rates (henceforth: BRR) by the weighted
average recovery of all corporate bond defaults, primarily in the United States, over the
period 1982–2001. The weights are based on the market value of defaulting debt issues of
publicly traded corporate bonds.z The logarithm of BRR (BLRR) is also analyzed.

* See Altman and Kishore (1996), Altman and Arman (2002), FITCH (1997, 2001), Standard and Poor’s (2000).
y We will concentrate on average annual recovery rates but not on the factors that contribute to understanding and
explaining recovery rates on individual firm and issue defaults. Madan and Unal (1998) propose a model for
estimating risk-neutral expected recovery rate distributions, not empirically observable rates. The latter can be
particularly useful in determining prices on credit derivative instruments, such as credit default swaps.
z Prices of defaulted bonds are based on the closing ‘‘bid’’ levels on or as close to the default date as possible. Precise-
date pricing was only possible in the last 10 years, or so, since market-maker quotes were not available from the
NYU Salomon Center database prior to 1990 and all prior date prices were acquired from secondary sources,
primarily the S&P Bond Guides. Those latter prices were based on end-of-month closing bid prices only. We feel
that more exact pricing is a virtue since we are trying to capture supply and demand dynamics which may impact
prices negatively if some bondholders decide to sell their defaulted securities as fast as possible. In reality, we do not
believe this is an important factor since many investors will have sold their holdings prior to default or are more
deliberate in their ‘‘dumping’’ of defaulting issues.
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The sample includes annual and quarterly averages from about 1300 defaulted bonds
for which we were able to get reliable quotes on the price of these securities just after default.
We utilize the database constructed and maintained by the NYU Salomon Center, under
the direction of one of the authors. Our models are both univariate and multivariate least
square regressions. The univariate structures can explain up to 60% of the variation of
average annual recovery rates, while the multivariate models explain as much as 90%.

The rest of this section will proceed as follows. We begin our analysis by describing the
independent variables used to explain the annual variation in recovery rates. These include
supply-side aggregate variables that are specific to the market for corporate bonds, as well
as macroeconomic factors (some demand side factors, like the return on distressed bonds
and the size of the ‘‘vulture’’ funds market, are discussed later). Next, we describe the
results of the univariate analysis. We then present our multivariate models, discussing the
main results and some robustness checks.

13.3.1 Explanatory Variables

We proceed by listing several variables we reasoned could be correlated with aggregate
recovery rates. The expected effects of these variables on recovery rates will be indicated by
a þ=� sign in parentheses. The exact definitions of the variables we use are:

BDR (�): The weighted average default rate on bonds in the high yield bond market and
its logarithm (BLDR, �). Weights are based on the face value of all high yield
bonds outstanding each year and the size of each defaulting issue within a
particular year.*

BDRC (�): One year change in BDR.

BOA (�): The total amount of high yield bonds outstanding for a particular year
(measured at midyear in trillions of dollars) and represents the potential
supply of defaulted securities. Since the size of the high yield market has
grown in most years over the sample period, the BOA variable is picking up a
time-series trend as well as representing a potential supply factor.

BDA (�): We also examined the more directly related bond defaulted amount as an
alternative for BOA (also measured in trillions of dollars).

GDP (þ): The annual GDP growth rate.

GDPC (þ): The change in the annual GDP growth rate from the previous year.

* We did not include a variable thatmeasures the distressed, but not defaulted, proportion of the high yieldmarket since
we do not know of a time-series measure that goes back to 1987. We define distressed issues as yielding more than
1000 basis points over the risk-free 10 year Treasury bond rate. We did utilize the average yield spread in the market
and found it was highly correlated (0.67) to the subsequent one year’s default rate and hence did not add value (see
discussion below). The high yield bond yield spread, however, can be quite helpful in forecasting the following year’s
BDR, a critical variable in our model (see our discussion of a default probability prediction model in Section 13.2.6).
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GDPI (�): Takes the value of 1 when GDP growth was less than 1.5% and 0 when GDP
growth was greater than 1.5%.

SR (þ): The annual return on the S&P 500 stock index.

SRC (þ): The change in the annual return on the S&P 500 stock index from the previous
year.

13.3.2 Basic Explanatory Variable: Default Rates

It is clear that the supply of defaulted bonds is most vividly depicted by the aggregate
amount of defaults and the rate of default. Since virtually all public defaults most
immediately migrate to default from the noninvestment grade or ‘‘junk’’ bond segment
of the market, we use that market as our population base. The default rate is the par value
of defaulting bonds divided by the total amount outstanding, measured at face values.
Table 13.1 shows the default rate data from 1982–2001, as well as the weighted average

TABLE 13.1 Default Rates, Recovery Rates, and Losses

Year

Par Value
Outstandinga

($ MMs)

Par Value
of Defaultsb

($ MMs)
Default
Rate (%)

Weighted Price
after Default

(Recovery Rate)
Weighted

Coupon (%)
Default
Lossc (%)

2001 649,000 63,609 9.80 25.5 9.18 7.76

2000 597,200 30,295 5.07 26.4 8.54 3.95

1999 567,400 23,532 4.15 27.9 10.55 3.21

1998 465,500 7464 1.60 35.9 9.46 1.10

1997 335,400 4200 1.25 54.2 11.87 0.65

1996 271,000 3336 1.23 51.9 8.92 0.65

1995 240,000 4551 1.90 40.6 11.83 1.24

1994 235,000 3418 1.45 39.4 10.25 0.96

1993 206,907 2287 1.11 56.6 12.98 0.56

1992 163,000 5545 3.40 50.1 12.32 1.91

1991 183,600 18,862 10.27 36.0 11.59 7.16

1990 181,000 18,354 10.14 23.4 12.94 8.42

1989 189,258 8110 4.29 38.3 13.40 2.93

1988 148,187 3944 2.66 43.6 11.91 1.66

1987 129,557 1736 1.34 62.0 12.07 0.59

1986 90,243 3156 3.50 34.5 10.61 2.48

1985 58,088 992 1.71 45.9 13.69 1.04

1984 40,939 344 0.84 48.6 12.23 0.48

1983 27,492 301 1.09 55.7 10.11 0.54

1982 18,109 577 3.19 38.6 9.61 2.11

Weighted average 4.19 37.2 10.60 3.16

Note: Default rate data from 1982–2001 are shown, as well as the weighted average annual recovery rates and
the loss rates. The time series show a high correlation (75%) between default and recovery rates.

a Measured at midyear, excludes defaulted issues.
b Does not include Texaco’s bankruptcy in 1987.
c Includes lost coupon as well as principal loss.
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annual recovery rates (our dependent variable) and the default loss rate (last column). Note
that the average annual recovery is 41.8% (weighted average 37.2%) and the weighted
average annual loss rate to investors is 3.16%.* The correlation between the default rate and
the weighted price after default amounts to .75.

13.3.3 Demand and Supply of Distressed Securities

The logic behind our demand=supply analysis is both intuitive and important, especially,
since as we have seen, most credit-risk models do not formally and statistically consider
this relationship. On a macroeconomic level, forces that cause default rates to increase
during periods of economic stress also cause the value of assets of distressed companies to
decrease. Hence the securities’ values of these companies will likely be lower. While the
economic logic is clear, the statistical relationship between GDP variables and recovery
rates is less significant than what one might expect. We hypothesized that if one drills
down to the distressed firm market and its particular securities, we can expect a more
significant and robust negative relationship between default and recovery rates.y

The principal purchasers of defaulted securities, primarily bonds and bank loans, are
niche investors called distressed asset or alternative investment managers—also called
vultures. Prior to 1990, there was little or no analytic interest in these investors, indeed
in the distressed debt market, except for the occasional anecdotal evidence of performance
in such securities. Altman (1991) was the first to attempt an analysis of the size and
performance of the distressed debt market and estimated, based on a fairly inclusive
survey, that the amount of funds under management by these so-called vultures was
at least $7.0 billion in 1990 and if you include those investors who did not respond
to the survey and nondedicated investors, the total was probably in the $10–$12 billion
range. Cambridge Associates (2001) estimated that the amount of distressed assets under
management in 1991 was $6.3 billion. Estimates since 1990 indicate that the demand
did not rise materially until 2000–2001, when the estimate of total demand for distressed
securities was about $40–$45 billion as of December 31, 2001 and $60–$65 billion in 1 year
later (Altman 2003). So, while the demand for distressed securities grew slowly in the 1990s
and early in the next decade, the supply (as we will show) grew enormously.

* The loss rate is impacted by the lost coupon at default as well as the more important lost principal. The 1987 default
rate and recovery rate statistics do not include the massive Texaco default since it was motivated by a lawsuit which
was considered frivolous resulting in a strategic bankruptcy filing and a recovery rate (price at default) of over 80%.
Including Texaco would have increased the default rate by over 4% and the recovery rate to 82% (reflecting the huge
difference between the market’s assessment of asset values versus liabilities, not typical of bankrupt companies). The
results of our models would be less impressive, although still quite significant, with Texaco included.
y Consider the latest highly stressful period of corporate bond defaults in 2000–2002. The huge supply of bankrupt
firms’ assets in sectors like telecommunications, airlines, and steel, to name a few, has had a dramatic negative
impact on the value of the firms in these sectors as they filed for bankruptcy and attempted a reorganization under
Chapter 11. Altman (2003) estimated that the size of the U.S. distressed and defaulted public and private debt
markets swelled from about $300 billion (face value) at the end of 1999 to about $940 billion by year end 2002. And,
only 1 year in that 3 year period was officially a recession year (2001). As we will show, the recovery rate on bonds
defaulting in this period was unusually low as telecom equipment, large body aircraft, and steel assets of distressed
firms piled up.
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On the supply side, the last decade has seen the amounts of distressed and defaulted
public and private bonds and bank loans grow dramatically in 1990–1991 to as much as
$300 billion (face value) and $200 billion (market value), then recede to much lower levels
in the 1993–1998 period and grow enormously again in 2000–2002 to the unprecedented
levels of $940 billion (face value) and almost $500 billion market value as of December
2002. These estimates are based on calculations in Altman (2003) from periodic market
calculations and estimates.*

On a relative scale, the ratio of supply to demand of distressed and defaulted securities
was something like ten to one in both 1990–1991 and also in 2000–2001. Dollarwise, of
course, the amount of supply-side money dwarfed the demand in both periods. And, as we
will show, the price levels of new defaulting securities was relatively very low in both
periods—at the start of the 1990s and again at the start of the 2000 decade.

13.3.4 Univariate Models

We begin the discussion of our results with the univariate relationships between recovery
rates and the explanatory variables described in the previous section. Table 13.2 displays
the results of the univariate regressions carried out using these variables. These univariate
regressions, and the multivariate regressions discussed in the following section, were
calculated using both the recovery rate (BRR) and its natural log (BLRR) as the dependent
variables. Both results are displayed in Table 13.2, as signified by an ‘‘x’’ in the correspond-
ing row.

We examine the simple relationship between bond recovery rates and bond default rates
for the period 1982–2001. Table 13.2 and Figure 13.1 show several regressions between the
two fundamental variables. We find that one can explain about 51% of the variation in the
annual recovery rate with the level of default rates (this is the linear model, regression 1)
and as much as 60%, or more, with the logarithmic and powery relationships (regressions 3
and 4). Hence, our basic thesis that the rate of default is a massive indicator of the likely
average recovery rate amongst corporate bonds appears to be substantiated.z

The other univariate results show the correct sign for each coefficient, but not all of the
relationships are significant. BDRC is highly negatively correlated with recovery rates, as
shown by the very significant t-ratios, although the t-ratios and R-squared values are not as
significant as those for BLDR. BOA and BDA are, as expected, both negatively correlated
with recovery rates with BDA being more significant on a univariate basis. Macroeconomic

*Defaulted bonds and bank loans are relatively easy to define and are carefully documented by the rating agencies
and others. Distressed securities are defined here as bonds selling at least 1000 basis points over comparable
maturity Treasury bonds (we use the 10 year T-bond rate as our benchmark). Privately owned securities, primarily
bank loans, are estimated as 1.4–1.8� the level of publicly owned distressed and defaulted securities based on studies
of a large sample of bankrupt companies (Altman 2003).
yThe power relationship (BRR¼ eb0�BDRb1) can be estimated using the following equivalent equation: BLRR¼
b0þ b1�BLDR (power model).
z Such an impression is strongly supported by a �80% rank correlation coefficient between BDR and BRR (computed
over the 1982–2001 period). Note that rank correlations represent quite a robust indicator, since they do not depend
upon any specific functional form (e.g., log, quadratic, power, etc.).
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variables did not explain as much of the variation in recovery rates as the corporate bond
market variables explained; their poorer performance is also confirmed by the presence
of some heteroscedasticity and serial correlation in the regression’s residuals, hinting at
one or more omitted variables. We will come back to these relationships in the next
paragraphs.

13.3.5 Multivariate Models

We now specify some more complex models to explain recovery rates, by adding several
variables to the default rate. The basic structure of our most successful models is

BRR ¼ f (BDR, BDRC, BOA, or BDA)

Some macroeconomic variables will be added to this basic structure, to test their effect
on recovery rates.

Before we move on to the multivariate results, Table 13.3 reports the cross-correlations
among our regressors (and between each of them and the recovery rate BRR); values
greater than 0.5 are highlighted. A rather strong link between GDP and BDR emerges,
suggesting that default rates are, as expected, positively correlated with macrogrowth
measures. Hence, adding GDP to the BDR=BRR relationship is expected to blur the
significance of the results. We also observe a high positive correlation between BDA
(absolute amount of all defaulted bonds) and the default rate.

We estimate our regressions using 1982–2001 data in order to explain recovery rate
results and to predict 2002 rates. This involves linear and log–linear structures for the two
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FIGURE 13.1 Univariate Models: Results of a set of univariate regressions carried out
between the recovery rate (BRR) or its natural log (BLRR) and the default rate (BDR) or
its natural log (BLDR). See Table 13.2 for more details.
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key variables—recovery rates (dependent) and default rates (explanatory)—with the log–
linear relationships somewhat more significant. These results appear in Table 13.4.

Regressions 1 through 6 build the ‘‘basic models’’: Most variables are quite significant
based on their t-ratios. The overall accuracy of the fit goes from 71% (65% adjusted
R-square) to 87% (84% adjusted).

The actual model with the highest explanatory power and lowest ‘‘error’’ rates is the
power model* in regression 4 of Table 13.4. We see that all of the four explanatory
variables have the expected negative sign and are significant at the 5% or 1% level.
BLDR and BDRC are extremely significant, showing that the level and change in the
default rate are highly important explanatory variables for recovery rates. Indeed
the variables BDR and BDRC explain up to 80% (unadjusted) and 78% (adjusted) of the
variation in BRR simply based on a linear or log–linear association. The size of the high
yield market also performs very well and adds about 6%=7% to the explanatory power of
the model. When we substitute BDA for BOA (regressions 5 and 6), the latter does not
look statistically significant, and the R-squared of the multivariate model drops slightly to
0.82 (unadjusted) and 0.78 (adjusted). Still, the sign of BDA is correct (þ). Recall that BDA
was more significant than BOA on a univariate basis (Table 13.2).

Macrovariables are added in columns 7–10: We are somewhat surprised by the low
contributions of these variables since there are several models that have been constructed
that utilize macrovariables, apparently significantly, in explaining annual default rates.y

As concerns the growth rate in annual GDP, the univariate analyses presented in Tables
13.2 and 13.3 had shown it to be significantly negatively correlated with the bond default
rate (�0.78, see Table 13.3); however, the univariate correlation between recovery rates
(both BRR and BLRR) and GDP growth is relatively low (see Table 13.2), although with the

TABLE 13.3 Correlation Coefficients among the Main Variables

BDR BOA BDA GDP SR BRR

BDR 1.00 .33 .73 �.56 �.30 �.72
BOA 1.00 .76 .05 �.21 �.53
BDA 1.00 �.26 �.49 �.64
GDP 1.00 �.02 .29

SR 1.00 .26

BRR 1.00

Note: Cross-correlations among our regressors (and between each of them and
the recovery rate BRR); values greater than .5 are in bold. A strong link
between GDP and BDR emerges, suggesting that default rates are, as
expected, positively correlated with macrogrowth measures.

* Like its univariate cousin, the multivariate power model can be written using logs. For example, BLRR¼ b0þ
b1�BLDRþ b2�BDRCþ b3�BOA becomes BRR¼ exp[b0]�BDRb1� exp[b2�BDRCþ b3�BOA] and takes
its name from BDR being raised to the power of its coefficient.

y See Jonsson and Fridson (1996), Keenan et al. (1999), Fridson et al. (1997), Helwege and Kleiman (1997), and
Chacko and Mercier (2001).
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appropriate sign (þ). Note that, when we utilize the change in GDP growth (GDPC, Table
13.2, regressions 5 and 6), the significance improves markedly.

When we introduce GDP to our existing multivariate structures (Table 13.4, regressions
7 and 8), not only is it insignificant, but it also has a counterintuitive sign (negative). The
GDPC variable leads to similar results (not reported). No doubt, the high negative
correlation between GDP and BDR reduces the possibility of using both in the same
multivariate structure.

We also postulated that the return of the stock market could impact prices of defaulting
bonds in that the stock market represented investor expectations about the future. A
positive stock market outlook could imply lower default rates and higher recovery rates.
For example, earnings of all companies, including distressed ones, could be reflected in
higher stock prices. Table 13.4, regressions 9–10, show the association between the annual
S&P 500 Index stock return (SR) and recovery rates. Note the insignificant t-ratios in the
multivariate model, despite the appropriate signs. Similar results (together with low R2s)
emerge from our univariate analysis (Table 13.2), where the change in the S&P return
(SRC) was also tested.

Since the dependent variable (BRR) in most of our regressions is bounded by 0 and 1, we
have also run the same models using a logistic function (Table 13.4, columns 11–15). As
can be seen, R-squares and t-ratios are broadly similar to those already shown above. The
model in column 12, including BDR, BDRC, and BOA explains as much as 74% (adjusted
R-square) of the recovery rate’s total variability. Macroeconomic variables, as before, tend
to have no evident effect on BDR.

13.3.6 Robustness Checks

This section hosts some robustness checks carried out to verify how our results would
change when taking into account several important modifications to our approach.

13.3.6.1 Default Probabilities
The models shown above are based on the actual default rate experienced in the high yield,
speculative grade market, (BDR) and reflect a coincident supply=demand dynamic in that
market. One might argue that this ex post analysis is conceptually different from the
specification of an ex ante estimate of the default rate.

We believe both specifications are important. Our previous ex post models and tests are
critical in understanding the actual experience of credit losses and, as such, impact credit
management regulation and supervision, capital allocations, and credit policy and plan-
ning of financial institutions. On the other hand, ex ante probabilities (PDs) are custom-
arily used in VaR models in particular and risk management purposes in general; however,
their use in a regression analysis of recovery rates might lead to empirical tests which are
inevitably limited by the models used to estimate PDs and their own biases. The results of
these tests might therefore not be indicative of the true relationship between default and
recovery rates.

In order to assess the relationship between ex ante PDs and BRRs, we used PDs
generated through a well-established default rate forecasting model from Moody’s
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(Keenan et al. 1999). This econometric model is used to forecast the global speculative
grade issuer default rate and was fairly accurate (R2¼ 0.8) in its explanatory model tests.*

The results of using Moody’s model to explain our recovery rates did demonstrate a
significant negative relationship but the explanatory power of the multivariate models was
considerably lower (adjusted R2¼ 0.39), although still impressive with significant t-tests for
the change in PD and the amount of bonds outstanding (all variables had the expected
sign). Note that, since the Moody’s model is for global issuers and our earlier tests are for
U.S. dollar-denominated high yield bonds, we did not expect that their PD model would be
nearly as accurate in explaining U.S. recovery rates.

13.3.6.2 Quarterly Data
Our results are based on yearly values, so we wanted tomake sure that higher-frequency data
would confirm the existence of a link between default rates and recoveries. On the basis of
quarterly data,y a simple, univariate estimate (Table 13.5) shows that: (1) BDR is still strongly
significant, and shows the expected sign; (2) the R-square looks relatively modest (23.9%)
versus 51.4 for the annual data, because quarterly default rates and recovery rates tend to be
very volatile (due to some ‘‘poor’’ quarters with only very few defaults).

Using a moving average of four quarters (BRR4W, weighted by the number of defaulted
issues) we estimated another model (using BDR, its lagged value and its square, see last
column in Table 13.5), obtaining a much better R-square (72.4%). This suggests that the
link between default rates and recovery is somewhat ‘‘sticky’’ and—although confirmed by
quarterly data—is better appreciated over a longer time interval.z Note that the signs of the
coefficients behave as expected: for example, an increase in quarterly BDRs from 1% to 3%
reduces the expected recovery rate from 39% to 31% within the same quarter, while a
further decrease to 29% takes place in the following three months.

13.3.6.3 Risk-Free Rates
We considered the role of risk-free rates in explaining recovery rates, since these, in turn,
depend on the discounted cash flows expected from the defaulted bonds. We therefore
added to our best models (e.g., columns 3–4 in Table 13.4) some rate variables (namely, the
1 and 10 year U.S. dollar Treasury rates taken from the Federal Reserve Board of Governors,
the corresponding discount rates or, alternatively, the ‘‘steepness’’ of the yield curve, as
measured by the difference between 10 and 1 year rates). The results are disappointing, since
none of these variables ever is statistically significant at the 10% level.§

* Thus, far, Moody’s has tested their forecasts for the 36 month period 1999–2001 and found that the correlation
between estimated (PD) and actual default rates was greater than 0.90 (Hamilton et al. 2003). So, it appears that
there can be a highly correlated link between estimated PDs and actual BDRs. By association, therefore, one can
infer that accurate PD models can be used to estimate recovery rates and LGD.
yWe had to refrain from using monthly data simply because of missing values (several months show no defaults, so it
is impossible to compute recovery rates when defaulted bonds amount to zero).
z This is confirmed by the equation residuals, which look substantially autocorrelated.
§ This might also be due to the fact that one of our regressors (BOA, the amount of outstanding bonds) indirectly
accounts for the level of risk-free rates, since lower rates imply higher market values and vice versa. Even removing
BOA, however, risk-free rates cannot be found to be significant inside our model.
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13.3.6.4 Returns on Defaulted Bonds
We examined whether the return experienced by the defaulted bond market affects the
demand for distressed securities, thereby influencing the ‘‘equilibrium price’’ of defaulted
bonds. To do so, we considered the 1-year return on the Altman-NYU Salomon Center
Index of Defaulted Bonds (BIR), a monthly indicator of the market weighted average
performance of a sample of defaulted publicly traded bonds.* This is a measure of the price
changes of existing defaulted issues as well as the ‘‘entry value’’ of new defaults and, as
such, is impacted by supply and demand conditions in this ‘‘niche’’ market.y On a

TABLE 13.5 Quarterly Regressions, 1990–2002

Dependent variable
BRR BRR4W

Explanatory variables: coefficients and t-ratios

Constant 45.48 48.12

(17.61) (39.3)

BDR �5.77 �8.07
(�3.92) (�4.24)

BDR(�1) �2.62
(�2.87)

BDRSQ 1.10

(2.87)

Goodness of fit measures

R-square 0.239 0.724

Adjusted R-square 0.223 0.705

F-Stat 15.36 38.47

(P-value) 0.000 0.000

Residual tests

Serial correlation LM, 2 lags (Breusch–Godfrey) 1.129 10.456

(P-value) 0.332 0.000

Heteroscedasticity (White, Chi square) 4.857 1.161

(P-value) 0.012 0.344

Number of observations 51 48

Note: Univariate estimates based on quarterly data. It appears that: (1) BDR is
strongly significant, and has the expected sign; (2) the R-square looks
relatively modest, because quarterly default rates and recovery rates tend
to be very volatile; (3) expressing recovery rates as the moving average of
four quarterly data (BRR4W) improves the R-square, suggesting that the
link between default rates and recovery is somewhat ‘‘sticky.’’

* More details can be found in Altman (1991) and Altman (2003). Note that we use a different time frame in our
analysis (1987–2001), because the defaulted bond index return (BIR) has only been calculated since 1987.
yWe are aware of the fact that the average recovery rate on newly defaulted bond issues could influence the level of
the defaulted bond index and vice versa. The vast majority of issues in the index, however, are usually comprised of
bonds that have defaulted in prior periods. And, as we will see, while this variable is significant on an univariate
basis and does improve the overall explanatory power of the model, it is not an important contributor.
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univariate basis, the BIR shows the expected sign (þ) with a t-ratio of 2.67 and explains
35% of the variation in BRR. However, when BIR is included in multivariate models, its
sign remains correct, but the significance is usually below 10%.

13.3.6.5 Outliers
The limited width of the time series on which our coefficient estimates are based suggests
that they might be affected by a small number of outliers. We checked for this by eliminating
10% of the observations, choosing those associated with the highest residuals,* and running
our regressions again. The results (not reported to save room) totally confirm the estimates
shown in Table 13.4, e.g., for model 3, the coefficients associated with BLDR (�0.15), BDRC
(�4.26), and BOA (�0.45) are virtually unchanged, and remain significant at the 1% level;
the same happens formodel 4 (the coefficients being, respectively,�0.15,�4.26, and�0.45).

13.3.6.6 GDP Dummy and Regime Effects
We saw, in our multivariate results, that the GDP variable lacks statistical significance and
tends to have a counterintuitive sign when added to multivariate models. The fact that
GDP growth is highly correlated with default rates, our primary explanatory variable, looks
like a sensible explanation for this phenomenon. To try and circumvent this problem, we
used a technique similar to Helwege and Kleiman (1997): they postulate that, while a
change in GDP of say 1% or 2% was not very meaningful in explaining default rates when
the base year was in a strong economic growth period, the same change was meaningful
when the new level was in a weak economy. Following their approach, we built a dummy
variable (GDPI) which takes the value of 1 when GDP grows at less than 1.5% and 0
otherwise. The univariate GDPI results show a somewhat significant relationship with the
appropriate negative sign (Table 13.2); however, when one adds the ‘‘dummy’’ variable
GDPI to the multivariate models discussed above, the results (not reported) show no
statistically significant effect, although the sign remains appropriate.

We also checked whether the relationship between default rates and recoveries outlined
in Table 13.4 experiences a structural change depending on the economy being in a ‘‘good’’
or ‘‘bad’’ regime. To do so, we re-estimated our multivariate regressions and reported the
results in the table after removing recession years (simply defined as years showing a
negative real GDP growth rate); the results (not reported) confirmed the results shown in
Table 13.4. This suggests that our original estimates are not affected by recession periods.

13.3.6.7 Seniority and Original Rating
Our study considers default rates and recoveries at an aggregate level. However, to
strengthen our analysis and get some further insights on the PD=LGD relationship, we
also considered recovery rates broken down by seniority status and by original rating.

Table 13.6 shows the results obtained, on such data, for our basic univariate, translog
model. One can see that the link between recovery rates and default frequencies remains
statistically significant for all seniority and rating groups. However, such a link tends to be
somewhat weaker for subordinated bonds and for junk issues. Moreover, while the

* This amounts to 2 years out of 20, namely 1987 and 1997.
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sensitivity of BRR to the default rate looks similar for both seniority classes, recovery rates
on investment-grade bonds seem to react more steeply to changes in the default rate. In
other words, the price of defaulted bonds with an original rating between AAA and BBB
decreases more sharply as defaults become relatively more frequent. Perhaps the reason for
this is that original issue investment-grade defaults tend to be larger than noninvestment-
grade failures and the larger amounts of distressed assets depresses the recovery rates even
greater in difficult periods.

13.4 IMPLICATIONS FOR CREDIT VAR MODELS,
CAPITAL RATIOS, AND PROCYCLICALITY

The results of our empirical tests have important implications for a number of credit risk
related conceptual and practical areas. This section reviews two key areas that can be

TABLE 13.6 Univariate Regressions on Data Broken by Seniority Status and Original Rating

Dependent variable
Data Broken by Seniority Status Data Broken by Original Ratingc

RR on Seniora

Bonds (log)
RR on Subordinatedb

Bonds (log)
RR on Investment-
Grade Bonds (log)

RR on Junkd

Bonds (log)

Explanatory variables: coefficients and t-ratios

Constant 2.97 2.58 2.70 2.70

(13.91) (8.79) (9.77) (10.99)

BLDR �0.24 �0.23 �0.31 �0.23
(�4.30) (�2.90) (�4.16) (�3.41)

Goodness of fit measures

R-square 0.507 0.319 0.519 0.421

Adjusted R-square 0.479 0.281 0.489 0.385

F-Stat 18.487 8.431 17.291 11.652

(P-value) 0.000 0.009 0.001 0.004

Residual tests

Serial correlation LM,
2 lags (Breusch–Godfrey)

0.6674 1.66 4.0302 0.162

(P-value) 0.5268 0.2213 0.0415 0.852

Heteroscedasticity
(White, Chi square)

0.719 0.2001 0.4858 0.4811

(P-value) 0.5015 0.8205 0.6245 0.6273

Number of observations 20 20 18 18

Note: A set of univariate regressions is shown, based on recovery rates broken down by seniority status and by
original rating. The link between recovery rates and default frequencies remains statistically significant
for all seniority and rating groups. However, it grows weaker for subordinated bonds and for junk
issues. Moreover, recovery rates on investment-grade bonds seem to react more steeply to changes in the
default rate.

a Senior-secured and senior-unsecured bonds.
b Senior-subordinated, subordinated, and discount bonds.
c Years 1993 ad 1994 not included because no default took place on investment-grade issues.

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C013 Final Proof page 230 7.4.2008 7:43pm Compositor Name: VBalamugundan

230 & Credit Risk: Models, Derivatives, and Management



significantly affected when one of the factors in that default rates is, in fact, negatively
correlated with recovery rates. These are (1) credit VaR models and (2) the potential
impact of our findings on the procyclicality of capital requirements debated by the Basel
Committee.*

13.4.1 VaR Models

Most credit VaR models treat recovery rates as deterministic (like in the credit riskþ
model proposed by Credit Suisse Financial Products 1997) or stochastic but independent
from default probabilities (like in the Creditmetrics framework: Finger et al. 1997). The
impact of a negative correlation between recovery rates and default rates is generally
overlooked. In order to assess this impact, we ran Monte Carlo simulations on a sample
portfolio of bank loans and compared the key risk measures (expected and unexpected
losses) obtained by the two above mentioned models to those generated when recovery
rates are treated as stochastic and negatively correlated with PDs.

The results of our simulations are revealing, indicating that both the expected loss
and the unexpected loss are vastly understated if one assumes that PDs and RRs are
uncorrelated.y As long as the PDs used in VaR models can be thought of as an ex ante
estimate of actual DRs, this implies that the risk measures generated by such models
are biased.

Summing up, if default rates (and PDs, which can be thought of as ex ante estimates
of actual DRs) are found to be correlated with RRs, then not only the risk measures
based on standard errors and percentiles (i.e., the unexpected losses) could be seriously
underestimated, but the amount of expected losses on a given credit portfolio (on
which banks’ provisioning policies should be based) could also be misjudged. Therefore,
credit models that do not carefully factor in the negative correlation between PDs and
RRs might lead to insufficient bank reserves and cause unnecessary shocks to financial
markets.

13.4.2 RR=PD Link and Procyclicality Effects

Procyclicality involves the sensitivity of regulatory capital requirements to economic and
financial market cycles. Since ratings and default rates respond to the cycle, the new
internal ratings-based (IRB) approach proposed by the Basel Committee risks increasing
capital charges, and limiting credit supply, when the economy is slowing (the reverse being
true when the economy is growing at a fast rate).

Such procyclicality effects might be thought to be exacerbated by the correlation
between DRs and RRs found in our study (and in some of the contributions quoted in
Section 13.1); in other words, low recovery rates when defaults are high would amplify

* We will simply summarize here our conclusions based on several simulation analyses, discussed in greater detail in
Altman et al. (2001).
y Both expected losses and VaR measures associated with different confidence levels tend to be underestimated by
approximately 30%.
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cyclical effects. This would result from the fact that a negative correlation between default
rates and recovery rates would lead to more sensitive capital requirements. For example, in
a recession period with increasing default rates, recovery rates would decrease leading to
higher credit losses. This would in turn lead to higher capital requirements and, corres-
pondingly, possibly to a decrease in the supply of bank credit to the economy, thereby
exacerbating the recession. On the other side, in a strong economic growth period with
decreasing default rates, recovery rates would increase leading to lower credit losses and
lower bank capital requirements. This would in turn allow an expansion of bank credit,
thereby favoring economic growth.

This procyclicality effect would especially be true under the so-called advanced IRB
approach, where banks are free to estimate their own recovery rates and might tend to
revise them downwards when defaults increase and ratings worsen.

The impact of such a mechanism was assessed, for example, in Resti (2002), based on
simulations over a 20 year period, using a standard portfolio of bank loans (the
composition of which is adjusted through time according to S&P transition matrices).
Two results of these simulations are worth mentioning. First, the procyclicality effect is
driven more by up- and downgrades, rather than by default rates; in other words,
adjustments in credit supply needed to comply with capital requirements respond mainly
to changes in the structure of weighted assets, and only to a lesser extent to actual credit
losses (except in extremely high default years). Second, when RRs are permitted to
fluctuate with default rates, the procyclicality effect increases significantly. Moreover,
bank spreads, too, become more volatile, since revisions in short-term RR estimates are
factored into loan prices.

One might object that in these simulations banks basically react to short-term results,
and that regulation should encourage advanced IRB systems to use long-term average
recovery rates. However, while the use of long-term RRs would make procyclicality effects
less marked, it would also force banks to maintain a less updated picture of their risks,
thereby trading stability for precision.

13.5 CONCLUDING REMARKS
This chapter analyzed the link between aggregate default rates=probabilities and the loss
given default on corporate bonds, both from a theoretical and an empirical standpoint. As
far as the theoretical aspects are concerned, most of the literature on credit-risk manage-
ment models and tools treats the recovery rate variable as a function of historic average
default recovery rates (conditioned perhaps on seniority and collateral factors), but in
almost all cases as independent of expected or actual default rates. This appears rather
simplistic and unrealistic in the light of our empirical evidence.

We examined the recovery rates on corporate bond defaults, over the period 1982–
2002, by means of rather straightforward statistical models. These models assign a key
role to the supply of defaulted paper (default rates) and explain a substantial pro-
portion of the variance in bond recovery rates aggregated across all seniority and
collateral levels.
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These results have important implications for portfolio credit-risk models, for markets
which depend on recovery rates as a key variable (e.g., securitizations, credit derivatives,
etc.), and for the current debate on the revised BIS guidelines for capital requirements on
bank assets.
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14.1 INTRODUCTION
Understanding and modeling the common dynamics of default probabilities is a key
concern for practitioners and academics. Probability changes have a significant impact
on the prices of credit risky instruments, and also on the way credit risk should be
managed. Regulation issues especially through economic capital computations, as well as
large variations in default rates over the last 5 years have renewed interest in this topic.
Common dynamic changes in probabilities have mainly been investigated using historical
rating migration matrices or, from pricing perspectives, by modeling credit quantities (in
particular credit spreads). It turns out that significant differences in probability levels have
been observed through expansion and recession periods (Nickell et al. 2000).

Researchers have concentrated on modeling and forecasting these changes either by
filtering out unobservable common drivers (Duffee 1999 or Driessen 2005 under the
pricing measure, Koopman et al. 2008 or Wendin and McNeil 2006 under the historical
measure) or using stock and bond markets factors (Janosi et al. 2002). These approaches
find their origins in structural models (firm-value based) and reduced-form models
(intensity based). The former are closely linked to financial markets as they model default
as the first time at which a firm asset value falls below its liabilities. But they regularly fail to
provide accurate probability estimates. This is essentially due to structural models heavily
relying on stock market components which are noisy and contain bubbles, as pointed out
by Janosi et al. (2002). Another reason for this failure is that some parameters, such as the
asset volatility, are difficult to observe and calibrate. The intensity-based methodology is
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more convenient for pricing and provides simple extensions to multiple assets (Duffie and
Singleton 2003).* However, since dynamics are exogenously specified, this approach
ignores what the default mechanisms are and leads to disappointing predictive power as
well. It is worth noticing that firm-specific variations have also been documented. This last
stream of studies relies on different modeling techniques, namely credit scoring or hazard
rate models (Duffie et al. 2007) which will be used in this chapter.

A key issue lies in the identification of the systematic drivers of default probabilities.
Some studies observed surprisingly low sensitivities of spreads to interest rate factors or to
stock market variables (Collin-Dufresne et al. 2001), but explanations are lacking. This
chapter contributes to the existing literature by considering a new set of potential deter-
minants that explicitly link the default process to economic fundamentals. This study
shows that including all economic components provides more accurate measures than
those obtained from financial market factors. For the first time, the critical roles of business
cycle related indicators as well as aggregate credit market factors are identified and
quantified. An additional contribution lies in the use of past information, jointly with
contemporaneous one. We show that large benefits can be obtained by taking into account
lagged effects between the economy and the default cycle. The empirical part of the chapter
relies on a unique rating event database that captures more precisely the default probabili-
ties, whereas the previous body of evidence is based on a noisy measure of these probabil-
ities, namely the credit spreads.

We believe there are four main contributions to this chapter. First, we analyze and
quantify the impact of financial markets, business cycle indicators, and credit market
indicators on default probabilities of various rating classes.

Second, we show that although all economic variables help explaining default likeli-
hoods, their explanatory power differs greatly between investment-grade (IG) and non-
investment-grade (NIG) classes. As issuer quality decreases, the dominant systematic
factors change from financial markets to business cycle and endogenous default indicators.
Relying solely on financial information to explain default probabilities leads to poor results
for NIG firms. Default peaks are underestimated, whereas default probabilities predicted
by the model overshoot realized probabilities during stable and low-default periods.

Third, we establish the critical importance of combining past information with contem-
poraneous factors. We show that default probability changes are the joint effects of past
shocks and subsequent economic trends. Resulting lead–lag effects between the economy and
the default cycle partially explain the lower speed and higher persistence of the default cycle.

Fourth, we introduce a semi-parametric framework which explicitly takes into account
the term structure of hazard rates. Firm ageing effects as well as calendar-time effects are
explicitly taken into account. Models are set up in continuous time using the natural time-
to-default framework and taking care of censoring. In particular, default probabilities can
consistently be computed at all horizons. A specification test is also introduced.

* We abusively use indifferently the terms of hazard rates and intensities in this chapter. We only point out the
differences when outlining our framework.
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The chapter is organized as follows. Section 14.2 briefly presents the default data.
Section 14.3 presents our modeling framework. We then propose a list of potential default
determinants that will be investigated in Section 14.4. We extensively study sensitivities of
the default cycle with respect to financial markets, business, and endogenous indicators
through conditional single-factor hazard models in Section 14.5. Section 14.6 gathers main
results and their implications looking at multifactor models. We check mis-specifications
of financial market-based models, and assess the benefits of considering other economic
components. Our results deliver clear empirical guidelines for modeling. They rely on
analyses of predictive variables of default probabilities exploiting the history of companies
in the rating process. This study opens new avenues to investigate the intensity-based
pricing and the management of default risk. It more particularly sheds light on relevant
systematic factors for the construction of realistic stress tests of credit portfolios in the
Basel II framework.

14.2 DEFAULT DATASET
We extract information on times-to-default from the Standard & Poor’s (S&P’s) CreditPro
6.6 rating database. As the first goal of ratings consists of providing a cross-sectional
ranking of firms with respect to their default likelihood, they allow to classify firms into
homogenous classes of default risk. The database contains S&P’s rating histories for 10,439
companies over the period January 1981 to December 2003. The CreditPro database has
already been used and extensively described by Bangia et al. (2002) and Couderc (2005).
Overall 33,044 rating migrations are recorded in CreditPro as well as 1386 defaults and
default rate ranges from 3% to 29% across industries. Within our sample, firms are
classified by industrial groups distributed among 93 countries; 6897 firms or 66% are U.S.
ones. Moreover, S&P attributes 25 distinct ratings plus the not-rated (NR) one, but we
aggregate the data coming from a grade and its plus=minus modifiers because of minimal
population requirements. Besides, all grades below B have been put in the CCC class.

Rating events require careful treatment as three sources of censoring are present in the
database. The first type of right censoring is an inherent feature of any rating database as
most companies survive after the end of the recordings. Another type of right censoring
requires specific consideration. Some companies leave the rating process and fall into the
NR category. Several reasons may explain this fact: the rated company may be acquired by
another firm or may simply decide no longer to be rated by S&P. In the database, we can
identify firms that migrated to NR and subsequently defaulted. Therefore, the NR class is
not a complete loss of information: although there is no longer any indication of credit
quality, an NR firm is a nondefaulter. Finally, left censoring arises from 1371 issuers having
already received a rating before they were included in the database (i.e., before January
1981). We do not have information about the attribution date of their first rating and
therefore, for robustness checks, we run all estimations both on the full sample and on the
reduced sample excluding left-censored data (the reduced sample contains 9068 companies
and 25,993 rating migrations). It is worthwhile to notice that these left-censored issuers
faced the 1991 and 2001 U.S. recessions. The number of issuers tracked by the database
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increases linearly. Consequently, one third of the total number of issuers were active on
average for 8 years in 1991 and 18 years in 2001, and another one third only faced the 2001
recession after an average of 4 years in the rating process.

The database allows to consider two types of durations, implying two different
approaches to the behavior of default probabilities. On the one hand, we can look at
times-to-default from entry in a risk class up to the last available observation. Such
durations provide a picture of default riskiness over the whole life of the firms without
any assumption on the rating process behavior. On the other hand, we can examine times-
to-default conditional on staying in a given risk class up to the default time. In this case, it
would require assumptions on rating migration dynamics so as to design the default
riskiness of a firm over the long term.

14.3 MODELS OF DEFAULT PROBABILITIES
Hereafter, we develop a powerful framework to analyze impacts of systematic factors. A
straightforward practice to study the effects of structural factors on a given variable consists
in performing regressions. Investigations of spreads follow this approach but it cannot be
used for probability changes because hazard rates or equivalently instantaneous default
probabilities are not directly observable. Since hazard rates fully characterize a default time
distribution, modeling hazard rates leads to specifying the conditional distribution of
times-to-default, and all parameters can be estimated in a single stage. We rely on the
standard way to construct hazard models, with log-intensities that are linear in the factors.
We briefly recall the basic parametric framework before turning to our more complete
semi-parametric framework.

14.3.1 Factor Models of Intensities

For a firm i in a given risk class, let Di denote the uncensored duration up to default, or
time-to-default, and Ci the censored duration. Ui¼min(Ci,Di) is the time at which the
firm leaves the class either because of censoring (Ci) or default (Di). The Ui are therefore
the true observations. We also let Z and u denote respectively a vector of explanatory
variables and the time-to-default or ageing time, while ti denotes the date at which a firm i
enters into the class. Hence, uþ ti represents calendar time. We consider intensities li as
exponential affine functions which remain constant between two observations of the
factors. Conditional on the realization of the factors, durations are exponentially distrib-
uted between factor updates:

li(u) ¼ l(u, ti) ¼ exp
�
g þ b0Z(ti, uþ ti)

� 8i (14:1)

where Z can include a combination of time-dependent and time-independent covariates.
The exponential assumption could be relaxed by replacing the constant eg by another
formulation. For instance, one could impose a conditional Weibull hazard model. The
survival probability for a firm i beyond the time uþ ti can then be retrieved as
P(U > ujti) ¼ exp

��Ð u0 l(u, ti)du
�
.

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C014 Final Proof page 239 21.4.2008 12:37pm Compositor Name: VBalamugundan

Business and Financial Indicators & 239



This parametric framework allows us to use maximum likelihood to efficiently estimatebb. Details of maximum likelihood estimation in this context are provided in Appendix.
The estimation of such models is therefore straightforward and both censored and
uncensored durations contribute to the likelihood.

The accuracy of the above estimator depends on the proper specification of the model,
on the selection of explanatory variables, and on time-to-default being conditionally
exponentially distributed. However, some empirical studies have demonstrated that these
simple models are mis-specified even if they successfully take into account all systematic
factors. Fledelius et al. (2004) and Couderc (2005) have shown that economic changes
create bumps in hazard rates and have established that the distribution of times-to-default
is not exponential (i.e., the hazard is not constant with u). In the remainder of this chapter,
we propose to use a semi-parametric framework for hazard models which relaxes this
exponential assumption. The nonparametric component of these models allows us to
extract the baseline hazard, which is the true conditional distribution of times-to-default
which characterizes the whole term structure of hazard rates. The parametric part of the
models reflects shocks to the hazard rates because of changes in economic and financial
factors. Once these shocks have been accounted for, the remaining bumps in the baseline
hazard indicate the proportion of the default cycle which is not captured by the factors. If
the factors were able to fully describe the patterns of historical times-to-defaults, then the
baseline hazard would be constant and we would fall back on the class of simple models
described above.

14.3.2 Semi-Parametric Framework for Intensities

In our semi-parametric setting, calendar-time effects, or factor impacts, can easily be
separated from pure duration or life cycle effects on hazard rate deformations. To build
our setup, we start from a fully nonparametric estimator of hazard rates and add a
multiplicative parametric component (Cox 1972, 1975 proportional hazard methodology).
The nonparametric baseline hazard is estimated using the GRHE (gamma Ramlau-Hansen
estimator) as the solution of the maximum likelihood objective function, while the
parametric part is estimated by partial likelihood.

14.3.2.1 Basic Estimator
The GRHE introduced by Couderc (2005) is based on a convenient gamma kernel
smoother of the hazard rate and allows to recover the term structure of hazard rates.
Standard smooth estimators suffer from large bias and oversmoothing, which lead to
incorrect inferences on hazard rates. The GRHE however is free of boundary bias and is
able to capture changes in intensities in the short run (which may cover up to 5 years) as
well as subsequent deformations.* Not using an unbiased estimator would lead to strongly
inaccurate estimations and assessments of hazard models.

* This feature has already been widely documented in the case of density function estimation. Standard smoothers are
biased because of the inadequacy between the domain of definition of the kernel and one of the data. For instance,
see Chen (2000).
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The necessary conditions ensuring the consistency of the estimator are assumed to be
met. Accordingly, all firms in a given risk class are assumed to be homogenous and
conditionally independent. Censoring mechanisms which may prevent from observing
firms up to their default time are random and independent from the default process. For a
given firm, these mechanisms are reported through a process Yi(u), which equals one only
if the firm was observed at least up to the time-to-default u. The most important building
block of the GRHE then lies in the following assumption.

ASSUMPTION 14.1. The intensity of individual firms satisfies the multiplicative intensity
model:

li(u) ¼ a(u)Yi(u) (14:2)

where a(u) is deterministic and called the hazard rate, whereas Yi(u) is a predictable and
observable process.

The difference between the intensity and the hazard rate resides in their observability
The estimator of the hazard rate is specified as follows.

DEFINITION 14.1. The gamma kernel estimator ba(u) of the hazard rate (GRHE) is defined by
ba(u) ¼ ð1

0

1
Y(s)

su=be�s=b

bu=bþ1G
�
u
b þ 1

� dNs (14:3)

where
dNs counts the number of defaults occurring at time s
Y(u) is computed as the number of firms for which the last time of observation is greater

than u

Y(u) handles censoring and is the sum of the Yi(u) over i. It is usually called the risk set.
b is a smoothing parameter, the so-called bandwidth. The intuition behind the above
nonparametric estimator is the following: probabilities of default in the very short run
[a(u) du], knowing survival up to time u, are estimated as a weighted average of past (if
any), current, and subsequent observed instantaneous default frequencies

�
dNs
Y(s)

�
. The

weights are determined by the kernel, the bandwidth, as well as by the durations between
u and observed default events.

The restrictions imposed on the process Y(u) are sufficiently weak to permit more
complex specifications of this process. In what follows, we rely on this multiplicative
intensity model to characterize economic shocks on time-to-default distributions.

14.3.2.2 Factor Models for the Term Structure of Hazard Rates
Let Z denote a vector of factors. We enrich standard factor models of hazard rates from
Section 14.3.1 by relaxing the conditional exponential assumption, or equivalently by not
constraining the term structure of hazard rates. This is done by using a semi-parametric
framework. As discussed previously, the parametric part reflects the impact of economic
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and financial factors on default intensities, whereas the baseline hazard or conditional
distribution of times-to-default is estimated through a slight modification of the GRHE.

ASSUMPTION 14.2. The intensities conditional on structural factors are proportional to a class
baseline intensity l�(u) representing the common intensity shape:

l(u, ti) ¼ l�(u) exp [b0Z(ti, uþ ti)] 8i
¼ a�(u)Yi(u) exp [b0Z(ti, uþ ti)] 8i (14:4)

where Z (ti, uþ ti) is the set of structural variables taken at the date of entry ti of the firm i in
the class or at calendar time uþ ti, and b is the vector of sensitivities associated with a given
risk class.

Provided that structural variable dynamics are not explosive, the gamma kernel estima-
tor of the baseline hazard a�(u) is as follows.

COROLLARY 14.1. Under Assumptions 14.1 and 14.2, a semi-parametric estimator of the
baseline hazard function is given by

bba�(u) ¼ ð1
0

1bbY(s)
su=be�s=b

bu=bþ1G t
bþ 1

� � dNs (14:5)

bbY(s) ¼X
i

Yi(s) exp bbb0Z(ti, uþ ti)

� �
(14:6)

A convenient feature of this model is that an estimate bbb of the sensitivities b can be
derived separately from the baseline intensity through Cox partial likelihood:

bbL ¼Yn
k¼1

Yk(uk) exp
�
b0Z(tk, uk þ tk)

�
P
i
Yi(uk) exp

�
b0Z(ti, uk þ ti)

� (14:7)

where
uk is the observed duration of firm k
tk is its date of entry in the class

A complete survey of related models, estimation techniques, and asymptotic can be
found in Andersen and Gill (1982) or Andersen et al. (1997).

This two-stage estimation technique does not affect the nonparametric estimation of the
baseline intensity as the speed of convergence of the partial likelihood estimator is of
order 1ffiffi

n
p and therefore higher than that of the kernel estimator. The parametric factor

model from Equation 14.1 corresponds to the case where the constraint a�(u) ¼ eg has
been imposed. The estimators bb and bbb converge to the same parameter b, but bbb has a
slower rate of convergence to its asymptotic distribution since it does not use the full
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likelihood.* Corollary 14.1 is a direct consequences of Andersen et al. (1997) and Couderc
(2005), bba� being the maximum likelihood estimator of the baseline hazard.

The relative performance of the various factors can be tested by comparing the hazard ratebba�NP of the fully nonparametric specification (b¼ 0) and the baseline hazards bba� of semi-
parametric models. The lower bba� is with respect to bba�NP, the higher the proportion of changes
in default hazard rates captured by the factors. Moreover, the comparison between bba� and the
constant hazard ebg of equivalent parametric models allows us to check mis-specifications of
standard hazard rate models. More precisely, we can observe deviations from the conditional
exponential hypothesis and their distributions through the term structure of times-to-default.

14.4 POTENTIAL DETERMINANTS OF DEFAULT
In this section, we discuss some potential common determinants of default intensities that
will be tested in our model. Mainstream models that attempt to explain risk-neutral default
probabilities are usually calibrated on financial variables: interest rates and equity infor-
mation. Another stream of literature focuses on long-term economic and credit cycles, and
relies mainly on macroeconomic variables to explain default rates. The business cycle has
for example been factored in time-series analyses of procyclicality with the bankruptcy
cycle (Koopman and Lucas 2004). To our knowledge, there exists no systematic study of
the common determinants of default including both financial and nonfinancial variables,
and we will attempt to fill that gap here. Given that our sample is primarily American, we
use U.S. explanatory variables. Our economic data were extracted from the Federal Reserve
of St. Louis Web site and Bloomberg. All factors are annualized, deseasonalized, and
updated monthly or quarterly.

14.4.1 Financial Market Information

The stock and bond markets are sources of information used both by structural (i.e.,
firmvalue based, la Merton) and reduced-form models. Reduced-form models typically
require to design a stochastic process of interest rates. For instance, Duffee (1999) relies
on a two-factor interest rate model to extract default intensities. In a structural approach, the
volatility and the return of the firm asset determine how close a firm is to its liability barrier
which represents the default threshold. Cremers et al. (2006) show that individual stock
return and volatility are significant determinants of spreads. Using an aggregate measure,
Janosi et al. (2002) and Collin-Dufresne et al. (2001) also establish the impact of the S&P500
index and the VIX (volatility index) on credit spreads, respectively. The latter further claim
that using individual stock volatility rather than index volatility does not modify their
results. We consequently test the following factors on hazard rates:

1. Annual return on S&P500: As a measure of asset levels, the higher the stock return,
the higher the distance to default should be. An increase in equity prices tends to

* We checked this last point on the subsequent multifactor models. We first found that all sensitivities keep the same

signs at the same horizons when switching from a parametric factor model to a semi-parametric specification. Small

variations in magnitude can be observed between bb and bbb. However, using bootstrap technique on the distance

kbbb� bbk2, we could never reject the null hypothesis (bb� bbb) at a 95% confidence level.
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decrease firm leverage and therefore pushes down default probabilities. Moreover,
from an economic standpoint, short- and mid-term economic performances should
be positively correlated with S&P500’s returns. We expect a negative impact on
default intensities (i.e., intensities should be a decreasing function of the factor).

2. Volatility of S&P500 returns: In a traditional Merton (1974)-type model, the two
drivers of default probabilities are leverage and the volatility of firms assets. The
implied volatility of equity returns is often used as a proxy for the latter. We use the
realized annualized volatility computed over 60 trading days. We expect it to have a
positive impact on default intensities.

3. Ten year treasury yield: Higher interest rate levels imply higher cost of borrowing.
Hence, this variable could impact positively on default probabilities. However, interest
rates tend to be lower in contraction periods and higher in expansions. The ultimate
impact on intensities is therefore uncertain and may depend on issuer quality.

4. Slope of term structure (10 year rate minus 1 year rate): Steep-term structures of
interest rates are usually associated with strong growth prospects. It can also reflect
expectations of higher future spot rates. We expect this variable to impact negatively
on mid- to long-term intensities.

14.4.2 Business Cycle

We believe that it is crucial to extract information from the business cycle. If stocks were
available for all firms and markets were fully efficient, financial market and business cycle
variables might be redundant. As mentioned, the return on the market index does not
constitute a perfect proxy for the state of the economy. To complement financial variables,
Fons (1991) regresses default rates on the GDP (gross domestic product) growth, and
Helwege and Kleiman (1997) add the NBER (National Bureau of Economic Research)
economic indicator. These business cycle indicators explain 30% of the annual default
probabilities. We will use these variables in our estimations and will also include the
personal income growth as in Duffie et al. (2007).

1. Real GDP growth: As a signal of current macroeconomic conditions, this variable
should be negatively correlated with short-term probabilities.

2. Industrial production growth: This is an alternative growth measure which should
have a similar impact as that of GDP growth. Its advantage over GDP growth is that it
offers more frequent updates (monthly versus quarterly).

3. Personal income growth: It has the same expected impact as the previous two
variables. This business factor is more volatile and should consequently be less
persistent. This indicator could also convey some slightly lagged information on
past business conditions.

4. CPI (consumer price index) growth: Inflation is again a general indicator of economic
conditions. We expect to observe a negative correlation with short-term default
probabilities, as high inflation has often been associated with growth.
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14.4.3 Credit Market Information

In addition to general economic variables and financial information, more specific credit
factors should prove valuable in explaining default intensities. Although corporate bond
spreads do not only reflect changes in underlying default probabilities (Ericsson and
Renault 2006), they should still contain some forward-looking information on default
probabilities. Moreover, when spread variations are due to changes in the default risk
premium, they involve changes in expectations of future economic conditions. Spread
factors may therefore be more persistent than other market factors.

1. Spread of long-term BBB bonds over treasuries: They reflect future default probabil-
ities, expected recoveries, as well as default and liquidity premia. It should therefore
be positively correlated with default intensities.

2. Spread of long-term BBB bonds over AAA bonds: This variable factors in the risk
aversion of investors and may be a measure of their risk forecast. It filters out mixed
effects contained into the BBB spread. Furthermore, an increase in the relative spread
may reflect an increase in firms asset volatilities (Prigent et al. 2001). We therefore
expect default intensities to increase with this variable.

3. Net issues of treasury securities: This indicator should positively impact short-term
probabilities of default as higher deficit and borrowing is an indicator of economic
difficulties (it is at least negatively correlated with the business cycle). Furthermore,
high public sector borrowing may crowd out private borrowers and lead to increased
financial difficulties for firms. However, if borrowing is used for investments, an
increase in treasury issuance may be linked to stronger growth in the long term and
decreasing probabilities of default.

4. Money lending (M2�M1) and bank credit growth: These factors measure credit
liquidity and should be associated with default intensities. It is well known that the
information content of this indicator andmore particularly ofM2 has changed a lot over
our sample period (series of adjustments have been done by the Federal Reserve). As a
consequence, this indicator cannot be conclusive in the short run, but its implications in
the long run turn out to be fairly stable. We thus expect clearer impacts when using lags.

14.4.4 Inner Dynamics of the Default Cycle

A striking feature of the default cycle might not be captured by the above variables. After
the last two recessions, strong persistence in default rates has been observed. The number
of defaults remained high even during economic recoveries. The default cycle seems to
exhibit its own dynamics. We believe that the set of predictive variables should be
expanded with default-endogenous variables. Kavvathas (2000) used the weighted log
upgrade–downgrade ratio and the weighted average rating of new issuers as explanatory
variables. He actually only took into account the first PCA (principal components analysis)
factor of these variables. The average rating of financial institutions may be of primary
interest in describing the short-term trend of the global economy (in terms of credit
crunch). This trend can also be captured by the ratio of downgrades over all nonstayer
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transitions. For instance, Jónsson and Fridson (1996) show that the credit quality of
speculative issuers explains a large proportion of annual aggregate default rates. As repre-
sentative of the default cycle trend, we choose to include the following rating-based variables:

. IG and NIG upgrade rates: Both variables should include information on economic
health.*

. IG and NIG downgrade rates: Downgrades should be higher in bad conditions.
Differences between upgrade and downgrade impacts should capture a potential
asymmetry in the default cycle.

14.4.5 Statistics

Table 14.1 presents basic statistics on the set of retained factors. Obviously, some of the
above variables such as real GDP growth and industrial production growth are highly
correlated, which would deteriorate statistical significance on the full set of variables. Many
of these factors are redundant, and will be eliminated at the estimation stage in multifactor
analysis. Taking a pragmatic approach, we will first identify the most relevant factors and
then construct parsimonious multifactor models.

TABLE 14.1 Statistics on Covariates

(%) Mean Minimum Maximum Volatility Skewness
3 Year

Autocorrelation

S&P500 return 9.3 �32.4 43.9 15.8 �0.57 �12.2
S&P500 volatility 15.4 6.3 62.8 7.3 3.02 8.2

Treasury 10 year yield 7.9 3.3 15.3 2.8 0.84 �23.4
Term structure slope 1.3 �2.1 3.3 1.1 �0.19 �8.1
Real GDP growth 3.0 �2.8 8.1 1.9 �0.57 17.0

DIP growtha 0.2 �1.8 2.0 0.6 0.02 22.8

CPI growth 3.5 1.1 11.8 1.9 1.89 60.4

Personal income growth 6.0 1.5 13.4 2.3 0.67 �32.6
BBB yield 10.1 6.2 17.2 2.7 1.06 62.7

BBB spread 2.2 1.3 3.8 0.6 0.77 9.1

BBB–AAA spread 1.1 0.6 2.7 0.4 1.33 44.0

Treasury net issues 14.4 �39.1 74.8 16.3 �0.48 �12.6
Money lending growth 6.2 �3.9 12.8 3.9 �1.00 16.2

IG upgrade rate 0.5 0 2.0 0.3 1.29 9.3

NIG upgrade rate 1.0 0 10.9 0.9 5.90 6.5

IG downgrade rate 1.1 0 3.1 0.7 0.73 4.9

NIG downgrade rate 1.7 0 13.1 1.3 3.62 �5.4
Note: Basic statistics on retained factors. Figures are given on an annual basis, and in percentages (except for

the skewness). All variables but upgrade and downgrade rates are U.S. indicators.
a DIP growth—Deseasonalized industrial production growth.

* The investment-grade class (IG) gathers the AAA, AA, A, and BBB classes, whereas BB, B, and CCC classes are
collected in the noninvestment grade (NIG) class.
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Although we do not explicitly include firm-specific factors, our approach does not fully
rule out nonsystematic risk as we will examine rating classes separately. Ratings should
indeed constitute stable and good proxies for firm-specific components and a fair alterna-
tive to specific variables, which are not always available or are not updated frequently.
Leverage targeting, jointly with the way ratings are reviewed, justifies this point. From an
accounting perspective, default cannot realistically be initiated by small changes in earn-
ings, leverage, or any balance sheet information, but rather by negative trends or by
unexpected large changes in cash flows. Any negative trend should have been incorporated
in issuer ratings. One may argue that ratings do not react quickly enough to new
information, but there is no consensus on this issue (Altman and Rijken 2004 or Löffler
2004) and we will assume that ratings capture significant changes in firm-specific
components.

14.5 PREDICTORS AND INDICATORS OF THE DEFAULT CYCLE
In this section, we investigate time-dependent covariates which embed the impact of
successive shocks of the economic environment on intensities: when the factor updates,
hazard rates are shifted and the conditional distribution of times-to-default is updated too.
We distinguish the impacts of current and past economic conditions on default
time distributions. We examine the sensitivity of hazard rates to each factor to determine
which factors are the most relevant. We also explore their persistency. Surprisingly, the
issue of lagged information has been ignored in most works on default probabilities,
although Koopman and Lucas (2004) have reported lagged effects between the market
and the bankruptcy cycle.

We analyze the explanatory power of each factor through maximum likelihood estima-
tions. For each covariate, we run distinct lagged estimations to examine the persistency of
its effects. In all cases, we look at 95% and 99% confidence tests, and likelihood ratios. The
alternative model of the likelihood ratio test (LR test) corresponds to unconditional
exponentiality, i.e., the case of constant intensity. We also break our dataset into several
samples, namely IG, NIG, AA, A, BBB, BB, B, and CCC samples.

Tables 14.2 through 14.4 present results on the broad IG and NIG samples respectively
over financial, business, and credit indicators. In addition to sensitivities, implied percent-
age changes in the hazard rates are provided when the factor changes by minus or plus one
standard deviation. These changes are not symmetric as the factor impacts the hazard rates
through the exponential function. Table 14.5 reports estimates of sensitivities with respect
to upgrade and downgrade rates over rating classes. To test the stability of the results, we
have estimated the models on various subsamples and found that the sample used makes
little difference in most cases. For example, considering durations up to the first exit from a
risk class (rather than default) keeps sensitivities almost unchanged and only lowers the
significance of parameters. Focusing solely on the U.S. subsample does not modify our
estimates by more than 10% on average, and does not alter signs. Such robustness could be
expected as risk classes are quite stable and the whole sample is made of 66% U.S. firms.
From a general perspective, all included variables are significant. We observe that most
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lagged factors are significant at all stages too. In addition, these findings do not change
across ratings. Estimated intercepts (g) lie around �13.1 for IG and �8.8 for NIG. Results
on lags between 2 and 5 years are similar than the ones of the 3 year lagged factors. These
results are not reported here.

14.5.1 Influence of Financial Markets

Table 14.2 shows that financial markets impact default probabilities as predicted by
structural models (lags up to 3 months). Increases in the market index decrease the

TABLE 14.2 Sensitivities with respect to Financial Markets Information

Lag S&P500 Return S&P500 Volatility Treasury Yield Term Structure Slope

Investment Grades

�1M �2.25** 3.36** �15.98** 40.69**

42.69=�29.92 �21.75=27.80 56.43=�36.07 �36.08=56.45
0M �2.72** 3.80** �15.33** 38.44**

53.69=�34.93 �24.22=31.97 53.61=�34.90 �34.48=52.63
1M �2.85** 3.99** �15.35** 33.11**

56.88=�36.26 �25.27=33.81 53.70=�34.94 �30.53=43.94
3M �2.61** 3.50** �13.90 28.29**

51.04=�33.79 �22.55=29.11 47.58=�32.24 �26.74=36.50
1Y �1.96** 2.59** �11.07** �3.56

36.30=�26.63 �17.23=20.81 36.34=�26.65 3.99=�3.84
3Y 1.33** 3.85** �11.75** �20.84**

�18.95=23.39 �24.50=32.45 38.96=�28.04 25.76=�20.49
Noninvestment Grades

�1M �1.89** 1.81** �10.91** 22.54**

34.80=�25.8 �12.38=14.13 35.73=�26.32 �21.96=28.14
0M �1.96** 2.10** �10.41** 19.66**

36.30=�26.63 �14.21=16.57 33.84=�25.28 �19.45=24.14
1M �2.05** 2.39** �10.44** 16.93**

38.25=�27.67 �16.01=19.06 33.95=�25.35 �16.99=20.47
3M �2.01** 2.47** �10.03** 10.98**

37.38=�27.21 �16.50=19.76 32.42=�24.49 �11.38=12.84
1Y �1.02** 1.99** �7.05** �19.00**

17.49=�14.88 �13.52=15.64 21.82=�17.91 23.24=�18.86
3Y 1.66** 3.60** �12.21** �21.08**

�23.07=29.99 �23.11=30.06 40.76=�28.96 26.10=�20.70
Note: Estimations of log-linear intensities l(u, ti) on investment (IG) and noninvestment grades (NIG) with

time-varying covariates over the whole sample up to last days of observation. The table displays
sensitivities bb from univariate specifications l(u, ti) ¼ exp [g þ b0Z(uþ ti)] where the default arrival
is assumed to be piecewise exponential conditional on factor realizations. We consider lags from 5 years
backward to 2 months forward, only main lags are reported. Constants bg are not reported. * and ** stand
for significance at 95% and 99% confidence level, respectively. For each factor, the lag offering the
highest likelihood ratio has been stressed in italics. Other figures display percentage changes in the
hazard rate for minus=plus one standard deviation changes in the factor.
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probability of default, while increases in volatility raise default probabilities. Increases in
long-term interest rates are good news because they reflect growth expectations. These
findings are consistent with the results of Duffee (1998) and Collin-Dufresne et al. (2001)
on spreads.

Unlike the above authors, we find that the slope of the term structure is significant and
has a large effect on hazard rates. In particular, Collin-Dufresne et al. (2001) show a
significant and negative relationship only with long maturity bonds with reasonable
leverage, whereas it becomes positive for short maturities. Table 14.2 explains this result.
Decreases in short-term yield raise default probabilities as low rates are strongly correlated
with recessions. A steep contemporaneous or recent slope of the term structure of riskless
rates tends to be associated with higher intensities of default, while past steep slopes (over 1
year lags) tend to decrease intensities. Therefore, effects on bond spreads are the results of
these conflicting phenomena, which dampens significance. Short maturity bonds are
mainly affected by recent changes in slope, so that an increase in the slope leads to an
increase in hazard rates and spreads. The only exception to this short-term=long-term
interest rates split is for the CCC class, for which a steep slope is always associated with
lower intensities, irrespective of the lags. This can be due to two reasons. First, low short-
term interest rates can indicate a slowdown of economic activity and an increased
competition in the corporate bond market. Second, increases in long-term interest rates
are often interpreted as expectation of higher growth. Future growth is the main deter-
minant of survival for junk issuers, as these companies are highly levered and require
strong business conditions to move up the rating ladder.

Some of the studies of corporate bond spreads mentioned above indicate a higher
impact of the market index than interest rates. Looking at implied percentage changes
on the hazard rate, our results are more contrasted. For investment grades, a decrease in
the long-term yield and an increase in the slope lead to shocks of the same order of
magnitude than a decrease in the S&P500 return. Even if all market indicators have smaller
effects on NIG, contemporaneous changes in the slope have lower impacts than changes in
the S&P500 return, and impacts of the market index are a bit more persistent. It may
explain why interest rates have usually been found to be less economically significant. The
results on the impact of volatility are interesting and challenging for the structural models a
la Merton on an aggregated pool of firms. We indeed find that volatility has a lower impact
on hazard rates for NIG firms, which is the opposite of what is predicted by structural
models. We will come back to this point later on.

14.5.2 Business Cycle Effects

The business cycle appears to have large effects on the default cycle. Of course, business
expansion tends to decrease intensities, as found by Fons (1991) and Helwege and Kleiman
(1997) for bankruptcy rates. Consistently with Duffie et al. (2007), the personal income
growth (PIG) has larger impacts than real GDP growth. But Table 14.3 shows that
GDP effects are more persistent and that the causality between the PIG and the changes
in the hazard rate is unclear. From likelihood ratios, the results suggest that decreases in
hazard rates imply future increases in the PIG. The effects of the PIG and the CPI growth
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diminish as the credit quality lowers. Conversely, the GDP becomes more important for
NIG, indicating a closer link with the global economic health. The positive skewness of the
PIG and the negative skewness of the GDP (see Table 14.1) reinforce the relevance of
the GDP. Remark that the PIG is strongly correlated with the long-term interest rate (74%)
and with the slope of the term structure (�59%), and therefore with parallel shifts in the
term structure.

Allowing for business cycle effects enables us to compare the relative usefulness of
financial market information and business cycle information. Janosi et al. (2002) stress the

TABLE 14.3 Sensitivities with respect to Business Cycle Information

Lag
Real GDP
Growth

Industrial Production
Growth

CPI
Growth

Personal Income
Growth

Investment Grades

�1M �17.47** �48.37** �15.85** �27.13**
39.37=�28.25 33.67=�25.19 35.14=�26.00 86.64=�46.42

0M �19.23** �38.40** �15.08** �26.74**
44.10=�30.61 25.91=�20.58 33.18=�24.91 84.97=�45.94

1M �20.81** �46.55** �12.77* �25.14**
48.50=�32.66 32.22=�24.37 27.46=�21.54 78.29=�43.91

3M �21.91** �57.27** �9.85** �22.16**
51.63=�34.05 41.00=�29.08 20.58=�17.07 66.48=�39.93

1Y �12.62** �47.77** �2.76 �9.72**
27.10=�21.32 33.19=�24.92 5.38=�5.11 25.05=�20.03

3Y 15.32** 5.99 �16.07** �.40
�25.25=33.79 �3.53=3.66 35.71=�26.31 .92=�.92

Noninvestment Grades

�1M �21.44** �39.38** �7.87** �19.82**
50.28=33.46 26.65=�21.04 16.13=�13.89 57.75=�36.61

0M �22.66** �36.20** �5.87** �18.78**
53.81=�34.98 24.26=�19.52 11.80=�10.55 54.02=�35.08

1M �23.01** �50.57** �4.47* �17.26**
54.84=�35.42 35.45=�26.17 8.86=�8.14 48.73=�32.77

3M �22.58** �54.06** �2.02 �13.16**
53.58=�34.89 38.31=�27.70 3.91=�3.77 35.35=�26.12

1Y �6.78** �35.55** .53 �.45
13.75=�12.09 23.78=�19.21 �1.00=1.01 1.04=�1.03

3Y 11.71** 13.65** �15.50** 1.34

�19.95=24.92 �7.86=8.53 34.25=�25.51 �3.03=3.13
Note: Estimations of log-linear intensities l(u, ti) on investment (IG) and noninvestment grades (NIG) with

time-varying covariates over the whole sample up to last days of observation. The table displays
sensitivities bb from univariate specifications l(u, ti)¼ exp[gþb0Z (uþ ti)] where the default arrival is
assumed to be piecewise exponential conditional on factor realizations. We consider lags from 5 years
backward to 2 months forward, only main lags are reported. Constants bg are not reported. * and ** stand
for significance at 95% and 99% confidence level, respectively. For each factor, the lag offering the
highest likelihood ratio has been stressed in italics. Other figures display percentage changes in the
hazard rate for minus=plus one standard deviation changes in the factor.
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difficulty to extract default information from stockmarkets. Our implied percentage changes
in the hazard rates are in line with this claim and shows that business information is more
reliable. The lower volatility of business indicators makes 1% changes more economically
significant: the sensitivity to the GDP is�22.66 for NIG, while the sensitivity to the S&P500
return is �1.96. Taking into account the variability of these factors, lowers the differences
but still shows that the GDP is more important, especially for NIG firms: an increase by one
standard deviation in the GDP reduces intensities by 34.98% for NIG, whereas an increase
by one standard deviation in the S&P500 return reduces intensities by 26.63%.

14.5.3 Impacts of Credit and Default Factors

So far, we have not considered information from credit markets. Table 14.4 shows that
credit information brings significant explanatory power, in particular through the BBB
spread. Its effects are similar across ratings. Signs of the money lending variable confirm
that a credit crunch amplifies defaults. Nevertheless, recent changes in net treasury issues
and money lending have minor but statistically significant impacts on intensities. We argue
that this is due to their weak short-term informational content. Interestingly, the BBB yield
and the IG spread seem to carry little information on default.

Finally, rating trend indicators (upgrade=downgrade rates) appear as major explanatory
components from Table 14.5. They express the persistency of the default cycle both in
declines and recoveries. Studies of rating migrations (Nickell et al. 2000) have shown that
the NIG downgrade ratio is highly correlated with increases in the number of defaults.
Including such endogenous factors in multifactor models should be highly relevant as
downgrade ratios are not much correlated with other factors (less than �25%).

14.5.4 Persistency and Importance of Past Conditions

Lagged information provides further insights on the explanatory power and the time-span
of economic shocks over the default cycle. We only report sensitivities to 3 year lagged
factors in Tables 14.2 through 14.4 because the highest likelihood ratios have been found
for this particular lag. Similar results are obtained with 2, 4, and 5 year lagged factors. The 1
year lagged factor bring intermediate results between short and long lags, but are not
statistically significant.

With 3 year lags, half of the nonfinancial factors become insignificant for IG hazard
rates, whereas all variables but the PIG remain significant for NIG. The 3 year lagged
changes in money lending have large effects on hazard rates: a one standard deviation
increase induces an increase of 60.24% in IG hazard rates. As expected, the money lending
contains long-term information. The significance of the factors evidences the high degree
of persistence of economic shocks on the firms likelihood of default. It bears major
implications from a modeling standpoint as Markovian processes are unlikely to provide
such features.

Besides, we find that some factors impact default probabilities differently in the long
run. The S&P500, the term structure slope, the real GDP growth, and net treasury issues
appear to be leading indicators of future peaks of defaults. It supports the claim that the
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default cycle lags the economy (Koopman and Lucas 2004). The interesting point lies in the
signs of these factors which come as warnings: expansion peaks of the financial market or
of the business cycle seem to announce increases in the number of defaults 3 years later. It
has to be taken with care as it could only represent the singularities of the global economy
over the past 25 years and will not necessarily apply to the future. For example, early
repayments and small levels of issues by U.S. Treasury signaled the peak of the U.S. cycle,
which was later followed by a major default crisis. However, we stress that these lagged
effects could also be significant because migration from distress to default takes time as
reported by Altman (1989). From that perspective, the default cycle has to remain high

TABLE 14.4 Sensitivities with respect to Credit Markets Information

Lag BBB Yield BBB Spread IG Spread Treasury Issues Money Lending

Investment Grades

�1M �10.23** 75.08** 50.38** 1.55** 2.54

31.81=�24.13 �36.27=56.91 �18.25=22.33 �22.33=28.74 �9.43=10.41
0M �9.65** 74.35** 44.63** .99** 3.39

29.76=�22.94 �35.99=56.22 �16.35=19.54 �14.90=17.51 �12.38=14.13
1M �9.39** 76.89** 41.38** .90* 4.45*

28.86=�22.39 �36.96=58.62 �15.25=18.00 �13.64=15.80 �15.93=18.95
3M �8.38* 72.70** 35.73** 1.09** 5.32**

25.39=�20.25 �35.35=54.68 �13.32=15.36 �16.28=19.44 �18.74=23.06
1Y �7.51* 49.11** �7.02 �.75* 9.34**

22.48=�18.35 �25.52=34.27 2.85=�2.77 13.00=�11.51 �30.53=43.94
3Y �8.60 41.57** �13.48 �2.41** 12.09**

26.14=�20.72 �22.07=28.33 5.54=�5.25 48.12=�32.49 37.59=60.24

Noninvestment Grades

�1M �5.76** 62.07** 51.84** .46** 4.88**

16.86=�14.40 �31.09=45.12 �18.73=23.04 �7.22=7.79 �17.33=20.96
0M �5.54** 59.09** 45.95** .14 5.41**

16.13=�13.89 �29.85=42.55 �16.79=20.18 �2.26=2.31 �19.02=23.49
1M �5.45** 60.12** 39.87** �.02 6.00**

15.85=�13.68 �30.28=43.44 �14.74=17.29 0.33=�0.33 �20.86=26.36
3M �5.02** 59.68** 28.85** �.26* 6.56**

14.52=�12.68 �30.10=43.06 �10.90=12.23 4.33=�4.15 �22.57=29.15
1Y �4.94** 28.91** �13.84** �1.61** 7.55**

14.27=�12.49 �15.92=18.94 5.69=�5.39 30.01=�23.08 �25.51=34.24
3Y �9.70** 30.16** �15.08** �1.76** 11.01**

29.94=�23.04 �16.55=19.84 6.22=�5.39 33.23=�24.94 �34.91=53.61
Note: Estimations of log-linear intensities l(u, ti) on investment (IG) and noninvestment-grades (NIG) with

time-varying covariates over the whole sample up to last days of observation. The table displays
sensitivities bb from univariate specifications l(u, ti)¼ exp[gþb0Z (uþ ti)] where the default arrival is
assumed to be piecewise exponential conditional on factor realizations. We consider lags from 5 years
backward to 2 months forward, only main lags are reported. Constants bg are not reported. * and ** stand
for significance at 95% and 99% confidence level, respectively. For each factor, the lag offering the
highest likelihood ratio has been stressed in italics. Other figures display percentage changes in the
hazard rate for minus=plus one standard deviation changes in the factor.
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after economic recoveries, generating explanatory power for past conditions and persist-
ency for economic shocks. We argue that lagged factors when used as supplementary
information could at least help in capturing business and market trends, which constitute
the essential information on future default probability.* Section 14.6.4 examines this issue.

14.6 EFFICIENT HAZARD MODELS ACROSS RATING CLASSES
In the previous section, we identified some major default determinants using univariate
hazard models. We now turn to multifactor models. By doing so, we can first compare the
pertinence and the complementarity of the various economic components. We show that
explained variations in intensities could be severely underestimated because of inappropri-
ate choices in the information set. For instance, leaving aside information provided by the
business cycle can be damaging for the performance of the model. Second, we can identify
relevant parametric conditional distribution and propose a specification test in finite
samples. We finally show the critical importance of economic trends and past information.

14.6.1 Failure of Contemporaneous Financial Market Factors

Table 14.6 presents estimates of sensitivities bbb for different specifications on the basis of
contemporaneous financial predictors over rating classes. It enables us to test whether
models based solely on stock prices or interest rates or on both (joint model) are sufficient
to explain historical default intensities.

The table presents three multifactor models. For robustness checks, we included a
dummy indicating non-U.S. firms. Sensitivities to this non-U.S. indicator were not signifi-
cant. LR tests identify the joint model as the best one, whereas interest rates alone provide
the poorest fits. This last result confirms findings of Driessen (2005) or Janosi et al. (2002)
on credit spreads. Interestingly, stock market volatility is not always significant and its
relative impact on default is minor with respect to other factors. Such a finding is highly
challenging for structural models as the volatility determines the dynamics of equities and
as a consequence default probabilities. However, BBB and BB classes are significantly
affected by market volatility. This may be explained by the economic impact (in terms of
increased funding cost) of a migration from IG to NIG. Some fund managers systematic-
ally rule out NIG corporate bonds from their portfolios: at the time of a downgrade from
BBB, numerous funds closed their positions, resulting in a jump in credit spread and the
cost of debt. The market volatility could be a good proxy for that kind of market
segmentation behavior and consequently has to be a key indicator for these classes.

Figure 14.1 focuses on IG and NIG classes displaying baseline hazard rates for non-
parametric (solid line), semi-parametric (solid bold line), and parametric counterparts
(dashed lines). Unreported baseline hazards for the Interest Rates model show that our
interest rate factors, when considered as a group, are unhelpful determinants of default
across rating classes. Conversely, stock market information brings significant explanatory

* Indeed, from time-series cycle analysis between the GDP and the bankruptcy rates, Koopman and Lucas (2004)
observe differences in magnitude and lengths. The default cycle being much smoother and persistent than the
financial market or the business cycles, transitory shocks should not represent the most relevant information.
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power on the IG class. In a Merton-like intensity model with additional stochastic
liabilities, it could be interpreted as evidence of the level and higher variability of assets
being the main determinants of the default probability changes. The baseline hazard is
leveled down by 29% on Figure 14.1a, thanks to stock indicators. But for each bump in
Figure 14.1a and c, deviations from the constant (bold lines) remain significant, implying
that the S&P500 return and volatility do not succeed in capturing all shocks of the
economy which affect the default riskiness. In particular, for the NIG category, the small
difference between bba�NP(u) and bba�(u) shows that these joint financial components perform
poorly on NIG issuers as univariate results suggested.

The analysis of the Financial Markets model evidences how correlated factors can be
damaging. We concentrate on IG and NIG classes on Table 14.6 and on Figure 14.1b and d.
Sensitivities to the long-term yield are insignificant. From a statistical standpoint, it can
be explained by high correlation with other factors. From an economic standpoint, the

TABLE 14.6 Contemporaneous Financial Multifactor Models

Model
(Factors=Class)

Stock
Market

Interest
Rates

Financial
Markets

Stock
Market

Interest
Rates

Financial
Markets

IG NIG

S&P500 return �2.26** �1.40** �1.87** �1.62**
S&P500 volatility 2.35** 2.53** .50* .33

Treasury yield �10.67** �4.37** �7.97** �4.21**
Term structure slope 32.22** 24.87** 15.52** 4.09**

AA BB

S&P500 return �3.17** �3.03* �1.92** �1.44**
S&P500 volatility .03 .10 .76** 1.15**

Treasury yield �10.55 �5.70 �3.05* �1.14
Term structure slope 19.72 12.01 25.80** 17.11**

A B

S&P500 return �2.03** �1.27* �1.96** �1.69**
S&P500 volatility .35 .35 .33 .17

Treasury yield �9.95** �6.67** �8.36** �4.53**
Term structure slope 27.33** 19.68** 16.93** 4.91**

BBB CCC

S&P500 return �2.11** �1.44** �1.27** �1.27**
S&P500 volatility 2.13** 2.55** .97* .35

Treasury yield �4.47 �1.90 �14.61** �10.25**
Term structure slope 33.25** 25.66** �12.85* �10.98**
Note: Estimations of semi-parametric models of default hazard rates with time-varying factors over rating

classes for durations up to the first exits and all countries. The table displays sensitivities bbb from
multivariate specifications l(u, ti) ¼ l�(u) exp [b0Z(uþ ti)]. We focus on financial market
information. * and ** stand for significance at 95% and 99% confidence level, respectively.
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long-term yield is less informative on current economic conditions than the market index,
and on future growth opportunities than the term structure slope. Figure 14.1d proves that
mis-specified and correlated factors dramatically reduce the explanatory power. The light
curve (all financial factors) lies above the nonparametric model, meaning that the model
introduces additional noise in hazard rates instead of improving the fit. The bold line, on
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FIGURE 14.1 Baseline hazards of multifactor models relying on financial information.
Estimated nonparametric baseline hazard rates [bba�NP(u), bba�(u)] and corresponding
means over investment (IG) and noninvestment grades (NIG). Thin lines denote the full
nonparametric model [a(u, ti) ¼ a�(u)] and bold lines show semi-parametric specifica-
tions {a(u, ti) ¼ a�(u) exp [b0Z(uþ ti)]} including only significant factors, whereas light
lines keep all factors. Dashed lines represent averages of baselines—they are not statistically
different from the estimated constants eg of parametric model counterparts
{a(u, ti) ¼ exp [g þ b0Z(uþ ti)]}. The Stock Market model uses the contemporaneous
return and volatility on the S&P500. The Financial Markets model includes in addition the
U.S. long-term yield and term structure slope.
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the other hand, shows the baseline hazard when the sensitivity to the treasury yield is
constrained to be null. For the IG category, the other coefficients become �1.53**, 2.64*,
and 27.12**. And for the NIG category, they become 1.67**, 0.62*, and 6.29**. Both Figure
14.1b and d prove in this constrained case the benefit to extract additional information
from the term structure slope. The variations in hazard rates explained by this specification
are about 43% for IG and 12% for NIG.

Finally, we observe that a constant hazard either unconditional or conditional on
financial information does not represent the data correctly. Short-term default probabilities
are completely overstated by standard hazard models (the dashed line is higher than bba�(u)
up to 2–4 years) as well as long-term default probabilities for NIG. Introducing financial
factors leads to overestimating long-term hazard rates on a larger part of the debt life. In an
attempt to capture effects of the 2001 default peak, the model grants too much weight to
covariations between the financial markets and the defaults, yet still undershoot this peak.
Notice that given our sample window, the 2001 recession is responsible to a large extent for
the first hump of bba�NP(u) (among NIG observed times-to-default which range between
1 and 5 years approximately, one fourth faced the 1991 recession at these horizons while
one half faced the 2001 recession).*

14.6.2 Models Based on Nonfinancial Information

Table 14.7 reports multifactor specifications using business and credit information. All
factors enter the various models with the same signs. Unlike Duffie et al. (2007) who
worked on bankruptcy rates, we observe that the real GDP and the PIG are complementary
explanatory variables for our dataset. The impact of the GDP increases as the credit quality
decreases, whereas that of the PIG decreases. This is in accordance with univariate results.
All factors from the credit cycle are significant. In particular, the impact of the BBB spread
is homogenous across rating classes, and so are the effects of the NIG downgrade rate. This
homogeneity can indicate the influence of changes in the default risk premium. Higher
premia increase future coupon rates as most of the companies issue floating rate bonds,
pushing some firms up to their limit. As one could expect, the IG downgrade rate brings
default information for IG hazard rates. But looking at rating classes, we observe that the
effects are starker around BBB and BB firms. This factor captures local demand and supply
shocks, whereas the NIG downgrade rate captures global health of issuers.

For each rating class, we report as the Nonfinancial model the best model using these five
factors. The model is selected from LR tests. Figure 14.2a and c plots corresponding baseline
hazards for IG and NIG categories. It is striking to observe that the GDP does not add
information on the IG likelihood of default, whereas the situation reverses for NIG (actually,
substituting the PIG by theGDPdo notmodify significantly the likelihood for the BBB class).

* We check this overfitting problem because of the 2001 recession by estimating the Stock Market model on the
subsample constituted by firms entered in the process after 03=01=1991. This basically cuts durations higher than 10
years, and thus the second hump on intensity graphs. On this reduced sample, the model delivers higher
sensitivities of �2.82 on the S&P500 return and of 3.14 on its volatility for IG, �1.99** and 0.88** respectively
for NIG. At the same time, it also exhibits a higher overestimation of instantaneous probabilities from 6 to 10
remaining years after the peak.
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As we previously mentioned, this split between the GDP and the PIG over rating classes can
be explained by the effect of interest rates and their correlationwith the PIG.Adding the term
structure slope makes the PIG insignificant on IG firms, but does not change impacts of the
GDP. Our results explain the findings of Duffie et al. (2007) since they do not include interest
rates information. It could also reflect that their sample consists mainly of IG firms.

Figures 14.1b and 14.2a show that IG firms are more closely linked to financial markets
than to the other components of the economy. The semi-parametric baseline hazard
is indeed higher for the Nonfinancial model than for the Financial Markets model.

TABLE 14.7 Contemporaneous Nonfinancial Multifactor Models

Model

Business
Cycle

Credit
Cycle Nonfinancial

Business
Cycle

Credit
Cycle Nonfinancial

(Factors=Class) IG NIG

Real GDP growth �8.80** �16.83** �13.90**
Personal income growth �22.91** �15.53** �11.63**
BBB spread 39.04** 14.54** 30.24** 18.42**

IG down grade rate 39.34** 30.77** 17.21** 15.13**

NIG down grade rate 15.53** 14.23** 18.76** 15.04**

AA BB

Real GDP growth �7.87 �16.13** �12.45**
Personal income growth �10.85* �6.96 �13.28**
BBB spread 25.31* 14.11 33.47** 23.17**

IG down grade rate 9.93 6.26 24.93** 23.59**

NIG down grade rate 17.67* 17.73* 18.03** 14.6**

A B

Real GDP growth �13.42** �16.89** �13.98**
Personal income growth �21.30** �19.83** �12.20**
BBB spread 35.23** 2.58 33.35** 22.01**

IG down grade rate 18.01* 7.02 15.29** 13.02**

NIG down grade rate 18.80** 19.11** 19.33** 15.34**

BBB CCC

Real GDP growth �10.67** �12.39** �8.81**
Personal income growth �17.47** �11.35** �8.36**
BBB spread 34.51** 15.96** 26.18** 22.01**

IG down grade rate 33.39** 28.54** 3.31 1.50

NIG down grade rate 13.77** 11.81** 18.56** 15.45**

Note: Estimations of semi-parametric models of default hazard rates with time-varying factors over rating
classes for durations up to the first exits and all countries. The table displays sensitivities bbb from
multivariate specifications l(u, ti) ¼ l�(u) exp [b0Z(uþ ti)]. We focus on business and credit
information. The Nonfinancial model displays the best model from this set of factors, on the basis of
likelihood ratio tests. * and ** stand for significance at 95% and 99% confidence level, respectively.
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Conversely, considering NIG firms, the business cycle and credit-specific information have
much larger impacts on default hazard rates than stock and interest rates information. The
Nonfinancial model explains 48% of the variation in NIG hazard rates, and 34% of the
changes in IG hazard rates.
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FIGURE 14.2 Baseline hazards of Nonfinancial and Global Multifactor models.
Estimated nonparametric baseline hazard rates [bba�NP(u), bba�(u)] and corresponding
means over investment (IG) and noninvestment grades (NIG). Thin lines denote the full
nonparametric model [a(u, ti) ¼ a�(u)] and bold lines show semi-parametric specifica-
tions {a(u, ti) ¼ a�(u) exp [b0Z(uþ ti)]}. Dashed lines represent averages of baselines—
they are not statistically different from the estimated constants eg of parametric model
counterparts {a(u, ti) ¼ exp [g þ b0Z(uþ ti)]}. The Nonfinancial model uses the BBB
spread, the IG, and the NIG downgrade rates. In addition, the IG model relies on the
personal income growth and the NIG model on the real gross domestic product growth.
The Best Global model relies on the S&P500 volatility, the term structure slope, the GDP,
the BBB spread, and both IG and NIG downgrade rates.
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14.6.3 Benefits of Considering All Current Economic Indicators

In traditional structural or intensity-based models, market factors are expected to integrate
information on the business cycle or on credit-specific phenomena. However, these factors
may merely supply a noisy signal of the business cycle and may not be the most efficient
vehicle of financial information.We have shown above that financial information is of prime
importance for explaining default probability changes of IG firms. Nonfinancial information
is more relevant for NIG firms. We will now test whether financial and nonfinancial
variables are complementary or substitute predictors of the default cycle. The top part of
Table 14.8 presents our Best Global models, over IG, NIG, and BBB to CCC classes.

Both broad categories of factors (financial and nonfinancial) form part of the most
relevant information set. However, some individual factors are no longer statistically
significant. The return of the S&P500 is not relevant for all classes except the AA
(unreported). Both its correlations with the business cycle (36% with the GDP) and with
the BBB spread (�46%) explain this result. It confirms that the market index is too noisy to
provide fully reliable information on changes in overall default risk. Because of the
significant impact of the term structure slope, the PIG is also insignificant and does not
contribute to the explanatory power of the model, according to LR test. The GDP, on the
other hand, is a key instrument. As before, the IG downgrade ratio has significant impact
on the BBB and BB classes. No variable should be added from LR test outputs.

Figure 14.2b and d shows the baseline hazards for the Global models. The IG baseline is
strongly shifted downwards by 62% compared to the previous specification. The NIG
baseline is very similar to the baseline of the Nonfinancial model, explaining 49% of the
variations in hazard rates. These results prove that financial and nonfinancial factors are
complementary and should be included in any model of default probabilities under the

TABLE 14.8 Global Multivariate Proportional Hazard Models and Specification Tests

Model
(Factors=Class) IG NIG BBB BB B CCC

Best Global Model

S&P500 volatility 3.17** .61** 3.34** .67*

Term structure slope 26.24** 3.22* 25.99** 10.91** 4.18* �10.67**
GDP 11.16** �14.48** �12.89** �13.05** �14.02** �9.13**
BBB spread 8.82* 12.21** 11.01** 12.44** 23.74** 29.89**

IG down grade rate 23.95** 12.94** 19.42** 18.01**

NIG down grade rate 13.18** 14.92** 8.74** 14.36** 16.42** 15.99**

Specification Tests

Financial Markets .119 .000 .150 .077 .000 .000

Nonfinancial .003 .121 .122 .068 .097 .064

Best Global .038 .075 .124 .065 .059 .042

Note: Estimations of semi-parametric models of default intensities with time-varying covariates over
investment grade (IG) and noninvestment grade (NIG) classes for durations up to the first exits and
all countries. The first part of the table displays sensitivities bbb from multivariate specifications
l(u, ti) ¼ l�(u) exp [b0Z(uþ ti)]. * and ** stand for significance at 95% and 99% confidence level.
The second part presents p-values of specification tests on conditionally log-logistic counterparts.
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historical measure. Nevertheless, we remark that the informational content of stock and
interest rates markets on the default likelihood of NIG issuers is highly limited. For that
kind of issuers, it is crucial to rely on business factors. The proportions of explained hazard
variations of our models are much higher than the reported 25%–30% by Collin-Dufresne
et al. (2001) on credit spreads. This evidence that the new factors are key determinants of
the default regime changes even if the NIG model is not fully satisfactory. In particular, the
level of the first hump (Figure 14.2d) suggests that the default cycle is longer than the
business cycle and that some persistency has still to be incorporated.

To verify our observations, we test whether the different models are mis-specified or not.
Well-specified models could indeed be used in risk management and pricing applications.
There exists no full specification test of semi-parametric hazard models a la Cox (test of the
parametric part could be done), but Fernandes and Grammig (2005) have proposed an
asymptotic specification test of parametric hazard models. We can therefore assume a
functional form for the baseline hazard rate (i.e., specify a conditional distribution of
times-to-default) and test the model using their approach. Figures 14.1 and 14.2 show that
the conditional exponentiality is strongly mis-specified. Other standard distribution of
durations are the Weibull, the log-normal, and the log-logistic distributions. Full max-
imum likelihood estimations show that for all baseline hazards across rating classes, similar
fits are obtained with the log-logistic and the log-normal distribution. Hereafter, we check
mis-specification of conditionally log-logistic factor models. Keeping previous notations,
hazard models with log-logistic baseline are defined by

l(u, ti) ¼ dp(du)p�1

1þ (du)p
exp

�
b0Z(ti, uþ ti)

� 8i, (14:8)

d and p being the parameters of the baseline hazard. The asymptotic theory doubtfully
applies to our limited samples. We rather propose a specification test in finite samples,
starting from the Fernandes and Grammig statistic and using bootstrap:

1. Estimate bu[u ¼ (d, p,b)] and bba�NP(u) on the observed durations U ¼ (U1, . . . ,UN).

2. Compute the statistic L(bu) ¼Ð�Ð u
0 [a(u; t:, bu)� bbaNP(u; t:)]du

	2
dF(u), where F is the

true probability function of Uis.

3. Draw a new uncensored duration sample D(i) ¼ �
D(i)
1 , . . . ,D

(i)
N

�
from the estimated

distribution f (u; t:, bu), called a bootstrap sample.

4. Apply a uniform right censoring scheme matching the censoring percentage of the
observed sample. It creates simulated durations U(i) ¼ �

U (i)
1 , . . . ,U (i)

N

�
.

5. Estimate bu(i) and bba�(i)NP (u) on the simulated sample U(i), and compute the correspond-
ing statistic L

�bu(i)�.
6. Repeat steps 3–5 S times, and obtain the empirical distribution of the statistic L

�bu(�)�,
called the bootstrap distribution.

7. Reject the null hypothesis of correct specification at significance level 5% if L
�bu � is

larger than the 95% percentile of the bootstrap distribution.
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This type of bootstrap procedures is known to work extremely well in finite samples.
Notice that dates of entry into the risk classes are kept fixed (parametric bootstrap). The
bottom part of Table 14.8 displays p-values based on 1000 bootstrap samples for the
Financial Markets, the Nonfinancial, and the Global models, where nonsignificant sensi-
tivities have been constrained to zero. Results confirm previous graphical outputs and LR
tests. The Nonfinancial model performs quite well over classes from BBB to CCC and for
the broader NIG category. As expected, in the case of NIG firms and junk issuers, modeling
hazard rates by means of financial factors is strongly rejected. Nevertheless, stock and
interest rates information are sufficient to capture changes in hazard rates of IG firms.
Unreported results corroborate the inability of conditionally exponential models to repre-
sent the data at a 99.9% confidence level. We also checked that simple unconditional log-
logistic models are rejected. As a consequence, it is necessary both to rely on a complete set
of economic factors and to take ageing effects (from the most recent rating review) into
account so as to correctly capture and predict hazard rates. When using all sources of
information, results are less conclusive. The Global model is indeed rejected at 95% over
CCC and IG classes. Correlation between the different factors may be at the origin of these
mis-specifications.

14.6.4 Trends and Persistency of Shocks

So far, all selected variables have been contemporaneous, but potential lead–lag effects
between the economy and the default cycle should also be considered. Looking back at
Table 14.2, we can argue that lagged variables bring information upon current economic
conditions, and some variables lead the default cycle by an average of 3 years. To address
the benefits of past information, we concentrate on the Financial Markets model which is
the most akin to structural Merton-type models. We add 3 year lagged volatility and stock
market return, 10 year treasury yield and term structure slope. Estimated parameters bbb are
provided in Table 14.9 using past information only, and using both contemporaneous and
past information.

In the complete case, we also report for each factor two additional sensitivities which
deliver another decomposition of the usefulness of information. The trend is the sensitivity
which can be attributed to the differential between the contemporaneous and the 3 year
lagged factor, whereas the persistency is the total sensitivity to the lagged factor. Using past
information only, results are in line with univariate analyses. Past increases in volatility and
10 year treasury yield respectively increase and decrease the default likelihood, but the
effects are stronger than that of contemporaneous factors. It supports the presence of a
significant lag between the financial cycle and the default cycle. The sensitivity to past
changes in the term structure slope becomes negative. We discussed that point for the
particular CCC class: 3 years later, the remaining informational content of past slopes lies
in growth anticipation. The positive sign of the sensitivity to the S&P500 return is less
obvious. We still advocate for anticipation of changes in the business cycle which is
confirmed by the Full model. Let us consider a concrete situation. Assume that we were
at the top of an economic expansion 3 years earlier, i.e., the persistency factor is positive.
The more the trend factor is negative (the smaller today returns are with respect to past
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ones), the higher the default likelihood is. Further assume that 3 years earlier we were at the
very beginning of the expansion period. The more the trend factor is positive, the lower the
default likelihood is, provided that the growth or the differential is higher than a given
point depending on past conditions (e.g., from Table 14.9 �[1:37�Z(t�3 yr)]

(�0:40) for the NIG case).
From a global perspective, Table 14.9 shows that both trend and past information are

determinants of default probabilities. The Full models are not rejected while the Past
models are. This shows that it is not sufficient to consider the lag between the economy
and the default cycle. Figure 14.3a and b confirms the poor explanatory power of past
information alone, but Figure 14.3b and d diagnoses high explanatory power when it is used
with contemporaneous factors to capture economic trends. Explained variations in hazard
rates reach 78% for IG and 59% for NIG categories. The improvement is even more
substantial than that achieved by additional business and credit indicators for the NIG class.

TABLE 14.9 Multivariate Proportional Hazard Models with Past Information

Financial Markets Models

Contem-
poraneous Past Full

Contem-
poraneous Past Full

Factors=Class IG NIG

S&P500 Return

Contemporaneous �1.40** �.41 �1.62** �.40**
3 year lagged 1.02** 1.22** 1.51** 1.77**

Trend �.41 �.40**
Persistency .81* 1.37**

S&P500 Volatility

Contemporaneous 2.53** 3.14** .33 .77**

3 year lagged 4.09** 2.93** 3.89** 3.25**

Trend 3.14** .77**

Persistency 6.07** 4.01**

Treasury 10 year yield

Contemporaneous �4.37** 2.53* �4.21** 5.63**

3 year lagged �8.79** �6.42** �6.91** �9.30**
Trend 2.53* 5.62**

Persistency �3.89** �3.68**
Term Structure Slope

Contemporaneous 24.87** 30.31** 4.09** 14.403**

3 year lagged �20.11** �4.24 �14.59** �6.0858*
Trend 30.31** 14.40**

Persistency 26.07** 8.32*

Specification Test .119 .000 .071 .000 .029 .053

Note: Estimations of semi-parametric models of default intensities with time-varying covariates over rating

classes for durations up to the first exits and all countries. The table displays sensitivities bbb from
multivariate specifications l(u, ti) ¼ l�(u) exp [b0Z(uþ ti)]. * and ** stand for significance at 95% and
99% confidence level, respectively. If bF

c is the sensitivity to the contemporaneous factor F and bF
p to its 3

year lag, the sensitivity to the trend component is given by bF
c and the one to the persistency component

by bF
c þ bF

p .
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We can propose two explanations for such findings. First, it may reflect some cyclicality in
equity returns, and an idiosyncrasy of the period we are studying. We have found that high
current equity returns tend to be associated with low current default rates. If there is
cyclicality in equity returns, with a peak-to-trough time of approximately 3 years, it is
plausible that high returns will be associated with high default rates 3 years on. Nonetheless,
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FIGURE 14.3 Baseline hazards of multiFactor models with past information.
Estimated nonparametric baseline hazard rates

�bba�NP(u), bba�(u)� and corresponding
means over investment (IG) and noninvestment grades (NIG). Thin lines denote the full
nonparametric model [a(u, ti) ¼ a�(u)] and bold lines show semi-parametric specifica-
tions {a(u, ti) ¼ a�(u) exp [b0Z(uþ ti)]}. Dashed lines represent averages of baselines—
they are not statistically different from the estimated constants eg of parametric model
counterparts {a(u, ti) ¼ exp [g þ b0Z(uþ ti)]}. The Past model uses 3 year lagged factors
(S&P500 return and volatility, 10 year treasury yield, and term structure slope). The Full
models add the same comporaneous factors.
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we have found no evidence of such a cyclicality since Past models do not perform in
explaining hazard rate variations. An alternative, more likely, explanation would be that
in good times (when the equity market is performing well), companies can afford to raise
large amounts of debt while preserving acceptable levels of leverage. Several years later, this
level may become unsustainable for some firms, thereby raising the default rate. Table 14.9
and Figure 14.3b and d do not contradict such a hypothesis. If the stock market has an
upward trend, the market appreciation induces a decrease in hazard rates. If the market
depreciates or stagnates, hazard rates increase as some firms start experiencing difficulties.

14.7 SUMMARY
In this chapter, we study times-to-default in the S&P’s rated universe using hazard models.
We rely on a tractable framework that enables us to analyze the behavior of default
probabilities with respect to changes in various economic indicators. This is done under
the historical measure to focus precisely on probabilities without any perturbations because
of changes in the default risk premium. The chapter concentrates on common default
determinants and investigates default probabilities, rather than bankruptcy rates as con-
sidered inmost previous research. Our setting also highlights the distribution of explanatory
errors through time. Themodels we propose can be operated to forecast default probabilities
at any horizon, and as a consequence, as inputs to standard credit risk applications.

We examine different economic components which should alter the default cycle and
quantify their explanatory power: the financial market information, the business cycle and
endogenous proxies from credit markets, and the default cycle. We explore further the
sensitivity of default probabilities to past economic conditions and show their persistency
as well as impacts of subsequent trends. Specification tests for parametric hazard rate
models are also proposed and applied to time-to-default modeling.

Our initial empirical results show that the business cycle and financial market factors
offer comparable explanatory powers. Business cycle changes have larger influences on
NIG issuers, whereas stock and bond market indicators are key determinants of future
default probabilities of IG companies. Leverage ratio-targeting and business diversification
provide some intuition for this phenomenon. We show that selecting a set of factors from
each economic components (financial, business, and credit) outperforms other specifica-
tions in capturing movements in default probabilities.

Results on impacts of the market volatility are challenging for structural models as stock
price volatility is only really significant for the BBB and BB classes which are more strongly
impacted by supply and demand phenomena. However, a lag between the market and the
default rates can explain these results as lagged volatility is a significant determinant of
default probabilities for all issuers.
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APPENDIX
For parametric hazard rate models, the standard estimation procedure relies on the
maximum likelihood technique and works in the following way. Assuming that structural
dynamics variables are independent, the likelihood is separable into two terms, one related
to the dynamics of factors and the other dealing with conditional durations. Therefore, if
we are not interested in factors dynamics, we can ignore this part and focus purely on time-
to-default. For a given firm i, the likelihood l of observed duration ui can be written
conditionally on factor realizations at firm’s death or exit, but the whole construction of the
risk classes information set has to be known up to that calendar time:

l(ui) ¼ l1 uijF Z
tiþui


 �
� l2 F Z

tiþui

 �

where l1 is the univariate likelihood of the conditional duration and l2 the likelihood
associated with the factor dynamics. From that point, letting L1 and L2 denote the
multivariate counterparts of l1 and l2, the multivariate likelihood function for a sample
of n firms observed up to time t ¼ max

i
{ti þ ui} is defined by

L(u1, . . . , un) ¼ L1 u1, . . . , unjF Z
t

� �� L2 F Z
t

� �
with

L1 u1, . . . , unjF Z
t

� � ¼Yn
i¼1

exp �
ðui
0

l(s,ti)ds

2
4

3
5 I(di>ci) þ l(ui,ti)I(di<ci)½ � (14:A1)

where
c1, . . . , cn are realizations of censoring variables C1, . . . , Cn

d1, . . . , dn are default durations D1, . . . , Dn
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15.1 INTRODUCTION
Low-default portfolios (LDPs) can be defined as portfolios where the bank has no or a very
low level of defaults and is therefore unable to estimate and validate probability of default
(PD), loss given default (LGD), and exposure at default (EAD) on a basis of a proven
statistical significance. Several types of portfolios may have low numbers of defaults due to
different reasons: for example, portfolios generally considered to be of low risk (such as
exposures to sovereigns, banks, insurance companies, or highly rated corporates) or
commonly small in size, either globally or at an individual bank level (such as project
finance or shipping).* However, most of the literature does not consider retail portfolios in
this list or consider only retail mortgages.

Unfortunately, in the real world, banks often have to face the problem of relatively
sparse default data for many retail portfolios. Contingency issues (e.g., banks are recent
market entrant for a given retail portfolio or have started to collect data only from a small
period) or the nature of the product itself (e.g., mortgages) are the most common reasons.
Considering that retail banking is generally based on transactional data (hard information,
as Berger [2006] observes) and needs advanced credit risk management tools to be
managed in an efficient way, the lack of internal data to develop or validate meaningful
credit risk models must be regarded as more dangerous for retail portfolios than for non-
retail ones.

Although retail mortgages, one of the best examples of LDP, are commonly considered a
low-risk product, they usually represent a very high percentage (often more than 50%) of
bank retail assets. Indeed, banking organizations should pay a special attention to the way
they manage this business, either in the application or in the behavioral process, since any
kind of inefficiency (such as the lack of a scoring system or the use of a low-quality one)
can have significant effects on the overall bank profitability.

Financial institutions should be aware that credit risk management for retail LDPs is
becoming a strategic issue in general and for Basel II purposes in particular. The new Basel
Capital Accord and concerns raised by the industry that the lack of sufficient statistical data
and the resulting difficulty in backtesting risk parameters will result in LDPs being
excluded from the IRB treatment have caused a special attention to this topic. Many recent
studies,y mainly focusing on the bank’s wholesale portfolio, conclude that it seems incon-
sistent with the spirit of the new Basel Accord, to exclude LDPs from the IRB treatment
only because they have suffered so few defaults. However, I believe that managing LDPs in
a more efficient way, using scoring systems based as much as possible on internal data, will
likely be the next challenge for banks to improve their internal efficiency and profitability
more than only to be allowed to apply the Basel II IRB approach.

The prime objective of this chapter is to present a new technique that allows banks to
use internal data to develop or validate default prediction models even if the number of
defaults in the selected retail portfolio is low or equal to zero. In LDPs, the dependent
variable (if a regression analysis is used) or the variable to define the different groups (if the

* See Basel Committee on Banking Supervision (2005).
y See BBA, LIBA, and ISDA (August 2004, January 2005) discussion paper about low-default portfolios.
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multivariate discriminant analysis is used) cannot be defined due to the lack of information
about one group, defaulted clients. Usually, in the past, banking organizations have solved
the problem by using generic scoring models (expert scorecards based on subjective
weights or developed on pooled data) or having their processes based on simple policy
rules, all manually checked by the employees. Both these solutions are extremely inefficient
in a retail context. The performance of generic scorecards is frequently very low and often
the selected variables are not able to satisfactorily explain the credit risk of a specific retail
product. The use of policy rules to manage retail credit risk is highly cost inefficient
considering the large volume and the low profit margin of retail products.

Avery et al. (2004) examine the potential value associated with incorporating situational
data, such as local economic circumstances (e.g., unemployment rate) or personal situ-
ations (e.g., divorce) into credit risk evaluation. Their empirical models yield strong
inferences that situational circumstances significantly influence an individual’s propensity
to default on a new loan. Their findings demonstrate that adverse, temporary economic, or
personal shocks, such as income disruptions, are important factors influencing payment
performance even after accounting for an individual’s ex ante credit quality.

Considering the results of the study of Avery et al. (2004), I argue that when the credit
quality of the individuals in the selected bank portfolio is unknown (because, for example,
there was not enough time to observe their behavior), temporary economic or personal
shocks can be used as factors to infer customers’ future credit quality. I propose to utilize
shocks that typically cause the default (trigger events, as Avery et al. stipulate, such as the
loss of the job, a divorce, or the death) to model the default event inside the portfolio.
Statistics about these shocks are regularly published from the national institutions of all the
countries.

I test the proposed methodology on two different retail portfolios: a mortgage portfolio
of a big Polish bank and a consumer finance portfolio of a small Czech bank.* My findings
show that the performance of the models developed using the development sample with
inferred defaults is, in both cases, significantly higher than the performance of the generic
scorecards used by the analyzed banks. Moreover, I show that the performance of the
models developed using the inferred defaults is considerably close to the performance of
the models developed using the actual defaults.

In this study, I focus on retail portfolios containing products for private individual
clients, but I believe that a similar methodology can be applied, with some realistic
assumption, also to small and medium enterprise (SME) clients. Actually, SMEs have
been included by banks in the retail segment only recently, often forced by national
regulators and to follow the new Basel Capital Accord rules.y This means that many
SME portfolios have a small history within the bank and contain few or zero defaults,

* The choice of using data from two Eastern European countries is well considered. Actually, even if the issue of LDPs
is addressed by banks all over the world, however, it is extremely relevant and important in economic regimes where
modern banking is a new feature in the nation’s economic development (such as Eastern Europe).
y Most large banks have only recently been motivated to develop models specifically for SMEs since the new Basel
Accord explicitly differentiates capital requirements between large corporates and SMEs. See Altman and Sabato
(2007) for further discussions.
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hence we can reasonably consider most of them as LDPs. Moreover, many recent studies
(Schwaiger 2002, Saurina and Trucharte 2004, Udell 2004, Jacobson et al. 2005, Kolari and
Shin 2004, Altman and Sabato 2005, Berger 2006, and Altman and Sabato 2007) demon-
strate that the use of scoring systems for SMEs clients is a significant strategic and
competitive issue for banking organizations to achieve internal efficiency and maximize
profits linked to the SME business. For this reason, the credit risk management for SME
LDPs can be reasonably considered another important challenge for banks.

In Section 15.2, a survey of the most relevant literature about failure prediction
methodologies is provided. First, the choice of using a logistic regression to develop credit
risk models is addressed and justified. Then, I give an overview of the most recent studies
about LDPs and I investigate their findings. In Section 15.3, I extensively analyze the
proposed methodology from both a theoretical and an empirical point of view. Data from a
mortgage portfolio of a big Polish bank and from a consumer finance portfolio of small
Czech bank will be utilized to test the prediction power of the proposed technique. In
Section 15.4, I submit my conclusions.

15.2 REVIEW OF THE RELEVANT RESEARCH LITERATURE
In this section, I review some of the most important works about default prediction
methodologies. First, I analyze the different alternative statistical techniques that can be
used to develop credit risk models and then I focus on the authors who have investigated
the problem of modeling credit risk for LDPS.

15.2.1 Default Prediction Studies

The literature about default prediction methodologies is extensive since many authors
during the last 40 years have examined several possible realistic alternatives to predict
customers’ default or business failure. The pioneers in this field were Altman (1968) and
Beaver (1967), who developed models to predict business failures using a set of financial
and economic ratios. Beaver (1967) used a dichotomous classification test to determine the
error rates a potential creditor would experience if he classified firms on the basis of their
financial ratios as failed or nonfailed. He used a matched sample consisted of 158 firms (79
failed and 79 nonfailed) and he analyzed 14 financial ratios. Altman (1968) used the
multiple discriminant analysis (MDA) technique to solve the inconsistency problem linked
to the Beaver’s univariate analysis. Since the Altman study, the MDA was the prevalent
statistical technique applied to the default prediction models and it was used by many
authors (Deakin 1972, Edmister 1972, Blum 1974, Altman et al. 1977, Eisenbeis 1977,
Taffler and Tisshaw 1977, Bilderbeek 1979, Micha 1984, Gombola et al. 1987, Altman et al.
1995, Lussier 1995). However, in most of these studies, authors pointed out that the two
basic assumptions* of the MDA are often violated when it is applied to the default

* The MDA is based on two restrictive assumptions: (1) the independent variables included in the model are
multivariate normally distributed; (2) the group dispersion matrices (or variance-covariance matrices) are equal
across the failing and the nonfailing groups. See Barnes (1982), Karels and Prakash (1987), and McLeay and Omar
(2000) for further discussions about this topic.
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prediction problems. Moreover, in MDA models, the standardized coefficients cannot be
interpreted as the slopes of a regression and hence do not indicate the relative importance
of the different variables. Considering these significant MDA’s problems, Ohlson (1980) for
the first time applied the conditional logit model to the default prediction’s study.* The
practical benefits of the logit methodology are that it does not require the restrictive
assumptions of MDA and allows working with disproportional samples. From the statis-
tical point of view, the logit analysis seems to fit perfectly the characteristics of the default
prediction problem, where the dependant variable is binary (default=nondefault) and with
the groups being discrete, nonoverlapping, and identifiable. Then, the logit score is a score
between 0 and 1, which easily gives the probability of default of the client. Lastly, the
estimated coefficients can be interpreted separately as the importance or significance of
each of the independent variables in the explanation of the estimated PD.

After the work of Ohlson (1980), most of the academic literature (Zavgren 1983, Gentry
et al. 1985, Keasy and Watson 1987, Aziz et al. 1988, Platt and Platt 1990, Ooghe et al.
1995, Mossman et al. 1998, Becchetti and Sierra 2002, Charitou and Trigeorgis 2002, Lizal
2002) started to use logit models to predict default. After careful consideration of the
nature of the problems and of the purpose of this study, I have decided to choose the
logistic regression as the appropriate statistical technique.

15.2.2 Low-Default Portfolio Studies

Only recently, concerns raised by the industry that the lack of sufficient statistical data and
the resulting difficulty in backtesting risk parameters will result in LDPs being excluded
from the Basel II IRB treatment have caused a special attention to the topic of LDP credit
risk management. However, most of the recent literature focuses on the nonretail LDPs of
the banks (such as exposures to sovereigns, banks, insurance companies, highly rated
corporates, project finance, or shipping) that are considered to be the portfolios most
exposed to the problem of low number of defaults.

During the almost 40 years of existence of the scoring techniques, many alternative
scoring methodologies have been tested to improve the performance of the models.
Balcaen and Ooghe (2004) show more than 10 different techniquesy that have been used
to develop scoring models, but none of these has been specifically addressed to solve the
problem of LDPs. Between the described techniques, the multilogit model and the dynamic
event history analysis seem to be of some interest for our purposes. The multilogit model
(introduced by Peel and Peel 1988) allows to simultaneously use data from several years
before failure and to simultaneously discriminate between failing and non-failing clients
for several reporting periods before failure. This statistical process can be useful when the
number of defaults in 1 year for one product is too low to develop a robust 1 year default

* Zmijewski (1984) was the pioneer in applying probit analysis to predict default, but, until now, logit analysis has
given better results in this field.
y Between the all listed methodologies, the following are the most interesting: survival analysis, machine learning
decision trees, artificial neural networks, fuzzy rules-based classification model, multilogit model, dynamic event
history analysis, and linear goal programming.

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C015 Final Proof page 273 7.4.2008 7:41pm Compositor Name: VBalamugundan

Managing Credit Risk for Retail Low-Default Portfolios & 273



prediction model, but it requires assumptions that are very likely to be violated in practice.*
The dynamic event history model (DEHA), applied by Hill et al. (1996), sees failure as a
process and looks at the transitions to and from the stable and financially distressed states
and from the latter to the bankrupt state, using multiperiod data. A transition or a change
in a firm’s financial status (e.g., stable, financially distressed, or bankrupt) is measured by
means of a ‘‘transition rate’’ or a ‘‘conditional probability.’’ In this way, instead of
considering clients who went bankrupt as defaulted (that can be few in our portfolio),
we can classify clients who had a major shift in their financial ratios as defaulted.
Although it is a very interesting approach, it is difficult to apply this technique to private
individuals.

Allen et al. (2003) provide an analysis of the possible alternative scoring techniques that
can be used to model credit risk focusing on the retail business. They examine the
traditional approaches to credit risk measurement (expert systems, rating systems, and
credit scoring models), but the issue of LDPs is only mentioned. In their study, Loffler et al.
(2004) propose a Bayesian methodology that enables banks with small datasets to improve
their default probability estimates by imposing prior information on the estimates. As prior
information, they use coefficients from credit scoring models estimated on other datasets.
They demonstrate that the performance of the model developed using the Bayesian
technique is slightly higher than the performance of the model developed with the logistic
analysis.y The analysis is done on a sample of nonfinancial firms contained in the S&P500
index. Their findings show how banking organizations can increase the accuracy of their
logistic scoring models by using prior information. However, the issue of using the
Bayesian methodology when the number of defaults in the portfolio is low or equal to
zero is not addressed. Schuermann and Hanson (2004) examine the possibility of applying
the duration method to estimate the PD by means of migration matrices. Their proposal is
a good solution when a certain number of defaults, in at least some (usually the low-
quality) rating grades, is available. However, their approach cannot be used for portfolios
without any defaults or with a very low number of defaults scattered in the overall
portfolio.

The only study that I am aware of that focused on estimating probabilities of default
specifically for LDPs is a recent chapter by Pluto and Tasche (2005). They observe the issue
of LDPs in terms of lack of a sufficient degree of conservatism to reflect the prudential risk
management style that banks should apply when they develop internal models to estimate
PD. As an attempt to overcome this issue, the authors suggest to use the most prudent
estimation principle. This methodology provides confidence intervals for the PD of each
rating grade. Then, the PD range can be adjusted by the choice of an appropriate
confidence level. Their results show monotone PD estimate, but, again, no examples of
how to apply this methodology to retail portfolios are shown.

* The multilogit method depends entirely on the assumption of signal consistency. This assumption requires that for
a firm the data for the consecutive years before the failure give consistent signals about the status of the firm.
y The Bayesian estimators have been introduced by Adkins and Hill (1996) applied to a probit analysis.
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Most of the recent literature about LDPs explored different alternative statistical tech-
niques that increase the value of the information given by a small number of defaults in the
sample or by external sources. However, the possibility of inferring, in a nonarbitrary way, a
sufficient number of defaults so as to develop a default prediction model based on internal
data, has never been investigated. This paper focuses on a possible realistic technique that
banks can use to increase the number of defaults in their LDPs. In this way, banking
organizations will be able to utilize a classical statistical methodology (e.g., MDA or logistic
analysis) to develop default prediction models using their own internal data.

15.3 METHODOLOGY
Low-default portfolios can present a significant obstacle in developing credit risk models.
Especially for the better rating grades, but even entire portfolios with low or no defaults are
not uncommon. The issue of retail LDPs has been addressed by banks using generic
scoring models (expert scorecards based on subjective weights or developed on pooled
data) or having their processes based on simple policy rules. These practices, while
widespread in the industry, do not both entirely satisfy the national supervisors’ desire
for a statistical foundation of the scoring models and provide banks with efficient credit
risk management tools. In LDPs, a sufficient number of internal data for the selected
portfolio are available, but few or no defaults prevent the definition of the binomial
dependent variable (default=nondefault) needed to run the regression.

The value of the information contained in the available internal data is significantly
high, but this is generally not used to develop scoring models due to the sparse number of
defaults. In this section, I introduce a new methodology that can be used to model credit
risk for retail LDPs.

15.3.1 Shock Methodology

Following the literature discussed in Section 15.2, I use a conditional probability model,
logit model, to estimate the 1 year PD through a range of variables by maximizing the log-
likelihood function. This procedure is used to obtain the estimates of the parameters of the
following logit model (Hosmer and Lemeshow 1989, Gujarati 2003):

P1(Xi) ¼ 1

1þ l�(B0þB1Xi1þB2Xi2þ...þBnXin)
� � ¼ 1

1þ l�(Di)
� �

where
P1(Xi)¼PD given the vector of attributes Xi

Bj¼ coefficient of attribute j (with j¼ 1, . . . , n) and B0¼ intercept
Xij¼ value of the attribute j (with j¼ 1, . . . , n) for customer i
Di¼ the logit for customer i

The logistic function implies that the logit score P1 has a value in the [0,1] interval and is
increasing in Di. If Di approaches �1, P1 will be 0 and if Di approaches þ1, P1 will be 1.
This peculiarity of the logistic function has made its success between default prediction
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techniques,* where the response variable is binary (default=nondefault). Moreover, the
advantage of this method is that it does not assume multivariate normality and equal
covariance matrices, as discriminant analysis does.y Before running the regression, the
binary (0,1) dependent variable must be associated to the default event. To define the
default event, I use the definition contained in the new Basel Capital Accord (June 2004,
par. 452) considering in default an obligor that is 90 or more days past due.

There is not a minimum number or an optimal number of defaults in a sample to
develop a default prediction model. In many studies (Altman 1968, Blum 1974, Bilderbeek
1979, Zavgren 1983, Platt and Platt 1990, Mossman et al. 1998, Charitou and Trigeorgis
2002), authors used matched samples of default and nondefault observations. Usually,
pairing was made on criteria of size, industry, and age and, even if the number of defaults
was low (i.e., Altman used 33 defaults, Deakin [1972] 32 defaults, and Ohlson [1980] 105
defaults), the models presented high prediction power and soundness. However, other
studies (Piesse and Wood 1992) have pointed out that, when a default prediction model is
based on nonrandom samples, the accuracy results of the model cannot be generalized.
The use of matched samples that differ significantly from the original population propor-
tions is likely to lead to biased coefficients in logit models and can cause misleading
indications of the model’s predictive accuracy (Zavgren 1983, Zmijewski 1984, Ooghe
and Verbaere 1985, Keasey and Watson 1991). As such, I develop the 1 year PD prediction
models utilizing random, nonmatched samples.

Concerns have been raised that the default prediction model methodologies applied to
the retail business have been based on corporate financial model techniques. The behavior
of corporate business is not similar to that of an individual. Considerable evidence suggests
that individuals may be subject to shocks (change in marital status or employment) rather
than continuous process of degradation. Avery et al. (2004) examine the potential value
associated with incorporating situational data, such as local economic circumstances
(e.g., unemployment rate) or personal situations (e.g., divorce), into credit risk evaluation.
Their empirical models yield strong inferences that situational circumstances significantly
influence an individual’s propensity to default on a new loan. Their findings demonstrate
that adverse, temporary economic, or personal shocks, such as income disruptions, are
important factors influencing payment performance even after accounting for an individ-
ual’s ex ante credit quality. Hence, I suggest that, if the information about default is not
available, we can use the information about one of these shocks as predictor of the possible
future personal financial distress.

Statistics about the shocks that can cause the default (e.g., unemployment rate, divorce
rate) are regularly published from the national institutions of all the countries. We can use
these statistics to model the probability of the shock for one of the variables contained in
our sample (typically age, level of education, or region where the client lives). Following

* See Back et al. (1996) for a clear discussion about the topic.
y See Altman (1968), Dimitras et al. (1996), Altman and Narayanan (1997), and Altman and Sabato (2007) for further
discussion about multiple discriminant analysis (MDA) technique. The work of Lo (1986) compares the multiple
discriminant analysis and the logistic analysis in the credit risk modeling and concludes that the results of both are
very similar.
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this process, we will obviously overestimate the discriminatory power of the chosen
variable inside our sample since we will construct the dependent variable (shock=non-
shock) based on its relationship with the shock event. However, I believe that this is a
realistic assumption considering that we are not trying to predict the default event, but the
trigger event that usually causes the default. In this way, I transform a certain number of
nondefaulted clients in defaults and, instead of assigning them randomly, I assign defaults
following the indication given by some event that we know that is often linked with the
default (such as the loss of the job or the divorce). Once the sample is ready, I will run a
logistic regression and use as predictors all available variables.

15.3.2 Empirical Tests

To test the proposed methodology, I use a mortgage data sample of a Polish bank, which
contains 11,646 mortgages granted during the years 2000–2002, and a consumer finance
portfolio of a small Czech bank, containing 3,383 clients over the period 2000–2001. In
both samples, a sufficient number of defaults are available to develop an internal default
prediction model (Tables 15.1 and 15.2), but, in the first step, I do not consider the actual
defaults. I keep only nondefaulted clients and I use a trigger event (the unemployment rate)
to randomly transform the expected number of nondefaulted clients in defaulted ones. As
input, I need to know the expected average default rate for the analyzed portfolios. Usually,
this is an information that banking organizations are able to find internally (if the product
is already been managed for enough time) or externally if the bank has just launched the
product. In this case, the expected average default rate for the Polish mortgage portfolio
was around 5%* and for the Czech consumer credit portfolio it was around 10%.y These
expected average default rates can be considered as a prior probability; hence I should
assign 568 defaults (11,366� 0.05) in the Polish portfolio and 324 defaults (3,240� 0.1) in
the Czech portfolio.

TABLE 15.1 Original Polish Mortgage Dataset

Groups Number Percentage (%)

Nondefaulted clients 11,366 97.6

Defaulted clients (actual) 280 2.4

Total 11,646 100

Note: This table shows the original Polish mortgage sample, such as extracted
from the bank database. The actual defaults will be excluded from the
analysis in the first step to infer a new number of defaults more liked to
bank’s risk expectations associated with this portfolio. In the first and
second rows, the number and the percentage of nondefaulted and
defaulted clients are shown.

* The current experienced default rate (2.4%) for the mortgage portfolio was considered not realistic, since the bank
applied a very strict selection process to the applicants during the first 2 years after the launch of the mortgage
business.
y This expected default rate was based on the competitor’s experience and the bank’s perceptions about the business’
riskiness.
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For both samples, I observe the distribution of the unemployment rate versus two
variables contained in the development samples: age and level of education (see Tables
15.3 through 15.6). For each band (i) of the chosen variables (columns 1 in Tables 15.3
through 15.6), a different value of the unemployment rate can be observed (Ui) (columns 2
in Tables 15.3 through 15.6). In the first step, I calculate for each band the distance of the
unemployment rate from the average unemployment rate of the overall portfolio (AVGU).
I call this value shock index (SIi) (columns 3 in Tables 15.3 through 15.6), where:

SIi ¼ Ui

AVGU

The shock index measures the distance of each variable’s class from the trigger event mean
and I assume that this distance would be the same if we were using the default event
instead of its trigger event. Then, I calculate the expected default rate for each variable’s

TABLE 15.2 Original Czech Consumer Finance Dataset

Groups Number Percentage (%)

Nondefaulted clients 3240 95.8

Defaulted clients (actual) 143 4.2

Total 3383 100

Note: This table shows the original Czech consumer finance sample, such as
extracted from the bank database. The actual defaults will be excluded
from the analysis in the first step to infer a new number of defaults more
liked to bank’s risk expectations associated with this portfolio. In the first
and second rows, the number and the percentage of nondefaulted and
defaulted clients are shown.

TABLE 15.3 Construction of the Shock Index between the Unemployment Rate
and the Age of the Client in Poland

Age
Unemployment

Rate
Shock
Index

Expected
Default
Rate (%) % Population # Population

Expected
Number

of Defaults

�24 25.4 1.5119 5.58 4.95 563 31

25–34 27.8 1.6548 6.10 33.08 3,760 230

35–44 21.7 1.2917 4.77 28.93 3,288 157

45–54 21.1 1.2560 4.63 27.70 3,148 146

�55 3.6 0.2143 0.79 5.34 607 5

Total average 16.8 5.00 100.00 11,366 568

Note: This table shows how the shock index and the expected number of defaults for each band are calculated.
In the first and second columns, the average Polish unemployment rate per age class is shown. These
figures have been found in the Polish National Statistical Institute Report for 2004 and 2005. In the third
column, the shock index is calculated dividing the unemployment rate for each band by the total average
unemployment rate. In the fourth column, the expected default rate for each band is shown. This has
been obtained by multiplying the shock index by the expected average default rate at portfolio level,
weighted by the percentage of population in each band. In the fifth and sixth columns, the percentage
and the number of customers for each portfolio band are depicted. In the last column, the expected
number of defaults for each band is calculated multiplying the expected default rate per band by the
number of clients in each band.
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band (DFi) multiplying the shock index (SIi) by a default rate (X) that allows the expected
average default rate for the entire portfolio (AVGDF), weighted by the percentage of
population in each band (ai), to be equal to the expected value (columns 4 in Tables
15.3 through 15.6):

DFi ¼ SIi � X
where

X ¼ AVGDF
SI1 � a1 þ SI2 � a2 þ SI3 � a3 þ � � � þ SIn � an

Once this expected default rate for each band has been calculated, I multiply it by the
number of the population contained in the band (columns 6 in Tables 15.3 through 15.6)
and I get the expected number of defaults that I should infer in that band (columns 7 in
Tables 15.3 through 15.6). Then, I randomly transform inside each band, the found
number of nondefaulted clients in defaulted ones and I obtain new development sample
with a number of defaults as sufficient as to develop a meaningful credit risk model using
own internal data.

For the Polish sample, I assign the default using the level of education, while, for the
Czech sample, I use the age.* In Tables 15.7 and 15.8, the new structure of the two

TABLE 15.4 Construction of the Shock Index between the Unemployment Rate and the Level
of Education of the Client in Poland

Level of Education
Unemployment

Rate
Shock
Index

Expected
Default
Rate (%)

%
Population

#
Population

Expected
Number

of Defaults

Basic, preprimary,
and no education

32.6 1.9405 17.90 3.05 347 62

Secondary education
(vocational)

22.4 1.3333 12.30 14.17 1,611 198

Secondary education
(general)

7.3 0.4345 4.01 38.54 4,380 176

Tertiary education
(university)

4.8 0.2857 2.64 44.24 5,028 133

Total average 16.8 5.00 100.00 11,366 568

Note: This table shows how the shock index and the expected number of defaults for each band are calculated.
In the first and second columns, the average Polish unemployment rate per level of education class is
shown. These figures have been found in the Polish National Statistical Institute Report for 2004 and
2005. In the third column, the shock index is calculated by dividing the unemployment rate for each
band by the total average unemployment rate. In the fourth column, the expected default rate for
each band is shown. This has been obtained by multiplying the shock index by the expected average
default rate at portfolio level, weighted by the percentage of population in each band. In the fifth and
sixth columns, the percentage and the number of customers for each portfolio band are depicted. In
the last column, the expected number of defaults for each band is calculated multiplying the expected
default rate per band by the number of clients in each band.

* The choice is not based on any specific reason. My intention was only to choose a different variable for each sample.
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TABLE 15.5 Construction of the Shock Index between the Unemployment Rate
and the Age of the Client in Czech Republic

Age
Unemployment

Rate
Shock
Index

Expected
Default
Rate (%) % Population # Population

Expected
Number

of Defaults

15–19 38.4 4.9272 49.42 0.40 13 6

20–24 14.8 1.9024 19.08 9.75 316 60

25–29 8.1 1.0384 10.41 17.50 567 59

30–34 7.5 0.9668 9.70 17.10 554 54

35–39 7.1 0.9080 9.11 15.56 504 46

40–44 6.2 0.7976 8.00 14.69 476 38

45–49 5.8 0.7456 7.48 10.77 349 26

50–54 6.9 0.8908 8.93 7.99 259 23

55–59 4.9 0.6246 6.27 4.26 138 9

60–64 2.8 0.3590 3.60 1.45 47 2

�65 3.7 0.4795 4.81 0.52 17 1

Total average 7.8 10.00 100.00 3240 324

Note: This table shows how the shock index and the expected number of defaults for each band are calculated.
In the first and second columns, the average Czech unemployment rate per age class is shown. These
figures have been found in the Czech National Statistical Institute Report for 2004 and 2005. In the third
column, the shock index is calculated dividing the unemployment rate for each band by the total average
unemployment rate. In the fourth column, the expected default rate for each band is shown. This has
been obtained by multiplying the shock index by the expected average default rate at portfolio level,
weighted by the percentage of population in each band. In the fifth and sixth columns, the percentage
and the number of customers for each portfolio band are depicted. In the last column, the expected
number of defaults for each band is calculated multiplying the expected default rate per band by
the number of clients in each band.

TABLE 15.6 Construction of the Shock Index between the Unemployment Rate
and the Level of Education of the Client in Czech Republic

Level of Education
Unemployment

Rate
Shock
Index

Expected
Default
Rate (%)

%
Population

#
Population

Expected
Number

of Defaults

Basic, preprimary,
and no education

20.5 2.6312 25.96 19.14 620 161

Secondary education 6.2 0.7949 7.84 54.97 1781 140

Tertiary education
(University)

2.2 0.2828 2.79 25.90 839 23

Total average 7.8 10.00 100.00 3240 324

Note: This table shows how the shock index and the expected number of defaults for each band are calculated.
In the first and second columns, the average Czech unemployment rate per level of education class is
shown. These figures have been found in the Czech National Statistical Institute Report for 2004 and
2005. In the third column, the shock index is calculated dividing the unemployment rate for each band
by the total average unemployment rate. In the fourth column, the expected default rate for each band is
shown. This has been obtained by multiplying the shock index by the expected average default rate at
portfolio level, weighted by the percentage of population in each band. In the fifth and sixth columns, the
percentage and the number of customers for each portfolio band are depicted. In the last column, the
expected number of defaults for each band is calculated multiplying the expected default rate per band
by the number of clients in each band.
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development samples is depicted. I use these two new samples to run the logistic regression
entering all the other available variables and I develop 1 year PD models.

15.3.3 Validation Results

To test the performance of my models, I apply them on the original samples, the ones
containing the actual defaults. Using this samples, I am able to prove my initial assumption
(i.e., default event and its trigger event are highly correlated). Moreover, I believe that
results cannot be satisfactory evaluated only on an absolute basis and, for this reason, I
show for both portfolios the performance of other two models applied on the same dataset.
One is a model developed on the original sample using the actual defaults. For the Czech
and the Polish portfolios, I run a logistic regression utilizing the same variables entered in
the models developed with the inferred defaults. Then, I also apply the two generic
scorecards used by the analyzed banks at the moment of the data extraction.*

In Tables 15.9 and 15.10, I summarize the results in terms of prediction accuracy of the
six different models (the two logistic models developed with actual and inferred defaults

TABLE 15.7 New Polish Mortgage Dataset

Groups Number Percentage (%)

Nondefaulted clients 10,798 95.0

Defaulted clients 568 5.0

Total 11,366 100

Note: This table shows the new Polish mortgage sample, containing the
new defaults inferred with the proposed technique. This sample
will be used to develop a default prediction model to be compared
with a model built on the original sample. In the first and second
row, the number and the percentage of nondefaulted and
defaulted clients are shown.

TABLE 15.8 New Czech Consumer Finance Dataset

Groups Number Percentage (%)

Nondefaulted clients 2916 90.0

Defaulted clients 324 10.0

Total 3240 100

Note: This table shows the new Czech consumer finance sample,
containing the new defaults inferred with the proposed
technique. This sample will be used to develop a default
prediction model to be compared with a model built on the
original sample. In the first and second rows, the number and
the percentage of nondefaulted and defaulted clients are shown.

* The Polish scorecard was subjectively designed by the bank internal analysts about 3 months after the launch of the
mortgage business, when already about 2000 data was available, but no defaults had occurred at that time. The
Czech generic scorecard was provided to the bank from a consultant company. The model was developed pooling
together data from consumer finance portfolios of different Western European countries.
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and a generic model for both countries) tested on the original sample. Following the large
literature about model classification accuracy (Beaver 1967, Altman 1968, Deakin 1972,
Edmister 1972, Altman et al. 1977, Ohlson 1980, Taffler 1982, Verbaere 1985, Koh 1992,
Ooghe et al. 1995, Steele 1995, Kraft et al. 2004), I present the type I and type II error rates
and the accuracy ratio of each model.

The error rates shown in Tables 15.9 and 15.10 are calculated fixing an arbitrary cutoff
rate of 40% of the population.* I acknowledge that the chosen cutoff rate is possibly not the
optimal rate since the different misclassification costs for the type I and type II error rates are
not taken into account (Altman et al. 1977, Taffler 1982). However, I point out that the

TABLE 15.9 Comparison of the Classification Accuracy of the Different Models Applied on the Polish
Mortgage Portfolio

Type I Error
Rate (%)

Type II Error
Rate (%)

Accuracy
Ratio (%)

Logistic model developed with actual defaults 18.60 27.46 56

Logistic model developed with inferred defaults 22.34 34.12 52

Expert model 25.82 43.30 37

Note: This table shows the misclassification rates and the accuracy ratios of the three different models applied
to the Polish original sample fixing an arbitrary cutoff rate of 40%. The first column shows the type I
error rate, i.e., the percentage of defaulted clients classified as nondefaulted. In the second column, the
type II error rate is illustrated. This rate represents the percentage of nondefaulted clients classified as
defaulted. In the last column, the accuracy ratio, defined as the ratio of the area between the cumulative
accuracy profile (CAP) of the rating model being validated and the CAP of the random model, and the
area between the CAP of the perfect rating model and the CAP of the random model, is shown.

TABLE 15.10 Comparison of the Classification Accuracy of the Different Models Applied on the Czech
Consumer Credit Portfolio

Type I Error
Rate (%)

Type II Error
Rate (%)

Accuracy
Ratio (%)

Logistic model developed with actual defaults 15.30 24.32 62

Logistic model developed with inferred defaults 21.74 29.56 57

Generic scorecard 27.12 31.60 43

Note: This table shows the misclassification rates and the accuracy ratios of the three different models applied
to the Czech original sample fixing an arbitrary cutoff rate of 40%. The first column shows the type I
error rate, i.e., the percentage of defaulted clients classified as nondefaulted. In the second column, the
type II error rate is illustrated. This rate represents the percentage of nondefaulted clients classified as
defaulted. In the last column, the accuracy ratio, defined as the ratio of the area between the cumulative
accuracy profile (CAP) of the rating model being validated and the CAP of the random model, and the
area between the CAP of the perfect rating model and the CAP of the random model, is shown.

* Applying the developed model to all the individuals contained in the sample, a score is calculated for each one of
them. Then, the 40% of the sample with the lowest scores is considered rejected to check the accuracy of the model
to correctly and incorrectly classify the clients (as defaulted and nondefaulted) between accepted and rejected
applicants. The choice to fix a cutoff at 40% is not based on any specific reason; any other percentage could have
been chosen for the analysis.
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purpose of this work is to use a common, arbitrary, fixed cutoff rate only to compare the
prediction accuracy of the different models and not to find the best cutoff strategy.

15.3.4 Comparison of Results

To compare models results, I provide the type I and type II error rates and an index
(columns 4 in Tables 15.9 and 15.10). The index is called the accuracy ratio (AR) and is
defined as the ratio of the area between the cumulative accuracy profile (CAP) of the rating
model being validated and the CAP of the randommodel, and the area between the CAP of
the perfect rating model and the CAP of the random model (see Engelman et al. [2003] for
further details). Indeed, it measures the ability of the model to maximize the distance
between the defaulted and nondefaulted clients.

For both portfolios, the performance of the model developed using the original actual
defaults is the highest in terms of prediction accuracy (56% and 62% accuracy ratio for the
Polish and Czech sample, respectively). This result was expected considering that the
performances of the models have been measured on the original samples, the samples
containing the actual defaults that, for these models, are also the development samples.
Moreover, the value of the internal data, when is available, is extremely high and it is
unquestionable that leads to the most powerful default prediction models.

I find that the prediction accuracy of the models developed on the samples manipulated
with the proposed technique is significantly higher than the accuracy of the generic
scorecards used by the banks and considerably close to the performance of the models
developed using the actual defaults (52% accuracy ratio versus 37% for the Polish portfolio
and 57% versus 43% accuracy ratio for the Czech portfolio).

These results demonstrate the added value associated with the use of internal data to
develop meaningful default prediction models, even when defaults are low or not available.
Utilizing the drivers of the default event to model the dependent variable can be reasonably
considered a very useful data-enhancing methodology for retail LDPs. In any case, the
proposed technique has led to solutions notably more efficient than generic scoring systems.

15.4 CONCLUSIONS
In this chapter, I introduce a methodology that can be used to manage credit risk for retail
LDPs. In the literature, I have found several studies addressing the topic of LDPs, but few
focus on the retail side. When retail portfolios experience a low-default situation, banks
generally solve this problem using generic scorecards or applying only policy rules. The
proposed methodology would allow banking organizations to develop powerful credit risk
models utilizing their own internal data even if default data is missing.

I update the existing literature with several findings. First, I analyze the problem of LDPs
focusing on retail assets.

Second, I prove my initial assumption about the inefficiency of generic scorecards that
present a prediction accuracy, always significantly lower than the accuracy of the score-
cards developed on internal data. I demonstrate the added value associated with internal
data even if defaults are missing. I also find, as expected, that scorecards developed on
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samples with enough actual defaults have the highest prediction accuracy. Indeed, any
solution adopted to solve the issue of LDPs should be temporary and must be substituted
as soon as enough defaults in the portfolio are available.

Last, even if LDPs are not mentioned as such in the Basel II framework, they have been
the reason of many industry questions and concerns and have led the Basel Committee
Accord Implementation Group’s Validation (AIGV) subgroup to publish a newsletter
(number 6 of September 2005) specifically addressed to the LDP matter. In this document,
it is extensively recognized that relatively sparse default data might require increased
reliance on alternative data sources and data-enhancing tools and techniques. Moreover,
the AIGV makes clear that the PD estimates should be forward looking for all portfolios
and that it should be possible to base them not only on recent loss data (that can be scarce),
but also on additional information about the drivers of losses.

I believe that the methodology proposed in this chapter can be classified as data-
enhancing tool with the purpose of modeling credit risk for retail LDPs. As suggested in
the AIGV paper, the lack of information about defaulted clients is addressed taking into
account the drivers of the default event. These trigger events are used to infer defaults
inside the selected retail portfolio. Using this technique, banking organization will be able
to develop powerful models to estimate PD utilizing their own internal data even if a
sufficient number of defaults are still not available.

I think that the suggested methodology can be considered as a Basel II compliant
realistic alternative to develop meaningful default prediction models for LDPs. However,
I want to emphasize that improving the credit risk management techniques used for the
LDPs banks will reap benefits especially in terms of internal efficiency of their retail
portfolios.

Developing advanced credit risk management tools is likely to become a significant
competitive advantage for banks that will want to compete globally. Improve the quality of
the decision in the application process and rely on automated decision systems are essential
elements of the retail business. Banks that will be able to manage their LDPs using efficient
scoring systems will likely experience higher internal efficiency and profitability.
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16.1 INTRODUCTION
From the beginning of 2007 European banks are required to assess the credit risk in their
portfolios with a set of new rules collectively known as the New Accord or Basel II. The
new regulatory framework has introduced radical changes to the existing regulation and is
quickly becoming a benchmark worldwide with all the major non-EU economies and most
emerging markets planning to introduce it within the next few years.

Basel II entails a three-pronged approach to bank capital regulation: (1) a comprehen-
sive set of rules designed to measure the risks in banks’ portfolios and to produce
minimum capital requirements, (2) a supervisory review process setting out the role of
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bank supervisors in ensuring that the new framework is correctly implemented, and (3)
disclosure requirements to induce banks to make available more information about the key
risks in their books with the objective of improving bank accountability and market
monitoring. Under the first ‘‘pillar,’’ banks can calculate credit-risk capital requirements
by choosing one of the three approaches. This flexibility was introduced in answer to the
criticism leveled at the ‘‘one-size-fits-all’’ approach of Basel I, the previous regulation. All
three options fundamentally depart from Basel I in that they employ credit ratings as a way
to assess individual exposures’ credit risk. The three options are called the standardized
approach (SA), the foundation internal rating-based approach, and the advanced internal
rating-based approach (collectively called IRBA hereafter). The SA is based on external
ratings as assigned by recognized rating institutions whereas the other two approaches, as
their names suggest, rely on ratings internally derived by the banks.* National supervisors
allow banks to adopt the latter approaches only if they are satisfied that the internal rating
assignment process is sufficiently accurate.y

The Basel Committee has conducted several ‘‘quantitative impact studies’’ to test the
effect of the new rules on banks’ regulatory capital. However, the main focus of such
studies was to compare the new and the old regulation and to determine whether the new
regulation would yield substantially lower capital requirements. On the other hand, most
of the available studies on the actual accuracy of Basel II refer to earlier drafts of the new
framework which has been substantially modified since the release of the first consultative
papers in 1999 and 2001, also to incorporate some of the points made in these studies.
Examples are, Altman and Saunders (2001) who show that the risk weights associated with
the risk categories in the SA do not accurately represent the credit risk of assets that fall in
such categories and Sironi and Zazzara (2003) who measure the inconsistencies between
the asset correlation assumptions in the IRBA and asset correlations implied from empir-
ically observed default correlations. The final version of the New Accord (Basel Committee
on Banking Supervision 2006a) indeed presents new risk weights for the SA and a revised
treatment of asset correlation in the IRBA. However, following the latest changes, Resti and
Sironi (2007a) take another look at the SA and conclude, in agreement with Linnell (2001),
that the different treatment of banks and nonbank corporations in the New Accord is not
justifiable. Their empirical evidence suggests that the credit risk of banks and nonbanks
with the same rating is statistically indistinguishable. They also conclude that the current
risk categories are too coarse and should be more granular to increase accuracy, and that
the risk-weight curve across risk categories should be steeper.

Empirical tests on the IRBA focus mainly on the accuracy of the regulatory approach
when measuring the risk of loans to small and medium enterprises and retail exposures.

* Krahnen and Weber (2001) and Crouhy et al. (2001) describe the principles and technical aspects one should
consider when devising an internal rating system. Carey (2001) and Jacobson et al. (2006) present some evidence on
the consistency of internal rating systems across banks.
y In this respect, the Basel Committee has produced a comprehensive survey of techniques for the validation of
internal rating systems (Basel Committee on Banking Supervision 2005). Carey and Hrycay (2001) on the other
hand investigate the potential pitfalls of internal rating systems and suggest that a combination of several rating
methods would help reduce their most common weaknesses.
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Perli and Nayda (2004) develop a credit-risk model for retail exposures that accounts for
future margin income and find that the negative relationship between probability of default
and asset correlation established in the IRBA does not necessarily hold empirically. Calem
and LaCour-Little (2004) show that geographical diversification, which is not directly
addressed in pillar 1 of Basel II, has an important role in determining the economic capital
of mortgage loan portfolios. Jacobson et al. (2005), through a re-sampling method applied
to a large database of bank loans from two major Swedish banks, find no evidence in
support of the IRBA assumption that SME loans and retail credits are systematically less
risky than wholesale corporate loans. With the same data and analytical approach Jacobson
et al. (2006) show that IRBA capital can be 6–9 times higher than economic capital.* The
re-sampling technique they adopt has the advantage that it allows them to derive portfolio
loss distributions without making any of the assumptions (e.g., on correlations) underlying
a credit-risk model. However, the usefulness of their approach is reduced in portfolios of
wholesale corporate loans. First, wholesale credits are larger in size and smaller in number
than retail and SME credits in a typical bank portfolio, which will lessen the accuracy and
significance of re-sampling. Second, conducting re-sampling on a database where only
default losses are recorded (but not losses in loan value arising from rating downgrades)
will not produce meaningful risk measures when there are no or few historical defaults in
the sample. Furthermore, the practice of marking-to-market portfolio exposures and hence
directly account for downgrade losses is becoming increasingly relevant today with the
widespread use of securitizations, also in the retail lending sector.

The contribution of this chapter is to provide new ways in which to test the accuracy of
SA and IRBA on a portfolio of wholesale corporate exposures. We do so by comparing the
regulatory capital obtained from the Basel II approaches with the economic capital
resulting from CreditMetrics, a popular credit-risk model which provides a natural way
to relax the assumptions underlying the IRBA. Furthermore, we single out the effect of
correlation and downgrade risk, as well as, loan maturity, probability of default, and credit
rating on the estimation bias produced by the regulatory models. We do so dynamically
over a 10 year period on portfolios of Eurobonds with different granularity and risk
characteristics. We find that the IRBA (as well as the SA) can produce regulatory capital
that is as much as three times larger than the economic capital generated with Credit-
Metrics. This bias has the same order of magnitude as in Jacobson et al. (2006) but is
smaller, probably because of the explicit inclusion in our analysis of downgrade losses
which cause economic capital to rise. The fact that previous findings about the conserva-
tiveness of the new capital regulation are broadly confirmed reinforces concerns about
the economic impact of the new rules especially in the light of the ongoing debate about the
propensity of the New Accord to aggravate credit rationing in recessions (Gordy and
Howells 2006).

This chapter is organized as follows. Section 16.2 summarizes the data used for our
analysis. In Section 16.3 we describe the Basel II models for credit risk. Section 16.4

* This result is derived from Table 12 in their paper. A typo in the text of the paper refers to regulatory capital being
6% to 9% higher than economic capital rather than 6–9 times higher.
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introduces the benchmark model that we employ to test the accuracy of the regulatory
models. In Section 16.5 we present our results and Section 16.6 concludes the chapter.

16.2 DATA
The data we use for this study were obtained through Reuters and include U.S. dollar-
denominated bonds issued by 502 firms.* Our criteria in selecting the bonds are (1) that
they were neither callable nor convertible, (2) that a rating history was available, (3) that
the coupons were constant with a fixed frequency, (4) that repayment was at par, and (5)
that the bond did not possess a sinking fund.

The composition of the total portfolio is shown in Table 16.1. The obligors domiciled in
the United States constitute 46.4%. A further 27.5% of the companies are headquartered in
Japan, the Netherlands, Germany, France, or the United Kingdom; 54% of the companies
in our sample are in the financial services or banking sectors.

To implement the benchmark model, we also needed: (1) transition matrices, (2) default
spreads and default-free yield curves, (3) equity index data, and (4) a set of weights linking
individual obligors to the equity indices. Transition matrices were sourced from Standard
and Poor’s (Vazza et al. 2005). Default-free interest rates and spreads for different rating
categories were taken from Bloomberg.y We also created an equity index dataset going
back to 1983 and comprising 243 country- and industry-specific MSCI indices. For each

TABLE 16.1 Portfolio Characteristics

Country No. of Firms Percentage

United States 233 46.4

Japan 42 8.4

Netherlands 36 7.2

United Kingdom 27 5.4

Germany 17 3.4

France 16 3.2

Other 131 26.1

Industry No. of Firms Percentage

Financial services 160 31.9

Banking 111 22.1

Utilities 27 5.4

Energy 20 4.0

Merchandising 15 3.0

Telecoms 15 3.0

Other 154 30.7

Total 502

* Of these, 90% were Eurobonds, the remainder are national bonds from several countries.
y We used spreads for U.S. industrials since these had the longest series and the fewest missing observations.
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obligor, based on the domicile and industry classification provided by Reuters, we then
chose one of these indices as the source of systematic risk.

16.3 BASEL II
In this section we briefly summarize the main features of the alternative approaches to
computing credit-risk capital requirements in Basel II, the SA, and the IRBA. The SA and
IRBA are implemented with variations that depend on the type of borrower namely, large
corporations, sovereigns, banks, and retail borrowers. We shall focus on large corporations
and banks only, as the data we employ for the empirical analysis are bonds issued by these
types of obligors.

The SA produces a capital requirement with a method similar to that in use in the first
Basel Accord (BCBS 1988), also called Basel I. Each claim is assigned a risk weight and
regulatory capital is given by the sum of the values of all claims, multiplied by their
respective risk weights, and a constant factor of 8%. In Basel I weights vary in relation to
the type of borrower. In the SA of Basel II, risk weights vary according to both borrower
type and the borrower’s external credit rating. Different risk charges are applied to unrated
companies.* For claims on banks, the SA offers two options and all banks in a country will
be subject to one of the two at the discretion of the national supervisor. Under option one,
the risk weight depends on the risk category assigned to the country of incorporation of the
borrowing bank. Risk categories are identified by the range of sovereign ratings that attract
the same risk weight. So, for example, sovereign ratings from AAA to AA– represent one
category as all have a 0% risk weight. Option two is particularly suitable for countries
whose banks are mostly unrated. Under option two, the risk weight depends on the
borrowing bank’s own credit rating.y A summary of SA risk weights for large corporations,
sovereigns, and banks is reported in Table 16.2.

The credit-risk capital charge under the two internal rating-based approaches is based
on the same analytical framework. However, it is only in the advanced IRBA that banks are
responsible for estimating all the four parameters of the model, probability of default (PD),
loss given default (LGD), exposure at default (EAD), and effective maturity (M). Banks
under the foundation IRBA will have to provide own estimates of the PD, but they are
required to follow specific computation rules for the other three parameters. For both
approaches, the minimum capital requirement is given by,

IRBA Capital ¼
XN
s

RWAs (16:1)

where
RWAs denotes the risk-weighted value of asset s
N is the total number of assets in the bank’s credit-risk portfolio

* All firms in our sample are rated; so the unrated weight has not been used.
y Also paragraph 62 in Basel II states ‘‘ . . . a preferential risk weight that is one category more favorable may be
applied to claims with an original maturity of three months or less, subject to a floor of 20%. This treatment will be
available to both rated and unrated banks, but not to banks risk weighted at 150%.’’
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The RWAs is defined as follows,

RWAs ¼ ULs � EADs (16:2)

where
ULs is the percent unexpected loss in assets
EADs is the asset’s exposure at default

From this formula we can infer that regulatory capital under the IRBA is designed to
cover only for unexpected losses. This is because banks systematically set aside provisions
for expected losses. ULs is defined as the difference between the expected loss from
borrowers in a downturn scenario and the expected loss under a normal scenario. It is
formally defined as*

ULs ¼ CF �MAs � LGDs � F
F�1(PDs)þF�1(0:999)

ffiffiffiffiffi
Rs
pffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Rs
p

� �
� PDs

� �
(16:3)

where CF is a calibration factor that was introduced to broadly maintain the aggregate
level of regulatory capital that was in place across the banking industry before the

TABLE 16.2 Risk Weights under the Standardized Approach
in Basel II

Banks Banks
Rating Sovereign (Option 1) (Option 2) Corporates

AAA 0 0.2 0.2 0.2

AAþ 0 0.2 0.2 0.2

AA 0 0.2 0.2 0.2

AA� 0 0.2 0.2 0.2

Aþ 0.2 0.5 0.5 0.5

A 0.2 0.5 0.5 0.5

A� 0.2 0.5 0.5 0.5

BBBþ 0.5 1 0.5 1

BBB 0.5 1 0.5 1

BBB� 0.5 1 0.5 1

BBþ 1 1 1 1

BB 1 1 1 1

BB� 1 1 1 1

Bþ 1 1 1 1.5

B 1 1 1 1.5

B� 1 1 1 1.5

<B� 1.5 1.5 1.5 1.5

Unrated 1 1 0.5 1

* A comprehensive description of the rationale behind the UL formula can be found in Resti and Sironi (2007b),
Chapter 20, and Basel Committee on Banking Supervision (2005).
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introduction of Basel II. The factor is currently equal to 1.06. F denotes a cumulative
standard normal. F(�) is an expression for the PD in a downturn scenario and is fully
derived in the Appendix. MAs is a maturity adjustment which grows with effective maturity,
M, and falls as PD increases. The idea behind it is that longer maturity bonds, which are
riskier, should attract a higher capital charge. However, if PD goes up, the MAs will fall
because lower quality assets are exposed to downgrade risk to a lower extent than higher
quality assets. In other words, the scope for loss in value due to a downgrade is larger for an
AAA asset than for an asset with lower credit rating.* The maturity adjustment is given by

MAs ¼ 1þ (Ms � 2:5)b(PDs)

1� 1:5b(PDs)
(16:4)

where

b(PDs) ¼ (0:11852� 0:05478 ln (PDs))
2 (16:5)

b(PDs) has been calibrated on market data to produce the downgrade effect discussed
above. M is obtained with a simplified duration formula and is defined as

Ms ¼
X
t

t � ct
 ! X

t

ct

,
(16:6)

where ct denotes the cash flow of asset s at time t. Rs in Equation 16.3 is the squared
correlation between the return of a borrower’s assets and the return on a systematic risk
factor.y By analyzing a large database of United States, Japanese, and European firms,
Lopez (2004) found Rs to be a decreasing function of the PD and an increasing function of
the size V of borrower s. These findings have been implemented in the IRBA with the
following formula:

Rs ¼ 0:12 � (1� exp (�50 � PDs))=(1� exp (�50))
þ 0:24 � 1� (1� exp (�50 � PDs))=(1� exp (�50))½ �
� 0:04 � (1� (V � 5)=45) (16:7)

where V is measured in terms of the firm’s annual sales in million Euros. The size
adjustment does not apply to companies that have a turnover of more than 50 million
Euros, and is set at �0.04 for those with annual sales lower than 5 millions. Although we
do not have turnover data for the companies in our sample, it is plausible to assume that
their size is considerable, since most of them are Eurobond issuers. Therefore, we do not

* This does not mean however that higher quality exposures will attract higher capital charges. Although, all else
equal, they will have a higher MA, their PD, which has a dominant effect on the unexpected loss in Equation 16.3,
will drive down their risk weight. Therefore, the impact of MA as credit quality improves is to make the fall in
capital requirement less sharp.
y Provided that the systematic risk factor is the same across borrowers, the factor cancels out in the derivation of the
ULs formula and so it need not be explicitly identified (see the Appendix for details).
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apply the size adjustment. If we ignore the size adjustment, Equation 16.7 indicates that Rs

is a weighted average of, i.e., it varies between, 0.12 and 0.24, with the parenthetic values
being normalized weights that sum 1. The weights are a function of PD and cause Rs to
decline as PD increases.

Interestingly, regulatory capital under the IRBA is additive—as is in the SA and in Basel
I—in the sense that to arrive at the total capital requirement one needs to sum the
individual capital charge of each asset in the portfolio. However, while additivity in
Basel I and the SA in Basel II follow from the implicit assumption that assets in the
portfolio are perfectly correlated, the IRBA additivity is the result of the assumptions that
the portfolio is perfectly diversified (or infinitely granular) and that only one systematic
risk factor drives the correlation among the assets in the portfolio.* Therefore, in the IRBA,
additivity obtains even though correlation is less than 1.

We implement as closely as possible the advanced IRBA by using the information in our
data sample.M is estimated as in Equation 16.6 and subject to a lower and upper boundary of
1 and 5 years, respectively, as indicated in Basel II.y For the probability of default, as we lack
internal rating data, we assume that the bank’s internal rating system perfectly replicates that
of a recognized rating agency, Standard and Poor’s. This is not implausible as Basel II allows
banks to map their internal ratings to agency ratings and employ the default probabilities of
the latter.z The PDs fed into the IRBA model are, at each point in time and for each credit
rating, the averages of point-in-time default rates for that rating over the previous 5 years.§

As prescribed in Basel II, we constrain default probabilities to be greater than or equal to
.03%.** As we do not have enough information on LGD for different seniorities over the
sample period, we use a flat LGD of 50% across the whole sample.yy The exposure at default
is equal to 1 for each firm as we aim to form portfolios in which assets are equally weighted.

16.4 BENCHMARK
The IRBA in Basel II is derived under some restrictive assumptions, namely that (1) the
credit risk of individual exposures is driven by one systematic risk factor only and that (2)
the portfolio of exposures is fully diversified. To remove such assumptions we use Credit-
Metrics, a popular credit-risk model proposed by Bhatia et al. (1997). The model allows for
multiple systematic factors and portfolio concentration. Belowwe describe its main features.

The main contribution of CreditMetrics is a simple way to model the correlation of
illiquid credit exposures. Most bank loans are illiquid in the sense that they are not traded,
in an exchange or over the counter, and hence their prices are not available. CreditMetrics
models the price of a credit exposure as a discrete process. The exposure’s future value will

* See Gordy (2003) for a detailed derivation of this result and an analysis of the properties of the IRBA model.
y See BCBS (2006a), para. 320.
z See BCSB (2006a), para. 462.
§ According to Basel II default probabilities should be estimated by taking average default rates over a minimum

period of 5 years (see BCBS 2006a, para. 447, 463).
** see BCSB (2006a), para. 285.
yy More than 70% of our bonds are unsecured (57.34% of unsecured proper and 14.14% of senior unsecured), which

according to Carty and Lieberman (1996) have an average recovery rate of 51.13%. Bonds with lower seniority
(that is, subordinated), and hence with a lower recovery rate, account for only 1.55% of the total sample.
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depend on the credit rating of the borrower at the chosen horizon (typically 1 year). The
correlation between any two exposures will then depend on how their future rating scenarios
are correlated. The idea in CreditMetrics is to model changes in rating scenarios of
borrowers with a standard normal latent variable Qs that represents the return of the assets
of that borrower. Positive and large asset returns will push the borrower towards a higher
rating, while large negative returns will cause a downgrade and, in severe cases, default. The
thresholds Zi,j that determine transitions from an initial rating i to a rating j are computed by
employing the transition probabilities pi,j found in rating transition matrices. These are
regularly published by all themajor rating agencies. The thresholds can be estimated directly
using the recursive equations below:

pi,D ¼ F(Zi,D)

pi,CCC ¼ F(Zi,CCC)�F(Zi,D)

. . .
pi,AAA ¼ 1�F(Zi,AA)

8>><
>>: (16:8)

Transition probabilities in a given year are estimated by taking the average of the previous
5 years’ point-in-time transition matrices. To take into account indirect migration and
generate nonzero default probabilities for ratings at the top end of the rating scale we use
the ‘‘generator’’ approach introduced by Jarrow et al. (1997) and refinedby Israel et al. (2001).

The value of the asset return Qs is assumed to depend on one or more systematic factors.
Under the simplifying assumption that each borrower’s asset return depends on one factor
only, the asset return will be given by

Qs ¼ usXs þ «s (16:9)

where Xs and «s denote the standardized return on the factor and the idiosyncratic
component of the firm’s asset return, respectively. Then, the correlation between the
asset return of borrower s and v will be usuvrs,v where rs,v is the correlation between
factors Xs and Xv. In CreditMetrics rs,v is proxied with the correlation of the equity indices
that most closely represent borrower s and borrower v. Typically, the chosen index is that
of the country and industry sector in which a borrower operates. However, it is unclear
how the systematic factor loading ur should be estimated. For simplicity, we use the
approach in the IRBA which expresses ur as

ffiffiffiffiffi
Rr
p

. This has the additional advantage of
simplifying the comparison between the regulatory model and the benchmark, as it
eliminates one of the potential sources of difference.*

Since the latent variableQs is standard normal, one can easily applyMonte Carlomethods
to generate correlated rating scenarios for all the loans in the portfolio and derive the
distribution of portfolio values.y Then, the portfolio loss distribution is obtained by taking

* This rather ad hoc assumption implies that asset correlation under the benchmark will always be lower than that
under the IRBA. Indeed, recent findings indicate that asset correlation as computed in the IRBA may be too
conservative (see Rösch and Scheule, 2008).
y See Bhatia et al. (1997), Chapters 10 and 11 for details.
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the difference between the 1 year forward value of the portfolio under the assumption that all
exposures maintain their current rating and the generated portfolio values.* By computing
the Value-at-Risk at the 99.9% confidence level on the loss distribution, as prescribed by
Basel II, the unexpected loss can then be estimated as the difference between the VaR and the
loss mean value. The comparison of the unexpected loss so derived with the regulatory
models’ capital charge will be the focus of our discussion in the reminder of the chapter.

16.5 RESULTS
In this section we compare the capital charge produced by the benchmark with the capital
charges of Basel II’s SA and IRBA. The starting point of our analysis is the asymptotic
single risk factor model (ASRF) of Gordy (2003), a special case of both, the IRBA and the
benchmark. By adding the assumptions that distinguish the two models from the ASRF,
one at a time, we will be in a position to study how they diverge and why.

Table 16.3 summarizes our findings. The three features that cause the IRBA to depart
from the ASRF are the maturity adjustment, the .03% default probability floor, and the
calibration factor. All of them increase the capital requirement relative to the requirement
one obtains with a straightforward application of the ASRF. The maturity adjustment has
the largest impact with an average increase in capital of 82.4%. The default probability floor
follows with a 50.4% increase, while the calibration factor adds a further 14.0%. The
benchmark, on the other hand, introduces granularity effects, (explicit) downgrade risk,

TABLE 16.3 Impact of IRBA and the Benchmark Models’
Assumptions on Capital Charge

Assumptions
Marginal Capital Charges,

% of ASRF

IRBA

Maturity adjustment 82.4

PD floor 50.4

Calibration factor 14.0

IRBA total 146.8

Benchmark

Granularity 36.9

Multiple factors �41.5
Downgrade risk 108.6

Benchmark total 104.0

Note: This table reports the marginal capital charges produced by
the various assumptions underlying the IRBA model in Basel
II and the benchmark model. Estimates are averages over the
sample period based on the implementation of the models
on our bond data. Marginal effects are percentages expressed
in terms of the capital charge of the ASRF model of Gordy
(2003).

* See, for example, Crouhy et al. (2001), Section 2.4.
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and multiple systematic risk factors to the basic ASRF. The largest rise in capital is caused
by downgrade risk, þ108.6%, followed by granularity effects with þ36.9%. The introduc-
tion of multiple factors on the other hand reduces capital by a substantial 41.5%.* The total
of the above modeling assumptions for the IRBA is þ146.8% which is higher than the total
for the benchmark þ104.0%. Therefore, from these initial observations it appears that the
regulatory model produces more conservative capital requirements than the benchmark.
Below, we shall investigate the causes behind this result in more detail.

Figure 16.1 shows that CreditMetrics with no downgrade risk and a single systematic
factor actually converges to the ASRF as portfolio diversification increases. The figure also
reveals two important points. First, credit riskmay be hard to diversify. In portfolios with 100
exposures, the UL of CreditMetrics may still exceed the UL based on full diversification
(ASRF) by a nonnegligible amount, due to concentration effects. Second, in high-quality
portfolios, convergence is slower. For example, with an average portfolio PD of .1%, the
discrepancy between CreditMetrics and ASRF is still 15.9% when the number of exposures is
as high as 200.

Figure 16.2 shows the granularity effect when the benchmark is applied to our bond
data. The benchmark is implemented in the simplest way, that is, without downgrade risk
and with a single systematic risk factor. The difference in unexpected loss is larger at the
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FIGURE 16.1 Convergence between CreditMetrics and asymptotic single risk factor
(ASRF). In this graph we report the percentage difference in unexpected loss (UL) between
CreditMetrics and the ASRF model as the number of exposures in the portfolio increases.
Results are based on a sample of fictitious exposures with identical default probability and
exposure at default, and a loss given default of 50%. The confidence level used to derive UL
with both models is 99.9%. CreditMetrics has been implemented without downgrade risk
and with a single risk factor.

* Within the framework of the benchmark model, using a single systematic factor is equivalent to using multiple
perfectly correlated factors. Hence, as risk factors are always less than perfectly correlated, it follows that portfolio
correlation, and as a result, unexpected losses, go down when multiple factors are introduced in the model.
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beginning of the sample period because the sample size increases with time. The negative
correlation between the number of exposures and the unexpected loss difference between
the two models is easily inferred from Figure 16.3.

We shall now present a temporal breakdown of the impact on the unexpected loss of
those assumptions of the IRBA and the benchmark that differentiate these models from the
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ASRF and whose average effect was reported in Table 16.3. Figure 16.4 shows how the
IRBA unexpected loss increases when the maturity adjustment, the PD lower bound, and
the calibration factor are introduced. The noticeable fall in the capital requirement of the
full IRBA is mainly due to a declining average effective maturity of the portfolio which goes
from 4.6 years at the beginning of the sample period to 3.2 years at the end of the period.
Lower effective maturity directly reduces the maturity adjustment in Equations 16.3 and
16.4 thus generating the pattern we observe. Figure 16.5 illustrates how the benchmark
reacts to the introduction of downgrade risk and multiple systematic risk factors. The
figure reveals that downgrade risk falls markedly between January 1991 and April 1993
causing the UL to drop by about 50%.

Finally, we investigate the core question of this study which pertains to the difference in
capital charges produced by the full implementation of both models as well as the SA.
Figure 16.6 shows that both Basel II approaches yield higher capital requirements than the
benchmark and increasingly so as time goes by. The divergence is particularly striking
from 1993 onward and peaks in April 1997 when IRBA and SA are about 196% and 322%
higher than the benchmark, respectively.

The figure also indicates that SA and IRBA start to diverge from the beginning of 1993.
The SA may only produce higher capital charges when the average rating of the assets in
the portfolio declines. From the above one may infer that the SA may become substantially
more conservative than the IRBA as credit quality deteriorates. This point is summarized
in Figure 16.7, which shows how the difference between IRBA and SA appears to be tightly
related to the average rating in the portfolio. It should be stressed however, that our sample

0

1

2

3

Ja
n-

89

Ja
n-

90

Ja
n-

91

Ja
n-

92

Ja
n-

93

Ja
n-

94

Ja
n-

95

Ja
n-

96

Ja
n-

97

Ja
n-

98

Time

U
L 

%

IRBA() IRBA(MA) IRBA(MA, PDlim, CF)

FIGURE 16.4 Internal rating-based approach (IRBA) unexpected loss under different
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expected portfolio value at time tþ 1 year. Time refers to the date at the VaR horizon, i.e.,
current time plus 1 year.
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does not cover the whole rating scale and hence our conclusions may not apply to
portfolios that have a very low credit quality. Indeed, Resti and Sironi (2007b)* show
that for a given maturity (2.5 years) and recovery rate (45%) and given default rates
associated with each rating category, the difference between the SA and the (foundation)
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FIGURE 16.5 Benchmark unexpected loss under different assumptions. We report the
unexpected loss of the benchmark model under three scenarios: benchmark(DR)
with downgrade risk and one systematic factor, benchmark(MF) with multiple factors
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factor. ULs are expressed as percentages of expected portfolio value at time tþ 1 year. Time
refers to the date at the VaR horizon, i.e., current time plus 1 year.
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FIGURE 16.6 Unexpected loss (UL) comparison: Benchmark, SA, and IRBA. The bench-
mark is implemented with downgrade risk and multiple factors while the IRBA includes
the maturity adjustment, the default probability floor, and the calibration factor. The UL is
expressed as a percentage of expected portfolio value at time tþ 1 year. Time refers to the
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* See Figure 20.4, page 617.
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IRBA may go up or down. In their example, the SA produces increasingly higher capital
requirements than the IRBA as the average quality of the portfolio declines from AA to A
and from A to BBB, while the distance between SA and IRBA falls as one moves further
down the rating scale. Eventually, the IRBA overtakes the SA in portfolios with B and CCC
average rating.

Next, we test the performance of the three models in portfolios with different risk
profile. We construct a high-risk and a low-risk portfolio with 40 exposures each, the ones
with the lowest and highest ratings, respectively, among those available in our sample at
each point in time. The results are reported in Figures 16.8 and 16.9. Although, judging
from Figure 16.1, the effect of portfolio concentration on these small size portfolios should
produce a noticeable increase of the benchmark UL relative to the IRBA UL, it turns out
that, as before, the IRBA yields, in most cases, capital charges that are higher (and often
much higher) than the benchmark. So, the maturity adjustment, PD floor, and calibration
factor in the IRBA more than compensate for the granularity effect in the benchmark. Also,
since the number of assets in the portfolio remains constant over time, it follows that the
increasing discrepancy between the regulatory models and the benchmark cannot be the
result of changes in granularity. We will explore the causes of such differences with
regression analysis in the next section.

In the low-risk portfolio the IRBA systematically overshoots the benchmark. The SA
also produces higher capital charges except for the first few months in 1989 when it falls
below the benchmark. Also, as the credit quality of the portfolio does not fluctuate much
and it always lies in the first rating bucket, the SA capital charge is flat at 1.6%, given by the
product of the top rating bucket risk weight 20% and the 8% Cooke ratio.
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implemented with all adjustments. The thin line is the average rating in the portfolio. To
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categories as follows: AAA¼ 27, AAþ¼ 25, AA¼ 24, AA�¼ 23, Aþ¼ 22, A¼ 21 . . .
where each further notch down causes the numerical value to decrease by 1.
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Figures 16.6, 16.8, and 16.9 show that none of the Basel II models consistently yields a
higher capital charge. However, according to the last quantitative impact study run by the
Basel Committee before the final approval of the Basel II framework in 2006 (BCBS 2006b)

0

2

4

6

8

10

Ja
n-

89

Ja
n-

90

Ja
n-

91

Ja
n-

92

Ja
n-

93

Ja
n-

94

Ja
n-

95

Ja
n-

96

Ja
n-

97

Ja
n-

98

Time

U
L 

%

Benchmark(DR, MF) SA IRBA(MA, PDlim, CF)

FIGURE 16.8 UL comparison in high-risk portfolio. The benchmark is implemented with
downgrade risk and multiple factors while the IRBA includes the maturity adjustment, the
default probability floor, and the calibration factor. The high-risk portfolio includes, at
each point in time, the 40 bonds with the lowest rating in the sample. The UL is expressed
as a percentage of expected portfolio value at time tþ 1 year. Time refers to the date at the
VaR horizon, i.e., current time plus 1 year.
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FIGURE 16.9 UL comparison in low-risk portfolio. The benchmark is implemented with
downgrade risk and multiple factors while the IRBA includes the maturity adjustment, the
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the SA yielded on average, across all the 382 banks in the 32 countries that participated in
the exercise, a higher capital requirement than either implementation of the IRBA (foun-
dation or advanced).* But, it should be noted that the impact study was done at a particular
point in time and hence its result need not apply in general. The SA will produce higher
regulatory capital than the IRBA when economic conditions are particularly benign, as was
the case during the last impact study. This is because internally derived default probabil-
ities within each rating category will fall and thus will compress the unexpected loss of the
IRBA. On the contrary, the SA capital charges cannot reflect such change in PD as they are
fixed for each rating category.

Figures 16.10 and 16.11 report the difference between the two Basel models and the
benchmark and are derived directly from Figures 16.6, 16.8, and 16.9. Under the IRBA, the
overestimation bias is always positive for the whole portfolio and the low-risk sub-portfolio
and its average over the sample period is 95% and 82% above the benchmark, respectively.
In the high-risk sub-portfolio the bias is much more volatile and, surprisingly, becomes
considerably negative in 1991. The lowest IRBA bias is �0.84% of (expected) portfolio
value and occurs in November 1991. This is 37% lower than the benchmark UL. On the
other hand, the maximum overestimation occurs in November 1995 with a whopping
375% increase on the benchmark level.

In the SA the bias exhibits a wider variation than the IRBA bias when we look at the whole
portfolio and the low-risk sub-portfolio. This is no doubt the result of the lower risk
sensitivity of the SA. Indeed the fixed risk weights of the SA do not change when the default
probability, asset correlation, or downgrade risk vary. So, the SA bias fully reflects the
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FIGURE 16.10 Internal rating-based approach (IRBA) overestimation bias. We report the
difference between the unexpected loss derived with the IRBA with all the adjustments and
the benchmark implemented with downgrade risk and multiple factors. The UL difference
is expressed as a percentage of expected portfolio value at time tþ 1 year. Time refers to
the date at the VaR horizon, i.e., current time plus 1 year.

* See Table 1 page 2 of Basel Committee on Banking Supervision (2006b).
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changes in the benchmark due to fluctuations in these factors. On the other hand, the range
of variation of the SA bias for the high-risk portfolio is comparable to that of the IRBA and is
in fact, slightly lower. This indicates that both regulatory models share comparable (and
substantial) inaccuracy when measuring the risk in low-quality portfolios. Similarly to the
IRBA, the lowest and highest SA biases occur in the high-risk portfolio. The lowest bias
comes about in February 1991 and equals�0.65% of the expected portfolio value, 25% below
the benchmark. The highest bias happens in December 1995 and is equal to 3.01%, which
is 335% above the benchmark.

In conclusion, Figures 16.6, 16.8, and 16.9 reveal that the regulatory models are closer to
each other than to the benchmark. Then, it appears that although the IRBA is a step in the
right direction from a fixed risk-weight approach such as Basel I and the SA in Basel II, still it
has not yet gone half the way towards a full portfolio model. It is also clear that the difference
between the two Basel models and the benchmark (Figures 16.10 and 16.11) may vary
substantially over time, an indication that they exhibit difference sensitivity to mutating
economic conditions. This suggests that the extent of the overestimation (and occasional
underestimation) cannot be simply fixed by a scaling factor. Moreover, the alternating sign
of the bias shows that the regulatory models may lead to capital requirements that are not
necessarily conservative, as often believed, but could in fact be too low at times.

16.5.1 Regression Analysis

In this section we explore the causes behind the time variation in the overestimation bias of
the Basel II models discussed in the previous section. This will help us to identify the
factors that may cause the regulatory models to misrepresent portfolio credit risk. We carry
out this analysis by regressing changes in the IRBA and SA biases on changes in the
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FIGURE 16.11 Standardized approach overestimation bias. We report the difference
between the unexpected loss derived with the SA and the benchmark implemented with
downgrade risk and multiple factors. The capital charge difference is expressed as a
percentage of expected portfolio value at time tþ 1 year. Time refers to the date at the
VaR horizon, i.e., current time plus 1 year.
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characteristics of the portfolios. These include (1) average effective maturity, (2) average
rating, which denotes both the internal rating for the IRBA and the external rating for
the SA,* (3) average default probability, (4) portfolio concentration as measured by the
Herfindahl index, (5) systematic factor correlation, and (6) the level of downgrade risk. The
rating variable has been constructed by assigning a numerical value to each rating as
follows, AAA¼ 27, AAþ¼ 25, AA¼ 24, AA�¼ 23, and so on. The wider gap between
AAA and AAþ was present in conversion tables supplied by Reuters and denotes the
absence of the AAA� rating and probably the greater difference in terms of financial
strength between AAA and AAþ than between any other pair of adjacent ratings. Variable
(5) is measured indirectly as the impact of changes in factor correlation on the benchmark
UL. Downgrade risk is estimated as the difference in the unexpected loss of the bench-
mark when diagonal rating transition matrices (i.e., without downgrade risk) are replaced
with full transition matrices. Regression results are reported in Table 16.4.

TABLE 16.4 Regression of Changes in Basel II Overestimation Biases on Changes of Portfolio Characteristics

IRBA Overestimation Bias SA Overestimation Bias

Whole
Portfolio

High-Risk
Portfolio

Low-Risk
Portfolio

Whole
Portfolio

High-Risk
Portfolio

Low-Risk
Portfolio

Constant 0.006 �0.007 0.002 0.001 0.017 0.002

Concentration �10.32 — — �80.77 — —

Rating �0.162 �0.541*** �1.111*** �0.357*** �0.154 �1.111***
Default probability 21.74*** 0.147 �23680.2*** �52.14*** �40.69*** �23685.6***
Effective maturity 0.482*** 0.411** 0.319*** 0.010 �0.093 �0.112***
Downgrade risk �0.565*** �0.233* �0.331*** �0.649*** �0.332*** �0.331***
Factor correlation 0.016 �0.287*** �0.226 0.055 �0.195*** �0.226
Adjusted R-squared 0.452 0.609 0.644 0.481 0.387 0.531

Note: The table reports the estimation results of regressions that aim to explain changes in the overestimation
bias in Basel II’s internal rating-based approach (IRBA) and standardized approach (SA) relative to the
benchmark model. The estimation bias is measured as the difference between the unexpected loss
obtained from one of the Basel II approaches and that of the benchmark model. The benchmark
model is CreditMetrics implemented with the inclusion of downgrade risk and multiple systematic
factors. The sample includes monthly observations over the period from January 1989 to February 1998.
Explanatory variables are in first differences and include: portfolio ‘‘concentration’’ as measured by the
Herfindahl index; average rating; average default probability; average effective maturity; downgrade risk
which is estimated as the difference in unexpected loss of the benchmark model when diagonal rating
transition matrices (i.e., without downgrade risk) are replaced with full transition matrices; and the
variable that measures systematic ‘‘factor correlation.’’ The ‘‘high-risk portfolio’’ (low-risk portfolio)
columns denote a portion of the sample including, at each point in time, the 40 firms with the lowest
(highest) rating. Parameters are estimated with ordinary least squares.

***, **, * indicate significance at the 1%, 5%, and 10% confidence level, respectively. Confidence intervals are
estimated with standard errors adjusted for autocorrelation and heteroscedasticity.

* An interesting area of investigation, which is beyond the purpose of this paper, would be an assessment of
systematic differences between agency ratings and banks’ own ratings and how they impact on SA and IRBA
regulatory capital. Differences may occur, for example, because of different emphasis on the rating time horizon
(point-in-time or through-the-cycle) and differences in the definition of default.
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The results indicate that the regulatory models do not share the same sensitivity to all
explanatory variables. If the bias of different regulatory models is pushed in different
directions by the same variable then banks using different models may be induced, as a
result of regulation, to adopt different portfolio allocation and lending policies. For
instance, the coefficient of effective maturity has a positive sign and is highly significant
for the IRBA in the whole portfolio as well as the high and low-risk ones. So, banks can
decrease the IRBA overestimation bias and hence their capital requirement by decreasing
the duration of the assets in their portfolios. This may be achieved for example with
policies that favor short-term lending or quick amortization of long-term loans. On the
other hand, the coefficient of effective maturity is either not significant (whole portfolio
and high-risk sub-portfolio) or negative and highly significant (low-risk sub-portfolio) in
the SA. This implies that a bank that adopts the SA and has a high-quality portfolio can
reduce overestimation bias and its capital charge through long-term lending, which is
exactly the opposite outcome to that obtained with the IRBA.

Higher effective maturity makes the maturity adjustment defined in Equation 16.4 to go
up which ultimately produces higher capital requirements. Given the positive sign of
effective maturity in the IRBA regression, higher effective maturity also causes the IRBA
estimation bias to increase, an indication that the influence of maturity on portfolio credit
risk appears to be overestimated within the IRBA. This observation is consistent with
Kalkbrener and Overbeck (2003) who reached a similar conclusion when investigating the
maturity effect in the 2001 version of the New Accord. On the other hand, the negative and
highly significant coefficient of effective maturity under the SA in the low-risk portfolio
results from the influence of maturity on the benchmark model. Longer maturity produces
higher volatility of forward bond values and hence higher unexpected loss from the
benchmark. Since the SA is not affected by maturity, then, when maturity goes up,
the gap between the SA and the benchmark will shrink which is the effect captured by the
regression coefficient. However, such effect does not seem to be so prominent in the whole
sample and in the high-risk portfolio.

Downgrade risk has a negative and always significant sign in both the IRBA and SA
regression. In other words, when downgrade risk goes up, the benchmark model will reflect
the change with higher unexpected losses and the IRBA and SA overestimation bias will
fall. It is interesting to note that the maturity adjustment was introduced in the IRBA to
account for downgrade risk.* But, the fact that the two variables are lowly correlated (0.28
correlation in first differences in the whole sample) and that each can only explain a
fraction of the volatility of the othery suggest that the maturity adjustment does not
accurately capture downgrade risk.

Although the level of granularity is important in explaining the difference between IRBA
and benchmark (Figure 16.2), regression results show that changes in granularity are not
significant in explaining changes in such difference, probably because they have been

* See, for example, Resti and Sironi (2007b), p. 611.
yWhen we regress one variable on the other, plus a constant, for the whole sample we find the adjusted R-squared to
be 7.2%.
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gradual over time and hence overshadowed by the effect of other variables. Even though
the sign of the concentration variable, which is a measure of granularity, is not significant,
still, as one might expect, it is negative. This means that higher concentration pushes the
UL of the benchmark higher and closer to the regulatory models’ ULs (as the latter remain
unaffected by concentration).

The correlation between the external rating and default probability variables is negative,
as expected.* However, the level of correlation is not as high as to cause concern for
multicollinearity (�41% in the whole portfolio,�79% in the high-risk portfolio, and�61%
in the low-risk portfolio). The reason for including both variables in the regression is that
default probability may change within the same rating category over time. So default
probability and rating need not move in unison. Also, changes in the external rating
produce an impact on SA while changes in default probability do not.

The rating variable influences both the IRBA and the benchmark in a similar way since a
change in rating brings about a change in the rating’s associated default probability.
However, the negative sign of the variable’s coefficient suggests that the distance between
the IRBA and the benchmark increases as the rating deteriorates. This may follow because
of the parameterization of the IRBA which appears to become more and more conservative
as credit quality goes down.

Similarly, higher values of the default probability variable bring about higher IRBA
overestimation bias in the whole (average quality) portfolio. The direction of the relation-
ship is the same as in the high-risk portfolio but the default probability coefficient in that
instance is not significant. The result in the low-risk portfolio is more curious as the default
probability coefficient is negative and highly significant. This implies that higher credit
quality (i.e., lower PD) causes the gap between IRBA and benchmark to grow, which
appears to contradict our previous conclusions. In fact, the finding seems to be the result of
the PD floor of .03% in the IRBA. As the credit quality improves and the PD keeps falling
below the .03% limit, the benchmark UL will fall while the IRBA UL will not be affected.
Hence, the gap between the two opens up. According to this line of reasoning, however, the
rating’s coefficient in the low-risk portfolio should be positive, while it is negative and
highly significant. The reason for it is that the rating variable for the low-risk portfolio only
changes in the first 2 years of the sample period, when the usual negative relationship
between credit quality and overestimation bias still applies. After that, the average rating of
the portfolio is flat at the AAA level (as all assets in the high-risk portfolio are AAA rated
from January 1991). Therefore, the negative relationship between credit quality and
overestimation bias does not carry into the remaining years (i.e., most of the sample
period) when the PD limit effect kicks in.

Unlike in the IRBA, in the SA both the rating and default probability coefficients are
always negative. The two variables have the same sign because the SA is only affected by
ratings and not by default probability. The negative sign of the rating variable means that,
similarly to the IRBA, the SA appears to become more conservative than the benchmark as
the credit rating deteriorates. On the other hand, a higher value of the default probability

* The correlation was estimated on the first difference of the variables.
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variable causes the benchmark UL to increase while leaving the SA UL unaffected, which
results in a lower SA overestimation bias.

The factor correlation variable is significant only in the high-risk portfolio under both
regulatory models. Its sign is negative in the high-risk portfolio because if factor correlation
goes up (down) the benchmark UL will go up and the overestimation bias will have to fall
(increase) as the variable does not have any bearing on the regulatory models.

It should be noted that the low-risk portfolio under both IRBA and SA produces
coefficients for all the explanatory variables, with the exception of effective maturity, that
have very similar values (often identical up to three digits). This is because the IRBA and
SA overestimation biases in the low-risk portfolio are highly correlated (65% on first
differences) as they are overwhelmingly influenced by the behavior of the benchmark
model (Figure 16.9).*

16.6 CONCLUSION
In this chapter we test the accuracy of the new credit-risk measurement techniques
introduced with Basel II. We do so by comparing the credit-risk measures produced by
the new regulatory framework with those obtained with a benchmark model that removes
several of the restrictive assumptions of the former. We find that the discrepancies between
regulatory models and the benchmark may be large. Our results may be summarized as
follows: (1) Regulatory models are typically more conservative than the benchmark and
may occasionally produce risk estimates that are more than three times higher than the
benchmark level. This should raise some concern as the finding combined with the higher
risk sensitivity of the new regulation may well exacerbate credit rationing in periods of
economic recession. (2) Credit-risk underestimation is also possible although its magni-
tude during our observation period is small compared to the overestimation bias (37% and
25% below the benchmark under the IRBA and the SA, respectively). The implication is
that banks may at times be overexposed to credit risk, despite the conservative approach
taken in devising the new rules. (3) Contrary to the evidence presented in the last
quantitative impact study undertaken by the Basel Committee (BCBS 2006b) we find
that the SA may yield lower capital requirements than the IRBA, when default rates are
high and the portfolio has long duration. (4) The difference between the regulatory models
and the benchmark depends on the combined effect of several variables. As a result, the
discrepancy could not be corrected easily, for example with the use of a constant scaling
factor. (5) We find the more advanced internal rating-based model IRBA to yield risk
measures that are on average closer to the SA than to the benchmark model. This suggests
that although the IRBA and the benchmark are both portfolio models, the simplifying
assumptions in the IRBA offset a large proportion of the benefits of a portfolio approach to
credit-risk modeling. (6) Different regulatory models can produce different incentives and,

* The SA unexpected loss is constant over the sample period so the SA bias is entirely driven by the benchmark loss.
In the case of the IRBA, although its unexpected loss changes, it does so with little volatility, so again the IRBA bias
is dominated by the benchmark loss.
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as a consequence, different portfolio allocation distortions in banks. For instance, the
adoption of the IRBA may induce banks to shorten the duration of their assets to attract
lower capital requirements and align regulatory capital with economic capital. On the other
hand, the SA has little sensitivity to asset duration. So, banks could successfully engage in
regulatory capital arbitrage by investing in assets with longer duration. (7) Finally, we find
that the maturity adjustment appears to be a poor proxy for downgrade risk.

We should emphasize that our conclusions are based on the benchmark we employ in
this study. Although the chosen benchmark provides a natural way to relax the assump-
tions in Basel II and is a widely popular model, its predictive ability has not been
thoroughly investigated yet, partly due to data availability issues which make backtesting
problematic.* Furthermore, in this work we do not consider possible generalizations of the
benchmark in which recovery risk and credit spread risk are accounted for as suggested by
Kiesel et al. (2001). These generalizations are likely to increase the capital requirements
implied by the benchmark. However, this will not necessarily result in a greater consistency
between the regulatory models and the benchmark as the additional risks, which are not
captured by the regulatory models, will create further points of departure between the two.
Moreover, the introduction of these risks leaves open the question of how to model the
dependence between credit spreads, recovery rates, and transition rates. We leave the
investigation of these issues to future research.

APPENDIX: DERIVATION OF DOWNTURN PROBABILITY
OF DEFAULT IN THE IRBA

Following Vasicek (2002), let us assume that the asset return Qs of any borrower s in a loan
portfolio depends on one systematic risk factor only, X, and that the asset correlation
between any two borrowers is constant and equal to R. Also, assume that the variables Qs

for s¼ 1, 2, . . . are jointly standard normal. Then, Qs will be

Qs ¼ X
ffiffiffi
R
p
þ Zs

ffiffiffiffiffiffiffiffiffiffiffi
1� R
p

where X and Z1, Z2, . . . are mutually independent standard normals. The unconditional
probability of default for borrower s is simply

PDs ¼ P(Qs < Qs,d) ¼ F(Qs,d)

where Qs,d is the default threshold for borrower s. On the other hand, the conditional
probability of default depends on the value taken by the systematic factor X. Let us denote
such value as x. Then, the conditional probability can be written as

PD(X ¼ x)s ¼ P(Qs < Qs,djX ¼ x) ¼ P x
ffiffiffi
R
p
þ Zs

ffiffiffiffiffiffiffiffiffiffiffi
1� R
p

< Qs,d

� �

* For a first analysis of the out-of-sample performance of such benchmark see Nickell et al. (2007).
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which yields

PD(X ¼ x)s ¼ P Zs <
Qs,d � x

ffiffiffi
R
pffiffiffiffiffiffiffiffiffiffiffi

1� R
p

� �
¼ F

Qs,d � x
ffiffiffi
R
pffiffiffiffiffiffiffiffiffiffiffi

1� R
p

� �

In a downturn X will be very low (that is very negative). Let us call the value of X in a
downturn, xdown. Basel II assumes a downturn scenario that occurs once every 1000 years.
Then, xdown in Basel II will be

xdown ¼ F�1(0:001)

So, the probability of default of borrower s conditional on a downturn that occurs with the
above frequency will be

PD(X < xdown)s ¼ F
Qs,d �F�1(0:001)

ffiffiffi
R
pffiffiffiffiffiffiffiffiffiffiffi

1� R
p

� �

or equivalently

PD(X < xdown)s ¼ F
F�1(PDs)þF�1(0:999)

ffiffiffi
R
pffiffiffiffiffiffiffiffiffiffiffi

1� R
p

� �

which is the expression we find in Basel II documents.
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Part V
Credit Risk Dependence and Dependent Defaults
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CHAPTER 1 7

Correlation Risk: What the
Market Is Telling Us and
Does It Make Sense?*
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17.1 CORRELATION IN CREDIT MARKETS
Correlation drives the risk of credit portfolios just as volatility is the primary driver of
options portfolios. This chapter discusses correlation in the context of credit derivatives
markets, and focuses on interpretation relevant to investments. The basic issue is stated
easily—if we could access the true joint distribution of all the assets in a credit portfolio,
and simultaneously forecast their evolution, recovery levels, and timing of default, we
would theoretically have no problem in the pricing and the risk management of any credit
derivative product; we would know the full portfolio loss distribution at all times. The
complications in practice arise due to the technical complexity of obtaining these all
important loss distributions, and market practitioners have had to resort to some powerful
yet limiting approximations. So, the use of the term correlation in the context of credit
derivatives requires an understanding of the limitations of statistics and models that have
been used to understand the joint behavior of corporate spreads.

Even without a model, we have a sense of correlation using statistical measures, i.e., by
looking at historical data, and for many investment applications, this intuitive understand-
ing is sufficient. However, recent product development has enabled the extraction of
implied correlation using correlation-sensitive traded securities. The implied correlation
approach adopts the risk-neutral pricing framework, and makes strong assumptions about
the liquidity and risk-premium content, as well as the distributional characteristics of
assets. We should note that the expected loss on straight portfolio products or baskets is
not sensitive to changes in correlations, so tranches or other correlation-sensitive securities
are required to extract any implied correlation content.

Statistical measures of correlation can be further divided. We can measure the correl-
ation between asset values of the various entities, between the equity prices of the entities,
or actual defaults of the entities. Default statistics by nature consist of rare event counting,
and, thus, are not easily quantified. Underlying asset dynamics are not always easy to
extract from equity prices, so modelers frequently assume that observed equity correlations
are sufficient, and there is reasonable evidence that this is not a particularly onerous
assumption (Mashal et al. 2003).

The standard model for default correlations assumes some form of structural model for
the underlying entities whose net assets evolve under a stochastic process (typically taken
to be jointly lognormal), and a default occurs when the net asset value falls below a default
threshold. Calibration of models poses another set of problems, and as of this writing,
most practitioners use a mix of structural and reduced form (hazard intensity based)
approaches.

We can extract implied correlation from correlation-sensitive securities, such as
tranches and default baskets, but there is no guarantee that the correlation so extracted
has anything to do with the real world. The problem with naive implied correlation is
actually even more severe because the results depend on the assumption that the default
swap market is complete. This is a strong and incorrect assumption in reality, since there is
no way to arbitrage mis-pricings in these instruments. May 2005 exposed the weakness of
so-called arbitrage trades between tranches whose hedge ratios were determined by blind
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reliance on model sensitivities. Figure 17.1 shows the structural break in the relationship
between the equity tranche and the senior mezzanine tranche for the investment grade
index. As discussed below, these two tranches carry a significant amount of spread, default,
and correlation risk.

Correlation is to tranched portfolio credit losses what volatility is to plain vanilla
options, so we should explore the analogy with options models a bit further to build
intuition. When we price options, we can choose to use historical or implied volatilities to
plug into an option pricing formula. A number of assumptions are made to obtain the
price of options. First, we assume that we know the option payoff. Second, we assume that
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FIGURE 17.1 0%–3% Tranche vs. 7%–10% tranche for the CDX IG index. The x-axis
shows the price of the 0%–3% equity tranche (in percent up-front points premium
assuming 500 bp running spread), and the y-axis shows the spread of the 7%–10%
mezzanine tranche. Note that the relationship changes substantially after the spring 2005
autocrisis. (From PIMCO, Newport Beach, California. With permission.)
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we know the probability distribution of the underlying variables over which we can average
the payoffs, and third, we assume that we know how to discount the probability-weighted
payoffs. If we think of the underlying asset as being lognormal, then volatility (the second
moment) is sufficient for capturing the uncertainty in the possible outcomes, i.e., the shape
of the distribution. However, if we estimate these volatilities using historical data, or some
other ad hoc method, and plug it into an option pricing formula, a trader who has access to
the options markets can take advantage of us if our estimate is wrong.* So over time, the
value of realized volatility and implied volatility should track each other closely due to
arbitrage.y

Let us see what, if any, is the analog in the credit derivatives markets. For simplicity, we
will use tranches (CDOs) on traded indices such as the CDX and the iTraxx, since they are
the most liquid correlation products (we could also use nth-to-default baskets, but their
liquidity and uniformity is far smaller).

Tranches on indices can be thought of as put spreads on index losses. There are 125
names in the widely traded CDX index. There are tranches that cover 0%–3% of losses
(equity), 3%–7% of losses (junior mezzanine), 7%–10% of losses (senior mezzanine),
10%–15% of losses (senior), 15%–30% of losses (super senior), and, by construction, the
30%–100% tranche, which is the remainder when all the losses from the index are
allocated. As correlation between the names increases, we expect that there is a higher
probability that either more names default together or they do not. So the junior tranches
(e.g., the equity tranche) will tighten in spread as correlations increase because there is a
relatively higher probability of no defaults (note that we are not making a model dependent
statement yet). On the other hand, as correlation increases, the higher rated, senior
tranches will fall in value, since they are now exposed to higher tail risk. So, we should
expect that as systemic risk increases, the impact on the senior tranches would be relatively

* Think of the skew in S&P500 option prices. The implied volatility of deeply out-of-the-money puts is higher than
that of deeply out-of-the-money calls. The common explanations for this phenomenon are crashophobia, or Black’s
leverage phenomenon, but these explanations cannot uniquely determine the magnitude of the effects. What we can
say with some degree of confidence is that the lognormal distribution of returns assumed for the underlying is
inadequate to simultaneously explain the realized volatility of the underlying for all horizons and for all levels. We
can also look at calendar spreads of options, i.e., options with same strikes but different maturities. Again,
depending on the shape of the term structure of the volatility, the relative value of the two options can be quite
variable. In periods of market crises, short-term volatility rises, and the term structure of volatility usually flattens.
The underlying reasons for this can be traced to rise in risk-aversion, higher transactions costs for hedging, and
demand for short-term crisis protection. Despite the serious shortcomings of the Black–Scholes model, these
features of the implied volatility are consistent with our understanding of what risk means, and hence they are
sensible.
y The arbitrageur does not necessarily have to even trade using options. Assuming that he can trade frequently, he can
dynamically create a locally replicating portfolio and trade it against the option we have priced using the incorrect
volatility value. Over time, he will be able to harvest the relative mis-pricing if our forecast of realized volatility is
wrong. In this sense, the implied volatility indicates a good forecast of future realized volatility. We can also think
about what happens when we change the strikes of the options. If we price a put spread where the strikes of the two
put options are far from the forward, we can observe the prices of each of the two options and back out the one
volatility number that would price the put spread to equal the traded price. In the limit that the put spread becomes
a digital (i.e., the spread narrows to zero), the implied volatility is a point estimate of some realized volatility for that
level of the underlying. It is still hard to develop intuition for the statistical analog of this tail volatility.
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higher. The dependence of the mezzanine tranches on correlation is not that easy to
explain, and, among other things, depends on their attachment and detachment levels
(lower and upper strikes). There are also tranches on indices with different final maturities.
We would intuitively expect that as correlation rises, the shorter maturity tranches have
different sensitivity to correlation than the longer maturity tranches. To what degree this
holds is discussed in a later section.

17.2 MARKET FOR IMPLIED CORRELATION
In this section, we discuss implied correlation from the perspective of the Black–Scholes
analog for correlation products—the Gaussian copula model. The Gaussian copula model
has more than a passing similarity with the simple Black–Scholes model for options, and
has suffered its shares of attacks. However, just as its older cousin, the Gaussian copula has
not only survived, but thrived. The reasons are multifold: (1) No one who trades correl-
ation products really believes that the Gaussian copula is the last word, but by their usage
they all agree that it is an excellent starting point and relatively easy to conceptualize (no
one believes that Black–Scholes for options is the last word either, but the formula by virtue
of its clarity and simplicity has survived 30 years in great style); (2) exact solutions are easy
to obtain for products such as tranches under reasonable assumptions, and when exact
solutions are not available, the framework allows for straightforward numerical simula-
tions; (3) it is easy to communicate the value of the variables and parameters, though the
meaning of these parameters is not always transparent. However, we should hasten to add
that much research has continued to expand the simple copula model to make more
realistic assumptions. A thorough review of this exciting field is beyond the scope of this
chapter.

Tranche markets are not limited to investment grade indices. There are also tranches on
the high yield indices that are reasonably liquid as of this writing, as well as tranches
on indices of subprime mortgage issuers (ABX and TABX). Discussion of the subprime
tranche market would require us to delve into mortgage credit and prepayment models, so
in this discussion we focus mainly on pure credit tranches.

17.2.1 Tranche Pricing

Let us review how correlation enters the pricing of tranches. As discussed above, a tranche
is a spread on the losses of the underlying index. A tranche is defined by an attachment
point (lower strike Kd) and a detachment point (upper strike Ku). If the loss on the
underlying index is Lindex(t), then the tranche loss is simply

Ltranche(t) ¼ max [Lindex(t)� Kd,0]�max [Lindex(t)� Ku,0]

If we divide the expectation of this quantity by the tranche notional Ku�Kd, we obtain the
tranche default probability. Finally, subtracting the resultant quantity from unity gives the
tranche survival probability.

To price a tranche, we impose the condition that the present value of the expected
premium payments (premium payments get reduced proportionately to the reduction in
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notional upon default) should equal the present value of the expected protection received
(i.e., when a name defaults we obtain 1 minus the recovery rate). The tranche survival
probability, equal to the expected percentage notional of the tranche surviving at some
time t, is the key quantity that is impacted by correlations. To obtain the expectations for
each maturity requires knowledge of the loss distributions for each maturity, and that is
not always a computationally tractable task in real time.

In a brute force model, we can take all the names in the index and generate Monte Carlo
paths for defaults. In this approach, we generate default times based on default intensities
extracted from a reduced form model for each name, and apply the pricing algorithm given
above. When there are a lot of assets, specifying each element in the correlation matrix of
default times is not only tedious but also becomes computationally intractable. In addition,
if we are interested in backing out the correlations from traded products by standing up the
pricing equation on its head, we are not guaranteed that the results would be unique or
sensible. As an alternative, we can assume a simple factor model. Each asset return depends
on the market factor, and an idiosyncratic factor. A common correlation determines how
much the correlation drives asset returns. If we assume that the standardized asset returns
are jointly normal with the market, then the decomposition is given by the standard
Cholesky decomposition formula for generating correlated random variables from inde-
pendent ones. We can, thus, generate random numbers for the realization of the market
factors and the individual factors and combine them using the Cholesky formula to obtain
the asset return realization. If we compute the cumulative distribution function of these
asset returns, we obtain a uniformly distributed set of numbers. Since the probability of
default lies between 0 and 1, we can use this uniformly distributed set of numbers as default
time probabilities at each firm level after computing the probability of survival embedded
in single name CDS spreads. If the asset return distributions are related in a Gaussian
copula, then the default time probabilities are also related with a Gaussian copula. Note
that at each stage, we are working in the risk-neutral framework, so we are throwing out
any risk-premium information. So it becomes critical that the parameters are retrospect-
ively evaluated through the lens of common-sense real-world experience.

17.2.2 Compound and Base Correlations

Regardless of whether we start with the brute force simulation of default times or a
structural model, the assumption that the underlying components are related via a
common market factor makes correlation a critical variable in the pricing of tranches.
The market has adopted the Gaussian copula model due to its speed and clarity, and there
are two different ways in which correlation based on the Gaussian copula is quoted
(O’Kane and Livesey 2004):

. In the compound correlation convention, each tranche is quoted using a single
tranche specific correlation number, so different tranches appear with different
correlations, and we observe a compound correlation smile.

. Using the base correlation convention, we think of each of the mezzanine and senior
tranches as the difference between two equity tranches. We start with the equity
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tranche specified by its own unique correlation (for equity tranches the base and
compound correlations are the same). For the next higher tranche, we use the fact
that it is the difference between a wider equity tranche and the first equity
tranche. We can solve for the correlation (holding the correlation for the first
equity tranche fixed), such that the price of the difference of the two equity tranches
equals the market price of the next higher tranche. We can keep repeating this
process until all tranches are associated with a unique correlation specific to its
detachment point. The correlations so obtained are the base correlations.

There is no extra information in the base correlation approach as compared to the
compound correlation approach. The base correlation approach is preferred for some
applications because it guarantees that for any tranche prices there are unique solutions for
the implied base correlation. Despite the problem of multiple solutions for mezzanine
tranches, compound correlation is still useful in connecting theory to observation.

17.3 DO THE MARKET’S ESTIMATES OF CORRELATIONS
MAKE SENSE?

Compound correlations implied by tranche prices demonstrate a skew. As of April 16,
2007, the 5y IG8 index was trading at a spread of 37. Against this level of spreads, the
tranches were at prices as displayed in the second and third columns of Table 17.1.

We can see that the junior mezzanine tranches trade at the lowest implied compound
correlation. We also see that the equity tranche has positive correlation sensitivity, i.e., as
correlation rises the equity tranche PV rises in value, whereas all the other tranches lose
value. The fact that compound correlation exhibits a smile is not surprising—it is akin to
option volatilities exhibiting a smile with strikes as one moves away from the at-the-money
level. Admittedly, the simple Gaussian copula assumption is too restrictive to explain the
full correlation structure of 125 names. But just as we ask the question for options, we can
ask: Is there a logical explanation for this? There are a few possibilities: one possibility is
simply a demand and supply mismatch for particular tranches; another explanation is the
possibility of modeling error even after accounting for the limitations of the distribution.
Similar to the Black–Scholes framework, the Gaussian copula has no way to account for

TABLE 17.1 IG8 5y Index Tranches and Compound Correlations Based on Gaussian Copula
with Recovery at 40% for $10MM Notional of Each Tranche

Upfront
Spread
(in bp)

Compound
Correlation PV01

Spread
Delta

Corr Sensitivity
per 1% in $1000

0%–3% 26.10 500 13.40 3.69 21.74 73.04

3%–7% 0 101 7.34 4.58 7.77 �54.82
7%–10% 0 21 12.51 4.6 1.74 �17.13
10%–15% 0 10.30 17.79 4.60 0.78 �7.47
15%–30% 0 4.30 27.63 4.60 0.28 �2.50
Source: From PIMCO, Newport Beach, California. With permission.
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jump risk. If there is a risk of jump-to-default (as in the May 2005 correlation crisis), the
equity tranches would be most directly impacted and hence would command a risk
premium. How might demand and supply impact the pricing of tranches and hence the
correlation structure? Long-term equity correlations of investment grade names in the
equity market indices are about 20%–25%. Similarly, the average equity return correlation
for the underlying components of the IG8 CDX index is 22%. Then an implied correlation
of 13.45% for the equity tranche implies that the equity tranche is cheap (because as
correlation rises the equity tranche gains in value and its spread tightens). But as discussed
above, this could be due to the inability of the model in pricing jump risk. For the
mezzanine tranches, as correlation rises its value falls, so a reversion to historical correl-
ation levels would make the tranche widen in spread. However, what is interesting is that
the junior mezzanine tranche is so much tighter than historical correlations would imply.
We can get a hint of why this might be so by again resorting to our options analogy. As of
April 16, 2007, the index spread is 37 bp, and with spread duration of ~4.5 years, the PV of
the index expected loss is approximately 1.67%, so the equity tranche with 0%–3% losses is
‘‘in-the-money’’ whereas the junior mezzanine tranche is just out of the money. In an
environment of credit spread tightening, low volatility, and low systemic risk perceptions,
selling the junior mezzanine tranche is akin to selling out-of-the-money options to collect
insurance premium. Before the May 2005 correlation debacle, hedging equity tranches
with mezzanine tranches was a popular trade implemented by hedge funds. The unwind
of these positions, and the consequent break down of the relationships as illustrated in
Figure 17.1, at steep losses for some investors who have a preference for such relative value
trades could have further been responsible for the correlation mismatch we observe in the
equity and junior mezzanine tranches. As we move to the senior tranches, we observe that
their compound correlation begins to converge to long-term equity correlations. We also
know anecdotally that in periods of market stress, equity correlations rise, as there is a
general flight to quality. So in periods of crisis, we would expect equity correlations to rise,
and assuming that senior tranches track this, their value to fall with correlation rising. In
other words, purchasing protection on senior tranches would benefit from systemic shocks
in a more dependable way. Note that insurance companies are typically sellers of synthetic
insurance via super-senior tranches, and this is not very different than selling reinsurance
on hurricanes or catastrophes.

Even with its severe limitations, we can use the compound correlation as a diagnostic
tool. Suppose equity and mezzanine spreads were to widen drastically—widening equity
spreads mean tightening compound correlation, and widening mezzanine tranche spreads
mean rising compound correlation. Then the compound correlation curve would flip or
invert from the shape as in Table 17.1. This could be the situation observed in reality if
levels of risk aversion rise in the credit derivatives markets.

We can also discuss the sensibility of base correlations. First, as we move up the
subordination structure, we find that base correlations rise (the correlation skew). This
makes sense in the context of the pricing of mezzanine tranches. Note that the junior mezz
can be thought of as the difference between the 0%–7% equity and the 0%–3% equity. Once
the correlation for the 0%–3% is determined by the price of the equity, the richness of the
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3%–7% tranche can only be possible if the 0%–7% is richer. But this is an equity tranche,
which is long correlation risk, so its implied base correlation has to be higher. Continuing
this for the higher tranches, it makes sense that the base correlations reflect the demand
and supply mismatch as illustrated by the demand for the mezz tranches. Second, let us
assume that we move in the index maturity dimension. For the IG8 series, we have the
5 year, the 7 year, and the 10 year indices, and on each one of these we have all the standard
tranches discussed above. As we move to longer maturities, the implied base correlations
fall for all tranches. This also makes sense, because as we go out in the maturity, the same
equity tranches are more in the money (expected index losses are higher), and hence these
are expected to trade cheaper. As the base correlation for the 0%–3% equity tranche falls,
so does the base correlation for all the higher tranches. We can also move in the vintage
dimension (assuming that the components are essentially the same). As we move to older
indices, we would see that the base correlations rise for the same tranches. So, for instance,
if the base correlation for the ITRAXX7 5y (ref. index 24 bp) 0%–3% is 16.4%, for
ITRAXX6 5y (ref. 21) 0%–3% it is 17.5%.

Invoking demand and supply considerations to explain correlation skews and smiles
might be less than convincing to some. An astute arbitrageur would ask why investors do
not create combinations of the tranches to take advantage of the correlation skews=smiles.
First, there is clear market segmentation—hedge funds and banks are typically equity
tranche investors, whereas insurance companies are investors in (sell protection) the senior
structures. Crossover buyers, pensions, retail and single tranche collateralized debt obliga-
tions (CDO) hedgers dominate the mezzanine structures. So, there is not much mobility of
investors between the tranches, and different investors show preference for different parts
of the capital structure (rating agency ratings also assist in habitat formation). Another
explanation relies on our often-used analogy with options. We know that the implied
volatility of deeply out-of-the-money puts in the equity market is much higher than
the implied volatility of options close to at the money. But this does not automatically
suggest that arbitrageurs should sell a lot of out-of-the-money options and hedge them
with at-the-money options. The failure of such a strategy would almost be guaranteed if
realized outcomes on the underlying deviated from a continuous lognormal behavior, or if
there was less than perfect liquidity in the hedge instruments. However, there is consid-
erable evidence that tranches have become a lot more efficient as carriers of correlated
credit risk.

There are a number of other ways by which we can try to ascertain whether the
correlation implied by the market makes sense. First, we can take a purely statistical
approach. Following the work of Voronov et al. (2005), we can think of each underlying
name in the index as being driven by a time series process. Different time series processes
can have very complicated tail correlations. The logic here is that if we can fit the time
series of index spreads to realistic models, we can generate the tail correlations organically.
In practice, however, it seems unlikely why credit markets should be driven by any
particular time series processes—the evidence is actually contrary. There is also the
question of change of measure. Asset correlations that enter the risk-neutral valuation of
tranches are under the risk-neutral or pricing measure, whereas the estimates using time
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series are necessarily under the pricing measure. In so far as correlation could carry a risk
premium, it is not clear how one should translate from one to the other.

Another appealing approach is the approach promoted recently by Longstaff and Rajan
(2006). Their approach is a top–down approach and removes the need for specifying a
copula. Three types of default events, corresponding to firm-specific, industry-, and
economy-wide default events drive spreads. Attempting to fit the movements of the indices
and the tranches with a single factor model fails; confirming the fact that default correl-
ations matter. Fitting their model to traded tranche prices on the IG indices shows that
the average times for firm-specific default are approximately a year, for industry-wide
defaults are 40 years, and for economy-wide risk are ~750 years. For the industry-wide and
economy-wide factors, they find that 10% and 35% of the index firms would default, which
is in the zone of sensibility. This way of looking at correlation risk highlights the economics
behind default risk embedded in credit portfolio products. Current work on extracting
similar information from noninvestment grade products that we are pursuing seems to
confirm and extend the intuition behind much of this top–down analysis.

17.4 CONCLUSION
In this chapter we reviewed how correlation impacts investment analysis in credit deriva-
tive products. We discussed the widely used standard model for correlation modeling, and
attempted to shed some light on the sensibility of the measures obtained by fitting to the
prices of traded credit derivatives. We also discussed alternative statistical and top–down
or macro models to gain another perspective on default correlations. The correlation
market is a natural extension of the volatility market to credit, and as any option trader
knows, it is crucial to understand what drives implied volatility, and now implied correl-
ation, in the market.
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The assessment of the joint default probability of groups of obligors, as well as related
notions, such as the probability that the n-th one of them defaults, is a crucial problem in
credit risk. To solve it, both the industry and the academia have extensively relied on
copula methods. These allow to split any joint default probability into the marginal ones
and a function, the copula itself, which represents only the association or dependence
between defaults. Essentially, the splitting up makes both default modeling and calibration
much easier, since it permits separate fitting at the univariate and joint level. At present,
the use of copula techniques is a well-established fact in risk modeling and credit derivative
pricing. However, the choice of the copula and its calibration is still an open issue: model
risk indeed exists at both stages, and its understanding relies on a deep discussion of the
current practices and model limitations.

The first part of the chapter reviews the theoretical background for different copula
choices in default–no default models and discusses its static and dynamic consistency,
when switching from structural to intensity-based approaches. The review proceeds as
follows: we first resume some basic facts about structural and intensity-based models, and
how copulas are introduced and calibrated in the two settings. We then recall how and
under which conditions two multivariate models of these classes can be statically remapped
into each other, keeping dependence fixed. This remapping is indeed exploited in most of
the industry applications of intensity-based models, starting from the well-known Li’s
model (Li, 2000). However, it suffers from dynamic inconsistency, in that structural models
with diffusive asset values do not have an intensity-based representation. In addition,
remapping allows dependence calibration under the historical measure only, since the
historical equity returns are used as proxies for the asset ones. To calibrate under a risk-
neutral measure, factorization, i.e., the so-called factor copula, is introduced. We discuss
factorization in joint default modeling. The survey will put into evidence the lack of
dynamically consistent foundations for inferring the risk-neutral dependence of survival
times for more than two obligors, without assuming equicorrelation.

The second part of the chapter suggests a possible solution to this problem: structural
models, in which the asset value is a pure jump process, such as the Merton’s restatement
of Madan (2000), or the corresponding early default model. These models allow for an
intensity interpretation, and are therefore dynamically consistent. They fit data nicely at
the univariate level (Fiorani and Luciano, 2006):

. Can be extended to the multivariate case (Luciano and Schoutens, 2006; Fiorani et al.,
2007).

. Can be calibrated under the risk-neutral measure and without equicorrelation.

. And have proven to fit credit data very satisfactorily (ibid.).

18.1 COPULA MODELING IN STRUCTURAL MODELS
This section makes an overview of basic copula uses in structural models. We will briefly
recall how copulas are introduced, how historical calibration is usually done for a given
copula choice, and finally how the best copula can (or cannot) be chosen.
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We consider a portfolio of n obligors, with random default times t1, t2, . . . , tn. The
indicator variable of default of obligor i, i¼ 1, 2, . . . , n, at time t, t 2 R

þ, is denoted as
Yi(t):¼ 1{ti�t}. Let (V, H, P) be the probability space over which the times-to-default are
defined. The space is endowed with the filtrations associated the single stochastic processes
Yi(t), Gi :¼ {Git ; t � 0}:

Git :¼ s[Yi(u); 0 � u � t] (18:1)

as well as with the joint filtrationG :¼ _ni¼1Gi, with the usual properties of right continuity
and completeness. Initially, all obligors are alive, so that Yi(0)¼ 0 for all i. The default
probability by time t, as determined at time 0, P[Yi(t) ¼ 1jGi0], will be denoted as Fi(t), while
Si(t) will denote the corresponding survival probability, Si(t) :¼ 1� Fi(t). Analogously, we
will denote the joint default probability at time t, evaluated at time 0, as F(t).

F(t) :¼ P[Y1(t) ¼ 1, Y2(t) ¼ 1, . . . ,Yn(t) ¼ 1jG0] (18:2)

and the corresponding survival probability as S(t)

S(t) :¼ P[Y1(t) ¼ 0, Y2(t) ¼ 0, . . . ,Yn(t) ¼ 0jG0] (18:3)

In describing the marginal and joint default or survival functions, we will omit, from now
on, the filtration. As for the copula tool, we will denote an n-dimensional copula, defined
on In :¼ [0,1]� � � � � [0,1], as C(u1, . . . , un), while its survival counterpart will be
�C(u1, . . . , un). We take for granted the copula definition as a joint distribution function
with uniform margins, which implies that C is always between the bounds max(u1þ u2þ
� � �þ un� 1, 0) and min(u1, u2, . . . , un). We will also take for granted the fundamental
Sklar’s theorem, which, under continuity of the margins, allows to represent any joint
distribution function of n random variates (rvs), F(t), in terms of a copula C and the
marginal distribution functions, Fi(t), i¼ 1, 2, . . . , n:

F(t) ¼ C[F1(t), F2(t), . . . , Fn(t)] (18:4)

Analogously, any joint survival probability S(t) can be represented in terms of the so-called
survival copula, �C, and the marginal survival functions, Si(t) :¼ 1� Fi(t),

S(t) ¼ �C[S1(t), S2(t), . . . , Sn(t)] (18:5)

This is the reason why the copula is also called dependence function, in that it isolates
dependence from the margin values: independence, for instance, is represented by the
so-called product or factor copula C?, which is simply the product of its arguments:

C?(u1, . . . , un) ¼ u1 � u2 � � � � � un (18:6)

Copulas can be parametrized by the linear correlation coefficient as well as by more general
association measures: in the sequel, we will use for instance the so-called Gaussian and
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Student’s t copulas, which are characterized by linear correlation and—the second only—
by the degrees of freedom parameter. They are linked by the fact that the former is the limit
of the latter, when the number of degrees of freedom diverges. For further details, as well as
for an overview of other common specifications, we refer the reader to either Nelsen (1999)
or Cherubini et al. (2004).

In the credit risk case, since the variables ti are default times, the copula represents their
dependence, and we could denote it as Ct, where t is the vector formed by the rvs ti :

F(t) ¼ Ct[F1(t), F2(t), . . . , Fn(t)] (18:7)

S(t) ¼ �Ct[S1(t), . . . , Sn(t)] (18:8)

The specification of the copula depends on whether we rely on a structural approach or an
intensity-based one. In the seminal structural model of Merton (1974), to start with, it is
well known that default of firm i can occur only at debt maturity. Let the latter be t for all
the firms in the portfolio: default is triggered by the fact that the firm’s asset value Vi(t) falls
to the liability one, Ki(t). The distribution of the time-to-default, ti, is therefore

ti ¼ t P[Vi(t) � Ki(t)]
þ1 P[Vi(t) > Ki(t)]

�
(18:9)

while the default probability at time t is

Fi(t) ¼ P[Vi(t) � Ki(t)] (18:10)

If the asset value follows a geometric Brownian motion, as assumed by Merton, and the
standard notation of the Black–Scholes framework is adopted, the marginal default
probability can be easily computed to be

Fi(t) ¼ F[�d2i(t)] (18:11)

where F is the distribution function of a standard normal, while

d2i :¼
ln [Vi(0)=Ki(t)]þ

�
m� s2=2

�
t

s
ffiffi
t
p (18:12)

and m is the instantaneous return on assets, which equates the riskless rate r under the
risk-neutral measure. By assuming that log assets are not only normally distributed at the
individual level, but also jointly normally distributed with correlation matrix R, it follows
that the joint default probability of the n assets is

F(t) ¼ P[V1(t) � K1(t), . . . ,Vn(t) � Kn(t)] ¼ FR[�d21(t), . . . ,�d2n(t)] (18:13)

where FR is the distribution function of a standard normal vector with correlation matrix
R. From the fact that the arguments of the distribution FR can be written as the inverses,
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according to the univariate normal density, of the marginal default probabilities,
i.e., �d2i(t)¼F�1 [Fi(t)], it follows, by simple substitution, that

F(t) ¼ FR
�
F�1[F1(t)], . . . ,F�1[Fn(t)]

�
(18:14)

The latter is the copula representation of the joint default probability for the case at hand,
since F is represented in terms of the marginal distributions. The copula which we have
obtained is the so-called Gaussian copula:

C(u1, . . . , un):¼ FR
�
F�1(u1), . . . ,F�1(un)

�
(18:15)

Instead of joint normality, we can keep the margins fixed and assume another type of
dependence, which means another copula. For instance, we can assume a Student t copula,
defined as

C(u1, . . . , un):¼ tR,n
�
t�1n (u1), t

�1
n (u2), . . . , t

�1
n (un)

�
(18:16)

where tR,n is the standardized multivariate Student’s t distribution with correlation matrix
R and n degrees of freedom, while t�1n is the inverse of the corresponding margin. By so
doing, we essentially incorporate fat tails in the asset return joint distribution. The joint
default probability immediately becomes

F(t) ¼ tR,n
�
t�1n [F1(t)], t

�1
n [F2(t)], . . . , t

�1
n [Fn(t)]

�
(18:17)

In general, starting from a marginal probability of the type in Equation 18.10, and
therefore from a marginal model of the Merton’s type, we can write the joint default
probability as

F(t) ¼ CV [F1(t), . . . , Fn(t)] (18:18)

where CV is the copula of the asset values. Let us recall however that the above expression
applies only at debt maturity, and assuming that the latter is common to all firms in the
basket.

Starting with Black and Cox (1976), the structural model of Merton has been extended
by introducing the possibility of early distress. Default occurs as soon as the asset value
Vi(t) falls below a (deterministic) level Ki(t), which can be, for instance, the present value of
debt. As a consequence, the time-to-default is

ti :¼ inf {t :Vi(t) � Ki(t)} (18:19)

and the cumulated default probability is

Fi(t) ¼ P
h
min
0�u�t

Vi(u) � Ki(u)
i

(18:20)

In this model, even if Vi follows a geometric Brownian motion, its minimum does not, and
the departure from the plain vanilla option pricing at the individual level is immediate.
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Other departures have been caused, during the development of the literature on structural
models, by introducing more realistic assumptions, such as the stochastic interest rate of
Longstaff and Schwartz (1995). However, the use of a Gaussian or Student version at the
multivariate level has been widespread, mostly for analytical convenience.

More recently, default has been supposed to be triggered by the fall of a credit
worthiness index under an empirically calibrated barrier (Hull and White, 2000). The
credit index does not necessarily admit a transform which behaves as a geometric Brownian
motion. Because of the lack of marginal normality, it is not natural any more to assume joint
normality and to collect the univariate probabilities in a Gaussian or an elliptic copula, such
as the Student: the bivariate version was outlined in Hull and White (2001), while multi-
variate versions are manageable through a purely numerical fit of the copula, similar to the
implied volatility derivation (see the perfect copula of Hull and White, 2005).

18.1.1 Dependence Calibration (under the Historical Measure) and Best
Copula Choice

The calibration of structural models is straightforward, especially if one refers to the seminal
Merton one, as we will do. Under a Gaussian copula, as in the natural multivariate version of
Merton’s work, only the linear correlation coefficients between the asset values are needed.
In case the Student copula is adopted, also the degrees of freedom parameter is required.

Since asset values are generally unobservable, the corresponding equity ones are gener-
ally used for calibration. This is the approach taken, for instance, by Mashal and Naldi
(2003), together with the Student assumption: they suggest a joint maximum likelihood
estimation of the degrees of freedom parameter and the correlation matrix. Obviously, the
calibration is done under the historical measure: under such a measure, as Mashal et al.
(2004) have shown, the dependence of assets is well proxied by the equity one. However,
the coincidence between historical and risk-neutral correlation requires either no premium
for default risk or particular assumptions, such as the ones listed by Rosenberg (2000).
If we exit the Merton model, in which asset returns are jointly normally distributed, such a
coincidence is not guaranteed.

It also follows from the meaning of the copula in the structural approach that the best
copula is the one which best describes equity dependence. The current literature tends to
agree on the fact that—at least for extreme co-movements—the Student dependence is
more appropriate, since it encapsulates tail dependence: evidence is reported, for instance,
in Mashal and Zeevi (2002) and Mashal et al. (2004).

18.2 COPULA MODELING IN INTENSITY-BASED MODELS
In the intensity-based models of Lando (1998) and Duffie and Singleton (1997, 1999),
default of the obligor i occurs as soon as a counting process, which is assumed to be of the
Cox or doubly stochastic type, jumps for the first time. Omitting the technical details, for
which the reader is referred to the probabilistic set up of Brémaud (1981), or to the credit
applications just mentioned, occurrence of default is linked to the event that the so-called
compensator of the Cox process, denoted as Li, be greater than or equal to a stochastic
barrier. The latter is exponentially distributed, with parameter 1:
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ti :¼ inf {t : Li(t) � ui} (18:21)

with ui � exp(1). Equivalently, using the change of variable ui :¼�ln Ui :

ti :¼ inf {t : exp[�Li(t)] � Ui} (18:22)

where Ui ~ U(0,1). The compensator is usually assumed to have an intensity, which means
to admit the representation

Li(t) ¼
ðt
0

li(s) ds (18:23)

where li is a nonnegative process, satisfying
Ð t
0 li(s)ds <1 almost surely for all t. Given

a filtration F :¼ {F t ; t � 0} on V, the intensity li(s) is assumed to be predictable,
while the threshold ui is independent of F . We also need to define the filtration
H :¼ F _G, or H :¼ {Ht ¼ F t _ Gt ; t � 0}.

The default probability of the above firm at time zero turns out to be

Fi(t) ¼ 1� E

�
exp

	
�
ðt
0

li(s) ds


�
(18:24)

where E(�) is the usual expectation operation, conditional on F 0.
If, in particular, the intensities are deterministic, the Cox processes describing default

arrival become inhomogeneous Poisson ones and

Fi(t) ¼ 1� exp

	
�
ðt
0

li(s) ds



(18:25)

Under the additional requirement that intensities are constant, li(s)¼ li for every s, they
become homogeneous Poisson processes, with Fi(t)¼ 1� exp(�lit).

When extending theCox framework tomultiple firms, i.e., taking i¼ 1, . . . , n, the previous
framework naturally leads to conditionally independent defaults, or a multivariate Cox
process, as in Duffie (1998) and the literature thereafter: the intensity processes are liable
to be correlated, while the thresholds ui, or their transform Ui, are assumed to be independ-
ent, and therefore have the product copula. It follows that the joint default probability of the
n firms by time t, evaluated at time 0, is

S(t) ¼ E

�
exp

�
�
ðt
0

[l1(s)þ l2(s)þ � � � þ ln(s)] ds

�
(18:26)

This extension usually produces low levels of both (linear) correlation between the default
indicators of different firms, r[Yi(t),Yj(t)], for i 6¼ j and all t, and (linear) correlation of
survival times, r(ti,tj), i 6¼ j. This happens, as is intuitive, as long as the intensities are
diffusion-driven.
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An alternative approach, introduced by Schönbucher and Schubert (2001), to whom we
refer for the technical details, allows defaults not to be conditionally independent. The
thresholds ui (or Ui) are linked by a copula which is not the product copula of Duffie
(1998). With the usual notation, let CU be the copula of the thresholds Ui, which is also the
survival copula* of ui, C

U¼ �Cu. The construction of Schönbucher and Schubert (2001)
gives as joint survival probability

S(t) ¼ E CU exp �
ðt
0

l1(s)ds

2
4

3
5, exp �ð

t

0

l2(s)ds

2
4

3
5, . . . , exp �ð

t

0

ln(s)ds

2
4

3
5

8<
:

9=
;jF 0

0
@

1
A
(18:27)

which reduces to Equation 18.26, as due, in the Duffie (1998) framework.
Whenever the n firms are driven by inhomogeneous Poisson processes, since the

intensities are deterministic, the survival probability in Equation 18.27 becomes

S(t) ¼ CU exp �
ðt
0

l1(s)ds

2
4

3
5, exp �ð

t

0

l2(s)ds

2
4

3
5, . . . , exp �ð

t

0

ln(s)ds

2
4

3
5

8<
:

9=
;

¼ CU [S1(t), . . . , Sn(t)] (18:28)

which further reduces to the product

S(t) ¼ exp �
ðt
0

[l1(s)þ l2(s)þ � � � þ ln(s)]ds

8<
:

9=
;

¼ S1(t)� � � � � Sn(t) (18:29)

with independent thresholds.

18.2.1 Dependence Calibration (under the Historical Measure) and Best
Copula Choice

In the general case of stochastic intensities, by choosing independent thresholds, one
restricts CU to be the product copula, as in Equation 18.26. Apart from this case,
calibration is a very delicate issue, since the thresholds Ui or ui are not observable: the
literature has concentrated on copulas which produce a shift of the remaining intensities
after default of one obligor, such as the Archimedean copulas (Schönbucher and Schubert,
2001). The calibration is usually done restricting to a one-parameter copula family, such as
a Gumbel one, a Clayton, or a Gaussian with equicorrelation. Once such a family has been
chosen, the parameter value is perfectly fitted using, for instance, the diversity score
produced by Moody’s. The perfect fitting, which is illustrated for instance in Jouanin
et al. (2001), does not permit to select a best copula: with respect to the structural approach

* The copula of the thresholds Ui and the one of their transforms ui are linked by the fact that each Ui is a decreasing
function of the corresponding ui.
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then, in which there is scope for a copula selection procedure, taking into consideration the
best fit of asset or equity returns, here there is no room for a best-fit selection.

As long as intensities are deterministic, calibration at a single point in time is much
easier, since, as we will now explain, the copula CU is nothing else than the survival copula
of the associated asset values. This is the approach first taken by Li (2000), made rigorous
in Frey and McNeil (2003), and extremely popular in practice, together with its best copula
selection. It is based on the observation that structural models with a diffusion-driven asset
or credit index process on the one side and reduced form models with deterministic
intensities on the other are both latent variable models: for any fixed horizon t, there
exist n rvs Zi(t) and n thresholds Di(t) 2 R such that default occurs if and only if the
random variables are smaller than or equal to the corresponding thresholds:

Yi(t) ¼ 1, Zi(t) � Di(t) (18:30)

Indeed, in the structural case, one has simply to choose either the asset values or their
minimum and the liabilities ones as rvs and thresholds, respectively:

Zi ¼ Vi, Di ¼ Ki (18:31)

In the intensity-based case, one has to replace the asset=index values, Vi, and the threshold
ones, Ki, with the stochastic thresholds and the compensators, respectively:

Zi ¼ ui, Di ¼ Li (18:32)

or with the uniform thresholds and the negative exponential of the compensators:

Zi ¼ �Ui ¼ � exp(�ui), Di ¼ � exp(�Li) (18:33)

Having made this simple remark, we can exploit the equivalence of latent variable models
to remap intensity-based models into structural ones, for a fixed horizon. Indeed, two
latent variable models

[Vi(t), Ki(t)]1�i�n, [ui(t), Li(t)]1�i�n (18:34)

are equivalent if the corresponding default indicator vectors are equal in distribution: this
allows us to assess that, at any fixed time t, the copula for the thresholds ui, C

u—which,
since CU¼ �Cu, is also the survival copula of the uniform thresholds, �CU—is the same as the
asset value copula, CV. The estimate of the last one obtained from equity returns, as
justified in structural models, can therefore be directly used to construct joint default
probabilities, starting from marginal intensity-based ones. Formally, we can then write the
joint default probability as

F(t) ¼ CV [F1(t), F2(t), . . . , Fn(t)]

¼ CV 1� exp �
ðt
0

l1(s)ds

2
4

3
5, 1� exp �

ðt
0

l2(s)ds

2
4

3
5, . . . , 1� exp �

ðt
0

ln(s)ds

2
4

3
5

8<
:

9=
;

(18:35)
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However, this remapping has two problems. First, it is not dynamically consistent, since
in structural models with a diffusive asset value, such as the ones described above and
used in common applications and commercial softwares, the times-to-default are not
totally unpredictable stopping times and, as a consequence, there does not exist an
intensity which can represent their arrival. Second, it leads to an historical calibration of
default dependency, via equity returns, which again has no reason to coincide with the
risk-neutral one.

18.3 FACTOR MODELS
While remapping, as described in the previous section, permits to reconnect the copula
choice to the asset one, while paying the price of dynamic inconsistency and calibration
limited to the historical measure, another popular approach to default modeling allows us
to switch to the so-called product copula. The switching or reduction technique, which is
widely adopted for the evaluation of losses in high-dimensional portfolios, with hundreds
of obligors (Laurent and Gregory, 2003), is the standard approach of (linear) factorization,
or transformation into a Bernoulli factor model.

Given a vector of random factors,

[X1(t), X2(t), . . . ,Xp(t)] (18:36)

the first step in reducing it consists in assuming that there exist n (probability) functions
pti : R

p ! [0,1], i ¼ 1, . . . , n, such that, conditional on a specific realization of the factors
X1¼ x1, X2¼ x2, . . . ,Xp¼ xp, the default indicators Yi(t) of the n obligor are independent
Bernoulli variables, with probability

Yi(t) ¼ 1 pti (x1, . . . , xp)
0 otherwise

�
(18:37)

In the sequel, we will work with one or two factors. In the former case, if the (unique)
factor X has a density f(x) on the real line R, it follows from the definition of conditional
probability that the marginal (unconditional) default probabilities can be written as

Fi(t) ¼
ð
R

pti(x)f (x) dx (18:38)

while the joint one can be represented through a (conditional) factor copula C?, as desired:

F(t) ¼
ð
R

Yn
i¼1

pti(x)f (x) dx ¼
ð
R

C?
�
pt1(x), . . . , p

t
n(x)

�
f (x) dx (18:39)

Let us discuss the factorization separately for structural, intensity-based with nonstochastic
intensity, and stochastic intensity with independent and dependent threshold ones:
without much loss of generality, we will use one-factor models, in which the factor is
standard Gaussian.
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18.3.1 Structural Models

The key assumption is that the ith asset value or credit worthiness indicator, properly
normalized, can be factorized as

Vi ¼ riX þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
«i (18:40)

where ri 2 R, X and «1, «2, . . . , «n are independent standard Gaussian, so that Vi is
standard normal too. The common factor is evidently X, while the «i are to be interpreted
as the idiosyncratic ones: it follows from Equation 18.40 not only that the Vis are
independent, conditionally on X, but also that the unconditional linear correlation coef-
ficient between Vi and Vj is rirj. The conditional marginal default probabilities, pti(x), if Ki

is the properly normalized liability or barrier level, are easily calculated:

pti(x) ¼ P(Vi � Kijx) ¼ F
Ki � rixffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

p
 !

(18:41)

The expressions for the unconditional ones, Equation 18.38, and the joint unconditional
ones, Equation 18.39, easily follow.

18.3.2 Intensity-Based Models with Nonstochastic Intensity

To adopt a factor model, starting from a uniform threshold, i.e., from the representation
Equation 18.25 of the unconditional marginal default probability, one must factorize
a transform of it, which is standard Gaussian by definition: Wi :¼ F�1(1�Ui). By
imposing

Wi ¼ riX þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
«i (18:42)

one gets as conditional marginal default probability, with a little bit of algebra

pti(x) ¼ P(ui � Lijx) ¼ F
F�1[1� exp(�Li)]� rixffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2i
p

( )
(18:43)

Again, the unconditional marginal probabilities, Equation 18.38, and the joint uncondi-
tional ones, Equation 18.39, easily follow.*

* More interestingly, the factorized models confirm the correspondence between structural and intensity-based
models discussed in Section 18.2.1, since the two models give the same conditional probabilities (and therefore
unconditional ones) whenever

Ki ¼ F�1[1� exp (�Li)]

which is the condition that characterizes the equivalence between latent variable models of the structural and
intensity type.
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18.3.3 Stochastic Intensity Models with Independent Thresholds

In a multivariate Cox framework, à la Duffie (1998), the variable which can be factorized is
a transform of the compensator, with no factorization of the thresholds, which are already
independent. Indeed, if we denote as Gi the distribution function of the compensator at
time t, so that 1�Gi(Li) is uniform, we can define

Wi :¼ F�1[1� Gi(Li)] (18:44)

and the latter can easily be proven to be standard normal. Let us impose on Wi the factor
structure in Equation 18.42. Noting that Li ¼ G�1i [1�F(Wi)], the conditional marginal
default probability

pti (x) ¼ P(ui � Lijx) ¼ 1� E[ exp(�Li)jx] (18:45)

can be written as

pti(x) ¼ 1� E exp �G�1i 1�F rix þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
«i

� 	 
� �����x
� 

(18:46)

The expression for the unconditional marginal probability, Equation 18.38, is straight-
forward.

As for the joint unconditional default probabilities, they can still be written as Equation
18.39, as follows. From the fact that for the case at hand, the representation Equation 18.26
of the joint survival probability holds, it follows that the joint default is

F(t) ¼ E
�
[1� exp(�L1)] [1� exp(�L2)] � � � [1� exp(�Ln)]

�
(18:47)

Conditioning it on X¼ x, we get

F(t) ¼
ð
R

E
�
[1� exp(�L1)] [1� exp(�L2)] � � � [1� exp(�Ln)]jx

�
f (x) dx (18:48)

Finally, recalling that the compensators are, by assumption, independent for given x, we have

F(t) ¼
ð
R

Yn
i¼1

�
1� E[ exp (�Li)jx]

�
f (x) dx (18:49)

which is nothing else than the Bernoulli representation of the default processes, Equation
18.39 above.

18.3.4 Stochastic Intensity Models with Dependent Thresholds

In this case, not only we need to perform the factorization for the multivariate Cox case at
the univariate level, but we also need to impose a factor structure on the thresholds, to
guarantee the conditional independence at the multivariate level.
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At the univariate step, nothing changes with respect to the independence case just
discussed, and the marginal conditional default probabilities in Equation 18.46 still hold.

At the multivariate level, Rogge and Schönbucher (2003) propose to assume that the
copula of the uniform thresholds is an Archimedean one:

CU (u1, u2, . . . , un) ¼ w�1[w(u1)þ w(u2)þ � � � þ w(un)] ¼ w�1
	Xn

i¼1
w(ui)



(18:50)

where w(u) : [0,1]! [0,1] is a continuous, strictly decreasing, and completely monotonic
function, and its generalized inverse can be chosen to be the Laplace transform of a
positive rv, Z.

We show in the appendix that, under this choice, a sufficient condition for obtaining a
factor model is to assume that the variable Z is independent of the factor driving the
intensities. As proven in Rogge and Schönbucher (2003), the previous copula choice is
indeed equivalent to assuming a nonlinear factor structure for the thresholds:

Ui ¼ w�1 � lnF(zi)

Z

	 

(18:51)

in which the zi are independent standard normal, which are also independent of «i,,X, and Z.
Summing up, both in structural and intensity-based models, factorization permits to

substitute the original copulas with the product one, according to Equation 18.39, some-
thing which makes computations and analytical pricing results easier to obtain.

In particular, assuming, in addition to a unique risk factor, also equicorrelation of the
single obligors with it, i.e., ri¼ r for all obligors i, calibration of default dependence boils
down to finding an appropriate value for the parameter r: this is practically done by
calibrating to the observed fees of liquid CDO (collateralized debt obligation) tranches.
However, practical applications of the methodology lead to the so-called correlation skew
phenomenon, which is inconsistent with the theoretical set up: for a survey and discussion
see Andersen and Sidenius (2005). In turn, this has led to a number of calibration-oriented
extensions, mainly related to stochastic correlation. Their full insertion in the intensity-
based framework is certainly worth high consideration, while not being completed yet:
however, it is far beyond the scope of this chapter.

18.4 STRUCTURAL MODEL WITH REMAPPING
AND RISK-NEUTRAL CALIBRATION

The models reviewed in the previous sections present a number of limitations, as concerns
either dynamic consistency or dependency calibration.

Intensity-based models with deterministic intensity in particular do not have a dynamic
consistent structural representation, and an asset copula consistent over time, since
intensities exist if and only if the time-to-default is not a totally predictable stopping
time. This condition, as mentioned above, is violated by diffusion-based structural models.
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When we enlarge our consideration to stochastic intensities, we encounter two prob-
lems. The limited range of dependency which can be reached via intensity-based models
with stochastic intensity and independent thresholds renders their usefulness quite limited.
Using stochastic intensities and allowing for dependent thresholds, one runs into the
problem of unobservability of the thresholds themselves. These two difficulties justify the
success of factor models, which span a wide range of dependency, while allowing easy risk-
neutral calibration, at the price of equicorrelation and correlation skews. Or the use of a
purely empirical approach to copula calibration, similar to the implied volatility one, as in
Hull and White (2005).

Recently, it has been stressed that the lack of total predictability—and therefore, of
intensity representation—of structural models can be overcome by assuming that the
information flow on asset values is not continuous over time: at the opposite, since account-
ing data are revealed only at discrete tenors, the wedge between the filtration of investors and
the actual one renders default times totally inaccessible. The seminal paper in the field, which
is for the time being developed only at the single obligor level, is Duffie and Lando (2001).

As an alternative, the total predictability can be eliminated by assuming that asset values
are not described by a diffusion process. To introduce this approach, we refer to a Merton-
like default model, as originally introduced by Madan (2000), which can be extended to the
case of several obligors. Let us consider a default mechanism as the one described in
Section 18.1, and assume that asset returns, as described by the logarithm of the asset value,
ln(Vi=V0), follow a pure jump process instead of a diffusion one. The simplest way to
introduce the pure jump process in this case is as a transform of a diffusion, such as a
Brownian motion with drift, via a stochastic transform of time:

ln
Vi(t)
Vi(0)

	 

¼ mG(t)þ sW[G(t)] (18:52)

where m is the (constant) drift of returns under the historical measure, s is their
instantaneous (constant) variance, W is a standard Brownian motion, while G(t) is the
value at time t a so-called subordinator, namely of a real increasing Lévy process, with no
diffusion component and finite variation. The effect of such a time transform on time, via
G, is that of making log returns belong to the realm of Lévy processes: in particular, if G is a
gamma process, the corresponding returns are variance gamma (VG), while if the sub-
ordinator is generalized inverse Gaussian, we get a generalized hyperbolic model. The
amount of time change can be easily interpreted as a stochastic clock, which in turn can be
related to the amount of trade in a given market (Geman, 2005). The usual restriction is
that the random time change is equal to actual time in expectation:

E[G(t)] ¼ t (18:53)

Let us denote with pti(x) the marginal default probability of obligor i, conditional on the
time change being equal to x. Given that we have a Merton default mechanism, if Ht

i (ujx) is
the asset value distribution of obligor i at time t, conditional on the change x, we have
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pti(x) ¼ Ht
i (Kijx) (18:54)

The remarkable property of describing individual assets as above is that, conditional on the
time change, these values are independent and therefore their (conditional) copula is the
product one. If we denote with ft the density of the time change at t (with support Rþ), we
have a representation analogous to the one in Section 18.3:

Fi(t) ¼
ð
R
þ
pti (x)ft(x) dx ¼

ð
R
þ
Ht

i (Kijx)ft(x) dx (18:55)

while the joint probability can still be represented through a (conditional) factor
copula C?:

F(t) ¼
ð
R
þ

Yn
i¼1

Ht
i (Kijx)ft(x) dx ¼

ð
R
þ
C?
�
Ht

1(K1jx), . . . ,Ht
n(Knjx)

�
ft(x) dx (18:56)

Luciano and Schoutens (2006) study the case in which the time change is gamma
distributed, so that asset returns are VG: this process indeed has been repeatedly used in
the equity literature. Under this choice, taking into consideration the restriction Equation
18.53, and focusing on time 1, we have

f1(x) ¼ n1=n

G(1=n)
x1=n�1e�x=n (18:57)

where G is the usual gamma function. At the same time, since—conditionally on the time
change—returns are normally distributed, we can easily derive the conditional probabilities
pti (x). Focusing again on their value at time 1, p1i (x)

p1i (x) ¼ H1
i (Kijx) ¼ F

zi �mix � ui

si
ffiffiffi
x
p

� 
(18:58)

where ui¼ rþwi and the shift wi is used so as to obtain a risk-neutral measure:

wi ¼ 1
n
log (1� s2

i n=2�min) (18:59)

In this framework, the correlation coefficient between the returns of obligors i and j is

rij ¼
mimjnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
i þm2

i n
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
j þm2

j n
q (18:60)

This shows that there is no equicorrelation.
From conditional normality, it follows that the marginal and joint default probabilities

at time 1 are, respectively,
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Fi(1) ¼
ð
Rþ

F
zi �mix � ui

si
ffiffiffi
x
p

� 
n1=nx1=n�1e�x=n

G(1=n)
dx (18:61)

F(1) ¼
ð
Rþ

Yn
i¼1

F
zi �mix � ui

si
ffiffiffi
x
p

� 
n1=nx1=n�1e�x=n

G(1=n)
dx (18:62)

where the threshold zi¼ ln[Ki=Vi(0)] is obtained from the inequality Vi(1)<Ki (Luciano
and Schoutens, 2006).

The copula representation of the last probability can be obtained only by numerical
inversion; however, the model can be easily calibrated, under the risk-neutral measure, so
as to be able to evaluate actual default probabilities. Luciano and Schoutens extract all the
model parameters (single and joint) from CDS (credit default swap) quotes. For each obligor
they get the standard VG parameters, namely mi, si; the third parameter (n) is common to
all of the obligors. With respect to the standard calibration of univariate VG processes, they
impose a constraint on the last parameter: the fit they obtain at the marginal level is quite
good. They have a risk-neutral joint default probability, since all the parameters are extracted
from market prices, with no need for equity (historical) correlation.

The model just described therefore overcomes two main problems evidenced in the
previous approaches: lack of structural models which can be used to map intensity-based
ones and lack of risk-neutral calibration without equicorrelation.

Fiorani et al. (2007) provide an even more general model of joint default with VG
margins and without equicorrelation. The model is based on an extended multivariate VG
process in which each asset is subject to a common and an idiosyncratic time change. As a
result, the constraint on the common gamma parameter (n) can be eliminated. The
calibration of this model to credit market data is performed in Fiorani et al. (2007), via
equity correlation and without equicorrelation.

In Fiorani and Luciano (2006), it was shown that the univariate VG model was able to
overcome the spread underprediction typical of the Merton approach and the prediction
biases ofmore sophisticated diffusive structuralmodels, since it workedwell both on high yield
and investment grade names. Since the multivariate models in Fiorani et al. (2007) build on
the univariate calibration as in Fiorani and Luciano (2006), the marginal fit is guaranteed.

The explicit representation of the previous models as intensity ones is under investiga-
tion: for the time being, the existence result is guaranteed, and the representation is not
needed to calibrate the model neither at the individual nor at the joint level.

18.5 SUMMARY AND CONCLUDING REMARKS
Default dependence, most of the times represented by default (linear) correlation, is an
important feature of credit derivatives pricing and hedging. Copula functions have proven
to be extremely useful in describing joint default and survival dependency, as well as
probabilities, in credit risk applications.

In the first part of this chapter, we have overviewed the state of the art and pointed out
some open modeling issues. We have discussed joint default modeling first in diffusion-based
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structural models, then in intensity-based ones. We have focused on the possibility, and the
dynamic inconsistency, of remapping a model of the second type into one of the first. For
both types of models, we have discussed calibration issues under the risk-neutral measure,
using the factor copula device.

The survey has led us to present a structural model, based on a nondiffusive asset value,
which can be remapped in a dynamic consistent intensity-based one, and which can be
calibrated under the risk-neutral measure without assuming equicorrelation. Its copula
properties and calibration have been investigated in Luciano and Schoutens (2006). Fiorani
et al. (2007) extend further both the multivariate credit model and the calibration. They fit
default correlation via equity correlation. It turns out that the model fits actual data quite
satisfactorily, when applied to the CDS spreads of both investment grade and high yield
names. In particular, it overcomes the underprediction of the diffusion-based Merton case
and the prediction biases of more sophisticated diffusive structural models.

Evidently, it is just one possible rigorous solution to the currently immature state of the
research in the field. Models who are dynamically consistent in the sense adopted here and
liable of calibration under the risk-neutral measure, for pricing and hedging purposes, are
very welcome.

APPENDIX
In this appendix, we briefly review the factor model with stochastic intensities and
nonindependent thresholds. Having assumed that the copula of the uniform thresholds
is Archimedean, as in Equation 18.50, w�1(u) can be chosen to be the Laplace transform of
a positive rv, Z, i.e., w�1(u)¼ E (e�uZ), and the copula (assuming a density exists for Z) can
be written as

CU (u1, u2, . . . ,un)¼ E

�
exp

	
�Z
Xn
i¼1

w(ui)


�
¼
ð
Rþ

exp

	
�z
Xn
i¼1

w(ui)



h(z)dz (18:A1)

With theArchimedean assumption, the joint survival probability can then bemanipulated as

S(t) ¼ E
n
CU [ exp (�L1), exp (�L2), . . . , exp (�Ln)]jF 0

o
¼ (18:A2)

¼ E

�
w�1
�Xn

i¼1
w[ exp (�Li)]

�
¼ � � � ¼ E

�ð
Rþ

exp

�
�z
Xn
i¼1

w[ exp (�Li)]

�
h(z) dz


(18:A3)

Let us change the order of integration and condition the inner expectation with respect to
X¼ x, which is the factor used in the marginal factorization (the one for W :¼F�1

[1�Gi(Li)]), and is assumed to be independent of Z:

S(t) ¼
ð
Rþ

ð
R

E

�
exp

�
�z
Xn
i¼1

w[ exp (�Li)]

�
jx

f (x) dxh(z) dz (18:A4)
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Recognizing that the compensators are independent, conditionally on X¼ x, we have

S(t) ¼
ð
Rþ

ð
R

Yn
i¼1

E
�
exp
��zw[ exp (�Li)]

�jx�f (x) dxh(z) dz (18:A5)

which is of the form corresponding to Equation 18.39, since

E(exp {�zw[ exp (�Li)]}jx)

¼ E exp �zw exp �G�1i 1�F(rix þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
«i)

	 
� �� 	 
� �
(18:A6)

is the marginal survival probability conditional on x and z, 1� pti(x,z).
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CHAPTER 1 9

Correlated Default Processes:
A Criterion-Based Copula
Approach

Sanjiv R. Das and Gary Geng
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19.1 INTRODUCTION
Default risk at the level of an individual security has been extensively modeled using both
structural and reduced-form models.* This chapter examines default risk at the portfolio
level. Default dependences among issuers in a large portfolio play an important role in the
quantification of a portfolio’s credit-risk exposure for many reasons. Growing linkages in
the financial markets have led to a greater degree of joint default. While the acutal portfolio
loss due to the default of an individual obligor may be small unless the risk exposure is
extremely large, the effects of simultaneous defaults of several issuers in a well diversified
portfolio could be catastrophic. In order to efficiently manage and hedge the risk exposure
to joint defaults, a model for default dependencies is called for. Further, innovations in the
credit market have been growing at an unprecedented pace in recent years, and will likely
persist in the near future. Many newly developed financial securities, such as collateralized
debt obligations (CDOs), have payoffs depending on the joint default behavior of the
underlying securities.y In order to accurately measure and price the risk exposure of these

* See the structural models of Merton (1974), Geske (1977), Leland (1994), Longstaff and Schwartz (1995), and
reduced-form models of Duffie and Singleton (1999), Jarrow and Turnbull (1995), Das and Tufano (1996), Jarrow
et al. (1997), Madan and Unal (1999), Das and Sundaram (2000), and Jarrow and Yu (2001).
y A CDO securitization comprises a pool of bonds (the ‘‘collateral’’) against which tranches of debt are issued with
varying cashflow priority. Tranches vary in credit quality, from AAA to B, depending on subordination level.
Seller’s interest is typically maintained as a final equity tranche, carrying the highest risk. CDO collateral usually
comprises from a 100 to over a 1000 bond issues. Tranche cashflows critically depend on credit events during the
life of the CDO, requiring Monte Carlo simulation (see, for example, Duffie and Singleton 1999) of the joint default
process for all issuers in the collateral. An excellent discussion of the motivation for CDOs and the analysis of CDO
value is provided in Duffie and Garleanu (2001). For a parsimonious model of bond portfolio allocations with
default risk, see Wise and Bhansali (2001).
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securities, an understanding and accurate measurement of the default dependencies among
the underlying securities is essential.* Accurate specification of default correlations is
required in the pricing of basket default contracts. Correlation specifications are critical,
as the baskets are not large enough to ensure diversification. Finally, the Basle Committee
on Banking Supervision has identified poor portfolio risk management as an important
source of risk for banking institutions. As a result, banks and other financial institutions
have been required to measure their overall risk exposures on a routine basis. Default
correlation is again an important ingredient to integrate multiple credit-risk exposures.

In this chapter, we use Moody’s default database to develop a parsimonious numerical
method of modeling and simulating correlated default processes for hundreds of issuers.
Using copula functions, we capture the stylized facts of individual default probabilities
as well as the dynamics of default correlations documented in Das et al. (2006) (DFGK,
2006). Our methodology is ‘‘criterion based,’’ i.e., it uses a metric that compares alternative
specifications of the joint default distribution using three criteria: (1) the level of default
risk, (2) the asymmetry in default correlations, and (3) the tail dependence of joint defaults.
We elaborate on these in what follows.

The base unit of joint credit risk is the probability of default (PD) of each issuer. Many
popular approaches exist for computing PDs in the market place, developed by firms such
as KMV Corporation, Moody’s Risk Management Systems (MRMS), RiskMetrics, etc. In
the spirit of reduced-form models, the default probability of issuer i at time t is usually
expressed as a stochastic hazard rate, denoted as li(t), i¼ 1, . . . , N. This chapter empirically
examines the joint stochastic process for hazard rates, li(t), for N issuers.

We fit a joint dynamic system to the intensities (or hazard rates) of roughly 600 issuers,
classified into six rating categories. Our approach involves capturing the correlation of PD
levels across the six rating classes, as well as the correlation of firms’ PDs within each rating
class. We find (1) the appropriate copula function (for the joint distribution), (2) the
stochastic process for rating-level default probabilities, and (3) the best set of marginal
distributions for individual issuer default probabilities.

At the rating level, we choose from two classes of stochastic processes for the average
hazard rate of the class: a jump-diffusion model, and a regime-switching one. At the issuer
level, we choose from three distributional assumptions: a normal distribution, a Student-t
distribution, and a skewed double-exponential distribution. We compare these distribu-
tions for each issuer using four goodness-of-fit criteria. At the copula level, we choose from
four types: normal, Student-t, Gumbel, and Clayton. These inject varying amounts of
correlation emanating from the joint occurrence of extreme observations.y

The various combinations of choices at the rating, issuer, and copula level result in 56
different systems of joint variation. To compare across these, we develop a metric to
determine how well different multivariate distributions fit the observed covariation

* As demonstrated by Das et al. (2001), Gersbach and Lipponer (2000), both the individual default probability and
default correlations have a significant impact on the value of a credit portfolio.
y Extreme value distributions allow for the fact that processes tend to evidence higher correlations when tail values
are experienced. This leads to a choice of fatter-tailed distributions, with a reasonable degree of ‘‘tail dependence.’’
The support of the distribution should also be such that the PD intensity li(t) lies in the range [0,1).
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in PDs. The metric accounts for the level of correlations, asymmetry of correlations, and
the tail dependence in the data.

An important issue we look at here is ‘‘tail dependence.’’ Tail dependence is the feature
of the joint distribution that determines how much of the correlation between default
intensity processes comes from extreme observations than from central observations. For
example, imagine two different bivariate distributions, with the same standard normal
marginal distributions. One distribution has a normal copula and the other a Student-t
copula with a low degree of freedom. The former has lower tail dependence than the latter,
which generates more joint tail observations. Hence, from a risk point of view, given the
marginal distributions, the second joint distribution would be riskier for a large class of
risk-averse investors. Our study sheds light on the tail dependence for default risk in a
representative data set of U.S. firms.

Our study of joint default risk for U.S. corporates using copula techniques finds that the
best choice of copula depends on the marginal distributions, and stochastic processes for
rating-level PDs. The Student-t copula is best when the jump-diffusion model is chosen for
the default intensity of each rating class. However, the normal or Clayton copula is more
appropriate when the regime-switching model is chosen for rating-level intensities. In
general, our metric prefers a regime-switching model to a jump-diffusion one (for rating-
level intensities), irrespective of the choice of marginal distributions, and a perusal of the
time series plot of the data (Figure 19.1) provides intuitive support for this result. While the
regime-switching model for rating-level intensities is best, no clear winner emerges
amongst the competing copulas. The interdependence between copula and marginal
distributions justifies our wide-ranging search over 56 different specifications.

We also assess the impact of different copulas on risk-management measures. An
examination of the tail loss distributions shows that substantial differences are possible
amongst the 56 econometric specifications. Arbitrarily assigning high kurtosis distribu-
tions to a copula with tail dependence may even result in the unnecessary overstatement of
joint default risk. Since different copulas inject varied levels of tail dependence, the metric
developed in this chapter allows fine-tuning of the specification, which enhances the
accuracy of credit VaR calculations.

The rest of the chapter proceeds as follows. In Section 19.2, we briefly describe the data
on intensities. Section 19.3 provides the finance reader with a brief introduction to copulas,
and Section 19.4 contains the estimation procedure and results. Section 19.5 presents
the simulation model and the metric used to compare different copulas. Section 19.6
concludes the chapter.

19.2 DESCRIPTION OF THE DATA
Our data set comprises issuers tracked by Moody’s from 1987 to 2000. For each issuer, we
have PDs based on their econometric models for every month the issuer was tracked by
Moody’s. Moody’s calibrates the PDs to match the level of realized defaults in the
economy. Issuers are divided into seven rating classes. Rating classes one through six
reflect progressively declining credit quality. Many more issuers fall into rating class seven,
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which comprises unrated issuers, and the PDs within this class range from high to low,
resulting in an average PD that is close to the median PD of all the other rating classes. We
do not consider PDs from rating class seven. We considered firms that had a continuous
sample over the period. We obtained data on a total of 620 issuers classified into six rating
classes. These 1 year default probabilities were converted into intensities using an assump-
tion of constant hazard rates, i.e., lit¼�ln(1�PDit). Table 19.1 provides summary data
on Moody’s rating categories.

The time series of average default probabilities is presented in Figure 19.1. Table 19.2
presents the descriptive statistics of our data from rating classes one through six. The mean
increases from rating class one to six, as does the standard deviation. PD changes tend to
be higher for lower grade debt. Table 19.3 presents the dependence between rating classes
measured by Kendall’s t statistic. Higher grade debt evidences more rank correlation in
PDs than low-grade debt. This highlights the fact that high-grade debt is more systemat-
ically related, and low-grade debt experiences greater idiosyncratic risk.
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FIGURE 19.1 Time series of average PDs. This figure depicts the average level of default
probabilities in the data set. The data show the presence of two regimes, one in which PDs
were high, as in the early and latter periods of the data. In the other regime, PDs were
much lower, less than half of those seen in the high PD regime. Complementary analysis of
correlated default on the same data set by subperiod in this same time frame is presented in
DFGK (2006) from where this figure is taken.
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19.3 COPULAS AND FEATURES OF THE DATA
19.3.1 Definition

We are interested in modeling an n-variate distribution. A random draw from this
distribution comprises a vector X 2 Rn¼ {X1, . . . , Xn}. Each of the n variates has its own
marginal distribution, Fi(Xi), i¼ 1, . . . , n. The joint distribution is denoted as F(X). The
copula associated with F(X) is a multivariate distribution function defined on the unit cube
[0, 1]n. When all the marginals, Fi(Xi), i¼ 1, . . . , n, are continuous, the associated copula is
unique and can be written as

C(u1, . . . , un) ¼ F
�
F�11 (u1), . . . , F

�1
n (un)

�
(19:1)

TABLE 19.1 Rating Classes

1 Aaa=Aa: Bonds rated Aaa=Aa carry the smallest degree of investment risk and are generally known as high-
grade bonds

2 A: Bonds rated A possess many favorable investment attributes and are to be considered as upper-medium-
grade obligations

3 Baa: Bonds rated Baa are considered as medium-grade obligations. Such bonds lack outstanding investment
characteristics and in fact have speculative characteristics as well

4 Ba: Bonds rated Ba are judged to have speculative elements. Often the protection of interest and principal
payments may be very moderate and thereby not well safeguarded during both good and bad times over the
future

5 B: Bonds with B rating generally lack characteristics of the desirable investment. Assurance of interest and
principal payments over any long period may be small

6 Caa=Ca=C: These are the bonds with high degree of speculation. Such issues may either be in default or
elements of danger may be present with respect to principal or interest payments

7 Not rated

Note: The database comprises seven rating categories, in descending order of credit quality our data set does
not contain data from firms in the financial sector.

TABLE 19.2 Descriptive Statistics for PDs

Rating
Category

PD in Levels PD in Changes

Mean Standard Deviation Mean Standard Deviation

1 0.0728 0.1051 0.0012 0.0441

2 0.1701 0.4884 0.0036 0.1468

3 0.6113 1.6808 0.0044 0.7317

4 1.4855 2.6415 0.0066 1.2694

5 3.8494 4.6401 0.0138 2.3576

6 6.5389 4.7731 0.0165 3.2075

Note: This table presents the summary of the time series of average PDs for each
rating class. Each time series represents a diversified portfolio of issuers within
each rating class, equally weighted. The probabilities are in percentages.
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Every joint distribution may be written as a copula. This is Sklar’s theorem (Sklar 1959,
1973). For an extensive discussion of copulas, see Nelsen (1999).* Copulas allow the
modeling of the marginal distributions separately from their dependence structure.
This greatly simplifies the estimation problem of a joint stochastic process for a portfolio
with many issuers. Instead of estimating all the distributional parameters simultaneously,
we can estimate the marginal distributions separately from the joint distribution. Given
the estimated marginal distribution for each issuer, we then use appropriate copulas to
construct the joint distribution with a desired correlation structure. The best copula is
determined by examining the statistical fit of different copulas to the data.y

Copula techniques lend themselves to two types of credit-risk analysis. First, given a
copula, we can choose different marginal distributions for each individual issuer. By
changing the types of marginal distributions and their parameters, we can examine how
individual default affects the joint default behavior of many issuers in a credit portfolio.
Second, given marginal distributions, we can vary the correlation structures by choosing
different copulas, or the same copula with different parameter values.

19.3.2 Copulas Used in the Chapter

In this chapter, in order to capture the observed properties of the joint default process, we
consider the following four types of copulas:

Normal Copula: The normal copula of the n-variate normal distribution with correlation
matrix r, is defined as

Cr(u1, . . . , un) ¼ Fn
r

�
F�1(u1), . . . , F�1(un)

�
where
F(u) is the normal cumulative distribution function (CDF)
F�1(u) is the inverse of the CDF

TABLE 19.3 Kendall’s t for Probabilities of Default

Correlations

Rating 1 2 3 4 5 6

1 1.0000 0.6508 0.2724 0.2868 0.2987 0.2762

2 0.4254 1.0000 0.4671 0.4569 0.4052 0.1794

3 0.1849 0.2312 1.0000 0.6416 0.4483 0.1080

4 0.1447 0.1393 0.0543 1.0000 0.5382 0.1708

5 0.0378 0.0877 0.0352 0.1245 1.0000 0.2911

6 0.0362 �0.0429 0.0238 �0.0276 0.1032 1.0000

Note: In this table we report Kendall’s t, which is a measure of the dependence between
any two time series. The upper right triangle of the correlation matrix above
reports the rank correlation for PD levels. The lower left triangle reports the rank
correlation for changes in PDs.

* There is a growing literature on copulas. The following references contain many useful papers on the topic:
Embrechts et al. (1997), Embrechts et al. (1999a,b), Frees and Valdez (1998), Frey and McNeil (2001a), Li (1999),
Nelsen (1999), Lindskog (2000), Schonbucher and Schubert (2001), Wang (2000).
y Durrleman et al. (2000) discuss several parametric and nonparametric copula estimation methods.
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Student-t copula: Let Tr,n be the standardized multivariate Student-t distribution with n

degrees of freedom and correlation matrix r. The multivariate Student-t copula is then
defined as follows:

C(u1, . . . , un; r, n) ¼ Tr,n
�
t�1n (u1), . . . , t

�1
n (un)

�
where t�1n is the inverse of the cumulative distribution function of a univariate Student-t
distribution with n degree of freedom.

Gumbel copula: This copula was first introduced by Gumbel (1960) and can be expressed
as follows:

C(u1, . . . , un) ¼ exp

"
�
 Xn

i¼1
(�ln ui)a

!1=a#
(19:2)

where a is the parameter determining the tail dependence of the distribution.

Clayton copula: This copula, introduced by Clayton (1978), is as follows:

C(u1, . . . , un) ¼
Xn
i¼1

u�ai � nþ 1

" #�1=a
(19:3)

Again, a> 1 is a tail dependence parameter.
The procedure for simulating an n-dimensional random vector from the above copulas

can be found in Wang (2000), Bouye et al. (2000), and Embrechts et al. (2001).

19.3.3 Tail Dependence

An important feature of the use of copulas is that it permits varying degrees of tail
dependence. Tail dependence refers to the extent to which the dependence (or correlation)
between random variables arises from extreme observations.

Suppose (X1,X2) is a continuous random vector, with marginal distributions F1 and F2.
The coeffcient of upper tail dependence is

lU ¼ lim
z!1

Pr
�
X2 > F�12 (z)jX1 > F�11 (z)

�
(19:4)

If lU> 0, then upper tail dependence exists. Intuitively, upper tail dependence is present
when there is a positive probability of positive extreme observations occurring jointly.*

For example, the Gumbel copula has upper tail dependence with lU¼ 2� 21=a. The
Clayton copula has lower tail dependence with lL¼ 2�1=a. The Student-t has equal upper

and lower tail dependence with lU ¼ 2�tvþ1
ffiffiffiffiffiffi
vþ1p ffiffiffiffiffiffi

1�rpffiffiffiffiffiffi
1þrp

� �
.

* Lower tail dependence is symmetrically defined. The coefficient of lower tail dependence is

lL ¼ lim
z!0

Pr[X2 < F�12 (z)jX1 < F�11 (z)] (19:5)

If lL> 0, then lower tail dependence exists.
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Table 19.4 provides a snapshot of the tail dependence between rating classes. The results
in the table present the correlations between rating pairs over observations in the tails of
the bivariate distribution. Results are provided both, in levels and changes. There is strong

TABLE 19.4 Measures of Tail Dependence between the Different Rating Classes

Rating Pair Lower Tail Dependence Upper Tail Dependence

Rating Rating 10% 20% 30% 70% 80% 90%

Panel A: Tail Dependence in Levels

1 2 0.4853 0.2879 0.2212 0.7518 0.7386 0.7206

1 3 0.0147 �0.3371 �0.1673 0.5837 0.5795 0.5441

1 4 �0.1471 0.0379 �0.0008 0.6376 0.4545 0.1471

1 5 �0.0882 �0.1439 �0.1314 0.6865 0.6061 0.2059

1 6 �0.2206 �0.1705 �0.0727 0.5298 0.4583 �0.0735
2 3 �0.1912 �0.2197 0.1004 0.5967 0.5985 0.5588

2 4 �0.2353 �0.1326 �0.0857 0.6000 0.4015 0.1324

2 5 �0.0147 �0.2045 �0.2065 0.6718 0.5189 0.0882

2 6 �0.1912 �0.3447 �0.1559 0.4171 0.3826 �0.1765
3 4 0.2500 0.2424 0.2539 0.5559 0.3902 0.1765

3 5 �0.0294 �0.1402 0.0694 0.5576 0.4205 0.2647

3 6 �0.1765 �0.1591 �0.0955 0.3535 0.4583 0.0147

4 5 0.0588 �0.1023 0.0155 0.7257 0.6439 0.4412

4 6 0.1471 �0.0833 �0.0318 0.4922 0.6326 0.4853

5 6 0.2206 0.0455 0.1020 0.4563 0.5152 0.2059

Panel B: Tail Dependence in Changes

1 2 0.5000 0.4394 0.4106 0.4253 0.4015 0.3971

1 3 0.0441 0.0189 0.0367 0.0776 0.0038 0.2206

1 4 0.1029 0.1439 0.0188 0.1429 0.0644 0.1618

1 5 0.1029 �0.0455 �0.0269 0.1069 0.1439 0.2794

1 6 0.0588 �0.0455 �0.0580 �0.2033 �0.1856 0.0735

2 3 0.1618 0.0606 0.0873 0.0204 �0.0606 0.1324

2 4 �0.2647 �0.0076 �0.0580 0.1984 0.0606 0.2647

2 5 �0.0147 0.0189 0.0645 0.0302 0.2045 0.3382

2 6 0.1618 0.0455 0.0482 �0.1559 �0.1667 �0.2500
3 4 0.2941 0.1364 �0.0433 0.0122 �0.0720 �0.0441
3 5 �0.0441 �0.1212 �0.0367 0.2082 �0.0152 0.0294

3 6 0.0882 0.0076 0.1216 �0.0694 �0.1136 �0.3382
4 5 �0.0588 �0.0227 0.1265 0.2555 0.3864 0.3824

4 6 �0.0735 0.1515 0.0971 0.0041 0.1098 �0.1324
5 6 �0.0294 0.1553 0.0171 0.0547 0.0341 �0.0147
Note: This table presents correlations between hazard rates amongst the rating classes based on different tail

percentiles. We examine correlation amongst observations in the bottom 10th, 20th, and 30th
percentiles. We also present the correlations in the top 10th, 20th, and 30th percentiles, i.e., the cutoffs
are the 70th, 80th, and 90th percentiles. The values in the table are the correlations when observations
from the second rating in the pair of rating classes lies in the designated portion of the tail of the
distribution. Results are presented for levels of hazard rates and for changes in hazard rates.
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positive correlation in the upper tail, evidencing upper tail dependence. Correlations in the
lower tail are often low and negative, and hence, there is not much evidence of lower tail
dependence.

19.3.4 Empirical Features of Dependence in the Joint Distribution

In order to compare the statistical fitting of joint distributions associated with different
copulas, we develop a metric, which captures three features of the dependence relationship
in the joint distribution:

. Correlation levels: We wish to ensure that our copula permits the empirically
observed correlation levels in conjunction with the other moments. This depends
on the copula and the attributes of the data.

. Correlation asymmetry: Hazard rate correlations are level dependent, and are higher
when PD levels are high—correlations increase when PD levels jump up, and
decrease when PDs jump down.

. Tail dependence: It is important that we capture the correct degree of tail dependence
in the data, i.e., the extent to which extreme values drive correlations.

Following Ang and Chen (2002), and Longin and Solnik (2001), we present the
correlations for different rating classes in a correlation diagram (Figure 19.2). This plot
is created as follows. We compute the total hazard rate (THR) across issuers (indexed by i)
at each point in time (t), i.e., THRt ¼

PN
i¼1 li(t), 8t. We normalize the THR by subtract-

ing the mean from each observation and dividing by the standard deviation. We then
segment our data set based on exceedance levels (j) determined by the normalized THR.
Our exceedance levels are drawn from the set j¼ {�1.5, �1.0, �0.5, 0, 0, 0.5, 1.0, 1.5}.
(Note that zero appears twice because we account for both, left and right exceedance.) Ang
and Chen (2002) developed a version of this for bivariate processes. Our procedure here is
a modification for the multivariate case. For example, the exceedance correlation at level
�j is determined by extracting the time series of PDs for which the normalized THR is less
than �j, and computing the correlation matrix therefrom. We then find the average value
of all entries in this correlation matrix, to obtain a summary number for the correlation in
the rating class at the given exceedance level. These are plotted in Figure 19.2. There is one
line for each rating class. The line extends to both the left and right sides of the plot. To
summarize, the exceedance graph shows (for each rating category) the correlation of
default probabilities when the overall level of default risk exceeds different thresholds. As
threshold levels become very small or very large, correlations decline, and the rate at which
they decline indicates how much tail dependence there is.

The three features of the dependence relationship are evident from the graph. First, the
height of the exceedance line indicates the level of correlation, and we can see that high-
grade debt has greater correlation than lower grade debt [see Xiao (2003) for a similar
result with credit spreads]. Second, there is clear evidence of correlation asymmetry, as
correlation levels are much higher on the right side of the graph, i.e., when hazard rate
changes are positive. Third, the amount of tail dependence is inferred from the slope of the
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correlation line as the exceedance level increases. The flatter the line the greater the amount
of tail dependence. As absolute exceedance levels increase, we can see that correlation levels
drop. However, they fall less slowly if there is greater tail dependence. We can see that
lower grade debt appears to have more tail dependence than higher grade debt.

Overall, the exceedance plot shows that bonds within high quality ratings have greater
default correlation than bonds within low quality ratings. However, tail dependence is
higher for lower rated bonds. Both results are intuitive—high-grade debt tends to be issued
by large firms that experience greater amounts of systematic risk, and low-grade firms
evidence more idiosyncratic risk; however, when economy-wide default risk escalates, low-
grade bonds are more likely to experience contagion, leading to greater tail dependence.

19.4 DETERMINING THE JOINT DEFAULT PROCESS
19.4.1 Overall Method

Our data comprise firms categorized into six rating classes. We average across firms within
a rating class to obtain a time series of the average intensity (lk) for each rating class k. We
assume that the stochastic processes for the six average intensities are drawn from a joint
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FIGURE 19.2 Asymmetric correlation of PDs This figure plots the exceedance correlations
for the different rating classes in our study. The figure breaks this out into the individual
ratings. The plots are consistent with the presence of asymmetric correlation. The degree of
asymmetry appears to be higher for the better rating categories. Complementary analysis of
correlated default by subperiod in this same time frame is presented in DFGK (2001a) where
different analyses are conducted on the same data set. This figure corresponds to their paper.
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distribution characterized by a copula, which establishes the joint dependence between
rating classes. The correlation matrix for the mean intensities is calculated directly from
the data. The copula is set to one of the four possible choices: normal, Student-t, Gumbel,
or Clayton. The form of the stochastic process for each average hazard rate is taken to be
either a jump-diffusion or a regime-switching one. This setup provides for the correlation
between rating classes.

Next, the correlations within a rating class are obtained from the linkage of all firms in a
rating class to the mean PD process of the rating category. We model individual firm PDs
as following a non-negative stochastic process with reversion to the stochastic mean of
each rating.

To conduct a Monte Carlo simulation of the system, we propagate the average rating
PDs using either a jump-diffusion or regime-switching model, with correlations across
ratings given by a copula. Then, we propogate the individual issuer intensities using
stochastic processes that oscillate around the rating means. The entire system consists of
a choice of (1) stochastic process for average intensities (jump-diffusion versus regime-
switching), (2) copula (normal, Student-t, Gumbel, Clayton), and (3) marginal distribution
for issuer-level stochastic process for intensities (one of seven different options). All told,
therefore, we have 56 alternate correlated default system structures to choose from.

19.4.2 Estimation Phase

Estimation is undertaken in a two-stage manner: (a) the estimation of the stochastic
process for the mean intensity of each rating class and (b) the estimation of the best
candidate distribution for the stochastic process of each individual issuer’s intensity. We
chose two processes for step (a). Both choices were made to inject excess kurtosis into the
intensity distribution. One, we used a normal-jump model. Two, we used a regime-
switching model. Each is described in turn in the next two subsections.

19.4.2.1 Estimation of the Mean of Each Rating Class Using a Jump Model
For our six rating classes (indexed by k), and all issuers (indexed by j), we compute
intensities from the probabilities of default (Pkj, j¼ 1, . . . , Nk, k¼ 1, . . . , 6) in our data
set. The intensities are computed as: lkj¼�ln(1� Pkj) � 0. We denote M as the total
number of rating classes and Nk as the total number of issuers within the rating class for
which data are available.

Let lk(t) be the average intensity across issuers within rating class k. Therefore,
lk(t) ¼ 1=Nk

PNk
j¼1 lkj(t), 8t. We assume that lk(t) follows the stochastic process:

Dlk(t) ¼ kk[uk � lk(t)]Dt þ xk(t)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lk(t)Dt

p
xk(t) ¼ "k(t)þ Jk(t)Lk(qk, t)

�k(t) � N[0,s2
k]

Jk(t) � U[ak, bk]

Lk(qk, t) ¼
1 w=prob qk
0 w=prob 1� qk

(19:6)

�

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C019 Final Proof page 358 21.4.2008 12:40pm Compositor Name: VBalamugundan

358 & Credit Risk: Models, Derivatives, and Management



We assume that the jump size Jk follows a uniform distribution over [ak,bk].* This
regression accommodates a mean-reverting version of the stochastic process, and kk
calibrates the persistence of the process. This process is estimated for each rating class
k, and the parameters are used for subsequent simulation. Copulas are used to obtain the
joint distribution of correlated default. The correlation matrix used in the copula comes
from the residuals xk(t) computed in the regression above.

We use maximum-likelihood estimation to obtain the parameters of this process. Since
there is a mixture of a normal and a jump component, we can decompose the uncondi-
tional density function for the residual term xk(t) into the following:

f [xk(t)] ¼ qk f [xk(t)jLk ¼ 1]þ (1� qk)f [xk(t)jLk ¼ 0] (19:7)

The latter density, f [xk(t)jLk¼ 0] is conditionally normal. The marginal distribution of
xk(t) conditional on Lk¼ 1 can be derived as follows:

f [xk(t)jLk ¼ 1] ¼
ðbk
ak

1

(bk � ak)
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

k

p � exp � (xk(t)� Jk)2

2s2
k

� 	
dJk (19:8)

Let z ¼ (Jk � xk(t))=sk. Then,

f [xk(t)jLk ¼ 1] ¼
ðbk�xk(t)

s

ak�xk(t)
s

1
bk � ak

exp � z2

2

� 	
1ffiffiffiffiffiffi
2p
p dz

¼ 1
bk � ak

F
bk � xk(t)

sk


 �
�F

ak � xk(t)
sk


 �� 	

In the case when ak¼ bk, the process has a constant jump size with probability 1 and the
marginal distribution of xk(t) degenerates to a normal distribution with mean ak and
standard deviation sk. This can be seen by letting bk¼ akþ c. We, then, have

f [xk(t)jLk ¼ 1] ¼ lim
c!0

1
c

F
ak þ c� xk(t)

sk

� 
�F

ak � xk(t)
sk

� � 	

¼ lim
c!0

1
sk

f
ak þ c� xk(t)

sk

� 

¼ 1
sk

f
xk(t)� ak

sk

� 

where f(�) and F(�) are the standard normal density and distribution functions, respect-
ively. Since jumps are permitted to be of any sign, we may expect that bk � 0 and ak � 0.
Also, if jbkj> jakj, it implies a greater probability of positive jumps. When ak is close to bk,

* This specification does permit the hazard rate to populate negative values. While this is not an issue during the
estimation phase, the simulation phase is adjusted to truncate the shock if the negative support is accessed.
However, we remark that this occurs in very rare cases, since lk(t) is the average across all issuers within the
rating class, and the averaging drives the probability of negative hazard rates to minuscule levels.

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C019 Final Proof page 359 21.4.2008 12:40pm Compositor Name: VBalamugundan

Correlated Default Processes: A Criterion-Based Copula Approach & 359



or when they have the same sign, the process has a constant or one-direction jump,
respectively.

The estimation results are presented in Table 19.5. The mean of the intensity process
(uk) increases with rating class k as expected. The variance (sk) also increases with
declining credit quality. Generally speaking, the probability of a jump (qk) in the hazard
rate is higher for lower quality issuers. We can see that rating classes 3–5 have a constant
jump and rating 6 has only positive jumps. While the mean jump for all rating classes
appears to be close to zero, that for the poorest rating class is much higher than zero.
Hazard rates jump drastically when a firm approaches default.

After obtaining the parameters, we compute residuals for each rating class. The residuals
include randomness from both the normal and jump terms. The covariance matrix of these
residuals is stored for later use in Monte Carlo simulations.

19.4.2.2 Estimating the Mean Processes in a Regime-Switching Environment
From Figure 19.1, we note that there are periods in which PDs are low, interjected by
smaller, sporadic regimes of spikes in the hazard rates. A natural approach to capture this
behavior is to use a regime-switching model.*

In order to determine regimes, we first computed the average intensity (hazard rate,
approximately) �l ¼PN

i¼1 li across all issuers in our database. Within each regime the
intensity is assumed to follow a square-root model represented in discrete-time as follows:

TABLE 19.5 Estimation of the Average Rating Process

Rating Class

Parameter 1 2 3 4 5 6

uk 0.0524 0.1336 0.3499 1.1550 2.3812 5.4848

7.73 16.74 2.75 4.01 1.99 7.12

kk 0.4813 0.0018 0.6680 0.4811 0.4305 2.8350

2.84 0.01 1.88 1.87 2.01 4.19

sk 0.0487 0.1050 0.2518 0.2633 0.2872 0.5743

14.17 13.39 12.48 11.44 8.51 5.85

bk 0.0839 0.1316 0.1241 0.2070 0.2684 1.1231

12.39 5.64 1.94 1.58 1.52 5.50

ak �0.0707 �0.0644 0.1241 0.2069 0.2684 0.0771

�6.33 �3.46 1.96 1.61 2.37 0.21

qk 0.1016 0.0777 0.1514 0.0950 0.2461 0.4374

3.87 3.18 2.94 2.07 2.08 2.07

Log-likelihood �622.16 �462.95 �205.48 �133.56 �32.82 �35.03
Note: In this table we report the estimation results of the stochastic process for the mean of the intensities of

each rating class. Numbers below the estimates are the t-statistics from the estimation, which is
undertaken by maximum-likelihood.

* Ang and Chen (2002) found this type of model to be good at capturing the three stated features of asymmetric
correlation in equity markets.
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D�lr(t) ¼ kr[ur � �lr(t)]Dt þ sr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lr(t)Dt

p
2 (t), r ¼ {HI, LO} (19:9)

The two regimes are indexed by r, which is either HI or LO. kr is the rate of mean-
reversion. The mean value within the regime is ur and sr is the volatility parameter.

The probability of switching between regimes comes from a logit model based on a
transition matrix:

pLO 1� pLO
1� pHI pHI


 �

where pr¼ exp(ar)=(1þ exp (ar)), r 2 {LO, HI}. Estimation is undertaken using
maximum-likelihood. We fixed the values of ur based on the historical PDs, with a
high–low regime cutoff of 2%. uLO was found to be 1.68% and uHI to be 2.40%.* We
then estimated the rest of the parameters in the above model. The estimation results are
presented in Table 19.6. In the high PD regime, the higher level of hazard rates is matched
by a higher level of volatility.

Our next step is to use the determined regimes to estimate the parameters of the mean
process for each rating class, i.e., lk, k¼ 1, . . . , 6. We fit regime-shifting models to each of
the rating classes, using a stochastic process similar to that in Equation 19.9:

D�lk,r(t) ¼ kk,r[uk,r � �lk,r(t)]Dt þ sk,r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lk,r(t)Dt

q
2 (k, t),

r ¼ {HI, LO}, k ¼ 1, . . . , 6 (19:10)

TABLE 19.6 Estimation of the Regime-Switching Model Across All Issuers

Parameter Low-PD Regime High-PD Regime

u 1.68% 2.40%

k 1.5043 1.7746

t-stat 2.4053 2.0558

s 0.1681 0.2397

t-stat 14.2093 7.9849

a 4.1286 3.3644

t-stat 4.6649 2.5428

Log-likelihood �195.5948
Note: This table provides estimation results for regimes estimated on the average intensity

process �l ¼PN
i¼1 li

� �
across all issuers in the dataset. We designated periods where

�l � 2% as the ‘‘low-PD’’ regime, and periods in which �l> 2% as the ‘‘high-PD’’ regime.
The regimes were bifurcated exogenously, as described, and we estimated the values of ur
by simply averaging the hazard rate within each regime. Estimation is undertaken using
maximum-likelihood.

* We found that the estimations of ur were very sensitive to the initial values used in the optimization. By fixing these
two values, the estimation turned out to be more stable.
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The results of the estimation are presented in Table 19.7. The parameters are as expected.
The mean of the processes is higher in the high regime, as is the volatility. We now proceed
to look at the choice of individual issuer marginal distributions.

19.4.2.3 Estimation of the Stochastic Process for Each Individual Issuer
Assume that the intensity for each individual issuer follows a square-root process:

Dlkj(t) ¼ kkj{ukj þ gkjlk � lkj(t)}þ skj

ffiffiffiffiffiffiffiffiffiffiffi
lkj(t)

p
«kj(t) (19:11)

We normalize the residuals by dividing both sides by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lkj(t)dt

p
. We then use OLS to

estimate parameters, which are stored for use in simulations. The resulting residuals are
used to form the covariance matrix for each class.

The long-term mean is defined as the sum of a constant number ukj, and the group
mean lk(t) multiplied by a constant, gkj. This indexes the mean hazard rate for each issuer
to the current value of the mean for the rating class. Consequently, there are four
parameters for each regression, kkj, ukj, gkj, and skj. Note that kkj should be positive, ukj
and gkj can be positive or negative as long as they are not both negative at the same time.
None of the issuers have negative ukj and gkj at the same time, although 20 issuers have
negative kkj. We, therefore, deleted the 20 issuers with negative k from our dataset for
further analysis.*

TABLE 19.7 Estimation of the Regime-Switching Model for the Mean of Each Rating Class

Rating Class

Parameter 1 2 3 4 5 6

uLO 0.0559 0.1625 0.5678 1.3588 3.6367 6.3138

t-stat 0.40 7.06 11.90 14.22 45.24 74.32

uHI 0.0991 0.3757 0.9818 2.2358 5.1216 7.8295

t-stat 0.36 6.55 4.91 19.29 18.74 8.07

kLO 1.3535 0.5094 1.5855 1.1317 2.2365 6.2456

t-stat 0.23 1.31 2.86 2.25 3.49 6.45

kHI 0.6152 0.1775 1.1717 2.8567 2.0833 1.8862

t-stat 0.35 1.74 0.95 2.52 1.67 1.81

sLO 0.0568 0.1224 0.3214 0.2986 0.3338 0.6798

t-stat 17.63 17.27 16.19 16.57 16.92 16.02

sHI 0.1103 0.2214 0.3275 0.3305 0.3681 0.8336

t-stat 8.41 7.83 7.84 7.93 8.15 8.24

Note: This table presents parameters for the regime-switching model applied to the mean process for each
rating class, i.e. �lk, k¼ 1, . . . , 6.

* The estimation of Equation 19.11 relies on the assumption that the mean around which the individual hazard rate
oscillates depends on the initial rating class of the issuer, even though this may change over time. Extending the
model to map default probabilities to rating classes is a nontrivial problem, and would complicate the estimation
exercise here beyond the scope of this paper. Indeed, this problem in isolation from other estimation issues is
complicated enough to warrant separate treatment and has been addressed in a paper by Das et al. (2002).
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19.4.2.4 Estimation of the Marginal Distributions
We fitted the residuals from the previous section to the normal, Student-t, and skewed
double-exponential distributions. We used prepackaged functions in Matlab for max-
imum-likelihood estimation for the normal and Student-t distributions. The likelihood
function for the skewed double-exponential distribution is as follows. Assume that the
residual «kj has a normal distribution with mean gV and variance V. Further, the variance
V is assumed to have an exponential distribution with the following density function:

pdf(V) ¼ 1
V0

exp � V
V0

� 
(19:12)

Then, it can be shown that «kj has a skewed double-exponential distribution with the
following density function:

pdf(«) ¼ l

V0
exp � j«kjj

l
� g«kj

� 
(19:13)

where

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V0

2þ g2V0

s

See the Appendix for a derivation of these results. The log-likelihood function L is given as
follows:

L ¼ �n
2

�
log (V0)þ log (2þ g2V0)

��Xn
i¼1
j«ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ g2V0

V0

s
þ g

Xn
i¼1

«i

19.4.2.5 Goodness of Fit of Marginal Distributions
Since we choose one of the three distributions for the residuals of each issuer, we used four
criteria to decide the best one. These are as follows:

. Kolmogorov distance: This is defined as the supremum over the absolute differences
between two cumulative density functions, the empirical one, Femp(x) and the
estimated, fitted one, Fest(x).

. Anderson and Darling statistic: This is given by

AD ¼ max
x2R

jFemp(x)� Fest(x)jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fest(x)[1� Fest(x)]
p

The AD statistic puts more weight on the tails compared to the Kolmogorov statistic.
. L1 distance: equal to the average of the absolute differences between the empirical and

statistical distributions.

. L2 distance: which is the root-mean-squared difference between the two distri-
butions.
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We used these criteria to choose between the normal, Student-t, and skewed double-
exponential distributions for each issuer. In each of our 56 simulated systems, the
issuer-level distributions are chosen from the following seven cases:

1. All marginal distributions were chosen to be normal.

2. All marginal distributions are Student-t.

3. All marginals are from the skewed double-exponential family.

4. For each issuer, the best distribution is chosen based on the Kolmogorov criterion.

5. For each issuer, the best distribution is chosen based on the Anderson and Darling
statistic.

6. Each marginal is chosen based on the best L1 distance.

7. Each marginal is chosen based on the best L2 distance.

For each criterion, we counted the number of times each distribution provided the best fit.
The results are reported in Table 19.8, which provides interesting features. On the basis of
the Kolmogorov, Anderson–Darling, and L2 statistics, the skewed double-exponential
distribution is the most likely to fit the marginals best. However, the L1 statistic finds
that the normal distribution fits most issuers better. The better fit of the skewed double-
exponential as marginal distribution comes from its ability to match the excess kurtosis of
the distribution.

19.4.3 Calibration

Our calibration procedure is as follows. First, using MLE, we determine the parameters of
the various stochastic processes (rating-level averages and individual issuer PDs). Second,
we choose one of the 56 possible correlation systems as described above, and simulate the
entire system 100 times, to obtain an average simulated exceedance graph. Third,
we compare the simulated exceedance graph with the empirical one (pointwise) and

TABLE 19.8 Fitting Marginal Distributions to Individual Intensities

Statistic Double-Exponential Normal Student-t

Kolmogorov 522 55 42

Anderson–Darling 409 7 203

L2 529 53 37

L1 118 500 1

Note: In this table we report the estimation results of the fit of individual
intensity residuals to various distributions. The three distributions
chosen were: double-exponential, normal, and the Student-t. We
used four distance metrics to compare the empirical residuals to
standardized distributions: the Kolmogorov distance, the Anderson–
Darling statistic, and distances in the L1 and L2 norms. The table below
presents the number of individual issuers that best fit each of the
distributions under the different metrics. A total of 619 issuers were
classified in this way.
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determine the mean squared difference between the two graphs. This distance metric is
used to determine a ranking of the 56 possible systems we work with.

19.5 SIMULATING CORRELATED DEFAULTS AND MODEL
COMPARISONS

19.5.1 Overview

In this section, we discuss the simulation procedure. This step uses the estimated param-
eters from the previous section to generate correlated samples of hazard rates. The goal is
for the simulation approach to deliver a model with the three properties described in the
previous section. Therefore, the asymmetric correlation plot from simulated data should be
similar to that in Figure 19.2.

We implemented the simulation model with an additional constraint, whereby we
ensure that the intensities (lk(t)) are monotonically increasing in rating level k. This
prevents the average PD for a rating class from being lower than the average PD for the
next better rating category, i.e., lk(t) should be such that for all time periods t, it must be
such that if i< j, then li(t)< lj(t). This check was instituted during the simulation as
follows. During the Monte Carlo step, if li(t)> lj(t) when i< j, then we set lj(t)¼ li(t). As
an example, see Figure 19.3 where we plot the times series of lk, k¼ 1, . . . , 6 for a random
simulation of the sample path of hazard rates.
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FIGURE 19.3 Simulated series of average PDs by rating class: this figure depicts the average
level of default probabilities in the data set by rating class. The hazard rates are (from top to
bottom of the graph) from rating class six to rating class one. The simulation ensures that
li(t)<lj(t) if i< j.
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19.5.2 Illustrative Monte Carlo Experiment

As a simple illustration that our approach arrives at a correlation plot fairly similar to that
seen in the data, we ran a naiveMonte Carlo experiment. In this exercise, we assumed that all
error terms were normal, except under some conditions, when we assumed the Student-t
distribution.We ran theMonte Carlo model 25 times and computed the average exceedance
correlations for all rating classes. To obtain asymmetry in the correlations, we need to have
higher correlations when hazard rates are high. To achieve this, the simulation uses the
Student-t distribution with six degrees of freedom when the average level of hazard rates in
the previous period in the simulation is above the empirical average of hazard rates. These
features provided the results in Figure 19.4. The similarity between the empirical exceedance
graph (Figure 19.2) and the simulated one (Figure 19.4) shows that the two-stage Monte
Carlo model is able to achieve the three correlation properties of interest.

19.5.3 Determining Goodness of Fit

The dependence structure amongst the intensities is depicted in the asymmetric correlation
plots. We develop a measure to assess different specifications of the joint distribution. This
metric is the average squared point-wise difference between the empirical exceedance
correlation plot and the simulated one. The points in each plot that are used are for the
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FIGURE 19.4 Asymmetric correlation of simulated PDs: this figure plots the exceedance
correlations for the different rating classes in our study, based on simulated data. The
figure breaks this out into the individual ratings. The plots are consistent with the presence
of asymmetric correlation. The degree of asymmetry is higher for the better rating
categories.
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combination of rating class (from 1 to 6) and exceedance levels (from �1.5 to þ1.5).
Hence, there are a total of 48 points in each plot which are used for computing the metric.
Define the points in the empirical plot as hk,x, where k indexes the rating class and x
indexes the exceedance levels. The corresponding points in the simulated plot are denoted
by h0k, x. The metric q (an RMSE statistic) is as follows:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
48

X6
k¼1

X1:5
x¼�1:5

�
hk,x � h0k, x

�2vuut (19:14)

A smaller value of q implies a better fit of the joint dependence relationship. In the
following section, we use the simulation approach and this metric to compare various
models of correlated default.

19.5.4 Calibration Results and Metric

It is important to note that the joint dependence across all issuer intensities depends on
three aspects: (1) the marginal distributions used for individual issuers, (2) the stochastic
process used for each rating class, and (3) the copula used to implement the correlations
between rating classes. Optimizing the choice of individual issuer marginal distributions
will not necessarily achieve the best dependence relationship, since the copula chosen must
also be compatible. In this chapter, we focus on four copulas (normal, Student-t, Gumbel,
and Clayton), and allow the rating class intensity stochastic process to be either a jump-
diffusion model or a regime-shifting model.

Tables 19.9 and 19.10 provide a comparison of the jump and the regime-switching
models across copulas. Twenty-eight systems use a jump-diffusion model for the average
PDs in each rating, and 28 use a regime-switching model. We see that the values of the q
metric are consistently smaller for the regime-switching model using all test statistics. This
implies that the latter model provides a better representation of the stochastic properties
amongst the issuer hazard rates. In particular, it fits the asymmetric correlations better.*
We conclude that, for rating-level PDs, a regime-switching model performs better than a
jump-diffusion model, irrespective of the choice of issuer process and copula.y

Tables 19.9 and 19.10 allow us to compare the fit provided by the four copulas. We find
that when the jump-diffusion model is used, the Student-t copula performs best, no matter
which marginal distribution is used. However, when the regime-switching model is used,
sometimes the normal copula works best and at other times, the Clayton copula is better.
The normal copula works best when the marginals are all normal or Student-t, and when
the marginals are chosen using the Anderson–Darling criterion. The Clayton copula is best
when the marginals are all skewed double-exponential or when the marginal criteria are
Kolmogorov or L2. The Student-t copula is best when the L1 criterion is chosen.

* This result is consistent with that of Ang and Chen (2002), who undertake a similar exercise with equity returns.
y The fact that the Student-tmarginal distribution works best for the jump models may indicate that the jump-model
does not capture the dependences as well as the regime-switching model does, since the Student-t distribution is
good at injecting excess kurtosis into the conditional distribution of the marginals.
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These results bear some explanation. A comparison of the correlations from the skewed
double-exponential distribution with those from the raw data reveals that the model over-
estimates theup-tail dependences a lot. TheClaytoncopuladecreases theup-tail dependences
and increases the low-tail dependences. As a result, it corrects some of the overestimation
from the double-exponential marginals, resulting in better fitting. Hence, the Clayton copula
seems to combine well with skewed double-exponential marginals. On the other hand, the

TABLE 19.9 Metric for Best Correlated Default Model (Normal and Gumbel Copulas)

Gaussian Copula Gumbel Copula

Model Jump-Diffusion Regime-Shifting Jump-Diffusion Regime-Shifting

Normal 0.0508 0.0276 0.0486 0.0462

Student-t 0.0375 0.0327 0.0416 0.0515

Double-exponential 0.0752 0.0355 0.0700 0.0381

Kolmogorov 0.0802 0.0387 0.0743 0.0364

Anderson–Darling 0.0447 0.0315 0.0452 0.0450

L2 0.0764 0.0367 0.0710 0.0376

L1 0.0667 0.0318 0.0625 0.0401

Note: This table presents the summary statistic for the asymmetric correlation metric to determine the best
simulation model. For each model we generate the asymmetric correlation plot and then compute the
distance metric. The asymmetric correlations (the metric q) are computed for the following seven cases:
normal distribution, Student-t distribution, skewed double-exponential distribution, the combination of
the best distributions based on Kolmogorov criterion, the combination of the best distributions based
on the Anderson and Darling statistic, the combination based on the L1 and L2 norms. We report the
results for both models, the jump-diffusion setup and the regime-switching one, and two copulas, the
Gaussian and Gumbel Copulas.

TABLE 19.10 Metric for Best Correlated Default Model (Clayton and Student-t Copulas)

Clayton Copula Student-t Copula

Model Jump-Diffusion Regime-Shifting Jump-Diffusion Regime-Shifting

Normal 0.0484 0.0395 0.0446 0.0506

Student-t 0.0415 0.0473 0.0370 0.0564

Double-exponential 0.0694 0.0304 0.0672 0.0433

Kolmogorov 0.0738 0.0293 0.0714 0.0404

Anderson–Darling 0.0445 0.0397 0.0418 0.0514

L2 0.0703 0.0296 0.0681 0.0423

L1 0.0622 0.0324 0.0596 0.0452

Note: This table presents the summary statistic for the asymmetric correlation metric to determine the best
simulation model. For each model we generate the asymmetric correlation plot and then compute the
distance metric. The asymmetric correlations (the metric q) are computed for the following seven cases:
normal distribution, Student-t distribution, skewed double-exponential distribution, the combination of
the best distributions based on Kolmogorov criterion, the combination of the best distributions based
on the Anderson and Darling statistic, the combination based on the L1 and L2 norms. We report the
results for both models, the jump-diffusion setup and the regime-switching one, and two copulas, the
Clayton and Student-t copulas.

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C019 Final Proof page 368 21.4.2008 12:40pm Compositor Name: VBalamugundan

368 & Credit Risk: Models, Derivatives, and Management



q-metric favors the normal copula if the criterion chooses normal marginals (as with the
normal, Student-t and L1 criteria), since less balancing of tail dependences is required.

19.5.5 Empirical Implications of Different Copulas

The degree of tail dependence varies with the choice of copula. It is ultimately an empirical
question as to whether the parameterized joint distribution does result in differing tail risk
in credit portfolios. To explore this question, we simulated defaults using a portfolio
comprising all the issuers in this study, under the regime-switching model. Remember
that we fitted four copulas, and seven different choices of marginal distributions, resulting
in 28 different models, each with its attendant parameter set. To compare copulas, we fix
the marginal distribution, and then vary the copula.

As an illustration, we present Figure 19.5. This plots the tail loss distributions from
the four copulas when all marginals are assumed to be normal. The line most to the right
(the Gumbel copula) has the most tail dependence. There is roughly a 90% chance that the
number of defaults will be less than 75, i.e. a 10% probability that the number of defaults
will exceed 75. For the same level of 75 defaults, the leftmost line (from the normal copula),
there is only a 7% probability of the number of losses being greater than 75. By examining
all four panels of the figure, we see that the ranking of copulas by tail dependence is
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FIGURE 19.5 Comparing copula tail loss distributions. This figure presents plots of the tail
loss distributions for four copulas, when the marginal distribution is normal. The x-axis
shows the number of losses out ofmore than 600 issuers, and the y-axis depicts the percentiles
of the loss distribution. The simulation runs over a horizon of 5 years and accounts for regime
shifts as well. The copulas used are: normal, Gumbel, Clayton, Student-t.
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unaffected by the choice of marginal distribution, i.e., the normal copula is the leftmost
plot, followed by the Student-t, Clayton, and Gumbel copulas.

In Figure 19.6 we plot the tail loss distributions for two models, the best fitting one and
the worst. The best fit model combines the Clayton copula, and marginal distributions
based on the Kolmogorov criterion. The worst fit copula combines the Student-t copula
with Student-t marginals. A comparison of the two models shows that the worst fitted
copula in fact grossly overstates the extent of tail loss. Therefore, while there is tail
dependence in the data, careful choice of copula and marginals is needed to avoid either
under- or overestimation of tail dependence.

19.6 DISCUSSION
This chapter develops a criterion-based methodology to assess alternative specifications of
the joint distribution of default risk across hundreds of issuers in the U.S. corporate
market. The study is based on a data set of default probabilities supplied by Moody’s
Risk Management Services. We undertake an empirical examination of the joint stochastic
process of default risk over the period 1987–2000. Using copula functions, we separate the
estimation of the marginal distributions from the estimation of the joint distribution.
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FIGURE 19.6 Comparing copula tail loss distributions in this figure we plot the tail loss
distributions for two models, the best fitting one and the worst. The best fit model
combines the Clayton copula, and marginal distributions based on the Kolmogorov
criterion. The worst fit copula combines the Student-t copula with Student-t marginals.
The simulation runs over a horizon of 5 years and accounts for regime shifts as well.
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Using a two-step Monte Carlo model, we determine the appropriate choice of multivariate
distribution based on a new metric for the assessment of joint distributions.

We explored 56 different specifications for the joint distribution of default intensities.
Our methodology uses two alternative specifications (jumps and regimes) for the means of
default rates in rating classes. We consider three marginal distributions for individual
issuer hazard rates, combined using four different copulas. An important extension to this
model structure is the inclusion of rating changes. In our analysis, we centered firms as
lying within the same rating for the period of the simulation, based on their most prevalent
rating. The two-step simulation model would need to be enhanced to a three-step one, with
an additional step for changes in ratings.*

Other than the myriad specifications, there are many useful features of the analysis for
modelers of portfolio credit risk. First, we developed a simple metric to measure best fit of
the joint default process. This metric accounts for different aspects of default correlation,
namely level, asymmetry, and tail dependence or extreme behavior. Second, the simulation
model, based on estimating the joint system of over 600 issuers, is able to replicate the
empirical joint distribution of default. Third, a comparison of the jump model and
the regime-switching model shows that the latter provides a better representation of the
properties of correlated default. Fourth, the skewed double-exponential distribution is a
suitable choice for the marginal distribution of each issuer hazard rate process, and
combines well with the Clayton copula in the joint dependence relationship amongst
issuers. Our simulation approach is fast and robust, allowing for rapid generation of
scenarios to assess risk in credit portfolios. Finally, the results show that it is important
to correctly capture the interdependence of marginal distributions and copula to achieve
the best joint distribution depicting correlated default. Thus, this chapter delivers the
empirical counterpart to the body of theoretical chapters advocating the usage of copulas
in modeling correlated default.
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APPENDIX: SKEWED DOUBLE-EXPONENTIAL DISTRIBUTION
Assume that a random variable X has a normal distribution with mean mþ gV, and
variance V, where V has an exponential distribution with the following density function:

pdf(V) ¼ 1
V0

exp � V
V0

� 
(19:15)

Then, X has a skewed double-exponential distribution.

A.1 Density Function

The density function is derived as follows:

pdf(x) ¼
ð1
0

1ffiffiffiffiffiffiffiffiffiffi
2pV
p exp � (x � m� gV)2

2V

� 	
� 1
V0

exp � V
V0

� 
dV

¼ 1ffiffiffiffiffiffi
2p
p

V0
exp {g(x � m)}

ð1
0

1ffiffiffiffi
V
p � exp � (x � m)2

2V
� g2V0 þ 2

2V0
V

� 	
dV

¼ 1ffiffiffiffiffiffi
2p
p

V0
exp {g(x � m)}

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pV0

2þ g2V0

s
� exp �jx � mj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ g2V0

V0

s( )

¼ 1
V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0

2þ g2V0

s
� exp �jx � mj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ g2V0

V0

s
þ g(x � m)

( )

¼ l

V0
exp � jx � mj

l
þ g(x � m)

� 	

A.2 Maximizing the Log-Likelihood Function

This subsection deals with the technical details of the maximization of log-likelihoods for
the skewed double-exponential model. The likelihood function is

L ¼� n
2
{log (V0)þ log (2þ g2V0)}�

Xn
i¼1
jxi � mj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ g2V0=V0

p
þ g

Xn
i¼1

(xi � m)

where m is the number of observations where xi is greater than m, l is the number of
observations otherwise, and n¼mþ l.
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The first-order condition can be derived as follows:

dL
dm
¼
Xn
i¼1

djxi � mj
dm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ g2V0

V0

s !
þ g

Xn
i¼1

(�1)

¼ �ng �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ g2V0

V0

s Xn
i¼1

djxi � mj
dm

¼ 0

dL
dg
¼ � n

2
2gV0

2þ g2V0

� 
�
Xn
i¼1
jxi � mj gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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 !

þ
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2þ g2V0
�
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i¼1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V0

2þ g2V0

s
þ
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(xi � m) ¼ 0

dL
dV0
¼ � n

2
1
V0
þ g2

2þ g2V0

� 
�
Xn
i¼1
jxi � mj (g2V0 � 2� g2V0)=V2

0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2þ g2V0)=V0

p
 !
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þ
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V0
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V0(2þ g2V0)

p ¼ 0

Solving the above first-order conditions gives

m ¼ m2P
x2A1 xi þ l2

P
x2A2 xi

nml

V0 ¼
2ml
�
1
n

Pn
i¼1 xi � m

�2
(l �m)2

g ¼ (l �m)2

2ml
�
1
n

Pn
i¼1 xi � m

�
where
A1¼ {x : xi�m � 0}
A2¼ {x : xi�m< 0}

Given a dataset, we may not be able to find a value of m to satisfy the above equations.
However, by choosing m to be as close as given by the first-order conditions, we can fit the
data well with the skewed double-exponential distribution.
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20.1 INTRODUCTION
Dependence, including correlation, is an important issue in credit risk portfolio modeling
and pricing. Credit portfolio derivatives such as collateralized debt obligations and index
tranches cannot be priced without a precise characterization of dependence, which allows
for a derivation of portfolio loss distributions. Among the dependence approaches to credit
risk that are documented in the literature,* copula and factor approaches are two dominant
concepts. First, the statistical copula approach as suggested for credit risk dependence
modeling for example by Li (1999) allows for general representations of dependence,
offering a highly flexible method, while the choice of a suitable copula function often
seems crucial, see also e.g., Bluhm and Overbeck (2007). An empirical study on copula
functions in modeling default dependence is by Das and Geng (2004). Second, the statistical
factor approach as applied in credit risk modeling, for example, by Vasicek (1987) is a
simplified dependence approach that allows for parsimonious and robust implementations,
while it may suffer from oversimplification. Although several authors argue that factor
approaches may not be able to match observed dependence, Yu (2003) shows that factor
approaches that take common risk factors of firm-specific credit risks into account may not
be subject to this shortcoming.

In this chapter we address systematic credit risk, which is probably the most striking
manifestation of credit risk dependence. Systematic credit risk was previously studied in a
different setting by Pedrosa and Roll (1998). We discuss a straightforward common factor
model of credit risk dependence. The model follows from the class of intensity models of
credit risk, which model dependence in the driving intensity process. This is motivated in
part by factor approaches as in Duffie and Singleton (1998), Yu (2003), and van der Voort
(2004), for example.

A number of previous studies dealt with the phenomenon of dependent default events
in credit portfolios. To this aim, structural credit risk models typically model dependence
in latent underlying asset values (often proxied by equity values) of the obligors. While
Lucas (1995) uses historical data whose availability is limited, Zhou (2001) analyses
dependence in a bivariate structural Merton model. De Servigny and Renault (2002)
study both equity-based and historical-default correlations. They conclude that there
does not seem to be an obvious link between the two. Das, Freed, Geng, and Kapadia
(2006) point out that in the Merton model, correlation and time variation in single firm
equity values and equity volatilities will cause variation in default probabilities. Accord-
ingly, they find that joint default probabilities are related to varying debt ratios, but are
especially driven by varying correlated volatilities. Das, Duffie, Kapadia, and Saita
(2007) provide evidence that the majority of joint default risk is due to covariation in
firm-specific default probabilities. As their results suggest, observable macroeconomic

* For overviews on default dependence modeling see, for example, Duffie and Singleton (2003), Chapter 10, and
Schlögl (2002). Using market variables, we may distinguish (1) rating and default correlations, (2) spread
correlations, (3) asset or equity correlations, and (4) implied correlations. Since default events are rare events by
definition, historical data are sparse. Therefore, latent credit risk dependence modeling approaches dominate.
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variables (including e.g., a business cycle variable) and particularly latent common vari-
ables play a major role in explaining correlated defaults.

We empirically study credit risk dependence under the risk-neutral measure, i.e., we
consider derivatives prices and study their dependence implications. As pointed out in the
preface to this volume, the market for credit default swap (CDS) contracts has grown
enormously during the last couple of years. Hence, data for a study of credit risk dependence
have recently become available through the derivatives markets. A study of credit risk
dependence under the risk-neutral measure appears relevant as it reveals how credit risk is
priced and traded in the market and it also forms the building block for the risk-neutral
distribution of credit portfolios, which serve as an underlying for other derivatives.

We study the dependence between index and component spread changes in our
common factor model using liquid quotes from the U.S. CDS market during the years
2004–2006. In the first step, we argue that CDS spread changes show distinct time-series
dynamics, which should be taken into account in advance of studying dependence. As
such, we then consider factor dependence of unpredictable spread changes. We find that
the CDX factor is significant for the chosen sample of large-cap U.S. obligors but has low
explanatory power. Additionally, we shed light on a heavily time-varying nature of factor
sensitivities. Various intensity models of joint defaults (see Section 20.2.2.4) predict
positive jumps—i.e., large positive changes—in credit spreads conditional on the default
of one or several obligors. In our setting, this translates into upper tail extreme factor
dependence, a feature which is observable for most of our obligors.

The remainder of this chapter is organized as follows. Section 20.2 presents our
methodology, which includes the derivation of the factor model, its implications, and the
methods used for inference. Section 20.3 outlines our empirical findings. The contribution
ends with a brief conclusion in Section 20.4.

20.2 METHODOLOGY
Starting with the intensity-based (or reduced-form) approach to credit risk modeling, this
section outlines a straightforward empirical model specification of common factor sys-
tematic credit risk under a risk-neutral measure. For a comprehensive summary of the
model background and further literature see, for example, Duffie and Singleton (2003).

20.2.1 Factor Intensity Approach

To model default probabilities under risk-neutrality, where Q denotes the equivalent
martingale measure, intensity models introduce a latent intensity process (li,t)0�t�T of the
ith obligor. Under standard assumptions, it follows that the conditional probability
of default between time t and T is given by

pi,t,T
Q ¼ 1� Et exp �

ðT
t

li,s ds

0
@

1
A (20:1)

A typical simplifying assumption is that the risk-neutral expected loss given default rate, loss
given default in short, is constant and denoted by li. Then, the credit spread is simply given as
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Si,t ¼ lili,t (20:2)

To introduce credit risk dependence of the obligors, we apply a common factor specifica-
tion. A one-factor intensity model of credit risk dependence, in parts related, e.g., to Duffie
and Singleton (1998), Yu (2003), and van der Voort (2004), is given by

li,t ¼ lF,t þ l«i,t (20:3)

where lF,t and l
«
i,t are two independent intensity processes. By assigning any time-variation

in the spread (Equation 20.2) to the time-varying intensity li,t only,* a simple model of the
credit spread dynamics follows. Fixing Si,0 and (lF,0, li,0), we can define the spread process
(Si,t)0�t�T via the equation

dSi,t ¼ lidlF,t þ li dl
«
i,t (20:4)

Fixing also SF,0, we obtain for the factor spread, dSF,t¼ lF dlF,t, and therefore

dSi,t ¼ li=lF dSF,t þ li dl
«
i,t (20:5)

We know from a broad body of empirical literature that observable spread changes are
driven by various additional factors that are not related to default risk, (Collin-Dufresne
et al. 2001). However, Equation 20.5 forms a fundamental model, which (1) shows how
spread changes are driven by changes in intensity, (2) models default dependence via a
common factor intensity lF,t, and, finally, (3) can easily be extended by taking other credit
spread determinants into account.

20.2.2 Factor Model Analysis

In a discrete-time empirical setting, Equation 20.5 translates into a regression model of
the form

DSi,t ¼ ai þ biDSF,t þ «i,t , t ¼ 1, . . . ,T (20:6)

where the usual assumptions apply and the innovations are independent with identical
distribution, «i,t � (0; s2

i ).
In this setting, we see from Equations 20.5 and 20.6 that systematic credit risk as

measured via bi relates to individual and factor loss given default li and lF, with bi¼ li=lF.
Hence, systematic credit risk is related to the ith obligor’s relative expected loss given
default. There are various econometric approaches whose application can be motivated by
the simple model in Equation 20.6. Of course, a straightforward application is an ordinary
least squares estimation of the model. In the following, we discuss how we use the model as
a starting point for our analysis of cross-sectional credit risk dependence.

Following Equation 20.6, our focus is on the dependence between changes in the factor
and the single obligor spreads. However, univariate analysis is a necessary and important

* Here, this assumption can be made without loss of generality since the intensity process is latent.
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step in going beyond a standard regression application and also necessary for a cross-
sectional dependence study. Our following analysis considers four areas:

. Univariate time-series dependence in spread changes

. Univariate extreme behavior of spread changes

. Time-varying factor sensitivity of spread changes

. Extreme factor dependence of spread changes

20.2.2.1 Time-Series Dependence
As univariate spread changes, DSt, are driven by various factors including liquidity effects,*
it appears promising to account for liquidity effects at least within a linear time-series
model. Additionally, there is evidence that nonlinear effects of volatility clustering are
observable in spread changes as well (Wagner et al. 2005). To allow for lagged responses to
previous innovations, we may assume a model of the ARMA(1,1)-form

DSt ¼ mþ wDSt�1 þ fUt�1 þ Ut , t ¼ 1, . . . ,T (20:7)

Furthermore, the unpredictable spread changes, Ut, may have a time-varying conditional
variance as given by a GARCH(1,1)-specification

Ut ¼ stZt

s2
t ¼ v0 þ v1U

2
t�1 þ v2s

2
t�1, v0 > 0, v1, v2 � 0 (20:8)

which is based on given start random variables (s2
0,Z0) (Bollerslev et al. 1992). The Zt’s

are standardized iid random variables with common distribution function FZ, where
Zt~ (0; 1). They represent standardized unpredictable spread changes.

20.2.2.2 Extreme Behavior
To characterize the extreme behavior of the univariate spread changes DSt, we may assume
that the distribution function FZ of the innovations Zt in Equation 20.8 is fat-tailed.
Extreme value theory (EVT) (e.g., Embrechts et al. 1997 or Coles 2001) shows that this
is equivalent to assuming that FZ has Pareto-like upper and lower tail

1�FZ(z) � cUz
�1=jU , cU > 0, jU > 0,

FZ(�z) � cLz
�1=jL , cL > 0, jL > 0, as z !1 (20:9)

The parameters jU and jL denote the tail index of the upper tail and the lower tail,
respectively.

We specify Pareto tail approximations for excesses of a sufficiently high positive
threshold, for example, via the generalized Pareto distribution (GPD). Choosing two

* Note that liquidity effects typically relate to liquidity differentials between the treasury bond, the corporate bond,
and the credit derivatives market.

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C020 Final Proof page 381 7.4.2008 7:44pm Compositor Name: VBalamugundan

Systematic Credit Risk: CDX Index Correlation and Extreme Dependence & 381



thresholds in our case, namely yU> 0 and yL> 0, we specify GPDs for a random number of
positive excesses of the upper threshold, YU¼Z� yU> 0, and the lower threshold,
YL¼�Z� yL> 0, respectively:

1� FZ(z � yU) ¼ 1þ jU
z � yU
bU

� ��1=jU
, bU > 0 (20:10)

FZ(�z � yL) ¼ 1� jL
z � yL
bL

� ��1=jL
, bL > 0 (20:11)

A characterization of the extreme behavior of spread changes allows for the modeling of
so-called gapping risk (or jump risk) in credit spreads. This denotes the risk of large
sudden spread changes, for example, a sudden widening in spreads of more than 20 basis
points for an index or more than 100 basis points for a single obligor (Duffie and Singleton
2003, p. 138, Bluhm and Overbeck 2007, p. 301). Previous studies that apply EVT in credit
risk modeling include Phoa (1999), Campbell and Huisman (2002), and Lucas, Klaassen,
Spreij, and Straetmans (2001).

20.2.2.3 Time-Varying Factor Sensitivity
Our model approach in Equation 20.6 assumes for simplicity that systematic credit risk,
bi¼ li=lF, is constant. One extension to the model, which may prove suitable in modeling
credit risk, is to allow for a time-varying factor sensitivity, bi,t of the unpredictable spread
changes Ut,i.

Allowing again for time-varying marginal spread change volatilities, si,t and sF,t, as in
Equation 20.8, multivariate autoregressive conditional heteroskedasticity offers a convenient
model approach. We choose the diagonal BEKK-specification by Engle and Kroner (1995).
In a bivariate setting, we can model individual and factor spread changes simultaneously,
where a generalization of the standard relation for the correlation coefficient holds, yielding

bi,t ¼ ri,F,t
si,t

sF,t
(20:12)

Hence, the time-varying conditional factor sensitivity bi,t is defined by the time-varying
conditional correlation as well as the conditional spread change volatilities. Supporting
the above specification, the empirical credit risk literature finds evidence of time-varying
credit risk correlations. See, for example, the studies by Zhou (2001), de Servigny and
Renault (2002), and Das, Freed, Geng, and Kapadia (2006).

20.2.2.4 Extreme Factor Dependence
To characterize the joint extreme behavior of the spread changes DSt,i and DSt,F, we may
assume that the extreme behavior of the joint distribution function F of the innovations Zt,i
and Zt,F can be characterized via the Pickands EVT-copula approach (Coles 2001).*

* For applications of the Pickands EVT-copula approach in finance see, e.g., Longin and Solnik (2001) and Marsh and
Wagner (2000).
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The Pickands representation theorem shows that a potential limiting distribution H,
satisfying the required max-stability condition, has to be of the form

H(zi,zF) ¼ exp � 1
zi
þ 1
zF

� �
A

zi
zi þ zF

� �� �
, zi > yU ,i, zF > yU , F (20:13)

Here, H has a unique EVT-copula, which is defined via the dependence function A(w):
[0,1] 7! [0,1], where w¼ zi=(ziþ zF). A(w) characterizes bivariate extreme dependence. If
A(w)¼ 1, the tails of the joint distribution are independent, whereas A(w)¼max(w, 1�w)
indicates perfect dependence. We choose three different parametric models for A(w). A
standard model is the symmetric logistic model, which relates to the Gumbel copula, where

Aa(w) ¼ [(1� w)1=a þ w1=a]a (20:14)

with 0<a � 1. Here, independence is reached when a¼ 1 and perfect dependence when
a ! 0. A generalization of the Gumbel copula allows for asymmetric dependence with

Aa,u1,u2(w) ¼ (1� u1)(1� w)þ (1� u2)wþ (1� w)1=au1=a1 þ w1=au
1=a
2

h ia
(20:15)

where 0<a � 1 and u1 � 0, u2 � 1. Under this asymmetric model, symmetry is obtained
under u1¼ u2¼ 1 and independence is reached when a¼ 1, u1¼ 0, or u2¼ 0. The asym-
metric negative logistic model defines the Galambos–Joe copula and is given by

Aa,u1,u2(w) ¼ 1� 1� w
u

� ��a
þ (w=u2)

�a
� ��1=a

(20:16)

witha> 0 and u1> 0, u2� 1. Independence is reached when eithera! 0 or u1! 0, u2! 0.
For each of the above candidate dependence functions, it is possible to derive the

limiting conditional exceedance probabilities

xU ¼ lim
yU!1

P(Zi > yUjZF > yU)

xL ¼ lim
yL!1

P(�Zi > yLj�ZF > yU)

These limiting conditional probabilities, xU and xL, indicate the presence of upper and
lower factor tail dependence, respectively. For example, we may interpret xU as the
probability of a significant jump in the spread of the ith obligor given that the factor
spread shows a significant jump, where both jump sizes exceed a very high threshold.

On the theory side, various models, including Davis and Lo (2001), Jarrow and Yu
(2001), Schönbucher and Schubert (2000), and Duffie, Eckner, Horel, and Saita (2006),
predict that the default of one obligor may cause other obligors’ spreads to jump. Empirical
evidence supporting this behavior is by Collin-Dufresne, Goldstein, and Helwege (2003)
and Zhang (2004), for example. The risk of individual spreads widening sharply in a state
where spreads generally increase results in the presence of spread jump dependence
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between our common factor and single spreads. For increasingly large jumps, this would
predict upper factor tail dependence in our setting.

20.3 EMPIRICAL ANALYSIS
20.3.1 Credit Default Swap Data Set

We study the common factor model of Section 20.2 based on a sample of CDS data. The
data come from the Open Bloomberg system. The CDS obligors that we pick are large-cap
U.S. corporations taken from the sixth revision of the Dow Jones CDX Investment Grade
(DJ CDX.NA.IG) index. The latter index universe consists of 125 U.S. corporations where
CDSs are actively quoted. Hence, our sample assures a high level of market liquidity.

Our sample contains 625 CDS quotes for the index and for each corporation during
the period January 9, 2004 to July 7, 2006. The quoted CDX index spread serves as a proxy
for our common factor (CDX). The 11 individual corporations in our sample are Altria
Group Inc. (MO), American International Group Inc. (AIG), Boeing Co. (BA), Caterpillar
Inc. (CAT), Dow Chemical Co. (DOW), Honeywell International Inc. (HON), Hewlett–
Packard Co. (HPQ), International Business Machines Corp. (IBM), Mariott International
Inc. (MAR), Motorola Inc. (MOT), and Walt Disney Co. (DIS). The CDS quotes are
averages between quoted bid and ask prices as actual transaction prices are not publicly
available. All quote series with the exception of BA and HPQ were obtained as complete
series. In the case of BA and HPQ, there were two missing quotes, respectively. These
missing data were linearly interpolated.

Spread changes are modeled as relative spread changes, DSt¼ ln CDSt� ln CDSt�1, due
to resulting unbounded support and other statistical properties (see also, e.g., a note in
Wagner et al. 2005). A preliminary analysis of the spread change series gives summary
statistics results as presented in Table 20.1. Mean values indicate that spreads were
decreasing on average in the sample period. Spread change standard deviations are in a

TABLE 20.1 Summary Statistics for Daily Logarithmic Credit Default
Swap Spread Changes DSt

Name Mean Std Skew Kurt Corrt;t–1 Corrt;t–2

CDX 0.000 0.023 0.402 10.124 �0.018 �0.011
AIG 0.000 0.034 3.360 42.899 0.217 0.014

BA �0.002 0.030 �0.304 5.817 �0.190 0.111

CAT 0.000 0.028 0.381 6.867 �0.194 �0.024
DIS �0.001 0.032 0.044 16.606 �0.111 0.160

DOW �0.001 0.030 0.455 8.995 0.022 0.057

HON �0.001 0.028 0.992 11.002 �0.150 �0.029
HPQ 0.000 0.032 0.158 12.965 �0.196 0.119

IBM �0.001 0.027 2.277 26.671 �0.162 0.072

MAR 0.000 0.021 0.684 10.031 �0.084 0.078

MO �0.002 0.027 1.206 21.594 0.021 0.076

MOT �0.001 0.025 �0.429 11.846 0.134 0.123
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range between 0.021 for MAR and 0.034 for AIG, with 0.023 for the CDX index, indicating
a remarkable annualized index volatility of 36.4%. Generally speaking, distributions tend to
be positively skewed with excess kurtosis and the spread change observations show
negative autocorrelation.

20.3.2 Results

The findings as summarized in Table 20.1 indicate that standard approaches to CDS
spread-risk and factor-dependence modeling are prone to failure and that a more detailed
time-series, tail, and tail dependence analysis should apply. The presentation of our
estimation results refers to the methods of Section 20.2.2.

In the first step, we estimate the time-series model of Section 20.2.2.1 for our 11 obligors
and the CDX via the standard maximum-likelihood (ML) method. It can be noted that
all GARCH parameter estimates (v1,v2) turn out to be significant at the 99% level for all
series. At least one of the ARMA parameter estimates (w,f) is significant at the 90% level
for all but CAT, MO, and CDX index spread changes.* This finding generally underlines
the distinct time-series properties of CDS spread changes. We study unpredictable spread
changes in the sequel.

In the second step, we postpone extreme behavior and consider the factor model
(Equation 20.6). We estimate least squares constant factor sensitivities and ML-BEKK
time-varying factor sensitivities as in Section 20.2.2.3. A summary of our results is given in
Table 20.2.

As we can see from Table 20.2, CDS spread changes are significantly related to CDX
index spread changes with all coefficient estimates positive and significant at the 95%
level. As our sample consists of high-quality investment grade obligors, the coefficients’

TABLE 20.2 Point Estimates of Factor Sensitivities bi Together with t-Values and
Coefficients of Determination, Statistics on the BEKK Time-Varying
Factor Sensitivities bi,t

Name bi t-Value R2 min(bi,t) max(bi,t) Std(bi,t)

AIG 0.121 3.05 0.015 �0.066 0.204 0.019

BA 0.113 2.84 0.013 �0.102 0.188 0.025

CAT 0.146 3.67 0.021 0.112 0.262 0.010

DIS 0.205 5.21 0.042 �0.134 0.707 0.068

DOW 0.159 4.03 0.025 �0.109 0.252 0.033

HON 0.088 2.19 0.008 0.061 0.084 0.003

HPQ 0.135 3.41 0.018 �0.098 0.138 0.013

IBM 0.082 2.04 0.007 �0.108 0.079 0.013

MAR 0.133 3.33 0.018 �0.152 0.251 0.037

MO 0.115 2.89 0.013 0.109 0.117 0.001

MOT 0.144 3.61 0.020 �0.048 0.323 0.024

* We therefore leave the results unreported and deliver them upon request.
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absolute values are relatively low and in a range between 0.082 (for IBM) and 0.205
(for DIS). Still, we have to attest that the results document weak overall explanatory
power of our simple one-factor model: R-squared statistics are in a range between 0.7%
(for IBM) and 4.2% (for DIS). This finding illustrates that the model lacks additional
covariates that explain default risk dependence (Das et al. 2007). To some extent, the
finding may also be explainable by a nonlinear impact of the factor on firm-specific credit
risk: while common factor changes do hardly affect single obligor spreads most of the time,
they become a driving force in some states of the economy. Time-varying factor sensitiv-
ities and the analysis of extreme dependence can shed more light on such a scenario.

Table 20.2 also reports results on the ML-BEKK time-varying factor sensitivities.
The results show that factor sensitivities remarkably fluctuate for most of our sample
corporations, including DIS, MAR, DOW, BA, and MOT. In contrast, MO and HON
show stable sensitivities. Figure 20.1 plots time-varying factor sensitivities for two of our
sample companies, namely AIG and DIS. As can be seen in the plot, factor sensitivities
heavily fluctuate around their mean values. As shown by the results in Table 20.2, DIS
has a higher average factor sensitivity than AIG. For short periods of time, DIS sensitivity
regularly jumps to values as high as 0.35–0.70 while AIG sensitivity always remains
below 0.21.

In the third step, we consider extreme spread change behavior. We use ARMA-GARCH
standardized residuals and then perform a simultaneous ML-estimation of the bivariate
GPD model as described in Sections 20.2.2.2 and 20.2.2.4. This method yields the marginal
parameter estimates (see Section 20.2.2.2) as well as the dependence (or copula) parameter
estimates (see Section 20.2.2.4) (cf. Coles 2001). On the basis of mean residual life plots
(or mean excess function plots, see, e.g., Embrechts et al. 1997), we fix the marginal
thresholds yU> 0 and yL> 0 for each series.
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FIGURE 20.1 BEKK conditional CDX factor correlation for American International Group
Inc. (AIG) and Walt Disney Co. (DIS).

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C020 Final Proof page 386 7.4.2008 7:44pm Compositor Name: VBalamugundan

386 & Credit Risk: Models, Derivatives, and Management



The GPDmarginal parameter estimates yield estimated upper tail indices in the range of
�0.081 (DOW) and 0.334 (MOT). Lower tail indices are between �0.233 (CAT) and 0.551
(DIS). These point estimate results do not obviously support fatter upper than lower tails.
For the overall market, as represented by the CDX index, we document moderate tail
behavior (i.e., neither fat tails nor thin tails) for the lower as well as upper tail. This is also
documented by the mean residual life plots in Figures 20.2 and 20.3. Hence, our results
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FIGURE 20.2 Mean excess function for upper tail CDX standardized unpredictable spread
changes.
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FIGURE 20.3 Mean excess function for lower tail CDX standardized unpredictable spread
changes.
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support the hypothesis that the GARCH model captures nonnormality in market spread
changes. However, for some individual sample corporations, including AIG, DIS, HON,
HPQ, IBM, and MOT, we find upper tail index point estimates above 0.20, i.e., extreme
risk for upward (adverse) spread residuals.

Our copula parameter estimation results for the upper tail are given in Table 20.3 and
those for the lower tail are given in Table 20.4. We additionally report the conditional
asymptotic probabilities xU and xL for the Gumbel copula model 20.14.

The results from Table 20.3 allow for the following conclusions. With the exception of
HON and IBM, where the estimates of the dependence parameter a approach the limiting

TABLE 20.3 Upper Tail ML-Estimation Results for the Bivariate GPD EVT-Copula Model

Gumbel Asymmetric Gumbel Galambos

Name y a x% a u1 u2 a u1 u2

CDX 1.00

AIG 0.95 0.906a 12.6 0.911a 0.999a 0.748 0.489a 0.999a 0.313

BA 1.05 0.979a 2.9 0.999a 0.745 0.787 15.00a 0.0316 0.260

CAT 1.25 0.939a 8.3 0.956a 0.734 1.000a 7.25 0.0679 0.355

DIS 1.25 0.910a 12.1 0.908a 1.000a 0.741a 15.00a 0.192a 0.0730

DOW 1.00 0.939a 8.3 0.961a 0.999a 0.762 13.50 0.489a 0.0335

HON 1.25 0.999a 0.1 0.999a 0.775 0.987 0.200a 0.454 0.487

HPQ 1.50 0.945a 7.5 0.550 0.149 0.340 1.174 0.144 0.332

IBM 1.50 1.000a 0.1 0.999a 0.763 0.984 0.201a 0.454 0.631

MAR 1.50 0.911a 12.0 0.457 0.264a 0.161 1.496 0.254a 0.168

MO 0.85 0.961a 5.3 0.986a 0.734 1.000a 1.572 0.0607 0.679a

MOT 1.25 0.929a 9.6 0.947a 0.734 1.000a 0.790 0.177 0.414

a Parameter different from zero at the 95% level.

TABLE 20.4 Lower Tail ML-Estimation Results for the Bivariate GPD EVT-Copula Model

Gumbel Asymmetric Gumbel Galambos

Name y a x% a u1 u2 a u1 u2

CDX 1.50

AIG 1.50 1.000a 0.0 1.000a 0.789 0.782 0.201a 0.561 0.553

BA 1.45 1.000a 0.0 0.999a 0.944 0.797 0.349 0.0169 1.000a

CAT 1.50 1.000a 0.0 0.999a 0.811 0.801 0.200a 0.595 0.606

DIS 1.95 0.964a 5.0 0.687a 0.053 0.999a 0.366 0.0985 1.000a

DOW 0.25 0.988a 1.7 0.962a 0.001 0.941 0.200a 0.0350 0.552

HON 1.50 0.969a 4.3 0.961a 0.712 1.000a 9.865 0.0572 0.119

HPQ 1.55 0.999a 0.1 0.999a 0.706 0.955 0.200a 0.610 0.705

IBM 1.00 0.999a 0.1 1.000a 0.826 0.883 0.200a 0.375 0.529

MAR 0.75 0.985a 2.1 0.989a 0.999a 0.728 0.285 0.999a 0.0937

MO 1.50 0.999a 0.1 1.000a 0.858 0.848 0.200a 0.569 0.565

MOT 1.50 0.999a 0.1 1.000a 0.887 0.801 0.201a 0.646 0.627

a Parameter different from zero at the 95% level.
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value of 1, upper tail extreme dependence in CDS spread changes is present for the
obligors. The corresponding conditional asymptotic probabilities xU can be interpreted
as default probabilities given a major credit spread shock to the market: we see that AIG,
DIS, and MAR carry the largest extreme systematic credit risk with xU estimated to be
larger than 10%. Evidence of an asymmetric dependence structure within the upper tail
is weak. Table 20.3 shows that the asymmetric Gumbel copula (Equation 20.15) yields
u-parameter estimates close or equal to one in most cases and mostly estimates of similar
magnitude. Only the cases of HPQ andMOmay indicate some asymmetry. The Galambos–
Joe copula (Equation 20.16) estimation results principally confirm our findings from the
Gumbel copula estimations while the results show remarkably less stability.

The results from Table 20.4 show that the dependence parameter a closely approaches
the value of 1 for all of the obligors. Hence, lower tail dependence is negligible and
estimated factor dependence in large spread decreases for DIS and HON is minor. We
may generally assume that spread changes are asymptotically independent (as, e.g., under
the bivariate normal model) and that the corresponding conditional asymptotic probabil-
ities xL are zero. Again, evidence of an asymmetric dependence structure within the
individual tails is not given.

Comparing the Gumbel copula estimation results in Tables 20.3 and 20.4 (upper tail and
lower tail, respectively) suggests that extreme dependence is asymmetric when considering
the upper- versus the lower-tail behavior. Extreme dependence appears as an issue with
upward shocks to CDX spreads.

20.4 CONCLUSION
Systematic credit risk is driven by credit risk dependence. In this chapter, we show that a
common factor model of credit risk dependence has several interesting features. While
common factor changesmay hardly affect single obligors’ spreadsmost of the time, theymay
become a driving force in some rare states of the economy. Time-varying factor sensitiv-
ities and the analysis of extreme factor dependence show that obligors will have varying
exposures to the market not only cross-sectionally (as, e.g., given by their rating class) but
also during time. We emphasize that a time-varying nature of systematic credit risk goes
along with asymmetric extreme dependence. These findings are important for portfolio
diversification and for future research into asset pricing models of credit risk premia.
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Part VI
Options, Portfolios, and

Pricing Loss Distribution Tranches
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CHAPTER 2 1

CDS Options through
Candidate Market Models
and the CDS-Calibrated CIRþþ
Stochastic Intensity Model

Damiano Brigo
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21.1 INTRODUCTION
We consider some alternative expressions for CDS (credit default swap) payoffs, stem-
ming from different conventions on the payment flows and on the protection leg for
these contracts. We consider standard running CDS (RCDS), postponed payments
running CDS (PPCDS), and briefly up-front CDS (UCDS). Each different RCDS defini-
tion implies a different definition of forward CDS rate, which we consider with some
detail.

We introduce defaultable floating-rate notes (DFRNs). We point out which kind of CDS
payoff produces a forward CDS rate that is equal to the fair spread in the considered
DFRN. An approximated equivalence between CDSs and DFRNs is established, which
allows to view CDS options as structurally similar to the optional component in defaultable
callable notes. Equivalence of CDS and DFRNs has been known for a while in the market
(Schönbucher 1998), where the simpler case with continuous flows of payments is con-
sidered. Here we consider a discrete set of flows, as in real market contracts, and find that
the equivalence holds only after postponing or anticipating some relevant default indica-
tors or discount factors.

We briefly investigate the possibility to express forward CDS rates in terms of some
basic rates and discuss a possible analogy with the LIBOR (London Interbank Offered
Rate) and swap default-free models. We then discuss the change of numeraire approach to
deriving a Black-like formula for CDS options, allowing us to quote CDS options through
their implied volatilities. This work is in the same field as Schönbucher (2000, 2004) and
especially Jamshidian (2002). Interesting considerations are also in Hull and White (2003).
Here, using Jamshidian’s approach as a guide, and based on a result by Jeanblanc and
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Rutkowski (2000), we derive CDS option prices for CDS payoffs given in the market
and for the new approximated CDS payoffs. We do so by means of a rigorous change of
numeraire technique. We consider the standard market model for CDS options resulting
from this approach. In doing so, we point out some analogies with the default-free LIBOR
and swap market models. This approach allows also for writing a dynamics for CDS
forward rates leading to a CDS options volatility smile.

In the final part of the chapter, we introduce a formula for CDS option pricing under the
CDS-calibrated (Cox–Ingersoll–Ross) CIRþþ stochastic intensity model. We give patterns
of implied volatilities as functions of the CIRþþ model parameters.

The chapter is structured as follows: Section 21.2 introduces notation, different kind of
CDS discounted payoffs, and the main definition of CDS forward rate. The notion of CDS-
implied hazard function and its possible use as quoting mechanism are recalled. UCDSs
are hinted at.

Section 21.3 examines some possible variant definitions of CDS rates. Furthermore, we
examine the relationship between CDS rates on different periods and point out some
parallels with the default-free LIBOR and swap market rates.

Section 21.4 introduces DFRNs and explores their relationship with CDS payoffs,
finding equivalence under some payment schedules.

Section 21.5 describes the payoffs and structural analogies between CDS options and
callable DFRN.

Section 21.6 introduces the market model for CDS options and the related market
formula for CDS options and callable DFRN. Hints on modeling of volatility smile for CDS
options are given, even though the smile in such market has not appeared yet.

Finally, Section 21.7 introduces a formula for CDS option pricing under the CDS-
calibrated CIRþþ stochastic intensity model. The formula is based on Jamshidian’s
decomposition. We investigate patterns of implied volatilities as functions of the CIRþþ
model parameters.

An earlier version of this chapter is in Brigo (2004), while a reduced related version has
appeared in Brigo (2005).

21.2 CREDIT DEFAULT SWAPS: DIFFERENT FORMULATIONS
21.2.1 CDS Payoffs

We recall briefly some basic definitions for CDSs. Consider a CDS where we exchange
protection payment rates R at times Taþ1, . . . , Tb (the premium leg) in exchange for a
single protection payment LGD (loss given default, the protection leg) at the default time t
of a reference entity C, provided that Ta< t � Tb. This is called a running CDS discounted
payoff. Formally, we may write the RCDS discounted value at time t as

PRCDSa,b(t) :¼ D(t, t)[t � Tb(t)�1]R1{Ta<t<Tb} þ
Xb
i¼aþ1

D(t,Ti)aiR1{t�Ti}

� 1{Ta<t�Tb}D(t, t)LGD (21:1)
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where t 2 ½Tb(t)�1,Tb(t)) i.e., Tb(t) is the first date among the Ti’s that follows t, and where
ai is the year fraction between Ti�1 and Ti. The stochastic discount factor at time t for
maturity T is denoted by D(t,T )¼B(t)=B(T ), where B(t) ¼ exp

�Ð t
0 ru du

�
denotes the

bank-account numeraire, r being the instantaneous short interest rate.
We explicitly point out that we are assuming the offered protection amount LGD to be

deterministic and, in particular, not to depend on the CDS rate but only on the reference
entity and on the payment dates. Typically, LGD¼ 1�REC, where the recovery rate, REC,
is assumed to be deterministic and the notional is set to one.

Sometimes a slightly different payoff is considered for RCDS contracts. Instead of
considering the exact default time t, the protection payment LGD is postponed to the
first time Ti following default, i.e., to Tb(t). If the grid is 3 or 6 months spaced, this
postponement consists in a few months at worst. With this formulation, the CDS dis-
counted payoff can be written as

PPRCDSa,b(t) :¼
Xb
i¼aþ1

D(t,Ti)aiR1{t�Ti} �
Xb
i¼aþ1

1{Ti�1<t<Ti}D(t,Ti)LGD (21:2)

which we term ‘‘postponed payoffs running CDS’’ (PRCDS) discounted payoff. Com-
pare with the earlier discounted payout Equation 21.1 where the protection payment
occurs exactly at t. The advantage of the postponed protection payment is that no
accrued-interest term in [t � Tb(t)�1] is necessary and also that all payments occur at
the canonical grid of the Ti’s. The postponed payout is better for deriving market
models of CDS rates dynamics, as we shall see shortly. Yet, unless explicitly specified,
in the following, we consider the first payout Equation 21.1, since this is the formu-
lation most resembling market practice. When we write simply CDS we refer to the
RCDS case.

A slightly different postponed discounted payoff would be more appropriate. Indeed, if
we consider

PPR2CDSa,b(t) :¼
Xb
i¼aþ1

D(t,Ti)aiR1{t>Ti�1} �
Xb
i¼aþ1

1{Ti�1<t<Ti}D(t,Ti)LGD (21:3)

(notice the Ti�1 in the indicators of the first summation), we see that we are including one
more R-payment with respect to the earlier postponed case. This is appropriate, since by
pretending default is occurring at Tb(t) instead of t we are in fact introducing one more
whole interval we have to account for in the premium leg.

From a different point of view, and since the protection leg, even if postponed, is
discounted with the appropriate discount factor taking into account postponement, notice
that in cases where t is slightly larger than Ti then the first postponed payoff Equation 21.2
is a better approximation of the actual one. Instead, in cases where t is slightly smaller than
Ti, the postponed payoff Equation 21.3 represents a better approximation. We will see the
different implications of these two payoffs.
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At times there is interest in UCDS contracts. In this version, the present value of the
protection leg is paid up front by the party that is buying protection. In other terms,
instead of exchanging a possible protection payment for some coupons, one exchanges it
with an up-front payment.

The discounted payoff of the protection leg is simply

PUCDSa,b(t) :¼ 1{Ta<t�Tb}D(t, t) LGD ¼
Xb
i¼aþ1

1{Ti�1<t�Ti}D(t, t)LGD (21:4)

Alternatively, one can approximate this leg by a postponed payment version, where we
postpone the protection payment until the first Ti following default t:

PUPCDSa,b(t) :¼
Xb
i¼aþ1

1{Ti�1<t�Ti}D(t,Ti)LGD (21:5)

21.2.2 CDS Pricing and Cox Processes

We denote by CDS(t, [Taþ1, . . . ,Tb], Ta, Tb, R, LGD) the price at time t of the above
standard running CDS. At times some terms are omitted, such as for example the list
of payment dates [Taþ1, . . . ,Tb]. We add the prefixes PR1 or PR2 to denote, respectively,
the analogous prices for the postponed payoffs Equations 21.2 and 21.3. We add the prefix
‘‘U’’ (up front) to denote the present value at t of the protection leg Equation 21.4 of the
CDS and ‘‘UP’’ (up front postponed) in case we are considering the present value of
Equation 21.5.

The pricing formulas for these payoffs depend on the assumptions on interest-rate
dynamics and on the default time t. Here we place ourselves in a stochastic intensity
framework, where the intensity is an Ft-adapted continuous positive process, Ft denoting
the basic filtration without default, typically representing the information flow of interest
rates, intensities, and possibly other default-free market quantities. Default is modeled as
the first jump time of a Cox process with the given intensity process. In the Cox process
setting, we have t ¼ L�1(j), where L is the stochastic hazard function which we assume to
be F t-adapted, absolutely continuous, and strictly increasing, and j is exponentially
distributed with parameter 1 and independent of F . These assumptions imply the existence
of a positive-adapted process l, which we assume also to be right continuous and limited on
the left, such that L(t) ¼ Ð t0 ls ds for all t. We will not model the intensity directly in this
chapter, except in Section 21.7. Rather, we model some market quantities embedding the
impact of the relevant intensity model that is consistent with them. In general, we can
compute the CDS price according to risk-neutral valuation (Bielecki and Rutkowski 2001):

CDS(t,Ta,Tb,R,LGD) ¼ E{PRCDSa,b(t)jGt} (21:6)

where Gt ¼ F t _ s({t < u}, u � t) and E denotes the risk-neutral expectation in the
enlarged probability space supporting t. We will denote by Et the expectation conditional
on the sigma field F t .
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This expected value can also be written, under very general assumptions, as

CDS(t,Ta,Tb,R,LGD) ¼ 1{t>t}

Q(t > tjF t)
E{PRCDSa,b(t)jF t} (21:7)

(see again Bielecki and Rutkowski (2001), Formula 5.1, p. 143; or more in particular
Jeanblanc and Rutkowski (2000) for the most general result of this kind).

This second expression, and the analogous definitions with postponed payoffs, will be
fundamental for introducing the market model for CDS options in a rigorous way.

For the time being, let us deal with the definition of (running) CDS forward rate Ra,b(t).
This can be defined as R that makes the CDS value equal to zero at time t, so that

CDS(t,Ta,Tb,Ra,b(t),LGD) ¼ 0

The idea is then solving this equation in Ra,b(t). In doing this, one has to be careful. It is best
to use Equation 21.7 rather than Equation 21.6. Equate this expression to zero and derive R
correspondingly. Strictly speaking, the resulting R would be defined on {t> t} only, since
elsewhere the equation is satisfied automatically, thanks to the indicator in front of the
expression, regardless of R. Since the value of R does not matter when {t< t}, the equation
being satisfied automatically, we need not worry about {t< t} and may define, in general,

Ra,b(t) ¼ LGDE[D(t, t)1{Ta<t�Tb}jF t]Pb
i¼aþ1 aiQ(t > tjF t)�P(t,Ti)þ E{D(t, t)[t � Tb(t)�1]1{Ta<t<Tb}jF t}

(21:8)

where �P(t,T) :¼ E[D(t,T)1{t>T}jF t]=Q(t > tjF t) is the ‘‘no survival-indicator’’ part of
the defaultable T-maturity (no recovery) zero-coupon bond, i.e.,

E[D(t,T)1{t>T}jGt] ¼ 1{t>t}E[D(t,T)1{t>T}jF t]=Q(t > tjF t) ¼ 1{t>t}�P(t,T)

is the price at time t of a defaultable zero-coupon bond maturing at time T. Notice that
replacing {t>T } by {t� T }, as we implicitly do in Equation 21.8, does not change anything
since we are assuming continuous processes for the short rate and the stochastic intensity.
We will denote by P(t,T) the default-free zero-coupon bond at time t for maturity T.

This approach to define Ra,b amounts to equating to zero only the expected value in
Equation 21.7 and in a sense is a way of privileging F t expected values to Gt ones. The
technical tool allowing us to do this is the above-mentioned Jeanblanc and Rutkowski
(2000) result and this is the spirit of part of the work in Jamshidian (2002).

Finally, we chose Cox processes as the underlying framework, but this is not necessary.
More generally, we may have market models where one directly models market-related
rates without presuming existence of a default intensity (Jamshidian 2002 and Brigo and
Morini 2005).

21.2.3 Market Quoting Mechanism and Implied Hazard Functions

Now we explain shortly how the market quotes RCDS and UCDS prices. First, we notice
that typically the T ’s are 3 month spaced. Let us begin with RCDSs. Usually at time t¼ 0,
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provided default has not yet occurred, the market sets R to a value RMID
a,b (0) that makes the

CDS fair at time zero, i.e., such that CDS(0, Ta, Tb, RMID
a,b (0), LGD) ¼ 0. In fact, in the

market RCDSs used to be quoted at a time zero through a bid and an ask value for this fair
RMID
a,b (0), for CDSs with Ta¼ 0, and with Tb spanning a set of canonical final maturities,

Tb¼ 1 year up to Tb¼ 10 years. As time moves on to say t¼ 1 day, the market shifts the
T ’s of t, setting Ta ¼ 0þ t, . . . ,Tb ¼ 10 yearsþ t, and then quotes RMID

a,b (t) satisfying
CDS(t,Ta,Tb,RMID

a,b (t),LGD) ¼ 0. This means that as time moves on, the maturities
increase and the times to maturity remain constant.

Recently, the quoting mechanism has changed and has become more similar to the
mechanism of the futures markets. Let zero be the current time. Maturities Ta, . . . , Tb are
fixed at the original time zero to some values such as 1 year, 2 years, 3 years, etc. and then,
as time moves for example to t¼ 1 day, the CDS maturities are not shifted correspondingly
of 1 day as before but remain 1 year, 2 years, etc. from the original time zero. This means
that the times to maturity of the quoted CDSs decrease as time passes. When the quoting
time approaches maturity, a new set of maturities are fixed and so on. A detail concerning
the constant maturities paradigm is that when the first maturity Ta is less than 1 month
away from the quoting time (say zero), the payoff two terms

TaD(0,Ta)R1{t>Ta} þ (Taþ1 � Ta)D(0,Taþ1)R1{t>Taþ1}

are replaced by

Taþ1D(0,Taþ1)R1{t>Taþ1}

in determining the fair R. If we neglect this last convention, once we fix the quoting time
(say to zero) the method to strip implied hazard functions is the same under the two
quoting paradigms. For example, Brigo and Alfonsi (2003) present a more detailed section
on the constant time-to-maturity paradigm, and illustrate the notion of implied determin-
istic intensity (hazard function), satisfying

Q{s < t < t} ¼ e�G(s) � e�G(t)

The market G’s are obtained by inverting a pricing formula based on the assumption that t
is the first jump time of a Poisson process with deterministic intensity g(t)¼ dG(t)=dt. In
this case, one can derive a formula for CDS prices based on integrals of g, and on the initial
interest-rate curve, resulting from the above expectation:

CDS t,Ta,Tb,R,LGD;G( � )ð Þ¼1{t<t} R
ðTb

Ta

P(t,u)[Tb(u)�1�u]d e�[G(u)�G(t)]
� ��

þ
Xn
i¼aþ1

P(t,Ti)Raie
G(t)�G(Ti)þLGD

ðTb

Ta

P(t,u)d e�[G(u)�G(t)]
� ��

(21:9)

By equating to zero the above expression in g for t¼ 0, Ta¼ 0, after plugging in the
relevant market quotes for R, one can extract the g’s corresponding to CDS market quotes
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for increasing maturities Tb and obtain market implied gmkt’s and Gmkt’s. It is important to
point out that usually the actual model one assumes for t is more complex and may involve
stochastic intensity either directly or through stochastic modeling of the future R dynamics
itself. Even so, the gmkt’s are retained as a mere quoting mechanism for CDS rate market
quotes and may be taken as inputs in the calibration of more complex models.

UCDS are simply quoted through the present value of the protection leg. Under
deterministic hazard rates g, we have

UCDS t,Ta,Tb,R,LGD;G(�)ð Þ ¼ 1{t<t}LGD

ðTb

Ta

P(t, u)d e�[G(u)�G(t)]
� �

As before, by equating to the corresponding up-front market quote the above expression in
g, one can extract the g’s corresponding to UCDS market quotes for increasing maturities
and obtain again market implied gmkt’s and Gmkt’s.

Once the implied g are estimated, it is easy to switch from the RCDS quote R to the
UCDS quote UCDS, or vice versa. Indeed, we see that, without postponed payments, the
two quotes are linked by

UCDS t,Ta,Tb,R,LGD;G
mkt(�)� � ¼ Ra,b(t)

ðTb

Ta

P(t, u)[Tb(u)�1 � u]d e�[G
mkt(u)�Gmkt(t)]

n o�

þ
Xn
i¼aþ1

P(t,Ti)aie
Gmkt(t)�Gmkt(Ti)

�

21.3 DIFFERENT DEFINITIONS OF CDS FORWARD RATES AND
ANALOGIES WITH THE LIBOR AND SWAP MODELS

The procedure of equating to zero the current price of a contract to derive a sensible definition
of forward rate is rather common. For example, thedefault-free forwardLIBORrateF (t, S, T) is
obtained as the rate at time t that makes the time t price of a forward rate agreement (FRA)
contract vanish. This FRA contract locks in the interest rate between time S and T. An
analogous definition of forward swap rate at time t is obtained as the rate in the fixed leg of
the swap thatmakes the swap value at time t equal to zero. For a discussion on both the default-
free FRA and swap cases see for example Brigo and Mercurio (2006), Chapter 1.

In the current context, we can set a CDS price to zero to derive a forward CDS rate.
Clearly, the obtained rate changes according to the different RCDS payoff we consider. For
example, by equating to zero Equation 21.7 and solving in R, we have the standard RCDS
forward rate given in Equation 21.8. Wemay wonder about what we would have obtained as
definition of forward CDS rates when considering CDS payoffs PRCDS with postponed
protection payments (Equation 21.2) or even PR2CDS (Equation 21.3). By straightforwardly
adapting the above derivation, we would have obtained a CDS forward rate defined as

RPR
a,b(t)¼

LGD
Pb

i¼aþ1E[D(t,Ti)1{Ti�1<t�Ti}jF t]Pb
i¼aþ1aiE[D(t,Ti)1{t>Ti}jF t]

¼LGD
Pb

i¼aþ1E[D(t,Ti)1{Ti�1<t�Ti}jF t]Pb
i¼aþ1aiQ(t> tjF t)�P(t,Ti)
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and

RPR2
a,b (t) ¼ LGD

Pb
i¼aþ1 E[D(t,Ti)1{Ti�1<t�Ti}jF t]Pb

i¼aþ1 aiE[D(t,Ti)1{t>Ti�1}jF t]

where PR and PR2 stand for postponed-running payoffs of the first and second kind,
respectively.

Can we use the forward CDS rate definition, limited to a one-period interval, to
introduce defaultable one-period forward rates? A straightforward generalization of the
definition of forward LIBOR rates to the defaultable case is given for example in Schön-
bucher (2000). This definition mimics the definition in the default-free case, in that from
zero-coupon bonds one builds a defaultable forward LIBOR rate

�F(t;Tj�1,Tj) :¼ (1=aj)[�P(t,Tj�1)=�P(t,Tj)� 1]

on t> t. However, as noticed earlier, the default-free F is obtained as the fair rate at time t
for a FRA contract. Can we see �F as the fair rate for a sort of defaultable FRA? Since the
most liquid credit instruments are CDSs, consider a running postponed CDS on a one-
period interval, with Ta¼Tj�1 and Tb¼Tj. We obtain (take LGD¼ 1)

RPR
j (t) :¼ E[D(t,Tj)1{Tj�1<t<Tj}jF t]

ajQ(t > tjF t)�P(t,Tj)
¼ E[D(t,Tj)1{t>Tj�1}jF t]� E[D(t,Tj)1{t>Tj}jF t]

ajQ(t > tjF t)�P(t,Tj)

(21:10)

where we have set RPR
j :¼ RPR

j�1,j. The analogous part of �Fj¼ �F(�, Tj�1, Tj) would be, after
adjusting the conditioning to F t(F̂j(t) ¼ �Fj(t) on t> t but F̂ is defined also on t � t)

F̂j(t) ¼
E[D(t,Tj�1)1{t>Tj�1}jF t]� E[D(t,Tj)1{t>Tj}jF t]

ajQ(t > tjF t)�P(t,Tj)

The difference is that in RPR
j ’s numerator we are taking expectation of a quantity that

vanishes in all paths where t>Tj, whereas in �F the corresponding quantity does not vanish
necessarily in paths with t>Tj. Moreover, while Rj comes from a financial contract,
�F remains an abstraction not directly linked to a financial payoff.

Schönbucher (2000) defines the discrete tenor credit spread, in general, to be

Hj(t) ¼ 1
aj

�P(t,Tj�1)=P(t,Tj�1)
�P(t,Tj)=P(t,Tj)

� 1

� �

(in t> t), and it is easy to see that we get

Hj(t) ¼ RPR
j (t)

but under independence of the default intensity and the interest rates, and not in general.
Again, in general, Rj comes from imposing a one-period CDS to be fair, whereasHj does not.
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A last remark concerns an analogy with the default-free swap market model, where we
have a formula linking swap rates to forward rates through a weighted average:
Sa,b(t) ¼

Pb
i¼aþ1

�
aiP(t,Ti)=

	Pb
k¼aþ1 akP(t,Tk)


�
Fi(t) ¼

Pb
i¼aþ1 wi t; F(t)ð ÞFi(t). This is

useful since it leads to an approximated formula for swaptions in the LIBOR model (Brigo
and Mercurio 2006, Chapter 6). A similar approach can be obtained for CDS forward rates.
It is easy to check that

RPR
a,b(t) ¼

Pb
i¼aþ1 aiRPR

i (t)�P(t,Ti)Pb
i¼aþ1 ai�P(t,Ti)

¼
Xb
i¼aþ1

�wi(t)R
PR
i (t) �

Xb
i¼aþ1

�wi(0)R
PR
i (t) (21:11)

A similar relationship for RPR2
a,b involving a weighted average of one-period rates is obtained

when resorting to the second type of postponed payoff.
A possible lack of analogy with the swap rates is that the �w’s cannot be expressed as

functions of the Ri’s only, unless we make some particular assumptions on the correlation
between default intensities and interest rates. However, if we freeze the �w’s to time zero,
which we have seen to work in the default-free LIBOR model, we obtain easily a useful
approximate expression for Ra,b and its volatility in terms of Ri’s and their volatilities=
correlations.

More generally, when not freezing, the presence of stochastic intensities besides sto-
chastic interest rates adds degrees of freedom. Now the �P’s (and thus the �w’s) can be
determined as functions for example of one- and two-period rates. Indeed, it is easy to
show that

�P(t,Ti) ¼ �P(t,Ti�1)
ai�1

	
RPR
i�1(t)� RPR

i�2,i(t)



ai
	
RPR
i�2,i(t)� RPR

i (t)

 (21:12)

We have to assume RPR
i�2,i(t)� RPR

i (t) 6¼ 0. Actually, if we assume this to hold for the initial
conditions, i.e., RPR

i�2,i(0)� RPR
i (0) 6¼ 0, and then take a diffusion dynamics for the two rates,

the probability of our condition to be violated at future times is the probability of a
continuous random variable to be zero, i.e., it is zero in general. We will see later how this
formula will help us in obtaining a market model for CDS rates. For the time being let
us keep in mind that the exact weights �w(t) in Equation 21.11 are completely specified in
terms of Ri(t)’s and Ri�2,i(t)’s, so that if we include these two rates in our dynamics the system
is closed in that we also know all the relevant �P’s. The difference with the LIBOR=swapmodel
is that here to close the system we need also two-period rates.

21.4 DEFAULTABLE FLOATER AND CDS
Consider a prototypical DFRN.

DEFINITION 21.1 A prototypical defaultable floating-rate note is a contract ensuring the
payment at future times Taþ1, . . . , Tb of the LIBOR rates that reset at the previous instants
Ta, . . . , Tb�1 plus a spread X, each payment conditional on the issuer having not defaulted
before the relevant previous instant. Moreover, the note pays a last cash flow consisting of the
reimbursement of the notional value of the note at final time Tb if the issuer has not
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defaulted earlier. We assume a deterministic recovery value REC to be paid at the first Ti

following default if default occurs before Tb. The note is said to quote at par if its value is
equivalent to the value of the notional paid at the first reset time Ta in case default has not
occurred before Ta.

Recall that if no default is considered, then the fair spread making the FRN quote at par
is zero (Brigo and Mercurio 2006).

When in presence of default, the note discounted payoff, including the initial cash flow
of 1 paid in Ta, is

PDFRNa,b ¼� D(t,Ta)1{t>Ta} þ
Xb
i¼aþ1

aiD(t,Ti)[L(Ti�1,Ti)þ X]1{t>Ti}

þ D(t,Tb)1{t>Tb} þ REC
Xb
i¼aþ1

D(t,Ti)1{Ti�1<t�Ti}

where REC is the recovery rate, i.e., the percentage of the notional that is paid in
replacement of the notional in the case of default, and it is paid at the first instant
among Taþ1, . . . ,Tb following default. This is the correct definition of DFRN, consistent
with market practice. The problem with such definition is that it has no equivalent in terms
of approximated CDS payoff. This is due to the fact that, in a Cox process setting, it is
difficult to disentangle the LIBOR rate L from the indicator and stochastic discount factor
in such a way to obtain expectations of pure stochastic discount factors times default
indicators. This becomes possible if we replace 1{t>Ti} in the first summation with 1{t>Ti�1},
as one can see from computations (Equation 21.13) below. The same computations, in case
we keep Ti in the default indicator, even in the simplified case where LGD¼ 1 and interest
rates are independent of default intensities, would lead us to a corresponding definition of
CDS forward rate where protection is paid at the last instant Ti before default, which is not
natural since one should anticipate default.

21.4.1 First Approximated DFRN Payoff

We thus consider two alternative definitions of DFRN. The first one is obtained by moving
the default indicator of L(Ti�1, Ti)þX from Ti to Ti�1. The related FRN discounted payoff
is defined as follows:

PDFRN2a,b ¼ �D(t,Ta)1{t>Ta} þ
Xb
i¼aþ1

aiD(t,Ti)[L(Ti�1,Ti)þ X]1{t>Ti�1}

þ D(t,Tb)1{t>Tb} þ REC
Xb
i¼aþ1

D(t,Ti)1{Ti�1�t<Ti}

Recall that, in the CDS payoff, LGD¼ 1�REC. We may now value the above discounted
payoff at time t and derive the value of X that makes it zero. Define

DFRN2a,b(t,X,REC) ¼ E{PDFRN2a,bjGt} ¼ 1{t>t}E{PDFRN2a,bjF t}=Q(t > tjF t)
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and solve E{PDFRN2a,bjF t} ¼ 0 in X. The only nontrivial part is computing

aiE[D(t,Ti)L(Ti�1,Ti)1{t>Ti�1}jF t] ¼ aiE{E[D(t,Ti)L(Ti�1,Ti)1{t>Ti�1}jFTi�1]jF t} ¼ � � �
Under our Cox process setting for t we can write

� � � ¼ aiE{E[D(t,Ti)L(Ti�1,Ti)1{j>L(Ti�1)}jFTi�1]jF t}

¼ aiE{D(t,Ti�1)L(Ti�1,Ti) exp [�L(Ti�1)]E[D(Ti�1,Ti)jFTi�1]jF t}

¼ aiE{exp [�L(Ti�1)]D(t,Ti�1)L(Ti�1,Ti)P(Ti�1,Ti)jF t}

¼ E{exp [�L(Ti�1)]D(t,Ti�1)[1� P(Ti�1,Ti)]jF t}

¼ E{D(t,Ti�1)[1� P(Ti�1,Ti)]1{t>Ti�1}jF t}

¼ E[D(t,Ti�1)1{t>Ti�1}jF t]� E[D(t,Ti)1{t>Ti�1}jF t] (21:13)

Now the LIBOR flow has vanished from the above payoff and we have expressed every-
thing in terms of pure discount factor and default indicators. Some of these computations
could have been performed more simply by means of standard and model independent
arguments, but we carried them out in the explicit intensity case so that the reader may try
them when not replacing 1{t>Ti} to see what goes wrong.

We may write also

DFRN2a,b(t,X,REC)¼[1{t>t}=Q(t> tjF t)]

�
�Et[D(t,Ta)1{t>Ta}]þEt[D(t,Tb)1{t>Tb}]

�
Xb
i¼aþ1

Et{[D(t,Ti)�D(t,Ti�1)]1{t>Ti�1}}

þX
Xb
i¼aþ1

aiEt[D(t,Ti)1{t>Ti�1}]þREC
Xb
i¼aþ1

Et[D(t,Ti)1{Ti�1<t�Ti}]

�

We may simplify terms in the summations and obtain

DFRN2a,b(t,X,REC) ¼ 1{t>t}

Q(t > tjF t)
�LGD

Xb
i¼aþ1

Et[D(t,Ti)1{Ti�1<t<Ti}]

(

þ X
Xb
i¼aþ1

aiEt[D(t,Ti)1{t>Ti�1}]

)

from which we notice en passant that

DFRN2a,b(t,X,REC) ¼ PR2CDS(t,Ta,Tb,X, 1� REC) (21:14)

By taking into account this result, the expression for X that makes the DFRN quote at
par is clearly the running ‘‘postponed of the second kind’’ CDS forward rate
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X(2)
a,b(t) ¼ RPR2

a,b (t)

i.e., the fair spread in a DFRN is equal to the postponed RCDS forward rate.

21.4.2 Second Approximated DFRN Payoff

The second alternative definition of DFRN, leading to a useful relationship with approxi-
mated CDS payoffs, is obtained by moving the default indicator of L(Ti�1, Ti)þX from Ti

to Ti�1 but only for the LIBOR flow, not for the spread X. This payoff is closer to the
original PDFRN payoff than the approximated PDFRN2 payoff considered above. Set

PDFRN1a,b ¼� D(t,Ta)1{t>Ta} þ
Xb
i¼aþ1

aiD(t,Ti)[L(Ti�1,Ti)1{t>Ti�1} þ X1{t>Ti}]

þ D(t,Tb)1{t>Tb} þ REC
Xb
i¼aþ1

D(t,Ti)1{Ti�1<t�Ti}

By calling DFRN1a,b(t, X, REC) the t-value of the above payoff and by going through the
computations we can see easily that this time

DFRN1a,b(t,X,REC) ¼ PRCDS(t,Ta,Tb,X, 1� REC) (21:15)

and that, as far as fair spreads are concerned,

X(1)
a,b(t) ¼ RPR

a,b(t)

21.5 CDS OPTIONS AND CALLABLE DEFAULTABLE FLOATERS
Consider the option to enter a CDS at a future time Ta> 0, Ta<Tb, paying a fixed rate K at
times Taþ1, . . . ,Tb or until default, in exchange for protection against possible default in
[Ta,Tb]. If default occurs a protection payment LGD is received. By noticing that the
market CDS rate Ra,b(Ta) will set the CDS value in Ta to zero, the payoff can be written as
the discounted difference between said CDS and the corresponding CDS with rate K. We
will see below that this is equivalent to a call option on the future CDS fair rate Ra,b(Ta).
The discounted CDS option payoff reads, at time t,

PCallCDSa,b(t;K)¼ D(t,Ta){CDS Ta,Ta,Tb,Ra,b(Ta),LGDð Þ �CDS(Ta,Ta,Tb,K ,LGD)}
þ

(21:16)

leading to two possible expressions, depending on whether we explicit the CDS values,
given respectively by
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PCallCDSa,b(t;K) ¼ 1{t>Ta}

Q(t > TajFTa)
D(t,Ta)

 Xb
i¼aþ1

aiQ(t > TajFTa)�P(Ta,Ti)

þ E{D(Ta, t)[t � Tb(t)�1]1{t<Tb}jFTa}

!
[Ra,b(Ta)� K]þ (21:17)

or, by remembering that by definition CDS (Ta, Ta, Tb, Ra,b(Ta), LGD)¼ 0, as

PCallCDSa,b(t;K) ¼ D(t,Ta)[� CDS(Ta,Ta,Tb,K ,LGD)]
þ (21:18)

This last expression points out that in holding this CDS option we would be interested in
the option to buy protection LGD at time Ta against default in [Ta,Tb] in exchange for a
premium leg characterized by the strike-rate K. These options can be introduced for every
type of underlying CDS. We have illustrated the standard CDS case, and we will consider
the postponed CDS cases below.

The quantity inside round brackets in Equation 21.17 will play a key role in the
following. We will often neglect the accrued-interest term in [t�Tb(t)�1] and consider
the related simplified payoff: in such a case the quantity between round brackets is denoted
by Ĉa,b(Ta) and is called (no survival indicator) defaultable present value per basis point
(DPVBP) numeraire. Actually the real DPVBP would have a 1{t>�} term in front of the
summation, but by a slight abuse of language we call DPVBP the expression without
indicator. More generally, at time t, we set

Ĉa,b(t) :¼ Q(t > tjF t)�Ca,b(t), �Ca,b(t) :¼
Xb
i¼aþ1

ai�P(t,Ti)

When including as a factor the indicator 1{t>t}, this quantity is the price, at time t, of a
portfolio of defaultable zero-coupon bonds with zero recovery and with different matur-
ities, and as such it is the price of a tradable asset. The original work of Schönbucher (2000,
2004) is in this spirit, in that the numeraire is taken with the indicator, so that it may
vanish and the measure it defines is not equivalent to the risk-neutral measure. If we keep
the indicator away, following in spirit part of the work in Jamshidian (2002), this quantity
maintains a link with said price and is always strictly positive, so that we are allowed to take
it as numeraire.

The related probability measure, equivalent to the risk-neutral measure, is denoted by
Q̂a,b and the related expectation by Ê

a,b
.

Neglecting the accrued-interest term, the option discounted payoff simplifies to

1{t>Ta}D(t,Ta)
Xb
i¼aþ1

ai�P(Ta,Ti)

" #
[Ra,b(Ta)� K]þ (21:19)

but this is only an approximated payoff and not the exact one.
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21.5.1 First Equivalence: PRCDS and DFRN1

Let us follow the same derivation under the postponed CDS payoff of the first kind.
Consider thus

PCallPRCDSa,b(t;K) ¼ D(t,Ta){PRCDS Ta,Ta,Tb,R
PR
a,b(Ta),LGD

� �
� PRCDS(Ta,Ta,Tb,K ,LGD)}

þ (21:20)

or, since PRCDS Ta,Ta,Tb,RPR
a,b(Ta),LGD

� � ¼ 0,

PCallPRCDSa,b(t;K) ¼ D(t,Ta)[�PRCDS(Ta,Ta,Tb,K ,LGD)]
þ

which, by Equation 21.15, is equivalent to

D(t,Ta)[�DFRN1a,b(Ta,K ,REC)]
þ (21:21)

with LGD¼ 1�REC, or since DFRN1a,b(Ta, Xa,b(Ta), REC)¼ 0, is equivalent to

D(t,Ta){DFRN1a,b Ta,Xa,b(Ta),RECð Þ � DFRN1a,b(Ta,K ,REC)}
þ

By expanding the expression of PRCDS we obtain as exact discounted payoff the quantity

PCallPRCDSa,b(t,K) ¼ 1{t>Ta}D(t,Ta)
Xb
i¼aþ1

ai�P(Ta,Ti)

" #	
RPR
a,b(Ta)� K


þ
(21:22)

which is structurally identical to the approximated payoff (Equation 21.19) for the stand-
ard CDS case. Thus we have created a link between the first postponed CDS payoff and an
option on an approximated DFRN. Notice in particular that the quantity in front of the
optional part is the same as in the earlier standard approximated discounted payoff, i.e., the
DPVBP.

21.5.2 Second Equivalence: PR2CDS and DFRN2

We may also consider the postponed RCDS of the second kind. The related discounted
CDS option payoff reads, at time t,

PCallPR2CDSa,b(t,K) ¼ D(t,Ta){PR2CDS Ta,Tb,R
PR2
a,b (Ta),LGD

� �
� PR2CDS(Ta,Tb,K ,LGD)}

þ (21:23)

and given Equation 21.14, this is equivalent to

D(t,Ta){DFRN2a,b Ta,Xa,b(Ta),RECð Þ � DFRN2a,b(Ta,K ,REC)}
þ (21:24)

with REC¼ 1� LGD, or by expanding the expression for PR2CDS, we get

[1{t>Ta}=Q(t > TajFTa)]D(t,Ta)
Xb
i¼aþ1

aiETa[D(Ta,Ti)1{t>Ti�1}]
	
RPR2
a,b (Ta)�K


þ
(21:25)

Again we have equivalence between CDS options and options on the defaultable floater.
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21.5.3 Callable Defaultable Floaters

The option on the floater can be seen as the optional component of a callable DFRN. A
DFRN with final maturity Tb is issued at time zero with a fair rate X0,b(0) in such a way that
DFRN0,b(0, X0,b(0), REC)¼ 0. Suppose that this FRN includes a callability feature: at time
Ta the issuer has the right to take back the subsequent FRN flows and replace them with
the notional 1. The issuer will do so only if the present value in Ta of the subsequent
FRN flows is larger than 1 in Ta. This is equivalent, for the note holder, to receive
1{t>Ta} þ min{DFRNa,b Ta,X0,b(0),ð RECÞ, 0} ¼ 1{t>Ta} þ DFRNa,b Ta,X0,b(0),ð RECÞ �
{DFRNa,b Ta,X0,b(0),RECð Þ}þ at time Ta if no default has occurred by then (recall that in
our notation DFRNa,b includes a negative cash flow of 1 at time Ta).

The component 1{t>Ta} þ DFRNa,b Ta,X0,b(0),RECð Þ when valued at time zero is sim-
ply the residual part of the original DFRN without callability features from Ta on, so that
when added to the previous payments in 0�Ta its present value is zero. This happens
because Xa,b(0) is the fair rate for the total DFRN at time zero. The component

{DFRNa,b Ta,X0,b(0),RECð Þ}þ ¼ {DFRNa,b Ta,X0,b(0),RECð Þ�DFRNa,b Ta,Xa,b(Ta),RECð Þ}þ

is structurally equivalent to a CDS option, provided we approximate its payoff with DFRN1
or DFRN2, as we have seen earlier, and we may value it if we have a model for CDS
options. We are deriving a market model for such options in the next section, so that we
will be implicitly deriving a model for callable defaultable floaters.

21.6 MARKET MODEL FOR CDS OPTIONS AND CALLABLE
DEFAULTABLE FLOATERS

As usual, one may wish to introduce a notion of implied volatility for CDS options. This
would be a volatility associated to the relevant underlying CDS rate R. To do so rigorously,
one has to come up with an appropriate dynamics for Ra,b directly, rather than modeling
instantaneous default intensities explicitly. This somehow parallels what we find in the
default-free interest-rate market when we resort to the swap market model as opposed for
example to a one-factor short-rate model for pricing swaptions. In a one-factor short-rate
model, the dynamics of the forward swap rate is a by-product of the short-rate dynamics
itself, through Ito’s formula. On the contrary, the market model for swaptions directly
postulates, under the relevant numeraire a (lognormal) dynamics for the forward swap rate.

21.6.1 Market Models for CDS Options

In the case of CDS options, the market model is derived as follows. First, let us ignore the
accruing term in [t�Tb(t)�1], by replacing it with zero. It can be seen that typically the order
ofmagnitude of this term is negligiblewith respect to the remaining terms in the payoff. Failing
this negligibility, one may reformulate the payoff by postponing the default payment to the
first date among the Ti’s following t, i.e., to Tb(t). This amounts to consider as underlying a
payoff corresponding to Equation 21.2 and eliminates the accruing term altogether, even
though it slightly modifies the option payoff. Take as numeraire the DPVBP Ĉa,b, so that
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Ra,b(t)¼ LGDE[D(t,t)1{Ta<t�Tb}jF t]Pb
i¼aþ1aiQ(t> tjF t)�P(t,Ti)

¼LGDE[D(t,t)1{Ta<t�Tb}jF t]

Ĉa,b(t)
, t�Ta (21:26)

having as numerator the price of an UCDS, can be interpreted as the ratio between a
tradable asset and our numeraire. As such, it is a martingale under this numeraire’s
measure and can be modeled as a Black–Scholes driftless geometric Brownian motion,
leading to a Black and Scholes formula for CDS options. Notice that, when Ra,b(0) is not
quoted directly by the market, we may infer it by the market implied gmkt according to

Ra,b(0) ¼
�LGD R Tb

Ta
P(0, u)d[e�G

mkt

(u)]Pb
i¼aþ1 aiP(0,Ti)e�G

mkt (Ti)

Indeed, by resorting to the change of numeraire starting from Equation 21.19 (thus
ignoring the accruing term or working with the postponed payoff) we see that

E{1{t>Ta}D(t,Ta)
Xb
i¼aþ1

ai�P(Ta,Ti) Ra,b(Ta)� Kð ÞþjGt}

¼ 1{t>t}

Q(t > tjF t)
E{1{t>Ta}D(t,Ta)

Xb
i¼aþ1

ai�P(Ta,Ti) Ra,b(Ta)� Kð ÞþjF t}

¼ 1{t>t}

Q(t > tjF t)
E

�
E{1{t>Ta}D(t,Ta)

Xb
i¼aþ1

ai�P(Ta,Ti) Ra,b(Ta)� Kð ÞþjF Ta}jF t

�

¼ 1{t>t}

Q(t > tjF t)
E

�
D(t,Ta)

Xb
i¼aþ1

ai�P(Ta,Ti) Ra,b(Ta)� Kð ÞþEf1{t>Ta}jF TagjF t

�

¼ 1{t>t}

Q(t > tjF t)
E

�
D(t,Ta)

Xb
i¼aþ1

Q(t > TajFTa)ai�P(Ta,Ti) Ra,b(Ta)� Kð ÞþjF t

�

¼ 1{t>t}

Q(t > tjF t)
E

�
D(t,Ta)Ĉa,b(Ta) Ra,b(Ta)� Kð ÞþjF t

�

¼ 1{t>t}

Q(t > tjF t)
Ĉa,b(t)Ê

a,b

�
Ra,b(Ta)� Kð ÞþjF t

�

¼ 1{t>t}�Ca,b(t)Ê
a,b

�
Ra,b(Ta)� Kð ÞþjF t

�

and we may take

dRa,b(t) ¼ sa,bRa,b(t)dW
a,b(t) (21:27)

where Wa,b is a Brownian motion under Q̂a,b, leading to a market formula for the CDS
option. We have

E{1{t>Ta}D(t,Ta)�Ca,b(Ta)[Ra,b(Ta)� K]þjGt}
¼ 1{t>t}�Ca,b(t){Ra,b(t)N d1(t)ð Þ � KN d2(t)ð Þ} (21:28)

d1,2 ¼ ln Ra,b(t)=Kð Þ � (Ta � t)s2
a,b=2

� ��
sa,b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ta � t

p �
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As happens in most markets, this formula could be used as a quoting mechanism rather
than as a real model formula. That is, the market price can be converted into its implied
volatility matching the given price when substituted in the above formula.

To completely specify the market model we need to show how the dynamics of Ra,b
changes when changing numeraire. We describe the essential steps briefly in two import-
ant cases, and we refer to the postponed running (PR) payoff.

21.6.2 One- and Two-Period CDS Rates Market Models

The first case we address is a family of one-period rates. This is to say that we are trying to
build a sort of forward LIBOR model for CDS rates. As the LIBOR model is based on one-
period forward rates, our first choice of a market model for CDS options will be based on
one-period rates. The fundamental components of our numeraires Ĉ are the �P’s. The �P’s,
through Equation 21.12, can be reduced to a function of a common initial �P (that cancels
when considering the relevant ratios) and of one- and two-period rates Rk and Rk�2,k in the
relevant range. We start then by writing the (martingale) dynamics of one- and two-period
rates Rk and Rk�2,k each under its canonical numeraire Q̂k�1,k and Q̂

k�2,k, respectively. At
this point, we use the change of numeraire technique on each of this rates to write their
dynamics under a single preferred Q̂

�,�. This is possible in terms of quadratic covariations
between the one- and two-period rates being modeled and the analogous rates concurring to
form the �P’s entering the relevant Ĉ. Now we have the dynamics for all the relevant Rk’s and
Rk�2,k’s under a commonmeasure Q̂�,�. Since Ra,b is completely specified in terms of one-and
two-period rates through Equations 21.11 and 21.12, we have indirectly also Ra,b’s dynamics.

Notice that if first we assign the dynamics of one-period rates, then the dynamics of the
two-period rates has to be selected carefully. For example, two-period rates will have to be
selected into a range determined by one-period rates to avoid �P(t,Tk)=�P(t,Tk�1) to
be negative or larger than one. The use of suitable martingale dynamics for each Rk�2,k
under Q̂k�2,k ensuring this property is currently under investigation.

If we are concerned about lognormality of R’s, leading to Black-like formulas for CDS
options, one of the possible choices is to impose one-period rates Rk to have a lognormal
distribution under their canonical measures. It suffices to postulate a driftless geometric
Brownian motion dynamics for each such rate under its associated measure. The resulting
Ra,b will only be approximately lognormal, especially under the freezing approximation for
the weights �w, but this is the case also with LIBOR versus Swap models, since lognormal
one-period swap rates (i.e., forward LIBOR rates) and multi-period swap rates cannot be
all lognormal (each under its canonical measure). The important difference with the
LIBOR model is that here we need also two-period rates to close the system. The need
for two-period rates stems from the additional degrees of freedom coming from stochastic
intensity whose maturities, in rates like R’s, are not always temporally aligned with the
stochastic interest rates maturities. More precisely, the fact that in the numerator of the last
term in Equation 21.10 we have not only �P (second term in the numerator), but also a term
in D(t,Tj)1{t>Tj�1} (first term in the numerator, notice the misaligned Tj�1 and Tj) adds
degrees of freedom that are accounted for by considering two-period rates.
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A final remark is that the freezing approximation is typically questionable when
volatilities are very large. Since, as we will see below, at the moment implied volatilities
in the CDS option market are rather large, the freezing approximation has to be considered
with care.

21.6.3 Coterminal and One-Period CDS Rates Market Models

Our second choice is based on coterminal CDS rates. Indeed, let us take a family of
CDS rates Ra,b, Raþ1,b, and Rb�1,b. Keep in mind that we are always referring to PR rates.
Can we write the dynamics of all such rates under (say) Q̂a,b? The answer is affirmative
if we take into account the following equality, which is not difficult to prove with some
basic algebra:

Ĉi,b(t) ¼ Q(t > tjF t)�P(t,Tb)
Yb�1
k¼iþ1

Rk,b(t)� Rk(t)
Rk�1,b(t)� Rk(t)

, i ¼ a, . . . , b� 2 (21:29)

Notice that the term in front of the product is just Ĉb�1,b(t). Notice also that the one-period
rates canonical numeraires �P can be obtained from the above numeraires via Ĉi,b � Ĉi�1,b’s.
Take into account that we need to assume Rk�1,b(t) 6¼ Rk(t). Analogously to what seen
previously for the one- and two-period rates case, we can assume this to hold at time zero
and then the probability that this condition is violated at future times will be zero in
general under a diffusion dynamics for the relevant rates.

As before, the set of rates and of different numeraires ratios are not a closed system. To
close the system we need to include one-period rates Raþ1, . . . , Rb. In this framework, we
may derive the joint dynamics of Ra,b, Raþ1,b, Raþ2,b, . . . , Rb�1,b;Raþ1, Raþ2, Rb�1 under a
common measure (say Q̂

a,b) as follows. First assume a lognormal driftless geometric
Brownian motion dynamics for Ra,b under Q̂

a,b and suitable martingale dynamics for
every other rate under its canonical measure. These different dynamics have to be chosen
so as to enforce the needed constraints on the Ĉk,b(t), such as for example Ĉk�1,b(t) > Ĉk,b(t)
and similar inequalities implying the correct behavior of the embedded �P’s. Take then a
generic rate in the family and write its dynamics under Q̂a,b with the following method.
Thanks to the change of numeraire technique, the drift of this rate dynamics under Q̂a,b will
be a function of the quadratic covariation between the rate being modeled and the ratio of
Ĉa,b(t)with the canonical numeraire of the selected rate itself. Thanks to Equation 21.29, this
ratio is a function of the rates in the family and therefore the relevant quadratic covariation
can be expressed simply as a suitable function of the volatilities and correlation (diffusion
coefficients and instantaneous Brownian covariations are more precise terms) of the one-
and multi-period rates in our family. As before no inconsistency is introduced, thanks to the
additional degrees of freedom stemming from stochastic intensity. Under this second
coterminal formulation, we can obtain the Black-like market formula above for the Ta�Tb
tenor in the context of a consistent and closed market model. The definition of suitable
martingale dynamics for CDS rates with different tenor is under investigation.
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21.6.4 Self-Contained Approximated CDS Rates Dynamics

Consider now the one-period CDS rates Rj(t) ¼ Rj�1,j(t). Go through the following
approximation:

Rj(t) :¼ Rj�1,j(t) ¼ LGD
E[D(t,Tj)1{Tj�1<t<Tj}jF t]

ajQ(t > tjF t)�P(t,Tj)

¼ LGD
E[D(t,Tj)1{t>Tj�1}jF t]� E[D(t,Tj)1{t>Tj}jF t]

ajQ(t > tjF t)�P(t,Tj)

¼ LGD
E{D(t,Tj�1)1{t>Tj�1} D(t,Tj)=D(t,Tj�1)jF t}� E[D(t,Tj)1{t>Tj}jF t]

ajQ(t > tjF t)�P(t,Tj)
¼ � � �

At this point, we approximate the ratio of stochastic discount factors with the related
zero-coupon bonds, obtaining

� � � � LGD
E[D(t,Tj�1)1{t>Tj�1}jF t]P(t,Tj)=P(t,Tj�1)� E[D(t,Tj)1{t>Tj}jF t]

ajQ(t > tjF t)�P(t,Tj)

¼ LGD
�P(t,Tj�1)P(t,Tj)=P(t,Tj�1)� �P(t,Tj)

aj�P(t,Tj)

¼ LGD

aj

�P(t,Tj�1)
[1þ ajFj(t)]�P(t,Tj)

� 1

� �
¼ � � �

At this point, by inserting a LIBOR model for the forward LIBOR rates Fj we could proceed
toward a joint dynamics for CDS rates and interest rates, both stochastic. However, let us
simplify further the rates by freezing Fj to time zero:

� � � � LGD

aj

�P(t,Tj�1)
[1þ ajFj(0)]�P(t,Tj)

� 1

� �
: ¼ ~Rj(t)

This last definition can be inverted so as to have

�P(t,Tj�1)
�P(t,Tj)

¼ aj

LGD
~Rj þ 1

 �
[1þ ajFj(0)] > 1 (21:30)

as long as ~R> 0, provided that Fj (0)> 0 as should be. This means that we are free to select
any martingale dynamics for ~Rj under Q̂

j�1,j, as long as ~Rj remains positive. Choose then
such a family of ~R as building blocks

d~Ri(t) ¼ si(t)~Ri(t)dZ
i
i(t) for all i

where Zi is a vector Brownian motion (with possibly correlated components having
correlation matrix r) under the measure Q̂i�1,i. Now one can define �P by using Equation
21.30 to obtain inductively �P(t, Tj) from �P(t, Tj�1) and from ~Rj. This way, the numeraires �P
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become functions only of the ~R’s, so that now the system is closed and all one has to model
is the one-period rates ~R vector. No need to model auxiliary rates to be able to close the
system.

In this context, the change of numeraire yields [see Brigo (2006) for details]

dZj
k ¼ dZi

k �
Xi
h¼jþ1

rk,h
sh(t)~Rh

~Rh þ LGD
ah

dt

from which we have the dynamics of ~Ri under Q̂
j:

d~Ri ¼ si~RidZ
i
i ¼ si~Ri dZj

i þ
Xi
h¼jþ1

rj,h
sh~Rh

~Rh þ LGD
ah

dt

0
@

1
A (21:31)

At this point, a Monte Carlo simulation of the vector process R based on a discretiza-
tion scheme for the above vector SDE (stochastic differential equation) is possible. One
only needs to know the initial CDS rates ~R(0), which if not directly available one can build
by suitably stripping spot CDS rates. Given the volatilities and correlations, one can easily
simulate the scheme by means of standard Gaussian shocks.

A final remark is in order: although our approximated family of rates ~R is based on
partial freezing of the F’s, this does not mean that we are assuming deterministic interest
rates (or independence between the interest rates and the default time) altogether. Indeed,
the building blocks for our ~R are the �P’s that embed possibly correlated stochastic interest
rates and default events.

In Brigo (2006), this framework is applied to constant maturity CDS valuation, obtain-
ing a closed form formula involving a convexity adjustment involving volatilities and
correlations. See also Brigo and Mercurio (2006).

21.6.5 Market Model for Callable DFRN

Since we are also interested in the parallel with DFRNs, let us derive the analogous market
model formula under PRCDSs of the first kind. The derivation goes through as above and
we obtain easily the same model as in Equations 21.27 and 21.28 with RPR replacing R
everywhere.

If we consider the second kind of approximation for FRNs, the option price is obtained
as the price of a CDS option, where the CDS is a postponed CDS of the second kind.
Compute then

E D(t,Ta){PR2CDS Ta,Ta,Tb,R
PR2
a,b (Ta),LGD

� �� PR2CDS(Ta,Ta,Tb,K ,LGD)}
þjGt

� �
¼ E

1{t>Ta}

Q(t > TajFTa)
D(t,Ta)

Xb
i¼aþ1

aiETa

	
D(Ta,Ti)1{t>Ti�1}


	
RPR2
a,b (Ta)� K


þjGt
( )

¼ E 1{t>Ta}D(t,Ta)
Xb
i¼aþ1

ai
ETa[D(Ta,Ti)1{t>Ti�1}]

Q(t > TajFTa)

	
RPR2
a,b (Ta)� K


þjGt
( )

¼ � � �
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This time let us take as numeraire

�Ca,b(t) :¼
Xb
i¼aþ1

aiEt[D(t,Ti)1{t>Ti�1}]

notice Ĉa,b(t) ¼

Xb
i¼aþ1

aiEt[D(t,Ti)1{t>Ti}]
�

This quantity is positive, and when including the indicator 1{t>t} this is, not surprisingly, a
multiple of the premium leg of a PR2CDS at time t. We may also view it as a (no survival
indicator) portfolio of defaultable bonds where the default maturity is one-period displaced
with respect to the payment maturity. Thus this quantity is only approximately a numer-
aire. Compute

� � � ¼ E 1{t>Ta}D(t,Ta)
�Ca,b(Ta)

Q(t > TajFTa)

	
RPR2
a,b (Ta)� K


þjGt
� �

¼ 1{t>t}

Q(t > tjF t)
Et 1{t>Ta}D(t,Ta)

�Ca,b(Ta)

Q(t > TajFTa)

	
RPR2
a,b (Ta)� K


þ� �

¼ 1{t>t}

Q(t > tjF t)
Et ETa 1{t>Ta}D(t,Ta)

�Ca,b(Ta)

Q(t > TajF Ta)

	
RPR2
a,b (Ta)� K


þ� �� �

¼ 1{t>t}

Q(t > tjF t)
Et D(t,Ta)

�Ca,b(Ta)

Q(t > TajFTa)

	
RPR2
a,b (Ta)� K


þ
ETa 1{t>Ta}ð Þ

� �

¼ 1{t>t}

Q(t > tjF t)
Et D(t,Ta)�Ca,b(Ta)

	
RPR2
a,b (Ta)� K


þn o

¼ 1{t>t}

Q(t > tjF t)
�Ca,b(t)�E

a,b
t

	
RPR2
a,b (Ta)� K


þn o

Now notice that RPR2 can also be written as

RPR2
a,b (t) ¼

Pb
i¼aþ1 E[D(t,Ti)1{Ti�1<t�Ti}jF t]

�Ca,b(t)

so that it is a martingale under �Qa,b. As such, we may model it as

dRPR2
a,b (t) ¼ sa,bR

PR2
a,b (t)d �Wa,b(t) (21:32)

and compute the above expectation accordingly. We obtain, as price of the option,

E{1{t>Ta}D(t,Ta)
�Ca,b(Ta)

Q(t > TajFTa)

	
RPR2
a,b (Ta)� K


þjGt}
¼ 1{t>t}

�Ca,b(t)
Q(t > tjF t)

	
RPR2
a,b (t)N(d1)� KN(d2)



(21:33)

where d1 and d2 are defined as usual in terms of RPR2
a,b (t), K , and s.

Which model should one use between DFRN1 and DFRN2 when dealing with DFRN
options? DFRN1 has the advantage of better approximating the real DFRN; further, the
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related market model is derived under a numeraire. DFRN2 is derived only under
an approximated numeraire and is a worse approximation of the real DFRN, but
the related CDS payoff PR2CDS is in some cases a better approximation of a real CDS
than PRCDS.

We present now some CDS options implied volatilities obtained with the post-
poned payoff of the first and second kind. We consider three companies C1, C2, and
C3 on the euro market and the related CDS options quotes as of March 26, 2004;
the recovery is REC¼ 0.4; C1 and C3 are in the telephonic sector, whereas C2 is a
car industry; LGD¼ 1� 0.4¼ 0.6; T0¼March 26, 2004 (0). We consider two possible
maturities Ta ¼ June 20, 2004 (86 days� 3 months) and T 0a ¼ Dec 20, 2004 (269
days� 9 months); Tb¼ June 20, 2009 (5 years and 87 days); we consider receiver option
quotes (puts on R) in basis points (i.e., 1E-4 units on a notional of 1). We obtain the results
presented in Table 21.1.

Implied volatilities are rather high when compared with typical interest-rate default-free
swaption volatilities. However, the values we find have the same order of magnitude
as some of the values found by Hull and White (2003) via historical estimation. Further,
we see that while the option prices differ considerably, the related implied volatilities
are rather similar. This shows the usefulness of a rigorous model for implied volatili-
ties. The mere price quotes could have left one uncertain on whether the credit spread
variabilities implicit in the different companies were quite different from each other
or similar.

We analyze also the implied volatilities and CDS forward rates under different payoff
formulations and under stress. Table 21.1 shows that the impact of changing postpone-
ment from PR to PR2 (maintaining the same R0,b(0)’s and re-stripping G’s) leaves both
CDS forward rates and implied volatilities almost unchanged.

In Table 21.2, we check the impact of the recovery rate on implied volatilities and CDS
forward rates. Every time we change the recovery we recalibrate the G’s, since the only
direct market quotes are the R0,b(0)’s, which we cannot change, and our uncertainty is on
the recovery rate that might change. As we can see from the table, the impact of the
recovery rate is rather small, but we have to keep in mind that the CDS option payoff is
built in such a way that the recovery direct flow in LGD cancels and the recovery remains
only implicitly inside the initial condition Ra,b(0) for the dynamics of Ra,b, as one can see
for example from Equation 21.22, where LGD does not appear explicitly. It is Ra,b(0) that
depends on the stripped G’s which, in turn, depend on the recovery.

TABLE 21.1 CDS Forward Rates and Implied Volatilites on Three Companies on March 26, 2004.
Rates Are in Basis Points and Volatilities Are Percentages

Company Option: bid mid ask R0,b(0) RPR
a,b (0) RPR2

a,b (0) K sPR
a,b sPR(2)

a,b

C1(Ta) 14 24 34 60 61.497 61.495 60 50.31 50.18

C2 32 39 46 94.5 97.326 97.319 94 54.68 54.48

C3 18 25 32 61 62.697 62.694 61 52.01 51.88

C1(T 0a) 28 35 42 60 65.352 65.344 61 51.45 51.32
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In Table 21.3, we check the impact of a shift in the simply compounded rates of the
zero-coupon interest-rate curve on CDS forward rates and implied volatilities. Every time
we shift the curve we recalibrate the G’s, while maintaining the same R0,b(0)’s. We see that
the shift has a more relevant impact than the recovery rate, an impact that remains small.

We also include the zero-coupon curve we used in Table 21.4 and the CDS market
quotes we used in Table 21.5.

Finally, we consider the possibility of including a volatility smile in our CDS options
model. Since the derivation is general, we may replace the dynamics Equation 21.27 or
21.32 by a different local volatility dynamics

dRPR
a,b(t) ¼ na,b

	
t,RPR

a,b(t)


RPR
a,b(t)d �Wa,b(t)

with n as a suitable deterministic function of time and state. We might choose the constant
elasticity of variance (CEV) dynamics, a displaced diffusion dynamics, an hyperbolic sine
densities mixture dynamics, or a lognormal mixture dynamics. Several tractable choices are
possible already in the local volatility diffusion setup, and one may select a smile dynamics
for the LIBOR or swap model and use it to model R. There are several possible choices. For
example, one may select na,b from Brigo and Mercurio (2003) or Brigo et al. (2003).

TABLE 21.2 Impact of Recovery Rates on the Implied Volatility and on the CDS Forward
Rates for the PR Payoff. Volatilities Are Expressed as Percentages and Rates
as Basis Points

Company REC¼ 20% REC¼ 30% REC¼ 40% REC¼ 50% REC¼ 60%

sPR
a,b :

C1(Ta) 50.02 50.14 50.31 50.54 50.90

C2 54.22 54.42 54.68 55.05 55.62

C3 51.71 51.83 52.01 52.25 52.61

C1(T 0a) 51.13 51.27 51.45 51.71 52.10

RPR
a,b :

C1(Ta) 61.488 61.492 61.497 61.504 61.514

C2 97.303 97.313 97.326 97.346 97.374

C3 62.687 62.691 62.697 62.704 62.716

C1(T 0a) 65.320 65.334 65.352 65.377 65.415

TABLE 21.3 Implied Volatilities sa,b (Left, as Percentages) and Forward CDS Rates Ra,b
PR (Right,

as Basis Points) as the Simply Compounded Rates Are Shifted Uniformly for All
Maturities

Implied Volatilities Forward CDS

Company Shift �0.5% 0 þ0.5% Shift �0.5% 0 þ0.5%
C1(Ta) 49.68 50.31 50.93 61.480 61.497 61.514

C2 54.02 54.68 55.34 97.294 97.326 97.358

C3 51.36 52.01 52.65 62.677 62.697 62.716
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21.7 CDS OPTION PRICING WITH THE SSRD STOCHASTIC
INTENSITY MODEL

In this final section, we move to explicit modeling of the stochastic intensity process l
driving the Cox process whose first jump-time represents the default time t. We consider
the shifted square root diffusion (SSRD) model introduced in Brigo and Alfonsi (2003).

21.7.1 SSRD Intensity and Interest Rates Models

We now describe our assumptions on the short-rate process r and on the intensity l

dynamics. For more details on shifted r diffusion dynamics see Brigo and Mercurio (2001,
2006).

21.7.1.1 CIRþþ Interest-Rate Model
We write the short-rate rt as the sum of a deterministic function w and of a Markovian
process xat (Brigo and Mercurio 2001):

rt ¼ xat þ w(t;a), t � 0 (21:34)

where w depends on the parameter vector a (which includes xa0 ) and is integrable on closed
intervals. Notice that xa0 is indeed one more parameter at our disposal: we are free to select
its value as long as w(0; a)¼ r0� x0. We take as reference model for x the CIR process:

dxat ¼ k(u� xat )dt þ s
ffiffiffiffiffi
xat

p
dWt

TABLE 21.4 Euro Curve for Zero-Coupon Bonds P(0,T) as of March 26, 2004

Date Discount Date Discount Date Discount

26-Mar-04 1 30-Dec-04 0.985454616 28-Mar-13 0.701853679

29-Mar-04 0.999829196 30-Mar-06 0.956335676 31-Mar-14 0.665778313

31-Mar-04 0.9997158 30-Mar-07 0.9261161 30-Mar-15 0.630686684

06-Apr-04 0.999372341 31-Mar-08 0.891575268 30-Mar-16 0.597987523

30-Apr-04 0.99806645 30-Mar-09 0.85486229 30-Mar-17 0.566052224

31-May-04 0.996398755 30-Mar-10 0.816705705 29-Mar-18 0.535085529

30-Jun-04 0.994847843 30-Mar-11 0.777867013 29-Mar-19 0.505632535

30-Sep-04 0.99014189 30-Mar-12 0.739273058

TABLE 21.5 Quoted CDS Rates for the Three Companies in Basis
Points as of March 26, 2004

Maturity Tb (year) R0,b (C1) R0,b (C2) R0,b (C3)

1 30 38.5 27

3 49 72.5 49

5 60 94.5 61

7 69 104.5 73
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where W is an F t-Brownian motion, and the parameter vector is a ¼ (k, u,s, xa0 ), with
k, u,s, and xa0 as positive deterministic constants. The condition 2ku>s2 ensures that the
origin is inaccessible to the reference model, so that the process xa is well defined and
remains positive. As is well known, this process xa features a noncentral chi-square
distribution, and yields an affine term-structure of interest rates. Denote by f instantaneous
forward rates, i.e., f (t,T) ¼ �@ ln P(t,T)=@T . The initial market zero-coupon interest-rate
curve T 7! PM (0, T) is automatically calibrated by our model if we set w(t;a) ¼ wCIR(t;a)
where wCIR(t;a) ¼ f M(0, t)� f CIR(0, t;a),

f CIR(0, t;a) ¼ 2ku(eth � 1)
2hþ (kþ h)(eth � 1)

þ x0
4h2eth

[2hþ (kþ h)(eth � 1)]2

with h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2s2
p

. For restrictions on the a’s that keep r positive see Brigo and
Mercurio (2001, 2006). Moreover, the price at time t of a zero-coupon bond maturing at
time T is

P(t,T) ¼ PM(0,T)A(0, t;a) exp [�B(0, t;a)x0]
PM(0, t)A(0,T ;a) exp [�B(0,T ;a)x0] P

CIR t,T , rt � wCIR(t;a);a
� �

(21:35)

where PCIR(t,T , xt ;a) ¼ E{exp [�Ð Tt xa(u) du]jF t} ¼ A(t,T ;a) exp [�B(t,T ;a)xt] is the
bond price formula for the basic CIR model with the classical expressions for A and B
given for example in Brigo and Mercurio (2006). From P’s the spot LIBOR rate L(t,T) at
t for maturity T, the forward LIBOR rates F(t, T, S) at t for maturity T and expiry S, and all
other rates can be computed as explicit functions of rt.

The cap price formula for the CIRþþ model can be derived in closed form from the
corresponding formula for the basic CIR model. This formula is a function of the
parameters a. One may calibrate the parameters a to cap prices, by inverting the analytical
CIRþþ formula, so that the interest-rate model is calibrated to the initial zero-coupon
curve through w and to the cap market through a, as in Brigo and Mercurio (2001, 2006).

21.7.1.2 CIRþþ Intensity Model
For the intensity model, we adopt a similar approach, in that we set (Brigo and Alfonsi 2003)

lt ¼ ybt þ c(t), t � 0 (21:36)

where c is a positive deterministic function that is integrable on closed intervals. As before,
the parameter vector is b ¼ (k,m, n, yb0 ), with k, m, n, and yb0 as positive deterministic
constants such that 2km> n2, and we take y again of the form

dybt ¼ k(m� ybt ) dt þ n

ffiffiffiffiffi
ybt

q
dZt

where the process Z is an F t-Brownian motion. This ensures that l be strictly positive,
as should be for an intensity process. Notice incidentally that this basically forces
the choice of a tractable y to the CIR model among all one-factor short-rate diffusion
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models. Dependence of c on b and possibly on other parameters will be specified later
when dealing with CDS calibration. We will often use the integrated process, that is
L(t) ¼ Ð t0 ls ds, and also Yb(t) ¼ Ð t0 ybs ds and C(t) ¼ Ð t0 c(s) ds. We assume the short
rate r and the intensity l processes to be correlated, by assuming the driving Brownian
motions W and Z to be instantaneously correlated according to dWtdZt¼ r dt.

21.7.2 Joint SSRD Model Calibration to CDS: Separability

The SSRD model is characterized by the terms P ¼ (a,w,b,c, r) and can be seen as an
extension of the CIRþþ model for interest rates. As we explained before, w is chosen to fit
exactly the default-free zero-coupon bonds and a is then selected to have the better
approximation of the cap prices. This procedure for the CIRþþ interest-rate part of the
model r still remains valid in presence of a correlated l since the products used for that
calibration do not depend on the dynamics of l and of (b,r,c).

Once a and w are fixed, we would like to fit the three remaining terms to the credit
derivatives market. To do so, we need first to calculate the price of CDSs in the SSRD
model. We find easily, through iterated expectations and the definition of t, that (see Brigo
and Alfonsi (2003) for the details)

CDS(0,Ta,Tb,R,LGD;P) ¼ R
ðTb

Ta

E exp �
ðu
0
(rs þ ls) ds

� �
lu

� �
[u� Tb(u)�1] du

þ
Xb
i¼aþ1

aiRE exp �
ðTi

0
(rs þ ls) ds

� �� �

� LGD

ðTb

Ta

E exp �
ðu
0
(rs þ ls) ds

� �
lu

� �
du (21:37)

Weplan to usec to calibrate exactly themarket CDS quotes (given forTa¼ 0 andTb spanning
a set of increasing final maturities). More precisely, we want to find, for each (b,r), a function
ca(�;b,r) thatmakes the CDS present values null,CDS 0, 0,Tb,RMID

0,b (0), LGD, P� � ¼ 0. This
could be done if we were able to calculate analytically the above expectations in general, taking
as in the deterministic case a specific shape for ca. Since these expectations are known only
when r¼ 0, we first restrict ourselves to calibrate the subclass of models with r¼ 0. Interest
rates and default intensities are independent with r¼ 0. By switching expectation and
differentiation with respect to u and Fubini’s theorem, it is easy to see that the price of the
CDS satisfies the deterministic case Equation 21.9 when replacing terms such as exp(G(t)�
G(u)) by E{ exp L(t)� L(u)ð Þ} (with u � t). Therefore, at time t¼ 0, for any b we can
calibrate automatically our model to the CDS by choosing c such that

e�G
mkt(u) ¼ E e�L(u)

	 
 ¼ e�C(u)
E e�Y

b(u)
h i

¼ e�C(u)PCIR(0, u, y0;b)

The remarkable point is that c does not depend on a (the zero-coupon bonds have been
calibrated exactly earlier), so that this calibration to CDS can be done independently of the
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interest-rate calibration. This separability is of practical interest. We thus denote by c(.; b)
the obtained c function, given by

c(u; b) ¼ gmkt(u)þ d

du
ln E e�Y

b(u)
h i �

¼ gmkt(u)þ d

du
ln PCIR(0, u, y0;b)
� �

(21:38)

The shape of c is partly implicitly specified by our choice for gmkt (piecewise linear or
otherwise).

So far we have described an analytical and exact calibration of the SSRD model in case
r¼ 0. However, numerical tests in Brigo and Alfonsi (2003) show that r has practically a
negligible impact on CDS prices computed under the SSRD model. Therefore, we may
assume r¼ 0, even if this is not true, and calibrate the model with the above procedure.
The error induced by this approximation will be negligible.

Now that CDSs are automatically calibrated, we would like to calibrate the parameters b
to some options on the credit derivatives market in the same way as a is used to fit cap
prices. To do this, we need a way to compute CDS options prices in the SSRD model. We
will see a formula where this is possible under deterministic r (and stochastic CIRþþ
CDS-calibrated l), and provide some hints on possible solutions in presence of stochastic r
and nonzero r as well.

21.7.3 CDS Options Pricing with the Calibrated CIRþþ l Model

We developed this formula by an initial hint of Ouyang (2003). Consider the option to
enter a CDS at a future time Ta> 0, Ta<Tb, receiving protection LGD against default up
to time Tb, in exchange for a fixed rate K. We have that the payoff at Ta reads, as we have
seen earlier, as

Pa : ¼ PCallCDSa,b(Ta) ¼ {CDS Ta,Ta,Tb,Ra,b(Ta),LGDð Þ � CDS(Ta,Ta,Tb,K ,LGD)}
þ

¼ [�CDS(Ta,Ta,Tb,K ,LGD)]
þ

¼ 1{t>Ta}

 
E

(
� D(Ta, t)[t � Tb(t)�1]K1{t<Tb}

�
Xb
i¼aþ1

D(Ta,Ti)aiK1{t>Ti} þ 1{t<Tb}D(Ta, t)LGDjGTa

)!þ

¼ 1{t>Ta}

 
� K

ðTb

Ta

E exp �
ðu
Ta

(rs þ ls) ds

� �
lujFTa

� �
[u� Tb(u)�1] du

� K
Xb
i¼aþ1

aiE exp �
ðTi

Ta

(rs þ ls)ds

� �
jF Ta

� �

þ LGD

ðTb

Ta

E exp �
ðu
Ta

(rs þ ls) ds

� �
lujFTa

� �
du

!þ
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If we take deterministic interest rates r this reads

Pa ¼ 1{t>Ta}

(
�K

ðTb

Ta

E exp �
ðu
Ta

ls ds

� �
lujFTa

� �
P(Ta, u)[u� Tb(u)�1] du

� K
Xb
i¼aþ1

aiP(Ta,Ti)E exp �
ðTi

Ta

ls ds

� �
jFTa

� �

þ LGD

ðTb

Ta

P(Ta, u)E exp �
ðu
Ta

ls ds

� �
lujFTa

� �
du

)þ

Define

H
�
t,T ; ybt

�
:¼ E exp �

ðT
t
ls ds

� �
jF t

� �

and notice that

E exp �
ðT
t
ls ds

� �
lT jF t

� �
¼ � d

dT
E exp �

ðT
t
ls ds

� �
jF t

� �
¼ � d

dT
H(t,T)

Write then

Pa ¼ 1{t>Ta}

(
K
ðTb

Ta

P(Ta, u)[u� Tb(u)�1]
d

du
H(Ta, u) du

� K
Xb
i¼aþ1

aiP(Ta,Ti)H(Ta,Ti)� LGD

ðTb

Ta

P(Ta, u)
d

du
H(Ta, u) du

)þ

Note that the first two summations add up to a positive quantity, since they are expect-
ations of positive terms. By integrating by parts in the first and third integral, we obtain, by
defining q(u) :¼ �dP(Ta, u)=du,

Pa ¼ 1{t>Ta}

 
LGD�

ðTb

Ta

{LGDq(u)þ KP Ta,Tb(u)
� �

dTb(u) (u)� K[u� Tb(u)�1]q(u)

� KP Ta,Tb(u)
� �

dTb(u) (u)þ LGDdTb(u)P(Ta, u)þ K P(Ta, u)}H(Ta, u) du

!þ

where dx denotes the Dirac delta function centered at x. Define

h(u) :¼ LGDq(u)� K[u� Tb(u)�1]q(u)þ LGDdTb(u)P(Ta, u)þ KP(Ta, u)

so that

Pa ¼ 1{t>Ta} LGD�
ðTb

Ta

h(u)H
�
Ta, u; y

b
Ta

�
du

� �þ
(21:39)
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It is easy to check, by remembering the signs of the terms of which the above coefficients
are expectations, that

h(u) > 0 for all u

Now we look for a term y* such thatðTb

Ta

h(u)H(Ta, u; y*) du ¼ LGD (21:40)

It is easy to see that in general H(t, T; y) is decreasing in y for all t, T. This equation can
be solved, since h(u) is known and deterministic and since H is given in terms of the CIR
bond price formula. Furthermore, either a solution exists or the option valuation is not
necessary. Indeed, consider first the limit of the left-hand side for y*!1. We have

lim
y*!1

ðTb

Ta

h(u)H(Ta, u; y*) du ¼ 0 < LGD

which shows that for y* large enough we always go below the value LGD. Then consider
the limit of the left-hand side for y*! 0:

lim
y*!0þ

ðTb

Ta

h(u)H(Ta, u; y*) du ¼ LGDþ
ðTb

Ta


LGDP(Ta, u)

@H(Ta, u; 0)
@u

þ {K[u� Tb(u)�1]q(u)þ KP(Ta, u)}H(Ta, u; 0)
�
du

Now if the integral in the last expression is positive then we have that the limit is larger
than LGD and by continuity and monotonicity there is always a solution y* giving LGD. If
instead the integral in the last expression is negative, then the limit is smaller than LGD
and we have that Equation 21.40 admits no solution, in that its left-hand side is always
smaller than the right-hand side. However, this implies in turn that the expression inside
square brackets in the payoff Equation 21.39 is always positive and thus the contract loses
its optionality and can be valued by taking the expectation without positive part, giving as
option price simply �CDS (0, Ta, Tb, K, LGD)> 0, the opposite of a forward start CDS. In
case y* exists, instead, we may rewrite our discounted payoff as

Pa ¼ 1{t>Ta}

ðTb

Ta

h(u) H(Ta, u; y*)� H
�
Ta, u; y

b
Ta

�h i
du

� �þ

Since H(t, T; y) is decreasing in y for all t, T, all terms
	
H(Ta, u; y*)� H

�
Ta, u; y

b
Ta

�

have

the same sign, which will be positive if ybTa
> y* or negative otherwise. Since all such terms

have the same sign, we may write

Pa :¼ 1{t>Ta}Qa ¼ 1{t>Ta}

ðTb

Ta

h(u)
	
H(Ta, u; y*)�H

�
Ta, u; y

b
Ta

�
þ
du

� �
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Now compute the price as

E[D(0,Ta)Pa] ¼ P(0,Ta)E(1{t>Ta}Qa) ¼ P(0,Ta)E
h
exp


�
ðTa

0
ls ds

�
Qa

i

¼
ðTb

Ta

h(u)E
n
exp


�
ðTa

0
ls ds

�h
H

Ta, u; y*

�
� H


Ta, u; y

b
Ta

�iþo
du

From a structural point of view, H(Ta, u; y
b
Ta
) are like zero-coupon bond prices in a CIRþþ

model with short-term interest-rate l, for maturity Ta on bonds maturing at u. Thus, each
term in the summation is h(u) times a zero-coupon bond like call option with strike
Ku* ¼ H(Ta, u; y*). A formula for such options is given for example in Equation 3.78 p. 94
of Brigo and Mercurio (2001).

If one maintains stochastic interest rates with possibly non-null r, then a possibility is
to use the Gaussian mapped processes xV and yV introduced in Brigo and Alfonsi (2003)
and to reason as for pricing swaptions with the G2þþ model through Jamshidian’s
decomposition and one-dimensional Gaussian numerical integration, along the lines of
the procedures in Brigo and Mercurio (2006). Clearly the resulting formula has to be tested
against Monte Carlo simulation.

Finally, in the general SSRD model, one may compute the CDS option price by means
of Monte Carlo simulations, equate this Monte Carlo price to Equation 21.28 applied to the
same CDS option at t¼ 0, and solve in sa,b. This sa,b is then the implied volatility
corresponding to the SSRD pricing model. The first numerical results we found in a
number of cases point out the patterns of sa,b in terms of SSRD model parameters that
are listed in Table 21.6. For more details see Brigo and Cousot (2006). The patterns are
reasonable. When k increases (all other things being equal) the time-homogeneous core of
the stochastic intensity has a higher speed of mean reversion and then randomness reduces
more quickly in time, so that the implied volatility reduces. When m increases, the
asymptotic mean of the homogeneous part of the intensity increases, so that we have
higher intensity and thus, since instantaneous volatility is proportional to the increasedffiffiffi
y
p

, more randomness. When n increases, clearly randomness of l increases so that it is
natural for the implied volatility to increase. We also find that increasing y0 (the initial
point of the time-homogeneous part of the intensity) increases the implied volatility, while
increasing the correlation r decreases the implied volatility.

21.8 CONCLUSIONS AND FURTHER RESEARCH
We considered several CDS payoff formulations. For some of them, we established
equivalence with approximated defaultable floaters. We explained the CDS market quoting
mechanisms and considered CDS pricing in an intensity framework. We derived a market

TABLE 21.6 Implied Volatility Patterns in the CIRþþ Model

Parameter k " m " n " y0 " r "
s
imp
a,b # " " " #
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model for CDS options, and thus for callable defaultable floaters, given the above equiva-
lence. We hinted at possible CDS option smile models and at a comparison of the market
models with classic stochastic intensity models, such as for example the CDS-calibrated
CIRþþ model in Brigo and Alfonsi (2003), a comparison that is under more detailed
investigation in Brigo and Cousot (2006). We also gave a CDS option formula under
CIRþþ stochastic intensity based on Jamshidian’s decomposition. Moreover, further
investigation on the possibility to link different CDS forward rate models, based on a
fundamental set of candidate liquid CDS rates, is to be investigated, starting from the
observed parallels with the LIBOR versus swap market models in the default-free interest
rates derivatives setting. As a beginning, we provide in Brigo (2006) a first study of
constant maturity CDS pricing under said parallels, where we also provide the explicit
vector dynamics for all CDS rates under a single pricing measure, a vector dynamics that
we have briefly recalled also here.
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22.1 INTRODUCTION
In recent years, investors of credit markets have witnessed a rapid growth of liquidity in
credit default swaps (CDS), options on the CDS (hereafter swaptions), tranches of collat-
eralized debt obligations (CDO), and, more recently, exotic portfolio credit derivatives
like bespoke single-tranche CDOs and CDOs of CDOs (so-called CDO2). Evolving with
the markets are the various pricing theories. For the pricing of single-name swaptions,
market practitioners and a series of researchers, including Schönbucher (2000), Arvanitis
and Gregory (2001), Jamshidian (2002), and Hull and White (2003), among others, have
led to the adoption of the Black’s formula as the market standard. For the pricing of CDO
tranches, where the modeling of dependent defaults is essential, there are survival-time
copula models represented by Li (2000), Gregory and Laurent (2003), Andersen, Sidenius,
and Basu (2003), and Giesecke (2003); and structural models represented by Zhou (2001)
and Hull et al. (2005). The Gaussian copula model formulated by Gregory and Laurent
(2003) and later improved by Andersen et al. (2003) is quite well received and has also
become the market standard. Despite the successes, there are still major problems remain-
ing. A fundamental problem is, from modeling point of view, the detachment of the single-
name credit derivatives market from the portfolio credit derivatives market, as there is no
unified pricing framework for both markets yet. As a result, the notions of consistent
pricing and hedging across the two markets are difficult to define. Although the Gaussian
copula model can take the default probabilities estimated from the CDS markets as inputs,
it has no capacity to utilize either spread dynamics or spread correlations observed in the
CDS markets for CDO pricing.

There are also limitations with the popular portfolio credit derivatives models men-
tioned above. One of the major drawbacks of the survival-time copula approach for CDOs
is that it does not constitute a proper dynamic model. The implication is that although this
kind of models can be used to price CDO tranches, options on spread, of either single
name or portfolio, cannot be priced under such models (e.g., exponential-copula model of
Giesecke [2003]). With the Gaussian copula model, the market standard, default-time
correlations are injected after the default times are mapped into normal random variables.
There is, however, no economic intuition on how to input the correlations for these normal
random variables. This problem is mitigated in the structural model of Hull et al. (2005),
where a default is triggered when the value of a firm breaches a barrier (Black and Cox,
1976). However, structural models are difficult to use, as a number of model parameters are
needed to be specified, including drifts, volatility, and correlations of the firm values, as
well as default barriers. Given that firm values are not observable, a proper specification of
the model is a daunting task by itself. In addition, firm-value based structural models do
not naturally take the price information like credit spreads and implied spread volatilities
from the single-name credit derivatives markets as inputs, hence the structural models do
not ensure price consistency across the single-name and portfolio credit markets.

In this chapter, we intend to deliver a unified framework for the pricing of CDS options
and CDOs. Motivated by the use of the Black’s formula for the single-name swaptions, we
developed a market model with forward credit spreads. Unlike usual structural models
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with firm values, the state variables of our market model are observable quantities. For the
pricing of single-name credit derivatives, the new model bears high analogy to the LIBOR
market model. In a very natural way, such a model can be applied to pricing CDO
tranches, using Monte Carlo simulations. Dynamically evolving CDS rates, CDS-rate
correlations, and implied swaption volatilities, which are all observable in credit markets,
are all utilized for pricing the codependence of defaults of credit portfolios. In addition,
the new model also has the capacity to price default-time correlations, through using the
technique of survival-time copulas.

Our dynamic model is developed under the notion of arbitrage pricing. We define risky
zero-coupon bonds for a credit name as cash flows backed by the coupons of corporate
bonds. With such a definition, risky zero-coupon bonds, the basic building blocks of
our model, become tradable. Consequently, forward spreads can be replicated with
risky bonds, and the hedging of CDS and CDS options can then be readily defined.
If liquidity and other market insufficiency are ignored, we can calibrate the market
model to risky bonds and spread derivatives (CDS and CDS options), and thus excludes
arbitrage opportunities across these two markets. Survival-time copula, in principle, is the
only input (for the model) that is unobservable in the credit market. When the volatilities
of forward spreads of all names are set to zero, our market model reduces to the popular
Gaussian copula model (Li, 2000; Gregory and Laurent, 2003). Hence, our model can be
regarded as a dynamic extension of the standard model in current markets.

This chapter is organized as follows. First, Sections 22.2 through 22.7 concern with the
single-name credit derivatives. In Section 22.2, we present the definition of risky zero-
coupon bonds and explain the intuition behind this definition. In Section 22.3 we define
risky forward rates and forward spreads. In Section 22.4 we deliver swap-rate formulae for
two types of credit swaps. Section 22.5 is devoted to the calculation of par CDS rates of both
floating-rate and fixed-rate bonds. In Section 22.6 we demonstrate the estimation of implied
survival rates and implied recovery rates. In Section 22.7 we present the market model for
single-name swaptions. In Sections 22.2 through 22.7, we have laid down the foundation
for the pricing of portfolio credit derivatives. In Section 22.8, we introduce CDOs, describe
the Monte Carlo method for CDO pricing under the market model, and demonstrate the
capacity of the model in accommodating spread correlations and default-time correlations.
Pricing examples with standardized CDOs are presented. Finally in Section 22.9 we
conclude. Most technical details are put in the Appendix at the end of the chapter.

22.2 PRICING OF RISKY BONDS: A NEW PERSPECTIVE
Our model is set in the filtered probability space, (V, (F t)t�0, Q), where the filtration
satisfies the usual conditions of right-continuity and completeness, and Q is the risk-
neutral measure. All stochastic processes are adapted to (F t)t�0. Without loss of generality,
we model the default time as the first jump time of a Cox process with an intensity (or
hazard rate) process, l(t). For technical convenience and clarity of presentation, we assume
independence between credit spreads and U.S. Treasury yields, independence between
hazard rate and the recovery rate of the credit (with the understanding that this may be
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against empirical findings [Duffee, 1998]). We also assume a single seniority across all
bonds under the same credit name.

We begin with bond pricing. A defaultable coupon bond pays regular coupons until a
default occurs or the maturity is reached. In case of a default, the market convention is
that a creditor will receive a final payment that consists of a fraction of both principal
and accrued interest. The schedule of the final payment varies. Without loss of generality,
we assume that (1) the final payment is made at the next coupon date following default and
(2) the last coupon accrues until the final payment date.* Let c be the coupon rate of a risky
bond with tenory [Tm,Tn], t be the default time, and Rt be the recovery rate at the default
time. Then, the cash flow at Tjþ1, m � j � n� 1 can be expressed as

DTc1{t>Tjþ1} þ Rt(1þ DTc)1{Tj<t�Tjþ1}

where DT¼ 1=(coupon frequency) and 1t2V is the indicator function that equals to 1 if
t2V, or 0 if otherwise. According to the arbitrage pricing theory (APT) (Harrison
and Pliska, 1981), the bond is then priced as the risk-neutral expectation of discounted
cash flows:

Bc(t) ¼
Xn�1
j¼m

EQ
t

B(t)
B(Tjþ1)

[DTjc1{t>Tjþ1} þ Rt(1þ DTjc)1{Tj<t�Tjþ1}]

� �

þ EQ
t

B(t)
B(Tn)

1{t>Tn}

� �

¼
Xn�1
j¼m

Pjþ1(t)DTjcE
Qjþ1
t 1{t>Tjþ1} þ Rt1{Tj<t�Tjþ1}

� �

þ
Xn�1
j¼m

Pjþ1(t)E
Qjþ1
t Rt1{Tj<t�Tjþ1}

� �þ Pn(t)E
Qn
t 1{t>Tn}ð Þ (22:1)

where, in addition,
B(t) is the money market account of value exp (

R t
0 rs ds), where rt is the risk-free spot rate

Pj(t) is the time-t price of the risk-free zero-coupon bond of $1 notional value maturing
at Tj, equals to EQ

t [B(t)=B(Tj)]

DTj is Tjþ1�Tj, the length of the coupon interval (Tj, Tjþ1]
Qj is the Tj forward measure
EQ
t [ � ] is the expectation under Q conditional on F t

The expression for payment upon a default, Rt(1þ DTjc), conforms well with real-world
practice: the compensation to the creditor is determined by the outstanding principal and

* The protection payment made only at a coupon date is a harmless idealization. There are other default payment
schedules as well. For example, the last payment may occur at tþ90 days. Most payment schedules can be
accommodated by an adjustment of the recovery rate.
y The coupon dates are {Tj}

n
j¼mþ 1. The bond is said to be forward starting if m> 0.
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the accrued interest of the defaulted bond, which are treated as in the same asset class, and
future coupons are not taken into consideration (Schönbucher, 2004). The second line of
Equation 22.1 results from the changes of measures, followed by a regrouping of the PVs of
the coupons and the principal. The payout at time Tjþ1 is priced by using the Tjþ1-forward
measure.

Parallel to the U.S. Treasury market, we introduce here the C-strip and the P-strip of
risky zero-coupon bonds that are backed separately by coupons and principals. It is not
hard to see that the C-strip zero-coupon bonds should be defined as

�Pj(t) ¼ EQ
t

B(t)
B(Tj)

1{t>Tj} þ Rt1{Tj�1<t�Tj}

� �� �

¼ Pj(t)E
Qj

t 1{t>Tj} þ Rt1{Tj�1<t�Tj}

� � 4¼ Pj(t)Dj(t) (22:2)

while the P-strip zero-coupon bonds are defined as in the last line of Equation 22.1. Here in
Equation 22.2, the 4¼ means that a new variable Dj(t) is defined through the equation.
Unlike their Treasury counterparts, the risky zero-coupon bonds of the two strips have
apparently different cash-flow structures. Given only the prices of risky coupon bonds, we
cannot identify the PVs of zero-coupon bonds in either strips unless additional informa-
tion is provided or additional assumptions are made.

In principle, zero-coupon bonds of the two strips can be generated through marketing
the cash flows of the coupons and the principals separately. In reality, however, risky zero-
coupon bonds are not traded and, as a result, direct price information is not available (with
perhaps occasional exceptions in Japanese market). Nonetheless, the prices of risky zero-
coupon bonds of both strips can be backed out from associated coupon bond prices and
additional information like the CDS rates. The notion of C-strip zero-coupon bonds, in
particular, is important for our model construction.

22.3 FORWARD SPREADS
To understand the product nature of CDS, we need to clarify risky forward rates intro-
duced by Schönbucher (2000) and Brigo (2005). A risky forward rate should be defined as
the fair rate on a defaultable loan for a future period of time, say, (Tj,Tjþ1], that is
collateralized by the coupon flows of defaultable bonds of an entity. If a default of the
bond occurs before Tj, the contract ceases to exist. If a default occurs between Tj and Tjþ1,
then a recovery value proportional to the recovery rate of the bonds applies. Assume the
notional of the loan to be $1. According to APT, the risky forward rate, denoted as f̂j(t),
must nullify the PV of the cash flows of the risky loan:

0 ¼ EQ
t

B(t)
B(Tj)

1{t>Tj}

� �
� EQ

t
B(t)

B(Tjþ1)
[1þ DTj f̂j(t)] 1{t>Tjþ1} þ Rt1{Tj<t<Tjþ1}

� �� �

¼ Pj(t)E
Qj

t (1{t>Tj})� Pjþ1(t)[1þ DTj f̂j(t)]Djþ1(t)

4¼ Pj(t)Lj(t)� Pjþ1(t)[1þ DTj f̂j(t)]Djþ1(t) (22:3)
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where Lj (t) is the Qj probability of survival until Tj and it is equal to the Q probability of
survival until Tj due to the independence between U.S. Treasury yields and the default
probability. Equation 22.3 gives rise to

f̂j(t) ¼ 1
DTj

Pj(t)

Pjþ1(t)
Lj(t)

Djþ1(t)
� 1

� �

¼ 1
DTj

�Pj(t)
�Pjþ1(t)

Lj(t)

Dj(t)
� 1

� �
(22:4)

The two lines in the equation above lead to two alternative expressions of f̂j(t). The first
expression is in terms of the LIBOR rates,

f̂j(t) ¼ fj(t)þ
1þ DTjfj(t)

DTj

E
Qjþ1
t [(1� Rt)1{Tj<t�Tjþ1}]

Djþ1(t)

( )
(22:5)

where fj(t) is the default-free forward rate for the period (Tj, Tjþ1] seen at time t, defined by

fj(t) ¼ 1
DTj

Pj(t)

Pjþ1(t)
� 1

� �
, t � Tj

The second expression is in terms of defaultable effective forward rate (Schönbucher, 2000),

f̂j(t) ¼ �fj(t)� 1þ DTj
�fj(t)

DTj

E
Qj

t Rt1{Tj�1<t�Tj}

� �
Dj(t)

" #
(22:6)

where �fj(t) is defined by

�fj(t) ¼ 1
DTj

�Pj(t)
�Pjþ1(t)

� 1

� �
, t � Tj

Note that �fj(t) should be understood as the effective rate of return over (Tj, Tjþ1] provided
that no default occurs until Tjþ1. It is pointed out in Brigo (2004) that �fj(t), in general, does
not link directly to a financial contract. Putting Equations 22.5 and 22.6 together, we have
the order

fj(t) � f̂j(t) � �fj(t) (22:7)

Note that f̂j(t) achieves the upper bound and the lower bound when Rt¼ 0 and Rt¼ 1,
respectively. The bounds on f̂j(t) should be regarded as no-arbitrage constraints.

Here, we reiterate the insight of nonseparability pointed out by Duffie and Singleton
(1999), which means that the hazard rate and the loss rate cannot be determined from
bond prices alone. In view of Equation 22.4, we can say that complete term structures of
the survival probability and the recovery rate, Lj(t) and E

Q
t [RtjTj�1 < t � Tj], j ¼ 1, 2, . . . ,

can be uniquely determined from the term structures of f̂j(t) and �fj(t), which in fact, as we

Wagner/Credit Risk: Models, Derivatives, and Management C9942_C022 Final Proof page 432 7.4.2008 7:50pm Compositor Name: VBalamugundan

432 & Credit Risk: Models, Derivatives, and Management



shall see, are informatively equivalent to the term structures of risky-bond yields and CDS
rates.

Intuitively, a forward spread is defined as the difference between a risky forward rate
and its corresponding risk-free forward rate:

Sj(t) ¼ f̂j(t)� fj(t), j ¼ 1, 2, . . .

From Equation 22.5, we obtain

Sj(t) ¼ [1þ DTjfj(t)]
E
Qjþ1
t [(1� Rt)1{Tj<t�Tjþ1}]

DTjDjþ1(t)
4¼ [1þ DTj fj(t)]Hj(t) (22:8)

According to its definition, Hj(t) can be interpreted as the expected loss per risky dollar
over (Tj, Tjþ1]. Equation 22.8 can be rewritten as

1þ DTj f̂j(t) ¼ [1þ DTj fj(t)] [1þ DTjHj(t)], j ¼ 1, 2, . . .

By comparing definitions, we can say that Hj(t) is the discrete-tenor version of the mean
loss rate introduced in Duffie and Singleton (1999).

22.4 TWO KINDS OF DEFAULT PROTECTION SWAPS
A default protection swap consists of a fee leg (or premium leg) and a protection leg. Before
the default of the reference entity, the protection buyer pays the protection seller a string of
fees at regular time intervals. Upon default, the protection buyer either delivers the bond to
the protection seller in exchange for par (so-called physical delivery), or receives from the
protection seller a payment that is equal to the loss incurred (cash settlement). In this
section, we consider two kinds of swaps: swaps for fixed-rate bonds and swaps for floating-
rate bonds. Without loss of generality, we assume the notional value of the bonds to be $1,
and the coupon rate to be c, and LIBOR, fj(Tj), respectively. For the swap on the fixed-rate
bond, the protection payment is (1�Rt)(1þDTc), while for the swap on the floating-
rate bond, the protection payment is (1�Rt)[1þDTj fj(Tj)]. The payments simply reflect
the loss to the bond holders in case of a default.* Note that the swaps of the second kind
depend only on the default status of the reference entity.

We proceed to the computation of fair default swap rates. Let us denote a swap rate by �s.
In the CDS markets, the contractual cash flows of the fee leg (for the protection of $1
notional) are typically

�sDTj 1{t>Tjþ1} þ
(t � Tj)

DTj
1{Tj<t�Tjþ1}

� �
, j ¼ 1, 2, . . .

i.e., in case of a default between Tj and Tjþ1, the protection buyer makes the final payment
that is proportional to the time elapsed between the last fee payment and the default.

* The quantity [1þDTjfj (Tj)] can be regarded as a constant dollar seen at time Tj.
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From the financial engineering point of view, such a fee specification is troubling because
the cash flow cannot be synthesized at the initiation of the swap contract. To make the
swap contract replicable, we propose a slight modification to the fee leg: we let the cash
flows be generated from the payouts of risky zero-coupon bonds:

�sDTj 1{t>Tjþ1} þ Rt1{Tj<t�Tjþ1}
� �

This new definition only changes the last piece of fee payment after default. The value of
the fee leg is now

PVfee ¼ �s
Xn�1
j¼m

DTjPjþ1(t)E
Qjþ1
t 1{t>Tjþ1} þ Rt1{Tj<t�Tjþ1}

� �

¼ �s
Xn�1
j¼m

DTj�Pjþ1(t) (22:9)

which is now a tradable annuity, analogous to the fixed leg of default-free swaps.
For a swap of the first kind, the cash flow of the protection seller can be written as

Vprot ¼ (1þ DTc)
Xn�1
j¼m

(1� Rt)1{Tj<t�Tjþ1}

The PV of the protection payment is then

PVprot ¼ (1þ DTc)
Xn�1
j¼m

Pjþ1(t)E
Qjþ1
t [(1� Rt)1{Tj<t�Tjþ1}] (22:10)

By equating the fee leg to the protection leg and making use of Equation 22.8, we obtain

�s1 ¼ (1þ DTc)

Pn�1
j¼m

Pjþ1(t)E
Qjþ1
t [(1� Rt)1{Tj<t�Tjþ1}]

Pn�1
j¼m

DTj�Pjþ1(t)

¼ (1þ DTc)
Xn�1
j¼m

�ajHj(t) (22:11)

where

�aj(t) ¼ DTj�Pjþ1(t)Pn�1
j¼m

DTj�Pjþ1(t)
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Note that the case c¼ 0 corresponds to a prototypical default swap, which only depends on
the default status of the reference entity and dominates the liquidity of single-name credit
derivatives markets.

For swaps of the second kind, the fair swap rate can be derived analogously as

�s2 ¼

Pn�1
j¼m

Pjþ1(t)[1þ DTj fj(t)]E
Qjþ1
t [(1� Rt)1{Tj<t�Tjþ1}]

Pn�1
j¼m

DTj�Pjþ1(t)
¼

Xn�1
j¼m

�ajSj(t) (22:12)

Here, we have made use of the independence between credit spreads and the U.S. Treasury
yields, as well as the martingale property of the forward rate: E

Qjþ1
t [ fj(Tj)] ¼ fj(t). Note that

a one-period CDS rate reduces to a risky forward rate.
Compared with the existing CDS rate formula (Schönbucher, 2004; Brigo, 2005), our

definition simply states that a CDS rate equal to the weighted average of credit spreads,
which does not require assumption on or explicit input of the recovery rate, and is
analogous to the swap-rate formula in LIBOR markets.

22.5 PAR CREDIT DEFAULT SWAP RATES
A par CDS rate is a spread, when added to a corresponding par rate of default-free bond,
yields the coupon rate of a risky par bond. We derive the par CDS rates for both floating-
rate bonds and fixed-rate bonds.

Typically, a defaultable floating-rate bond (which is also called a defaultable floater)
pays LIBOR plus a credit spread, denoted by sF, until a default occurs, when a holder may
obtain some recovered value of both principal and coupon. Hence, the cash flow of a
defaultable floater at Tjþ1 can be written as

CFjþ1 ¼ {1þ DTj [ fi(Tj)þ sF]}(1{t>Tjþ1} þ R1{Tj<t�Tjþ1})� 1{t>Tjþ1,jþ1<n}

The question here is: if the floater is to be priced at par, what should be the fair spread rate
sF? To answer this question, we imagine that the holder of the floater is also ‘‘long’’ a
protection swap of the second kind. Then, his or her cash flow at time Tjþ1 is

CFjþ1 ¼ DTj fi(Tj)1{t>Tj} þ 1{Tj<t�Tjþ1} þ 1{t>Tn,jþ1¼n}
þ (sF ��s2)(1{t>Tj} þ R1{Tj�1<t�Tj}) (22:13)

The first line in Equation 22.13 gives the cash flow of a rolling-forward CD that lasts until
Tjt ^ Tn, where Tjt is the first fixing date after default, and such cash flows represent those
of a par bond (that matures at Tjt ^ Tn). It then becomes clear that, for the defaultable
floater to be priced at par, there must be

sF ¼ �s2

i.e., the par default swap rate equals nothing else but the credit spread.
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Given the clear relationship between a defaultable floater and a CDS, we come up with
the following hedging strategy for swaps of the second kind: once such a swap is written,
the hedger goes ‘‘long’’ a default-free floater and goes ‘‘short’’ a defaultable floater, both at
par. Then, the net cash flow at any fixing date is zero.

Next, we derive the par CDS rate for a corresponding fixed-rate bond with tenor
[Tm,Tn]. We let sX denote the par CDS rate for the fixed-rate bond. Then, sX can be
determined by equating the PVs of fixed-rate and floating-rate par bonds:

[Rm,n(t)þ sX]
Xn�1
j¼m

DTj�Pjþ1(t) ¼
Xn�1
j¼m

DTj�Pjþ1(t)[ fj(t)þ�s2]

¼
Xn�1
j¼m

DTj�Pjþ1(t) f̂j(t)

where the PVs of the principals have been canceled, and Rm,n(t) represents the corre-
sponding swap rate (i.e., par rate) in LIBOR markets, defined by

Rm,n(t) ¼
Xn�1
j¼m

ajfj(t), aj ¼
DTjPjþ1(t)Pn�1

k¼m
DTkPkþ1(t)

It follows that

sX ¼
Xn�1
j¼m

�aj f̂j(t)� Rm,n(t)

¼ �s2 þ
Xn�1
j¼m

(�aj � aj)fj(t)

Hence, the so-called credit spread is different for floating-rate bonds and fixed-rate bonds
and a par CDS rate for fixed-rate bonds is close to �s2 instead of �s1 (when c¼ 0).

It can be verified that the short position of the default swap on the risky coupon bond
with coupon rate c can be hedged by the following:

1. Being ‘‘short’’ the risky coupon bond

2. Being ‘‘long’’ a risk-free floater at par

3. Being ‘‘long’’ [c� �Rm,n(t)] units of the risky annuity,
Pn�1

j¼m DTj�Pjþ1(t)

Here, �Rm,n(t)¼Rm,n(t)þ sX is the risky par yield.

22.6 IMPLIED SURVIVAL CURVE AND RECOVERY-RATE CURVE
In reality, neither { f̂ j(t)} or {�f j(t)} is directly observable. For CDS pricing and other applica-
tions, it is more convenient to make use of the term structures of forward hazard rate
and forward recovery rate. We define the forward hazard rate for (Tj,Tjþ1] seen at time t by
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lj (t) ¼ 1
DTj

Lj(t)

Ljþ1(t)
� 1

� �
for t � Tj (22:14)

and the forward recovery rate for the same period by

Rj(t) ¼ EQ
t [RtjTj < t < Tjþ1] for t � Tj and j � h(t) (22:15)

where h(t) is smallest integer such that Th(t) � t. The survival probability, Lj(t), relates to
the hazard rates by

Lj(t) ¼ [1þ (Th(t) � t)lh(t)�1(Th(t)�1)]�1
Yj�1

k¼h(t)
(1þ DTklk)

�1 (22:16)

The standard market practice is to back out the survival probabilities from CDS of
various maturities, assuming a constant recovery rate (of 40%). Instead of doing the same
thing with our model, we consider backing out simultaneously the implied hazard rates
and recovery rates from CDSs and, in addition, corporate bond prices. We choose
Citigroup as the credit name for a demonstration, as there is relatively richer credit
information on this company. A snapshot of market quotations is provided in Tables
22.1 and 22.2, where the currency is U.S. dollars, the CDS rates are for c¼ 0, and the bond
prices are ‘‘clean’’. To build the risk-free discount curve in U.S. dollars, we have used
LIBOR rates up to 2 years and swap rates from 2 to 20 years. The interest-rate information
is provided in Table 22.3. Figure 22.1 presents the forward-rate curve constructed using the
yield data in Table 22.3.

We determine {lj,Rj} through reproducing the CDS rates and the bond prices of
Citigroup by the swap-rate formula (Equation 22.11) and the bond formula (Equation
22.1), respectively. Because the problem is under determined, we have adopted cubic-spline
and linear interpolation for the hazard rates and the recovery rates, respectively, and
imposed additional smoothness regularization. In our search algorithm, we have taken
various initial guesses with lj¼ 0 and 0:0 � Rj � 0:6, 8j. Often, but not always, the search
ends up in one of the two solutions, depicted in Figures 22.2 through 22.4, depending on
the closeness of the initial recovery rate to either R0¼ 0.0 or R0¼ 0.4. Existence of more
than one solution reflects the ill-posed nature of calibration problem, particularly with
regard to the determination of the recovery rate.

We remark here the ill-posed nature of calibration problem is largely intrinsic. This is
due to the insensitivity of the bond and CDS prices with respect to the change of the

TABLE 22.1 Citigroup CDS Rates (07=28=05,
Bloomberg)

Maturity 1Y 3Y 5Y 10Y

Rates (%) 0.07 0.13 0.19 0.33
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TABLE 22.2 Prices of Benchmark Citigroup Bonds
(07=28=05, Bloomberg)

Maturity Frequency Coupon Price

22=2=2010 Semi-annual 4.125% 98.123

1=10=2010 Semi-annual 7.25% 114.563

7=5=2015 Semi-annual 4.875% 97.563

18=5=2010 Quarterly U.S. LIBþ15bps 99.00

16=3=2012 Quarterly U.S. LIBþ12.5bps 99.80

5=11=2014 Quarterly U.S. LIBþ28bps 100.501

TABLE 22.3 U.S. Dollars Yield Data (07=28=05,
Bloomberg)

Type of Rate Term Rate

LIBOR 3 mth 3.6931%

6 mth 3.8435%

12 mth 4.1731%

Swap 2 Y 4.3200%

3 Y 4.3840%

4 Y 4.4330%

5 Y 4.4690%

7 Y 4.5365%

10 Y 4.6290%

12 Y 4.6905%

15 Y 4.7630%

20 Y 4.8320%
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FIGURE 22.1 U.S. dollars forward rates (07=28=05).
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FIGURE 22.2 Implied hazard rates.
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FIGURE 22.3 Implied default rates and recovery rates.
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FIGURE 22.4 Forward rates and discount curves.
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recovery rates,* particularly for a good credit name. As a consequence of the ill-posedness,
implied recovery rates and default rates may depend on initial guesses, as are shown in
Figures 22.2 and 22.3. To settle down to a single solution, additional regularizations (based
on financial or mathematical considerations) are needed. On the other hand, the ill-
posedness may not be a big concern. As is shown in Figure 22.4, risky forward rates and
risky discount curve demonstrate noticeable stability. This is due to the complimentary
effect between the hazard rates and the recovery rates in calibration.

By comparing the implied hazard rates with the CDS rates, we can say that the market
quotations of CDS rates pretty much represent the risk-neutral hazard rates for zero
recovery upon default. The quoted CDS spreads increase with time to maturity, a risk-
neutral hazard rate will also increase with its maturity.

22.7 CREDIT DEFAULT SWAPTIONS AND AN EXTENDED
MARKET MODEL

For either protection buyer or seller, an open position can be closed by either going ‘‘short’’
or going ‘‘long’’ of the same swap. Because the protection legs are exactly offset, the profit
or loss for the pair of transactions comes from the difference of the fee legs, which is

1{t>t}[�sm,n(t)��sm,n(0)]
Xn�1
j¼m

DTj�Pj(t) (22:17)

where �sm,n(t) is the prevailing CDS rate, either �s1 or �s2, seen at time t.
A credit swaption, meanwhile, is a contract that gives its holder the right, not the

obligation, to enter into a forward-starting swap at time T�Tm with a predetermined swap
rate, �s*. Apparently, the profit=loss at maturity T of the swaption is

1{t>T}[�sm,n(T)��s*]þ
Xn�1
j¼m

DTj�Pj(T) (22:18)

The standard practice in markets is to price the swaption by using Black’s formula. Parallel
to Schönbucher (2004), we define the default swap measure,y QS, according to

dQS

dQ

����
F t

¼
�Am,n(t)
�Am,n(0)

�
B(t)
B(0)

(22:19)

where

�Am,n(t) ¼ 1{t>t}

Xn�1
j¼m

DTj�Pjþ1(t)

* The insensitivity is also demonstrated in Brigo (2005).
y Schönbucher (2004) calls it a survival measure.
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In term of the new measure, we can express the price of the default swaption as

C ¼ EQ
t

B(t)
B(T)

�Am,n(T)[�sm,n(T)��s*]þ
� �

¼ �Am,n(t)E
Q
t

�Am,n(T)
�Am,n(t)

�
B(T)
B(t)

� �
(�sm,n(T)��s*)þ

� �
¼ �Am,n(t)E

QS

t {[�sm,n(T)��s*]þ} (22:20)

A few comments are in order. First, �Am,n(t) is replicable until t¼Tm (beyond Tm, �Am,n(t)
remains replicable if the recovery rate is zero). The implication is that the price given by
Equation 22.20 is an arbitrage price. The default swap measure defined in Equation 22.19
generalizes the definition of Schönbucher (2004), whose annuity numeraire is nontradable
unless the recovery rate is zero. Second, �Am,n(t)¼ 0 in case of a default at t< t, which
implies that QS is absolutely continuous with respect to, but not equivalent to, Q. For
swaption pricing, the lack of equivalence here is just harmless. Note that Brigo (2005)
provides an alternative derivation of the Black’s formula that preserves the measure
equivalence, based on a theory of restricted measure (Jeanblanc and Rutkowski, 2000;
Bielecki and Rutkowski, 2001). According to the interpretation of Schönbucher’s survival
measure by Bielecki and Rutkowski (2001) (Section 15.2.2), these two approaches should
be equivalent.

Parallel to Schönbucher (2004), we can establish the following results. The proof is
straightforward and thus is omitted for brevity.

PROPOSITION 22.1 Under the new measure QS, there are

(1) QS-default probability is zero:

EQS
[1{t<T}] ¼ 0

(2) Swap rate �sm,n(t) of either kind of swap is a martingale:

EQS

t [�sm,n(T)] ¼ �sm,n(t) 8T 2 (t,Tm)

On the basis of the results of Proposition 22.1, we assume �sm,n(t) is lognormal martin-
gale under QS:

d�sm,n(t) ¼ �sm,n(t)�gm,ndW
S
t (22:21)

where
WS

t is a one-dimensional Brownian motion under QS

�gm,n is the swap-rate volatility

The lognormality assumption (Equation 22.27) leads readily to Black’s formula for
credit swaptions:

C ¼ �Am,n(t)[�sm,n(t)N(d1)��s*N(d2)] (22:22)
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with

d1,2 ¼
ln [�sm,n(t)=�s*]� 1

2 �g
2
m,n(T � t)

�gm,n

ffiffiffiffiffiffiffiffiffiffiffi
T � t
p

A hedging strategy follows from Black’s formula (Equation 22.22): at time t<T, the hedger
maintains N(d1) units of the credit default swap; and maintains �sm,n(t)N(d1)��s*N(d2)
units of the annuity

Pn�1
j¼m DTj�Pjþ1(t).

Next we show that the above swaption pricing approach can be justified under the
market models with either mean loss rates:

dHj(t)

Hj(t)
¼ mH

j (t) dt þ gH
j (t) � dWt (22:23)

or forward spreads:

dSj(t)

Sj(t)
¼ mS

j (t) dt þ gS
j (t) � dWt (22:24)

whereWt is a multidimensional Brownian motion under Q. Assume that the recovery rate
is time stationary, EQ[RtjTj�1<t<Tj] ¼ �R¼ constant, we can derive that

mH
j (t) ¼ gH

j (t)
Xj

k¼1

DTkHk(t)
1þ DTkHk(t)

gH
k � 1�

�Hk

Hk


 �
gH
k�1

� �
(22:25)

where

1�
�Hk(t)
Hk(t)

¼ � 1þ DTkHk(t)
DTkHk(t)

�RDTk�1Hk�1(t)
1� �R� �RDTk�1Hk�1(t)

The drift term of Sj(t) takes a more complex form:

mS
j (t) ¼

DTj fj(t)

1þ DTj fj(t)
mj þ

DTj fj(t)

1þ DTj fj(t)
gj � sD

jþ1(t)
� �

gS
j (t)�

DTj fj(t)

1þ DTj fj(t)
gj(t)

� �

sD
jþ1(t) ¼ �

Xj

k¼1

DTkSk(t)

1þ DTk f̂k(t)
gS
j (t)�

DTj

1þ DTj fj(t)
gj(t)

� �
(22:26)

Here, fj(t) follows a lognormal process under the LIBOR market model (Brace et al., 1997;
Jamshidian, 1997; Miltersen et al., 1997), with drift mj and volatility gj, such that

mj(t) ¼ gj(t)
Xj

k¼1

DTk fk(t)
1þ DTk fk(t)

gk(t) (22:27)

The derivations of Equations 22.25 and 22.26 are left in Appendix.
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Next, we proceed to the pricing of swaptions under the extended market model. We take
the first kind of swaps as an example. The swap rate is given by Equation 22.11. By Ito’s
lemma, we can derive an approximate swap-rate process as follows:

d�sm,n(t) ¼
Xn�1
j¼m

@�sm,n(t)
@Hj

Hj(t)g
H
j � dWS

t

¼ �sm,n(t)
Xn�1
j¼m

@�sm,n(t)

@Hj

Hj(t)

�sm,n(t)
gH
j � dWS

t

� �sm,n(t)
Xn�1
j¼m

@�sm,n(0)

@Hj

Hj(0)

�sm,n(0)
gH
j � dWS

t

¼ �sm,n(t)�gm,n � dWS
t (22:28)

where

�gm,n 4¼
Xn�1
j¼m

�vjg
H
j , �vj 4¼

@�sm,n(0)

@Hj

Hj(0)

�sm,n(0)
� �aj

Hj(0)

�sm,n(0)
(22:29)

and WS
t is a multidimensional Brownian motion under QS, defined by

dWS
t ¼ dWt �

Xn�1
j¼m

�aj�sjþ1(t) dt

and �sjþ1 is the volatility of �Pjþ1(t). The lognormal process for swap rates (Equation 22.28)
justifies the use of Black’s formula (Equation 22.22) for swaptions. Note that, in the context
of LIBOR market model, the approximations made in Equations 22.28 and 22.29 are
known to be accurate enough for applications and have been justified with rigor (Brigo
et al., 2004). The expressions in Equation 22.28 describe the relation between forward spread
volatilities and swap-rate volatilities, which can be used in practice to gauge the relative price
richness=cheapness of a swaption. Themodel for spreads, either Equation 22.23 or 22.24, can
be calibrated to the implied volatilities of the default swaptions using the quadratic pro-
gramming technology developed by Wu (2003) for market model calibrations.

Models more comprehensive than Equation 22.23 or 22.24 can be developed by including
other risk dynamics like jumps, stochastic volatilities, and even correlations among multiple
credit names (Eberlein et al., 2005). Such developments are largely parallel to existing
extensions to the standard market model. Brigo (2005) and especially Schönbucher (2004)
have made several extensions using swap rates as state variables.

22.8 PRICING OF CDO TRANCHES UNDER THE MARKET MODEL
In this section, we explain how to apply the market model for pricing CDOs. A CDO is a
way to restructure the cash flows a portfolio of bonds (with various credit ratings).
Tranches of ascending seniority are defined in terms of the percentages of the notional
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principal value of the portfolio, and losses are always allocated to the most junior tranche
that is still alive. The spread of each tranche is just the premium of protection payments,
which, unlike the protection payments in a single-name CDS, are made periodically until
all notional value is lost. Tranches are divided by attachment points. Take CDX IG, a
standardized CDO, for example, the attachment points are 0%, 3%, 7%, 10%, 15%, 30%,
and, of course, 100%. The equity tranche, which is the most junior tranche with attach-
ment points 0% and 3%, will absorb the losses to the portfolio up to the first 3% and then
ceases to exist. Subsequent losses will then be bearded by the next tranche with attachment
points of 3% and 7%, which is called the mezzanine tranche. Losses to other senior
tranches are determined similarly. For each tranche, the premium of protection is calcu-
lated based on the outstanding notional principal value. To express the remaining out-
standing notional principals of the tranches, we introduce the following notations:

[Pi
D,P

i
U ] — the attachment points for the ith tranche, in percentage;

D(k)(Tjþ1)— the forward price of the outstanding notional value of the kth name at Tjþ1,
equal to 1{t>Tjþ1} þ �R1{Tj<t<Tjþ1};

Then, the total outstanding notional at Tjþ1 for the portfolio in percentage is

DP(Tjþ1) ¼ 1
K

XK
k¼1

D(k)(Tjþ1) (22:30)

where K be the number of credit names in the portfolio. The outstanding notional at Tjþ1
for the ith tranche can be expressed as

Oi(Tjþ1) ¼ 1
Pi
U � Pi

D
DP(Tjþ1)� 1þ Pi

U

� þn
� DP(Tjþ1)� 1þ Pi

D

� þo
(22:31)

The loss to the ith tranche over (Tj,Tjþ1) is thus

Oi(Tj)� Oi(Tjþ1)

The expression in Equation 22.31 reiterates the fact that the outstanding notional for any
tranche at any cash flow day can be regarded as a spread option on the total outstanding
notional value of the portfolio backing the CDO.

Next, we consider the pricing of the premium rate on a tranche. Let si be the premium
rate on the ith tranch, then the value of the fee leg is

PVfee ¼ si
Xn�1
j¼m

DTjPjþ1(t)E
Qjþ1
t [Oi(Tjþ1)]

while the value of the protection leg is

PVprot ¼
Xn�1
j¼m

Pjþ1(t) E
Qjþ1
t [Oi(Tj)� Oi(Tjþ1)]
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The formula for the premium rate on the ith tranche is then

si ¼

Pn�1
j¼m

Pjþ1(t) E
Qjþ1
t [Oi(Tj)� Oi(Tjþ1)]

Pn�1
j¼m

DTjPjþ1(t) E
Qjþ1
t [Oi(Tjþ1)]

In view of Equation 22.31, we understand that the key to CDS rate calculation lies in the
valuation of a sequence of call options of the form

E
Qjþ1
t DP(Tjþ1)� X

� þn o
, j ¼ m, . . . , n� 1 (22:32)

We now consider the valuation of the above options by Monte Carlo simulation method.
In view of the definition of DP(Tjþ1) in Equation 22.30, we need to simulate D(k)(Tjþ1),
k¼ 1, . . . ,K. For simplicity, we assume constant recovery rate, EQ[RtjTj�1 < t < Tj] ¼
�R ¼ constant. We then can express D(k)(Tjþ1) as

D(k)(Tjþ1) ¼ 1{t>Tj} 1
{u>l(k)j (Tj)DTj}

þ �R1
{u<l(k)j (Tj)DTj}

� �
(22:33)

where u obeys the uniform distribution in (0,1), denoted by U(0,1; Su), where Su stands for
the correlation matrix of u’s. If taking a Gaussian copula for u’s, we can proceed as follows:

1. Do a Choleski decomposition of the input correlation matrix

Sg ¼ AAT (22:34)

2. Simulate K(Tj) (which is the number of surviving firms at time Tj) independent
standard normal random variables, {~«i}

K(Tj)

i¼1
3. Transform {~«i}

K(Tj)

i¼1 to correlated normal random variables

«1
..
.

«K(Tj)

0
B@

1
CA ¼ A

~«1
..
.

~«K(Tj)

0
B@

1
CA

4. Transform the normal random variables to uniform random variables

(u1, . . . , uK(Tj)) ¼ [N(«1), . . . ,N(«K(Tj))]

If, furthermore, we abide by the industrial convention to assume a uniform pairwise
correlation such that corr(«k,«j)¼ r> 0 for any k and l, then steps 1–3 above are simplified
into the calculations of
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«k ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
~«k þ ffiffiffi

r
p

~«c (22:35)

where ~«c and ~«k, k¼ 1, . . . , K(Tj) are independent standard normal random variables.
The evolution of l(k)j (t) follows from that of H(k)

j (t). Under discrete approximation,
we have

H(k)
j (Tj) ¼ H(k)(Tj�1) exp mH

j (Tj�1)� 1
2

gH
j

��� ���2� �
DTj þ gH

j DW
(k)

� �
(22:36)

Here, we have locally freeze mH
j (Tj�1), defined in Equation 22.25. The hazard rate at Tj

is then

l(k)j (Tj) ¼
H(k)

j (Tj)

1� [1þ DTjH
(k)
j (Tj)]�R

(22:37)

In the evolution of H(k)
j (t), we can incorporate the correlations of the credit spreads

observed in the single-name CDS market.
We are now ready to describe the algorithm for CDO pricing. The simulation of

correlated defaults is the focus of the algorithm. Note that we need to input two set
of correlations. The first set is for the correlations, SH, of CDS rates, which is the state
variables for themarketmodel. This set of correlations can be observed from themarket. The
second set is for the correlations of default times, Su, which is not quite observable and is
dealt with the technique of Gaussian copula. Let T be the maturity of the CDO, DT the time
interval for premium payments, J¼T=DT the maximal number of the premium payments,
andM be the number of Monte Carlo simulation paths. We develop the following algorithm
for pricing the options in Equation 22.32.

=* Algorithm for pricing options on DP
j (Tj), j ¼ 1, . . . , J *=

For j¼ 1 : J
Vj¼ 0

end

For m¼ 1 : M
For k¼ 1 : K

D(k)(T0)¼ 1
end

K(T0)¼K
For j¼ 1 : J

Generate {DW(k)}
K(Tj�1)
k¼1 � N(0,DTSH)

Generate {uk}
K(Tj�1)
k¼1 � U(0, 1;Su)

Put DP(Tj)¼ 0
l¼ 0
For k¼ 1 : K repeat

If D(k)(Tj�1)¼ 1, then
D(k)(Tj)¼ 1
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=* Calculate the hazard rate l(k)(Tj�1) *=

l(k)(Tj�1) ¼ H(k)
j�1(Tj�1)=(1� (1þ DTjH

(k)
j�1(Tj�1))�R)

=* Simulate default over (Tj�1, Tj) for the kth name *=

l¼ lþ 1
If ul < l(k)(Tj�1)DTj

D(k)(Tj) ¼ �R
K(Tj) ¼ K(Tj)� 1

end if

DP(Tj) DP(Tj)þ D(k)(Tj)

=* Simulate the hazard rate H(k)(Tj) according to the market model *=

H(k)(Tj) ¼ H(k)(Tj�1) exp (mH
j (Tj�1)� 1

2 kgH
j k2 )DTj þ gH

j DW
(ks)

� �
end if

end if

=* Calculate the payoff of the option *=

Vj  Vj þ (DP(Tj)=K � X)þ

end

end

=* Average payoff *=

For j¼ 1 : J
Vj  Vj=M

end

=* The end of the algorithm *=

One can see that the entire algorithm is rather easy to implement and the computation
time is about J times more than that of the Gaussian copula method of Li (2000).

Next, let us examine the ability of the model to back out correlations implied by various
tranches of two standardized CDOs, namely, CDX IG and iTraxx IG. The quotes on
August 24, 2004 are listed in Table 22.4.* The LIBOR and swap rates for the same day are
listed in Table 22.5.

Without loss of generality, we make a few reasonable simplifications in the handling of
data. We assume that the curve of forward spreads is flat and equal to the index of the
respective maturity, which implies that the CDS rate of any maturity equals to the value of
forward spreads. The CDS rate volatility is set at the constant level of either 50% or 100%,
which represents the usual range of implied swaption volatilities (Schönbucher, 2004;
Brigo, 2005). The recovery rate is taken to be �R¼ 40%, abiding to the industrial conven-
tion. Owing to the lack of correlation data for CDS rates, we let the CDS rates and the
Gaussian copula for default times share the same pairwise correlation. We take the number
of paths to be M¼ 10,000 and the number of time stepping to be Dt¼ 0.25. The implied

* The data are taken from Hull et al. (2005).
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TABLE 22.4 Quotes on 08=24=04

CDX IG Tranches

0%–3% 3%–7% 7%–10% 10%–15% 15%–30% Index

5 year quotes 40.02 295.71 120.50 43.00 12.43 59.73

10 year quotes 58.17 632.00 301.00 154.00 49.50 81.00

iTraxx IG Tranches

0%–3% 3%–6% 6%–9% 9%–12% 12%–22% Index

5 year quotes 24.10 127.50 54.00 32.50 18.00 37.79

10 year quotes 43.80 350.17 167.17 97.67 54.33 51.25

TABLE 22.5 U.S. Dollars Yield Data (08=24=04, Bloomberg)

Type of Rate Term Rate

LIBOR 3 mth 1.760%

6 mth 1.980%

12 mth 2.311%

Swap 2 Y 2.840%

3 Y 3.265%

4 Y 3.592%

5 Y 3.890%

6 Y 4.100%

7 Y 4.295%

8 Y 4.455%

9 Y 4.595%

10 Y 4.710%
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FIGURE 22.5 Implied correlations for kgHk ¼ 0:5.
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correlations of various tranches,* obtained through trial and error, are listed in Figures 22.5
and 22.6. The average accumulated default numbers for both CDOs, for a pairwise
correlation of 20%, are shown in Figures 22.7 and 22.8.

Let us comment on the results. Under the market model, the implied correlation curves
do not quite look like a smile. We have let kgHk, the CDS rates volatility, vary from 50% to
100%, and witnessed a gradual deformation of the smile curve. Remarkably, the smile
curves of CDX IG and iTraxx IG stay close to each other, which is interesting but an
explanation is not yet available. The histograms of average accumulated number of defaults
look reasonable. The bigger numbers of defaults for CDX IG are consistent with the bigger
numbers of spreads across all tranches. The algorithm is not optimized, but it has been
very robust. The pricing of an entire CDO takes about 20 s in a PC with Intel Pentium 4
CPU (3.06 GHz, 504 MB RAM).

We tend to believe that the higher implied correlation for themezzanine tranche is caused
by the assumption of flat CDS rates across all maturities, which is against the fact that a CDS
rate increases with maturity, as is seen in Table 22.1 for the CDS rates of Citigroup. If we
bootstrap the forward spreads against the CDS rates, we should see that the forward spread
curve has a bigger slope of increase than that of the CDS rate curve. The assumption of flat
forward spread curve should have produced more defaults in short horizon yet less
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FIGURE 22.6 Implied correlations for kgHk ¼ 1.
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FIGURE 22.7 Accumulated number of defaults for kgHk ¼ 0:5.

* Note that the implied correlation for a tranche may not necessarily be unique.
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defaults for long horizon, which in turn can cause higher price fore junior tranches yet lower
prices for senior tranches, as is reflected by the level of implied correlations.

We want to point out here that we have tried to reproduce the CDO spreads without
default correlation, by letting the random variables {uk} be independent. The results are not
good, which thus support a widely held opinion among market participants that the spread
correlations are insufficient for pricing CDOs, for that we also need default correlations.

22.9 CONCLUSIONS
In this chapter, we develop a market model with the newly defined forward credit spreads.
We justify the use of Black’s formula for CDS options and present a natural algorithm for
pricing CDO tranches. Model calibration and the calculations of implied CDO correlations
are demonstrated with market data and the results show that the current model has the
capacity to calibrate to both CDS options and CDOs. There are a number of outstanding
theoretical, computational, and empirical issues left for further studies, which include
allowing stochastic recovery rate, developing analytical solutions to CDO spreads, and
studying the hedging performance of the model.
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APPENDIX: DETAILS OF SOME DERIVATIONS
Derivation of f̂ j(t):

The first line of Equation 22.4 leads to

f̂j(t) ¼ 1
DT

Pj(t)

Pjþ1(t)
� 1

� �
þ 1
DT

Pj(t)

Pjþ1(t)
Lj(t)

Djþ1(t)
� 1

� �

¼ fj(t)þ 1
DT

Pj(t)

Pjþ1(t)
E
Qj

t 1{t>Tj}

� �� E
Qjþ1
t 1{t>Tjþ1} þ R1{Tj<t�Tjþ1}

� �
Djþ1(t)
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FIGURE 22.8 Accumulated number of defaults for kgHk ¼ 1.
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¼ fj(t)þ 1
DT

Pj(t)

Pjþ1(t)
E
Qjþ1
t [(1� R)1{Tj<t�Tjþ1}]

Djþ1(t)

( )

¼ fj(t)þ 1þ DTj fj(t)

DT

E
Qjþ1
t [(1� R)1{Tj<t�Tjþ1}]

Djþ1(t)

( )
(22:A1)

In the third row of the equation, we have again used the independence between the hazard
rate and Treasury yields. The second line of Equation 22.4 leads to

f̂j(t) ¼ 1
DT

�Pj(t)
�Pjþ1(t)

� 1

� �
� 1
DT

�Pj(t)
�Pjþ1(t)

1� Lj(t)

Dj(t)

� �

¼ �fj(t)� 1þ DTj
�fj(t)

DTj

E
Qj

t (R1{Tj�1<t�Tj})

Dj(t)

" #
(22:A2)

Derivation of the drift term of Hj(t):

According to its definition, we have

Hj(t) ¼ 1
DTj

1þ DTj f̂j(t)

1þ DTj fj(t)
� 1

" #

¼ 1
DTj

�Pj
�Pjþ1
� Lj(t)

Dj

Pj
Pjþ1

� 1

2
4

3
5

¼ 1
DTj

Dj

Djþ1
� Lj(t)

Dj
� 1

� �
(22:A3)

For simplicity, we assume that the recovery rate is time stationary, meaning that
E
QTj

t [Rt] ¼ �R ¼ constant. Our first step is to express Lj=Dj in terms of Hj. In fact,

Lj

Dj
¼ Lj þ �R(Lj�1 � Lj)� �R(Lj�1 � Lj)

Dj

¼ 1�
�RDTj�1
1� �R

(1� �R)(Lj�1 � Lj)

DTj�1Dj

¼ 1�
�R

1� �R
DTj�1Hj�1 (22:A4)

According to the LIBOR model, the risk-neutral process of Hj(t) is

dHj(t) ¼ Hj gH
j dWt þ mH

j dt
� �

for all j
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We thus have

d
Lj(t)

Dj(t)


 �
¼ �

�R
1� �R

DTj�1dHj�1(t)

¼ �
�R

1� �R
DTj�1Hj�1(t) gH

j�1(t)dWt þ mH
j�1dt

h i
¼ Lj

Dj
� 1


 �
gH
j�1(t)dWt þ mH

j�1dt
h i

(22:A5)

It then follows that

dHj(t) ¼ 1
DTj

d
Dj

Djþ1


 �
Lj

Dj


 �
þ Dj

Djþ1


 �
d

Lj

Dj


 �
þ d

Dj

Djþ1


 �
d

Lj

Dj


 �� �

¼ 1
DTj

Lj

Dj

Dj

Djþ1
sD
j � sD

jþ1
� �

� dWt þ Dj

Djþ1

Lj

Dj
� 1


 �
gH
j�1(t)dWt

� �

þ drift terms

¼ 1
DTj

(1þ DTjHj) sD
j � sD

jþ1
� �

dWt þ (1þ DTjHj)� Dj

Djþ1

� �
gH
j�1dWt

� �

þ drift terms

¼ 1þ DTjHj

DTj
sD
j � sD

jþ1
� �

þ Hj � 1
DTj

Dj

Djþ1
� 1


 �� �
gH
j�1

� �
dWt

þ drift terms

4¼
1þ DTjHj

DTj
sD
j � sD

jþ1
� �

þ Hj � �Hj
� �

gH
j�1

� �
dWt þ drift terms (22:A6)

where sD
j is the percentage volatility of Dj(t). By equating the volatility term above to gH

j Hj,
we obtain

1þ DTjHj

DTj
sD
j � sD

jþ1
� �

¼ Hjg
H
j � (Hj � �Hj)g

H
j�1 (22:A7)

We then have the recursive formula for the volatility sD
j as

sD
jþ1 ¼ sD

j �
DTjHj

1þ DTjHj
gH
j � 1�

�Hj

Hj


 �
gH
j�1

� �

¼ sD
1 �

Xj

k¼1

DTkHk

1þ DTkHk
gH
k � 1�

�Hk

Hk


 �
gH
k�1

� �
(22:A8)

Here,

1�
�Hj(t)

Hj(t)
¼ � 1þ DTjHj(t)

DTjHj(t)

�RDTj�1Hj�1(t)
1� �R� �RDTj�1Hj�1(t)
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In addition,

sD
1 ¼ �s1 � s1

where �s1 and s1 are the volatilities of �P1 and P1, respectively. Unless a default is imminent,
we may comfortably put sD

1 ¼ 0 and hence obtain an expression of sD
jþ1 in terms of

gH
k , k < j.
The drift term of Hj is given by

mH
j Hj ¼ 1

DTj
�Lj

Dj

Dj

Djþ1
sD
j � sD

jþ1
� �

sD
jþ1 þ

Dj

Djþ1

Lj

Dj
� 1


 �
mH
j�1

� �

þ Dj

Djþ1
sD
j � sD

jþ1
� � Lj

Dj
� 1


 �
gH
j�1

¼ 1
DTj

�DTj g
H
j Hj � gH

j�1(Hj � �Hj)
h i

sD
jþ1 þ DTjm

H
j�1(Hj � �Hj)

n

þDTj(Hj � �Hj) sD
j � sD

jþ1
� �

gH
j�1

o
¼ �Hjg

H
j s

D
jþ1 þ (Hj � �Hj) mH

j�1 þ gH
j�1s

D
j

� �

¼ Hj �gH
j s

D
jþ1 þ 1�

�Hj

Hj


 �
mH
j�1 þ gH

j�1s
D
j

� �� �
(22:A9)

Hence,

mH
j ¼ �gH

j s
D
jþ1 þ 1�

�Hj

Hj


 �
mH
j�1(t)þ gH

j�1s
D
j

h i
(22:A10)

or

mH
j þ gH

j s
D
jþ1 ¼ 1�

�Hj

Hj


 �
mH
j�1(t)þ gH

j�1s
D
j

h i
(22:A11)

If we make an insignificant assumption that the chance of imminent default between t and
T0 is zero, then we have mH

0 (t)þ gH
0 s

D
1 ¼ 0, and, consequently,

mH
j ¼ �gH

j s
D
jþ1

Derivation of the drift term of Sj(t):

The drift and volatility terms of Sj can now be derived with ease. Since

Sj ¼ (1þ DTj fj)Hj
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we have

dSj ¼ DTjHjdfj þ (1þ DTj fj) dHj þ DTjdfj dHj

¼ DTjHj fj(mjdt þ gj � dWt)þ (1þ DTj fj)Hj mH
j dt þ gH

j � dWt

� �
þ DTj fjHjgjg

H
j dt

¼ Sj
DTj fj

1þ DTj fj
mj þ gjg

H
j

� �
þ mH

j

� �
dt þ DTj fj

1þ DTj fj
gj þ gH

j


 �
� dWt

� �

4¼ Sj mS
j dt þ mS

j � dWt

� �
(22:A12)

where mS
j and gS

j relate to mH
j and gH

j through

mS
j ¼ mH

j þ
DTj fj

1þ DTjfj
mj þ gjg

H
j

� �

gS
j ¼ gH

j þ
DTj fj

1þ DTj fj
gj (22:A13)

By substituting the above expressions for mH
j and gH

j in Equations 22.A8 and 22.A10, we
obtain Equation 22.26.
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23.1 INTRODUCTION
Over the last decade, the growth in the credit derivatives market has been enormous.
First, the market for credit default swaps (CDSs) on single names has become very liquid.
This was followed by the rapid development of the synthetic collateralized debt obligation
(CDO) market over the last couple of years. Following this large growth in liquidity there
has been a need formodels which can be calibrated tomarket quotes. Amongst practitioners,
the one factor Gaussian copula has become standard. In order to allow for calibration an ad
hoc method has become popular, known as the base correlation approach, presented in
McGinty et al. (2004). This method cannot be regarded as a model explaining the observed
market quotes, but rather as a fix of the standard one factor Gaussian copula model, much
like implied volatilities in the equity derivatives markets. When considering nonstandard
tranches, i.e., tranches with nonstandard attachment and detachment levels, tranches with
nonstandard maturities or tranches on nonstandard indices, some mapping choices have to
be made. There are multiple ways to map the observed base correlation skew to different
maturities or different baskets and three of them are considered in this chapter.

In this chapter we perform an empirical analysis of market prices for CDO tranches,
using a data set ranging from December 2004 up to November 2006. The data set consists
of three different sets of quotes. Quotes of standard interest rate products are available and
these are used to determine risk-free discount factors. For each reference entity entire CDS
term structures are available, which are used to determine marginal distributions of
the default times. Finally quotes for synthetic CDO tranches are available and these are
used to determine the market-implied default dependency structure. Using only the data
on synthetic CDO tranche quotes we first investigate whether correlation effects can be
discovered from these quotes directly. Therefore the influence of the credit risk of the
underlying index is filtered out by means of regression analysis. The resulting residuals
should then capture correlation effects.

The second part of the analysis uses the base correlation method to imply the default
dependency structure from the market. First, the base correlation method is used to
investigate the behavior of market-implied credit correlation over time. Secondly, three
different mapping methods are considered and their performance is investigated by means
of out-of-sample tests. An out-of-sample test is considered where tranche quotes with five
year maturity on a certain index are mapped to tranches with either seven or ten year
maturities on the same index. In addition out-of-sample tests are performed where
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mapping is done using quotes for five year tranches on one index and mapping the
resulting base correlations to five, seven, and ten year tranches on the other index.

The outline of this chapter is as follows. In the next section the synthetic CDO market
is discussed. The mechanics of the products are discussed and the quoting convention is
explained. In addition it is shown that pricing of these products can be reduced to
determining the expected loss on equity tranches. The third section focuses on the
modeling of default dependency by means of copulas and the one factor Gaussian copula
in particular. In addition, the base correlation method is described, which has become the
industry standard approach for visualizing default correlation implied in the market.
Section four describes the data which have been used in the empirical analysis and some
summary statistics are presented. In addition, the increase in liquidity in the synthetic
CDO market is briefly touched upon. Section five presents the results of the empirical
analysis. First the synthetic CDO tranche quotes are considered directly without using any
default correlation model. The second part of this section applies the base correlation
method to the available data. First, the behavior of the different base correlations with
a five year maturity is considered. Second, the base correlation method is used in com-
bination with different mapping methods in order to investigate the performance of
three different mapping methods by means of out-of-sample tests. Finally, Section 23.6
concludes this chapter.

23.2 SYNTHETIC CDO TRANCHES
In a collateralized debt obligation, CDO, a pool of assets functions as collateral against
which notes are issued. These notes represent tranches of the structure and strictly regulate
the seniority of the notes. In the following figure (Figure 23.1), the structure of a CDO
contract is graphically represented. Here on the left-hand side one can see the pool of
collateral, while on the right-hand side the CDO structure is represented where four
different tranches are issued, the equity, the junior mezzanine, the senior mezzanine, and
the super senior tranche. In the case of a default event in the pool of collateral the first
losses are absorbed by the equity tranche investor. Once the cumulative losses increase
beyond the size of the equity tranche, the junior mezzanine tranche is affected and so forth.
Clearly the equity tranche investor is much more exposed to losses in the pool of collateral
and therefore this investor is compensated by receiving a larger coupon. Rating agencies
can be involved to assign credit ratings to the different tranches. Usually the equity tranche
is not rated, due to the large risk involved. As the name suggests these tranches are similar
to investing in equity, while the more senior notes can be compared to investing in bonds.

Traditionally these CDO tranches are backed by a pool of cash assets, such as bonds,
student loans, or credit card receivables. Due to issues such as different maturities and
prepayment of assets such structures usually require a manager to manage the cash flows
and invest in new assets. It was realized that one could also create the pool of collateral
synthetically by means of CDSs. The clear advantage here is that one can select CDSs with
equal maturity leading to easy to predict cash flows which are only affected by a default
event of one of the underlying reference entities. More information about different types of
CDOs can be found in Anson et al. (2004) or Tavakoli (2003).
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23.2.1 Standard Tranches and Quoting Conventions

In recent years the market for synthetic CDO tranches has become increasingly liquid.
Two reference indices have been defined, known as CDX NA IG and iTraxx Europe, which
contain 125 North American reference entities and 125 European reference entities,
respectively. All these names are high grade issuers and on March 20th and September
20th of each year the indices are rolled, leading to new series. At a roll date names for
which credit worthiness has deteriorated are possibly replaced by names with better
credit quality. In addition to a possible change of index composition, at a roll date the
maturity of quoted synthetic CDO tranches also change with six months. Standard
maturities are at 20th June and 20th December of each year. For instance, after an index
roll at 20th March, the new on the run tranches reference the new index and have
maturities at 20th June. Thus, initially the five year quoted CDO tranches have a tenor
of five years and three months. Just before the next roll date the tenor has reduced to four
years and nine months.

Five tranches on the iTraxx index are quoted in the market with attachment and
detachment levels: 0%–3%, 3%–6%, 6%–9%, 9%–12%, and 12%–22%. For the tranches
on the CDX index detachment levels are slightly different at: 0%–3%, 3%–7%, 7%–10%,
10%–15%, and 15%–30%. All tranches have quarterly payments and the Actual=360 day-
count convention is used to determine premium payments. For the equity tranche the
quote is given as a percentage of the notional to be paid up front by the protection buyer, in
addition to premium payments of 500 bp on an annual basis, paid quarterly. Typically the
five tranches are quoted in combination with a notional delta exchange. This means that a
protection buyer can buy protection for a certain tranche in return for the quoted premium

TranchesCollateral

Equity

Junior mezzanine

Senior mezzanine

Super senior

FIGURE 23.1 CDO structure with the pool of collateral assets on the left-hand side and
four different tranches on the right-hand side. The risky equity tranche is shown at the
bottom of the CDO structure and is followed by a junior mezzanine tranche, a senior
mezzanine tranche, and a super senior tranche.
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and in addition will sell protection on the index CDS with notional equal to the tranche
notional times the notional delta exchange. The reason for this delta exchange is that both
parties are likely to hedge their credit delta risk. Trading the delta hedge with each other,
in combination with the tranche, is thus simple and avoids extra costs due to the
bid=offer spread. The quotes also consist of the index spread against which the notional
delta exchange part of the trade is executed and this is known as the reference spread. Both
reference spread and delta exchanges are agreed periodically by a dealer poll, where
the reference spread follows the index spread closely.

Table 23.1 gives an example of a set of synthetic CDO quotes on the iTraxx index with
maturity of five years.

Thus, for instance an investor can sell credit protection on the 3%–6% tranche for
1 million notional, receiving 54.5 bp. Simultaneously, the investor buys protection on the
index CDS for 5 million notional against a spread of 24 bp.

The synthetic CDO market on these indices started with quoting for a five year tenor
only. In recent years the range of maturities has expanded to include seven and ten year
maturities as well. However, the major part of the analysis presented in this chapter focuses
on tranches with a five year maturity as these are most liquid.

23.2.2 Pricing of Synthetic CDO Tranches

In order to price a synthetic CDO tranche the focus will be on the distribution of the
cumulative loss of a certain basket at future points in time. Let LB(t) denote the percentage
loss on basket B at time t. The percentage loss on an equity tranche, i.e., a tranche with zero
attachment, and detachment level u is given by

LBu (t) ¼
1
u
min (LB(t), u) (23:1)

Next a general tranche is considered, having both an attachment as well as a detachment
level. The percentage loss of a tranche with attachment l and detachment u is given by

TABLE 23.1 Market Quotes for the Five Standard Synthetic
CDO Tranches on iTraxx, with a Tenor
of Five Years

iTraxx Tranche Bid Offer Delta

Ref. 24 bp 0–3 11.625 11.875 25.5

3–6 54.5 54.75 5

6–9 13.25 14.25 1.5

9–12 5 6 0.5

12–22 2 3 0.3

For each tranche the bid and offer quotes are shown as well as the
notional delta exchange. In addition a reference spread is shown.
Quotes are from the 1st of November 2006 and thus maturity for
the quoted tranches is December 20th, 2011.
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LBl,u(t) ¼
min (max (LB(t)� l, 0), u� l)

u� l

¼ min (LB(t), u)�min (LB(t), l)
u� l

¼ u � LBu (t)� l � LBl (t)
u� l

(23:2)

Thus, the loss on any tranche can always be written in terms of the loss on equity tranches.
Modeling of tranches will focus on the modeling of the cumulative loss of the basket over
time, LB(t). Once a certain model is chosen, the focus will be on the expected loss on a
certain equity tranche at future times, i.e., E[LBu (t)]. This expected loss is calculated under
the risk neutral measure as the model for the cumulative loss will be consistent with the
market-observed values for CDSs. The expected loss needs to be evaluated for different
times in the future due to discounting and due to premium payments which are made over
outstanding tranche notional, which is expected to decrease over time.

First the value of the protection leg of an equity tranche is considered using a discrete
approximation over time. Let T0, T1, . . . , TM�1, TM¼T denote a partition of the time
interval, where T0 denotes the valuation date and TM the maturity. The value, PB,Tu , of the
protection leg of an equity tranche with detachment u on basket B with maturity T can
then be approximated using the following expression:

PB,Tu � E
XM
i¼1

D
1
2
(Ti�1 þ Ti)

� �
LBu (Ti)� LBu (Ti�1)
� �" #

¼
XM
i¼1

D
1
2
(Ti�1 þ Ti)

� �
E LBu (Ti)
� �� E LBu (Ti�1)

� �� �
(23:3)

Here D(t) denotes the value at the valuation date of a risk-free payment of one unit made at
time t. In the expression the midpoint assumption is used as it is assumed that all
protection payments during the period are made at the middle of the period under
consideration. Similarly one can derive the value, AB,Tu , of the premium leg in the case of
1 bp premium. Here we consider the case of premium payments made over outstanding
notional, which is the most commonly traded variation of synthetic CDO tranche swaps.
The premium payment dates, Tk, k¼ 1, . . . , N, can be used for discretization. Furthermore,
we let T0 denote the valuation date.

AB,Tu � E
XN
k¼1

dk D (Tk)
1
2

1� LBu (Tk)þ 1� LBu (Tk�1)
� �" #

¼
XN
k¼1

dk D (Tk) 1� 1
2

E LBu (Tk)
� �þ E LBu (Tk�1)

� �� �� �
(23:4)

Here the term dk denotes the day count fraction which applies to the premium payment to
be made at time Tk. There are some important differences when comparing Equations 23.3
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and 23.4. First, the discretization for the protection leg is general, while for the premium
leg the payment dates have been used. Second, discounting for the protection leg is done in
the middle of a period, while for the premium leg the end of the period is used, which
corresponds to the payment date.

Due to the simple linear relationships it is straightforward to derive the following
relationships for general tranches:

PB,Tl,u ¼
u � PB,Tu � l � PB,Tl

u� l

AB,Tl,u ¼
u � AB,Tu � l � AB,Tl

u� l
(23:5)

As the value of the protection leg is defined for one unit of tranche notional, one has to weigh
using the attachment and detachment levels of the contract. This relation shows that one can
write both protection and premium leg values of any tranche in terms of two equity tranches.
This relationship is the main observation used in the base correlation model discussed in
Section 23.3.2. Given the values of the protection leg and premium leg for 1 bp premium, one
could easily determine the value, VB,Tl,u , of a CDO with contracted premium pc, or one could
determine the fair premium pf of that tranche:

VB,Tl,u ¼ PB,Tl,u � pc � AB,Tl,u

pf ¼ PB,Tl,u

AB,Tl,u

(23:6)

Here the value is given from the point of view of the protection buyer. In case an
up-front payment is specified, one could easily determine the value by subtracting
this up-front payment. Note that this is only relevant at initiation of a contract.

23.3 MODELING DEFAULT DEPENDENCY
Default dependency is usually modeled using copula methods, see Nelsen (1999) for more
details on copulas. The main advantage of copulas is that they allow one to split modeling
of marginal distributions from the modeling of the dependency structure. The one factor
Gaussian copula is a special case of the more general Gaussian copula, presented in
Li (2000), where some additional structure is enforced which simplifies the model.

23.3.1 One Factor Gaussian Copula

The market standard model has become the one factor Gaussian copula. Default events are
modeled by means of latent variables and default dependency is modeled by correlating the
latent variables in some specific way. For the one factor Gaussian copula model, the latent
variables are modeled as follows:

Xi � ri � Y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
� ji

ti � t , Xi � xi(t) (23:7)
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Here ti denotes the default time for reference entity i. Xi denotes the latent variable for
name i and a default event has occurred before time t, when the latent variable is smaller
than some time dependent threshold function xi(t). The latent variables of the different
names are correlated through the common factor, Y, which is assumed to have a standard
normal distribution. The second term depends on the idiosyncratic random variable ji,
which also has a standard normal distribution. All the random normals, i.e., Y and ji are
independent. It is easy to see that the latent variables, Xi, have a standard normal
distribution as well. In order to make sure that the distribution of default times are
calibrated to the market, one must use the distribution of these latent variables to
determine the thresholds xi(t):

xi(t) ¼ F�1(pi(t)) (23:8)

Here pi(t) is the marginal default probability for name i for the period up to time t, which is
obtained by bootstrapping to CDS quotes from the market. F denotes the cumulative
distribution function for the standard normal distribution.

One can observe that the latent variables Xi and Xj, for i 6¼ j, as defined in Equation 23.7
have correlation ri � rj. In practice, due to the large number of names to model, the
parameters ri are often chosen to be constant over all names, i.e., ri¼ r, 8i. In this case
the default dependency structure is driven by a single correlation parameter.

As discussed in Section 23.2.2 the valuation of synthetic CDO tranches comes down to
modeling E[LBu (t)]. Under the class of one factor copula models this can be done relatively
fast using the observation that, conditional on the realization of the common factor, all
remaining sources of risk are independent.

E LBu (t)
� � ¼ ð1

�1
E LBu (t)jY ¼ y
� �

f(y)dy (23:9)

Here f denotes the probability density function for the standard normal distribution. The
problem has thus been reduced to finding the expected loss on an equity tranche condi-
tional on the realization of the common factor.

One can use a simplified version of the methods described in Andersen et al. (2003),
Hull and White (2004), and Laurent and Gregory (2003) and we will illustrate this method
using an example where the probability of exactly n defaults at some future time t will be
determined. The approach can be seen as a recombining binomial tree which has N steps,
each step corresponding to one name in the basket. At horizonal step i the probability of
an up-move will be the default probability of name i conditional on the realization of
the common factor Y¼ y: pi(tjy). Thus, the probability of a down-move will be 1 � pi(tjy).
Every up-move corresponds to a default event, while a down-move corresponds
to survival. Working from the root of the tree back to the end values, one obtains the
probability of exactly n defaults, for n¼ 0, . . . , N. To illustrate this, let di,j denote the
path probability at step i and height j. We assume that i runs from 0, . . . , N, and j¼ 0, . . . , i.
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Thus we start the algorithm by setting d0,0¼ 1, after which the algorithm continues as
follows:

di,j ¼
(1� pi) � di�1,j if j ¼ 0

pi � di�1,j�1 þ (1� pi) � di�1,j if 0 < j < i
pi � di�1,j�1 if j ¼ i

8<
: (23:10)

It is important to note that this algorithm can only be applied with independent default
probabilities. For brevity we have used pi¼ pi(tjy). If one is done working through the tree,
the values dN,j¼ dN,j(tjy) give the conditional probability of exactly j defaults in the basket
of N names at time t. Integrating these terms out over the distribution of the common
factor will result in the probability of exactly j defaults, p( j, t) for j¼ 0, . . . , N. Thus, we get

p( j, t) ¼
ð1
�1

dN ,j (tjy)f(y)dy (23:11)

To calculate this integral one has to resort to numerical integration techniques, for instance
Gauss-Legendre quadratures as described in Abramowitz and Stegun (1972). During
numerical integration one has to build the entire tree as shown in Equation 23.10 for
each chosen value for the common factor realization, y.

From this one can easily determine the expected loss on a certain tranche. Alternatively
one could determine the expected loss on a tranche conditional on the realization of the
common factor and integrate out subsequently. This will lead to the same result as first
integrating over probabilities. As can be seen from the pricing formulas 23.3 and 23.4 this
procedure has to be repeated to determine the expected loss on a tranche for different
future times.

23.3.2 Base Correlation

In recent years the market for tranche CDSs has become very liquid leading to a need for a
marking-to-market approach. Similar to implied volatilities, the notion of implied correl-
ation can be introduced for these products using the standard one factor Gaussian copula.
Assuming that each pair of reference entities has a constant correlation parameter, one can
derive a correlation such that the model price exactly matches the price observed in
the market. This results in a tranche specific correlation parameter known as the implied,
or compound correlation. One drawback of such an approach is that one is left with
correlations which are a function of both attachment as well as detachment level. The base
correlation method, due to McGinty et al. (2004), overcomes this issue by switching to
equity tranches or base tranches. In Section 23.2.2 it was shown that the expected loss of a
certain tranche can always be written as the difference of expected losses for two equity
tranches, see Equation 23.5. The idea of the base correlation method is that all tranches are
reduced to base tranches and correlation depends on the detachment level of the tranche.
One can iteratively solve for the correlations belonging to each detachment level for which
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a quote is available. The base correlation method has become the industry standard for
valuing CDO tranches, see Reyfman (2004) or Friend and Rogge (2005) for instance.

Let Ql,u denote the quote of a tranche with attachment percentage l and detachment
percentage u. Further, let Ul,u denote the up-front value in percentages of tranche notional.
A set of base correlations is calculated per basket and per maturity for which quotes are
available. In the derivations below the basket and maturity are fixed and for brevity their
dependency is not shown in the protection and premium values. We want to determine ru
recursively such that the model-implied fair spread equals the spread quotes in the market.

Ql,u ¼ u � Pu(ru)� l � Pl(rl)� (u� l) � Ul,u

u � Au(ru)� l � Al(rl)
(23:12)

For the quoted equity tranche the attachment percentage is 0 and thus both Pl and Al are
zero. One can use a numerical root-finding routine, see for instance Press et al. (2002), to
obtain the value of ru such that the quote is exactly matched by the model. Once this has
been determined, one can move to the next tranche and its attachment level, l, equals the
detachment level of the previous tranche under consideration. Thus rl is already known, as
this is ru solved in the previous step. This can be used to determine the next base
correlation:

Ql,u(u � Au(ru)� l � Al(rl)) ¼ u � Pu(ru)� l � Pl(rl)� (u� l) � Ul,u

Ql,u ¼ u � Pu(ru)� (u� l) � ~Ul,u

Au(ru)
(23:13)

In the last line the terms already known, i.e., those depending on the attachment level l
have been grouped in the adjusted up-front value:

~Ul,u � Ul,u þ l � Pl(rl)� l � Al(rl) � Ql,u

u� l
(23:14)

From the final line of Equation 23.13 one can see that the problem of finding ru is reduced
to finding the implied correlation of an equity tranche with detachment level u. Moreover
as the value of an equity tranche is monotonically decreasing in default correlation, this
relationship shows that the base correlation is unique, something which is not necessarily
the case for implied correlations for general tranches. Moreover the monotonicity makes
numerical root-finding a straightforward exercise.

Note that this algorithm can be applied only when quotes are available for successive
tranches, where the detachment level of one tranche equals the attachment of another.
Furthermore, a quote for the equity tranche is required as well.

The following figure (Figure 23.2) shows both compound correlations as well as base
correlations using market data of the 1st of November 2006, for tranches on the CDX
index with maturity of five years. Both curves are plotted as a function of the detachment
level. The compound correlation for the equity tranche is around 14%, after which it
decreases to a level close to 6.5% for the junior mezzanine tranche. For more senior
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tranches it increases again from roughly 14% to 18% to reach a level of 31% for the most
senior tranche. Further, one can observe a close to linear relationship between base
correlations and detachment level. By construction the base correlation for the equity
tranche equals the compound correlation. The base correlations increase to roughly 66%
for the most senior tranche. The fact that the lines are not horizontal clearly illustrates the
model’s inability to fit the market with a single correlation parameter.

In order to apply the base correlation method to nonstandard tranches, for example
tranches with nonstandard attachment and detachment levels, tranches with different
maturities, or tranches on bespoke baskets, some mapping approach is required. Ideally
such an approach would take the credit risk in the underlying basket over the relevant
period into account. For example a 0%–3% tranche on a basket which has fair spread of
30 bp is very different from a 0%–3% tranche on a basket having a fair spread at 100 bp.
The following three different mapping methods have been described in literature and will
be considered in this study:

. Direct detachment–detachment mapping, dd

. Detachment as a percentage of expected basket loss, dp

. Expected loss percentage mapping, lp

The first method states that the base correlation for any basket just depends on the
detachment level only. It does not take into consideration differences in credit risk of
different portfolios. The second method is described in McGinty et al. (2004) where it is
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FIGURE 23.2 Compound and base correlations plotted against the detachment level of the
tranches. Quotes on standard tranches on the DJ CDX basket are used from the 1st of
November 2006.
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proposed to divide the detachment level by the expected loss on the entire basket over the
same time-span, resulting in a scaled detachment level. From this one can define a
relationship between scaled detachment and base correlation, which defines the map. In
order to determine the correlation for a tranche with different maturity or on a different
basket one first divides the detachment level by the expected loss of the underlying basket
up to the relevant maturity and then determines the number using the relationship defined
earlier. The third and final mapping method is the most advanced and is described in
Reyfman et al. (2004). For each combination of detachment level and corresponding base
correlation one first determines the expected loss on the tranche, expressed as a percentage
of expected loss on the total basket, leading to five combinations of expected loss percent-
age and base correlation. When mapping to a different maturity or different basket one first
implies detachment levels on this basket such that the same combinations of expected loss
percentage and base correlations are found. This requires a numerical root-finding tech-
nique. Finally the resulting detachment levels and corresponding base correlations can be
used in combination with interpolation and extrapolation rules to determine the correl-
ation to use for a certain tranche.

23.3.3 Other Default Dependency Models

The base correlation approach cannot be seen as a proper model of defaults, but merely as
a method to visualize market quotes in terms of correlations. It does not allow one to
determine prices on bespoke baskets, without the use of mapping methods. Difficulties will
increase even further when prices for more complex credit derivatives are required, such as
a CDO of CDOs, or CDO2. For these reasons many alternative models have been proposed
in the literature, usually extending the one factor Gaussian copula in one way or the other.
For instance, Hull and White (2004) propose to model both the common factor and the
idiosyncratic risk terms using a Student t distribution. Other extensions allow for ran-
domness of the correlation parameter. A mixture copula for instance assumes that the
correlation parameter can take on a limited number of values each with some probability.
Another random correlation model proposed by Andersen and Sidenius (2004) allows the
correlation to be dependent on the common factor. In this case one can model behavior
where a bad state of the economy, reflected through the realization of the common factor,
goes accompanied by large default correlation. In van der Voort (2007) additional idio-
syncratic default risk is introduced by an external source such as fraud. Although these
models do a reasonable job fitting to market quotes and can be used to model more
complex derivatives, the base correlation method is still the industry standard approach for
pricing tranches and to communicate about default correlation. A comparative analysis of
a number of different one factor copula models is given in Burtschell et al. (2005).

23.4 DATA
In order to apply the base correlation method a large amount of input is required. For this
study market data have been used which have been made available to us by ABN Amro.
For the analysis we have used data from December 2004 up to November 2006. From the
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modeling description given in Section 23.3 it is clear that market data are needed for three
parts of the model: risk-free discounting, marginal default distributions, and the default
dependency. Each of these aspects is related to specific types of market instruments which
are discussed below.

23.4.1 Default Free Discounting

In order to approximate risk-free discounting, we have used quotes for money market
accounts and plain vanilla interest rate swaps. From these quotes a risk-free discounting
curve is constructed using standard methods, see for instance Hull (2005). For each day of
the data set a risk-free discounting curve is constructed for both the U.S. dollar as well as
for the Euro.

23.4.2 CDS Term Structures

As our data set ranges from December 2004 up to November 2006, different series for both
indices are involved due to the roll of the indices as discussed in Section 23.2.1. For the
iTraxx Europe index this means that series 2 up to series 6 are included. For CDX the data
also involve five different compositions, namely series 3 up to series 7.* It is worth noting
that when rolling from series 4 to series 5 at September 20th 2005, Ford and General
Motors, were removed from the basket, amongst other reference entities. Due to the rolls
the total number of different reference entities is thus larger than 250. For each of these
reference entities a CDS term structure is available at each date in the period. A piecewise
constant default intensity curve is used, which allows the model to be calibrated to the CDS
quotes using a bootstrap method, see Schönbucher (2003) or Brigo and Mercurio (2006)
for instance. Recovery rates are assumed to be 40% for all names. As discussed in
Houweling and Vorst (2005) the choice of the recovery rate does not have a large influence
on pricing, as long as one calibrates to observed CDS quotes. From the resulting marginal
default distributions for all names, one could easily determine the fair spread for an index
CDS on each of the two indices. This determines the total amount of default risk present in
each of the baskets and is therefore a large determinant of the values of the different
tranches as well. Figure 23.3 shows the evolution of the fair spread for an index CDS on
iTraxx and CDX with five year maturity.

From the figure one can observe the decrease of the fair spread for a five year CDS on
the CDX index around the roll date of September 20th, 2005, which is partly due to the
removal of Ford and General Motors. Further, one can observe that both indices show a
similar behavior over time.

23.4.3 Synthetic CDO Quotes

Once the marginal default distributions are calibrated to CDS quotes the remaining part
is to include default dependency. Quotes for synthetic CDO tranches are available which,
in combination with the base correlation method, determine the dependency structure.

* For a composition of the different iTraxx and CDX series the reader is referred to the Markit website: www.
markit.com.
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Due to historical reasons quotes for tranches with a five year maturity are available from
December 2004 up to November 2006, while quotes for tranches with seven and ten year
maturity are available only over the period from July 2005 up to November 2006.

Table 23.2 presents a summary of statistics of both the quotes on iTraxx as well as
those on CDX, all with a maturity of five years. In addition, summary statistics are
presented for the two reference spreads. For each series of tranche quotes or reference
spread the table presents the average, the standard deviation, the maximum, and minimum
values. The last row presents the correlation of the quote under consideration with the
reference spread.

One can observe that quotes have moved a lot over the past two years, as can be derived
from the standard deviations as well as the large differences between minimum and
maximum quotes of the different tranches. Further, one can observe that for each of
the ten different time series of tranche quotes there exists a large degree of correlation
with the reference spread. Especially the equity tranches and the most senior tranches seem
to be largely correlated with the value of the reference spread. This relationship is
investigated in more detail in Section 23.5.1.

23.4.4 Liquidity

As discussed the synthetic CDO market has grown rapidly over the last few years. In order
to investigate whether there is evidence of this growth in the available data set, the bid=offer
spread of the quotes can be considered, which are available for each tranche over the entire
period. A smaller bid=offer spread would indicate a larger degree of liquidity for the
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FIGURE 23.3 Fair spread for a five year index credit default swap on iTraxx and CDX from
December 2004 up to November 2006.
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synthetic CDO tranches. In Table 23.3 the average bid=offer spread of the first ten days is
compared to the average bid=offer spread of the last ten days for each synthetic CDO
tranche with a five year maturity.

From the table one can observe that bid=offer spreads have decreased dramatically,
roughly with a factor three. Although the spread of both underlying indices has decreased
slightly as well this large decrease in bid=offer spread clearly indicates a large increase
in synthetic CDO tranche liquidity over the last two years. A similar effect can be observed
for the tranches on iTraxx and CDX with either seven year or ten year maturity.
Relative decreases in bid=offer spreads were similar although one has to note that the
period for which seven and ten year data are available only ranges from July 2005 up to
November 2006.

TABLE 23.2 Summary Statistics for Quotes with a Five Year Maturity on Both the
European iTraxx Index as well as the North-American CDX Index

iTraxx 0–3 3–6 6–9 9–12 12–22 Reference

Avg. 24.7 86.3 26.4 13.5 7.4 35.15

Std. Dev. 6.3 31.6 10.6 6.6 4.9 5.9

Max. 49.6 191.0 63.0 35.0 25.0 57.0

Min. 10.4 43.8 13.0 5.0 2.1 23.0

Corr. Ref. 95% 82% 84% 88% 89% 100%

CDX 0–3 3–7 7–10 10–15 15–30 Reference

Avg. 37.0 126.1 31.6 15.4 7.9 47.6

Std. Dev. 9.1 50.6 14.8 7.7 4.4 10.0

Max. 62.0 260.0 74.5 34.0 20.0 76.0

Min. 22.9 65.0 12.0 6.5 3.1 34.0

Corr. Ref. 98% 86% 75% 91% 94% 100%

Note: For each tranche the average (Avg.), the standard deviation (Std. Dev.), the
maximum (Max.), the minimum (Min.), and the correlation with the
reference quote (Corr. Ref.) are shown.

TABLE 23.3 Bid=Offer Spread of the Different Tranches on the Two Indices

iTraxx December 2004 November 2006 CDX December 2004 November 2006

0–3 0.67 0.24 0–3 1.33 0.24

3–6 3.30 0.60 3–7 4.35 1.70

6–9 3.30 0.95 7–10 5.40 1.40

9–12 3.75 0.95 10–15 5.75 1.23

12–22 2.00 0.76 15–30 2.58 0.95

A ten day average at the beginning of the data set is compared to a ten day average at the end of
the data set.
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23.5 EMPIRICAL ANALYSIS
23.5.1 Correlation Moves in Quotes

In the previous section it was shown that there exists a large correlation between quotes of
tranches and the reference spread of the quote. Here we investigate this relationship in
more detail using iTraxx and CDX tranche quotes with a five year maturity. Clearly, in a
CDO structure, such as shown in Figure 23.1 any change in the risk of the pool of collateral
assets must be translated to the different tranches of the CDO structure. When taking
a closer look at modeling one finds that, apart from interest rates, the fair spread is a
function of both the credit risk of the underlying index as well as default correlation. The
effect of interest rate moves is typically small as it affects both legs in a similar manner and
will therefore be ignored here. As before let Q denote the fair spread of a synthetic CDO
tranche and S the fair spread of a CDS on the underlying index with the same maturity as
the synthetic CDO tranche. Further let r denote a parameter for default correlation. Under
these settings one has Q¼Q(S, r) and thus:

dQ ¼ @Q
@S

dSþ @Q
@r

dr (23:15)

This equation shows that after correcting for index spread movements, changes in default
dependency remain the only driver of changes in quotes. We are interested in levels rather
than changes in the quotes and therefore it is assumed that there exists a simple linear
relationship between the tranche quote and the corresponding basket spread. In order to
investigate correlation effects, one should thus adjust for the risk in the portfolio, which is
reflected in the index spread, i.e., the spread of an index CDS on the index with same
maturity as the CDO tranche. As a proxy for this index spread the reference spread is used,
which is part of the quote. This can be done by means of an Ordinary Least Squares, OLS,
regression where one regresses the observed quote on the corresponding reference spread.
Let Qk

i denote the mid-quote for tranche k, for observation i. Assume that the iTraxx
tranches are indexed 1, . . . , 5 and CDX tranches 6, . . . , 10 in order of seniority. Further let
the corresponding reference spread be denoted by Rk

i , which is equal for all iTraxx quotes
and is also equal for all CDX quotes. The following simple linear relationship is considered:

Qk
i ¼ ak þ bk � Rk

i þ «ki (23:16)

Here the disturbances «ki are assumed to be i.i.d. normally distributed. This regression
analysis has been performed for each of the available time series of quotes and regression
results are shown in Appendix A. Let ak and bk denote the estimate values for ak and bk,
respectively. One can observe from the regression results that for each time series the
estimated coefficient bk is highly significant and that the coefficients of determination are
reasonably large. Thus, the reference spread explains a large part of the variation in the
observed market quotes of synthetic CDO tranches. For each of the time series a second
regression analysis has been performed where a quadratic form is considered by including
the squared reference spread. However, for none of the series this improved explanatory
power of the model significantly.
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Using the estimated parameters as shown in Appendix A, one can determine the
estimated residuals as follows:

eki � Qk
i � ak � bk � Rk

i for k ¼ 1, . . . , 10 (23:17)

As an example the series of iTraxx equity quotes is considered. As can be seen from the
appendix the estimated coefficients are a1¼�11.1 and b1¼ 1.02 and the coefficient of
determination is close to 90%. In Figure 23.4 we present the time series of quotes along
with the estimated values using the reference quote. In addition the estimated residuals are
plotted.

As can be seen from the figure the simple linear relationship provides a good fit. Further
one can observe that the estimation residuals do not seem to be independent but clearly
follow a certain pattern over time. Furthermore, one can clearly observe the increase in
residuals at the beginning of May 2005. This increase means that, after correcting for
moves in reference spread, the equity quote has moved upward. An increase in the value of
protection for the equity tranche goes accompanied by a decrease in default correlation.
This is exactly what was observed in the base correlations during the May 2005 events.

This simple OLS analysis can be applied to all different tranches which are quoted and
one can observe clear patterns for the errors over time for each of these series. In Table 23.4
the correlation matrix of the ten different residuals series is presented.

From the table one can observe some interesting results. First one can observe that for
both indices the residuals for the equity tranche are negatively correlated with those for
the other tranches. Note that this makes intuitive sense as when prices for the equity
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FIGURE 23.4 Regression of iTraxx equity quote on the reference spread. Both the original
data as well as the fit and the residuals are presented.
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tranche are high relative to the reference spread, or average portfolio spread, it must be that
the more senior tranches have lower prices relative to average spread. Another interesting
observation is the large correlation of the residuals for the different underlying baskets. For
instance residuals for quotes on equity tranches have a correlation of 80%, while for the
junior mezzanine tranche this is even 93%. Thus, in Figure 23.3 it was shown that index
CDS spreads for iTraxx and CDX moved closely and the table above suggests that the
default dependency structure also moves closely between both indices.

23.5.2 Empirical Base Correlations

As discussed in Section 23.3.2 the base correlation method has become the industry
standard approach which is used to visualize market-implied correlations. This method
has been applied to the data and in Appendix B the 5 base correlation series for iTraxx are
shown, as well as the ones for the CDX, all for a five year maturity. When considering the
base correlation for the equity tranches for both iTraxx and CDX one can clearly observe
the May 2005 event. For both indices base correlations for the equity tranche dropped from
around 20% to just below 10%. For the base correlations with higher detachment levels
corresponding to the iTraxx one can observe similar drops. However, for the CDX base
correlations corresponding to higher detachment levels one can see an increase.

As can be seen from the figures in Appendix B the correlations move closely together.
Table 23.5 presents the correlations of the different base correlations series. These numbers
confirm that base correlations for the different detachment levels move closely together
and in addition show that the base correlations corresponding to the two different indices
move closely together. One cannot directly compare these numbers with the correlations of
the regression residuals presented in Table 23.4. The reason is that the latter are based on
the tranches seen in the market, which correspond to different parts of the CDO structure.
When considering the base tranches, i.e., equity tranches with different detachment levels,

TABLE 23.4 Correlation of the Regression Residuals for the Different Series of Synthetic CDO Quotes

Correlation
of Errors

iTraxx CDX

0–3% 3–6% 6–9% 9–12% 12–22% 0–3% 3–7% 7–10% 10–15% 15–30%

iTraxx 0–3 100 �64 �76 �78 �75 80 �54 �73 �75 �49
3–6 �64 100 87 74 48 �64 93 83 70 �1
6–9 �76 87 100 83 60 �74 82 89 87 30

9–12 �78 74 83 100 85 �80 73 80 80 44

12–22 �75 48 60 85 100 �78 47 59 63 62

CDX 0–3 80 �64 �74 �80 �78 100 �67 �76 �74 �57
3–7 �54 93 82 73 47 �67 100 84 73 1

7–10 �73 83 89 80 59 �76 84 100 90 28

10–15 �75 70 87 80 63 �74 73 90 100 50

15–30 �49 �1 30 44 62 �57 1 28 50 100

Note: These residuals can be regarded as reference corrected quotes and are expected to capture correlation
moves in the synthetic CDO market.
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there is a large amount of overlap. One could however compare the base correlations
corresponding to the equity tranche, i.e., with detachment level of 3%, to the residuals
determined in Section 23.5.1. For iTraxx the correlation for these two time series equals
�94%, while for CDX the correlation is �83%. As discussed earlier, large residuals from
the OLS analysis for the equity tranches goes accompanied by low base correlations,
explaining the negative sign of the two correlations between the time series of residuals
and the time series of base correlations. These large correlations give further evidence that
the quotes, when adjusted for portfolio credit risk, indeed give a good indication of the
default dependency implied in the market.

23.5.3 Mapping Methodologies

We now turn to the different mapping methodologies as described in Section 23.3.2. As
discussed the base correlation method is not a proper model which becomes clear when
one wants to mark-to-market nonstandard tranches. For instance tranches with nonstan-
dard attachment and detachment levels, tranches with nonstandard maturities, or tranches
on bespoke baskets. As only five base correlations are available, one has to resort to
interpolation=extrapolation techniques in combination with mapping methods. Here we
consider the three different mapping methodologies described earlier on:

1. Direct detachment–detachment mapping, dd

2. Detachment as a percentage of expected basket loss, dp

3. Expected loss percentage mapping, lp

In the test all different mapping methods are used in combination with natural splines to
determine a base correlation for each detachment level. Linear extrapolation is used for

TABLE 23.5 Correlation of the Different Base Correlations

Correlation of Base
Correlation Series

iTraxx CDX

3% 6% 9% 12% 22% 3% 7% 10% 15% 30%

iTraxx 3 100 89 80 75 65 90 79 70 57 58

6 89 100 98 96 89 74 92 89 81 81

9 80 98 100 99 94 64 91 91 86 86

12 75 96 99 100 96 59 89 91 87 88

22 65 89 94 96 100 46 76 80 75 80

CDX 3 90 74 64 59 46 100 76 62 48 49

7 79 92 91 89 76 76 100 98 93 90

10 70 89 91 91 80 62 98 100 98 95

15 57 81 86 87 75 48 93 98 100 96

30 58 81 86 88 80 49 90 95 96 100

Note: For both iTraxx and CDX base correlations for five different detachment levels are determined for each
date in the data set. This results in a time series for each base correlation and the table presents
correlation for these series.
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detachment levels smaller than 3%. Note that the choice of interpolation technique is a
complex problem as well, as one might introduce arbitrage opportunities, especially for
short-term CDO tranches. However, this topic is not considered in this chapter.

For testing purposes we shall use the quotes on standard tranches with a five yearmaturity
for building the base correlation skew, as these are by far the most liquid correlation
instruments. After building the skew we apply one of the three different mapping methods
in order to determine the model value of tranches with different maturities or on different
underlying baskets. Comparing these model-generated values with the actual values results
in an error of the model compared to the market value.

Let S denote the set of tranches used for testing the mapping method. By definition
when considering a tranche with up-front value and premium contracted as implied by the
quotes, the correct value should be zero. Let Vj

i denote the model value for tranche i under
mapping method j, when the up-front percentage and contracted premium correspond to
the quoted numbers.* As the market-implied value of the tranche is zero, the error made
by the mapping method is thus equal to Vj

i . These errors can be used to define the Root
Mean Squared Error, for a mapping method j given a set of tranches S. We refer to this as
the value-based Root Mean Squared Error, or RMSEV:

RMSEV ( j, S) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NS

X
i2S

Vj
i

� 	2
s

(23:18)

Here NS �
P

i2S 1 denotes the number of tranches in the testing set. Instead of using
the value of the tranche, one could alternatively look at the fair up-front value or fair
premium implied by the model, to determine the errors. The market quotes the up front
or premium, while a mapping method results in a model-implied fair up-front value or fair
premium, leading again to an error. Let Qi denote the quote for tranche i and p

j
i the model-

implied up-front value or fair spread for the same tranche under mapping method j. In
addition to the value-based RMSE one could consider a quote-based Root Mean Squared
Error, RMSEQ:

RMSEQ( j, S) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NS

X
i2S

vi � Qi � p
j
i

� 	2
s

(23:19)

Here the terms vi allow one to give a certain weight to the different tranches. One could for
instance set vi ¼ 1=Q2

i and consider the relative errors, a choice which is made throughout
the remainder of this section.

When looking at the value-based RMSE one can expect that a large part of the result is
caused by equity and junior mezzanine tranches. When using the quote-based RMSE with
weights as above, the difficulty arises that quotes for the most senior tranches can be very

* In order to allow for a fair comparison, the notional delta exchange is taken into account by determining its value
and correcting the model-implied value for this.
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low, making large relative errors likely and causing the RMSEQ to put a large weight on
these senior tranches. Thus, the RMSEV is likely to put more weight on the equity and
junior tranches, while the RMSEQ is expected to put more weight on the more senior
tranches. For this reason, both of them are considered in the performance test for the
different base correlation mapping methods.

23.5.3.1 Mapping in the Time Domain
First the performance of the different mapping methods is investigated when varying the
maturity of the tranches. Using quotes on five year synthetic CDO tranches and one of the
mapping methods, one can determine the model-implied quote for a standard tranche with
either seven or ten years maturity. As quotes are available for these products one can easily
determine the error made due to the use of a mapping method. From these errors one
can determine the different RMSEs as described above, and compare the performance of
the different mapping methods among each other. In Appendix C the value-based RMSE is
presented for each of the five tranches on both iTraxx and CDX, with either seven year or
ten year maturity. In addition the RMSE is aggregated over both indices and both
maturities for each tranche separately. Further the RMSE is aggregated over all tranches
for a certain combination of index and maturity. Finally the RMSE is determined over all
tranches for each mapping method.

As can be seen from the results the mapping based on the expected loss percentage, lp,
shows the best performance. With the exception of the equity tranche it shows the best
performance for all tranches. A slightly worse performance is found for the scaled
detachment method, dp, where the detachment is expressed as a fraction of expected loss
of the total basket. The simple detachment-based mapping, dd, shows the worst perform-
ance, even though for equity tranches it appears to generate the closest fit. A reason for this
might be the chosen extrapolation method for the other two mapping methodologies,
which is not an issue for the dd method.

Table 23.6 shows the RMSE using all available tranches. Both the value-based RMSE is
shown as well as the RMSE based on relative errors for fair premia.

From this table one can observe that the expected loss percentage mapping, lp, shows
the best performance under both measures. However, the average relative error in terms of
the quotes is still at a level of 18%.

TABLE 23.6 Total RMSE under Two Approaches for All Three
Different Mapping Methods

Mapping RMSEV RMSEQ

Detachment–detachment, dd 3.78 0.46

Detachment percentage, dp 3.38 0.28

Expected loss percentage, lp 2.54 0.18

Note: RMSEV is based on the value of the tranche when contracted
premium equals fair premium. The RMSEQ is based on the
quoted numbers and relative errors are used.
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23.5.3.2 Mapping to Bespoke Baskets
A similar test can be performed in order to test the different mapping methods when
applied to bespoke baskets. Quotes for bespoke baskets are not available, but one could use
quotes on iTraxx tranches and subsequently value CDX tranches. The model-generated
quotes can then be compared to the market quotes and the performance of the different
mapping methods can be investigated. For this test we have used the five year quotes on the
iTraxx index to build a base correlation skew. Using one of the three mapping methods the
standard tranches on CDX with maturities of five, seven, and ten years, are priced and
results are compared with the correct values. In Appendix D one can find the value-based
RMSE split over the different mapping methods, the different tranches, and the different
maturities. Again the results show that the expected loss percentage mapping, lp, performs
best in most cases. Further one can observe that the simple detachment mapping, dd, again
performs best for equity tranches. It is interesting to see that this is only the case when
mapping from CDX to iTraxx tranches. When mapping from iTraxx to CDX tranches the
dd mapping method shows the worst performance.

Table 23.7 shows the RMSE using all available tranches. Both the value-based RMSE is
shown as well as the RMSE based on relative errors for fair premia. From this table one can
observe that the expected loss percentage mapping, lp, shows again the best performance
under both measures. However, the average relative error in terms of the quotes is still at a
level of 23%. Further one can observe that the simple detachment mapping, dd, performs
better than the scaled detachment level, dp, when considering the value-based RMSE. For
the RMSE based on relative error in fair premium, the results are the other way around.
This is caused by the large relative errors for the simple detachment mapping method for
senior tranches.

23.6 CONCLUSION
Over the last years the market for synthetic CDO tranches has undergone a rapid
development together with the research efforts in order to value these products consistently
with the observed market quotes. A widely used model for imposing default correlation is
the one factor Gaussian copula approach and calibration is done using the base correlation
method. One of the main drawbacks is that the base correlation method is not a proper

TABLE 23.7 Total RMSE under Two Approaches for All Three
Different Mapping Methods

Mapping RMSEV RMSEQ

Detachment–detachment, dd 3.21 0.42

Detachment percentage, dp 3.48 0.32

Expected loss percentage, lp 2.75 0.23

Note: RMSEV is based on the value of the tranche when contracted
premium equals fair premium. The RMSEQ is based on the
quoted numbers and relative errors are used. iTraxx quotes
are used to map to CDX tranches and vice versa.
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model and mapping methods are required when pricing tranches with nonstandard
attachment and detachment levels, nonstandard maturities, or tranches on bespoke
baskets.

In this chapter we have focussed on default correlation implied by market quotes. Using
a large data set with quotes for synthetic CDO tranches between December 2004 and
November 2006 we have considered different aspects of market-implied default correl-
ation. First the quotes have been used directly, using a simple linear regression to correct
for the level of default risk of the reference index. The remaining residuals show a clear
pattern over time, indicating moves in market-implied default dependency. One could
clearly observe the May 2005 events in these residuals. Furthermore, it was shown that the
correlation of these residuals amongst each other has been large and of expected sign,
where residuals for equity quotes were negatively correlated with those for the other
tranches. In addition it was shown that there exists a large correlation between the time
series of the residuals for equity tranches and the time series of base correlations corre-
sponding to the 3% detachment level.

In addition the data were used to investigate the performance of three different mapping
methods. These methods determine the correlation for a nonstandard tranche using the
base correlations implied from market quotes. Two out-of-sample tests have been per-
formed. First quotes for tranches with a five year maturity on a certain index were mapped
through the base correlation approach to tranches with seven and ten year maturity on the
same index. This allowed us to investigate the performance of the different mapping
methods in the maturity domain. Secondly, quotes for five year tranches on a certain
index were mapped to tranches with five, seven and ten year maturities referencing the
other index. This allowed us to investigate the performance of the mapping methods when
mapping to different baskets. It was found that the method based on the expected loss
percentage outperforms the use of the method of scaled detachment levels and simple
detachment only mapping. However, in all cases the errors were still very large with
relative errors in quotes around levels of 20%.
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APPENDIX A REGRESSION RESULTS: QUOTES REGRESSED
ON REFERENCE SPREAD

TABLE 23.A1 Results of Regression Analysis, where the Quote for Each Tranche is Regressed
on the Reference Spread

iTraxx 0–3 CDX 0–3

R2 0.898 R2 0.956

Variable Coeff. Std. Err. t-Ratio Variable Coeff. Std. Err. t-Ratio

Constant �11.139 0.719 �15.502 Constant �5.268 0.569 �9.259
Ref. Spread 1.022 0.020 50.617 Ref. Spread 0.888 0.012 75.886

iTraxx 3–6 CDX 3–7

R2 0.676 R2 0.742

Variable Coeff. Std. Err. t-Ratio Variable Coeff. Std. Err. t-Ratio

Constant �68.661 6.386 �10.752 Constant �81.994 7.660 �10.704
Ref. Spread 4.417 0.180 24.603 Ref. Spread 4.370 0.157 27.754

iTraxx 6–9 CDX 7–10

R2 0.706 R2 0.560

Variable Coeff. Std. Err. t-Ratio Variable Coeff. Std. Err. t-Ratio

Constant �26.618 2.040 �13.051 Constant �21.302 2.926 �7.280
Ref. Spread 1.512 0.057 26.363 Ref. Spread 1.111 0.060 18.475

iTraxx 9–12 CDX 10–15

R2 0.773 R2 0.824

Variable Coeff. Std. Err. t-Ratio Variable Coeff. Std. Err. t-Ratio

Constant �21.109 1.115 �18.928 Constant �18.003 0.964 �18.671
Ref. Spread 0.986 0.031 31.445 Ref. Spread 0.702 0.020 35.435

iTraxx 12–22 CDX 15–30

R2 0.798 R2 0.879

Variable Coeff. Std. Err. t-Ratio Variable Coeff. Std. Err. t-Ratio

Constant �18.892 0.786 �24.023 Constant �11.981 0.460 �26.043
Ref. Spread 0.749 0.022 33.876 Ref. Spread 0.417 0.009 44.140

On the left-hand side results are shown for iTraxx, while on the right-hand side results for CDX are shown. For
each regression the coefficient of determination, R2 is shown and for each parameter its estimate, standard
error, and t-ratio.
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APPENDIX B BASE CORRELATIONS
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FIGURE 23.A1 iTraxx and CDX base correlations from December 2004 up to November
2006.
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APPENDIX C PERFORMANCE OF MAPPING METHODS
TO MATURITY

TABLE 23.A2 Root Mean Square Error, RMSE of Three Different Mapping Methods

Tranche 1 Tranche 2 Tranche 3 Tranche 4 Tranche 5 Total

iTraxx 7Y dd 2.83 1.32 1.17 0.88 0.24 1.55

dp 2.94 3.72 0.62 0.28 0.08 2.14

lp 2.29 2.51 0.35 0.21 0.13 1.53

10Y dd 2.58 10.11 3.33 2.90 1.18 5.10

dp 6.20 6.16 5.31 1.32 0.31 4.61

lp 5.89 4.28 2.92 0.57 0.41 3.52

CDX 7Y dd 2.79 1.36 1.15 0.93 0.26 1.54

dp 2.58 2.89 0.61 0.19 0.14 1.76

lp 2.31 1.93 0.42 0.18 0.19 1.36

10Y dd 2.04 10.68 3.00 2.81 1.23 5.23

dp 3.94 5.51 6.00 0.99 0.16 4.07

lp 3.99 3.97 3.58 0.95 0.39 3.02

All dd 2.59 7.35 2.38 2.11 0.86 3.78

dp 4.20 4.76 3.98 0.85 0.19 3.38

lp 3.94 3.32 2.29 0.56 0.30 2.54

Map ‘‘dd’’ simply maps based on the relevant detachment level. Map ‘‘dp’’ uses the method described in
McGinty et al. (2004), where detachment is expressed as a percentage of the expected loss on the entire basket.
Finally, map ‘‘lp’’ considers mapping based on the expected loss on a tranche as a percentage of total expected
loss, as described in Reyfman et al. (2004). Quotes with 5Y maturities on iTraxx and CDX are used as input and
errors in value are determined for tranches with 7Y and 10Y maturities, after mapping. The final row considers
both indices and both maturities for the tranche. The final column combines the five different tranches.
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APPENDIX D PERFORMANCE OF MAPPING TO BESPOKE

TABLE 23.A3 Root Mean Square Error, RMSE of Three Different Mapping Methods

Tranche 1 Tranche 2 Tranche 3 Tranche 4 Tranche 5 Total

iTraxx 5Y dd 3.70 1.42 0.66 0.38 0.32 1.81

dp 4.71 1.74 0.64 0.32 0.35 2.27

lp 3.71 0.80 0.29 0.18 0.17 1.71

7Y dd 1.88 1.99 0.83 0.69 0.31 1.32

dp 4.99 3.73 0.63 0.23 0.16 2.80

lp 4.50 3.15 0.49 0.26 0.10 2.47

10Y dd 1.95 8.81 2.73 2.84 1.22 4.44

dp 8.13 6.67 5.20 1.23 0.19 5.28

lp 7.95 5.08 3.49 0.74 0.42 4.51

CDX 5Y dd 4.03 1.36 0.59 0.26 0.16 1.92

dp 4.21 1.92 0.33 0.13 0.11 2.08

lp 3.83 1.08 0.26 0.10 0.19 1.79

7Y dd 5.17 1.72 2.03 1.04 0.26 2.64

dp 2.89 4.96 1.24 0.22 0.18 2.63

lp 2.56 3.08 0.41 0.18 0.25 1.81

10Y dd 3.73 10.67 4.19 3.11 1.11 5.59

dp 3.13 7.35 7.74 1.74 0.29 5.04

lp 3.17 5.57 4.51 0.62 0.35 3.52

All dd 3.62 5.50 2.14 1.71 0.68 3.21

dp 4.96 4.68 3.64 0.84 0.23 3.48

lp 4.58 3.44 2.22 0.40 0.26 2.75

Map ‘‘dd’’ simply maps based on the relevant detachment level. Map ‘‘dp’’ uses the method described in
McGinty et al. (2004), where detachment is expressed as a percentage of the expected loss on the entire basket.
Finally, map ‘‘lp’’ considers mapping based on the expected loss on a tranche as a percentage of total expected
loss, as described in Reyfman et al. (2004). Quotes with 5Y maturities on iTraxx are used as input and errors in
value are determined for tranches on CDX with 5Y, 7Y, and 10Y maturities, after mapping. This is repeated
using CDX quotes as input and pricing iTraxx tranches. The final row considers both indices and both
maturities for the tranche. The final column combines the five different tranches.
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CHAPTER 2 4

Pricing Tranched Credit
Products with Generalized
Multifactor Models
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24.1 INTRODUCTION
The market of credit tranched products is one of the fastest growing segments in the credit
derivative industry. As an example, Tavakoli (2003) reports an increase in market size from
almost $19 billions in 1996, to $200 billions in 2001. Recent reports estimate market size to
be $20 trillions in 2006 (BBA Credit Derivatives Report, 2006). As a result, an increasing
attention of the financial sector audience has focused on the pricing of these new products.

The development of pricing models for multiname derivatives is relatively recent. As
was pointed out by Hull and White (2004), the standard approach on the credit risk
literature tends to subdivide the pricing models for multiname derivatives in two groups:
structural models, which are those inspired in Merton’s (1974) model or Black and Cox
(1976), or the intensity-based models, like Duffie and Gârlenau (2001). Roughly speaking,
their differences remain on how the probability of default of a firm is obtained: using their
fundamental variables—assets and liabilities—as in the case of the structural models, or
using directly market spreads, as in the intensity models approach. Up to a point, the
structural-based approach has been extensively implemented by the financial sector, maybe
due to the extended use of industrial models like Vasicek (1991) or Creditmetrics model of
Gupton et al. (1997).* However, recent academic literature analyze the prices of collateralized
debt obligations (CDO) tranches using intensity models, as Longstaff and Rajan (2008).
We refer to Bielecki and Rutkowski (2002) for a general presentation of structural- and
intensity-based models.

This chapter presents an extension of the standard gaussian model of Vasicek (1991), in
line with the structural models literature. Basically, Vasicek’s (1991) model assumes that
the value of a firm is explained by the weighted average of one common factor for every
asset plus an independent idiosyncratic factor. By means of linking the realization of one
systematic factor to every firm’s values, Vasicek (1991) provides a simple way to reduce the
complexity of dealing with dependence relationships between firms. Gibson (2004) and
Gregory and Laurent (2004, 2005) provide additional insights about the risk features of this
model.

Our approach relies on the connection between the changes of value of a firm and the
sum of two factors: systematic and idiosyncratic. Our approach overcomes the limitations

* It is worth mentioning that the appearance of techniques within the structural framework that diminishes the
traditional high computing cost of multiname credit derivatives (see Andersen et al. (2003) or Glasserman and
Suchitabandid (2006), among others) has contributed to the wide usage of structural models.
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of the standard Gaussian model: the different areas or regions of correlation that could
compose a credit portfolio (Gregory and Laurent, 2004). This chapter presents a model
that captures some of the facts found in real data. Motivated by this fact, this chapter
proposes an extension to the two-Gaussian asset classes as in Schönbucher (2003). This
chapter extends the existing literature in three ways. Firstly, the assumption of asset
homogeneity is relaxed by introducing two asset classes. Secondly, we consider an add-
itional source of systematic risk by including another common factor related with industry
factors. Finally, the normality assumption on common factors is relaxed.

This chapter is divided as follows: Section 24.2 presents the model. Section 24.3 studies
the sensitivity to correlation and to changes in credit spreads. Section 24.4 addresses the
econometric modeling. Finally, some conclusions are presented in Section 24.5.

24.2 MODEL
To motivate our model, we discuss some empirical features found in CDO data that are
not captured by the standard Gaussian models and propose an extension to the asset
class models posited by Schönbucher (2003). Notation is taken from Mardia et al. (1979).

24.2.1 Standard Gaussian Model

The Gaussian model introduced by Vasicek (1991) has become a standard in the industry.
Basically, it addresses in a simple and elegant way the key input in CDOs price: the
correlation in default probabilities between firms affects the price of the CDO.

Usually, a CDO is based on a large portfolio of firms bonds or CDS.* Let Vn�1
(subscript denotes matrix dimension) be a random vector with mean zero and covariance
matrix S. As standard notation in multivariate analysis, we will define the p-factor
model as

Vn�1 ¼ Ln�pFp�1 þ un�1 (24:1)

where Fp�1 and un�1 are random variables with different distributions.
The interpretation of the model (Equation 24.1) is the following:

. Vector Vn�1 represents the value of the assets for each of the individual n-obligors.

. Vector Fp�1 captures the effect of systematic factors—business cycle, industry, etc.—
that affect the whole economy.

. By contrast, un�1 represents the idiosyncratic factors that affect each of the
n-companies.

. Finally, Ln�p is called the loading matrix, and determines the correlation between
each of the n-firms.

By assumption, we have that

* CDX or iTraxx indexes are composed by 125 firms.
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E(F) ¼ 0, Var(F) ¼ I (24:2)

E(u) ¼ 0, Cov(ui,uj) ¼ 0, i 6¼ j (24:3)

and

Cov(F,u) ¼ 0 (24:4)

where I is the identity matrix.
We will also assume that vector un�1 is standardized to have zero mean and unit

variance.
Using a simplified form of Equation 24.1, Vasicek (1991) assumes that firm’s values in

the asset pool backing the CDO are affected by the sum of two elements: on one hand, a
common factor to every firm that represents the systematic component represented by the
factor F; on the other hand, an idiosyncratic component modeled by a noise «i. Both are
assumed to be standard N(0,1) random variables

Vi ¼ ri1F1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ri1

2
p

«i, with i < n (24:5)

Using Equation 24.5 it is possible to capture the correlation between different firms in a
portfolio. As Equation 24.5 reveals, Vasicek (1991) assumes that correlation coefficient is
homogeneous for each pair of firms.* Additionally, the simplicity of their assumptions
permits a fast computation of CDO prices under this framework.

As an immediate consequence of Equation 24.5, a further step is given by generalizing
the number of factors that affects firms values. Thus, Lucas et al. (2001) consider the
following factor model:

Vi ¼
Xp
j¼1

rijFj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Xp
j¼1

r2ij

vuut ui, with i < n (24:6)

where Vi represents the value of the i-company, Fj, j¼ 1, . . . , p capture the effect of
p-systematic factors, and ui is the idiosyncratic factor associated to the i-firm. Needless
to say, assumptions on the distribution of common and idiosyncratic factors (F and u,
respectively) could be imposed. Hull and White (2004) also include an extension to many
factors, including the t-Student distributed case. Finally, Glasserman and Suchitabandid
(2006), in a recent paper, implements numerical approximations to deal with these multi-
factor structures within a Gaussian framework.

For getting intuition about the behavior of these different models, Figure 24.1 exhibits
the loss distribution generated by three alternative models:

. Standard Gaussian model (Vasicek, 1991),

* For a detailed exposition of assumptions in structural models see Bielecki and Rutkowski (2002).
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VG
i ¼ ri1F1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i1

q
«i and F1, «i � N(0,1)

. One-factor double-t model (Hull and White, 2004),

VS
i ¼ ri1F1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i1

q
«i

where F1 and «i follows t-Student distributions, with six degrees of freedom.

. Two-factor Gaussian model (Hull and White, 2004, or Glasserman and Suchitaban-
did, 2006),

VDG
i ¼ ri1F1 þ ri2F2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i1 � r2i2

q
«i

with F1, F2, «i ~ N(0,1) and r2i1 þ r2i2 < 1.

As we will see later, the loss distribution plays a role crucial in the CDO pricing.
Different distributions are computed for a portfolio of 100 firms, with constant default
intensities of 1% per year. Correlation parameters are 0.3 for all models, except for two-
Gaussian factor, with 0.1 and 0.3. The double-t model considers a common and idiosyn-
cratic factors each distributed as t-Student with six degrees of freedom. The picture shows
that, under the same correlation parameters, the standard Gaussian model assigns lower
probability to high losses (see for instance the case of 20 firms) than the double-tmodel. By
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FIGURE 24.1 Total loss distribution of a 100-firms portfolio for different models. Indivi-
dual default probabilities are fixed at 1%. Correlation for the standard Gaussian and
t-Student distribution (with six degrees of freedom) is 0.3. Correlations for the double
Gaussian model are 0.1, 0.3.
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considering an additional factor, as in the two-Gaussian case, the probability of high losses
is substantially higher than in previous cases.

Table 24.1 presents the spreads (in basis points) of a 5 years CDO portfolio composed
by 100 firms. The individual default probabilities are constant and fixed at 1%. The
recovery rate is 40%, a standard in the market. Finally, the different correlation parameters
are displayed in the table. We remember that all spreads are obtained considering only one
asset class. As Table 24.1 shows, results are consistent with the loss distribution lines
presented in Figure 24.1, the double t-Student distribution gives prices systematically
bigger than those obtained for the standard Gaussian model, keeping constant the correl-
ation. In the two-Gaussian factor model prices, we observe a mixture of effects due to
different combinations of correlations in the portfolio.

24.2.2 Two-by-Two Model

Generally, as considered by Schonbücher (2003) or Lando (2004), a credit portfolio is
composed by different asset classes or buckets, attending to criteria of investment grade,
noninvestment grade assets, or industry, among others. The exposure of a credit portfolio
to a set of common risk factors could be significant between groups, but should be
homogeneous within them. In line with this, the idea of two groups of assets treated in
different ways is a more realistic assumption.

As was pointed out by Gregory and Laurent (2004), the one-factor model imposes a
limited correlation structure on the credit portfolio, which is not realistic. Initially, one can
argue that increasing the number of factors could be enough to capture a richer structure of
correlation within the portfolio. However, this is not yet consistent with the idea of
heterogeneity correlation among groups, due to the fact that every asset is exposed to
the same degree of correlation. By contrast, a richer correlation structure could be imposed
in the portfolio if these two groups are treated in different ways.

To illustrate these ideas, Figure 24.2 shows the yearly percentage default rates for
investment and noninvestment grades. Rates for investment data have been multiplied
by 10 with the intention of clarifying the exposition. Figure 24.2 reveals that correlation
between these two asset groups varies through time: periods with high degree of default in
noninvestment grade assets do not match with high default rates for investment grade.
With reference to this idea, Figure 24.3 displays the correlation coefficients computed using
a moving window of 5 years. This also provides some additional insights on the degree of
correlation between asset classes: the picture shows how the correlation among different

TABLE 24.1 Spreads of Different Tranches for a 100-Names CDO under Different Correlation
Parameters

Model Standard Gaussian Two-Gaussian Factors t-Student

Correlation 0.1 0.3 0.1=0.1 0.1=0.3 0.1 0.3

Attachment Points (%) Tranche Spread (Basis Points)

0–3 2117 1320 2186 1656 2485 2135

3–10 86 110 508 653 131 233

10–100 0.02 1 7 29 1 9
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groups changes during the sample period, from negative correlation (1975, 1977, or 1990)
to zero (1993, 1996) or highly positive (1982, 1995, or 2000). These differences in default
rates through time could reveal the existence of an idiosyncratic component between asset
classes. This fact could support the idea of modeling the behavior of different assets in a
different way.
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FIGURE 24.2 Default (yearly) rates for investment and noninvestment grades. Rates for
investment data have been multiplied by 10 for comparing the data. (From Hamilton, D.T.,
Varma, P., Ou, S., and Cantor, R., Default and Recovery Rates of Corporate Bond Issuers,
1920–2004, Moody’s Investor Service, January, 2005.)
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FIGURE 24.3 Correlation coefficients using a moving window of 5 years.
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This chapter considers a family of models that take account the existence of these
different asset classes or regions, in line with the suggestions of Gregory and Laurent
(2004). We analyze a model in the line of the two assets–two Gaussian factor model of
Schönbucher (2003), where no distinction is made between the obligors that belong to the
same class. Our model generalizes the model posited by Schönbucher (2003) by consider-
ing a t-Student distribution, which assigns a higher probability to high default events.
Empirical evidence seems to go in this direction (Mashal and Naldi, 2002). Our work
contributes to the existing literature in the analysis of these asset class models. To the best
of our knowledge, no similar studies have yet been reported in this direction.

The model we propose is a two-by-two factor model as follows:*

Vi1 ¼ a11F1 þ a12F2 þ b1ui1
Vi2 ¼ a21F1 þ a22F2 þ b2ui2 (24:7)

where, Vi1, Vi2 (i< n) represents the value of the i-company which belongs to the different
asset class, Fj, j¼ 1, 2 captures the effect of systematic factors—business cycle and
industry—with independent t-distributions with nj degrees of freedom, and ui1, ui2 are
idiosyncratic factors distributed also with ni1, ni2 degrees of freedom, respectively.

Under the assumptions of factor models, Fj are scaled to have variance 1, then

a11 ¼ r11

ffiffiffiffiffiffiffiffi
n1�2
n1

q
and so on. Idiosyncratic errors are also scaled, for instance

b1 ¼
ffiffiffiffiffiffiffiffiffi
ni1�2
ni1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

11 � a2
12

p
. Finally, we assume the same default barriers Ki1, Ki2 for

the obligors of the same class.
Needless to say, the model can be easily generalized to the case of m-asset classes as

follows:

Vi,m ¼
Xp
h¼1

rmhFh þ ui,m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Xp
h¼1

r2mh

vuut
where, Vi,m represents the value of the i-company which belong to the m-asset class,
Fj, j = 1, . . . , p capture the effect of systematic factors, and ui,m is the idiosyncratic factor
corresponded to i-firm of the m-asset class. Generally speaking, assumptions relying on
distribution factors or more asset classes could also be proposed. However, a trade-off
between accuracy, parsimony, and computing efficiency must be considered.

24.2.3 Conditional Default Probabilities

Without loss of generality, we omit the subscript that refers to the i-firm for the ease of
exposition. We want to study the probability of default for the i-firm that belongs to an
asset class m, with m¼ 1, 2,

* For the sake of brevity, we omit the graph of the loss distribution implied by this model.
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P[Vm < KjF ¼ f] ¼ P um � K � aF

bm
jF ¼ f

� �
¼ Tm

K � af

bm

� �

where, Tm denotes the distribution function of a t-student with nm degrees of freedom for
the i-firm, and F, a are the common vector factors and their coefficients, respectively.

It is usual to calculate the probability of having k default events, conditional to
realization of vector factor F as

P[X ¼ kjF] ¼
Xk
l¼0

b(l,N1,T1) b(k� l,N2,T2)

where b(l, N, T) denotes the binomial frequency function, which gives the probability of
observing l successes with probability T, where N represents the number of firms that
belong to each asset class. In the same manner, the unconditional probability of k default
events is obtained considering all possible realizations of factors F

P[X ¼ k] ¼
Xk
l¼0

ðþ1
�1

ðþ1
�1

b(l,N1,T1) b(k� l,N2,T2)c(f) df

where c(f) denotes the probability density function of F.
Finally, the total failure distribution is just obtained as the sum of all the defaults up to

level k,

P[X � k] ¼
Xk
r¼0

P[X ¼ r]

¼
Xk
r¼0

Xr

l¼0

ðþ1
�1

ðþ1
�1

b(l,N1,T1) b(r � l,N2,T2)c(f) df (24:8)

Lando (2004) refers to this problem as a different buckets problem in the sense that by
means of multinomial distributions, we compute the total loss distribution of the portfolio.
Our approach to this point would be the computation of this set of bucket probabilities but
we will adopt a different approach.

24.2.4 Loss Distribution

As pointed out in Lando (2004), calculation of multinomial expressions like Equation 24.8 is
burdensome. Instead of computing Equation 24.8 by brute force, we use a simple idea, due to
Andersen et al. (2003) that could improve the efficiency in terms of computing cost.*

Andersen et al. (2003) provide an efficient algorithm, which has become widely used by
the industry. Roughly speaking, the main idea behind this is to observe what happens to
the total loss distribution of a portfolio when we increase its size by one firm.

* Their contribution has been also explored and extended in Hull and White (2004).
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Consider a portfolio that includes n credit references and let pn(ijf) be the probability of
default of i firms in this portfolio conditional on factors f. Let qnþ1(f) be the default
probability of an individual firm that is added to this portfolio. These two probabilities are
conditional on the realization of the common factor vector f.

Consider the total loss distribution (LD) in this portfolio. Intuition says that the
probability of i-defaults in this portfolio—conditional on f—can be written as

LD(ijf) ¼ pn(ijf)� (1� qnþ1(f))þ pn(i� 1jf)� qnþ1(f), 0 < i < nþ 1

where the first term reflects that default is due to i-firms included in the initial portfolio
while the new reference (just included in the portfolio) survives. In a similar way, the
second term reflects the new firm (just included in the portfolio) defaults while the other
i� 1 defaulted firms were previously included in the original portfolio.

Moreover, for the extreme cases of default firms, we have

pnþ1(0jf) ¼ pn(0jf)� [1� qnþ1(f)]
pnþ1(nþ 1jf) ¼ pn(njf)� qnþ1(f)

Then, taking into account the last firm just included in the portfolio, these equations reflect
that no firm defaults or all of them default, respectively.

As an example, consider an initial portfolio including two firms. Adding a third firm, the
total default probabilities are given by

p3(0jf) ¼ p2(0jf)(1� q3(f))

p3(1jf) ¼ p2(1jf)(1� q3(f))þ p2(0jf)q3(f)
p3(2jf) ¼ p2(2jf)(1� q3(f))þ p2(1jf)q3(f)
p3(3jf) ¼ p2(2jf)q3(f)

Using this iterative procedure, we can compute the unconditional total LD by considering
all possible realizations of f.*

24.3 RESULTS FOR TWO-BY-TWO MODEL
In this section, we present some results of the model given by Equation 24.7. Firstly, we
discuss the spreads obtained using the two-by-two approach. Secondly, we give an
approach useful for cases of high degrees of freedom based on Cornish–Fisher expansions,
which is useful in terms of computing cost.

* See Andersen et al. (2003) or Gibson (2004) for more details.
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24.3.1 Numerical Results

To give some results of the model, given by Equation 24.7, we analyze different cases for a
two asset classes, 5 year CDO with 100 firms with quarterly payments. We also assume that
the recovery rate is fixed and equal at 40%. Risk-neutral default individual default
probabilities are fixed at 1% and 5% for assets belonging to class 1 and class 2, respectively.
For ease of explanation, the size of each asset class in the portfolio is the same (50% for
each one). More results concerning the size of the portfolio are provided in Section 24.4.

Table 24.2 displays the main results obtained. First row corresponds to the three
simulated base cases: the standard Gaussian model* with one factor, two asset classes;
the two assets–two Gaussian factor; finally, the two assets–two t-Student factors.y t-Student
distributions have been fixed at five degrees of freedom for idiosyncratic and systematic
factors. Second row displays the correlation parameters of each asset class with both
factors. For example, 0.1=0.3 in the two-Gaussian case refers to a correlation of 0.1 (0.3)
for elements of class 1 (2) with the two systematic factors. In line with Gregory and Laurent
(2004), our idea is to check the behavior of the CDO to a portfolio exposed to two different
degrees of correlation.

All the simulations have been carried out for different tranches values. Looking at the
riskier tranche (equity tranche), we observe that for the same degree of correlation, its spread
is systematically bigger for the two t-Student case than for the two-Gaussian factors. One
conclusion that arises from Table 24.2 is that the two assets–one-Gaussian factor spreads for
equity tranche are close to those values obtained for two assets–two t-Student factors.

As expected, the same does not apply for mezzanine tranches: the addition of more
factors provides more weight to extreme default events, which results in an increase in
spread of mezzanine tranches. The same conclusions apply to senior tranche.

24.3.2 Approximation for n Infinite

The asymptotic relationship between a t-distributed random variable and a normal
random variable by means of the Cornish–Fisher expansion could be interesting for
cases of big degrees of freedom. Shaw (2006) provides the Cornish–Fisher expansion for
a t-distributed random variable, with zero mean and unit variance, in terms of a standard

TABLE 24.2 Spreads of Different Tranches for a 100-Names CDO under Different Correlation Parameters

Model Standard Gaussian Two-Gaussian Factors t-Student

Correlation 0.1=0.1 0.1=0.3 0.1=0.1 0.1=0.3 0.1=0.1 0.1=0.3

Attachment Points (%) Tranche Spread (Basis Points)

0–3 7166 5016 5421 3154 6899 4977

3–10 1040 929 1581 1401 1254 1302

10–100 5 11 43 122 27 65

* Standard Gaussian model has been computed using a Gauss–Hermite quadrature with eight nodes.
y t-Student simulations have been computed using a Simpson’s quadrature with 25 points.
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normal random variable distribution. This reduces considerably the computational time as,
in this case, it is possible to use a double Gauss–Hermite quadrature, instead of a Simpson
quadrature. Basically, Shaw (2006) provides the relationship

s ¼ z þ 1
4n

z(z2 � 3)þ 1
96n2

z(5z4 � 8z2 � 69)þ � � � (24:9)

where s is the t-distributed random variable with n degrees of freedom, and z is a standard
normal random variable. To check the accuracy of the approximation in Equation 24.9,
Table 24.3 displays the spreads (in basis points) for different tranches in a two asset classes,
50-named CDO with quarterly payments under different correlation parameters for
various degrees of freedom. As in the previous section, correlation parameters correspond
to factors of each asset classes. As in previous examples, risk-neutral default probabilities
have also been fixed at 0.1 and 0.3 for each asset class. The recovery rate is fixed at 40%.

Basically, two general models have been computed: two-Gaussian factors and a two
t-Student factor. The last column refers to the two t-Student factor approximation using
the Cornish–Fisher expansion. Correlation coefficients and degrees of freedom for each
model are displayed in the table.* The Gaussian case is presented to get intuition of how far
we are from the asymptotic result. As expected, the larger the degree of freedom, the higher
the accuracy of the results. The differences between the equity tranche range from 20% for
10 degrees of freedom to 12% for 15 degrees of freedom case. Similarly, considering the
mezzanine cases, differences go from 21% to 11%. There are no substantial changes in
the case of senior tranche. It is worth remembering that computations under the exact
t-Student distribution have been done using a numerical quadrature and, so, they are
exposed to numerical errors.

24.4 SENSITIVITY ANALYSIS
Now, we are interested in the prices of the CDO under two different scenarios: changes in
portfolio size and correlation. Firstly, we present some standard measures in risk manage-
ment as the value at risk (VaR) and the conditional value-at-risk (VaR) measures.
Secondly, we analyze the sensitivity of different tranches to changes in correlation.

TABLE 24.3 Spreads of Different Tranches for a 50-Names CDO under Different Correlation Parameters

Model Two-Gaussian Factors t-Student CF t-Student

Correlation 0.1=0.3 0.1=0.3 0.1=0.3 0.1=0.3 0.1=0.3
Degrees of Freedom (n1=n2) ‘=‘ 10=10 15=15 10=10 15=15

Attachment Points (%) Tranche Spread (Basis Points)

0–3 3015 3924 3711 3270 3296

3–10 1380 1236 1198 1025 1083

10–100 289 160 160 166 160

* The two-Gaussian factor model is equivalent to a two t-Student factor model with infinite degrees of freedom.
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24.4.1 Value at Risk and Conditional Value at Risk

Value at risk and conditional value at risk are usually taken as representative risk
measures for a portfolio. VaR is defined as the percentile of the distribution of portfolio
losses given a certain level of confidence (Duffie and Pan, 1997). Artzner et al. (1999)
enumerates some limitations of the VaR measure and discuss some interesting proper-
ties of a proper measure of risk. According to this, we also include the CVaR measure,*
defined as the expected loss in a portfolio conditional to a certain loss threshold u,
that is,

CVaRu ¼ E[xjx > u]

where the sign of the inequality has been changed because we are working directly with the
total loss distribution.

Table 24.4 includes the VaR and CVaR measures for a 100-named CDO composed by
two different risky asset classes under different correlation parameters and different
proportions in the portfolio. The (yearly) risk-neutral default probabilities for each
obligor of asset class 1 have been fixed at 0.01, and 0.05 for obligors belonging to asses
class 2 to asset class 2. For the sake of simplicity, all the factors—systematic and
idiosyncratic—in the model (Equation 24.7) have been fixed at five degrees of freedom.
The first column includes the correlation coefficients corresponding to both factors of
each class (i.e., 0.1=0.3 means a correlation coefficient of 0.1 (0.3) for both factors in asset
class 1 (2)). Correlation coefficients equal to zero refers to independence case between
obligors. For analyzing the response of the loss distribution generated by the model
(Equation 24.7) with respect to different sizes of the portfolio, the remaining columns
show different percentage sizes of the portfolio. The first term refers to the portfolio
percentage of class 1, and so on.

TABLE 24.4 VaR and CVaR Measures for a 100-Named CDO Composed by Two Different Risky Asset
Classes under Different Correlation Parameters and Different Proportions in the Portfolio

VaR 99% CVaR 99%

Correlation 25=75 50=50 75=25 25=75 50=50 75=25

0.0=0.0 10 9 7 18 9 9

0.1=0.1 25 19 13 35 27 19

0.1=0.3 57 40 23 67 48 30

0.3=0.3 61 47 33 72 61 50

Note: Degrees of freedom are fixed at 5 for all factors. The first (second) coefficient refers to the proportion
(in percentage) of asset class 1 (2) in the portfolio. Yearly risk-neutral probabilities have been fixed to
0.01 for each obligor of asset class 1, and 0.05 for those of asset class 2.

* This measure was posited by Acerbi et al. (2001).
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Needles to say that two main results arise form Table 24.4. Firstly, the higher the
correlation the higher expected extreme loss as measured by VaR and CVaR, as expected.
Secondly, an increase in the percentage of the risky asset (asset class 2) produces an
increase in the losses of the portfolio.

24.4.2 Sensitivity to Correlation

To analyze the sensitivity to correlation of the model (Equation 24.7), we have created a
CDO based on a portfolio of 50 names. Individual default probabilities have been fixed at
1% for asset class 1 and 5% for asset class 2, respectively. To reduce the computational
cost of the implementation, we have set the distribution of the two systematic factors as
t-Student ones with 15 degrees of freedom. We have used the results of Shaw (2006)
developed in Section 24.2.5, without loss of generality. All simulations have been per-
formed using a double Hermite quadrature with 64 nodes. Idiosyncratic factors have been
fixed at 5 for each asset class. To search differences in the portfolio composition, we have
applied our study to two different-sized portfolio: equally weighted portfolio (50% asset
class 1, 50% asset class 2) and risky portfolio (25% asset class 1, 75% asset class 2).

Figures 24.4 and 24.5 display the spreads obtained under different sets of correlations
for the equally weighted and risky portfolios. In general, the convexity pattern of the
equity-senior curves remains constant in both cases, which is consistent with the prefer-
ence (aversion) for risk on equity (senior) tranche investors, as expected.

Regarding changes in correlation, Figure 24.4 reveals that correlation with risky asset
classes are, by large, responsible for changes in the value of equity spreads. When it comes
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FIGURE 24.4 Spreads under different correlations for a equally weighted (50%–50%)
portfolio.
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to the risky portfolio (Figure 24.5), it is interesting to observe how changes produced
by the correlation in asset class 1 or 2 (see Figure 24.5a and b) produce almost the same
effects.

As it is also expected, an increase in global correlation raises the spreads of senior
tranche. A higher correlation increases the probability of big losses, which is reflected in
the senior spreads. This feature could be also mentioned (in a different scale) to the case of
the risky portfolio in Figure 24.5.
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FIGURE 24.5 Spreads under different correlations for a 25%–75% portfolio.
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24.5 ECONOMETRIC FRAMEWORK
This section focuses on the parameters estimation of the model given in Equation 24.7. As
pointed out in Embretchs et al. (2005), the statistical estimation of parameters in many
industrial models are simply assigned by means of economic arguments or proxies
variables. We will develop an exercise of formal estimation using some well-known
econometric tools as logit–probit regressions.* Because of the features of our data, some
cautions must be taken to understand our results. This is due to the shortage of relevant
data (for instance, rates of default of high-rated companies) or the sample size, as was also
noticed by Embretchs et al. (2005). These authors also provide a more general discussion
on the statistical estimation of portfolio credit risk models.

24.5.1 Estimation Techniques

As suggested by Schönbucher (2003) or Embretchs et al. (2005), the estimation of
parameters in the expression (Equation 24.7) will be carried out using the models for
discrete choice of proportions data. Basically, the idea consists in explaining the sample
rates of default pi (where i refers to the asset class or group) as an approximation to the
population rates of default Pi plus an error term, «i. The idea behind is to link the
population probability with some function F(�) over a set of explanatory factors Xi and
their coefficients b, as follows:

pi ¼ Pi þ «i ¼ F(x0ib)þ «i (24:10)

To be interpreted as a probability, the function F (�) must be bounded and monotonically
increasing in the interval [0,1]. Some widely used functions for F are the standard Normal
distribution, which corresponds to the probit model, or the uniform distribution, which
results in the linear probability model.

As suggested by Greene (2003), we could use regression methods as well as maximum
likelihood procedures to estimate the set of coefficients b of the expression (Equation
24.10). For example, in the case of the probit regression, the relationship between the
sample rates of default pi and their population counterparts are

pi ¼ Pi þ «i ! F�1( pi) ¼ F�1(Pi þ «i)

which could be aproximated by (Novales, 1993)

F�1( pi) ’ x0ibþ
«i

f (x0ib)

where F(�) denotes the distribution function of a standard Normal variable. As mentioned
in Novales (1993), the last expression suggests that we can estimate the parameter vector b
by regressing the sample probits F�1(pi) on the variables x. Considerations about the
heteroscedasticity of the residual can be found in the cited reference.

* Standard references on this type of regressions using grouped data can be found in Novales (1993) or Greene (2003).
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To check the model’s goodness of fit, Novales (1993) also provides a comparison of
different regressions (probit, logit, or lineal) in terms of the mean square error (MSE). The
statistic s is defined as

s ¼
XT
1

ni(pi � P̂i)2

P̂i(1� P̂i)
� x2

T�k (24:11)

where ni represents the sample size of the data (subscript i refers to asset class or group)
and pi, P̂i are the observed and estimated frequencies, respectively. The statistic s
follows a chi-square distribution with T–k degrees of freedom, sample length T and k
restrictions.

24.5.2 Variables and Estimation

With the intention of illustrating the estimation of the model given by Equation 24.7,
we have chosen a set of six explanatory variables for the rates of default: the real
growth domestic product (GDP), the consumers price index (CPI), the annual return
on the S&P500 index (SP_ret), its annualized standard deviation (SP_std), the 10 year
treasury constant maturity rate (10_rate), and the industrial production index (IPI).*
As dependent variables we have the annual rates of default for two investment grades:
noninvestment grade (SG) and investment grade (IG), both collected from Hamilton
et al. (2005). Because of the availability of default rate data, the sample period
has been taken from 1970 to 2004, which results in 35 observations. A summary of
the main statistics and the correlation coefficients are presented in Tables 24.5 and
24.6, respectively.

To visualize the influence of the proposed explanatory variables in the default rates,
Figures 24.6 and 24.7 represent the scatter plots of different investment classes versus

TABLE 24.5 Descriptive Statistics

Descriptive Statistics Mean Median Std Skewness Kurtosis Max Min

IG 0.0006 0 0.0011 2.2481 8.2051 0.0049 0

SG 0.0389 0.0345 0.0288 1.0213 3.0976 0.1058 0.0042

SP_ret 0.0297 0.0439 0.0675 �0.6110 2.5129 0.1310 �0.1208
SP_std 89.4702 39.3947 106.3397 1.4176 3.7198 390.1884 7.5537

GDP 0.0130 0.0148 0.0087 �0.6077 2.8766 0.0301 �0.0085
CPI 0.0205 0.0159 0.0128 1.2338 3.7824 0.0564 0.0052

10_rate 7.7577 7.4176 2.4231 0.8413 3.2283 13.9214 4.0139

IPI 0.0111 0.0124 0.0185 �0.4614 3.2866 13.9214 �0.0409

* All data are available from the Federal Reserve Bank of St. Louis webpage (www.stlouisfed.org) except the S&P 500
index level, which has been taken from Bloomberg.
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different explanatory variables. Figure 24.6 seems to corroborate what we could guess
departing from the correlation parameters included in Table 24.6: the standard deviation
of the S&P 500 returns, the GDP, and the CPI can be good candidates for explaining the
default rate in the case of the noninvestment firms. Additionally, at a certain degree, the

TABLE 24.6 Correlation Matrix

IG SG SP_ret SP_std GDP CPI 10_rate IPI

IG 1.0000

SG 0.4106 1.0000

SP_ret �0.2388 �0.2153 1.0000

SP_std 0.1760 0.3472 �0.0424 1.0000

GDP �0.1431 �0.3541 0.4988 0.0029 1.0000

CPI �0.1847 �0.3209 �0.2806 �0.4959 �0.4937 1.0000

10_rate �0.1043 �0.2344 0.0611 �0.6113 �0.1070 0.6060 1.0000

IPI �0.1499 �0.2930 0.2687 �0.0385 0.6671 �0.3252 �0.1344 1.0000
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variables.
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S&P 500 return can be added to this list as a possible explanatory variable in the case of the
investment firms.*

One step ahead is to compute how much of the sample can be explained by the set of
variables under study. To answer this question, we regress the explanatory variables on the
noninvestment and investment rates. Table 24.7 shows the results. The first row corres-
ponds to the different independent variables under study. The first column contains the
model under study—linear, probit, logit—and the different regressed variables (SG and IG
default rates). Second to eighth columns display different b’s obtained under different
models. Finally, the last column shows the s statistic defined in Equation 24.11, which will
be used as a naive benchmark: if the whole set of independent variables explains some
quantity of the sample, two variables would explain less: the pair of variables whose s value
are closest to the benchmark could be good candidates as common factors in the model
(Equation 24.7).
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FIGURE 24.7 Investment grade rates of default (IG) versus different explanatory variables.

* As Figure 24.7 reveals, due to the high number of null observations in the IG sample, conclusions about the factors
affecting IG rates should be taken carefully.
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We start with regressions on SG rates. One main reason recommends this procedure:
their data are more relevant to determine the factors that may cause default. Up to a point,
conclusions on the factors will be more robust. Previous regressions suggest choosing the
variables GDP, CPI, IPI, and SP_stdas common factors in the model given by Equation
24.7. These variables minimize the statistic (Equation 24.11) with respect to other pairs of
alternatives. Finally, we select GDP and CPI as common factors according to two main
reasons:

1. Firstly, the industrial production index could be seen as a proxy of the GDP and its
information could be redundant. Moreover, regressions of probit–logit models using
these two variables support the choice of GDP against the IPI.

2. Secondly, regressions on the parameter SP_std give a b close to the precision imposed
to our estimated parameters (10�4).

Table 24.8 presents the ordinary least squares (OLS)* estimates for b of independent
term, GDP variable, and CPI variable, in the columns, using the SG rates. Confidence
intervals at the 95% level are displayed in brackets. The rows in this table also display
regression results for linear, probit, and logit models. The last row contains the value of the
statistic given by Equation 24.11 obtained for each case. Attending to the goodness-of-fit
criteria using s, the ordinary least squares (OLS) probit model regression provides the best
fit to the sample.y Overall, all the b estimates corresponding to OLS regressions are
negative, except for the independent term of the linear model, which leads to higher s
statistic. Results concerning to OLS regressions can be interpreted as follows: a negative b
implies an increasing on default probabilities. In line with this, as expected, a decrease in
GDP rates may produce an increase in SG default rates. Surprisingly, an increase in the CPI
rate could diminish the rates of default, which might result counter intuitive.

TABLE 24.8 Results for Regressions of Noninvestment (SG) Default Rates on Real Growth Domestic
Product (GDP) and Consumer Price Index (CPI) as Explanatory Variables

SG Model b0 GDP CPI s

Linear OLS 0.0979 �2.2380 �1.4690 21.8030

[0.0733 0.1226] [�3.2486 �1.2274] [�2.1548 �0.7832]
Probit OLS �1.0785 �26.7705 �21.6288 14.7653

[�1.3568 �0.8002] [�38.1822 �15.3587] [�29.3730 �13.8846]
Logit OLS �1.6293 �61.8990 �51.7790 15.4018

[�2.2769 �0.9816] [�88.4563 �35.3416] [�69.8014 �33.7567]

* GLS estimates have not been computed due to the sample size.
y Maximum likelihood estimates (available on request) for models probit and logit are close to those parameters
obtained for respective OLS models.
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Table 24.9 shows regression results for linear, probit, and logit models using IG rates as
dependent variable. It is worth to notice that results are not conclusive as 63% of the
sample under study are zeros. GLS estimations do not make sense in this context. To avoid
numerical problems in the estimation, we have added the quantity 0.00005 to the sample,
as suggested by Greene (2003). The first row displays the independent term and explana-
tory variables. Each pair of the following rows contains firstly the different values of b ’s
obtained using two variables (GDP and CPI); secondly, their values using only the GDP
variable. Maximum likelihood estimates (available on request) for the probit and logit
models are close to those parameters obtained for respective OLS models. We have
estimated GDP variable alone with the intention of analyzing the explanatory power of
the GDP on IG rates. First to second rows show the model and procedure used. The last
column displays the value for the statistic s. At a certain degree, results on Table 24.8 could
support the inverse relationship between the explanatory variables and the IG rates of
default, as previously noted for the SG case.

24.5.3 Interpretation of Coefficients

As was pointed out by Elizalde (2005), due to the difficulty of interpreting what the
correlation term represents, estimating the correlation term in factor models is not an
evident task. Looking at Equation 24.10, the estimate b describes the effect from the
explanatory factor x through a nonlinear transformation of the firm’s asset value, which
itself is unobserved, as it is also noticed by Elizalde (2005). As this fact complicates
understanding the proper correlation term, the author enumerates some measures used
ad hoc by practitioners, as equity return correlations, to conclude about the insufficiency
(and scarcity) of papers that deals with this problem.

Our interpretation of coefficients in the model given by Equation 24.7 goes in the
direction of the econometric explanation for the coefficients of the linear, logit, and probit
models, that is, the influence of the exogenous variables on the endogenous variables.

TABLE 24.9 Results for Regressions of Investment (IG) Default Rates on Real Growth Domestic Product
(GDP) and Consumer Price Index (CPI) as Explanatory Variables

IG Model b0 GDP CPI s

Linear OLS 0.0017 �0.0391 �0.0290 5.0921

[0.0005 0.0029] [�0.0884 0.0102] [�0.0624 0.0045]

OLS 0.0009 �0.0181 — 2.2557

[0.0002 0.0015] [�0.0623 0.0261]

Probit OLS �3.1421 �14.1617 �11.2345 6.4347

[�3.6496 �2.6347] [�34.9687 6.6453] [�25.3546 2.8856]

OLS �3.4781 �5.9888 — 8.6336

[�3.7663 �3.1899] [�24.5193 12.5417]

Logit OLS �7.1801 �50.7973 �40.7355 7.1658

[�9.0318 �5.3284] [�126.7275 25.1328] [�92.2634 10.7923]

OLS �8.3983 �21.1631 — 9.6372

[�9.4493 �7.3472] [�88.7533 46.4271]
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In other words, the (relative) impact of the explanatory variables on the probability of
default. Following Novales (1993), this interpretation of estimates for the linear model
must differ to that for the logit and probit models.* This is the main reason why we split
our results in two tables, Tables 24.10 and 24.11, that include, respectively, the estimation
of the linear and logit–probit models.

Regarding the estimates of the linear probability model, Table 24.10 reflects the contri-
bution of the two explanatory random variables to the probability of default. The main
conclusions are obtained from the default probabilities of noninvestment grade assets (SG),
but can also be extended to the investment grade (IG) assets. Looking at Table 24.10, it is
interesting to observe the sign of the coefficients, which is negative: the more we decrease the
GDP or the CPI, the more we increase the rates of default. Given the value of the coefficients,
the variables have the same contribution to the default probability. With reference to the fit
of the model to the data, under the null hypothesis that the goodness of fit to the sample is
good, we cannot reject that the linear probability model could explain the results obtained.

Table 24.11 includes the ratio between estimates for SG and IG series for probit and logit
models, respectively. By and large, the conclusions are the same for all the series under
study. According to Novales (1993), the ratio between the estimated b’s measures the
relative contribution of the explanatory variables on the default probability. Results
are consistent to the results obtained for the linear probability model: the negative sign
of the explanatory variables, which reflects an opposite effect between default ratios and the
macroeconomic variables. Moreover, the relative contribution of the explanatory variables
remains equal, as was also derived from Table 24.10. Finally, we do not reject the goodness
of fit of the model using confidence levels of 95% and 99%.

TABLE 24.10 Estimated Coefficients for the Linear Probability Model

Linear Model b0 GDP CPI s x2
95% (32) x2

99% (32)

SG 0.0979 �2.2380 �1.4690 21.8030 No reject No reject

IG 0.0017 �0.0391 �0.0290 5.0921 No reject No reject

Note: s refers to the fit statistic.

TABLE 24.11 Estimated Coefficients for Probit and Logit Models

b0
GDP
CPI s x2

95% (32) x2
99% (32)

Probit model

SG �1.0785 1.2377 14.7653 No reject No reject

IG �3.1421 1.2606 6.4347 No reject No reject

Logit model

SG �1.6293 1.1954 15.4018 No reject No reject

IG �7.1801 1.2470 7.1658 No reject No reject

Note: s refers to the fit statistic.

* For example, the relationship between the explanatory and explained variables in the probit model is nonlinear
while the linear probability model implies linearity between dependent and independent variables.
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24.6 CONCLUSIONS
The current success of the credit derivatives market for tranched products is one of the
biggest success seen within the financial industry. The standard pricing model, widely used
by the practitioners, is the Gaussian one-factor model (Vasicek, 1991). However, some
assumptions underlying this model are probably too restrictive. These features concern,
among others, to those of homogeneity of asset classes involved, or the exposure to one
sources of systematic risk.

In a more realistic setting, Schönbucher (2003) or Lando (2004) pointed out that a credit
portfolio is composed of different asset classes or buckets, attending to criteria as, for
example, investment grade, noninvestment grade assets, or industry. The exposure of a
credit portfolio to a set of common risk factors could be significant between groups, but
should be homogeneous within them. In line with this, the idea of two groups of assets
treated in different ways could become a more realistic assumption than that used
previously in the literature.

With the aim of contributing to the current literature, this chapter considers a family
of models that takes into account the existence of different asset classes or regions of
correlation. Thus, we analyze a model in the line of the two assets–two-Gaussian factor
model of Schönbucher (2003). In this chapter we generalize the standard model by means
of a two-by-two model (two factors and two asset classes). We assume two driving factors
(business cycle and industry) with independent t-Student distributions, respectively, and
allow the model to distinguish between portfolio assets classes. One of the main implica-
tions of considering a t-Student distribution is that we assign a higher probability to high
default events.

Our work contributes to the existing literature in the analysis of these asset class models.
To the best of our knowledge, no similar studies has been reported yet in this direction.
Regarding to distributional assumptions, we extend the standard Gaussian model by
considering the t-Student distribution. In this way, we deal with a more general model
with the additional advantage that includes the Gaussian model as a particular case. We
also provide the econometric framework for assessing the parameters of the posited model.
Finally, an empirical application with Moody’s data has been presented as an illustration of
the methodology proposed.
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CHAPTER 2 5

CDO Prices and Risk
Management: A Comparative
Study of Alternative
Approaches for iTraxx Pricing
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25.1 INTRODUCTION
Default risk is now spreading the valuation of derivatives in any area. Whenever a
derivative is traded over the counter, the default risk of the counterparty should, in
principle, enter the valuation. Recently, regulatory institutions have insisted on the need
to include this kind of risk in the pricing paradigm, as for example pointed out in the Basel
II framework and also in the IAS 39 system.

Counterparty risk is the risk that the counterparty owing some payments (according to
an agreed derivative transaction) defaults. Whenever a payoff is at risk of default, it must be
included in the risk neutral valuation paradigm. In a sense, doing so creates a payoff
depending on the underlying of the basic derivative and on the default of the counterparty.
The latter feature transforms the payoff in a credit (actually hybrid) derivative, and default
modeling is needed to carry out the risk neutral pricing.

This principle applies to all derivatives, and in particular, credit derivatives whose
simplest form are the credit default swaps (CDSs). In this chapter, we study a more
complex class of credit derivatives, namely collateralized debt obligations (CDOs). This
class has experienced a major breakthrough since the turn of the century. By 2006,
synthetic and tranched CDOs were accounting for 24% of the total credit derivatives
market. In particular, tranched index trades amounted to 7.6% of the total, a rise of almost
300% in 2 years. Yet, the pricing of these CDO tranches still bears some obscure zones, like
the dependence assumptions between the underlying names. This chapter attempts to
identify the major sources of simplifications and to study the impact of the main risk
drivers on the pricing and the sensitivities of tranche prices.

Our contribution can be viewed in two dimensions. First, we provide a very simple
algorithmic decomposition of the pricing kernel of CDOs for numerical application
purposes. Next, thanks to a set of numerical simulations using observed prices of iTraxx
CDO tranches and fitting the implicit correlation structure, we can assess the impact of the
various pricing assumptions on the price levels and sensitivities.

25.2 PRIMER ON CDS AND STANDARDIZED CDO TRANCHES
Concerning single-name products, involving default of single companies, the main data are
defaultable (or corporate) bond prices and CDS rates. Corporate bonds are generally used
more as building blocks than as concrete market instruments. The situation is different as
far as CDSs are concerned. CDSs are now highly standardized products focusing on default
of single names. When available, liquid CDS data are preferred to bond data for this reason.
The payoffs for CDS are representing the actual payoffs one finds in the market. This
consistency and absence of special features in CDSs is the reason why the market tends
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to prefer CDSs as sources of single-name credit data over corporate bonds, especially for
delta-hedging purposes.

CDSs are quoted through the rates (or spread) S in their premium legs that render them
fair at inception. CDS rates on one name are usually quoted for protection extending up to
1–10 years. Mostly, maturities Ti of 1, 3, 5, 7, and 10 years are quoted. These data may be
used to calibrate either intensity or structural models to credit data, by finding the model
parameters matching the default probabilities implicit in CDS prices to the default
probabilities implied by the models themselves. A few prices of CDS options on single
names are quoted in the market as well, but bid-offer spreads are usually large and these
quotes are not liquid. For the time being it may be safe not to include single-name CDS
option data in model calibration, although this might rapidly change.

As far as multiname credit derivatives are concerned, the quoting mechanisms are
similar. The premium rate Sindex on a standardized pool of CDS on different names (the
DJiTraxx (Dow Jones iTraxx) index, involving 125 European names, and the DJCDX
index, involving 125 U.S. names are the main examples) is quoted when protecting against
the whole loss of the pool of names, although some particular conventions on outstanding
notionals and recovery rates are taken, which we partly illustrate with the trade example
below.

But also standardized CDO tranche quotes are available in the market. Premium rates
Suindex in the premium legs rendering the different tranches fair at inception are considered,
for CDOs on standardized pools of names with standardized attachment points ui and
standardized maturities Ti. The protection maturities Ti are 5 and 10 years. The standard-
ized attachment=detachment points of the tranches are as percentages, where for the
iTraxx index we have

u1 ¼ 0, u2 ¼ 3%, u3 ¼ 6%, u4 ¼ 9%, u5 ¼ 12%, u6 ¼ 22%

while for the CDX index we have

u1 ¼ 0, u2 ¼ 3%, u3 ¼ 7%, u4 ¼ 10%, u5 ¼ 15%, u6 ¼ 30%

Just to illustrate this important family of products, we consider an example concerning
an iTRAXX tranche trade.

An investor sells EUR 25 mm protection on the 3%–6% tranche with a 5 year maturity.
We assume a fair tranche credit spread (or rate) S3,6index of 140 bp. Therefore, the market
maker pays the investor 140 bp per annum quarterly on a notional amount of EUR 25 mm.
We assume that each underlying name has the same recovery a¼ 40%.

. Each single name in the portfolio has a credit position in the index of 1=125¼ 0.8%
and participates to the aggregate loss in terms of 0.8%� LGD¼ 0.8%� (1� 0.4)¼
0.48%, since each time a default occurs the recovery is saved, leading to a loss of
LGD¼ 1�a¼ 1� 0.4¼ 0.6 (where LGD is loss given default).

. This means that each default corresponds to a loss of 0.48% in the global portfolio.
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. After six defaults, the total loss in the portfolio is EUR 0.48%� 6¼ 2.88% and the
tranche buyer is still protected since the tranche starts at 3% and we are at
2.88%< 3%.

. When the seventh name in the pool defaults the total loss amounts to 0.48%� 7¼
3.36% and the lower attachment point (i.e., 3%) of the tranche is reached.

. To compute the loss of the tranche, we have to normalize the total loss with respect to
the tranche size. The net loss in the tranche is then (3.36%� 3%)=3%� 25 mm¼
EUR 3 mm, which is immediately paid by the protection seller to the protection
buyer.

. Notional amount on which the premium is paid reduces to 25� 3 mm¼EUR 22 mm
and the investor receives every month a premium of 140 bp on EUR 22 mm until
maturity or until the next default.

. Each following default leads to change in the tranche loss (paid by the protection
seller) of 0.48%=3%� 25 mm¼EUR 4 mm and the tranche notional decreases
correspondingly.

. After the 13th default the total loss exceeds 6% (13� 0.48%¼ 6.24%) and the tranche
is completely wiped out.

. In this case, one last payment is made of (6%� 5.76%)=3%� 25 mm¼EUR 2 mm to
the protection buyer, which in turn stops paying the premium since the outstanding
notional has reduced to zero.

The different tranches offer different kinds of protection to the investor. An equity
tranche (0%–3%) buyer suffers from every default in the portfolio, which leads to a
decrease of tranche notional on which the periodic premium is paid and conversely to
contingent protection payments. On the other side, the buyer of more senior tranches
(e.g., 9%–12%) is better protected against few defaults. Indeed, theses tranches are affected
only in the case of large number of defaults. This difference leads to different premium paid
to buy protection. It is natural to see that the periodic premium paid to buy protection is
inversely proportional to the tranche seniority.

The premium for the equity tranche is usually very large, so it is market practice to pay
it as a fixed running premium of 500 bp plus an up-front payment (computed in a way that
the total value is zero at inception).

Bearing in mind this discussion, in the next section we review the mechanisms imple-
mented for the pricing of CDO tranches.

25.3 MODELING ASSUMPTIONS
In this section, we discuss the assumptions taken regarding the inputs that permit the
pricing of the CDO. As pricing is done with a Monte Carlo simulation framework, a great
number of scenarios are simulated for the default times of the referenced names inside the
portfolio. Each of these scenarios gives the exact timing of the defaults for every underlying
debt, provided that default occurs before maturity. Knowing the times of default, we
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compute the loss given default (LGD) for each name with the associated recovery rate
(RR). With a complete picture of the losses incurred in each simulation, it is possible to
determine what would have been the right spread to pay for a given tranche. The final
pricing will be the average of all the observed spreads.

25.3.1 Inputs

There are four key issues for the pricing of CDO tranches with the Monte Carlo simula-
tions procedure described above. The interest rate dynamics has to be known to compute
the present values of the losses. The probability of default from the names inside the
portfolio represents the major input for the simulations. Next, one has to assess what
recovery rate is to be considered in the event of a default. Finally, the correlation structure
between these different parameters is crucial.

Practically, the yield curve which is used in this chapter is constructed by bootstrapping
from the Euribor (Euro interbank offered rate) swap rates. The majority of transactions on
the iTraxx are made by financial institutions, hence the Euribor is the closest proxy for
their real funding rate.

The distribution of the probability of default for the different names is structured in an
intensity-based framework, following Jarrow and Turnbull (1995). The default is therefore
modeled as a jump event following a Poisson process. Denoting t the default time and l(t)
the hazard rate* the probability of default is given by

S(t) ¼ Pr(t > t) ¼ e
�
Ð T

t
l(s) ds

The hazard rate l(t) is derived for every name from the observed CDS spreads. It is
market practice to use a fixed hazard rate for the whole period from a single spread.y Here
we have a 5 year CDO, so we could only focus on the underlying 5 year CDS (a reason
could also be that the liquidity is particularly high on the 5 year CDS market). Neverthe-
less, we have 1 year and 3 quotes as well as the 5 year, and the spreads are much different
for these maturities,z usually implying a much lower hazard rate for the first periods. We
suppose that the information given by the 1 and 3 year maturities is relevant, and therefore
we choose to construct a bootstrapping methodology to infer the hazard rate function.

The base case recovery rate is taken as a fixed number of 40%, which is a standard
approach in the industry (Chen et al. 2005). Secondly, we introduce some dynamics by
setting that RR follows a beta distribution parameterized by Renaud and Scaillet (2004).
The beta distribution is a very convenient function for RR since it is bounded between
0 and 1, and only requires two parameters that allow a large set of distribution patterns.
The probability density function for the standard beta distribution is given as

* The instantaneous default probability for a security that has attained age t conditional on the survival until time t.
y Here we are working with mid-spreads.
z On September 1, 2006, the average mid-quotes for the series 6 of the iTraxx were 6.0, 16.8, and 28.2 bp, respectively,
for 1, 3, and 5 year CDS maturities.
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f (x,a,b) ¼ 1
B(a,b)

xa�1(1� x)b�1 x 2 [0,1]

where B(a,b) is equal to the beta function.
Finally, the correlation between the probabilities of default can be modeled with a one

factor model (Laurent and Gregory 2003, Hull and White 2004). This method uses a vector
of correlation to a state of the economy variable which is the same for every name. Another
technique is based on copula functions dependent on complete matrices of correlation of
default, i.e., a different correlation between every name (Will 2003). In practice, since the
default correlation is not readily observable, the same correlation factor is often applied to
the whole portfolio.

For the pricing of multiname credit derivatives, it is common to suppose independence
between the dynamics of the interest rates and of the arrival rate of default. But some argue
that an increasing interest rate can have a negative impact on the probability of survival of
a firm, a distressed company will have to support even higher charges. This hypothesis
has recently been introduced for pricing single-named credit derivatives by Brigo and
Pallavicini (2007).

Another correlation issue arises between the probability of default and the level of the
recovery rate. During recession periods, when there are numerous defaults, recovery rates
tend to be low. This subject has been studied in credit risk theory by Frye (2000), Hu and
Perraudin (2002), and Sibille and Hübner (2007) in the context of CDS. A review of these
models has been made by Altman et al. (2005).

In this study, we adopt the copula approach. This assumption enables us to challenge
the market practice assumption of an equal correlation factor to the whole portfolio, and to
identify what changes in the pricing dynamics induced by a more precise account of the
dependence structure between individual default probabilities.

25.3.2 CDS Prices

The price of a CDS is represented by its spread, which is the interest on the notional of the
contract that the protection buyer has to pay to the protection seller so that he is fully
reimbursed in the case of a default. As shown by Hull and White (2000) among others, the
spread can be extracted from the equality of the present value of the expected fixed and
floating legs.

Fixed Leg ¼ sN
XT
j¼1

B(0, tj)Dj�1,jS(t)

Floating Leg ¼ N
ðT
0
B(0, t)(1� RR)F(t ¼ t) dt

s ¼
Ð T
0 B(0, t)(1� RR)F(t ¼ t) dtPT

j¼1
B(0, tj)Dj�1,jS(t)
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where
N is the notional
s the spread
F(t)¼ 1� S(t) the probability of default

This equation allows us to extract the hazard rate between time 0 and a 1 year maturity,*
because we have no information on the instantaneous probability at time 0 we suppose it to
be constant until time 1. The probability is taken from an arbitrage-free setting and is
therefore true under the equivalent martingale measure Q. With the hazard rate between 0
and 1, we can extract the hazard rate until time 3. Here we suppose a linear relation
between l1 and l3. When we know l3, we can determine l5. The survival probability will
then be defined as follows:

S(tj0 < t < 1) ¼ e�l1t

S(tj1 < t < 3) ¼ exp� l1 þ
ðt
1

l1(3� s)þ l3(s� 1)
2

ds

� �

S(tj3 < t < 5) ¼ exp� l1 þ
ð3
1

l1(3� s)þ l3(s� 1)
2

dsþ
ðt
3

l3(5� s)þ l5(s� 3)
2

ds

� �
(25:1)

As an example, here is a graph which plots the hazard rate as a function of time
following the Barclays CDS structure (Figure 25.1).

With the survival probabilities for each names, an RR assumption and a present value
function, we can build a complete model for the pricing of the tranches.
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FIGURE 25.1 Graph of the hazard rate as a function of time following the Barclays CDS
(credit default swap) structure.

* The recovery rate is supposed to be fixed at 40%.
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25.4 PRICING METHODOLOGY
The Gaussian copula model has been introduced by Li (2000) and has become an industry
standard. The assumption is to model the default correlation between the names of the
referenced portfolio as in a multinormal distribution, with a rather small correlation in the
tails (for the extreme values).

DEFINITION 25.1. Let X1, . . . , Xn be normally distributed random variables with means
m1, . . . , mn, standard deviations s1, . . . , sn, and correlation matrix S. Then the distribution
function CS(u1, . . . , un) of the random variables

Ui :¼ F
Xi � mi

si

� �
, i 2 {1, . . . , n}

(where F(�) denotes the cumulative univariate standard normal distribution function) is
called the Gaussian copula with correlation matrix S and can be written as

CS(u1, . . . , un) ¼
ðF�1(u1)

�1
� � �

ðF�1(un)

�1
kSe

�1
2(~y�~m)TS�1(~y�~m)dy1 � � � dyn

where

kS ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2p)ndet(S)

p
yi ¼ F�1(ui), i 2 {1, . . . , n}

This distribution is a very convenient one, but in practice it is usually impossible to
parameterize the correlation structure such that the model is price consistent for all the
tranches. This has led to the well-known correlation smile. A different correlation structure
is implied for every tranche, and the structure obtained looks like a smile with high
correlations on the two extreme tranches.*

To imagine a different correlation for every tranche means to suppose a completely
different distribution. This proves the distribution to be wrong. Therefore, other copulas
have been proposed in the literature as in Burtschell et al. (2005) where a comparison ismade
between the Gaussian, the Student-t, and the Clayton copulas. Here we present the Student-t
copula that is tested on different degrees of freedom compared to the Gaussian copula.

DEFINITION 25.2. Let X1, . . . , Xn be normally distributed random variables with mean 0,
standard deviations 1, and correlation matrix S. Let Y be an x2-distributed random variable
with y degrees of freedom which is independent of X1, . . . , Xn. Then, the distribution function
Cy,S(u1, . . . , un) of the random variables

* For further explanations see Hager and Schöbel (2006).
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Ui :¼ ty

ffiffiffi
y
pffiffiffiffi
Y
p Xi

� �
, i 2 {1, . . . , n}

(where ty(�) denotes the cumulative univariate Student-t distribution function with y degrees
of freedom) is called the Student-t copula with correlation matrix S and can be written as

Cy,S(u1, . . . , un) ¼
ðt�1y (u1)

�1
� � �

ðt�1y (un)

�1
kn,S 1þ 1

y
(~y � ~m)TS�1(~y � ~m)

� ��yþn
2

dy1 � � � dyn

where

ky,S ¼
G

y þ n
2

� �
G

y

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(py)ndet(S)

p
It is important at this point to keep in mind that the copula functions only introduce

correlation in the probabilities of default. The univariate probability functions are the Si(t)
presented before.

With multivariate distribution functions, we can simulate the times of default and
realize the pricing. We present here the details of the valuation model for the Gaussian
copula, but the methodology is the same for the Student-t.

First, correlated random numbers ui are generated for each firm i from the copula.*
Then, these numbers are transformed into probabilities using the normal univariate
cumulative density function, pi¼F(ui). The probabilities obtained are compared with
Equation 25.1. If for name i the probability is above the corresponding Si(T), the firm has
survived until maturity T. If it is not the case, the exact time of default ti is the time such
that pi¼ Si(ti). In our specific example on the iTraxx, this gives

ti ¼

� ln pi
l1

if pi � Si(1)

3l1 � l3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l21 þ l1k� l3k

q
l1 � l3

if Si(1) < pi � Si(3)

5l3 � 3l5 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l23 þ l3k� l5k

q
l3 � l5

if Si(3) < pi � Si(5)

No default if pi > Si(5)

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

where

k ¼ ln (1� pi)

* One way to realize this is to generate independent normal numbers and multiply them with the Cholesky-
decomposed correlation matrix.
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The advantage of such an analytical formula is a much faster computation which
permits a high number of simulations in the Monte Carlo framework. We can also
generate an antithetical case with a second set of random numbers ui which is equal to
�ui. This is a consistent approach since the Gaussian copula is symmetric and has a mean
equal to 0. It is also good for convergence purposes since the global mean of all generated
scenarios will be exactly equal to 0.

The second part of the model performs the pricing given the times of default from each
firm for every scenario. First, defaults ti are sorted in an ascendant order (from the first
default to the last). Because each name weights the same proportion in the index and
because the RR assumption is the same for all names, it does not matter to identify exactly
which name has defaulted. Given the defaulted times, the following kernel is computed for
every default.

S0, L0 ¼ 0 (25:2)

N1,0,N2,0 ¼ 1 (25:3)

if ti � T

Sti ¼ Sti�1 þ
Xti
k¼ti�1

B(0, tk)(tk � tk�1)s

" #
N2,ti�1 (25:4)

Lti ¼ Lti�1 þ
1N1,ti�1<0(1� R)B(0, ti)

n(uend � ubeg)
(25:5)

N1,ti ¼ N1,ti�1 �
1� R
nubeg

(25:6)

Lti ¼ Lti þ 1N1,ti<0,N2,ti�1 ¼ 1 �B(0, ti)N1,ti
ubeg

uend � ubeg

� �
(25:7)

N2,ti ¼ max 0, 1þ 1N1,ti<0N1,ti
ubeg

uend � ubeg

� �
(25:8)

where St and Lt represent, respectively, the sum of the spreads s being received and the
losses being incurred,* until time t. tk are exact payment datesy of spreads. N1,t and N2,t are
the proportions that have survived from 0% of notional default to the beginning of the
tranche ubeg and from ubeg to the end of the tranche uend. n is the number of underlying
debts (125 for the iTraxx), R is the recovery rate, and B(0,t) the present value at time 0 of
one monetary unit received for certain at time t.

When the kernel is finished, which means all defaults have been treated, we obtain the
total spread received and the loss incurred for every simulation by solving

* We take this example in the point of view of the buyer of the tranche.
y The spreads on the iTraxx are paid quarterly.
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ST ¼ StT þ
XT
k¼tT

B(0, tk)(tk � tk�1)s

" #
N2,tT (25:9)

LT ¼ min (LtT , 1) (25:10)

The spread s that permits to equal the floating leg with the fixed leg is then given by

s ¼ LT
ST

The final pricing of the tranche will be the average of all the spreads from the simulated
scenarios.

The pricing kernel can be explained as follows. First, in Equation 25.2 the global losses
and received spreads are fixed to 0 at time 0. The proportion of survival before the
beginning of the tranche and the proportion of survival inside the tranche are fixed to
100% in Equation 25.3 at time 0. Equation 25.4 increases the fixed leg by the present value
of the spread. These payments are proportional to the amount of the tranche that has
survived until the new default. This means that the accrued interests until the date of
default are taken into account. Equation 25.5 increases the amount of the floating leg by
the present value of the LGD, this increase takes place only if the tranche has already been
hit. The loss is also proportional to the size n of the portfolio and the size uend � ubeg of the
tranche. Equation 25.6 then computes the loss on the notional before the beginning of the
tranche, ubeg. If this number becomes negative, the tranche has been hit. Equation 25.7
increases the amount of the losses in a particular case: the first loss in the tranche (the
condition is written N1,ti <0 and N2,ti�1 ¼ 1). This loss is divided between the tranche and
the proportion of defaults before the tranche. The amount of the default that has reached
the tranche is equal to the value of �N1,ti , but has to be proportional to the size of the
tranche by multiplying by ubeg

uend�ubeg and to the present value at the time of default B(0,ti).
Equation 25.8 defines the proportion of survivors inside the tranche. This proportion is
also constrained to stay positive. To complete the model, a last payment of the spreads is
introduced in Equation 25.9 and a constraint is put on LT so that the maximum of the
losses cannot be higher than 100%.

25.5 RESULTS
This section applies the methodology described above for the pricing of the series 6 of the
iTraxx. The first pricing is done on September 21, 2006 with a Gaussian copula and a fixed
RR assumption. Subsequently, the date will be changed to see if the same implied
correlation structure can lead to qualitatively similar results. Next, the influence of a
random RR is tested. Finally, an implied correlation for different degree of freedom of
the Student-t copula is tested to see how the correlation smile can be altered.

The second part of this section tests the sensitivity of the model to the following inputs:
interest rates, correlation, and CDS spread.
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25.5.1 Pricing

It is very difficult to find good proxies for the correlation of default. Correlation on the
stock prices is not related to the correlation of default and historical data are low and
mostly irrelevant from nature (i.e., it is difficult to explain the correlation of default from
current firms with historical defaults of other firms). For this reason, the CDO market
works with implied correlation as a common practice. A different correlation for each
tranche is implied from the current prices. This is the approach that we take here.

For different correlation levels, we perform 400,000 simulations.* When two prices are
found closer than 0.5% to the actual price (one below and one above), an interpolation is
made to find the exact implied correlation of the tranche. The results are presented in
Table 25.1.

This table clearly shows a smile structure in the correlation. The equity tranche has a
bigger correlation than even the S4, and the correlation of S6 is huge. This result implies
that the Gaussian copula is not an exact distribution for the arrival of defaults, with a too
low correlation in the tails.

25.5.2 Date

To see if the same correlation structure can explain the price on different dates, we run the
simulations and compare the prices we obtain with the prices that have been observed.

As we can see in Table 25.2, a constant correlation structure cannot explain very well the
price on a future date. Some estimated prices (as for S5) are close to the market price, but
on average the error is 14.6%. Positive and negative errors occur, so it is not a global shift
upward or downward from the correlation structure.

25.5.3 Student-t Copula

The test realized in this section is about the Student-t copula. Trying two different levels of
degrees of freedom—given that an increase in the number of degrees of freedom would
result in a convergence to the Gaussian one—we determine the implied correlation
structure and compare the results with the standard Gaussian model (Table 25.3).

TABLE 25.1 Implied Correlation

Tranche Price Implied Correlation (%)

S1 19.94% 16.15

S2 74.00 4.53

S3 22.00 11.16

S4 10.25 15.36

S5 4.00 21.04

S6 1.38 50.32

Note: The table shows the implied correlation structure for every
tranche of the Series 6 of the iTraxx on September 21, 2006.

* This is the standard number of simulations that are made given the high level of convergence that the model
requires.
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The cells marked ‘‘NA’’ represent cases where no dependence structure could fit the
observed prices within the considered tranche. Looking at the results, it appears the
Student-t copula does not do better than the Gaussian copula to introduce correlation in
the probability of default for the pricing of CDO tranches. One of the issue being that no
correlation can be implied for certain tranches.

25.5.4 Random Recovery Rate

The RR in the case of a default cannot be predicted. For this reason, it is better to suppose a
random RR. However, the probability of default implied by the CDS market is dependent
on the hypothesis we take on the RR (if we suppose it is high, for example, the probability
of default will be high). This is one of the reason why the RR is often taken as a constant,
another being the facility in the computation.

In this section, we realize a pricing of the tranche taking a random RR and following a
beta distribution as presented earlier (Table 25.4). The parameters will follow the article by
Renaud and Scaillet (2004). An average of 44.96% (the whole hazard rate structure is
adapted for this average), an alpha¼ 1.088 and a beta¼ 1.3318.

The randomness of RR does not seem to have an influence on the equity tranche.
Numerous defaults appearing in this tranche seem to offset the effect. For the other
tranches, the new distribution of RR has a material effect. The resulting impact is an

TABLE 25.2 Price for Different Trading Dates

20=10=2006 21=11=2006 21=12=2006

Tranche P Pest P Pest P Pest

S1 (%) 16.13 17.6 11.81 13.62 11.5 14.92

S2 65.00 58.6 53.00 38.07 50.00 42.26

S3 16.00 18.46 14.75 11.66 15.00 13.07

S4 7.5 8.4 5.75 5.56 5.75 6.10

S5 3.25 3.35 2.5 2.22 2.5 2.52

S6 0.938 1.234 0.7 0.941 1.1 1.06

Note: This table illustrates the error in the price we would estimate if we keep the same
correlation structure on different trading dates.

TABLE 25.3 Implied Correlation for Student-t Copula

Tranche y¼ 10 (%) y¼ 20 (%) Gaussian (%)

S1 0.542 8.55 16.15

S2 NA NA 4.53

S3 NA 3.04 11.16

S4 0.027 10.70 15.36

S5 4.28 17.83 21.04

S6 43.8 47.91 50.32

Note: The table gives the implied correlation structure for
different loss distributions.
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increase in the price of S2, compensated by lower prices for the other tranches. Quite
logically, the effects balance each other because the underlying risk structure is dependent
on the prices of the CDS, not on the assumption about RR.

25.5.4.1 CDS Spreads
Wechange in this section the level of the spreadsSCDS to test the influence it canhaveon theprice.

From Table 25.5, we can conclude that the prices of the tranches are highly sensitive to
CDS market price. Because the CDS market provides information on the probability of
default, it is not surprising to witness a marked, and even inflated effect. Furthermore, the
effect seems to differ in magnitude to a large extent from one tranche to another (the span
goes from 16.90% for the equity tranche to 36.77% for the first mezzanine tranche S2).

The convexity of the tranche price is negative for the extreme tranches, while it is
positive in the middle range. This finding shows that there is no progressive increase in
the gamma as one moves from the senior to the equity tranche. The option-like behavior of
the equity tranche is partially offset by the fact that defaults do not eat up the tranche in a
linear fashion, therefore putting more probability on low recoveries.

TABLE 25.4 Random Recovery Rate

Tranche P PRR PRR�P PRR�P
P (%)

S1 (%) 19.94 19.94 0.00 �0.01
S2 74.00 80.3 6.30 8.51

S3 22.00 21.66 �0.340 �1.55
S4 10.25 9.42 �0.830 �8.10
S5 4.00 3.07 �0.930 �23.25
S6 1.38 1.165 �0.215 �15.58
Note: This table shows the differences we obtain when using a random recovery rate.

TABLE 25.5 CDS Spread Sensitivity

Tranche DSCDS
SCDS

(%) PCDS PCDS�P PCDS �P
P (%) Cy ¼ Pþ

CDS
þP�

CDS
� 2P

P(DSCDS)
2

S1 �10.00 16.42% �3.52% �17.64 �0.741
10.00 23.31% 3.37% 16.90

S2 �10.00 52.42 �21.58 �29.16 7.62

10.00 101.21 27.21 36.77

S3 �10.00 15.61 �6.39 �29.03 5.19

10.00 29.53 7.53 34.22

S4 �10.00 7.57 �2.68 �26.16 2.08

10.00 13.15 2.90 28.24

S5 �10.00 3.07 �0.93 �23.32 1.58

10.00 5.00 1.00 24.90

S6 �10.00 1.08 �0.30 �21.89 �4.86
10.00 1.61 0.23 17.03

Note: This table shows the changes in the prices from a change in the spreads of the CDS. The last
column represents the effective convexity of the tranche price taken at its initial level.
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25.5.4.2 Correlation
The last series of sensitivity test focuses on the pricing of the tranche for different levels of
correlation (Table 25.6).

The correlation has a major impact on the price of CDOs. Also, the effects are opposite
between the equity tranche and the rest of the tranches. A lower correlation desynchro-
nizes the occurrences of defaults, which tends to favor a diversification effect present in the
equity tranche. For all other tranches, a lower correlation seems to make a cut into the
upper tranches more likely as it is a rarer event.

25.6 CONCLUSION
This research presents an application of standard models for the pricing of the iTraxx. On
the theoretical side, it has shown how a simple recursive kernel could be used to provide a
numerically effective procedure to price the CDO tranches. Based on market data, we have
analyzed various sensitivity aspects of the CDO index, and performed a series of checks of
the consequences of the adoption of a Gaussian copula model.

With such a practical methodology, it is possible to forecast changes in the price relative
to changes in the correlation and in spread of the underlying CDS. Furthermore, tests on
the Student-t distribution have shown its poor job in describing the correlation structure in
a particular case. Finally, we emphasize that the introduction of a random distribution for
the RR should be seriously considered by market participants given the important influ-
ence it can have on the price.
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CHAPTER 2 6
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26.1 INTRODUCTION
The pricing of derivatives based on portfolios composed by assets with default risk has
received an increasing attention during the past years. Up to a point, this may be due to the
recent appearance of the highly successful credit default swap (CDS) market, where the
irruption of indexes like the DJ iTraxx or DJ CDX, and their tradable tranches series have
contributed to their fast growing over the past years. For example, the International Swaps
and Derivatives Association (ISDA) reports an increase in the notional principal outstand-
ing volume* of CDS from $26.0 trillion at June 30, 2006 to $34.5 trillion at December 31,
2006, which represents a 33% increase during the second half of 2006.y In view of this fast
development of standardized credit markets, the recent financial literature has focused its
interests on the pricing of these new credit-linked products, with attention to the modeling
of some interesting features presented in these assets.

Probably, the main characteristic in basked credit derivatives products is their exposure
to default correlation, intended as the different relationships of dependence between
defaults that could be given among firms: the higher the correlation between the assets
in a credit portfolio, the higher is the probability of suffering a big loss in the portfolio.
Then, the role of the correlation is crucial to price assets as, for instance, first-to-default
swaps (FtD) or collateral debt obligations (CDO).

The recent literature on credit risk refers, at least, four main approaches to achieve
correlation among different obligors. As pointed out by textbooks of Schönbucher (2003),
Lando (2004), and Duffie and Singleton (2004), the academic literature provides different
frameworks to introduce correlation. The approaches more cited in the literature are the
following:

. Structural models

. Intensity models

. Copulas

. Mixture models

* ISDA news release, April 18, 2007. Available at http:==www.isda.org. This report refers to credit default swaps on
single names, baskets, and portfolios of credits, baskets, and index trades.
y CDS notional volume growth rates were 52% during the first half of 2006. Those reported for the whole years 2006
and 2005 were 102% and 103%, respectively. Source: www.isda.org.
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Roughly speaking, the main difference between these different pricing models for CDOs
consists on the form that they use to achieve correlation among different obligors. We
focus here on the two main approaches to introduce default dependence between assets, in
line with the two main paradigms for analyzing credit risk:*

1. On one hand, the structural-based models take into account the capital structure of a
firm by relating the value of the issuing company to its liabilities (Schmidt and Stute,
2004). This family of models includes the models of Merton (1974), Black and Cox
(1976), and Leland and Toft (1996), among others.

2. On the other hand, the reduced-form approach is based on the relative valuation of
credit derivatives by means of market data, with no care about any firm features.
Jarrow and Turnbull (1995) or Duffie and Singleton (1999), among others, can be
included within this second group.

To put it briefly, the main basic difference between structural and reduced-form models
consists on how they consider the causes of default:

1. Structural models explain the event of default as the impossibility of the firm to
respond to its liabilities, that is, in an endogenous form.

2. By contrast, the intensity-based model analyzes the dynamics of default from an
exogenous point of view, extracting directly the probabilities of default from the
observation of market prices (Giesecke, 2004).y

Owing to its direct connection with the literature of bond pricing, the intensity
approach has become a standard in the valuation of corporate bonds and their credit
derivatives counterparts (CDS, for example). Although, the intensity-based literature has
not been capable to extend its influence to the pricing of credit basket derivatives, and
specially to tranched products like the collateral debt obligations (CDOs). Some remark-
able contributions are those of Duffie and Garlenau (2001), which basically considers
correlations between the default times of individual firms. Nevertheless, as pointed out by
Hull and White (2004) or Mortensen (2006), this procedure is computationally
burdensome.z

In addition to the lack of tractability of intensity models, another plausible reason that
may explain the wide-range usage of factors models by the practitioners may be given by
the popularity of some models like the Creditþ of Moody’s or the KMV (see Schönbucher,
2003 or Schmidt and Stute, 2004 for a digression of these models). Directly inspired from
Merton (1974), both models formalize the CDO pricing under an individual level firm

* See Schönbucher (2003) or Duffie and Singleton (2004) for an overview of additional alternatives for modeling
default dependencies.
y Recently, Duffie and Lando (2001) have demonstrated that both approaches are connected by information
asymmetries.
z Recently, Mortensen (2006) has implemented a tractable extension of the Duffie and Garlenau (2001) framework by
considering the algorithm of Andersen et al. (2003) for factor models.
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framework by modeling the default of individual firms that trigger some threshold
previously determined, and combining their different possibilities. Furthermore, the devel-
opment of techniques that improve the computation times of former models (usually
highly time consuming) has contributed to extend the scope of these models.*

In contrast to this individual approach, where the total number of defaulted firms is
conditioned by the level of correlation among the obligors, Longstaff and Rajan (2008)
posited a joint default approach for the pricing of CDOs: basically, they assume that
defaults could be clustered, in the sense that joint defaults could happen simultaneously,
an approach closely linked to the contagious scheme of Davis and Lo (2001). Contrary to
Duffie and Garlenau (2001) approach, where defaults are considered at an individual level,
the assumption of joint default simplifies the computation of CDOs prices dramatically, as
is shown later.

The aim of this chapter is to study the pricing of CDO tranches using the intensity-
based scheme of clustered defaults developed by Longstaff and Rajan (2008). Our intention
is to explore the capability of the model to generate reasonable values for CDOs tranches
under different sets of circumtances, particularly those referred to the number of factors
used and their impact in the loss distribution. We also explore some natural extensions of
the original model, extending its range mainly in two directions: firstly, by analyzing the
consequences of adding jumps to the default process; then, by randomizing the impact of
defaults in the loss distribution. To the best of our knowledge, no similar studies have yet
been reported.

This chapter is organized as follows. Section 26.2 reviews the mechanics of the CDS and
their related indexed products like iTraxx or CDX. Section 26.3 describes the model posited
in Longstaff and Rajan (2008) and introduces somemodifications in that paper. Section 26.4
performs a Monte Carlo study to illustrate numerically some extensions we propose in
the original model by Longstaff and Rajan (2008). Finally, the main conclusions are
summarized in Section 26.5.

26.2 CREDIT DEFAULT SWAP INDEXES
This section is devoted to the CDS indexes. We outline here their main features, beginning
with their most basic component, the credit default swap; then, we review their pricing
mechanics, and provide some standard pricing formulas. This part is mainly based on
Felsenheimer et al. (2004), Jakola (2006), and references therein.

26.2.1 Credit Default Swap

Before showing the mechanism of a CDX index, it is necessary to describe briefly the main
component of this index, the CDS. A CDS is a financial product used to hedge mainly fixed
income assets (for instance, bonds) against certain types of credit events.y Then, a CDS is
based on an agreement between two parties where one of them—the protection buyer—
pays a defined, periodical amount to the other—the protection seller—contingent to the

* We can mention the algorithm of Andersen et al. (2003) as an example of this type of methods.
y For instance, Moody’s refers bankruptcy, delayed disbursement of principal, or some legal distresses, among others.
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occurrence of a given credit event (usually a default). If there is no default, the protection
buyer must pay a defined premium until maturity. By contrast, if default happens, the
protection seller must pay to the protection buyer an amount equal to the difference
between the face value of the asset (for instance, a bond) and its market value after default.
As pointed out by Duffie and Singleton (2004), a CDS can be seen as a default insurance on
loans or bonds.*

Up to a point, the success of the CDSmarket could be explained as these assets provide to
investors with a simple, liquid tool to remove the credit risk exposure of their portfolios in an
easy way. Blanco et al. (2006) underline that the cost of shorting credit risk in the corporate
bondmarket is high, mainly due to illiquidity costs. By using CDS, investors can short credit
risk over a longer period at a known cost by buying protection.

26.2.2 Credit Default Swap Indexes
26.2.2.1 Product
A direct consequence of the fast growing of the credit market has been the appearance of
standardized products that diminish the hedging cost of portfolios composed by a large
number of firms, by means of transferring their credit risk without a necessity of buying
CDS contracts on each individual firm. An example of these kind of products is the CDS
index.

A CDS index is a basket of equally weighted CDS single names that serves as underlying
for some tranched products, swaps, etc. Felsenheimer et al. (2004) refer that a CDS index
cannot be characterized as a classical index, in the sense that no index level is computed.
They also noticed that quoted prices for these products are a result of supply and demand
within credit markets.

Jakola (2006) refers two main tradable index families: the Dow Jones CDX and the
International Index Company iTraxx. Basically, both indexes are portfolios that present
similar features as, for instance, the following:y

. Both indexes are composed by the 125 most liquid firms in the CDS market.

. These firms are investment grade rated.

. Index composition is revised every 6 months.

With respect to differences between these indexes, we can mention that the Dow Jones
CDX only includes U.S.-names while the iTraxx takes into account only European names.

26.2.2.2 Mechanism
To explain the payment mechanism in a CDS index, we illustrate briefly here its two main
situations, depending whether there is default or not.We address the reader to Felsenheimer
et al. (2004) for a more detailed exposition.

* As noted by Blanco, Brennan, and Marsh (2006), the difference between a CDS and an insurance contract is of legal
type: under a CDS, holding an insured asset to claim compensation is not necessary.
y See Jakola (2006) for references to the Dow Jones CDX and Felsenheimer et al. (2004) for the iTraxx index.
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Investors on CDS index can find any of the following alternative situations:

. No credit event happens. Here, the protection buyer pays a constant premium to the
protection seller. This premium is computed as a percentage (named the spread) on a
definite notional amount and is paid on a quarterly basis until maturity.

. A credit event happens. Now, the magnitude of the event and the recovery value
determine the cash payment between the parties involved. As an example, we will
assume that 1.6% of the firms included in the total portfolio default (2 over 125) and a
recovery rate of 50%. Here, the protection seller pays the amount of 1.6%� notional
� 50% to the protection buyer. As could be intended, the protection seller is exposed
to recovery risk. With respect to the protection buyer, he continues paying the
constant premium on the remaining notional amount, which is now 98.4% of the
original. This amount should be paid until maturity or until other credit event.

The existence of a tranched products market besides each CDS index has provided a
liquid, simple way of removing the credit exposure associated to fixed, standardized
fractions—tranches—of the underlying portfolio losses. In other words, without necessity
of creating the full capital structure, an investor can hold individual index tranches
according to its needs. Longstaff and Rajan (2008) argue that this huge flexibility has
contributed to the fast increase in the trading volume of the index tranches.

26.2.3 Pricing Formulas

To complete this overview of tranched products, this section outlines the basic formulas for
pricing a CDO. For a more detailed exposition, we refer the reader to Gibson (2004) or
Elizalde (2005) and references therein.

Roughly speaking, pricing a CDO means to compute the fair value of the percentage
on a definite notional that must be paid by the CDO issuer, protection buyer, to her
counterpart, the CDO investor or protection seller. As previously mentioned, this percent-
age is called the spread. With small differences with respect to a swap, a CDO is a contract
between two parties where the CDO issuer pays periodically a fixed coupon, based on the
spread, to the counterparty. This payoff scheme is close to that of a CDS in the sense that
the payments are contingent to the occurrence of a credit event on the underlying.
However, its difference comes from the following facts:

1. We operate over a pool of firms in the case of a CDO, instead of a single name as in a
CDS.

2. We can define the loss amount of the underlying portfolio in percentage terms
(tranches) that the protection seller agrees to offer protection, in contrast to a CDS,
where the protection seller must face to the total amount of the (single) loss.

Usually, a CDO is issued over a portfolio of bonds, loans, CDS, or other defaultable
instruments (Elizalde, 2005). The exposure to the losses in the portfolio is sold in tranches,
that is, percentages on the total portfolio losses. Their bounds are usually standardized and
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are called attachment points. For instance, usual attachment points are 0%–3% for the
equity tranche—riskier—and 15%–30% for the senior tranche—smaller risk.* Intermediate
tranches are called mezzanine and their attachment points vary from 3% to 7%, 7% to 10%,
and 10% to 15%.

An additional feature of CDOs is the hierarchy in the payoffs: cash flows generated by
the pool of firms are assigned by seniority to the different tranches of the CDO; first to the
owners of senior tranches, then mezzanine, and to equity tranches subsequently. It is worth
saying that equity investors receive the last payments of the credit portfolio. As a result, these
investors are highly exposed to the first losses that may occur in the underlying portfolio.

As pointed out by Elizalde (2005), the pricing of a CDO is similar to that of a swap
contract in the sense that the spread is fixed as there is no up-front payment between the
parties. In line with this argument, we must compute the cash flows received for each part
and equate, in present value terms, both amounts.

Let s be the spread of the CDO and let U and L be the upper and lower attachment
points that define the tranche, respectively. Also, let R be the recovery rate and Xt be a
random variable that defines the total distribution of losses in the portfolio at time t. For
the ease of the exposition, we will define later the function f (�) that defines the losses of the
tranche holders over the total losses in the portfolio.y

On one hand, the cash flows received by the protection seller will be the (unknown)
spread s over their associate tranche (U� L) computed on a principal amount. If any firm of
the portfolio defaults, the protection seller will receive the same spread but over the new
(reduced) notional amount,U� L� E[ f (Xt)].

z The accrual factor for the payment t is given
by Dt. Computing the corresponding present value for each date of payment, this results

Pseller ¼ s
XT
t¼1

e�rtDt{U � L� E[f (Xt)]} (26:1)

On the other hand, the protection buyer expects to receive the discounted amount of the
total losses produced on the tranche during the different periods, which are

Pbuyer ¼
XT
t¼1

e�rj{E[f (Xt)]� E[f (Xt�1)]} (26:2)

By equating expressions given by Equations 26.1 and 26.2, we get the spread

s ¼
PT
t¼1

e�rj{E[f (Xt)]� E[f (Xt�1)]}

PT
t¼1

e�rtDt{U � L� E[f (Xt)]}

(26:3)

* Bespoke tranches are also available in over-the-counter markets.
y To be consistent with our notation, recovery rates, attachment points, and the losses in the portfolio are given in
percentage terms.
z Of course, until the total losses of the portfolio overcome the tranche.
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Finally, the exposure to the total portfolio losses faced by the tranche investors is given by

f (Xt) ¼ min [(1� R)Xt ,U]�min [(1� R)Xt , L]

¼ max [min [(1� R)Xt ,U]� L, 0] (26:4)

where, of course, the recovery rate affects directly the total portfolio losses.

26.3 MODEL
This section is devoted to the model. First of all, we justify the idea of correlation among
firms, and cite the main approaches presented in the literature to model it. Second, we
analyze some interesting aspects of the Longstaff and Rajan (2008) model, also incorpor-
ating some extensions.

26.3.1 Previous Models

The distribution of losses in basket products like CDS indexes or tranches plays a crucial
role because the amount of cash flows delivered between the protection seller and the
protection buyer depends dramatically on the number of default events occurred during
the contract: the higher the number of firm defaults in the portfolio the higher are the
losses. In some cases where the prioritization schemes are embedded in some products like
the standard tranches, the losses on a definite percentage of the portfolio can be viewed as a
call spread on the total losses of the portfolio (Duffie and Singleton, 2004; Longstaff and
Rajan, 2008).

One of the stylized facts generally assumed in the credit risk literature is that
firms usually default together in the sense that a default in an individual firm seems to
increase the risk of default in some others. A simple empirical exercise can illustrate
this idea.

With the intention of checking this effect in real data, Figure 26.1 shows (with an
histogram) the distribution of default rates for U.S. firms from 1970 to 2004.*

Figure 26.1 also displays the default rate distribution obtained in a simulated portfolio
(dashed line) composed by one hundred independent obligors. For the sake of simplicity,
all firms within the portfolio have the same characteristics—even the same probability of
default. This is usually called the homogeneous portfolio assumption. It is clear that, in
the absence of correlation among firms, the total distribution losses will be described by a
binomial distribution with parameters N¼ 100 and p equal to the individual default
probability of each obligors. To put it another way, it reduces to an experiment repeated
(independently) N times with probability of success equal to p. Finally, this figure also
exhibits the simulated rates of default for a portfolio taking into account correlation
among firms (solid line).

* The data has been taking from Hamilton et al. (2005).
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Simulations of default rates have been carried on using the Vasicek (1991) model, a
standard model used by the industry for pricing CDOs. Simulation parameters for the
independent (r¼ 0) and dependent cases correspond to the parameters previously
obtained from the yearly default rates sample of Hamilton et al. (2005). Estimated
parameters of correlation and individual default probability for the Vasicek (1991)
model are r¼ 10.73% and p¼ 1.27%, respectively. Finally, parameters have been estimated
using the large homogeneous portfolio (LHP) hypothesis.*

As Figure 26.1 reveals, a model that incorporates correlation among firms seems to offer
a better fit to the sample data than a model without correlation. Additionally, Schönbucher
(2003) also presents evidence of default clustering through time. The intuition behind this
fact is that default correlation among entities results in a higher risk of joint default. That is
to say, the correlation between firms affects crucially the total number of defaults. As a
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FIGURE 26.1 Relative frequencies of yearly default rates. The empirical yearly default rates
are represented in bars. The dashed line corresponds to simulated default rates for a
portfolio of 100 independent obligors. The solid line represents the default rates obtained
with the Vasicek model for the same portfolio but considering a correlation parameter of
10.00%. Individual default probabilities are fixed at 1.20%. Simulation parameters have
been previously estimated from real data. (From Vasicek, O. 1991. Limiting loan loss
probability distribution, Working Paper, KMV Corporation.)

* See Schönbucher (2003) for a detailed discussion of the former points.
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result, models used for pricing portfolios of firms should take into account this empirical
feature of data.

Our work is focused on the recent proposal of Longstaff and Rajan (2008), which is inserted
within the intensity models family. The next section analyzes some of its main features.

26.3.2 Simultaneous Default Model

Longstaff and Rajan (2008) assume the occurrence of simultaneous defaults within the
obligors of the credit portfolio. The main idea behind this approach consists on modeling
the loss distribution directly, by using a monotonically decreasing process. The intuition
underlying this approach is that the arrival of a credit event (usually triggered by an
underlying intensity process) produces a fractional loss in the portfolio. Longstaff and
Rajan (2008) posit that the impact of credit events on portfolio losses are constant through
time, with a range that implies defaults from one to various tens of firms.

In view of the former, three main components could be noticed in the Longstaff and
Rajan (2008) model: firstly, the loss process; secondly, the process that activates the losses;
and finally, the magnitude of the losses themselves. What follows is a more detailed
exposition of this point, where we also include some extensions to the original model.

26.3.2.1 Loss Process
Using the notation given in Longstaff and Rajan (2008), let Lt denote the total portfolio
losses per $1 notional amount, with L0¼ 0. The dynamics of the loss distribution is given
by the expression

dLt
1� Lt

¼
Xn
i¼1

�gi dNit (26:5)

where
Nit is a Poisson process with time-varying intensity lt
gi is the magnitude of the jump size
n represents the number of factors that affect the losses

As shown in Longstaff and Rajan (2008), the solution to Equation (26.5) is given as

Lt ¼ 1� exp �
Xn
i¼1

gi dNit

 !
(26:6)

Themechanism of the model is simple: an underlying intensity process, which captures the
instantaneous default probabilities given by the market, causes a jump in the Poisson process,
which takes a value 1. This activates a (percentage) loss in the portfolio of magnitude e�g.

Figure 26.2 illustrates the evolution through the time of the losses based on an extended
version of Longstaff and Rajan (2008) model for different parameters.* We have simulated

* Particularly, we have considered jumps in the intensity process. Moreover, we have taken the impact of losses as a
random variable.
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1000 different scenarios of portfolio losses and have collected their evolution in different
histograms. As Figure 26.2 exhibits, the number of bigger losses in the portfolio increases
when times goes by, with a high number of zero counts in the early stages that decreases
with time.

On the basis of principal component analysis over the CDX index and its associated
tranches, Longstaff and Rajan (2008) consider that a three-factor model is enough to
capture the whole variability of prices in the CDX index tranches. This point is also tested
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FIGURE 26.2 Evolution of portfolio losses in the Longstaff and Rajan (2008) framework for
two different parameter sets. Notice that portfolio losses axes have different scales.
(From Longstaff, F.A. and Rajan, A. 2008. To appear in Journal of Finance.)
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by Longstaff and Rajan (2008) analyzing simplest versions of the model. Their results
suggest that the three-factor model version presents a close fit to the data.

26.3.2.2 Intensity Process
To capture the instantaneous default probability observed in the market, we assume a
stochastic process for the intensity of the Poisson process, lt. By definition, the process
must guarantee positive values. Then, it is common to assume a squared-root type process
as that proposed by Cox et al. (1985) for interest rates. We also consider in our study the
potential appearance of jumps in the intensity process, as previously used by Duffie and
Garlenau (2001) in the context of individual firms:

dlit ¼ (ai � bilit) dt þ si

ffiffiffiffiffi
lit

p
dZit þ Ji dp (26:7)

where
b is the mean-reversion speed of the process
a=b determines the long-run mean value at which the intensity converges
s is the volatility of the intensity process

Finally, we assume that jumps are driven by a Poisson process dpwith constant intensity di.
The size of the jump is given by a random variable J exponentially distributed with mean mi.

The objective that we pursue by adding jumps is to increase the volatility of the intensity
process. The intuition is that, in line with that posited by Merton (1976) for stock markets,
the arrival of abnormal information—modeled by the Poisson process dp—could produce
an increasing, nonmarginal change of magnitude J in the instantaneous default probability.

26.3.2.3 Impact of Losses
The impact of a credit event in the total portfolio losses is given by the parameter gi in
Equation 26.5. The estimations given for a three-factor model in Longstaff and Rajan (2008)
suggest an economic interpretation of the different parameters g in terms of percentage of
losses in the portfolio: the market seems to be pricing three main credit events:

1. Default of a single obligor

2. Industry-specific event that affects one sector of the economy (about 10 firms)

3. Wide crisis that affects the whole economy (about 75 firms)

As the authors pointed out, this interpretation is consistent with that mentioned by
Duffie and Garlenau (2001) that considers default events in three categories: firm-specific
events, industry events, and recessions of the entire economy.

Again, we adopt here a different approach by randomizing the impact of losses after a
credit event. Thus, we consider that losses are distributed as nonnegative random variables.
In more detail, we assume exponentially distributed variables with mean g. Our purpose is
to relax the assumption of fixed impact to allow for more flexibility to the total losses
portfolio distribution.
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26.4 MONTE CARLO STUDY
This section analyzes the different models posited in the previous section by means of
simulations.* We start exploring the original model of Longstaff and Rajan (2008) and
extend the study to consider two possible alternatives: by introducing jumps in the
intensity process, as previously specified; and by randomizing the losses or the jumps.

Before starting this simulation study, some general considerations must be taken into
account. The simplest form of the model proposed by Longstaff and Rajan (2008) (one
factor and constant loss size) needs a four-parameter vector Q¼ (a, b, s, g) including
three parameters for the intensity process and one for the loss impact. This means that any
extension of the model implies adding more parameters; what is more, the different
combinations of parameters that we must introduce to analyze the responses of the
model increase the difficulties of interpretation.

On account of this, some restrictions on the study must be imposed, with the intention of
extracting some reasonable conclusions about the parameters and their cross interrelation-
ship. For this reason, we proceed in a sequential form by detecting (in the early stages of the
model) the set of parameters that could be of interest in subsequent extensions of the model.

As a general rule, our Monte Carlo study tries to identify the changes on the spread of
tranches in two main directions:

1. Changes on the parameters of the intensity process

2. Changes on the losses size

In line with this idea, all the following tables mainly address variations on one of these
alternative ways.

26.4.1 Longstaff and Rajan Model

As a first step, we analyze the model presented in Longstaff and Rajan (2008) with a
constant impact losses g and intensity process (Equation 26.7) without jumps ( J¼ 0). We
start by using the parameters obtained therein due to the inexistence of similar studies, a
point that is discussed later when necessary.

We begin by simulating the one-factor model. Table 26.1 displays the results we have
obtained. The first column indicates the set of parameters for the intensity process under
analysis. The second column displays the different impacts on the portfolio losses. Finally,
the last column exhibits the spreads obtained for each of the different tranches.

Firstly, it can be seen that variations in the losses size, given by the parameter g, seem to
produce a high variability on the tranche spreads obtained. For instance, considering the
lower impact on losses (g¼ 0.005), we obtain the same values independent of the set of
parameters used.y The influence of the volatility parameter s seems to be irrelevant;

* Our study comprises 5000 paths simulations with 1250 steps in each one. Initial parameters for the intensity process
of the expression given by Equation (26.7) have been fixed to those of their long-run means. All computations have
been carried on a 2.8 Mhz Pentium IV computer with 500 Mb of RAM.
y Differences in basis points of some spreads are explained by the variance of the simulation procedure used.
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likewise, those differences could be explained by the numerical implementation of
the model.

The increase of the parameter a related with the actual mean arrival probability of credit
events (a=b) produces large variations on tranche credit spreads, as is also displayed in
Table 26.1: proportional increases in a, b parameters (from a¼ 1.50, b¼ 0.60 to a¼ 8.33,
b¼ 10.00) keep the long-run mean of the intensity process constant. As a result, no
changes are observed with respect to previous cases.

Table 26.2 displays the simulations for the two-factor version of Longstaff and Rajan
(2008). The first main column refers to parameters of the intensity process (Equation 26.7)
for i¼ 1, 2. Values under the Parameters column must be intended as follows: values under
the a column correspond to a1¼ 0.50, a2¼ 0.02; values under the b column correspond to
b1¼ 0.60, b2¼ 0.60, and so on. Second and third columns are those of Size Losses and
Tranches similar to those in Table 26.1.

As expected from observing the expression in Equation 26.3, the magnitude of losses is
determinant when it comes to price the tranches: to a certain degree, lower g results on
lower prices for tranches. This last begins to be conditioned to the combination of losses of
the two processes. For instance, considering low losses (g1¼ 0.005, g2¼ 0.100 or
g1¼ 0.005, g2¼ 0.035) seems not to generate as a richiest variety of spreads as higher
ones (for example, g1¼ 0.050, g2¼ 0.050).

Again, an increase in the a parameter (that controls the long-run mean of the process
given by Equation 26.7) results on higher tranches spreads.

Finally, Table 26.3 shows the simulations for the three-factor model. Basically, this table
reveals that the addition of a third factor enhances the spreads obtained for the one- and

TABLE 26.1 Simulations for the One-Factor Model of Longstaff and Rajan

Parameters Size Losses Tranches (Basis Points)

a b s g 0–3 3–7 7–10 10–15 15–30

0.50 0.60 0.05 0.005 94 0 0 0 0

0.050 1839 355 0 0 0

0.100 1852 1852 1079 0 0

0.350 1828 1828 1828 1828 1634

0.50 0.60 0.15 0.005 94 0 0 0 0

0.050 1843 355 0 0 0

0.100 1862 1862 1084 0 0

0.350 1842 1842 1842 1842 1634

1.50 0.60 0.15 0.005 102 0 0 0 0

0.050 4577 421 0 0 0

0.100 4550 4550 1704 0 0

0.350 4549 4549 4549 4549 3553

8.33 10.00 0.35 0.005 94 0 0 0 0

0.050 1860 357 0 0 0

0.100 1815 1815 1067 0 0

0.350 1828 1828 1828 1828 1627

Source: From Longstaff, F.A. and Rajan, A., 2008. To appear in Journal of Finance.
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two-factor versions of the model. Particularly, in addition to bespoke intensity processes,
the heterogeneity in the losses impact results in a diversity of spreads for all tranches.

To put it briefly, results of this section seem to address that changes in the s (volatility)
parameter seem not to produce changes in tranches values. By contrast, variations in (1)
the long-run mean and (2) the impact of the portfolio sizes must be taken into account.
This is the purpose of the subsequent sections.

26.4.2 Longstaff and Rajan Model with Jumps

Here, we extend the model of Longstaff and Rajan (2008) by adding jumps in the
background processes that control the arrival of credit events. As previously cited, the
underlying idea is to introduce discontinuities—jumps—in the paths of the intensity
process that could be explained as nonmarginal changes in the instantaneous probability
of default. The arrival of unexpected information could cause these kind of effects.

To keep the number of parameters under study manageable, the parameters that
correspond to jumps in the intensity processes (the arrival intensity d and the mean m of

TABLE 26.2 Simulations for the Two-Factor Model of Longstaff and Rajan

Parameters Size Losses Tranches (Basis Points)

a b s g1 g2 0–3 3–7 7–10 10–15 15–30

0.50 0.02 0.60 0.60 0.15 0.20 0.005 0.100 110 0 0 0 0

0.005 0.350 109 0 0 0 0

0.050 0.050 1890 436 61 0 0

0.100 0.350 1905 1905 1162 75 15

1.50 0.02 0.60 0.60 0.15 0.20 0.005 0.100 117 0 0 0 0

0.005 0.350 117 0 0 0 0

0.050 0.050 4641 519 62 0 0

0.100 0.350 4637 4637 1849 77 15

0.50 0.20 0.60 0.60 0.15 0.20 0.005 0.100 185 0 0 0 0

0.005 0.350 185 0 0 0 0

0.050 0.050 2507 1099 493 0 0

0.100 0.350 2475 2475 1825 636 85

Source: From Longstaff, F.A. and Rajan, A., 2008. To appear in Journal of Finance.

TABLE 26.3 Simulations for the Three-Factor Model of Longstaff and Rajan

Size Losses Tranches (Basis Points)

Set g1 g2 g3 0–3 3–7 7–10 10–15 15–30

1 0.005 0.050 0.350 143 50 7 7 7

2 0.150 0.050 0.350 1911 1897 1865 975 19

3 0.050 0.150 0.350 1891 788 51 51 16

4 0.350 0.150 0.050 1871 1870 1868 1860 1422

Source: From Longstaff, F.A. and Rajan, A., 2008. To appear in Journal of Finance.
Note: Parameters are fixed at a1¼ 0.50, a2¼ 0.02, a3¼ 0.001, b1¼b2¼b3¼ 0.60, s1¼ 0.15, s2¼ 0.20, and

s3¼ 0.15.
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the jump amplitude) will be considered equal for all the intensity processes. All the tables in
this and subsequent sections that contain these parameters must be intended in this form.

Tables 26.4 through 26.6 display the simulations for the one-, two- and three-factor
versions of the Longstaff and Rajan (2008) model with jumps. By and large, same
qualitative conclusions than aforementioned in the previous section arise: the addition of
jumps results in a high value of tranche spreads. Basically, jumps introduce more volatility
in the default process, which results in higher probability of default. As a result, the more
we increase the probability of a credit event, the more credit events we have. Another fact

TABLE 26.4 Simulations for the One-Factor Model with Jumps of Longstaff and Rajan

Diffusion Parameters Jump Parameters Size Losses Tranches (Basis Points)

a b s d m g 0–3 3–7 7–10 10–15 15–30

0.50 0.60 0.15 0.02 0.10 0.005 98 0 0 0 0

0.050 2342 378 0 0 0

0.100 2336 2336 1243 0 0

0.350 2336 2336 2336 2336 2035

0.50 0.60 0.15 0.02 0.20 0.005 99 0 0 0 0

0.050 2653 388 0 0 0

0.100 2673 2673 1337 0 0

0.350 2633 2633 2633 2633 2260

0.50 0.60 0.15 0.10 0.10 0.005 100 0 0 0 0

0.050 3430 405 0 0 0

0.100 3421 3421 1509 0 0

0.350 3397 3397 3397 3397 2805

Source: From Longstaff, F.A. and Rajan, A., 2008. To appear in Journal of Finance.

TABLE 26.5 Simulations for the Two-Factor Model with Jumps of Longstaff and Rajan

Jump Parameters Size Losses Tranches (Basis Points)

d m g1 g2 0–3 3–7 7–10 10–15 15–30

0.02 0.10 0.005 0.100 1068 937 907 0 0

0.005 0.350 1075 946 946 946 929

0.050 0.050 2737 1330 631 0 0

0.100 0.350 2720 2720 2131 928 926

0.02 0.20 0.005 0.100 1553 1402 1340 0 0

0.005 0.350 1556 1407 1407 1407 1373

0.050 0.050 3184 1791 845 0 0

0.100 0.350 3145 3145 2623 1370 1367

0.10 0.10 0.005 0.100 2575 2387 2227 0 0

0.005 0.350 2574 2388 2388 2388 2296

0.050 0.050 4218 2749 1166 0 0

0.100 0.350 4159 4159 3705 2345 2335

Source: From Longstaff, F.A. and Rajan, A., 2008. To appear in Journal of Finance.
Note: Parameters are fixed at a1¼ 0.50, a2¼ 0.02, b1¼b2¼ 0.60, s1¼ 0.15, and s2¼ 0.20. For ease of

exposition, jump parameters are equal for both processes.
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arises from these tables: considering the parameters under study, it seems that higher
frequencies of relatively small jumps produce bigger impacts on the tranche spreads than
lower frequencies with large leaps.

26.4.3 Longstaff and Rajan Model with Jumps and Random Losses

In view of the important role of the parameter g in the total portfolio losses, we analyze
now the consequences of randomizing the impact of losses in the Longstaff and Rajan
(2008) model. We also include jumps in the intensity process with the intention of
studying simultaneously the joint effect on the spreads.

Tables 26.7 through 26.9 show the simulations for the one-, two- and three-factor
versions of the Longstaff and Rajan (2008) model with jumps in the background default
process and random losses. The variables that model the size losses are exponentially
distributed with mean g.

TABLE 26.6 Simulations for the Three-Factor Model with Jumps of Longstaff and Rajan

Size Losses Tranches (Basis Points)

Set g1 g2 g3 0–3 3–7 7–10 10–15 15–30

1 0.005 0.050 0.350 1595 1155 881 881 878

2 0.150 0.050 0.350 3050 2871 2728 2275 975

3 0.050 0.150 0.350 3001 1948 1471 1449 954

4 0.350 0.150 0.050 3047 2900 2782 2714 2322

Source: From Longstaff, F.A. and Rajan, A., 2008. To appear in Journal of Finance.
Note: Parameters are fixed at a1¼ 0.50, a2¼ 0.02, a3¼ 0.001, b1¼b2¼b3¼ 0.60, s1¼ 0.15, s2¼ 0.20, and

s3¼ 0.15. For ease of exposition, jump parameters are equal for the processes, d¼ 0.02, and m¼ 0.10.

TABLE 26.7 Simulations for the One-Factor Model with Jumps and Exponential Random Losses
of Longstaff and Rajan

Diffusion Parameters Jump Parameters Size Losses Tranches (Basis Points)

a b s d m g 0–3 3–7 7–10 10–15 15–30

0.50 0.60 0.15 0.02 0.10 0.005 98 0 0 0 0

0.050 934 269 104 39 7

0.100 1323 570 309 168 46

0.350 1938 1328 981 732 392

0.50 0.60 0.15 0.02 0.20 0.005 96 0 0 0 0

0.050 943 253 96 34 4

0.100 1434 595 311 169 51

0.350 2152 1467 1068 774 415

0.50 0.60 0.15 0.10 0.10 0.005 98 0 0 0 0

0.050 1079 279 107 43 6

0.100 1640 637 333 181 49

0.350 2645 1671 1188 847 431

Source: From Longstaff, F.A. and Rajan, A., 2008. To appear in Journal of Finance.
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By and large, we can observe that considering a random impact of credit events results
in a richest diversity of spreads for all tranches. When it comes to comparing against the
previous results for the Longstaff and Rajan (2008) model with constant g, this is more
evident. A possible explanation can be related to the fact that taking g as random provides
a wide range of different losses without a necessity of considering combinations of fixed
values for this parameter.

As revealed by the simulations in Table 26.1 for the mean value of size losses g¼ 0.005,
it is also important to notice that the magnitude of the impact in losses continues being
important. Moreover, the effect of introducing g as random produces a smoothness of
tranches values with respect to previous cases, a point that will be discussed in the next
section.

TABLE 26.8 Simulations for the Two-Factor Model with Jumps of Longstaff and Rajan

Jump Parameters Size Losses (Mean) Tranches (Basis Points)

d m g1 g2 0–3 3–7 7–10 10–15 15–30

0.02 0.10 0.005 0.100 863 427 258 148 46

0.005 0.350 1006 731 600 492 304

0.050 0.050 1625 662 308 144 25

0.100 0.350 2190 1485 1110 823 451

0.02 0.20 0.005 0.100 1157 529 302 169 51

0.005 0.350 1412 997 782 618 360

0.050 0.050 1968 774 347 157 27

0.100 0.350 2677 1862 1388 1056 555

0.10 0.10 0.005 0.100 1647 631 331 182 53

0.005 0.350 2201 1448 1087 803 419

0.050 0.050 2622 926 386 165 28

0.100 0.350 3716 2662 1978 1416 675

Source: From Longstaff, F.A. and Rajan, A., 2008. To appear in Journal of Finance.
Note: Parameters are fixed at a1¼ 0.50, a2¼ 0.02, b1¼b2¼ 0.60, s1¼ 0.15, and s2¼ 0.20. Jump parameters

are equal for both processes. Parameter in Size Losses correspond to the mean of an exponential
distributed random variable.

TABLE 26.9 Simulations for the Three-Factor Model of Longstaff and Rajan with Jumps and Exponential
Random Losses

Size Losses Tranches (Basis Points)

Set g1 g2 g3 0–3 3–7 7–10 10–15 15–30

1 0.005 0.050 0.350 1404 939 733 580 347

2 0.150 0.050 0.350 2610 1929 1471 1141 645

3 0.050 0.150 0.350 2345 1590 1232 982 598

4 0.350 0.150 0.050 2772 2272 1863 1468 830

Source: From Longstaff, F.A. and Rajan, A., 2008. To appear in Journal of Finance.
Note: Parameters are fixed at a1¼ 0.50, a2¼ 0.02, a3¼ 0.001, b1¼b2¼b3¼ 0.60, s1¼ 0.15, and s2¼ 0.20,

and s3¼ 0.15. For ease of exposition, jump parameters are equal for the three processes, d¼ 0.02, and
m¼ 0.10. Finally, parameters in Size Losses correspond to the mean of an exponential distributed
random variable.
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26.4.4 Sectional Comparison

Finally, we study in detail the individual effects of adding jumps and randomizing the
losses in the Longstaff and Rajan (2008) for one, two, and three factors.

Figures 26.3 through 26.5 show the different versions of the model under study. LR
represents the Longstaff and Rajan (2008) model and it refers to its simplest version. Then,
we display the ‘‘jumps’’ and ‘‘jumps plus random variable’’ versions of the model. Finally,
we include the mean spreads cited in their article for comparing the performance of the
models. It is important to notice that we are interested in comparing the different models
(one, two, or three factors) to their extended versions, taking the empirical spreads just as
an order reference.*

We begin the study for the one-factor version of Longstaff and Rajan (2008). Figure
26.3 displays the spreads obtained for various tranches under different models. As
expected, the one-factor versions of Longstaff and Rajan (2008) with constant loss size
produce spreads so far from mean values. Naturally, the version with jumps shows higher
spreads, due to the fact that jumps in the default process generate higher probability of
arrivals of default events. Finally, it is important to note that a single factor version
with random losses can capture the spreads given in the market, attending at bars on
Figure 26.1.y

0

500

1000

1500

2000

2500

Tranches (%)

S
pr

ea
d 

(b
p)

LR
LR + Jumps
LR + Jumps + r.v.
Empirical

Senior Mezzanine Equity

FIGURE 26.3 Comparison of spreads for different tranches and different versions of the
Longstaff and Rajan model with one factor. Parameters are a1¼ 0.50, b1¼ 0.60, s1¼ 0.15,
g1¼ 0.10, d1¼ 0.20, and m1¼ 0.10. Finally, the g1 parameter corresponds to the mean of
an exponential distributed random variable for the ‘‘random losses’’ version of the model.
(From Longstaff, F.A. and Rajan, A. 2008. To appear in Journal of Finance.)

* To put it in other words, there is no intention here of doing an empirical analysis of the model. A study on this
direction overcomes the objectives of this chapter.
y How to intend the default process in this context can be a subject of further research.
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Figure 26.4 compares the spreads for alternative versions of a two-factor model in
Equation (26.6). Again, the model with jumps and constant g generates the highest spreads
in equity–mezzanine tranches. We observe here that the addition of a second factor results
in spreads obtained by the constant size loss model closer to those obtained with random
size losses for every tranches.

Finally, Figure 26.5 shows the spreads for the three-factor version of Longstaff and Rajan
(2008) under study. As previously deduced in Figure 26.2, the addition of a third factor
serves to provide spreads close to those observed empirically. The extensions that consider
‘‘jumps’’ and ‘‘jumps with random losses’’ seem to produce spreads far away from those
observed in the market.

26.5.5 Conclusions

The development of markets where investors are able to trade their exposure to credit
events has contributed to the appareance of a huge diversity of standardized financial
assets. A wide range of these new products such as FtD or CDS indexes are examples of
how the investors can reduce the hedging cost of portfolios including a large number of
firms without necessity of buying insurance contracts on each individual firm.

This chapter has focused on these families of basket credit derivatives with special
emphasis on CDS indexes, where the role of the default correlation (intended as the
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FIGURE 26.4 Comparison of spreads for different tranches and different versions of
the Longstaff and Rajan model with two factors. Parameters are a1¼ 0.50, a2¼ 0.02,
b1¼b2¼ 0.60, s1¼ 0.15, s2¼ 0.20, g1¼ g2¼ 0.05, d1¼ d2¼ 0.20, and m1¼m2¼ 0.10.
Finally, the parameters gi, i¼ 1, 2 correspond to the mean of an exponential distributed
random variable for the ‘‘random losses’’ version of the model. (From Longstaff, F.A. and
Rajan, A. 2008. To appear in Journal of Finance.)
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different relationship of dependence between defaults that can be given among firms) is
crucial to price these assets.

Then, the aim of this chapter has been to study the pricing of standardized CDO
tranches using the intensity-based framework of clustered defaults developed by Longstaff
and Rajan (2008). These authors assume that defaults can be bursted, that is, that joint
defaults can happen simultaneously, an approach linked to the contagious scheme of Davis
and Lo (2001). Then, this model contrasts to the individual approach of Duffie and
Garlenau (2001), where the total number of defaulted firms is conditioned by the level
of correlation among the obligors.

We have performed a Monte Carlo study to explore numerically the capability of this
model to generate values for standardized CDOs tranches under two different circumstan-
ces, particularly those referred to the number of factors used and the impact of credit
events on the loss distribution.

We have also extended the original model in two directions: by adding jumps to the
default process; and by randomizing the impact of defaults on the loss distribution. To the
best of our knowledge, no similar study has yet been reported.

Our results seem to suggest that a three-factor version of Longstaff and Rajan (2008)
with constant losses impact is flexible enough to reproduce the spreads given by the
market. In addition to this, the inclusion of jumps to the default process results in a
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FIGURE 26.5 Comparison of spreads for different tranches and different versions of
the Longstaff and Rajan model with three factors. Parameters are a1¼ 0.50, a2¼ 0.02,
a3¼ 0.001, b1¼b2¼b3¼ 0.60, s1¼ 0.15, s2¼ 0.20, s3¼ 0.15, g1¼ 0.050, g2¼ 0.15,
g2¼ 0.35, d1¼ d2¼ d3¼ 0.20, and m1¼m2¼m3¼ 0.10. Finally, the parameters gi, i¼ 1,
2, 3 correspond to the mean of an exponential distributed random variable for the
‘‘random losses’’ version of the model. (From Longstaff, F.A. and Rajan, A. 2008.
To appear in Journal of Finance.)
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high arrival of credit events, as corroborated by the high values spreads for equity tranches.
Finally, the alternative of random losses can be helpful when dealing with one- and two-
factor models, but it seems to be irrelevant in the case of three-factor models. Anyway, this
last point can be developed as a subject for further research.
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Gaussian model, for tranched credit products,

487–490
Gauss-Legendre quadratures, 465
General Art Index of Art Market Research, 55
Generalized Pareto distribution (GPD), 381–382
General Motors (GM), 76
Goldman Sachs, 7
Goodness of fit of marginal distributions, 363–364
Gumbel copula, 354, 369–370, 383, 388–389

H
Halliburton (HAL), 193–194
Hazard rate, 15–16, 515, 517

forward, 436–437, 439
Hedge funds, 59
Hedging dynamic credit exposures, 173–175
Herfindahl index, 307
Hewlett–Packard Co. (HPQ), 384
HiVol index, 72
Homogeneous portfolio assumption, 534
Honeywell International Inc. (HON), 384
HSBC JCLACOL index, 106
Hull–White model, of CDS pricing

approximate valuation, 201
empirical analysis, 202–203

vs cointegration in market, 206
correlation statistics for, 203–205
data set, 199–200
intensity model, 200–201

empirical analysis, 203–205
MSRPE statistics for, 203–204
sensitivities, 206–207

I
IBC index, 106
IBoxx, 72
IG and NIG

downgrade rates, 246
upgrade rates, 246

IGBC index, 106
IG8 5y Index tranches and compound correlations,

323–324
Implied volatility, 320
Instantaneous default loss (IDL), 42
Institutional investors, 59
Intensity process, of default probability, 538

Internal rating-based approach (IRBA), to credit
rating, 290, 293

International Business Machines Corp. (IBM), 384
International Index Company, 72
International Swaps and Derivatives Association

(ISDA), 528
IPSA index, 106
Ito’s formula, 408
iTraxx CDS Index spreads, 77–79
iTraxx Crossover, 46
iTraxx Europe, 46, 72, 75, 460–461
iTraxx Europe Series 3, 88
iTraxx Future, 40, 43–44, 48
iTraxx swap contract, 43
iTraxx universe, 45

J
Jamshidian’s decomposition, 395
Jarrow’s methodology, for pricing, 213
JP Morgan, 7
JP Morgan Emerging Market Bond Index

(EMBI), 99
Jump-diffusion model, of correlated default process,

358–360
Junk bond, 217

K
Kalman filtering technique, 161, 167
Kalman filter procedure, 90
Kendall’s t, 188, 195
KMV approach, to firm valuation, 119
Knock-out-on-default feature, of credits, 46
Kolmogorov distance, 363

L
Large homogeneous portfolio (LHP)

hypothesis, 535
Latin American credit spread market

bond market, 99–102
domestic, 100–101
international bank financing, 101
international bond issues, 101
international bonds and notes issued, 102

credit-risk pricing issues, 103–105
study

data and methods, 105–108
empirical results, 108–109

Lehman Brothers Fixed Income Database, 160
Lehman Euro Aggregate Bond Index, 88, 91
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Leveraged buyout (LBO), 41–42
Leverage, of a company, 189
Likelihood ratio test (LR test), 247, 260
Linear extrapolation, 475–476
Liquid iTraxx default swaptions, 46
Ljung-Box statistics, 77, 81
Loading matrix, 487
Log-likelihood function L, 363
London Interbank Offered Rate (LIBOR), 141, 384
Longstaff and Rajan model, 539–541

with jumps, 541–543
with jumps and random losses, 543–545

Long-Term Capital Management (LTCM)
crisis, 98

Long-term mean, defined, 362
Loss distribution, dynamics, 536

impact, 538
Loss given default (LGD), 42
Low-default portfolios (LDPs)

application of Bayesian methodology, 274
default prediction studies, 272–273
dynamic event history model (DEHA), 274
literature review, 273–275
modeling of, study

comparison of results, 283
empirical tests, 277–281
shock methodology, 275–277
validation results, 281–283

multilogit model, 273

M
Mapping methodologies

to bespoke baskets, 478
linear extrapolation, 475–476
in time domain, 477–478
value-based Root Mean Squared

Error, 476–477
Mariott International Inc. (MAR), 384
Market, for CDS, 71–72

Latin America, 99–102
Venezuela, 144–145

Markovian process, 417–418
Martingale dynamics, 410
M-asset classes, 492
Maximum recovery rate methodology, 140, 148
Mean absolute pricing error (MAPE), 188
Mean processes, in a regime-switching

environment, 360–362
Mei & Moses All Art Index, 55
Merton default mechanism, 340–341
Merton firm value model, 26–27

Merton’s credit risk model, 47, 73
assumptions, 26–27
expected stream of payments, 28–29

Mexican Bolsa Index, 106
Mexican Stock Exchange, 106
Mezzanine tranches, 319, 321, 323–324, 444,

459–460, 466, 495
Models, credit risk; see also Recovery rate,

for defaulted entity
for bank loans, 213
estimation

of defaultable bond models, 163
interest rate process, 161
single-name defaultable process, 161–164

market
for callable DFRN, 413–417
CDS options, 408–413

measures of misspecification and performance
determinants, 164–169
generalized method of moments test of model

comparisons and specification tests,
169–172

hedge dynamic credit exposures, 173–175
valuation errors for defaultable coupon bond

models, 165, 168
pricing

calibration, 185–186
determinants, 188–193
Hull and White, 200–207
performance evaluation, 186–188
sensitivity, 185
trinomial, 184–185

single-name defaultable coupon bonds, 160–161
Monte Carlo simulation methods, 23, 26, 297, 322,

360, 413, 445
Monte Carlo study, of CDS Indexes models

Longstaff and Rajan model, 539–541
with jumps, 541–543
with jumps and random losses, 543–545

Moody’s default database, 349
Moody’s model, of recovery rates, 226–227
Morgan Stanley, 7
Mortgage backed securities, 54
Motorola Inc. (MOT), 384
Multidimensional Brownian motion under QS, 443
Multivariate models, for recovery rates, 222–226

N
Newey–West method, 169
Nonfinancial multifactor models, 257–259
Normal copula, 353
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O
Obligors, 329
Obligor spread changes, analysis

extreme behavior, 381–382
extreme factor dependence, 382–384
time-series dependence, 381
time-varying marginal volatilities, 382

One-and two-period CDS rates market models,
410–411

One-factor double-t model, for tranched credit
products, 489

Open Bloomberg system, 384
Optimized portfolios, 48–49
Ornstein–Uhlenbeck process, 103
OTC market makers, 7
Outliers, 229
Over-the-counter derivatives (OTC derivatives), 22
Over-the-counter (OTC) contract, 420

P
Paintings, 54
Par bonds, 12
Par CDS rate, 435–436
Payoffs, CDS, 395–397
Pearson correlations, 74
Periodic fee, 86
Permanent capital vehicle (PCVs), 50
P-factor model, for tranched credit, 487
Phillips Perron test, 76–77
Pickands EVT-copula approach, 382
Pickands representation theorem, 383
Postponed payments running CDS (PPCDS), 394, 396
Premium leg, of contract, 146–147
Premiums, 5

for CDS, 531
for equity tranche, 514
price, see Periodic fee

Pricing; see also Hull–White model, of CDS pricing
art ACDS derivatives, 60–65
collateralized debt obligations (CDOs)

methodology, 518–521
modeling assumptions, 514–517
result analysis, 521–525

credit default swap (CDS), 397–398
data, 182–183
examples, 193–195
models, 184–193

of credit derivatives
of CDO tranches undermarket model, 443–450
credit swaption, 440–443, 450–454
default protection swaps, 433–435

forward spreads, 431–433
implied survival curve and recovery-rate

curve, 436–440
limitations, 428
par CDS rate, 435–436
of risky bonds, 429–431

in credit-risk, issues, 103–105
of default swaption, 441
error statistics, 188
Jarrow’s methodology, 213
mean absolute pricing error (MAPE), 188
models, credit risk

calibration, 185–186
determinants, 188–193
Hull and White, 200–207
performance evaluation, 186–188
sensitivity, 185
trinomial, 184–185

options with SSRD stochastic intensity model
with calibrated CIRþþ l model, 420–423
intensity and interest rates models,

417–419
joint SSRD model calibration, 419–420

risk neutral CDS
basic assumptions, 16
cash flows, 13
default probabilities, 14–16
default status tree, 13
fixed leg, 17–19
floating leg, 16–18
rate, 17–18

of synthetic CDO tranches, 461–463
tranched credit products with

generalized models
conditional default probabilities, 492–493
econometric analysis, 501–508
loss distribution, 493–494
sensitivity analysis, 496–500
standard Gaussian model, 487–490
two-by-two model, 490–492, 494–496

of tranches, 321–322
Primers, 512–514
Probability density function, for the standard beta

distribution, 515–516
Product or factor copula, 329, 336
Protection buyer, 4–5, 58–59, 530
Protection leg, 463
Protection seller, 4, 58–59, 530
Prototypical defaultable floating-rate note,

402–403
P-strip zero-coupon bonds, 431
Put option premium, 5
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Random recovery rate, 523–525
Rating-based model, of CDS

assumptions and valuation, 32–33
with different correlations strutures, 33–35

Rating, of company, 189
Recovery rate, for defaulted entity, 43

determinants of defaulted bonds, 214
empirical analysis

basic variables, 217–218
demand and supply of distressed securities,

218–219
explanatory variables, 216–217
multivariate models, 222–226
return on bonds, impact of, 228–229
robustness checks, 226–230
role of risk-free rates, 227–228
univariate models, 219–222

implications, 214
RR=PD link and procyclicality effects, 231–232
VaR models, 231

relationship with default rates, 212–215
role of supply and demand defaulted bonds, 214

Reference asset, 6, 22
Reference bond, 27
Reference credit, 6
Reference entity, 23
Reference obligation, 22
Regime-switching model, of correlated default

process, 360–362
Replication, of credit swap

asset swap strategy, 11–13
fixed coupon bond strategy, 10–11

Repo contract, 12
Restructuring, 6
Risk-free asset (RF), 49
Risk-free forward rate, 433
Risk-free premium payments, 25
RiskMetrics, 73
Risk models, credit

five distress factor proxies, 160
Risk neutral pricing

basic assumptions, 16
cash flows, 13
default probabilities, 14–16
default status tree, 13
fixed leg, 17–19
floating leg, 16–18
rate, 17–18

Risk-neutral process, 23
Risk set, 241

Risk shedder, see Protection buyer
Risk taker, see Protection seller
Risky bond, 105
Risky coupon bond, with coupon rate c, 436
Rolling correlations, cross-country, 150–151
Running CDS (RCDS), 394–395, 398–400

S
Sao Paulo Stock Exchange, 106
Schwarz-Bayes information criterion (SIC)

statistic, 167
Sculpture, 54
Self-contained approximated CDS rates dynamics,

412–413
Sensitivities, of different credit risky instruments, 48
Sensitivity analysis, of tranched credit products

correlation analysis, 498–500
value at risk and conditional value at risk, 497–498

Shapiro–Wilk statistic, 169
Shifted square root diffusion (SSRD) model, for CDS

option pricing
with the calibrated CIRþþ l model, 420–423
intensity and interest rates models

CIRþþ intensity model, 418–419
CIRþþ interest-rate model, 417–418

joint calibration model, 419–420
Shock index methodology, for LDPs, 275–279
Simpson quadrature, 496
Single-name CDSs, 42–43
Size, of company, 189
Sothebys, 57
Spearman’s rank correlations, 74
Special purpose entities (SPE), 127
S&P500 index, 243–244, 256
Spread change correlation, 186–188
Spread process, 380
Standard deviation of the pricing error (SDPE), 188
Standardized approach (SA), to credit rating, 290, 293
Statistics, defined, 502
Stochastic interest formulation, 16
Stochastic process, for each individual issuer, 362
Stock Market model, 256
Stock market performance, of a company, 189
Structured investment vehicles (SIVs), 50–51
Student’s t copulas, 330–331, 518, 522–523

with correlation matrix S, 519
Student’s t distribution, 488, 492, 495
Student-t copula, 354, 369–370
Student-t marginals, 370
Subordinator, 340
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Supervalue Inc. (SVU), 195
Survival copula, 329
Swap premium payments, 33
Switching or reduction technique, 336
Synthetic CDO tranches, 459–463
Systematic credit risk, study

empirical analysis
credit default swap data set, 384–385
results, 385–389

methodology
factor intensity approach, 379–380
factor model analysis, 380–384t

T
Tail dependence, 354–356
Technology-media-telecommunications (TMT), 74
Time-series dependence, in spread changes, 381
Time-varying marginal spread change

volatilities, 382
Trac-x, 72
Tranched credit products with generalized

models, pricing
conditional default probabilities, 492–493
econometric analysis, 501–508

interpretation of coefficients, 507–508
investment grade rates of default (IG)

vs. different explanatory variables, 504
noninvestment grade rates of default (SG)

vs. different explanatory variables, 503
ordinary least squares (OLS) estimates using

SG rates, 506
regression of SG and IG default rates with

respect to different explanatory
variables, 505

regression results for linear, probit, and logit
models using IG rates, 507

loss distribution, 493–494
sensitivity analysis, 496–500
standard Gaussian model, 487–490
two-by-two model, 490–492, 494–496

Tranche (s), 45–46
arbitrage pricing of CDO, under market model,

443–450
bid=offer spread of, on iTraxx and CDX

indices, 471
and correlation risk, 321–322
defined, 321
on indices, 320

loss, 321
primers on CDO, 512–514

Trinomial tree model, 184–185
Two-by-two model, for tranched credit products,

490–492, 494–496
Two-state intensity model, of CDS

assumptions, 29–31
expected value of the premium payments,

31–32
T-year par yield bond, 201
Type I and type II error rates, 282–283

U
Unbiased accounting information, 119–120
Undervaluation, 117
United States generally accepted accounting

principles (U.S. GAAP), 127
Univariate models, for recovery rates, 219–222
Up-front CDS (UCDS), 394, 398–400
U.S. benchmark bonds, 105
U.S. CDS market, 74
U.S. T-bond, 105–106
U.S. Treasury yields, 432, 435

V
Value-based Root Mean Squared Error, 476–477
Variance gamma (VG), 340–342
VaR models, of credit, 231
Vasicek’s model, of credit spread, 103
Volatility index (VIX), 243–244
Vultures, 218

W
Walt Disney Co. (DIS), 384, 386
Wealthy individuals, 53, 59
Weibull hazard model, 239
Weighted average default rate, on bonds, 216
Weiner firm value process, 104

Y
Yield spreads, 5

Z
Zero bond price formulation, 16
Zero-coupon bonds, 31
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