


~T n the late 1950s the British scientist and writer C. P. Snow deliv-

JL ered the Rede Lecture at Cambridge University and identified 

two disparate intellectual cultures: the intellectuals among the 

humanists (including artists and wri ters) and the intellectuals 

among the scientists (natural scientists and mathemat ic ians) . 1 

Snow claimed that communicat ion between the two groups was 

strained at best and nonexistent at worst . At the beginning of the 

twenty-first century we find ourselves still discussing the chasm 

dividing Snow's two cultures. 

My own passions have always been varied. I am an artist, an 
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occasional archaeologist, but primarily, a physicist—teaching and 

doing research in atomic physics, astrophysics, and nuclear physics. 

In art, my works were displayed in a number of exhibitions, includ

ing one-man shows in London and Washington, D.C., and collec

tions of my lithographs found their way into Buckingham Palace (a 

gift of United States Ambassador Walter Annenberg to the Queen), 

the White House, and the Smithsonian Institution. As a theoretical 

physicist I have trained or taught at a number of universities— 

including Georgetown, Berkeley, Princeton, Oxford, and the In

stitute for Advanced Study. I am a person, I like to think, who lives 

in both cultures. 

Five hundred years ago in Italy there were many intellectuals who 

developed expertise in diverse fields, and a number of these individ

uals were spectacularly good in many fields. The expression "Ren

aissance man" entered the Western vocabulary precisely to describe 

such people. One person, Leonardo da Vinci, more than any other, 

embodied that spirit, indeed transcended it. He was quite simply the 

best in the myriad fields with which he preoccupied himself. 

Leonardo was a part-time artist, who might have worked on 

twenty paintings, a dozen of which survive; of these, only seven are 

of unchallenged provenance. Nonetheless, it is first as an artist that 

he is remembered. Indeed, one might argue about who is the third 

greatest artist in history—perhaps Rembrandt or Raphael, Monet or 

Picasso? About the first two, there is no argument. One can take 

Leonardo or Michelangelo, in either order. The level of their influ

ence, their role as dr ivers , is that s ignif icant . As an engineer , 

Leonardo's legacy includes a long list of actual and mental inventions 

that foreshadow future technologies by hundreds of years. Leonardo 

is inventing the future. Thus, he is the first and preeminent futurist. 

The most extraordinary aspect of his genius, however, may just 

be that his general modus operandi actually prefigures the method

ology of modern empirical science. Accordingly, I join in the trum-
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peting of a theme beginning to be heard among scientists, that 

Leonardo was the first modern scientist. There have been individ

uals with greater scientific legacies than Leonardo. Certainly 

Galileo, Newton, and Einstein are more prominent figures in the 

history of science, but science is the only reason for their attain

ing prominence. They made unprecedented discoveries and they 

published their results. In Leonardo's day printing was in its in

fancy, and he had a relatively minor role in the production of only 

one book, De divinaproportione. Had he been able to publish the sci

entific ruminations found in his manuscripts in his own time, our 

present level of sophistication in science and technology might 

have been reached one or two centuries earlier. 

Leonardo's Model 

For Leonardo, the paragon artist-scientist-engineer, the astonishing 

variety of his interests are like the knots of a magnificent tapestry. 

Uncovering the internal dynamics of each of these interests and 

establishing the connections between them were his quest, and sys

tematic experimentation, his method. Ultimately, in every aspect of 

his life—while doing science, engineering, and on the infrequent 

occasions when he did art—he was operating as the consummate 

scientist. And it was the cross-fertilization of ideas and their seam

less integration that led to many of his astonishing achievements. 

The transcendent unity of science and art, and the expansive cross-

semination, are the essence of Leonardo's model. 

Five hundred and fifty years after Leonardo's birth we use 

Leonardo's model to seek again the consilience of science and art— 

painting, architecture, sculpture, music, mathematics, physics, biol

ogy, and engineering—and to remedy as far as possible the disasso-

ciation that exists between cultures. We examine common themes 

and grounds among the interests of the artist and the scientist and 
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the modes of expression adopted by each. The task involves applying 

elements of modern science and mathematics to the analysis of per

spective, proportion, patterns, shapes, and symmetries underlying 

art and nature. It is important to point out at the outset, however, that 

in the case of the artist it is almost always unwittingly (but intuitively) 

that he imbues his works of art with these technical devices, often 

picked up as subliminal messages from nature. But in Leonardo's 

case, it was most likely done with total awareness and forethought— 

in his art as well as his science. And so it is in the sciences now. The 

underlying mathematics and the principles of symmetry are not just 

useful, they are indispensable. 

The chapters of Math and ibeMona Lisa follow the development 

of fundamental science from the dawn of civilization, when num

bers were invented, to ancient Greece, where science was born. We 

shall examine the significant role of Muslim scholars, who not only 

served as a conduit for the transfer of knowledge from the philoso

phers of antiquity to the scholars of the Renaissance, but who also 

invented some powerful tools of science and mathematics. The 

journey will take us through the Renaissance into the Scientific 

Revolution of the seventeenth century, through Gali leo 's discov

eries of the law of the pendulum and the law of free-fall and 

Newton's discoveries of the universal law of gravitation and the for

mulation of the calculus. The scientific methodology of Leonardo 

continued into the twentieth century with Einstein formulating the 

theory of relativity and a number of extraordinarily gifted young 

physicists creating quantum mechanics. 

Only after we establish the framework of the science and math

ematics underlying art and science, and the differing approaches the 

artist and scientist take in describing nature, will we return to exam

ine Leonardo's modus operandi and his legacy as artist, scientist, and 

engineer. Thus, although Leonardo's system, the "model," serves as 

a unifying theme throughout the book, only three chapters are 
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devoted exclusively to Leonardo. But if he were alive now, it is likely 

that it would have been many of the other chapters that he would 

have found especially interesting. The quintessential futurist, 

Leonardo would have glimpsed the whole from the vantage point of 

the modern scientist. 

Math and the Mona Lisa presents science through art, and art 

through science, and approaches the larger goal of achieving a syn

thesis of the two fields. The qualities of timelessness and universal

ity in Leonardo's astonishing works speak eloquently for themselves. 

With Leonardo's model providing the unifying thread, however, it 

becomes possible, first, to glimpse the man's restless intellect, that 

extraordinary psyche; second, to see whence the ideas for his works 

of art came; and ultimately, to appreciate his art at a different level. 





The water you touch in a river is the last of that 

which has passed and the first of which is com

ing. Thus it is with time present. Life, if well 

spent, is long. 

—Leonardo da Vinci 

J ate medieval and early Renaissance Italy witnessed many 

changes, including a revival of the mercantile economy, the 

emergence of a vernacular literature, and the first serious efforts 

to recover the classical tradition of learning. Feudalism, with the 

landed nobility controlling the lives and destinies of the populace, 

began to lose its grip. The Holy Roman Empire and the Roman 

Catholic Church increasingly failed to provide social and political 

stability. National monarchies, especially those of France and 

England, rose in importance, and in Italy, the city-state became the 

1 
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preferred form of political organization. One city-state, Florence, 

located in north central Italy, took the lead in projecting the new 

indefatigable spirit of humanism, a return to the classical ideal of 

man being the measure of all things; it became the incontestable 

intellectual capital of Renaissance Europe. The city's preeminence 

was displayed in literature—with Petrarch, Dante, and Boccaccio— 

but most prominently in painting, sculpture, and architecture. The 

brilliant painter Giotto appeared early in this remarkable period. 

The next hundred years gave rise to the artist Masaccio and archi

tects Alberti and Brunelleschi; then, toward the end of the fifteenth 

century, the matchless trio of Leonardo, Michelangelo, and Raphael 

burst onto the scene. 

An explosive catalyst for the change was the invention, by 

Johannes Gutenberg, of the printed book in 1455.' Before the print 

revolution, Europe's libraries contained 30,000 volumes. Within 

fifty years the number of books had increased to three million. The 

Renaissance also saw the European voyages of discovery, resulting 

in dramatic expansion in the size of the known world . The Pro

testant Reformation ignited further intellectual commotion, with 

an attendant eruption of various dissident sects. Finally, the 

Renaissance artist, who saw the need to describe nature in the way 

it really presented itself and not in some idealized or ecclesiastically 

dictated way, was instrumental in the launching of modern science. 

The changing intellectual milieu of the Renaissance spread 

quickly to Rome, Milan, and Venice. One ingredient for its acceler

ated development in Italy came with the conquest of Constantinople 

by the Ottoman Turks in 1453. A number of significant Byzantine 

scholars migrated to Italy at the invitation of the Italian humanists, 

among them, Theodore Gaza, John Argyropoulos, and the most influ

ential of all, Demetrius Chalcondyles. These scholars brought with 

them the first serious efforts to recover the classical tradition of learn

ing and afforded Italian humanists access to the classic Greek texts 

and manuscripts preserved in Constantinople. 
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Any discussion on the ascent of civilization must necessarily 

include the rise of the university. Toward the end of the eleventh 

century the first of the studiageneralia, precursors of universities, 2 

had appeared in Bologna. In the twelfth century others began in 

Paris, Oxford, Modena, and Parma, and in the thirteenth century 

in Cambridge, Padua, Siena, Salamanca, Perugia, and Palermo. The 

universities did not give rise to the Renaissance, but they benefit

ted significantly from it. Whi le the Italian universit ies were the 

first to be founded in Europe they were the last to be liberated 

from the scholastic tradition grounded in the works of Aristotle. 

Their doctrine was salutary for the rebirth of rigorous intellectual 

discourse in the manner of the ancient philosophers, but it focused 

mostly on theological issues in a doctrinaire way. Thus the early 

emergence of universities in Italy with their scholastic tradition 

has to be regarded as a red herring for the development of science 

in Italy. 3 

Not much is known about Leonardo da Vinc i ' s personal life. 

According to his earliest biographer, Giorgio Vasari, he was an un

commonly handsome man, well-built, full of charm and grace, but 

he left no definitive image of himself. One reasonable candidate for 

a Leonardo likeness is a red chalk drawing, found in Turin in the mid-

nineteenth century and believed by many to be a self-portrait of 

Leonardo in his old age. There is a mesmerizing quality in the eyes, 

simultaneously exuding wisdom, sadness, and acute intelligence that 

only a truly insightful psychologist-artist could capture (Plate 1 ) . 

Another possible likeness, also from his mature years, is a colored 

chalk profile portrait thought to be by one of his pupils; David Alan 

Brown, of the National Gallery of Art, Washington, D.C., makes a 

compelling case for the subject of this work. 

Leonardo lived his sixty-seven years in a time of frequent wars 

and political and social upheaval, but also in a period of artistic and 

intellectual ferment unrivaled since the Golden Age of Greece. He 

embodied the Renaissance spirit. In his own time he was known 
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as II Fiorentino (the Florentine), although by the late sixteenth century 

Giorgio Vasari was already referring to him as "Leonardo da Vinci." 

It is not known exactly where Leonardo was born, but con

vincing arguments have been offered by a number of biographers 

that he was born on April 15 , 1452, in the Tuscan village of An-

chiano, near the town of Vinci, on the outskirts of Florence. He was 

the illegitimate son of Ser Piero di Antonio da Vinci and a peasant 

girl named Caterina. The young couple never married, the boy liv

ing the first five years of his life with his mother, grandmother, and 

a peasant from Anchiano, whom the mother eventually did marry. 

Meanwhile, Ser Piero married Donna Albieri, a woman of his own 

station, and only when he found that his wife was infertile did he 

seek and gain guardianship of Leonardo. 

During the next ten years the boy lived in his father's family 

home in Vinci, never gaining formal adoption or the benefit of the 

respected family name. There have been speculations by a number 

of authors—including Sigmund Freud—that in the home of his 

mother and maternal grandmother, and later in the home of his step

mother and step-grandmother, the boy perhaps received attention 

bordering on the worshipful . These factors have been offered as 

possible ingredients for his unusual psyche, his exquisite sensitiv

ity, superhuman drive, surpassing intelligence, and probable homo

sexuality—although this is all conjecture. 

Ser Piero eventually married two more times, fathering twelve 

other children, but none exhibited similar gifts, nor left the slight

est mark on civilization. A rare reference to Leonardo 's siblings 

dates to 1504, when Ser Piero died at the age of seventy-seven, when 

the siblings launched a successful conspiracy to cut Leonardo off 

from any share of his father's estate. 

Had Leonardo been born legitimate he most likely would have 

been groomed to become a notary—just as his father, grandfather, 

and great-grandfather had been. That option was not open to chil

dren born out of wedlock. He had no formal schooling, although he 
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had some private tutoring, what we might call "home schooling." 

His unconventional education did not include the study of Latin or 

Greek, and he seems to have felt inadequate in never being able to 

read the works of the classical authors in their original languages. 

With a lack of formal education he did not benefit from many of 

the great classical ideas, but neither was he saddled with the bad 

ones. Leonardo, untutored by a university education, was thus also 

uncontaminated by it. 

The choice of a vocation for the young boy presented his father 

with a quandary. From the beginning Leonardo displayed certain 

talents for art and music, and accordingly Ser Piero's decision was 

simplified. When Leonardo was fifteen, he moved with his pater

nal family to Florence, and two years later, was apprenticed to the 

painter's workshop of Andrea del Verrocchio, a talented goldsmith, 

sculptor, and painter. Verrocchio—whose name means "true eye"— 

was one of Florence's most influential artists. 

Leonardo flourished in Verrocchio's workshop, developing the 

skills that would serve him throughout life. He mastered the tech

niques for grinding rare-earth elements to create colors, making 

brushes, even casting bronze, as well as the latest principles of per

spective and composi t ion. He also learned from the master the 

techniques of chiaroscuro, using light and shade in pictorial repre

sentation, and sfumato, the blending of chalk strokes to make a 

seamless, smoky shadow, the latter a procedure that Verrocchio 

developed himself. And he learned the importance of understand

ing anatomy, so that he could build the body from the inside out. It 

was clear from the start, however, that Leonardo wanted to build 

on what was known, and experimentation with all of the elements 

of art became his modus operandi. In his early days in the work

shop Verrocchio assigned Leonardo one of the two kneeling angels 

in the Baptism of Christ (Florence, Uffizi). Although masters often 

gave a student a secondary figure to paint, this proved to be a strate

gic mistake, because here that single angel becomes the painting's 
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visual focus. Verrocchio, overwhelmed by Leonardo's mastery, never 

picked up a brush again. 

Leonardo acquired his wonder and passion for nature in his 

childhood in the verdant hills of his native Tuscany, observing 

nature as both an artist and a scientist. He had a "mysterious cave" 

in the hills that inspired his life-long passion for geology. 4 Indeed 

the peregrinations convinced him that the earth was much older 

than the contemporary view—an early triumph of observation over 

orthodoxy. His earliest known landscape drawing, a pen and ink 

study from 1473 (Florence, Uffizi) made when he was twenty-one 

years old and living in Florence, depicts the Arno valley seen from 

a hilltop. The scene is rich with artistic devices—impeccable per

spective, draftsmanship, and shading. But also present is the degra

dation in the quality of light with distance seen through the eyes of 

the physicist, and the rock formations seen through the eyes of the 

geologist. In his codices he classified rocks and pondered their ori

gin, identifying sedimentary rocks—long before the invention of 

geology and its classifications. In the striations and strata in rocks— 

some presenting horizontal, others oblique configurations—he 

wondered about the possibility of "uplifting" as a mechanism for 

their formation, anticipating the development four centuries later 

of the theory of plate tectonics with its attendant process of uplift

ing as the established explanation for mountain chains. In Leonardo's 

drawings and in several of his greatest paintings, geologically inter

esting topographies become commanding backdrops. 

If science—searching out nature's secrets—was a noble cause 

for Leonardo, so was technology—the building of inventions to 

make life more efficient, more comfortable, more interesting. The 

conviction, however, that nature's own inventions were by far the 

most beautiful ("nothing is lacking, and nothing is superfluous") 

meant that we should begin by trying to emulate nature's own cre

ations. "If birds can fly, so should humans be able to fly," he wrote, 

a belief that fueled his life-long interest in creating machines that 
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could carry man aloft. Some of his mental inventions may have 

been produced, but most remained just theories. Among the de

signs that fill the notebooks one can see that he prefigured, among 

other devices, the bicycle, the automobile, the tank, the collapsi

ble bridge, the parachute, the underwater diving mask, the flame

thrower, scissors, and the submarine. To satisfy his scientific curios

ity he performed ballistic experiments in order to determine 

projectile trajectories and painstaking dissections to understand 

anatomical s t ructure . Wi th seamless faci l i ty he funct ioned as 

ana tomis t , botanist, geometer, physicist, architect, mechanical 

engineer, hydraulic engineer, civil engineer, and even aeronautical 

engineer. His drawings of anatomical and botanical subjects are 

especially unmatched for their virtuosity and insight, which in 

some cases would not be surpassed for two or three centuries. 

Leonardo's drawings reveal a negative slope (top left to bottom 

right slant) in the shading. Mos t scholars believe this is evidence 

that he was left-handed or possibly ambidextrous. He is also famous 

for his use of mirror text; the right-to-left direction in the hand

writing is more natural for a born left-hander, since pulling a pen 

rather than pushing it avoids smearing the freshly laid ink. Leonardo 

annotated his sketch of an old man using his characteristic mir

ror text. The left image is a digital ly produced reflection of the 

original at the right, and reveals the familiar letters of Latin script. 

The symbols identifying various subdivisions in the right image 

are also in the mirror text, as clarified in the reflected image on 

the left (Figure 1 . 1 ) . 

Leonardo never married, and he may never have had a sexual rela

tionship with a woman; there is no evidence that he had any children. 

His only interest in women seems to have been as subjects for com

missioned portraits—three of which became pivotal masterpieces of 

Western art. That he may have been a homosexual was long sus

pected by art historians. Relationships between masters and young 

apprentices may have been quite common in Leonardo's day, and on 
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Figure 1.1. (right) Portrait in profile of an old man by Leonardo, with mir

ror text, Windsor Castle, Royal Library; (left) digitally generated reflec

tion of the image 

April 9,1476, Leonardo was denounced anonymously to the Ufficiali 

di Notte in Florence, the official in charge of public morals, leading 

to sodomy charges against him. These charges were eventually 

dropped for lack of evidence, but the toll on Leonardo made the 

period excruciatingly painful for him. Commissions from wealthy 

patrons dried up, although this was perhaps also due to his growing 

reputation for not finishing works on time. 

In 1481 Lorenzo de' Medici (the "Magnificent"), the visionary 

patron of Florentine artists, received a request from Pope Sixtus IV 

to send Florence's leading painters to collaborate on the murals in 

the newly erected Sistine Chapel. Lorenzo complied, submitting a 

team that included Botticelli, Ghir landaio, Perugino, Piero di 

Cosimo, and Cos imo Rosselli , but glaringly omitted Leonardo 's 

name. In July of the same year Leonardo had to settle for painting 

the Adoration of the Magi for the monastery of San Donato a Scopeto 

near Florence, which required him "to supply all his materials and 

complete the commission within 24 or at the most 30 months" s or 
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else forego the commission. True to form, he became sidetracked, 

did not comple te the work on t ime, and failed to rece ive the 

compensation. But the painting, although unfinished, was so mag

nificent and revolu t ionary in its concept ion that Leona rdo ' s 

contemporaries—including his rivals, back from decorating the 

Sistine walls—stood in front of it transfixed and awestruck. 

By 1482 Leonardo, dispirited from the humiliation of his last 

few years in Florence, moved to Milan. It was known among artists 

that its ruler, Duke Ludovico Sforza, wanted to erect a massive 

bronze equestrian monument in memory of his father. Leonardo 

wrote to the duke, applying for the position of court engineer, a 

capacity in which he could design buildings, sanitation systems, 

portable bridges, and a variety of terrible weapons; only as an after

thought did he mention that he also was an artist. 

Leonardo was hired and moved to Milan, where he would 

spend the next sixteen years. Sforza had launched a program of 

importing artists and intellectuals to transform the wealthy city in 

the Lombard hinterland to one that would rival Florence as a cul

tural capital. Among Leonardo's contemporaries in Milan were the 

architect Bramante, w h o would later design Saint Peter's Basilica 

in Rome, and the mathemat ic ian Luca Paciol i , whose De divina 

proportione Leonardo would illustrate. 

Leonardo envisioned the colossal equestrian monument as a 

possible crowning glory for his artistic endeavors. Once he received 

Ludovico's final approval to proceed, he moved quickly to finalize 

his design from myriad possibilities he had contemplated. He toiled 

feverishly, sculpting a full-size model out of clay in preparation for 

casting the final product in bronze. But as fate would unfold, the 

French chose just that moment to lay siege to Milan. Ludovico, des

perate to stave off the better-armed enemy, had the metals allocated 

for the bronze horse cast instead into cannons. The Milanese were 

unable to stop the French, whose troops entered the city with rel

ative impunity. When they came upon Leonardo's clay model, the 
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Gascon archers among them immediately identified it as an object 

for target practice. Exceedingly disheartened by the ignominious 

end to his dream, Leonardo could do nothing. He understood the 

desperation for survival of the Sforza, their dynasty rapidly draw

ing to an end. Ludovico, disguised as a Swiss pikeman, tried to flee, 

but was arrested by the French, who placed him in a dungeon, 

where he lived out the last decade of his life. Meanwhile, Leonardo, 

with his assistant Andrea Salai and his mathematician friend Luca 

Pacioli, moved first to Mantua, and from there on to Venice for sev

eral months. It must have been in this period that the seeds of De 

divina proportione were sown. The book, published in 1509 in 

Venice, reveals Leonardo's lifelong preoccupation with geometric 

shapes and patterns—the informal doodling, finally found its way 

into print. 

In his Milanese period from 1482 to 1500, Leonardo was at his 

inventive peak, especially regarding science and engineering. When 

the French defeated Milan and the residents of the city overthrew 

Ludovico, he was forced to abandon the city with approximately six 

hundred florins. He was not paid for the last two years of his work, 

and the equestrian statue would never be finished. He had produced 

a few paintings, including his Lady with the Ermine (Portrait of Cecilia 

Gallerani), the second of only three secular portraits of women, and 

the Last Supper, which Kenneth Clark called "the keystone of European 

art." In addition, he accumulated countless sketches of his mental 

inventions, in notebooks or on unbound sheets. 

Leonardo returned for a short time to Florence, where writers, 

poets, artists and architects received him with deference, but did 

not accord him the adulation given to the younger and exceedingly 

talented sculptor and painter, Michelangelo. He came very close to 

taking a court engineer position in Constantinople, similar to his 

post in Milan, and to painting a portrait of the Ottoman sultan 

Bayezid II. In his application he contemplated preliminary designs 

for a bridge over the Golden Horn and a pontoon bridge across the 
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far more expansive Bosporus. As events unfolded, however, the 

position fell through and Leonardo went to work in Urbino, under 

the patronage of the city's new leader, II Principe, Cesare Borgia. 

Leonardo saw in Borgia a potential unifier of the scattered city-

states of Italy. Also in Urbino he met and befriended Niccolo 

Machiavell i , author of The Prince, a book modeled largely on the 

career of Borgia. Within five years, however, disillusioned by the 

unbridled tyranny of the Borgia family, Leonardo was ready to leave 

Urbino. Through Machiavell i Leonardo received a commission 

from Florence, where he and Michelangelo were each to paint a 

mural on facing walls of a hall in the Palazzo Vecchio. The massive 

mural by Leonardo was to celebrate the Battle of Anghiari, in which 

Florence defeated Milan in 1440. Although some thoughts began to 

take shape in his notebooks, the commission was withdrawn. The 

prospect of a double mural in the same room by the two titans of 

the Renaissance evaporated as quickly as it had appeared. 

Leonardo had even briefer stays in his next few towns. In 1506, 

upon an invitation from Milan's French occupiers, he returned to 

Milan, where for a time Louis XII became his protector and patron, 

according him the title Painter and Engineer of the King. It was at 

this time that Leonardo also met two young men who were to have 

a lasting effect on him. The first was Marcantonio della Torre, the 

brilliant young professor of anatomy at the University of Pavia, who 

gave Leonardo some direction for his future anatomical studies, and 

the second was the aspiring young artist Francesco Melzi , son of 

Leonardo's landlord, Girolamo Melzi. His relationship with young 

Melzi, who would become his apprentice and closest disciple, has 

been described as one of mutual devotion, approaching that of 

father and son. He was only six years in Milan the second time, for 

when the French were evicted after their defeat in the Battle of 

Pavia, a Sforza heir, Maximil iano, took over the city and saw in its 

future little need for art, learning, or universal genius. Leonardo, 

accepting a commission from Pope Leo X, went to Rome in 1513. But 
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his preoccupation with producing a new type of varnish instead of 

a new painting was another personal downfall, and resulted in the 

pope shifting his focus to the talents of the young Raphael. Soon 

afterward Leonardo suffered a stroke that left him partially para

lyzed in his right arm, effectively ending his career as a painter. 

In 1516 the king of France, Francis I, befriended Leonardo and 

invited the aging artist and his two assistants to France. Leonardo and 

his tiny entourage journeyed to Amboise, about sixty miles south of 

Paris. He brought chests, bulging with manuscripts, his collection 

of books, the scale drawing for Virgin and Child with Saint Anne, Saint 

John the Baptist (now thought to be Bacchus), and the one painting 

with which he would not part, the Mona Lisa, created a decade earlier 

in Florence. The group moved into the manor house at Cloux, a short 

walk from the Chateau d'Amboise, the king's own abode. 

Leonardo died three years later, on May 2 , 1 5 1 9 . He was in the 

care of a genuinely devoted king, w h o rushed down from Paris 

upon having heard of Leonardo's impending death. A generous 

benefactor who had asked for little in return, Francis I inherited the 

Mona Lisa, and Leonardo's manuscripts and books were bequeathed 

to Melzi. 



The most praiseworthy form of painting is the one 

that most resembles what it imitates. 

— L e o n a r d o d a V i n c i 

J ike the artist, the scientist is a lover of nature. Just as the artist 

is restricted only by his imagination and his facility with his 

chisel or brush, the scientist is restricted only by his imagination 

and his facility with his mathematics. The artist uses imagery and 

metaphor; the scientist, numbers and mathematics. 1 The artist is 

more interested in the whole of his composition than in its very fine 

details. And the scientist is more interested in the generality of 

nature's laws than in its particulars. However, it is from scrutiny of 

13 
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a very small section of the universe, the earth, that he tries to 

explain the whole. A "beautiful law" of nature, one whose funda

mental symmetries have been deciphered, one that is simple and 

yet general, evokes the image of an ornate tapestry, and in physicist 

Richard Feynman's words, "Nature uses only the longest threads to 

weave her tapestry, so each small piece of her fabric reveals the 

organization of the entire tapestry." 2 

For mathematicians and physicists it is undeniable that there 

exists inherent beauty in mathematics. This is the aesthetics of mathe

matics. Perspective, proportion, and symmetry in any context are 

quantifiable. Accordingly, art indeed possesses quantifiable aspects. 

There is the symmetry expressible in mathematical terms, and then 

there are "nature's numbers." These notions figure into the mathe

matics of aesthetics. The associated quantification can be formulated at 

various levels of mathematical sophistication. In this book the math

ematical authority—embodied in a modest number of equations—will 

be relegated to the endnotes. The Fibonacci series gives rise to the 

notion of dynamic symmetry, the golden section, or the "divine pro

portion," which Fibonacci himself could not have anticipated. Three 

hundred years after Fibonacci formulated his series Leonardo da Vinci 

illustrated a book called De divina proportions But the integration of 

science and art has many more strands than Fibonacci's mathematics 

and Leonardo's art: It also draws in elements of architecture, astron

omy, biology, chemistry, geology, engineering, mathematics, philos

ophy, physics—encompassing the extraordinary range of Leonardo da 

Vinci's interests. For him these were branches of the same tree, part 

of a grand unified structure, the universe. 

In nature we observe symmetric shapes at the macroscopic level 

in both animate and inanimate objects. At the microscopic level and 

at the supramacroscopic, both beyond the capabilities of our senses, 

some of the same shapes, symmetries, and regularities emerge. When 

magnified one hundred thousand times, the spirals seen in the cross-

section of the microtubules of the heliozoan resemble, in scale and 
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shape, the spirals seen in the horns of the ram. This shape, magnified 

another hundred billion billion times, resembles the arms of a spi

ral galaxy. At one extreme the observing apparatus may be an electron 

microscope or its more powerful cousin, the scanning-tunneling 

microscope, and at the other, an optical or radio telescope. 

X-ray diffraction technology reveals certain symmetries in crys

tals that also manifest themselves at the macroscopic level. Crystallo-

graphers identify five possible Bravais or space lattice types in two 

dimensions and fourteen types in three dimensions. All of the two-

dimensional and some of the three-dimensional types are found in 

man's artistic creations. A millennium before crystallography became 

a science, Moorish artists—especially Sunni Muslims, forbidden to 

produce the human likeness—were creating magical calligraphic and 

geometrical designs displaying intuitive understanding of the space 

lattices. This is nowhere more dramatically illustrated than in the 

mosaics and stone carvings at the Alhambra Palace in Granada and 

at the Great Mosque in Cordoba. 

In the physical and mathematical sciences the recognition of 

symmetries in nature plays a central role in seeking new laws. The 

physicist observes symmetries in physical laws; however, he is often 

more interested in partial or incomplete symmetries than in per

fect symmetries—because it is in the former that one can look for a 

deeper story, a more fundamental or profound insight into the laws 

of nature. The same is true in art, where an off-centered location of 

the focal points makes the picture more intriguing than would a 

centered location. 

In modern physics one finds that some of the most abstract and 

arcane areas of pure mathematics, the elements of which often 

appear entirely unconnected to the laws of nature, in time prove to 

be the basis of fundamental physical laws. (Linear algebra, differ

ential geometry, and algebraic topology are three such areas of 

mathematics that have helped theoretical physicists express the 

fundamental workings of nature.) From this experience emerges an 
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appreciation of the aesthetics of mathematics and an abiding faith 

among physicists: Mathematics is indeed the tool to unravel those 

subtly hidden laws, to explain why a particular experiment yielded 

the results it did or, still better, what is yet to be observed. But why 

there should exist this remarkable effectiveness of mathematics in 

describing the laws of nature has never been shown. Princeton's 

ineffably wise Eugene Wigner, one of the greatest theoretical physi

cists of the twentieth century, wrote : "The miracle of the appro

priateness of the language of mathematics for the formulation of 

the laws of physics is a wonderful gift, which we neither understand 

nor deserve. We would be grateful for it and hope that it will remain 

valid in future research and that it will extend, for better or for 

worse, to our pleasure, even though perhaps also to our bafflement, 

to wide branches of learning."' 

Wigner, seen in my 1978 ink sketch (Figure 2 . 1 ) , described the 

failure of science to answer the question of the mathematical nature 

of the universe as "a s c a n d a l . . . an enormous gap in human under

standing." No one could have spoken with greater authority on the 

subject. No one had earned the right to be as boastful and haughty, 

and yet no one was more gentle and humble in his demeanor. His 

most important work had been the introduction into physics of 

group theory with its attendant symmetry considerations, a for

malism that turned out to be a transcendent contribution to our 

quest to understand nature. 4 

Just as symmetry can produce a sense of harmony, balance, and 

proportion, too much symmetry in certain contexts, such as in an 

endless line of row houses or identical statues, can have negative 

emotional impact. Similarly, asymmetry can produce a sense of dis

cord and lack of proportionality. But in some instances, such as in 

the shape of an egg (as opposed to a smooth sphere), it can gener

ate a positive emotional response, a sense of release, freedom, and 

mystery. Thus, released from the prejudice of viewing only perfect 

symmetries as ideal, we have come to regard the Alps as uncom-
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Figure 2.1. Portrait of Princeton Nobel Laureate Eugene Wigner. Ink 

drawing by the author, 1978 

monly beautiful creations of nature. s Likewise, the finest examples 

of visual art and music are anything but endlessly regular. Indeed, 

the notion of "the mono tonous" is one of ar t is t ic and social 

aversion. In the seventeenth century, a younger contemporary of 

Shakespeare's captured this message: 
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A sweet disorder in the dress 

Kindles in clothes a wantonness. 

A careless shoestring, in whose tie 

I see a wild civility: 

Do more bewitch me, than when art 

Is too precise in every part. 

—Robert Herrick ( 1 5 9 1 - 1 6 7 4 ) 

It is not the purpose of this book to present an exhaustive inventory 

of examples of natural and artistic phenomena that demonstrate the 

same patterns, but rather to scrutinize the symmetries and patterns 

at a fundamental level, and to examine possible forces that would 

produce similar shapes at wildly disparate scales. We will also review 

the notion of aesthetics, and the mathematics underlying aesthet

ics. By studying the interdynamics of art and science one gains a sense 

of the confluence of the two, and to a lesser extent, the psychology 

underlying the human affinity for symmetry. 

The Power of Observation 

The observational skills necessary to perform modern science come 

from the skills introduced by artists in the Renaissance. It has been 

said that the greatest discovery of science is science itself. 6 Yet it 

was the artist, in his attempt to mirror nature, who first learned to 

observe nature as it really presented itself. And, in turn, for the artist 

the greatest discovery of the Renaissance—actually a rediscovery— 

was the notion prevailing in classical antiquity that man was the 

measure of all things. 

Twenty-five years before Leonardo was born, a few discerning 

artists began to develop a new approach to observing and representing 

nature with correct perspective. Leonardo, however, made a science 

of linear perspective, and as a part-time artist, he produced among 

a handful of paintings the two most famous paintings in history (the 

Last Supper and the Mona Lisa). He also left behind thousands of pages 
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Likewise, the scientist operates as if physical laws already exist, in 

unique form, and only need to be discovered, or to be extricated from 

of personal observations, ruminations, and sketches on every subject 

conceivable. In the last few years, as scientists—physicists, mathe

maticians, engineers, anatomists, botanists—have undertaken exam

inations of Leonardo's work in science and technology, they have 

returned to pronounce Leonardo the first modern scientist. 7 His 

methodology prefigures Galileo's work by more than a century. 

Ultimately, it is the originality of his questions and the prescience of 

the solutions that still impress us after five hundred years. 

The Sculpture Model of Science 

An unfortunate banality in philosophy ascribes to science the exclu

sive process of analysis, and to art, the exclusive process of synthesis. 

The scientist, this platitude explains, takes apart his subject. The 

artist, puts it together. Jacob Bronowski brings this misconception to 

task: in reality the scientist engages in both processes, as does the 

artist. For each, imagination begins with a very close scrutiny and 

analysis of nature, and ends in synthesis, putting together a "form by 

which the creative mind transcends the bare limits, the bare skeleton 

that nature provides." 8 Bronowski offers sculpture for the model of 

science. Sculptors from Phidias onward imagined the existence of the 

statue in the rough-hewn block, the figure beckoning to be released, 

to be discovered. In Michelangelo's words, 

When that which is divine in us doth try 

To shape a face, both brain and hand unite 

To give, from a mere model frail and slight, 

Life to the stone by Art's free energy. 

The best artists hath us thought to show 

Which the rough stone in its superfluous spell 

Is all the hand that serves the brain can do. 9 
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nature. But in reality, the physical laws no more exist in unequivo

cal manner than the statue in that rough block. In the hands of dif

ferent sculptors the block is destined to yield different forms. And 

in the hands of different scientists the laws are destined to emerge 

in different form, although ultimately perhaps susceptible to a de

monstration of equivalence. Depending on how exactly the questions 

are asked, the results can appear differently, but correctly. 

Radical Reductionism 

Progress in certain areas—in the arts and the sciences especially— 

involves vicissitudes along the way, bumps, forward surges, occa

sionally retrograde slippage, before true understanding occurs. At 

the risk of oversimplifying, offered here are a pair of converse views. 

James Burke, who starred in the BBC series Connections, claimed that 

at the roots of the progress of civilization were incremental steps. 

Bronowski , a one-time colleague of Burke, had argued in an ear

lier series, The Ascent of Man, that progress came in the form of 

phase transitions, revolutions. The contention in this book is that 

both types of change are necessary. Certainly the incremental changes 

represent the norm, but then a need for a radical reductionism, a 

synthesis, becomes a periodic necessity in order to put some order 

into the incremental progress. This type of transformation has 

occurred in science, in art, and in other fields. Bronowski expressed 

this message succinctly: "Although science and art are social phe

nomena, an innovation in either field occurs only when a single 

mind perceives in disorder a deep new unity." 

Radical reductionism has its purpose in the sciences and in art. 

In the sciences, one tries to reduce the laws to their bare essence. 

The unification or synthesis of the laws of physics represents a rad

ical reduction into a single sublime formalism, a Holy Grail of 

physics. Reductionism in art occurred naturally and in a most 

healthy manner—progressively. Certainly it was underway with 
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Vermeer in the seventeenth century, gained momentum with the 

great colorist J .M.W. Turner in the nineteenth, and came to full 

fruition in the twentieth century with geometric abstractionists like 

Mark Rothko. This movement, however, started even earlier when 

Michelangelo, toward the end of his incomparable career, carved 

the series of sculptures called the Captives, depicting bodies emerg

ing from rough hewn stone, statues that now line the long room 

leading to his David in the Gallerie del l 'Academia in Florence. In 

another late work, his RondaniniPieta (c. 1550-53) , Michelangelo 

abandoned realism, depicting his figures with elongated limbs in 

the fashion of Mannerism, a style in which the work evokes previ

ous art rather than nature. These works are magnificently finished 

in their seemingly unfinished states, as is Schubert 's Unfinished 

Symphony. Only half a century after Michelangelo 's death, Rem

brandt began to create some of the most powerful portraits in the 

history of art, having discarded fine brushes and minute close-up 

detail, while capturing the soul and character of his subjects with 

his bold multi-layered brushwork. 

The Ambiguous Role of Religion in Art and Science 

While science and art share similarities in their patterns of inspi

ration and creativity, there are also glaring differences. Although 

there exist instances where the artist consciously draws on some of 

the symmetries and proportions that we shall express in quantifi

able terms in this book, the vast majority of art is ultimately pro

duced intuitively, emotionally, and created with imagination and 

subjectivity, with no interest in such quantification. And this is as 

it should be. The scientist, for whom scientific or physical intuition 

and imagination can be a powerful asset, avoids emotion, con

strained by drawing on analysis and objectivity—working within 

the boundaries dictated by the principles of science, and ultimately 

by the laws of physics. It is not only acceptable for an artist to draw 
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from religious inspiration, but historically religion has been art 's 

driving force, providing content and theme (and often the cleric's 

patronage). Indeed, it has been in the name of God(s ) that virtu

ally all of the most enduring works of art and architecture were 

created. 

The decoupling of art and religion began anew in the Ren

aissance. When Leonardo painted his incomparable psychological 

portraits of the "three women"—the Ginevra de' Benci, Cecilia 

Gallerani, and the Mona Lisa—it was again the beginning of a break 

from the accepted norm—religious art. By the early seventeenth 

century the great Dutch artists, including Rembrandt and Vermeer, 

were more interested in nonreligious subjects than religious. Today, 

whether secular or nonsecular, good art is simply good art. 

Science, in contrast to art, can at best coexist with religion, even 

in this presumably more liberal and enlightened age. In the past, 

the two were at constant loggerheads. Even in antiquity the adver

sarial nature of the relationship between science and religion was 

apparent. The natural philosopher Anaxagoras , an advisor to 

Pericles, would have been lynched by a mob for ridiculing the gods 

of the pantheon had Pericles not intervened. As it was, he was sim

ply allowed to retreat into exile, becoming one of the first intellec

tuals persecuted for his religious views. Similar danger existed in 

the Middle Ages for philosophers challenging the authority of the 

Church, and this remained the case well into the Renaissance. In 

modern times, however, mixing the two would be anathema for the 

serious scientist, and probably discouraging for the religious fun

damentalist. Creation science, for instance, is frankly an oxymoron, 

a contradiction in terms. 

When the great scientists of the Scientific Revolution—Newton 

and Galileo, both religious men—performed their experiments in 

physics, their mode of questioning was no different than it would 

be for a scientist today. They did not mix their science and religion. 

Modern science is performed in a secular manner, detached from 
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religion. Among pure scientists today, one still encounters individ

uals with a deep spiritual side, but even they do not mix their sci

ence with religion. There appears to be no reasonable way to rec

oncile science and religion. In short, one is not testable by the other. 

Each requires a certain kind of faith. In the case of science, there is, 

first, that there exist laws of nature; second, that the laws of nature 

can be extracted from her, and third, that they can be expressed 

mathematically. As a metaphor for the order in the universe—the 

cosmos—scientists have frequently invoked the name of God. 

Einstein, giving a guest lecture at Princeton University in 1930, 

expressed this circumstance in his native German, "Raffiniert ist 

Herr Gott, aber Boshaft ist er nicht!" (Subtle is the Lord, but mali

cious he is not!) The laws of nature are there for us to decipher. The 

task may not be easy, but unlike the Mad Queen in Alice in Wonder

land, he does not change the rules of the game already in progress. 

Paul Dirac, a central player in the development of quantum 

mechanics, was known for his frequent reference to the value of 

"beautiful equations," and the pronouncement, "God is the great

est mathematician of them all." But as we have seen, for Einstein 

and Dirac, God was the order of the universe. 

Asking God Questions 

Once I was in Cleveland, Ohio, for an interview on a CBS affiliate 

station. I had been speaking about the birth and death of the uni

verse, being mindful not to trample on the religious sensibilities 

of anyone in the listening audience. The call-in nature of the pro

gram brought forth a question that put me in difficult straits, "How 

does a physicist reconcile science and religion?" 

I was there to answer questions about the physicist's view of the 

origin of the universe, not about the place of God in the scheme of 

things. Reflexively, I blurted out, "Physics and religion are orthog

onal functions. They are linearly independent." 
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The moderators looked puzzled, trying to figure out what I said. 

And / tried to figure out what I had said. My answer pertained to 

wave functions, and had come straight out of quantum mechan

ics, a subject I had taught for many years. Trying to gain some time, 

or to deflect attention away from what to me was an intractable 

question, I invoked a story about the great nineteenth-century 

physicist Joseph Henry, the inventor of the electromagnet. 

In 1846 President James K. Polk wrote to the Royal Society of 

London, asking for the name of the world 's greatest scientist. (The 

Royal Society at the time functioned as a clearinghouse for matters 

scientific.) Polk explained, "[W]e would like to offer him the posi

tion of Secretary of the Smithsonian Institution in Washington, 

D.C." The Royal Society wrote back, identifying Joseph Henry, ' 0 

professor of physics at Princeton University, as the leading scien

tist. (This was also the time Michael Faraday was operating in 

England, and with a much greater scientific legacy than Joseph 

Henry, but clearly the British did not want to send their greatest sci

entist to the hinterland of the United States.) Polk's assistant was 

immediately dispatched to Princeton to offer Mr. Henry the job. 

The man found Henry just getting ready to begin an experiment 

with one of his electromagnets. Henry invited Polk's assistant to 

observe the experiment, but then suddenly stopped, proposing, 

"Let's get a few more witnesses." Then he stepped into the hallway 

and rounded up some graduate students. Everyone watched curi

ously, as Henry, just before turning on the power, pronounced, "We 

are going to ask God a question. Let us pray that we do not miss his 

answer when He gives it to us." 

Henry had reduced performing scientific experiments to asking 

God questions. The magnificence and genius of the Creator was 

ultimately embodied in nature's laws, and it was precisely by 

extracting these laws that he was honoring God. Though he thought 

his answers came from God, he asked his questions according to 

the same scientific method that had taken shape in the seventeenth 
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century and had been followed by the great early scientists of that 

era, most notably Galileo and Newton, and Leonardo before them. 

This mode of questioning nature did not require any appeal to God 

or a Creator or any other supernatural force or being. Henry was a 

devout and simple man who happened to be immensely gifted as 

a scientist. When Henry (or for that matter, Faraday, who was also 

an intensely religious man) performed his experiments, his mode 

of questioning was no different than it would be for a scientist 

today. These men did not mix their science and religion, although 

ultimately both were convinced that by uncovering the truth and 

beauty of nature they were glorifying God. 

In Rocks of Ages, the evolutionary biologist Stephen Jay Gould 

compared the domains of science and religion: "The net, or mag-

isterium, of science covers the empirical realm: what is the universe 

made of (fact) and why does it work this way (theory). The mag-

isterium of religion extends over questions of ultimate meaning and 

moral value. These magisteria do not overlap . . . science gets the 

age of rocks, and religion the rock of ages; science studies how the 

heavens go, religion how to go to heaven."" 

Leonardo was the most impious of the thinkers of his t ime 

(although there exists no evidence that he was not a believer) and 

operated without ever appealing to divine providence in either his 

science or his art. Nonetheless, he created in the Last Supper one of 

the two most important religious works in all of Western art (the 

other being Michelangelo 's Sistine Ceil ing). His working dictum 

extended to other fields where blind faith ran counter to experi

mental and mathematical demonstration. He abjured astrology, 

which even the later scientists Kepler and Galileo did not reject, and 

he renounced alchemy, which Newton secretly embraced. In this 

sense, Leonardo's perspective was even more modern than those of 

the luminaries of the Scientific Revolution. 



The principles of mathematics... deal with discon

tinuous and continuous quantities with the utmost 

truth. Here no one hazards guesses to whether two 

threes make more or less than six, or whether the 

angles of a triangle less than two right angles. Here 

all guesswork remains destroyed in eternal silence, 

and these sciences are enjoyed by their devotees in 

peace, which is not possible with delusory sciences of 

wholly cerebral kind. 

—Leonardo da Vinci 

J eonardo often criticized the intellectual who would prefer to intro

spect in the search for scientific truth, instead of seeking it with 

experimentation and mathematical demonstration. Four hundred 

years after Leonardo, the prominent physicist Lord Kelvin, also speak

ing for the scientist, expressed the need to be exact when he made the 

pronouncement: "When you can measure what you are speaking 

about and express it in numbers, you know something about it; but 

when you cannot measure it, when you cannot express it in numbers, 

your knowledge is of a meager and unsatisfactory kind." 

2 6 
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The knowledge may be "meager," but the experience can be 

rich. Lord Kelvin 's dictum is true for the sciences, and that is the 

context in which it must be taken, but because of its absolutist 

nature it would meet violent opposition from the practitioners of 

the arts, and it should. It would be a sacrilege to judge the beauty 

and power of an ode by Keats, a sonnet by Shakespeare, or a sym

phony by Beethoven in terms of numbers. Nonetheless there often 

exist quantifiable aspects in architecture, sculpture, poetry, and 

music that serve to describe their structures. And there exist quan

tifiable aspects in the graphic arts—in painting—specifically in 

issues of perspective, proportion, symmetry and shape, with which 

the painter has informed the work (witt ingly or unwit t ingly) . 

Putting numbers on a painting does not turn the process into paint

ing by numbers. In the same way that Lord Kelvin's message may 

be an anathema for the humanist, a statement by the eighteenth-

century British statesman Edmund Burke, "It is the nature of all 

greatness not to be exact ," w o u l d be meaningless gibberish if 

taken out of context—a source of disdain for the scientist. 

"Painting by numbers" may not be as egregious a pursuit as one 

might imagine. Leonardo himself invented a form of it, assigning 

assistants to paint areas on a work that he had already sketched out 

and numbered. Most likely while painting a ceiling in the Vatican, 

Michelangelo also assigned numbers to areas for his thirteen assis

tants, many brandishing their own brushes. But this is not the sense 

in which I intend to use numbers; rather it is in seeking the quan

tifiable aspects of art and science. Numbers and mathematics are 

indispensable in the sciences, and any attempt to seek a confluence 

of art and science invariably summons the search for the quantifi

able common ground of the two. 

The Slavy Indians of north central Canada have never abstracted 

the notion of numbers. They convey approximations for quantities 

by proportionately drawing out the articulation of the word Netlo. 

If they are asked how many geese they shot, the answer may be 
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confusing to us. If they've shot one or two geese, they may say, 

"Netlo." If they've shot several, they may express this circumstance 

as "Nee . . tlo." In the event that an entire flock has been bagged, 

it might be, "Neeee tlo!" Members of the Slavy Indian audi

ence, however, all get a sense of the size of the kill, and respond 

with ovation or commiserat ion accordingly. The Slavy Indians ' 

practice is evocative of the different meanings an expression can 

take depending on where the stress falls: for example in "quite a 

few," "quite a few" and "quite a few." 1 

Among the aborigines of New Guinea and North Borneo the 

abstract notion of numbers has also never emerged. There might be 

a word for "one dog," another word for "two dogs." And a pack of 

dogs numbering more than two might be referred to by an entirely 

different word still, with no distinction between three, or four, or 

five. The Bushmen of South Africa's Kalahari use pairs of similar 

objects, and group the pairs until they reach five pairs, for a total of 

ten. Any number beyond that becomes too many to reckon. 

The Origin of Numbers 

Mathematics comprises more than just numbers. The abstraction 

of numbers and the formulation of basic operations for them, such 

as addition, subtraction, multiplication, and division, signal the 

birth of mathematics. Among our ancestors of the Paleolithic 

period—approximately 30,000 years ago—there is already evidence 

of reckoning with numbers , and even grouping these numbers, 

that is, a rudimentary use of bases. A wolf shin bone excavated in 

Czechoslovakia in 1937 reveals cut notches arranged in groups of 

five, evocative of how in modern times one might count a small 

sample in a straw poll with four vertical lines, crossed by a fifth— 

a diagonal line. They were counting in the base-five or the quinary 

system. There have been experiments with different bases, but 

some of them appear to have been more natural and consequently 
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more enduring than others. According to the historian of mathe

matics Carl Boyer, 2 of the three hundred native American tribes 

whose quantitative reckoning has been identified, roughly one-third 

use base ten (decimal system); another one-third use a combination 

of base five and base ten; about ten percent employ the base twenty 

(vigesimal system) and a negligibly small number (about one per

cent) use the base three (ternary system). An accident of evolution 

which gives us five fingers per hand, with ten fingers total, plus 

another ten toes make the quinary, decimal, and vigesimal bases 

natural, and the base three or four, or seven, contrived. 

C O U N T I N G I N A N C I E N T M E S O P O T A M I A 

Among the Babylonians, and the Sumerians before them, the com

mon base was sixty (the sexagesimal system). The inspiration for 

the base sixty has been lost in the mists of time. It could have been 

formed from melding the base five and base twelve (duodecimal), 

both of which have been seen through history, or it could have been 

derived from the number of days, 360, then thought to constitute 

a year. Or perhaps it is because 60 can be divided by 1, 2, 3, 4, 5, and 

6. Although the sexagesimal base became extinct in the distant past, 

it left behind vestigial remains—the sixty seconds in the minute and 

the sixty minutes in the hour. 

Starting in the fourth millennium B.C. , Sumerian scribes, work

ing in wet clay, were wri t ing and computing in the style called 

cuneiform. The system showed such remarkable longevity that it 

was still in use two millennia later. The earliest known peace treaty 

between two nations, inscribed in a variation of cuneiform, is seen 

on a tablet in the Archaeological Museum, Istanbul. The numerical 

system employed in cuneiform is comprised of two symbols—"< " 

and "I "— representing ten and one. The entries are arranged in 

columns (reading from right to left) of 6o°, 60', 6oz, 60', 6o\ ... (or 

1, 60, 3600, 216 000,12 960 000, . . . respectively). Thus the symbols 

grouped as "<<<!!I [gap]<<\\\ " could represent 33 x 60 + 23x1 = 2 003. 
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I say, "could," because the multipliers might just as easily have been 

60 ' and 60 2 , instead, making the total number 33 X216 000 + 23 X 

3 600, or 7 210 800. Although the Babylonians used the place value 

system, they did not have a symbol for zero, and one has only the 

context as a clue. They had not seen the need to introduce a symbol 

representing "nothing." According to Robert Kaplan 5 at least one 

scribe about the seventh century B.C. , however, used a pair of back

slashes " \ \ " to represent a gap or a missing power of 60. Thus the 

combinat ion of symbols "< \\ < W'would have been 10 X3 600 + 0 

x 60 + 1 2 x ; = 36 012. 

Although the Babylonian mathematicians did not develop zero 

as a formal symbol for nothing, they showed considerable mathe

matical sophistication in their calculations, recognizing for exam

ple that 3 2 + 4 2 = 5 2 , often associated with the Pythagorean theorem. 

For the particular Pythagorean triad or "triple" (3, 4, 5) at least, they 

had made this connection. They may or may not have discovered 

other triads, such as (5, 1 2 , 13) , and evidence for their recognition 

of the general rule, a 2 + b 2 = c 2 , is lacking. Their mathematical 

achievements predated the work of Pythagoras by centuries. 

R E C K O N I N G N U M B E R S A M O N G T H E M A Y A 

In ancient Central America the number system used was always the 

vigesimal system. The fact that the inhabitants wore no shoes may 

have made the base-twenty system entirely natural. The Olmecs, liv

ing around La Vente in Mexico around 1000 B.C., left no written script. 

But a multitude of successors—the Teotihuacan from around the time 

of Christ, the Mixtecs, the Zapotecs, the Maya, the Toltecs and the 

Aztecs—all used the vigesimal system. It was under the Maya, a civi

lization of gifted astronomers, mathematicians, and master builders, 

that the base twenty—comple te with a zero—was formal ized. 

Accordingly, it is the Maya who are generally given credit for the dis

covery of the zero in the Americas. (The French have used the decimal 

system as long as have other European nations. But their word for 
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eighty, quatre-vingt—"four twenties"—may be the distant memory of 

a base twenty system.) The classic period of the Maya fell between the 

third and ninth centuries A.D. , when the Europeans of the same time 

were mired in the darkest period of the Dark Ages. In city-states like 

Chichen Itza, Tikal, Copan, Kabah, and Uxmal the astronomer-priests 

performed astronomical calculations of uncanny sophistication. 

Among the Maya there existed a number of different ways to 

express numbers, some of them stylized and decorative, and conse

quently difficult to decipher. The most common form, however, uti

lized three symbols: a hollow dot "o" representing the one, a thick 

horizontal bar "—" representing five, and a stylized seashell, seen in 

the last column of the last row, representing the zero. The symbols 

were generally arranged in boxes in vertically ascending order, with 

values of the boxes employed as multipliers, 20°, 20' , 20 2 , 2 0 ' , . . . (or 

1, 20, 400, 8,000, . . .). 

A S U B L I M E L E G A C Y O F 

T H E H I N D U S A N D T H E A R A B S 

The invention of a symbol for nothing eluded the Greeks, as well as 

the Egyptians, the Hittites, the Assyrians, the Phoenicians (often 

credited as inventors of the phonetic alphabet), and the Romans. 

Nonetheless, the formal notion of nothing was eventually invented, 

indeed not once but twice, and in vastly different geographic-

regions. The Maya invented zero around the first century B.C. , but 

earlier, in fifth-century B.C. India, the zero was used by the math

ematicians and astronomers in a decimal system. By 400 B.C. the 

astronomer Aryabhata had formalized the concept of zero as one of 

a set of ten symbols of the decimal system. We shall return to the 

decimal system after the next section. 

Around A . D . 750 the Arabs, while engaged in spreading Islam, 

made an early incursion into India. It was in that encounter with 

the Hindus that they first saw the decimal system, consisting of the 

nine s y m b o l s 1 through 9, plus a tenth, the zero. There they 
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mastered the skill of making paper, developed six centuries earlier 

in China. They brought a compendious knowledge of practical and 

academic treasures back with them to the Middle East and North 

Africa. Musl im astronomers were already familiar with the works 

of Ptolemy and the great philosophers of antiquity. Their mathe

maticians developed the elements of algebra, trigonometry, and 

number theory, and their natural philosophers made strides in 

astronomy, medicine and alchemy (a precursor of chemist ry) . 

Words with the prefix al for "the"—algebra, alcohol, almanac, algo

rithm, alkali, etc.—are, more often than not, Arabic creations. (An 

exception exists in the word alimony, strictly a Western invention.) 

Islamic scholars obeying the directive of the Koran that they should 

study nature in order to glorify God were foreshadowing the modus 

operandi of those great scientists later to emerge in Europe. 

Among the noteworthy Islamic mathematicians and scientists 

was al-Khawrazmi, whose name gives us the word algorithm. A 

scholar in the Dar al-ulum (House of Wisdom) in Baghdad in the 

ninth century, al-Khawrazmi performed pivotal work in astronomy 

and mathematics. Borrowing from the Greek mathematician 

Diophantus, Babylonian sources that he accessed through Hebrew 

translations, as wel l as knowledge gleaned from Hindu mathe

maticians, al-Khawrazmi succeeded in formulating a self-consistent 

al-jabr or algebra. 4 And algebra certainly increased the analytical 

power of mathematics by orders of magnitude, preparing the stage 

for the introduction of analytic geometry and calculus in the sev

enteenth century. The expressions al-jabr and the process of manip

ulating equations, muqabalah ("give-and-take" or "a balancing") 

have their roots in Arabic . A number of other Musl im scientist-

mathematicians of the period—Habash al-Hasib ("He who calcu

lates"), Abul'l-Wafa al-Buzjani, Abu Nasr al-Iraq and Ibn Yunus— 

formulated trigonometry (including all six trig functions) at a level 

of sophistication far above that introduced by the Greek astro

nomer-mathematician Hipparchus in the third century B.C. 
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In the eternal cycles that mark the rise and demise of cultures, 

by the mid-ninth century European science had hit abysmal depths 

just as Islamic science was ascending to new heights. So dramatic 

was the disparity that the Arab geographer Ibn Khurradadhbeh was 

moved to describe western Europe as "a source of eunuchs, of slave 

girls and boys, of brocade, beaver skins, glue, sables, and swords 

. . . and not much more." Another Muslim geographer, Masudi, was 

equally contemptuous when he remarked, "Europeans are dull in 

mind and heavy in speech." The supremacy in science and mathe

matics would be inverted again, but not for another six centuries. 

Al-Haytham's study of optics and vision compares favorably 

with the work performed by Leonardo da Vinci five centuries later. 

And indeed, not until the Scientific Revolution in the seventeenth 

century—with the work of Isaac Newton and Christian Huygens— 

was the study of geometric optics to yield a higher level of funda

mental understanding in the field. The Persian scholar Omar 

Khayyam (c. 1 0 4 8 - 1 1 3 1 ) left behind the most distinguished legacy 

of any scientist-mathematician of Islamic culture. In the service of 

the Kurdish-Turkish Sultan Salah ad-Din ibn Ayyub (known in the 

west as Saladin), the nemesis of Richard the Lionheart during the 

second crusade, Khayyam published a definitive treatise on algebra 

in which he classified algebraic equations up through the third 

degree and showed how geometric solutions to the equations could 

be obtained. With astronomical observations of extraordinary pre

cision, he devised a solar calendar significantly superior in accuracy 

to the Gregorian calendar introduced in Europe almost six centuries 

later and still in use today. 

Ironically, the source of Khayyam's most enduring legacy is nei

ther his mathematics nor his science, but rather his poetry. The 

nineteenth-century British poet Edward Fitzgerald dedicated most 

of his life to translating, some might say recomposing, Khayyam's 

poetry. The Rubaiyyat, published initially in 1859, and then in three 

successive versions, presents numerous bittersweet quatrains, all 
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melancholic ruminations about the irreversibility of fate and the 

fleeting nature of life. In the present context we might even take his 

message (although unintended) as a reflection of the finite life 

expectancies of civilizations themselves. In one such stanza Khayyam 

is found to ruminate, 

Ah, make the most of what we yet may spend, 

Before we too into the dust descend, 

Dust into dust, and under dust to lie, 

Sans wine, sans song, sans women, and sans end. 5 

In the thirteenth century there was another gifted astronomer-math

ematician, Nasr al-Din al-Tusi, who was a character of decidedly flex

ible political loyalties. His town having been overrun by the Mongol 

hordes of Genghis Khan, al-Tusi took up residence with the Isma'ilis, 

founded in the nth century by Hasan Sabbah, also known as the "Old 

Man of the Mountain," in Alamut, near the Caspian Sea in north

western Iran. There the members of a cult given to political assassi

nations of rival tribal leaders would be trained for their dastardly 

assignments. They would be given hashish along with assurances that 

carrying out the will of the cult leader—often an assassination—was 

also the will of God. It would gain them immediate entry into Jannet, 

or paradise. The word assassin has its roots in hashishinn, the term 

identifying the cult's members. Al-Tusi benefited from the rich col

lection of scholarly books belonging to the sect. 6 

In 1256, when Halagu, the grandson of Genghis Khan, began a 

siege of Alamut, al-Tusi found it expedient to change sides. He 

accepted a position as a scientific scholar with Halagu. In grateful 

appreciation Halagu built for al-Tusi a magnificent new astronom

ical observatory in Maragha, in northwestern Iran. For generations 

thereafter, al-Tusi's followers at the observatory carried out sys

tematic observations, keeping copious records. Similar observations 

and research were carried out at the even more elaborate observa-
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tory established by the Ulugh Beg in Samarkand in the fifteenth cen

tury, and they all appeared to function with a dictum meant to chal

lenge Ptolemy's geocentric picture of the universe that the Church 

in Europe had decided to sanction. Although there is no evidence 

that Copernicus knew much about Islamic science when he pub

lished his monumental treatise De revolutionibus orbeum coelestium in 

the mid-sixteenth century, his work was certainly driven by a spirit 

of challenging the Ptolemaic order. There may, however, be a con

nection here. Although in the final copy of De revolutionibus Copern

icus made no mention of Aristarchus, the third-century B . C . astro

nomer from Samos who had first proposed the heliocentric picture, 

Copernicus had referred to him in the foreword of an earlier draft 

of his book. Islamic scholars, keeping alive Greek teachings, had 

access to the work of Ptolemy and most likely to the earlier teach

ings of Aristarchus, to be examined in Chapter 1 1 . 

This creative period of Islamic science and mathematics con

tinued to bear fruit several centuries after Khayyam, and into the 

Ottoman Turkish period in the fifteenth century. Without question 

for the better part of a mil lennium Musl im scientist-mathemati

cians had been far ahead of their European counterparts, but this 

circumstance showed signs of reversal beginning in the late fif

teenth and early sixteenth centuries in Florence, and subsequently 

accelerated with the Scientific Revolution in the following century. 

A number of conjectures seek to explain the decline of science in 

Islamic civilization. One explanation has it that a general fatalism 

pervaded Islamic culture, revealed in the melancholia and pathos 

of Khayyam's quatrains. Another and quite compelling argument 

involves the emergence in twelfth-century Baghdad of an intellec

tual movement that favored faith and dogma over reason and direct 

evidence. This was a movement spearheaded by al-Ghazali, a con

temporary Persian compatriot of Khayyam's , who, much like the 

modern-day Taliban, argued on behalf of fundamentalism. 

One final contributor to the decline, or at least to the passing of 
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the baton, may be found in a metamorphosis that took place in 

Islamic cultural philosophy. In an earlier age the Romans had been 

great builders (indeed also empire-builders) preferring application 

to theory, whereas their cultural antecedents, the Greeks, had been 

more cerebral and better theorists—superior philosophers, math

ematicians, and scientists. So it was with the Ottoman Turks. 

Unlike the earlier Muslims—the Arabs, the Persians, and the Selcuk 

Turks , w h o had an affini ty for phi losophy, ma themat ics , and 

sc ience—the O t tomans prefe r red archi tec ture , engineer ing , 

and expanding an already vast empire. As one would expect of such 

an empire, the applied science of cartography was also given extraor

dinary prominence. The earliest known map showing the east coast 

of South America, the West Indies, and the west coast of Africa was 

drawn by the Ottoman map maker Piri Reis in 1513, just twenty-one 

years after Christopher Columbus's momentous discovery. 

With the publication of Piri Reis's map serving as a time post, 

we can put events of the period into historical perspective. 

Leonardo da Vinci , who was forty years old when Columbus dis

covered America, died in 1519 at sixty-seven. Just two years earlier, 

in 1517, Martin Luther had posted his Ninety-five Theses on a 

church door in Wittenberg, launching the Protestant Reformation 

the same year Ferdinand Magellan had set sail from Spain, aspiring 

to circumnavigate the earth. The hapless Magellan died in 1521 as a 

result of a squabble with natives in the Philippines, but his crew 

completed the feat just a year later. The size and shape of the earth 

began to come into view much as Eratosthenes had envisioned it 

almost eighteen hundred years earlier (see Chapter 1 1 ) . 

The Second Leonardo: "II Pisano" 

Another Leonardo, far less familiar than his latter-day compatriot and 

namesake, also left a surprisingly enduring legacy. A mathematician, 

Leonardo Fibonacci di Pisa (also known as Leonardo Pisano) lived 
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three centuries before da Vinci. In his Liber Abaci, a seminal book pub

lished in 1202 , he introduced into Europe, just beginning to awaken 

from almost seven centuries of lethargy and intellectual recession, 

the decimal system of numbers, complete with the zero. In his book 

Fibonacci pulled another rabbit out of his hat, and then another one. 

In fact, virtually as an afterthought, he threw in a mathematical prob

lem involving the reproduction of rabbits confined in an enclosure. 

The problem was presented in the last chapter of a book of thirteen 

chapters and has given us the mathematical series that bears his 

name—a series that yields an enigmatic ratio with significance far 

beyond the artifice of mathematics. 

Fibonacci 's name, literally "the son of the innocent," was a 

euphemism for "the son of the simpleton." His nickname, "Bigalone," 

was even more disparaging—"block head." But then, the position 

on the social ladder in medieval Europe for a mathematician would 

have been below that of the barber-surgeon, and well below that of 

the sorcerer. Certainly that would have been the sentiment of Saint 

Thomas Aquinas (1225-1274) , a rationalist whose religious doctrine 

still provides the underpinnings for Catholicism, and who is known 

to have offered the questionable admonishment that "the good 

Christian should beware of mathematicians." 

V e r y l i t t le i s k n o w n about the pe r sona l life of F i b o n a c c i 

(c . 1 1 7 0 - 1 2 4 0 ) . He received the preponderance of his mathemati

cal education from Arab scholars in North Africa, where his mer

chant father often took the family. As a young man he continued to 

travel, living briefly in Constantinople and Alexandria, and finally 

settling in his boyhood town of Pisa and practicing mathematics. 

Mathematics in medieval Europe is often characterized as having 

been practiced in two different settings: by clerics doing academic 

mathematics and by the merchants doing practical or applied 

mathematics. The title of the book, Liber Abaci (Book of the abacus), 

suggests that it is about practical computations, especially for com

merce. In fact, it is a book about algebra and abstract mathematics. 
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Indeed , the "son of the simpleton," the "blockhead" Leonardo 

Fibonacci was the preeminent mathematician of medieval Europe. 

In the beginning of his book, Fibonacci presented a number in 

Roman numerals, demonstrating that it can be written in many dif

ferent ways . Let us consider an example of our own, the number 

1999. The number can be written M C M L I L , M C M I C , M D C C C C I C , M I M , 

and in a number of other possible ways. The last of these choices 

is the most economical form, and accordingly the one of choice. 

Nonetheless, it is obvious that the notation is not unequivocal. 

Following the Arabs, Fibonacci introduced the ten symbols, o 

through 9. In two instances (for o and 9) he borrowed the symbols 

directly from an early version of Arabic numerals. For others, he cre

ated his own symbols, adhering roughly to the recipe: The value rep

resented must be proportional to the number of straight lines in the symbol. 

The 2 and 3 consist of two and three horizontal lines, respectively, ten

uously connected. Although Fibonacci's symbols were inspired by the 

symbols used by the Arabs, only a slight resemblance exists between 

the two sets of symbols now. The 1 is the same; the 2 and 3 of the 

Arabic system, if rotated 90 degrees counterclockwise, are evocative 

of Fibonacci's symbols and those that we still use (Figure 3.1). 

Also following the Arabs, Fibonacci introduced the place-value 

concept, each position representing a different power of ten, and 

these arranged in ascending order from right to left. Each position 

has a power of ten as a multiplier. Thus the number 12 345.67 has its 

particular value, because the 1 has a multiplier of 104 (or 10,000); 

the 2 has a multiplier of ioi (or 1,000), the 3 has a multiplier of 101, 

. . . the 7 has a multiplier of w~2. 

S c i e n t i s t s , d e a l i n g w i t h w i l d l y d i s p a r a t e s c a l e s , g e n e r a l l y u s e s c i -
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Figure j . i . Symbols in the decimal system: (top) the symbols proposed 

by Fibonacci in the Hindu/Arabic notation, (bottom) Arabic numerals 

entific notation, or powers of ten—io 3 or "kilo" (one thousand); i o 6 

or "mega" (one million), i o 9 "giga" (one billion), i o 1 2 or "terra" (one 

trillion), all used for large measures. And there are the 10 5 "milli" 

(one thousandth); i o ~ 6 "micro" (one millionth); i o - 9 "nano" (one 

bil l ionth); and i o ~ 1 2 " p i c o " (one trillionth), and so on, for small 

measures. 

THE PROBLEM OF THE 

RABBITS AND THE FIBONACCI SERIES 

In Fibonacci 's problem of the rabbits the rules are stipulated as fol

lows: (1) One pair of immature rabbits is placed in an enclosure. (2) 

The rabbits must mature for two months before they can repro

duce. (3) A mature pair of rabbits must combine to produce one new 

pair each month. (4) The offspring, subsequently, must mature for 

two months before they can begin to reproduce. (5) No new rabbits 

can be introduced from outside, and no rabbits can leave the enclo

sure. In this deterministic Utopian wor ld of rabbits there is no 

immigration, emigration, shortage of food, shortage of space, over

crowding or death. For example, in the third month there should 

be two pairs of rabbits: the original pair, now fully matured, plus 

one infant pair. The number of pairs in each successive month can 

be seen in the following table. 
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first 1 

second 1 

third 2 

fourth 3 

fifth 5 

sixth 8 

seventh 13 

eighth 21 

The question that Fibonacci posed at this juncture was "How many 

pairs of rabbits would there be at the end of the yea r?" Applying 

Fibonacci 's rules, one would arrive eventually at the twelfth num

ber (or "term") in the series as 144 pairs (i.e., 288 rabbits). Fib

onacci, in examining the column labeled "Number of Pairs," must 

have recognized the pattern quickly. The sum of the first and sec

ond terms, 1 and 1, respectively, produces the third term, 2; the sum 

of the second term, 1, and third, 2, produces the fourth term, 3, and 

so on . . . 

1 , 1 , 2, 3 ,5, 8 ,13 , 21 , 34, 55, 89 ,144 (the twelfth term), 233, 377, 610, 

987, 1597, 2584 (the eighteenth term), . . . 

535 835 925 499 096 640 871 840 (the 120th term), . . . 

185 477 076 894 719 862 1 2 1 901 38 521 399 707 760 (the 180th 

term), . . . 

These numbers will be seen to have significance for the sciences (and 

accordingly are sometimes called "nature's numbers"); and a ratio 

ensuing from the series will be seen to have significance for the arts. 

Examining the ratios of sequential terms in Fibonacci's series—for 

any pair in sequence, the second term divided by the first—one sees 

a pattern emerging: 1, 2 ,1 .5 ,1 .666 , 1.60,1.62s, 1615, values oscillating 

Month Number of Pairs 
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up and down around approximately 1.62. After the first dozen terms 

the ratio rounds off to 1.618 056. By the seventeenth and eighteenth 

terms, the ratio has a value of 2584/1597= 1.618 033 813, but rounded 

off to six places, still 1.618 034. In reality this number approximates 

an irrational number 7 denoted by <p (called "phi"), and variously 

known as the "golden mean," the "golden ratio," the "golden section," 

"sectio aura," the "divine proportion." 

The 120 th as well as the 180th terms in the Fibonacci series 

(representing the number of pairs of rabbits after ten and fifteen 

years , respect ively) were computed on a mainframe computer 

with the aforementioned method, that is, by adding pairs of terms 

in sequence. The formula for computing the general or nth term 

of the series directly, as well as the formula for comput ing the 

ratio (w+i) s l /wth terms are well-known manifestations of number 

theory. In this book these formulae and a simple derivat ion are 

relegated to the endnotes. 8 With the algorithms derived there it 

is possible to compute a specific term of the series without know

ing the previous two terms. 

If we start with any pair of integers, add the first and second to 

get a third number, add the second and third to get a fourth num

ber, and so on, generating a series similar to Fibonacci 's original 

series that began with the pair 1 and 1, we will discover that the 

ratio of successive pairs of numbers in any such series will ulti

mately converge to the magic 1.618 034 . . . . The reader might want 

to experiment with an individual birthday. My own birthday—June 

10 , taken as 6 , 1 0 or 10 , 6—is especially conducive to producing that 

ratio rapidly. Thus 6, 10 , 16, 26, 42, 68, 1 1 0 , . . . the ratios reduce to 

1.618 after just five or six terms. George Washington's birthday, 

February 22- yields the series: 2, 22, 24, 46, 7 0 , 1 1 6 , 1 8 6 , 302, 488, 790, 

1278. . . . At least ten terms must be generated in this instance before 

the ratio emerges with six-place accuracy. 

A number of other curious properties of <p exist. Along with <p, 

here are the inverse and a square of 0: 
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0 = 1 . 6 1 8 0 3 4 . . . <t>~' = 0.618 034 .. . = 2.618 034 .. . 

For a short table of common powers associated with (j) see the 

endnotes. 9 There is no evidence that the mathematicians of antiq

uity were familiar with the Fibonacci series, but the value of <p asso

ciated with the series is another story. The number had been in 

common use for millennia before Fibonacci came along. Euclid gave 

a geometric construction for a rectangle with proportions of f. 

Most likely the proportion was an intuitive creation of artists and 

architects even earlier. 

Geometric Constructions Associated with (j): The Golden Rectangle, 

Golden Triangle, Golden Point, Golden Pyramid, 

and the Logarithmic Spiral. 

A series of geometr ic const ruct ions wil l be demonst ra ted here 

(Figure 3 .2) . Star t ing wi th the square ABCD w i th sides of unit 

length, one can readi ly construct the golden rectangle. Firs t , 

bisect the square vertically. Then draw the diagonal MC and use 

it as the radius of an arc CF. Nex t , ex tend AB hor izonta l ly to 

intersect the arc CF; draw a vertical line FG at this intersection, 

and finally extend DC to complete the rectangle AFGD. Since BC 

has a length of unity, and MB of 0.5, the Pythagorean theorem 

yields jWCasV7.25 o r j . 1 1 8 034. Adding AM = 0.5 to MC= MF= 1.118 

034, one immedia te ly ar r ives at AF = 1.618 034. The rectangle 

A F G D is then the golden rectangle, possess ing the length-to-

width ratio of (f>. 

Moreover, BF = MF - MB = 1.118 034 - 0.5 = 0.618 034. The ratio 

B C / B F is equal to 1/0.618 034 = 1.618 034, which renders the rectan

gle B F G C a golden rectangle also. Within B F G C , if one were to par

tition off another square, still another golden rectangle would be 

formed. Accordingly, a simple pattern emerges. 

This relationship codifying the statement, "the whole is to the 
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F i g u r e 3.2. T h e g o l d e n r e c t a n g l e , t h e g o l d e n t r i a n g l e , t h e l o g a r i t h m i c sp i -

r a l , a n d t h e d o u b l e g o l d e n r e c t a n g l e . ( A ) C o n s t r u c t i o n o f t h e g o l d e n r e c 

t a n g l e , t h e l e n g t h - t o - w i d t h r a t i o o f t h e r e c t a n g l e y i e l d i n g (p. ( B ) 

C o n s t r u c t i o n o f t h e l o g a r i t h m i c s p i r a l . ( C ) T h e g o l d e n t r i a n g l e d e f i n e d 

b y t h e a n g l e s 72°—36°—72° i s c l o s e l y r e l a t e d t o t h e l o g a r i t h m i c s p i r a l . 

( D ) C o n s t r u c t i o n o f t h e d o u b l e g o l d e n r e c t a n g l e 

major part as the major part is to the minor," is known as the law 

of divine proportion. 

Partitioning off a square within the golden rectangle, and in the 

process generating a new golden rectangle, can be repeated ad infini

tum, each time creating a square plus a new golden rectangle. Finally, 

if one were to connect either the leading corners of squares (or the 
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As it is with the golden rectangle, artistic significance can be attached 

to the golden triangle. More immediately, the 36° vertex at the top 

forms one prong of a five-point star, the pentagram, which in turn, 

yields the pentagon when the points are connected. The latter figure 

was known as the magic pentagram to the Pythagoreans of ancient 

Greece, and later it became a favorite conjuring device for magicians; 

and in less savory ways, as the magic pentacle, it was adopted by devil 

worshipers. In these capacities it has endured for centuries. 

The double golden rectangle can be constructed in a manner 

evocative of that employed in creating the golden rectangle. A 

square is vertically bisected creating a pair of rectangles 1:0.5. At 

centers of the squares), with a smooth continuous curve, one would 

obtain the logarithmic spiral, as well as an image of whirling squares. 1 0 

As a preview of things to come, specifically when perspective, 

symmetry, and shape are discussed in detail, we present a stained 

glass w indow created in the mid-twentieth century by Marc 

Chagall for the United Nations Building in New York (Plate 2, top 

left). Assembled from square pieces, the window consists of 5 X 8 

squares (5 and 8 comprise a pair of sequential terms in the 

Fibonacci series). Then, if a 5 x 5 square is isolated within the rec

tangle, the remaining rectangle will be 3 x 5, another golden rec

tangle. If a 3 x 3 square is delineated within the 3 x 5 rectangle, the 

remaining part will be 2 x 3. Each of those values cited—2, 3, 5, 8— 

are terms of the Fibonacci series, and each of the delineated sec

tions, approximates the golden rectangle. 

A logarithmic spiral can be used in generating the golden tri

angle, an isosceles triangle with the angles 72°—36°—72°. In such 

a triangle AB/BC= <p. Moreover, the points D, E, F, G . . . used in gen

erating additional golden triangles help define the segments AB, BC, 

CD, DE, EE, . . . and the ratios 
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the point where the bisector meets the upper edge of the square a 

compass pin is planted, and with a radius equal to the diagonal of 

one of the rectangles, arcs are drawn in opposite directions. The 

square is then extended horizontally to meet the arcs. The new rec

tangle will exhibit the ratio of the sides 2.V5 or 1:2.236. While still 

a member of Verrocchio's workshop, the young Leonardo painted 

the Annunciation (1472-73) , closely approximating the proportions 

of the double golden rectangle. 

The golden rectangle can be subdivided in different ways in order 

to present a work of art with its most salient features (Figure 3.3). 

Each of these geometric constructions shown here has been em

ployed by artists as the organizing structure in graphic composition; 

but to reiterate a frequent message, artists have usually adopted such 

constructions intuitively, relying on aesthetic intuition, and only 

occasionally with knowledge and premeditation. 

Although the logarithmic spiral is the one that nature appears 

to favor strongly, spirals other than the logarithmic do exist in 

nature: they include the Archimedean, the hyperbolic, the para

bolic. The Archimedean spiral describes the shape of a ribbon or 

tape of uniform thickness wrapped uniformly around a cylindri

cal core. The ordinary garden hose coiled on the ground and a video 

tape on a spool are examples of the Archimedean spiral. The hyper

bolic spiral resembles the logarithmic spiral initially, but as it 

unwinds the spiral opens up and becomes a straight line. The par

abolic spiral, also called the Galilean spiral after the physicist-math

ematician w h o first described it mathematically, is reminiscent of 

the logarithmic spiral in that it increases in thickness in unwind

ing, but not with the same spacing of the logarithmic spiral. 

In addition to spirals that are curves on a plane ( two-dimen

sional space), there exist helical shapes manifested in three-dimen

sional space. Coiled springs and threads on screws are helical. So 

are the spirally fluted marble columns, sometimes found at classi

cal sites on the Ionian coast of Turkey, and the Archimedean screw 
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Figure 3.3. Subdivisions of the golden rectangle. In A and B squares are 

delineated within the golden rectangle and diagonals are constructed 

of both the original golden rectangle and the squares. The shaded 

quadrangles defined by the intersections of the diagonals represent 

the "sweet spots" of the diagrams. In C a golden rectangle is subdi

vided vertically and horizontally in proportions of 1:1.618, creating 

two squares, three golden rectangles and two double golden rectan

gles. The intersection of the vertical and horizontal dividers 

defines the "golden point." In D the geometric constructions in figures 

A, B, and C are merged to create this diagram with vertical and hori

zontal reflection symmetries. 
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(the ancient apparatus for raising water from one elevation to a 

higher one) . A circular staircase (usually helical in shape), when 

viewed along its axis from above or from below, will appear to con

verge in the form of a logarithmic spiral. 

Human affinity for the variety of geometric figures developed 

in this section all manifest themselves as patterns in nature. In this 

chapter that started with a presentation of the origin of numbers 

and the contributions to number theory of the medieval mathe

matician Leonardo Fibonacci, we shall conclude by briefly exam

ining the notion of fundamental indefinables. 

Quantifiable Parameters and Fundamental Indefinables 

Let us return briefly to Lord Kelvin's pronouncement found in the 

opening of this chapter—"Unless you can measure what you are talk

ing about and attach some numbers to it, your knowledge is of a mea

ger and unsatisfactory kind." What is it that we are measuring? In the 

natural sciences the centrality of quantitative analysis would never be 

in question, the quantified parameters representing the ingredients 

of mathematical formulae. In physics, these are physical parameters 

such as length, mass, time, energy, momentum, force, acceleration, 

temperature, wavelengths, etc., and in chemistry, the pH level, or 

some molecular parameter, as well as many of those in physics. In 

biology the mathematical formalism of probability is used in under

standing heredity, and mathematical algorithms are employed in 

mapping genomes. Even the social sciences increasingly call for quan

titative skills in their practitioners. Economists quote rates of growth, 

the gross national product (GNP), and they examine economic indi

cators. Linguists, studying the evolution of languages, rely on quan

titative and logical methods. Historians and political scientists rely on 

data from surveys and censuses; archaeologists infer life styles of 

ancients from statistical analyses of pollen, potsherds, and human and 

animal bones, and they use radiocarbon dating technology grounded 
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in mathematical physics. Even the visual arts increasingly use com

puter graphics—drawing on the need for calculus, geometry, and 

computer algorithms. In the culinary arts, the expression "a pinch of 

salt" rings quaint, but lacks the reproducibility of "a gram of salt." In 

short, a denumerable infinity of parameters crowd modern life— 

beyond just salaries and expenses, temperatures and calories, prices 

and sizes—all eliciting some measure of precision. 

According to epistemology—the area of philosophy that deals 

with the nature, validity, and limitations of knowledge—in any field 

of study one must first identify the fundamental indefinables. These 

are concepts and notions so basic that any attempt to define them 

leads to circular arguments. For example, in geometry a point can 

be described as the intersection of a pair of lines, and a line can be 

described as a collection or locus of points. To avoid such conun

drums, a point is taken as a fundamental indefinable. In physics, 

there are three fundamental indefinables: length, mass, and time. 

They are physical observables taken from one's simpler experi

ences . (When e l ec t romagne t i sm is inc luded , the concept of 

"charge" is taken as a fundamental indefinable also.) But why are 

other simple physical observables, such as area, volume or momen

tum not fundamental? The answer is that areas and volumes are 

obtained by multiplying lengths by each other; momenta, by mul

tiplying mass by velocity; and velocity, in turn, is a distance divided 

by time. Thus area, volume and momentum, all composites of fun

damental indefinables, are all more complex physical observables 

than the constituents that helped define them in the first place. In 

the following we shall examine two of the fundamental indefin

ables, length and mass, relegating the discussion of the most enig

matic of the fundamental indefinables, time, to a later chapter. 

L E N G T H : A B R I E F H I S T O R Y 

A measure of length (or distance) is the answer to the questions, 

"how far?" "how long?" "how tall?" The first recorded unit of length 
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in history is the cubit. This is the distance between the tip of the mid

dle finger on one's outstretched hand and one's elbow, and may have 

been introduced as far back as 6000 B.C. The Greek historian Herodotus 

of Halicarnasus on a visit to the valley of Giza took some measure

ments on the Great Pyramid (the pyramid of Khufu, or in the Greek, 

Cheops) and recorded the perimeter of the square base as 2,000 

cubits. The 500 cubits he measured for each side corresponds to the 

230 meters we measure now. The length of a cubit translates to 0.46 

meters, 46 cm, or 18 inches. In Genesis, the length of Noah's ark is 

given as 300 cubits, or around 140 meters. 

A unit introduced by the Romans and handed down to the 

inhabitants of England, then brought to America by the English col

onizers, was the mile. This was based on 1,000 ("mille") double-

steps (about 5 feet) of the Roman legionnaire. A unit that had some 

statistical (and democratic) legitimacy was the foot. It was based 

on the length of 40 Anglo-Saxon right feet (of the first 40 men 

emerging from church one Sunday morning). 

The units of length that existed at the turn of the sixteenth cen

tury in England consisted of a mind-bogglingjumble of units with no 

consistent base:" 3 barley corns = 1 inch; 12 inches = 1 foot; 3 feet = 1 

yard; 9 inches = 1 span; 5 spans = 1 ell; 5 feet = 1 pace; 125 paces = 1 fur

long; 5 'A yards = 1 rod; 40 rods = 1 furlong; 8 furlongs = 1 statute mile, 

while 12 furlongs = 1 league. At approximately the same time in 

Leonardo's Italy units in common use were the piede (the foot) and 

the braccio (an indeterminate unit that could vary between 15 and 39 

inches depending on the region in which the measurement was 

made). A century later, in Galileo's time, there existed the punto 

(where 828 punti = 777 mm). The braccio and the punto have merci

fully gone the way of the cubit, the ell, and many other units with 

dubious provenance or of only provincial acceptance. 

In 1670 the Frenchman Gabriel Mouton determined with "rea

sonable" precision the circumference of the earth and proposed 

employing a terrestrial parameter for a standard of length based on a 
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fraction of the circumference of the earth. In 1791 the meter was 

defined as "one part in ten million ( t o - 7 ) of the distance between the 

North Pole and the equator, on the longitude passing through Paris." In 

accompaniment with this standard was the proposal to use decimal 

multiples and fractions of the meter as the standard of length, thus 

the "centimeter" ( ' / i o o of a meter) and the "kilometer" (1,000 meters), 

etc. Shortly after the Revolution France "went metric" in response to 

the strong lobbying by the great chemist Antoine Lavoisier. During 

the Reign of Terror that followed the Revolution, however, Lavoisier 

was beheaded—for having been associated with tax collecting under 

the deposed Louis XVI , not for introducing the metric system. At 

approximately the same time, the United States Congress rejected the 

lobbying of Thomas Jefferson to have the United States adopt the 

metric system. 

In the early 1970s the British, the Canadians, and most other 

former British Colonies began to convert to the metric system. The 

United States along with the African nation of Burkina Faso (for

merly known as "Upper Volta") remain steadfast holdouts for the 

imperial system. How much sense does it make to use a decimal 

system for our number system and still adhere to an ever-varying 

base for our system of measurement, where an inch is divided into 

fourths, eighths, sixteenths; or it is multiplied by 12 to get a foot, by 

36 to get a yard; and a foot, by 5,280 to get the mile? It is my earnest 

hope that one day the inch, the foot, the yard, and the mile will all 

fade into oblivion, go the way of the cubit and the ell. 

The French government in 1889 established an international 

bureau of standards and constructed a "standard meter" from a 

platinum-iridium alloy (known to maintain its length unusually 

well under conditions of varying temperature). In the 1960s a more 

exacting standard was introduced, offering precise reproducibil

ity in scientific laboratories around the world. Based on the orange-

red emission of the atom of Krypton-86, the meter was defined as 

the total distance comprising 1.650 763 73 x 1 0 6 wavelengths of this 
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radiation of wavelength 6.057 802 x 1 0 " 7 meters. Finally, with the 

advent of atomic clocks the measurement of time became so accu

rate that an alternative approach was taken to defining the standard 

meter. In this scheme the speed of light in a vacuum, c, is taken as 

the precise measuring unit, and fixed at exactly 299 792 458 m/sec. 

The meter is then defined as the distance traversed by light during 

a time interval of V299 792458 of a second." 

A simple rule of thumb is that the yard is the distance between 

the tip of the right middle finger (on the extended right arm) and 

the right ear, the person looking straight ahead and not at the fin

gertip. The meter is the distance between the tip of the middle fin

ger on the right hand and the tip of the nose. The meter is approx

imately nine centimeters longer than the yard. But an inch is exactly 

2.54 centimeters, enabling one to convert longer distances readily 

into exact metric equivalents, for example, 

For very large distances, well beyond the kilometer, there exists 

a host of other units. For relative distances in the solar system, a 

useful calibration stick is the astronomical unit (AU), defined as the 

mean distance between the sun and earth. For greater distance still 

a far more convenient unit is light-lime, or the distance that light 

travels in a specified time—a light-second is thus 3 x 1 0 8 meters, a 

light-year is about 10 x 1 0 " meters (or ten trillion kilometers). On 

this scale, the distance from the sun to the earth is 500 light-sec

onds or about 8 light-minutes. The distance from the sun to Saturn 

(10 AU) is 80 light-minutes (or 1.3 light-hours). 

M A S S 

The concepts of mass and weight are distinguished in Newton ' s 

second law. Newton , in formulating this universal law of monu-
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mental significance, recognized that a direct correlation exists 

between acceleration (the rate of change of velocity) of a body and 

the force applied on the body, Fcca. But whenever a proportional

ity symbol appears, it can be removed by supplying a constant and 

an equality sign. In this case, the proportionality constant, repre

senting impedance to acceleration, is the mass, or inertia, of the 

body, and signified by m. In the metric system, where force is meas

ured in units of newtons (N), mass would be in kilograms (kg), and 

acceleration in m/sec 2 . For a constant force, the mass and the accel

eration are inversely proportional. Thus a 1 0 - N force would accel

erate a l-kg mass by 10 m/sec 2 ; it would accelerate a 2-kg mass by 

5 m/sec 2 , a 5-kg mass by 2 m/sec 2 , and a 10-kg mass by only 1 

m/sec 2 , respectively. If it happens to be gravitation that is apply

ing the force, then the acceleration would be a = g = 9-8 m/sec2, a 

value peculiar to the earth. In this instance, Newton 's second law, 

F= ma, can be replaced by W=mg. A body that has a mass of 1 0 0 

kilograms would have a weight of 980 newtons. Originally the gram 

was defined as the mass of 1 cm* (formerly called a "cc") , and 

accordingly, the kilogram as the mass of 1,000 cm3 of water. 

Presently, the standard for the kilogram is a specified mass of an 

alloy of plat inum-iridium in the possession of the International 

Bureau of Weights and Measures in Sevres, France. 

In the imperial system of units, force (or weight) is measured in 

pounds, acceleration, in f t /sec 2 , ( w i t h ^ = 32 f t /sec 2 ) , and mass, in 

slugs. The expression "sluggishness" has its roots in the slug. In 

nations using the metric system, most people have come to mistake 

the kg as a unit of weight. 

In the metric system a tonne (spelled in its French form) is defined 

as 1,000 kg. This is a unit of mass, with a weight of 9,800 newtons, or 

2,205 pounds. In distinction to the tonne, the ton used in the impe

rial system is actually a weight of 2,000 pounds. Thus the metric 

tonne weighs about 10 percent more than the imperial ton. 



If they disparage me as an inventor, how 

much more they, who never invented anything 

but are trumpeters and reciters of the works of 

others, are open to criticism. Moreover, those men 

who are inventors are interpreters of nature. 

—Leonardo da Vinci 

J eonardo was a master scientist and a master engineer-inventor. In 

his scientific investigations he often used technology, anticipating 

a process that was to begin over a century later, but not coming to 

full realization for several hundred years. The investigations of water 

pressure, the phenomenon of friction, the trajectories of projectiles, 

and countless others are all experimental in nature, all carried out 

using the apparatus he designed for each experiment. 

The discovery of fire and the chipping of stones in order to cre

ate cutting tools are monumental developments in early technol-

53 
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ogy, dating back to our distant ancestors roaming the savannas of 

Kenya and Tanzania or dwelling in caves of South Africa 70-80,000 

years ago. At the end of the last Ice Age (10 ,000 -9000 B . C . ) in Asia 

Minor and the Middle East farming and domestication of animals 

were just emerging. Several thousand years later followed the land

mark innovations of ceramics, metallurgy, and writing. Each of 

these developments, each an example of technology sans science, 

was critical for the birth and rise of civilization. Technology once 

learned is rarely unlearned. 

In contrast to technology, science is a system of knowledge— 

the orderly and systematic comprehension, description and expla

nation of natural phenomena, constrained by logic and mathemat

ics. Pure science was an invention of the Pre-Socratic Ionian Greek 

philosophers. According to Aristotle 's own explanation in the 

fourth century B .C. , the first great philosopher was Thales of Miletus, 

who had flourished two to three centuries earlier. Thales and his 

followers had practiced natural philosophy, working with the con

viction that there exist natural laws governing the behavior of nat

ural processes, and that future physical events could be predicted 

by understanding these laws. One did not have to examine animal 

bones and chicken entrails in order to understand the vagaries and 

whims of the gods w h o ultimately determined these events. The 

only certain date we have for Thales is a solar eclipse that he pre

dicted in 585 B . C . 

Echoing the message of Thales, the pre-Socratic philosopher 

Protagoras (485-415 B . C . ) wrote "Man is the measure of all things 

. . . of the being of things that are and [the] nonbeing of things that 

are not."1 In Athens of the fourth century B.C. , however, empirical sci

ence held little appeal (although Aristarchus and Eratosthenes in 

Alexandria, and Archimedes in Sicily were still to continue to com

ply with Thales's dictum, putting more emphasis on observation and 

logic than speculation and introspection). Socrates had an aversion 

to natural philosophy. Plato celebrated mathematics but opposed any 
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form of experimentation in natural philosophy. Aristotle was far 

more receptive to natural philosophy but practiced minimal experi

mentation or observation. 

Science, unlike technology, has progressed in fits and starts, its 

course sometimes entirely retrograde in direction. The Romans were 

technologists and made little contribution to pure science; then from 

the fall of Rome to the Renaissance science regressed. Through these 

times science and technology had clearly evolved independently, and 

to a large extent one could have science without technology, and tech

nology without science. 

In the Renaissance science was reinvented, and in the Scientific 

Revolution of the seventeenth century, science and technology 

began a courtship. The full-scale coupling of the two systems be

came permanent in the next two centuries. By the nineteenth cen

tury electricity and magnetism were developed both at the tech

nological and the scientific levels. Electric generators, motors, and 

transformers could be created, and the underlying physics could be 

invoked to explain why they worked and how to improve them. The 

peak in the coupling, however, came in the atomic age of the twen

tieth century. Ultimately, it is the interaction of science and tech

nology that led to unprecedented acceleration in the progress of 

both. The Industrial Revolution, beginning in the eighteenth cen

tury, can be regarded as one of the most significant fruits of this 

interaction. The cross-fertilization between science and technology 

produced the nuclear, aerospace, and computing revolutions of the 

twentieth century. Modern science cannot be carried out effectively 

without technology, and modern technology cannot proceed very 

far without science. 

In the stratified structure that exists in the sciences, physics—the 

most fundamental and mathematical of the sciences—underlies chem

istry, which in turn underlies the life sciences. Astride them all are the 

social sciences—including psychology, sociology, and anthropology. 

There are even interfaces such as physical chemistry, biochemistry, 
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psychobiology, and other fields that suggest a seamless progression 

among the sciences. Evocative of the dynamics of a tree, the nutrients 

move upward. This simple paradigm explains why the physicist gen

erally lags behind the mathematician in invoking the newest mathe

matical tools; why chemists adopt some of the techniques of the physi

cist a generation or two after the physicist has developed them, and 

indeed why the biologist gets to these tools after the chemist. (To be 

sure, each science develops some of its own techniques, but the more 

fundamental concepts flow upward from the more mathematical 

strata below.) In the first quarter of the twentieth century the preem

inent experimental nuclear physicist, Lord Rutherford, expressed his 

disdain for those sciences higher in the strata than his own, when he 

made the pronouncement, "In science, there is only physics. The rest 

is stamp collecting." By 1953, when x-ray diffraction was being applied 

to biology to decipher the structure of the D N A molecule, biology 

would have earned Rutherford's respect as a legitimate science. Finally, 

underlying the entire structure is mathematics, not a science itself, but 

essential for the sciences, providing them with both a powerful tool 

and a language. Its function is to lend rigor, effectiveness, and pre

dictability to the scientific theories explaining the behavior of natural 

phenomena. 

Archimedes, the greatest scientist and mathematician of antiq

uity, had made significant strides in connecting mathematics and 

physics. One hears among historians of mathematics that if the 

Greeks had possessed a better mathematical notation, Archimedes 

might have invented calculus eighteen centuries before its formal 

development in the Europe of the Scientific Revolution. The Greeks 

lacked the zero, yet new evidence has surfaced of Archimedes hav

ing achieved familiarity with infinite sets, at the other end of the 

numerical spectrum from the zero. 2 

The publication by Copernicus of his monumental book De rev-

olutionibus in the mid-sixteenth century signaled the real beginning 

of the revolution. In a more consistent and comprehensive manner 
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the connection of mathematics and natural law came to full fruition 

in the seventeenth century, starting with Gali leo and Kepler, and 

culminating with Newton. 

The journey that brought us to our present understanding of 

science has taken over two and a half millennia. Experimental and 

theoretical research are ongoing, with the unification of physical 

laws—those governing the submicroscopic universe (quantum 

mechanics) and those governing the large scale universe (general 

relativity)—representing the ultimate quest of physics. 

Leonardo discovered anew some of the scientific principles first 

developed by the ancients and subsequently forgotten, and he 

invented entire fields of science and technology that would not be 

reinvented for centuries. He may have been a prisoner of his time, 

but his restive mind wandered over scientific and technological 

problems encountered by the natural philosophers of the distant 

past and still to be faced by the scientists of the distant future. 



Those who fall in love with practice without 

science are like pilots who board a ship 

without rudder or compass.' 

—Leonardo da Vinci 

S~\ hroughout history certain numbers and ratios in nature have 

IJ been incorporated by artists into their creations. These num

bers are picked up sometimes consciously, but usually unwittingly as 

subliminal messages from nature. The numbers of the Fibonacci 

series ( 1 , 1 , 2, 3 ,5, 8 . . . ) are often the same ones significant in genet

ics and in phyllotaxis (pertaining to arrangements of the veins on 

leaves, and the leaves and branches on plants). The ubiquitous ratio 

issuing from the series 0= 1.618 034 . . . is approximated in altogether 

prosaic items—three-by-five index cards, playing cards, postcards, 
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and credit cards—and also the monumental: the architecture of 

Bramante and Le Corbusier, the music of Mozart and Bartok, the pro

portions of the paintings of Velazquez and Leonardo da Vinci. To 

reiterate, these numbers and ratios seem to be picked up subcon

sciously and incorporated into works of art inadvertently, as a prod

uct of the artist's aesthetic intuition. However, in other instances, as 

in the case of Leonardo, they are employed after experimentation and 

applied with full premeditation. 

Among all of the artistic creations of the distant past two mon

umental edifices stand out for their use of "nature's numbers," asso

ciated with "dynamic symmetry," or the divine proportion. These are 

the Great Pyramid and the Parthenon, creations of a pair of great 

civilizations separated by two millennia. 

The Pyramids of Egypt 

I was five years old the first time 1 saw the pyramids in the valley of 

Giza, just outside Cairo. It was January 1946, not quite five months 

after the end of the war in the Pacific. My father, a young major in 

the Turkish army, had just been assigned as the assistant military 

attache from Ankara to London. Before heading off to London, my 

mother, father, and I sailed from Istanbul to Alexandria, where we 

boarded a train bound for Cairo. In the Egyptian capital we were to 

make a stopover of a few days, then fly on to London, but the con

clusion of the war created a logistic nightmare in Cairo, which 

became a bottleneck with tens of thousands of British soldiers wait

ing there for their trip home. What was to have been a few-day's 

stopover for us stretched out to two months. There was no room on 

flights bound for London and the only ships making the transit to 

England were troop carriers. 

My first impression of the pyramids was of their immensity, ris

ing endlessly into the sky. I remember well riding a camel around the 

base of the Great Pyramid, where a street photographer shot our 
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picture (Plate 3, upper right), and watching A fellah with great admi

ration scramble up to the top in exchange for the baksheesh that my 

father gave him. But the source of my abiding interest in Egyptology 

came about much later from discussions with Kurt Mendelssohn, a 

professor of physics at Oxford. 

Mendelssohn was a specialist in cryogenics and medical physics, 

and by avocation, an Egyptologist . 2 A physics education has been 

described as a problem-solving degree. One learns to formulate 

questions, cull the best approaches in order to resolve the questions, 

and invoke the indispensable tool of mathematics. Although Men

delssohn was not a trained archaeologist, he was applying his con

siderable problem-solving skills to address issues in Egyptology, and 

this sort of cross-semination often bears original fruit. I found his 

views eminently compelling. Having revisited the pyramids and 

made some simple calculations for myself, I am convinced more 

than ever of their validity—notwithstanding the fact that they may 

be at variance with some of the standard explanations of Egyptolo

gists, and most certainly with anyone who attributes divine or mys

tical properties to the shape. 

A pseudoscientific theory that can be quickly eliminated is the 

claim that ancient Egyptian mariners sailed across the Atlantic and 

taught the Mesoamericans how to build pyramids. The first pyra

mids appearing in Central America were in Teotihuacan, near 

Mexico City, and date from the first century B . C . Several centuries 

later the Maya built pyramids in a number of city-states, includ

ing Tikal, Uxmal, Palenque, and Kabah. Several centuries later still 

the Toltecs built their pyramid, known as the Castillo, in Chichen 

Itza. Finally, in the fourteenth and fifteenth centuries the Aztecs 

built a number of pyramids in their capital, Tenochtitlan, on the site 

of modern-day Mexico City. Pyramid building in Central America 

spanned fifteen hundred years. None of the structures even slightly 

resemble the Egyptian pyramids, and most importantly, the Egyptians 
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had long been out of the pyramid-building business by the time it 

was taken up in the N e w World. 

"Pyramid power"—attributing special properties to the pyramid 

shape for preserving food, retarding aging, and maintaining the sharp 

edge on razor blades—has gained legitimacy as an element of popu

lar culture. No scientific evidence exists to confirm such mysterious 

properties, and no physical principle can possibly confer any validity 

to such claims. Pyramid power belongs in the same family of pseu-

dosciences as astrology, numerology, and palm reading, and no self-

respecting scientist would accept its claims. Nonetheless, a number 

of remarkable mathematical relations exist in the Egyptian pyramids 

that can be supported by science. 

"The pyramids of Egypt are immensely large, immensely ancient, 

and, by general consensus, immensely useless," so Mendelssohn liked 

to say.' They were built at the dawn of civilization, beginning about 

4,700 years ago. So old are they that among Egyptians there is a com

mon saying, "Man fears time, and time fears the pyramids." In all, 

there exist approximately fifty pyramids spanning a millennium, and 

most of them are quite unremarkable. The first seven, however, built 

in an astonishingly brief time of a little over a century are monu

mental. But they outnumber the pharaohs of the Third and Fourth 

Dynasties who reigned during that time, rendering unlikely the gen

erally accepted view that the exclusive purpose of a pyramid was to 

serve as a burial tomb or mausoleum for a pharaoh. 

For a century and a half after Egyptology was conceived in the 

late eighteenth century, the theories regarding the building of pyr

amids were based largely on the writ ings of the Greek historian 

Herodotus, w h o had visited in the fifth century B . C . and inter

viewed local inhabitants. These theories had posited that the pyr

amids were built by slave labor; that 100 ,000 slaves worked simul

taneously on the Great Pyramid of Khufu (or Greek, Cheops); that 

a giant ramp had been built in order to elevate the stones to the 
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upper levels of the structure. When he wrote his History the pyra

mids were nearly as distant in time from Herodotus as Herodotus 

is from us. It is not difficult to see where he went wrong. 

The max imum surface area of a pyramid would have been 

achieved just as the pyramid reached its complet ion. That area 

divided into a population of 1 0 0 , 0 0 0 would place approximately 

thirty workers in each five square feet of space along with the two-

ton cubic stone that they were dragging up with them. (If only one-

third of this number actually worked on the pyramid itself, that 

would put ten workers—plus the rock—on each five square feet of 

the surface.) Highly improbable! It is also highly improbable that a 

colossal mud-brick ramp was built in order to raise the stones. As 

the pyramid rose in place, the slope of the ramp would have to have 

been changed continuously. There would have been frequent occur

rences of workers falling off the edges of the ramp. Indeed the edges 

themselves would have caved in frequently from the traffic, and the 

volume of the ramp would have to have been greater than the pyra

mid itself. This is simply not a cost-effective technique. 

An alternative theory that makes more sense is to have a set of 

four mud-brick ramps, coiled around the pyramid, and rising as the 

pyramid itself takes shape within the square-cornered helical struc

ture. Each ramp would start from one corner of the base, and to

gether with the other three, spiral upward in the same direction. 

Three of the ramps could have been used for the workers to haul up 

the stones and the fourth for the workers to descend with their 

equipment. After the completion of the pyramid the coiling ramps 

would have been removed, leaving a polished limestone surface 

with no trace of the scaffolding. That this may have been the best 

method certainly does not guarantee that it was the one employed. 

The builders, although lacking modern technological devices, were 

no less clever than modern engineers and architects. 

Finally, it is also unlikely that the pyramids were built with slave 

labor. It may have required as many as 20 ,000 soldiers to keep 
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1 0 0 , 0 0 0 slaves in line. And who was to feed this mass of people? 

Fortunately, a number of clues exist to resolve the critical issues of 

w h o built the pyramids and why, and the lesser question of the 

number of workers required. Until the emergence of the dynastic 

system around 3000 B . C . , a jumble of tribes occupied Upper and 

Lower Egypt, making invasions and threats of invasion common. 

The trend toward unification began with the dynastic system, but 

was not fully achieved until around 2650 B . C . with the reign of 

Djoser (2668-2649 B . C . ) , the second pharaoh of the Third Dynasty. 

T H E F I R S T S C I E N T I S T : 

T H E A R C H I T E C T O F C I V I L I Z A T I O N 

When kings of the First and Second Dynasties died, they were 

buried in tombs located below mastabas, one-story slab-like build

ings. These monoliths, characteristically rising with a slope of 3:1 

(3 parts rise to 1 part run), were not especially difficult for grave 

robbers to penetrate. Then suddenly with the reign of Djoser the 

unification of Upper and Lower Egypt was complete. A powerful 

army was formed; the sun god Ra became overwhelmingly promi

nent, and pyramids became the preferred burial tombs for pharaohs. 

What better way to worship the sun god than by building a man-

made mountain in the form of a sunburst effect—a pyramid. The 

farmers, working seasonally (according to the rise and fall of the 

flooding Nile), might have been encouraged to come to work on the 

pyramid project as a way of buying indulgence for the afterlife, the 

next life being far more important than this ephemeral one. Thus, 

rather than a reviled project of slave labor, a pyramid would have 

been a public works project, a labor of devotion. This could all be a 

stretch, but the improbable ideas of the 100 ,000 laborers, 20 ,000 

guards, and the need to feed them all, makes this stretch a little less 

unappealing. In the last decade of the twentieth century, the emi

nent Egyptologist Zahi I lawass reported the discovery of workers ' 

houses near the base of the pyramids, replete with accoutrements 
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of ordinary subjects, pointing to the validity of Mendelssohn 's 

hypothesis of free men being employed on the project. Hawass esti

mates that 20 ,000 workers were employed on the Great Pyramid 

at any given time, and that they worked for about two months 

before returning to their villages, when another group of 20 ,000 

took their place. 

Can anyone really be identified as the first scientist, or deserve 

the accolade "architect of civilization?" In fact it is not difficult to 

make a case for a legendary character by the name of Imhotep being 

accorded both of these astounding mantles. Djoser's step pyramid in 

Saqqara was the first ever built, and the architect of the project was 

known to have been Djoser's chief vizier, Imhotep, a medical sage, 

astronomer, mathematician, and architect. Imhotep came to be re

vered as a god of healing and was in time identified by the Greeks 

with their own Asklepios. Isaac Asimov in his biographies of scien

tists singled out Imhotep as the very first, and added: "there was not 

to be another for over two thousand years." 4 Moreover, if the hypoth

esis is valid that the building of the first pyramid served as the cata

lyst for the unification of Egypt, and if the project was masterminded 

as a public works project by one man—Imhotep—then he is indeed 

deserving of those honorifics. 

The step pyramid , r is ing to a height of two hundred feet— 

comparable to a twenty-story building—is not a true pyramid, rather 

it resembles a set of six mastabas, gradually decreasing in footprint 

and height, stacked one on top of the other. In its internal structure, 

however, there is most likely a tower rising with a slope of 3 :1, but

tressed by the series of mastaba-like steps, each rising with the same 

slope. Without dismantling the pyramid it would be impossible to 

confirm this, but a clue is offered by the second pyramid, built in 

Maydum, thirty-five miles south of Saqqara, and otherwise known 

as the "collapsed pyramid" (Plate 3, upper left). This failed structure 

had initially been designed as a step pyramid modeled after Djoser's. 

The lowest two courses are still present, and these reveal a finished 
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surface, suggesting that it was not until the pyramid's completion as 

a step pyramid that the builders returned to modify it, indeed, to 

convert it into a true pyramid. The rubble of the collapsed structure 

presents a silhouette very much resembling a colossal chocolate kiss. 

The desired angle of slope of the "true pyramid" was 52°, a point that 

will gain significance later on. A number of factors conspired to bring 

about the rockslide of the collapsed pyramid: the angle at which the 

additional blocks were stacked; the polished surfaces of the finished 

steps failing to give these blocks sufficient adhesion; the relatively 

small size of the blocks, and the fact that the blocks were not ade

quately squared or precisely fitted. s For a pyramid the size of the col

lapsed pyramid, composed of limestone, the pressure on stones at 

the base would be of the order of 50 kg / cm 2 (710 lbs./sq. in.) if the 

stones were precisely squared. And the pressure at the base would be 

around 1,000 k g / c m 2 (over 14 ,000 lbs./sq. in.) on the protruding 

edges if the stones were not precisely squared. Whereas limestone 

can withstand 50 kg /cm 2 pressure, it would crumble when subjected 

to 1,000 kg/cm 2 . Candy makers have long known that a cone-shaped 

chocolate candy, when placed on a baking sheet and heated, assumes 

the shape of a chocolate kiss as a result of plastic flow. And it is the 

classic effect of plastic flow that the collapsed pyramid displays. 

Moreover, the collapse would have occurred so quickly that the 

workers on its surface would not have had time to escape to safety. 

Mendelssohn suggests that a systematic excavation of the rubble sur

rounding the exposed tower, the core, may well uncover a large 

number of buried skeletons still preserved by the dry climate. 

At Dashur, not far away, the building of a third pyramid had 

commenced even before the completion of the pyramid at Maydum. 

The initial plan evidently was to make it a true pyramid with slopes 

of 52°. Then mysteriously midway up the sides the slope was 

changed to 43.5°. The prevailing theory in Egyptology is that the 

king for whom the pyramid had been designated passed away pre

maturely, and the builders decided to truncate the building to save 
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time. But a calculation reveals that the time saved in the process— 

based on the stone saved—is merely 10 percent. M o r e likely, as 

Mendelssohn suggests, it was the sudden catastrophic collapse of 

the pyramid in Maydum that triggered the builders' desperate mod

ification of their own pyramid. Because of its double-angle the edi

fice is known as the bent pyramid. As it is, the pyramid is well over 

300 feet high, or higher than a thirty-story building. If the lower 

surfaces, rising at 52°, were to be extrapolated, however, they would 

meet at a point well above 400 feet, and put this pyramid into the same 

class of colossal pyramids as the Khafre (or the Greek, Chephren) and 

the Great Pyramid of Khufu in the valley of Giza. 

The fourth pyramid, built also in Dashur, was again a true pyra

mid and had the field-tested, safe angle of 43.5° for its surfaces. This 

is the red pyramid, the name derived from the reddish stone used 

as facing on its surfaces, and is associated with the pharaoh Snefru, 

father of Khufu, and grandfather of Khafre. This pyramid has a 

height of over 300 feet, comparable to that of the bent pyramid. 

Then in the valley of Giza the fifth and sixth pyramids— Khufu 

and Khafre—were built, climbing majestically at 52° to elevations 

comparable to fifty-story buildings. And finally, a seventh pyramid, 

Menkaure, a relative runt at twenty-five stories tall, was built in the 

same valley. In 1995 members of the Dav id H. Koch Py ramids 

Radiocarbon Project undertook a definitive program to date the 

pyramids. They collected tiny bits of organic material embedded in 

the gypsum used for mortar in the pyramids and tested them for 

their carbon-14 ( C 4 ) activity rates. (The half-life of C 1 4 is 5,715 years, 

which means that in 5,715 years only half of the original activity will 

remain in the sample.) The building of the entire complex at Giza 

was determined to have lasted eighty-five years, from 2589 to 2504 

B.C. 6 This marks the highest development of Egyptian pyramid 

building. 

A dramatic decline followed this flurry of activity. And although 

pyramids continued to be built for another 1,500 years, they were 
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all vastly overshadowed by the first seven, especially numbers five 

and six. Indeed, by the end of the Fourth Dynasty the Egyptians 

were essentially out of the pyramid building business. 

By the mid-twentieth century aerial photography offered arch

aeologists a bird's-eye view of the topography of the land and the 

opportunity to visualize the pattern at the site of human settle

ment—in the same sense that a person examining an oriental car

pet from a normal standing view has a considerable advantage in 

appreciating the pattern of the carpet than someone examining one 

tiny portion of it. A little later aerial infrared photography provided 

additional capabilities. Materials possessing different heat capaci

ties cool off at different rates. Since rocks cool off faster (and emit 

infrared radiation with greater intensity) than the surrounding 

earth, infrared photographs can reveal buried foundation walls 

even where the overlying ground is perfectly smooth. A substantial 

step beyond aerial photography is offered by remote sensing— 

satellites that provide much larger areas to view and much wider 

ranges of the electromagnetic spectrum. Exploration of natural 

resources and investigation of ecological concerns have been the 

greatest benefactors of this technology. Along with successes in 

establishing the geomorphology of various sites, hitherto unsus

pected ruins have been discovered. Lying deep below shifting sand 

dunes in Saudi Arabia the ruins of the fabled lands of frankincense 

and myrrh were discovered by NASA in the early 1990s. 

A conjecture was presented earlier in this chapter that it might 

have been the sunburst effect that inspired the shape of the pyramid— 

a man-made mountain for the pharaoh to ascend to the sun god. In 

a recent paper geologist Farouk El-Baz, a specialist in remote sens

ing technology, offered an alternative conjecture, but also one in

spired by nature. 7 Remote sensing technology had revealed below 

the obscuring layers of sand in the eastern Sahara the existence of 

dried riverbeds, meandering in wide swaths. This was offered by 

El-Baz as evidence of vastly different cl imatic condit ions in the 
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distant past, and archaeological excavations of the area have turned 

up sites of human settlement. Catastrophic drought in lands west 

of the Nile took place around 5,000 years ago and forced the migra

tion eastward of the nomadic inhabitants. According to El Baz's 

theory it is the cultural melding of desert people and the pioneer 

farmers of the Nile valley that ultimately catalyzed the unification 

of Upper and Lower Egypt. The memory the nomads brought with 

them of the eastern Sahara may have served six or eight generations 

later as the inspiration for pyramids, and even the Sphinx. Natural 

formations created by the action of water and wind, the latter in a 

well-defined north-to-south direction, may have created the mod

els that served the generation of pyramid builders. 

T H E S Y M M E T R I E S I N T H E 

P Y R A M I D S A N D T H E G O L D E N P Y R A M I D 

Earlier we saw that King Djoser's step pyramid comprised six 

mastabas stacked on top of one another, each rising at a 3:1 slope (or 

an angle of 72°). That slope appeared again in the core of the collapsed 

pyramid, and it was speculated that most likely a tower of the same 

slope was embedded in the structure of the step pyramid. 

Extrapolating the sides of the tower creates the "golden triangle"—the 

isosceles triangle with the angles 36°—72°—72° (Plate 3, upper left). 

Had Imhotep, the mastermind behind the step pyramid, recognized 

the golden triangle? Most likely not. He simply knew from the design 

of mastabas that a slope of "three parts rise to one part run" was a safe 

angle, and a healthy design to incorporate into his design. 

The second pyramid to be built—the collapsed pyramid—was 

initially completed as a step pyramid with 72° slopes, but then a 

drastic modification was applied in an attempt to convert it by way 

of a casing into a true pyramid. The angle chosen for this casing was 

52 0 . Though the pyramid collapsed due to fatal design faults dis

cussed earlier, that 52° angle has a special significance. If a circle 

were to be laid out using a prescribed radius the circumference 
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would of course be in times the radius. If that circle is formed into 

a square so that the circumference of the original circle and the 

perimeter of the square are exactly the same, the sides of a pyramid 

constructed on that base, with a height equal to the radius of the 

original circle, would have a slope of 52°. The simplici ty of that 

scheme may have been the inspiration in the choice of the angle, or 

it may have had some magical connotations. We do not know. 

In the bent pyramid the lower portion of the pyramid was built 

at 52°, but midway up, the angle was changed to 43.5°. Following 

Mendelssohn's conjecture, the builders in desperation changed the 

angle to stave off the collapse of the structure, having just witnessed 

the collapse of pyramid two. The ratio of the perimeter-to-height of 

a 43.5° pyramid happens to be 3TI, lightening the load and again sug

gesting a preoccupation with n. The fourth pyramid in the series, the 

red pyramid, was also built at the safe angle of 43.5°. The bent and red 

pyramids have survived the better part of 5,000 years. 

In the case of the Khufu the parameters are well known: 230 

meters (or 500 cubits) on each of four sides, and a height of 146.4 

meters originally (which has since been reduced to 137 meters by 

erosion or clandestine quarry activity). The ratio of the full perime

ter 4 x 230 meters = 920 meters divided by the 146.4-meter height 

is 2K. The stones or blocks used are much larger than those used 

in the earlier pyramids (of the order of 1 meter on an edge) and very 

precisely shaped. In building the pyramid a circle with a circum

ference of 4 x 230 meters (or 920 meters) was laid out using rope. 

The circle was then physically "squared" by teams of laborers tug

ging at diametrically opposite points on the rope, achieving the 

required right angles at the corners by making sure that the diag

onals were precisely the same length. 

For the original measurements, the ratio of one edge of the base 

to altitude is 1.57, fairly close to the golden ratio of 1.62, and if one 

were to inscribe the Khufu in a golden rectangle, the tip of the pyra

mid would stick out only slightly. More importantly, focusing on 
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This is a restatement of the law of divine proportion. 

The unexplained question here is one of a "chicken and egg." 

What came first for the ancient Egyptian architects who designed the 

pyramids at Giza? Were they attempting to build imposing structures 

whose surface areas satisfied the relationship described above? Did 

they wish even before the first stone was laid in place for the final 

product to relate in some way to the divine proportion? Did they 

know that for a pyramid shape to reveal the law of divine proportion 

its edges must rise at an angle of 52° (Plate 3, center left)? In other 

words, were they fully aware of the implications of their design? Did 

they know what they had accomplished in this regard? The answer 

to all these questions is, "probably not." Most likely the builders sim

ply wanted to have the height of their pyramid defined by the radius 

of a circle the circumference of which equaled the perimeter of the 

pyramid. It was fortuitous that such a pyramid would also exhibit the 

properties of divine proportion. Whether these precise symmetries 

are intentional or accidental, we are justified in describing the Khufu 

and Khafre as golden pyramids. 

The Divine Proportion in Antiquity: Classical Greece 

The Greek army in 479 B . C . defeated the Persians at Plataea, ush-

just the triangular shape of one face, the ratio of the alt i tude of 

a face to one-half the length of the base is exact ly 1.62. But what 

is far more intr iguing is a computation involving the areas of the 

facades and the base, first recognized by the mathematician and 

astronomer Johannes Kepler ( 1 5 7 1 - 1 6 3 0 ) . The base has an area T = 

52,900 m 2 , the four sides have a combined area A = 85,647 m 2 . 

These values can be related as follows: 
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ering in a period of peace and prosperity, the Golden Age of Greece. 

The period saw an unprecedented explosion in artistic creativity 

that included the development of the Athenian Acropolis in honor 

of the city's namesake and patron goddess Athena. In 447 B . C . work 

on the temples astride that massive stone outcropping commenced. 

Fifteen years later in 432 B .C . the Parthenon was completed, although 

work on the other buildings continued for another thirty-five years. 

By any measure the Parthenon is the most sublime of all extrovert 

buildings ever built. Although the Greeks could make arches by fit

ting together wedge-shaped stones, they had not extended the idea 

into spanning large spaces by making domes of such stones. That 

would await the Romans with their Pantheon in the first century 

A . D . Hence the interior of the Parthenon, busy with columns to sup

port wooden beams and a heavy roof, was anything but commodi

ous, anything but introverted. 

Collaborating on the design of the Parthenon were Athens 's 

premier sculptor-architect Phidias and the architects Callicrates 

and Ictinus. The columns—fluted shafts topped with capitals of the 

Doric order—supported a pediment with Phidias 's sculpture, 

carved as no stone had ever been carved before. The friezes con

sist of ninety-two metopes in low relief alternating with vertically 

fluted triglyphs. The sculpture in the pediment, depicting the 

Olympians after their victory over their dreaded enemies, the 

Titans, is meant to be emblematic of the victory of civilization over 

barbarism. The east and west facades of the Parthenon both form 

golden rectangles, or exhibit length-to-width ratios of 0. As for the 

assignment of the symbol <p to the golden ratio, this is an entirely 

modern development. It was early in twentieth century that 

American mathematician Mark Barr first denoted the golden ratio 

by Phidias's monogram. 

The architects introduced several imaginative measures to elim

inate unfavorable optical illusions. For example, a perfectly straight 

horizontal line would normally appear to sag in the middle, because 
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it would naturally be sighted against the horizon, which itself has 

a convex curvature; columns which are cylindrical would appear to 

be concave m i d w a y up. In o rde r to coun te r these effects, the 

Parthenon was built on a convex base of a 5.7-kilometer (3.5-mile) 

radius of curvature. Columns rising perpendicular to a convex cur

vature, however, would diverge slightly at their tops, an effect that 

would be barely visible, but a source of subtle discomfort. In order 

to avoid a splayed appearance the columns were aimed or sighted 

to converge at a c o m m o n point app rox ima te ly 2.4 k i lometers 

(1.5 miles) in the sky. The midsections of the columns incorporated 

a slight bulge, entasis, negating the optical il lusion in the other 

direction. How they arrived at these happy numbers is a mystery, 

but the scheme clearly works! Finally, they used fluted columns, 

grooved vertically, as opposed to plain cylindrical columns, which 

would have appeared lumbering and heavy. 

It is the confluence of all of these elements—the artificial con

structs to correct for detracting optical illusions, unerring propor

tions, the majestic perch atop the Acropolis, and Phidias's immor

tal sculpture—all w o r k i n g in concert to render the edif ice the 

epitome of classical Greek architecture. As for Phidias's carvings 

that once adorned the pediment and were painted in vivid colors, 

only a scant few remain on site. Virtually the entire original assem

bly was carted off to the British Museum by Lord Elgin early in the 

nineteenth century. The pediment in its present state offers little 

clue to the original beauty of the edifice. A scale model of the orig

inal carvings, however, is on display in the small museum atop the 

Acropolis, offering a glimpse into the Parthenon's original magnifi

cence (Plate 3, bottom). 

On a personal note, I have been to the Parthenon many times. 

On one occasion I was there with a friend, an academic dean. 8 At 

the end of the day, when we were just about to leave the site he bent 

over, pretending to tie his shoe laces, and picked up a loose stone as 

a souvenir. Clearly nervous, he confided to me his utter terror of 
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being discovered in stealing a piece of the hallowed edifice, "Who 

knows what part of the building it came from?" he mused in a whis

per. But just then a large truck appeared and dumped tons of stones 

for tourists visiting on the next day. 

Although only a single co lumn remains of the Ar temis ium 

( temple of Ar temis , or Diana for the Romans ) in Ephesus , it is 

believed that some of the same proportions with which its builders 

imbued the Parthenon were also featured in the Ar temis ium. 

This Ar temis ium was considerably larger than the Parthenon in 

all of its d imensions and ranked as one of the Seven Wonders of 

the Ancient World, a distinction not bestowed on the Parthenon. 

In a painful t ragedy of his tory a madman burned down the 

Artemis ium in the same year that Alexander the Great was born 

in Macedonia . The reason the arsonist, Herostratos, gave for his 

deed: he wan ted his name to be r emembered in perpetuity. In 

the meandering path that he took with his armies through Asia 

Minor , A l e x a n d e r s topped o v e r the si te and founded a new 

Ephesus a few kilometers away. It is the ruins of that magnificent 

c i ty founded by Alexander that tourists see on their visi ts to 

Ephesus now. 

That nature inspires the designs of artists and architects is inar-

guable. Columns and capitals are another case in point. Technically 

a column consists of the vertical shaft, the stem topped by a block, 

the capital. The Egyptians usually employed cylindrical columns 

with capitals modeled after flowers and pods of lotus and papyrus 

plants, displayed nowhere with more drama than in Luxor and 

Karnak. In Knossos on the island of Crete the columns are evoca

tive of the trunks of trees, inverted so that the upper parts of the 

column display a widened, flange-like appearance. The capitals 

of the Parthenon's columns were in the Dor ic order, consist ing 

of plain slabs, but two other types of capitals employed by the 

Greeks—the Ionic and the Corinthian—most certainly reflected 

pat terns in nature. Capi ta ls in the Cor in th ian order, the most 
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decorative of the lot, were embellished with acanthus leaves, and 

became favored by the Romans. The swirl ing shape of the cham

bered nautilus, incorporating the logarithmic spiral into the capi

tal design, inspired the Ionic order. 

Greco-Roman Sculpture 

The artists of classical antiquity incorporated the divine propor

tion into a variety of objects, ranging from vases to eating uten

sils, from paintings to statuary. To the sculptors of classical Greece 

and Rome the divine proport ion was recognized as ideal for the 

human anatomy: the length of the fingers to the hand, the hand 

to the forearm, the forearm to the full arm, etc. Among these pro

port ions there is the ratio of one's height to the height of one's 

navel. In the statue of Venus de Mi lo (second century B . C . ) the 

ratio of the height to the height-of-navel is close to (j). Th is can 

be effectively dramatized by inscribing the subject in a golden rec

tangle and constructing a square in the lower portion of the rec

tangle. The upper edge of the square will then be seen to pass very 

close to the navel. The interested reader could make similar obser

vations in numerous other classical mas te rworks , including 

Aphrodite, Eros, and Pan (c. too B . C . ) , Hermes and the Infant Dionysus 

(c. 340 B . C . ) , and the father with his two sons in the Laocoon (first 

century A . D . ) . In that last work it is necessary to "straighten" the 

three figures into upright positions digitally, or employ the low-

tech method of measuring the subjects in the statue directly with 

a pliable tailor 's tape measure. Locked in mortal combat with a 

number of serpents coiled around them, all three figures are 

slightly hunched over in anguish and stress, their navels approx

imately 0.618 of their heights. 

I recently put the hypothesis of <p being the ratio of one's height 

to the height of one's navel to the test with a group of twenty-one 
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universi ty students, ten male, eleven female. The point of the 

exercise ostensibly was to demonstrate the statistical analysis of 

data, by computing averages, uncertainties, and standard devia

tions. In reality such a small group cannot yield meaningful sta

tistics. Nonetheless , it was a bl ind test, and for the record, the 

results for the average and standard deviation measurements were 

1.618 + 0.04. 

Any discussion of the ancient Greeks in the context of the 

divine proportion would be incomplete if it did not include men

tion of Yale University art historian Jay Hambidge. Professor 

Hambidge started in the 1920s to publish an exhaustive series of 

analyses of the Hellenistic vase. He found many of the vases he 

examined to be conducive to analyses in terms of the golden ratio. 

It was his work, rather than that of anyone else in modern times, 

that rekindled interest in dynamic symmetry and divine proportion 

in general. 9 

Mathematical Mosaics, Polygons, and Polyhedra 

A figure in two dimensions has two types of symmetry. It has line 

symmetry if a line can be drawn through it so that each point on one 

side of the line has a matching point on the opposite side at the 

same perpendicular distance from the line. An equilateral triangle 

possesses three-fold line symmetry; a square, four-fold line sym

metry; a regular polygon of n sides, M-fold line symmetry. Finally, 

a circle has infinite-fold line symmetry. 

In discussing point symmetries in this short technical interlude, 

we begin by introducing a convenient unit for measuring angles: the 

radian, where ^-radians corresponds to 180°. A figure has point sym

metry if it can be rotated about a point so that it replicates its origi

nal shape (but specifically excluded is the trivial case of rotation by 2K 

radians (360°), thus a full turn. An equilateral triangle can be rotated 
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about a point at its center by 271/3 radians (120°) and by 471/3 radians 

(240°) in fulfilling the condition above. A square can be rotated 

through a point at its center by multiples of 90° (2A/4, 471/4 and 671/4 

radians) in order to replicate the original picture. A regular polygon of 

n sides should possess (n-i)-fold point symmetry, with rotations by 

271/n, 471/n, 67l/n, .. .2(n~i) 7C/n radians, all recreating the original shape. 

The expression mathematical mosaics refers to configurations of 

regular polygons which completely cover a surface so that an equal 

number of polygons of each kind are arranged around a regular array 

of points called lattice points, defining the vertices of the polygons. In 

practical terms, if a surface is to be covered by the same kind of reg

ular polygon, the possibilities turn out to be limited: equilateral tri

angles, squares, and hexagons are the only figures that can form a 

homogeneous pattern of tiling. If the idea is extended to three dimen

sions, optimization—in this instance, minimization of material for 

construction of walls with an attendant maximization of the internal 

volume—is achieved by hexagonal tiling. Meanwhile the construc

tion also produces unusual structural strength against compression. 

Such are the results of applying calculus to a geometric and engi

neering problem. But long before mathematicians recognized hexa

gons as viable shapes for flat space tiling, nature had made the dis

covery. Bees were constructing their honeycombs in this pattern, 

presumably having made the calculation intuitively! 

Meanwhi le , pentagons, requiring rotations by 271/5 radians to 

replicate themselves, cannot tile a flat surface by themselves. The 

resulting pattern displays rhombus-shaped gaps. Seven-sided reg

ular polygons, heptagons, requiring rotations by 2^/7 radians, 

would not be able to form a flat mosaic pattern, since adding new 

heptagons would result in overlapping rhombus-shaped areas. 

Similarly it would be impossible to tile with octagons (eight-sided 

regular polygons) or with decagons (ten-sided regular polygons). 

Combinat ions of regular polygons or an unlimited number of 

irregular polygons can all be used for tiling, for example , paral-
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le lograms, isosceles triangles, and so on. A common pattern of 

tiling is seen in the combination of octagons and squares in a peri

odic array. 

Penrose Tiling 

In the late 1970s an intr iguing mathemat ica l t i l ing pattern 

emerged from the drafting board of the Oxford mathemat ica l 

physicist Roger Penrose. In his pattern two types of rhombuses— 

"skinny rhombuses" wi th inter ior angles 36° and 144° and "fat 

rhombuses" with the angles 72° and 108°—are assembled in the 

aperiodic pattern that is the heart of Penrose tiling. The skinny 

rhombus, bisected, would yield a pair of isosceles triangles with 

angles 7 2 ° — 3 6 ° — 7 2 ° , the golden tr iangle. Thus i t should be no 

surprise that on an infinite plane the ratio of the number of fat 

rhombuses to the number of skinny rhombuses is the golden 

ratio </>(= 1.618 034 . . . ), the irrational number generated from 

the Fibonacci series. 

Beyond the regular polygon used in mathematical tiling are a 

virtually unlimited number of abstract shapes, all understood in 

terms of symmetry operations allowed on a flat surface. The Moors 

in Northern Africa and Spain, the Selcuk and Ottoman Turks in the 

Middle East, and the Persians raised two-dimensional abstract 

design and calligraphy to a level of extraordinary sophistication and 

beauty. The Moors adorned their special buildings with patterns 

revealing tacit understanding of space symmetry concepts, epito

mized in the tiles of the Alhambra Palace in Granada and the Great 

Mosque in Cordoba. 

During the Islamic Mughal rule in north central India, Shah 

Jahan created an architectural masterpiece for the ages in the Taj 

Mahal , a mausoleum for his favorite wife, Mumtaz Mahal . Con

structed whol ly of white marble, the seventeenth-century edifice 

raises calligraphy and mathematical mosaics to a peerless art form. 
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Typically seen among the carved marble window traceries are ape

riodic patterns of six-pointed stars, regular hexagons, and stylized 

tulips in two different sizes. 

M. C. Escher 

The twentieth-century Dutch crystallographer Maurits Cornells 

Escher (1898-1972), intrigued by graphics techniques, employed sym

metry operations in generating inexhaustible patterns of realistic 

(and sometimes mythical) figures in his graphic artwork. Some of his 

graphics consisted of flattened images, others incorporated perspec

tive—stairs and lattice structures, knots, and Mobius strips. Escher 

often challenged the viewer with the liberties he took with one-point, 

two-point, three-point, and even four-point perspective, for exam

ple, ascending staircases that transform mysteriously into descend

ing staircases. Unencumbered by religious interdicts such as the ones 

imposed on Islamic artists (forbidding the depiction of humans and 

animals), Escher utilized these figures with abandon in his symmet

ric musings. Dark horsemen facing the right are interposed between 

light horsemen facing the left. The symmetry operations that leave 

the pattern invariant are simple translation in vertical and horizon

tal directions plus reflection. In the reflection process the shading 

of the horsemen is also interchanged. 

Ear l ie r we saw that the different types of regular po lygons 

that could create a homogeneous mosa ic w e r e only three in 

number. However , irregular mosaics, consist ing of different reg

ular po lygons , are unl imi ted in number . Escher p layed off the 

same s y m m e t r y o p e r a t i o n s that cha rac t e r i ze m a t h e m a t i c a l 

mosaics and created enticing, albeit s imple, graphics. In light of 

his early training as a crystal lographer, it is understandable that 

his art w o u l d often incorpora te scientif ic themes . Later, in 

Chapter 7, we will take a closer look at one of Escher ' s creations. 
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M o r e immediate ly , however , we shall examine three-dimen

sional bodies—regular and semiregular po lyhedra—and their 

underlying symmetr ies . 

Regular Polyhedra 

The regular polyhedron is defined as a three-dimensional solid com

prising regular polygons for its surfaces—and with all its surfaces, 

edges and vertices identical. The regular polyhedra are the four-

sided tetrahedron, the six-sided cube, the eight-sided octahedron, 

the twelve-sided dodecahedron, and the twenty-sided icosahedron 

(Figure 5 .1 ) . There are only five types, a happenstance that Lewis 

Carroll described as "provokingly few in number." Although all five 

types had been identified by Pythagoras two hundred years before 

Plato was born, they are nonetheless collectively known asplatonic 

solids, named in honor of Plato by the geometer Euclid. 

For the ancient Greeks all material in nature was composed of 

only four elements—earth, fire, air, and water—taken in different 

admixtures. Atoms of fire had tetragonal shape; atoms of earth, 

cubic; atoms of air, octahedral; and those of water, icosahedral . 

The number of regular polyhedra, however, clearly outnumbered 

by one the number of recognized elements. To the Pythagoreans, 

the fifth polyhedron had monumental significance. An omerta, or 

a code of silence, was imposed regarding the dodecahedron, 

divulging its secret meaning—the shape of the universe—to out

siders could earn a traitor the death penalty! The Pythagorean 

Academy was located in Crotone, on the sole of the Italian boot. 

Founded by Pythagoras about the sixth century B . C . , the fields of 

academic interest were mathematics, natural philosophy, and 

music. Myst ic ism and numerology, however, seem to have char

acterized the underlying philosophy of the Pythagoreans, a cult in 

the modern sense. 



Figure 5.1. Regular and semi-regular polyhedra and the golden pyramid: 

(A) tetrahedron, four sides; (B) cube, six sides; (C) octahedron, eight 

sides; (D) dodecahedron, twelve sides; (E) icosahedron, twenty sides. 

(F) Fifteen golden rectangles span the interior of the icosahedron (only 

three of which are seen here); (G) the icosidododecahedron; (H) the 

truncated icosahedron, or an icosahedron with its vertices clipped; (I) 

the geodesate, or a tessellated dodecahedron, closely resembles 

Buckminster Fuller's geodesic dome; (J) the stellated dodecahedron; 

(K) the stellated icosahedron; (L) the golden pyramid 
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Intuitively it is quite easy to see how there can be only five pla-

tonic solids. The plane figure with least number of sides is the tri

angle. The smallest number of triangles around a point in three 

dimensions is three. Also, four and five triangles form polyhedra, 

but six tile the plane. Thus only three, four, and five can form poly

hedra. With squares, three around a point form a cube, but four tile 

the plane. With pentagons, again only three is possible, with four 

going beyond the plane. Accordingly, three, four, and five triangles; 

three squares; and three pentagons are all that fit around a single 

point in three-dimensional space. 

In the early seventeenth century Johannes Kepler, German-

born mathemat ic ian and assistant to the Danish as t ronomer 

Tycho Brahe, succeeded in formulating the three laws of plane

tary motion. Before actually getting his hands on Tycho ' s obser

vational data and undertaking the massive computational effort 

which ultimately lead to these laws, however, he ruminated on the 

peculiar pattern of spacing between the planets. Among a num

ber of mathematical schemes that he considered was the notion 

of using the five regular polyhedra as the spacers, and the task as 

he saw it was to identify the order in which they were to be 

employed (Figure 5.2). 

Salvador Dali's Last Supper 

An intriguing encounter with the dodecahedron takes place in 

Salvador Dali 's Sacrament of the Last Supper. In the painting in the 

National Gallery of Art in Washington, the Twelve Apostles, heads 

bowed, are seen flanking the figure of Christ. In the background is the 

setting sun, and on the tabletop, the shadows cast by the apostles, the 

piece of bread, and the glass of wine. The figure of Christ, somewhere 

between transparent and translucent, casts no shadow. At the top of 

the scene of Dali's Last Supper are the sheltering and protective arms 

of God, face unseen. But just below God's arms, and framing the scene, 
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Figure 5.2. Johannes Kepler's geometric construction employing the 

five regular polyhedra as "spacers" between the orbits of the known 

planets (Courtesy History of Science Collections, University of 

Oklahoma, Norman) 

is the unmistakable shape of a dodecahedron. The painting possesses 

almost perfect bilateral symmetry, one side mirroring the other. The 

positions of Christ's arms are not symmetrical, nor is the configura

tion of the islands in the background (a view thought to be from Dali's 

house in Catalonia). The painting reflects some of the artist's experi

ences from the late 1930s and 1940s. Dali, like many other artists and 

intellectuals of the time, including Picasso, sided strongly against the 

fascists in the Spanish Civil War. During this time he was profoundly 

influenced by a meeting with the elderly Sigmund Freud. After a 

period of agnosticism he returned to Christianity and abandoned the 
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themes of anarchy in his art. Finally he found inspiration in examin

ing anew Renaissance art of the early sixteenth century. 

Dali 's Last Supper exudes a dreamlike quality (a clear influence 

of Freudian psychology) and a classical perspective (the influence 

of the Italian Renaissance and, especially, Leonardo da Vinci 's Last 

Supper). Dali, a superb technician with a brush, created this surre

alistic work in 1955. It is pleasantly puzzling. In both works Jesus 

Christ is backlit—in Leonardo's mural, by a window immediately 

behind him, and in Dali 's painting, by the setting sun. Of course, 

Dali 's Last Supper does not begin to approach the psychological 

drama and power captured in Leonardo 's Last Supper (which we 

will look at in more detail in Chapter 9). Regarding the dodecahe

dron incorporated in the composition, Dali explained: "I wanted to 

materialize the maximum of luminous and Pythagorean instanta-

neousness, based on the celestial Communion of the number 

twelve: twelve hours of the day—twelve months of the year—the 

twelve pentagons of the dodecahedron—twelve signs of the zodiac 

around the sun—the twelve Apostles around Christ." 

The ratio of the painting's length to width is 1.603, close to the 

golden ratio <f) = i.6i&. Whether this choice of proportion was a con

scious attempt to employ that classical ratio, a product of his intu

itive artistic sensibilities, or a simple coincidence, he did not 

explain. But it would not be wi ld speculation to presume that 

Dali—a numerologist with a deep mystical bent—would have been 

euphoric had he known that he had unwittingly incorporated in his 

painting the Pythagorean Academy's closely guarded secret—the 

dodecahedron—emblematic of the universe. 1 0 It is unlikely that he 

knew about the significance, for he would have mentioned it in his 

explanation of the painting. 

Semi-Regular Polyhedra 

By mixing a variety of regular polygons , whi le adher ing to the 
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requirement that at all vertices the arrangement of polygons is the 

same, one obtains the solid figures called semiregularpolyhedra. 

For example, the icosahedron with twenty equilateral triangles, 

in having its vertices cropped, becomes a truncated icosahedron, 

a figure characterized by two hexagons and one pentagon at each 

vertex. The modern soccer ball is a truncated icosahedron, usu

ally with the hexagonal leather patches dyed white and the pen

tagonal patches, black. 

Another semiregular shape, the cuboctahedron, has fourteen 

faces—eight equilateral triangles and six squares—each vertex sur

rounded by the sequence of a triangle, a square, a second triangle, 

and a second square (classified by the scheme 3-4-3-4). Here a phys

ical significance is to be found: the arrangement offers the model 

for close-packing of identical spheres in space, which is of consid

erable interest in crystallography. In the following section the clas

sification of crystal structure will be presented within a more gen

eral topic about patterns in nature. 

A subtle connection exists between the icosahedron and the 

golden rectangle. Close examination of this polyhedron, supporting 

twenty triangular sides and thirty edges, reveals the existence of 

golden rectangles spanning opposite pairs of edges. Each pair of dia

metrically opposite edges forms two shorter sides of a golden rectan

gle, and since there exist thirty edges on an icosahedron, there must 

exist a total of fifteen embedded golden rectangles in all. The rela

tionship between numbers of vertices, faces, and edges for any convex 

polyhedron—regular or irregular—was given by the great Swiss math

ematician Leonard Euler (1707-1783): the number of vertices plus the 

number of faces equals the number of edges plus 2. 

There also exist classes of solid objects that are neither regular 

nor semiregular, but are familiar to most individuals, for example, 

pyramids (triangular sides with a variety of polygonal bases), 

p r i sms (cy l indr i ca l shapes w i th a va r i e ty of p o l y g o n a l c ross -
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sections), the frustum (a cone with its pinnacle truncated parallel 

to its base). The tetrahedron encountered earlier is a pyramid with 

a triangular base. Certainly the most familiar of pyramids is the 

square-based pyramid employed by the ancient Egyptians and dis

cussed at length earlier in this chapter. As the number of sides of 

the base increases, the resulting figures become the pentagonal 

p y r a m i d , hexagona l py ramid , and so on—indeed, in the l imi t 

when the number of sides reaches infinity, the pyramid transforms 

to the familiar cone. In this context one special square-based pyra

mid discussed earlier was the pyramid whose base perimeter 

exactly equals 2 n times the height of the pyramid itself. The con

dition, of course, created the pyramid rising at 52° and incorporat

ing the divine proportion. (Recall this relationship was displayed 

in the Khufu and the Khafre pyramids.) 

Most individuals can readily visualize the simpler regular poly

hedra, such as the cube and the tetrahedron, and even the octahe

dron. The more complicated of the regular polyhedra (the dodeca

hedron and the icosahedron) and semiregular polyhedra (the 

truncated dodecahedron and the truncated icosahedron) require con

siderably more cogitation. Here mentally rotating the body around 

various axes may be required in order to examine the underlying sym

metry. But at the beginning of the twenty-first century, it is more con

venient to write equations and computer code and have a high-speed 

computer draw the polyhedra. In the stellated dodecahedron there 

exist pentagonal pyramids protruding from each of the twelve sur

faces, and in the the stellated icosahedron, triangular pyramids or 

tetrahedra protrude from each of the twenty triangular faces. Finally, 

in the dodecahedral geodesate, the surfaces of a dodecahedron are 

tessellated onto the surface of a circumscribed sphere. This is the geo

desic sphere of Buckminster Fuller (1885-1983), patented in 1954. The 

best-known dome built in this style is the sixty-five meter (200 foot) 

high dome at the United States Pavilion in Expo '67 in Montreal. An 
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inner layer of hexagonal elements are connected to triangular ele

ments on the outside, and those, in turn, are overlaid by a transpar

ent plastic skin. 

Designs by Leonardo 

Dispersed among Leonardo da Vinci ' s manuscripts , along with 

drawings, notes, doodles, and computations, are also a variety of 

polyhedral creations, products of what Leonardo called his "geo

metric recreation." With possibilities for endless variation, these 

regular and semiregular polyhedra seem to have been a source of 

fascination for him. Leonardo was born at approximately the same 

time as Johannes Gutenberg's publication of the first book in mov

able type in Europe—the Bible—and participated in the publica

tion of only one book, De divina proportione (Venice , 1 5 0 9 ) . De 

divina proportione was the product of collaboration between Leo

nardo, the Franciscan priest and mathematician Fra Luca Pacioli, 

and the artist Piero della Francesca, although inexpl icably it is 

Pacioli w h o appears as the sole author. In addition to explanatory 

text, the book offers sixty i l lustrations—including a variety of 

polyhedra and the design of the letters for a new font (Vitruvian 

letters). There is also one drawing that examines the proportions 

of the human face seen in profile. An equilateral triangle has been 

constructed with a vertex located at the base of the skull. The orig

inal drawings for the book are housed in the Biblioteca Ambro-

siana in Milan (Figure 5.3). 

The "official" author of De divina proportione, Pacioli, was a tal

ented mathematician who is held in reverence in the field of account

ing as the patriarch of the double-entry bookkeeping system. He had 

introduced the system in a treatise on mathematics in 1494, giving 

credit to "Leonardo of Pisa" (Fibonacci), who had introduced it three 

hundred years earlier in his Summa. Contemporary Islamic scholars, 

however, point out that the double-entry system had been known to 
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medieval Islamic mathematicians. Although no documents have sur

vived, this claim may be quite correct. It is certainly reminiscent of 

the applied mathematics and science known to have come down 

from medieval Islamic scholars. 

There is in the foregoing a wider connection in mathematics, 

aesthetics, and science that draws the two Leonardos—da Vinci and 

Fibonacci—under the same intellectual umbrella. Ultimately, how

ever, there is also the powerful image of intellectual tributaries ris

ing much earlier: in ancient Egypt , India, Babylon, and classical 

Greece, but its full confluence not occurring until much later. Along 

with some remarkable discoveries there are also some fundamen

tal mistakes, especially in natural philosophy, that had been per

petuated. Full reckoning was to come after the medieval times of 

the Islamic scholars, and even after the Renaissance. In the High 

Renaissance Leona rdo da Vinc i w o u l d first begin to chal lenge 

Aristotelian, Ptolemaic, and Galenic errors in natural philosophy 
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and the entrenched misapprehensions of the Church (a topic of 

Chapter 1 0 ) . In the sixteenth century the works of Copernicus and 

Vesalius would signal a turning of the tide in the prevailing intel

lectual order, the high tide appearing early in the seventeenth cen

tury with Gali leo finding himself locked in struggle with the 

Church. Although Galileo would lose his battle, the process, moved 

to the new venue of northern Europe, would establish its own inex

orable course and make unprecedented progress. 



The wisest and noblest teacher is nature itself. 

—Leonardo da Vinci 

J eonardo carried out a lifelong love affair with nature—he stud

ied it, wrote about it, drew it, painted it. He captured its nuances 

as no other. Nature provides inspiration for both the artist and 

the scientist. Although both are interested in describing nature, 

their expressions take distinctly different tacks: the artist is inter

ested in interpreting the visible world, the scientist in explaining 

why and how nature operates. The style and modus operandi of the 

artist is to glean information about nature directly with his senses, 

to seek its subtle qualities, and he may even be susceptible to sub-

89 
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liminal messages presented by nature that can be expressed as num

bers. The artist is unlikely to measure angles, slopes, proportions, or 

to count branches, but rather to seek abstract qualities, the "soul" of 

the subject, and to produce a piece of work that captures the essence 

of the subject's appeal to the viewer. Ultimately, the work has to sat

isfy the abstract requirements imposed by the artist, and to look "just 

right." In Christopher Tyler's words, '"looking just right' is as much 

a resonance with the psyche of the viewer as it is getting at the ding 

an sich. So art looks inward while science looks outward." ' 

Historically the Renaissance artist, especially in the unique persona 

of the artist-scientist Leonardo da Vinci, preceded the Renaissance 

scientist in learning to observe nature, and especially how to ask the 

right questions, not just to hypothesize and introspect. In that sense, 

except for a small number of natural philosophers of antiquity, the 

Greeks and Romans were not engaged in empirical science. And sci

ence in the modern sense did not experience a rebirth in the 

Renaissance. It was born in the Renaissance. 

The modern scientist makes systematic observations with 

instruments more sensitive than the senses and generates explana

tions that have internal consistency and universality; in the process 

some of the sources of those subliminal messages and subtleties are 

revealed. The artist works subjectively with full artistic freedom; the 

scientist is constrained by objectivity, facts, and data. But it is not just 

facts and data that dictate the operating mode of the scientist, there 

is also intuition, inspiration, and imagination. Paleontologist Stephen 

Jay Gould, a gifted expositor of science, described this process, espe

cially for those scientists w h o are credi ted wi th t ransformat ive 

theories: "Science is not a heartless pursuit of objective information. 

It is a creative human activity, its geniuses acting more as artists than 

as information processors. Changes in theory are not simply the deriv

ative results of new discoveries but the work of creative imagination 

influenced by contemporary social and political forces." 2 Moreover, 

although the realms of the artist and the scientist seem opposed, 
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throughout history evidence abounds of correlations in their visions, 

with the artist sometimes foreshadowing discoveries of the scientist. 

Such a theme is trumpeted by Leonard Shlain, who offers various par

allel developments in art and science: for example, the works of 

Manet, Monet, and Cezanne at the end of the nineteenth century 

intuiting the coming upheaval in physics with Einstein's theory of 

relativity.* This is a fascinating thesis, but one that requires proper 

perspective. 

In the accelerated progress of abstraction in art beginning in the 

mid-nineteenth century, the unmistakable catalyst was Louis 

Daguerre 's concoction of photographic emulsion, laying the 

groundwork for photographic technology. The camera could cap

ture realistic images with detail even more minute than any paint 

applied to canvas. The precision displayed in the paintings of 

Delacroix and Gericault began to lose their appeal, with artists con

ceding precision to the camera. Indeed, a generation of brash new 

painters emerged with new styles of expression ignoring that pre

cision and detail while embracing color and texture. By then par

allel revolutions in art and music were underway, with Monet ush

ering in impressionism in art and Debussy, its counterpart in music. 

In addition, an entirely new art form was born in photography, with 

its own branches—portrait photography, landscape photography, 

and photojournalism. 

The great French photographer Henri Cartier-Bresson (b. 1908) 

is also regarded as an eloquent elucidator of photography as an art. 

In a career that spanned virtually the entire twentieth century, 

Cartier-Bresson created a legacy of some of the finest photographic 

images ever produced (especially in the surrealist style) and, in his 

thoughtful introspection, he successfully blended art, insightful 

psychology, and good literature. He called photographic portraiture 

"the one domain that photography had wrested from painting." In 

light of the evolution of both media during the past century and a 

half, few would disagree with that assertion. "Of all the means of 
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expression," he wrote, "photography is the only one that fixes a pre

cise moment in time," echoing an earlier age, when Leonardo made 

the same pronouncement about painting. 

Cart ier-Bresson also wrote in his advanced years, "The only 

joy in photography is geometry. All the rest is sentiment." We feel 

compel led to take seriously any statement by someone so long 

l ionized in the field, even if we have to agonize over the mean

ing of a missive that reeks with ambiguity. At first pale, the state

ment appears to stand at odds with other statements he made in 

his photographic heyday—to dismiss photography for anything 

beyond its graphic beauty—and represents perhaps a soulful 

yearning to return to drawing. He seems to be saying that ele

ments of composi t ion (the geometry of pho tography) hold the 

only interest for him—that the moral , polit ical and even emo

tional agenda that is c rowded into photojournalism (in particu

lar) bore him. But an entirely different, and I think correct, inter

pretation is that it means that form without feeling or feeling 

without form is incapable of producing good art. If indeed that is 

what represents his true sentiment, then it paral lels roughly 

Leonardo ' s words , "Where the spirit does not w o r k with the 

hands, there is no art ." 4 

At the turn of the twenieth century the scientific air was 

entirely unsettled, with one pair of issues prominently beckoning 

resolution. First, an incompatibility existed between the two great 

edifices of physics : classical mechanics and electrodynamics. 

Second, there was the question of whether aether (ether) existed 

in interstellar space as a medium for the propagation of light 

across great distances. These two issues served in tandem to make 

the time extraordinarily ripe for the formulation of relativity, and 

the prevailing restlessness is what these artists may have mirrored 

in their artwork. It would, of course, be an unreasonable stretch to 

presume that the great postimpressionists had the slightest inkling 

of how to resolve the problems within the purview of physics. And 
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the restlessness in physics was only a part of the late-nineteenth-

century Zeitgeist, the intellectual milieu prevail ing in European 

culture. Perhaps a better characterization than saying that art fore

shadowed discoveries in physics would be to say that art paralleled 

them. 

Unhappily, the artist and the scientist rarely speak to each other. 

Changes in both art and science, however, have the same root—the 

realization that things are not as we are accustomed to viewing 

them, that there is more to them than what our standard represen

tations can portray. In physics, quantum mechanics represented an 

approach to physical problems from an entirely new point of view. 

The formulators of quantum mechanics were not representing real

ity in the customary Newtonian way, but in an abstract and more 

"essential" way. The parallel in the visual arts is exemplified by 

Pablo Picasso or George Braque in their Cubism. Picasso's cele

brated painting Les Demoiselles d'Avignon (1907) represents an 

abstract look at women, reflecting their essence rather than their 

appearance. 

Symmetries and Patterns in Nature, Symmetry in Physical Laws 

Earlier, in Chapter 3, a mathematical progression had taken us from 

the Fibonacci series to the golden rectangle, from the golden rec

tangle to the logarithmic spiral, from the logarithmic spiral to the 

golden triangle. The discussion of these shapes was followed by the 

introduction of mathematical mosaics (tiling with polygons) in flat 

space, and then polyhedra, in which polygons were assembled into 

solid figures in three-dimensional space. The interconnections 

among these patterns had all emerged from a simple logic that dic

tated the flow. It is the nature of art that these mathematical shapes 

and figures in two and three dimensions find their way inexorably 

into works of art, and conversely it is the art of nature that these 

shapes and figures are displayed by nature's own creations. 
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The key to the patterns and regularities in nature lies in space

filling (mathematical mosaics) , as well as in biological and phys

ical dynamics . Ultimately, it is physical forces that give the cre

ations of nature—both animate and inanimate, and both at the 

microscopic and macroscopic scale—their symmetries and shapes. 

A n d forces in turn are de t e rmined by their o w n unde r ly ing 

symmetries . 

Nature's Own Mathematical Shapes 

A simple figure that emerges from exercises in geometric con

struction based on the golden triangle is the five-pointed star (the 

pentagram). Nature has its own pentagram in the starfish. 

Technically the animal is not a fish but an echinoderm, a member of 

a group that also includes the sea urchin, sea cucumber, and the sea 

lily. Most starfish have five arms; others resemble pentagons, and 

still others strut many arms; the creatures inhabit all of the world 's 

oceans. As one goes back and forth between the shapes described 

by mathematics and those encountered in nature, a sense emerges 

that the shapes that mathematics can describe have already been 

replicated by nature, and conversely the shapes that nature can pro

duce can also be described mathematically. 

An entirely different pattern in nature, the spiral or coil , is 

encountered at dramat ical ly disparate scales, and in basically 

three different forms—the hyperbolic, the Archimedean, and the 

logarithmic. The hyperbolic spiral, quite rare in nature, resembles 

the logarithmic spiral initially, but as it unwinds, the spiral opens 

up and becomes a straight line. Fronds of the sago palm and the 

f iddlehead, both types of fern, resemble hyperbolic spirals in that 

they leave the stem straight and only become coiled at their tips. 

The Archimedean spiral , a little less frequently encountered in 

nature, appears similar to a strip of material of uniform thickness, 

coiled tightly around a central axis. It is a spiral that replicates the 
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grooves of the old fashioned phonograph record, or a roll of tape 

wound on a spool. 

The Logarithmic Spiral: Spira Mirabil is 5 

The key to spiral formation in the organic wor ld is the different 

growth rates of cells on the two sides of a tissue, with the s lower 

growing surface being gradually enclosed by the faster growing 

surface on the outside. If the cells are of uniform size their linear 

arrangement forms a cyl inder ; wind ing the cyl inder uniformly 

will generate an Archimedean spiral. But if the cells are gradually 

increasing in size—the cell diameters defining a cone—then wind

ing the cone will give rise to the logari thmic spiral. This s imple 

rule offers a connect ion between a number of str ikingly differ

ent phenomena. A dramatic example is the shell of the chambered 

nautilus, Nautilus pompilius. The chambered nautilus is called a 

"living fossil" because its close ancestors, the ammonites, appeared 

at least 400 mil l ion years ago. The creature, however, has been 

anything but inert in its evolution, changing cont inuously and 

rapidly during the t imeline of geological epochs. The animal 

inside the shell extends and enlarges its home whi le forming a 

continuous rolled tube. As it g rows in size, the animal inhabiting 

the shell secretes material to create a wall behind it, then moves 

on (Plate 4, center left). 

Peter Stevens points out that the difference in growth in the suc

cessive chambers automatically causes the coiling to take place, 

thus no gene needs to remember or plan the final shape of the shell, 

rather, it needs only to facilitate a difference in growth between 

inner and outer surfaces of the shell. 6 Other examples of the loga

rithmic spiral in the organic world abound: the tusks of a masto

don, the horns on a ram, the shavings from a wood plane, the claws 

of a cat, the fangs of a saber tooth tiger, the dried leaf of the poin-

settia, the myriad gastropods, the cochlea in the inner ear, the 
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Figure 6 . 1 . The proportions of the DNA molecule 

human lip curved gently outward—all manifestations of the inner 

tissue growing faster than the outer. 

The D N A molecule (deoxyribonucleic acid), the agent of the 

genetic code, is a macromolecule in which a pair of columns of sugar 

and phosphate molecules are intertwined (Figure 6 .1). The unequal 

lengths in their edge bonds result in that helical shape of the struc

ture. Thus it is ultimately skewed molecular units that give shape to 

the double helix. The projection of the three-dimensional structure 

exhibited by the double helix onto a flat two-dimensional plane, the 

process that chemists call "graphing," creates a pair of intertwined 

sine curves. The Israeli biophysicist Harel and his colleagues, in meas

urements of the D N A molecule, 7 found for each cycle of the sine 

curves a length-to-width ratio of <p (—1.62). Astonishing! 

The logari thmic spiral pattern of the chambered nautilus, 

expanded by a factor of five million, could represent the swirling 

cloud patterns in a hurricane that stretches up to five hundred miles 

across; magnified another sixty million million times, the arms of 

a spiral galaxy that typically stretches 1 0 0 , 0 0 0 light years across 

(Plate 4, center and lower right). 
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The long-range force that locks celestial bodies in their eternal 

orbits is gravitation, and the dominant interaction at the level of 

atoms and molecules is derived from the electromagnetic force. Both 

interactions are called "inverse square forces," but is that the key to 

formation of spiral shapes? In the case of those solids among spiral 

patterns—the chambered nautilus, the horn of the ram—the spiral 

pattern emerged with cells on one side of a plane growing faster than 

on the other, and the interactions are short-range and internal, such 

as cohesion and adhesion. In the swirling clouds of a hurricane or in 

the vortex of a whirlpool, on the other hand, external forces are oper

ating. First there exist pressure gradients in the atmosphere that gen

erate the winds, then there is the coriolis force generated by the spin

ning earth. In fact, the spinning of the earth causes hurricanes (and 

whirlpools) in the northern hemisphere to rotate counterclockwise, 

and in the southern hemisphere to rotate clockwise. 

But what are the forces that cause spiral galaxies to assume their 

characteristic shapes? In irrotational motion, the inner parts of the 

galaxy rotate faster than the arms. Then why does a spiral galaxy not 

just wind up into a knot? How is it that galaxies preserve their spi

ral integrity for billions of years? Physical intuition would suggest 

that the astrophysicist seek solutions to these questions in dynam

ics (classical mechanics) and gravitation. Reality, however, has the 

solution flowing from a cross-fertilization of disciplines, where pop

ulation biology has to be blended with dynamics and gravitation, but 

requires a mathematical explanation beyond the scope of this book. 

Spiral Phyllotaxis 

Any discussion of spirals in nature would be incomplete without spe

cial attention directed to the spiral growth pattern in plants. The area 

of botany known as phyllotaxis comprises the arrangements of petals 

on flowers, leaves on stems, and branches on trees. This is a field in 

which the curious appearance of the Fibonacci numbers has long 
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been recognized. Intervals measured in arcs between branches in the 

poplar tree, intervals between thorns on a rosebush, as well as inter

vals in the delicate network of veins (such as in the leaves of the hardy 

ivy plant) are among the examples of plants associated with the 

divine proportion. While the proportions enhance the beauty of the 

plant, the geometry is found to be manifestly functional, enabling the 

plant to obtain maximum exposure to the sun and maximum nutri

ents for its cells. In short, nature almost always knows best. Stevens 

investigated numerous plant patterns, ranging from branches of trees 

to delicate petals of the most ephemeral flower. 8 In an examination 

of the cross section of the celery just above the meristem (the coni

cal mound of solid tissue at the base of the plant), he reported find

ing the stalks of the celery to be packed together closely, creating the 

swirling pattern of a pair of spirals—a clockwise spiral was countered 

by a counterclockwise spiral. Closer scrutiny revealed a more general 

scheme: when leaf bases develop in succession around the stem apex 

they fit between each other in a manner that composes a helical pat

tern, with each stalk riding above the older member of the pair of 

stalks in the preceding whorl. Variations of the helical pattern appear 

with stalks of one whorl interpenetrating and making contact with 

stalks of the previous whorls. 

A bunch of broccoli exhibits spirals in two different directions. 

The spirals appear at first sight to be quite nebulous in structure, but 

with careful examination the organization in logarithmic spirals can 

be identified. Pinecones viewed from their base exhibit logarithmic 

spiral patterns in their scales. The clockwise-to-counterclockwise 

ratio in all of these pinecones is 8:13. The chrysanthemum exhibits 

a phyllotaxis of 1 3 : 2 1 . Sunflower seeds form spirals that are consid

erably easier to identify than those in broccoli. Here the phyl

lotaxis—the ratio of clockwise to counter-clockwise spirals—turns 

out to be an unequivocal 2 1 3 4 . 

Similarly, when one examines the helix of thorns of a young 

hawthorn tree, one finds in two full circles around the stem a total 
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of five thorns, an arrangement characterized by 2:5. Apple, oak, and 

apricot exhibit a similar 2:5 pattern of phyllotaxis. As for sedges, 

beech, and hazel, a phyllotaxis of 1:3 is found; for plantain, poplar, 

and pear, 3:8; for leeks, willow, and almonds, 5 :13. When the dou

ble helix of the pinecone is flattened in the direction of its axis of 

symmetry, compound logarithmic spirals are seen to emerge. The 

pineapple, just like the pinecone, exhibits an 8113 spiral phyllotaxis. 

The daisy displays a clockwise-to-counterclockwise ratio of 21 :34 . 

Sunflowers, depending on their species, can have phyllotaxis of 

21 :34 , 55:89, or 144:233. In each instance, the terms in the ratio are 

members of the Fibonacci series. 

The reason for the occurrence of the Fibonacci numbers in such 

a diversity of plants turns out to be a necessary consequence of the 

growth pattern inherent in all of them. This is demonstrated by an 

analysis offered by Stevens, which begins by plotting the tips of a 

bunch of celery stalks. Through the points it is possible to draw a 

continuous logari thmic spiral. The circular arc between any two 

consecutive points is found in a precise measurement to be 137° 30 1 28" 

(=137.5077°). This angle divided by the angle in a full circular turn 

(360°) represents the ratio i37.5077°/36o°= 0.381 966, a value equal 

to the square of the inverse of 1.618 034, (or 0.618 034 2 = 0.381 966). 

Therein lies the spiral's relation to the golden mean. More signifi

cantly, Stevens draws all the possible smooth spirals through these 

points, both clockwise and counterclockwise. The results are com

pound spirals with phyllotaxis of 1:2 , 2:3, 3:5, 5:8, 8:13, 1 3 : 2 1 . The 

array of points not only generates all Fibonacci fractions, it gener

ates only Fibonacci fractions! 

Finally, examination of many species of trees reveals that a tree 

trunk, in rising, branches off at a certain elevation; then at a slightly 

higher elevation, one of these two branches divides again, but not 

the other. At this juncture, there now exist three branches. At a 

higher elevation still, two of three branches simultaneously appear 

to branch, but not the third. At this point the branches number five 
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in all. The next time a branching occurs, the number is most likely 

eight. Thus at any given elevation the number of extant branches is 

seen to be a Fibonacci number: 1, 2, 3, 5, 8. . . . This pattern appears 

frequently, but is not universal. That pattern of compliance to the 

Fibonacci scheme should be considered in the proper perspective. 

The plant is no more enamored of the golden mean than it is in 

applying mathematical computation before sprouting a stalk. 

Rather, it puts the stalks where they have the most room, where 

they can make the most of the nutrients and the sunlight available. 

As Stevens observes, "All the beauty and all the mathematics are the 

natural by-products of a simple system of growth interacting with 

its spatial environment." 1 0 

F L E E T I N G A N D I L L U S O R Y S P I R A L S 

Among artificially created spirals, it is the Archimedean that is by 

far the most frequently encountered. The storage of a variety of 

materials of uniform thickness, including most varieties of tape, can 

be achieved in the most compact and convenient form when 

wrapped around a spool. The hyperbolic spiral, which appears ini

tially as a straight line that near its tip curls up into a spiral, is seen 

much less frequently than the Archimedean spiral in works of art 

and in the artificial world in general. The logarithmic spiral, like 

the hyperbolic, is not seen frequently in artificial creations. But a 

helical shape, such as an ordinary circular staircase, when viewed 

along its axis will appear to converge in the manner of the loga

rithmic spiral. The view looking downward from the top of the 

double intertwined circular staircase of the Vatican Museum, built 

according to a design by Leonardo da Vinci, offers a dramatic illus

tration of this shape (Plate 5, top). The rifling inside the muzzle of 

a cannon has the function of imparting a precisely reproducible 

spin to cannonballs (and consequently a reproducible trajectory). 

When the muzzle is viewed along the cannon's axis, the rifling will 

appear as a number of intertwined logarithmic spirals. 
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Mario Livio describes the tantalizing problem faced by the pere

grine, a falcon that can fly at the blinding speed of two hundred miles 

per hour, but has the impediment of having its eyes on the sides of its 

head. If the falcon were to cock its head at an angle of 40 degrees rel

ative to its body axis (never looking away from its prey), it could in 

fact fly to it in a straight line, but then the air resistance would slow 

the falcon's speed substantially and increase its time of flight. It 

chooses instead to keep its head pointed along its body axis, peering 

sideways, keeping its prey in its sight continually, its trajectory 

describing a collapsing spiral. During its approach to its target its 

body axis makes a 40-degree angle relative to a purely circular tra

jectory (the same as the angle made by the vector of its actual trajec

tory and the vector joining the falcon and the prey). The falcon man

ages to optimize the time of flight to the prey while minimizing the 

air resistance and the length of trajectory; maintaining that constant 

angle results in the equiangular or logarithmic spiral. ' 0 As in the case 

of the bee that created the honeycomb in contiguous hexagonal cylin

ders (achieving minimum wall material and maximum volume), the 

falcon's solution derives from form following function. We could 

solve both problems readily by applying calculus, but nature in both 

instances has achieved the correct results by imbuing the creatures 

with the correct instinctive behavior. Finally, a fleeting spiral pattern 

also develops in the trajectory of a missile with a faulty engine noz

zle. The unbalanced torque in the thrust causes the missile to spin 

end-over-end, producing in a distinct logarithmic spiral for a contrail 

(see Plate 4, bottom left). 

The Divine Proportion and Human Anatomy 

The space between the slit of the mouth and the base of the nose 

is one-seventh of the face... . The space from the mouth to below 

the chin will be a quarter part of the face, and similar to the width 

of the mouth... . The space between the chin and below the base 
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of the nose will be a third part of the face, and similar to the nose 

and the forehead. The space between the midpoint of the nose 

and below the chin will be half the face. . . . If you divide the 

whole of the length of the nose into four equal parts, that is to say, 

from the tip to where it joins the eyebrows, you will find that one 

of these parts fits into the space from above the nostrils to below 

the tip of the nose, and the upper part fits into the space between 

the tear duct in the inner corner of the eye and the point where 

the eyebrows begin; and the two middle parts are of a size equiva

lent to the eye from the inner to the outer corner." 

—Leonardo da Vinci 

Leonardo was neither the first nor the last to quantify ideal facial 

proportions, although with obsessive precision he wrote more than 

eight hundred words describing the proportionali ty of the face 

alone, before going on to describe the proportions of the rest of the 

body. Since the Golden Age of Greece, proportions in the human 

figure have been a source of considerable preoccupation among 

artists. In examining sculpture of classical Greece and Rome, we 

had seen one special case—the ratio of total height to the height 

of the navel as (p. In the twentieth century Le Corbusier made a sys

tematic study of these proportions and found connections to the 

divine proportion, or golden mean. 

Born Charles-Edouard Jeanneret in the town of La Chaux-de-

Fond, Switzerland, in 1887, Le Corbusier adopted the name he made 

famous only after he left Switzerland and settled in France. Trained 

initially as an engraver of watches, he became an architect and 

developed a special vision for simplicity, functionality, space, and 

proportion. A house he designed in the suburbs of Paris and now 

serving as the headquarters of the Le Corbusier Society is a play on 

the golden mean. But whether applying his imagination to design-



F i g u r e 6 . 2 . T h e d i v i n e p r o p o r t i o n i n t h e h a n d . W i l h e l m R o n t g e n ' s 

x - r a y o f t h e h a n d o f a h u n t e r w o u n d e d b y b i r d s h o t ( 1 8 9 6 , B e r l i n ) . T h e 

i n s c r i p t i o n b e l o w t h e p h o t o i s a n e n t r y b y P r o f e s s o r P u p i n a t 

C o l u m b i a U n i v e r s i t y , a c o n t e m p o r a r y o f R o n t g e n . 
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ing furniture, buildings, or an entire town, his quest was always the 

search for salient propor t ions and harmony. Le Corbus ie r cre

ated a graphic known as Modulor i l lustrat ing the parts of the 

human body. The golden ratio, 0, occurs over and over again in 

the graphic: the height of the head of the figure to the height of 

the navel, the dis tance from the navel to top of the head to the 

dis tance from top of the head to the end of his outs t re tched 

hand. The inescapable conclus ion from examin ing all of Le 

Corbusier 's designs is that this man was totally preoccupied with 

the divine proport ion. 

A fascinating demonstrat ion of the prevailing proport ions in 

the human body is found in the bones of the hand. This is exhibited 

dramatically in an early x-ray image produced by Wilhelm Rontgen, 

w h o first discovered x-rays, invented the x-ray machine, and, 

indeed, was awarded the first Nobel Prize in Physics for his work 

(1901 ) . The product of a technology in its infancy, the image—mor

bid in its content in revealing the presence of birdshot in the hand 

of a vict im of a hunting accident—shows the bones with excep

tional clarity (Figure 6 .2). The bones of the wrist are known as the 

ca rpa l s and those in the hand , as the me taca rpa l s . T h e first 

metacarpal, connected to the thumb, has a length we shall desig

nate by A'B'. The bones in the thumb are the proximal and distal 

phalanges, the lengths of which we shall designate by B'C and CD', 

respectively. In the case of the index finger, the second metacarpal 

(of length AB) is connected to the bones of the finger—the proxi

mal, medial, and distal phalanges (the lengths of which will be des

ignated by BC, CD, and DE, respectively). The inherent proportions 

of these bones on average are surprisingly close to the law of divine 

proportion. For the bones of the thumb: 
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F o r t h e b o n e s o f t h e i n d e x f i n g e r : 

In the first century B.C. the Roman artist-architect Vitruvius for

mulated an architectural theory inspired by proport ions in the 

human body, and indeed it is this message that Le Corbusier's archi

tectural theory echoes in the twentieth century. For Leonardo, 

deriving inspiration from natural design was always compelling. 

Accordingly, when a new edition of Vitruvius was considered for 

publication in 1 5 1 1 , who better could there have been than Leonardo 

to illustrate the Greco-Roman canon of perfect human proportions. 

Leonardo created one of the most familiar drawings in Western art, 

the Vitruvian Man (Figure 6.3). His arm span equals his height. 

When he does a spread eagle with his arms and legs he is inscribed 

in a circle, the center of which is located at the man's navel. The 

ratio of his height divided by the height of his navel is the classic 

golden ratio, <p = 1.618... 

A contemporary clinical orthodontist, Robert Ricketts, has 

spent his career correcting a wide variety of congenital and acci

dental disfigurations. ' 2 His systematic investigations into the 

growth pattern of the lower jaw (mandible) suggest that the best 

description of the growth pattern is in terms of a smooth spiral 

curve. Specifically, he points to the eruption of the lower teeth and 

their forward migration during two periods of growth—between 

ages three and eight, and between thirteen and eighteen—as show

ing a remarkable similarity to the shape of the logarithmic spiral. 

His diagrams are reminiscent of the shape of the human ear, and so 

too of the shape of the human embryo at about six weeks—also log

arithmic spirals. Leonardo during his Milanese period had under

taken anatomical studies of animals, and while performing a dis-



F i g u r e 6.3. L e o n a r d o d a V i n c i , The Proportions of the Human Body 

According to Vitruvius (The Vitruvian Man). P e n a n d b r o w n i n k , b r u s h 

a n d w a s h o v e r m e t a l p o i n t , G a l l e r i e d e l l ' A c c a d e m i a , V e n i c e 
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All of these values are surprisingly close to the ninth, tenth, 

eleventh, and twelfth terms of the Fibonacci series (i.e., 2 1 , 34, 55, 

section on a cow, sketched the embryo, also revealing that unmis

takable logarithmic spiral (in the Codex Atlanticus). 

D I V I N E P R O P O R T I O N I N F A C I A L A E S T H E T I C S 

The ratio of the height of an individual to the height of the navel and 

the proportions of a variety of contiguous bones in the hand were 

seen to be related by the golden ratio, and artists since classical times 

to have been cognizant of those proportions. In his aesthetic and 

orthodontic surgery, Ricketts has made his own extensive studies on 

this topic, and uses his patented "Golden Divider," a caliper with 

three prongs (instead of the usual two), with the prongs designed 

always to maintain spacing between the prongs of i :0 (Figure 6.4) . 

In one special study, Robert Ricketts reports the results of meas

urements on a number of female photographic models, posited as 

"physically beautiful women." The technical terms used by the aes

thetic surgeon to identify a number of points on the face are indi

cated in the pencil sketch. 1 5 These are, clockwise from the top right: 

a point located very close to the hairline, trichion, T; temporal soft 

tissue, T S ; the outer corner of the eye, lateral canthus, L C ; the cen

ter of the curve on the outer edge of the nostril, alar rim, A L ; the lip 

embrasure or the lateral edge of the mouth, chilion, CH; the lower 

border of the soft tissue of the chin, menton, M; the outer edges of 

the nostrils, lateralnares, L N ; the cheek prominence, ZP; and the 

lower border of the curve of the eyebrows, EB. 

For a variety of distances measured vertically on the faces of the 

ten models, Ricketts reports the following average values: 

A L - C H 21.3 mm T - L C 52.1 mm T - A L 88.6 mm 

C H - M 33.7 mm A L - M 54.5 mm L C - M 89.3 mm 

L C - A L 34.7 mm L C - C H 55.6 mm T - M 1 4 4 3 mm 



EB 

Figure 6.4. Superimposed on a pencil sketch of Rochele Hirsch by the 

author are the sites on the face identified by the aesthetic surgeon: tri-

chion (T), lateral canthus (LC), chilion (CI I), etc. Without the smile a 

golden triangle can be visualized with the acute angle (36°) located at 

the bridge of the nose and the 72° angles defining the chin. With the 

smile, however, the golden triangle transforms into a pentagon that 

can be discerned in the drawing. The left inset illustrates Dr. Robert 

Ricketts's patented Golden Divider. 
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89, 144)- The fact that the unit of measurement used, the millime

ter, yields these values so closely approximating the Fibonacci num

bers is just a happy coincidence, alleviating the need to normalize 

them to an arbitrary dimension. Three of the distances measured— 

trichion to lateral canthus ( T - L C ) , alar rim to menton ( A L - M ) , and 

lateral canthus to chilion ( L C - C H ) , and two other distances, chil-

ion to menton ( C H - M ) , and lateral canthus to alar rim ( L C - A L ) — 

are no more than 3 to 4 percent at variance with each other. The val

ues appearing in the preceding table yield within reasonable 

accuracy the law of divine proportion: 

For horizontal proportions on the photographers ' models, 

Ricketts reports relationships between the width of the nose, the 

mouth, the eyes, and the temple. The width of the nose, defined by 

the distance between the lateral nares (LN) displays an average value 

of 28.4 mm. The width of the mouth, defined as the distance between 

the right and left chilion (CH) measures on average 45.4 mm, or 1.60 

times the width of the nose. The distance between the outer edges of 

the eyes (LC) has a mean value of 75.3 mm, or 1.66 times the width 

of the mouth. The distance between the temples (TS) is on average 

1 1 8 . 2 mm, or 1.57 times the distance between the outer edges of the 

eyes. The value 1.57 happens to very nearly equal n/z, or the average 

girth of the head. It is a noteworthy happenstance that the distance 

between the outer edges of the eyes is equal to one-fourth of the cir

cumference of the head. As for the numbers given above for left-to-

right measurements, T S ; - T S W , LC^-LCj,, C H r C H K and L N ^ L N ^ , the 

relationships can be summarized roughly by 
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Aesthetic dentists have a formula for reconstructing the teeth 

for a "beautiful smile." 1 4 First, the teeth should be symmetric on the 

two sides of the midline, with the each of the central incisors dis

playing the length-to-width ratio of 4:3 (or 1.33). Another formula 

has the two front incisors together forming a golden rectangle con

figured horizontally, each incisor then having a length to width 

ratio of approximately 5:4 (1.25). Then, inspired by the golden ratio, 

this formula calls for the central incisors to be 1.62 times wider than 

the pair of lateral incisors bracketing them. As the teeth curve away 

from the viewer, the lateral incisors should appear to be 1.62 times 

wider than the next pair of teeth, the cuspids, which in turn should 

appear to be 1.62 times wider than the first bicuspids bracketing 

them. These values for the relative width of teeth, measured from 

the midline, comprise the series <p°, 0~', 0~ 2 , 0 " ' . . . (; , 0.618, 0.382, 

0.236, . . .). 

M A R Q U A R D T ' S M A S K 

Stephen Marquardt, a retired oral and maxillofacial surgeon at the 

U C LA Medical Center, has done impressive research on the types 

of proportions and symmetries observed in human aesthetics. He 

has performed surgery on individuals who desire a different, gen

erally more attractive look, and he has operated to restore the 

appearances of individuals who have been injured in accidents. His 

work has culminated in a series of beauty masks replete with a cel

ebration of the divine proport ion. Overlaying a subject 's photo

graph with a properly scaled mask is tantamount to applying a 

mathematical test on the subject's physical looks—the separation 

of the eyes, the relative lengths of the forehead and nose, and so on, 

all coming into play. Marquardt 's original mask represented the 

proportions of an ideal face in frontal repose (FR) . Subsequently, 

he extended his beauty mask to reflect Frontal Smiling (FS) , gen

der differences, race, and indeed even age differences. 
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In the FR-mask there is the appearance of a golden triangle 

(with characteristic 72°—36°—72° angles) around the nostrils, and 

a transformation into a pentagon around the mouth and chin when 

the subject presents a broad smile. Marquardt is currently engaged 

in creating three-dimensional versions of the mask that could be 

rotated and v iewed in the manner of virtual reality. This would 

allow the mask's superimposition on portraits depicting subjects in 

half or three-quarter profile. ' 5 

Marquardt's Web page illustrates his "0 -Mask , " as it is superim

posed on a selection of six legendary beauties spanning thirty-two 

centuries—from Queen Nefertiti to Marlene Dietrich and Marilyn 

Monroe (Plate 6) . 1 6 The portrait of each woman has been paired with 

the same portrait overlaid with the 0 -Mask . The near precise fit in 

each instance appears to make a compelling case for the mask's valid

ity as a gauge for human pulchritude. Facial features related to the 

divine proportion are precisely the ones our species associates with 

beauty, and indeed appear timeless. The modern codification is a fur

ther refinement of the proportions specified by Leonardo. 



Thefirst intention of the painter is to make a flat surface 

display a body as if modeled and separated from this 

plane.... This accomplishment... arises from light and 

shade.... Perspective, with respect to painting, is divided 

into three parts... thefirst is the diminution in the size of 

bodies at various distances; the second part is that which 

deals with the diminishing in color of these bodies; the third 

is the diminution in distinctness of the shapes and bound

aries which the bodies exhibit at various distances.' 

—Leonardo da Vinci 

>ccording to physics, with receding distance the intensity of light 

from the scene (the source) drops off as the inverse square of 

the distance. There is additional attenuation of this intensity from 

the absorption and scattering of light by the atmosphere interposed 

between the subject and the viewer. This scattering or dispersion 

of light by the atmosphere also causes degradation in the resolution 

of the image as well as dilution or smearing of the wavelengths 

defining colors—a process that also leads to the blue appearance of 

the sky. Since the rays of light, traveling in straight lines, are all 

1 1 2 
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received by the eye at a point, the size of the image must drop off 

linearly with distance. 

Leonardo 's observat ions in that opening quote are entirely 

compatible with the principles established by science. Dust par

ticles, microscopic pollen, and water molecules suspended in the 

air cause light to scatter and change frequencies. The effect is to 

add "white light," washing out the vividness of the spectrum of 

colors from the source. As for the "blue of the sky," it can be 

explained by the Rayleigh scattering phenomenon, demonstrated 

mathematically almost four hundred years after Leonardo made 

the pronouncement. 

A property of light that is crucial to the scientist, but inconse

quential to the artist, is its finite speed, rendering the scene viewed 

a composite image in time. It is essential for the astronomer to take 

into account that in the image of the night sky some stars lie a few 

light-years away, while others are hundreds, thousands, or millions 

of light-years away. It may be interesting, although, entirely irrel

evant for the portrait painter, that in the image of his subject, light 

from the sitter's cheeks and ears may be "older" by a fraction of a 

nanosecond than light from the tip of his nose (depending on how 

the subject is turned). And it is also irrelevant that in the image 

viewed by the landscape painter, light from the distant mountains 

and valleys is older by a few microseconds than light from objects 

in the foreground. 

Perspective, Symmetry, and Shape 

The theory of linear perspective is of central importance as a tool 

for the painter to create an illusion of depth—the appearance of 

three dimensions on a two-dimensional plane. It was already pres

ent in the works of Agatharchus, scene painter for the great tragic 

dramatist, Aeschylus, in the fifth century B . C . Indeed, so effective 

were Agatharchus 's scrims (backdrops) that they gained Plato's 
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enthusiastic praise of the illusion of reality presented. Although no 

perspective paintings from classical Greece have survived, Pompeii, 

that veritable time capsule from A . D . 79, offers a window onto 

Roman architectural drawing and most likely a window onto the 

earlier Greek as well . Neuroscientist Christopher Tyler, an author

ity on human vision and separately on the theory of perspective in 

painting, suggests that it may even have been Greek artists who 

painted those architectural murals in Pompeii in which a measure 

of perspective is displayed. 2 

Euclid (325-270 B.C.) formalized geometry, but the use of per

spective in ancient art was based on the artist's intuition rather than 

on any mathematical authority. In the architectural drawings in 

Pompeii, for example, there are unrelated vanishing points along 

a pair of parallel horizon lines, whereas the correct picture in the 

one-point perspective scheme calls for a single horizon line and a 

single vanishing point. Medieval and even early Renaissance artists 

had been content to represent their subjects symbolically. Since 

their subjects were usually religious, the backgrounds were gener

ally flat gold leaf, as far removed from reality and perspective design 

as heaven is from earth. 

Projective geometry, the mathematics underlying the rules of 

perspective, was born in the Renaissance and indeed may have ush

ered in the art of the High Renaissance. One-point perspective 

appeared first in the works of Masaccio and Masol ino in the first 

half of the fifteenth century, coming to full fruition in the works of 

Leonardo da Vinci in the second half of the century. Although the 

scheme was firmly established with Leonardo, it saw further 

refinement in subsequent centuries with the introduction of two-

point perspective a century later and three-point perspective much 

later—after cameras with tiltable lenses for architectural renditions 

were invented in the twentieth century. 

The actual timeline of the development of projective geome-
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try so closely parallels the development of the rules of perspec

tive in art that it strongly suggests an all-pervasive interaction, the 

in terdynamics between art and science. It was the Renaissance 

artist w h o insisted on the need to represent nature as it actually 

appeared, not as it was thought to appear. This vision turned out 

to be a transcendent gift of the artist to the scientist. The role of 

Leonardo in this context cannot be overstated. One of the most 

significant drivers in the development of the theory of perspec

tive was Leonardo, the paragon of the artist-scientist: a consum

mate artist doing science, a consummate scientist doing art. Later 

we will see three portraits of women that Leonardo painted at fif

teen-year intervals . With each portrait Leonardo returned to 

painting having done little art in between, but each time showing 

astonishing growth as an artist, not just starting where he left off, 

but at an astoundingly higher level. In the time between paintings 

he did everything else—the mental inventions, the sketches, the 

anatomical studies, designs of bridges, spring driven vehicles, 

thoughts of human flight and experiments with optics. Painting 

alone was s imply too easy, and slavishly producing canvas after 

canvas without substantial experimentation was the lazy way out. 

He berated and cajoled other artists: "Those w h o fall in love with 

practice without science," he wrote, "are like pilots w h o board a 

ship without rudder or compass." 5 Leonardo was bridging the two 

fields of art and science, and creating as he went along. Raphael, 

on the other hand, superb draftsman, pract iced exquisite, flaw

less composi t ion and perspect ive, but was not "a dr iver" in the 

same sense. 4 He applied established rules but did not discover any 

new ones. 

If one is to seek an answer to why the artist in the Renaissance 

became aware of issues of perspective, one has to look no further 

than the extraordinary serendipity that saw the artist as an archi

tect and engineer. The image of the Renaissance man as one fre-
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quently preoccupied with philosophy, literature, poetry, music, 

mathematics and natural philosophy (science), as well as with the 

skills of the artist-architect, is not just an empty metaphor. The 

cross-semination of the variety of interests he brought to his work 

and the presence of enlightened patrons willing to listen served as 

key ingredients in the remarkable intellectual and artistic blos

soming of the period. 

In a number of instances there are opportunit ies to see how 

the artist started the work and how a painting was thought out or 

abstracted. In some cases detailed studies for a final painting have 

survived as cartoons. In others, a sketch can be seen on the can

vas of the unfinished work. Modern technologies such as stereo

scopic microscopy, infrared reflectography, or x-radiography can 

be applied to the finished works, making overpainted details vis

ible. Before painting the Adoration of the Magi the twenty-nine-

year-old Leonardo produced intricate perspective and composi

tional studies for his design. The painting itself was left unfinished, 

but it became one of the gems of the Uffizi in Florence. This is a 

work we shall revisit in Chapter 9. 

Meanwhi le , Leonardo 's northern contemporary, Albrecht 

Durer, was so preoccupied with understanding the issues of per

spective that in his works of art he adhered strictly to the system he 

was developing independently, but he also created works of art, 

mostly woodcuts, demonstrating actual techniques for achieving 

error-free perspective. In one woodcut the artist is seen observing 

his subject from a fixed point of perspective through a frame onto 

which a grid has been scored. As he observes his subject through 

the scored frame defining his plane of view, he painstakingly maps 

out the image on the drawing board on his table, similarly scored. 

In another woodcut we see mounted within the frame a pane of 

glass (with a scored grid). The pane of glass is hinged in the style of 

a window that can swing outward, so that the angle it makes with 

the plane of v iew can be adjusted (Figure 7 . 1 ) . The artist seeks to 
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correlate the intersection of rays of light from his subject with the 

angled pane and the visual plane defined by the frame itself. 

Projective Geometry 

The quest of the Renaissance artist was to formulate theorems that 

would assist in precisely mapping a three-dimensional scene ob

served (or imagined) onto an imaginary pane of glass, or specify

ing exactly how a scene would appear on the two-dimensional 

pane. Obviously, the canvas itself is not transparent, but the scene, 

properly visualized on that imaginary pane, would then be recre

ated on the canvas. The questions that the Renaissance artist raised 

and the theorems he deduced became seminal issues for a new 

branch of mathematics, projective geometry. 5 In the hands of the 

professional mathematicians the field blossomed into an elegant, 

general, and powerful geometry, with applications to physics, crys

tallography, and chemistry. 

A square at a distance will have different appearances depend

ing on the vantage point of the observer—an intuitively obvious 

result, and one that can be proven by ordinary Euclidean geometry. 

What assists the artist in deducing the proper shape is that trans

parent plane interposed between the observer's eye and the subject, 

the square. A single square floor tile viewed directly from above will 

have a square appearance with the normal 90-degree vertices and 

sides of equal length. But observed at an oblique angle, an array of 

square tiles will have the shapes of quadrilateral figures, with par

allel lines, defined by the edges of the tiles, appearing to converge 

at vanishing points. Nonetheless, the impression they create will be 

precisely that of square tiling. 

The Dutch genre artists of the seventeenth century, especially 

Pieter de Hooch and Johannes Vermeer, are known for those impec

cable lines of perspective with floor tiles, doorways, and walls all 

defining lines of one-point and two-point perspective. Vermeer 's 
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magnum opus, The Art ofPainting (Plate 7 ) , shows that the appearance 

of the individual tiles on the flat space of the painting is anything but 

square, but the pattern conveyed is clearly that of square tiling. 

Parallel lines extrapolated from opposite edges of the tiles lead off 

into infinity, where they converge at a pair of vanishing points on the 

horizon line, thus demonstrating two-point perspective. 

Vermeer created tantalizingly few paint ings—approximately 

three dozen, only two dozen of which have survived—half a paint

ing for each year of his short lifetime, and half as many as Rem

brandt's self-portraits alone. He created some of the most com

pelling works in the history of art, yet his personal life is shrouded 

in mystery. Common to nearly all his paintings are the unerring 

perspective and the nature of the scene—set in his studio with a 

female subject. After his father died when the artist was twenty, he 

was left to live with his mother and sister. When he took a wife, 

Catharina Thins, he moved into a rent-free house provided by his 

mother-in-law, again making his immediate companions women. 

When Catharina had children, a business at which she was beyond 

Figure 7 . 1 . Albrecht I Hirer, De Symmetria Partium Humanorum Corporum 

(Draftsman Doing Perspective Drawings of a Woman), 1 5 3 2 . The 

Metropolitan Museum of Art, Gift of Felix M. Warburg, 1 9 1 8 . 

(Courtesy The Metropolitan Museum of Art, New York) 
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prolific—bearing fifteen children, eleven of whom survived—there 

was again a preponderance of girls. This sea of females that sur

rounded him may have colored his choice of subjects for his paint

ings. In all but two of his single subject paintings the subject is a 

woman. Yet he has portrayed these women so sensitively, in works 

that still confound and amaze us, works described as "serene and 

unnerving, sensuous and disembodied." 6 They appear mellifluous, 

placid, and always timeless. 

As a favorite son of the Dutch school Vermeer is second only to 

Rembrandt, who had a prodigious output. Although some of Ver-

meer's Dutch contemporaries, especially Rembrandt and even Franz 

Hals, may have painted more forceful and dramatic psychological 

characters, their subjects are distinctly seventeenth-century Dutch 

contemporaries of the artists. With Vermeer's subjects there is a time

less character to their visage; they could be our contemporaries. 

Except for a few resplendent outdoor scenes of Delft, the background 

is almost always the same: the artist's studio, simple props chosen for 

the occasion, subdued light from a window at the left. 

Phillip Steadman, an architect by training, w h o analyzed 

Vermeer 's paintings painstakingly for two decades and tracked 

down the few houses in which Vermeer lived, recently published 

a theory about Vermeer's use of a camera obscura, or a type of "per

spective box" similar to the one used by Samuel van Hoogstraten, 

in planning out his composit ion and achieving impeccable per

spective (the simple optics involved consists of a pair of double con

vex lenses mounted in the aperture of the box) . 7 Steadman's theory 

is vigorously disputed by art historian Walter Liedtke. Focusing on 

one painting, The Milkmaid, Liedtke writes, "It is not photographic, 

nor even materialistic effect, but an illusionistic device that works 

splendidly in that small, intensely colored picture. . . . Vermeer 

achieved an effect similar to that seen in a camera obscura (or a 

photographic reconstruction of how they work) , but he was also 

enhancing effects of light that had been described by Dutch artists 
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a few decades earlier (for example, Franz Hals)." Moreover, accord

ing to Liedtke, Vermeer may be unusual in his talent but is not really 

apart from the prevailing Delft school in technique, and "extraor

dinary talents can only come into being if they have the blood of 

such a community in them." 8 Without jumping headlong into the 

fray, I believe from my personal perspective as a scientist-artist 

there is most likely some truth to Steadman's claim as well as 

Liedtke's counter. Vermeer was indeed extraordinari ly talented, 

and the fascination with new instruments was part and parcel of 

the Dutch Golden Age. 

The controversy regarding whether and to what extent Vermeer 

may have used optical artifices to achieve the beguiling effects in his 

paintings may never be resolved. One undisputed fact, however, is 

that Vermeer did have access to the finest lens makers of the time. 

His closest friend was Antonie van Leeuwenhoek, inventor of the 

microscope. The refracting telescope was invented in Holland, and 

the exceedingly successful wave theory of light still used in elemen

tary physics was developed by another Dutch compatriot, Christian 

Huygens. The inarguable fact is that there was evolving around 

Vermeer optical theory, and applications for art and science, and he 

was both a generous contributor to and a grateful benefactor of them. 

While Vermeer and the Dutch masters were plying their trade 

in Holland, a self-taught French architect-engineer, Girard Desargues, 

formulated a powerful theorem in projective geometry, still known 

as "Desargues's theorem." The theorem—complicated conceptu

ally and difficult to prove mathematically—pertains to points of 

convergence for lines in a geometric construction. In a number of 

works by acknowledged masters, including those serene and sub

lime indoor scenes of Vermeer and perhaps in the trademark 

Venetian panoramas of Canaletto, there appears intuitive compli

ance with the tenets of Desargues's theorem. And much earlier still, 

Leonardo, in composing the Last Supper, had displayed thorough 
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understanding of the derived perspective of the theorem. The per

spective underlying the Last Supper is seen in the upper left inset 

of Plate 8. 

One-, Two-, Three-, and Four-Point Perspective 

Rather than getting mired further in the mathematical aspects of 

perspective, I shall examine the notions of one-point, two-point, 

three-point, and four-point perspective graphically with my own 

work, some of it created for my book of lithographs, Oxford and the 

English Countryside.9 In one-point perspective a convenient artifice 

an artist might use is a perfectly clear cube, with minimal refrac

tion, or light bending. The opposing faces of the cube are parallel 

to each other; the edges can be extrapolated to a vanishing point on 

the horizon line. Depending on whether the cube is v iewed from 

above or from below, the horizon line will descend or ascend 

accordingly—but each time with the lines of perspective converg

ing on the horizon line. The cube can represent a model for the inte

rior of a room or, just as effectively, a street scene with the fronts of 

facing buildings parallel to each other (Figure 7.2). 

Among the finest treasures of the Vatican are the series of mon

umental frescos Raphael executed between 1509 and 1 5 1 1 . In one, 

the School of Athens, Raphael integrates three elements of interest to 

us here. First is the breathtaking demonstration of one-point per

spective, which had come into full fruition at the turn of the six

teenth century (Plate 9). Then we have a group portrait of the great 

natural philosophers of antiquity, a historical composite spanning 

approximately eighteen centuries—from Heraclitus (active sixth 

century B.C.) to Averroes (active twelfth century A.n . ) . Finally there 

are Raphael's contemporaries—other artists, who serve as models 

for the philosophers. The mural offers an extraordinary real-life 

group portrait. 
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V P 

Figure 7.2. Diagrams of (A) one-point perspective; (Bi, B2) two-point 

perspective; (C) three-point perspective 

The sprawling character in the light blue toga in the lower cen

ter is Diogenes (c. 412-323 B . C . ) . In the lower left the man scrawling 

mathematics on a tablet, with two observers looking over his shoul

der, is Pythagoras (c. 560-480 B . C . ) . At the bottom right, engaged 

in a geometric construction with a compass, while four young men 

watch intently, is the figure of Euclid, the geometer (c. 325-270 

B . C . ) . At the top of the stairs and just below the colossal statue of 

Athena is the likeness of Socrates (479-399 B . C . ) . For the foregoing 

philosophers the artist-models are not known, although the model 

for Euclid is thought to be the architect Bramante. The brooding, 

dark, lonely character near the bot tom of the mural , leaning on 

his e lbow and seemingly in deep concentrat ion, is meant to be 
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Heraclitus, for whom the model is Michelangelo (1475-1564) . The 

orthogonals (radial lines) of the one-point perspective employed 

converge on the two central characters seen at the top of the stairs: 

on the right, Aristotle (384-322 B . C . ) , and on the left, Plato (427-347 

B . C . ) , for w h o m the model was Leonardo da Vinci . In the extreme 

lower right a cluster of four men engages in conversation, one rep

resenting Zoroaster (fifth century B . C . ) and another, Ptolemy, each 

holding a globe. The second man from the right in that group, serv

ing as host for the viewer, is the artist himself, Raphael. Historically 

the Renaissance artist, especially in the unique persona of Leonardo 

da Vinci , artist-scientist, preceded the Renaissance scientist in 

learning to observe nature, and especially how to ask the right ques

tions, not just to hypothesize and introspect. 

In two-point perspective there exist two vanishing points, and 

generally the subject, perhaps a building, is seen edge on. The cen

ter of gravity of each scene is the cube in the foreground. The upper 

and lower horizontal edges are extrapolated into the distance where 

they converge on a horizon line. The lines of perspective from four 

of the parallel edges of the cube converge at one of the two vanish

ing points, and the lines of perspective from four other edges (per

pendicular to the first set) converge at the other vanishing point. In 

one instance the observer is above the top surface of the cube 

(Figure 7.2 B 2 ) ; in the other the observer is below, looking upward 

at the bottom surface of the cube (Figure 7.2 B i ) . It is readily seen 

that if the cube is rotated about a vertical axis passing through the 

center of the cube, the vanishing points move horizontally along 

the line of sight, the horizon line. 

An example of two-point perspective is seen in my own ink 

sketch (Figure 7.3). The scene is the northwest corner of the 

Supreme Court Building in Washington, D.C., where columns with 

ornate Corinthian capitals stand below the pediment. It is appar

ent that by rotating the subject around a vertical axis, one of the two 

vanishing points can be rotated to a point behind the cube, but then 
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VP-1 VP-2 
Figure 7.3. Two-point perspective illustrated in the detail of the United 

States Supreme Court Building, Washington, D.C. (ink sketch by the 

author) 

the other vanishing point will recede further into the distance on one 

side or the other. In the drawing, if the lines of perspective (drawn 

along the edges of the building) are extrapolated far enough, they 

would be found to converge at two separate vanishing points. These 

vanishing points VP- i and VP-2 are located on the horizon line. 



VP-3 

Figure 7.4. Three-point perspective illustrated in a view of Tom Tower, 

Christ Church, Oxford (lithograph by the author) 
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In three-point perspective three separate vanishing points are 

utilized in giving the scene depth, while emphasizing the height of 

a subject. The scene depicted is either looking down from a great 

height (such as an aerial perspective of skyscrapers), or looking up 

to a considerable height from ground level. As in the preceding 

cases the "center of gravity" of the scene is the cube. A normal, or 

perpendicular vector is constructed at the center of the bottom sur

face of the cube (dotted line) in order to define the direction of the 

third vanishing point, or where the lines extrapolated from the ver

tical edges of the cube all converge (Figure 7.4). The three vanish

ing points are V P - i , VP-2 , and VP-3. 

Finally, in four-point perspective, there are four vanishing points: 

two converge on the horizon line, and the other two, at a pair of 

points far above and far below the subject. A simple scenario can 

be invoked in order to visual ize the vanishing points at the top 

and bottom: an observer is placed at the fifty-first floor of a build

ing across the street from the 102-s tory Empire State Building. As 

the observer v iews the building, the top will appear to converge 

at a vanishing point far above the building, and so too the bottom 

of the building, which will appear to converge at a point far below 

ground level. (Four-point perspect ive has not been il lustrated 

among these figures.) 

The Golden Rectangle and Graphic Composition 

So far, we have seen the golden rectangle and the law of divine pro

portion first as geometric constructions and subsequently as the 

generator of the logarithmic spiral, the pentagram, and the penta

gon. In the last chapter we noted that many of the patterns and reg

ularities encountered in nature were seen to parallel those mathe

matical constructs. The pyramids and the Parthenon were found to 

be related to the golden ratio. In the context of graphic art, the 



Figure 7.5. The composition of the author's lithograph Church Lane, 

Ledbury, England, is based on the subdivision of the golden rectangle 

seen in the inset figure, the "sweet spot" located in the lower portion 

of the rectangle. 
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golden rectangle becomes an artifice to organize artistic composi

tion. And indeed there is evidence that, whether consciously or 

unwittingly, artists often imbue their works of art with this pro

portion, select their vantage points accordingly, and wherever pos

sible site their subjects so that certain lines emerge as especially nat

ural. Many of these lines coincide with the geometric construction 

lines partitioning the rectangle, and many of these lines also coin

cide with the lines of perspective. 

Initially a canvas wi th length-to-width ratio approx imat ing 

the propor t ion of the golden rectangle is selected: a pair of 

sequential numbers of the Fibonacci series, for example, 21 by 34 

inches on the imperial system or perhaps 1 0 0 by 162 centimeters 

(about 40 by 66'A in.). Although this scheme can be used equally 

effectively with the canvas configured horizontally or vertically, 

only the latter case wil l be demonstrated. The canvas posi t ioned 

vertically has a full-width square delineated either in the upper 

part of the rectangle or in the lower part. The former is especially 

conduc ive to portrai t compos i t ion , the latter to street scenes. 

The quadrilateral area formed by the intersection of the diago

nals defines the "sweet spot" (akin to that on the face of a ten

nis racket), inviting placement of an especially salient part of the 

scene. 

I used this scheme when I did my ink drawing Church Lane at 

Ledbury, England (F igure 7.5). The scene has considerable bilat

eral symmetry, one side virtually mirror ing the other. The sim

ple network of diagonals of the golden rectangle closely resem

bles the intricate lacework of perspect ive lines in the one-point 

perspective scheme examined earlier. The representational artist 

has artistic freedom—to select the angle, pick the correct t ime 

of day for proper lighting, lower or raise branches of trees, add 

people, and subtract people, but not to redesign a building. The 

use, at least by the author, of the technique descr ibed above, 
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reflects a bel ief that doing so wi l l op t imize the chance of ren

dering justice to the scene depicted and to the abstract require

ments of art. 

Fechner's Data 

H. E. Huntley, writing about experimental aesthetics, reported stud

ies by a number of German psychologists of the late nineteenth and 

early twentieth century regarding preferences for rectangles of dif

ferent proportions. 1 0 In 1876 Gustav Fechner made an inventory of 

thousands of common rectangular shapes—from windows to play

ing cards, from book covers to writing pads—and found an unusu

ally high occurrence of rectangles reflecting the shape of the golden 

rectangle. Subsequently, he canvassed large groups of people and 

tabulated their preferences for rectangles of different length-to-

width ratios: 1 : 1 , 6:5, 5:4, 4:3, 10:7, 3:2, <j)= 1.618, 23 :13 , 2:1 and 5:2. 

The results Fechner tabulated are presented as a table for ten dif

ferent rectangles as 1, 2, 3, 4, . . . 10 , respectively, and the associ

ated histogram plotted as a bar chart (Figure 7.6). In the chart there 

appear bars at each ratio to indicate the actual preference in per

centage of the individuals surveyed. As the bar chart shows quite 

clearly, the golden rectangle with length-to-width ratio of <p, is the 

overwhelming favorite among all the rectangles, having garnered 

35 percent of the vote. 

The results of similar studies by a number of other late nine

teenth- and early-twentieth-century researchers—among them Adolf 

Zeising in Der GoldeneSchnitt (1884), Witmar (1894), Lalo (1908) and 

Thorndike (1917) , according to Huntley point unambiguously to a 

popular preference for rectangles approximating the golden rectan

gle." Helen Hedian reported an analysis—within the framework of 

the golden ratio—on four hundred paintings "of accepted excel

lence." 1 2 According to Hedian, all but a few of the artworks yielded to 
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LENGTH/WIDTH RATIOS 
F i g u r e 7.6. C h a r t o f G u s t a v F e c h n e r ' s 1876 s t u d y r e v e a l i n g h u m a n 

a f f i n i t y f o r t h e g o l d e n r e c t a n g l e 

such an analysis, with the majority of the works yielding <p = 1.618 and 

a variation the V5-rectangle, i.e., 1:2.236 066. These and other values 

associated with the golden ratio and tabulated earlier (see Chapter 3) 

were found among the works she analyzed. 

Hedian ' s inventory includes from the ear ly Rena i s sance 

Giot to 's Ognissanti Madonna (c. 1 3 1 0 ) in the Uffizi. This painting 

displays lines of perspect ive and divis ions of the golden rectan-
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gle highly reminiscent of some of the geometr ic construct ions 

encountered in Chapter 3. From the eighteenth and nineteenth 

centuries , she cites J .M.W. Turner ' s Bay of Baise (Tate Gal lery, 

London) and George Romney ' s Lady de la Pole (1786; Museum of 

Fine Arts , Bos ton) as being suscept ible to analyses in terms of 

the golden rectangle and its subdivis ions. A m o n g the paintings 

that she cites as having ratios close to 1:2.236 are Cezanne 's Still 

Life with Peppermint Bottle of 1894 (Nat iona l Ga l l e ry of Art , 

Washington, D .C . ) ; Seurat 's Fishing Fleet (c. 1885, The Museum 

of M o d e r n Art , N e w Y o r k ) ; P icasso ' s Lady with a Fan ( 1 9 0 5 ; 

Harr iman Col lec t ion , Na t iona l Ga l l e ry of Art , Washing ton , 

D.C.) ; and Matisse 's Variation on de Heem ( 1 9 1 5 ) . Finally, she cites 

a number of ancient works , among them an Egyp t i an stele (c. 

2 1 5 0 B . C . ) , an Assyr ian winged demigod from the ninth century 

B . C . , and the Dying Lioness from Nineveh, seventh century B . C . , 

for invit ing analyses in terms of the golden rectangle. 

In the following pages I shall present my own sampling of mas-

terworks incorporating geometric figures—polygons, polyhedra, the 

golden rectangle, logarithmic spiral, and others. The creators of these 

works have all been dominant figures of their respective times. 

The Adoration of the Magi and the Golden Point 

Spain can boast among its favorite sons El Greco, Diego Velazquez, 

Francisco Goya, Pablo Picasso, and Salvador Dali, some of the most 

influential artists in the history of art. Diego Velazquez's Adoration 

of the Magi (see Plate 7, left), displays a height-to-width ratio very 

close to (p. Moreover, as a near golden rectangle it can be neatly sub

divided, delineating a square in the lower portion, with the upper 

portion again forming a golden rectangle. The rectangle in the 

upper portion is subdivided again, creating a square in the upper 

left and another golden rectangle on the upper right. The intersec-
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tion of these lines, defining the golden point, is at the place between 

the infant Christ 's eyes. 

The Circus Side Show 

Until the late eighteenth and early nineteenth centuries creative 

artists saw themselves as having an abiding task—to reflect nature. 

That was the message in Leonardo's words: "The most praiseworthy 

form of painting is the one that most resembles what it imitates." And 

a century later that sentiment was echoed by Shakespeare in Hamlet 

III: ii, "the purpose of p lay ing . . . was and is, to hold as 'twere the mir

ror up to nature." In the Romantic period in England—in the poetry, 

first of Wordsworth and Coleridge, then Keats, Shelley, and Byron— 

the artist began to illuminate nature rather than to reflect it. (A sim

ilar transformation took place in music with the emergence of the 

Romantic composers—Beethoven, Schubert, and Chopin.) Im

pressionist and Post-Impressionist art would not have burst forth 

without this metamorphosis in outlook, nor Cubism a little later. 

The postimpressionist artist Georges Seurat attempted to ren

der the effects of artificial light at night using Pointillism, a tech

nique that he personally invented. Inspired by a French translation 

of a lecture on artificial light by American artist James Whistler, 

Seurat formulated a scientific theory paralleling the ideas of Charles 

Henry (1859-1926) , in which he cobbled together aesthetics and the 

physiology and psychology of the senses. Seurat, in describing his 

thoughts, wrote: "Art is Harmony. Harmony is the analogy of con

trary and similar elements of tone, of color, and of line, considered 

according to their dominants and under the influence of light, in 

gay, calm, or sad combinations. . . . Gaiety of tone is given by the 

luminous dominant; of color, by the warm dominant; of line, by 

lines above the horizontal." 

Seurat 's works frequently incorporated the golden ratio, but 

none as prominently as Circus Side Show (La Parade) (Figure 7.7) ." 
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F i g u r e 7.7. G e o m e t r i c d i a g r a m o v e r l a y i n g G e o r g e s S e u r a t , Circus Sideshow (La 

Parade), 1887-88. O i l o n c a n v a s , 39 ' A x 59 in . T h e M e t r o p o l i t a n M u s e u m o f 

A r t , B e q u e s t o f S t e p h e n C . C l a r k , i96o.(Courtesy M e t r o p o l i t a n M u s e u m o f 

A r t , N e w Y o r k ) 

Created near the end of his brief life, the painting describes the 

scene at the entrance to a traveling theater—free entertainment 

offered for the purpose of attracting audiences to attend the main 

event. Demarcations in color and texture offer clues to subdividing 

the canvas with vertical and horizontal lines, such as N E , CI, LG, 

etc. The rectangle defined by N E H K in the painting displays the 

ratio of length-to-width of approximately (j), making this portion of 

the canvas a golden rectangle. N C I K defines a square, rendering 

CEHI another golden rectangle. <p, in fact, is found at a minimum in 

the following four ratios: 

T h e m u l t i p l e o c c u r r e n c e o f t h e r a t i o i s m o s t l i k e l y a p r o d u c t o f 
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Seurat 's artistic intuition, a reflection of Fechner's findings. If he 

had been formally applying the law of divine proportion, he would 

most likely not have remained mute in describing the process, after 

all, he had not been shy in articulating his "scientific theory." 

Circular Paintings, or Tondi 

In Europe of the Middle Ages the circle had been regarded as a sym

bol for the divine or for heaven (as it was also regarded, for cen

turies, by Chinese philosophers) . The reason for this may be that 

the circle is seen as an infinite-sided polygon with no beginning and 

no end. The earth, represented by a square with its sharply defined 

features, was symbolical ly subordinated to heaven by having the 

square circumscribed by the circle. The square, in turn, helps in 

generating equilateral triangles of angles 6o°—60°—60° or isosce

les triangles of angles 45°—90°—45°. By the time of the Renaissance 

the earth had risen to greater prominence, and man was the meas

ure of all things. A triangular organization of composition circum

scribed by a circular boundary was often used in the High 

Renaissance, for example in two prominent paintings: Michelangelo's 

Holy family and Raphael 's Alba Madonna (Plate 1 0 ) . 1 4 

In Michelangelo's tondo, the artist's only known work to have 

been executed on canvas or panel, a geometric construction is 

found in a pair of interlocking triangles, evocative of the Star of 

David. (The horizon line defines one side of the star's lower trian

gle.) An intriguing feature of the painting is that the figures exhibit 

a porcelain-like translucent quality. But then Michelangelo, by his 

own claim, was first and foremost a sculptor. The figure of the 

Virgin Mary exhibits a helical shape used to produce depth and 

dynamism, first introduced by Leonardo. As for Raphael 's Alba 

Madonna, embodying one of the finest pictorial compositions of the 

Renaissance, the painting was part of a collection purchased from 

the Hermitage in the early 1930s—the seller being the cash-strapped 
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Stalin, who never had much use for art. The three figures in the 

painting are organized in a triangular scheme—of a right isosceles 

triangle with the 90-degree angle at the top. An even more precise 

organizational structure that the trio exhibits, however, is three-

dimensional pyramidal form, again influenced by Leonardo. Finally 

a helical twist in the Virgin's body, also a Leonardo influence, pro

duces a sense of dynamism. 

Dynamic Symmetry in Architecture, the Second Millennium 

Dynamic symmetry was employed in antiquity—in the Egyptian pyr

amids 4,700 years ago, in the temples of Karnak and Luxor 3,300 years 

ago, in the Greek temples of the Age of Pericles 2,400 years ago and 

in Roman buildings a few centuries later—and persisted for several 

hundred years. ' 5 In great art and architecture in disparate times the 

scheme seemed to be reinvented—developed independently (not

withstanding the Greek influence on the Romans) . The defining 

Byzantine architectural gem, the Hagia Sophia, was built in the mid-

sixth century on a model of an interlocking hemisphere and regular 

polyhedra. Five hundred years later still the great Gothic cathedrals 

in western Europe were constructed, in some instances incorporat

ing dynamic symmetry. In the Renaissance dynamic symmetry was 

rejuvenated as an accompaniment to interest in the scholarship and 

art of the classical world. In the following section we examine a pair 

of edifices—the cathedral of Notre-Dame in Paris, a masterpiece of 

medieval architecture, and the pair of Petronas Towers in Kuala 

Lumpur, a cathedral to commerce—both reaching upward toward 

heaven, built nine hundred years apart. 

The Cathedral of Notre-Dame and the Petronas Towers 

The years 1163 to 1250, virtually coinciding with Leonardo Fibonacci's 

lifetime, saw the erection of the most famous Gothic cathedral in all 
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Figure 7.8. Two prominent works of architecture, built almost a millen

nium apart, both illustrating the recursive use of the golden ratio: (left) 

Notre-Dame-de-Paris: (right) Petronas Towers, Kuala Lumpur 

of Christendom—the cathedral of Notre-Dame in Paris. Architectural 

historians offer elegant artistic and structural explanations for vir

tually all aspects of the remarkable edifice, rising so high toward 

heaven, with flying buttresses seemingly introduced as adornment 

instead of for the critical purpose of supporting immense walls weak

ened by colossal windows. But one can only speculate about how the 

architect chose the proportions of the various external sections—was 

it by chance, the aesthetic judgment of the artistic eye, or the appli

cation of the Fibonacci series? We may never know. The Fibonacci 

series was, however, just being formulated in Pisa, although the 

divine proportion derived from tp had long been known. What is 
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The surface ahfe defines a square. With the rectangle bcjf added to 

it, the resulting surface has the shape of the golden rectangle. 

Similarly cdqh forms a square, but with the rectangle bcjf added to 

it, the resulting surface becomes a golden rectangle. Of course, bcgf 

itself is a golden rectangle. In the second course ijml forms a square, 

and with the golden rectangleyTrnw added to it, the resulting figure 

becomes a golden rectangle. The mirror reflection of these figures on 

the right hand side also satisfies the divine proportion. In the lower 

course rspo forms a square, but with the golden rectangle stqp added 

to the square, the resulting figure becomes a golden rectangle. The 

mirror reflection on the right also satisfies the divine proportion. 

Finally the entire west facade including the towers, displays propor

tions very close to those of the golden rectangle. 

Applying the principle to new structures became a driving force 

behind Le Corbusier's architecture in the first half of the twentieth 

century. Other modern architects have also invoked elements of 

dynamic symmetry in their own creations. In the Halliburton Tower, 

at Rhodes College in Memphis, Tennessee, architect H. Clinton 

Parrent has used the proportions given by sequential terms of the 

Fibonacci series to arrive at the heights of the various courses. In the 

closing years of the twentieth century a far more imposing edifice 

than that tower—indeed a pair of towers connected by a bridge—was 

erected in Kuala Lumpur (Figure 7.8, right). The national oil company 

of Malaysia, Petronas, commissioned the twin towers that exceed the 

clear is that the facade of Notre-Dame features the proportions 

embodied in the golden ratio (Figure 7.8, left). The various segments 

indicated as adjacent pairs of lines exhibit ratios close to that magic 

ratio, 1:1.618. Specifically, the following proportions are surprisingly 

accurate for the great medieval cathedral: 
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height of the Sears Tower in Chicago, the previous holder of the title 

of the world's tallest building. The Petronas Towers (1998), designed 

by Cesar Pelli and Associates, rise 1,470 feet to proclaim Malaysia as 

a rising economic world power. In its structural design the base of 

each building is an octagon—a shape formed by an interlocking pair 

of squares, emblematic of the union of heaven and the earth. Massive 

columns of high-performance concrete and steel rise from each point 

of intersection of the squares in order to give structural integrity to 

the massive edifices, which are, on the surfaces, clad in stainless steel 

and glass. Then new sections appear to rise, reminiscent of the sec

tions in a telescope, with a semblance of a mathematical pattern. A 

measurement of the segments reveals their proportions to fall into 

the scheme 

reflecting the law of divine proportion. 

Mirage, Image, Camouflage 

In physics one proceeds by describing microscopic and macro

scopic reality in terms of models at a tangible scale and writ ing 

equations for these models. By solving these equations one can 

hope to comprehend how and why nature behaves as it does. 

Physics can handle collisions of galaxies and collisions of individ

ual atoms. But including all of the interactions extant may make the 

equations insoluble, or mathematically intractable. Ignoring some 

of the interactions and parameters may allow the equations to be 

solved. However, neglecting certain crucial interactions—such as 

gravitation in a problem at the cosmic scale or electromagnetic 

forces in a problem at the atomic scale—may make the mathemat

ics relatively simple, but the associated physical description will no 
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longer reflect reality. One may end up describing a soap bubble 

instead of a boulder. A number of models exist to describe one phe

nomenon or another associated with the atomic nucleus—the liq

uid drop model, optical model, unified model, single-particle shell 

model, etc.—but no single model hitherto developed has been able 

to explain all the phenomena, all the processes. Moreover, such 

models are rarely the sources of revolutionary change in our fun

damental understanding of the nucleus. 

In contradistinction, truly transformative changes in science 

most often follow from inspiration received from unlikely sources 

and from viewing reality from different and original vantage points. 

Viewing nature in an entirely different manner may lead to radi

cal syntheses. Einstein, by considering the speed of light as absolute 

while relegating the notions of length, mass, and time to relative 

status, launched the special theory of relativity. A generation later 

Louis de Broglie 's suggestion that particles—molecules, atoms, 

nucleons—display a dual par t ic le /wave nature turned out to be a 

pivotal hypothesis in launching quantum mechanics, the most suc

cessful picture of the world at the atomic scale. 

So it is in art. When nature is observed in entirely different 

ways, and the description takes on entirely distinct styles, the pos

sibility exists for a transformative revolution. The discovery of lin

ear perspect ive launched the Renaissance in art, and in a much 

broader sense—by observing and pondering nature rather than 

idealizing it—planted the seeds of modern science. These were 

revolutionary in outlook and result. The impressionist movement 

in art was launched when the ar t is t /observer in late-nineteenth-

century France saw a need to capture the essence of the subject, 

rather than merely to reflect it. These movements in art compare 

in their significance in radical reductionism to the relativistic and 

quantum mechanical revolutions in physics. They showed the 

seminal and enduring qualities necessary to qualify as transfor

mative revolutions. 
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—Bev Doolittle 

Ultimately, the scientist and the artist, both in the business of 

describing nature, are receptive to shapes and patterns—to real 

images, static or fleeting, as well as to optical illusions. In the follow

ing pages we shall consider a few instances of how nature might have 

presented itself to the artist, and the bold manner in which the artist 

has dealt with the subject. The works are those of M. C. Escher, Bev 

Doolittle, and Frederick Hart. Their work is not revolutionary or 

transformative. Rather they each exemplify a single, even a narrow and 

confined manner, of modeling and representing nature. And like the 

physicist's models of the nucleus, each method of representation is by 

no means all-inclusive or all-embracing. They successfully show us, in 

a way similar to the physicist's tangible scale models, how some, but 

not all, of the phenomena of perception work on us. This short cata

logue also presents some minor musings by Leonardo da Vinci, and 

the techniques that these ruminations appear to have inspired. 

M. C. Escher wrote about having received inspiration for his 

graphic art in part from viewing the tile work of Islamic artists in 

Spain, but reflected, "What a pity it is that Islam did not permit 

them to make graven images." Unencumbered himself by such reli

gious interdicts, he utilized animate as well as inanimate, realistic 

as well as mythical figures with abandon. Many of Escher 's sym

metrical musings were tantamount to mathematical mosaics. In his 

wel l -known woodcut Horsemen we see figures on horseback in 

white appearing to travel to the right, and similar figures reflected 

and darkened, heading leftward. In a different period of his career 

Escher unveiled graphic art in which the figures undergo gradual 

evolution, a style he dubbed "metamorphosis." 

Camouflaged Art: Cryptotechne16 

I think that to find meanings you have to look at things from 

different directions.1 7 
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Bev Doolittle's pronouncement is as pertinent for the scientist as it 

is for the artist. This contemporary Western artist displays a dis

tinctive style—seamlessly blending animate life in the foreground 

with the inanimate background. White pintos with brown blotches 

are set against patches of clay amidst pristine snow, other horses 

with native riders astride are seen through clumps of aspen trees, or 

a grizzly bear is barely visible, camouflaged by dense thicket. Gestalt 

psychology, the subject of which is shape recognition, describes how 

the human mind is able to process an image with little difficulty and 

to distinguish the foreground from the background (Plate 1 1 , bot

tom). Computers, programmed to scan the scene for color differ

ences and shapes, would have a virtually impossible task identifying 

the horses. This is mimicry in nature celebrated in art. Doolittle's 

work displays simultaneously a realistic and abstract quality, and 

rarely is it clear whether to classify it as one or the other. What is evi

dent, however, is that it always engages the viewer, forcing him to 

take a second and a third look, and indeed to become a participant 

in the scene. Doolittle's works radiate an unequivocal message that 

things are rarely what they seem—an unfaltering missive also for sci

entists practicing their art. 

Mimic ry in nature manifests itself in physical characteristics 

developed by animals to camouflage them against the background— 

the predator to become more effective as a hunter, and the prey to 

blunt the effectiveness of the predator. The mighty polar bear, 

unchallenged in its position at the top of the food chain, nonethe

less optimizes its hunting prowess by virtually fading into the ice 

and snow of its background. On a different scale the praying man

tis similarly dissolves into its background—blades of grass or green 

twigs on which it perches in wait for its food. The viceroy, a but

terfly that is a delicacy to some birds, has evolved to resemble closely 

the monarch, a butterfly entirely unpalatable to the same birds. 

Unwilling to take a chance, birds steer clear of the viceroy. But then 

there is the puzzling case of the zebra. The bold black and white 
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stripes make the zebra as inconspicuous as a lavender hippopota

mus or, worst still, a zebra. Has nature blundered in this instance? 

Not at all! A herd of agitated zebras melds into a vast terrifying 

monolith, generating clouds of dust and galloping thunder, the 

individual animals virtually indistinguishable in the maelstrom, 

thereby confusing predators. 

Even in the category of hidden images we recognize a Leonardo 

connection. A man of great personal charm and humor, and eager 

to interject some irony in his works , Leonardo planted hidden 

ironies and double entendres in his paintings and drawings. The 

portrait of Ginevra de' Benci at the National Gal lery of Art in 

Washington (which we will take up further in Chapter 9) is a dou

ble-sided painting—the portrait of the young woman on the recto 

and flora on the verso—a laurel and palm framing a juniper twig. In 

Italian the word for juniper is ginepro, clearly a play on the subject's 

name. Among the anatomical drawings in the Codex Windsor is the 

detailed drawing of a cow embryo. Leonardo must have had a smile 

on his face when he invoked some subtle "cryptotechne," inserting 

the inverted image of a cow in the drawing. The image is unmis

takable once it is pointed out, but subtle it is. Meanwhile, prepos

sessed by the exquisite shapes of nature, perhaps even cognizant of 

their mathematical connection, Leonardo must have noticed the 

smoothly arched, ever-widening curve of the logarithmic spiral 

describing the shape of the embryo itself. It has a similar shape to 

the human embryo at about six weeks. 

A N A M O R P H O S I S 

Perspective, as we saw in the last chapter, helps to project a three-

dimensional image onto a two-dimensional plane. It assists in 

rationalizing the relationship of the objects within the scene, and 

simultaneously the relationship between the viewer and the scene. 

One-point perspective had its birth among artists in the Renaissance, 

and in subsequent centuries developed in the hands of artists and 
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Figure 7.9. Leonardo's anamorphic art. The image of the face appears 

to "float" above the page. 

mathematicians. The mathematical formalism underlying per

spective is found in projective geometry. 

Having opened this chapter with an examination of perspective, 

we shall close it with a discussion of perspective carried to an extreme, 

the artist observing his subject from an altogether unusual vantage 

point, sometimes a well-defined peephole. The result is anamor

phoses. The etymology is not entirely clear—the word may have its 

roots in ana (again) and morphe (shape), suggesting that the viewer 

has to take an active part in the realization of the image, or it could 

be derived from an (meaning absence of or without) and morphe, thus 

"shapeless." Although the root of the word is not unequivocal, the 

description of the work itself is correct in both senses. The image cer

tainly appears "shapeless," and it clearly requires the active partici

pation of the viewer, looking again and again 

The first known work utilizing anamorphic art dates from 1485. 

At first glance it looks like a puerile drawing depicting an infant 

(Figure 7.9). An infant the subject is, but puerile this artist is not. 

The slit of the eye is much shorter and the slope of the chin more 

pronounced on the right, with the distortion increasing gradually 

as one moves to the left. That asymmetry offers a clue—the picture 

is meant to be viewed from a grazing angle, from the right edge of 

the sheet. The sketch is introduced unobtrusively and without ex

planation among the pages of Leonardo da Vinci 's Codex Atlanticus.18 

Having invented anamorphic art, Leonardo most likely produced 
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other examples. Francesco Melzi , Leonardo ' s assistant and heir 

to the Leonardo manuscr ipts , descr ibed having seen a drawing 

of a "[D]ragon and lion in combat . . . a wonder to behold"—the 

illusion created by this graphic distortion. This work, however, 

has not survived. 

In the sixteenth and seventeenth centuries other prominent 

artists, including Caravaggio and Annibale Carracci in Italy and 

Hans Holbein in the north, experimented with anamorphic art. The 

Venet ian G iovann i Bat t is ta T i epo lo , known for his magica l ly 

illusionistic ceiling and dome paintings, became an unrivaled master 

of the style, but then the technique seemed to lose its appeal, except 

as a source of fascination for scientists examining optical themes or 

experimenting with virtual reality. Often this art is seen in the form 

of a swirl of color, entirely unrecognizable in form and perspective. 

But when the proper reflector—the one specifically used in creating 

the painting in the first place—is placed in the designated spot, the 

painting regains proper perspective and springs to life. 

Optical Illusions versus Gestalts 

In Chapter 5 we encountered the remarkable lengths to which the 

builders of the Parthenon—Phidias, Callicrates, and Ictinus—went 

in order to obviate detracting optical illusions. Among various 

tricks employed was the convex curvature that the base of the 

building was given as an artifice to eliminate the "sagging" look that 

a straight horizontal base would normally present when viewed 

against the convex curvature of the horizon. They had also aimed 

the axes of the columns to converge far above the building, partly 

to negate the splayed appearance of the columns rising from a con

vex base and partly perhaps to create an illusion of great height. 

This is reminiscent of three-point perspective—which would not 

appear formally for another two-and-a-half millennia. 

During the classical period of Greece, along with the notion of 
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the divine proportion, optical tricks were skillfully applied. The 

Greeks knew a good deal about detracting optical illusions and how 

to counterbalance them, and they are believed to have known about 

perspective, at least intuitively. Optical illusions were most likely 

recognized, however, long before the classical Greek period. With 

optical illusions our senses deceive us, and we can only confirm that 

this is so if we make measurements. The effect of lines or colors 

judiciously arranged throws off one's perspective. 

A rectangle A B C D and a parallelogram A' B 1 C D 1 have been 

constructed, each with the convenient long-side to short-side ratios 

of 1.618:1 (Figure 7 .10). Indeed, the former is a golden rectangle; the 

latter is reminiscent of a golden rectangle seemingly distorted by a 

pair of horizontal shearing forces. In the rectangle the segment MN 

bisects the segment AD, and the diagonals AN and ND help to gen

erate the isosceles triangle A N D . These diagonals are of equal 

length. In the case of the parallelogram, the segment M ' N ' certainly 

does not bisect A ' D ' and the segment A ' M ' certainly does not equal 

the segment M ' D 1 . And at first glance the diagonals A 'N 1 appears to 

be shorter than the diagonal N ' D 1 . In reality, however, A ' N ' D 1 also 

defines an isosceles triangle as did AND. Thus A'N' does in fact equal 

N'D', as a measurement would immediately confirm. Indeed, it is an 

optical illusion that makes A ' N ' appear to be shorter than N ' D ' . In 

distinction to optical illusions there are Gestalts, which are the 

visual perceptions of shapes and patterns of natural formations— 

permanent or ephemeral—and their inadvertent association with 

familiar phenomena. 

Inspiration in the Clouds 

It is unusual that a pattern as frequently seen in nature as the log

arithmic spiral has not found more frequent application by artists. 

Earlier we saw how the logarithmic spiral was generated geomet

rically from the golden rectangle, and subsequently the ubiquitous 
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Figure 7.10. Example of an optical illusion. The segment A 'N' appears 

to be shorter than the segment N'D', although they are precisely the 

same length. 

quality of the spiral was seen in patterns in nature, "accidentally" 

in man's creations, or in an entirely different phenomenon, in the 

trajectory of the malfunctioning Trident missile (see Plate 4). 

In classical antiquity the shape inspired the basic designs of 

Ionic capitals, and, emulating the horns of rams, it was used in 

women 's jewelry. I have personally encountered only two modern 

works prominent ly featuring the spiral, and both created within 

a few years of each other, both in the Nat iona l Ca thedra l in 

Washington, D.C. The first, a w indow created in 1974 by stained-

glass artist Rodney Winfield, commemorates N A S A ' s Apol lo XI, 

which in 1969 made its way to the moon and returned with lunar 

samples (see Plate 2, right). In the Space Window an elongated fig

ure 8 embodies simultaneously a double connotation—the trajec

tory of the spacecraft and the symbol for infinity. Indeed, the work, 

according to its creator, is rife with symbol ism: a melding of the 

infinitesimal and the infinite scales of space, and the fleeting and 



The Science of Art | 147 

the eternal scales of time. The lower circle on the right is at once 

the earth and the moon (seen in total eclipse); the lower circle on 

the left alludes to vast galaxies (including the Mi lky Way) and to 

star-gobbling black holes. In the mode of many abstract works, it 

invites subjective interpretation. There is the obvious allusion to 

manned space exploration. The space engineer gazing at the image 

might see the lunar-lander separating from the spacecraft, leaving 

the lunar-orbiter aloft, and spiraling onto the lunar surface; the 

physicist would recognize representations of escape velocity and 

orbital velocity—subjects of Newtonian mechanics. Ultimately, it 

is art celebrating cutting-edge science and technology. Aside from 

that aspect, there is for me one additional intriguing element in the 

window: the occurrence of a perfect logarithmic spiral—not 

Archimedean, nor hyperbolic, nor any other kind. It is in the upper 

circle that the logarithmic spiral is seen, converging on a piece of 

moon rock—3.5 billion years old—embedded in the window, and 

creating a virtual eyepiece to the mysterious. 

The second example—subtle and exuding extraordinary 

power—is ExNihilo (see Plate 5, bot tom) by Frederick Hart, w h o 

employed the logarithmic spiral intuitively in organizing his com

position. In 1974 the sculptor, then thirty-one years old, was 

awarded the commission for three friezes in the cathedral 's west 

facade—it is perhaps the most significant religious sculpture of the 

twentieth century. In architectural terms, the description of the 

sculptural program comprises the three portal tympana, each sup

ported by a central column figure—one of Saint Peter, another of 

Adam, and a third of Saint Paul. A carving representing the creation 

of humans, Ex Nihilo, was to be located in the central portal and the 

creation of day and night, respectively, in the two flanking portals. 

Hart 's friend, the author Tom Wolfe, described the frieze as 

"depicting mankind emerging from the swirling rush of chaos." 1 9 

"Swirling rush" is indeed an appropriate description for that mael

strom of eight bodies seemingly issuing forth spontaneously from 
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bedrock. But perhaps the inspiration for the composition was in the 

subliminal messages we receive from nature and its patterns in sun

flowers, hurricanes, and chambered nautiluses. The inset (see Plate 

5, bottom) presents the mathematical logarithmic spiral, the cross-

section of the chambered nautilus, digitally overlaid on Ex Nihilo, 

Hart's masterpiece. 2 0 In organizing the composition a "best fit" can 

be made with the curve passing through the elbows of at least five 

of the figures. 

Born in 1943, Hart, at just fifty-four, suffered a stroke in the right 

hemisphere of his brain, leaving him partially paralyzed on the left 

side, and at least temporarily curtailing his prodigious pace. Even 

though he was a right-handed sculptor the damage to the emoting, 

nonverbal side of the brain had put limitations on his ability to per

ceive objects in space, although "he was still able to conceptualize, 

formulate ideas, process the sensual underpinnings of those ideas, 

and create an expression of those ideas in a newly created image." 2 1 

With heroic will and intensive physical therapy he regained some 

of the use of his left arm. Overcoming the reduction in spatial per

ception—the ability to perceive (not just to see) both his subject and 

his rendering required additional effort. He made progress in this 

area by concentrating harder and using mirrors as well as a specially 

modified camera. 

Eighteen months after his stroke, in August 1999, Hart was diag

nosed with cancer, and just three days later succumbed to the rav

ages of the disease. He was two months shy of his fifty-sixth birth

day. Although I knew and admired him immensely, I never got the 

chance to discuss with him the logarithmic spiral that appears to 

organize the composition of the frieze. But I am convinced it was 

decidedly not a conscious exercise; in his own words he once 

explained, "I saw Ex Nihilo ('out of nothing') as a single expression 

of creation, as the metamorphosis of divine spirit and energy. The 

figures emerge from the nothingness of chaos, caught in the 

moment of eternal transformation—the majesty and mystery of 
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divine force in a state of becoming." His widow, Lindy Hart, 

explained that it had been a swirl ing pattern "in a formation of 

clouds" that inspired her husband, but added, "Rick would have 

been captivated to see the [logarithmic] spiral superimposed." 

Tradition has it that Michelangelo similarly received his vision of 

the Creation scene for the Sistine Chapel from an ephemeral cloud 

formation. 

As for the episode of Hart's stroke, it parallels the effect of a sim

ilar stroke that the left-handed Leonardo suffered in the left hemi

sphere of his brain, partially paralyzing his right arm, and, in his 

case, effectively ending his career as a painter. For artistic creativ

ity to thrive, the conjoining of both hemispheres of the brain 

appears to be important, or perhaps the various functions are not 

altogether the exclusive domain of one side or the other—at least 

in the examples of these two artists. 

Putting (j) into Perspective 

Regarding the significance of tp in works of art there are both unbri

dled enthusiasts and outspoken detractors, each group ready to 

offer uncontestable evidence to corroborate its views. Each, to me, 

is correct on one level, and incorrect at another. Among the enthu

siasts 0 is attributed to successful schemes in virtually every cre

ative enterprise—in art, musical composition, poetry, even invest

ing in the market. And indeed, if we look hard enough, we are 

bound to find an unlimited number of examples among man's cre

ations in which the golden ratio occurs. One has to assess each 

piece separately, and guard against reading between the lines. 

Among detractors (especially among a number of mathematicians) 

there is strident protest: the Parthenon's end facades do not display 

exactly 1 :1 .618 , but rather 1 : 1 . 7 1 ; the outline of the Great Pyramid, 

makes a length-to-width ratio of 8:5 (translating to 1.60). Both 

buildings are, nonetheless, close to 1.618 in their proportions. And 
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in the case of the Great Pyramid rising at 52°, it is not the ratio of 

length-to-width that is unusually intriguing, but rather the ratios 

of the areas of the sides. (The analysis indeed suggested that it was 

a happy accident, a result of the convenient scheme of taking the 

pyramid 's perimeter to be 27t t imes its height that produced the 

recurrent ratio 1.618 in the variety of area measurements.) 

As a scientist and artist, however, I am convinced that there is a 

subliminal message that the artist picks up from nature that provides 

the basis for a sense of proportion, and it is this sense of proportion 

that manifests itself in so many artists' works. That is the simplest 

and most likely explanation of the ratio's appearance in paintings 

by Velazquez, Dali, and Seurat. The evidence of our affinity for the 

ratio is unmistakable in Fechner's data. The codification occurs for

mally only in a limited number of "systems" such as in the music of 

Bartok, Debussy, and Schillinger, 2* in the architecture of Vitruvius, 

Bramante, and Le Corbusier, in the paintings of Mondrian, possibly 

also those of Seurat. But the single artist that most likely cobbled 

together mathematical form and artistic design consciously is the sci

entist-artist Leonardo, and even he does not speak explicitly about 

the subject. The evidence is in the grand melange of the mathemati

cal musings, studies in perspective, formal drawings, illustrations in 

De divinaproportions quick sketches, and the finished paintings—all 

forming pieces of an elaborate puzzle. 



The eye is the window to the soul. 

—Leonardo da Vinci 

A mong all his scientific and artistic studies, Leonardo allotted dis-

J\ proportionate attention to light and the body's detector of light, 

the eye. He experimented with the optical phenomena of reflection 

and refraction, created reams of drawings of geometric optics in order 

to understand the behavior of light incident on multifaceted as well as 

uniformly curved surfaces, and performed exquisite anatomical dis

sections on the eye itself. Unhappily, he accorded little attention to the 

structure and function of the brain (unless such work was presented 

in his missing manuscripts, for we only have one-third of the origi-
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nal volume he produced). When he created his astonishing portraits, 

the eyes of the subjects spoke (or withheld) volumes in accordance 

with its artist's own vision and perfect artistic control. The ambiguity 

portrayed in the Mona Lisa's mesmerizing visage represents 

Leonardo's insight into light and optics, as well as psychology. 

The quality of art one produces is as much a function of how 

one observes as of how one wields a pencil, a paintbrush, or a 

chisel. Observing is a collaboration of the eye sensing and the brain 

processing. In childhood, drafting skills continue to improve until 

we are around ten years old. 1 But then 95 percent of the population 

begins to display regression in their drawing prowess. Rather than 

focusing on their subject—that is, consciously observing—they 

summon subconscious preconceptions and transfer to their draw

ing boards what they think their subject looks like. By their middle 

years, in the unlikely case that they actually pick up a pen and pad 

to sketch the face of an individual, they have generally fallen into 

the habit of placing their subject's eyes higher and higher in the 

face. The eyes belong on the equator. The remaining 5 percent con

tinue to improve, drawing what they observe. They comprise the 

roughly one person in twenty whom we characterize as possessing 

some measure of artistic ability. In teaching nonartistic adults how 

to draw, Betty Edwards in a modern classic, Drawingon the Right Side 

of the Brain,1 suggested a remedy: take a photograph of the subject 

and mount it upside down. Then, draw what you see. 

Workshops using Edwards 's ideas endeavor to teach students 

techniques enabling them to access the nonverbal, spatially oriented 

right brain, best suited for observing and drawing. The question that 

arises here is whether there is any evidence of physiological and func

tional differences in the brains of artists and nonartists. 

The Painter's Eye' 

That artistic talent could be detected scientifically might have sounded 
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absurd until a series of experiments in the 1990s revealed that perhaps 

it is not such a laughable notion after all. The gifted English repre

sentational artist Humphrey Ocean and a personal friend, scientist 

John Tchalenko, collaborated in a series of studies. As reported by 

writer Alan Riding, while Tchalenko and his camerawoman, Belinda 

Parsons, were videotaping Ocean, Ocean was creating a portrait of 

them. 4 In the early 1990s the documentary film produced by 

Tchalenko and Parsons, along with Ocean's artwork, were shown in 

exhibitions at a number of leading galleries in the United Kingdom. 

Near the end of the decade, Tchalenko revisited the time-encrypted 

videotapes produced almost a decade earlier and discovered a pattern 

in Ocean's artistic technique previously overlooked. The discovery 

inspired Tchalenko to undertake further experimentation. 

In 1998 he drafted neuroscientists from Oxford University and 

Stanford University who used state-of-the-art biomedical imaging 

technology. These new experiments on Ocean focused on the inter

actions between his eyes, hand, and brain. Moreover, they involved 

his conscious as well as unconscious responses. These results were 

compared with test results of nonartists performing similar tasks and 

were presented together in 1999 at the National Portrait Gallery exhi

bition The Painter's Eye. The three scientific sections of the exhibition 

carried the titles "The Eye Captures," "The Hand Implements," and 

"The Brain Processes." "The Eye Captures" experiment examined the 

actual process of observation exercised by the artist and was per

formed by the team headed by Christopher Miall of the physiology 

department at Oxford. The regularities and other patterns Tchalenko 

had observed in viewing his old tapes were in fact what had fueled 

this aspect of the new study. Using a special eye-tracking camera, the 

researchers performed measurements on the artist's eye movement 

while he was selecting a subject and while he was actually executing 

his art. In choosing a subject from four candidates, Ocean was found 

to perform rapid eye fixations, as often as 140 times in one minute, 

focusing on each candidate's features—the nose, the eyes, the coun-
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tenance, and other abstract requirements that the artist might envi

sion for his work. In commencing with the drawing he altered his 

pace, glancing up at his subject on the average of 12 times per minute, 

taking mental snapshots of one-second duration. Thus 20 percent 

of his working time was spent in observing his subject. During the 

five hours Ocean spent producing his drawing, one hour was invested 

in looking at his subject. When nonartists were tested, no regular pat

terns in their observations were found. Their fixations were simply 

far less methodical in manner. 

The second experiment, "The Hand Implements," examined 

eye-hand correlation as Ocean toiled on a sketch. He had been given 

a finite amount of time—just twelve minutes—to complete his 

drawing of a subject's face. A sensor measured motions of his pen

cil on and off the paper and determined that his hand would prac

tice strokes with his pencil just millimeters above the paper before 

actually landing the pencil on the paper to create a line. As Ocean 

characterized this procedure, "In all my work, I'm after precision. 

'Detail ' means where the line lands, and if it lands a millimeter to 

the right or a millimeter to the left, it changes the weight, in some 

way, or the shape that it is describing. So when the line lands, you 

want it to land in the right position, whatever that is." 5 

The third section of the exhibition, and the one that involved the 

latest biomedical imaging technology, also revealed the most unex

pected differences between the brains of the artist and the nonartist. 

The Oxford researchers had made quantifiable correlation in hand-

eye activity for the artist and nonartist, but producing brain images 

was not part of their experiment. Ocean and Tchalenko were to find 

the last bit of their puzzle at Stanford University, where functional 

magnetic resonance imaging ( /MRI) tests were carried out on Ocean 

and two nonartists by Robert Solso and his team. Each of the sub

jects, including Ocean, was provided with small sketch pads and a set 

of five abstract figures to reproduce on their sketch pads while they 

were lying in the confines of the machine. 



Plate l. (left) Leonardo da Vinci, Self Portrait, c. 1 5 1 2 - 1 5 1 6 . Red chalk on 

paper. Biblioteca Reale. (right) Pupil of Leonardo da Vinci (possibly 

Francesco Melzi), Portrait oj Leonardo da Vinci. Red chalk on paper, The 

Royal Collection, H. M. Queen Elizabeth II, Windsor Castle. (Windsor 

Castle, Royal Collection © Her Majesty Queen Elizabeth II) 



Plate 2. Examples of geometry in stained glass, (top) Marc 

Chagall, stained-glass window for the United Nations 

Building, New York, (center left) Roy Miller, stained-glass 

chandelier in the shape of a truncated icosahedron (con

sisting of hexagons and pentagons, subdivided into trian

gles); (bottom left) Roy Miller, Penrose tiling; (bottom right) 

Rodney Winfield, Space Window, 1974. (Chagall stained 

glass, © 2004 Artists Rights Society (ARS), New 

York/ADAGP, Paris. Space Window, photo by the author, 

permission of the National Cathedral, Washington, D.C.) 



Plate 3. (top left) The collapsed pyramid in Maydum. The sides of the 

tower (or core), when extrapolated, form a 7 2 ° — 3 6 ° — 7 2 ° triangle—a 

golden triangle, (top right) Photograph of the author as a child with his 

family on a visit to Cairo in front of the Great Pyramid of Khufu 

(Cheops), (center left) The golden pyramid, in red outline, rising at a 52° 

angle on its sides; (center right) The golden rectangle, in red outline; 

(bottom) The Parthenon viewed from the southwest 



Plate 4. Logarithmic spirals in nature. (top left) Thomas Mangelson, Indian 

Summer—Hall Rams; (lop right) Leonardo's drawing of cow embryo with a 

hidden image of an upside-down cow, 1506-8, Codex Windsor 52 recto, The 

Royal Collection, H.M. Queen Elizabeth II, Windsor Castle; (center left) The 

shell of the chambered nautilus; (small inset, center left) a fossilized 

ammonite, a distant ancestor of the chambered nautilus; (center right) 

1 lurricane Andrew (1992); (bottom /<•//) The launch of a Trident Missile, but 

with malfunctioning engine nozzle, (bottom right) Spiral Galaxy 

"Whirlpool," M51. (Indian Summer— Dull Rams © Thomas D. Mangclsen / 

Images of Nature; Codex Windsor, Windsor Castle, Royal Collection, © Her 

Majesty Queen Elizabeth II; Chambered nautilus and inset ammonite, 

photographs BIA, Hurricane Hugo, satellite image, National Oceanic and 

Atmospheric Administration (NOAA). Galaxy M51, Hubble image, NASA. 

Trident Missile, photograph by Bill Sikes, © The Florida Times-Union.) 



Plate 5. Logarithmic spirals in art and architecture; (top) The double 

circular staircase in the Vatican Museum, designed by Leonardo da 

Vinci; (bottom) Frederick Hart, Ex Nihilo, Washington National 

Cathedral (center right inset)with a logarithmic spiral superimposed. 

(Ex Nihilo photo by author, permission of Washington National 

Cathedral) 



Plate 6. The Marquardt Mask. Dr. Marquardt's selection of six beauti

ful women from history, seen alone and overlaid with the 0-Mask. (top 

left) Portrait of Queen Nefertiti (c. 1 3 5 0 B . C . ) ; (lop right) head from the 

statue of Aspasia, mistress of Pericles (fifth century B.C. ) (center left) 

the portrait of the Virgin in Raphael's CowperMadonna ( 1 5 0 5 ) ; (center 

right) John Singer Sargent's Portrait of Lady Agnew ( 1 8 9 3 ) . (bottom left) 

Marlene Dietrich ( 1 9 3 6 ) (bottom right) Marilyn Monroe ( 1 9 5 7 ) . (Matrix, 

Courtesy Stephen Marquardt. Monroe photograph, permission Milton 

H. Greene Estate) 



Plate 7. (/c//) Diego Velazquez, Adoration oj the Magi. Oil on canvas, 

Prado, Madrid. The entire canvas forms a golden rectangle, (right) 

Johannes Vermeer, The Art oj Tainting, c. 1 6 6 6 - 6 7 . Oil on canvas, 

Kunsthistorisches Museum. Vienna, (inset, center bottom) Leonardo's 

perspective construction for tiling 



Plate 8. (top) Leonardo da Vinci, The Last Supper, 1 4 9 8 . Oil with tem

pera grassa, refectory of Santa Maria delle Grazie, Milan, (bottom left) 

This perspective study closely parallels the analysis by art historian 

Martin Kemp, (bottom right) A detail of Raphael Morghen, Last Supper, 

c. 1 8 0 0 , engraving inspired by Leonardo's mural. (Leonardo da Vinci, 

Last Supper, © Alinari/Art Resource, New York. Copy by Morghen, 

courtesy private collection) 



Plate 9. Raphael, School oj Athens, c. 1 5 1 0 , Stanza delta Segnatura, Vatican 

Palace, superimposed with the lines of one-point perspective. Proceeding 

clockwise, the two central figures on the top step are Plato (depicted in 

the likeness of Leonardo da Vinci) and Aristotle (model unknown); just 

below Aristotle and sprawled on the steps is Diogenes. The quartet of 

standing characters on the bottom right are Ptolemy, Zoroaster, Sodoma, 

and Raphael. Just to their left and hunched with a compass in hand is 

Euclid demonstrating geometric proofs to his students. Near the front 

center the pensive, dark, brooding figure with an elbow on a chest is 

Heraclitus—the model, Michelangelo. Just to his left, with scroll in hand, 

is Parmenides, to the left of Parmenides, scribbling on a drawing l)oard, is 

Pythagoras, and looking over his shoulder, the Arabic scholar Averroes. In 

the lower left are Epicurus and Xeno ("the Skeptic"). Finally, one trio on 

the top step in the upper left comprises Alexander the Great, Xenophon, 

and Socrates. (© Enrich Lessing/Art Resource. New York) 



Plate 1 0 . (top) Raphael, The Alba Madonna, c. 1 5 1 0 . Oil on panel transferred to 

canvas, National Gallery of Art, Washington, D.C. (bottom) Michelangelo, 

The Holy Family with the Infant Saint John the Baptist (the Doni Tondo), 

C. 1 5 0 3 - 1 0 . Tempera on panel, Galleria degli Uffizi, Florence (Raphael, Alba 

Madonna, photo courtesy National Gallery of Art, Washington, D.C.) 



Plate 1 1 . (top) Salvador Dali, Sacrament of I lie Last Supper, i<)S5. Oil on can

vas, National Gallery of Art, Washington, D.C. (bottom) Bev Doolittle, 

Pintos, 1979. Watercolor, private collection (Dali, photo courtesy National 

Gallery of Art, Washington, D C ; Doolittle, courtesy Bev Doolittle.) 

Doolittle's original image has been cropped here to fit the plate. 



Plate 12. Christopher Tyler's center-line principle, illustrated (top) by 

his matrix of nine classic single-subject portraits spanning five cen

turies and (bottom) Jamie Wyeth, Portrait of John F. Kennedy, 1 9 6 7 . Oil on 

canvas, collection of the artist. The vertical line divides the width of 

the canvas in a proportion of 1 : 1 . 6 1 8 (portrait of Kennedy, by permis

sion of James Wyeth) 



Plate 1 3 . Six self-portraits by Rembrandt van Rijn. The artist painted 

about sixty self-portraits. These six reflect the 5:1 disparity in a left-

cheek preference over the right in all of his self-portraits (remember: 

the "left" cheek reflected in the artist's mirror is actually his right). 

(top, left to right) as he appeared at age twenty-three ( 1 6 2 9 , Mauritshuis, 

the Hague); at twenty-eight ( 1 6 3 4 , Galleria degli Uffizi, Florence); and 

at filly-eight ( 1 6 5 8 , Frick Collection, New York); (bottom left to right) the 

artist at age sixty-three ( 1 6 6 9 , English Heritage, Kenwood House, 

London); at sixty-six ( 1 6 6 9 , National Gallery, London); and at fifty-

three ( 1 6 5 9 , National Gallery of Art, Washington, D.C. ) 



Plate 1 4 . Leonardo, Virgin of the Rocks. Oil on wood, transferred to canvas, 

Musee du Louvre, Paris. Commissioned in 1 4 8 ? to hang as the altarpiece 

of the Immaculate Conception in Milan, (inset, top right) The golden 

pyramid superimposed on the four figures. Viewed as a flat image, how

ever, the outer edges of the pyramid form two sides of an isosceles trian

gle of angles 4 5 ° — 9 0 0 — 4 5 ° (Permission Musee du Louvre) 



Plate 1 5 . Leonardo's three famous portraits ol women: (left) Ginevrade' 

fiend, (shown with the missing right edge and the lower third of the panel 

restored digitally). Oil on panel, National Gallery of Art, Washington, 

D.C.; (center) Lady with the Ermine (Portrait oj Cecilia Gallerani), 1 4 9 1 . Oil on 

panel, C/.artoryski Collection, Krakow, (right) The Mona Lisa. Oil on panel, 

Musee du Louvre, Paris. In each of the portraits a golden rectangle has 

been superimposed incorporating the head and upper chest (down to the 

bodice) of the subject. Subsequently, a square has been delineated in the 

upper portion of the rectangle, the height of the head determining the 

size of the square. The diagonals of the squares intersect at the "com-

positionally dominant" eye of the subjects. The vertical line bisecting 

each portrait passes through or very close to an eye, in accord with 

Christopher Tyler's center-line principle, (inset, top left) The site of 

Leonardo's fingerprints, (top right) One simple interpretation has just the 

Mona Lisa's face framed by a golden rectangle. Her figure is organized by 

the golden triangle ( 7 2 ° — 3 6 ° — 7 2 ° ) (Photograph of Leonardo's fingerprints 

in Ginevra de'Benci by David Bull. Permission National Gallery of Art, 

Washington, D.C.) 



Plate 1 6 . Telescopes spanning five hundred years, (top left) 

Leonardo's study of light rays reflected from a concave reflector, 

and on the same sheet, a cylindrical tube mounted on an ad

justable mount, Codex Atlanticus; (top right) The Hubble space tel 

escope, a descendant of Newton's reflector; (bottom left) One of 

Galileo's refracting telescopes, Museum of the History of 

Science, Florence; (bottom right) Replica of Newton's reflecting 

telescope, Museum of the Royal Society of London. (Hubble tele 

scope, courtesy NASA) 
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W i t h / M R I one can pinpoint the areas of the brain where vari

ous mental functions are being carried out. Blood rushes to the 

parts of the brain requiring oxygen to process a particular function, 

a particular operation, performing a mathematical calculation, or 

creating a work of art. The / M R I studies on artist Humphrey Ocean 

and on the nonartist are wonderfully revealing. During the draw

ing sessions in which the nonartist made drawings while inside the 

machine, the parts of his brain involved in accomplishing the task 

were revealed to be located primarily in the rear of the brain, in the 

visual cortex. The brain process for the nonartist consisted of see

ing and copying, but distinctly did not involve abstract thought. 

Producing art involves the process of abstraction. When artist 

Ocean was working in the confines of the / M R I the areas of his 

brain that "lit up," or where oxygen-carrying blood saw a surge, 

were found to be in the frontal part of the brain. This presents a cru

cial difference. In Tchalenko 's words , "For Humphrey, the real 

transformation was taking place in the front, where you find emo

tion, previous faces, painting experience, intentions and so on. In 

essence, the control subject was s imply trying to slavishly copy 

what he saw. But Humphrey was creating an abstracted represen

tation of each photograph. He was thinking the portraits." 6 And 

according to neurophysiologist Robert Solso, for Ocean there was 

"less activity in the face area, the fusiform gyrus in the right pari

etal area, than in the nonartist, but more activity in the right frontal 

areas—the 'thinking' part ." 7 

Humphrey Ocean is an immensely talented figurative artist 

with no fewer than five paintings (and two drawings) hanging in 

London's National Portrait Gallery. 8 Tchalenko, although neither a 

physiologist nor a psychologist (he is a trained seismologist), is cer

tainly familiar with scientific methodology. As for those teams of 

scientists at Oxford and Stanford, they operate two of the finest lab

oratories of their kind in the world . The limitations in the scope 

of the experiment notwithstanding—studies on a single artist—the 
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results are fundamentally simple and intuitive, though they clearly 

invite expanded study. Further study, however, will have to wait . 

Tchalenko notes that it is difficult to raise money for such an inter

disciplinary art and science project, as "science bodies think this 

is art, and art bodies think this is science." 9 

The Eye of the Beheld 

If I could write the beauty of your eyes 

And in fresh numbers, number all your graces, 

The age to come would say, "This poet lies;" 

His heavenly touches ne'er touch'd earthly faces.'0 

—William Shakespeare 

"Is it the eyes?" wrote Guy Gugliotta, "The light? The sort of smile? 

What is it that makes the Mona Lisa—one of history's most memorable 

portraits—so compelling, even in its creation, that the young Raphael 

sat at Leonardo's knee just to watch him paint i t?"" Christopher Tyler, 

a neuroscientist in San Francisco, and independently, Michael 

Nicholls and fellow psychologists in Melbourne, compiled comple

mentary evidence of particular symmetries and asymmetries, a lateral 

bias, in portraits spanning the past five hundred years. 

In 1998 Christopher Tyler began to explore the possibility that 

the asymmetric functions of the two hemispheres of the brain may 

have somehow manifested themselves differently in artists' works. 

It was an unusual approach, although decidedly simple in concep

tion, in which he constructed a vertical line bisecting the frames of 

each of the portraits. Tyler accepted only seated or standing, but 

not reclining figures; in all, 282 artists were represented in his 

study. After he discovered that a preponderance of the center lines 

passed through one of the eyes of the subject, a "compositionally 



The Eye of the Beholder and the Eye of the Beheld | 157 

dominant eye," he expanded his study to a much larger universe 

of Western portraiture spanning 2,000 years and ever-changing 

styles and schools. 

For his statistical analysis Tyler tested four hypotheses: the 

major axis hypothesis, the golden section (divine proport ion) 

hypothesis, the head-centered hypothesis, and the one-eye centered 

hypothesis. At first glance most observers would agree that the eyes 

in portraits are generally located near the center of the canvas, but 

Tyler 's study revealed a subtler element. One eye, either the lead

ing or the trailing eye, was found to lie in a gaussian distribution 

(bell curve) about the center line with a narrow standard deviation 

of ±5 percent of the frame width. One-third of the portraits dis

played one-eye coincident with the center line and fully two-thirds 

of the portraits displayed one-eye within 5 percent of the center 

line. Vertically, Tyler found, the eye height distribution peaked not 

around the horizontal center line, but rather around the golden 

ratio of 61.8 percent of the height of the canvas, with only a negli

gible number of eyes found below the vertical center.' 2 

Tyler published a matrix of nine masterworks of Western civi

lization, portraits spanning the past five centuries (Plate 1 2 , top). 

These were chosen to illustrate the variety of compositional asym

metries, yet all have an eye right on the center line. Even Picasso, 

the ultimate creator-rebel of twentieth-century art in his Portrait of 

Dora Maar (1937), succumbed to this unwitting, unwritten norm for 

artists to put an eye at or near the vertical center line (third row, 

third column) . Until the end of the twentieth century, common 

American currency—from George Washington on the one-dollar bill 

to Benjamin Franklin on the hundred-dollar bill—had one eye of 

the subject coincident with the centerline. But then in the last years 

of the century new United States currency bearing values beyond 

one dollar were issued placing the head and the compositionally dom

inant eye off-center. In the self-portrait drawn by Leonardo da Vinci 
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gazing in a mirror, an engaging exercise for the reader would be to 

return to the drawing, construct a vertical bisector, and view its 

position on the face (Plate 1, left). 

Rules are made to be broken, especially if they are promulgated 

formally. But those unwritten rules that are generated subcon

sciously, perhaps inherent in the artist 's psyche, appear less sus

ceptible to violation. And so the center line principle, falling into 

the latter category, has demonstrated remarkable resilience. Artists, 

w h o are otherwise compelled to excavate new ground, much like 

scientists, appear unlikely to stray from the principle. Nonetheless, 

examples of "symmetry breaking" obviously exist, a third of the 

eyes falling in the tails of the peak plus-or-minus one standard devi

ation of Tyler 's eye-distribution histogram. 

Although no clear pattern outside the gaussian is discernible, 

0, the ubiquitous ratio resonating through past chapters, is found 

in a contemporary painting. It appears in the work of artist Jamie 

Wyeth, of the dis t inguished family of artists. In 1967, then not 

quite twenty-one years old, he painted a penetrating psycholog

ical portrait of John F. Kennedy (Plate 1 2 , bottom). On the canvas 

Kennedy's face is distinctly offset from the vertical bisector of the 

f rame," appearing to comply generally with the artist 's "rule of 

thirds." But when a vertical line is constructed to divide the can

vas 1:1.618 parts, it is seen to pass surprisingly close to Kennedy's left 

eye. The canvas itself does not form a golden rectangle (possess

ing instead the proport ion 1 : 1 . 7 8 ) ; thus it is the horizontal span 

that is d iv ided according to the golden mean. On v iewing this 

painting in an earl ier vers ion of my manuscript , Chr is topher 

Tyler offered an incisive comment: "It is clear that Wyeth 's intent 

was to create a v iew of Kennedy in a reflective mood, disengaged 

from the viewer. [The painter) has thus avoided the salience of the 

center line to enhance the sense of disengagement ." ' 4 There is no 

evidence that the artist chose the position of the eye based on any 
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mathematical strategy. He was s imply fol lowing his artistic-

instincts. 

A Leftward Bias 

As Chr is topher Tyle r ' s serendipi tous d iscovery indicates, the 

artist frequently places one of the subject's eyes at the center line 

of his frame, imbuing the portrait with a hidden symmetry. But 

immediate ly the question arises: "Is there a directional b ias? Is 

there a preponderance of one eye, one cheek—left or right—over 

their opposites?" Although Tyler 's eye-centered principle emerged 

in 1998, the issue of a directional bias had been investigated a 

quarter century earlier. In addition, the more recent observations 

by Michael Nicholls are entirely compatible with Tyler ' s results 

and also offer compell ing reasons toward resolving why the bias 

exists. 

A 1973 paper pointed out that in a sampl ing of 1,474 single-

subject portraits, 68 percent of female and 56 percent of male sub

jects presented more of the left side of the face than the r ight ." 

Another study examining portraits by Francisco Goya alone cited a 

turning bias of left cheek over right cheek for female subjects, and 

a less pronounced disparity of right cheek over left for male sub

jects . 1 6 Subsequently, an examination of 4 ,180 single subject por

traits in a variety of media—paintings, drawings, lithographs and 

photographs—revealed again that an asymmetry existed, with a 

preference for the left cheek over the right. 1 7 Yet another study of 

127 portraits of scientists, all members of the British Royal Society, 

revealed no leftward or rightward bias at al l . 1 8 Moreover, a separate 

pair of studies found an overall preference of artists to light their 

subjects from the left s ide . 1 9 Finally, there was Tyler ' s 1998 study 

which led to the center line principle, pointing out that bilateral 

symmetry in the presentation of the face was relatively rare. With 
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the center line passing through or near one eye, the subject was usu

ally presented with one eye and one cheek compositionally domi

nant over the opposite eye and cheek, but with no lateral bias in the 

distribution. 

With the aforementioned studies, some seemingly contradic

tory, serving as backdrop, Michael Nicholls carried out additional 

studies—some alone (2000) and others in collaboration with col

leagues in the department of psychology at the University of 

Melbourne (1999). A number of issues were addressed: (1 ) Does the 

right or left-handedness of the artist influence the direction of the 

subject's pose in a portrait? (2) How is the left-cheek bias reflected 

in a self-portrait? (3) Is there a difference in bias when the subject 

attempts to convey a different emotion? (4) Is there a gender factor 

in any of these results? 

A preponderance of portraits dating from the Renaissance dis

plays illumination of the subject from the artist's left side (the sub

ject's right). Although left-handers are disproportionately represented 

among artists, right-handed artists still slightly outnumber their left-

handed counterparts. And one would assume that artists, holding 

their paintbrushes in their preferred hand and their palettes in the 

other, would benefit from having the palette illuminated by the light 

falling from the illuminated side, thus reflecting the greater number 

of right-handed artists preferring left-hand lighting. Another hypoth

esis put forth by Nicholls: the right-hander, just by the musculature 

of his arm and shoulder, would find it more natural to draw or paint 

a subject with a left cheek bias, and a left-hander just the opposite. Yet 

an inventory of the portraits by two prolific known left-handers— 

Raphael and Hans Holbein the Younger—does not reflect these artists' 

preference for illuminating their subjects from the left, or for dis

playing the right cheek/eye as the compositionally dominant one. For 

Raphael fully two-thirds of his single subject portraits show a left-

cheek bias, for Holbein the number is three-fourths, these numbers 

reflecting roughly the statistics for all artists, regardless of whether 
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they are right- or left-handed. Thus the handedness of the artist deter

mining the side of the face featured appears to be a red herring. 

Nicholls 's investigation of 137 Renaissance portraits, ignoring 

gender differences in the subjects, revealed that 129 of them display 

the center line passing through or near one e y e , 2 0 in line with 

Tyler's discovery of just a year earlier. But then he found that 63 per

cent of the 129 portraits displayed the subject turned, exhibiting a 

prominent left cheek, left eye. 

How does the left cheek bias exhibit itself in self-portraits? 

Nicholls performed statistical analyses on self-portraits as well as por

traits of others, and the differences were dramatic, although in ret

rospect not surprising. For portraits of others, the featured side of the 

face was the left side in 57 percent of male subjects and 78 percent of 

female subjects. In contradistinction, in self-portraits it was the right 

side that was featured prominently—in 61 percent of portraits with 

male subjects and 67 percent of portraits with female subjects. These 

proportions for the portraits of others versus self-portraits are virtu

ally inverted. But then, when an artist works with a mirror, the right 

and left sides become inverted: the left cheek becomes the right, and 

the right, the left! Leonardo's self-portrait (see Plate 1) featured the 

right side of the artist's face, which we again know to be his left! In 

the fifty-seven known Rembrandt self-portraits, those unparalleled 

psychological studies, spanning the Dutch master's lifetime, forty-

eight of them feature the right cheek, only nine the left. But in all 

those forty-eight self-portraits Rembrandt was gazing in the mirror 

at the left side of his face (Plate 13) . 

The next hypothesis Nicholls tested was the effect of the emo

tional frame of mind of the subject on the direction in which he or 

she turns. (In this experiment the premise is that it is the subject 

and not the artist/photographer who selects the subject's direction 

of turn.) The subjects were 165 psychology students, 122 female and 

43 male. An integral aspect of the study was the subjects' initial 

prepping with one of two directives—actually a pair of hypothetical 
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scenarios with differing emotional content. With neither the sub

ject nor the proctor alerted about the left-right connotations of the 

study, the proctor would photograph the subject with a video cam

era positioned two meters in front of them. One statement prompted 

the subject to pose for a photograph designated for a loved one; the 

other prompted, "You have been invited to become a member of the 

Royal Society and a portrait of you is to be submitted." After being 

told not to face the camera directly and to take thirty seconds to 

strike a pose, each subject was photographed. The first statement 

had been designed to generate a sense of warmth, endearment, and 

emotion; the second to generate a desire to suppress emotion, to 

exude a sense of rationality and power. Neuropsychologist Michael 

Nicholls offered an explanation: the right side of the brain—the 

hemisphere associated with emotive functions and the hemisphere 

controlling the left eye and cheek—impels the subject of the por

trait to subconsciously turn toward the right, exposing prominently 

the left side. Mona Lisa, desiring to appear loving and loyal, bares her 

left cheek. Conversely, when immersed in the second hypothetical 

scenario, "to pose for a portrait to hang with portraits of other pow

erful and intelligent scientists in the Royal Society," the subject of the 

portrait shows off the right eye (and cheek), the side controlled by 

the rational, expressive, confident left hemisphere of the brain. As a 

general principle, Nicholls's explanation is compelling and, like the 

Ocean/Tchalenko experiments discussed earlier, beckons further 

research, if possible, with brain imaging technology. The numbers 

certainly suggest a correlation with differing functions of the right 

and left hemispheres of the brain. Moreover, the gender factor is 

quite minimal, and so is the handedness of the artist. 



O marvelous science, you keep alive the transient 

beauty of mortals and you have greater permanence 

than the works of nature, which continuously change 

over a period of time, leading remorselessly to old age. 

And, this science has the same relation to divine 

nature as its works have to the works of nature, and 

on this account is to be revered. 

—Leonardo da Vinci 

J eonardo wrote entire tomes on how painting was a science, how 

music was "the younger sister of painting," and how paint

ing was superior to all other forms of art —poetry, music, and 

sculpture—as a medium for describing nature. He wrote that paint

ing could capture a fleeting moment, the subject never aging 

beyond the time of execution of the subject's likeness. Meanwhile, 

he seemed to take special delight in denigrating sculpture—an 

understandable prejudice, considering his greatest rival specialized 

in that medium: "Sculpture is not a science but a very mechanical 
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a r t . . . generally accompanied by great sweat which mingles with 

dust and becomes converted into mud. His face becomes plastered 

and powered all over with marble dust, which makes him look like 

a baker."' In the hierarchy of intellectual pursuits, however, science 

maintained an unrivaled perch. Even as an apprentice, when he first 

took up a brush, Leonardo was already infusing his paintings with 

elements of his beloved nature, its secrets revealed by his unre

lenting scientific inquiries. Thus his paintings are rich in anatom

ical, botanical, geological, and psychological overtones, and also 

rich in the geometric shapes and patterns, employed for either 

organizing his subjects or giving them depth and dynamism. 

The shapes and patterns were extraordinarily enduring, recur

ring in his works again and again. As a teenager he painted a small 

section of Verrocchio 's Baptism of Christ. The contours and high

lights of the curls in the angel 's hair are signature touches of 

Leonardo, reminiscent of the vortices in his drawings of the flood

ing Arno. The curls again appear in his Ginevra de'Benci, executed 

when he was about twenty-one. A gentle helical twist imparts a 

sense of dynamism to the angel's body in the Baptism of Christ; this 

is seen again in three of the four figures in the Virgin of the Rocks, 

painted when he was in his early thirties. Again, in the portrait Lady 

with the Ermine, created when Leonardo was in his late thirties, and 

in the Mona Lisa, painted when he was past fifty, the same helical 

contour imparts dynamism to the subjects. 

Among paintings attributed to Leonardo 's first Florentine 

period is the unfinished painting Saint Jerome in the Wilderness 

(Vatican Museum) . Jerome, w h o was identified so closely with 

nature, must have been a favorite of Leonardo's, for his own psyche 

was inseparable from nature. In this early work depicting the old 

hermit, the figure of Jerome can be framed within a golden rectan

gle. Leonardo, w h o was later to illustrate Luca Pacioli 's De divina 

proportione, was of course intimately familiar with the divine pro

portion (and the golden rectangle), as well as with regular and semi-
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regular polyhedral figures, which he depicted in rough sketches in 

his notebooks and presented formally in Pacioli's book. Thus it was 

most likely more than a coincidence for Leonardo to frame the fig

ure of Saint Jerome within a golden rectangle. 

In order to dramatize the proportions of the kneeling figure of 

Saint Jerome, I have digitally superimposed the golden rectangle on 

the painting; then in the upper inset figure, reproduced a postcard 

with precisely the same proportions. The postcard I chose for the 

demonstration happens to bear the image of a classical Greek vase 

(crater) that fills the postcard precisely (Figure 9 .1 ) . The simple 

exercise of juxtaposing objects from different ages—from antiquity, 

the Italian Renaissance, and contemporary culture—in the same fig

ure is meant to dramatize the timelessness of the golden rectangle, 

a shape more often than not chosen inadvertently but, by Leonardo, 

probably with careful premeditation. 

In Milan Leonardo was a boarder in the house of the de' Predis 

brothers, both painters. On April 25 ,1483 , he was commissioned to 

paint an Immaculate Conception altarpiece for a small church. The 

presumptuous officials dictated their own idea for a composition 

and even the choice of colors: "the cloak of Our Lady in the middle 

[is to] be of gold brocade and ultramarine blue . . . the gown .. . gold 

brocade and crimson lake, in o i l . . . the lining of the cloak . . . gold 

brocade and green, in oil. . . . Also, the seraphim done in sgrafitto 

work. . . . Also God the Father [is] to have a cloak of gold brocade 

and ultramarine blue." 2 

Indeed, the details of the colors and design required from 

Leonardo for this work continued another fourfold beyond those 

specified above. But Leonardo, after agreeing to the terms of the 

contract, went on to produce his own version. He organized the 

composi t ion as a pyramid with the Madonna ' s head at the ver

tex, her right arm draped over the infant John the Baptist, whom 

she is poised to bless; the infant Christ is immediately below her 

left hand. At the lower right corner is a kneeling angel pointing 



F i g u r e 9.1. L e o n a r d o d a V i n c i , Saint Jerome and the Lion ( u n f i n i s h e d ) , 

1482, V a t i c a n M u s e u m , R o m e , (inset, top right) T h e i m a g e o f a n a n c i e n t 

G r e e k v a s e w i t h t h e p r o p o r t i o n s o f a p o s t c a r d , t h e p o s t c a r d i t s e l f i n 

t h e s h a p e o f a g o l d e n r e c t a n g l e . 
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toward Saint John . Rugged stalactites and stalagmites, all 

immersed in a thick mist but punctuated by bright light, provide 

a surrealistic backdrop to the quartet of characters. The painting, 

known today as the Louvre 's famous Virgin of the Rocks (Plate 1 4 ) , 

measures 198.1 by 122 centimeters, thus it has a height-to-width 

rat io of 1 .62, or 0. Twen ty years later, Leonardo , col laborat ing 

with his housemate Ambrogio de' Predis, produced a variation of 

this painting for the church of San Francesco Grande in Mi lan . 

This painting, the London Nat ional Gal le ry ' s Virgin of the Rocks, 

has overal l p ropor t ions very close to its predecessor , but the 

backdrop of stalactites and stalagmites has been brought forward 

slightly, the Vi rg in and the two infants have halos, Saint John 

holds a cross of reeds, and the angel is not pointing. 

The Last Supper 

In 1495 the forty-three year old Leonardo was commiss ioned to 

paint a mural in the dining room of the small church of Santa Maria 

delle Grazie in Milan—the theme, Christ 's last meal with his dis

ciples. On the wall of the refectory for which it was planned, the 

natural light enters the room through windows on the left-hand 

side, and the work is appropriately customized for the setting. The 

right side of the scene is illuminated far more than the left, and the 

left sides of the individual figures are lit while the right sides are 

in gradations of shadow (see Plate 8). Artists of the Renaissance, in 

paintings depicting the Last Supper, would often separate Judas 

from the other disciples, placing him alone on one side of the table, 

separated from the rest of the disciples seated on the other. His full 

face was never presented, lest the viewer gaze inadvertently into the 

eye of evil. Leonardo has integrated Judas into one of four group

ings of disciples, but made sure that his face is in shadow, and only 

one eye can be seen. In that moment, rife with electricity, when 
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Christ has just made his announcement of the betrayal, Judas 

recoils in terror, knocking over the saltcellar. 

Leonardo's prel iminary sketches reveal the intensity of the 

moment, the individual and group conflict, the psychological 

drama at that dinner table, in the faces and hands. Indeed, hands as 

much as faces represent a powerful instrument to convey passion. 

Verrocchio had already exposed his pupils to the emotive power of 

gesture in his figures. But Leonardo informed his Last Supper with 

much greater artistic currency than could his master—he had 

deeper insight into psychology, superior skills with his medium and 

composit ion. And as admonishment meant for young artists, he 

identified in the Libro dipittura pitfalls to avoid in multiple subject 

works: "Do not repeat the same movements in the same figure, be 

it their limbs, hands, or fingers. Nor should the same pose be 

repeated in one narrative composition." 

Leonardo, characteristically running late in completing the 

work, was called to task by a prior: "Why is it taking so long?" 

Leonardo responded that he was having a difficult time finding a 

model for Judas, and suggested to the prior that perhaps he might 

serve in this capacity. The prior departed, foaming with indigna

tion, but refrained from further badgering the artist. In the mode 

of a modern director seeking just the right actor for his cast, 

Leonardo spent months observing, sketching, searching for just the 

right countenance he envisioned for each disciple. The casting for 

the model of Jesus Christ was evidently not unusually difficult. He 

found Jesus in a handsome and muscular young man, exuding con

fidence and an unmistakable air of piety. Several years later, 

Leonardo lore has it, he found his Judas in a Roman prison. From 

a close friend, who had also been on the lookout for the Judas char

acter, he heard the description he was after. When he personally vis

ited the prison and saw the bedraggled convict brought out for his 

viewing, Leonardo accepted the man without hesitation—only to 
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find, to his shock and horror, that this broken wretch was the very 

man who had served as his Jesus! 

When Leonardo finally finished the Last Supper, the mural was 

revolutionary in its composit ion, grouping the apostles in four 

groups of three, and isolating Christ. In this, the most dramatic of 

all of his paintings, Leonardo had captured that instant when Christ 

had just announced to the bewildered and distraught guests at din

ner table, "Verily, verily one of you will betray me." That moment 

of despair is said to reflect in Jesus' face Leonardo's own feeling of 

betrayal twenty years earlier in Florence. 

Normally in painting a fresco, water-based paints are applied to 

wet plaster, thus penetrating and becoming a part of the plaster. 

Leonardo used oil-based paint along with varnish, and these, 

applied to a dry wal l , never achieved sufficient penetration. Un-

proven techniques and materials, coupled with the salts leeching 

from the upwelling groundwater, caused the paint to gradually flake 

off. Over the centuries a number of attempts were made to restore 

the great mural, most of them expediting its decay. The most recent 

effort to restore the mural, a project that lasted seventeen years, 

may have finally succeeded in decelerating further degradation. 

Removal of almost all of the past restorers' over-paint also revealed 

Leonardo's original vivid palette. 

Among the legion of artists who have tried to copy or produce 

variat ions of Leonardo 's Last Supper was Raphael Morghen, w h o 

produced arguably the best engraving based on the work (c. 1800) 

and served to disseminate the image. It is this engraving that 

reveals some of the details of Leonardo 's symbol ism. Among the 

group immediate ly to the left of Christ is Judas , face in shadow 

and clutching a sack of s i lver in one hand (see Plate 7, bot tom 

right). 

Just as Leonardo was about to leave Urbino after three disap

pointing years in the employ of Cesare Borgia, Machiavelli helped 
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him to secure a commiss ion from the city of Florence. He and 

Michelangelo were each to paint on facing walls of the Great 

Council hall of the Palazzo del Signoria (now the Palazzo Vecchio) 

massive murals celebrating a pair of successful military campaigns 

carried out by Florence. Leonardo was to depict the Battle of 

Anghiari, which led to the defeat of Milan in 1440 ; Michelangelo, 

the Battle of Cascina, which led to the defeat of Pisa in 1364. 

Thoughts began to take shape in both artist's notebooks, and each 

created full-size cartoons that were displayed and greatly admired. 

Sadly, just as the work commenced, Michelangelo was ordered to 

Rome to complete the tomb of Pope Julius II, and the commissions 

were withdrawn. 

Leonardo had gone so far as to do an underpainting on the wall ; 

it was covered by Vasari when he received a commission in 1563 to 

remodel the room. And although this cover-up was all too success

ful, defying even modern attempts to locate the unfinished mural 

using high-tech equipment, at least some of Leonardo's sketches of 

battling warriors and horses can be found in his notebooks. Neither 

Michelangelo's nor Leonardo's cartoons have survived. Yet a hun

dred years after Leonardo first conceived its design, a copy of the 

cartoon, albeit by a poor artist, was still in existence. In 1603 the 

Flemish Baroque master Peter Paul Rubens replicated that cartoon 

in the "style of Leonardo" (Fig. 9.2). In view of Rubens's skill and 

his abiding reverence for Leonardo, it is likely that he reproduced 

as faithfully as possible what he thought Leonardo had in mind. If 

so, the cartoon reflects Leonardo's personal aversion to the horrors 

of combat, notwithstanding his employment as a designer of 

engines of war. Some of Leonardo's sketches of battling warriors 

and horses can be found in his notebooks; the faces are highly rem

iniscent of those of some of the warriors and horses in Rubens's car

toon. As for the general shape and composition, the cartoon can be 

seen to invoke the golden pyramid to frame the subjects. 
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Figure 9.2. Peter Paul Rubens, drawing after Leonardo's cartoon for the 

Battle oj Anghiari ( 1 6 0 3 ) , Musee du Louvre, Paris; (insets, upper left anil right) 

details of two sheets with studies of heads of soldiers for the Battle of 

Anghiari, both in the collection of the Szepmiiveszeti Muzeum, Budapest 

The Three Women 

Therefore make the hair on the head play in the 

wind around youthful faces and gracefully adorn 

them with many cascades of curls. 

—Leonardo da Vinci 

Leonardo painted only three portraits of women, approximately 

fifteen years apart, but each painting became a pivotal work in 

the history of art. In each instance he took a routine commiss ion 
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for a portrai t of a w o m a n of nei ther prepossess ing beauty nor 

overwhelming ly lofty stature and bes towed immorta l i ty on his 

subject. These are the Ginevra de'Benci, Cecilia Gallerani, and the 

Mona Lisa. 

The only painting by Leonardo outside Europe is also his only 

known double-sided painting (Plate 15) . It portrays Ginevra de' 

Benci, the daughter of the wealthy Florentine banker Amerigo de' 

Benci, on the obverse side, and a combination of symbolic flora on 

the reverse. In early 1474 Ginevra had married Luigi de Bernardo 

Nicolini , a prominent magistrate, and the portrait was created 

shortly thereafter. It is thought to have passed from the Benci fam

ily, which had died out by the early eighteenth century, into the 

hands of the princes of Liechtenstein, whose red wax family seal 

can be seen in the upper right corner of the reverse. In 1967 the 

National Gallery of Art in Washington acquired the painting from 

the Principality of Liechtenstein. 3 

Ginevra, with her hairline and eyebrows plucked to accentu

ate "a smoothly domed forehead" emblematic of her intellect, is 

seen in front of a juniper (ginepro) bush, a symbol of virtue and a 

play on her name. In the distance is a pair of church spires, pre

sumably representing her piety. On the reverse juniper appears 

again—this time a sprig cupped by a laurel on one side and palm 

branch on the other. The relatively limited palette and the precisely 

delineated curls of her hair are evidence of the painting having been 

executed in the artist's youth: he was just five years older than his 

sixteen-year old subject. 

The painting is on a poplar panel, measuring 38.8 by 36.7 cen

timeters (IS'A by 14'A in.); in other words, the overall shape of the 

portrait is virtually a square—or is it? When we carry out a sim

ple geometric construction—inscribing the subject from the top of 

her head down to her bodice within a vertically configured golden 

rectangle, the head defining a square in the upper portion of the 
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rectangle—we find that her chin rests almost directly on the lower 

edge of that square. 

Painting the reverse side of the wooden panel had a salutary 

effect, for it has kept the panel perfectly flat for over five hundred 

years. Warping is caused by the cells on one side of a wooden panel 

absorbing more moisture than cells on the other (a less extreme case 

of the spiral pattern). This panel was hermetically sealed; however, 

even that cannot stop discoloration of the painting's protective var

nish, which yellows over the years. In 1992 the painting underwent 

thorough cleaning and restoration, and what emerged was even more 

beautiful than expected. Of course, the yellow filter of a varnish con

verts the blues to green and reds to orange. Removing the yellowed 

varnish from the portrait restored Leonardo's original blue hues to 

the sky. It also revealed the rich undertones and overtones Leonardo 

used in painting the girl's aristocratic complexion, much paler and 

more porcelain-like than had been evident. Women of the Renaissance 

were physically and figuratively sheltered, and suntanned skin was 

anything but fashionable. 

The square shape of the Ginevra de'Benci has long been a source 

of speculation, as this was a rare format for paintings in the 

Renaissance. Is there a missing part of the painting, and if so, what 

was there? T w o of its edges, the right and the bottom, display evi

dence of damage and of having been sawed. We have also observed 

that for Leonardo the hands were as expressive as the face—that 

was the case in the Last Supper, and as we will see, that is the case 

with each of the three portraits. David Brown and National Gallery 

staff have digitally reassembled a study of hands by Leonardo (a 

drawing in Windsor Castle) and the portrait of Ginevra with 

remarkable results. The clue to how they should be aligned was on 

the reverse side, where the juniper twig was found to be offset by 

1 .3 centimeters in the direction of the damaged edge. Operating 

under the hypothesis that the juniper twig had been aligned at the 
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center of the original panel, the first step was to add 1.3 centimeters 

to that, and then fill in the space digitally. The branches embracing 

the juniper were propagated downward to converge near the bot

tom of the panel. Then, on the obverse, the hands were digitally 

overlaid at the bottom of Ginevra's image and manipulated—trans

lated, rotated, and rescaled—until Brown achieved what he was 

convinced was the artist's style and intent. But the digital coloriza-

tion process leaves the colors of the hands and dress somewhat flat. 

Moreover, distinctly missing, especially in the hands, are the soft

ness and grace with which Leonardo would have normally imbued 

his subject in an oil portrait. At least, however, we have an oppor

tunity to see Ginevra 's position as it might have appeared in the 

original portrait (Plate 15 , bottom left). 

In 1482, eight years after he completed the Ginevra de'Benci, 

Leonardo moved from Florence to Milan, having secured a post as 

court engineer for Duke Ludovico Sforza (II Moro ) . Problems in 

civil and mili tary engineering consumed his time, but frequent 

experimentation, studies in optics, sketches of mental inventions, 

and the systematic recording of results continued undeterred. On 

the infrequent occasions when he returned to painting, evidence of 

this intellectual ferment would be manifest in his art, and each new 

commission brought his work to a level of refinement far above the 

last. In 1491 , when he painted the Lady with the Ermine (Portrait oj 

Cecilia Gallerani), the cultivated mistress of II Moro (Plate 15 , cen

ter) fifteen years had passed since he had painted Ginevra de'Benci, 

and there was an astonishing growth in sophistication. As in the 

Ginevra, this is a full-on portrait at a time when people were used 

to seeing only profiles of women, and it is rife with psychological 

overtones—the sideways glance, the delicate fingers. In fact, Leo

nardo's Ginevra de'Benci and Cecilia Gallerani were arguably the first 

psychological portraits ever seen. 

On the painting of Cecilia Gallerani a golden rectangle is delin

eated, framing the area from the top of the head to the top of the 
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bodice. A square is portioned off in the upper part of the rectangle, 

leaving a golden rectangle in the lower portion. The result is just as 

in the Ginevra de'Benci. 

In 1503, in Florence, Leonardo accepted another commission for 

a portrait—again after a fifteen-year hiatus from portrait painting— 

this time he was to paint the wife of the wealthy merchant Francesco 

del Giocondo. Indeed Leonardo had done very little other painting, 

having left a number of works unfinished. But his studies in every

thing else continued unabated, with notes recorded in two types of 

notebooks—one for daily observations and rough sketches and 

another for distillations of the best of the daily notebooks and more 

finished drawings. With the Ginevra de'Benci, he had been a young 

artist just trying to get established, and Verrocchio may have passed 

on the commission to him. With the Cecilia Gallerani, the mistress 

of Ludovico Sforza, he probably just wanted to impress the duke. 

But with the wife of del Giocondo, it is a mystery why he even 

accepted the commission. We can speculate that perhaps he needed 

money. But one thing is certain: with the Mona Lisa, he produced 

a miraculous psychological portrait—spellbinding, hypnotic, time

less. You know this woman, and yet you don't. She is looking 

directly at the viewer, but what is on her mind is the real enigma. 

She exudes confidence and uncertainty at the same time, with an 

expression that is both inviting and frightening. In a sense it is a 

universal statement about women, albeit by a man whose attitude 

toward the opposite sex was highly problematic. It is no wonder 

that her countenance and that partial smile have launched more 

wild speculations than all other works of art, among them: "She is 

pregnant," "She is suffering from a tooth ache," "It's a self-portrait 

by Leonardo." 

After each fifteen-year hiatus from painting portraits, Leonardo 

returned with immensely greater knowledge and insight, and a more 

refined technique. This is not difficult to understand: it is quintes

sential Leonardo, his interests inseparable, all organic components 
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of the same mind. Leonardo accepted the commission for the Mona 

Lisa in 1503 but did not complete it until 1507. For whatever reason— 

either because he had not completed it in a specified time or because 

he had become too fond of it and could not part with it—he never 

turned it over to Francesco del Giocondo. Leonardo left Florence 

with the painting in 1507 and kept it with him through his subse

quent travels. He took the painting with him in 1516 when he moved 

to France, and it was still in his possession at his death in Amboise 

(south of Paris) in 1519. It was in Amboise that Francis I acquired the 

Mona Lisa for his local chateau. At different times afterward, the 

painting surfaced at three different locations: Fontainbleu, Paris, 

Versailles. At some point the painting found its way into the collec

tion of Louis XIV, and after the Revolution it found a home in the 

Louvre, then Napoleon Bonapart commandeered the painting and 

hung it above his bed. Later, when Napoleon was sent into exile, the 

Mona Lisa returned to the Louvre, where it has been ever since. 

In its f ive-hundred-year history the Mona Lisa has survived 

appalling ordeals. According to Leonardo scholars, at an undeter

mined time in the past a pair of columns framing the subject on a 

terrace were cut out. Then early in 1911 the painting was stolen and 

taken to Florence, where it was kept hidden under a bed by an 

Italian nationalist. In 1956 it was damaged by a madman who threw 

acid on it, and again in the 1960s by another who slashed it. But let 

us hope all this traumatic experience is in the past. Majestically it 

hangs in the Louvre (as La Gioconda or La Joconde), restored, 

shielded by bulletproof glass, and since the 1980s protected by a law 

that prohibits all future travel abroad. 

The proportions of the Mona Lisa panel are about 1:1.45, not par

ticularly close to the golden ratio of 1 :1 .618, though the earlier trim

ming of the painting on its sides makes this test meaningless for us. 

When the columns were still present and the painting was wider, 

its length-to-width ratio would have been smaller than 1:1.45. Other 

interesting geometric constructions, however, can be seen (Plate 15, 



Leonardo, Part-Time Artist | 177 

lower right). As in the Ginevra de'Benci and the Cecilia Gallerani, we 

first construct a golden rectangle enclosing the area from the top of 

her head down to the top of her bodice. A square delineated in the 

upper portion of the rectangle leaves her chin resting on the bot

tom edge of the square and her left, or "leading," eye located at the 

center of the square. This was also true for the Ginevra de' Benci and 

the Cecilia Gallerani, although in those paintings it was the right eye. 

Finally, the torso of the Mona Lisa—slightly turned, her right shoul

der and her right cheek set back relative to the left shoulder and left 

cheek, respectively—can be inscribed in a golden triangle (with 

angles 72°—36°—72°) . There is a question that begs an answer: Was 

this all a coincidence for Leonardo—just a manifestation of his 

unerring eye, as it most likely had been for the architects of the pyr

amids—or was it a conscious exercise? In the work of any other 

artist, we would assume these manifestations to be coincidental. 

For Leonardo, who seamlessly integrated mathematics, science, and 

art, and spent his life seeking unifying principles, perhaps not! 

When Leonardo painted his earlier works of art such as the 

Adoration of the Magi and the Annunciation, the theory of one-point 

perspective had already been known for fifty years, and Leonardo had 

mastered it. By the time he painted the Mona Lisa, Leonardo had 

already learned how to manipulate it in order to produce special 

effects. For a painting's image to be "lifelike" in the Renaissance 

meant the conveying of a feeling of being alive, rather than rendering 

an exact physiognomic or photographic likeness of the subject. 

Indeed, since no other images of del Giocondo's wife exist, no one 

knows how she really looked. But from the canvas she is ready to 

speak: the outer edges of her eyes (the lateral canthus) have been 

painted purposefully blurred, creating a sense of ambiguity. Moreover, 

the landscape forming the backdrop behind her is higher on one side 

than on the other. Therein lies Leonardo's trick: his artifice causes 

the observer's eye to inadvertently oscillate back and forth across the 

subject's eyes, creating an optical illusion of animation. 
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In the last chapter we examined Christopher Tyler 's serendip

itous discovery of the central-line phenomenon, his observation 

that in a preponderance of single-subject portraits the vertically 

bisecting line of the canvas passed very close to one eye, whether 

the leading eye or the trailing eye. In one element of the matrix of 

portraits reproduced from Chris topher Tyler was the portrait of 

Mona Lisa. Here we apply the center-line principle to the other two 

Leonardo portraits of women, the Ginevra de'Benci and the Lady 

with the Ermine (Portrait of Cecilia Gallerani). The center line in the 

Ginevra has been drawn to bisect the existing panel and not the cor

rected version extended on the right by 1.3 centimeters, following 

David Brown's reconstruction (the discrepancy in the position of 

the line is a negligibly small 2 percent). The center line is seen to 

pass convincingly close to the leading eye—the right eye for the 

Ginevra de'Benci and Cecilia Gallerani and the left eye for the Mona 

Lisa. The left-cheek bias in Renaissance portraits pointed out by 

Nicholls is evident in the Mona Lisa, but not so in the Ginevra de' 

Benci and the Cecilia Gallerani. But then three portraits are just too 

small a sample on which to make a sweeping generalization. 

As the United States began to prepare for the five hundredth 

anniversary of the discovery of America in 1992, many museums 

around the nation launched programs to commemorate the event 

with exhibit ions of their own. The National Gal lery of Art, cus

todian of the Ginevra de'Benci, planned Circa 1492, an exhibit ion 

of works from the era of Columbus, with aspirations of including 

Leonardo's Lady with the Ermine, painted in 1491 . The curators of 

Poland's national Czar toryski Collect ion in Krakow were 

extremely reluctant to lend the priceless work, without a doubt 

the most important artistic treasure of the nation. The argument 

they offered was that the painting was too fragile. At that junc

ture. President George H. W. Bush appealed directly to President 

Lech Walesa, w h o was not entirely unrecept ive to the idea. In 

express ing condit ional agreement, he was conveying the tacit 
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gratitude of Poland for American support in the struggle to break 

off from the Soviet Block. 

Conservator David Bull of the National Gallery of Art went to 

Krakow to ascertain whether the painting was sound enough to 

travel. He examined the painting with a magnifying glass for four 

hours. To the stunned Polish curators ' delight, he pointed to one 

area and pronounced "there is Leonardo's fingerprint," 4 something 

that no one had ever noticed. This discovery, and the assessment 

that the Lady with the Ermine was in condition to travel, helped the 

negotiations proceed to a successful conclusion. Four months later 

the painting was transported to the United States for a three-month 

visit amidst unprecedented security. Cecilia, accompanied by David 

Bull and two Polish curators, flew first class on a Pan Am flight to 

Washington, D.C. In the agreement that brought the work to the 

United States, it was also decided that after the three-month exhi

bition of the painting, David Bull could spend another week exam

ining the painting with high-tech equipment in the National 

Gallery's conservation laboratory. There on his Formica table, side-

by-side he had the "two girls." Bull had spent his professional life 

examining, cleaning and restoring masterworks by Bellini, Titian, 

Raphael, Rembrandt , van Gogh, Cezanne, Manet , Monet, and 

Picasso, "But two Leonardos at once. . . ! In the rarefied world of art 

masterpieces such a moment is without compare ." 5 The FBI was 

called in to photograph the fingerprints on both the Ginevra de' 

Benci and the Lady with the Ermine using a specialized camera. The 

fingerprint images are stored—along with those of distinguished 

and notorious individuals of twentieth century—in the data banks 

of that institution. 

In his investigations of the two portraits by Leonardo Bull relied 

mainly on the two basic techniques of x-radiography and infrared 

reflectography, along with the nowadays more common tool of the 

stereoscopic microscope. With x-radiography, x-rays are used to 

probe deep into the paintings with a view toward ascertaining the 
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beginnings and the structure of the work. In the Ginevra de'Bend, 

the images on the two sides of the panel are compressed, as both 

sides are visible simultaneously. This technique also reveals over-

painting on previous images. On the reverse side of the Ginevra, 

underlying the Benci family motto "Beauty adorns Vir tue" is 

another, "Virtue and Honor" (the motif of Bernardo Bimbo, who 

was Ginevra's platonic lover and perhaps the person who commis

sioned Leonardo to do the painting). Thus Ginevra 's own motto 

was overpainted. On the Lady with the Ermine, x-radiography re

vealed that Leonardo had experimented with Cecilia Gallerani 's 

hands, altering their position after initially painting them. 

David Bull found that infrared reflectography was most helpful 

for his needs when investigating the two portraits. This technology 

utilizes infrared radiation, which is much less penetrating than x-rays, 

to investigate the surface (and just below the surface) of paint. The 

infrared radiation reflects off the white gesso ground that lies 

between panel and paint, and the image is recorded by camera and 

made visible on a computer monitor. Bull's examination of the two 

paintings with infrared reflectography revealed an underlying draw

ing outlining the subject. With his sitter before him, Leonardo would 

make a drawing on paper. He would take the drawing back to the stu

dio and make pin pricks outlining the drawing, carefully going around 

the nose, the eyes, the lips. Then he would take the drawing with the 

holes punched through, essentially now a stencil, and lay it down on 

the gesso, then lightly dab the perforated study with a muslin bag of 

charcoal dust to transfer his design. The resulting outline of the fig

ure was visible again in the infrared reflectography. 

The Ginevra de'Benci and the Mona Lisa, painted thirty years apart, 

each have pastoral background landscapes; and their astonishing 

chiaroscuro and sfumato keep them in perfect harmony with the sub

ject. Chiaroscuro is a technique of painting in which the figures por

trayed have somewhat nebulous outlines, seen emerging into the light 

from shadows. With sfumato, believed to have been invented by 
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Verrocchio, the objects in a picture are coated with layers of very thin 

paint to soften edges and blur shadows, creating a dreamlike effect of 

atmospheric mist or haze. Leonardo had already exhibited his mas

tery of these techniques in the Virgin of the Rocks (1483). 

The study of the Lady with the Ermine revealed another dra

matic surprise. Painted midway in that thirty year span, it features 

a flat (albeit dramatic) black background that is out of character 

with the other two portraits . Art historians had long suspected 

that the original background had been painted over sometime in 

the past. Bull 's infrared reflectography studies revealed the back

ground indeed had been altered, he speculates, in the nineteenth 

century. The obvious guess would be that the painting had once 

had a symbol ic landscape s imilar to the other two , but Bull 's 

examinat ion revealed none. It was a subtle iridescent blue-gray, 

somewhat evocative of the metallic paint one encounters on some 

cars, unusual for the Renaissance and unusual even for Leonardo. 

But then every innovation this man introduced broke new ground 

and left the medium much richer. 

For both his works of art and scientific investigations, Leonardo 

personally developed and practiced a technique that is evocative of 

modern scientific methodology: careful experimentation, meticulous 

observation, copious recording of data, and a synthesis in the form 

of an explanation—a theory. But he did not publish! It is clear from 

the notes he left behind, however, that he approached everything with 

consummate open-mindedness. His art, whether religious or secular, 

was informed by the fruits of his scientific investigations—linear per

spective, mathematics, optics, mechanics, anatomy, geology, even psy

chology. His subjects are depicted not just as photographic likenesses, 

but integrated into a canvas teeming with psychological overtones. In 

single-subject paintings they communicate with the viewer, and in 

multiple-subject paintings, also with each other. 

Inquiry in any human endeavor, scientific or artistic, cannot 

proceed without experimentation, but experiments can go awry. 
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Once Leonardo painted with oils onto a stone wal l ; then he 

applied heat to the wall in order to fix the paint. The paint melted 

and the creation was destroyed. 6 A more serious failed experiment 

occurred on the Last Supper, where instead of s imply using a 

proven mural technique, he introduced a method that was not con

ducive to the environmental conditions of the room and building, 

and the great mural began its inexorable deterioration process by 

the time it was finished. 

Finally, there is one other Leonardo work that we must revisit— 

The Adoration of the Magi, long regarded as one of the gems of the 

Uffizi, hanging on an honored wall in the great museum. Although 

an unfinished work, the Adoration shows the perspectival studies 

made by Leonardo to be a prelude to a final painting. In spring 2002 

a tragic discovery was made when the work was moved for restora

tion and conservation into the museum's laboratory. A painstaking 

scientific analysis revealed to everyone's horror that, although the 

underdrawing is indeed by Leonardo, the work was overpainted— 

possibly a century later—by an artist of modest talent. The museum 

staff subsequently took a sad but necessary decision, moving the 

painting not back onto its lofty perch in the museum, but into a 

storeroom where it has remained since. Perhaps the overpainting 

will be removed in the near future and the work can be exhibited as 

a Leonardo. 

High Technology as a Tool for Uncovering Forgery 

The high technology applied to Leonardo's paintings has been reveal

ing. Issues of color, composition, technique and especially prove

nance all make more sense. They eliminate wild speculation and 

guesswork, anathema to Leonardo. Moreover, since it had been the 

Renaissance artist who first taught the scientist to make careful 

observations, and ultimately to help launch modern science, we 

might regard high technology as a return favor by the scientist. The 
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plethora of modern technical tools routinely resolve questions that 

in another age would have been accepted or rejected according to 

one's intellectual prejudices. Among questions resolved by carbon-

14 testing has been the authenticity of the Shroud of Turin (it turns 

out to be less than a thousand years old). High tech medical imag

ing—computer-assisted tomography (CAT-scan) and MRI—has been 

performed on Egyptian mummies, determining, among other things, 

the diseases to which various pharaohs ultimately succumbed. 

Cosmic radiation was employed in searching for hidden chambers, 

and ultimately mapping out the internal structure of the Chephren 

Pyramid (there were no hidden chambers). Radiography, with highly 

penetrating gamma radiation, was used in revealing an anachronis

tic internal wire structure in a Greek statue of a horse—a forgery! 

Among unresolved questions is the date of the occipital bone and 

right arm purportedly belonging to John the Baptist. (The Byzantine 

emperor Justinian with virtually unlimited resources had acquired 

them in the sixth century, a time when he was transforming Con

stantinople into an unmatched Christian reliquary.) The bones dis

played now in the Topkapi Museum, Istanbul, have not yet been 

tested. The seedy side of the art and artifact business would be far 

more active than it is if some of the high tech tools did not exist to 

discourage the practice. 

I offer an example of how the technology—even in its relative 

infancy almost sixty years ago—exposed an astonishing hoax. The 

story resonates with ironies, the artist claiming the forgery, the skep

tical authorities rejecting his claims. Han van Meegeren, prewar 

Dutch artist of not entirely inconsequential talents, was far more 

creative as forger than as artist. Van Meegeren produced a number 

of "authentic" Vermeers, including works from hitherto unknown 

periods of the artist's life. His recipe—mixing paint scraped from old 

paintings, painting over period paintings of little value, cooking and 

causing crackling—produced works of sufficiently convincing qual

ity to fool most art experts. 
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After the war Meegeren was arrested, not for producing for

geries, but for trafficking with the enemy. While on trial for sell

ing national treasures to the Nazis , specifically to Reich Marshal 

Hermann Goring, he was forced to admit the works were all of his 

own creation. Asking to have the paintings x-rayed, van Meegeren 

first revealed details of the underlying paintings. To buttress the 

claim, he set up an easel in front of six witnesses and an armed 

guard, and p roduced a ninth and final pseudo-Vermeer . Van 

Meegeren even claimed the highly acclaimed "Vermeer" Christ with 

His Disciples at Emmaus, which had found an honored spot in the 

Rotterdam Museum, to be his work. The definitive test of prove

nance for this work had to await the development two decades later 

of sophisticated new radioisotope technology. The determination 

of the precise ratio in the paint of the radioactive isotopes Ra-226 

and Pb-210 revealed the painting to have been created in the twen

tieth century and not in the seventeenth. 

Poetic justice and irony abound in the van Meegeren-Vermeer 

case. First, van Meegeren, who had planned and toiled to produce 

work that would fool the critics, had to turn around and convince 

them of his forgery. Second, the same critics w h o had panned van 

Meegeren for lack of talent, accepted the works by van Meegeren 

as authentic Vermeers, uncontestable creations of genius. Third, 

absolved of charges of treason, van Meegeren was convicted of forg

ing Vermeer's signature. Fourth, despite the conviction, van Mee

geren became a national hero as, "the man who had duped Goring." 

Fifth, just before beginning his term, a one-year sentence, van 

Meegeren had a heart attack and died. Finally, the ultimate irony 

emerged: the purchaser, Goring, had paid for the paintings with 

counterfeit money. 



Human subtlety. . . will never devise an invention 

more beautiful, more simple or more direct than 

does nature, because in her inventions, nothing is 

lacking, and nothing is superfluous. 

—Leonardo da Vinci 

W ith his small entourage in tow, at the invitation of the newly 

crowned Francis I, in 1516 Leonardo journeyed to Amboise , 

where he would spend his final three years. The belongings he had 

with him in that move included his treasured collection of books, 

two or three paintings, among them the Mona Lisa, and chests 

bursting with his papers. It has been estimated that he had pro

duced 13 ,000 to 14 ,000 pages, less than a third of which have sur

vived. He may have left some of the papers in Milan and Florence. 

But he must have retained a substantial portion of the original 

1 8 5 



186 | Math and the Mona Lisa 

papers when he arrived, considering he still entertained notions 

of writing as many as " 1 2 0 books." The papers bound as notebooks 

or bundled together as loose sheets reveal the depth of Leonardo's 

thoughts and the dizzying range of his interests, especially in sci

ence, mathematics, and technology. It is there that we find the evi

dence of his extraordinary talent for identifying critical questions 

regarding nature and the physical intuition to design proper exper

iments to answer these questions. There, too, we see his unflagging 

dedication to open-mindedness and intellectual honesty, quintes

sential assets for anyone engaged in scientific inquiry. For Leonardo 

there were no defined parameters, no boundaries. These manu

scripts represent no less than detailed maps of previously uncharted 

territory in science and technology. 

Leonardo's early teacher, Verrocchio, had instilled in his 

apprentices the need to know anatomy, but the levels of investiga

tion that Leonardo would undertake far transcended what he would 

need in order to inform his works of art. We know that in his own 

lifetime Leonardo 's patrons had little patience for his frequent 

retreats into science. The almost idolatrous admirer , the artist 

and biographer Giorgio Vasari , in 1 5 5 0 singled out Leonardo and 

Michelangelo for the sublime quality and power of their works of 

art. But clearly he felt an obligation to explain that Leonardo's artis

tic output had been limited because of what he described as 

Leonardo's frequent "dalliance with science." In writ ing that 

Leonardo "could have been a great scientist [if that was all he did] ," 

Vasari revealed that he had little idea of the quality of Leonardo's 

science. Could have been? 

Leonardo's work in science and technology might not have been 

known to us had the caretakers of the various manuscripts not 

begun to realize what they had on their hands. In the late nine

teenth century, with the development of photography, there was a 

major effort to produce facsimiles, specifically of the Codex 

Atlanticus. But it was not until a hundred years later that high-qual-
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ity facsimiles of the anatomical studies in the Codex Windsor 

appeared. 

Unhappily, Leonardo's inventions and scientific discoveries were 

to come to light long after so much that he had investigated was 

rediscovered independently, long after entire fields that he had 

invented were reinvented. One cannot avoid the nagging notion that 

some of the questions and methods that he introduced might have 

been handed down by word of mouth, or that some of the pages of 

his dismembered notebooks might have become available to others, 

considering how much of Leonardo's manuscripts were lost. There 

were the detailed dissections and drawings of the human body that 

Vesalius undertook half a century after Leonardo. And there was also 

the fleeting annotation about the sun Leonardo left in a notebook— 

"The sun does not move"—the keystone of the Copernican helio

centric system. I have in mind also the experiments with the pen

dulum and with falling bodies that Galileo repeated with resounding 

success a century later. There is on one page of the Codex Atlanticus, 

admittedly with little explanation, a study of the reflection of light 

from a concave reflector mounted at the bottom of a vertical tube, 

with the angle of the tube completely adjustable. Are these the rudi

ments perhaps of a reflecting telescope, constructed by Newton 

nearly two centuries later? Finally, 1 have in mind Leonardo's con

clusions in the Codex Leicester regarding the existence of geological 

strata chronicling the earth's great age, and that fossils found in the 

strata represented once living animals. 

The traditional view of the birth of modern science is that it 

dates from 1543 with the publication of two important books. There 

was the inspired treatise by Copernicus of De revolutionibus orbeum 

coelestium, arguing on behalf of a sun-centered universe. And the 

same year saw the publication of Vesalius's first accurate anatom

ical atlas, De humani corporisfahrica. By the seventeenth century the 

scientific revolution was in full bloom with Galileo, Harvey, Boyle, 

Kepler, and especially Newton. Leonardo's manuscripts, however, 
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offer compell ing reason to accept him as having foreshadowed 

modern scientific methodology by a full fifty years before Co

pernicus and Vesalius produced their works. Though Leonardo 

never disseminated his discoveries, it is not difficult to make a case 

for Leonardo being the first modern scientist, and indeed that 

theme is asserted in the title of a recent book.' 

He kept two different kinds of notebooks. There were the daily 

notebooks containing an admixture of snapshot-like sketches of 

faces in the crowd, ideas for inventions, and mathematical calcu

lations and doodling. He also included in these notebooks profound 

observations intermingled with the prosaic and the perfunctory. 

The sense one gets in viewing these pages is that of a broad cross-

semination taking place among all the components of his world . 

The image evoked is of a circuit board with each site wired to all 

others, signals flashing between sites, until they pause and a fin

ished idea emerges. Then they start all over again until the con

ception of another new idea. 

In the second kind of notebook were the finished drawings, 

including the anatomical drawings produced from multiple angles, 

designs for machines replete with precise specifications and oper

ating instructions, drawings demonstrating the results of reflection 

and refraction, experiments in optics, and so on. The text, in ver

nacular Italian, was written in that otherworldly mirror text from 

right to left. At one level, there is of course the astonishing content, 

an unsurpassed artist illustrating unsurpassed science, recording it 

all in exquisite detail. But at another level, and in the vernacular 

of our time, even these manuscripts represent a masterpiece of sorts 

in the modern publisher's art of layout drawings executed with clar

ity and precision, and text wrapped skillfully around the drawings, 

every last sheet a frameable piece of art. 

The first attempt to put some order into the papers came from 

Melzi, a man of unremarkable intelligence and limited artistic tal

ent, who proved to be well short of the Herculean task. Melzi spent 
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fifty years of well-meaning travail trying to organize them, and 

achieved little success. According to Sherwin Nuland, Leonardo's 

loyal assistant was able to assemble only 344 brief chapters into a 

collection, and unhappily even these remained in a state of confu

sion; none of it was ever to get published in Melzi 's lifetime. 2 And 

the worst was still to come. Upon Melzi 's death in 1570 his nephew 

Orazio became heir to the wondrous collection. Orazio, a lawyer, 

proved to be a man of lesser wit than his uncle; moreover, he was 

entirely unencumbered by the devotion that his uncle had shown 

to his immortal mentor. He quickly lost all interest, losing some 

papers, selling others, and tragically dispersing the collection. 

Among those helping themselves to the treasure was the tutor of 

Orazio's children. What and how much this man took and whether 

any of it remains among the surviving works will never be known. 

Near the end of the sixteenth century the sculptor Pompeo 

Leoni managed to recover a large assortment of the manuscripts, 

and by cutting and pasting, grouped some of these into ten lots, or 

codices, with the rest remaining a potpourri of unrelated papers. 

The organizing principle of Leoni 's collation was general subject 

areas, but without any order in the dates in which the individual 

leaves were conceived. The collection was assembled for sale to 

Phillip II of Spain. Phillip, however, died in 1598 before even taking 

possession. Meanwhile, the manuscripts made the trip to Madrid, 

but with the failed sale Leoni returned to Florence, taking back with 

him only the Codex Atlanticus, dealing mostly with mechanical 

inventions. The rest he left behind in Spain. 

The 1 ,119-page Atlanticus passed through the hands of various 

wealthy families, eventually finding its way into the Biblioteca 

Ambrosiana in Milan. A large part of the collection left originally in 

Madrid made its way to England. This included the corpus of the six-

hundred-page Windsor collection, dealing with anatomical studies; 

a third group, the Codex Arundel, ended up in the British Museum; a 

fourth group of only seventeen pages, the Codex on the Flight of Birds, 
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is in the Biblioteca Reale, Turin; a fifth group. CodexForster, is owned 

by the Victoria and Albert Museum in London; a sixth group was 

purchased by a wealthy Oxonian, who subsequently bequeathed it to 

Christ Church, Oxford University, where it is periodically put on 

exhibition. Also included in the transfer to England was a seventh 

group of sixty-five sheets, the Codex Leicester, owned for centuries by 

the Leicester Family. The Codex Leicester was purchased from its 

English owners by the American industrialist, Armand Hammer, 

under whose ownership it became known as Codex Hammer. Then 

in the early 1990s this codex was purchased by Bill Gates at an auc

tion of Hammer's estate. With the change of ownership, the name of 

the collection reverted to the Codex Leicester. 

The Gallerie dell'Academia in Florence, the Gallerie dell'Academia 

in Venice, the Uffizi in Florence, the Vatican Library in Rome, the 

Louvre in Paris, and the Institut de France all own collections of the 

manuscr ipts . The last insti tution listed owns both the Codex 

Ashburnham and the Codices of the Institut de France. 

In 1651 a French publisher with deep reverence for Leonardo's 

works culled from a jumble of Leonardo's general writ ings just 

those pertaining to art. A critic at the time had characterized the 

notebooks as "a chaos of intelligence." The publisher brought some 

organization to that chaos. After commissioning the French sev

enteenth-century artist Nicolas Poussin to illustrate the writings, 

he simultaneously published French and Italian editions of the 

Treatise on Painting—Traite sur la peinture and Tratalto dipillura. 

Finally, in the 1960s a pair of volumes of Leonardo 's manu

scripts was discovered in Spain, where they had been lost for 180 

years in the Biblioteca National . The caretakers of the collection 

had even pasted some of the "less useful" pages together in order to 

fortify others, then promptly misfiled the books. After painstaking 

restoration the glued pages were separated in the late 1960s and 

1970s, and the 192 pages of the notebooks became available for 

study by Leonardo scholars as the Codices Madrid I and //. Volume 
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I comprises Leonardo's writings on classical mechanics; Volume II, 

a looser assortment of writings on mathematics and optics. 

Glimpsing the Future 

The mechanical designs of Leonardo can be loosely classified as 

machines for industrial engineering; machines for commercial 

application; tools for civil engineering; devices for locomotion on 

land, air and sea; and military engines for defense and offense. The 

mental inventions were sometimes accompanied by reflection on 

the fundamental science underlying the technology. How and why 

does nature behave as it does? The finite space that we can devote 

to reviewing the technical component of Leonardo 's legacy will 

al low only a partial inventory of these mostly mental inventions. 

We shall take a different tack and seek the wider connections 

among his endeavors rather than presenting a comprehensive cat

alogue. This approach should assist in understanding the immense 

value of Leonardo's cross-fertilization of ideas, as well as his pre

science, that genius for anticipating future science and technology. 

It will also serve to launch discussions of modern developments, 

some that Leonardo could have envisioned as extensions of his 

own, and others that even he could never have foreseen but would 

have found fascinating. 

Leonardo's preoccupation with the flow of rivers and the cat

astrophic movement of land (such as in earthquakes) now defines 

the fields of hydrology, geomorphology, seismology, and a host of 

other specialties within geology. In his early days in Florence he 

once wandered into a cave teeming with bats and the all-pervasive 

rancid mist repugnant even for spelunkers. He also came across the 

fossils of an extinct creature. The memories of those early encoun

ters remained with him throughout his life; he contemplated the 

age of the earth, and became deeply skeptical of the time horizon 

for the age of the earth taught by the Church. He concluded that the 
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earth was much older. He also wondered about the large-scale 

changes in the topography of the land as the overwhelming weight 

of the mountains bore downward. Those experiences are reflected 

in some of his paintings, as in the Virgin of the Rocks, where the back

ground is provided by the cave with stalactites and stalagmites, per

meated by the heavy mist. His geologic interests are also in evidence 

in the Mona Lisa, where the distant landscape includes a stream run

ning through the undulating hills and valleys, all formed by the 

forces of nature. 

Leonardo labored on the dynamics of vortices in water. The 

sketches in his notebooks of these circular, spiral, and cascading 

flow patterns would reappear in his paintings as gentle swirls in the 

hair of the subjects of his portraits. He preoccupied himself with 

problems of hydrostatics and hydrodynamics, examining the rela

tionship between water depth and water pressure. Indeed, there is 

evidence that he anticipated discoveries made by his latter-day 

countryman Torricelli , and by the great Swiss family of scientist-

mathematicians, the Bernoull is . ' He explained that it was the 

weight of the water that determined the pressure at different lev

els. His experiment in this instance called for holes of equal size 

drilled at different levels in a cylindrical water container. The water 

gushed out at different speeds from holes at different heights, 

revealed by the different ranges of the water 's trajectories, and was 

due to the pressure at different levels. He then extended this idea to 

explain the existence of different atmospheric pressures at differ

ent altitudes as evidence of the weight of the air itself. He designed 

variations of water pumps and made significant improvements in 

the hydraulic designs of Heron of Alexandria (first century A . D . ) 

Leonardo designed a side-wheel paddle assembly for propelling 

boats. In some versions of the design, a heavy flywheel builds up 

angular momentum and delivers the power uniformly to the pad

dles. The power is supplied by one or more people turning cranks. 

In the nineteenth century, with steam supplying the power, stern 
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and side-wheelers were navigating the waterways , most promi

nently on the Mississippi River. Leonardo also designed a double-

hull structure for ships that in the twentieth century became the 

standard design for oil tankers. 

In the 1860s, during the American Civil War, the Confederate 

navy built the submarine the CSS H. L. Hunley, reminiscent of a design 

by Leonardo, powered by men cranking stern or side paddle wheels. 

By the early twentieth century, with diesel-powered engines, sub

marines became devastating engines of war. 

Leonardo envisioned "floating shoes" that would allow an indi

vidual to walk on water, flotation rings that would keep him afloat, 

and he designed diving suits that would allow a submerged person 

to breath through hoses. He left behind drawings for equipment 

that could dredge silted waterways. One device consisted of a float

ing double-pontoon boat with vertically mounted rotating scoops, 

scraping silt and depositing it on a floating barge towed between 

the pontoons. This design is similar to the equipment used in the 

dredging of the Panama Canal at the turn of the twentieth century, 

except the latter was steam-powered. 

Among his drawings is the design for a turbine to harness hydro-

dynamic power. Water flowing or falling from a higher elevation 

rotates a turbine, which in turn drives other devices, such as mills, 

drills, and saws. With the harnessing of electricity in the nineteenth 

century, the turbine became a device to power the electric genera

tor, which in turn provided the electrical energy to run the mills, drills 

and saws, and to run homes, cities, and factories. 

In addition to countless designs for original devices, there are 

also present designs for "derived tools." It is clear these are ideas 

that have been inspired by others' inventions, but Leonardo's ver

sions rarely lack improvement over previous designs. There are his 

variations on the Archimedean screw—one design involving a sin

gle helical coil, another a pair of intertwined coils. 4 The screws are 

turned by cranking a handle, raising the water uphill. In still 
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another version a helical hollow coil wrapped around an axle is 

rotated manually with a crank. 

Lock, Stock, and Barrel 

Among the pages of the Codex Atlanticus are ideas for the mortar and 

the howitzer, shooting multiple cannonballs. The mili tary engi

neering aspect aside, there is a subtle observation here of the inher

ent physics. That realistic depiction of the array of cannonballs 

reveals in their curvilinear motion the smoothly arched trajectories, 

a circumstance that no single cannonball frozen in space and time 

could reveal by itself. (This is in the manner of a stream of water 

propelled from the nozzle of a hose. No droplet alone frozen in 

space and time reveals the path as the stream itself does.) It is clear 

that Leonardo already had a more realistic understanding of the tra

jectory of a projectile than the instructors of natural philosophy 

(physics) who were still teaching Aristotelian physics in academic 

institutions. That archaic view, which prevailed into seventeenth 

century, had the projectile rising in a straight line at some oblique 

angle, and upon losing energy, plummeting vertically, the two 

straight lines of the rise and fall connected by a short semicircular 

curve. Among Leonardo's drawings appears a set of trajectories of 

projectiles launched at different angles. These trajectories are rec

ognizably parabolic in s h a p e . I n the parabola there exists a right-

to-left symmetry about the midline, lacking in the trajectories 

depicted by the Aristotelians (Figure 1 0 . 1 ) . 

The mathematics describing the shapes of curves (analytic 

geometry) awaited formulation by Descartes a century later. Leo

nardo was unable to demonstrate the parabolic trajectories with 

mathematical rigor. Almost a century after Leonardo's death Galileo 

established the exact trajectories of projectiles to be parabolic 

curves. Such measurements and calculations are revealed in one 

of Gali leo 's lab books of 1 6 0 8 . 6 In a first-year physics laboratory 
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Figure 10 .1 . (top) Leonardo's drawing of bursts of mortars, revealing 

smooth arched trajectories, Codex Atlanticus. (insets, left to right) 

Illustration from a military treatise published in the early seventeenth 

century reflecting the prevailing Aristotelian notion of a projectile's tra

jectory, (inset, center bottom) Galileo's discovery of the parabolic trajectory 

(1608). (inset, right bottom) Leonardo's drawing of the trajectories of 

projectiles fired at a variety of angles 

course in high school or college similar experiments are routinely 

duplicated by seeking the relationship between the vertical and hor

izontal distances projectiles travel. 

Leonardo contemplated other weapons of much greater effec

tiveness, such as a machine gun. Multiple muzzles are arranged in 

splayed configuration and when fired spray projectiles in a wide 

horizontal plane. There is little chance of precision aiming with this 
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weapon, depicted in the Codex Atlanticus, but then it is the scatter

shot effect that appears to be the goal. There is no evidence that the 

weapon was ever built in Leonardo's time, but late in the nineteenth 

century the Gatl ing gun was invented with muzzles in a circular 

arrangement around a central axis. 

One is struck by the precision and detail in the drawings, and 

indeed in the transparency of their function. Every manner of 

spring, every manner of gear—worm gears, reducing gears, the vari

able transmission, and even the mechanism for converting recip

rocating motion into circular (and conversely, circular into recip

rocating) has been conceived and masterfully drawn, each a general 

solution awaiting a special problem. 

In other instances solutions are presented for wel l -def ined 

problems. There is, for example, the design of odometers to deter

mine distances. For odometers he envisioned variations of a de

vice reminiscent of a modern wheelbarrow that would be rolled 

along the path to be measured. There is a gearing down process 

with thirty revolutions of the main wheel resulting in one revo

lution of an intermediate wheel . Then thirty revolut ions of the 

intermediate wheel result in one turn of the last wheel ; followed 

immediately by the release of a bead into a collector. F^ven this 

col lec tor /counter is arranged so that the beads form a regular 

array, which at a quick glance reveals the total distance covered 

by the odometer. For example, a 4-by-5 array of beads represents 

30 x 30 x 20 = 18 ,000 revolutions of the main wheel of precisely 

known circumference. This apparatus is so s imple and practical 

that Leonardo very likely constructed it to use in his civil engi

neering tasks. 

It was mainly during his Milan years, from 1482 to 1500, that 

Leonardo's thoughts ran to urban planning, revealing prescience 

regarding the communicabi l i ty of diseases. He wrote about the 

intolerable squalor of certain sections of the city, and saw a threat 

of the spreading of "the seeds of plague and death," perceiving a 
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need for the population to be more uniformly spread out. To that 

end, he drew a plan to create a city of concentric circles of ten 

zones, and a zoning system that would distribute the population of 

300,000 evenly among the ten zones. Unhappily his employer, the 

duke Ludovico Sforza, never saw fit to implement the plan, which, 

as Sherwin Nuland observes, could have served as a model for many 

European cities also suffering the tribulations of congested popu

lation densities. It was an idea of human settlement, ekistics, cen

turies ahead of its time. 

In his original letter to Sforza seeking employment, Leonardo 

had offered his services as a military engineer—to build devices for 

defending walls as wel l as other devices to tear them down. His 

notebooks from this period reveal many of the proposed instru

ments of w a r having attained design stage, but rarely the level of 

production. There were shielded ladders and portable bridges to 

be used in attacking the enemy, or conversely, for retreating. There 

were cannons of unusual efficacy, among them a design to propel 

cannonballs with steam pressure. Also among the mental inven

tions in his arsenal was the design of a particularly grisly machine, 

a chariot-driven scythe that could mow down enemy soldiers (but 

as much a hazard to the attacker as the attacked). There was the 

design for a colossal bow that could breach fortified castle walls. 

The scythe is most likely derived from earlier Renaissance inven

tors, and indeed, the massive crossbow idea harks back to the 

Romans . Finally, Leonardo has the design of an improved tre-

buchet, the medieval war engine designed to catapult boulders or 

marble balls several hundred kilograms in mass into castle walls. 

The Mongol armies were known to have used the trebuchet to 

launch animal carcasses (and even plague-r idden human 

corpses) over city walls . This early application of biological war

fare unhappily did not elude Leonardo, w h o also included in his 

notes the sketch of a trebuchet armed with its projectile: the car

cass of a horse. 
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Operating a machine that is virtually invulnerable to the enemy 

while your warriors are attacking is a fantasy as old as the concept 

of warfare itself. Leonardo's solution, an armored vehicle, prefig

ures the twentieth-century tank by more than four centuries. A 

gang of four men, providing power for the vehicle by cranking han

dles, does not make for efficient locomotion, but there is improve

ment in another design where he introduced oxen as the source of 

power. Once diesel-powered locomotion became available in the 

late nineteenth century, the feasibility of a tank blossomed fully in 

time for the First World War. It became an overwhelming offensive 

force in warfare through the twentieth century. 

One device that was produced in his own lifetime following his 

design was the wheel lock. As a precursor to the flintlock, the 

wheel lock represents a significant development in the history of 

weapons , making possible portable guns—pistols, muskets, the 

blunderbuss, and ultimately the modern rifle. Leonardo's designs 

for a door lock and a wheel lock both appear in the Codex Madrid; 

his designs for a variety of leaf and coil springs appear in the Codex 

Atlanticus.7 Springs and small connecting chains are used in cock

ing and releasing component parts. When a trigger is pulled, a 

cocked mainspring sets a steel flywheel spinning. A piece of iron 

pyrite, a flint, held in place by a small vise is brought into contact 

with the rim of the spinning wheel , resulting in the release of a 

stream of sparks. These ignite the gunpowder interposed in the 

barrel between the wheel lock and a bullet. Also required is a stock 

heavy enough to reduce the recoil when nestled in the gun-bearer's 

shoulder, allowing the weapon to be held safely and comfortably, 

and a imed wi th ease. The necessary componen t s of the rifle 

yield the common expression in English conveying the entirety of 

a system—"the lock, stock, and barrel." 

It is no surprise that Leonardo, who contemplated a variety of 

devices to harness energy, spent time designing a spring-driven 

horseless carriage. Leonardo's crude sketch for the spring-powered 
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cart appears in the CodexAtlanticus. As depicted, his machine would 

have lurched forward and traveled a short distance. Four hundred 

years later, after the discovery of the Otto cycle and invention of 

the gasoline-powered engine and the diesel engine the car became 

more than a viable means of transportation—it became indispen

sable. At the threshold of the twenty-first century the question is 

not whether such vehicles will be around into the distant future, but 

rather what will be their future sources of power—battery, fuel 

cells, hybrid? 

In the book The Unknown Leonardo* Ladislao Reti presents the mar

vels of the Codex Madrid, a pair of notebooks dating from Leonardo's 

peak productive period, 1491 to 1505. This is a period coinciding with 

the years of his artistic masterpieces, the Lady with the Ermine, the 

Mona Lisa, and the Last Supper. The bicycle evolved during the nine

teenth century—from a pair of wheels which a man straddled and 

took for a walk, to the unicycle, to a pair of wheels with varying sizes, 

and so on. There was experimentation with a small wheel in front and 

a large one in back, then vice versa, until the optimum general design 

finally emerged toward the end of the century. The modern bicycle— 

replete with two equal wheels, a handle bar, seat, pedals, a pair of gears 

and, connecting the gears, a chain-drive—dates to the 1 8 9 0 s , but the 

identity of its inventor depends on who is making the claim. 

According to French tradition Frnest Michaux, a blacksmith in Paris, 

created the first bicycle; according to the Germans it was Baron Drais 

von Sonnerbronn who had that honor. We are not in a position to 

resolve the debate. Or are we? 

Leonardo's Codex Madrid contains the vision of a bicycle, com

plete with two equal sized wheels, a handle bar, a seat, pedals, a pair 

of gears and a connecting chain-drive. 1 ' Displayed in the drawing is 

a tacit understanding of the mechanical advantage obtained from 

driving the smaller gear in the rear with the larger one in the front. 

Another figure appearing in the codex depicts the details of a bicy

cle chain complete with sprockets. Leonardo's vision in this instance 
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hurdled four centuries of technology, including the entire span of 

the Industrial Revolution. 

Human Flight 

Why should man not be able to do what the birds do? 

—Leonardo da Vinci 

Leonardo was in love with every facet of nature but reserved a spe

cial veneration for birds. He regarded birds as nature's splendid fly

ing machines. In their case form had followed function magnifi

cently. He spent his life virtually fixated on the mechanics of the 

flight of birds, bats, insects, creatures all clearly heavier than air— 

and dreamed of human flight. He reasoned that if birds could fly, 

then with some help so could humans. His notebooks are filled with 

sketches of wings, their anatomy, their mechanical motion, and his 

own designs for a variety of ornithopters, pairs of strap-on wings 

resembling those of bats. His assistants may have been mortified by 

the notion that he might appear at work some morning and ask one 

of them to test-fly one device or another. 

When Leonardo eventually concluded that achieving flight by 

flapping wings in the manner of birds was less than promising, he 

began to think of achieving elevation with a spinning helical foil. In 

his art, especially in the portraits, the helical shape had been used 

to create dynamism in his subjects. In the Archimedean screw it 

was used as a mechanical device to elevate water. He must have con

nected that shape and the memories of watching samaras descend

ing gently from trees while spinning. 1 0 Could the helical screw be 

rotated to achieve lift? Leonardo's design for a helicopter called for 

a large helical foil, a massive screw, which would be powered by 

two (and in another version by four) men. A horizontal torque gen

erated by cranking handles was converted into a vertical torque 
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with one of the gear assemblies sketched out in his notebooks, 

operating in a manner reminiscent of the differential or rear end of 

an automobile. 

Leonardo may have built miniature scale models of some of the 

inventions he had visualized, as it is generally believed he built mod

els of the polyhedra presented in Dedivina proportione, but none have 

survived. Many of the machines he designed would have worked just 

as they were depicted. Others would have worked in principle, but 

not in practice. And others still would not have worked as they were 

conceived. The boat with side-paddles, the submarine, the car would 

not have had sufficient power if the energy came from humans exert

ing muscle power only. His aerial screw could never have generated 

sufficient "bite" powered by humans; moreover , i t would have 

needed a stabilizer and a steering mechanism to become a practical 

flying machine. The Russian-American aeronautical engineer Igor 

Sikorsky claimed to have been inspired by Leonardo's aerial screw 

when he created the first successful helicopter in the 1930s, powered 

by a gasoline engine with a stabilizing propeller in the rear. 

Among the pages of the manuscripts there is an unusually rough 

sketch, a fleeting idea for a parachute, a pyramid-like four-cornered 

fabric structure and a man hanging from lines attached to each cor

ner. An annotation by Leonardo explains its purpose: "If a man 

have a tent made of linen of which the apertures have all been 

stopped up, and if it be twelve braccia across and twelve in depth, 

he will be able to throw himself down from any great height with

out suffering any injury." Even in our day we might find the design 

problematic, interesting, but unlikely to work as depicted, certainly 

unlike the billowing hemispherical sail, replete with a small stabi

lizing hole at the top, and the cords made of lightweight nylon that 

we are accustomed to. But in December 2000, five hundred years 

after Leonardo had created his sketch of a parachute, a National 

Geographic Society photographer captured the spectacle of a man 

sailing down from the skies above South Africa with a parachute 
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created in the image of Leonardo's own design and built to his spec

ifications. 

A Bridge for the Sultan 

In 1500 Leonardo traveled to Florence for what would be a short 

second Florentine period. And although he was received with def

erence, he was not accorded the adulation of Michelangelo, the 

younger and exceedingly talented sculptor and painter who man

aged to finish projects. He came very close to relocating to Con

stantinople (today Istanbul), ostensibly to take up a position as 

court engineer similar to the one he had held in Milan, and to do 

a portrait of the Ottoman sultan Bayezid II. In his application for 

a job he had contemplated preliminary designs for a bridge over the 

Golden Horn, and a pontoon bridge across the far more expansive 

Bosporus. As events unfolded, however, Bayezid did not take him 

up on the offer, and Leonardo took instead a position in Urbino, 

under the patronage of the city's new leader, Cesare Borgia. 

There is a tradition among many in Istanbul that the father of 

Sultan Bayezid, the legendary Mehmed the Conqueror, had earlier 

invited Leonardo to Constantinople to paint his likeness. But with 

Leonardo being unavailable at the time, the commission had gone 

instead to an older contemporary, the Venetian Gentile Bellini, who 

made the journey to the Ottoman capital and produced the only 

known likeness of the legendary conqueror of the city. The portrait, 

created in 1 4 8 0 , a year before the Sultan's death, is now in the 

National Gallery in London. It is certainly possible that Leonardo, 

then twenty-eight, could have been offered the commission, but 

there does not appear to be sufficient basis in fact to accept the 

story's veracity." 

As for a br idge spanning the Golden Horn, a floating br idge 

was finally built 350 years later, and a pair of br idges spanning 

the Bosporus, five hundred years later (in 1973 and 1982, respec-
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t i ve ly ) . But L e o n a r d o ' s or ig ina l des ign , c o m b i n i n g funct ion, 

s tructural s trength and art ist ic elegance, but somewha t scaled 

d o w n , was b rough t to frui t ion in 2 0 0 1 in the far nor th—As, 

Norway . 

Replicas of the "Mental Inventions " 

Replicas of Leonardo's mental inventions were ultimately created 

from the sketches that he left in his notebooks. The best known set 

of the replicas came in the late 1930s, when Benito Mussolini com

missioned Roberto Guatelli, an Italian modeler/engineer, to create 

scale models from the sketches. Shortly after the replicas were com

pleted they were shipped to Tokyo, where they were put on exhibi

tion. But like so much else, they became victims of the war, destroyed 

during aerial bombing of the city. In 1951 I B M hired Guatelli to cre

ate a new set of replicas, finally completed in the late 1950s. The repli

cas are now owned by the Gallery Association of N e w York State 

( G A N Y S ) and are lent out to museums and other institutions for dis

play. Among Guatelli's creations based on Leonardo's drawings are 

the ornithopter, the parachute, and the aerial screw. Also there are the 

double-hulled ship, the paddle assembly for the side-wheeler boat, 

the mechanism for a water powered turbine, a transmission, varia

tions of the odometer, a scale model of Leonardo's tank, a printing 

press, the spring-powered cart (Leonardo's automobile), an anemo

meter to measure wind velocity, and a hydrometer to measure mois

ture, among other inventions. 

After the discovery of the two volumes of the Codex Madrid in 1967, 

Guatelli examined the books, uncovering the design of a machine 

closely resembling another sketch appearing in the Codex Atlanticus. 

Using the two designs in tandem, he created the replica of a machine 

that convinced him that he had a crude mechanical calculator on his 

hands. With thirteen gears connected in series, and a ratio of 1 0 : 1 

between each pair of gears in sequence, Guatelli surmised that the 
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machine was capable of registering up to to ' 2 (i.e., i o ° - i o 1 2 ) . A panel 

of engineering faculty at MIT convened to study the machine and 

became convinced that the inherent friction between so many gears 

in series would render the machine unworkable as depicted, but that 

its intended function was that of a "ratio machine." In 1971 Guatelli 

and chief assistant Joseph Mirabella, his stepson, left IBM and founded 

their own workshop in New York in order to continue producing 

replicas of Leonardo's mental inventions. 

Leonardo Timekeeper 

Questions regarding the nature of time have baffled philosophers 

and physicists since ancient times, and it would have been surpris

ing if Leonardo had not contemplated the problem. His concerns 

about the nature of time may have been fueled by his desire to build 

an accurate mechanical clock. But whether the concerns actually 

occurred to him in that order or in the reverse (i.e., pondering the 

nature of time, then addressing the engineering problem of design

ing a clock) may never be known. Over the ages scholars have grap

pled with notions of a circular time, with cosmic history repeat

ing itself, and a linear time progressing irreversibly. The passage by 

Leonardo quoted at the beginning of Chapter 1, which compares 

the passage of time and a flowing river, is a reflection of the man's 

interest in this enigmatic phenomenon of nature. His metaphor 

suggests that in his v iew time progressed according to the latter 

model. These prefigure twentieth-century cosmology 's debate 

between the validity of an always existing, steady-state universe 

versus an expanding universe that had a beginning in time (with a 

big bang). If the latter, will the universe keep expanding forever— 

making this a one-time universe—or will its expansion slow down 

and stop; and if this is the case, perhaps there would follow a col

lapse (a big crunch), followed by the endless repetition of the 

process. These are issues we shall examine later. 
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During his investigation of t ime and timekeeping, Leonardo 

examined the behavior of the simple pendulum. A weight is sus

pended by a string, and put into oscillation by being displaced to 

one side and released. The weight or pendulum oscil lates back 

and forth, between a m a x i m u m displacement on one side (the 

ampl i tude) and the m a x i m u m displacement on the other. The 

period of the pendulum is defined as the time for the pendulum 

to go from one ampli tude to the other and then to return to its 

original position, one full back and forth motion. The pendulum 

at its maximum displacement will momentari ly stop before mov

ing in the other direction, its maximum speed attained at the low

est point of its swing. In the ideal case, where air resis tance is 

absent, the oscil lat ion wil l continue unabated. In reality, air 

resistance creates a drag and eventually stops the oscillation of the 

pendulum. What is remarkable about the behavior of the simple 

pendulum is that the period of the oscillation turns out to be very 

near ly cons tan t , even w h i l e the amp l i t ude of the osc i l l a t ion 

decreases. 

Leonardo left a crude sketch of the simple pendulum. As it 

appears in the Codex Atlanticus, however, it has a confusing aspect 

to it. The pendulum is shown in successive images, but with the 

highest density of images occurring near the lowest part of the 

swing. If a modern strobe light were illuminating the swinging pen

dulum, the highest density of images would occur at the extreme 

points where the pendulum is in its slowest stage. Thus Leonardo 

appears in that sketch to be using greater density of images to rep

resent the areas of greatest speed. 

Leonardo 's notebooks also contain the rough sketch for a 

machine with a pair of flat springs twisted into shapes reminiscent 

of the horns of a water buffalo, and weights hanging from a pair 

of brackets on the machine's sides. What Leonardo had in mind for 

this machine was a quandary until a German engineer replicated 

the machine recently, hoping to resolve the question of its purpose. 



206 I Math and the Mona Lisa 

It turned out to be the design for a mechanical clock driven by 

springs and fine-tuned with the adjustable weights. 

Among Guatelli 's replicas is an apparatus to determine the cur

vature of the surface of the spherical earth, with a device somewhat 

evocative of the scheme used by the ancient Alexandrian 

astronomer Eratosthenes. With his technique of sighting a distant 

celestial body at two points on earth that are separated by sub

stantial distance, Eratosthenes had measured the radius and cir

cumference of the earth. Indeed, the notion of a flat earth was pre

posterous to Leonardo, even more so than an earth-centered 

universe. In speculations about the sun-centered universe he was 

echoing the sentiments of Aristarchus of Samos, another astronomer 

of antiquity (but a notion not to resurface until Copernicus pub

lished his book in 1543). The views of Aristarchus and Eratosthenes 

may or may not have been available to Leonardo. Never having 

received the sanction of the Church, these views were most likely 

not available in Italy, although the success of Columbus 's trip of 

1492 had gone a long way toward confirming the shape of the earth 

prescribed by both scientists. 

The Anatomical Studies 

Whereas the dates of so many of Leonardo's technical works have 

been obscured by Pompeo Leoni 's questionable sorting technique, 

the anatomical drawings can be traced mainly to two well-defined 

periods in his life when he is known to have undertaken such stud

ies. His first Milanese period ( 1 4 8 2 - 1 5 0 0 ) saw some limited dissec

tions of corpses, but more of animal carcasses than of human 

cadavers. Leonardo's early beliefs had been shaped by the writings 

of the second century A . D . Greek physician Galen. He still accepted 

the Galenic view that blood originated from the liver, and a healthy 

body required a critical balance of the four humors—blood, black 

bile, yellow bile, and phlegm—together with the proper admixture 
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of hot, cold, wet, and dry. His drawings of the heart of a calf and the 

embryo of a cow are exquisite in their detail, but not overwhelm

ingly significant for the understanding of the human machine, or 

that of any other mammal. He had little access to human cadavers 

in this period and his understanding is accordingly rife with errors. 

Leonardo's second Milanese period (1506-1513) turned out to be 

a time of bounty for his anatomical studies, and conversely, a time of 

austerity for his artistic productivity. Although the Mona Lisa may 

have been completed around 1507, few other works of art are known 

from the time. His new patron in Milan was the French King Louis 

XII, whose hegemony extended over Milan and who entered the city 

personally in 1507, shortly after Leonardo. For the inhabitants of the 

city the presence of the formidable French forces brought a life rel

atively secure from invasion at a time in Italy when the fear of inva

sion was one of the constants of life. Louis recognized Leonardo for 

his gifts and granted him regular compensation, allowing him to 

operate his own veritable "think tank." There were seemingly no 

requirements to produce anything. Leonardo's fertile imagination 

could explore untrammeled. For the first time in his life Leonardo 

had the opportunity to devote himself to his beloved science, unen

cumbered by the need to scrounge about for patronage. 

A catalyst for his mastery of anatomy came with his meeting the 

prodigiously talented young anatomist, Marcantonio della Torre, 

w h o had recently transferred from the University of Padua to the 

University of Pavia. The former was one of the few Church-sanc

tioned seats of anatomical studies, including dissections, and the 

latter was aspiring to build up a program. The collaboration with 

della Torre, half his age, galvanized Leonardo's intense dedication 

to the pursuit of knowledge. There is some disagreement among 

Leonardo scholars as to whether della Torre was the driver, direct

ing Leonardo 's dissection procedures, or an equal partner deriv

ing as much from Leonardo's work as he contributed. A fair assess

ment five hundred years after the fact might be that della Torre 
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indeed gave Leonardo's methods of anatomical probing some struc

ture, but that Leonardo—with his immense gifts of innovation, the 

dexterity of a supreme artist, and above all his independence of 

thought—took it from there. Just as he had always been a scientist 

doing art, here he was the artist doing science. The collaboration 

with della Torre, however, was to last no more than three or four 

years; in 1512 the young physician died, a victim of the plague. 

The Leonardo scholar and professor of surgery Sherwin Nuland, 

to whom all scholars of Leonardo as an anatomist may safely defer, 

recounts a pair of back-to-back dissections that Leonardo performed. 

The first was carried out on a recently deceased old man w h o had 

claimed to be a hundred years old, on whom Leonardo was able to 

perform an autopsy almost immediately after death. Leonardo con

cluded that the cause of death was "a weakness through failure of 

blood and of the artery that feeds the heart and the lower members 

which I found to be very parched and shrunk and withered." 1 2 He 

found in a subsequent autopsy on a two-year-old child the same 

vessel to be clear of obstruction and the vessel walls to be supple. 

What Leonardo had described in the coronary arteries of the old 

man was "atherosclerosis of the aorta and perhaps even artery 

obstruction, hundreds of years before either was recognized by 

physicians." 1 3 The dissections he had performed on these two 

freshly deceased cadavers stood in dramatic contrast to others he 

had performed—mostly in fetid chambers—on cadavers in various 

states of decay, though also described copiously. The descriptive 

narrative, however, in those earlier cases is of less significance than 

the detailed anatomical drawings presented from multiple angles. 

Anatomical drawings of the female body that existed in the litera

ture of Leonardo 's time could have been mistaken for schematic 

drawings of a frog's anatomy (Figure 10 .2 ) . 

One organ in the human body fascinated Leonardo beyond any 

other. His "window to the soul," the eye, as the instrument of sight, 

had to be understood at all levels: its structure, its connections to 
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Figure 10.2. "The Great Lady," Codex Windsor. Anatomical drawing of the 

female torso by Leonardo, (inset, upper right) Anatomical drawing of the 

female torso appearing in a contemporary work, FasciculusMedicinae 

other organs, and its precise operation as light traversed it. In order 

to understand the anatomy of the eye—this aqueous, mysterious 

organ—he had to perform minute dissections. But this is an organ 

uncommonly difficult to cut accurately because of its fluid interior. 

Leonardo invented the technique of holding the eyeball fixed in a 

glutamate formed by a hard-boiled egg (the eyeball would be 



2 i o | Math and the Mona Lisa 

immersed in egg white and hardboiled within it). The technique of 

embedding the eyeball in a coagulum such as paraffin for purposes 

of accurate slicing is routinely used today. 1 4 

Also to be mastered in this connection was the nature of light 

itself. Thus the anatomy (biology) of the eye was only half the story; 

it had to be augmented with the other half, optics (physics), which 

also required examination at a fundamental level. He studied the 

science of perspective, just coming into its own, and he made sig

nificant contributions. He recorded his observations on light falling 

on the sides of multifaceted polygons in order to understand the 

nuances of the shading, the scattering of light. This was invaluable 

for informing his paintings, especially the portraits. The faces of 

both the Virgin and the angel in the Virgin of the Rocks exude oth

erworldly and divine qualities because Leonardo was able to illu

minate them with just the right light. The enigmatic visage of the 

Mona Lisa similarly reflects its creator's surpassing mastery of light. 

Studies in optics in the context of reflection and refraction of 

light are found in more than one codex—the Atlanticus, the Arundel, 

the Madrid II. On a page of the Codex Atlanticus (c. 1490) there is an 

entry, "making glasses to see the Moon enlarged," proposing the 

idea of a refracting telescope, which was ultimately patented by the 

German-born Dutch optician Hans Lippershey in 1608. In a refract

ing telescope a pair of semiconvex lenses (a primary and a second

ary) are used to magnify the object viewed, most of the actual mag

nification being performed by the larger primary lens. Less than a 

year later Gali leo, having been presented approximate specifica

tions of Lipershey's marvelous invention by a close friend, created 

his own refractor (Plate 16, lower left). 

One drawing that has fascinated me since I first came upon it 

several years ago in the Codex Atlanticus is a study of reflected rays 

from a concave mirror. On the same leaf also appears a cylindrical 

tube, possibly to house the concave reflector/mirror, and a hinged 

structure to allow the tube to be "aimed." There is no annotation 
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regarding that tube with the hinged base, but I cannot not help 

wondering—was Leonardo contemplating a rudimentary design for 

a reflecting telescope (Plate 16, upper left)? Finally, my suspicions 

regarding the purpose of that concave reflector's function were fur

ther reinforced more recently when I came across an article by 

O'Conner and Robertson. 1 5 Almost a quarter of a century after his 

entry in the Codex Atlanticus referring to the possibility of a refrac

tor, Leonardo had written: "[l)n order to observe the nature of the 

planets, open the roof and bring the image of a single planet onto 

the base of a concave mirror. The image of the planet reflected by 

the base will show the surface of the planet much magnified" {Codex 

Arundel, c. 1513) . 

In a successful reflecting telescope, the reflecting surface—the 

mirror—would have to be parabolic in its shape rather than circular 

for parallel light rays entering the tube all to be reflected to the focal 

point of the parabola. A small diagonal mirror located at the focal 

point would then gather these converging rays and reflect them all 

to an eyepiece. James Gregory in 1633 first described the correct 

structure of a reflecting telescope, but never constructed the appa

ratus. Then around 1668 Isaac Newton, after independently deriv

ing the associated mathematics, created the first functional reflect

ing telescope. More than three hundred years later the Hubble Space 

Telescope (HST), a far more sophisticated version of the reflecting 

telescope, was placed into orbit by a space shuttle. Free of the 

obscuring atmosphere of the earth, the Hubble Telescope is able to 

peer into the distant edges of the universe (Plate 16, upper right). 

Along with the telescope and the pendulum a number of 

Leonardo's other concerns—the problem of friction between sur

faces of moving bodies, the notion of center-of-gravity, and the 

behavior of bodies in free fall—are all concerns of physics. Leonardo 

designed a machine exclusively to study the phenomenon of fric

tion, which is a practical problem, but does not rise to the level of 

fundamental physics. In one of his drawings (Codex Leicester) two 
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men are seen on a seesaw in a manner suggesting the tacit under

standing of balanced torques. In another drawing pairs of balls of 

different sizes are shown contiguously, hung from a nail in the ceil

ing. Depending on their relative sizes (presumably their weights), 

the center of gravity is identified by a vertical line—for two equal-

size balls, the line passes through the two balls ' point of contact; 

when one ball is larger (more massive than the other), the line 

passes through a point inside the larger ball, the point of contact 

having shifted in the direction of the smaller ball. In still another 

set of drawings, Leonardo depicts the spherical earth with a con

centric shell-like structure, explaining in his own words that heav

ier masses have gravitated toward the center of the earth, echoing 

the modern understanding of twentieth-century geophysics. As for 

the phenomenon of falling bodies, Leonardo first sowed the seeds 

but did not follow through to the harvest. One hundred years later 

Galileo established firmly the constancy of acceleration in free fall. 

More significantly, the problem led to Newton's formulation of the 

universal law of gravitation, and ultimately Einstein's general the

ory of relativity. That it would take Galileo, Newton, and Einstein's 

entry into the fray, and the emergence of entirely new areas in 

physics and mathematics, to bring us to our present understanding 

attests to the problem's importance. In the five hundred years since 

Leonardo framed his question there has been astonishing progress. 

But the final synthesis of the physics of the very large and the 

physics of the very small, a sort of Holy Grail of physics, still re

mains elusive. For the first time, however, the formulation of a "the

ory of everything" (TOE) seems within striking range. We shall 

devote the next two chapters to following the drama that brought 

us to this point in our understanding. 



He who is fixed to a star does not change his mind. 

— Leonardo da Vinci 

A t one level, the statement quoted above could be regarded as 

_J\ Leonardo's derogation of astrology as an indicator of one's 

fate; certainly it reflects his sentiment that one has to keep an open 

mind. Like other anatomists of his time, Leonardo had begun his 

studies from a Galenic frame of reference, but unlike the others, he 

was far more open to modifying his views when his observations 

appeared to contradict the prevailing understanding in the field. In 

astronomy, he started out with the earth-centered Ptolemaic view, 

but where intellectual honesty required revision of the accepted 

213 
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theory, he sought evidence presented by nature. In physics there 

existed Aristotelian formalism, but again Leonardo demanded 

proof before he could accept the tenets of that formalism. Coleridge's 

words , "A man convinced against his will is of the same opinion 

still," could not have rung with more truth for anyone else. 

In the fourth century B .C. Aristotle, the most influential of all 

philosophers, taught that heavy bodies fall faster than light ones.' 

In one passage Leonardo echoes this observation verbatim. But 

with systematic experimentation and observation, and with a quin-

tessentially open mind, Leonardo established for himself that accel

eration for a falling body was constant and independent of its 

weight. It was that extraordinary personal code of intellectual hon

esty, the skills to ask just the right questions of nature, that gave him 

the astonishing ability to extricate her secrets. 

Regarding the Ptolemaic picture of the solar system, in which 

the sun orbits the earth, there is no doubt that Leonardo was en

gaged in a recurrent struggle to search out the most logical picture. 

In one geometric construction he depicts the earth orbited by the 

moon, and at a much greater distance, also by the sun—the geo

centric picture. But in another instance he confronts Ptolemy head 

on, saying the sun "stands still." He asserts the heliocentric picture: 

"The earth is not the center of the circuit of the sun, nor the cen

ter of the universe." Unhappily, he left no other reference to this 

issue, but what other treasures must have been hidden in the orig

inal mass of manuscripts? Perhaps further ruminations regarding 

a sun-centered solar sys tem? Or thoughts about what keeps the 

moon locked in an eternal orbit? We can only speculate. 

The irrecoverable loss of two-thirds of Leonardo's manuscripts 

leaves one with the same sorrow and frustration as the loss of the 

works stored in the library of Alexandria in the great fire of the late 

fourth century A . D . Among the works destroyed then were hun

dreds of thousands of scrolls from classical antiquity—including 

the original teachings of Aristarchus, Archimedes, and Eratosthenes, 
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and of Herophilus, an Alexandrian physiologist w h o had firmly 

established the brain in distinction to the heart as the seat of rea

son. There were also the works of Berosus, the Babylonian histo

rian whose accounts referred to a primeval flood, as well as events 

as far back as a hundred thousand years earlier. So many abstrac

tions and discoveries—the idea of a spherical earth, the sun-cen

tered universe, atoms, elements, democracy, and the recognition of 

the brain as the organ for reason—had had their origins in antiquity 

and had to be rediscovered in modernity. Leonardo's manuscripts 

represent a similar treasure. So many of the insights and inventions 

of the notebooks prefigure the developments and discoveries of the 

following three hundred years. Had they been available to others in 

Leonardo's time, the progress of science and technology would 

have been accelerated dramatically. 

It would be more than a century after Leonardo that the law of 

falling bodies would be codified, expressed mathematically by 

Galileo. 2 Almost another full century would pass before the physics 

of heaven and earth would be unified by Isaac Newton; and two 

centuries later still that in the hands of Albert Einstein a compre

hensive theory of the mechanics of the cosmos would be formu

lated as the general theory of relativity. Perhaps because of their 

connection to human flight, Leonardo performed experiments 

related to free-fall. His conclusions turned out to be only partially 

correct. But in introducing a particularly resourceful approach, he 

was on the same track that led to the ultimate resolution of the 

problem. This draws him into the pantheon of physicists with 

Galileo, Newton, and Einstein. We shall examine here the history 

of this quest, and present the analysis in mostly qualitative terms. 

To eliminate all vestiges of what are mathematical theories, how

ever, would undermine their essence as physical laws, and produce 

only dogma. A few very simple equations will be introduced, but 

relegated to the endnotes. To reiterate a frequently resonating mes

sage of this book: the universe is expressible in mathematical 
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terms—a feature to be savored. In order to gain a deeper insight, 

however, one would need familiarity with that magnificent math

ematical invention of differential calculus—formulated in the sec

ond half of the seventeenth century by Newton (and independently 

by Leibniz), but lying outside the scope of this book. 

To reiterate a second message of this book: there is beauty in 

nature, beauty in the universe. For the scientist the prospect of 

uncovering a deep mystery of nature holds almost hypnotic allure. 

Mathematical models that help us to visualize physical phenomena 

are created and tested. Theories are formulated and are proved and 

accepted, disproved and abandoned, or (more often) modified to 

conform more closely with observations. Theories that rise to the 

level of the transformative are rare. George Bernard Shaw, in intro

ducing Einstein at a banquet, had this refinement process in mind 

when he quipped, "Newton created a universe that lasted two hun

dred years. Einstein created a universe, and we don't know how 

long [his] will last." But before we can begin to see how we came to 

our present understanding of the underlying logic behind the uni

verse and the significance of that understanding, we must first 

appreciate the dizzying scale of space and time. 

The Scale of Space and Time 

The earth is a spherical ball 12,800 kilometers (8,000 mi.) in diam

eter, slightly more oblate (fatter at the equator) than strictly spher

ical. In the beginning of the third century B .C. the circumference 

and radius of the earth were determined with surprising accuracy 

by the astronomer and mathematician Eratosthenes of Cyrene. 

Head of the great library of Alexandria, Eratosthenes carried out a 

series of measurements. He knew from his predecessors that at 

noon on the longest day of the year (the day of the summer solstice) 

the sun would be directly overhead in Syene (today Aswan) . A ver

tical post erected in Syene would have no shadow at that moment, 
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whereas a post in Alexandria 800 kilometers (500 mi.) north of Syene 

would have a measurable shadow. It is this shadow that Eratosthenes 

measured with exquisite precision on that day. He determined the 

difference in the angles between the axes of the two posts to be 

7 degrees. These axes, he reasoned, if extrapolated downward, would 

meet at the center of a spherical earth. That 7 degrees happens to be 

approximately one-fiftieth of a circle. Multiplying the 800-kilometer 

(500-mi.) distance between the two posts by 50, Eratosthenes ob

tained the circumference of the earth as 40,000 kilometers (25,000 mi.). 

Finally, dividing the circumference by K, he calculated the diameter 

of the earth to be 12,800 kilometers. If Columbus had known 

Eratosthenes's value in 1492, he would not have been deluded into 

believing that he had reached India or Asia, and the islands of the 

Caribbean would not have been dubbed the "Indies." He had no idea 

that the much more expansive Pacific lay to the west of the continent 

he had discovered. 

An older contemporary of F>atosthenes, Aristarchus of Samos 

(c. 320-250 B .C.) , had theorized just a generation earlier that the shape 

of the earth was spherical, offering as evidence a three-part argument: 

the field of stars changes with the latitude of the observer; the mast of 

a ship comes into view before its hull as the ship approaches the shore 

from a distance; and the shadow of the earth cast on the moon during 

a lunar eclipse is always round. Aristarchus, however, is not known to 

have attempted to measure the size of the earth. 

In another project still, Aristarchus tried to compare the dis

tances from the earth to the moon and the sun. When the moon 

is i l luminated by the sun as a half-disk, he reasoned, the angle 

made by the line connecting the earth and moon and the line con

necting the moon and sun would be exactly 90 degrees. Accord

ingly, he constructed a pair of similar triangles, and found the rel

ative distances for those lines to have the ratio of 1 :19 . His method 

was correct, but his instruments were much too crude. The correct 

ratio is 1:395. 
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That value, 1 3 9 5 , is also virtually the same ratio as the diameter 

of the moon to that of the sun, a happenstance that explains why, 

in viewing a total solar eclipse, we see the disk of the moon to fit 

almost precisely over the disk of the sun. The size and distance pro

portions of the sun and moon appear to have been known to 

Leonardo, who in a drawing in the Codex Leceister demonstrated that 

geometry. In a vertical cone representing light, the sun is a sphere 

at the opening of the cone, the moon is within the cone, and the ver

tex of the cone falls on a point on the surface of the earth. Indeed, 

this juxtaposition creates similar triangles in geometry. 

But even more dramatic than Aristarchus 's assertion of the 

spherical shape of the earth and his attempts to measure the rela

tive distances from the earth to a pair of heavenly bodies was his 

heliocentric (sun-centered) theory of the solar system. A full eight

een hundred years before Copernicus, he advanced a model of the 

solar system with the earth as a planet orbiting the sun along with 

the other planets. A few centuries later much of the erudition handed 

down by Aristarchus and Eratosthenes fell into disfavor in the eyes 

of the early Church. A geocentric (earth-centered) picture, plac

ing mankind at the center of the universe, became the model of 

choice. Indeed, in time the teaching of the alternate theory would 

be deemed heresy punishable by death. It would not be until 

Copernicus in 1543, ' and Galileo and Kepler in the early seventeenth 

century, that the heliocentric picture would return. But only late in 

the seventeenth century, when Newton published the Principia, 

would it gain final acceptance. 

Astronomical distances are expressed in a variety of units, each 

selected for its convenience of purpose. The distance between the 

earth and the sun is approximately 150 million kilometers (93 mil

lion miles) ; this distance also defines an astronomical unit (AU). 

For the first several planets the distances from the sun are 0.4 AU 

(Mercury) , 0.7 AU (Venus), 1.0 AU (Earth), 1.6 AU (Mars) , 5.2 AU 

(Jupiter) and 10 AU (Saturn). 4 A more convenient unit, especially 
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for longer distances than those encountered within the solar sys

tem, is "light-time." It takes sunlight about 500 seconds, or about 8 

minutes, to reach the earth. This distance is called "8 light-minutes." 

On this scale, the distance to Saturn is 80 light-minutes, and the dis

tance to the outermost planet, Pluto, is 5.3 light-hours. The closest 

neighboring star, Alpha Centauri, is 4.3 light-years away. 

Spots in the night sky that appeared as nebular or diffuse stars 

were speculated to be "island universes" by the philosopher 

Immanuel Kant in the eighteenth century and first catalogued in 

Kant 's time by the French astronomer Messier. The catalogue of 

galaxies now honors Messier, in, for example, the designation M51 

(or Messier 51) , otherwise known as the celebrated Whir lpool 

galaxy, or M i 0 0 , a magnificent spiral galaxy visible from the south

ern hemisphere (Plate 4, bottom right). Our galaxy, the Milky Way, 

with a population of approximately 400 billion stars, measures 

close to 120 ,000 light-years in diameter, and, as a spiral galaxy, it 

resembles the galaxy M 1 0 0 . The sun, with its array of planets, is 

approximately half way out from the center—28,000 light-years— 

on one of the spiral arms of the galaxy. 

The entire galaxy rotates, not in the manner of a rigid pinwheel, 

but rather in differential irrotational motion, the inner parts turn

ing much faster than the outer. At the radial distance from the cen

ter of the Milky Way, where our solar system is located, it takes 

about 200 million years to make one turn. Since the solar system 

(accompanied by the earth) has been around for about 4.5 billion 

years, it has made this giant galactic orbit approximately twenty-

two or twenty-three times. The last time the solar system was in its 

present location, the dinosaurs were just emerging. And since they 

became extinct sixty-five million years ago (at the end of the 

Cretaceous Period), the entire era of the dinosaurs spanned two-

thirds of one galactic orbit. 

The Milky Way belongs to a small cluster of galaxies held together 

by their mutual gravitational field, all orbiting a common center of 
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mass. One of these neighboring galaxies is the giant Andromeda 

galaxy ( M 3 1 ) , approximately 2 . 2 million light-years away, with over 

a trillion stars. Although the universe is expanding, with most galax

ies, and certainly clusters of galaxies, all moving away from each 

other, there are some galaxies that are drawing toward each other. For 

example, in about ten billion years the Milky Way and Andromeda 

will collide and merge, creating an even larger galaxy. The universe 

contains tens of billions of galaxies, each containing hundreds of bil

lions of stars, producing a ballpark figure of 1 0 2 3 stars for the entire 

universe. The size of the universe is around 14 billion light-years, and 

its age is 14 billion years. There is, however, no coincidence in these 

numbers: In the prevailing big bang theory of the universe, space and 

time have a simultaneous origin, with the universe growing at the 

speed of light for the past 14 billion years. 

The Copernican Revolution 

Shortly before his death in 1543 Copernicus published his treatise 

De revolutionibus orheum coelestium, reviving the long-dormant helio

centric picture of the universe, and effectively repudiating the 

Ptolemaic (geocentric) picture upheld by the Church. Though this 

conjecture might remove mankind from the center of the universe, 

he was not interested in challenging the authority of the Church. 

He was just hoping to set astronomical matters straight. However, 

his system, which seems obvious and irrefutable to us now, is not 

entirely correct. As it will be seen, Copernicus's orderly picture of 

a sun-centered solar system with orbits describing perfect circles 

does not predict future positions of planets even as accurately as 

those given by the Alphonsine tables, based on a Ptolemaic picture.* 

Accordingly, Copernicus 's conjecture could have simply been 

judged as poor science, originating in the scientific backwater of 

northern Europe. Also for Copernicus, living in Poland, consider

ably removed from the epicenter of the Inquisition sweeping Italy 
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and Spain, one w o u l d have thought him to be somewhat safer. 

Moreover, an introduction to the book written by an anonymous 

author explained that Copernicus 's system represented an alter

native method for determining positions of planets, rather than a 

fundamental shift in the paradigm representing physical reality. 

Finally, as a priest work ing wi thin the Church, one also wou ld 

have thought he might have been more sheltered than the secular 

scholars w h o were disseminat ing thoughts on the heavens. But 

this was not the case. The Church by then had already been 

shaken to its core by Mart in Luther, the far more threatening 

heretical priest in Germany. But just to be safe from persecution, 

Copernicus took a pair of precautionary steps: he dedicated his 

book to the pope, and he wai ted until he was on his deathbed 

before publishing. 

Neither the brilliance nor the foresight of Copernicus charac

terized another priest, Giordano Bruno, a Dominican friar born 

near Naples in 1547. Although Bruno would have deserved not even 

a footnote for his contributions to science, as a catalyst for bring

ing scientific progress in Italy to a halt, his negative significance 

cannot be overstated. His first and most important work, La cena de 

leceneri, published in 1584, was actually about the Last Supper and 

the Eucharist, the Christian ceremony of Holy Communion. Bruno 

was a Copernican, but operating with a hidden agenda. He was a 

disagreeable man, regularly turning off hosts and patrons alike with 

his comportment. Moreover, he never quite understood the math

ematics of Copernicus, but invoked scientific jargon and analogy as 

tools for his arguments, and was actually taking aim at the author

ity of the Church. He believed in demoting the Earth to a planet, 

thereby removing it and its human inhabitants from their hallowed 

position at the central eye of the universe, and then bestowing souls 

on them all—humans, planets, stars—drawing no distinction among 

them. He was a proponent of an "ancient true philosophy," 

Hermeticism. 6 And within the tenets of his own dubious version of 
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this philosophy, he could equate Catholicism and Protestantism. 

But most flagrant and egregious of all of his beliefs was his denial 

of the divinity of Christ. 

For his poor science the Church might have simply dismissed 

him, but for his heresy he could not be tolerated. He had formed 

some of his ideas at Oxford and London, and it was there he first 

published them. But when he unwisely visited Venice in 1592, he 

was arrested on a trumped-up charge and imprisoned for a year. 

The following year he was moved to Rome, where the Inquisitors 

tried him for heresy. At his trial and during his seven-year impris

onment he still could have saved himself simply by recanting his 

heretical notions. But he remained intransigent to the end. Given 

one last chance to d isavow this heresy, he again renounced the 

authority of the Church. It is said that he made the pronounce

ment that the other planets were also inhabited, and "the inhabi

tants are looking down and laughing at us." Unfortunately the 

Church had the last laugh, as Bruno was burned at the stake as an 

example to other heretics. Thus he became an unfortunate exam

ple of publish and perish! Ironically, at the Piazza Campo dei Fioro 

in Rome, indeed at the spot where Bruno met his death in February 

of 1600, there now stands a statue of the hapless Dominican monk 

in full habit. 

Meanwhile on the island of Hven (today Ven) in the Baltic Sea, 

the Danish astronomer Tycho Brahe was gathering data on the 

movements of the planets, hoping to confirm the geocentric pic

ture of the universe. The king of Denmark had bestowed on him the 

deed to the island, along with authority over the inhabitants—the 

local peasants—to do with as he wished. The peasants became his 

servants, helped him to build his observatory, and assisted him in 

his observations. In this pretelescope age his principal observa

tional tools were a number of large astrolabes along with massive 

brass disks with holes in them—holes through which he could peer 

and track the movements of the planets. The servants were rou-
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tinely assigned the task of lifting him up bodily, chair and all, and 

moving him from disk to disk. 

A colorful nobleman, in his youth Tycho had lost his nose in a 

duel over a mathematics problem. He wore a silver-gold prosthetic-

nose secured by ties fastened behind his ears, similar to the man

ner in which Venetian masks are worn at Carnevale. Fortunately, 

his skills as an astronomer were far superior to his skills as a 

swordsman. Over almost four decades Tycho compiled extensive 

data on the heavens. Though he toiled assiduously, he was never 

able to reconcile his observations with the geocentric picture, and 

as an honest scientist he never fudged his data. His numbers 

awaited a far more clever and open-minded mathematician to 

determine the proper order behind planetary motion. 

Johannes Kepler ( 1 5 7 1 - 1 6 3 0 ) , a German-born mathematician, 

astronomer, and astrologer to royalty, plying his various trades in 

Prague, turned out to be that mathematician. In an effort to ascertain 

the laws of planetary motion, among his mathematical musings had 

been one in which the five regular polyhedra were regarded as spac

ers between the orbits of the six planets (see Figure 5.2). The scheme 

bore little fruit. By then it was general knowledge that Tycho pos

sessed the most accurate data extant, but when Tycho realized that 

Kepler was a superior mathematician, he became excessively pos

sessive of the planetary data he had collected, resolving to keep it out 

of the younger man's hands at all cost. 

Fortunately for science and unfortunately for Tycho and the 

Brahe family, calamity struck at a banquet given for the visiting 

Danish king when Tycho sustained a burst bladder and died. For 

a period afterward Tycho ' s family felt a moral obligation to con

tinue to keep his priceless data out of Kepler 's hands. Frustrated, 

Kepler simply stole the data and immediately started the task of try

ing to sort it all out. His attentions were focused on Mars, which 

with its pronounced retrograde motion turned out to be a propi

tious choice. As he analyzed the data he found that the orbits of the 



224 | Math and the Mona Lisa 

planets, including that of the earth, were not circular, as asserted 

by Copernicus, but elliptical, with the sun located at one of the foci, 

or focal points, of the ellipse. This statement, Kepler 's first law of 

planetary motion, resolved once and for all the controversy sur

rounding the geocentric versus the heliocentric picture. 

A second law formulated by Kepler from Tycho's data was that 

the area swept out on the plane of a planet's orbit by the radial vec

tor of the planet is the same for any equal period of time. As a con

sequence, during its elliptical motion around the sun a planet trav

els faster when it is close to the sun than when it is farther away. 

Mathematical ly speaking, the rate of change of area is constant. 

Kepler published his first two laws in his New Astronomy in 1608. 

Finally, Kepler gleaned the third of his planetary laws approx

imately a decade after he had discovered the first two. He found 

that the period for each planet (that is, its year, or the time for it 

to revolve around the sun) was indeed proportional to its distance 

from the sun, but that this was not a linear relationship. Rather, he 

found that the square of the period for a planet varied directly with 

the cube of its mean distance from the sun, thus T2oc R\ or T2 / R? = C, 

a constant. 

As a simple example of the application of the third law, we can 

compute the period for Jupiter. The mean radius of Jupiter 's orbit 

is approximately 5.2 AU, compared to the earth's 1.0 AU. With the 

earth's period of T= 1 year, Kepler 's third law yields for Jupiter a 

period of 12 years. 7 Saturn, revolving around the sun at a distance 

of 10 AU, takes approximately-fiio*), or about 31.6 years. In retro

spect, the circumstances of Kepler's theft of Tycho 's papers could 

be regarded as an example of how crime sometimes pays. But per

haps in this instance it is not an egregious crime. Tycho's final pro

nouncement, so scientific lore goes, was to Kepler: "Don't let my 

life seem to have been in vain." 

The scientific achievements of Copernicus, Tycho, and Kepler 

were all concerned with heavenly bodies and their motion. In south-
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ern Europe Galileo, Kepler's contemporary and a confirmed Co-

pernican, performed science on two separate fronts—terrestrial 

experimentation and celestial observation. Traditions regarding 

Galileo abound in his hometown of Pisa, for example there is a story 

that a seminal experiment with the pendulum was inspired by an 

oscillating chandelier in the cathedral following an earthquake. 

A far more fundamental law that Galileo formulated just a short 

time later—by studying balls rolling down inclined boards—was the 

law of translational equilibrium: "a body placed in motion will con

tinue in that state of motion forever unless a force is applied to slop 

it." He rolled balls down one incline that was smoothly connected 

to a second, adjustable incline. No matter what angle the second 

incline made relative to the first, the balls would ascend until they 

reached exactly the same height from which they had been released. 

The line connecting the point of release and the point of final ascent 

was always a horizontal line, parallel to the ground. Galileo con

cluded that if the second incline were lowered to a horizontal posi

tion, the balls would have to keep rolling forever in order to reach 

the level at which they had been released; in geometry "parallel lines 

meet at infinity." (The ball rolling down and increasing in speed, 

then rolling up and losing speed, can be effectively explained in 

terms of the constancy or "conservation" of mechanical energy: the 

kinetic plus the potential energy at every point in its motion remains 

the same.) Gali leo's law of motion contradicted the Aristotelian 

"law" proclaiming that bodies placed in motion would stop of their 

own accord unless a force were continually applied to them. 

Aristotle's law certainly appears closer to everyday experience until 

one realizes that it is the force of friction that serves as the applied 

force slowing down traveling bodies. Although Galileo was the first 

to promulgate the law formally, it is now generally called Newton's 

first law. Newton's second law, that "force equals mass times accel

eration," is far more general. It accommodates the first law as a spe

cial case when the net force on a body is zero. 
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The use of a gently inclined board for measuring acceleration, 

however , was a par t icular ly ingenious idea, and one that even 

Leonardo had not conceived, and explains why Galileo was able to 

collect data that was superior to Leonardo's for accelerating bod

ies. The motion of a body could be slowed down to the point where 

precise measurements could be made while always maintaining the 

same relationship between acceleration and velocity and between 

velocity and displacement. 

The Law of Falling Bodies—Rectilinear Motion 

In the last chapter we also encountered "curvilinear motion" in the 

context of the trajectories of projectiles in two-dimensional space. 

Here we shall start out by examining "rectilinear motion," or motion 

in a straight line. In the late sixteenth century natural philosophers 

still believed that the acceleration of heavy falling bodies would be 

greater than that of light ones. Even before Galileo, scholars had 

attempted to explain this acceleration, but no one had been able to 

properly quantify the phenomenon. A hundred years before Galileo, 

Leonardo da Vinci made his own study. Rather than ask how fast the 

body was descending, Leonardo sought to answer how far the body 

would descend in successive intervals of time. His conclusion was 

that the distances could be expressed as sequential integers: 1 unit 

of distance in the first interval, 2 units in the second, 3 units in the 

third, and so on. For example, after ten intervals the total distance 

the body would have dropped, according to Leonardo's theory, would 

be given by ( + 2 + 3 + 4 + . •• + 10(55 units of distance. The sum of the 

values Leonardo obtained in his experiment of falling bodies, after 

time t, 1 + 2 + 3 + . . . / , is the average value 'A (1 + / ) , multiplied by the 

number of terms t, or s(t) = ' />; + 'A t2 units of distance. 

A century later, when Gali leo began to grapple with the prob

lem of free-fall, he used precisely the same method Leonardo had 
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Figure 1 1 . 1 . Pisa, (left) The chandelier in the cathedral of Pisa that 

inspired Galileo to investigate the behavior of the pendulum, (right) 

Next to the cathedral is Pisa's famous Leaning Tower, its campanile, or 

bell tower. The tower is used here as a backdrop to illustrate the data 

obtained by Leonardo and Galileo, who both investigated the law 

of falling bodies. 

used, namely to measure the distance a body falls in successive 

intervals of time. The young Galileo, according to Pisan tradition, 

dropped objects from the top of the campani le , or bell tower, 

which provided a convenient shape for his free-fall experiments 

(Figure 1 1 . 1 ) . There is no historical basis for this tradit ion, and 

most likely Gali leo made his discovery while serving as a profes

sor at the University of Padua ( 1 5 9 2 - 1 6 1 0 ) . We shall use the same 
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tower, however, to demonstrate the sequence of distances for free-

fall: the distances according to Leonardo (column L) and those 

according to Gali leo (column G ) . In both columns the time inter

vals between the horizontal lines are the same. Unlike Leonardo, 

who had concluded that the distance covered in successive inter

vals were given by the sequence of integers (1 , 2, 3, 4, . . . ), Galileo 

determined these distances to be the sequence of odd integers 

only: 1 , 3 , 5 , 7 his celebrated odd numbers rule. Thus after the 

first interval of t ime the distance would be 1 unit; after the first 

two intervals the total distance covered would be 1 + 3 = 4 units 

(or 2 2 ) ; after the first three intervals, 1 + 3 + 5 = 9 units (or 3 2 ) 

units, and after 4 intervals 16 units (or 4 2 ) . The conclusion that 

Gal i leo reached was that the total distance a free-falling body 

would drop in t seconds wou ld be given by s(t) = t 2 units of dis

tance. This equation differs from Leonardo 's expression describ

ing free-fall. 8 

In 1604 Galileo observed in the night sky a new star, invisible 

one moment and shining bright the next (which we now realize was 

a supernova, or exploding star). The observation of a supernova is 

a rare event for the unaided eye, but far more common when tele

scopes are used. Indeed, since 1604 another such event has been 

seen only once—in 1987—from the southern hemisphere. From the 

perceived parallax effect Galileo knew that this was a member of 

the region of immutable stars, far beyond the sublunar region 

where phenomena were believed to be susceptible to change, 

according to Aristotelian astronomy. He gave a set of special lec

tures in Padua about the new star, pointing out the alarming evi

dence of Aristotle's mistake. 

In 1609 Gali leo received the portentous news of the German-

Dutch lens maker Hans Lippershey's invention of the telescope just 

a few months earlier. Gali leo immediately undertook the con

struction of a more powerful instrument for his own use. In mak

ing his own lenses he tried both Florentine glass and Murano glass 
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from Venice; he found the former superior for its optical proper

ties. Taking his telescope to the top of the campanile in Venice, he 

offered the rulers of the city a tool that would enable them to see 

approaching enemy warships and the merchants a means of obtain

ing advanced notice of arriving goods. When he turned his instru

ment to the heavens he observed unexpected wonders : the night 

sky teeming with hitherto unseen stars, sunspots (blemishes on a 

celestial body beyond the moon) , and further evidence against 

Aristotelian astronomy. He saw mountains and valleys on the moon 

and a set of four moons around Jupiter. Galileo published his obser

vations in a 1 6 1 0 treatise, Sidereal Messenger. The book was dedi

cated to the Medicis , his new patrons in Florence, and indeed, he 

named the four satellites of Jupiter the Medicean stars (Figure 1 1 . 2 ) . 

In 1613 Galileo observed the phases of Venus—evidence that 

Venus was orbiting the sun—and immediately published his findings. 

In 1615 the inquisitors summoned him to Rome. There he pleaded, 

"Please . . . look through my telescope." "It is not necessary," sug

gested the Church, "you have faulty vision! Only the Earth can have 

a moon." As for those mountains he claimed to have seen, "As a heav

enly body, the moon has to be a perfectly smooth sphere!" Galileo 

was ordered "to abjure, curse and de te s t . . . and to recant the hereti

cal teachings!" Remembering well the tragic lesson of Giordano 

Bruno, he swore, in effect, that he was mistaken, and that the sun 

revolved around a stationary earth. With the mediation of powerful 

friends, especially the Medicis, he was released with a stinging rep

rimand, but without incarceration or physical torture. 

In 1623, when his old friend and patron Cardinal Mafeo Barb-

erini was made Pope Urban VIII, Galileo might have hoped for bet

ter days. In 1624 he even had a series of six audiences with Urban, 

receiving tacit permission to write a book about the plausibility of 

the Copernican system, but only "if he would treat it as a hypo

thetical and mathematical possibility . . . not one to endorse over 

the accepted Aristotelian view." But in 1632, eighteen years after his 



Figure 1 1 . 2 . (top) Detail of title page of Galileo's Sidereal Messenger (1610). 

This rare presentation copy of the book is inscribed "To the most illustri

ous Sig. Gabriel Chiabrera," and signed "Galileo Galilei." (bottom) 

Excerpt showing Galileo's own annotation in his personal copy of the 

Dialogue on the Two Chief World Systems. (Courtesy History of Science 

Collections of the University of Oklahoma, Norman) 
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first brush with the Inquisition, Gali leo 's controversial book 

Dialogue on the Two Chief World Systems—Ptolemaic and Copernican, 

was published. The superiority of the Copernican v iew was more 

than evident in Galileo's treatment. Moreover, depicted in the fron

tispiece in his own skillful hand were the three characters: Simplicio, 

the Aristotelian simpleton; Sagredo, the sagacious and reflective 

thinker; and Salviati, the intelligent layman serving as the inter

locutor. Galileo, a talented artist, in creating the cartoon, had evi

dently drawn Simplicio in the likeness of the pope—or so the pope 

was led to believe by his advisors. In reality, the pope may never 

have seen the book. 

Again Gal i leo was invited to Rome for an audience with the 

inquisitors. Although he recanted readily this time, no amount of 

apology and penance could save him. After a lengthy trial, Galileo, 

then s ixty-nine years old, was convicted and condemned— 

although spared the fate that had befallen Bruno. He would there

after live under house arrest. He was never to write another book, 

and no publ isher was ever to print any of his heretical works . 

Meanwhile , the pope displayed neither the patience nor the polit

ical courage to come to his aid, being mired in his own troubles 

with the Thi r ty Years ' War. The year turned out to be Gal i leo ' s 

annus horribilis. 

In 1 6 3 8 while he was under house arrest and suffering from a 

number of debilitating maladies, his most important book was pub

lished. Two New Sciences distilled Galileo's years of experimentation 

and analyses on problems of physics and strength of materials. The 

manuscript had been smuggled out to a friend, the publisher Louis 

Elzevir of Leyden, Holland. As with his other books, the language 

was Italian rather than the usual scholarly Latin, and just as with 

the Sidereal Messenger and the Dialogue on the Two Chief World Systems, 

there were three characters engaged in a philosophical dialogue. In 

one typical exchange, Simplicio declares, "When two objects of dif

ferent weight are dropped simultaneously, the heavier object hits 

the ground before the lighter—displaying greater acceleration." 
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Sagredo's riposte, "If you tie the two bodies together, creating a 

heavier body still, will the aggregate fall faster still, or will the 

lighter component impede the motion of the heavier one?" com

pletely confounds Simplicio. The Interlocutor's facetious comment, 

devoid of a decision on who had offered the more compelling argu

ment, is "Oh, yes, I see." 

Galileo's physics had gotten him into a great deal of difficulty 

with the Church. But ultimately it was not the physics of free-fall, 

nor any of the other aspects of his classical mechanics that contra

dicted Aristotelian mechanics, rather his endorsement of the Co-

pernican view of the heliocentric universe that was manifestly 

unacceptable to the Church. 

A recent book by Dava Sobel offers an account of the extraor

dinarily warm relationship that existed between Gali leo and his 

eldest daughter, presented against the backdrop of his less than con

genial relationship with the Church. 9 It is evident that Galileo had 

a warm human side while dealing with his daughter, but there is lit

tle doubt that he did not suffer fools easily. The attitudes of human

ists and theologians who were guided by old teachings and dogma, 

rather than by observation and reasoning, bedeviled him. He wrote, 

"I do not feel obliged to believe that the same god who has endowed 

us with sense, reason, and intellect has intended us to forgo their 

use." The Church, however , saw him as a reincarnate Giordano 

Bruno, although never quite the equal of the reviled and defrocked 

priest. Nonetheless, he had become a thorn in their side, gaining a 

reputation for being ambitious, quarrelsome, and arrogant, and 

demonstrating an endless appetite for antagonizing former patrons 

and friends. 

Galileo died in 1642, a broken man, blinded by the ravages of an 

eye disease, likely caused by damage to the fovea (part of the retina) 

that he had sustained in repeated observations of the sun through 

his telescope. A poignant meeting in his last years was with a visi

tor and ardent admirer, John Milton, w h o would himself go blind 
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a few years later. In his great epic poem Milton would refer to the 

wonders revealed by Galileo's telescope: 

his ponderous shield 

Etherel temper, massy, large and round, 

Behind him cast; the broad circumference 

Hung on his shoulders like the Moon, whose Orb 

Through Optic Glass the Tuscan Artist views 

At Ev'ning from the top of Fesole, 

Or in Valderno, to describe new Lands, 

Rivers or Mountains in her spotty Globe 

—Paradise Lost, 1667 ,1 :284-91 

"The Tuscan artist!" What reverence, what veneration for the great 

scientist from the great poet, accepting him as a fellow artist. 

Some of the lenses that Galileo personally ground, as well as a num

ber of his own telescopes, are on display in the Museum of the 

History of Science in Florence. When his body was moved from the 

chapel of Saint Cosmas and Damian to Santa Croce for reburial in 

1737, an admirer removed the middle finger of his right hand—now 

a relic, mounted in a glass case in the same room as the one hous

ing the telescopes. And those four satellites he had discovered orbit

ing Jupiter are now known to astronomers as the Galilean moons. 

The last great creator of the Italian Renaissance had been a sci

entist who established an enduring modus operandi for the mod

ern scientist. And in reality Galileo's technique of scientific inquiry 

had been little different than Leonardo's , except in one critical 

respect. Unlike Leonardo, Galileo saw an urgent need to dissemi

nate news of his discoveries, the effect of which would be to imme

diately influence the course of future research. Ironically, the pub

lication of his results, especially those refuting misapprehensions 

of the Church, brought terrible personal consequences for him. And 
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indeed, with the persecution and death of Galileo serious scientific 

inquiry in Italy and most of the rest of Catholic Europe came to an 

end, as scientific inquiry's center of gravity shifted to the north. 

Galileo's Dialogue was placed on the list of banned books, the Index 

librorum prohibitorum, in 1633, where it remained until 1821. Finally, 

in 1992 Pope John Paul II courageously convened a commission to 

revisit the case of Galileo's persecution by the Church. What was at 

stake was the issue of papal infallibility—a possible misjudgment by 

a predecessor who had sanctioned the trial some 360 years earlier. 

When the commission returned with its findings, there was no apol

ogy on behalf of the Church, no judgment that Galileo had been 

wronged. However, the final pronouncement that was published— 

"Galileo was a great man!"—was a tacit vindication of Galileo Galilei 

and a final closure to loose ends that had prevailed for all those years. 

The statement read, "Galileo sensed in his scientific research the pres

ence of the Creator who, stirring the depths of his spirit, stimulated 

him, anticipating and assisting his intuitions." 

Jus t as 1564 had been a t ransi t ional year, wi th the death of 

Michelangelo and the birth of Galileo and Shakespeare, so too was 

1642. Galileo died on January 8, and Isaac Newton was born on 

Christmas Day in Woolsthorpe, a village in the county of Linconshire 

in England. Only a numerologist might assign significance to the 

coincidence of those years, but certainly the coincidence of the dates 

makes them easier to remember. Nature operates with conservation 

laws—conservation of momentum, conservation of angular momen

tum, conservation of energy/mass, conservation of charge, and so 

on—but there is no conservation law for genius. When an individ

ual of towering genius dies, talent of similar magnitude does not have 

to be born. There is always the possibility, however, that the prevail

ing intellectual climate is especially conducive for individuals with 

inherent gifts to step forward. Galileo spent his lifetime in combat 

against the prejudices of the past—the dogma and the intellectual tra-
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dition that had taken two millennia to become entrenched. Newton 

could ignore all that, taking dead aim at the future. 

The Universal Law of Gravitation: 

Unifying the Physics of Heaven and Earth 

Demonstrating early on in his life that he would make a less-than-

effective farmer, in 1661 Isaac Newton was sent off to Cambridge 

University. There is no evidence that he knew any more mathemat

ics in 1661 than anyone else, but there is plenty of evidence of his pos

sessing transcendent gifts for mathematics and analytic reasoning just 

four years later. In his final year as an undergraduate at Cambridge in 

1665 he had already developed the binomial theorem, a mathemati

cal express ion to raise the sum of a pair of te rms to a constant 

power—a power that could be positive or negative, integer or frac

tion. Just about the time he completed his studies at Cambridge, the 

bubonic plague that had been ravaging the Continent crossed the 

English Channel and began to decimate the population. The univer

sities were closed, and the scholars sent home. 

Sixteen months later, when the plague subsided the scholars were 

called back to the universities, and academic activities resumed. Isaac-

Newton, on his return to Cambridge, reported to his mentor Isaac 

Barrow with a list of his "mental inventions" (theories). The list in

cluded ( 1 ) applying the binomial theorem to determine the slopes 

of continuous curves, (2) the formulation of the "method of flux

ions," (3) experiments in optics and the invention of the reflecting 

telescope, (4) the formulation of the "inverse method of fluxions," (5) 

the formulation of the three laws of motion (now known as Newton's 

laws), and as a crowning glory, (6) the formulation of the universal 

law of gravitation. In that sixteen-month period he laid the founda

tions for optics and classical mechanics and for the unification of clas

sical mechanics and astronomy. 
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The invention in mathematics of" "fluxions" and "inverse flux

ions," as differential and integral calculus, respectively, earned for 

him the mantle of the greatest mathematician in history. It was 

Einstein's opinion that Newton 's greatest single contribution was 

in developing the differential law, or showing that the laws of the 

universe could be expressed as differential equations. The period 

from 1665 to 1666 is referred to as Newton ' s annus mirabilis—his 

miracle year. 

T w o years later Newton ' s mentor, Isaac Barrow, holder of the 

first Lucasian Chair of Mathematics at Cambridge, resigned his 

professorship to take a position as a professor of theology, he rec

ommended Newton as his successor. The episode is evocative of 

Leonardo's mentor Verrocchio, putting down his paintbrush per

manently upon seeing Leonardo's work on the angel in the Baptism 

of Christ—Barrow and Verrocchio, each a distinguished master, rec

ognized staggering, inscrutable genius. 

It was not until 1687 that Newton, at the behest of his friend 

Edmund Halley (whose namesake is the famous comet), published 

his theories on classical mechanics in a book entitled Philosophia 

naturalis principia mathematica (mathematical principles of natu

ral philosophy), or simply, the Principia. In synthesizing classical 

mechanics and astronomy the book unified the physics of terres

trial and celestial phenomena. The work is unrivaled in its signifi

cance in the history of science. As for Newton ' s reasoning of the 

universal law of gravitation, an integral topic of the book, the great 

twentieth-century theoretical physicist Richard Feynman described 

it as "the greatest achievement of the human mind."'° 

Newton asked the question, "What keeps the moon in its orbit?" 

The prevail ing explanation of monks in monasteries had been 

"angels flapping their wings with great vigor." Most popular ren

ditions of Newton ' s discovery of the universal law of gravitation 

include an apple: "Newton saw an apple fall," "Newton was struck 

by an apple." A century after Newton 's death, Lord Byron in Don 



Unifying the Physics of Heaven and Earth | 237 

Juan alluded to the connection with the apple, when he wrote : 

"And this is the sole mortal who could grapple / Since Adam, with 

a fall or with an apple." There may or may not have been an inci

dent with an apple, but in Newton 's explanation an apple does fig

ure prominently, if just as an example of a mass. Newton sought to 

compare the distance an apple fell in the first second with how far 

the moon "fell" in that second. The notion of the moon falling sim

ply refers to the distance its trajectory has deviated from a straight 

line. The information he had available was (1) the distance 

between the earth and the moon, measured center-to-center, is 

about 240,000 miles; (2) the radius of the earth, 4,000 miles; (3) 

the period of the moon, about 28 days; and (4) the distance an 

apple falls in the first second after it has been released, 16 feet. In 

the hands of Newton this data sufficed. From his second law of 

motion, Newton knew that the acceleration of a body was pro

portional to the force applied on the body, and that it was the mass 

of the body that represented the constant of proportionality. But 

since the distance a body travels depends on its acceleration (and 

time), Newton 's question reduced to comparing the distance the 

moon fell toward the earth (or deviated from a straight line) with 

how far the apple fell in the same time. 

With the use of similar triangles Newton showed that in the first 

second, while the apple falls 16 feet, the moon falls 7 i 9 of an inch. The 

ratio of the two distances is close to 3,600. Meanwhile, the ratio of 

the distance between the apple and the earth (measured center-to-

center) and the distance between the moon and the earth is 'Ao. In 

correlating these, Newton arrived at his result: the dependence of the 

gravitational force on distance must be ' A o 2 (= Vs^oo). Finally, the 

general relationship—the universal law of gravitation, describing the 

gravitational attraction between two masses—is obtained as an 

inverse-square law. Specifically, the law says the force is the product 

of the two masses, m and m', divided by the distance of their sepa

ration squared (a proportionality constant G, the universal gravita-
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tional constant, appears as a multiplier of the expression)." The value 

of G was determined experimentally at the end of the eighteenth cen

tury by the Cambridge physicist Henry Cavendish, who published a 

paper entitled "Weighing the Earth." 

Newton 's third law states succinctly, "For every action (force), 

there is an equal and opposite reaction (force)," these forces act

ing on separate or contrary bodies. Applied to the apple and earth, 

the force with which the earth attracts the apple (action) exactly 

equals in magnitude the force with which the apple attracts the 

earth (react ion) . Since the magnitudes of these forces are the 

same, we can then invoke N e w t o n ' s second l aw: the mass (of 

the apple) multiplied by the acceleration (g) of the apple down

ward equals the mass of the earth multiplied by the acceleration 

(a) of the earth upward . Accordingly, if the apple is held out at 

arms length and released, it descends with the normal accelera

tion g= 9.8 m/sec2, and simultaneously the earth ascends with an 

acceleration of 9.8 X zo~25 m/sec2—approximately a millionth of a 

millionth of a mill ionth of a millionth of a meter / sec /sec—in 

order to meet the apple. 

Applying this result to celestial bodies, we can specify the force 

in Newton 's second law as that of gravitation, and the acceleration 

as centripetal (center-seeking). The velocity of a body in orbit can 

then be computed. In the frontispiece of the Principia a cannonball 

is fired horizontally from a mountaintop at v, its range depending 

on the velocity (Figure 1 1 . 3 ) . Fired at 30,000 k m / h r (18,000 m i / h r 

or 5 mi /sec) , the cannonball achieves a low-earth orbit. A veloc

ity of approximately 3,700 k m / h r (2,300 m i / h r ) is sufficient to 

keep the moon in its orbit. The trajectories are all elliptical, and 

indeed the parabolic trajectories—illustrated by Leonardo and 

described mathematical ly by Gali leo—are actually small-scale 

approximations of Newton 's and Kepler 's parabolic trajectories. 1 2 

The Newton formulation also shows that, fired at 42,000 k m / h r 

(25,000 m i / h r or 7 mi / sec ) , the cannonball possesses "escape 
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Figure 1 1 . 3 . Detail of the frontispiece of Newton's Prineipia, showing 

elliptical trajectories of cannonballs fired from the top of a mountain 

at V (Courtesy History of Science Collections of the University of 

Oklahoma, Norman) 

velocity"; it can reach the moon. T w o hundred and seventy years 

before a Sputnik became the first artificial satellite, Newton had 

already computed the velocity needed to achieve orbit or to visit 

the moon and outer planets. It was the technology that had to 

catch up with the science. 

Newton 's explanation of gravitation was much more powerful 

than its application to just the apple, the moon, and the earth. It 
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applied to every particle of mass in the universe, thus the expres

sion "universal law of gravitation." Now if the expression for orbital 

velocity is set equal to the distance the satellite travels divided by 

its period, also a measure of its speed, what emerges is Kepler 's 

third law—demonstrating that the square of the period of a satel

lite is related directly to the cube of the orbit's radius. 

The Principia synthesized astronomy and classical mechanics, 

in effect unifying the physics of the heavens and the earth. It gave a 

consistent mechanical system for the operation of the universe with 

mathematical precision. The calculus, as the mathematics of 

change, initially developed to solve problems in physics, proved to 

be the most powerful tool in every quantifiable field of intellectual 

endeavor. By 1687, however, Newton was essentially finished with 

his scientific queries and concentrated on two other fields at log

gerheads with science—alchemy and religion, both of which he 

pursued with greater tenacity than he had science or mathematics. 

In 1693 he had a debilitating nervous breakdown, taking several 

years to recover before reverting to the reclusive, taciturn, and iras

cible man he had always been. The cause of the breakdown has been 

a puzzle for generations of psychologists, historians, and physicists. 

What was the reason for his personal crisis? The clues in his note

books from that period suggest that the cause may have been his 

poor laboratory practices. In the early 1980s locks of his hair from 

that period—maintained in the Royal Society Museum—were 

tested with neutron activation (a sample of hair or fingernails are 

irradiated in a reactor, then analyzed for their gamma ray spec

trum). The culprit was revealed. Newton had indeed damaged his 

brain by ingesting heavy elements, especially mercury, during his 

alchemical experiments. A pair of ironies presents itself in this con

nection: one of the most brilliant brains in history had destroyed 

itself; and the science he spawned more effectively than anybody 

else had explained how he had done it. But the revelation was three 

centuries too late to help him. 
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Newton was honored first by his countrymen, and then begin

ning in the Enlightenment of the eighteenth century, by all intel

lectuals—scientists, philosophers, and enlightened monarchs alike. 

William Wordsworth, ruminating on the view from his Cambridge 

room, wrote in his epic poem, the Prelude: 

Near me hung Trinity's loquacious clock, 

Who never let the quarters, night or day 

Slip by him unproclaimed, and told the hours 

Twice over with a male and female voice. 

Her pealing organ was my neighbor too; 

And from my pillow looking forth by light 

Of moon or favoring stars, I could behold 

The antechapel where the statue stood 

Of Newton with his prism and silent face, 

The marble index of a mind for ever 

Voyaging through the seas of Thought, alone. . . ." 

—Prelude, 1850, III: 53-63 

In molding Western civilization, Cambridge University casts a 

shadow rivaled by few other institutions. The ancient university 

boasts scholars who have left monumental impact in virtually every 

field of intellectual endeavor: Christopher Marlowe, John Milton, 

John Harvard, William Harvey, Oliver Cromwell, Henry Cavendish, 

William Wordsworth, Samuel Taylor Coleridge, Lord Byron, Charles 

Babbage, Charles Darwin, Lord Tennyson, Rupert Brooke, James 

Clerk Maxwell, Robert Walpole, Lord Kelvin, Srinavasa Ramanujan, 

Bertrand Russell, Ludwig Wittgenstein, John Keynes, Paul Dirac, 

C. S. Lewis, Alan Turing, Louis Leakey, James Watson, Francis Crick, 

Jane Goodall, Freeman Dyson, Steven Hawking, and a list that 

includes seventy-nine Nobel Prize winners (twenty-nine from the 

Cavendish Laboratory alone) ." During the 1930s one college at 

Cambridge claimed that it was "home to more Nobel Prize winners 
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than Fiance." In the antechapel of Trinity College the two facing long 

walls are lined with some of the busts of the great sons of 

Cambridge—all turned toward the end of the hall, all gazing with 

veneration at a full size statue—Newton staring out the window. The 

inscription: Newton, qui genus humanum ingenio superavit (Newton, 

who surpassed human genius). 

The French have never been quick to praise the English. But 

Voltaire, a man of uncommon wisdom and intellectual integrity, 

excoriated France's own scientists, "You have confirmed in these 

tedious places what Newton found without leaving his room." 

When Newton died in 1727 at the age of eighty-five, he became the 

first scientist to be buried in Westminster Abbey. And for the occa

sion a contest was held to choose a suitable epitaph to place over 

his tomb. The entry that won the contest is lengthy, and not par

ticularly memorable. The one that is best remembered, however, is 

the couplet by Alexander Pope from his Essay on Man: "Nature and 

Nature's Laws lay hid in night. / God said, 'Let Newton be!' and all 

was light." 

In 1 9 8 7 , when institutions of science throughout the world cel

ebrated the three-hundredth anniversary of the publication of the 

Principia, I was in Washington, D.C. with some of my students to 

tour an exhibit of Newton memorabilia—manuscripts, spectacles, 

a lock of hair, and a p r ice less copy of the first edi t ion of the 

Principia—all on display at the National Museum of American 

History. As I stood before a geometric proof posted on a wall, 

admiring its conciseness and precision, I gl impsed a guide sweep 

right through the room with her charges, a group of visitors. When 

they paused momentari ly in front of a case in which some of 

Newton 's manuscripts lay, she announced, with the air of author

ity bestowed on her by her position, "This collection is to com

memorate the work of Sir Isaac Newton, author of a famous book 

published exactly three hundred years ago." She continued, "He 
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was a famous English scientist. He may have been gay, but we are 

not quite sure." Newton , w h o invented calculus, formulated the 

universal law of gravitation, unified the physics of terrestrial and 

celestial mechanics, and perhaps even had a hand in sowing the 

seeds of the Industrial Revolution, " . . . he may have been gay, but we 

are not sure! "Her remark, delivered in passing, seemed to echo end

lessly in that room. This was all she could say about Isaac Newton. 

And right across from the National Museum of Natural History on 

the Mall, the grassy rectangular patch lined with great museums, 

stands the National Air and Space Museum—exhibit ing satellites 

that orbit the earth, space capsules, replicas of the rocket ships that 

took astronauts to the moon, and indeed samples of rocks these 

astronauts brought back with them. That is the real monument 

honoring Isaac Newton. 

Leonardo realized early that mathematics comprised the very 

firmament of science, the pillars on which science stood. "Oh, stu

dents," he wrote, "study mathematics and do not build without 

foundations." How prescient he was in that intuitive conviction. 

But it would be Newton who finally demonstrated the mathemat

ical nature of the universe, inextricably melding mathematics and 

physics. In the eighteenth and nineteenth centuries physicists 

refined the formulation of Newton 's classical mechanics and went 

on to develop the sciences of heat, light, electricity, and magnetism. 

In 1 8 6 4 , while the Civil War was raging in North America, the great 

Scottish physicist James Clerk Maxwel l , then a professor at 

Cambridge University, succeeded in synthesizing the laws of elec

tricity and magnetism, reducing them to what today are written as 

just four equations. Few physicists would argue that Maxwell was 

the finest physicist from the time of Newton to the time of Einstein, 

characterized by a notable contemporary as "incapable of making 

a mistake in solving a physics problem." 

By the end of the nineteenth century many physicists, with Lord 
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Kelvin and Henri Poincare as the most vocal proponents, were con

vinced that most of the significant questions in physics had been 

answered and all that remained was to tweak things here and there, 

just refine some of the measurements. Ironically, physics was 

poised at the threshold of a pair of revolutions—one leading to rel

ativity, the other to quantum mechanics. 



S\ o our utter frustration, Leonardo produced only a few paint-

V ings—although all are miraculous in quality. He may wel l 

have been the greatest painter, but painting was not his first love. 

It is likely, as many art historians have conjectured, that paint

ing was too easy for him. His first love was science, fueled by an 

unquenchable passion to understand nature. Accordingly, it 

would have been in the science and technology developed in the 

past five hundred years that he would have found deepest fasci

nation. He frequently argued that painting was a science. At one 
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No human inquiry can be a science unless it pursues 

its path through mathematical exposition and 

demonstration. 

—Leonardo da Vinci 
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level, at least, there exists truth of the converse of Leonardo ' s 

c la im—science is a form of art—and he especial ly would have 

appreciated the beauty it can reveal. 

There is an elegant beauty in science as well as in the scientist's 

view of the universe that few laymen experience, reality at this level 

often presenting itself as abstract solutions to arcane equations. 

Paralleling the development in art, the description of nature given 

by modern physics in the twentieth century is more abstract than 

in the paradigms that prevailed earlier. Leonard Shlain remarks, 

"the epiphany that inspired the book [Art and Physics] was a con

nection between the inscrutability of art and the impenetrability of 

new physics," an event, he says, "that occurred at the same in

stant." 1 My own feeling is that both became more abstract, perhaps 

even counterintuitive, but that the mathematical "impenetrability" 

he ascribes to physics (even for the enlightened layman) was there 

from N e w t o n ' s t ime o n w a r d . In the e igh teen th cen tu ry the 

Lagrangian and Hamiltonian formulations of Newton ' s classical 

mechanics; and in the nineteenth century, the mathematical de

scriptions of electricity and magnetism, were as hopelessly inac

cessible to the layman as the mathematical machinations of mod

ern physics are today. Although the mathematical beauty of the 

universe may remain esoteric and inaccessible, some aspects of its 

physical beauty—made visible by the complex instruments of the 

scientist as well as the largely qualitative descriptions by a num

ber of uncommonly good facilitator scientists—are accessible to 

everyone. 2 It is unfortunate that such elucidation was not available 

at the time when D. H. Lawrence wrote in Pansies: Poems: 

I like relativity and quantum theories 

because I don't understand them 

and they make me feel as if space shifted about 

like a swan that can't settle, 

refusing to sit still and be measured; 
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and as if atoms were an impulsive thing 

always changing its mind. 

Reading God's Mind 

Albert Einstein, with his faith in the mathematical underpinnings 

of natural law as well as in the internal consistency of his own 

mathematical derivation, displayed from the start a deep convic

tion of the validity of relativity. But in 1922, while commiserating 

about the realities of nationalism that pervaded even the world of 

science, Einstein pronounced: "If my theory of relativity is proven 

successful, Germany will claim me as a German and France will 

declare that I am a citizen of the world . Should the theory prove 

untrue, France will say that I am a German, and Germany will de

clare that I am a Jew." 3 

The year 1905 proved to be Einstein's annus mirabilis, witness

ing the publication of five papers, three of which were of Nobel 

Prize quality. The special theory of relativity was published that 

year with the arcane title "The Electrodynamics of Moving Bodies." 

Einstein, in attempting to establish the generality (and universal

ity) of the laws of physics for all inertial frames (or frames of ref

erence in uniform motion), postulated a pair of relatively simple 

principles. The first, also known as the principle of relativity and 

accepted since the seventeenth century, posited that an observer in 

an inertial frame could never perform an experiment entirely 

within his frame to detect the motion of his frame. The second and 

more daring (because of its counterintuitive nature) was: "the speed 

of light is the same for all inertial observers, regardless of their rel

ative velocities." The two postulates suggest the existence of an 

infinity of equivalent frames. The consequence of the theory is that 

the fundamental indefinables of physics—length, mass, and time— 

all emerge as relative, and the speed of light c becomes the only 

absolute. Although each of the indefinable fundamentals has a 
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unique correct value in its own inertial frame, measurements by 

observers in all other frames, using their own measuring tools, yield 

an infinity of different but still correct values. Specifically, length 

(or distance) contracts, t ime dilates (or slows down) , and mass 

increases as the velocity increases. An object simultaneously con

tracts as its mass increases, resulting in its density increasing at a 

compounded rate. At 87 percent the speed of light, an object con

tracts to half its original length, its mass doubles, and its density 

is quadrupled. Along with a number of other equally startling rel-

ativistic effects, there is the equivalence of energy and mass, 

enshrined in the simple formula E=mc2. 

The publication of the special theory effectively threw down a 

gauntlet, challenging all other theoretical physicists and mathe

maticians to formulate a general theory—a theory valid for accel

erated frames as wel l . It is the formulation of the general theory 

by Einstein (1915) that attests to the man's transcendent genius and 

his recognition as the rightful heir to the mantle of Isaac Newton. 

It is general relativity that establishes the equivalence of gravitation 

and acceleration. 

The underlying postulate of the general theory of relativity is 

that the effects of gravitation and those of accelerated frames are 

the same when observed locally, a principle known as the "equiv

alence principle." In two enclosures—one a stationary elevator on 

earth, and the other, an identical enclosure located in a rocket ship 

accelerating in interstellar space (far from the gravitation of celes

tial bodies)—a number of simple thought experiments , 

Gedankenexperimenten, are performed. We shall assume that the 

acceleration of the rocket ship is exactly 9.8 m / s e c 2 , just as it is for 

bodies free-falling on the earth. The occupant of the stationary ele

vator can stand on a bathroom scale and look down to determine 

his weight . The occupant of the rocket ship accelerating at iG 

would determine his weight to be identical to his weight in the sta

tionary elevator. In a second Gedankenexperiment the observer in 
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the stationary elevator could hold a pair of apples in his out

stretched hands, and when he released them, watch them accel

erate downward at 9.8 m / s e c 2 . And the occupant of the elevator or 

enclosure in the rocket ship could release a pair of apples from his 

hands and watch the apples "fall" (in reality, watch the floor 

ascend) at 9.8 m/sec 2 . From his vantage point, or "frame of refer

ence," the effects observed would be the same—or almost the same. 

A subtle difference would exist, in that the trajectories of the 

apples in the rocket ship would be precisely parallel all the way 

down, whereas the trajectories of the apples in the gravitational 

field, the "parallel lines," could be extrapolated and found to con

verge at the center of the earth, 6,400 kilometers below the floor 

(just as in the case of Eratosthenes's posts used in determining the 

radius of the earth). 

Einstein's field theory equations predicted that a curvature of 

space-time would occur with mass as the cause of the curvature, or 

"warping." Light passing in the vicinity of a celestial body traverses 

the area with a curved trajectory, following the curvature of space-

t ime. 4 The path that light takes is found to be the one that mini

mizes its time of travel. Within two years after the publication of 

the general theory of relativity, English and German scientists col

laborating under the leadership of the Cambridge astrophysicist Sir 

Arthur Eddington journeyed to South Africa to perform an exper

iment testing the predictions of the general theory. A total solar 

eclipse was due in that area, and a star hidden by the solar disk was 

predicted by relativity to become visible as the result of the light-

bending effect of the sun's gravitational field. Right on cue the 

moon blocked the disk of the sun, and the star directly behind the 

sun became visible on the periphery of the solar disk. The star's 

light rays passing by the sun had been bent and redirected to the 

predicted spot in South Africa where the eclipse occurred. Of 

course, extrapolating that image of the star's observed location put 

the star trillions of miles away from its actual known location. A 
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massive body, deflecting light in this manner, operates as a "gravi

tational lens." 

In 1986 Princeton University astrophysicists photographed the 

same galaxy at two points slightly separated from each other due to 

the presence of an unseen mass intervening between the earth and 

the observed galaxy. (In reality, the actual galaxy was hidden pre

cisely behind the massive invisible object acting as the gravitational 

lens.) Ten years later, the Hubble telescope photographed a perfect 

gravitational lens effect—an entire circular image. A galaxy, with its 

light radiating in all directions, was seen as a circular image. A mas

sive object, invisible to the telescope and posit ioned in line and 

midway between the earth and the galaxy, had focused the rays 

from the galaxy to one spot, the earth. 

General relativity also predicted that in an accelerating rocket (a 

pseudogravitational field) time would pass at a faster rate in the nose 

than in the tail section. Similarly, in a gravitational field time would 

pass at a faster rate in the penthouse of a tall building than in the 

basement, and accordingly the occupants would age faster in the 

penthouse than in the basement. It was not until i960 that Robert 

Pound and Hans Rebka of Harvard University performed an experi

ment confirming the effect of gravitation on the passage of time. 5 

Just two years after Einstein published the general theory of rel

ativity, he began to investigate its application to cosmology. The first 

rigorous solution to Einstein's equation was to come from the thirty-

five-year-old Russian mathematician Alexander Friedman, just a year 

before his death in 1925, but the solution turned out to be unsettling: 

it predicted an unstable universe—one that is expanding or con

tracting, and decidedly not static. Since no physical evidence existed 

at the time suggesting that the universe might be anything other than 

stable, Einstein felt it necessary to introduce a cosmological constant, 

a proverbial fudge factor, into his equation, which would assure a 

steady-state condition. A curmudgeon might say, "A doctor buries his 

mistakes, an architect hides his in ivy, and a theoretical physicist 
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introduces constants." In 1929 Hubble discovered that indeed all 

intergalactic separations were increasing, and the greater their dis

tance from each other, the faster they were increasing. In short, the 

universe was expanding. Einstein realized immediately that he should 

have trusted the mathematics of the "bare" equation in the first place, 

and he rescinded the constant. 

During the following decades there still remained scientists 

skeptical of the notion of an expanding universe—the aftermath of 

a primordial explosion predicted by general relativity. The most 

vocal opponent of an expanding universe was the British astro

physicist Fred Hoyle, who advocated a steady-state picture, or one 

of a constantly self-replenishing universe. Ironically, it was Hoyle 

who derisively characterized the picture of the expanding universe 

as "the big bang," introducing an expression that stuck. 

Then in 1965 Arno Penzias and Robert Wilson, physicists work

ing at Bell Laboratories in Murray Hill, New Jersey, detected back

ground microwave radiation, as an all-pervasive relic of the pri

mordial explosion, poetically called the "whisper of creation." The 

discovery of the background radiation made a compelling case for 

the big bang theory, but introduced a vexing new question. From 

this radiation that was so uniform, or monochromatic, how could 

a "lumpy universe" possibly evolve? Twenty-seven years passed 

before striations and blotches appeared out of the uniformity, the 

explanation for the eventual lumpiness of the universe. The Cosmic 

Background Explorer ( C O B E ) Satellite in 1992 discovered varia

tions on the order of 10 s parts, or one part in 100 ,000 . As for the 

most immediate of "lumps," our own solar system—the sun, the 

neighboring planets, the earth with all its inanimate and animate 

creatures, the book you are holding in your hands—was once the 

material of a very large star. In exploding (about 4.7 billion years 

ago) it dispersed its material that eventually accreted into the solar 

system some 4.5 billion years ago by the mediation of gravity. As the 

recycled material of a star, you and I are all its children! 
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In the past forty years data has been accumulating and remov

ing major question marks, but at the same time spawning new ques

tions. Is this a one-time universe with a beginning and an end? Or 

is it a repeating universe, continually recycling itself—expanding 

then contracting? (During recent times evidence has been accu

mulating for an ever-expanding universe—but again with a com

plication. For a while it increased, while decelerating; then it began 

to increase at an accelerating rate. This is where we find ourselves 

now.) Are the constants of nature truly constants forever, or can 

they be changing (this might explain the observed decelerated 

growth rate of the early universe morphing into an accelerating 

one). There are also other questions: Was there anything before the 

big bang—all evidence of an earlier universe having been destroyed 

by that cataclysmic event? Can there be other, parallel universes? 

Does extraterrestrial life exist, and if so, does extraterrestrial intel

ligent life exist? We have been able to detect other solar systems, 

but we have not yet detected any sign of extraterrestrial life. 

With the launching of the Hubble telescope and other orbiting 

space laboratories, and indeed with the coming of age of telescopy 

in spectral regions far from the visible, the observational evidence 

is for the first t ime catching up with the speculative models per

colating in mathematical physics . 6 Matter in the bulk—planets, 

stars, galaxies, and even interstellar gases—are ultimately all com

posed of atoms, molecules, nuclei, and nucleons (protons and neu

trons); nucleons, in turn, are composed of quarks. And it is with 

spectroscopy that we try to understand their internal mechanisms. 

Spectroscopy, based on the study of radiation in a variety of 

regions of the electromagnetic spectrum, represents an immensely 

powerful probe, but one that is basically indirect. Its operation has 

been likened to listening to the sounds emitted by pianos dropped 

from a roof, and—from the sounds they produce as they come 

crashing to the ground—attempting to understand the structure 

of a piano. 
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Einstein's special and general theories of relativity resolved the 

mathematical incompatibil i ty between the two great edifices of 

Newton ' s mechanics and Maxwel l ' s electrodynamics, and in the 

process had delivered a new picture—of a four-dimensional space-

time in which the dimension of time and the three dimensions of 

space are inextricably linked. The special theory represented a par

adigm shift in describing nature; the general theory was an entire 

paradigm upheaval. The description of reality in Einstein's picture 

is so different than that of Newton ' s that Einstein was moved to 

write an apology to his great predecessor: "Newton, forgive me; you 

found the only way which, in your age, was just about possible for 

a man of highest thought and creative power." 7 Alexander Pope's 

little couplet honoring Newton inspired a sequel epigram by J. C. 

Squire to herald Einstein's contribution: "It did not last: the Devil 

howling, 'Ho! ' / 'Let Einstein be!' restore the status quo." 

The better part of a century has passed since Einstein formu

lated his two theories—the special and general theories of relativ

ity—and they have proved their power and resilience repeatedly. 

They are established laws of nature. To use the misnomer "theories" 

reflects a poor habit among scientists. Conversely, labeled as "laws" 

are Wien's blackbody law and Rayleigh-Jeans's blackbody law, both 

seminal hypotheses, but neither of them correct. Together they pro

vided salutary influences in Planck's formulation of his blackbody 

law that led to the birth of quantum mechanics. 

The development of physics in the twentieth century is evoca

tive of the development of art in the Italian Renaissance. Between 

1900 and 1932 physics saw a Renaissance, and during a very short 

period spanning 1924 to 1928, when quantum mechanics was being 

formulated, a High Renaissance. Jacob Bronowski in The Ascent of 

Man described the scientific discoveries of this short period as "the 

greatest collective piece of art of the twentieth century." In the essay 

"What is Quantum Mechan ics?" the modern physicist Frank 

Wilczek wrote, "the founders of quantum mechanics were guided 
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by analogy, by aesthetics, and—ultimately—by a complex dialogue 

with Nature, through experiment.""The context of the statement 

is Paul Dirac's inspired ideas in formulating the mathematical oper

ators of quantum mechanics, and indeed introducing the axioms 

underlying the theory. Perhaps more than any other physicist, Dirac 

believed in the inherent beauty of mathematics as the fertile ground 

to seek the laws of nature. 

The Plight of the Early Achiever 

Age is, of course, a fever chill 

That every physicist must fear. 

He's better dead than living still 

When once he's past his thirtieth year. 

—Paul Dirac ( 1 9 0 2 - 1 9 8 4 ) 

This verse reflects a sentiment known to mathematicians and 

physicists: that unlike the practitioners of most other sciences, 

one's creative peak occurs early. It is echoed by Albert Einstein, who 

said, "A person who has not made his great contribution to science 

before the age of thirty will never do so." Isaac Newton was twenty-

three and twenty-four during his annus mirabilis, Albert Einstein 

twenty-six during his. (Music is another field that manifests this 

pattern; and another is lyric poetry, as opposed to, say, novel writ

ing.) Although the poetic legacy of Paul Adrien Maurice Dirac will 

never rival his scientific legacy, he was ideally qualified to make this 

pronouncement regarding the mathematical sciences. His scientific 

legacy places him among the finest scientists in history. 

Born in 1 9 0 2 in Bristol , England, Dirac matriculated at 

twenty-one in the graduate program at Cambr idge University 

with plans to pursue research in the hot new area of relativity. But 

upon his arrival at the venerable institution, he switched on the 
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advice of his new research advisor, Ralph H. Fowler, to the newly 

emerging field of quantum theory. The theory had its seeds in 

M a x Planck's paper, published in 1900, explaining the character

istics of the radiation emitted from a heated and glowing body. 

It had demonstra ted that e lectromagnet ic radiation, including 

ordinary light, is emitted in packets, called "quanta of radiation" 

or "photons." Slow to be recognized for its significance, this idea 

received legit imacy from Einstein, w h o invoked it in explaining 

the photoelectric effect in 1905, a mathematical explanation that 

earned him the 1 9 2 1 Nobel Prize. (Planck, meanwhile , had 

received the Prize in 1 9 1 8 . ) 

In 1913 Niels Bohr had summoned quantum theory in explain

ing the workings of the hydrogen atom: electrons orbited the 

atomic nucleus in concentric circular orbits, each of precisely pre

scribed radii. When an electron dropped or decayed from one orbit 

to a lower one, energy would be emitted from the atom in the form 

of a photon. Conversely, in absorbing a photon, the atom would be 

"excited," with an electron jumping from a lower orbit to a higher 

one. In 1915 Arnold Sommerfeld refined the explanation of the Bohr 

model by introducing a touch of relativity into the mix in allow

ing elliptical orbits along with the circular ones prescribed by the 

Bohr model. In its refined form, the theory worked impressively for 

the simplest atom, hydrogen, something that neither Newtonian 

mechanics nor Maxwel l ' s electrodynamics had been able to do. 

Planck's quantization of energy and the Bohr theory were invoked 

by Einstein in 1917—in this instance to predict the phenomenon 

of stimulated emission of radiation. With this conjecture Einstein 

prefigured the idea behind the M A S E R and LASER" by an aston

ishing four decades, the practical devices first coming to fruition in 

the late 1950s. Bohr received the Nobel Prize in Physics a year after 

Einstein, in 1922. By 1915, however, it had already started to become 

frustratingly evident that the prevailing theory had serious short

comings. Now referred to as the "old quantum theory," it failed to 
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explain the behavior of atoms beyond hydrogen, and certainly also 

the behavior of molecules and atomic nuclei. This impasse was to 

last for the better part of a decade. 

In 1924 a young student at the Sorbonne, Louis de Broglie, sub

mitted a doctoral thesis with an intriguing hypothesis—that "mat

ter," in the corpuscular form that we know it, could be regarded as 

having a dual part icle/wave nature, just as had been established for 

light. Devoid of any substantive physical or mathematical basis, the 

thesis could easily have been rejected—tossed onto the pile of dis

credited pseudoscientific theories regularly springing up in bo-

hemian Paris. What gained de Broglie's conjecture a second look, 

however, was the young man's royal birth: Louis de Broglie was a 

prince. And although he was a retiring and shy prince, his brother— 

also a physicist—was most certainly not. It was the brother, a more 

forceful and loquacious man, who brought pressure to bear on the 

head of the physics department, Langevin, to consider Louis 's 

hypothesis carefully. 

Langevin's dilemma was particularly delicate: the theory could be 

wrong, and its acceptance by the department would make the 

Sorbonne faculty the laughing stock of the international physics com

munity. Or the theory could turn out to be correct, and their rejection 

of it would make them look just as silly. Fortunately for Langevin and 

the future of the physical sciences, his good friend Albert Einstein was 

passing through town, and Langevin saw an opportunity to see the 

dilemma resolved. "Of course, we know what to do with the thesis," 

he explained, "but we would appreciate your suggestions." 

Einstein, like any good academic pressed to answer a problem 

that he was unable to answer immediately, asked for additional 

time. "Let me sleep on it," he replied, hoping perhaps for some 

delayed insight, or that the question would go away. Einstein was 

neither able to sleep, nor did the problem go away. He told Langevin 

the following day that this was indeed an "interesting hypothesis 

and he would need even more time. 
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Einstein sent de Broglie's thesis to his friend Pieter Debye, the 

head of the physics department at the University of Zurich. Debye, 

an experimental physicist, not up to the task, passed the thesis on 

to Erwin Schrodinger, a young Austrian-born physicist in his 

department coming up for tenure. "Take this paper and evaluate it. 

You can discuss it at the department seminar next month." As 

Debye walked away, he paused, displaying clear puzzlement. Then 

throwing up his hands, he declared, "1 don't even know what kind 

of wave theory this is. It has no equations." After a pause, he strode 

back, "See if you can write some equations." Schrodinger was not 

particularly eager to take on the task, but the request was coming 

from the head of the department. And he was up for tenure. 

Mathematically gifted and extraordinarily colorful, Schrodinger, 

it is said, retired for two weeks to a mountain chalet in the resort of 

Arosa, Switzerland. 1 le took along his young mistress, and two weeks 

later returned with the resolution: there appeared nothing wrong 

with de Broglie's conjecture. Schrodinger also brought back with him 

from the mountaintop a tablet with a pair of "Commandments"— 

two wave equations to mollify Debye. 1" Ironically, the theory was pre

sented at the department seminar without unusual enthusiasm. 

These equations, however, soon to become known as Schrodinger's 

time-dependent and time-independent equations, were emerging as 

the starting point in solving most problems in quantum theory just 

as Newton's second law represented the starting point in solving 

most p rob l ems in c lass ica l mechan ics . T h e endorsemen t by 

Schrodinger of de Broglie's hypothesis was transmitted with a cer

tain alacrity to Einstein. And Einstein, in turn, dispatched a message 

to Langevin at the Sorbonne, "Give the boy his Ph.D. He can't do 

much damage with a Ph.D. in physics!" 

In 1926 Schrodinger published his theory of wave mechanics. 

The de Broglie hypothesis was to prove so seminal that just three 

years after Einstein recommended the acceptance of the thesis by 

the Sorbonne, in 1925, he proceeded to nominate de Broglie for the 
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Nobel Prize." In a parallel development in the same year, the 

twenty-three-year-old German physicist Werner Heisenberg, 

approaching physical reality from a different vantage point, for

mulated the "uncertainty principle," and with significant input 

from M a x Born and Pasqua l Jordan the next year followed up 

with the formulation of "matrix mechanics." The Heisenberg 

uncertainty principle is a quantifiable and precise mathematical 

statement placing a lower limit on the product of the uncertainty 

in position and the uncertainty in momentum (momentum is mass 

multiplied by velocity). In short, he demonstrated that it is impos

sible to know simultaneously and with perfect precision both the 

position and the momentum of a body. The principle finds alter

native expressions, including this form: "Before the detection and 

measurement of a property of the system (atom, particle, photon, 

etc.), it does not even exist. Once a measurement has been made 

and a value obtained, any subsequent measurement will not nec

essarily yield the same value as the earlier measurement." In the 

sense that the measuring instrument disturbs what it is measuring, 

the uncertainty principle has found its way into the vocabularies of 

other fields, although not quantifiably. It appears as a frequently 

quoted and intuitively obvious principle among social scientists, 

especially pollsters. But the sociological interpretation is not at all 

the same as that in physics. Before opinion polls are taken, opinions 

presumably already exist, and these indeed may change when the 

poll results are published. Ultimately, however, in physics the 

uncertainty principle is couched in the wave-particle duality of 

matter at the ultra-microscopic scale. 

By 1926 the drama heightened. There existed two alternative 

approaches to the physics of phenomena at the atomic scale—each 

describing correctly those systems more complex than the hydro

gen atom. But they appeared to be based on entirely different fun

damental principles—their success providing the only common 

ground. Was it a coincidence that they both worked? 
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That year, however, Schrodinger demonstrated the mathemat

ical equivalence of the two forms of quantum mechanics; and again 

the same year, the twenty-four-year old Dirac—taciturn and reclu

sive, and operating independently of the cadre of continental 

physicists also engaged in the work—succeeding in developing a 

fundamental, axiomatic theory. Such syntheses of two fields had 

occurred only three or four times before in the history of science. 

In the seventeenth century Newton had synthesized the mechanics 

of terrestrial and celestial phenomena (1687). In the nineteenth 

century M a x w e l l had synthesized electricity, magnet i sm, and 

optics ( 1 8 6 4 ) ; and later in that century Bol tzmann and Gibbs 

independent ly formulated statistical mechanics , unifying clas

sical mechanics and the rmodynamics , the physics of heat. 

Finally, in the early twentieth century Einstein inextr icably 

linked the three dimensions of space and the one dimension of 

t ime with the special theory of relativity. And ten years later, 

invoking non-Euclidean geometry, he offered an improved the

ory of gravitation with his general theory of relativity. 

Quantum mechanics, called the greatest scientific theory ever 

formulated, represented the crowning glory of the physics renais

sance. The theory's simple axioms, its internal consistency, its 

mathematical elegance, and ultimately its stunning success all com

bine to render the theory a human creation of pure beauty, an artis

tic masterpiece. In the formalism of quantum mechanics, physical 

observables—energy, momentum, position, etc.—all have associ

ated with them a mathematical operator (itself not measurable) 

defined by a mathematical operation (an eigenvalue equation). The 

eigenvalue equation yields physical observables in the form of 

eigenvalues that are unique and measurable. And the equation also 

yields wave functions (eigenfunctions) that are again not measur

able; but these eigenfunctions can be used in computing probabil

ities for various parameters: where the particles might be dwelling, 

their momenta, and so on. De Broglie's original hypothesis of par-
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t ides behaving as physical waves was only partially correct, but its 

incomparable salutary consequence was no less than the launching 

of quantum mechanics. The theory abounds with perplexing impli

cations such as particles with insufficient energy to hurdle a barrier 

"tunneling" through the barrier without losing any energy, of a 

camel passing through the eye of a needle, or even a particle being 

in two different places at the same time. The wave function's role 

as a probability amplitude, preempting de Broglie 's proposal of a 

physical wave, came largely from the work of Born, who in 1925 had 

first introduced the expression "quantum mechanics." While on the 

Cambridge Universi ty physics faculty, Born received the Nobel 

Prize (1954) for his contributions to the development of the theory. 

Although one of the pioneers of modern physics, he is less well 

known in our culture than his granddaughter, actress/singer Olivia 

Newton-John. The probabilistic nature of the theory, as opposed 

to the deterministic cause and effect scheme characterizing clas

sical physics, never sat well with the old guard in the field. Indeed, 

it was Einstein, who emerged as the most vociferous opponent of 

the new theory based on the uncertainty principle, uttering the 

famous vituperative, "God does not play dice with the universe." 

That triggered a riposte from Bohr, Einstein's close friend and con

temporary, but in this instance an ardent patron of the young 

quantum mechanics, "Albert , stop telling G o d what he does or 

does not do!" After experience with the theory for three-quarters 

of a century, there is general consensus among physicists that a 

superior theory simply does not exist. 

In 1928 Dirac formulated his magnum opus, the relativistic Held 

equation. The solutions of this equation predicted the existence of 

antimatter as opposed to matter—of positively charged positrons, 

antielectrons, as the antimatter conjugates of ordinary negatively 

charged electrons, of negatively charged antiprotons as the anti

matter conjugates of positively charged protons, and so on. Just 

four years after the theory was published, Carl David Anderson, a 
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young physicist at Caltech, detected the positron. When energy (in 

the form of gamma radiation raining down on the earth as cosmic 

radiation) passed through a steel plate, it suddenly "materialized," 

transforming into an electron-positron pair of particles. Conversely, 

an electron-positron pair—in colliding—were seen to destroy each 

other in "pair annihilation," with the attendant release of a pair of 

gamma-ray photons (in opposite direction) of total energy E=2mc2. 

For his discovery, a confirmation of Dirac's prediction, Anderson 

received the 1938 Nobel Prize in Physics. It took until the mid-1950s, 

when particle accelerators with sufficient accelerating energy could 

be built, however, before antiprotons and antineutrons could also 

be produced. 

Because of the theory's mathematical rigor, the undergraduate 

physics student may not even encounter Dirac's name. The gradu

ate student, however, cannot avoid it. The idea that someone can 

produce work of such seminal significance and not be recognized 

except by professionals in the field presented no problem to the 

enigmatic Dirac personality. He was so retiring and shy that he con

templated turning down the Nobel Prize. Only after being advised 

that he might become an even greater celebrity by doing so did he 

relent and accept. Other great physicists have been accorded units 

after their names: a newton of force, a joule of energy, a pascal of 

pressure, and an ampere of current. Dirac, extraordinarily parsi

monious with words, inspired the whimsical unit, the Dirac: "one 

word per year." Of course, there are multiples of the Dirac— 

KiloDiracs, and MegaDiracs, etc.—but such multiples were rarely 

uttered by Dirac himself. During the nearly four decades that he 

spent at Cambridge University, he held the chair of the Lucasian 

Professor of Mathematics, the same chair Isaac Newton had held, 

and which Stephen Hawking holds today. 

A conference held in 1927 at the Solvay Institute, Belgium, had 
a s its miss ion to examine the ph i losophy under ly ing this new 

theory—arcane, abstract, counterintuitive, and yet so very success-
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fill. Toward the end of the deliberations the participants in the con

ference gathered for a "family portrait" (Figure 1 2 . 1 ) . Included in the 

photograph is the handful of very young, very talented theoretical 

physicists who created quantum mechanics—de Broglie, Schrodinger, 

Heisenberg, Dirac. Present in the photograph also are Afbert Einstein, 

Figure 1 2 . 1 . Participants in the 1 9 2 7 Solvay Conference. Those seated in 

the front row represent mostly the old guard. Starting from the sec

ond person at the left are Max Planck, Marie Curie, Heinrik Lorentz, 

Albert Einstein, and Paul Langevin. Second row from left, the first per

son is Pieter Debye; the fifth is P.A.M. Dirac; the seventh, Louis de 

Broglie; next to de Broglie is Max Born, and finally, Niels Bohr. Third 

row, sixth from left is Erwin Schrodinger; eighth, Wolfgang Pauli; and 

ninth, Werner Heisenberg. ( 1 9 2 7 Photophraphie Benjamin Couperie. 

Ecole Internationale de Physique Solvay; courtesy AIP Emilio Segre 

Archives) 
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the head of the counter-revolution, and Niels Bohr, serving as "Father 

Confessor" 1 2 for the young physicists. As a group picture of the pio

neers of modern physics—natural philosophy—the photograph rep

resents the twentieth century's answer to Raphael's School of Athens. 

The twenty-nine individuals in the photograph received a total of 

twenty Nobel Prizes, Madame Curie accounting for two (one in 

physics and another in chemistry). 

At the threshold of the twenty-first century the refinement of 

the laws of physics continues. The last word on the subject is still 

not written. Physicists see the universe as the product of four fun

damental forces: gravitational, electromagnetic, and two types of 

nuclear—strong and weak—forces. It is believed that in the very 

beginning (before 1 0 ' 4 3 seconds, known as "Planck time") there was 

only one primordial force, and four separate forces sprang from it 

very quickly. In the big bang scenario an intractable course sets in, 

the universe expanding (at the speed of light from a point of sin

gularity), attended by an inexorable decrease in temperature. The 

lyrical expression "whisper of creation" describes the leftover radi

ation from the big bang, now having cooled to about 3° kelvin (-270° 

C or -454° F). Einstein spent the last three decades of his life, includ

ing twenty-five years at the Institute for Advanced Study in 

Princeton, trying to formulate a unified field theory synthesizing 

the four forces. When he died in 1955 he was nowhere near realiz

ing the dream. That oft-quoted line attributed to Einstein—"The 

Lord God is subtle, but malicious he is not!"—delivered in a lecture 

at Princeton University and alluded to earlier, has an appropriate 

sequel. Einstein, frustrated with results he was obtaining from 

some of his equations, commented in a letter to his friend, 

Valentine Bargmann, "I have second thoughts. Maybe God is mali

cious!" His meaning here is that often we are deluded into believ-
l n g we have finally understood something of fundamental signifi

cance, when in reality we are far from understanding anything. 1 3 

Two of the four fundamental forces of nature—electromagnetic 
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and the weak force—were unified as the "electroweak force" by the 

standard model, published by Sheldon Glashow, Abdus Salam, and 

Steven Weinberg, who shared the 1979 Nobel Prize in Physics. At pres

ent, three of the four forces have been unified quite effectively, the 

rogue force avoiding unification with the other three being gravitation. 

A monumental obstacle still impedes further progress: quantum 

mechanics, magnificently successful in dealing with atomic phenom

ena, is incompatible with general relativity, which is spectacular in 

explaining phenomena on the cosmic scale. It is hoped that superstring 

theory (or one of its variations) may just rise to bring together har

moniously the two great theories in a holy grail theory of everything 

(TOE). Then gravitation will take its place with the other three 

forces—in a re-creation of the primordial force from which all four sep

arated. We have reached this point after only five hundred years of sci

entific inquiry that began with Leonardo watching pendulums oscil

lating and objects falling from a tower, and a hundred years later, with 

Galileo repeating the same experiments, and publishing his results. 

A general principle for dynamic systems exists that holds for art 

as well as science. In the present context one might say, "Today's 

physics is tomorrow's history of physics." Whatever form our pres

ent description of reality takes, there most likely will be the need to 

refine the descriptions again and again. Einstein's relativity repre

sented a refinement, but there is no reason to think that even 

Einstein's is the final version. Certainly a theory bringing gravity 

into the fold will have to accommodate quantum mechanics, and 

Einstein's theory will have to be modified. I would like to think that 

if Leonardo were living now, the issues of fundamental science 

would still preoccupy his interests. 

The Institute for Advanced Study: An Interlude 

Founded in 1 9 3 0 by the Bamberger family (of department store 

fame), the Institute for Advanced Study in Princeton, New Jersey, has 
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Figure 1 2 . 2 . Einstein Drive, the Institute for Advanced Study, 

Princeton, seen from the intersection of Einstein Drive and Maxwell 

Lane (lithograph by the author, 1 9 8 7 ) 

been one of the great think tanks of America. Abraham Flexner, who 

had earlier been a driving force in elevating the Johns Hopkins 

University Medical Center into a preeminent institution, was visit

ing the University of Oxford in the late 1920s. Oxford is a federation 

of thirty-odd colleges, and Flexner had come upon one college—All 

Souls (founded in the fifteenth century)—that had scholars but no 

students. He was impressed by the notion that cutting-edge schol

arship could be carried out by scholars who were unencumbered by 

the need to teach classes, hold office hours, and otherwise perform 

routine academic tasks. Upon his return to the United States Flexner 

convinced the Bambergers of the benefits of establishing a similar 

institution in America. The Bambergers became enthusiastic, grant

ing Flexner five million dollars for the enterprise and purchasing 

seven hundred acres of choice Princeton landscape (Figure 1 2 . 2 ) . 1 4 
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Flexner was appointed the first director of the Institute, and one 

of his initial projects would be to try to recruit Albert Einstein, rec

ognized already as the most famous living scientist. Flexner imme

diately journeyed back to Oxford, where he found Einstein "hang

ing out between jobs" 1 5 and offered him a position at the new 

institution. Einstein responded that he "had offers from Princeton 

University, Oxford University, and Caltech to join their faculties, 

but [was] still undecided." He added that he "was leaning toward 

the offer from Princeton University." (Princeton was the first aca

demic institution to accept relativity.) "But then," he asked, "at your 

place [also to be located in the town of Princeton] I would not have 

to teach?" Assured that he would have no classes (Einstein was a 

notoriously poor lecturer) he accepted the job. Then the question 

of salary became an issue. "How much do you think you would 

require for a salary?" Flexner asked. Einstein, with his considerable 

mathematical prowess, answered, "Three thousand dollars a year 

would be just right." "That cannot be," countered Flexner, "we are 

paying everyone else $16 ,000 . We should pay you at least as much." 

Einstein protested, " $ 3 , 0 0 0 would be satisfactory." Flexner, reluc

tantly agreed to pay Einstein only $ 3 , 0 0 0 a year. But fortunately for 

the Einstein family, Mrs. Einstein renegotiated, and Einstein started 

receiving the standard $16 ,000 . 

Einstein, from the very beginning of his tenure at the institute, 

served as a magnet to attract the finest theoretical physicists and 

mathematicians of his time. Over their careers many of the most 

original thinkers in the field—including recipients of the Nobel 

Prize in Physics: Bohr (father Niels and later, his son, Aage), 

Schrodinger, Dirac, Pauli, Salam, Gell-Mann, Yang, Lee, and numer

ous others—have spent time at the institute. Three of the twentieth 

century's greatest mathematicians, Janesh "Johnny" von Neumann, 

Kurt Godel, and Andrew Wiles (who in the 1990s solved one of the 

longest-standing problems in mathematics—Fermat 's last theo

rem) spent considerable time at the Institute. N o w into its eighth 
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decade, it continues to serve as an ideal setting for members to 

interact with other gifted individuals in the field. String theorist 

Edward Witten, w h o has been called the "Michael Jordan of 

Physics," is now a professor at the institute; recently retired is 

another "physicist's physicist," Freeman Dyson. 

In pursuit of my own modest research in theoretical physics, I 

was at the institute during two stints, 1974-75 and 1982-83. While 

there, I got to know Helen Dukas, who had served as Einstein's sec

retary for many years. For the opportunity to revel in "old Einstein 

stories," Ms. Dukas proved a treasure trove. She told me anecdotes 

that I had not heard before, and she confirmed or denied the ones 

that I had heard elsewhere. She had earlier collaborated with 

Einstein's one-time assistant, Banesh Hoffman, in writing an unusu

ally good book about the great scientist.' 6 The opening quote of the 

book reflects Einstein's unassuming and modest character. But it is a 

profound pronouncement of resignation that all other modern sci

entists would view with empathy: "One thing I have learned in a long 

life: that all our science measured against reality, is primitive and 

childlike—and yet it is the most precious thing we have." 

Three hundred years ago the imperious Newton, in an unusual 

self-effacing mood, observed, "I do not know what I may appear to 

the world; but to myself, I seem to have been only like a boy playing 

on the sea-shore, and diverting myself in now and then finding a 

smoother pebble or a prettier shell than ordinary, whilst the great 

ocean of truth lay all undiscovered before me." In another rare mod

est moment, he commented, "If I have seen further it is by standing 

on the shoulders of giants."' 7 The idea of the nature of science as a 

cumulative process is one that every scientist would embrace. And 

it would be a rare scientist who would not rush to concede his own 

relative insignificance in the scale of the cosmos. 

Many different models have been proposed as paradigms to 

understand nature. Each may be useful to explain one physical phe

nomenon or another, but no model has risen to be general enough to 
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explain all physical phenomena. A single be-all, end-all model still 

remains the quest. But even if such a model or theory is one day 

formulated, it will still be just that, a theory to explain nature. It 

would not be nature itself. So, in our quest we will continue to 

approach the unfathomably large scales of time and space and the 

infinitesimally small subatomic world—both beyond the capabilities 

of our physical senses—in terms that are close to our experience. "It 

seems that the human mind has first to construct forms independ

ently before we can find them in things," wrote Einstein. This senti

ment was expressed especially eloquently by the poet William Blake, 

a humanist who ironically neither understood nor showed any fond

ness for science. Yet his lines from "Auguries of Innocence" could 

serve as a timeless credo for the scientist, and so too for the artist: 

To see a world in a grain of sand, 

And a heaven in a wild flower, 

Hold infinity in your hand, 

And eternity in an hour. 



The desire to know is natural to good men. 

—Leonardo da Vinci 

~T f an abiding message is to be gleaned from an examination of 

J- Leonardo's scientific and artistic legacy, it is the insatiable 

curiosity, the persistent questioning that defined his life—from 

resolving everyday problems to exploring grand-scale issues per

taining to the workings of nature. He observed and pondered; the 

commonplace became wondrous, the wondrous commonplace . 

"Nature is the best teacher," he wrote. "Learn from nature, not from 

each other." His curiosity encompassed diverse intellectual worlds: 

technical and nontechnical, scientific and artistic; and indeed it is 

269 
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by the conjoining of these intellectual worlds that he was able to 

produce works of such dazzling quality and diversity. 

The typical liberal arts curriculum offered in the American under

graduate education system gives students exposure to different intel

lectual cultures. But then the need to develop specialized skills in one 

field or another tends to discourage further forays across the cultural 

divide. The higher education systems in most other countries call for 

this specialization to begin even earlier. Beyond formal education, 

normal maturation or aging itself is sadly accompanied by the monot-

onic dimming of one's curiosity. Once the specialization process 

begins, those individuals who are more technically oriented have 

greater facility communicating with others who are technical, and 

those who are artistic or less technical similarly feel comfortable in 

the company of individuals with skills and interests akin to their own. 

In short, birds of a feather most clearly flock together, communicat

ing with each other in their own languages. 

In 1940 engineers from Indiana's Department of Highways asked 

the state legislators to purchase an electric calculator for their office. 

One of the legislators challenged the engineers: "Why would you 

need a calculator? You are not mathematicians." An engineer 

responded, "In order to build safe roads it is necessary to make pre

cise calculations of curves and banking angles. We must factor K into 

our calculations; and 7ris an irrational number—a constant with a 

value of 3.141 593. . . ." The legislator was confused by the mathe

matical riposte. Shaking his head, he walked into his legislative meet

ing, taking with him the engineer's explanation for the "justification" 

for the expenditure. After a while the legislator emerged with an 

answer: "We don't have money for your calculator. But, we decided 

to change the value of Ji for you to 4." Lack of communication 

between technical and the nontechnical cultures pervades all levels 

of society. Sixty years later the faculty senate in a selective liberal arts 

college in the United States voted to allow a certain course taught in 

the college's geography department to satisfy the college's natural sci-
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ence requirement, all the nonscientists in the senate voting, "aye," all 

the scientists, outnumbered, voting "nay." By committee vote, geog

raphy had been deemed a natural science—further evidence of the 

continuing malady of a cultural divide. 

I opened the prologue of this book with C. P. Snow ' s famous 

pronouncement on the two disparate intellectual cultures and on 

the lack of communicat ion between them. What even Snow did 

not realize is that the seeds of another intellectual revolution had 

already been planted that would complicate the picture of the two 

cultures. T w o decades earlier the gifted British mathematician 

Alan Turing had published a general theory of computing. ' 

Beginning in the late 1940s engineers, mathematicians, and physi

cists in the United States began to construct digital computers— 

those early mainframe machines, E N I A C and UNIVAC—and to 

create computer languages such as F O R T R A N , C O B O L , and 

A L G O L . 2 

In the late 1960s I was in a Ph.D. program in theoretical physics 

that still had a vestigial sense of a balanced liberal arts education, 

requiring doctoral candidates to demonstrate facility in two foreign 

languages. I had to write my own programs in one of the prevailing 

computer languages and, on the side, prepare for the language com

petency tests in French and German, besides the main task of mas

tering all the necessary physics. A year or two after I finished my 

degree the foreign language requirement was dropped. Ph.D. can

didates would now have the option to substitute computer lan

guages for foreign languages. Conversely, for the bachelor's degree 

in computer science, the natural sciences are no longer a require

ment, although there may be an institutional requirement to take 

such courses under the category of "general education." By the late 

1970s a new species had begun to propagate—"computer scien

tists"—with skills to write programs and create sophisticated gen

eral software packages that ran more efficiently than any program 

I could have conceived. And at approximately the same time there 
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was the birth of the personal computer—desktops, fol lowed by 

laptops—not replacing the mainframes, but joining them and 

beginning to communicate with each other, and all spreading at 

pandemic speed. The first personal computer was created in 1975. 

By July 2002, when the wor ld population was estimated to be 6.2 

billion, the sales of personal computers reached one billion. 

At the beginning of the twenty-first century we find ourselves not 

only with a deeper chasm dividing C. P. Snow's two cultures but also 

with a third intellectual culture formed by members of the seceding 

computer-literate "techies"—neither natural scientists nor human

ists. Members of the other two intellectual cultures benefit from 

application programs such as word processing, mathematical com

puting, and cyberspace technology, developed by computer scientists. 

The details of the actual programs remain as incomprehensible, mys

tifying, and irrelevant to these two cultures as their own material is 

to each other. The cultural divide describing the dissociation of the 

first two cultures now demands a reorganization, with a "digital 

divide" now describing the further dissociation of a third culture. 

Under the rubric "Leonardo's model" this book presented the 

mathematical and scientific basis underlying both science and art, 

and the tenets of the laws of nature, albeit all of it in an essentially 

qualitative manner. The interdisciplinary approach, it was seen, 

invited a discussion of the human side of doing science and art. 

Among the most creative artists and scientists—especially those who 

launched revolutionary transformations in the prevailing order in 

their fields—there abound tortured souls, baffling personalities very 

different from those in everyday life. There are also the historical and 

social conditions that made certain times ripe for such unusually cre

ative individuals to spring up and leave their marks. 

Beethoven on his deathbed reportedly raised his fist in defiance 

at a thunderstorm raging outside and cried, "I know I am an artist! 

In the last hours before his death, Leonardo, with an air of forlorn 

resignation, remarked to an assistant, "Tell me, did anything get 
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done?" For us, these are puzzling and poignant pleas for reassur

ance by t w o of the greatest c rea t ive indiv iduals in history. In 

Leonardo's case there also resonates the tone of frustration at unful

filled ideas and unfinished work. One cannot deny that the rea

soning out of solutions, especially in art, and the creating of men

tal inventions, especially theories in science and technology, were 

more important for Leonardo than bringing them to actuality. Thus 

his chronic problem of darting from one beckoning source of 

curiosity to the next was real. And as his reputation for failing to 

complete projects and commissions was well deserved. Through it 

all, however, he was always breaking significant new ground. From 

the threshold of the twenty-first century we can view the dizzying 

array and quality of his accomplishments, and we can wonder: 

"Could there have existed a dozen different and supremely gifted 

individuals all operating with the same name—Leonardo da Vinci?" 

A retrospective that includes the comprehensive abundance of 

Leonardo's achievements must be viewed against the specter of his 

inventory of demons. Leonardo displayed boundless variation in 

his passions, unparalleled originality, a superhuman drive, and an 

unusual personality. And these were all steeped in paradoxes, con

tradictions, and ironies. But the questions "What is a cause, what is 

an effect?" and "What is catalytic, what is coincidental?" must all 

be regarded as speculative. Nothing with Leonardo is easy. Some of 

the issues have the ring of central significance. Others certainly do 

not seem as important today, but we are five centuries removed 

from a time when they were regarded as serious demons and adver

sities with which Leonardo had to grapple. 

Leonardo was an illegitimate son in a society that afforded little 

opportunity to such an individual. He was a vegetarian who found 

detestable the idea of becoming "a cage for dead animals," and an ani

mal rights activist who would purchase birds in the marketplace just 

to release them into the air. He was left-handed in a time when left-

handedness was regarded as sinister. He may have been a homosex-
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ual at a time when society, guided largely by the Church, regarded this 

as sinful. He seems to have had no adult involvement with women, 

and yet painted the most enigmatic, beguiling and timeless portrait 

of a woman in all of Western art. In a time when dissecting human 

bodies was proscribed by law he spent endless hours studying cadav

ers. Under the intolerable conditions of fetid chambers he dissected 

human bodies in various states of decay, and created reams of 

anatomical drawings. He was a pacifist with an aversion to warfare 

who was employed as a military engineer, designing devices to for

tify castles and machinery to breach them, shields to protect the 

bearer while striking fear into the enemy, and weapons as deadly as 

any conceived up to that time. As for that vexing curse—the reputa

tion for failing to finish projects—was his mercurial focus and fre

netic pace somehow connected to a higher form of attention defi

ciency hyperactive disorder? Or was it a case of just too many ideas 

for a finite lifetime? Labels tend to oversimplify phenomena; in 

Leonardo's case, they are beyond the absurd. 

Early in the book I had expressed, with some trepidation, the faith 

that presenting science through art and art through science would 

lead to an understanding of Leonardo's mind. W h o could be pre

sumptuous enough to claim to fathom the mind of someone as com

plex as Leonardo? Complex he certainly was, but certain components 

of his psyche have indeed emerged that are surprisingly simple. 

In the surviving paintings and notebooks are strewn a jumble 

of clues. Leonardo's life can be viewed as a sort of kaleidoscope— 

creating art of sublime beauty and awesome power, abruptly darting 

to thoughts on turbulent flow in white water, the geometric pat

terns of polyhedra, the anatomical studies of man and beast meta

morphosing into each other, human flight, spring-driven vehicles, 

then returning to create one more miraculous work of art. But 

amidst it all, there are the scattered unfinished projects, endlessly 

frustrating the most loyal patron. 

Leonardo's unusual style, dizzying in pace and diversity, defined 
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his true modus operandi. The depiction of turbulent water in the 

daily notebooks is reflected in the golden curls of his subjects. The 

gently twisted helix, a product of his mathematical musings, is sus

piciously evocative of the poses struck by the subjects of his por

traits. Regarding painting, he wrote, "It embraces all the forms that 

are and are not found in nature." The Platonic solids informed his 

architectural drawings, were seen as rough sketches in the codices, 

and are formalized in De divina proportione. There is the golden 

pyramid, which he appears to have discovered independently of 

past civilizations, organizing the grouping of the characters in the 

Virgin of the Rocks (and most likely also in the unfinished lost mural, 

The Battle of Anghiari). In studying the flight of birds he is at once 

a naturalist, an aerodynamic engineer, and an artist capturing the 

motion of wings in serial animated drawings; but his thoughts ulti

mately speculated on human flight. The helical spiral used earlier 

to give dynamism to the subjects in his paintings returned as the 

aerial screw, giving lift to the Leonardo helicopter. Totally preoc

cupied with manned flight, he examined free-fall and gravitation, 

issues of fundamental significance for physics. The experiments he 

performed were magnificently framed, leading to conclusions of 

constant acceleration, independent of the weight of the falling 

body. In Leonardo's entire process there was total symbiosis, total 

synergy. His personal growth can be seen in all areas of his creativ

ity, but also seen is the evidence of the deliberate and systematic 

effort, the mental exercises he performed to attain this growth. An 

"unlettered man," he left behind lists of daily words to be mastered, 

in the manner of the autodidact striving for self-improvement. 

Interviewed on the occasion of the exhibition Leonardo da Vinci: 

Master Draftsman at the Metropoli tan Museum of Art, Carmen 

Bambach explained, "As an architect, he begins to think of build-

mgs in terms of plans, sections, elevations, three-dimensional per-

spectival v iews of form. N o w that sounds to us very normal, but 

t h a t ' s basically Leonardo's legacy! He is doing this in architecture 



276 J Math and the Mona Lisa 

by 1490, precisely the moment when he undertakes his studies for 

the human skull, and guess what—he applies the same technique of 

the section, the dimensional view, and the elevation to create a con

sistent vocabulary for anatomical description."' 

In this one man's works there is more cross-semination of ideas 

from different intellectual worlds than among the works of gener

ations of specialists in any number of disciplines. Herein lies a time

less lesson. Dramatic progress in any field is most effectively cat

alyzed by cross-fertilization with others. It is certainly not the only 

way to achieve progress, but it is an extraordinarily effective way. 

Leonardo is a lways making connections and driving it all is the 

freakish trait of never outgrowing an exceedingly fertile childlike 

curiosity. This is a trait that was also to characterize the scientists 

Newton and Einstein and the composer Mozart , each at the pin

nacle of his respective field. Einstein's lifelong curiosity is seen in 

the pronouncement: "The most beautiful thing we can experience 

is the mysterious. It is the source of all true art and science." 

We are all impressed by the rate of learning of young children. 

In the parlance of psychology children exhibit steep learning curves 

that allow short doubling and tripling times in their knowledge, but 

obviously this ability attenuates with age. Along with the insatiably 

inquisitive intellect, Leonardo retained throughout his life that 

childlike, virtually vertical learning curve and an endless passion 

for making connections. In his late fifties he was collaborating with 

a distinguished mathematician, and separately with a world-class 

anatomist, to learn all they knew about their respective fields and 

to raise the quality of the research to much higher levels. 

Among his faculties there is the suggestion of a preternatural 

vision, an ability to take mental snapshots and, in his mind's eye, to 

virtually freeze motion. This ability is manifested in his renditions of 

parabolic trajectories of cannonballs, the flapping wings of birds, and 

the swirling vortices in water. Although one has always to guard 

against the temptation to impute supernatural ability and even 
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omniscience to Leonardo, an endowment with such acute vision is 

not to be dismissed out of hand. Ted Williams, the legendary base

ball player renowned for his extraordinary ability to hit a ball, used 

to claim that he could see the seams on a pitched baseball. 

A century ago Sigmund Freud put forth a conjecture that it was 

the sublimated sexual energy of a homosexual Leonardo that was 

the source of his superhuman drive, an explanation that subsequent 

psychoanalysts chose to discredit. Sherwin Nuland makes a com

pelling case that Freud's explanation should not be dismissed out 

of hand. If Freud and Nuland are correct, then the hypothesis of the 

repressed sexual energy, coupled with unsurpassed intelligence, 

could also go a long way toward explaining Isaac Newton 's unri

valed productivity in mathematics and physics. But all this is largely 

speculative; there is little rigorous science in it. So, how much have 

we really penetrated Leonardo's mind? 

Through the ages both the arts (including the visual arts and lit

erature) and the sciences (the natural sciences and mathematics) 

have generally evolved gradually, incrementally. But there have also 

taken place, however infrequently, fundamental changes in the pre

vailing order—changes of kind rather than degree, akin to a phase 

transition between vapor and liquid, or liquid and solid. Initiating 

these "revolutions" have been a finite number of artistic and intel

lectual revolutionaries—better characterized as transformative 

geniuses or "magicians." 4 Their reasoning processes do not appear 

to be constrained by the familiar topography of logic, a topography 

that includes the slopes and valleys. Rather, reaching conclusions 

for them is reminiscent of leaping from mountaintop to moun-

taintop. But their works represent no less than the periodic syn

theses of the accumulated knowledge in a field; they succeed by 

defining human limits and elevating the human spirit. Leonardo, 

Michelangelo, Shakespeare, Newton, Beethoven, and no more than 

three or four others 5—all magicians, all towering intellects, all con

sumed by a fire raging within—also appear to share one common 



278 | Math and the Mona Lisa 

quality: they rarely allow any profound penetration into their psy

che; their creative processes are forever steeped in mystery. One 

thing is clear: the more time one devotes to understanding the mind 

of the magician, the deeper he recedes into the mist . 6 This is a curi

ous phenomenon that distinguishes the magician from others, 

including the ordinary genius. 

The expression "struggling with issues of creativity," a valid topic 

for the psychologist, is entirely alien to the magician. He creates spon

taneously without ever questioning the process personally, often 

unable to explain the process. There is inspiration; there is intuition. 

In the parlance of electronics, there may even be a special hard wiring 

of the brain. For example, Einstein's brain, although entirely normal 

in size, was missing the left parietal cortex, and the inferior parietal 

lobe had grown approximately 15 percent larger than it normally 

would be, in order to fill the area of the missing operculum. 7 The infe

rior parietal lobe is thought to be the site where analytical reasoning 

and mathematical modeling are carried out. Another noteworthy fea

ture of Einstein's brain was the existence of an unusually shallow 

Sylvian fissure, a groove slicing through the brain. This feature, the 

researchers suggest, allows the brain cells in the area to be packed 

closer together, permitting more interconnections, and functionally, 

allowing better cross-referencing of information and ideas. This is of 

critical importance for analytical processing. 

Leonardo, mastering virtually every discipline known in his 

time and inventing fields that would have to be reinvented hun

dreds of years later (for example, geology, aeronautical engineering, 

and automotive engineering), nowhere bothers with the "creativ

ity" question. Ironically, his subjects, including his portraits of the 

"three women"—Ginevra de'Benci, Cecilia Gallerani, and the Mona 

Lisa—and the cast of thirteen characters in the Last Supper—are all 

unsurpassed psychological portraits. They speak with their facial 

expressions. The sense of imminent motion, which is achieved by 

Michelangelo with strained muscles, is achieved by Leonardo with 
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psychology. Leonardo and Shakespeare may well represent the 

greatest applied psychologists ever, just as Leonardo may well rep

resent the greatest anatomist ever, the latter a sentiment expressed 

by Walter Pater and echoed by Nuland. 

Sherwin Nuland, in that unusually beautiful biography of 

Leonardo to which I have referred a number of times, wrote a par

ticularly stirring passage: 

If he is, as Sir Kenneth Clark so appropriately calls him, "the most 

relentlessly curious man in history," he is also the historical figure 

about whom we are most relentlessly curious.. . . The dates, the facts, 

the known events are far fewer than we need, if we are to understand 

how such a being could have existed. The enigma of the Mona Lisa's 

smile is no less than the enigma of her creator's life force. Or perhaps 

the smile is in itself Leonardo's ultimate message to the ages: There is 

even more to me than you can ever capture: though I have spoken so 

intimately to you in my notebooks even as I have spoken to myself, I 

have kept final counsel only with the depths of my spirit and the 

inscrutable source that has made me possible; seek as you may, I will 

commune with you only so far; the rest is withheld, for it was my des

tiny to know things you will never know." 

The lore associated with the magician is spawned by our own 

need to understand such an individual—extroverted and intimate 

with us at one level, and utterly introverted and inaccessible at 

another. Perhaps the best explanation is also the simplest, that 

genius at this scale is entirely isolated by its own genius. 9 Leonardo 

da Vinci, paragon artist-scientist-engineer, a cynosure of the Italian 

Renaissance, more so than any other magician manifests that qual

ity. Does it really matter that Leonardo will always remain this mys

terious and mythical creature, w h o as a part-time artist produced 

the epitome in art? His works number so few that even the expres

sion "part-time artist" overstates the case. But it is certainly not the 
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quantity that counts. Goethe's throwaway line, "In art, the best is 

good enough," encapsulates the circumstance. Leonardo also devel

oped scientific methodology a century before Galileo, and antici

pated future technologies centuries before they were realized. What 

really matters is that he demonstrated a model of supreme efficacy, 

a lesson for the ages: seeking connections, conjoining different in

tellectual worlds, is indeed the source of profound understanding 

and appreciation in any one of these worlds or in all of them. 

What exactly can account for a creature of such transcendent gifts 

will most likely never be known. It is too easy to say that he was a 

happy accident of nature and nurture—the concatenation of his 

mother's and father's genes, the effects of the prevailing social, polit

ical, and intellectual winds sweeping Renaissance Florence. In 

Leonardo's case, there is so much self-nurture. We simply do not 

know much about his upbringing. He repeatedly admonished 

others—artists and scientists alike— to "learn from nature, not from 

each other." In a timeless irony, we must first learn from him, then 

observe, and ponder. Avoid taking anything for granted, test it before 

accepting it. Uon't ever give up the aspiration for personal growth no 

matter what stage of your life you are in, read incessantly, read criti

cally, even look up words you don't know with a view toward increas

ing your vocabulary. Carry a small pad with you and draw sketches 

(even if you have convinced yourself that you cannot draw). Creating 

sketches will make you more observant.'" Observe in the manner of 

the scientist, savor in the manner of the artist. Record your obser

vations. Experiment, knowing full well that some experiments will 

fail. But that is how to attain a deeper understanding. It is important 

to be curious, and important to explore different intellectual worlds, 

but it is essential to seek their connections. The model that worked 

magnificently for him will never make any of us another Leonardo, 

a man called by so many scholars "the greatest genius who ever 

lived." But it cannot fail to make us each far more creative and more 

effective practitioners in the intellectual world that we inhabit. 
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