

Programming PIC
Microcontrollers with PicBasic

Programming PIC
Microcontrollers with PicBasic

by Chuck Hellebuyck

Newnes is an imprint of Elsevier Science.

Copyright © 2003, Elsevier Science (USA). All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
the publisher.

Recognizing the importance of preserving what has been written, Elsevier Science prints its books on acid-free
paper whenever possible.

Library of Congress Cataloging-in-Publication Data

A catalogue record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book.

For information, please contact:

Manager of Special Sales
Elsevier Science
200 Wheeler Road
Burlington, MA 01803
Tel: 781-313-4700
Fax: 781-313-4882

ISBN 1 5899 5001 1

For information on all Newnes publications available, contact our World Wide Web home page at:
http://www.newnespress.com

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

Dedication

This book is dedicated to my wife Erin and my children Chris, Connor, and
Brittany.

This book would never have happened without your support.

Contents

Introduction xi

Chapter One: Getting Familiar with PICs and PicBasic 1

PIC Overview .2

Software for PICs .9

Assembly Language .10

PicBasic Compiler .11

Chapter Two: PicBasic Compiler (PBC) .13

How PBC Works .14

Variables, Memory, and I/O .17

Program Operators .18

PBC Commands .21

Using PBC .47

vii

Chapter Three: The PicBasic Pro Compiler .51

Variables .55

Constants .57

Symbols .58

Numeric and ASCII .58

Strings .59

I/O Access .59

I/O Control .60

Comments .62

Math Operators .62

Arithmetic Operators .63

Binary Functions .65

PBPro Commands .66

Chapter Four: Inside the PIC Microcontroller 117

Fundamentals .117

Program Memory .118

Reset Vector .119

Data Memory .120

STATUS Register .120

I/O Registers .122

A/D Registers .123

Peripheral Interrupt Vector .126

OPTION Register .127

viii

INTCON Register .129

Summary .132

Chapter Five: Simple PIC Projects .133

Project #1—Flashing an LED .133

Project #2—Scrolling LEDs .139

Project #3—Driving a 7-Segment LED Display .146

Chapter Six: Moving on with the 16F876 .153

Project #4—Accessing Port A I/O .153

Project #5—Analog-to-Digital Conversion .162

Project #6—Driving a Servomotor .173

Chapter Seven: Communication .183

Project #7—Driving a LCD Module .183

Project #8—Serial Communication .195

Project #9—Driving a LCD with a Single Serial Connection 204

Chapter Eight: Memory and Sound .221

Project #10—Using External Memory .222

Project #11—Accessing Internal Memory .232

Project #12—Making Music .241

ix

Chapter Nine: Robotics .249

Project #13—Robot Base .251

Project #14—Line Tracker .262

Project #15—Obstacle Detection .284

APPENDIX A .305

APPENDIX B .309

INDEX .315

x

Introduction

Electronics has been my hobby and profession for over 25 years. I started as a
young child building kits from Radio Shack and projects described in electronics
magazines and books. When microprocessors were first developed, I was fascinated
with them. I was a bit too young to really understand how they worked, but I could
see they would replace the batches of discrete integrated circuits (ICs) my previous
electronic projects depended on. I soon discovered microprocessors required many
more tools and resources (like money) than I could afford. This made it difficult to
build a home lab for micro-based designing so I never got involved during all the
early years of microprocessor development.

I went on to earn a bachelor’s degree in electrical engineering and made elec-
tronics my profession. Although I had learned how to program and work with some
of the best microprocessor tools, I still didn’t see the opportunity to build a home
lab for microprocessor development without spending a bunch of money.

Then I discovered the Microchip PIC family of microcontrollers. They were
inexpensive, easy to purchase through various sources, and development tools were
inexpensive. I bought a PIC programmer and started playing with electronics as a
hobby again. Although I developed some interesting projects using Microchip
assembly code, I really longed for a simple form of programming like the BASIC
language because I didn’t have a lot of spare time.

A company named Parallax began advertising a small PIC-based computer
module called the “Basic Stamp” that could be programmed in a form of BASIC. I
bought one and I started playing with it. It was easy to use, and I had a lot of fun
with it. But it had memory limitations and was a bit expensive to make permanent
designs with. I had spent a lot of time developing gadgets and really wanted to turn
a couple of my ideas into products I could market.

xi

I thought about developing my own Basic compiler for the Parallax computer
module that would allow me to program a PIC directly. Then I saw an advertisement
for a new product from microEngineering Labs called the PicBasic compiler. It
could convert a program written for the Parallax module into the code format
required to program a PIC. It used the same commands as the Parallax module along
with a few more. I purchased one immediately and began designing in PicBasic.

I found it to be a simple but very powerful compiler. I could develop complex
projects in a few days rather than weeks or months with assembly language. I
designed a few products and began to market them through my website at
www.elproducts.com. I also decided to write an article for Nuts and Volts magazine
about the Microchip PICs and fortunately got it published in July 1998. I was then
approached about writing a book on PICs. I never thought of myself as an author
but I saw it as an opportunity to share my knowledge about PICs and PicBasic with
those who might enjoy this stuff as much as I do.

As I wrote, many things got in the way and this book took far longer to write
than I had originally expected. But the delay allowed this Basic programming
method to become more popular. New compilers from other companies, new pro-
gramming accessories and hardware began to show up all over the place. The PICs
and the PicBasic compilers improved as well.

As it evolved and my own experience increased, I tried to capture as much as
possible in this book but still keep it at the entry level. One result of my increasing
experience was to modify the original outline to include a chapter on robotics.
Robotics has become very popular during the time I wrote this book, and I believe
it’s because there were more people like me who were using all the new affordable
yet powerful microcontroller tools to develop robots in their home labs.

Using Basic to program microcontrollers began to be called embedded Basic
programming and recently I’ve seen job postings for PicBasic programmers. It’s
become harder to find people who are trained at programming in assembly code,
with so many electronic development companies switched to the C language. I
believe embedded Basic will be the next wave of programming for small module
high-volume designs since it’s so much easier to write and almost as efficient as C.

xii

I hope you find this book informative and challenging, not to mention enjoyable.
Everything in here was learned the hard way—by trial and error. Microchip has
some great components and the PicBasic compiler makes it easy for everyone to
become an embedded Basic designer. You can visit my website for more info on
some of the latest embedded Basic products. If you have any questions, I can be
reached via email.

Chuck Hellebuyck
Electronic Products

www.elproducts.com
chuck@elproducts.com

xiii

Getting Familiar with
PICs and PicBasic

The PIC (Programmable Interface Controller) line of microcontrollers was origi-
nally developed by the semiconductor division of General Instruments Inc. The first
PICs were a major improvement over existing microcontroller because they were a
programmable, high output current, input/output controller built around a RISC
(Reduced Instruction Set Code) architecture. The first PICs ran efficiently at one
instruction per internal clock cycle, and the clock cycle was derived from the oscil-
lator divided by 4. Early PICs could run with a high oscillator frequency of 20 MHz.
This made them relatively fast for an 8-bit microcontroller, but their main feature
was 20 mA of source and sink current capability on each I/O (Input/Output) pin.
Typical micros of the time were advertising high I/O currents of only 1 milliampere
(mA) source and 1.6 mA sink.

General Instruments eventually sold its semiconductor division, along with the
PIC manufacturing facility in Chandler, Arizona, to a venture capitalist group that
formed what is now known as Microchip Technology. PICs quickly became the
main components offered by the new company.

Initially the selections were small and none of them had common microcon-
troller features such as timer overflow or external interrupts. They also used a some-
what unusual banking arrangement for memory that still exists today in many of
Microchip’s parts. Despite these limitations, the PICs sold well and allowed
Microchip to develop new components with new features including interrupts, on-
board A/D (Analog/Digital) conversion, on-board comparators, and more.

1

C H A P T E R 1

Microchip’s lineup soon included flash memory components as well as low-cost
OTP (One Time Programmable) devices. These low-cost OTP devices set Microchip
apart from their competitors. Other 8-bit micro companies offered OTP compo-
nents, but they usually came at a high price premium relative to masked ROM (Read
Only Memory) versions.

Masked ROM microcontrollers are fabricated by placing layers of semiconduc-
tor material on top of each other to form the transistors and other components. The
proper arrangement makes the microcontroller operate according to the software.
After a masked ROM is created, it cannot be changed. Even one software command
change requires a new masked ROM. Microchip found a way to produce OTPs at
only a small cost premium compared to masked ROM parts. This allowed design-
ers to use OTPs in final designs because small changes could be made without stop-
ping production or spending more money for a new masked ROM.

Microchip also made their PICs serially in-circuit programmable. This allowed
a manufacturer to build up electronic modules with an unprogrammed PIC on-board
and then program it right on the factory floor. That flexibility made Microchip pop-
ular with professionals as well as experimenters. Microchip has since grown to
become the second largest producer of 8-bit microcontrollers. Microchip also
expanded to become a leader in low-cost, long-life EEPROM (Electrically Erasable
Programmable ROM) memory and other niche markets.

Microchip continues to develop new microcontrollers at a rapid pace with the
devices falling into three main categories: 12-bit core, 14-bit core and 16-bit core
program memory. All the parts have an 8-bit wide data bus that classifies them as 8-
bit microcontrollers. No matter what your application, Microchip probably has a
device that will work well with your design concept.

PIC Overview

This book focuses on programming PICs in the PicBasic language. The PicBasic com-
piler (PBC) is designed to work with the popular 14-bit core devices. The PicBasic Pro
compiler (PBPro) works with the 14-bit core, 16-bit core, and the new 18CXXX com-
ponents that don’t have the page limiting memory all the other PICs have.

I cannot cover all the devices from Microchip in this chapter since the PIC fam-
ily continues to grow. However, I want to give you a basic overview of the

Programming PIC Microcontrollers with PicBasic

2

Microchip microcontroller devices you will most likely be working with. Later in
this book, I’ll spend more space detailing some of the inner workings of the 14-bit
core components. My intent is not to give you a summary of the Microchip data
book, but instead to help you understand how to properly write programs to control
a PIC.

I will mention assembly language from time to time because that is the pro-
gramming language Microchip developed for PICs. Many professionals program in
assembly and even Basic programmers should have some knowledge of assembly
language. Don’t let that scare you though; I’ll show you how to use the PicBasic
compiler so assembly language will be something you rarely use.

Consider this section to be the fundamentals—the stuff no programmer really
likes but the stuff every programmer should know!

The PIC family can be broken up into three main groups, which are:

� 12-bit instruction core (16C5X, 12C5XX, 12CE5XX)

� 14-bit instruction core (16C55X,16C62X, 16C6X, 16C7X, 16C71X,
16C8X, 16F8X, 16F87X, 16F62X, 12C6XX, 16C9XX, 14C000)

� 16-bit instruction core (17C4X, 17C7XX, 18C2XX, 18C4XX)

All three groups share the same core set of RISC instructions, with additional
instructions available on the 14- and 16-bit cores. This means that assembly code
written for the 12-bit family can be easily upgraded to work on a 14- or 16-bit core
device. This is one of the great advantages of the PIC.

Another feature is that all assembly language instructions (except branch and
goto instructions) execute within one clock cycle (crystal frequency/4), which
makes it easy to check the execution timing. That isn’t the case with the PicBasic
language, since it compiles higher-level commands into groups of assembly code.

Once you have compiled a PicBasic file, it creates an assembly file. If you
understand assembly code, you could work with that file. Most users won’t need
that. It’s only when doing advanced PicBasic programming that you may need this
detail. After creating the assembly file, the PicBasic compiler will assemble it into
the binary (.hex) file needed to program a PIC. That binary file is then used to actu-
ally program the PIC using a PIC programmer.

Getting Familiar with PICs and PicBasic

3

An abbreviated list of PIC devices and brief list of features are outlined in
Table 1-1.

Table 1-1: Abbreviated list of PIC microcontrollers and their features.

Device ROM EEPROM RAM
Words Bytes Bytes # I/O A/D Timers Misc.

12 bit Core

12C5XX 0.5K to 1K 25 to 41 6 none 1+ WDT 8 pin package

12CE5XX 0.5K to 1K 16 25 to 41 6 none 1+ WDT 8 pin package

16C5X 0.5K to 2K 25 to 73 12 to 20 none 1+ WDT 18 pin, 28 pin
package

14 bit Core

12C67X 1K to 2K 128 6 4 1+ WDT 8 pin package

12CE67X 1K to 2K 16 128 6 4 1+ WDT 8 pin package

16C55X .5K to 2K 80 to 128 13 1+ WDT 18 pin package

16C6X 1K to 8K 36 to 368 13 to 33 3+ WDT 18 pin, 28 pin,
40 pin package

16C62X .5K to 2K 80 to 128 13 1+ WDT 18 pin package

16C7X, 71X .5K to 8K 36 to 368 13 to 33 4 to 8 3+ WDT 18 pin, 28 pin,
40 pin package

16F87X,
8X, 62X .5K to 8K

(FLASH) 64 to 256 36 to 368 13 to 33 0 to 8 3 + WDT 18 pin, 28 pin,
40 or 44 pin
package

16F9XX 4K 176 52 0 to 5 3 + WDT 64 or 68 pin
package, built
in LCD driver

14000 4K 192 20 1+ WDT 28 pin package

16 bit Core

17C74X 4K to 16K 232 to 454 33 4+ WDT 40 or 44 pin
package

17C7XX 8k to 16K 678 to 902 50 4+ WDT 64 or 68 pin
package

Programming PIC Microcontrollers with PicBasic

4

12-bit instruction core

This is the original core produced and is used in the most cost-effective parts avail-
able from Microchip. They use only 33 assembly language instructions. But
because they only have a two-byte wide stack, these parts will not work with the
PicBasic compiler. I’ve included them in Table 1-1 so you know they exist, but as
prices of the 14-bit PICs have declined, the advantages of the 12-bit versions have
faded.

14-bit instruction core

The 14-bit core parts are second-generation devices. Microchip added interrupts
and other features, and a clever thing Microchip did was to keep the footprint or pin-
out the same as for the 12-bit components. They also kept most of the 12-bit core
assembly code instructions, allowing a direct upgrade from the 12-bit core parts to
the 14-bit core parts without changing the circuit board or having to do a major soft-
ware revision.

Because of the added features, the number of assembly instructions increases by
two for a total of 35. Microchip actually added four instructions and replaced two
12-bit core assembly commands with special function registers. The two instruc-
tions replaced by a special function register are the TRIS (port direction) and
OPTION (special function).

The four added instructions include two math function commands and two
return commands. The two return commands include one return command for the
interrupts and one for subroutine returns, which can be nested deeper on the 14-bit
core because the stack increases to eight levels. This increased stack size is neces-
sary to use the PicBasic compiler.

Table 1-1 lists the feature summaries for these parts. They also offer most of, if
not all, the features any electronics hobbyist needs to develop microcontroller-based
products.

16C55X

The 16C55X is pin-for-pin compatible with its 5X 12-bit core cousins, but with a
major addition: interrupts. They also add one more I/O pin by sharing the TOCKI

Getting Familiar with PICs and PicBasic

5

external clock pin (used for incrementing the 8-bit timer from an external source).
The interrupts include the 12CXXX wake-up on state change interrupt along with a
real interrupt pin for capturing an event. Also included is a timer overflow interrupt
for the 8-bit timer. All the interrupts jump to a single redirection register, so your
main interrupt routine will have to bit test the interrupt flags within the INTCON
register. Your program can mask any and all interrupts through the INTCON regis-
ter also. A final difference is the I/O characteristics increase to 25 mA sink and
source.

16C62X

These devices are similar to the 16C55X group but add two on-board comparators
to the package. The 62X components have 13 I/O and 0.5k, 1k, or 2k of 14-bit wide
code space. They share all the features of the 14-bit core group including the inter-
rupts. If you need comparators in your design then these could reduce your overall
parts count.

A new device recently released by Microchip was the 16F628. It is a flash ver-
sion of these components.

16C6X

These parts were part of the original 14-bit core group and consist of several devices
with unique features. They start with the 16C61, which isn’t much different from
the 16C556 part, but the rest of the 16C6X group is very different. They add the fol-
lowing features to the devices previously mentioned: 2k, 4k, or 8k of code space for
programs, 22 or 33 I/O, synchronous serial port (shared with I/O), one or two
Capture/Compare/ PWM pins (shared with I/O,) and three timers (two 8-bit, one 16-
bit).

The 16-bit timer is great for accurate timing requirements. It can run from its
own crystal separate from the main clock source. It will even run during sleep mode,
allowing time to increment while very little current is being consumed by the PIC.
It has an overflow interrupt so you can wake up from sleep process the timer infor-
mation and then sleep some more.

Programming PIC Microcontrollers with PicBasic

6

The synchronous serial port can be used to communicate with serial devices. It
operates in two modes: 1) serial peripheral interface (SPI), or 2) inter-integrated cir-
cuit (I2C).

These are very powerful components.

16C7X, 16C71X

These parts are identical to their 16C6X cousins with the addition of four, five, or
eight channels of 8-bit on-board A/D conversion. For example, if your design uses
a 16C62 and you need to add A/D, you can drop a 16C72 in its place. They are pin-
for-pin compatible with each other. The A/D converters are shared with some of the
Port A and Port E I/O pins, so its best to save these when doing a non-A/D design
that may later need A/D. The 16C71X devices are upgraded versions of some
16C7X parts that add more RAM space.

16C67X

These parts are the 8-pin package versions of the 14-bit core group. They share the
I/O the same way the 12CXXX 8-pin parts do to maintain one input only and five
I/O. The amazing thing is that they also have four channels of A/D conversion that
operate the same as the 16C7X devices (shared with the I/O). Code that was writ-
ten to work with the 16C7X A/D will work on the 16C67X. They also have all the
14-bit core interrupts, and one 8-bit timer with timer overflow interrupt and built in
oscillator option. They offer 0.5k and 1k of code space. This is a lot of microcon-
troller in a small package.

16C8X,16F8X

If you’re looking for a flash or EEPROM version of the PIC, this is the group.
Originally Microchip only offered EEPROM versions (16C8X) but now have
released them in flash (16F8X). They have all the features of the base 14-bit core
group: interrupts, 13 I/O, one 8-bit timer, 0.5k or 1k of code space as EEPROM or
flash and 36 or 68 bytes of RAM.

Unique to these devices is the 64 bytes of EEPROM data memory. This data
will stay even when power is removed so it’s great for storing calibration or vari-

Getting Familiar with PICs and PicBasic

7

able data to be used when the program starts again. They are very handy for devel-
opment because they can be programmed over and over again without ever leaving
the circuit.

16F87X

This is one of the newest groups of devices from Microchip. They have flash pro-
gram memory so they can be reprogrammed over and over again. They are built to
be identical to the 16C7X family with some data memory and program memory
updates. They offer 22 to 33 I/O, three timers and up to 8k of program memory.
They have all the special functions the 16C6X and 16C7X parts have as mentioned
earlier.

All the projects in this book will be built around the 16F876 because it is flash
reprogrammable, has A/D, and has all the other PIC features. It also offers the
option to build a bootloader inside. A bootloader allows you to program the part
from a serial port without any special programmer circuitry.

16C9XX

This device shares many of the 16C63 and 16C73 features (three timers, interrupts,
etc.) but adds another feature: on-board liquid crystal display (LCD) drive circuitry.
It can drive up to 122 segments using four commons. The 16C924 also has five
channels of A/D on-board, making this a great component for measuring analog sig-
nals and then displaying the results on an LCD.

With the 16-bit timer, it could display time for possible data-log applications
and with the synchronous serial port any kind of external data storage or PC inter-
face is possible. These devices seem to have it all except on-board EEPROM for
nonvolatile memory storage.

14C000

This is a different numbering scheme and offers a different approach. It’s a mixed-
signal processor. It has a slope-type A/D, instead of sample and hold, and also has
D/A (digital-to-analog) conversion capability. It shares the higher-end 14-bit core

Programming PIC Microcontrollers with PicBasic

8

characteristics, including the three timers and such. These are unique devices when
compared to the rest of the PIC family but share the same code.

16-bit instruction core

This is the high-end group from Microchip. They cannot be used with PBC. To pro-
gram these in PicBasic, you will have to use PBPro. That is one of the advantages
that PBPro offers and why it costs more than PBC.

The 16-bit core parts offer up to 33-MHz clock speed for a 121-nanosecond
instruction time. They have the same 35 instructions as the 14-bit core plus 23 more
instructions. The stack increases to 16 levels. 33 I/O is standard with two open-drain
high-voltage (12 V) and high-current (60 mA) pins. They add another 16-bit timer
for four total timers.

These parts can also operate as a microprocessor rather than a microcontroller
by accessing the program to be executed from external memory. These are not the
parts to start experimenting with until you’ve mastered the 12- or 14-bit core parts.
If you’re experienced with other microcontrollers, then you may be able to use them
right away.

This book is really dedicated to the beginning PicBasic user so I won’t spend
more time on these parts. You should now have enough basic knowledge to under-
stand what the different PICs are about. Now I’ll discuss software as we lead into
using PBC and PBPro.

Software for PICs

A microcontroller is nothing without software. To program PICs requires a binary
file of coded ones and zeros. Microchip offers an assembly language for PICs and
a free assembler to get you going. Assembly language can be tough for a beginner,
though. It is easier for a beginner or hobbyist with limited time to use a higher-level
language and a compiler to convert that higher-level language into an assembly lan-
guage program.

PicBasic is a higher-level language that is easy for beginners, hobbyists and
even professionals to use for simple code development and rapid prove-out of a

Getting Familiar with PICs and PicBasic

9

concept. I recommend it and use PicBasic often. I also write in assembly and rec-
ommend everyone learn it at some point, but PicBasic is a great way to start and in
most cases stick with. Since this book is about PICs and PicBasic, I’ll just touch on
assembly below and then dive into the guts of PicBasic.

Assembly Language

All microcontrollers run on simple binary codes. These codes are various arrange-
ments of ones and zeros. Assembly language is a higher-level language to this
binary code and Microchip PICs have their own set of assembly commands. These
commands when combined as a program are assembled by a software program
called an assembler. The assembler outputs a file in the binary command form the
microcontroller uses. That binary file is the “ones and zeros” program that controls
the PIC.

Microchip offers a free assembler for software writers to assemble their pro-
grams. The file produced by the assembler for PICs uses the Merged Intel Hex for-
mat or INHX8M and is given the .hex file suffix. This .hex file is what the PIC
programmer tool uses to burn the program into the PIC’s program memory.

Assembly commands, although easier to understand than binary code, can be
difficult to understand and can take a beginner months of practice to get a program
to work. That’s why even higher-level languages such as PicBasic became popular.
At some point, though, you’ll need to do something with the PIC that PicBasic or
any higher-level language won’t do. That’s when you may want to use assembly lan-
guage.

Sometimes a single assembly language command can solve the problem.
PicBasic fortunately has the capability to mix assembly code within the PicBasic
program. In the chapters where I discuss the various PicBasic commands, I’ll show
you examples of using assembly code.

I’ve written hundreds of programs in PicBasic and never had to use assembly
language but it helps to know it’s there when you really need it.

Programming PIC Microcontrollers with PicBasic

10

PicBasic Compiler

Back in 1995, a company named Parallax incorporated developed a small computer
module based on the PIC that could be programmed in a modified version of the
BASIC software language.

Parallax Inc. had been producing programmers and emulators for the Microchip
PICs but saw a potential to make PIC-based design easier for everyone. They knew
that assembly language programming was difficult for the beginner and hobbyist so
they decided to develop a form of the BASIC language called PBASIC. They devel-
oped the computer module around a PIC 16C56 device and called it the BASIC
Stamp. The module used external EEPROM memory to store the program, and the
PIC retrieved commands from that memory one at a time and executed them. This
is known as interpreted execution, which the BASIC language is famous for.
Although this isn’t the fastest way to run a program, it became popular with many
experimenters, electronic hobbyists, and even professional technical people. It
offered a totally new approach to programming PICs that was simple and quick.

It wasn’t long before some users were asking if working programs could be
compiled into assembly language so a PIC could be directly programmed instead of
the somewhat expensive PIC-based Basic Stamp computer modules. Micro
Engineering Labs answered the call. They developed a PicBasic compiler, or PBC,
that would take a working PBASIC program and convert it into the INHX8M for-
mat required to program a PIC. They added more commands to increase the capa-
bilities of PicBasic. It really made PIC-based development easy.

The compiler works with all the 14-bit core parts previously mentioned and
when compiled a program will run about 15 times faster than the same program run-
ning on the Parallax module. Because the code is compiled rather than being
directly written in assembly, it isn’t as efficient as an assembly language program—
but it can be close. The true advantage is reduced software development time.
Programs that may take weeks or months to write in assembly can be written in days
or weeks in PicBasic. For the professional, this offers quick concept “prove-out” or
even rapid production. For the hobbyist or experimenter it offers quick project
development and a shorter software learning curve.

I have found some limitations with PBC but can usually work around them with
better program structure or occasional assembly language inserts. That was the case

Getting Familiar with PICs and PicBasic

11

until the PicBasic Pro (PBPro) compiler was introduced. It offered so many features
that I found I never had to add assembly code to my programs at all. It also could
compile programs much more efficiently than the PBC.

These two different but related versions of the PicBasic compiler will be cov-
ered in this book, the standard lower-cost PBC version and the PBPro professional
version.

I’ll try to be consistent and call the professional version of compiler “PBPro”
and the standard version will be called “PBC.” This should make it easier to under-
stand.

PBPro and PBC share the same basic code structure, but the PBPro version
offers many added features and is really designed to be independent of the Parallax
module coding limitations.

In Chapters 2 and 3, I’ll give a brief overview of the PBC and PBPro commands,
respectively. In later chapters, I’ll show you examples of both versions at work in
projects you can build yourself. Both versions include a manual and this book is not
intended to be a substitute for those manuals. This book is intended to be a compli-
mentary resource for making PICs, PBC, and PBPro easier to understand and use.
The PicBasic language is really easy to learn and somewhat intuitive but the exam-
ples and explanations in this book should leave you ready to program any concept
you have in mind. It’s only limited by your imagination.

Programming PIC Microcontrollers with PicBasic

12

PicBasic Compiler (PBC)

Programming microcontrollers in BASIC may seem old fashioned or limited in
capabilities. After all, the BASIC language has been around a long time. It was so
easy to learn that kids could program with it. The first Apple computers,
Commodore computers, and Radio Shack TRS-80 computers all came with BASIC
as their programming language. The BASIC language is what helped Microsoft’s
founders get started in business. So how could such an old language still be useful
today? For all the reasons it was successful in the early days: the simplicity of the
language.

Almost anybody can read a BASIC program and understand a few lines even if
they have never programmed before. Microcontroller development, on the other
hand, is not that easy. You need at least some knowledge of electronics. You also
need some knowledge of algebra. And you need some knowledge of structuring a
software program.

Building simple kits can help you pick up electronics knowledge. Algebra is
something we all should have learned in school. But how do you simplify learning
structured software development? By using an easy-to-understand language like
BASIC. You don’t need to know quantum physics to understand how a transistor
works and you don’t have to understand advanced calculus to understand basic alge-
bra. So why should someone have to learn assembly language to program a micro-
controller? Thanks to the PicBasic (PBC) compilers, programming Microchip’s
PICs can be easy for anyone.

13

C H A P T E R 2

In this chapter, I want to focus on just the PBC. It doesn’t have all the commands
and features found in the PBPro compiler, but that does not rule it out for many
applications. PBC doesn’t handle program spaces larger than 2k very well because
of the PIC’s inner structure, but a program of 2k is still quite large (and much larger
than the Basic Stamp module). That 2k limit to PBC is something PBPro does not
have and is why some people prefer the PBPro compiler instead. But I can tell you
from my experience that the PBC is so efficient that I have written many very pow-
erful programs that fit in a 1k 16F84A device. When you figure the PBPro compiler
is almost two and a half times more expensive than the PBC, you just can’t rule out
the PBC. It’s really a great compiler for the money.

In this chapter, I will cover each PBC command in some detail but won’t repli-
cate what you can find in the PBC manual. What I have done is expand upon the
information in the PBC manual. I will also explain how to use the PBC compiler
and give you a better understanding of the compiler’s function. To understand how
to use this compiler, though, it helps to know how it works. Let’s start there.

How PBC Works

The guts of the PBC are a batch of short little assembly language programs written
to do certain tasks. When the compiler is run, it groups those little programs
together according to your PBC program structure.

If, for example, you want to turn an input/output (I/O) pin high so an LED will
light, then you would issue the HIGH command in your PBC program. It’s not that
easy in the PIC, though. First you have to change the I/O pin to output mode. Then
you have to set the bit within the port register that corresponds to that pin. This
would take several commands in assembly code. A brief assembly code example to
set bit 0 of Port B to a high state looks like this:

bsf STATUS,RP0 ;Move to register bank 1
movlw 0FF ;First make all pins of PORT B
movwf TRISB ; high impedance inputs
bcf STATUS,RP0 ;Move to register bank 0
movlw 01 ;Set bit 0 of PORT B
movwf PORTB ; to high.
bsf STATUS,RP0 ;Move to register bank 1
movlw 0FE ;Set PORT B pin 0 to output
movwf PORTB ; and the rest of the pins to inputs
bcf STATUS,RP0 ;Move back to bank 0

Programming PIC Microcontrollers with PicBasic

14

Although this probably isn’t the most efficient way to do this in assembly lan-
guage, it does show the several main steps required. The same function in PBC
looks like this:

high 0 ‘Set PORTB pin 0 to high

When the commands get more involved (such as serial communication) the
assembly code file gets bigger but the equivalent PBC command takes just one line.
This explains why higher-level languages are more efficient for the developer. The
cost for that is the inefficiency of the assembly language the compiler creates. Some
assembly language commands within the various compiler programs could be
shared, but aren’t because of the structure. The author of the compiler program tries
to keep those inefficiencies to a minimum, but it’s almost impossible to get rid of
them all. That’s the price we pay for quick, easy-to-follow program development.
However, I’ve found the PBC to be quite efficient.

I do a lot of development with the 16F84 flash PIC that has only 1k of ROM
space. When I’ve run out of space, simple modifications to my PBC program
allowed some complex routines to fit. What really helps is the vast array of com-
mands PBC offers. Serial RS232 type communication, lookup tables, and math
functions are just some of the complex features PBC has reduced down to a single
command. PBC includes the following list of commands:

ASM..ENDASM: Insert assembly language code section.

BRANCH: Computed GOTO (equivalent to ON..GOTO).

BUTTON: Debounce and auto-repeat input on specified pin.

CALL: Call assembly language subroutine.

EEPROM: Define initial contents of on-chip EEPROM.

END: Stop execution and enter low power mode.

FOR..NEXT: Repeatedly execute statement(s).

GOSUB: Call BASIC subroutine at specified label.

GOTO: Continue execution at specified label.

HIGH: Make pin output high.

I2CIN: Read bytes from I2C device.

PicBasic Compiler (PBC)

15

I2COUT: Send bytes to I2C device.

IF..THEN: GOTO if specified condition is true.

INPUT: Make pin an input.

LET: Assign result of an expression to a variable.

LOOKDOWN: Search table for value.

LOOKUP: Fetch value from table.

LOW: Make pin output low.

NAP: Power down processor for short period of time.

OUTPUT: Make pin an output.

PAUSE: Delay (1millisecond, or msec, resolution).

PEEK: Read byte from register.

POKE: Write byte to register.

POT: Read potentiometer on specified pin.

PULSIN: Measure pulse width (10us resolution).

PULSOUT: Generate pulse (10us resolution).

PWM: Output pulse width modulated pulse train to pin.

RANDOM: Generate pseudo-random number.

READ: Read byte from on-chip EEPROM.

RETURN: Continue execution at statement following last executed GOSUB.

REVERSE: Make output pin an input or an input pin an output.

SERIN: Asynchronous serial input (8N1).

SEROUT: Asynchronous serial output (8N1).

SLEEP: Power down processor for a period of time (1 Sec resolution).

SOUND: Generate tone or white noise on specified pin.

TOGGLE: Make pin output and toggle state.

WRITE: Write byte to on-chip EEPROM.

Programming PIC Microcontrollers with PicBasic

16

Some of these commands will be used in every program you write, while others
will only be used in specific applications. The list may seem extensive, but in time
you’ll find the commands are easy to remember and understand.

Variables, Memory, and I/O

The PBC was written to use the same basic structure as the Parallax BASIC Stamp
module. The Stamp only allows eight I/O pins for program development. A standard
14-bit core PIC has at least 13 I/O pins available. The Stamp also has limited space
for program memory and variables. Program memory is limited to 256 bytes, and
RAM or variable space is limited to 13 bytes. The14-bit core PICs have an entry
level of 512 bytes of ROM or program memory space with up to 8k available as
upgrade parts. However, remember the PBC doesn’t handle program space larger
than 2k. The 14 bit core PICs also offer more I/O and more variable RAM.

To use the extra I/O and RAM, or variable memory in the PIC, and still main-
tain compatibility with the Basic Stamp module, the PBC just added additional
commands and variable names. The added program memory space in the PIC did-
n’t require any special commands. It naturally allows larger programs than the
Stamp. This is a major advantage the PBC compiler has over the Basic Stamp.

For variables, the Stamp named each of its 13 predefined RAM locations bytes
B0 through B13. Word variables are formed by combining two bytes. Of the 13
bytes, six byte pairs are used and are named W0 through W6. For example, W0 is
the same space as B0 and B1 combined.

The first pair of bytes—B0, B1 that form W0—are also individual bit names.
The least significant bit in B0 is labeled BIT0, the second bit BIT1, etc. This allows
individual bits to act as flags without using up a whole byte.

The PBC takes advantage of the added RAM in various PICs. It adds more byte
variable names along with added word names. Table 2-1 and Table 2-2 show the
variable arrangement for the various 14-bit core PICs.

PicBasic Compiler (PBC)

17

Table 2-1: Predefined PIC variables.

16C61,16C71,16C710,16F83,16C84 B0 - B21 W0 - W10

16C711,16F84 B0 - B51 W0 - W25

16C554,16C556,16C620, 16C621 B0 - B63 W0 - W31

16C558,16C622,16C62A,16C63, 16C64A ,
16C65A,16C72,16C73A, 16C74A B0 - B79 W0 - W39

Table 2-2: Predefined PIC variable alignment.

W0 B0 B1 Bit0, Bit1, … Bit15

W1 B2 B3 None

W2 B4 B5 None

… … …

W39 B78 B79 None

The added I/O is handled by the special commands PEEK and POKE. Because the
BASIC Stamp PIC-based module only offered eight I/O pins (which are actually the
eight bits of the PORT B PIC register), all additional PIC I/O is accessed through
direct manipulation of the PIC’s port data and TRIS registers. This is a bit of a has-
sle but compatibility with the Parallax module forced that direction.

These PEEK and POKE commands really allow direct access to the PIC’s internal
registers similar to assembly language programming, but without leaving the PBC
command structure. I’ll talk about this in more detail in the POKE and PEEK com-
mand description, but note that any PBC commands that require a pin designator
will only work on the eight PORT B I/O.

Program Operators

Symbols

Variables can be renamed using the SYMBOL statement. This allows PBC users to
change the B0 format to anything they feel describes the variable more effectively.
The format is simply:

Programming PIC Microcontrollers with PicBasic

18

Symbol count = W1 ‘ W1 can now be referred to as count

Symbols must be at the top of the program. Symbols can also be used to set con-
stants.

Symbol Value = 10 ‘ Value can be used instead of 10

This is handy for having one location to change constants rather than changing
them all the way through a program. When a symbol is used to define a constant,
no RAM memory is used up. It’s simply used as a compiler directive.

Comments

Comments within a PBC program can be formatted in two ways. The comments can
be preceded by a single quote (‘) or the REM keyword.

HIGH 1 ‘ This would be the comment
LOW 1 REM This would also be a comment

Numeric Values

Numeric values can be specified in three ways: decimal, binary, and hexadecimal
numbers. Decimal numbers are the default so nothing is required to tell PBC you
mean decimal. Binary numbers must be preceded by the % symbol and hexadecimal
numbers must be preceded by the $ symbol.

100 ‘ Decimal value 100
%01100100 ‘ Binary value for decimal 100
$64 ‘ Hexadecimal value for decimal 100

ASCII Values

ASCII characters must be placed within quotes. They are treated as the numeric
ASCII value in all operations. Several ASCII characters together are treated as sep-
arate characters. These are mainly used when transmitting information with the
SEROUT and SERIN commands.

“A” ‘ Treated as ASCII value of decimal 65
“HELLO” ‘ Treated as individual ASCII values for H,E,L,L and O

PicBasic Compiler (PBC)

19

Line Labels

The PBC compiler doesn’t allow or require line numbers for each program line.
Sometimes a label is required to designate a location in the program for jumps and
branches. This can be done with a label followed by a colon (:). Labels can be
placed on a line by themselves or at the beginning of a command line. Labels are a
necessary part of PBC programming. Labels are limited to a length of 32 characters
and cannot start with a number.

Start:
‘ Start program here

Finish: END ‘ End program here

Math Operators

This is where the beginner and even the experienced user will appreciate the PBC
compiler when compared to assembly language. PBC allows simple math instruc-
tions to be included right in the program. There’s no need for advanced routines or
bit manipulation; it’s all done for you by the compiler. The list below shows the
math operators.

It’s important to note that all math functions are performed strictly from left to
right. This violates the typical math rules of parenthesis operations first, then mul-
tiplication, then division, etc. This can be confusing if you are doing complex items.
It’s best to break up functions to make it easier to follow. Breaking up the equations
will not increase the memory usage in most cases.

+ Addition

- Subtraction

* Multiplication

** Most significant bit (MSB) of multiplication

/ Division

// Division remainder only

MIN Limit result to minimum value defined

MAX Limit result to maximum value defined

Programming PIC Microcontrollers with PicBasic

20

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

&/ Bitwise AND NOT

| / Bitwise OR NOT

^ / Bitwise XOR NOT

All math is performed with 16-bit precision, which allows byte and word math.
Multiplication is actually 16x16, resulting in 32-bit results:

W2 = W1 * W0 ‘ The lower 16 bits of the result are placed in W2

W2 = W1 ** W0 ‘ The upper 16 bits of the result are placed in W2

Division does the opposite:

W2 = W1 / W0 ‘ The numerator of the result is placed in W2

W2 = W1 / / W0 ‘ The remainder only is placed in W2

Math operators also include what I call “digital logic math.” AND, OR, and
exclusive OR can all be performed on variables. The opposite is also available:
NAND, NOR and exclusive NOR. These commands are great for bit testing or bit
manipulation without affecting the whole byte.

B4 = B2 & %11110000 ‘ Store the upper four bits of B2 in B4 and
‘ ignore the lower four

MIN and MAX operators set limits for the variables. For example:

B1 = B1 + 1 MAX 128 ‘ B1 can increase to 128 but no larger

B1 = B1 -1 MIN 1 ‘ B1 can decrease to 1 but never 0

PBC Commands

Hopefully you now have a good idea of the program operators. They will become
clearer when I show actual program examples in later chapters. Now we need to

PicBasic Compiler (PBC)

21

cover the guts of the PBC compiler, namely how the commands operate. To help
explain the various command functions I’ve broken them down into separate
groups.

I/O Control

This group contains some of the most commonly used commands. After all, most of
the PIC’s operation involves turning outputs high, low or reading a value.

HIGH pin

This command sets a specific bit in the PIC PORTB data register to high and then
makes that pin an output. The pin value designates which PORTB PIC bit to set
high. Pin must be a number from 0 to 7.

Example:

HIGH 1 ‘Set PORTB bit 1 high and make it an output. (PIC pin
‘7 on 16F84)

LOW pin

This command sets a specific bit in the PIC PORTB data register to low and then
makes that pin an output. The pin value designates which PORTB PIC bit to set low.
Pin must be a number from 0 to 7.

Example:

LOW 1 ‘Set PORTB bit 1 low and make it an output. (PIC pin 7
‘on 16F84)

INPUT pin

This makes a specific bit in the PIC PORTB data register an input or high-imped-
ance pin ready to measure incoming signals.

Example:

INPUT 1 ‘Make PORTB bit 1 and input. (PIC pin 7 on 16F84)

Programming PIC Microcontrollers with PicBasic

22

OUTPUT pin

This makes a specific bit in the PIC PORTB data register an output. You must be
careful to know what state the PORTB data register is in before issuing this com-
mand. As soon as you issue this command, the status of the bit in the data register
(high or low) will instantly show up at the PIC pin.

Example:

OUTPUT 1 ‘Make PORTB bit 1 and output. (PIC pin 7 on 16F84)

TOGGLE pin

This command reverses the state of the port pin in the data register. If a port pin was
high, it is changed to a low. If it was low, then it’s changed to high. If the port pin
was an input prior to this command, the port pin is made an output and then the state
of that port pin in the data register is reversed.

Example:

TOGGLE 2 ‘Change state of PORTB bit 2. (PIC pin 8 on 16F84)

REVERSE pin

This command reverses the direction of the port or pin in the TRIS register. If a port
was an output, it is changed to an input. If it was an input, then it’s changed to an
output.

Example:

REVERSE 2 ‘Change direction of PORTB bit 2. (PIC pin 8 on 16F84)

POT pin, scale, var

The POT command was developed to allow analog-to-digital (A/D) measurement
with a standard PIC I/O pin. Some PICs have built-in A/D ports, which in my opin-
ion is the best way to measure an analog signal. Although an A/D port is far more
accurate, you may want to use the POT command at some point so I’ll explain how
this command works.

PicBasic Compiler (PBC)

23

In resistor and capacitor circuits, the rate of charge to reach a known voltage
level in the cap is based on the values of the resistor and capacitor. If you instead
know the charge time and the capacitor value, then you can figure out the resistance.
That’s how the POT command works.

It uses the I/O pins’ high and low thresholds as the trigger points for measuring
the capacitor charging. The capacitor and resistor are connected to an I/O pin as
seen in Figure 2-1.

Figure 2-1: Circuit configuration for measuring capacitor charging.

When the command is processed, the capacitor is first discharged by the I/O
port, which is configured by the POT command as an output and low. After that, the
I/O port is changed to an input and starts timing how long it takes for the capacitor
to charge up to the high threshold voltage threshold of the PIC I/O port. When that
high threshold is met, the charge time is known. That charge time is converted into
a 0–255 decimal value based on the value of the scale variable, where 255 is the
maximum resistance and 0 is minimum.

The key is the proper scale value. It must be specified for this command to work
properly. In order to have the scale value match the resistance range you are using,
it must first be calculated for the R/C attached. No math is required because it must
be determined experimentally. First set the resistance to its maximum value. Then
set scale to 255 and run the command. The variable value returned will be the proper
scale value for that R/C combination.

5-50K

0.1uF

PIN

Programming PIC Microcontrollers with PicBasic

24

Example:

POT 3, 240, B0 ‘ Measure the resistance and place the 0-255
‘ value in B0
‘ The 240 value was found first by setting scale
‘ to 255

BUTTON pin, down, delay, rate, var, action, label

This command is designed to make it easier to check the status of a switch. I find it
very confusing, and I’m not alone! Let’s examine it.

This command actually operates in a loop. It continually samples the pin and fil-
ters it for debounce. It also compares the number of loops completed with the switch
closed to see if auto-repeat of the command action should take place. The auto-
repeat is just like the keyboard on a personal computer. Hold down a key down, and
it will soon auto-repeat that character on the screen until it runs out of space.

The command has several operators that affect its operation.

pin

This is the I/O port pin the switch is connected to as seen in Figure 2-2.

Figure 2-2: I/O port pin connection.

5-50K

PIN

Vdd

PicBasic Compiler (PBC)

25

down

This defines what the port should see when the switch is closed, a high (1) or low
(0).

delay

This is a value of 0-255 that tells the command how many loops must occur with
the key pressed before starting the auto-repeat feature. This operator also does two
other functions. If the value is 0, then debounce and auto-repeat are shut off. If it’s
255, then debounce is on but auto-repeat is off.

rate

This value sets how fast the auto-repeat actually repeats itself. In other words, it’s
the rate of auto-repeat. It requires a 0–255 value.

var

This must be a variable like B0 because it stores the number of loops completed in
the BUTTON command. It must be reset to zero prior to running this command or the
BUTTON command will not function properly.

action

This tells the BUTTON command which state the switch must be in to jump to the
location described by label. If you want to jump to the label routine when the switch
is closed (as defined by down), then set action to 1. If you want to jump when the
switch is open, then set action to 0.

label

This sets the goto label if the action operator is met. This label must be defined
somewhere in the program to properly compile.

Programming PIC Microcontrollers with PicBasic

26

Example:

B0 = 0
BUTTON 2, 0, 100, 10, B0, 0, SKIP ‘ Check for button press (0 at

‘ I/O port)at port pin 2 and
‘ goto SKIP routine if not
‘ pressed. Also if it’s pressed
‘ and held for 100 loops,
‘ auto-repeat at a rate of 10

What makes this command so confusing is all the options. I would have pre-
ferred a simple BUTTON command with just action and label with modifiable switch
debounce. Auto-repeat could have been a command on its own. I’ll show examples
later of how to read switches with other techniques.

This completes the I/O control section of the PBC language. Now let’s look at
some more familiar BASIC commands in the section I call “redirection.”

Redirection

This group contains the commands used to jump around within your PBC program.
This can be confusing to the beginner but anyone who has programmed before
knows the power of redirection. It allows multiple options within a program all
based on the logic within the PBC program structure.

GOTO label

This is the simplest of the bunch. It simply redirects the current program location to
a new location. This can be used for bypassing a section of code accessed by another
part of the program or even jumping back to the start of the program. The label must
be defined somewhere else in the program.

Example:

GOTO START ‘ Jump to the beginning of the program at label START

PicBasic Compiler (PBC)

27

IF comp {AND/OR comp} THEN label

This command could be considered a conditional GOTO. If you have written any
BASIC code then you’re probably familiar with this command. The bracketed
AND/OR is an optional part of the command. The comp term(s) is the expression that
is tested. The expression must contain a variable that is compared to a constant or
another variable. The expressions may use any combination of the following:

< less than

> greater than

= equal to

<> not equal to

<= less than or equal to

>= greater than or equal to

All comparisons are unsigned, meaning PBC can’t tell the difference between a
negative number or a positive number. They are all treated as absolute values. When
the comp expression is true, the command jumps to the label following THEN. If the
comp expression is not true, then the PBC command following the IF THEN com-
mand will be executed.

Example:

IF B0 > 10 THEN BEGIN ‘ If the variable B0 is greater than 10
‘ then jump to BEGIN

IF B0 => 10 AND B0 <= 20 THEN test ‘ B0 must be less or equal to
‘ 20 and greater than or equal
‘ to 10 to jump to test

BRANCH offset, (label, {label, label, …})

This command is a multiple level IF THEN. It will jump to the program label based
on the offset value. Offset is a program variable. If offset equals zero, the program
will jump to the first listed label. If offset is one, then the program will jump to the
second listed label.

Programming PIC Microcontrollers with PicBasic

28

If offset is a larger number than the number of labels, then the BRANCH instruc-
tion will not be executed and the PBC command following BRANCH will execute.

Example:

BRANCH B1, (first, second, third) ‘ If B1=0 then goto first; if
‘ B1=1 then goto second; if
‘ B1=2 then goto third; if
‘ B1 > 2 then skip BRANCH
‘ instruction

GOSUB label

This command is a temporary GOTO. Just like GOTO, it jumps to the defined label.
Unlike GOTO, it returns back and continues with the next command after GOSUB.

GOSUB is really an abbreviation for GOto SUBroutine. A subroutine is a program
listing within a main program. You can have several subroutines that each perform
a special function. You can also place a common routine in one subroutine rather
than write the common routine multiple times. This is a way to save memory.

You can also GOSUB within a subroutine. The first return will bring you back to
the subroutine and the second return will bring you back to the original GOSUB. This
is known as nesting. You are limited to four levels of nesting with PBC or, in other
words, a maximum of four GOSUB commands may be used together.

The return is performed by an accompanying command RETURN. They must both
be in the program to make the function work. You can have multiple GOSUB com-
mands jumping to the same routine but only have one RETURN command at the end
of the subroutine. This is quite common.

Example:

FLASH:
GOSUB SUB ‘ Jump to subroutine SUB
GOTO FLASH ‘ Loop again to flash LED on PORTB bit 4

SUB:
TOGGLE 4 ‘ Change state of PORTB bit 4
RETURN ‘ Return to command after gosub

PicBasic Compiler (PBC)

29

RETURN

As explained above, this command is used at the end of a PBC subroutine to return
to the command following the GOSUB command.

Example:

Subrout:
B0 = B0 + 1
RETURN

This completes the redirection section of the PBC language. Now let’s look at
some of the special function commands.

Special Function

This is a group of commands with a very diverse set of functions. They are really
handy commands and begin to show how easy PBC makes programming.

SOUND pin,(note, duration {, note, duration})

This command was created to make sounds from a PIC. A PIC alone cannot pro-
duce sound so additional hardware is required, as shown in Figure 2-3.

Figure 2-3: Circuit for generating sound with a PIC microcontroller.

What SOUND does is pulse the designated pin high and low at an audible fre-
quency. The pulsing will continue for a length of time specified by the duration

PIN

Programming PIC Microcontrollers with PicBasic

30

value. The values do not specifically tie into musical note values. The sounds pro-
duced fall into two categories, tones and white noise.

Tones are selected by the note value. The note value can range from 1 to 127 for
tones and the higher-frequency white noise are values 128 to 255. Value 0 is for
silence. It can be used to produce a pause between notes or white noise.

Duration is a value of 0 to 255 measured in milliseconds. Additional notes and
duration values can be include in a single command. With the right combination,
even a short melody can be produced. Using just a single note and duration makes
it easy to produce feedback if a button is pressed. Here’s a short program example;
I’ll have more examples in the later chapters.

Example:

SOUND 0, (100, 10, 50, 20, 100, 10, 50, 20) ‘Make a cycling sound
‘ that alternates
‘ between note 100 and
‘ note 50 on PORTB pin
‘ 0. Each note has a
‘ different duration

FOR … NEXT

This command is familiar to anyone who has used BASIC. The format is as follows:

FOR variable = start TO end [STEP [-] increment]
[PBC Routine]

NEXT {variable}

The PBC routine trapped between the FOR / NEXT command structure will be
executed while the logical statement following the FOR command is within the start
and end values.

Variable can be any variable you create with the SYMBOL command mentioned
earlier. Start and end are limited to the size of the variable. If the variable is a byte
then start and end must be 255 or less. If variable is a word size then start and end
must be less than 65536.

PicBasic Compiler (PBC)

31

What this command really does is first initialize the variable to the start value.
It then executes the PBC Routine. At the end of the routine it increments the vari-
able by one and compares it to the end value. If variable is equal to or greater than
the end value, then the PBC command that appears after the NEXT command is exe-
cuted. If variable is less than the end value then the trapped PBC routine is executed
again.

The STEP option allows the command to do something other than increment the
variable by one. It will instead increment the variable by the value increment. If
increment is a negative number, then the variable is actually decremented. If a neg-
ative number is used, you must make sure start is a greater number than end.

The variable name after NEXT is optional. It will increment the closest FOR vari-
able. If you have a FOR … NEXT loop within a FOR … NEXT loop, then it’s best to
place the proper variable name after the NEXT.

Here is an example of FOR … NEXT teamed up with SOUND:

Example:

FOR B0 = 1 to 100 ‘Continue producing sound on PORT B
pin 2

SOUND 2, (B0, 50) ‘ in 50 msec increments.
‘ The sound will increase in pitch

NEXT ‘ with every loop until sound value
‘ 100 is produced

LOOKDOWN search,(constant {, constant}), var

It can be difficult to remember exactly what this command does. I still look it up in
the manual almost every time I use it. What it does is look down a list of values
(constant) and compare each value to a master value (search). If a match is found,
then the position is stored in a variable (var). It provides a lookup-table method for
converting any character into a numeric value from 0 to 255.

If search matches the first constant then var is set to 0. If the second constant
matches search, then var is set to 1, etc. String constants and numeric constants can
both be part of the table.

Programming PIC Microcontrollers with PicBasic

32

The PBC separates the list of constants by looking at each 8-bit value. It’s best
to separate the constants with commas so the compiler knows where to start and
where to stop. 1010 is not treated the same as 10,10. If you use string constants, then
they will be treated as their respective 8-bit value. Therefore, commas may not be
needed for string variables.

Example:

LOOKDOWN B0,(0, 1, 2, 4, 8, 16, 32, 64, 128), B1 ‘ B1 contains
‘ in decimal which single
‘ bit is set in B0. If
‘ B0 = 128 or 10000000
‘ binary then B1 = 8.
‘ If more than one
‘ bit is set in B0 then
‘ B1 = 0

LOOKUP index,(constant {, constant}), variable

This command performs a lookup table function. Index is an 8-bit variable that is
used to choose a value from the list of constants. The selected constant is then
stored in the variable following the list of constants.

If the index variable is 0, the first constant is stored in the variable. If index is
1, then the second constant is stored in variable, and so on. If index is a value larger
than the number of listed constants, then variable is left unchanged. The constants
can be numeric or string constants. Each constant should be separated by a comma.

Example:

FOR B0 = 0 to 7 ‘Convert
‘decimal number to

LOOKUP B0,(0, 1, 2, 4, 8, 16, 32, 64, 128), B1 ‘ a single bit to
‘be set

NEXT

PicBasic Compiler (PBC)

33

PEEK address, var
POKE address, var

These commands do not come from the original BASIC Stamp language. They are
unique for the PIC only and very useful. With these commands, you can access any
register in the PIC and read the value or write a value at that location. This is use-
ful for accessing other I/O ports, such as Port A, and also for reading A/D values on
PICs with A/D ports. It can also be used to set up the option or status registers if you
are into advanced PIC control.

Address is the location within the PIC that you want to read from (peek) or write
to (poke). The var is the variable that contains the data to be written when using the
Poke command. The var is the variable where the data is stored when using the Peek
command.

Here is an example accessing additional I/O in port A by using both commands.

symbol PORTA = 5 ‘PortA data register memory location
symbol TRISA = $85 ‘PortA Tris register memory location

init:
poke TRISA, 255 ‘Make all ports inputs

loop:
peek PORTA, B0 ‘Read the signals on PORTA, store in

‘B0
if B0 = 5 then end ‘If PORTA = %xxx00101 binary then

‘stop the program. (xxx are
‘unavailable pins on port A)

goto loop ‘test again

RANDOM var

This command produces a pseudo-random number for various applications. The var
variable must be a word variable. It will produce a value from 1 to 65535 but will
not produce zero. You cannot use a port number or port variable.

Example:

Programming PIC Microcontrollers with PicBasic

34

loop:
random W2 ‘ Create a random number
pause 100 ‘ pause 100 msec
goto loop ‘ do it again

Pulse Control

This group of commands is used to control the digital waveforms many projects
require. To create a pulse requires the PIC to simply switch the I/O port from a low
state to a high state and then back to low again. These commands make it much eas-
ier to do that and also receive pulses from other sources and measure the pulse
width. Even digital-to-analog conversion can be accomplished if you can control the
pulse width. These commands are very useful.

PULSIN pin, state, var

This command is great for measuring the pulse width of any signal coming into a
PIC port. With the 4-MHz crystal or resonator, PULSIN will measure in 10 microsec-
ond resolution.

The variable pin is a value of 0 to 7 representing the PORTB pin you want to
monitor. The state variable determines if the high portion or the low portion of the
signal should be measured. If state is 0 the low portion is measured. If state is 1 the
high portion is measured.

The var variable is where the results are stored. If you want to measure from 0
to 2550 microsecond, then var could be a byte variable like B0. If you want to meas-
ure up to 655,350 microsecond, then use a word variable or W1.

Example:

meas:
pulsin 3,1,w3 ‘ measure the high time of signal

‘ on portB pin 3
if w3 > 100 then warn ‘test high time value if its greater

‘ than 1 msec
low 0 ‘clear pin 0 to turn off LED
goto meas

warn:

PicBasic Compiler (PBC)

35

high 0 ‘ set pin 0 high to light LED (greater than 1
‘ msec warning)

goto meas

PULSOUT pin, period

This command generates a single pulse from any of the PORTB pins. The pin vari-
able is the PORTB pin to use. The period variable is the length value of the gener-
ated pulse (1 to 65535). The resolution is in 10 microsecond units so the maximum
pulse width is 655,350 microseconds wide.

The pulse is generated by toggling the pin twice. Thus, the initial state of the pin
determines if the pulse is high or low. It’s best to set the pin to the desired state
before issuing this command.

Example:

pulse:
low 1 ‘ initialize pin1 to zero
pulsout1, 300 ‘ send a high pulse 3 msec wide out

‘ portB pin 1
pause 10 ‘ pause 10 msec and do it again
goto pulse

PWM pin, duty, cycle

This command can be used for various tasks, but a common task is creating an ana-
log output from a digital signal. This command works slightly different than you
might initially think. The command sends a series of pulses from the specified pin
for a specific period of time. The pulse width of each pulse is actually fixed but the
number of times the pulse is sent controls the high time versus the low time. This is
how the pulse width modulation is controlled.

The pin variable sets which PORTB pin to send from. The duty variable sets the
duty cycle or actually the number of times the single pulse is repeated. It can vary
from 0 (0%) to 255 (100%). The cycle variable sets how many times the series of
pulses are repeated or number of cycles.

Programming PIC Microcontrollers with PicBasic

36

To use this command as a digital-to-analog converter you have to connect the
output to a resistor and the resistor to a capacitor. The capacitor is connected to
ground. The voltage across the capacitor will vary by how many pulses or (duty
cycle) that PWM produces. The example below and Figure 2-4 demonstrate this.

loop:
for B0 = 0 to 255 ‘ Change duty cycle from 0 to 100%.
pwm 7, B0, 150 ‘ Send varying duty cycle for 150

‘ cycles long Analog out voltage
‘ will slowly increase.

next ‘ Next duty cycle.
goto loop ‘ Repeat.

Figure 2-4: Circuit configuration to use the PWM command
for analog to digital conversion.

Communication

This category of commands is exciting for the computer novice. With these single
line commands, you can create PBC programs that allow a PIC to communicate
with another PIC or even a PC. Anything that is RS232 compatible will most likely
be capable of communicating with a PIC by using these commands. There are also
commands for communicating in other signal formats.

SERIN pin, mode, (qual, qual), (#) item, item, ...

This command emulates the RS232 communication common on PCs, also known as
serial communication. With this command many interesting programs are possible.

PIN
10K

Analog Out

1uF

PicBasic Compiler (PBC)

37

The command receives data from the sending source in 8N1 format, which
means eight data bits, no parity, and one stop bit. The pin variable is the PORTB pin
used. The mode variable is the baud rate to communicate at per the chart below.

This chart is slightly different from the BASIC Stamp because it allows 9600-
baud communication in place of the Stamp’s 600 baud. This is possible because a
PIC programmed with PBC will run 15 times faster than a BASIC Stamp.

Here are the mode options:

Mode value Baud Rate Format

T2400 or 0 2400 TTL True

T1200 or 1 1200 TTL True

T9600 or 2 9600 TTL True

T300 or 3 300 TTL True

N2400 or 4 2400 TTL Inverted

N1200 or 5 1200 TTL Inverted

N9600 or 6 9600 TTL Inverted

N300 or 7 300 TTL Inverted

The item variable is the byte value received in the 8N1 format. If more than one
item variable is listed in the command then the program will wait for the exact num-
ber of items listed to be received. This can lock up a program while it waits for vari-
ables. Care must be taken when using this command so you don’t lock up.

The qual option is not needed but, if used, sets a prerequisite before accepting
any items. The qual value can be a constant, variable or a string constant. The com-
mand looks for the qual to be received before going further.

The item variable can be preceded with a # character. This will convert any dec-
imal number received into the ASCII equivalent and store that in the item variable.
Any non-decimal values received will be ignored when using the #.

Example:

Programming PIC Microcontrollers with PicBasic

38

loop:
serin 1, n9600, (“A”), B0 ‘ Wait until the ASCII value

‘ for A is received on portB
‘ pin 1 and then store the next
‘ byte in B0

goto loop

SEROUT pin, mode, (item, item, ...)

This commands sends a byte or bytes in serial 8N1 format out a specified pin. The
pin variable defines the PORTB pin used for communication. The mode value deter-
mines the communication baud rate. The chart below defines the mode options.

Mode value Baud Rate Format

T2400 or 0 2400 TTL True

T1200 or 1 1200 TTL True

T9600 or 2 9600 TTL True

T300 or 3 300 TTL True

N2400 or 4 2400 TTL Inverted

N1200 or 5 1200 TTL Inverted

N9600 or 6 9600 TTL Inverted

N300 or 7 300 TTL Inverted

OT2400 or 8 2400 Open Drain

OT1200 or 9 1200 Open Drain

OT9600 or 10 9600 Open Drain

OT300 or 11 300 Open Drain

N2400 or 12 2400 Open Collector

N1200 or 13 1200 Open Collector

N9600 or 14 9600 Open Collector

N300 or 15 300 Open Collector

The item value(s) can be in three formats and they can be mixed.

PicBasic Compiler (PBC)

39

1) A string constant is sent as a string of characters, i.e. “hello” is sent as five
individual bytes.

2) A numeric value can be sent as the ASCII equivalent (i.e., 13 will represent
the ASCII carriage return and 10 will be received as a line feed). If you send
the numeric value to another PIC, though, it will be received as the binary
value.

3) A numeric value preceded by a # symbol will break up the number and send
it as individual ASCII characters, i.e., #123 will be sent as “1”, “2”, and “3”.

Example:

loop:
for b1 = 0 to 9 ‘ Send 10 numbers
serout 5, n2400, (#b1, 10) ‘ 2400 baud inverted, send

‘ ASCII value of b1
next ‘ followed by a line feed.
goto loop

I2CIN control, address, var {, var}
I2COUT control, address, var {, var}

These commands are used to communicate with other components in the Phillips
I2C format. I2CIN receives byte values and stores them in the var(s) variables and
I2COUT sends the var data. They are very useful for communicating with other com-
ponents such as serial EEPROM.

The lower seven bits of the control variable contain the control code and the chip
select or additional information. This depends on the device. The high-order bit in
control is used as a flag to indicate whether the address is to be sent as a 16-bit value
or an 8-bit value. If that bit is 1, then it’s sent as 16 bits; if 0, it’s sent as eight bits.

The address is the location to read from or write to. For example, when com-
municating with a single 24LC01B 128 byte serial EEPROM the address needs to
be right bits, and the chip select is unused. The control byte would be %01010000

Programming PIC Microcontrollers with PicBasic

40

for that part. (See the Microchip Non-Volatile Memory Products Data Book for
more info on the serial EEPROM memory chips.)

These commands are also unique in that they use PORTA pins 0 and 1 for data
and clock, respectively, instead of the usual PORTB pins.

Example:

‘ I2CIN and I2COUT Commands
‘
‘ Write address to the first 16 locations of an external serial
‘ EEPROM
‘ Read first 16 locations back and send to serial out repeatedly

SymbolSO = 0 ‘ Serial Output

For B0 = 0 To 15 ‘ Loop 16 times
I2Cout $50,B0,(B0) ‘ Write each location’s

‘ address to itself
Pause 10 ‘ Delay 10ms after each

‘ write
Next B0

Loop: For B0 = 0 To 15 step 2 ‘ Loop 8 times
I2Cin $50,B0,B1,B2 ‘ Read 2

‘ locations in
‘ a row

Serout SO,N2400,(#B1,” “,#B2,” “) ‘ Print 2
‘ locations

Next B0

Serout SO,N2400,(10) ‘ Print linefeed

Goto Loop

Timing

This popular group of commands involves time. They really don’t do anything spe-
cial except waste a specified amount of time and then let the program continue or
stop the program altogether. The accuracy is not something to set your watch by, but
for most applications they are accurate enough.

PicBasic Compiler (PBC)

41

Some of the commands put the PIC in low power mode while they waste time.
This is great for battery applications.

NAP period

This command places the PIC in a low power mode for short periods of time.

This can be used to save power in battery applications; nap for a short time, then
go check the I/O, then nap again, etc..

The period variable is a number from 0 to 7. Each corresponds to the delay
listed below. The timing is derived from the Watchdog Timer (WDT) inside the PIC.
You must have the WDT turned on when you program the PIC to use this. The WDT
is driven by an internal RC circuit so its accuracy is not great. All time values are
nominal but can vary as much as 20% over a range of operating temperatures.

period delay (approx)

0 18 millisecond (msec)

1 36 msec

2 72 msec

3 144 msec

4 288 msec

5 576 msec

6 1.152 sec

7 2.304 msec

Example:

loop:
if in0 = 0 then prog ‘ Test pin 0 if its low
nap 6 ‘ low power for 1.152 sec delay
goto loop ‘ test pin 0 again

prog:
toggle 1 ‘ pin 0 low, toggle pin 1
goto loop ‘ test pin 0 again

Programming PIC Microcontrollers with PicBasic

42

PAUSE period

This is one of the very useful commands. It can pause program execution for a
period of 1 to 65,535 milliseconds. It doesn’t put the PIC in low power mode, but
is more accurate than the NAP or SLEEP command. You can use it to control tim-
ing or pulse widths or whatever your program requires.

Example:

pulse:
high 0 ‘send high signal out pin 0
pause 10 ‘pulse width is 10 msec plus time to execute

‘pause command
low 0 ‘send low pulse out pin 0
pause 10 ‘pulse width is 10 msec plus time to execute

‘pause command
goto pulse ‘loop again to make square wave of close to 50%

‘duty cycle

SLEEP period

This command places the PIC in low-current mode and stops the PIC from running
for a length of time. The period variable sets the amount of time to stay in the low-
power mode.

The SLEEP command timing is controlled by the watchdog timer (WDT) within
the PIC, which is just an RC circuit. To make the SLEEP timing more accurate it is
compared to the system clock every 10 minutes and adjusted. The period value can
range from 1 to 65535 and represents increments of 2.3 seconds. A value of 1 will
make the PIC sleep for 2.3 seconds, while a value of 65535 will make the PIC sleep
for just over 18 hours.

Example:

loop:
if in0 = 0 then prog ‘ Test pin 0 if its low
sleep 26 ‘ low power for 1 minute delay
goto loop ‘ test pin 0 again

prog:
toggle 1 ‘ pin 0 low, toggle pin 1
goto loop ‘ test pin 0 again

PicBasic Compiler (PBC)

43

END

This command stops program execution. It is automatically placed at the end of
your assembled PBC program if you don’t include it, but it’s best to include it at the
end of your main loop. Place the subroutines after this command. You should never
actually get to this command since your PIC just stops and goes into an endless
series of NAP commands and never leaves until you reset the PIC.

Memory

The following commands only work on PICs with internal EEPROM memory. At
the time this book was written, that included the 16C8X, 16F8X, and 16F87X
devices. Microchip is expanding the EEPROM family so more choices will soon be
available.

These memory commands are great for storing measured data or constants you
don’t want to lose when the power goes out. That’s because EEPROM memory is
nonvolatile. Data stored in EEPROM can last as long as ten years without power.
Let’s start with the READ command.

READ address, var

This command will only work on PICs with internal EEPROM like the 16F84. The
address variable is the location to read. The value read at the specified location will
be stored in the var variable. The command also has a special mode. If address is
the value 255 then the total number of space available in the PIC EEPROM will be
put in var.

Example:

loop:
read 10, b1 ‘Store value at location 10 in variable b1
goto loop ‘ repeat

Programming PIC Microcontrollers with PicBasic

44

WRITE address, value

This command will only work on PICs with internal EEPROM like the 16F84. The
address variable is the location to write to. The value in the var variable will be
stored at the specified location.

Example:

loop:
for b1 = 0 to 9 ‘ The first 10 locations in EEPROM
write b1, 0 ‘ are set to 0.
next

EEPROM location, (constant, constant)

This command is different than any of the other commands because it is only exe-
cuted when the PIC is programmed, not when the program in the PIC is run. It is
used to preload the EEPROM memory.

The location variable is optional and sets the starting point to store values. If it
is not included in the command then the location 0 is used. The constant value can
be a numeric or string constant. Only the least significant byte is stored for numeric
constants and string constants are treated as separate ASCII values.

Example:

EEPROM 5, (10,”A”) ‘Store value 10 at location 5, ASCII value
‘of “A” at location 6 of the internal
‘EEPROM

Assembly Language

At some point you will want to do something that PBC can’t do, or at least some-
thing that would be easier or quicker using assembly language. Assembly language
is a little more difficult to understand, and most of your programs will consist of
only PBC. But it’s nice to have the option of sticking a few lines of assembly in
when you need it. These are the commands that allow that.

PicBasic Compiler (PBC)

45

I also suggest you read the back sections of the PBC manual before using these
commands. The manual explains how the compiler handles assembly and gives tips
on the best way to mix assembly and PBC.

ASM ... ENDASM

These commands are used together to insert assembly language into a PBC pro-
gram. This is handy for simple things or more control over how long a command
executes. You should read the PIC manual before dealing with assembly language.
Comments must start with a semicolon when commenting assembly commands.

Example:

asm ‘The following code is written in assembly
_assembly ;Label must be proceeded by underscore

clrb RP0 ; Comments must be proceeded by semicolon
mov 5,_B0 ; for assembly instead of the single quote for

; PicBasic
endasm

CALL label

Similar to GOSUB, except this executes an assembly language subroutine rather than
a PBC subroutine. It can be tricky to use this and it should only be used when your
program just HAS to use assembly.

Example:

CALL assembly

asm ‘The following code is written in assembly
_assembly ;Label must be proceeded by underscore

clrb RP0 ; Comments must be proceeded by semicolon
mov 5,_B0 ; for assembly instead of the single quote for

; PicBasic
endasm

Programming PIC Microcontrollers with PicBasic

46

Command Summary

Programming in PBC is quite easy and is only limited by your imagination and the
amount of PIC memory you have. I only included short snippets of code examples
in this chapter, but later in this book I’ll cover actual applications.

When you purchase the PBC complier, you also get a manual that covers these
commands in similar detail. Hopefully, I’ve filled in any gaps the manual has and at
least given you a thorough introduction to the PBC language. Now let me explain
how to actually use this compiler.

Using PBC

The PBC is really a DOS program that can be run from a true DOS prompt or within
a DOS window on a Windows machine. The command format is very simple. The
tough part is writing your program.

You create your program with any text editor you like and when it’s completed,
you name the file any name with eight or fewer characters with a “.bas” suffix. The
PBC defaults to looking for “.bas” files. After you have created the file, you then
invoke the PBC with the following command:

PBC filename.bas

filename is the name you gave your program.

The PBC then goes into action. It first compiles your file into an assembly file.
The output file should end up in the same directory as the original filename.bas. The
assembly file will be called filename.asm.

That “.asm” file is then assembled by the integral assembler into a file named
filename.hex. That “.hex” file is the 1’s and 0’s version of your program that actu-
ally is used to program the PIC.

This whole process takes just a few minutes, unless you have errors. If errors are
present in your PBC program, the compiler briefly describes the error and what line
it’s on. You then have to go back and fix what is wrong and compile again.

PicBasic Compiler (PBC)

47

It’s very rare to write a program the first time without errors, so don’t get dis-
couraged when you have errors. Hopefully, the program examples in the later chap-
ters will help guide you through successful code development.

Recently, several users of PBC and PBPro have developed Windows editors
designed for using PBC or PBPro. These make the above steps even easier since it’s
all done within the same screen.

The PBC also has several command line options. I skipped that previously for
the sake of simplicity, but let’s talk about that now.

Options

The complete PBC command line is as follows:

PBC -options filename.bas

The -option is the list of command line options you may want to use to control
how the PBC works on your file. The options are just that, optional. All options
must be preceded by a “-” symbol. Here are the options:

option -C

This limits the compile to just the BASIC Stamp (BS) command set. It doesn’t allow
any more variables than the BS allows and it doesn’t allow any of the PBC com-
mands that the BS doesn’t have. This option makes PBC completely compatible,
forward and backward, with the BS.

option -D

This causes the assembler to generate a symbols table, a listing file, and a map file
in addition to the .hex file.

option -P

This option is for programming PICs other than the default 16F84.

Programming PIC Microcontrollers with PicBasic

48

option -L

This creates a listing file in addition to the .hex file.

option -OB

This forces PBC assembler to produce a binary file instead of the Merged Intel HEX
file. It’s mainly for older programmers.

option -Q

This stops the default .bas and forces you to include the full filename suffix so you
can use something other than .bas if you desire.

option -S

This prevents the assembler from invoking leaving just the assembly file and not a
.hex file. You then have to assemble the resultant file.

As you can see, the PBC is a full-feature compiler despite its easy-to-use BASIC
language core. PBC is a great way to start and most hobbyists will find it’s all they
need. To fully utilize PBC, it helps to understand the inner workings of the PIC
processors. Because the PICs use a common architecture, once you learn one PIC
your knowledge carries over to any other PIC you may want to use. Once you learn
the inner workings you may want to upgrade to the PBCPro compiler or PBPro.
Let’s look at that before we start using these compilers.

PicBasic Compiler (PBC)

49

The PicBasic Pro Compiler

If you’re really serious about PICs and want to stay with PicBasic,
microEngineering Labs has developed a professional version of the PicBasic com-
piler called PicBasic Pro (PBPro). microEngineering Labs had so many things they
wanted to add to PBC that it became a BASIC compiler in a league by itself. PBPro
added many more features to PBC. The main benefits of PBPro over the PBC are:

� Interrupts in BASIC

� Programs longer than 2k

� Arrays

� Direct access to all I/O without using PEEK and POKE

� Direct access to special function registers without using PEEK and POKE

� Ability to tell Pro what clock oscillator you want to operate at instead of the
4 MHz PBC expects

� Ability to use PBPro with Microchip’s assembler MPASM for better ICE
and simulator compatibility

� Any variable can be designated as bit, byte, or word.

PBPro is really a full-featured compiler. By the time you read this,
microEngineering Labs should have announced the release of additional support for

51

C H A P T E R 3

the 17CXXX high-performance 16-bit core PICs. Here is a list of the current PBPro
commands:

@: Insert one line of assembly language code.

ASM..ENDASM: Insert assembly language code section.

ADCIN: Read on-chip analog to digital converter.

BRANCH: Computed GOTO (equivalent to ON..GOTO).

BRANCHL: BRANCH out of page (long BRANCH).

BUTTON: Debounce and auto-repeat input on specified pin.

CALL: Call assembly language subroutine.

CLEAR: Zero all variables.

CLEARWDT: Clear Watchdog Timer.

COUNT: Count number of pulses on a pin.

DATA: Define initial contents of on-chip EEPROM.

DEBUG: Asynchronous serial output to fixed pin and baud.

DEBUGIN: Asynchronous serial input from fixed pin and baud.

DISABLE: Disable ON INTERRUPT processing.

DISABLE DEBUG: Disable ON DEBUG processing.

DISABLE INTERRUPT: Disable ON INTERRUPT processing.

DTMFOUT: Produce touch-tones on a pin.

EEPROM: Define initial contents of on-chip EEPROM.

ENABLE: Enable ON INTERRUPT processing.

ENABLE DEBUG: Enable ON DEBUG processing.

ENABLE INTERRUPT: Enable ON INTERRUPT processing.

END: Stop execution and enter low power mode.

FOR..NEXT: Repeatedly execute statements.

FREQOUT: Produce up to 2 frequencies on a pin.

Programming PIC Microcontrollers with PicBasic

52

GOSUB: Call BASIC subroutine at specified label.

GOTO: Continue execution at specified label.

HIGH: Make pin output high.

HSERIN: Hardware asynchronous serial input.

HSEROUT: Hardware asynchronous serial output.

I2CREAD: Read bytes from I2C device.

I2CWRITE: Write bytes to I2C device.

IF..THEN..ELSE..ENDIF: Conditionally execute statements.

INPUT: Make pin an input.

{LET}: Assign result of an expression to a variable.

LCDIN: Read RAM on LCD.

LCDOUT: Display characters on LCD.

LOOKDOWN: Search constant table for value.

LOOKDOWN2: Search constant/variable table for value.

LOOKUP: Fetch constant value from table.

LOOKUP2: Fetch constant/variable value from table.

LOW: Make pin output low.

NAP: Power down processor for short period of time.

ON INTERRUPT: Execute BASIC subroutine on an interrupt.

OUTPUT: Make pin an output.

PAUSE: Delay (1 millisecond (msec) resolution).

PAUSEUS: Delay (1 microsecond (_sec) resolution).

PEEK: Read byte from register.

POKE: Write byte to register.

POT: Read potentiometer on specified pin.

PULSIN: Measure pulse width on a pin.

The PicBasic Pro Compiler

53

PULSOUT: Generate pulse to a pin.

PWM: Output pulse width modulated pulse train to pin.

RANDOM: Generate pseudo-random number.

RCTIME: Measure pulse width on a pin.

READ: Read byte from on-chip EEPROM.

READCODE: Read word from code memory.

RESUME: Continue execution after interrupt handling.

RETURN: Continue execution at statement following last executed GOSUB.

REVERSE: Make output pin an input or an input pin an output.

SERIN: Asynchronous serial input (8N1) (BS1 style with timeout.)

SERIN2: Asynchronous serial input (BS2 style.)

SEROUT: Asynchronous serial output (8N1) (BS1 style.)

SEROUT2: Asynchronous serial output (BS2 style.)

SHIFTIN: Synchronous serial input.

SHIFTOUT: Synchronous serial output.

SLEEP: Power down processor for a period of time.

SOUND: Generate tone or white noise on specified pin.

STOP: Stop program execution.

SWAP: Exchange the values of two variables.

TOGGLE: Make pin output and toggle state.

WHILE..WEND: Execute code while condition is true.

WRITE: Write byte to on-chip EEPROM.

WRITECODE: Write word to code memory.

XIN: X-10 input.

XOUT: X-10 output.

Programming PIC Microcontrollers with PicBasic

54

As you can see, the PBPro list of commands is extensive. Some of the com-
mands you will use often and other commands will be specific to unique applica-
tions. You will find that some PBPro commands operate slightly different from PBC
commands of the same name and some commands function the same but have a
slightly different format. Commands are not the only thing different about PBPro.
The way the PBPro compiler handles variables, constants, symbols, and pin names
make it a more powerful compiler. Let’s look at those first.

Variables

PBPro uses the RAM of the PIC as open space for storing data the same way an
assembly language program would. The RAM space is not predefined with the B0
or W0 names that PBC used. Instead, you can name the RAM anything you want
using the VAR directive. You also have to tell the compiler how much RAM space
the variable will use. It can be defined as a bit, byte or word variable. The format
is as follows:

label VAR size{.modifiers}

The label is the name of the variable you will use throughout your program.
PBC and PBPro are case insensitive, which means LABEL and label are treated the
same by both compilers. A label can have up to 32 characters, but you’ll probably
only use five or six. Why create such a long name if you’re going to repeat it 20 or
30 times throughout a program? Save yourself the typing and make them short but
understandable.

VAR is the directive that lets PBPro know that this line is establishing a variable.
It doesn’t have to be capitalized.

Size is the amount of RAM space the variable is going to use. It has to be bit,
byte or word. Nibble is not an option.

Examples:

Book var word
Page var byte
Letter var bit

The PicBasic Pro Compiler

55

The size parameter can also be modified or specified to be a part of a bigger
memory size variable. Also, the bit number and the bit word (“0” and bit0) are
treated the same. Modifier names are listed below.

0 and bit0 are the 1st bit of the byte or word;

1 and bit1 are the 2nd bit if the byte or word;

and so on until. . . .

15 and bit15 are the highest or 16th bit of the byte or word.

byte0 and lowbyte are the least significant byte of the word; byte1 and highbyte
are the most significant byte of the word.

Examples:

letter0 var page.0 ‘letter0 is bit0 of the byte page
letter1 var page.bit1 ‘letter1 is bit1 of the byte page
chap0 var book.byte0 ‘ chap0 is the first byte of the word

‘ variable book
chap1 var book.highbyte ‘ chap1 is the second byte of the

‘ word variable book

The VAR directive can also be used to add another name or alias to the same vari-
able.

Example:

Novel var book ‘novel or book will refer to the same RAM
‘location

You can also create arrays with PBPro, which is very handy for some program-
ming routines. You use the same VAR directive and then specify the number of array
elements in the size modifier. The number of elements must be with brackets.

Examples:

chapter var byte[10]

These will be treated as chapter[0], chapter[1], …, chapter[10]. You can
even use them in a loop.

Programming PIC Microcontrollers with PicBasic

56

Example:

for x = 1 to 10
chapter[x] = x
next

Because of memory limitations, arrays are limited as follows:

� Bit: 128 elements

� Byte: 64 elements

� Word: 32 elements

PBPro uses 24 bytes of RAM for its own internal use and can occasionally grab
a few more bytes for sorting out complex equations. How many variables you can
have depends on the PIC part you are using. A 16F84 PIC, which has 68 bytes of
RAM, will yield (68 - 24), or about 44 byte variables.

If you still like using the B0 and W0 predefined variables, PBPro has two
include files that you enter at the top of your program.

Include “bs1defs.bas”

or

Include “bs2defs.bas”

These contain numerous var statements that define the B0 and W0 type vari-
ables used in the Basic Stamp modules. I don’t recommend them, though. You will
have more space and much more control if you create variables yourself. It’s also
better from a programming technique because a label like “number” is far more
understandable than “B0”.

Constants

Constants are handled differently in PBPro. Instead of using the SYMBOL command
as in PBC, you instead use the CON directive. Constants are handy for having a name
reference a value so that reference can be used throughout the program rather than
the actual number. This offers the opportunity to change the value once at the CON

The PicBasic Pro Compiler

57

line of the program and the compiler will then change the value everywhere the con-
stant name is used.

You can also define a constant by an equation that uses another constant, so a
single value change can have a domino effect throughout your program.

Example:

Value con 100
Tenth con value/10
Price con value * 2

As you can see, any change to the value constant will also change the tenth and
price constants throughout the program.

Symbols

The SYMBOL command in PBC is used in PBPro but is limited to renaming variables
and constants.

Examples:

Symbol cost = price
Symbol value = 100

Numeric and ASCII

PBPro has three ways to define a number: decimal, binary, and hexadecimal. You
will find advantages to each as you program. Most BASIC language programmers
like the simplicity of just using decimal numbers and PBPro defaults to that for-
mat. Any number is assumed to be decimal.

If a number is preceded by a % symbol, then the number is considered binary.
Binary numbers are always assumed to be least significant bit to the right and most
significant bit to the left. If less than eight bits are shown, then the missing bits are
assumed to be zero and to the left of the number shown.

If the number is preceded by a $ symbol, then the number is considered a hexa-
decimal number. Then there are also ASCII characters, which are basically every

Programming PIC Microcontrollers with PicBasic

58

character you can create on a computer screen. These characters are typically let-
ters, but if the letters are enclosed in double quotes then PBPro treats the letter or
character as the ASCII numeric equivalent. Here are examples of each numeric for-
mat.

100 ‘Decimal value 100
%100 ‘Binary equivalent to 00000100 or decimal 4
%11110000 ‘Binary format used to show each bits value. The

‘higher four bits ‘are 1, lower are 0
$100 ‘Hexadecimal number equivalent to 256 decimal.
$F0 ‘Hexadecimal number that is the same as %11110000

‘binary.
“A” ‘ASCII character that PBPro uses decimal 65, the

‘ASCII value for A

Strings

If a string of characters are within double quotes, PBPro breaks them up into sepa-
rate ASCII characters and uses their ASCII numeric value.

Example:

“HELP” ‘ is treated as “H”, “E”, “L”, “P” and uses the ASCII
‘ values for each character

This can be handy when sending ASCII characters to a PC or some other serial
module. A phrase can be put in quotes and then each letter’s ASCII value will get
sent as a string of bytes. You’ll see more of this in the command descriptions.

I/O Access

It may seem strange that I jump to a hardware-related topic from the data format
discussion, but it’s because PBPro has added the feature of easily defining an I/O
value the same way you would define a bit or byte value. The ports within the PIC
are predefined by PBPro so access to an I/O pin on Port B is as easy as this:

PORTB.1 = 1 ‘This sets the port B bit 1 to a value of 1.

What it doesn’t do is make PORTB.1 an output. You have to do that separately.
That’s the difference between setting a port high or low with this method and set-
ting a port using the HIGH or LOW command. The HIGH and LOW commands first make

The PicBasic Pro Compiler

59

the pin an output, and then sets the state. This is a great example of where PBPro
separates itself from PBC and the Basic Stamp limitations. It also moves you closer
to using the PIC to its full potential. It really helps to understand the inner workings
of the PIC, and we’ll cover that in the next chapter.

The PIC has several special function registers, and PBPro has a predefined name
for each one. The list of names is found in the file PIC14EXT.bas that is included
with PBPro. I recommend you print it out and add it to the PBP manual. I have mine
stapled to the inside cover for easy reference. Registers like the STATUS or INT-
CON are used a lot so those you will remember. But others like SSPBUF or SSP-
CON for the serial port peripheral on some PICs are ones you’ll probably look up.
The nice thing about PBPro is they all can be modified just like the example of
PORTB earlier. You can define the contents of the register or location with a math-
ematical expression. To set the PORTB to four inputs and four outputs you would
set up the TRISB register as follows:

TRISB = %00001111 ‘ RB7 - RB4 outputs; RB3 - RB0 inputs

This is a real time saver and a great feature of PBPro. It’s also a format very sim-
ilar to programming in assembly. If you ever have to write in assembly, using PBPro
will have prepared you quite well.

The VAR directive has other functions. You can even rename a port pin for its
function using the VAR command and then set the bit value.

For example:

led var PORTB.0 ‘LED is connected to port B bit 0
led = 1 ‘set port B bit 0 to a high or 1 value

As you can see, I/O control can be as easy as defining a variable. This example
assumes that PORTB is already set up as an output, otherwise the led = 1 line will
set the bit but the LED won’t see the value.

I/O Control

PBPro expands the available I/O that can be accessed with just a numeric reference.
PBPro increased the range from the 0-7 available in PBC to 0-15. This means a
command such as “HIGH 10” is legal in PBPro. Those 0-15 reserved I/O are there

Programming PIC Microcontrollers with PicBasic

60

to maintain compatibility with the BASIC Stamp modules. If you’re a Stamp user
and want to use all the capabilities of PBPro, it’s time to break that habit! As I
described earlier, any pin on the PIC can be called by its portname.number format
(PORTB.0). Commands like “HIGH 10” can be replaced with “HIGH porta.1”. If
you are using a PIC with more than 16 I/O, then using the portname.number format
will give you direct access to every I/O with every PBPro command. If you still
want to use the 0-15 digits in your commands, then you need to know which ports
they work with on each PIC. Because each PIC PORT set-up is defined by its pack-
age, the following shows how the 0-15 numbers are assigned.

PIC Package PINs 0 – 7 PINs 8 - 15

8 pin GPIO (0 - 6) none

18 pin PORTB (0 - 7) PORTA (8 - 12)

28 pin (except 14000 PIC) PORTB (0 - 7) PORTC (8 - 15)

28 pin 14C000 only PORTC (0 - 7) PORTD (8 - 15)

40 pin PORTB (0 - 7) PORTC (8 - 15)

As you can see, the 8-pin PICs don’t use the PORTB at all but instead use the
GPIO name that Microchip uses on the 8-pin PICs. Why Microchip didn’t use
PORTB or PORTA is a mystery to me, but if you want to define a bit in GPIO, it’s
also defined by PBPro in the PIC14EXT.bas file.

Example:

Led var GPIO.0 ‘LED connected to bit 0 of the GPIO port.

If you’re a BASIC Stamp user, then you are familiar with the PINs command.
This does the same thing PORTB.0 does but in its own way. PBPro will allow you
to use the BASIC Stamp I/O format if you include the BS1 or BS2 definition files.

Include “bs1defs.bas”

or

Include “bs2defs.bas”

The PicBasic Pro Compiler

61

bs1defs.bas defines the Pins, B0-B13, W0-W6 names, and bs2defs.bas defines
the Ins, outs, B0 - B25, W0 - W12 names.

I highly recommend you break the BASIC Stamp format habit when using
PBPro. PBPro is so much more powerful. Many people, including me, started out
using Basic Stamps and then switched to PBC or PBPro. If you are a Stamp user
you probably have many Basic Stamp programs already written. In my opinion it’s
well worth the time converting those programs to pure PBPro format. Then you
have a large base of PBPro programs to work from as you develop other projects.

Comments

Comments within a PBPro program can be formatted in the same two ways as PBC.
The comments can be preceded by a single quote (‘) or the REM keyword.

HIGH 1 ‘ This would be the comment
LOW 1 REM This would also be a comment

Math Operators

PBPro adds a bunch of new math operators to the list PBC offers. PBPro also per-
forms math in hierarchical order. That means multiplies and divides are done before
addition and subtraction. Equations within parentheses are done first and then the
rest of the equation. All math is unsigned and uses 16-bit precision, the same as
PBC. MIN and MAX also perform differently than PBC. When used in PBPro, they
return the minimum or maximum value rather than limit the minimum or maximum
value. The following table shows the math operators.

+ Addition

- Subtraction

* Multiplication

** Most significant bit (MSB) of multiplication

*/ Middle 16 bits of multiplication

/ Division

// Division remainder only

Programming PIC Microcontrollers with PicBasic

62

<< Shift left

>> Shift right

ABS Absolute value

COS Cosine

DCD 2n decode

DIG Digitize

MIN Limit result to minimum value defined

MAX Limit result to maximum value defined

NCD Encode

REV Reverse bits

SIN Sine

SQR Square root

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

&/ Bitwise AND NOT

| / Bitwise OR NOT

^ / Bitwise XOR NOT

Arithmetic Operators

Multiplication

Multiplication is actually 16 × 16, resulting in 32-bit results.

W2 = W1 * 100 ‘ The lower 16 bits of the result are placed
‘ in W2

W2 = W1 ** 100 ‘ The upper 16 bits of the result are placed
‘ in W2

W2 = W1 */ 100 ‘The middle 16 bits are stored in W2

The PicBasic Pro Compiler

63

Division

Division is done as follows.

W2 = W1 / 100 ‘ The numerator of the result is placed in W2

W2 = W1 / / 100 ‘ The remainder only is placed in W2

ABS

An absolute value is return up to 127 for bytes and 32767 for words. If the value is
greater then 127, the result returned is 256 – value and words is 65536 – value.

Answer = ABS B0 ‘ If B0 = 100 then Answer = 100
‘ If B0 = 200 then Answer = 56

COS, SIN

These generate the cosine or sine of a number, although differently than the typical
cosine/sine math. It creates a value in binary radians between –127 and +127, and
not the typical degrees. You have to do your own conversion of binary radians to
degrees. The command uses a lookup table to create the answer. If you need these
kinds of calculations, PBPro has them reduced to a single command.

SQR

This operator calculates the square root of a value. However, it will only return an
8-bit integer value.

MIN, MAX

This operator is used in PBC but PBPro changed the function. PBC had MIN and MAX
set the limit for a variable. PBPro measures two variables against each other and
returns the minimum or maximum value. If one variable is set to a constant value,
then you accomplish the same thing PBC was doing. But if both variables are
changing, then these make a quick IF - THEN type function.

W0 = W1 MAX W2 ‘W0 will always equal the larger of W1 and W2

Programming PIC Microcontrollers with PicBasic

64

Binary Functions

Shift <<, >>

This is a new operator PBC doesn’t have. It allows you to shift a word or byte bit
by bit left or right. As bits are shifted left or right, the empty bit spaces are filled
with zeros. It does not shift a 1 bit from the left all the way around to the right.

Result = %11110000 >> 4 ‘Variable Result equals
‘%00001111 when done

Result = %00001111 << 4 ‘Variable Result equals
‘%11110000 when done

DCD

The name is confusing but it’s a handy operator. This operator sets a specific bit to
1 while clearing all the other bits. It operates on word and byte variables. The range
is bits 0–15.

W0 = DCD 0 ‘ W0 will have the 1st bit set %0000000000000001
‘ when completed

NCD

This does the opposite of DCD. Instead of setting a bit, it reads the highest bit set
and returns the position as a numeric number. If no bit is set, it returns a zero. If
more than one bit is set, only the highest bit position will be returned. The number
returned will range from 1–16 with 0 reserved for the no bit set answer.

B0 = %00010001
B1 = NCD B0 ‘B1 will equal 5 because the 5th bit is the

‘highest bit set

REV

This operative is short for “reverse.” It reverses the order of a specific number of
bits. The operative is followed by the number of bits to reverse, starting at the low-
est-order bit. The number to be reversed can be 1–16.

B1 = %11110000 REV 8 ‘ The result is B1 = %00001111

The PicBasic Pro Compiler

65

DIG

This is not really a binary function, but it is bit related. DIG returns a single digit
from a group of up to five digits. If a variable has the decimal value of 54321, any
one of those digits can be plucked from the number and placed by itself in a vari-
able all its own. The choices are 0–4, with 0 being the right-most digit.

W0 = 54321
B1 = W0 DIG 2 ‘B1 = 3 or %00000011

Digital Operators: &, |, ^, ~, &/, |/, ^/

These are the characters that make a program look very strange to a nonprogram-
mer. They are just a way of doing digital logic (AND, NAND, OR, NOR, etc.) on
variables. They can be handy, but hard to remember if you don’t use them often.

B1 = %11001111
B0 = %11110000 & B1 ‘ B0 will AND each bit and the result will

‘ be %11000000
B2 = %11110000 | B1 ‘ B0 will OR each bit and the result will be

‘ %11111111
B3 = %11110000 ^ B1 ‘ B0 will Exclusive OR each bit; B0 =

‘ %00111111

PBPro Commands

The PBPro list of commands is extensive, as mentioned earlier. Some of them are
identical to the PBC commands and some are either not available to PBC users or
have the same name as PBC commands but function slightly different. I won’t
group these like I did in Chapter 2, as it would be too hard to find them when you
reference this later. Instead I’ll list them alphabetically. I will repeat the descriptions
from the PBC chapter for commands that are identical to PBPro commands.

The PBPro command structure deals with the unique PIC memory much better
than PBC. PICs have an internal page boundary that is limited to 2k. PBC didn’t
handle this well and PBPro fixes that issue. PBPro even has some special commands
for dealing with tables that cross the 2k page boundary. For the most part, though,
you won’t have to worry about the page boundary. The PBPro compiler takes care
of that for you. Here is the descriptive list of commands:

Programming PIC Microcontrollers with PicBasic

66

@ insert one line of assembly language code

Put this symbol in front of any command and the compiler will think it’s an
assembly language statement or command. This makes it easy to insert a single
assembly language command. PBPro has so many command options that this may
not be necessary. What is handy about this command, though, is using it to insert an
assembly language program. If you have a program that performs a special function,
and it’s written in assembly to conserve space, then just insert it with this command.

Example:

@ Include debugger.asm

ADCIN channel, var

This command is not the best example of PicBasic efficiency but it does save sev-
eral coding steps. It was developed to make reading the analog-to-digital (A/D)
ports easier but still requires so much set-up that the command really only saves a
few lines of code.

The command requires the A/D channel you want your program to read. This
can be a number from 0–7. Also required is the variable you want the value stored
in. This should be a byte variable for 8-bit A/D and a word variable for 10- or 12-
bit A/D. The number of bits in your result depends on which PIC you are using and
how you configure the PIC A/D port.

I wish this command did more for your A/D set-up than it does but it can be a
handy command. You see, all PICs with A/D allow the A/D ports to be configured
as digital ports also. Therefore, before you use this command you have to make sure
the port is properly set up for A/D input.

First you have to set the port to input mode:

TRISA = %11111111 ‘ all PORTA pins are inputs

Second, you have to set up the ADCON1 register. This register selects which
A/D ports will be used as A/D ports and which are configured as digital ports.
Consult the PIC data sheets to explain the ADCON1 register options; I also suggest
you read the PIC data sheet on A/D before using this command. It will make a lot

The PicBasic Pro Compiler

67

more sense to you. The ADCON1 register also controls how the result is placed in
the ADRESH and ADRESL registers. The result can be right or left justified for 10-
and 12-bit A/D ports. The directive to set up ADCON1 for all A/D PORTA and right
justify the 10-bit result is:

ADCON1 = %10000010 ‘all PORTA analog and right justify the
‘result

After the TRISA and ADCON1 steps are done, then the ADCIN command can
be used:

ADCIN 0, value ‘ Read A/D channel 0 and store the result in
‘ variable value.

This command also has a few Defines that should be included with every PBPro
program that uses the ADCIN command.

DEFINE ADC_BITS: used to set the result to a byte or word result. It should be
followed by an 8 or a 10.

DEFINE ADC_CLOCK: used to select the internal clock source that the A/D port
will use in its sample and hold circuitry. The define should be followed by a value
of 0 to 3.

0: External oscillator/2

1: External oscillator/8

2: External oscillator/32

3: PIC internal RC oscillator

The most common selection here is the PIC’s internal RC oscillator, which
would be the value 3. Here is an example of reading a 10-bit A/D on channel 0,
assuming a PIC16F876 is being used:

Define ADC_BITS 10 ‘ 10 bit result
Define ADC_CLOCK 3 ‘ use internal RC oscillator

advalue VAR word ‘ Word variable to store result

TRISA = %11111111 ‘ All PORTA set as inputs

Programming PIC Microcontrollers with PicBasic

68

ADCON1 = %10000010 ‘all PORTA analog and right justify
‘the result

Loop:
ADCIN 0, advalue ‘ Read channel 0 and store in advalue
variable
Pause 100 ‘ Pause 100 msec before taking
another sample
………. ‘ insert code here for what you do
with the advalue
Goto loop ‘ Jump back and sample again

ASM..ENDASM

These commands are used together to insert assembly language into a PicBasic pro-
gram. This is handy for simple things or more control over how long a command
executes. (One more time: you should really read the PIC data sheet before using
assembly language!) Comments must start with a semicolon when commenting
assembly commands.

Example:

Asm ‘The following code is written in assembly
_assembly ;Label must be proceeded by underscore

clrb RP0 ; Comments must be proceeded by semicolon
mov 5,_B0 ; for assembly instead of the single quote

; for PicBasic
endasm

BRANCH offset, [label, {label, label, …}]

This command is similar to the PBC version, except it uses brackets “[]” instead of
“()” to frame the list of labels. The list of labels can include up to 256 different
labels but they must all be on the same 2k memory page.

The BRANCH command is a multiple level IF THEN. It will jump to the program
label based on the offset value. Offset is a program variable. If offset equals 0, the
program will jump to the first listed label. If offset is 1, then the program will jump
to the second listed label, and so forth. If offset is a larger number than the number
of labels, then the branch instruction will not execute and the next PicBasic com-
mand following BRANCH will execute.

The PicBasic Pro Compiler

69

Example:

BRANCH B1, [first, second, third] ‘ If B1=0 then goto first; if
‘ B1=1 then goto second;

‘ if B1=2 then goto
‘ third; if B1 > 2 then
‘ skip BRANCH
‘ instruction

BRANCHL offset, [label, {label, label, …}]

This works the same as the BRANCH command except it takes care of the 2k page
boundary. It also limits the number of labels to 128.

BUTTON pin, down, delay, rate, var, action, label

This command is designed to make reading a switch easier. I find it very confusing
and I’m not alone. This command actually operates in a loop. It continually samples
the pin and filters it for debounce. It also compares the number of loops completed
with the switch closed to see if auto-repeat of the command action should take
place. The auto-repeat is just like the keyboard on a personal computer. Hold down
a key down and it will soon auto-repeat that character on the screen until it runs out
of space. The command has several operators that affect its operation.

pin

This is the I/O port pin the switch is connected to as seen in Figure 3-1.

Figure 3-1: I/O port pin switch connection.

5-50K

PIN

Vdd

Programming PIC Microcontrollers with PicBasic

70

down

This defines what the port should see when the switch is closed, a high (1) or low
(0).

delay

This is a value of 0–255 that tells the command how many loops must occur with
the key pressed before starting the auto-repeat feature. This operator also does two
other functions. If the value is 0, then debounce and auto-repeat are shut off. If it’s
255, then debounce is on but auto-repeat is off.

rate

This value sets how fast the auto-repeat actually repeats itself. In other words, it’s
the rate of auto-repeat. It requires a 0–255 value.

var

This must be a variable because it stores the number of loops completed in the BUT-
TON command. It must be reset to zero prior to running this command or the BUT-
TON command will not function properly.

action

This tells the BUTTON command which state the switch must be in to jump to the
location described by label. If you want to jump to the label routine when the switch
is closed (as defined by down) then set action to 1. If you want to jump when the
switch is open then set action to 0.

label

This sets the goto label if the action operator is met. This label must be defined
somewhere in the program to properly compile.

The PicBasic Pro Compiler

71

Example:

B0 = 0
BUTTON2, 0, 100, 10, B0, 0, SKIP ‘ Check for button press (0 at
I/O port)

‘ at port pin 2 and goto SKIP
‘ routine if not pressed. Also
‘ if it’s pressed and held
‘ for 100 loops, auto-repeat
‘ at a rate of 10

What makes this command so confusing is all the options. I would have pre-
ferred a simple BUTTON command with just action and label with modifiable switch
debounce. Auto-repeat could have been a command on its own. I’ll show examples
later of how to read switches with other techniques.

CALL label

This is similar to GOSUB, except this executes an assembly language subroutine
rather than a PicBasic subroutine. It can be tricky to use this and should only be
used when your program absolutely must use assembly.

Example:

CALL assembly

Asm ‘The following code is written in assembly
_assembly ;Label must be proceeded by underscore

clrb RP0 ; Comments must be proceeded by semicolon
mov 5,_B0 ; for assembly instead of the single quote

; for PicBasic
endasm

CLEAR

This new command clears all RAM variables to zero. The PIC does not automati-
cally do this, and it’s a good practice to preset or clear all variables at the beginning
of the program. This command makes clearing the variables easy.

Programming PIC Microcontrollers with PicBasic

72

Example:

CLEAR ‘Set all variables to 0

Start: Put your main program loop here after the CLEAR command

CLEARWDT

This is a command that was created in response to user feedback. If you understand
the inner workings of the PIC, you know the Watchdog Timer can time out and reset
your program back to the beginning. The SLEEP and NAP instructions use the
Watchdog Timer to wake up the PIC after the time specified by these commands has
expired. Other than that, the Watchdog is just there to reset the PIC if for some rea-
son the program locks up. It’s like an automatic “Control-Alt-Delete” function like
that on a PC. The internal code of all the PBC and PBPro commands reset the
Watchdog so resets don’t occur when your program is running properly. This can
also be done with an assembly language insert:

@ CLRWDT

Some users wanted this direct control of the watchdog reset in PICBASIC, so the
CLEARWDT was developed.

Example:

loop:
High portb.1 ‘ set portb pin 1 high
Asm ‘The following code is written in assembly
_assembly ;Label must be proceeded by underscore

clrb RP0 ; Comments must be proceeded by semicolon
mov 5,_B0 ; for assembly instead of the single quote

; for PicBasic
endasm
CLEARWDT ‘ reset watchdog timer to make sure it is

' reset prior to moving on
pause 100 ‘ delay 100 milliseconds

The PicBasic Pro Compiler

73

COUNT pin,period,var

This command is carried over from the Basic Stamp II. I like the simplicity of it.
You can use it to sample a port for a specified amount of time, and then use the data
to calculate frequency or speed or just the rate that pulses are arriving. The resolu-
tion of the sample time is dependent on the crystal frequency and it counts the tran-
sitions from low to high. At a 4-MHz crystal frequency the designated pin is
checked every 20 microsecond. With a 20-MHz crystal/resonator it’s checked every
4 microsecond.

Pin can be 0–15 or a variable with the value of 0–15 or a portname.number such
as PORTA.1. The pin is automatically made an input. Period is in units of millisec-
onds. It can run up to 65536 milliseconds or 65.5 seconds but that’s quite a long
sample time. Var stores the total number of pulses counted during the period. It
really assumes a 50% duty cycle that is equal high and low time but it will work
with more or less than 50%. You have to know your signal to use this command
accurately.

Example:

‘Speed calculator assuming each pulse is 1/3600 of a mile and
‘measure pulses for 1 second,
‘(3600 second/hr)*(1 mile/3600 pulses)*(X pulses/second) = Y
‘mile/hr or 1 pulse per MPH

distance var byte
speed var byte

sample:
count 0, 1000, distance ‘get number of pulses in a

‘second
speed = distance ‘ number of pulses = MPH
serout 1, N9600, speed ‘ send speed value serial to

‘ display device
goto sample

DATA @location, constant, constant, …

This command is different from most of the other commands because it is only exe-
cuted when the PIC is programmed, not when the program in the PIC is run. It is
used to preload the EEPROM memory. It only works with PICs that have EEPROM
memory, like the 16F84. The location variable is optional and sets the starting point

Programming PIC Microcontrollers with PicBasic

74

to store values. If it is not included in the command then the location 0 is used. The
constant value can be a numeric or string constant. Only the least significant byte is
stored for numeric constants unless it is preceded by the modifier “word”. If word
precedes it, then the next two bytes are stored in consecutive EEPROM locations.
String constants are treated as separate ASCII values and stored as separate values.

This command is similar to the PBC EEPROM command, and in fact PBPro
allows the EEPROM command as well. They do the same thing—store constants in
EEPROM at compile time—but they have slightly different formats. DATA doesn’t
require a parenthesis around the constants, but does require an @ symbol before the
location value. DATA also has the ‘word’ operator and EEPROM doesn’t. The com-
mand DATA was carried over from the BASIC Stamp 2.

Example:

DATA @5, 10,”A” ‘Store value 10 at location 5, ASCII
‘value of “A”
‘at location 6 of the internal EEPROM

DATA word $1234 ‘Stores $34 at first two bytes and
‘$12 at the second ‘two bytes.

DATA $1234 ‘Stores $4 at first byte, $3 at
‘second byte, $2 third ‘and $1 fourth

DEBUG item, item, …

This command was written to give PBPro users a simple way of monitoring the pro-
gram while running in a PIC. It serially sends any variable data out a predefined port
pin at a predefined baud rate in 8N1 format. It really is a simplified SEROUT com-
mand. It can be handy for monitoring a set of variables by connecting a PC or serial
LCD module to display the values sent. Sometimes just seeing the value of a vari-
able can clue you into why your program isn’t working like you expected.

Because the DEBUG command uses predefined definitions, the only way to
change those definitions is with a set of DEFINE statements. These statements are
read when the PBPro program is compiled. They will stay intact throughout the pro-
gram. That means all DEBUG commands inserted in a PBPro program will commu-
nicate at the same baud rate, via the same port pin. That is how this command differs
from the SEROUT command. The SEROUT command sets all the communication
parameters at each SEROUT command so each SEROUT command can drive a differ-
ent pin at various baud rates.

The PicBasic Pro Compiler

75

DEBUG definitions include the following:

DEFINE DEBUG_REG PORTB ‘Set debug port to B
DEFINE DEBUG_BIT 0 ‘Use PORTB bit 0
DEFINE DEBUG_BAUD 2400 ‘Set baud rate to 2400
DEFINE DEBUG_MODE 1 ‘0 = true, 1 = inverted
DEFINE DEBUG_PACING 1000 ‘This sets the delay between

‘characters its in 1 msec
‘units so 1000 = 1 second

DEBUG can be enabled or disabled with the DISABLE DEBUG and ENABLE DEBUG
commands.

DEBUGIN {timeout, label,} [item, item, …]

This command was written to expand on the capabilities the DEBUG command offers.
The DEBUG command focused on sending information out. This command is for
receiving information in. It really is just another form of SERIN2 command,
explained later, but it uses less code space than SERIN2. The real advantage to this
command is the ability to build a debugger program that will stop the program and
wait for you to input data. Then the program can run from that point on. DEBUGIN
can be enabled or disabled with the DISABLE DEBUG and ENABLE DEBUG commands.

DISABLE INTERRUPT

This is one of the unique PBPro commands that came about because of interrupts.
The biggest complaint I have always had with BASIC Stamps, and even PBC, was
the lack of interrupts in BASIC. In fact, the BASIC Stamps don’t offer interrupts at
all. Interrupts add so much to a program. You can have the program interrupt when
a switch is closed or an internal timer runs out, and then run another short program
called an interrupt handler.

When the interrupt handler is done, the PIC is returned to the main program loop
where it was interrupted. This allows functions to be monitored in the background
while your main program loop is running. That is the great advantage of interrupts.

Sometimes during your main loop you may be doing something that an interrupt
could screw up. That’s when the DISABLE INTERRUPT command is used. Place it

Programming PIC Microcontrollers with PicBasic

76

before the code you don’t want interrupted and the interrupt handler routine will be
disabled. The ENABLE INTERRUPT command mentioned later will restore the inter-
rupts. Using DISABLE INTERRUPT does not mean the interrupt handler routine won’t
ever function, its just delayed until the ENABLE INTERRUPT command is encoun-
tered.

DISABLE INTERRUPT ‘ Disable interrupts
For x = 1 to 3 ‘ Sample PORTB three consecutive
value(x) = portb ‘ times without interruption.
next
ENABLE INTERRUPT ‘ Ready for interrupts

DISABLE DEBUG

This command does a similar function as DISABLE INTERRUPT above, except it only
works on the DEBUG commands. ENABLE DEBUG reverses this command.

DISABLE

This combines the DISABLE DEBUG and DISABLE INTERRUPT into one command.

It disables both the DEBUG and ON INTERRUPT functions. ENABLE command
resets them back to working mode.

DTMFOUT pin, onms, offms, [Tone,Tone, …]

This is a clever command that generates the Touch Tones your phone uses to call a
number. Pin designates which PIC pin to send the signal out of. It can be the 0–15
value or a variable or the portname.number format (PORTA.0). Onms is the number
of milliseconds each tone is on. Offms is the time delay in milliseconds between
tones. These are optional parameters to include because the command defaults to an
onms of 200 msec and an offms of 50 msec.

The Tone(s) are a number from 0 to 15. The digits 0 to 9 are the same tones as
the numbers on your Touch Tone phone. The * key tone is number 10 and the # key
is number 11. Values 12–15 are reserved for the extended keys A, B, C and D,
respectively. Extended keypads offer those keys.

The PicBasic Pro Compiler

77

This command actually uses another PBPro command, FREQOUT, which I’ll dis-
cuss later. The DTMFOUT uses FREQOUT to produce two tones in a pulse-width mod-
ulated method. The actual signal is not very useful until you add external wave
shaping and, for best results, an amplifier to boost the sound. This command also
prefers you run the PIC at 20 MHz rather than the default 4 MHz for best results. A
suggested filter is shown in Figure 3-2.

Figure 3-2: Output filter for use with tones generated by the DTMFOUT command.

EEPROM location, (constant, constant)

This command is the same as the PBC version except it uses ‘[]’ instead of ‘()’. It
is only executed when the PIC is programmed, not when the program in the PIC is
run. It is used to preload the EEPROM memory. It only works with PICs that have
EEPROM memory like the 16F84. The location variable is optional and sets the
starting point to store values. If it is not included in the command then the location
0 is used. The constant value can be a numeric or string constant. Only the least sig-
nificant byte is stored for numeric constants and string constants are treated as sepa-
rate ASCII values. This command is similar to the DATA command mentioned
earlier and is included mainly for people converting Basic Stamp 1 code to PBPro
code.

Example:

EEPROM 5, (10,”A”) ‘Store value 10 at location 5, ASCII value
‘of “A” at location 6 of the internal EEPROM

ENABLE INTERRUPT

This command enables the interrupts that were put on hold by the DISABLE
INTERRUPT command mentioned above. Both ENABLE INTERRUPT and DISABLE
INTERRUPT take up zero code space and are really directives to the compiler to

PIC
pin

1K 1K

0.1 uF 0.1 uF

To
Amp

Programming PIC Microcontrollers with PicBasic

78

include some interrupt jumps or not. ENABLE INTERRUPT restores the interrupt han-
dler to run mode if an interrupt occurred during the DISABLE INTERRUPT mode.

If an interrupt occurred, the interrupt handler will start immediately after the
ENABLE INTERRUPT command and before the first PBPro command that follows
ENABLE INTERRUPT. DISABLE INTERRUPT and ENABLE INTERRUPT should always
surround the interrupt handler routine. You don’t want to receive an interrupt while
your processing a previous interrupt or you could end up never leaving that section
of code.

Example:

DISABLE INTERRUPT ‘ No interrupts please!
inthand:

total = total + 1 ‘increment interrupt count for
‘whatever purpose

resume ‘Return back to the main loop and
‘reset the interrupt flag

ENABLE INTERRUPT ‘ Interrupts enabled

ENABLE DEBUG

This command does a similar function as ENABLE INTERRUPT above, except it only
works on the DEBUG commands. DISABLE DEBUG reverses this command.

ENABLE

This combines the ENABLE DEBUG and ENABLE INTERRUPT into one command.

It enables both the DEBUG and ON INTERRUPT functions. DISABLE command resets
them back to working mode.

END

This command stops program execution. It is automatically placed if you don’t
include it but it’s best to include it at the end of your main loop. Place the subrou-
tines after this command. You should never actually get to this command since your
PIC stops and goes into an endless series of NAP commands and never leaves until
you reset the PIC.

The PicBasic Pro Compiler

79

FOR … NEXT

This command is familiar to anyone who has used BASIC. The format is as follows:

FOR variable = start TO end [STEP [-] increment]
[Picbasic Routine]

NEXT {variable}

The PicBasic routine trapped between the FOR/NEXT command structure will be
executed while the logical statement following the FOR command is within the start
and end values.

Variable can be any variable you create with VAR mentioned earlier. Start and
end are limited to the size of the variable. If the variable is a byte, then start and
end must be 255 or less. If variable is a word size, then start and end must be less
than 65536. What this command really does is first initialize the variable to the start
value. It then executes the PicBasic Routine. At the end of the routine the variable
is incremented by one and compared to the end value. If variable is greater than the
end value, then the PicBasic command that appears after the NEXT command is exe-
cuted. If variable is less than or equal to the end value, then the trapped PicBasic
Routine is executed again.

The STEP option allows the command to do something other than increment the
variable by one. It will instead increment the variable by the value increment. If
increment is a negative number, then the variable is actually decremented. If a neg-
ative number is used, you must make sure start is a greater number than end.

The variable name after NEXT is optional. It will increment the closest FOR vari-
able. If you have a FOR … NEXT loop within a FOR … NEXT loop, then it’s best to
place the proper variable name after the NEXT.

Here is an example of FOR … NEXT used to count in binary with LEDs connected
to PORTB:

Example:

X var byte

FOR X = 0 to 255 ‘Count from 0 to 255
PORTB = X ‘LED anodes connected to PORTB, cathodes

‘ground
NEXT ‘loop until X >255

Programming PIC Microcontrollers with PicBasic

80

FREQOUT pin, onms, frequency1, frequency2

Just like the DTMFOUT command this command produces a pulsed output of one or
two different frequencies. It also needs the same filtering and amplification that
DTMFOUT needed for sound, unless you just want a square wave. FREQOUT actually
produces a square wave on the designated pin. It is different than DTMFOUT in that
you define the output frequency by setting a value of 0–32767 in hertz for each fre-
quency variable. Frequency1 is necessary, but frequency2 is optional.

Pin is the port you want to send the signal out from. As usual it can be 0–15, a
variable or the portname.number (PORTB.1) option. This command only lets you
define the onms “on time” in milliseconds. FREQOUT is very handy for driving a
piezo buzzer. Buzzers can be used to indicate time has run out or give audible feed-
back that a switch was pressed.

Example:

‘ Timer example with buzzer output

x var byte

for x = 0 to 60 ‘not very accurate 1 minute timer
pause 1000 ‘1 second pause repeated 60 times
next ‘loop if x < 60

freqout 0, 1000, 2000 ‘output a square wave for 1 second at
‘2000 hertz
‘indicating 1 minute has elapsed

GOSUB label

This command could be considered a temporary GOTO. Just like GOTO, it jumps to
the defined label. Unlike GOTO, the program will return back and continue with the
command after GOSUB when the RETURN command is encountered. GOSUB is really
an abbreviation for GOto SUBroutine. A subroutine is a program listing within a
main program. You can have several subroutines that each performs a special func-
tion. You can also place a common routine in one subroutine rather than write the
common routine multiple times. This is a way to save memory.

You can also GOSUB within a subroutine. The first return will bring you back to
the subroutine and the second return will bring you back to the original GOSUB. This

The PicBasic Pro Compiler

81

is known as nesting. You are limited to four levels of nesting with PBPro or, in other
words, a maximum of four GOSUB commands may be used together. The return is
performed by an accompanying command RETURN. They must both be in the pro-
gram to make the function work.

You can have multiple GOSUB commands jumping to the same routine but only
have one RETURN command at the end of the subroutine. This is quite common. The
total number of GOSUB commands is unlimited—just don’t nest more than four.

Example:

FLASH:
GOSUB SUB ‘ Jump to subroutine SUB

GOTO FLASH ‘ Loop again to flash LED on PORTB bit 4

SUB:
TOGGLE 4 ‘ Change state of PORTB bit 4
RETURN

GOTO label

This command redirects the current program location to a new location. This can be
used for bypassing a section of code accessed by another part of the program or
even jumping back to the start of the program. Label must be defined somewhere
else in the program. It is usually placed at the bottom of the program just above the
END command. That way you can direct the program back to the beginning or ini-
tialization before reaching the END command.

Example:

GOTO START ‘ Jump to the beginning of the program at label
‘ START

END

HIGH pin

This command sets a specific bit in one of the predefined PIC I/O data registers and
then clears the corresponding TRIS register bit to 0 to make it an output. The pre-
defined PIC I/O data and TRIS register are dependent on the PIC you are program-
ming. The I/O control section earlier in this chapter defines the ports used. The pin
value designates which port bit to operate on. Pin must be a number from 0 to 15.

Programming PIC Microcontrollers with PicBasic

82

This command was handy in PBC, but PBPro makes it so much easier with the
portname.number format that HIGH is rarely needed and takes up more code space.
If you like using it, PBPro still includes it to maintain compatibility with PBC and
BASIC Stamps.

Example:

HIGH 1 ‘Set PORTB bit 1 high and make it an output. (PIC
‘pin 7 on 16F84)

alternative,

TRISB.1 = 0 ‘make PortB bit 1 an output
PORTB.1 = 1 ‘make PortB bit1 high

HSERIN paritylabel, timeout, label, [item, …]
HSEROUT [item, …]

These are some of the commands that put PBPro in a league of its own. Some of the
PICs have a built-in serial port peripheral. That peripheral is used to do serial RS232
type communication and offers many features that bit banging a RS232 signal does-
n’t offer. To set up the peripheral requires several steps but this command takes care
of it for you. The formats are similar to the SERIN/SEROUT commands except the
baud rate and other transmit set-up details are preset using a DEFINE statement.
These DEFINE statements are used when the program is compiled.

The HSERIN command offers several options in the command line such as par-
itylabel, timeout, label. The only required operator is the list of items, which is the
list of variables where you want the received information to be stored. After that is
set, you can add the optional timeout value in milliseconds that specifies how long
to wait for sent information before jumping to the label. Use the timeout option to
prevent the program from locking up at this command while it waits for informa-
tion. In the DEFINE set-up of this command you can set-up various parity options.
Paritylabel is used as the place to jump to if there is a parity error.

The DEFINE statements include:

DEFINE HSER_RCSTA 90h ‘enable receive register in
‘PIC

DEFINE HSER_TXSTA 20h ‘enable transmit register in
‘PIC

The PicBasic Pro Compiler

83

DEFINE HSER_BAUD 2400 ‘set baud rate
DEFINE HSER_EVEN 1 ‘set even parity
DEFINE HSER_ODD 1 ‘set odd parity

Setting HSER_EVEN and HSER_ODD to 0 will disable the parity mode.

The HSEROUT command line requires a list of items just like the HSERIN com-
mand but this time it’s the list of characters to send. There are no optional param-
eters in the command line for HSEROUT except for the data modifiers described
briefly below.

Both HSERIN and HSEROUT commands allow you to place modifiers on the infor-
mation being sent and received. The PBPro manual explains these fairly well so I’ll
just touch on them here.

Bin, dec or hex may precede the variable being sent or received. These will con-
vert the value of the variable into binary, decimal or hexadecimal prior to sending it
or if received, prior to storing the value. For example:

HSEROUT [dec b0, 13] ‘send value of b0 as decimal and then 13
‘which is ascii carriage return.
‘If b0 = 123 then “1” then “2” then “3”
‘would be sent

If the “dec” modifier wasn’t included in the example above, then the contents of
b0 would be sent as a byte value “123”.

For HSEROUT you can also issue the REP or repeat modifier. It will send a char-
acter as many times as you specify. The format is variable/number of sends.

For example:

HSEROUT [“a”/4] ‘send “a” 4 times or “aaaa”

I2CREAD datapin, clockpin, control, address, [var,var,…], label
I2CWRITE datapin, clockpin, control, address, [value, value, …],
label

If you ever want to communicate using the Phillips I2C format, these commands are
designed to make it easier for you. The datapin is the PIC pin you want to commu-
nicate on and is the PIC pin connected to the data pin of the I2C device. The clock-

Programming PIC Microcontrollers with PicBasic

84

pin is the PIC pin you want to send the clock pulse on and is the PIC pin connected
to the clock pin of the I2C device. The control is the code for the I2C device that com-
municates chip select info, address info, and other things that the I2C device defines.
This control code can be found in the data sheet of the I2C device you are using. Even
the PBPro manual has some codes for some of the Microchip EEPROM parts.
Getting the control character wrong is a very common problem, so double-check it.

The address is the location the information is to be read from or written to.
Typically this will be a variable that you change somewhere else in your PBPro pro-
gram. The address can be a byte size or word size, but it is driven by the I2C device
you are using. Again, check with the data sheet for the I2C device.

The var in the I2CREAD command is the list of variables where you store what
you’ve read. If a word-sized variable is used to store the data, the high order byte is
filled first and then the low order byte. Remember this because it’s opposite most
other two-byte operations in PBPro.

The value in the I2CWRITE command is the list of data to write into the I2C
device. If value is a word-sized variable, then the high byte is sent first followed by
the low byte. The var or value data must be contained within brackets, not paren-
theses.

The label is optional but handy. If the I2C device does not send an acknowledge
signal to the PIC, then the PBPro program will jump to the label. This is handy for
error detection. Your PBPro program can have a routine written at label to either
warn you somehow or have the program resend the data.

Here is an example of I2C communication. I strongly recommend you consult
the PBPro manual on this command because it is written quite well.

‘ I2CREAD and I2WRITE Commands
‘
‘ Write to the first 10 locations of an external 24LC01B 128 byte
‘ serial EEPROM
‘ The control code is %1010xxx0 (xxx means don’t care) or $A0
‘ Then read first 10 locations back and send them serially to a PC

SO con 0 ‘ Define serial output pin
DPIN var PORTA.0 ‘ I2C data pin

The PicBasic Pro Compiler

85

CPIN var PORTA.1 ‘ I2C clock pin
x var byte
y var byte
z var byte

init:
y=0

main:
for x = 0 To 9 ‘ Loop 10 times
y = y + 2
I2CWRITE DPIN,CPIN,$A0,x,[y] ‘ Write the value of y at each
x address
pause 10 ‘ Delay 10ms after each write
next

loop:
for x = 0 To 9 ‘ Loop 10 times
I2CREAD DPIN,CPIN,$A0,x,[z] ‘ Read the stored values
serout SO,N2400,[x, z, 10, 13] ‘ Print location, value then
next line and carriage return

‘ on PC screen via RS232
communication.
next

end

IF..THEN..ELSE..ENDIF
IF comp AND/OR comp THEN

statement1
ELSE

statement2
ENDIF

If you’re at all familiar with the BASIC language, you will recognize this command.
PBPro expands on the simple IF..THEN command of PBC by adding the ELSE
option. The ELSE option gives another alternate to the original IF .. THEN state-
ment. If the comparison is true, then do statement 1. If the comparison is not true,
then do statement 2. The IF .. THEN format works the same as PBC if the
ELSE/ENDIF lines are left off.

Programming PIC Microcontrollers with PicBasic

86

Example:

X var byte
LED var portb.0 ‘LED is connected to portb pin 0

init:
LED = 0

x = 0
main:
x = x + 1 ‘increment x
if x = 100 then ‘test x value

led = 1 ‘LED on.
x = 0 ‘clear x
pause 1000 ‘wait 1 second so a human can see the

‘LED is on
goto main

else
led = 0 ‘LED off
goto main

INPUT pin

This command is carried over from PBC to make a pin an input. It works on the first
16 I/O pins defined for a PIC, as mentioned in the I/O section of this chapter.

The pin variable is the I/O pin (0-16) you want to modify the direction of. pin
can also be a variable, which is handy. The command INPUT 2 makes PORTB pin
2 an input. The limitation is the 16 I/O. If you are using a PIC with more than 16
I/O pins, then you have to set the I/O direction by modifying the TRIS register for
that PORT. It also takes less assembly code in the compiler to do the TRIS modifi-
cation then the INPUT command. For those two reasons its best to not pick up the
habit of using the INPUT command.

To show you the difference between INPUT and TRIS, I’ll show the two meth-
ods with the same results.

Example:

INPUT 2 ‘Set portb pin 2 to an input

or

TRISB.2 = 1 ‘Set portb pin 2 to an input.

The PicBasic Pro Compiler

87

{LET}

This command is in brackets because you never actually need to use it! When you
define an expression, the LET command is implied. For example:

X= X + 1 is the same as LET X = X + 1

So why did I mention this command? Just to let you know the compiler will
allow you to use LET if you really want to! But since there’s no need to, why bother?

LCDIN {address,} [var, var, ...]

This command was created after the LCDOUT command mentioned next. Some LCD
modules have extra RAM space on-board, and this command allows you to access
that space for extra storage.

You really need to study the LCD data sheets to understand this function. It can
be a handy command, but I have never had a need for it. I find the larger EEPROM
PICs offer me all the extra storage I could ever need.

LCDOUT item, item, …

This command is one of the neat new features added in PBPro. Many people have
used expensive add-on modules that convert a parallel drive LCD to a serial inter-
face. The original idea of the add-on modules was to save I/O, but people often used
them just because it made driving the LCD easier. This PBPro command practically
eliminates the need for the converter module if you have the seven I/O pins required
to drive the LCD because it reduces the software to drive the LCD down to one sin-
gle command. The command is written to drive an LCD module built around the
Hitachi 44780 controller (which 99% of them are). PBPro defaults to a predefined
I/O set-up to connect to the LCD. That set-up can be changed using the DEFINE
statement.

PBPro defaults to using PORTA.0 - PORTA.3 for the DB4 - DB7 data pin con-
nections. It uses PORTA.4 for the RS (Register Select) connection and it uses
PORTB.3 for the E (enable) connection. It also sets the LCD up for 4-bit buss com-

Programming PIC Microcontrollers with PicBasic

88

munication using DB4-DB7 and 2-line display. These can all be changed with the
following DEFINE statements:

LCD_DREG ‘Port used to connect to DB4-DB7
LCD_BITS ‘Buss size used in the LCD (4 or 8 bits)
LCD_DBIT ‘First port pin to be connected to DB4-DB7

‘ (4-bit) or DB0-DB7 (8-bit)

Example:

‘Change the LCD data buss to 8 bits, connected to PORTC, using all
‘8 PORTC pins
DEFINE LCD_BITS 8 ‘Buss set to 8 bits
DEFINELCD_DREG PORTC ‘Use PORTC
DEFINELCD_DBIT 0 ‘PORTC pin 0 is the first data

‘ pin connected to DB0 of LCD.

LCD_RSREG ‘Port used to connect to the LCD RS pin
LCD_RSBIT ‘Port pin to be connected to the LCD RS pin
LCD_EREG ‘Port used to connect to the LCD E pin
LCD_EBIT ‘Port pin to be connected to the LCD E pin

Here’s another example:

‘Make port C bits 0,1 the RS and E connections
DEFINELCD_RSREG PORTC ‘Use PORTC for RS
DEFINELCD_EREG PORTC ‘Use PORTC for E
DEFINELCD_RSBIT 0 ‘Connect LCD RS to pin 0
DEFINELCD_EBIT 1 ‘Connect LCD E to pin 1

The next DEFINE statement is the one you may use the most. With it you set the
number of lines the LCD contains. A 2x16 LCD, which is common, has two lines
of 16 characters. Another common LCD is the 4x20 size that has four lines of 20
characters. This has to be set up with a DEFINE to allow the LCDOUT command to
work properly:

DEFINE LCD_LINES 4 ‘set the number of lines to 4 for 4x20
LCD

Once you have the LCD set-up defined, you can start sending characters to it.
All characters sent are the value that the LCD has associated to each character. Most
of the common characters, such as numbers and letters are associated with the

The PicBasic Pro Compiler

89

ASCII value for them. Other special characters have to be looked up in the LCD
data sheet. Because the ASCII values are used for common characters, the LCDOUT
command allows you to use the same modifiers used in the SEROUT/SERIN com-
mands.

The # symbol preceding a variable will the send the ASCII value for each num-
ber in the variable. For example, if the variable B0 = 255, then three bytes would be
sent ASCII for “2”, “5”, “5” if the # was used. Otherwise, the value $FF (255)
would be sent if the # sign was omitted. Another shortcut is the sending of strings.
If the characters to be sent are within a set of quotes, then each character’s ASCII
value is sent. Here are examples of both:

LCDOUT “Test of LCD” ‘The characters “T”, “e”, “s”, … ,
‘“D” are sent

LCDOUT #B1 ‘ If B1 = 128 then “1”, “2”, “8” is
‘ sent

The LCD module also can be controlled to do certain functions like return the
cursor to home or clear the display. They are necessary to format the LCD display
the way you want. The LCD data sheet will explain these more, but below are sev-
eral common commands. The LCDOUT command allows you to send the control
commands right in the LCDOUT command line. The code $FE is sent first and the next
byte sent is the command. The list of common commands is below.

$01 Clear display

$02 Return home

$0C Cursor off

$0E Underline cursor on

$0F Blinking cursor on

$10 Move cursor left one position

$14 Move cursor right one position

$C0 Move cursor to beginning of second line

Here’s an example:

‘Display the value of B0 in numeric form on an LCD. The display
‘will count from 0 to 255 and ‘then rollover to 0 again.

Programming PIC Microcontrollers with PicBasic

90

B0 var byte
loop:

LCDOUT $FE, 1, #B0 ‘clear the LCD and then display
‘the value of B0

B0 = B0 + 1 ‘increment b0 by 1
pause 1000 ‘delay for 1 second
goto loop ‘loop again

LOOKDOWN search,[constant {, constant}], var

It can be difficult to remember what this command does; I look it up in the manual
almost every time I use it. What it does is look down a list of values (constant) and
compares each value to a master value (search). If a match is found, then the posi-
tion of the constant is stored in a variable (var). It is a look-up table method for con-
verting any character into a numeric value from 0 to 255. If search matches the first
constant, then var is set to 0. If the second constant matches search, then var is set
to 1, etc. String constants and numeric constants can both be part of the table.

PBPro works the same way as PBC does. It separates the list of constants by
looking at each 8-bit value. It’s best to separate the constants with commas so the
compiler knows where to start and where to stop—1010 is not treated the same as
10,10. If you use string constants, then they will be treated as their respective 8-bit
value. Therefore commas may not be needed for string variables. The only real dif-
ference between PBC and PBPro is this command uses brackets instead of paren-
theses.

Here’s an example:

LOOKDOWN B0,[0, 1, 2, 4, 8, 16, 32, 64, 128], B1 ‘ B1 contains
‘ in decimal
‘ which
‘ single bit
‘ is set
‘ in B0. If
‘ B0 = 128 or
‘ 10000000
‘ binary then
‘ B1 = 8.

‘ If more than one
‘ bit is set or no bits are set in ‘B0 then B1 = 0

The PicBasic Pro Compiler

91

LOOKDOWN2 search,{test}[constant {, constant}], var

This command works the same as LOOKDOWN, but it has three advantages over it.

For one, this command takes care of the page boundary problem in the PIC. If
your program runs over the first 2k of memory space, then this is the command to
use. The LOOKDOWN command uses less code space then LOOKDOWN2, but if the table
of constants crosses the page boundary then the LOOKDOWN command will not work
properly. PBPro will warn you of page boundary crossings when it compiles the
program, but you still have to be aware of which command to use.

A second advantage of LOOKDOWN2 is it allows 16-bit constants. The result is still
a byte, since only 256 constants are allowed. However, the search parameter can
now be 16 bits long.

Finally, LOOKDOWN2 also adds the optional test parameter. This parameter can do
a logical search rather than just a search for the constant that equals the search
value. For example, using a > or < symbol will make the command look for the first
constant greater than or less than the search value.

Example:

Lookdown2 W0,< [100, 200, 300, 400, 500], B0 ‘Look for the
‘first constant
‘less than W0
‘and return the
‘position in B0

LOOKUP index,[constant {, constant}], variable

This command performs a lookup table function. Index is an 8-bit variable that is
used to choose a value from the list of constants. The selected constant is then
stored in the variable following the list of constants. If the index variable is 0, the
first constant is stored in the variable. If index is 1, then the second constant is
stored in the variable, and so on. If index is a value larger than the number of listed
constants, then variable is left unchanged. The constants can be numeric or string
constants. A comma should separate each constant. This command is the same as
the PBC command except it uses brackets instead of parentheses.

Programming PIC Microcontrollers with PicBasic

92

Here is an example:

FOR B0 = 0 to 7 ‘Convert decimal number to
LOOKUP B0,[0, 1, 2, 4, 8, 16, 32, 64, 128], B1 ‘ a single bit to

‘ be set.
NEXT

LOOKUP2 index,[constant {, constant}], variable

This command works the same as LOOKUP but has two advantages. For one, this
command takes care of the page boundary problem in the PIC. If your program runs
beyond the first 2k of memory space, then this is the command to use. While the
LOOKUP command uses less code space than LOOKUP2, if the table of constants
crosses the page boundary the LOOKUP command will not work properly. PBPro will
warn you of page boundary crossings when it compiles the program, but you still
have to be aware of which command to use.

A second advantage of LOOKUP2 is it allows 16-bit constants. The variable must
be word size if the constants are 16 bits long. The index is limited to a byte size
because only 256 constants are allowed.

Example:

Lookup2 B0, [100, 200, 300, 400, 500], W0 ‘Store the constant in
‘W0 that is pointed

‘to by B0. If B0 = 0 then W0 = 100, B0=1,
‘W0=200, etc.

LOW pin

This command clears a specific bit in one of the predefined PIC I/O data registers
and then clears the corresponding bit in the TRIS register to make that pin an output.
The predefined PIC I/O data and TRIS register depend on the PIC version you are
programming. The I/O control section earlier in this chapter defines the ports used.

The pin value designates which data register and TRIS register bit to operate on.
Pin must be a number from 0 to 15. This command was handy in PBC, but PBPro
makes it so much easier with the portname.number format that LOW is rarely needed
and just takes up more code space. If you like using it, PBPro still includes it to
maintain compatibility with PBC and BASIC Stamps.

The PicBasic Pro Compiler

93

Example:

‘Assume we are programming a 16F84 PIC which uses PORTB (0-7) and
‘PORTA (8-12)
LOW 1 ‘Clear PORTB bit 1 and make it an output. (PIC pin

‘7 on 16F84)

or

TRISB.1 = 0 ‘make PortB bit 1 an output
PORTB.1 = 0 ‘make PortB bit1 low

NAP period

This command places the PIC in a low power mode for short periods of time. This
can be used to save power in battery applications. Nap for a short time, then go
check the I/O, then nap again. The period variable is a number from 0 to 7. Each
corresponds to the delay listed below. The timing is derived from the Watchdog
Timer inside the PIC. You must have the WDT turned on when you program the PIC
to use this.

The WDT is driven by an internal RC circuit, so its accuracy is not great. All
time values are nominal but can vary as much as 20%. Sometimes you will use one
of the PIC’s internal timers, which typically require you to modify the timer
prescaler. If you play with the prescaler in the PIC, you can affect the timing of the
NAP instruction.

period delay (approx)

0 18 msec

1 36 msec

2 72 msec

3 144 msec

4 288 msec

5 576 msec

6 1.152 sec

7 2.304 msec

Programming PIC Microcontrollers with PicBasic

94

Here’s an example:

loop:
if portb.0 = 0 then prog ‘ Test portb pin 0 if its low
nap 6 ‘ low power for 1.152 sec

‘ delay
goto loop ‘ test pin 0 again

prog:
toggle portb.1 ‘ portb pin 0 low, toggle

‘ portb pin 1
goto loop ‘ test pin 0 again

ON DEBUG GOTO label

This single command allows your PBPro program to help you monitor your pro-
gram’s operation internally. With this command, you can jump to a DEBUG routine
at the location label. It can be another PBPro routine that sends out the current vari-
able values. With a little bit of work on your PC, you could make a emulator type
program to read your variables and display what is going on after every PBPro com-
mand. This is because this command inserts a jump to your debug monitor routine
before each PBPro command.

This is really an advanced step and really requires deeper explanation than we
give it here, so you should consult the PBPro manual before attempting to use it.
Unlike the ON INTERRUPT command discussed next, this command runs right within
the normal program space and doesn’t monitor any PIC registers to determine if a
jump should occur. It was developed to allow in-process monitoring of your PBPro
code.

To use this command, you need to establish a word-size system variable named
DEBUG_ADDRESS. This is required so PBPro has a place to store the address where
the program was interrupted. When the DEBUG routine is done, it uses that location
to return to your main program.

Here’s an example:

‘Send out status of B0 during program run time

B0 var byte
DEBUG_ADDRESS VAR word

The PicBasic Pro Compiler

95

ON DEBUG GOTO dbuggr
loop:
b0 = b0 + 1 ‘ increment b0
goto loop ‘ loop around again

dbuggr:
disable debug ‘ stop the debugger
LCDOUT $FE, 1, #B0 ‘ Display B0 on LCD
Return ‘ return to where we came from
enable debug ‘ enable debug after this routine

ON INTERRUPT GOTO label

This single command makes PBPro worth its weight in gold. With this command,
you can use the interrupt structure of the PIC without a bunch of assembly code.
Interrupts can add a whole new dimension to a PicBasic program. If you’re not
familiar with interrupts, I’ll explain them here briefly but I would also recommend
you read the PIC data book section on interrupts to really understand how they work
in a PIC.

Interrupts do just what the name implies: interrupt the PIC program. In the hard-
ware of the PIC is circuitry that will stop execution of the main program and jump
to a designated location. That location is a separate program called the interrupt
handler. It is typically a very short section of code. When an interrupt occurs the
interrupt handler runs and, when it’s completed, the PIC gives control back to the
main program right where it was interrupted. The main program then continues.

The PicBasic command ON INTERRUPT allows you to interrupt a PicBasic pro-
gram and have the interrupt handler also written in PicBasic. The real advantage to
using interrupts is the interrupt handler acts like a second program running in par-
allel with the main program, but all contained in a single PIC. In fact, the PIC offers
several different ways to interrupt the main program.

Each different interrupt has its own flag that gets set in the INTCON register. If
your interrupt handler first checks which flag is set, then the interrupt handler can
run a separate program for each interrupt type. In this way multiple programs are
running in parallel within a single PIC. As I mentioned, the interrupt handler is typ-
ically very short because the main program is briefly stalled while the interrupt han-

Programming PIC Microcontrollers with PicBasic

96

dler is running. This could result in the main program missing any inputs or outputs
it may have to be updated. Some of the interrupts are timer overflow, change on
portb, portb.0 state change, serial communication, PWM control, and more. This
topic could be a chapter in itself and I can’t cover it all here. What this section will
do is show the key components to writing an interrupt in PicBasic.

The label in the command line is the label of the interrupt handler. When a inter-
rupt happens, the label is where the PicBasic program jumps to. The interrupt han-
dler looks like any PicBasic section of code but ends with the RESUME command.
That command (described later in this chapter) is what sends control back to the
main program. Two other commands work with ONINTERRUPT: DISABLE, and
ENABLE. DISABLE turns off all interrupts and ENABLE turns interrupts on. Sometimes
you will be running a section of your main program that you don’t want interrupted
until you’re done. Before that section of code, place the DISABLE command. At the
end of that section of code, place the ENABLE command to allow interrupts to occur.
If you had an interrupt request while the interrupts were disabled, then the interrupt
will occur immediately after the ENABLE command.

The ON INTERRUPT command is placed at the top of the program with the inter-
rupt handler label defined. Then the INTCON register within the PIC is set-up to
define which interrupts to allow and which to ignore. (Again, to fully understand
this command you should read the PIC data book.) The interrupt handler is usually
placed after the end of the main program. This way it acts like a little subroutine that
only gets run when called by an interrupt. DISABLE should be placed before the
interrupt handler so a second interrupt doesn’t interrupt it. Just think what would
happen if the interrupt handler kept getting interrupted—the program would be
stuck running the interrupt handler over and over again, never returning to the main
program. At the end of the interrupt handler is the RESUME command and following
that is the ENABLE command just in case additional subroutines are added later. Here
is a simple interrupt in PicBasic example:

‘Count the number of time RA4/TOCKI receives 256 pulses and
‘display it on an LCD.

B0 var byte

ON INTERRUPT GOTO inthand

INTCON = %10100000 ‘Enable the TMR0 timer overflow
‘interrupt

The PicBasic Pro Compiler

97

OPTION_REG = %10100111 ‘Make TMR0 increment on the low to
‘high

‘transition of the RA4/TOCKI
‘PIC pin.

main:
LCDOUT $FE, 1, #B0 ‘Display B0 (number of 256 pulses) on

‘LCD
goto main

DISABLE
inthand: ‘TMR0 overflowed so 256 more

‘pulse were received
B0 = B0 + 1 ‘number of times 256 pulses

‘were received
RESUME
ENABLE

OUTPUT pin

This makes a specific bit in one of the 16 predefined PIC ports an output. You must
be careful to know what state the data register for the port is in before you issue this
command. As soon as you issue this command, the status of the bit in the data reg-
ister (high or low) will instantly show up at the PIC pin. Another way to do this is
by directly modifying the TRIS register. Here are the two examples.

OUTPUT 1 ‘Make PORTB bit 1 an output (PIC pin 7 on
‘16F84)

or

TRISB.1 = 0 ‘Make PORTB bit 1 an output

PAUSE period

This is a very useful command. It can pause program execution for a period of 1 to
65,535 milliseconds. It doesn’t put the PIC in low power mode, but is more accu-
rate than either the NAP or SLEEP command. You can use it to control timing or pulse
widths or whatever your program requires. Here’s an example:

Programming PIC Microcontrollers with PicBasic

98

trisb.0 = 0 ‘Make portb pin 0 an output
pulse:

portb.0 = 1 ‘send high signal out pin 0
pause 10 ‘pulse width is 10 msec
portb.0 = 0 ‘send low pulse out pin 0
pause 10 ‘pulse width is 10 msec
goto pulse ‘loop again to make square wave of close to

‘50% duty cycle

PAUSEUS period

This command expands on the PAUSE command by allowing microsecond delays.
The value period is still a number from 1 to 65,535, but it’s in microseconds.
Because the PIC internally runs a routine for every PicBasic command, this com-
mand is actually limited to how short the pause can go. At 4 MHz, the PIC can only
accurately delay to a minimum of 24 microseconds. Values below this will not be
accurate. If you use the DEFINE OSC operative to change the crystal frequency, then
smaller delays can be obtained. Here are the minimum delay times:

4 MHz: 24 microsecond

8 MHz: 12 microsecond

10 MHz: 8 microsecond

12 MHz: 7 microsecond

16 MHz: 5 microsecond

20 MHz: 3 microsecond

Here is an example:

trisb.0 = 0 ‘Make Portb pin 0 an output
pulse:

portb.0 = 1 ‘send high signal out pin 0
pauseus 100 ‘pulse width is 100 usec

portb.0 = 0 ‘send low pulse out pin 0
pauseus 100 ‘pulse width is 100 usec
goto pulse ‘loop again to make square wave of close

‘to 50% duty cycle

The PicBasic Pro Compiler

99

PEEK address, var
POKE address, var

These commands are listed as part of PBPro to carry over PBC programs. They
should not be used in PBPro programs, however, since they don’t work properly
within the structure of PBPro.

PBPro allows you to directly access any register by its PicBasic name listed in
the file PIC14EXT.bas. Those names should be used since they are much more effi-
cient and much easier. As seen in previous examples, do the direct access rather than
POKE and PEEK. For example,

INTCON = %10010000 ‘Set the interrupt control register

POT pin, scale, var

The POT command was developed to allow analog-to-digital measurement with a
standard PIC I/O pin. Some PICs have built-in A/D ports that make the POT com-
mand unnecessary. Although an A/D port is far more accurate, you may want to use
the POT command at some point.

In resistor and capacitor circuits, the rate of charge to reach a known voltage
level in the capacitor is based on the values of the resistor and capacitor. If you
know the charge time and the capacitor value, then you can figure out the resist-
ance. That’s how the POT command works. It uses the I/O pins’ high and low
thresholds as the trigger points for measuring the capacitor charging. The capaci-
tor and resistor are connected to an I/O pin designated by the pin value. This com-
mand is the same as the PBC POT command except it can use predefined pins 0–15
or a variable that contains 0–15 or the portname.number format. A schematic is
shown in Figure 3-3.

Programming PIC Microcontrollers with PicBasic

100

Figure 3-3: Circuit to be used with the POT command.

When the command is processed, the capacitor is first discharged by the I/O
port, which is configured by the POT command as an output and low. After that,
the I/O port is changed to an input and starts timing how long it takes for the capac-
itor to charge the high threshold voltage threshold of the PIC I/O port. At that
point, the charge time is known and that time is converted into a 0–255 decimal
value based on the value of the scale variable. 255 is the maximum resistance and
0 is minimum.

The key is the proper scale value that must be specified for this to work. In
order to have the scale value match the resistance range, it must first be calculated
for the R/C attached. No math is required because it must be determined experi-
mentally. First set the resistance to its maximum value. Then set scale to 255 and
run the command. The var value returned will be the proper scale value for that
R/C combination.

Example:

POT 3, 240, B0 ‘ Measure the resistance and place the 0-255
‘ value in B0 The 240 value was found first
‘ by setting scale to 255

I don’t recommend this command. PBPro makes programming A/D port so
easy that I suggest you use a PIC with an A/D port. It is more useful and far more
accurate.

5-50K

0.1uF

PIN

The PicBasic Pro Compiler

101

PULSIN pin, state, var

This command allows you to measure the pulse width of an incoming square wave.
It is great for doing pulse-width modulation (PWM) measurements. The resolution
of this command is dependent on the oscillator used. If a 4-MHz oscillator is used,
the resolution is 10 _sec. A 20-MHz oscillator has a 2 _sec resolution. The com-
mand will measure the high time if the state variable is a 1 or measure the low time
if the state is 0.

The pin is the PIC pin to measure the pulse on. It can be the predefined port
numbers 0–15, a variable containing 0–15, or the portname.pin method (PORTB.1).
The measurement is stored in a variable defined by the var in the command line. It
can be a word size or byte size variable. The command always measures 65535 sam-
ples but if the var is a byte size then the least significant byte is stored in the vari-
able. If the signal is longer than 65535 samples, or no signal is present at all, then
the var is set to 0.

The DEFINE OSC directive has no effect on this command. If a 4-MHz oscilla-
tor is used, then a measurement of 50 would mean a pulse width of 500 microsec-
ond (50 * 10 microsecond resolution). If the signal is known to be a 50% duty cycle,
then the total period of the signal is twice that measured or 1000 microsecond.
Inverting that would give the frequency of 1 kHz. The example below uses pulsin
to light a warning light if the frequency exceeds 1 kHz.

Example:

‘Assuming a 50% duty cycle and 4mhz crystal, measure the high
‘pulse width to ‘determine the frequency.
‘If the frequency is greater than 1 khz then light LED.

Pulse var word
LED var portb.1

measure:
pulsin portb.0, 1, pulse ‘ Measure the high time of the

‘ incoming pulse.
if pulse <= 50 then ‘ Test sample if less than 1 khz
LED = 0 ‘ LED off if <= 1 khz
goto measure ‘ Measure again
else

Programming PIC Microcontrollers with PicBasic

102

LED = 1 ‘ Sample greater than 1 khz, light the LED
‘ warning light.

goto measure

PULSOUT pin, period

This command is the complement to the PULSIN command in that it generates a
pulse. The pin value determines the PIC pin the signal will come from. The pin
value can be a predefined PIC pin number 0–15 or a variable with the value 0–15
or a portname.pin designator. The period value is actually the pulse width value.
The period value determines how long the signal is high, and the resolution is deter-
mined by the oscillator. A 4-MHz oscillator will use a 10- microsecond resolution
and a 20-MHz oscillator will have a 2- microsecond resolution. The period value
can be a byte or word variable or a constant value from 1 – 65535. This command
is commonly used to drive a servo, but can be used for various applications. You can
use it to communicate with a shift register by using one pin for clock and the other
for data. You can create a pulse-width modulated signal by placing the PULSOUT
command in a loop. For example:

‘ Create a changing pulsewidth signal from 10 usec wide to 655
‘msec wide.

Width var word

for width = 1 to 65535
pulsout portb.1, width
pause 1
next

PWM pin, duty, cycle

This command initially looks interesting because it implies it will create a variable
pulse width like the PULSOUT example above. Instead, the command actually pro-
duces a series of very short pulses that are recreated a number of times. The result-
ing signal can be used “as is,” but if a resistor-capacitor circuit is added then this
command can be used to generate a voltage across the capacitor. By adjusting the
duty value, the voltage across the capacitor can be varied. It creates a digital-to-
analog (D/A) converter. The command does not run in the background, so it really
is just for creating a burst. To drive a true PWM signal that continually runs in the
background, you must use the PWM port available on some PICs.

The PicBasic Pro Compiler

103

To use this command pin is a predefined pin number 0–15, a variable with the
value 0–15, or that portname.pin method of defining a pin. The duty value is the
value that controls the number of short bursts put out. A value of 0 is 0%, or no
pulses, and 255 is 100%, or a continuous pulse. The cycle value determines how
long the burst of pulses repeats. The actual length of time for each cycle is deter-
mined by the oscillator used. A 4-MHz oscillator cycle time is about 5-msec long
while a 20-MHz oscillator will result in a 1-msec time.

RANDOM var

This command produces a pseudo-random number for various applications. The var
variable must be a word variable. It will produce a value from 1 to 65535, but will
not produce zero. You cannot use a port number or port variable.

Example:

loop:
random W2 ‘ Create a random number
pause 100 ‘ pause 100 msec
goto loop ‘ do it again

RCTIME pin, state, var

This command measures how long a pin stays at a specified level. It’s another form
of POT brought over from the Basic Stamp 2. It allows you to use a standard digital
I/O port to measure resistance. I would rather use a PIC with an A/D port, but this
is an alternative. The pin is the PIC pin your program is reading. The state is the
level that is measured. The var is the variable that the time is stored in. The resolu-
tion of this command is based on the oscillator. A 4-MHz oscillator gives a 10-_sec
resolution and 20 MHz gives a 2-_sec resolution. For example:

Time var word

portb.0 = 0 ‘set Port B pin 0 to low
RCTIME 0,0,time ‘measure time pin 0 stays low

READ address, var

This command will only work on PIC devices with internal EEPROM like the
16F84. The address variable is the location to read. The value read at the specified

Programming PIC Microcontrollers with PicBasic

104

location will be stored in the var variable. The command also has a special mode.
If address is the value 255 then the total number of bytes available will be put in
var.

Example:

‘Subroutine

sub:
read 10, b1 ‘Read value at location 10 in

‘variable b1
return ‘ repeat

READCODE address, var
WRITECODE address, var

I’m breaking the alphabetical listing on these commands because they work so
closely together. They are written to work with the 16F87X flash memory PICs.
Those PICs allow you to read from and write over program code space. This opens
so many possibilities, from simply adding more nonvolatile memory space (unused
program memory) to creating a self-programming chip.

These are commands for the advanced user and are really beyond the scope of
this book. Therefore, I’m covering them just to make you aware they exist. They
operate similarly to the EEPROM commands, but they can be dangerous to your
PBPro program because they can overwrite your code while the PIC is running.
That would make the PIC lock up and then when the watchdog resets the PIC it
would run till it locks up again—a very tough situation to diagnose. Here is an
example of how these commands can be used:

value VAR word

loop:
writecode 100, value ‘ Write the value variable content to memory

‘ location 100
readcode 100, value ‘ Read the word at location 100 and

‘ store in value
goto loop ‘ loop forever

The PicBasic Pro Compiler

105

RESUME {label}

As mentioned earlier, this command is used at the end of an interrupt routine to
direct the program back to where it was interrupted. RESUME also has the option of
including a label. The program will jump to that label instead of back to the pro-
gram. It can be useful if the interrupt routine is an error routine. That way the inter-
rupt routine can possibly reset the program without the outside world ever knowing.

Example:

error:
clear ‘ reset all variables to 0
resume start ‘ go to the start label at the beginning of

‘ the program

RETURN

This command is used at the end of a PicBasic subroutine to return to the command
following the GOSUB command. For example:

Subrout:
B0 = B0 + 1
RETURN

REVERSE pin

This command changes the direction of the port or pin in the TRIS register. If a port
was an output, it is changed to an input. If it was an input, then it’s changed to an
output. For example:

REVERSE 2 ‘Change direction of PORTB bit 2. (PIC pin
‘8 on 16F84)

SERIN pin, mode, timeout, label,[qual, qual], (#) item, item, ...

This command emulates the RS232 communication common on PCs, also known
as serial communication. With this command many interesting programs are possi-
ble. The command receives data from the sending source in 8N1 format that means

Programming PIC Microcontrollers with PicBasic

106

eight data bits, no parity, and 1 stop bit. The pin variable is the PIC pin used. The
mode variable is the baud rate to communicate at per the chart below.

This chart is slightly different than the BASIC Stamp because it allows 9600-
baud communication in place of the Stamp’s 600 baud. This is possible because a
PIC programmed with PicBasic will run 15 times faster than a BASIC Stamp1.
PBPro uses the same mode options as PBC, but you have to include a definition file
if you want to use the mode names like T2400. That definition file is included with
the command:

Include ‘modedefs.bas”

Here are the mode options:

Mode value Baud rate Format

T2400 or 0 2400 TTL True

T1200 or 1 1200 TTL True

T9600 or 2 9600 TTL True

T300 or 3 300 TTL True

N2400 or 4 2400 TTL Inverted

N1200 or 5 1200 TTL Inverted

N9600 or 6 9600 TTL Inverted

N300 or 7 300 TTL Inverted

The item variable is the byte value received in the 8N1 format. If more than one
item variable is listed in the command, then the program will wait for the exact num-
ber of items listed to be received. This can lock up a program while it waits for vari-
ables. In PBPro, this command has the timeout and label options to prevent that.

The timeout value is the amount of time in 1 millisecond units that the command
will wait for a signal. If the signal does not arrive in the timeout time, then the pro-
gram jumps to label.

The qual option is not needed but if used sets a prerequisite before accepting any
items. The qual value can be a constant, variable or a string constant. The command
looks for the qual to be received before going further.

The PicBasic Pro Compiler

107

The item variable can be preceded with a # character. This will convert any dec-
imal number received into the ASCII equivalent and store that in the item variable.
Any nondecimal values received will be ignored when using the #.

Example:

loop:
serin 1, n9600, 1000, error, (“A”), B0 ‘ Wait until the ASCII
‘ value for ‘ capital A is
‘ received or until 1 second ‘(1000 msec) has expired
‘ on portB pin 1 and then store ‘the next byte in B0

goto loop

error: high portb.1 ‘Light LED on
‘PortB pin 1

end

SERIN2 datapin {\flowpin}, mode, {paritylabel}, {timeout, label},
[item, item, ...]

This command was taken from the Basic Stamp 2 and extends the features of the
SERIN command. I highly recommend that you read the PBPro manual on this com-
mand because it has so many features; I’ll cover the basics here. The mode is set
totally differently from the SERIN command. The mode contains more info than just
the baud rate. It also selects the parity or no parity mode and it selects the signal
style of inverted or true level. Mode is a 16-bit value but PBPro only uses the lower
15 bits.

The baud rate in mode is the first 0–12 bits. Bit 13 is the parity bit: 0- no parity
and 1-even parity. Bit 14 is the signal style: 0-true and 1-inverted. Bit 15 is not used.
The mode value is set by the equation:

(1000000 / baud) - 20

+ 8192 if even parity

+ 16384 if inverted

————————————

mode

Here’s an example:

Programming PIC Microcontrollers with PicBasic

108

To receive on port A pin 1, into a variable named temp:

300 baud, even parity, inverted

(1000000 / 300) - 20 = 3313.3333 or 3313

+ 8192 for even parity

+ 16384 for inverted

—————————————-

mode = 27889

SERIN2 porta.1, 27889, [temp]

SEROUT pin, mode, [item, item, ...]

This command sends a byte or bytes in serial 8N1 format out a specified pin. The
pin variable sets the PORTB pin for communication. The mode value determines the
communication baud rate. The chart below defines the mode options. Just like
SERIN, to use the mode names such as T2400, you have to include the definition file:

Include “modedefs.bas”

Mode value Baud rate Format

T2400 or 0 2400 TTL True

T1200 or 1 1200 TTL True

T9600 or 2 9600 TTL True

T300 or 3 300 TTL True

N2400 or 4 2400 TTL Inverted

N1200 or 5 1200 TTL Inverted

N9600 or 6 9600 TTL Inverted

N300 or 7 300 TTL Inverted

OT2400 or 8 2400 Open Drain

OT1200 or 9 1200 Open Drain

The PicBasic Pro Compiler

109

OT9600 or 10 9600 Open Drain

OT300 or 11 300 Open Drain

N2400 or 12 2400 Open Collector

N1200 or 13 1200 Open Collector

N9600 or 14 9600 Open Collector

N300 or 15 300 Open Collector

The item value(s) can be in three formats and they can be mixed:

1) A string constant is sent as a string of characters i.e., “hello” is sent as five
individual bytes.

2) A numeric value can be sent which will be received in a PC as the ASCII
equivalent; i.e., 13 will represent the ASCII carriage return and 10 will be
received as a line feed. If you send the numeric value to another PIC, though,
it will be received as the binary value.

3) A numeric value preceded by a # symbol will break up the number and send
it as individual ASCII characters. For example, #123 will be sent as “1”,
“2”, “3”. Here is how SEROUT is used:

loop:
for b1 = 0 to 9 ‘ Send 10 numbers
serout 5, n2400, [#b1, 10] ‘ 2400 baud inverted, send

‘ ASCII value of b1
next ‘ followed by a line feed.
goto loop

SEROUT2 datapin {\flowpin}, mode, {pace}, {timeout, label}, [item,
item, ...]

This command comes from the Basic Stamp 2 format, so it operates similarly to the
SERIN2 command. The mode is calculated similar to the SERIN2 command. Bits
0–12 set the baud rate. Bit 13 sets the parity even (bit 13 = 1) or no parity (bit 13 =
0). Bit 14 sets the true (bit 14 = 0) or inverted mode (bit 14 = 1). But SEROUT2 adds
a bit 15 that sets the output to “always driven” (bit 15 = 0) or is left in high imped-
ance open state (bit 15 = 1). The open state can be used to allow several modules on
the same serial bus. The mode equation looks like this:

Programming PIC Microcontrollers with PicBasic

110

(1000000 / baud) - 20

+ 8192 if even parity

+ 16384 if inverted

+ 32768 if in open state

————————————

mode

This command also adds an optional pace value that puts a delay in between
characters. The pace value is in milliseconds and can range from 1 to 65535. I again
recommend you read the PBPro manual on this command because it has so many
features.

Here is an example of sending “hello world” out PORTB pin 3 at 300 baud,
even parity, inverted, driven open with 10 msec between characters:

(1000000 / 300) - 20 = 3313

+ 8192 for even parity

+ 16384 for inverted

+ 32768 for open state

—————————————

mode = 60657

SEROUT2 portb.3, 60657, 10, [“hello world”]

SHIFTIN datapin, clockpin, mode, [var {\bits}, var {\bits}, ...]

This command allows your program to receive information a bit at a time and store
it in var(s). You have for options to receive data that is set by the mode value.

0: First bit stored as most significant bit before sending clock pulse.

1: First bit stored and least significant bit before sending clock pulse.

2: First bit stored as most significant bit after sending clock pulse.

3: First bit stored and least significant bit after sending clock pulse.

The PicBasic Pro Compiler

111

The most confusing thing about this command is that the PIC generates the
clock pulse. Normally the receiving chip gets the clock pulse from the sender. That’s
why these mode definitions are so important and initially confusing.

The datapin and clockpin define the PIC pins to use for these functions. The \bits
option allows less than 8 bits to be stored in a particular variable. If a variable was
followed by a \7, then only 7 bits would be stored in that variable. For example:

Shiftin 1, 2, 0, [B0, B1\7]’ Receive the data and store it LSB
‘ first in B0 and
‘ the next 7 bits in B1 LSB first

SHIFTOUT datapin, clockpin, mode, [var {\bits}, var {\bits}, ...]

This command allows your program to send a variable’s information one bit at a
time. You have two optional modes: least significant bit first (mode = 0) or most sig-
nificant bit first (mode = 1).

If \bits option is used, then only that number of bits are shifted out. The datapin
and clockpin determine the PIC pins to use.

Example:

Shiftout portb.1, portb.2, 1, [B0, B1\7] ‘Send the 8 bits of B0
‘ MSB first and the most significant 7 bits of B1

SLEEP period

This command places the PIC in low current mode and stops the PIC from running
for a length of time. The period variable sets the amount of time to stay in the low-
power mode. The SLEEP command timing is controlled by the Watchdog Timer
within the PIC, which is just an RC circuit. To make the SLEEP timing more accu-
rate it is compared to the system clock every 10 minutes and adjusted. The period
value can range from 1 to 65535 in units of seconds. A value of 60 will make the
PIC sleep for 60 seconds while a value of 65535 will make the PIC sleep for just
over 18 hours.

Programming PIC Microcontrollers with PicBasic

112

For example:

loop:
if portb.0 = 0 then prog ‘ Test pin 0 if its low
sleep 60 ‘ low power for 1 minute delay
goto loop ‘ test pin 0 again

prog:
toggle 1 ‘ pin 0 low, toggle pin 1
goto loop ‘ test pin 0 again

SOUND pin,[note, duration {, note, duration}]

This command was created to make sounds from a PIC. A PIC alone cannot pro-
duce sound so additional hardware is required as shown in Figure 3-4.

Figure 3-4: Circuitry required to generate sounds using the
SOUND command.

What SOUND does is pulse the designated pin high and low at an audible frequency.
The pulsing will continue for a length of time specified by the duration value. The
values do not specifically tie into musical note values. The sounds produced fall into
two categories, tones and white noise. Tones are values 1 to 127 and the higher fre-
quency white noise values are 128 to 255. Value 0 is for silence. It can be used to
produce a pause between notes or white noise.

Duration is a value of 0 to 255 measured in milliseconds. Additional notes and
duration values can be include in a single command. With the right combination, a

PIN

The PicBasic Pro Compiler

113

short melody can be produced. Using just a single note and duration makes it easy
to produce feedback if a button is pressed. Here’s a short program example:

SOUND 0, [100, 10, 50, 20, 100, 10, 50, 20] ‘Make a cycling
‘sound that
‘‘alternates
‘between note
‘100 and note
‘50 on PORTB
‘PIN 0. Each
‘note has a
‘different
‘duration.

STOP

This command just puts the program in an endless loop and does not put the PIC in
low-power mode. This command is not that useful.

SWAP var, var

This command is used to swap the contents of two variables. The var describes the
variables to use. If B0 = 7 and B1 = 1, then after using this command on those vari-
ables B0 = 1 and B1 = 7.

Example:

Swap B0, B1

TOGGLE pin

This command reverses the state of the port pin in the data register. If a port pin was
high, it is changed to a low. If it was low, then it’s changed to high. If the port pin
was an input prior to this command, the port pin is made an output and then the state
of that port pin in the data register is reversed. For example:

TOGGLE 2 ‘Change state of PORTB bit 2. (PIC pin 8 on
‘16F84)

Programming PIC Microcontrollers with PicBasic

114

WHILE condition
statements ...

WEND

This is a grouped set that lets a group of PicBasic commands run while the condition
value is true. The condition is any comparison statement such as <, >, =, <=, etc. This
can be very handy for performing a function while a port is high or low or while a
variable is below a value that is changing by an interrupt routine.

Example:

LED var portb.0

WHILE portb.1 = 1 ‘While Port B pin 1 is high
LED = 1 ‘light LED on Port B pin 0

WEND

WRITE address, value

This command will only work on PIC devices with internal EEPROM, like the
16F84. The address variable is the location to write to. The value in the var variable
will be stored at the specified location.

Here’s an example:

loop:
for b1 = 0 to 9 ‘ The first 10

‘ locations in EEPROM
write b1, 0 ‘ are set to 0.
next

XIN datapin, zeropin, {timeout, label,}[var, var, ...]
XOUT datapin, zeropin, [housecode\keycode{\repeat}, housecode\key-
code{\repeat}, ...]

These commands are used to communicate with X-10 format modules available
from various sources such as Radio Shack. These modules allow electronics to com-
municate a command signal over house wiring. The intention is to allow develop-
ment of a “smart house.” These commands are used to make the PIC the central

The PicBasic Pro Compiler

115

control panel for various X-10 modules throughout a house or allow the PIC to be
the front end to a household function.

The datapin and zeropin are the PIC pins used for the communication. The XOUT
command sends data as a code, set up by the X-10 format. X-10 codes are usually
predefined for the modules you are using and you will need to study the documen-
tation for those X-10 modules. The XIN command allows you to make your own
X-10 module and you can define what each code will do. It’s similar to any other
electronic communication except the communication is using the house wire.

I suggest you read the PBPro manual for these commands and also understand
the X-10 format before experimenting with these. They work with the high-voltage
house wiring which is very untypical for PIC projects.

Summary

This concludes our discussion about PBPro, but by no means is it a complete sum-
mary. My intent was to complement the PBPro manual. PBPro is so powerful and
has so many features it could be a book by itself. My intention was to give you a
good reference summary and also offer an alternate explanation of the commands.

I suggest you look at the “readme” file included on your version of PBPro. Any
new commands or updates to PBPro since this book was written will be in that file.

Now we can start talking about the guts of a PIC and the fun stuff of actually
using PBC and PBPro to program PICs and make those microcontrollers do some-
thing. So let’s move on!

Programming PIC Microcontrollers with PicBasic

116

Inside the PIC Microcontroller

As mentioned in the previous chapters, the PicBasic Compiler (PBC) and PicBasic
Pro (PBPro) work with the 14-bit core family of PIC microcontrollers. Although
PBPro can work with the 16-bit core devices, I’ll be focusing on the 14-bit ones
here. (Most of the PIC features are common between them anyway.)

In this chapter, I’ll detail some of the most common features within these
devices. If you are anxious to start using PicBasic, you can skip this chapter and
read it after doing the projects. While the information in this chapter is really help-
ful to understand the PIC’s features, the PBC and PBPro compilers make program-
ming so easy you can skip this and still successfully write PIC software.

In projects where you need some of the detail in this chapter, I’ll explain just the
bare essentials to get you going on the project. If you really want to know all about
PICs before programming, or if you are using the book to teach a PIC class, then
this chapter should be covered before moving on to the projects.

Fundamentals

The PIC family has many cousins with various unique features. Despite this,
Microchip designed the PICs to share many common attributes such as memory lay-
out and packaging layout. For example, the pin-out for the 18-pin package is the
same whether it’s a device with standard I/O, or analog comparators, or even analog-
to-digital converter ports. They also share the same set of core assembly language
commands and memory locations for special function registers. What this means is

117

C H A P T E R 4

that upgrading from one version to another with more features requires very little
code “tear up” or hardware changes. In fact, some upgrades require no changes at all.

Because of the common set of core PIC attributes, I can cover the most common
features and still have covered a lot of ground. You can then refer to the PIC data
sheet for any specific details.

Program Memory

Program memory is the space where your PicBasic program resides. When you read
a data sheet and see the PIC is 0.5k, or 1k, or 2k, they are referring to the program
memory space. Those sizes—0.5k, 1k, 2k , 4k, and 8k—are the program memory
sizes for the majority of the PIC devices. This may seem incredibly small, but for
the functions a PIC is designed to do, it’s not.

A PicBasic program can have several hundred commands and still fit in a 1k
device. Because each PicBasic command is so powerful, a 1k program could con-
trol a motor with feedback and direction control, or monitor a burglar alarm system
while displaying information on a liquid crystal display (LCD). Adding a serial port
to send the status of the system sensors to a PC is as easy as a single SEROUT com-
mand.

It’s possible to fit so much in because you are creating what is known as embed-
ded software. There is no operating system like DOS, and no printer drivers or
graphic drivers to include. The embedded software just controls the switching of the
I/O ports to control the surrounding electronics that are connected to the PIC.

Program memory in a PIC is actually 14 bits wide even though PICs are con-
sidered 8-bit microcontrollers. The 8-bit terminology comes from the data memory
buss, which is 8 bits wide. It’s common to refer to the 14-bit-wide memory as bytes
even though a byte by definition is 8 bits wide. Microchip calls the 14-bit-wide
addresses “words” even though a word is 16 bits long. This gets very confusing
when you try to compare the size of a PIC to another 8-bit micro. PBC and PBPro
call the 14-bit-wide memory “words.” When your program compiles successfully,
PBC and PBPro will display how many words of program memory were used.

Programming PIC Microcontrollers with PicBasic

118

The 14-bit PIC program memory is sectioned off starting at location 0000h, or
zero hex.

It really helps to understand binary and hex number systems to understand how
to use a microcontroller and I’ll assume you do. If you don’t, you can still use
PicBasic because it defaults to decimal mode, and that helps a lot.

On a 0.5k PIC, the memory goes from 0000h to 01ffh (0 to 511 decimal, 14-bit
wide words). A 1k part is 0000h to 03ffh, and a 2k part is 0000h to 07ffh. Some
PICs do offer more than 2k, but PBC works with the first 2k only. You’ll need PBPro
to use the larger memory PICs.

The reason for the PBC limitation is because of the way the PIC expands the
program memory beyond 2k, using a banking scheme. This means they share the
address connections between each 2k block, and then have one or two bits select
which bank of 2k to read from. A compiler has a tough time knowing exactly where
the compiled code will end up in the PIC memory space, so it has to either limit the
program to the first bank or do some elaborate code testing to handle the banking.
PBPro handles that.

Reset Vector

All 14-bit PICs share some very important program memory locations. The first is
the RESET VECTOR. It always occupies the first byte, or 0000h. When the PIC is
first powered up, it has to know where to start executing the program. The PIC does
that by executing the instruction at location 0000h first.

That first instruction is usually the beginning of your program, but it can some-
times be a directive to jump to another part of your program. The PicBasic compil-
ers take care of all that so you don’t need to worry about this. It’s just good
information to know and can be used when you get to the advanced stages of
PicBasic programming.

The PIC can be reset from various sources, including the MCLR pin.
Depending on the type of reset, internal registers may be affected. That is why it is
best to initialize all I/O registers and special function registers at the top of your

Inside the PIC Microcontroller

119

program. Consult the PIC data sheet about resets for more detailed information on
this subject.

Data Memory

Data memory is where all your variables are stored. This is RAM (Random Access
Memory), which means when the PIC is disconnected from power all the data mem-
ory is lost. The data memory is 8 bits wide, which is why the PICs are considered
8-bit microcontrollers. The PIC data memory is also banked just like the program
memory. The first section of data memory is reserved for special function registers.
These registers are the key locations that control most of functions within the PIC.

Some of the registers are located in Bank 0 while some are located in Bank 1.
Some are even repeated so they are available in both banks. To select which bank to
control, a bit is set or cleared in the STATUS register. Because you need access to
the STATUS register from both banks, it is located in both banks.

PicBasic makes it so easy for the beginner that in most cases you do not need to
manipulate the STATUS register. The PicBasic commands take care of it for you.
There may be times when you are doing something unique, and that will be the time
you will manipulate the special function registers. You can easily do that with the
PEEK and POKE commands in PBC or directly write to the register in PBPro.

STATUS Register

The STATUS register is located in data memory at location 03h. Most of the STA-
TUS functions are useful if you’re programming in assembly; they control which
bank of memory you are working on, tell you when the PIC is fully powered up after
a reset, and even indicate what the results were of a recent math function. I don’t
believe you will be using this register much, but the information is here for refer-
ence. The register looks like the following:

STATUS REGISTER 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IRP RP1 RP0 T

O

P

D

Z DC C

Programming PIC Microcontrollers with PicBasic

120

IRP—Register Bank Select bit (used for indirect addressing)

0: Bank 0,1 (00h - FFh)

1: Bank 2,3 (100h - 1FFh)

RP1:RP0—Register Bank Select bits (used for direct addressing)

00: Bank 0 (00h - 7Fh)

01: Bank 1 (80h - FFh)

10: Bank 2 (100h - 17Fh)

11: Bank 3 (180h - 1FFh)

T

O

—Time-out bit

1: After power-up timer

0: After watchdog timer time-out

P

D

—Power-down bit

1: After powering up

0: After entering sleep mode

Z—Zero bit

1: The result of the last assembly command arithmetic instruction was zero.

0: The result of the last assembly command arithmetic instruction was not zero.

DC—Digit Carry bit

1: The lower order nibble overflowed a bit to the higher order nibble.

0: No lower order nibble to higher order nibble occurred.

C—Carry bit

1: The last assembly command overflowed the most significant 8th bit.

0: The last assembly command did not overflow the most significant 8th bit.

Inside the PIC Microcontroller

121

In most PicBasic programs, the most you can do is change the RP1 and RP0
bits. The rest are only useful if you’re inserting assembly language in your PicBasic
program or writing in assembly.

I/O Registers

This is the set of registers that you will use most. Every I/O port has two registers
that control its operation, a data register and a direction register.

The data register is named after the port it controls. Port B, for instance, has a
register name of PORTB. Within that register each of the eight bits, or pins, are con-
trolled. This register determines if the pins should be a high or a low when the port
pins are set up as outputs. If the port pins are set up as inputs, then this register is
where the level of the port pins is stored when the port is read.

The data direction register is called the TRIS register, meaning Tri-State regis-
ter. “Tri” means three, and the three states are High, Low and High Impedance.
Each I/O port has its own TRIS register named after the port letter: TRISA is for
Port A, TRISB for Port B, etc.

Each pin of the port can be set up as an input or an output by controlling a bit
within the TRIS register. A “1” makes the pin an input and a “0” makes the pin an
output. You can arrange these ports in any combination of input and output. You can
change the direction at any point in your program. With proper care, you can read a
port as an input and then drive something from the same port as an output.

PBPro allows you to manipulate these registers directly, but PBC requires you
to use the PEEK and POKE commands except for Port B. As mentioned earlier, PBC
commands automatically act on Port B handling the TRIS register for you. (One of
the projects I demonstrate in the following chapters is how to control the I/O pins.)

Within the PIC banked register memory, the Data registers are on Bank0 and the
TRIS registers are on Bank1. Here is the list of port memory locations.

Port A: $05

TrisA: $85

Programming PIC Microcontrollers with PicBasic

122

Port B: $06

TrisB: $86

Port C: $07

TrisC: $87

Port D: $08

TrisD: $88

Port E: $09

TrisE: $89

Ports D and E are only on the larger PICs and can sometimes move a few other
PIC registers around within the memory map. That is why the data sheet for the part
you are using is important to have. It will have all the memory locations displayed
for you.

A/D Registers

Analog-to-digital registers are used specifically to control the A/D ports. On most
A/D equipped PICs, the A/D ports will be included on Port A only. Some of the
larger PICs also add more A/D ports by using Port E.

The A/D structure in the PIC uses three registers for access and control: the
“A/D control register 0” (ADCON0), the “A/D control register 1” (ADCON1), and
the “A/D result register” (ADRES). The ADCON0 register is really more of a con-
trol register while ADCON1 is a setup register.

ADCON0

ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/D

O

N

E

Not Used ADON

ADCS1-0—A/D Conversion Clock Select

These two bits allow you to pick from four different clock sources. The clock
signal is used in the sample and hold A/D circuitry inside the PIC. The best choice

Inside the PIC Microcontroller

123

is the internal RC oscillator since it runs independent of the external crystal/
resonator.

The other choices are for more precise measurements and require a lot of spe-
cific calculations—more calculations than the average PicBasic user will want to
deal with.

The bit selections are:

00: External Oscillator / 2

01: External Oscillator / 8

10: External Oscillator / 32

11: Internal RC Oscillator

CHS2-0—Analog Channel Select

These bits choose which A/D port you want to read within your program. You will
have to select this at the beginning of your PBC A/D routine. PBPro automatically
selects this when you use the ADCIN command.

CHS2-0 select as follows:

000: Channel 0 (A0 pin)

001: Channel 1 (A1 pin)

010: Channel 2 (A2 pin)

011: Channel 3 (A3 pin)

100: Channel 4 (A5 pin)

101: Channel 5 (E0 pin)

110: Channel 6 (E1 pin)

111: Channel 7 (E2 pin)

Notice how pin A4 is skipped. That is because A4 is used for the timer TMR0
input and also is an open source output. Any digital I/O on A4 requires an external
pull-up resistor.

Programming PIC Microcontrollers with PicBasic

124

GO/D

O

N

E

—A/D Conversion Status bit

This bit is really a control bit and an indicator flag. It is used to monitor when the
A/D conversion is complete. It allows your program to check A/D status. When it is
set to a “1”, the A/D conversion process starts. This bit is automatically cleared
when the conversion is complete.

Not Used—This bit is not used for anything and can be ignored.

ADON—A/D On bit

This bit turns the A/D circuitry on or off. Setting this bit to a “1” will enable the A/D
converter at the channel selected in bits CHS2-0. Setting this bit to a “0” shuts down
the A/D circuitry so it doesn’t draw any current.

This bit has to be set before the GO bit is set. In fact, the PIC requires your pro-
gram to delay one sample time period between turning the A/D converter on
(ADON = 1) and starting the conversion (GO = 1). That time has to be calculated
to be exact but it’s usually less than 50 microseconds. PBPro takes care of this in
the ADCIN command.

ADCON1

Not Not Not
ADFM Used Used Used PCFG3 PCFG2 PCFG1 PCFG0

The ADCON1 register is where you set Port A to be digital or analog input
mode. Remember, the TRISA register just makes the port an input or output.
ADCON1 takes it the next step and selects what kind of input. This is only used on
Port A and Port E because they share standard I/O circuitry with the A/D converter
circuitry.

The ADCON1 bits are as follows:

ADFM—A/D Result Format

(This bit is only used on the larger PICs with 10-bit A/D converters. It selects how
the result is stored in a 16-bit space.)

Inside the PIC Microcontroller

125

Programming PIC Microcontrollers with PicBasic

126

0: Left Justified

1: Right Justified

PCFG3-0—A/D Port Configuration Control

These bits set which A/D port pins are non-A/D digital and which are analog A/D
converter pins. It also selects the voltage reference used by the A/D converter.

The list below is the shorter version used for 18-pin PICs with 8-bit A/D; check
the data sheet for the larger PICs with more A/D channels.

PCFG A0 A1 A2 A3 Vref

00 A A A A Vdd

01 A A A Vref A3

10 A A D D Vdd

11 D D D D ----

ADRES

This register is where the result of the A/D conversion is stored. On larger 10-bit
A/D PICs, this register is doubled to form the ADRESH and ADRESL registers.
ADRESH is the high byte and ADREL is the low byte. If you are just using an 8-
bit PIC, then all you need is ADRES.

ADRES and ADRESH are at the same memory location. It allows you to use
similar code from an 8-bit A/D PIC for occasions when you want 8-bit results on a
10-bit A/D converter. One of the projects in the later chapters will demonstrate how
to use the A/D converter in PBC and PBPro.

Peripheral Interrupt Vector

One of the features the 14-bit core PICs offer over the 12-bit core PICs is interrupts.
An interrupt is an internal hardware circuit that, if enabled, will interrupt your pro-

gram and jump to another program. Interrupts can come from various sources,
depending on what the PIC offers. All interrupts can be disabled, or only selected
interrupts can be disabled by clearing a control bit. This is known as masking an
interrupt.

The PERIPHERAL INTERRUPT VECTOR is the location in the program
memory where the PIC jumps to if an interrupt occurs. The memory location is
0004h. In this location you put a goto statement that redirects the program to your
interrupt routine.

When that interrupt routine is complete, a RETFIE (return from interrupt enable)
assembly command returns the program to the location it was at before the interrupt
occurred. The actual selection of interrupts depends on the PIC device that you are
using. There are timer overflow interrupts, change in state interrupts for I/O, exter-
nal signal interrupts for I/O, interrupts for completion of a function like serial com-
munication, and others. To really understand all the interrupt functions, you need to
study the data sheet for the part you are using.

PBC does not support interrupts in Basic. To use interrupts with PBC, you need
to insert some assembly code and modify one of the include files the PicBasic com-
piler uses to convert your PicBasic program to a hex file. This is really an advanced
function and beyond the scope of this book.

PBPro does offer interrupts in Basic and can also work with interrupts in assem-
bly. The PBPro manual has a section in the back that discusses this. The interrupts
in Basic feature doesn’t use all the capabilities of the PIC’s internal interrupt struc-
ture, so it is a bit slower in responding than an assembly program would be. In most
cases though, the PBPro “On Interrupt” command will perform all your interrupt
requirements.

There are two internal registers you need to understand to use the internal inter-
rupts: the OPTION register and the INTCON register.

OPTION Register

This register is used to set up various internal features of the PIC. Within this reg-
ister you can control the timer and Watch Dog timer prescaler that is used to extend
the time it takes for the internal TMR0 timer, or the WDT, to overflow.

Inside the PIC Microcontroller

127

It also has a bit for selecting the TMR0 timer clock source. The internal oscilla-
tor clock or an external source at the TOCKI pin (A4) on the PIC are the two
options. This second choice is handy for using the TMR0 timer as a counter instead.
The OPTION register also enables or disables weak pull-up resisters on PORTB.
This is handy for connecting to a bank of switches or keypad.

The OPTION register is also used to set up the interrupt control on Port B bit0.
Port B pin 0 is designated an external interrupt pin. That pin can be set up to sus-
pend the main program operation and run the interrupt routine if the pin changes
state. The Option register sets up the direction of that change of state. It can be a ris-
ing signal (low to high) or a falling signal (high to low). This is done by setting the
INTEDG bit.

The register breaks down as follows:

OPTION REGISTERBit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

R

B

P

U

INTEDG TOCS TOSE PSA PS2 PS1 PS0

R

B

P

U

—PORTB Pull-up enable bit

0 : PORTB pull-ups are disabled

1 : PORTB pull-ups are enabled

INTEDG—Interrupt edge select bit

0 : Interrupt on rising edge of PORTB RB0/INT pin

1 : Interrupt on falling edge of PORTB RB0/INT pin

TOCS—TMR0 Clock Source Select bit

1 : Increment on pulse at PORTA RA4/TOCKI pin

0 : Increment on internal clock pulse

TOSE—TMR0 source edge select bit when driven by TOCKI pin

1 : Increment on high to low transition

0 : Increment on low to high transition

Programming PIC Microcontrollers with PicBasic

128

PSA—Prescaler assignment

1 : Prescaler assigned to WDT

0 : Prescaler assigned to TMR0

PS2—PS0 Prescaler rate select bits

Bit Values TMR0 Rate WDT Rate

000 1:2 1:1

001 1:4 1:2

010 1:8 1:4

011 1:16 1:8

100 1:32 1:16

101 1:64 1:32

110 1:128 1:64

111 1:256 1:128

Both PBC and PBPro require the Watch Dog Timer to be enabled for the PAUSE,
SLEEP, and NAP commands. Modifying the prescaler will affect these. That’s why it
is good to understand the registers’ functions so you don’t set up one feature and
disable another.

INTCON Register

This register has a lot going on in it. The PIC has several different interrupts and this
register controls all of them.

GIE

All the interrupts can be enabled or disabled by setting or clearing the GIE bit in the
Option register. After that, you can disable or enable specific interrupts by setting
the proper enable bit.

Inside the PIC Microcontroller

129

EEIE

This bit enables the EEPROM write interrupt, which indicates when the PIC has
completed writing to the EEPROM. EEIE enables and disables that function. This
is the only interrupt that has the indicator flag somewhere else. The EEPROM inter-
rupt flag is located in the EECON1 register.

TOIE and TOIF

Next you have the timer TMR0 overflow interrupt enable bit. The TMR0 is an inter-
nal register that can be incremented by the internal PIC clock or by an external sig-
nal on the TOCKI pin, which is shared with the RA4 pin. The TOIE bit enables and
disables this interrupt.

The TOIF flag is set if the TMR0 register counts beyond 255. The TMR0 regis-
ter will overflow back to 0 and keep counting to 255 again. The TOIF indicates the
TMR0 register overflowed so you can make corrections for it in your code.

INTE and INTF

The Port B Pin 0 interrupt, which has some of its control located in the Option reg-
ister, can be enabled or disabled with the INTE bit. The INTF flag will indicate if
the interrupt occurred.

RBIE and RBIF

This is another Port B interrupt. It is affected by the change of state at Port B pins
4 thru 7. This interrupt is handy for monitoring a keypad. The PIC can go into sleep
mode and when this interrupt occurs, the PIC will wake up and run the code you
have written to respond to this interrupt. The RBIF flag indicates that the change
occurred.

INTCON REGISTERit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

GIE EEIE TOIE INTE RBIE TOIF INTF RBIF

Programming PIC Microcontrollers with PicBasic

130

GIE—Global Interrupt Enable bit

0 : Disable all interrupts

1 : Enable all un-masked interrupts

EEIE—EE Write Complet Interrupt Enable bit

0 : Disable EE write complete interrupt

1 : Enable EE write complete interrupt

TOIE—Timer Overflow Interrupt Enable Bit

0 : Disable timer overflow interrupt

1 : Enable timer overflow interrupt

INTE—Port B pin 0 Interrupt Enable Bit

0 : Disable Port B pin 0 Interrupt

1 : Enable Port B pin 0 Interrupt

RBIE—Port B Change Interrupt Enable bit

0 : Disable Port B change interrupt

1 : Enable Port B change interrupt

TOIF—Timer 0 (TMR0) Overflow Interrupt Flag

0 : TMR0 did not overflow

1 : TMR0 overflowed

INTF—Port B pin 0 Interrupt Flag

0 : Port B pin 0 interrupt did not occur

1 : Port B pin 0 interrupt occured

Inside the PIC Microcontroller

131

RBIF—Port B Change Interrupt Flag

0 : Port B change interrupt did not occur

1 : Port B change interrupt occured

As you can see, the PIC offers a lot of interrupt options. I don’t want to dive too
deeply into this because this book is more about PicBasic than PIC internals. You
should understand how to use this register if you use any interrupts in PBPro. By
reading or clearing the bits in the INTCON register, you can control your interrupt
routine.

Summary

I’ve only covered the basics here. The larger PICs have more timers and more reg-
isters to control the added interrupts, serial ports, capture/compare function, serial
peripheral controller, and other advanced features. You need to really study the data
sheets if you want to understand all those PIC features.

My experience has taught me that actually using PIC microcontrollers is the best
way to learn. After completing the projects in this book, you should have enough
experience with PICs to dive into the advanced features on your own.

Now let’s build PIC-based projects with PBC and PBPro.

Programming PIC Microcontrollers with PicBasic

132

Simple PIC Projects

As mentioned in the previous chapters, the PicBasic compilers work with the 14-bit
core family of PIC microcontrollers. In this chapter we will put PicBasic to work
with one of the more popular PICs, the 16F876. It is a great device to play with
because of its flash memory. “Flash” memory means it can be programmed over and
over again without having to erase it under ultraviolet light. The 16F876 PIC also
has in-circuit programming capability that allows you to reprogram the flash mem-
ory without removing it from the circuit.

For this book, I will be using a bootloader to program the PIC. A bootloader is
a small section of code pre-programmed into the PIC that allows you to download
your program via a serial port. There are various versions of a bootloader available,
but I’m using MELOADER from microEngineering Labs since they are also the
company that produces the PicBasic compilers.

You will see both a PBC and PBPro version for each project. The PBPro
requires a special directive line to work with the bootloader. If you program with a
standard programmer, then that line can be eliminated.

Let’s get started.

Project #1—Flashing an LED

We’ll begin with the easy project of flashing an LED on and off. While this seems
simple, even experienced PIC developers often start with this just to make sure

133

C H A P T E R 5

things are working properly. Sometimes, within a complex program, I will flash an
LED on an unused I/O pin just to give visual feedback that the program is running.

In this example, we’ll flash an LED connected to port B pin 0 (RB0). The PIC
I/O can individually sink or source 25 milliamps (mA) of current. That is more
than enough to drive an LED directly. The software will light the LED for one sec-
ond, then shut it off for one second, and then loop around to do it again. While this
program is simple, getting the LED to flash on and off verifies that you success-
fully wrote the program in PicBasic, compiled/assembled it, programmed the PIC,
and correctly built the PIC circuit. That is a big first step, and why you’ll find this
first project very rewarding. Figure 5-1 shows the completed circuit board for this
project.

Figure 5-1:View of the completed circuit board for the LED flasher.

Figure 5-2 shows the schematic for this project; it will become the main build-
ing block for many of your PicBasic designs. It contains a 4-MHz resonator con-
nected to the PIC OSC1 and OSC2 pins. It also has a 1k pull-up resistor from the
MCLR pin to Vdd voltage of 5 volts. These are the only connections a PIC needs to
run besides power and ground. That makes getting projects going much easier.

Programming PIC Microcontrollers with PicBasic

134

Figure 5-2: Schematic diagram of the LED flasher circuit.

PBC Code

The PBC code for this project is written to simply turn the B0 pin of Port B on and
off at one second intervals. The first part of the program sets up the symbol LED to
represent the Port B pin. This isn’t necessary, but makes it easier to read then just
putting a “0” everywhere the symbol LED is.

Next, Port B is set for which pins are inputs and which are outputs. Notice how
PBC uses the DIRS directive and outputs are a “1” and inputs a “0”. Finally, we
enter the main code section. We use the High and Low commands to control Port B
pin 0. The Pause command is used to create the one-second delay.

The main program runs in a continuous loop using the GOTO command to jump
it back to the main: label.

‘ ——-[Title]————————————————————————————
‘
‘ File...... proj1PBC.bas
‘ Format.... PicBasic
‘ Purpose... PIC16F876 flash LED

16F876+5v

+5v
100

1K

4 Mhz

LED

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

Simple PIC Projects

135

‘ Author.... Chuck Hellebuyck
‘ Started... June 16, 1999
‘ Updated...

‘ ——-[Program Description]—————————————————————
‘ This is a simple program written to flash an LED by turning it
‘ on for one second and off for one second. The LED should be
‘ connected to portB pin 0 (16F876 pin 21) with the Cathode to
‘ ground and the anode at the PIC. A 100 ohm resistor is used in
‘ series with the LED to limit the current.

‘——-[PBC Code]——————————————————————————

Symbol LED = 0 ‘Rename pin 0 of portb (PIC 16F84 pin 6)
‘to LED

DIRS = %00000001 ‘Setup port b as RB7-RB1 inputs, RB0 as
‘output

main: ‘Label for beginning of main loop

High LED ‘Set pin 0 of portb high (5 volts) which turns
‘ the LED on

Pause 1000 ‘Pause 1000 milliseconds (1 second) with
‘LED on

Low LED ‘Set pin 0 of portb low (0 volts) which
‘turns the LED off

Pause 1000 ‘Pause for 1 second with LED off

goto main ‘Jump to the main label and do it all
‘again

END ‘This line is not needed but its safe to
‘put it here just in case the program gets
‘lost.

Programming PIC Microcontrollers with PicBasic

136

PBPro Code

The code for the PBPro compiler is written to simply turn the B0 pin of Port B on
and off at one-second intervals in a similar manner to the PBC version.

The first part of the program sets up the symbol LED to represent the Port B pin.
This isn’t necessary, but makes it easier to read than just putting a “0” everywhere
the symbol LED is. Next, Port B is set for which pins are inputs and which are out-
puts. PBPro uses the TRIS directive and “1” is an input while “0” is an output. (This
is a major difference between PBC and PBPro programs, as explained in the earlier
chapters.) Finally, we enter the main code section. We use the High and Low com-
mands to control Port B pin 0. The Pause command is used to create the one-sec-
ond delay.

The main program runs in a continuous loop using the GOTO command to jump
it back to the main: label.

‘——-[Title]————————————————————————————-
‘
‘ File...... proj1PRO.bas
‘ Format.... PicBasic Pro
‘ Purpose... PIC16F876 flash LED
‘ Author.... Chuck Hellebuyck
‘ Started... June 16, 2001
‘ Updated...

‘ ——-[Program Description]—————————————————————
‘ This is a simple program written to flash an LED by turning it
‘ on for one second and off for one second. The LED should be
‘ connected to port B pin 0 (16F876 pin 21) with the Cathode to
‘ ground and the anode at the PIC. A 100 ohm resistor is used in
‘ series with the LED to limit the current.

‘——-[PBPro Code]——————————————————————————

Define LOADER_USED 1 ‘Only required if bootloader used to
‘ program PIC

Simple PIC Projects

137

symbol LED = 0 ‘Rename pin 0 of portb (PIC 16F876 pin 21)
‘to LED

TRISB = %11111110 ‘Setup port b as RB7-RB1 inputs, RB0 as
‘output

main: ‘Label for beginning of main loop

High LED ‘Set pin 0 of portb high (5 volts) which
‘turns the LED on

Pause 1000 ‘Pause 1000 milliseconds (1 second) with
‘LED on

Low LED ‘Set pin 0 of portb low (0 volts) which
‘turns the LED off

Pause 1000 ‘Pause for 1 second with LED off

goto main ‘Jump to the main label and do it all
‘again and again

END ‘This line is not needed but its safe to
‘put it here just in case the program gets
‘lost.

Final Thoughts

There are several variations to this same program that will work; you may have a
totally different format in mind. What I wanted to do with this was show the basics
from which any program can be built. If you want to try other variations of this proj-
ect, you could modify the values for “pause” to make the LED flash faster or slower.
You could also add a second LED and alternate the on and off modes so the LEDs
appear to flash back and forth. You could also just build the next project!

Programming PIC Microcontrollers with PicBasic

138

Project #2—Scrolling LEDs

This project expands on the previous project by lighting eight LEDs in a scrolling,
“back and forth” motion. The entire Port B I/O is used to drive the eight LEDs. This
is a good project that demonstrates how to control all eight LEDs with a single loop-
ing routine. The routine uses a FOR-NEXT loop to make it happen. The completed
circuit is shown in Figure 5-3 and the schematic diagram is in Figure 5-4.

Figure 5-3:View of the completed circuit board for “scrolling LEDs” project.

Figure 5-4 shows the LEDs all sharing the same 100-ohm resistor. This works
because only one LED is on at a time. Normally each LED should have its own
resistor, and that would work here also without modifying the software. But I
wanted to show another design approach that I thought was interesting. Notice that
the same basic connections are used: OSC1, OSC2, MCLR, 5 volts, and ground.

Simple PIC Projects

139

Figure 5-4: Schematic diagram of the “scrolling LEDs” circuit.

PBC Code

The PBC code for this project is very similar to that for the previous project, but
expands on it by adding a FOR-NEXT loop to the code. It uses the same Port B to con-
trol the LEDs, but this time uses all eight ports of Port B to control eight LEDs.

In the PBC code, the symbol LED is established to represent the variable B0
rather than just a port pin. Through this variable LED, we will use the FOR-NEXT
loop to increment through each Port B pin. Then we make all of Port B outputs with
the DIRS directive and also add the PINS directive to establish all of Port B pins as
low. This makes sure all the LEDs are off to start.

Next we enter the main loop of code. Within this main loop are two sub-loops
created by separate FOR-NEXT loops. The first FOR-NEXT loop operates on the LED

16F876

+5v

1K

+5K

100
ohm

4 Mhz

LED

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

Programming PIC Microcontrollers with PicBasic

140

variable by increasing the value by one each time through the loop. This continues
until LED is equal to 7, and then the second FOR-NEXT loop is entered.

The second FOR-NEXT loop actually initializes the LED variable to 7 and then
decrements it by 1 on every loop. This continues until the LED variable is equal to
0. The LEDs light up in the opposite direction to the first FOR-NEXT loop. The pro-
gram then has a GOTO statement to route the code back to the main: label to do it all
again. The result is a scrolling light that moves back and forth.

This program shows how a small section of code within a FOR-NEXT loop can be
used over and over to achieve different output results. The same effect could be
achieved with a whole bunch of High and Low commands repeated for each LED.
The effect would be the same, but the amount of program memory would be about
five times larger!

‘ ——-[Title]————————————————————————————
‘
‘ File...... proj2PBC.bas
‘ Format.... PicBasic
‘ Purpose... PIC16F876 scroll eight LEDs
‘ Author.... Chuck Hellebuyck
‘ Started... June 25, 1999
‘ Updated...

‘ ——-[Program Description]—————————————————————
‘ This program will scroll a string of LEDs in a back and forth
‘ motion. Each LED is turned on for ‘1 second and then turned off.
‘ The next LED in line is turned on immediately after the previous
‘ LED is turned off. This continues for all eight LEDs and then
‘ the direction is reversed. This creates a back and forth motion
‘ of light. All the LEDs are connected to port B which makes the
‘ code easier to implement.A single command can control all the
‘ LEDs at once by setting or clearing the bit associated with each
‘ LED.

‘——-[PBC Code]——————————————————————————

symbol LED = B0 ‘Rename variable B0 as LED

Simple PIC Projects

141

pins = %00000000 ‘Initiate all port B pins to low

dirs = %11111111 ‘Setup port b as all outputs

main: ‘Label for beginning of main loop

‘ *********** Light LEDs in right direction ************

for led = 0 to 7 ‘Loop through all LEDs

high led ‘Set each pin of portb high (5 volts)
‘ which turns the LED on

pause 1000 ‘Pause 1000 milliseconds (1 second) with
‘LED on

low led ‘Set each pin of portb low (0 volts) which
‘ turns the LED off

next ‘Continue until all 7 have been lit once

‘ *********** Light LEDs in left direction **************

for led = 7 to 0 step –1 ‘Loop through all LEDs
‘backwards

high led ‘Set each pin of portb high (5 volts)
‘which turns the LED on

pause 1000 ‘Pause 1000 milliseconds (1 second) with
‘LED on

low led ‘Set each pin of portb low (0 volts) which
‘turns the LED off

next ‘Continue until all 7 have been lit once

‘ ********** Loop Back to Beginning ***************

goto main ‘Jump to the main label and do it all
‘again

END ‘This line is not needed but its safe to
‘put it here just in case the program gets
‘lost.

Programming PIC Microcontrollers with PicBasic

142

PBPro Code

This PBPro code is also similar to that for the first project with an added FOR-NEXT
loop. It uses the same Port B to control the LEDs, but this time uses all eight ports
of Port B to control eight LEDs.

The B0 is not a predefined byte variable in PBPro as it is in PBC. Instead, we
create a byte variable called “LED” using the VAR directive. Through this variable
LED, we will use the FOR-NEXT loop to increment through each Port B pin. Next,
we make all of Port B outputs with the TRISB directive and also add the Port B
directive to establish all of Port B pins as low. This makes sure all the LEDs are off
to start. Both of these directives act on the PIC register of the same name. This is
more efficient than the way PBC handles this function.

Then we enter the main loop of code. Within this main loop are two sub-loops
created by separate FOR-NEXT loops. The first FOR-NEXT loop operates on the LED
variable by increasing the value by one each time through the loop. This continues
until LED is equal to 7, and then the second FOR-NEXT loop is entered.

The PBPro format allows us to work directly on the Port B register to change
individual bits. “PortB.0” is the portname.number format I mentioned earlier, and
the line “PortB.0” represents pin 0 of Port B. We can add an equal sign after it and
make it equal to 1 or 0. In this program, we take that a step further and add the
“LED” variable to the end of it, “PortB.0[LED]”. What that does is shift the bit to
operate on from 0 to the LED value. For example, if LED equaled 5 then the
“PortB.0[LED] = 1 would make the fifth bit of Port B high and turn on that LED.

The second FOR-NEXT loop actually initializes the LED variable to 7 and then
decrements it by 1 on every loop. This continues until the LED variable is equal to
0. The PortB.0[LED] line then lights up the LEDs in the opposite direction from the
first FOR-NEXT loop. The program then has a GOTO statement to route the code back
to the main: label to do it all again.

This program shows how a small section of code within a FOR-NEXT loop can be
used over and over to achieve different output results. The same effect could be
accomplished with several PortB.0 = 1 and PortB.1 = 1, etc. commands repeated for
each LED. As was the case with PBC code, the effect would be the same but the
amount of program memory it would take would be about five times larger.

Simple PIC Projects

143

‘ ——-[Title]————————————————————————————
‘
‘ File...... proj2PRO.bas
‘ Format.... PicBasic Pro
‘ Purpose... PIC16F876 scroll eight LEDs
‘ Author.... Chuck Hellebuyck
‘ Started... June 25, 1999
‘ Updated...

‘ ——-[Program Description]—————————————————————
‘ This program will scroll a string of LEDs in a back and forth
‘ motion. Each LED is turned on for 1 second and then turned off.
‘ The next LED in line is turned on immediately after the previous
‘ LED is turned off. This continues for all eight LEDs and then
‘ the direction is reversed. This creates a back and forth motion
‘ of light. All the LEDs are connected to port B which makes the
‘ code easier to implement. A single command can control all the
‘ LEDs at once by setting or clearing the bit associated with each
‘ LED.

‘——-[PBPro Code]——————————————————————————

Define LOADER_USED 1 ‘Only required if bootloader used to
‘program

‘ PIC

LED var Byte ‘LED variable setup as byte

PortB = %00000000 ‘Initiate all port B pins to low

Trisb = %00000000 ‘Setup port b as all outputs

main: ‘Label for beginning of main loop

‘ *********** Light LEDs in right direction ****************

for led = 0 to 7 ‘Loop through all LEDs

Programming PIC Microcontrollers with PicBasic

144

portB.0[LED] = 1 ‘Set each pin of portb high (5 volts)
‘which turns the LED on

pause 1000 ‘Pause 1000 milliseconds (1 second) with
‘LED on

portb.0[LED] = 0 ‘Set each pin of portb low (0 volts) which
‘ turns the LED off

next ‘Continue until all 7 have been lit once

‘ *********** Light LEDs in left direction ******************

for led = 7 to 0 step –1 ‘Loop through all LEDs
‘backwards

portb.0[led] = 1 ‘Set pin 0 of portb high (5 volts) which
‘turns the LED on

pause 1000 ‘Pause 1000 milliseconds (1 second) with
‘LED on

portb.0[led] = 0 ‘Set pin 0 of portb low (0 volts) which
‘turns the LED off

next ‘Continue until all 7 have been lit once

goto main ‘Jump to the main label and do it all
‘again and again

END ‘This line is not needed but its safe to
‘put it here just in case the program gets
‘lost.

Final Thoughts

You can modify the timing to make the LEDs scroll faster or slower by changing
the values for the “pause” command. With some trial and error, you could even get
it to operate like the front of that car on the Night Rider TV show!

Simple PIC Projects

145

Project #3—Driving a 7-Segment LED Display

In this project, we drive a 7-segment display like those used in digital clocks and in
old calculators. One of the biggest thrills for me, in my early days of fooling with
electronics, was when I drove a 7-segment display to indicate 0 to 9 using four dis-
crete integrated circuits. That was a long time ago! This project reduces those four
chips to a single PIC.

Driving a 7-segment LED display is really the same as driving seven separate
LEDs. Each segment of a 7-segment LED is an individual LED, but they have their
cathodes (common cathode) or anodes (common anode) tied together at one pin.
We’ll use Port B of the PIC 16F876 to drive each segment individually of a “com-
mon cathode” 7-segment LED. The program will count from 9 to 0, and then light
an LED on the eighth port of Port B that is not used by the 7-segment display. This
program demonstrates the use of the Lookup command to set the proper Port B pins
high to form the numbers 0 through 9. Figure 5-5 shows the completed circuit board
for this project and Figure 5-6 gives the schematic diagram.

Figure 5-5:View of the completed 7-segment LED display driving circuit.

Programming PIC Microcontrollers with PicBasic

146

The circuitry uses a common cathode 7-segment display. The display pin num-
bers are not designated because I could not guarantee that the pin-out would match
your LED display. You must check the pin-out data sheet for the display you use. The
resistors for all the LED segments and the stand-alone LED are 100 ohms. The rest
of the circuit is the standard PIC connections that were used in the previous projects.

Figure 5-6: Schematic diagram of the LED display driver.

PBC Code

The PBC version of the project code starts as usual with the variables defined. A
general purpose “x” variable is used as the count variable. A second variable
“numb1” is used to store the segment arrangements that form the individual numbers.

Next the I/O is set up and all outputs reset to off. Because PBC defaults to work-
ing with Port B, the DIRS directive is used. The program then begins the main loop
at label loop:. This loop is really formed by the FOR-NEXT commands. Within the
FOR-NEXT loop, the variable “x” is decremented from its initial value of 9 to the low-
est value of 0. Within that loop is also a command we haven’t used in previous proj-
ects, the GOSUB command.

The GOSUB command forces the PIC to put the main loop on hold and run a sec-
ond loop of commands. Those commands are at label convrt. The convrt loop

16F876

+5v

100
Ohm

1K+5K

4 Mhz

F

A

E

CC

C

G

B

D

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

Simple PIC Projects

147

contains another command we have not used, LOOKUP. This convrt loop takes the
value of variable “x” and, through the LOOKUP command, stores the proper Port B
I/O set-up in variable “numb1”. The LOOKUP command constants, contained in the
parentheses, are the Port B I/O arrangements required to display the number con-
tained in variable “x” on the LED display.

The convrt loop returns back to the main loop using the RETURN command. It
returns the PIC back to the command that follows the GOSUB command. The com-
mand line after the GOSUB command is where Port B actual drives the LED display
with the value in “Numb1”. It’s done with the simple PINS directive. All this con-
tinues until variable “x” equals zero. Then the program leaves the FOR-NEXT loop
and moves to the light label. Within that section, the program turns on the stand-
alone LED in the same way Project #1 did earlier. After that, the program loops up
to loop again and starts the whole countdown over.

‘ ——-[Title]————————————————————————————
‘
‘ File...... proj3PBC.bas
‘ Format.... PicBasic
‘ Purpose... PIC16F876 drives 7-segment LED
‘ Author.... Chuck Hellebuyck
‘ Started... August 1,1999
‘ Updated...

‘ ——-[Program Description]—————————————————————
‘This program drives a common cathode 7-segment LED display to
‘countdown from 9 to 0 and then lights a separate LED for one
‘second to signify the end of the countdown. The program then
‘loops around and counts down again.

‘——-[PBC Code]——————————————————————————

symbol x = b0 ‘ Establish variable X

symbol numb1 = b1 ‘ Establish variable numb1

init:

Programming PIC Microcontrollers with PicBasic

148

pins = %00000000 ‘Set all port B pins low
dirs = %11111111 ‘Set all port B as outputs

loop:
for x = 9 to 0 step –1 ‘Countdown from 9 to 0

gosub convrt ‘Go to conversion routine

pins = numb1 ‘Set proper I/O pins per convert
‘routine

pause 1000 ‘Keep display the same for 1 second

next ‘Next number in countdown

light:
high 0 ‘Countdown reached 0 light LED

pause 1000 ‘Keep LED lit for 1 second

low 0 ‘LED off

goto loop ‘Do it all again

‘* Convert decimal number to proper segment alignment for LED
‘display *

convrt:

lookup x,($DE,$50,$E6,$F4,$78,$BC,$BE,$54,$FE,$FC),numb1 ‘Match
‘segments to value of x

return ‘ Return to the line after the gosub

end ‘Add this in case program gets lost.

PBPro Code

The PBPro code starts as usual with the variables defined. A general-purpose “x”
variable is used as the count variable. A second variable, “numb1,” is used to store
the arrangement of segments that form the individual numbers.

Simple PIC Projects

149

Next the I/O is set up and all outputs reset to off at the init label. The program
then begins the main loop at label loop. This loop is really formed by the FOR-NEXT
commands. Within the FOR-NEXT loop is where the variable “x” is decremented
from its initial value of 9 to the lowest value of 0. As with the PBC code, within that
loop is also a command we haven’t used in previous projects, the GOSUB command.

The GOSUB command forces the PIC to put the main loop on hold and runs a
second loop of commands. Those commands are at label convrt. The convrt loop
contains another command we have not used, Lookup. This convrt loop takes the
value of variable “x” and, through the Lookup command, stores the proper Port B
I/O set-up in variable “numb1”. The Lookup command constants, contained in the
brackets, are the Port B I/O arrangements required to display the number contained
in variable “x” on the LED display.

Notice how the LOOKUP command in PBPro uses brackets around the selection
list, while PBC earlier used parentheses. This minor code difference will produce an
error if you try to convert a PBC program to PBPro.

The convrt loop returns back to the main loop using the RETURN command. It
returns the PIC back to the command that follows the GOSUB command. The com-
mand line after the GOSUB command is where Port B actual drives the LED display
with the value in “Numb1”. It’s done by directly modifying the Port B register.

All this continues until variable “x” equals zero. Then the program leaves the
FOR-NEXT loop and moves to the light label. Within that section, the program turns
on the stand-alone LED in the same way Project #1 did earlier. After that, the pro-
gram loops up to loop again and starts the whole countdown over.

‘ ——-[Title]————————————————————————————
‘
‘ File...... proj3PRO.bas
‘ Format.... PicBasic Pro
‘ Purpose... PIC16F876 drives 7-segment LED
‘ Author.... Chuck Hellebuyck
‘ Started... June 17, 2001
‘ Updated...

Programming PIC Microcontrollers with PicBasic

150

‘ ——-[Program Description]—————————————————————
‘This program drives a common cathode 7-segment LED display to
‘countdown from 9 to 0 and then lights a separate LED for one
‘second to signify the end of the countdown. The program then
‘loops around and counts down again.

Define LOADER_USED 1 ‘Only required if bootloader used to
‘program PIC

x var byte ‘ General purpose variable

numb1 var byte ‘ variable to store the 7-segment I/O setup

init:

portb = %00000000 ‘Set all port B pins low

trisB = %00000000 ‘Set all port B as outputs

loop:
for x = 9 to 0 step –1 ‘Countdown from 9 to 0

gosub convrt ‘Go to conversion routine

portb = numb1 ‘Set proper I/O pins per convert
‘routine

pause 1000 ‘Keep display the same for 1 second

next ‘Next number in countdown

light:
high 0 ‘Countdown reached 0 light LED

pause 1000 ‘Keep LED lit for 1 second

end

low 0 ‘LED off

goto loop ‘Do it all again

Simple PIC Projects

151

‘* Convert decimal number to proper segment alignment for LED
‘display *

convrt:
lookup x,[$DE,$50,$E6,$F4,$78,$BC,$BE,$54,$FE,$FC],numb1 ‘Match

‘segments to value of x

return

end ‘Add this in case program gets lost.

Final Thoughts

You could modify the count direction to count up instead of counting down just by
changing the FOR-NEXT loop values from “9 to 0” to “0 to 9 and remove the step 1.”
You could also replace the stand-alone LED with a low current buzzer that will beep
when the count is finished.

Programming PIC Microcontrollers with PicBasic

152

Moving On with the 16F876

Now we’ll discuss additional interesting projects that use more of the PIC’s
resources. We will continue to work with the 16F876 flash PIC and will be access-
ing additional I/O directly using PBPro and indirectly using the PEEK and POKE
commands in PBC. After that, we use some of the special I/O of the 16F876 that
includes an analog-to-digital (A/D) converter shared with the Port A digital I/O
pins. With PBC, the A/D ports can be accessed with a few fairly simple commands
and PBPro allows A/D access with a single command. As a final project, we’ll drive
a servomotor. These are popular with hobbyists and are really quite easy to control
with both PBC and PBPro.

Some of these projects will access sections of the PIC described in Chapter 4. If
you skipped that chapter, you might want to read it before attempting these projects.

Project #4—Accessing Port A I/O

Most of the PBC commands work directly on the pins of Port B, but what if you
want to use another port in the PIC to do something? The answer is the POKE and
PEEK commands. Through these commands you can change the state of the I/O pin
from high to low or low to high or make a pin an input and read it for a high level
or low level.

Because we are controlling I/O indirectly through PEEK and POKE, you have to
know something about the inner workings of a PIC I/O structure. Every I/O port has

153

C H A P T E R 6

two registers associated with it; a direction register called the TRIS (TRISA for port
A) register and a data register called by the port name (i.e., PORTA) register.

When the PIC is first powered up, all I/O is put into a high impedance input
mode. To make a pin within the port an output requires you to clear the bit associ-
ated with it in the port’s TRIS register.

Bit 0 in the TRISA register determines the direction for the RA0 pin of PORTA.
If the TRISA bit is a “0,” then the pin is set to an output. If the TRISA bit is set to
a “1,” then the pin is set to an input. Therefore, when the PIC is first started up all
the TRIS pins are set to “1” meaning all inputs. You can change any single bit to an
output or change all of them to outputs.

In this project we will set PORTA pin 0 to an input to read the state of a switch.
We will set PORTA pins 1 and 2 to outputs to drive LEDs. If pin 0 is high (switch
open), we will light the LED on pin 1. If pin 0 is low (switch closed), then we will
light the LED on pin 2. Seems easy enough, right?

(Note: Port A direction bits are opposite the direction bits PBC uses in the DIRS
control of Port B. That’s because PBC tried to maintain compatibility with the Basic
Stamp. PBC inverts the DIRS to the proper Port B TRISB settings.)

PBPro is much simpler to use than PBC because it can operate directly on Port
A the same way it operates on Port B in previous chapter projects. PBPro can access
the TRISA register directly with a one-line command (TRISA = %00001111).
Although the PBPro command set includes the PEEK and POKE commands, the com-
piler manufacturer does not recommend using them.

Once you look at the PBPro code and the PBC code described for this project,
you’ll understand how PBPro improves on the PBC structure and thus makes pro-
gramming PICs in Basic easier.

The completed circuit is shown in Figure 6-1 and its schematic is in Figure 6-2.
As you can see, the circuit is fairly simple. It contains a standard 4-MHz resonator
connected to the PIC OSC1 and OSC2 pins. It also has a 1k pull-up resistor from
the MCLR pin to the Vdd voltage of 5 volts. In addition, there are the connections
required for the I/O control of Port A.

Programming PIC Microcontrollers with PicBasic

154

Figure 6-1: Completed circuit for the accessing port A I/O.

Notice that a connection to Port A doesn’t look any different than the previous
project’s connections to Port B. The only difference between Port A and Port B in
PBC is the way they are accessed in software. PBPro treats them the same.

The PIC has very powerful I/O circuitry that allows it to drive LEDs directly. A
series resistor is required to limit the current. LED1 and LED2 are driven this way
through 470-ohm resistors; changing them will change the LEDs’ brightness. Just
don’t exceed 20 mA to prevent damage to the PIC.

The pushbutton switch is connected directly to Port A pin 0 (RA0). A 1k resis-
tor “pulled-up” to 5 volts is also connected to it. The pushbutton switch is a nor-
mally open type that means the switch is open circuit when it’s not being pressed.
The 1k resistor sets the RA0 threshold to 5 v, or high, when the switch is not
pressed.

When the switch is pressed, the signal at RA0 goes to ground indicating a low
level. Make sure you use the correct type of switch when you build this or the cir-
cuit will not work properly with the software.

Moving On with the 16F876

155

Figure 6-2: Schematic for circuit shown in Figure 6-1.

PBC Code

The circuit’s PBC software, as listed below, first establishes the symbols Port A,
TrisA, and ADCON1 by setting them equal to the memory location where they
reside in the PIC. This makes understanding the PBC code much easier if you ever
have to refer back to this code at a later date. After you use a PIC for a while, you
will find you remember these location addresses but it’s still much easier to read the
port description.

If you’re wondering where those memory location values came from, then look
no further than the PIC data sheets or data book. Within those data sheets is a mem-
ory map. The memory map shows the numeric location of every register in the PIC.

16F876+5v

+5v

+5v

470

470

1K

1K

4 Mhz

LED 1

LED 2

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

Programming PIC Microcontrollers with PicBasic

156

The next set of instructions actually work on those locations using the POKE
command. The digital direction of Port A needs to be set up by modifying the TrisA
register. Notice how each port pin is set to a 0 or a 1 using the “%” binary directive.
This makes it easy to tell which pin does what. The left-most digit is port pin 7 and
the right-most is port pin 0.

The digital state of each pin is also established by modifying the Port A register
in the same way the TrisA register was set up. Making a pin a 0 sets that pin low, a
1 makes it high.

In the line below, pin 1 of Port A is set high while the rest of the port is set low.
This presets the LED connected to RA1 pin to the “on” or lit state.

poke PortA, %00000010 ‘ Set PortA RA1 high to turn
‘ on LED1

Now I have to throw a little curve in here because I chose to use the PIC16F876.
This PIC has an A/D shared with Port A. At power-up, the A/D has control over Port
A. For that reason, the command to POKE a value of 6 into the ADCON1 register is
necessary to set Port A up as a digital I/O port. Reading the data sheet about the A/D
register will reveal this, but it’s not instantly obvious.

The next section of code at label Main is the main loop. It first uses the PEEK
command to read all the pins of Port A as a byte and store it in RAM byte prede-
fined variable B0. Even though Port A pin RA1 is set to an output, it will read that
pin as the state defined by the Port A register. RA2 will be read the same way. The
rest of the pins of Port A are read as the voltage applied to those pins.

Since we only care about the state of RA0 where the switch is connected, the
next line uses the & directive or AND directive to perform a logical AND on the byte
that was read into RAM byte B0. By comparing it to %00000001, we are essentially
erasing all the bits to 0, except for the last bit that is the state of the switch. If the
switch is open, this bit will be high. If the switch is closed, this bit will be low.
Therefore, if the switch is open B0 will equal one, and if the switch is closed B0
will equal zero.

The next line of code tests for that. By using the IF-THEN command we test for
a zero value of B0. If B0 equals zero (switch closed), then we want the program to

Moving On with the 16F876

157

jump to label LED2. If B0 does not equal zero, then the program just jumps to the
next command.

The next command repeats what was done at the top of the program and “pokes”
LED1 on by setting that bit in the PORTA register. After the program completes
that, the next command simply jumps the program back to the label Main to start the
process all over again. On the other hand, if the value of B0 was indeed 0, then at
label LED2 we use the same POKE command but this time to set Port A pin RA2 to a
1 and RA1 to a 0 which turns LED1 off and turns LED2 on to indicate the switch
was pressed.

Immediately after that, the program jumps back to Main and tests the switch
again. If the switch is not still being pressed, the program will turn off LED2 and
turn LED1 back on with the PEEK command.

To keep the LED2 on, you have to keep your finger pressing the switch closed.
As soon as you lift your finger off the switch, the LEDs should change back to
LED1 on and LED2 off.

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... proj4PBC.bas
‘ Format… PicBasic
‘ Purpose... Accessing PortA using Peek and Poke
‘ Author.... Chuck Hellebuyck
‘ Started... May 1, 2000
‘ Updated...

‘ ——-[Program Description]——————————————————————-
‘ This program demonstrates how to access PortA using Peek and
‘ Poke in PicBasic.

Symbol PortA = 5 ‘ PortA address
Symbol TrisA = $85 ‘ PortA data direction

‘ register
Symbol ADCON1 = $9F ‘ A/D control register (PortA

‘ secondary control)
Init:

poke TrisA, %00000001 ‘ Set PortA RA4-RA1 to
‘ output, RA0 to input

Programming PIC Microcontrollers with PicBasic

158

poke PortA, %00000010 ‘ Set PortA RA1 high to
‘ turn on LED1

poke ADCON1 = 6 ‘ Set PortA to digital
‘ I/O

Main:
‘ *** Test the switch state ***
peek PortA, B0 ‘ Read all PortA states and

‘ store in B0
B0 = B0 & %00000001 ‘ Clear all bits in B0 except

‘ bit 0
if B0 = 0 then led2 ‘ If switch is closed then

‘ jump to
‘ the LED2 on routine

poke PortA, %00000010 ‘ Turn LED1 on, LED 2 off

goto Main ‘ Jump to the top of the main
‘ loop

LED2:
‘*** Turn LED2 on ***
poke porta, %00000100 ‘ LED2 on and LED1 off

goto Main ‘ Jump to the top of the main loop

PBPro Code

The PBPro software, as listed below, first goes to work on the special function reg-
isters TRISA, PORTA, and ADCON1. PBPro makes it easier on you to access these
registers because they don’t require you to know the register address in the PIC.
PBPro already has that built in.

The work done on those registers is to preset them to defined values by directly
equaling them to a value. The digital direction of Port A needs to be set up by mod-
ifying the TrisA register. Notice how each port pin is set to a 0 or a 1 using the %
binary directive. This makes it easy to tell which pin does what. The left-most digit
is port pin 7 and the right-most is port pin 0.

The digital state of each pin is also established by modifying the Port A register
in the same way the TrisA register was set up. Making a pin a 0 sets that pin low, a

Moving On with the 16F876

159

1 makes it high. In the code below, pin 1 of Port A is set high while the rest of the
port is set low. This presets the LED connected to RA1 pin to the on or “lit” state.

Now I have to throw a little curve in here because I chose to use the PIC16F876.
This version of the PIC has an A/D shared with Port A. At power-up, the A/D has
control over Port A. For that reason, the command to preset a value into the
ADCON1 register is necessary to set Port A up as a digital I/O port. Reading the
data sheet about the A/D register will reveal this but it’s not instantly obvious.

The next section of code at label Main is the main loop. The first thing we do is
go to work on the pin connected to the switch, RA0. PBPro allows us to use the IF-
THEN command to test that pin directly using the portname.pinnumber convention.
If the state of RA0 is high or a “1,“ then the switch is open and we should proceed
to the next command. The next two commands work directly on Port A register to
set RA1 on and RA2 off, thus turning LED1 on and LED2 off. After that, the pro-
gram loops back to test the switch again. If the switch is closed when we were at
the IF-THEN command, then RA0 will be low or a “0” and the command then
directs the program to jump to label LED2.

At LED2 we operate directly on the Port A register to set and clear the LED pins
to their proper state. In this case we set LED1 off and LED2 on. After that, the pro-
gram loops back to Main to start all over again testing the switch. To keep LED2 on,
you have to keep your finger pressing the switch closed. As soon as you lift your
finger off the switch, the LEDs should change back.

If you compare the PBC program to the PBPro program, it becomes clear that
not having to PEEK and POKE makes the PBPro version much easier to use and
understand.

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... proj4PRO.bas
‘ Format.... PicBasic Pro
‘ Purpose... Using Porta on PIC16F876
‘ Author.... Chuck Hellebuyck
‘ Started... June 1, 2000
‘ Updated...

Programming PIC Microcontrollers with PicBasic

160

‘ ——-[Program Description]——————————————————————-
‘This program demonstrates how to control PortA with PicBasic Pro.
‘Peek and Poke commands are not required because PicBasic Pro has
‘control over all registers including I/O registers.
‘direct This program will do the same function as proj4PBC.bas but
‘in Pro format. PortA RA1 and RA2 will drive LEDs. The RA0 port
‘will be an input and read the state of a momentary push button
‘switch to determine which LED to light. If switch is pressed LED2
‘will light. If switch is not pressed then LED1 will light.

Define LOADER_USED 1 ‘Only required if bootloader used to
‘program PIC

Init:
adcon1 = 6 ‘ Set all PortA to digital

‘I/O
trisa = %00000001 ‘ set PortA RA4-RA1 to

‘outputs, RA0 input
porta = %00000010 ‘ Set PortA RA1 high to turn

‘on LED1

Main:
‘ *** Test the switch state ***
if portA.0 = 0 then led2 ‘If switch is pressed then

‘jump to LED2 routine

PortA.1 = 1 ‘ Turn LED1 on
portA.2 = 0 ‘ Turn LED2 off
goto Main ‘ Jump to the top of the main loop

LED2:
‘*** Turn LED2 on ***
porta.2 = 1 ‘ LED2 on

porta.1 = 0 ‘ LED1 off
goto Main ‘ Jump to the top of the main

‘ loop

Final Thoughts

It is obviously more complicated to access Port A than Port B in PicBasic. But after
you set up variables for the TRISA register and Port A register locations, the program
becomes easier to understand. POKE and PEEK are very useful commands since they
allow your PBC program to access any register on the PIC. As you get more famil-

Moving On with the 16F876

161

iar with PICs, you will be able to access internal timers, analog-to-digital conversion,
internal registers, and many other features available on the various PICs.

The PBPro compiler once again makes programming the PIC a little shorter and
a little easier. Although these programs were simple, it was interesting to see how
you could modify their function just by pressing a switch. You can build on this
basic arrangement to add more switches and functions to control more than just
LEDs. We’ll touch on some of those in later chapters. But for our next project, let’s
skip the step where we changed the ADCON1 register to digital I/O and use Port A
as an A/D converter.

Project #5—Analog-to-Digital Conversion

This project uses one of the most useful features of the PIC16F876, the analog-to-
digital (A/D) converter. Almost everything in the real world is not digital but instead
analog. To control something in the real world, or to understand something in the
PIC, we have to convert that real-world analog data into the digital form the PIC
understands. That is done with an A/D converter. F or example, if you have to read
a temperature or light levels, you will need both a sensor to convert the measure-
ment into a variable voltage and an A/D converter to change the resulting voltage
into a digital value.

In this example, our sensor will be a variable resistor called a potentiometer
(POT). As we turn the POT’s shaft, we want to read the variable resistance from that
POT and light some LEDs to show how much we turned it. This could be compared
to the volume adjustment you make on a stereo. As you turn the knob for volume,
the sound from the stereo gets louder. That’s because it is reading the resistance of
the POT connected to the knob you turned to adjust the amplifier’s output.

This project will use a POT connected to Port A pin RA2. We’ll control five
LEDs using Port B. The program will have thresholds of A/D values associated with
each LED so, as we turn the POT, the LEDs will light in order just like a bar meter
on a stereo.

Programming PIC Microcontrollers with PicBasic

162

Fortunately, we don’t need to know too much about the operation of the A/D cir-
cuit; the software just assumes the circuit works, and it does. A/D circuits come in
different forms but they all do the same thing—convert an analog voltage into a dig-
ital voltage. An A/D register’s digital output will have a resolution to it. That means
it can output an 8-bit digital value, 10-bit digital value, or larger if required. The PIC
16F876 has a 10-bit resolution A/D register, but can also operate as an 8-bit. We will
use it as an 8-bit since it’s a little easier to understand. Eight bits fit into one byte,
and that’s much easier to manipulate in code.

Figure 6-3 shows the completed circuit and the schematic is given in Figure
6-4. The LEDs are connected to Port B with 100-ohm series resistors. Note that the
same basic connections are used—OSC1, OSC2, MCLR, 5 volts, and ground—that
were used in the previous project.

Figure 6-3: Completed circuit for the A/D conversion project.

Moving On with the 16F876

163

Figure 6-4: Schematic for the circuit shown in Figure 6-2.

Looking at Figure 6-4, notice we add the potentiometer to Port A RA2. The 15k
pull-up resistor is needed to supply power to the POT. You can vary the values of
the POT and pull-up resistor and still get similar results. By adjusting the POT, we
are changing the voltage at RA2 through the resistor divider formed between the
15k resistor and POT.

The A/D port cannot handle voltages above 5 volts. Therefore if you need to
measure larger voltages, you either have to step it down using resistors or build a
voltage conversion circuit using an op amp IC. (But that’s a subject for another book
and another author!)

PBC Code

In the PBC program for this circuit, the first part of the PBC code establishes names
for the register locations. ADCON0 and ADCON1 are special function registers for
controlling the A/D register and ADRESH and ADRESL are where the result of the
A/D conversion is stored. If you operate in 10-bit mode, both ADRESH and

16F876

+5v

+5v
+5v

1K

50 K

15 K 100 Ohms

100 Ohms

4 Mhz

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

Programming PIC Microcontrollers with PicBasic

164

ADRESL are used to hold the 10-bit result. If you use 8-bit resolution, then you
only need one byte to store the result so that register is ADRESH. These register val-
ues are once again found in the PIC16F876 data sheet and I described them in
Chapter 4.

After the A/D special function registers are established, the code then initializes
the Port B pins at the Init label. Using the PINS directive and the DIRS directive,
Port B is set as all outputs and all pins set to zero. Then the program enters the main
code at label Start.

First step at Start is to set Port A to operate as an A/D register. The POKE com-
mand is used to adjust the TrisA register to all inputs. The POKE command is then
used to set ADCON1 to hex value $02. This sets all Port A pins connected to the A/D
converter to operate as A/D input pins rather than digital I/O pins. This adjustment
of ADCON1 also clears the ADFM bit, described in Chapter Four, to set the A/D out-
put to 8-bit mode. This will put the full result in the ADREH register as a byte.

Next we set the A/D converter operating mode. This step selects which A/D port
to actually read. We POKE the ADCON0 register to control this. If we were reading
more than one POT, we would have to do this step over again for that second POT
connected to a separate A/D port.

We set ADCON0 to %11010001. Starting from the left, the two most significant
bits select the RC internal oscillator as the clock for the A/D circuitry. (Unless you
are into extremely accurate A/D measurements, this is the choice to use.) The next
three bits are “010” and they select channel 2 or pin RA2 as the A/D port pin to read.
Finally, the last bit is a “1” and it turns the A/D converter on. In fact, it starts the
A/D conversion.

Since the A/D conversion is started, we have to check when it is completed. We
do that at label loop. We test it by first using PEEK to copy the whole ADCON0 reg-
ister into predefined RAM byte B0. Then in the next command line we use and IF-
THEN statement to test the Go/Done bit by using the predefined “Bit2” name
associated with RAM byte B0. That’s the advantage of using B0 as the register
because we have easy access to the bits. If that bit2 value is 1, the conversion is not
complete so we loop back to PEEK ADCON0 again. If the bit2 value is 0, then we
know the A/D conversion is complete and the result is stored in the ADRESH reg-
ister. We then use the PEEK command to read ADRESH and store the result in pre-
defined RAM byte B3.

Moving On with the 16F876

165

Now that we have the A/D result from the POT, we need to determine how many
LEDs to light up. We do that with a series of IF-THEN statements. We test the value
four times to see if it is greater than a preset value. This program tests it for a value
of 25, 75, 125, and 175. If the value of B3 is less than the predefined value, the next
command uses the Pins directive to set the correct number of LEDs. If the value of
B3 is larger than the predefined value, the IF-THEN command jumps the program to
the next IF-THEN test of B3. If all the IF-THEN commands are smaller than the value
of B3, the final step simply sets all the LEDs on because the value is greater than
all the tested values.

After the LEDs are set, we pause 100 milliseconds to let the LEDs glow. Then
the program loops back up to Loop to get another reading off the POT. The 100-mil-
lisecond delay can be eliminated or reduced if you want to read the POT a little
faster.

To understand how the voltage at the POT is compared to the set values in the
IF-THEN section of code, let’s look at the math involved. The A/D converter defaults
to the 5-volt Vref as the reference voltage used internally by the A/D converter. It
takes the ratio of the voltage at RA2 and the Vref voltage of 5 volts and multiplies
it by 255. The result of that calculation is then stored in the ADRESH register. For
example, if the voltage at RA2 is 2.30 volts, then the result would be:

(2.30 / 5) * 255 = 117.30.

In our code we turn on the first three LEDs when the A/D result is less than 125.

tst3:
if B0 > 125 then tst4 ‘If A/D value is between 75 and 125
pins = %00000111 ‘ then light LED0 - LED2
goto cont ‘continue with the program

Therefore the fourth LED will light when the voltage at RA2 increases above
the 125 value, which is just about 2.45 volts.

To me this is a great example of how programming in PicBasic is so powerful.
You are using simple PEEK and POKE commands to control a high-powered micro-
controller the same way someone programming in assembly code would do. But it’s
so much easier to read and understand. You will see that the A/D converter is very

Programming PIC Microcontrollers with PicBasic

166

accurate and not too difficult to set up. That’s why in earlier chapters I didn’t rec-
ommend the POT command because using a PIC with A/D gives more accurate and
consistent results.

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... proj5pbc.BAS
‘ Purpose... POT -> 16F876 -> LEDs
‘ Author.... Chuck Hellebuyck
‘ Started... May 19, 2001
‘ Updated...

‘ ——-[Program Description]——————————————————————-
‘
‘ This Program uses the 16F876 to read a potentiometer (POT) and
‘ drive LEDs in a bar graph mode as the POT is turned.
‘
‘ RA2 pot connection
‘ RB4 LED4
‘ RB3 LED3
‘ RB2 LED2
‘ RB1 LED1
‘ RB0 LED0

‘ ——-[Revision History]————————————————————————
‘
‘

‘ ——-[Constants]———————————————————————————-
‘

‘ A/D Variables and symbols
‘
Symbol ADCON0 = $1F ‘ A/D Configuration
Register 0
Symbol ADRESH = $1E ‘ A/D Result for 8-bit
mode
Symbol ADRESL = $9E
Symbol ADCON1 = $9F ‘ A/D Configuration
Register 1
Symbol TRISA = $85 ‘ PortA Direction
register

Moving On with the 16F876

167

‘ ——-[Variables]———————————————————————————-
‘
‘ B0 and B3 are used but predefined in PBC therefore no symbol
‘ required

‘ ——-[Initialization]—————————————————————————
‘
Init:

pins = $0000 ‘ all outputs off to
‘ start

Dirs = %11111111 ‘ All of Port B is
‘ outputs

‘ ——-[Main Code]———————————————————————————-
‘

‘************ A/D Read *************************
‘
‘ PEEK and POKE Commands
‘
‘ Access 16F876 A/D using Peek and Poke

Start:
poke TRISA, $FF ‘Set PortA to Inputs
poke ADCON1, $02 ‘Set PortA 0-5 to analog

‘ inputs, and also
‘ Sets result to left
‘ justified 8-bit mode

poke ADCON0, %11010001 ‘ Set A/D to RC Osc, Channel
‘ 2, A/D converter On

loop:
Peek ADCON0,B0

Bit2 = 1
Poke ADCON0,B0 ‘ Set ADCON0-Bit2 high

‘ to start conversion

test:
Pause 5

Peek ADCON0,B0
If Bit2 = 1 Then test ‘ Wait for low on bit-2

‘ of ADCON0, conversion
‘ finished

Peek ADRESH,B3 ‘ Move HIGH byte of
‘ result B3 variable

Programming PIC Microcontrollers with PicBasic

168

‘********** Drive LEDs *************************

LEDtst1:
if B3 > 25 then tst2 ‘If A/D value is less than 25
pins = %00000001 ‘ then light LED0 only
goto cont ‘continue with the program

tst2:
if B3 > 75 then tst3 ‘If A/D value is between 25

‘ and 75
pins = %00000011 ‘ then light LED0 & LED1
goto cont ‘continue with the program

tst3:
if B3 > 125 then tst4 ‘If A/D value is between 75

‘ and 125
pins = %00000111 ‘ then light LED0 - LED2
goto cont ‘continue with the program

tst4:
if B3 > 175 then tst5 ‘If A/D value is between 125

‘ and 175
pins = %00001111 ‘ then light LED0 - LED3
goto cont ‘continue with the program

tst5:
pins = %00011111 ‘A/D value is greater than 175

‘ so
‘ light all the LEDs 0-4

cont:
Pause 100 ‘wait 1 second
goto loop

end

PBPro Code

And now for a real demonstration of the simplicity the PBPro compiler offers, we’ll
use the ADCIN command to perform the same function that took several steps in
PBC. We’ll read the same A/D port RA2 and light the same LEDs based on the same
threshold values, but we’ll do it in about half the code space PBC required.

Moving On with the 16F876

169

We start off with the DEFINE statements required by PBPro. The same
Loader_Used define statement is at the top because I am using a bootloader to
program the PIC. Next are a series of DEFINE statements dedicated to the ADCIN
command. These make it simple to set the output result to eight bits, the clock
source to RC, and add a sample time that sets when we check the status of the A/D
conversion.

Next, at the init label the program establishes a byte variable called “adval.”
This is where the A/D result will be stored. After that, we set Port B to be all out-
puts and initialize all LEDs to off by setting all the Port B pins to 0.

After that we enter the main code section. We first set Port A to all inputs by
modifying the TrisA register. Then we work on the ADCON1 register to make all
inputs of Port A work with the A/D register rather than as digital I/O. Then the
ADCIN command is issued. Within this command we define which A/D port to read
(2) and where to put the result (adval). The testing for completion of the A/D con-
version is all done by the ADCIN command. After the conversion is complete, we can
go right to work on the result and test it against the IF-THEN statement thresholds
the same way the PBC version did.

At each step, we compare “adval” to the predefined values. We light the LEDs
by working directly on the Port B register. We light the LEDs according to the value
of “adval.” If “adval” is less than a predefined value in the IF-THEN statement, then
the next command is the Port B manipulation. If none of the values in the IF-THEN
statements are larger than “adval,” then the Port B register is changed to light all five
LEDs. After this, the program pauses for 100 milliseconds and then jumps back to
the Loop label to test the A/D register again.

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... proj5pro.BAS
‘ Purpose... POT -> 16F876 -> LEDs
‘ Author.... Chuck Hellebuyck
‘ Started... May 19, 2001
‘ Updated...

Programming PIC Microcontrollers with PicBasic

170

‘ ——-[Program Description]——————————————————————-
‘
‘ This Program uses the 16F876 to read a potentiometer (POT) and
‘ drive LEDs in a bar graph mode as the POT is turned.
‘
‘ RA2 pot connection
‘ RB4 LED4
‘ RB3 LED3
‘ RB2 LED2
‘ RB1 LED1
‘ RB0 LED0

‘ ——-[Revision History]————————————————————————
‘
‘

‘ ——-[Constants/Defines]———————————————————————————-
‘
Define LOADER_USED 1 ‘Only required if bootloader used to

‘program PIC

‘ Define ADCIN parameters
Define ADC_BITS 8 ‘ Set number of bits in result
Define ADC_CLOCK 3 ‘ Set clock source (3=rc)
Define ADC_SAMPLEUS 50 ‘ Set sampling time in uS

‘ ——-[Variables]———————————————————————————-
‘
adval var byte ‘ Create adval to store result

‘ ——-[Initialization]—————————————————————————
‘
Init:

PortB = $00 ‘ all outputs off to start
TrisB = %00000000 ‘ All of Port B is outputs

‘ ——-[Main Code]———————————————————————————-
‘

TRISA = %11111111 ‘ Set PORTA to all input
ADCON1 = %00000010 ‘ Set PORTA analog

Moving On with the 16F876

171

loop:
ADCIN 2, adval ‘ Read channel 0 to adval

‘********** Drive LEDs *************************

LEDtst1:
if adval > 25 then tst2 ‘If A/D value is less

‘than 25
portb = %00000001 ‘ then light LED0 only
goto cont ‘continue with the program

tst2:
if adval > 75 then tst3 ‘If A/D value is

‘between 25 and 75
portb = %00000011 ‘ then light LED0 & LED1
goto cont ‘continue with the program

tst3:
if adval > 125 then tst4 ‘If A/D value is between 75

‘and 125
portb = %00000111 ‘ then light LED0 - LED2
goto cont ‘continue with the program

tst4:
if adval > 175 then tst5 ‘If A/D value is between 125

‘and 175
portb = %00001111 ‘ then light LED0 - LED3
goto cont ‘continue with the program

tst5:
portb = %00011111 ‘A/D value is greater than 175

‘so
‘ light all the LEDs 0-4

cont:
Pause 100 ‘wait 1 second
goto loop

end

Programming PIC Microcontrollers with PicBasic

172

Final Thoughts

You can use this concept whenever you want to interface digital circuitry to the real
analog world. Reading sensors is probably the most common application but not the
only one. The code for this project can easily be turned into a subroutine for more
complex programs. You can even modify it to read more than one sensor connected
to each of the Port A A/D pins. Don’t be discouraged if you have difficulty at first
understanding the programs and what they’re doing; they’ll probably be tough to
initially understand because we covered so much in this project.

But now let’s change direction again and drive something other than an LED.
How about driving a servomotor? The next project does just that.

Project 6—Driving a Servomotor

If you’ve ever built radio control airplanes or robots, you are probably familiar with
servomotors. Inside a servomotor is a DC motor with a series of gears attached. The
gears drive the output shaft and also control an internal potentiometer. The poten-
tiometer feeds back the output shaft position to the internal control electronics that
control the DC motor. The output shaft is limited to 180 degrees of rotation, but
some people rework the internals to make the servomotor turn a continuous 360
degrees. (We’ll explore applications of such “reworked” servomotors later in this
book.) The servomotor is controlled by a pulse-width modulated (PWM) signal. The
signal has to be between one and two milliseconds. A 1-millisecond wide pulse
moves the shaft all the way to the left, and a 2-millisecond wide pulse moves it all
the way to the right. Any pulse width in between moves the shaft between the end
points in a linear rotation. A 1.5-millisecond pulse would put the shaft at the
halfway point.

This project is quite simple. It first moves the shaft to the center position, and
then rotates the shaft back and forth between the end points. It’s simple, but quite
fun to play with. The finished project is shown in Figure 6-5 and Figure 6-6 shows
the schematic diagram.

Moving On with the 16F876

173

Figure 6-5: Completed servomotor control circuit.

Figure 6-6: Schematic for the circuit shown in Figure 6-5.

16F876

+5v

+5v

+5v

4 Mhz

1K

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

Yellow

Servo Monitor

Red

Black
Jameco
#157067

Programming PIC Microcontrollers with PicBasic

174

The servomotor only requires three wires: 5 volts, ground, and the signal wire
that is connected to RB2. Be sure to use a good power supply. The servomotor
draws a lot more power than any of the previous projects in this book. If you are
using a regulator to produce the 5 volts, I suggest you use at least a TO-220 pack-
age with proper heat sinking. Many people use separate power sources for the ser-
vomotor and the PIC; just make sure your grounds are all connected if you use that
method. The rest of the circuit is the standard PIC connections that were used in the
previous projects.

PBC Code

There is really not a lot to explain about the PBC code for this project. It’s quite sim-
ple. The key command in controlling a servo is the PULSOUT command. (Why they
didn’t just spell the full word “pulse” in that command is beyond me! I get more
syntax errors from spelling it PULSEOUT than any other stupid mistake.) The PUL-
SOUT command requires the PIC pin used to output the signal and the period con-
stant to tell how long to send the pulse. That is the format of the command covered
earlier in the book.

The PBC code does not require any variables to be established since we are
using the pre-defined B0 and B2 byte variables. There is nothing to initialize either.
Therefore we jump right into the main code loop. We begin at the Center: label.
This block of code centers the shaft of the servomotor. I have the PIC send the PUL-
SOUT signal 100 times by using a FOR-NEXT loop using variable B2. I also have a
20-millisecond pause to allow the servomotor to react. Servomotors require a con-
stant signal to maintain proper position. They have tremendous resistance to move-
ment if you have any loads on the shaft, but they will not hold forever and therefore
you should send the position signal often. The 20-millisecond delay is the recom-
mended delay between commands for many servomotors.

The PBC PULSOUT command has a 10-microsecond resolution. The period con-
stant that is used in the center block of code needs to result in a 1.5-millisecond
pulse. Therefore the actual value used in the command is 150 (150 * 10 microsec-
ond = 1500 microsecond, or 1.5 milliseconds).

Moving On with the 16F876

175

I deliberately send this command 100 times because I found that gave me
enough time to pull the linkage arm off the servo and position it back on the motor
shaft at center while the motor was being driven to center.

Once the Center: loop is complete, the program moves into the servo: label
block. Here is where the PIC 16F876 is set to drive the servomotor back and forth
between the full counter-clockwise range of positions and the full clockwise range
of positions. We do this with two FOR-NEXT loops. The first FOR-NEXT loop incre-
ments variable B0 by 1, starting with 100 and ending with 200. These are the end
points for the servomotor. When the servo: label is approached in the code, you
will know it because the servo will drive immediately from the center position to
most counter-clockwise position. Then the servomotor will slowly step the servo
shaft to the full clockwise position. Then the next FOR-NEXT loop increments the
servomotor in the opposite direction by changing the B0 variable from 200 to 100
in -1 steps. Notice how the FOR-NEXT command has the Step -1 statement follow-
ing it. This is required to make the FOR-NEXT loop count down instead of incre-
menting B0.

After that second FOR-NEXT is complete, we use a GOTO statement to jump back
up to the servo: label and do it all again, thus creating a back and forth movement
of the servomotor shaft.

The servomotor linkage could be tied to anything you could think of. Ever see
one of those Christmas displays where the elf is pounding a hammer? A servomo-
tor could be controlling that with code similar to this program.

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... proj6PBC.bas
‘ Purpose... PIC 16F876 -> Servo
‘ Author.... Chuck Hellebuyck
‘ Started... 15 January 2000
‘ Updated...

‘ ——-[Program Description]——————————————————————-
‘
‘This is a simple program to drive a servo. It initially sets the
‘servo to the halfway point of its movement for a short period of
‘drives the servo to its full counterclockwise position and then
‘to its full

Programming PIC Microcontrollers with PicBasic

176

‘clockwise position. The back and forth movement is
‘repeated continously in a loop.
‘
‘Connections:
‘PIC-PIN Servo
‘RB2 Control wire (yellow)
‘Vdd - 5V Power Wire (red)
‘Vss – Ground Ground wire (black)
‘MCLR - 5V (thru 1k)

‘ ——-[Constants/Defines]———————————————————————————-
‘

‘ ——-[Variables]———————————————————————————-
‘

‘ ——-[Initialization]—————————————————————————
‘

‘ ——-[Main Loop]——————————————————————-

Center:
For b2 = 1 to 100 ‘Send center signal 50 times
pulsout 2, 150 ‘150 * 10usec = 1.5 msec
pause 20 ‘wait 20 msec
next ‘if 50 are complete move on

servo:
‘———-Clockwise Direction————————

for b0 = 100 to 200 ‘Move from left to right
pulsout 2,b0 ‘send position signal
pause 20 ‘wait 20 msec
next ‘if all positions complete move on

‘———-Counter Clockwise Direction————
for b0 = 200 to 100 step –1 ‘move right to left
pulsout 2,b0 ‘send position signal
pause 20 ‘wait 20 msec
next ‘if all positions complete

move on

goto servo ‘loop to servo label and do it again

Moving On with the 16F876

177

PBPro Code

For this project, the PBC code and PBPro code are almost identical. In fact, the
PBPro code is a few lines longer. (I’ll repeat much of what I said in the PBC sec-
tion above in case you’re only reading the PBPro sections.)

This code has to first establish the variables. B0 and B2 are not pre-defined. I
could have put one of the DEFINE options at the top called:

Include “bs1defs.bas”

This would establish all the B and W variables the Stamp and PBC use but I
don’t recommend it. You should always define your variables with the VAR directive.
This is a good habit and allows you to name the variables anything you want. That’s
what I do in the variables section of the code listing. B0 and B2 are established as
byte variables. I also have the DEFINE statement for the bootloader added which
PBPro requires (PBC never requires this).

After that the code is identical to the PBC version. We use the same PULSOUT
command, which requires the PIC pin used to output the signal and the period con-
stant to tell how long to send the pulse.

After establishing the variables we jump right into the main code loop. We begin
at the Center: label. This block of code centers the shaft of the servomotor. I have
the PIC send the PULSOUT signal 100 times by using a FOR-NEXT loop using variable
B2. I also have a 20-millisecond pause to allow the servomotor to react. Servomotors
require a constant signal to maintain proper position. They have tremendous resist-
ance to movement if you have any loads on the shaft, but they will not hold forever.
Therefore you should send the position signal often. The 20-millisecond delay is the
recommended delay between commands for many servomotors.

The PBPro PULSOUT command has a 10-microsecond resolution with a 4-MHz
crystal/resonator running the PIC. The period constant, which is part of the PULSOUT
command, used in the center block of code needs to result in a 1.5-millisecond
pulse. Therefore, the actual value used in the command is 150 (150 * 10 microsec-
ond = 1500 microsecond, or 1.5 milliseconds). I deliberately send this command
100 times because I found that gave me enough time to pull the linkage arm off the
servomotor and position it back on the motor shaft at center while the servomotor
was being driven to center.

Programming PIC Microcontrollers with PicBasic

178

Once the Center: loop is complete, the program moves into the servo: label
block. Here is where the PIC 16F876 is set to drive the servomotor back and forth
between the full counter-clockwise range of position and the full clockwise range
of position. We do this with two FOR-NEXT loops.

The first FOR-NEXT loop increments variable B0 by 1 starting with 100 and end-
ing with 200. These are the end points for the servomotor. When the servo: label
is approached in the code, you will know it because the servomotor will drive imme-
diately from the center position to most counter-clockwise position. Then the ser-
vomotor will slowly step the servomotor shaft to the full clockwise position. Then
the next FOR-NEXT loop increments the servomotor the opposite way by changing
the B0 variable from 200 to 100 in -1 steps. Notice how the FOR-NEXT command has
the Step -1 statement following it. This is required to make the FOR-NEXT loop
count down instead of incrementing B0.

After that second FOR-NEXT is complete we use a GOTO statement to jump back
up to the servo: label and do it all again thus creating a back and forth movement
of the servomotor shaft.

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... proj6PRO.bas
‘ Purpose... PIC 16F876 -> Servo
‘ Author.... Chuck Hellebuyck
‘ Started... 15 January 2000
‘ Updated...

‘ ——-[Program Description]——————————————————————-
‘
‘This is a simple program to drive a servo. It initially sets the
‘servo to the halfway point of its movement for a short period of
‘time and then drives the servo to its full counterclockwise
‘position and then to its full clockwise position. The back and
‘forth movement is repeated continously in a loop.
‘
‘Connections:
‘PIC-PIN Servo
‘RB2 Control wire (yellow)
‘Vdd - 5V Power Wire (red)
‘Vss – Ground Ground wire (black)
‘MCLR - 5V (thru 1k)

Moving On with the 16F876

179

‘ ——-[Constants/Defines]———————————————————————————-
‘
Define LOADER_USED 1 ‘Only required if bootloader used to

‘program PIC

‘ ——-[Variables]———————————————————————————-
‘
B2 var byte ‘ Generic Byte
B0 var byte ‘ Generic Byte to store Servo position

‘ ——-[Initialization]—————————————————————————
‘

‘ ——-[Code]——————————————————————-

Center:
For b2 = 1 to 100 ‘Send center signal 50 times
pulsout 2, 150 ‘150 * 10usec = 1.5 msec
pause 20 ‘wait 20 msec
next ‘if 50 are complete move on

servo:
‘———-Clockwise Direction————————

for b0 = 100 to 200 ‘Move from left to right
pulsout 2,b0 ‘send position signal
pause 20 ‘wait 20 msec
next ‘if all positions complete move on

‘———-Counter Clockwise Direction————
for b0 = 200 to 100 step –1 ‘move right to left
pulsout 2,b0 ‘send position signal
pause 20 ‘wait 20 msec
next ‘if all positions complete

move on

goto servo ‘loop to servo label and do it again

Programming PIC Microcontrollers with PicBasic

180

Final Thoughts

You can easily modify the loops to position the servomotor based on a switch input
or even use an A/D input to control the servo. The potentiometer circuit in Project
#5 could be combined with this code to make a servomotor that follows the move-
ment of the potentiometer. You could use this to control something from a distance
with just a few wires connected between the POT and PIC16F876 circuit and the
servomotor somewhere else. You could even have the servomotor controlling some-
thing inside a climate-controlled chamber while you control the servomotor from
outside the chamber.

Moving On with the 16F876

181

Communication

In this chapter, we’ll use the power of PicBasic to communicate with a PC serial
port using RS232 format. We’ll also use PicBasic to drive a parallel LCD module
(commonly used to display information). The third project of this chapter will com-
bine the first two projects into one by creating a serial LCD module.

Any of these are good learning projects because many of your PicBasic projects
will require some way to communicate information—data, time, etc.—to other
humans while the PIC is running. It can even be used to display variable data so you
can monitor if your program is running correctly.

There’s a lot of material in this chapter, so let’s get moving!

Project # 7—Driving an LCD Module

One of the first projects I attempted when I started with PicBasic was to drive a
LCD module. LCD modules come in various configurations, but 99% of them use
the same interface chip, the Hitachi 44870 LCD character driver. This project is
really quite simple but forms the basis for all LCD projects you may build in the
future. In this project, we will drive a 2 x16 LCD module and display the phrase
output by so many simple computer programs: “Hello World”. This project will
show how the PBC and PBPro compilers differ while performing the same task and
show the basic structure for controlling a LCD.

183

C H A P T E R 7

The schematic for this project, shown in Figure 7-1, is simple. The completed
project is shown in Figure 7-2. Note the standard MCLR pull-up resistor and 4-MHz
resonator connected to OSC1 and OSC2. The easiest I/O to control with PBC is
Port B, so we use that here to control the LCD. The LCD can be controlled in an
8-bit mode or a 4-bit mode, which requires eight I/O or four I/O, respectively. Most
people want to save I/O so they use the 4-bit mode. We do the same thing here. Port
B is connected to the DB4-DB7 of the LCD module. Through these connections all
control characters are sent.

Figure 7-1: Schematic diagram for the LCD module project.

16F876+5v

+5v

+5v

4 Mhz

1K
1K 1K

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

E
Vdd

Vss Vo R/W

RS DB4 DB5 DB6 DB7

2 x 16 LCD

Programming PIC Microcontrollers with PicBasic

184

Figure 7-2: View of the complete LCD module circuit board.

The I/O ports have external pull-up resistors to guarantee a logic high level. The
PIC Port B has internal pull-up resistors that you can set, but that will cause confu-
sion for the beginning programmer. Therefore, I went with the external resistors.

The LCD has the R/W pin grounded, which limits it to write-only mode, which
is all we plan to do anyway. The Vo pin controls the contrast level of the LCD. We
ground it for simplicity, and that sets the LCD to maximum contrast. The RS pin is
connected to Port B pin 3. It’s used to tell the LCD if a character or LCD command
is coming from the PIC. The software section will explain this better. Finally +5
volts and ground are connected to the LCD. The LCD pins are not numbered since
LCDs come in different pin layouts. Check the data sheet for your LCD to verify
the proper pin numbers.

Communication

185

PBC Code

The PBC code has several important steps. First, several variables and constants for
the LCD setup are established. Some of them don’t get used in this program, but I
set them up so you can expand the program without having to add a bunch of new
ones. Next, the LCD is initialized through a whole list of commands. The LCD data
sheet will explain several steps to set up the LCD. Those steps are spelled out below.

First, we follow the LCD setup process by sending the proper command three
times and then all the commands to establish the LCD setup that matches your LCD.
The PULSOUT command controls the E, or enable, line of the LCD. The LCD auto-
matically initializes in 8-bit mode. Sending the same command three times and then
pulsing the E line for the LCD to recognize it converts the LCD to 4-bit mode.

After that, the LCD is set up with several steps. Notice how almost every other
command is a GOSUB to the LCDCMD subroutine. This subroutine controls the RS line
of the LCD. That makes the LCD electronics read the information as a command to
control the LCD rather than a character to be displayed on the LCD. It does that by
setting the RS pin low prior to jumping to the WRLCD subroutine. When the WRLCD
subroutine is done, it returns to the LCDCMD subroutine that sets the RS bit back to
high and returns to the section of main code that jumped to the LCDCMD subroutine.
All these set-up commands are LCD commands that establish the number of rows
on the LCD, whether the cursor is on or off, and other minor features.

After the LCD set-up section comes the main loop of the code. It starts off by
sending commands to clear the LCD. Then it begins to send each character of the
phrase “Hello World”. Each letter has to be sent separately to the LCD with the
same WRLCD subroutine mentioned in the LCD setup section above. Because we are
writing characters and not commands, we skip the LCDCMD subroutine and go right
to the WRLCD subroutine. The first step is to store the character in the variable “char”
and then jump to the WRLCD subroutine.

The WRLCD subroutine is really the heart of the program. Let’s look at it in some
detail.

pins = pins & %00001000 ‘ output high nibble

Programming PIC Microcontrollers with PicBasic

186

This line takes all the PORTB pins and does a logical “and” with the binary
value %00001000. What that does is reset every bit to 0 except the fourth bit, which
is the RS bit. If that bit is a 1 it stays a 1; if it’s a 0 it stays a 0. Therefore, it’s left
untouched because it can sometimes be set by the LCDCMD subroutine that indicates
WRLCD is sending a command rather than a character to display.

b3 = char & %11110000 ‘store high nibble of char in B3

This next line takes the “char” variable and logically “ANDs” it with binary
%11110000. Once again we are clearing the lower four bits but leaving the upper
four alone. We do this because we need to break the 8-bit “char” byte into two nib-
bles so we can send it to the LCD. (Remember we are communicating to the LCD
using the 4-bit mode to save I/O.) Notice how we operate on “char” but store the
result in b3. This leaves “char” unchanged.

pins = pins|b3 ‘combine RS signal with char

This line combines the PORTB pins with the four unchanged “char” bits to set
PORTB with the proper bit states. We do this with the logical “OR” directive.
Because of the way we preset the pins and b3 variable, this command just joins the
lower four bits of “pins” with the upper four bits of b3 to produce the desired
PORTB state.

pause 1 ‘wait for data setup

We pause briefly to let the data stabilize.

PULSOUT E, 100 ‘ strobe the enable line

Now we pulse the E line of the LCD so the LCD module knows to accept the
data at its data lines. The pulse is a 1-millisecond wide positive pulse.

b3 = char * 16 ‘Shift low nibble to high nibble

This next line is tricky. Since we just sent the upper four bits of the “char” vari-
able, we now have to send the lower four bits. In order to do that, we have to shift
the lower four bits to the upper four bits’ position. Multiplying any byte by 16 shifts
the bits over four places. If we wanted to go the opposite way, we would have
divided by 16. Again notice we leave “char” unchanged and store the result in b3.

Communication

187

pins = pins & %00001000 ‘combine RS signal with char

Now we reset PORTB I/O back to zeros, except for the RS bit, just like we did
at the beginning of this subroutine.

pins = pins|b3 ‘ output low nibble

Once again we combine the shifted lower four bits, now in b3, with the lower
four bits of PORTB pins data register using the logical “OR” directive.

pause 1 ‘wait for data setup

We pause briefly again to let the data setup.

PULSOUT E, 100 ‘strobe the enable line

We pulse the E line so the LCD reads the second set of four bits. The LCD now
has the full “char” byte and displays the character on the LCD.

RETURN

As the final subroutine step, we return back to the area of the program that
called the WRLCD subroutine. Actually we return to the command just after the GOSUB
WRLCD command line that sent us here.

That’s really all there is to this program. After each character of “Hello World”
is sent to the LCD, we just pause for a second and then loop back to do it again.

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... Proj7PBC.BAS
‘ Purpose... PIC -> LCD (4-bit interface) using 16F876 and 2x16
‘ LCD
‘ Author.... Chuck Hellebuyck
‘ Started... January 20, 2002
‘ Updated...

‘ ——-[Program Description]——————————————————————-
‘
‘
‘ PIC16F876 to LCD Port predefined connections:
‘

Programming PIC Microcontrollers with PicBasic

188

‘ PIC LCD Other Connections
‘ ——— ———- ——————————————-
‘ B4 LCD.11
‘ B5 LCD.12
‘ B6 LCD.13
‘ B7 LCD.14
‘ B3 LCD.4
‘ B0 LCD.6
‘ OSC1 Resonator - 4 mhz
‘ OSC2 Resonator - 4 Mhz
‘ MCLR Vdd via 1k resistor
‘ Vdd 5v
‘ Vss Gnd

‘ ——-[Revision History]————————————————————————
‘
‘

‘ ——-[Constants]———————————————————————————-
‘
‘ LCD control pins
‘
symbol E = 0 ‘ LCD enable pin (1 = enabled)
symbol RS = 3 ‘ Register Select (1 = char)

‘ LCD control characters
‘
symbol ClrLCD = $01 ‘ clear the LCD
symbol CrsrHm = $02 ‘ move cursor to home position
symbol Row2 = $C0 ‘ 2nd row position of LCD
symbol CrsrLf = $10 ‘ move cursor left
symbol CrsrRt = $14 ‘ move cursor right
symbol DispLf = $18 ‘ shift displayed chars left
symbol DispRt = $1C ‘ shift displayed chars right
symbol Digit = $30 ‘ Character column code for LCD
‘ ——-[Variables]———————————————————————————-
‘
symbol x = B0 ‘ General purpose variable
symbol char = B1 ‘ char sent to LCD
symbol loop1= B2 ‘ loop counter

‘ ——-[Initialization]—————————————————————————
‘
Init: pins = $0000 ‘ all outputs off to start

Communication

189

Dirs = %11111111 ‘ LCD pins
PAUSE 215 ‘ pause for LCD setup

‘ Initialize the LCD (Hitatchi HD44780 controller)
‘
I_LCD:

pins = %00110000 ‘set to 8 bit operation
PULSOUT E,100 ‘SEND DATA 3 TIMES
PAUSE 10
PULSOUT E,100 ‘SEND DATA 3 TIMES
PAUSE 10
PULSOUT E,100 ‘SEND DATA 3 TIMES
PAUSE 10
PINS = %00100000 ‘SET TO 4 BIT OPERATION
pause 1
PULSOUT E,100 ‘SEND DATA 3 TIMES
HIGH RS
CHAR = %00101000 ‘4 BIT, 2 LINES, 5X7 CHARACTER
GOSUB LCDCMD
CHAR = 8 ‘Display, cursor and blink off
GOSUB LCDCMD
CHAR = 6 ‘Shift display right
GOSUB LCDCMD
CHAR = 1 ‘clear display and return home
GOSUB LCDCMD
CHAR = 15 ‘display, cursor and blink on
GOSUB LCDCMD

‘ ——-[Main Loop]———————————————————————————-
‘

Start:char = clrlcd ‘ Clear LCD
gosub lcdcmd ‘ and position cursor at home
char = CRSRHM ‘ Issue cursor home command
gosub lcdcmd ‘ send cursor home on LCD

‘***** Send “Hello World” to first line of LCD ******
char = “H” ‘ Send “Hello World” one

‘ letter
gosub wrlcd ‘ at a time to the LCD
char = “e”
gosub wrlcd
char = “l”
gosub wrlcd
char = “l”

Programming PIC Microcontrollers with PicBasic

190

gosub wrlcd
char = “o”
gosub wrlcd
char = “ “
gosub wrlcd
char = “W”
gosub wrlcd
char = “o”
gosub wrlcd
char = “r”
gosub wrlcd
char = “l”
gosub wrlcd
char = “d”
gosub wrlcd

Pause 1000 ‘Pause long enough to see it

goto start

‘ Send command byte to LCD Subroutine
‘
LCDcmd:

LOW RS ‘ RS low = command
GOSUB WrLCD ‘ send the byte
HIGH RS ‘ return to character mode
RETURN

‘ Write ASCII char to LCD Subroutine
‘
WrLCD:

pins = pins & %00001000 ‘ output high nibble
b3 = char & %11110000 ‘store high nibble of char in B3
pins = pins|b3 ‘combine RS signal with char
pause 1 ‘wait for data setup
PULSOUT E, 100 ‘ strobe the enable line
b3 = char * 16 ‘Shift low nibble to high nibble
pins = pins & %00001000 ‘combine RS signal with char
pins = pins|b3 ‘ output low nibble
pause 1 ‘wait for data setup
PULSOUT E, 100 ‘strobe the enable line
RETURN

Communication

191

PBPro Code

The PBPro version of the code demonstrates one of PBPro’s major advantages over
PBC. All of that set-up routine we did in the PBC example, and all of the LCDCMD
and WRLCD subroutine stuff, is done within the PBPro command LCDOUT. In fact, we
still have control over the LCD set-up, but we do it with DEFINE statements rather
than a series of GOSUB commands.

The first part of the program establishes all the DEFINE statements to tell PBPro
what port to use for the data port, RS line, and E line. Each define indicates which
pin(s) of the port are for communication. We also use DEFINE to communicate the
4-bit mode setup and the number of LCD lines. Finally we even have a DEFINE to
control the time between commands being sent and time delay for data set-up. Some
LCDs are picky, so PBPro allows you to adjust the timing of its LCDOUT command
to work with various LCDs. The DEFINE statements I used here should work with
most LCDs since I really slowed things down.

lcdout $fe, 1 ‘ Clear LCD

The main loop is very small but does the same thing as the longer PBC program
we previously examined. The LCDOUT command line above is sending a command
to the LCD to clear the screen. The LCDOUT command is sending it as a command
signal because of the “$fe” in front of the code “1” for clearing the LCD. All the
toggling of the RS line is done by the LCDOUT command. All you have to remember
is to put the “$fe” in front of the code so PBPro knows you meant to send a com-
mand.

LCDOUT “Hello World” ‘ Send “Hello World” to the LCD

The next line sends the characters within the quote marks, “Hello World”. The
LCDOUT command allows you to put the whole phrase between quotes and then it
sends it, character by character, to the LCD. The “$fe” is left off because these are
characters to display and not command codes. After this line, we pause for 1 second
and loop around to do it again.

See how much easier PBPro is to use? The LCDOUT command is priceless in my
opinion and is one of the reasons PBPro is worth the extra money it costs. Even
though the actual compiled code is not a lot smaller than the PBC code, the listing
is much smaller and easier to read.

Programming PIC Microcontrollers with PicBasic

192

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... proj7pro.BAS
‘ Purpose... PIC -> LCD (4-bit interface) using 16F876 and 2x16
‘ LCD
‘ Author.... Chuck Hellebuyck
‘ Started... November 19, 1999
‘ Updated...

‘ ——-[Program Description]——————————————————————-
‘
‘
‘ PIC16F876 to LCD Port predefined connections:
‘
‘ PIC LCD Other Connections
‘ ——— ———- ——————————————-
‘ B4 LCD.11
‘ B5 LCD.12
‘ B6 LCD.13
‘ B7 LCD.14
‘ B3 LCD.4
‘ B0 LCD.6
‘ OSC1 Resonator - 4 mhz
‘ OSC2 Resonator - 4 Mhz
‘ MCLR Vdd via 1k resistor
‘ Vdd 5v
‘ Vss Gnd

‘ ——-[Revision History]————————————————————————
‘
‘
‘ ——[Includes / Defines]—————————————————————-
‘
Define LOADER_USED 1 ‘Only required if bootloader used to

‘program PIC

DEFINE LCD_DREG PORTB ‘Define PIC port used for LCD Data
‘lines

DEFINE LCD_DBIT 4 ‘Define first pin of portb
‘connected to LCD DB4

DEFINE LCD_RSREG PORTB ‘Define PIC port used for RS line of
‘LCD

DEFINE LCD_RSBIT 3 ‘Define Portb pin used for RS
‘connection

Communication

193

DEFINE LCD_EREG PORTB ‘Define PIC prot used for E line of LCD
DEFINE LCD_EBIT 0 ‘Define PortB pin used for E

‘connection
DEFINE LCD_BITS 4 ‘Define the 4 bit communication

‘mode to LCD
DEFINE LCD_LINES 2 ‘Define using a 2 line LCD
DEFINE LCD_COMMANDUS 2000 ‘Define delay between sending LCD

‘ commands
DEFINE LCD_DATAUS 50 ‘Define delay time between data sent.

‘ ——-[Constants]———————————————————————————-
‘
‘ ——-[Variables]———————————————————————————-
‘
‘ ——-[Initialization]—————————————————————————
‘
‘ ——-[Main Code]———————————————————————————-
‘

Start:
lcdout $fe, 1 ‘ Clear LCD
lcdout $fe, 2 ‘ Position cursor at home

‘***** Send “Hello World” to first line of LCD ******

LCDOUT “Hello World” ‘ Send “Hello World” to the LCD
Pause 1000 ‘ Pause for 1 second to see it

Goto Start ‘ Loop back and do it all
‘ again

Final Thoughts

As this project illustrates, PBC can do a lot, but PBPro can do more. Imagine if you
had several messages you wanted to display on the LCD. With PBC, you would
have to spell out each character with a separate command. You could set up a lookup
table and send it from a loop. That would save code space, but PBPro would just
require a single LCDOUT command for each displayed message.

Programming PIC Microcontrollers with PicBasic

194

These two programs can be easily modified to fit into any PicBasic program you
write to have an LCD display as part of the project.

Project #8—Serial Communication

This project requires a terminal program running on your PC. The editor software
I’m using is called “Codestudio” and has a built-in terminal window. Many of the
windows interface software programs available as shareware on the web for using
PBC and PBPro have a terminal window. In this project, we will communicate with
the PIC16F876 using the serial port of the PC and display info in that terminal win-
dow. This whole project is built around the SERIN and SEROUT commands. Those
commands can be used on any PIC pin.

The 16F876 has a dedicated serial buffer built in on pins C6 and C7. We won’t
use those here since I wanted to demonstrate the versatility of the SERIN and SEROUT
commands. We will use a serial buffer chip that shifts the 0–5 volts PIC signal to
the –12 v to +12 v signal the PC serial port likes to see. Some PCs will read the 0–5
volt signal, but it’s safer to buffer your circuit from the PC serial port.

This project will send a menu of commands to the PC to be displayed in the ter-
minal window. You will choose from that menu and send back your selection from
the terminal window, through the serial port, and back to the PIC circuit. Based on
which selection you make at the PC, the PIC will respond with a message or change
the state of an LED. From this you will easily see how we could control a PIC-based
module directly from a PC serial port.

Figure 7-3 shows the schematic for this project while Figure 7-4 shows the com-
pleted circuit. The standard resonator, MCLR, and power/ground connections are
present as in previous projects. Added are the connections to the RS232 level shifter
chip and DB9 connector that will hook to a PC “straight-thru” serial cable. We will
use that standard cable rather than a null-modem cable. The level shifter chip is
available from various sources and all have the same pin-out. The circuit also has an
LED connected to Port B pin 0. We use this as a visual indicator that is controlled
from the PC. By choosing the proper selection from the menu, you can control the
state of the LED.

Communication

195

Figure 7-3: Schematic diagram for the serial communications project.

The PBC code starts off initializing the LED to the off state. (This shouldn’t take
much explanation by now!) The main part of the program at label Menu creates the
menu you will see on the PC screen terminal window. It does this by sending each
line of the menu serially to the terminal program using the SEROUT command. The
program uses 2400 baud true mode to communicate. The terminal program has to
be set at the same baud rate. We have to use the T2400 true mode directive so the
RS232 level shifter chip sees the proper signal levels.

The information between quotes in the SEROUT command lines are sent as ASCII
bytes. The PC should recognize the characters and display the word “Menu” as the
first line. For each number displayed as part of the menu, we place a “#” symbol in
front of the actual number so the ASCII equivalent is sent instead of just the num-
ber. You see, if we just sent the number “1” the ASCII character associated with the
value one would be displayed. Instead we want the ASCII character associated with
hex $31, which is the ASCII character “1”. By putting a “#” in front of the number,
PBC will send a $31 instead of a $01.

16F876+5v

+5v

+5v

4 Mhz

1K

1K

1K
MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

RS232 Chip

luf

luf

luf

luf

100

LED

2

3

5

+

+

+

+

1

Programming PIC Microcontrollers with PicBasic

196

Figure 7-4: Completed circuit for the serial communications project.

Each SEROUT command line ends with sending the 10 and 13 characters. These
are the ASCII codes for line feed and carriage return. These make each line of
SEROUT sent information display as a separate line on the PC. It might help you to
look up the ASCII character set to understand all the characters and their code. You
can find that in Appendix B.

The next section at label receive is where the PIC waits for the menu choice to
be sent by the PC. The choice is sent as an ASCII value. To convert that back into a
decimal number we can use, we subtract $30 (30 hex). All ASCII numbers are off-
set by $30 (0 = $30, 1 = $31, etc). Once we have the menu selection as a numeric
value, we can use that to operate on the user’s choice. We use that numeric value to
branch to one of four locations. They are labeled Zero, One, Two, and Three. At
each label we have a different function; some are simply a single line that sends
back a “Hello” or “Goodbye”.

Communication

197

At label One and label Two, we simply send back serial “Hello” or “Goodbye”
and then return to the menu routine to redisplay the menu choices. At label Three,
we have the PIC control a LED. Each time you enter choice three at the PC, the
LED connected to the PIC Port B pin 0 reverses its state from on to off or off to on.
We can tell what state it was in previously by the bit flag “LED.” If it’s a 0, then we
know the LED is off, so go to the routine that turns the LED on. If it’s a 1, then we
go to the routine that turns the LED off. We also send a message with the state of
the LED using the SEROUT command. After that we return to the menu routine to
display the menu choices again. That’s really all there is to it.

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... proj8pbc.BAS
‘ Purpose... PIC -> PC serial port using 16F876
‘ Author.... Chuck Hellebuyck
‘ Started... November 9, 2001
‘ Updated...

‘ ——-[Program Description]——————————————————————-
‘
‘
‘ PIC16F876 hardware connections
‘ PIC External
‘ —— ————-
‘ RB1 Max232(RX)
‘ RB2 Max232(TX)
‘ RB0 LED
‘ MCLR 5v
‘ Vdd 5v
‘ Vss gnd
‘ Gnd DB9-pin 5 (gnd)

‘ ——-[Revision History]————————————————————————
‘
‘

‘ ——-[Constants]———————————————————————————-
‘

‘ ——-[Variables]———————————————————————————-
‘
symbol RX = B2 ‘ Receive byte

Programming PIC Microcontrollers with PicBasic

198

symbol LED = bit0 ‘ LED status bit

‘ ——-[Initialization]—————————————————————————
‘
Init:
LED = 0 ‘Initialize LED flag to zero
low 0 ‘Initialize LED to off

‘ ——-[Main Code]———————————————————————————-
‘
Menu:
‘ ****** [Menu setup on PC screen] *************************

serout 2, T2400, (“menu”, 10, 13) ‘Display menu
‘on PC screen

serout 2, T2400, (#1, “) “, “send hello”, 10, 13)
serout 2, T2400, (#2, “) “, “send goodbye”, 10, 13)
serout 2, T2400, (#3, “) “, “toggle LED”, 10, 13)

Receive:
‘ ***** [Receive the menu selection from PC] ***************

serin 1, T2400, RX ‘Receive menu number
RX = RX - $30 ‘Convert ASCII number to

‘ decimal
If RX > 3 then error ‘Test for good value
Branch RX, (zero, one, two, three) ‘redirect to menu

‘selection code
Error:

serout 2, T2400, (“error”, 10, 13, “Try again”, 10, 13)
goto menu

Zero:
‘***** [Code for zero value] *****************************

goto menu ‘Return to menu, zero is not a
‘valid selection

One:
‘***** [Code for selection 1] *************************

serout 2, T2400, (“Hello”,13,10,13) ‘Send “Hello” back
‘to PC

goto menu ‘Return to main menu
‘routine

Two:
‘***** [Code for selection 2] *************************

Communication

199

serout 2, T2400, (“Goodbye”,13,10,13) ‘Send “Goodbye” to
‘PC

goto menu ‘Return to Menu routine

Three:
‘***** [Code for selection 3] **********************

if LED = 1 then off ‘If LED bit =1 then goto
‘off

high 0 ‘Turn LED on
led = 1 ‘Set LED bit to 1
serout 2, T2400, (“LED ON”,13,10,13) ‘Send LED status to

‘PC
goto menu ‘Return to main menu

Off:
low 0 ‘Turn LED off
led = 0 ‘Clear LED bit to 0
serout 2, T2400, (“LED OFF”,13,10,13) ‘Send LED status to

‘PC
goto menu ‘Return to main menu

Goto menu

PBPro Code

The PBPro code starts off initializing the LED to the off state. PBPro also requires
a DEFINE to establish the SEROUT mode definitions. PBPro doesn’t automatically
recognize the T2400 mode in the SEROUT command without the MODEDEFS.BAS
INCLUDE. PBPro also has to set up the TRISB and PORTB registers so the proper
state of the pins is established.

The main part of the program at label Menu sets up the menu you will see on the
PC screen terminal window. It does this by sending each line of the menu serially
to the terminal program using the SEROUT command. The program uses 2400-baud
true mode to communicate. The terminal program has to be set up at the same baud
rate. We have to use the T2400 true mode directive so the RS232 level shifter chip
sees the proper signal levels.

The information between quotes in the SEROUT command lines is sent as ASCII
bytes. The PC should recognize the characters and display the word “Menu” as the
first line. For each number displayed as part of the menu, we place a “#” symbol in

Programming PIC Microcontrollers with PicBasic

200

front of the actual number so the ASCII equivalent is sent instead of just the num-
ber. If we just sent the number “1” the ASCII character associated with the value
one would be displayed. Instead we want the ASCII character associated with hex
$31, which is the ASCII character “1”. By putting a “#” in front of the number,
PBPro will send a $31 instead of a $01.

Each SEROUT command line ends with sending the 10 and 13 characters. These
are the ASCII codes for line feed and carriage return. These make each line of
SEROUT send information and display as a separate line on the PC. Again, it might
help you to look up the ASCII character set to understand all the characters and their
code. You can find it in Appendix B.

The next section label receive is where the PIC waits for the menu choice to
be sent by the PC. The choice is sent as an ASCII value. To convert that back into a
decimal number we can use, we subtract $30 (30 hex). All numbers are offset by
$30 (0 = $30, 1 = $31, etc). Once we have the menu selection as a numeric value,
we can use that to operate on the user’s choice. We use that numeric value to branch
to one of four locations. They are labeled Zero, One, Two, and Three. At each label,
we have a different function. Some are simply a single line that sends back a
“Hello” or “Goodbye”.

At label One and label Two we simply send back serial “Hello” or “Goodbye”
and then return to the menu routine to redisplay the menu choices. At label Three,
we have the PIC control an LED. Each time you enter choice three at the PC, the
LED connected to the PIC Port B pin 0 reverses its state from on to off, or off to on.
We can tell what state it was in previously by the bit flag “LED.” If it’s a 0, then we
know the LED is off so go to the routine that turns the LED on. If it’s a 1, then we
go to the routine that turns the LED off. We also send a message with the state of
the LED using the SEROUT command. After that we return to the menu routine to
display the menu choices again.

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... proj8pro.BAS
‘ Purpose... PIC -> PC serial port using 16F876
‘ Author.... Chuck Hellebuyck
‘ Started... November 9, 2001
‘ Updated...

Communication

201

‘ ——-[Program Description]——————————————————————-
‘
‘
‘ PIC16F876 hardware connections
‘ PIC External
‘ —— ————-
‘ RB1 Max232(RX)
‘ RB2 Max232(TX)
‘ RB0 LED
‘ MCLR 5v
‘ Vdd 5v
‘ Vss gnd
‘ Gnd DB9-pin 5 (gnd)

‘ ——-[Revision History]————————————————————————
‘
‘
‘ ——-[Includes/Defines]————————————————————————————-
‘
include “modedefs.bas” ‘include serout defines
define loader_used 1 ‘Used for bootloader only

‘ ——-[Constants]———————————————————————————-
‘

‘ ——-[Variables]———————————————————————————-
‘
RX var byte ‘ Receive byte
LED var bit ‘ LED status bit

‘ ——-[Initialization]—————————————————————————
‘
Init:
TRISB = %00000010 ‘All port b output except pin 1 (RX) is

‘input
PORTB = %00000000 ‘Initialize PortB to all zeros and LED

‘to off

LED = 0 ‘Initialize LED flag to 0

‘ ——-[Main Code]———————————————————————————-
‘
Menu:

Programming PIC Microcontrollers with PicBasic

202

‘ ****** [Menu setup on PC screen] *************************
serout 2, T2400, [“menu”, 10, 13] ‘Display menu

‘on PC screen
serout 2, T2400, [#1, “) “, “send hello”, 10, 13]
serout 2, T2400, [#2, “) “, “send goodbye”, 10, 13]
serout 2, T2400, [#3, “) “, “toggle LED”, 10, 13]

Receive:
‘ ***** [Receive the menu selection from PC] ***************

serin 1, T2400, RX ‘Receive menu
‘number

RX = RX - $30 ‘Convert ASCII
‘number to decimal

If RX > 3 then Error ‘ Test for
‘good value

Branch RX, [zero, one, two, three] ‘redirect to menu
‘selection code

Error:
serout 2, T2400, [“error”, 10, 13, “Try again”, 10, 13]
goto menu

Zero:
‘***** [Code for zero value] *****************************

goto menu ‘Return to menu, zero is not a
‘valid selection

One:
‘***** [Code for selection 1] *************************

serout 2, T2400, [“Hello”, 10, 13] ‘Send “Hello” back
‘to PC

goto menu ‘Return to main menu
‘routine

Two:
‘***** [Code for selection 2] *************************

serout 2, T2400, [“Goodbye”, 10, 13] ‘Send “Goodbye” to
‘PC

goto menu ‘Return to Menu routine

Three:
‘***** [Code for selection 3] **********************

if LED = 1 then LEDoff ‘If LED bit =1 then
‘goto off

portb.0 = 1 ‘Turn LED on
led = 1 ‘Set LED bit to 1

Communication

203

serout 2, T2400, [“LED ON”, 10, 13] ‘Send LED status to
‘PC

goto menu ‘Return to main menu

LEDOff:
portb.0 = 0 ‘Turn LED off
led = 0 ‘Clear LED bit to 0
serout 2, T2400, [“LED OFF”, 10, 13] ‘Send LED status to

‘PC
goto menu ‘Return to main menu

Goto menu

Final Thoughts

As you can see, the PBC and PBPro programs are very similar for this project. You
can easily expand the menu to include more choices. You can also have the menu
choices do a lot more than light a LED or send back a message; for example, you
could have a series of control circuits tied to the PIC pins and control them through
this same setup. Or how about a robot arm in a “cold chamber”? You could have that
robot arm controlled by a PIC and that PIC controlled through a single serial con-
nection to a PC in a warm lab. Interesting?

Project #9—Driving an LCD with a Single Serial Connection

This project uses the same hardware connections as Projects #7 and #8, but the soft-
ware is unique. The idea is to receive information through the serial port and then
display the information on the LCD. This allows a serial port from any PC or
another PIC to drive the LCD with a single serial connection.

The software works on simple principles. The PIC waits for three bytes of data.
The first is the “row” byte. It indicates on which row the information should be dis-
played.

The second byte is the “location” byte. It indicates at which position (column)
within the row the information should start. The third and final byte is the character

Programming PIC Microcontrollers with PicBasic

204

code of the information to be displayed. This would be the code for a letter (“a”) or
number (“1”). This is defined by the display character generator, but is typically an
ASCII value similar to what we did in Project #8 to set up the PC menu.

The third byte has an alter ego, though; it can also be used to control the LCD
via custom code commands. To enter this command control mode, we set the “row”
byte equal to 0. When the module receives the 0 value for the “row” byte, then the
module knows that the character code is a command code and not a character to be
displayed. A separate action routine will occur based on that command code.
Clearing the whole display would be one such command code.

The schematic for this project is shown in Figure 7-5; it combines the schemat-
ics of Projects #7 and #8 into one schematic. It’s not too different from those proj-
ects, so there is not much to explain here. We use the same resonator and MCLR
pull-up resistor as every other project. The serial connection is the same as Project
#8 and the LCD connection is the same as Project #7. The completed circuit is
shown in Figure 7-6.

Figure 7-5: Schematic diagram for driving a LCD through a serial connection.

16F876+5v

+5v
+5v

4 Mhz

1K

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

RS232 Chip

luf

luf

luf

luf

2

3

5

+

+

+

+

1

+5v

1K 1K

E
Vdd

Vss Vo R/W

RS DB4 DB5 DB6 DB7

2 x 16 LCD

Communication

205

Figure 7-6: Finished circuit board for the circuit in Figure 7-5.

PBC Code

While the circuit for this project may be simple, the PBCcode for it may initially
look confusing. Let’s break it down.

The labels Init and I_LCD initialize the LCD the same way Project #7 did. We
use the 2x16 module because those are very common LCD modules. You can
reconfigure the code to work with any LCD size by first modifying the initializa-
tion section.

The next label, start, is where this project code really starts. The main line is
the SERIN line that waits for the row, location, and value bytes. The program will sit
here forever if it doesn’t receive any information. When information is received, it
first tests the row byte and location byte to see if “Row” is not 0 and “Location” is

Programming PIC Microcontrollers with PicBasic

206

0, indicating the cursor should not be moved from its existing position and to write
the character in the value byte at that location. It does that by jumping to the
Display label.

If the location byte is not 0, independent of the value of “Row,” then the next
command that is run which is a BRANCH instruction. The BRANCH instruction jumps
the program to the proper label based on the value of the row byte. If the row byte
is 0, then the program jumps to the label Command. The code at the Command label
will send a LCD command based on the value byte received (I’ll explain this in
more detail later).

If “Row” does not equal 0, then the BRANCH command redirects the program to
the R1 or R2 labels. Let’s try to follow that path. At labels R1 and R2, the program
converts the location byte received into the corresponding LCD code to position the
LCD cursor at the proper row and column using the LOOKUP command. We have to
subtract 1 from the location because the LOOKUP command starts at 0 instead of 1.

After we have the proper position code from the LOOKUP command, the program
then jumps to the LCDcmd subroutine to send the special LCD position code to the
LCD and move the cursor on the LCD. When the subroutine is done, the program
jumps back to the command after the GOSUB LCDcmd line. That command is a jump
to the Display label.

At the Display label, the program first stores the serial-received “Value” byte
in the “Char” variable. Then the program jumps to the subroutine WrLCD to send that
byte to the LCD character generator that actually displays the character on the LCD.
The program then returns back to the Display label routine, which then sends the
program back to the top to receive a new set of information at the Start label. (See
how we first positioned the cursor based on the row and location bytes and then sent
the character code to be displayed at that position?)

If the “Row” byte is 0, the BRANCH command under the Start label redirects the
program to the Command label. We don’t stop at the R1 and R2 labels to get a LCD
command code because the “Value” byte received serially should have the LCD
command byte in it. All we have to do is convert that value byte to the proper
LCD command code based on the table above the Command label. First we take the
“Value” byte and convert it into a decimal number by subtracting hex $30. Then we

Communication

207

use the LOOKUP command to change the “Value” byte into the proper LCD command
code. That command code is stored in the “Char” variable.

The next command line jumps the program to the LCDcmd subroutine where the
command code is sent to the LCD. After that is complete we return from the sub-
routine and then jump back to the Start label to receive more data.

That’s really all this program does. It hopefully was clear to you, as this program
jumps around a lot.

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... proj9pbc.BAS
‘ Purpose... Serial -> PIC16F876 -> LCD (4-bit interface)
‘ Author.... Chuck Hellebuyck
‘ Started... January 20,2002
‘ Updated...

‘ ——-[Program Description]——————————————————————-
‘
‘
‘ PIC16F876 Port Hardware connections:
‘
‘ PIC LCD Other Connections
‘ ——— ———- ——————————————-
‘ B4 LCD.11
‘ B5 LCD.12
‘ B6 LCD.13
‘ B7 LCD.14
‘ B3 LCD.4
‘ B0 LCD.6
‘ OSC1 Resonator - 4 mhz
‘ OSC2 Resonator - 4 Mhz
‘ MCLR Vdd via 1k resistor
‘ Vdd 5v
‘ Vss Gnd
‘ B1 Max232(RX)
‘ B2 Max232(TX)

‘ ——-[Revision History]————————————————————————
‘
‘

Programming PIC Microcontrollers with PicBasic

208

‘ ——-[Constants]———————————————————————————-
‘
‘ LCD control pins
‘
symbol E = 0 ‘ LCD enable pin (1 = enabled)
symbol RS = 3 ‘ Register Select (1 = char,

‘ 0 = command)

‘ LCD control characters
‘
symbol ClrLCD = $01 ‘ clear the LCD
symbol CrsrHm = $02 ‘ move cursor to home position
symbol Row2 = $C0 ‘ 2nd row position of LCD
symbol Row3 = $94 ‘ 3rd row position of LCD
symbol Row4 = $D4 ‘ 4th row position of LCD
symbol CrsrLf = $10 ‘ move cursor left
symbol CrsrRt = $14 ‘ move cursor right
symbol DispLf = $18 ‘ shift displayed chars left
symbol DispRt = $1C ‘ shift displayed chars right
symbol Digit = $30 ‘ Character column code for LCD
‘ ——-[Variables]———————————————————————————-
‘
‘B3 reserved for drive routine
symbol x = B0 ‘ General purpose variable
symbol char = B1 ‘ char sent to LCD
symbol loop1= B2 ‘ loop counter
symbol ROW = b5 ‘ LCD ROW value
symbol LOCATION = b6 ‘ Column position on the LCD
symbol VALUE = b7 ‘ Value is the ASCII Character to

‘ display
symbol temp2 = b8 ‘ unused
symbol temp3 = b9 ‘ unused
symbol temp4 = b10 ‘ unused
symbol temp1 = b11 ‘ unused

‘ ——-[Initialization]—————————————————————————
‘
Init:

pins = $0000 ‘ all outputs off to start
Dirs = %11111101 ‘ LCD pins
PAUSE 215 ‘ pause for LCD

‘ setup

‘ Initialize the LCD (Hitatchi HD44780 controller)
‘
I_LCD:

Communication

209

pins = %00110000 ‘set to 8 bit operation
PULSOUT E,100 ‘SEND DATA 3 TIMES
PAUSE 10
PULSOUT E,100 ‘SEND DATA 3 TIMES
PAUSE 10
PULSOUT E,100 ‘SEND DATA 3 TIMES
PAUSE 10
PINS = %00100000 ‘SET TO 4 BIT OPERATION
pause 1
PULSOUT E,100 ‘SEND DATA 3 TIMES
HIGH RS
CHAR = %00101000 ‘4 BIT, 2 LINES, 5X7 CHARACTER
GOSUB LCDCMD
CHAR = 8 ‘Display, cursor and blink off
GOSUB LCDCMD
CHAR = 6 ‘Shift display right
GOSUB LCDCMD
CHAR = 1 ‘clear display and return home
GOSUB LCDCMD
CHAR = 15 ‘display, cursor and blink on
GOSUB LCDCMD

‘ ——-[Main Code]———————————————————————————-
‘
‘Display initial screen
‘
‘******* Main Program **

Start:
SERIN 1,T2400,ROW,LOCATION,VALUE ‘receive serial data
Row = Row - $30 ‘ Correct row to decimal

‘ number
Location = Location - $30 ‘ Correct location to

‘ decimal number

‘******* Decision and Branch Routine *****************************
‘ if ROW = 0 then its a command so jump to command
‘ if ROW does not = 0 and LOCATION = 0 then write the value where
‘ the cursor is. VALUE is the ASCII equivalent of the value sent
‘ per the LCD ASCII chart

IF ROW <> 0 AND LOCATION = 0 THEN DISPLAY ‘Test for
‘zero value

BRANCH ROW,(COMMAND,R1,R2)’,R3,R4) ‘Branch to
‘proper row

Programming PIC Microcontrollers with PicBasic

210

‘******* position cursor where new value will be written *********

R1:
LOCATION = LOCATION – 1 ‘Correct location byte for zero

‘value
‘ Shrunk to fit in one line, lookup table for cursor position LCD
‘ code
LOOKUP LOCATION,($80,$81,$82,$83,$84,$85,$86,$87,$88,$89,$8A,$8B,

$8C,$8D,$8E,$8F,$90,$91,$92,$93),char
GOSUB LCDcmd ‘Send position command to LCD
GOTO DISPLAY ‘Go to character display

‘routine

R2:
LOCATION = LOCATION – 1 ‘Correct location byte for zero

‘value
‘Shrunk to fit in one line, lookup table for cursor position LCD
‘code
LOOKUP LOCATION,($C0,$C1,$C2,$C3,$C4,$C5,$C6,$C7,$C8,$C9,$CA,$CB,

$CC,$CD,$CE,$CF,$D0,$D1,$D2,$D3),char
GOSUB LCDcmd ‘Send position command to LCD
GOTO DISPLAY ‘ Go to character display

‘ routine

‘**** row 3 and row 4 setup for 4x16 LCD. These command commented
‘out.
‘R3:
‘ LOCATION = LOCATION - 1
‘LOOKUP LOCATION,($94,$95,$96,$97,$98,$99,$9A,$9B,$9C,$9D,$9E,$9F,
‘$A0,$A1,$A2,$A3,$A4,$A5,$A6,$A7),char
‘ GOSUB LCDcmd
‘ GOTO DISPLAY
‘
‘R4:
‘ LOCATION = LOCATION - 1
‘LOOKUP LOCATION,($D4,$D5,$D6,$D7,$D8,$D9,$DA,$DB,$DC,$DD,$DE,$DF,
‘$E0,$E1,$E2,$E3,$E4,$E5,$E6,$E7),char
‘ GOSUB LCDcmd
‘ GOTO DISPLAY

Communication

211

‘****** convert value to be displayed for wrlcd routine

DISPLAY:
char = VALUE ‘ Store received Value character in

‘ char variable
GOSUB WrLCD ‘ Jump to routine that sends char to

‘ LCD
GOTO START ‘ jump back to beginning of main loop

‘***** ROW=0, Therefore run a command per list below

‘0 clear LCD and move to position 1 of row 1
‘1 shift cursor left
‘2 Display is off, Cursor is off, Cursor Blink is off
‘3 Display is on, Cursor is off, Cursor Blink is off
‘4 Display is on, Cursor is on, Cursor Blink is off
‘5 Display is on, Cursor is off, Cursor Blink is on
‘6 Display is on, Cursor is on, Cursor Blink is on
‘7 shift display right
‘8 shift display left
‘9 shift cursor right

COMMAND:
value = value - $30 ‘Correct value to decimal for

‘command byte only
‘*** Convert byte received to LCD command code
LOOKUP VALUE,($01,$10,$08,$0C,$0E,$0D,$0F,$1C,$18,$14),char
GOSUB LCDcmd ‘Jump to routine that sends command to

‘LCD
GOTO START ‘Jump to beginning of main loop

‘ ****** Send command byte to LCD Routine *************
‘LCDcmd:

LOW RS ‘ RS low = command
GOSUB WrLCD ‘ send the command byte
HIGH RS ‘ return to character mode
RETURN ‘ Return to caller of this

‘ subroutine

Programming PIC Microcontrollers with PicBasic

212

‘******* Write ASCII char to LCD **********
WrLCD:

pins = pins & %00001000 ‘ Set LCD data lines to zero,
‘ leave RS bit alone

b3 = char & %11110000 ‘store high nibble of char in B3
pins = pins|b3 ‘Output high nibble and RS

‘signal
pause 1 ‘Wait for data setup
PULSOUT E, 100 ‘Strobe the enable line
b3 = char * 16 ‘Shift low nibble to high

‘nibble
pins = pins & %00001000 ‘Set LCD data lines to zero,

‘leave RS bit alone
pins = pins|b3 ‘Output low

‘nibble and RS
‘signal

pause 1 ‘Wait for data setup
PULSOUT E, 100 ‘Strobe the enable line
RETURN ‘ Return to where this subroutine was

‘ called

END

PBPro Code

The PBPro code also may initially look confusing. The first part of the program
establishes all the DEFINE statements to tell PBPro which port to use for the data
port, RS line, and E line. Each DEFINE then directs which pin(s) of the port are for
communication. We even use the DEFINE statements to communicate the 4-bit mode
and the number of LCD lines. Finally, we even have a DEFINE to control the time
between commands being sent and time delay for data set-up. Some LCDs are picky
so PBPro allows you to adjust the timing of its LCDOUT command to work with var-
ious LCDs. The DEFINE statements I used here should work with most LCDs, since
I really slowed things down.

Next we establish the variables “Row,” “Location,” “Value,” and “Char” which
will be used throughout the PBPro code. After that, the Init label sets up PORTB
for proper data direction using the TRIS directive. This is followed by a direct con-
trol of PORTB to set the state of each PORTB pin. Finally, we use the LCDOUT com-
mand to display an initial message that says “Serial LCD”.

Communication

213

The label start is where this project code really starts. The main line is the
SERIN line that waits for the row, location, and value bytes. The program will sit
here forever if it doesn’t receive any information. When information is received it
first tests the “Row” byte and “Location” byte to see if “Row” is not 0 and
“Location” is 0 by using an IF-THEN statement. If these variables are at that state,
it indicates don’t move the cursor from its existing position and write the character
in the “Value” byte at that location. It does that by jumping to the Display label.

If the “Location” byte is not 0, independent of the “Row” byte value, then the
next command run is a BRANCH instruction. The BRANCH instruction jumps the pro-
gram to the proper label based on the value of the “Row” byte. If the “Row” byte is
0, then it jumps to the Command label. The code at the Command label will send a
LCD command based on the “Value” byte received.

If “Row” does not equal 0, then the BRANCH command redirects the program to
the Row1 or Row2 labels. At label Row1 and Row2, the program converts the
“Location” byte received into the proper LCD code to position the LCD cursor at
the proper row and column using the LOOKUP command. We have to subtract 1 from
the “Location” byte because the LOOKUP command starts at 0 instead of 1.

After we have the proper position code from the LOOKUP command, the program
then jumps to the LCDcmd subroutine to send the special LCD position code to the
LCD and move the cursor on the LCD. When the subroutine is done, the program
jumps back to the command after the GOSUB LCDcmd line. That command is a jump
to the Display label.

At the Display label, the program first stores the serially received “Value” byte
and stores a copy of it into the “Char” variable. Then the program jumps to the sub-
routine WrLCD to send that byte to the LCD character generator that actually displays
the character on the LCD. The program then returns to the routine at the Display
label, which sends the program back to the top to receive a new set of information
at the Start label. Note how we first positioned the cursor based on the “Row” and
“Location” bytes and then sent the character code (“Value” byte) to be displayed at
that position.

As mentioned above, if the “Row” byte is zero, the BRANCH command under the
Start label redirects the program to the Command label. We don’t stop at the Row1
and Row2 labels to get a LCD command code because the “Value” byte received

Programming PIC Microcontrollers with PicBasic

214

serially should have the LCD command byte in it. All we have to do is convert that
“Value” byte to the proper LCD command code based on the table above the
Command label. We take the “Value” byte and convert it into a decimal number by
subtracting hex $30. Then we use the LOOKUP command to change the “Value” byte
into the proper LCD command code. That command code is stored in the “Char”
variable.

The next command line jumps the program to the LCDcmd subroutine where the
command code is sent to the LCD. After that is complete, we return from the sub-
routine and then jump back to the Start label to receive more data.

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... proj9pro.BAS
‘ Purpose... Serial -> PIC16F876 -> LCD (4-bit interface)
‘ Author.... Chuck Hellebuyck
‘ Started... January 22 2002
‘ Updated...

‘ ——-[Program Description]——————————————————————-
‘
‘
‘ PIC16F876 Port Hardware connections:
‘
‘ PIC LCD Other Connections
‘ ——— ———- ——————————————-
‘ B4 LCD.11
‘ B5 LCD.12
‘ B6 LCD.13
‘ B7 LCD.14
‘ B3 LCD.4
‘ B0 LCD.6
‘ OSC1 Resonator - 4 mhz
‘ OSC2 Resonator - 4 Mhz
‘ MCLR Vdd via 1k resistor
‘ Vdd 5v
‘ Vss Gnd
‘ B1 Max232(RX)
‘ B2 Max232(TX)

Communication

215

‘ ——-[Revision History]————————————————————————
‘
‘
‘——-[DEFINES]——————————————————————————————

include “modedefs.bas” ‘include serout defines
Define LOADER_USED 1 ‘Only required if bootloader used to

‘program PIC

DEFINE LCD_DREG PORTB ‘Define PIC port used for LCD Data
‘lines

DEFINE LCD_DBIT 4 ‘Define first pin of portb
‘connected to LCD DB4

DEFINE LCD_RSREG PORTB ‘Define PIC port used for RS line of
‘LCD

DEFINE LCD_RSBIT 3 ‘Define Portb pin used for RS
‘connection

DEFINE LCD_EREG PORTB ‘Define PIC prot used for E line of LCD
DEFINE LCD_EBIT 0 ‘Define PortB pin used for E

‘connection
DEFINE LCD_BITS 4 ‘Define the 4 bit communication

‘mode to LCD
DEFINE LCD_LINES 2 ‘Define using a 2 line LCD
DEFINE LCD_COMMANDUS 2000 ‘Define delay between sending LCD

‘commands
DEFINE LCD_DATAUS 50 ‘Define delay time between data

‘sent.

‘ ——-[Constants]———————————————————————————-
‘
‘ ——-[Variables]———————————————————————————-
‘
ROW var byte ‘ LCD ROW value
LOCATION var byte ‘ Column position on the LCD
VALUE var byte ‘ Value is the ASCII Character to display
char var byte ‘ Temporary storage of character code

‘ ——-[Initialization]—————————————————————————
‘
Init:

TRISB = $0000 ‘ all outputs off to start
portb = %11111101 ‘ LCD pins
LCDOUT “Serial LCD” ‘ Display project name on LCD
pause 1000 ‘ Delay 1 second

Programming PIC Microcontrollers with PicBasic

216

‘ ——-[Main Code]———————————————————————————-
‘
‘Display initial screen
‘
‘******* Main Program **

Start:
SERIN 1,T2400,ROW,LOCATION,VALUE ‘Receive serial data

Row = Row - $30 ‘Correct Row to
‘decimal number

Location = Location - $30 ‘Correct Location to
‘decimal number

‘******* Decision and Branch Routine *****************************
‘ if ROW = 0 then its a command so jump to command
‘ if ROW does not = 0 and LOCATION = 0 then write the value where
‘ the cursor is. VALUE is the ASCII equivalent of the value sent
‘ per the LCD ASCII chart

IF ROW <> 0 AND LOCATION = 0 THEN DISPLAY ‘Test for zero
‘value

BRANCH ROW,[COMMAND,Row1,Row2]’,Row3,Row4] ‘Branch to proper row

‘******* position cursor where new value will be written *********

Row1:
LOCATION = LOCATION – 1 ‘Correct location for zero value

‘**** Shrunk line to fit, convert location byte to char byte for
‘LCD command

LOOKUP LOCATION,[$80,$81,$82,$83,$84,$85,$86,$87,$88,$89,$8A,$8B,
$8C,$8D,$8E,$8F,$90,$91,$92,$93],char

GOSUB LCDcmd ‘Jump to LCD command routine
GOTO DISPLAY ‘ Jump to LCD display routine

Row2:
LOCATION = LOCATION – 1 ‘Correct location for zero value

‘**** Shrunk line to fit, convert location byte to char byte for
LCD command
LOOKUP LOCATION,[$C0,$C1,$C2,$C3,$C4,$C5,$C6,$C7,$C8,$C9,$CA,$CB,

$CC,$CD,$CE,$CF,$D0,$D1,$D2,$D3],char
GOSUB LCDcmd ‘Jump to LCD command routine
GOTO DISPLAY ‘Jump to LCD command routine

‘
‘**** These commented out lines are for converting this program to

‘ 4x16 LCDs

Communication

217

‘Row3:
‘ LOCATION = LOCATION - 1
‘LOOKUP LOCATION,[$94,$95,$96,$97,$98,$99,$9A,$9B,$9C,$9D,$9E,$9F,
‘$A0,$A1,$A2,$A3,$A4,$A5,$A6,$A7],char
‘ GOSUB LCDcmd
‘ GOTO DISPLAY
‘
‘Row4:
‘ LOCATION = LOCATION - 1
‘LOOKUP LOCATION,[$D4,$D5,$D6,$D7,$D8,$D9,$DA,$DB,$DC,$DD,$DE,$DF,
‘$E0,$E1,$E2,$E3,$E4,$E5,$E6,$E7],char
‘ GOSUB LCDcmd
‘ GOTO DISPLAY

‘****** convert value to be displayed for wrlcd routine

DISPLAY:
char = VALUE ‘Store Value byte into char variable
GOSUB WrLCD ‘Jump to routine that sends display

‘characters to LCD
GOTO START ‘Jump back to beginning of main loop

‘***** ROW=0, Therefore run a command per list below

‘0 clear LCD and move to position 1 of row 1
‘1 shift cursor left
‘2 Display is off, Cursor is off, Cursor Blink is off
‘3 Display is on, Cursor is off, Cursor Blink is off
‘4 Display is on, Cursor is on, Cursor Blink is off
‘5 Display is on, Cursor is off, Cursor Blink is on
‘6 Display is on, Cursor is on, Cursor Blink is on
‘7 shift display right
‘8 shift display left
‘9 shift cursor right

COMMAND:
value = value - $30 ‘Convert value to decimal number for

‘command only
‘**** Convert Value byte to LCD code byte and store in char ***

LOOKUP VALUE,[$01,$10,$08,$0C,$0E,$0D,$0F,$1C,$18,$14],char
GOSUB LCDcmd ‘Jump to routine that sends LCD commands
GOTO START ‘Jump to beginning of program

‘ *** Send command byte to LCD Subroutine

Programming PIC Microcontrollers with PicBasic

218

‘
LCDcmd:

LCDOUT $FE, char ‘ Send command to LCD
RETURN ‘Return to where this routine was

‘called

‘ *** Send ASCII character, to be displayed, to LCD
‘
WrLCD:

LCDOUT char ‘ Send char to LCD
RETURN ‘ Return to where this routine was

‘ called

END

Final Thoughts

I have to admit this isn’t the best serial LCD example I could have written, but it is
unique in that each position of the LCD can be accessed with a single serial com-
mand based on a simple row and column (location) value. This project can be
expanded in numerous ways. Just playing around with the way the program receives
data could be a major change. Possibly making the SERIN command line part of a
loop until a certain character is received would allow multiple characters to be
received at one time before putting them on the LCD screen. Use your imagination!

Hopefully you’ve learned how to control a LCD module and how to communi-
cate using the SERIN and SEROUT commands. These are some of the most common
functions your PicBasic programs will perform and also brings PICs into the real
world. People ask me all the time what I do with the programming tools I use and
sell at my website. Once I show them a PC screen responding to actions at the PIC
circuit, it seems to answer their question. When the LCD displays messages to them,
they seem to understand this as well. Soon they are making comments about build-
ing alarm systems and sprinkler systems, or even ideas for robots. It’s the human
connection they were looking for and the LCD or PC is just that. Adding an LCD
and serial connection to any PIC project makes it look more professional and a lot
more complicated than it actually is. But PicBasic makes it easy!

Communication

219

Memory and Sound

In this chapter we explore both the internal memory of the PIC and access to exter-
nal memory. The memory I refer to is neither the program memory (where your
code is stored) nor the data or RAM memory (where your variables are accessed).
I’m referring to the EEPROM (Electrically Erasable Programmable Read Only
Memory). This is the memory that stores information or data you want to keep alive
after the power is disconnected. It can be changed at any time within a program, but
once the PIC is shut down anything in EEPROM is not erased.

All flash memory PICs have internal EEPROM memory, but usually less than
1k. If you need more than 1k, then external EEPROM memory chips are used. You
can get large 128k memory chips in a tiny 8-pin package.

Access to the internal EEPROM is quite easy in PicBasic by using a single
WRITE or READ command. External memory is a bit tougher, though. Many external
memory chips communicate using the Phillips I2C protocol. PicBasic makes that
easy with the I2CIN and I2COUT commands.

This chapter’s projects will show how to access the internal EEPROM memory
and access external memory. After that, we’ll do something completely different.
We make the PIC into a music generator by playing music through a speaker using
the SOUND command.

221

C H A P T E R 8

Project #10—Using External Memory

In addition to PIC microcontrollers, Microchip also makes external EEPROM chips.
The most common types of these chips are controlled using the I2C protocol, and
the PicBasic I2CIN and I2COUT commands make communicating with these chips
quite easy.

This project is easy to build, but is quite handy when combined with other func-
tional code. Just as previous projects did, this project forms the basis for using a PIC
to access external keep-alive memory. The program simply accesses external mem-
ory and sends it out serially to a terminal program running on a PC.

We use a Microchip 24LC00 device in this project, which is actually a very
small memory part. It only has 16 bytes of EEPROM space. You might ask why we
use such a small chip when the internal PIC memory is larger than that. The reason
is to show how simple EEPROM can be added to any PIC, especially PICs that
don’t have any internal EEPROM. Even 16 bytes of EEPROM can be very handy
for very little cost. The 24LC00 works the same as other EEPROM chips, so the
code is the same. Besides, I had a free 24LC00 sample from Microchip lying
around! Figure 8-1 shows the schematic diagram for this project and Figure 8-2
shows the completed circuit board.

Hardware

The PBC and PBPro manuals show the connections required to use the I2COUT and
I2CIN commands. This project uses those connections to the external Microchip
24LC00 I2C memory chip. RA0 and RA1 must be used for the PBC program
because those connections are predefined in the PBC internal code. The group of
connections to ground on the EEPROM chip’s A0, A1, and A2 pins are required to
designate the address of the chip.

The schematic in Figure 8-1 also shows the serial connection using the RB2 and
RB1 pins. Those can be moved to any pins you want but the code below would have
to change. They feed into a RS232 level shifter chip like the one used in Chapter 7
projects. This chip converts the 0–5 volt PIC signals into +12 to –12 volt signals the
PC can easily read. The last two connections are the SCL and SDA pins. These are
the serial clock and serial data lines. They are the communication lines used to send
data to the EEPROM chip.

Programming PIC Microcontrollers with PicBasic

222

Figure 8-1: Schematic diagram for external memory project.

Figure 8-2: View of the completed circuit shown in Figure 8-1.

16F876

+5v

+5v

+5v

+5v

4 Mhz

1K

1K

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

RS232 Chip

luf

luf

luf

luf

2

3

5

+

+

+

+

1

A0

A1

A2

Vss

Vcc

WP

SCL

SDA

Memory and Sound

223

PBC Code

The program first initializes symbols by setting up the address and value bytes. The
serial in and serial out connections are made into constants “SI” and “SO”. This
makes it easy to change the serial connections later by just changing these two con-
stants to match the hardware.

Next the EEPROM control byte is established. This can be found in the PBC
manual or in the EEPROM data sheet. If just one of these bits is off, the whole pro-
gram can act screwy or not work at all. Following that the “address”, “value”, and
temporary “x” variables are established. As a final step, we establish the constant
for the ADCON1 register in the PIC memory map. We’ll use that to set up PORTA.

Now the program does one more step before entering the init label. We issue
the command line below:

poke adcon1, 7

This line is required because the PIC initializes PORTA to analog mode. In other
words, the port is automatically set up to act as an A/D port. By modifying the
ADCON1 register with a %00000111or 7 using the POKE command, we set PORTA
to all digital mode.

(This has everything to do with the PIC and nothing to do with PBC.)

Now the program enters the init label. At this label we have a FOR-NEXT loop
that initializes all 16 bytes of EEPROM data to a value of 10. We simply increment
the address variable and the use the I2COUT command to send the value in the paren-
thesis, which is 10, to each value of address in the EEPROM.

The main loop is entered at the Rx label. At this label, the program first sends
out a line of instructions for the command format using the SEROUT command. The
format is the address (0–15) followed by the value to be stored (0–254). The pro-
gram then waits for two bytes of data that can be sent by any serial communication
device in an 8N1 format (8 data bits, no parity, 1 stop bit) at 2400 baud. A PC run-
ning a terminal program works great for this.

Programming PIC Microcontrollers with PicBasic

224

Some terminal programs will allow you to send numbers larger than 9 with a “#”
symbol in front of it. This will send the actual number rather than the ASCII value
of each character. For example, if you send 10 then the ASCII value $31 followed
by $30 would be sent, which is the ASCII value for “1” and then “0.” If instead #10
is sent, then the value 10 or $0A is sent. The latter is what you want to make this
program work. Check your terminal program to see how to send the data.

The program only accepts one byte of data at a time. Using the I2COUT com-
mand, the program then sends the address and data bytes to the 24LC00 chip. The
24LC00 finds that address and then stores the data there. If the address byte received
ever equals 255, then the program ignores the data sent and jumps to the Tx label.

At the Tx label, the external memory is read starting at location 0 using the
I2CIN command. The data is retrieved byte by byte and as each byte is received, the
SEROUT command is used to send each byte out to the terminal program. It contin-
ues until all 16 locations have been read and sent. Then the program jumps back to
the Rx label to wait for new data.

As I noted at the beginning of this section, this is a simple program but can be
very useful.

‘ ——-[Title]———————————————————————————-
‘
‘ File...... Proj10PB.BAS
‘ Purpose... PIC16F876 -> 24LC00 Microchip EEPROM
‘ Author.... Chuck Hellebuyck
‘ Started... February 9, 2002
‘ Updated...

‘ ——-[Program Description]—————————————————————
‘
‘ This program demonstrates the use of the I2CIN and I2COUT
‘ commands.
‘

Memory and Sound

225

‘ The program is written to work with a PC. The PC will send
‘ serial data to the circuit to be stored into the 16 bit EEPROM
‘ chip. If a value of ‘ 255 is sent to the circuit, then the
‘ program will read each EEPROM location and send the data to the
‘ PC to be displayed. The receiving part of the program requires
‘ the address and the value of the data to be stored. It then
‘ overwrites that address with the received data using the I2COUT
‘ command. When the data is 255, the program uses the I2CIN to
‘ read the EEPROM one byte at a time and send that data to the PC.
‘
‘ Hardware Connections:
‘
‘ PIC EEPROM Pin EEPROM Pin Name Misc Conn.
‘ ——— ————— ———————- —————
‘ RA0 EEPROM.5 SDA
‘ RA1 EEPROM.6 SCL
‘ RB1 Serial In (RX)
‘ RB2 Serial Out (TX)
‘ EEPROM .1 A0 Gnd
‘ EEPROM. 2 A1 Gnd
‘ EEPROM. 3 A2 Gnd
‘ EEPROM. 4 Vss Gnd
‘ EEPROM. 7 WP Gnd
‘ EEPROM. 8 Vcc 5v

‘ ——-[Revision History]——————————————————————
‘
‘
‘
‘ ——-[Defines]——————————————————————————-
‘
‘
‘
‘ ——-[Variables and Constants]———————————————————
‘
symbol SO = 2 ‘ Define serial output pin
symbol SI = 1 ‘ Define serial input pin
symbol control = %01010000 ‘ Set EEPROM control byte
symbol Address = b3 ‘ Byte to store address
symbol Value = b2 ‘ Byte to store value to store
symbol X = b1 ‘ multi-purpose variable
symbol adcon1 = $9f ‘ Define adcon1 register address
‘

Programming PIC Microcontrollers with PicBasic

226

‘ ——-[Initialization]———————————————————————
‘

poke adcon1, 7 ‘ Set Port A to digital
‘ I/O

Init:
For address = 0 To 15 ‘ Loop 16 times

I2Cout control,address, (10) ‘ Preset each address to ten
Pause 10 ‘ Delay 10ms after each write
Next

‘ ——-[Main Code]——————————————————————————
‘

RX:
serout SO, T2400,(“Enter #address#value”) ‘Display instruction

‘line
Serin SI,T2400,address, value ‘ Receive location and

‘ data to store
If address = 255 then TX ‘ Test for data dump request
I2Cout control, address, (value) ‘ Store value received at
address pause 10 ‘ Delay to allow write to occur

Goto RX ‘ Jump back to receive more
‘ data

TX:
For address = 0 To 15 ‘ Loop thru 16 locations
I2Cin control, address, value ‘ Read byte at address X
Serout SO,T2400,(#address, “: “,#value, 10, 13)
Next ‘ Send Address and

‘ value received
‘ read to PC

Goto RX ‘ Loop back to the top to
‘ receive
‘ data

PBCPro Code

Before we initialize anything in the PBCPro version of the code, including variables
and constants, we have to issue a special include statement:

Memory and Sound

227

Include “modedefs.bas” ‘ Include serial modes

Unlike PBC, PBPro does not predefine the baud rate mode names such as T2400
or N2400. I find them to be really handy and easy to understand later when I’m
reviewing code. PBPro allows you to use them if you add that include line.

After that we add the usual DEFINE for PBPro to recognize we are using a boot-
loader:

define loader_used 1 ‘Used for bootloader only

The program first initializes symbols by setting up the address and value bytes.
The serial in and serial out connections are made into constants “SI” and “SO”. This
makes it easy to change the serial connections later by just changing these two con-
stants to match the hardware.

Next the EEPROM control byte is established. This can be found in the PBPro
manual or in the EEPROM data sheet. If just one of these bits is off, the whole pro-
gram can act screwy or not work at all.

We add the alias names DPIN and CPIN to Port A pin 0 and 1 which are our data
and clock pins. This makes reading the I2CIN and I2COUT commands easier to fol-
low later. Following that the “address”, “value”, and temporary “x” variables are
established.

Prior to entering the init label, we issue the command lines below. Because
PBPro recognizes PIC register names, we don’t have to define what address the
ADCON1 register is at in PIC memory. We just act on the ADCON1 register
directly to make Port A digital pins. After that we have to establish Port A direction
registers as outputs.

adcon1 = 7 ‘ Set PortA to digital ports
TRISA = %00000000 ‘ Set PortA as all outputs

Now the program enters the init label. At this label we have a FOR-NEXT loop
that initializes all 16 bytes of EEPROM data to a value of 20. We simply increment
the address variable and then use the I2COUT command to send the value in the
brackets, which is 20, to each value of address in the EEPROM.

Programming PIC Microcontrollers with PicBasic

228

The main loop is entered at the Rx label. At this label the program first sends out
a line of instructions for the command format using the SEROUT command. The for-
mat is address (0-15) followed by the value to be stored (0-254). The program then
waits for two bytes of data that can be sent by any serial communication device in
an 8N1 format (8 data bits, no parity, 1 stop bit) at 2400 baud. A PC running a ter-
minal program works great for this.

Some terminal programs will allow you to send numbers larger than 9 with a “#”
symbol in front of it. This will send the actual number rather than the ASCII value
of each character. For example, if you send 10, then the ASCII value of $31 fol-
lowed by $30 would be sent, which is the ASCII value for “1” and then “0”. If #10
is sent instead, then the value 10, or $0A is sent. This is how you want this program
work. Check your terminal program to see how to send the data.

The program only accepts one byte of data at a time. Using the I2COUT com-
mand, the program then sends the address and data bytes to the 24LC00 chip. The
24LC00 finds that address and then stores the data there. If the address byte received
ever equals 255, then the program ignores the data sent and jumps to the Tx label.

At the Tx label, the external memory is read starting at location 0 using the
I2CIN command. The data is retrieved byte by byte and, as each byte is received,
the SEROUT command is used to send each byte out to the terminal program. It con-
tinues until all 16 locations have been read and sent. Then the program jumps back
to the Rx label to wait for new data. As was true with the PBC version, this is a sim-
ple but useful program.

‘ ——-[Title]———————————————————————————-
‘
‘ File...... Proj10PR.BAS
‘ Purpose... PIC16F876 -> 24LC00 Microchip EEPROM
‘ Author.... Chuck Hellebuyck
‘ Started... February 9, 2002
‘ Updated...

‘ ——-[Program Description]—————————————————————
‘
‘ This program demonstrates the use of the I2CIN and I2COUT
‘ commands.
‘

Memory and Sound

229

‘ The program is written to work with a PC. The PC will send
‘ serial data to the circuit to be stored into the 16 bit EEPROM
‘ chip. If a value of 255 is sent to the circuit, then the program
‘ will read each EEPROM location and send the data to the PC to be
‘ displayed. The receiving part of the program requires the
‘ address and the value of the data to be stored. It then
‘ overwrites that address with the received data using the I2COUT
‘ command. When the data is 255, the program uses the I2CIN to
‘ read the EEPROM one byte at a time and send that data to the PC.
‘
‘ Hardware Connections:
‘
‘
‘ PIC EEPROM Pin EEPROM Pin Name Misc Conn.
‘ ——— ————— ———————- —————
‘ RA0 EEPROM.5 SDA
‘ RA1 EEPROM.6 SCL
‘ RB1 Serial In (RX)
‘ RB2 Serial Out (TX)
‘ EEPROM .1 A0 Gnd
‘ EEPROM. 2 A1 Gnd
‘ EEPROM. 3 A2 Gnd
‘ EEPROM. 4 Vss Gnd
‘ EEPROM. 7 WP Gnd
‘ EEPROM. 8 Vcc 5v

‘ ——-[Revision History]——————————————————————-
‘
‘

‘ ——-[Defines]———————————————————————————
‘

Include “modedefs.bas” ‘ Include serial modes
define loader_used 1 ‘Used for bootloader only

‘ ——-[Variables and Constants]———————————————————
‘
SO con 2 ‘ Define serial output pin
SI con 1 ‘ Define serial input pin
Control con %10100000 ‘ Set EEPROM control byte

Programming PIC Microcontrollers with PicBasic

230

DPIN var PORTA.0 ‘ I2C data pin
CPIN var PORTA.1 ‘ I2C clock pin
Address var byte ‘ Byte to store address
Value var byte ‘ Byte to store value to
store
X var byte ‘ multi-purpose variable

‘ ——-[Initialization]———————————————————————-
‘

adcon1 = 7 ‘ Set PortA to digital ports
TRISA = %00000000 ‘ Set PortA as all outputs

Init:
For x = 0 To 15 ‘ Loop 16 times

I2Cwrite dpin,cpin,control,x,[20] ‘ Preset each
‘ address to ten

Pause 10 ‘ Delay 10ms after
‘ each write

Next

‘ ——-[Main Code]—————————————————————————-
‘

RX:
serout SO, T2400,[“Enter #address#value”] ‘Display instruction

‘ line
Serin SI,T2400,address, value ‘ Receive location

‘ and data to
‘ store

If address = 255 then TX ‘ Test for data dump
‘ request

I2Cwrite dpin,cpin,control,address,[value]’ Store value received
‘ at address received

pause 10 ‘ Delay to allow
‘ write to
‘ occur

Goto RX ‘ Jump back to
‘ receive more
‘ data

Memory and Sound

231

TX:
For X = 0 To 15 ‘ Loop thru 16 locations
I2Cread dpin,cpin,control, X, [value] ‘ Read byte at address X
Serout SO,T2400,[#X, “: “,#value, 10, 13] ‘ Send Address and value

‘ read to PC
Next

Goto RX ‘ Loop back to the
‘ top
‘ to receive data

Final Thoughts

This project can easily be used as the basis for other projects that need configura-
tion data stored for later retrieval when the PIC is first powered up. RAM data, such
as variables, need to be cleared or initialized at the beginning of a program.
EEPROM data can be used to preload those variables with data developed when the
PIC was last running.

You can also use one of the larger memory chips if necessary, but check the
PicBasic manual since the control byte in the I2CIN and I2COUT commands will
need to be matched to the chip you use.

Project #11—Accessing Internal Memory

This project functions similarly to the previous project, except we use the internal
EEPROM space of the 16F876 PIC. However, this doesn’t work for all PICs; it only
works with the PICs that have internal EEPROM, which are typically the flash
memory PICs. The project uses the READ and WRITE commands. Because the mem-
ory is internal to the PIC, we don’t have to worry about external connections or con-
trol bytes. All we need is the address byte and the data byte.

Programming PIC Microcontrollers with PicBasic

232

As Microchip develops new PICs, the size of the internal EEPROM available
seems to grow. If you only need 256 bytes or less, you can probably find a PIC with
enough internal EEPROM memory. Figure 8-3 shows the schematic and Figure 8-4
illustrates the completed circuit.

Figure 8-3: Schematic diagram for accessing internal memory.

Hardware

The hardware is similar to the previous project. We use the RB2 and RB1 pins for
SEROUT and SERIN communication by tying them to a RS232 level shifter. We also
have the standard power, resonator, and MCLR pull-up connections. Other than
that, however, the rest of the connections are internal to the PIC.

16F876

+5v

+5v

+5v

4 Mhz

1K

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

RS232 Chip

luf

luf

luf

luf

2

3

5

+

+

+

+

1

Memory and Sound

233

Figure 8-4: View of the completed circuit shown in Figure 8-3.

PBC Code

To program this circuit using the PBC compiler, we first initialize the constants and
variables that make it easy to follow. SO and SI are defined, as the SEROUT and
SERIN pins. After that we reserve space and define the “Address” variable and the
“Value” variable.

The next step is the Init label section of code. We use a FOR-NEXT loop with a
WRITE command in the middle of the loop to initialize the first 16 bytes of internal
EEPROM to all 10’s. This is similar to the previous Project #10, but now we use the
WRITE command.

When the initialization of the memory is finished, the program jumps to the Rx
label. At that label is a SERIN command waiting for address byte and data byte from

Programming PIC Microcontrollers with PicBasic

234

a source communicating at 2400 baud 8N1 format. A terminal program does the job
here again.

When the address byte is received, the program tests the address byte value to
see if it is equal to 255. If it is equal to 255, then the program jumps to the TX label
and begins to dump the contents of internal EEPROM using the READ command.
Each address is read within a FOR_NEXT loop. The data byte read is then sent seri-
ally in a 2400-baud 8N1 format that can be displayed with a terminal program.
When all 16 address bytes have been read and sent, the program jumps back to the
RX label to get more incoming data.

If the address received in the RX label’s FOR-NEXT loop is not 255, then the pro-
gram proceeds to store the “Value” byte received at the “Address” byte received
using the WRITE command. The program then loops back to receive another set of
data.

‘ ——-[Title]———————————————————————————-
‘
‘ File...... Proj11PB.BAS
‘ Purpose... PIC16F876 -> Internal PIC16f876 EEPROM
‘ Author.... Chuck Hellebuyck
‘ Started... February 9, 2002
‘ Updated...

‘ ——-[Program Description]————————————————————-
‘
‘ This program demonstrates the use of the Read and Write
‘ commands. The program is written to work with a PC. The PC will
‘ send serial data to the circuit to be stored into the PICs
‘ internal EEPROM. If a value of 255 is sent to the circuit, then
‘ the program will read each EEPROM ‘ location and send the data
‘ to the PC to be displayed.
‘
‘ To update the existing EEPROM with new data, the receiving part
‘ of the program requires the address and the value of the data to
‘ be stored. It then overwrites that address with the received
‘ data using the Write command. When the data is 255, the program
‘ uses the Read command to read the EEPROM one byte at a time and
‘ send that data to the PC.

Memory and Sound

235

‘
‘ Hardware Connections:
‘
‘ Since everything is internal to the PIC there is no external
‘ hardware to hookup. Just the standard Oscillator, MCLR, power
‘ and ground connections.
‘
‘ ——-[Revision History]——————————————————————-
‘
‘
‘
‘ ——-[Defines]———————————————————————————’
‘ ——-[Variables and Constants]———————————————————
‘
symbol SO = 2 ‘ Define serial output pin
symbol SI = 1 ‘ Define serial input pin
symbol Address = b3 ‘ Byte to store address
symbol Value = b2 ‘ Byte to store value to store
‘ ——-[Initialization]———————————————————————
‘
Init:
For address = 0 To 15 ‘ Loop 16 times

Write address, 10 ‘ Preset each address to ten
Pause 10 ‘ Delay 10ms after each write
Next

‘ ——-[Main Code]——————————————————————————
‘

RX:
serout SO, T2400,(“Enter #address#value”) ‘ Display instruction
line
Serin SI,T2400,address, value ‘ Receive location

‘ and data
‘ to store

If address = 255 then TX ‘ Test for data dump
‘ request

Write address, value ‘ Store value
‘ received at
‘ address received

pause 10 ‘ Delay to allow
‘ write to
‘ occur

Programming PIC Microcontrollers with PicBasic

236

Goto RX ‘ Jump back to receive
‘ more
‘ data

TX:
For address = 0 To 15 ‘ Loop thru 16 locations

Read address, value ‘ Read byte at address X
Serout SO,T2400,(#address, “: “,#value, 10, 13) ‘ Send

Address and
‘ value read to PC

Next

Goto RX ‘ Loop back to the
‘ top to
‘ receive data

PBPro

Before we initialize anything, including variables and constants, we have to issue a
special include:

Include “modedefs.bas” ‘ Include serial modes

Unlike PBC, PBPro does not predefine the baud rate mode names such as T2400
or N2400. However, I find them to be really handy and easy to understand later
when I’m reviewing code. PBPro allows you to use them if you add the include
line above.

Before we enter the main program section, we initialize the constants and vari-
ables that make it easy to follow. SO and SI are defined, as the SEROUT and SERIN
pins. After that, we reserve space and define the “Address” variable and the “Value”
variable. The next step is the Init label section of code. We use a FOR-NEXT loop
with a WRITE command in the middle of the loop, to initialize the first 16 bytes of
internal EEPROM to all 10’s. This is similar to Project #10, but now we use the
WRITE command.

Memory and Sound

237

Once the initialization of the memory is finished, the program jumps to the Rx
label. At that label is a SERIN command waiting for the address byte and data byte
from a source communicating at 2400 baud 8N1 format. A terminal program does
the job here again.

When the address byte is received, the program tests the address byte value to
see if it’s equal to 255. If it’s equal to 255, then the program jumps to the TX label
and begins to dump the contents of internal EEPROM using the READ command.
Each address is read within a FOR_NEXT loop. The data byte read is then sent seri-
ally in a 2400 baud 8N1 format that can be displayed with a terminal program.
When all 16 address bytes are read and sent, the program jumps back to the RX label
to get more incoming data.

If the address received in the RX label’s FOR-NEXT loop is not 255, then the pro-
gram stores the “Value” byte received at the “Address” byte received using the
WRITE command. The program then loops back to receive another set of data.

‘ ——-[Title]———————————————————————————-
‘
‘ File...... Proj10PR.BAS
‘ Purpose... PIC16F876 -> Internal 16F876 EEPROM
‘ Author.... Chuck Hellebuyck
‘ Started... February 9, 2002
‘ Updated...

‘ ——-[Program Description]—————————————————————
‘
‘ This program demonstrates the use of the Read and Write
‘ commands. The program is written to work with a PC. The PC will
‘ send serial data to the circuit to be stored into the PICs
‘ internal EEPROM. If a value of 255 is sent to the circuit, then
‘ the program will read each EEPROM location and send the data to
‘ the PC to be displayed. To update the existing EEPROM wih new
‘ data, the receiving part of the program requires the address and
‘ the value of the data to be stored. It then overwrites that
‘ address with the received data using the Write command. When the
‘ data is 255, the program uses the Read command to read the
‘ EEPROM one byte at a time and send that data to the PC.

Programming PIC Microcontrollers with PicBasic

238

‘
‘ Hardware Connections:
‘
‘ Since everything is internal to the PIC there is no external
‘ hardware to hookup. Just the standard Oscillator, MCLR, power
‘ and ground connections.
‘
‘ ——-[Revision History]——————————————————————-
‘
‘
‘ ——-[Defines]———————————————————————————
‘

Include “modedefs.bas” ‘ Include serial
‘ modes

define loader_used 1 ‘Used for
‘ bootloader only

‘ ——-[Variables and Constants]———————————————————
‘
SO con 2 ‘ Define serial output pin
SI con 1 ‘ Define serial input pin
Address var byte ‘ Byte to store address
Value var byte ‘ Byte to store value to
store

‘ ——-[Initialization]———————————————————————-
‘

Init:
For address = 0 To 15 ‘ Loop 16 times
Write address,10 ‘ Preset each address to ten
Pause 10 ‘ Delay 10ms after each

‘ write
Next

‘ ——-[Main Code]——————————————————————————
‘

RX:
serout SO, T2400,[“Enter #address#value”] ‘ Display instruction

‘ line
Serin SI,T2400,address, value ‘ Receive location

‘ and data to
‘ store

Memory and Sound

239

If address = 255 then TX ‘ Test for data dump
‘ request

Write address,value ‘ Store value received at
‘ address received

pause 10 ‘ Delay to allow
‘ write to
‘ occur

Goto RX ‘ Jump back to receive
‘ more
‘ data

TX:
For address = 0 To 15 ‘ Loop thru 16 locations
Read address, value ‘ Read byte at address X
Serout SO,T2400,[#address, “: “,#value, 10, 13] ‘ Send

Address and
‘ value read to PC

Next

Goto RX ‘ Loop back to the
‘ top to
‘ receive data

This program only uses the first 16 bytes of 16F876 internal EEPROM memory.
It has 256 bytes so you can easily expand the FOR-NEXT loops to use all the mem-
ory if you want. Once again, this program can be used as the basis for other pro-
grams that may need configuration memory storage or data storage that has to stay
available after power is removed. EEPROM memory is great for storing data you
want to keep if the battery goes dead in your battery-powered PIC project.

The WRITE and READ commands are very similar between PBPro and PBC, so
expanding one can easily be ported over as an improvement for the other.

Programming PIC Microcontrollers with PicBasic

240

Project #12—Making Music

“Making music,” as the heading above says, might be a bit of a stretch. However,
we will play “Mary Had a Little Lamb” as a series of computer beeps. The point of
this project is to demonstrate how to use the SOUND command to produce audible
sound through a speaker. It will sound similar to one of those greeting cards that
play a tune when you open them. The tune is played through a series of codes
retrieved by a LOOKUP command. Each of those codes is converted to a signal by
the SOUND command to play a note through an 8-ohm speaker.

Hardware

Because the PIC has such high-power output capability, it can drive a speaker
directly. The circuit adds a capacitor in series to block any DC and pass the AC tune
through to the speaker. The hardware is fairly easy to build. Figure 8-5 shows the
schematic diagram for this project and the completed circuit is shown in Figure 8-6.

Figure 8-5: Schematic diagram for generating music with a PIC.

16F876+5v

+5v

4 Mhz

1K

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

10 uF

+ 8 Ohm
Speaker

Memory and Sound

241

Figure 8-6:The completed music generation circuit.

As with previous PIC projects, we have the same MCLR pull-up resistor and
resonator. We add the 8-ohm speaker, with a 10 µf capacitor in series, to Port B pin
0. The PicBasic manual shows this same circuit, and is recommended when using
the SOUND command. Make sure you connect the capacitor with the correct polarity.
Any 8-ohm speaker should work, but a small unit will probably be best.

PBC Code

The program starts by establishing the pin used for the SOUND command. It’s the
Port B pin connected to the speaker or Port B pin 0. By making it a constant with
the SYMBOL directive, we can easily move the speaker on the hardware with very lit-
tle revisions needed to the software.

Next we establish three variables “x”, “tone”, and “dur” which represent a
counter variable to keep track of the number of notes, the tone variable (or note to

Programming PIC Microcontrollers with PicBasic

242

be played), and the duration (or how long we play it). After that we DELAY for 1 sec-
ond. There is no reason for doing this other than I wanted to have a pause before it
started blasting out a tune!

The main loop is at the beep label. Here is where the SOUND command gets used.
What we do is use a FOR_NEXT loop to step through 51 notes that are stored in the
LOOKUP command’s line. Notice how the LOOKUP command spreads across three
lines here in the code listing that follows? These should be one continuous line in
your actual program.

The FOR-NEXT loop first retrieves the note to be played in the first LOOKUP com-
mand line and then the duration is retrieved in the second LOOKUP command line.
After that, the two codes are used by the SOUND command to play that note for that
duration. The loop then jumps back up to retrieve another set of note and duration.

Once all the notes have been played, you should have heard a crude version of
“Mary Had A Little Lamb.” The program will wait 10 seconds for you to digest this
wonderful symphony of sound and then it jumps back up to the top to do it all again.

‘ ——-[Title]———————————————————————————-
‘
‘ File...... Proj12PB.BAS
‘ Purpose... PIC16F876 -> Speaker
‘ Author.... Chuck Hellebuyck
‘ Started... February 9, 2002
‘ Updated...

‘ ——-[Program Description]————————————————————-
‘
‘ This program demonstrates the use of the Sound Command.
‘
‘ The program is written to play a crude version of “Mary had a
‘ little lamb”. You will find the PIC is not the greatest musician
‘ but this program demonstrates how the sound command can add
‘ noise or audio feedback to a button press or an error in data
‘ entry.

Memory and Sound

243

‘
‘ PIC Misc Conn.
‘ ——— —————————-
‘ RB0 + side of 10uf cap
‘ - side of 10uf cap to speaker
‘ other speaker wire to ground
‘
‘ ——-[Revision History]——————————————————————
‘
‘

‘ ——-[Defines]——————————————————————————-
‘

‘ ——-[Variables and Constants]——————————————————-
‘
Symbol SND = 0 ‘ 10uf cap to Speaker Pin
Symbol tone = b3 ‘ Variable for storing tone
Symbol dur = b5 ‘ Variable for storing duration
Symbol x = b1 ‘ General counting variable

‘ ——-[Initialization]———————————————————————
‘
Init:

Pause 1000 ‘ Let PIC delay before blasting its
‘ tune

‘ ——-[Main Code]—————————————————————————-
‘

Beep:
for x = 0 to 50 ‘ Step thru 51 total tones

‘** The for next loop steps thru 51 notes and durations using two
‘** lookup commands. The lines are so long, I had to add comments
‘here.
‘** I also had to break them up into three lines. Your program
‘must
‘** make this one continuous long line or it won’t work.

lookup x,(80,0,75,0,68,0,75,0,80,0,80,0,80,0,75,0,
75,0,75,0,80,0,80,0,80,0,80,0,75,0,68,0,75,0,80,0,
80,0,80,0,80,0,75,0,75,0,80,0,75,0,68),tone

lookup x,(80,0,80,0,80,0,80,0,80,0,80,0,80,0,80,0,

Programming PIC Microcontrollers with PicBasic

244

80,0,80,0,80,0,80,0,80,0,80,0,80,0,80,0,80,0,80,0,
80,0,80,0,80,0,80,0,80,0,80,0,80,0,80),dur

Sound SND,(tone,dur) ‘ Generate Sound
next ‘ Get next note and duration

pause 10000 ‘ Delay for 10 seconds for applause
‘ before playing again

Goto beep ‘ Do it forever

PBPro

The PBPro version of the program starts off by establishing the pin used for the
SOUND command. It’s the Port B pin connected to the speaker or Port B pin 0. By
making it a constant with the SYMBOL directive, we can easily move the speaker or
the hardware with very little revisions to the software.

Next we establish three variables “x”, “tone”, and “dur”, which represent a
counter variable to keep track of the number of notes, the tone variable (or note to
be played), and the duration (or how long we play it). After that we DELAY for 1 sec-
ond because I wanted to have a pause before it started blasting out a tune.

The main loop is at the beep label. Here is where the SOUND command gets used.
What we do is use a FOR_NEXT loop to step through 51 notes that are stored in the
LOOKUP command’s line. Notice how the LOOKUP commands spreads across three
lines in the code listing that follows? Unlike PBC above, PBPro allows this if you
enter an underscore (“_”) character after each broken line. This allows long com-
mand lines to fit in a small format that is easy to read and print.

The FOR-NEXT loop first retrieves the note to be played in the first LOOKUP com-
mand line. Then the duration is retrieved in the second LOOKUP command line.
After that, the two codes are used by the SOUND command to play that note for that
duration. The loop then jumps back up to retrieve another set of note and duration.

Once all the notes have been played, you should have heard a crude version of
“Mary Had A Little Lamb.” The program will wait 10 seconds for you to enjoy the
magnificent sound and then it will jump back up to the top to do it all again.

Memory and Sound

245

This program is not much different than the previous PBC version. The biggest
differences are the variable set-up, the LOOKUP command, and SOUND command.
Remember that LOOKUP and SOUND use brackets instead of parentheses in PBPro.

‘ ——-[Title]—————————————————————————————-
‘
‘ File...... Proj12PR.BAS
‘ Purpose... PIC16F876 -> Speaker
‘ Author.... Chuck Hellebuyck
‘ Started... February 9, 2002
‘ Updated...

‘ ——-[Program Description]——————————————————————-
‘
‘ This program demonstrates the use of the Sound Command.
‘
‘ The program is written to play a crude version of “Mary had a
‘ little lamb”. You will find the PIC is not the greatest musician
‘ but this program demonstrates how the sound command can add
‘ noise or audio feedback to a button press or an error in data
‘ entry.
‘
‘ PIC Misc Conn.
‘ ——— ——————————-
‘ RB0 + side of 10uf cap
‘ - side of 10uf cap to speaker
‘ other speaker wire to ground
‘
‘ ——-[Revision History]————————————————————————
‘
‘

‘ ——-[Defines]———————————————————————————-
‘

define loader_used 1 ‘Used for bootloader
‘only

‘ ——-[Variables and Constants]———————————————————————————-
‘
SND con 0 ‘ 10uf cap to Speaker Pin
x var byte ‘ Temporary counter byte
tone var byte ‘ Variable for storing tone
dur var byte ‘ Variable for storing duration

Programming PIC Microcontrollers with PicBasic

246

‘ ——-[Initialization]—————————————————————————
‘
Init:

Pause 1000 ‘ Let PIC delay before blasting its
‘ tune

‘ ——-[Main Code]———————————————————————————-
‘

Beep:
for x = 0 to 50 ‘ Step thru 51 total tones

‘****** The for next loop steps thru 51 notes and durations using
‘two lookup
‘****** commands. The lines are so long, I had to add comments
‘here.

lookup x,[80,0,75,0,68,0,75,0,80,0,80,0,80,0,75,0,75,_
0,75,0,80,0,80,0,80,0,80,0,75,0,68,0,75,0,80,0,80,0,80,_
0,80,0,75,0,75,0,80,0,75,0,68],tone

lookup x,[80,0,80,0,80,0,80,0,80,0,80,0,80,0,80,0,80,_
0,80,0,80,0,80,0,80,0,80,0,80,0,80,0,80,0,80,0,80,0,80,_
0,80,0,80,0,80,0,80,0,80,0,80],dur

Sound SND,[tone,dur] ‘ Generate Sound
next ‘ Get next note and duration
pause 10000 ‘ Delay for 10 seconds for applause

before playing again
Goto beep ‘ Do it forever

Final Thoughts

You can simply change the existing tune by changing the values in the LOOKUP table.
To make it easier to read, you could store the song code in external EEPROM mem-
ory and then access the song like we accessed data from external EEPROM in
Project #10. One way to do this would be to have several different EEPROM chips,
each with a different tune stored in them. To change the tune, just change the EEP-
ROM chip.

Memory and Sound

247

By now you should be getting very comfortable writing PBC and/or PBPro pro-
grams. If you still are a bit shaky, then try playing around with the code given so far
in this book to modify it using your own techniques. You’ll learn more by doing that
than any book can teach you. You’ll make mistakes, but by catching those mistakes
you will learn to program PICs in PicBasic better than you can by just reading about
PicBasic.

Programming PIC Microcontrollers with PicBasic

248

Robotics

Robots are not my area of expertise, but they have become very popular among elec-
tronics hobbyists in recent years. The inspiration for this chapter was a recent trip
to an assembly plant where I saw a three-wheeled robot in action, as shown in
Figure 9-1.

Figure 9-1: An industrial robot in action.

The robot had two rear drive wheels and a heavy-duty caster wheel in front. The
robot pulled a series of trailers that carried parts from one end of the plant to the

249

C H A P T E R 9

other. It followed a line that was buried into the concrete floor. It also had an obsta-
cle detection system in front that was simply a clear plastic shield with switches
attached via cables. If anything bumped into the plastic, the cables would release
tension to the switches and signal the robot to stop.

I’d seen hobbyist robot kits like this before, but never really took them too seri-
ously. After I got home, though, I immediately starting putting together the pieces
to build my own PicBasic controlled version. It’s shown in Figure 9-2.

Figure 9-2: A PicBasic-controlled robot.

In this chapter, we will discuss three robotics projects. The first will simply con-
trol a three-wheeled robot platform with two rear drive wheels and one front caster
wheel. The second project will add a line-following sensor to determine if a white
or black color is present in front of the sensor; the purpose will be to build a basic
robot that can follow a black line on the ground. The third project will add obstacle
detection, but of greater complexity than the bumper switch method. It will use a
Sharp GP2D15 infrared detector mounted on top of a servomotor. The servo will be
mounted in the front of the robot and will sweep the detector back and forth to look
for obstacles.

These will be three interesting projects (both to programmers and nonprogram-
mers), so let’s get started!

Programming PIC Microcontrollers with PicBasic

250

Project #13—Robot Base

I’m not going to go through all the steps needed to build this robot platform because
it’s very easy to do (and this is a book about PicBasic, not robot construction!).
There are several good books about robot construction, and much information about
the subject is available on the World Wide Web. If you’ve never experimented with
robots before, those are great sources for finding the information you’ll need.

The hardest part of constructing the hardware for these projects will be rework-
ing the servomotors, that is, if you do it yourself. As we discussed in a previous
chapter, servomotors are designed to move back and forth based on a pulse-width
modulated signal. In order to use these motors for a robot drive, their internals have
to be reworked to spin a full 360 degrees in both directions. The robot tires are then
attached to the shaft of the servomotors, so by individually turning the servomotors
we can make the robot go forward, backward, turn right, and turn left. The rest of
these robot projects can be built from parts available at a hardware store or hobby
shop (a trip to your local electronics store goes without saying). Check out
Appendix A for more on-line sources of robotics parts and complete kits.

Reworked servomotors accept the same signal as a standard servomotor; the key
difference is that when the signal pulse is 1.5 milliseconds long, the servomotor
stops turning. If the signal is greater than 1.5 milliseconds to 2.0 milliseconds, the
motor turns counter-clockwise continuously. If the signal is less than 1.5 millisec-
onds to 1.0 milliseconds, then the servomotor will turn clockwise continuously.

As noted before, the robot has tires attached to the shaft of the servomotors and
by individually turning the servomotors we can make the robot go forward, back-
ward, turn right, and turn left. That is what this project is all about. We will use the
PicBasic PULSOUT command to send the control signals to the servomotors and
make the robot follow the following preset pattern:

1) First, the robot will drive forward for a short distance.

2) Then the robot will turn left about 180 degrees.

3) Next, the robot will drive backwards a short distance.

4) Finally it will turn right about 180 degrees.

5) The program will then loop back up to the top and do it all over again.

Robotics

251

Figure 9-3: Path of the PicBasic-controlled robot.

Figure 9-3 shows the robot platform and the direction it will follow. The
schematic in Figure 9-4 shows the electrical connections to the PIC16F876. Once
again the standard connections are the same, with MCLR tied to Vdd through a
resistor and the Vdd and ground connections to the power source. The servomotors
draw a lot of power, so I put them and the PIC circuit on separate battery supplies.
The ground points are connected, however, so they all share the same reference
point.

Because servomotors have internal circuitry that handles the high current of the
motors, a PIC pin can directly communicate with the servo. PIC pin B2 controls the
right wheel servo while B7 controls the left wheel. These simple connections allow
us to drive the robot.

Programming PIC Microcontrollers with PicBasic

252

Figure 9-4: Electrical connections to the PIC16F876.

PBC Code

The program is really quite simple once you understand the key strategies to driv-
ing the servomotors. Because the servomotors are on opposite sides of each other
you have to spin the left wheel counter-clockwise and the right wheel clockwise to
make the robot go straight. You reverse that when you drive the robot in reverse. By
just spinning one wheel at a time, you make the robot turn.

The PULSOUT command is used to send either 200 for counterclockwise rotation
or 100 for clockwise rotation; the code creates four different subroutines for han-
dling direction of the robot. This allows a simple main loop that calls each of the
subroutines as the desired direction is needed. The four subroutines are labeled FWD,
REVS, RFWD, and LFWD. They stand for forward direction, reverse direction, turn

16F876

+5v

+5v4 Mhz

1K

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

Servo

Motor

Servo

Motor

–
+
S

–
+
S

Servo
B+

Robotics

253

right in forward direction, and turn left in forward direction. These form the “con-
trol system” for the robot.

The program first establishes two byte-size variables: “move” and “x”. These
will be used throughout the program. Then PortB is set up with the DIRS directive
to make all PortB pins outputs. After that the main program loop is entered.

The first block of commands is similar to the rest, so I’ll explain the first block
below:

‘ *** Move robot forward and pause
move = 100 ‘Preset move to 100 for distance
gosub fwd ‘Jump to fwd subroutine for forward movement
pause 10 ‘Delay before next move

The variable “move” is given a value of 100. This will actually be used by the
servomotor control subroutine as a means to move the robot wheels. I did not cal-
culate how much each value would equate to in distance the robot will travel; I just
tried different “move” values until I got what I wanted. A large value for “move”
will drive the robot wheel further, while a small value will turn the wheel a shorter
distance.

After the move value is established, the program jumps to the FWD subroutine.
After the program returns from the subroutine, it pauses for a short time before the
next directional movement is sent. The FWD subroutine is representative of all the
subroutines, so let’s examine that next:

‘ *** Move robot forward subroutine
FWD:
For x = 1 to move ‘Start forward movement loop
pulsout 2, 100 ‘Turn right wheel forward
pulsout 7, 200 ‘Turn left wheel forward
pause 10 ‘Delay to control robot speed
next ‘Repeat forward movement loop
return ‘Jump back to where this subroutine was called

At the FWD subroutine, the “move” variable is used as the end point of a FOR-
NEXT loop. The “move” variable simply controls how many times the servomotor is
turned on by this subroutine, and thus controls the distance the robot wheel travels.

Programming PIC Microcontrollers with PicBasic

254

Within the FOR-NEXT loop are the PULSOUT commands that turn the robot
wheels. They just send a pulse to the servomotors that their internal circuitry reads
and then uses to drive the servomotor shaft. Since the servomotors are reworked, the
position that matches the pulse width value sent is never seen by the servomotors’
internal circuitry. That makes the wheel continue to turn and drive the robot wheel
every time it gets a signal.

After the PULSOUT commands have pulsed the robot wheels a short distance, the
subroutine has a PAUSE command. This pause slows down the loop time and thereby
controls the robot speed. Make this value too small and you won’t slow it down
much at all; make it too large and the robot will be jumpy. This was strictly a trial
and error effort to arrive at a delay of 10 msec.

When the FOR-NEXT loop is complete, the subroutine uses the RETURN command
to jump back to the main loop. The program returns at the command following the
GOSUB command that jumped the program to the subroutine.

The main loop continues this flow for the right turn, reverse and left turn rou-
tines that make up this project. When all those routines are complete, the main loop
starts all over again at the top with a goto main command line. The robot will per-
form that same pattern all the way across the floor until you pick it up and pull the
power.

‘ ——-[Title]———————————————————————————-
‘
‘ File...... proj13pb.BAS
‘ Purpose... Drive Robot in Unique Pattern PIC16F876 -> Servos
‘ Author.... Chuck Hellebuyck
‘ Started... March 1, 2002
‘ Updated...

‘ ——-[Program Description]————————————————————-
‘
‘ This Program uses the 16F876 to control a Servo robot platform.
‘ The robot has dual servo motors with wheels mounted to drive the
‘ robot. This program will drive the robot forward a short
‘ distance and then turn left. After completing the left turn, the

Robotics

255

‘ robot will drive straight in reverse for a short distance and
‘ then stop. After that the robot will turn right. After
‘ completing the right turn, the robot will start the routine over
‘ with the forward movement.
‘
‘ RB2 Right Wheel Servo
‘ RB7 Left Wheel Servo

‘ ——-[Revision History]——————————————————————
‘
‘

‘ ——-[Constants]—————————————————————————-
‘

‘ ——-[Variables]—————————————————————————-
‘
symbol move = b0 ‘robot movement variable
symbol x = b1 ‘general purpose variable

‘ ——-[Initialization]———————————————————————
‘

Init:
DIRS = %1111111111 ‘Set portB to all outputs

‘ ——-[Main Code]—————————————————————————-
‘

main:
‘ *** Move robot forward and pause
move = 100 ‘Preset move to 100 for distance
gosub fwd ‘Jump to fwd subroutine for forward movement
pause 10 ‘Delay before next move

‘ *** Make robot turn left 180 degrees and pause
move = 250 ‘Preset move to 250 for 180 degrees turn
gosub lfwd ‘Jump to lfwd subroutine to turn left
pause 10 ‘Delay before next move

‘ *** Move robot in reverse and then pause
move = 100 ‘Preset move to 100 for distance backwards
gosub revrs ‘Jump to revrs subroutine to move backwards
pause 10 ‘Delay before next move

Programming PIC Microcontrollers with PicBasic

256

‘ *** Make robot turn right 180 degrees and pause
move = 200 ‘Preset move to 200 for 180 degrees turn
gosub rfwd ‘Jump to rfwd subroutine to turn right
pause 10 ‘Delay before next move

goto main ‘Loop back and do it again

‘ *** Move robot forward subroutine
FWD:
For x = 1 to move ‘Start forward movement loop
pulsout 2, 100 ‘Turn right wheel forward
pulsout 7, 200 ‘Turn left wheel forward
pause 10 ‘Delay to control robot speed
next ‘Repeat forward movement loop
return ‘Jump back to where this subroutine was called

‘ *** Move robot in reverse subroutine
revrs:
For x = 1 to move ‘Start reverse movement loop
pulsout 2, 200 ‘Turn right wheel in reverse
pulsout 7, 100 ‘Turn left wheel in reverse
pause 10 ‘Delay to control robot speed
next ‘Repeat reverse movement loop
return ‘Jump back to where this subroutine was called

‘ *** Move robot forward-left subroutine
Lfwd:
For x = 1 to move ‘Start left-forward movement loop
pulsout 2,100 ‘Turn right wheel forward to go left
pause 10 ‘Delay to control robot speed
next ‘Repeat left-forward movement loop
return ‘Jump back to where this subroutine was called

‘ *** Move robot forward-right subroutine
Rfwd:
For x = 1 to move ‘Start right-forward movement loop
pulsout 7, 200 ‘Turn left wheel forward to go right
pause 10 ‘Delay to control robot speed
next ‘Repeat right-forward movement loop
return ‘Jump back to where this subroutine was called

Robotics

257

PBPro Code

The PBPro program version is very similar to the PBC program. There are areas that
could have been simplified, but I wanted to try to maintain a common structure so
the PBPro version copies the PBC version.

As with the PBC code, the program is really quite simple once you understand
the key strategies for driving the servomotors. Because the servomotors are on
opposite sides of each other, you have to spin the left wheel counter-clockwise and
the right wheel clockwise to make the robot go straight. You reverse that when you
drive the robot in reverse; by just spinning one wheel at a time, you make the robot
turn.

The PULSOUT command is used to send either 200 for counter-clockwise rota-
tion or 100 for clockwise rotation. What the code does is create four different sub-
routines for handling direction of the robot. This allows a simple main loop that
calls each of the subroutines according to which direction is needed. The four sub-
routines are labeled FWD, REVS, RFWD, and LFWD. They stand for forward direction,
reverse direction, turn right in forward direction, and turn left in forward direction.
These form the main control of the robot.

Starting at the top, the program establishes two byte-size variables: “move” and
“x”. These will be used throughout the program. Then PortB is set with the TRISB
directive to make all PortB pins outputs. After that, the define loader_used 1 line
is issued to let the compiler know we are using a bootloader to program the PIC.
Then the main loop of code is entered.

The first block of commands is similar to the rest, so I’ll explain the first block
below:

‘ *** Move robot forward and pause
move = 100 ‘Preset move to 100 for distance
gosub fwd ‘Jump to fwd subroutine for forward movement
pause 10 ‘Delay before next move

The variable “move” is given a value of 100. This will actually be used by the
servomotor control subroutine as a means to move the robot wheels. I did not cal-
culate how much each value would equate to in distance the robot will travel. A

Programming PIC Microcontrollers with PicBasic

258

large value for “move” will drive the robot wheel further, while a small value will
turn the wheel a shorter distance.

After the “move” value is established, the program jumps to the FWD subroutine.
After the program returns from the subroutine, the program pauses for a short time
before the next directional movement is sent.

The FWD subroutine represents all the subroutines, so we’ll examine that next:

‘ *** Move robot forward subroutine
FWD:
For x = 1 to move ‘Start forward movement loop
pulsout 2, 100 ‘Turn right wheel forward
pulsout 7, 200 ‘Turn left wheel forward
pause 10 ‘Delay to control robot speed
next ‘Repeat forward movement loop
return ‘Jump back to where this subroutine was called

At the FWD subroutine, the “move” variable is used as the end point of a FOR-
NEXT loop. The “move” variable simply controls how many times the servomotor is
turned on by this subroutine and thus controls the distance the robot wheel travels.

Within the FOR-NEXT loop are the PULSOUT commands that turn the robot
wheels. They send a pulse to the servomotors that their internal circuitry reads and
uses to drive the motor shaft. Since the servomotors are reworked, the position that
matches the pulse width value sent is never seen by the servomotors’ internal cir-
cuitry. That makes the wheel continue to turn and drive the robot wheel every time
it gets a signal.

After the PULSOUT commands have pulsed the robot wheels a short distance, the
subroutine has a PAUSE command. This slows down the loop time and thus controls
the robot speed. Make this value too small and you won’t slow it down much at all;
make it too large and the robot will be jumpy. This was strictly a trial and error effort
to arrive at a delay of 10 msec.

When the FOR-NEXT loop is complete, the subroutine uses the RETURN command
to jump back to the main loop. The program returns at the command following the
GOSUB command that jumped the program to the subroutine.

Robotics

259

The main loop continues this flow for the right turn, reverse, and left turn rou-
tines that make up this project. When all those routines are complete, the main loop
starts all over again at the top with a GOTO main command line. The robot will per-
form that same pattern all the way across the floor until you pick it up and pull the
power.

‘ ——-[Title]———————————————————————————-
‘
‘ File...... proj13pr.BAS
‘ Purpose... Drive Robot in Unique Pattern PIC16F876 -> Servos
‘ Author.... Chuck Hellebuyck
‘ Started... March 1, 2002
‘ Updated...

‘ ——-[Program Description]————————————————————-
‘
‘ This Program uses the 16F876 to control a Servo robot platform.
‘ The robot has dual servo motors with wheels mounted to drive the
‘ robot. This program will drive the robot forward a short
‘ distance and then turn left. After completing the left turn, the
‘ robot will drive straight in reverse for a short distance and
‘ then stop. After that the robot will turn right. After
‘ completing the right turn, the robot will start the routine over
‘ with the forward movement.
‘
‘ RB2 Right Wheel Servo
‘ RB7 Left Wheel Servo

‘ ——-[Revision History]——————————————————————
‘
‘

‘ ——-[Constants]—————————————————————————-
‘

‘ ——-[Variables]—————————————————————————-
‘
move var byte ‘robot movement variable
x var byte ‘general purpose variable

‘ ——-[Initialization]———————————————————————

Programming PIC Microcontrollers with PicBasic

260

‘

Init:
TRISB = %00000000 ‘Set portB to all outputs

‘ ——-[Main Code]—————————————————————————-
‘

define loader_used 1 ‘Used for bootloader only

main:
‘ *** Move robot forward and pause
move = 100 ‘Preset move to 100 for distance
gosub fwd ‘Jump to fwd subroutine for forward movement
pause 10 ‘Delay before next move

‘ *** Make robot turn left 180 degrees and pause
move = 250 ‘Preset move to 250 for 180 degrees turn
gosub lfwd ‘Jump to lfwd subroutine to turn left
pause 10 ‘Delay before next move

‘ *** Move robot in reverse and then pause
move = 100 ‘Preset move to 100 for distance backwards
gosub revrs ‘Jump to revrs subroutine to move backwards
pause 10 ‘Delay before next move

‘ *** Make robot turn right 180 degrees and pause
move = 200 ‘Preset move to 200 for 180 degrees turn
gosub rfwd ‘Jump to rfwd subroutine to turn right
pause 10 ‘Delay before next move

goto main ‘Loop back and do it again

‘ *** Move robot forward subroutine
FWD:
For x = 1 to move ‘Start forward movement loop
pulsout 2, 100 ‘Turn right wheel forward
pulsout 7, 200 ‘Turn left wheel forward
pause 10 ‘Delay to control robot speed
next ‘Repeat forward movement loop
return ‘Jump back to where this subroutine was called

‘ *** Move robot in reverse subroutine
revrs:
For x = 1 to move ‘Start reverse movement loop
pulsout 2, 200 ‘Turn right wheel in reverse

Robotics

261

pulsout 7, 100 ‘Turn left wheel in reverse
pause 10 ‘Delay to control robot speed
next ‘Repeat reverse movement loop
return ‘Jump back to where this subroutine was called

‘ *** Move robot forward-left subroutine
Lfwd:
For x = 1 to move ‘Start left-forward movement loop
pulsout 2,100 ‘Turn right wheel forward to go left
pause 10 ‘Delay to control robot speed
next ‘Repeat left-forward movement loop
return ‘Jump back to where this subroutine was called

‘ *** Move robot forward-right subroutine
Rfwd:
For x = 1 to move ‘Start right-forward movement loop
pulsout 7, 200 ‘Turn left wheel forward to go right
pause 10 ‘Delay to control robot speed
next ‘Repeat right-forward movement loop
return ‘Jump back to where this subroutine was called

Final Thoughts

The projects that follow are really follow-on steps to this project. Before continuing
further, I suggest you play with the main loop and make the robot drive different
patterns. Changing the “move” variable values and the pause values in the subrou-
tine is something else to try. From that, you will have a better understanding of the
effects these values have on your robot platform. (I mention this because not all ser-
vomotors will react the same way.)

Project #14—Line Tracker

This project expands the previous project’s robot platform, so I’ll omit details of the
robot construction. When I was taking pictures for the hardware section below, I
tried out a really lousy digital camera. The picture was fuzzy and not usable for
what I intended, but something interesting was captured with that camera. It had
caught the infrared light shining down from the infrared detectors. For the descrip-
tion to follow, this picture is really worth a thousand words. See it in Figure 9-5.

Programming PIC Microcontrollers with PicBasic

262

Figure 9-5: The infrared detectors are how the robot tracks the “test track.”

I found this project to be quite a lot of fun, but also a challenge. I found a line-
follower kit that was fairly easy to assemble and easy to interface to a PIC. It had
three infrared emitter/detector pairs separated on the board about 0.75-inch apart. It
also has buffer electronics that output three signals, with one signal output pin for
each detector. When the detectors are placed about 0.25-inch above a white surface,
the output is high (5 volts). When the detector is placed above a black surface, the
output is low (ground). By monitoring the three outputs, we should be able to con-
trol the robot motors to keep the center detector above a black line about 0.75 inch
in width. That is exactly what this project does.

To start, I drew a long curvy line on a string of printer paper taped together. This
formed the “test track” on top of my bench for running the line follower. The first
time I tested my code, it worked quite well. But after playing with it a while, I found
some bugs. The hardest part was debugging when the robot would suddenly stop in
the middle of the test track. Because of that, I added three LEDs to signal which
detector pair was over the black line.

When the center detector was over the black line, I lit a green LED, when the
left detector was over the black line, I lit a yellow LED, and when the right detec-
tor was over the black line I lit a red LED. Every once in a while, the robot would

Robotics

263

stop, yet the LEDs showed the green LED lit. This implied to me that the robot
should keep moving forward, as the center detector was over the black line as
desired. Unfortunately, that wasn’t the case.

I discovered the robot was following the code I wrote rather than the code I
thought I wrote! It turned out I hadn’t written code to handle the situation of when
none of the detectors sensed the black line, which is what was happening when the
black line was thin enough to fit between two of the sensors. The green LED was lit
from the previous loop of code, not because the sensor was over the black line. To
correct this problem, I could have simply made the line wider. Instead, I modified
the code to move forward until the line was found again. This also allowed the robot
to run around freely on a white surface until a black line was found. It seems sim-
ple now, but it took me more than an hour to figure out my mistake. Once that was
corrected, the robot followed the line perfectly.

The LEDs also added an unplanned visual “special effect.” As the robot drove
across my bench test track, the LEDs would scramble back and forth, showing the
robot going too far to the left or right and then correcting itself back to the center,
as the robot zigzagged down the line. I showed my two young sons and their friends
the robot with the idea they might ask how it worked (I also wanted to demonstrate
what dad had been working on in the basement). Instead they were more fascinated
by the LEDs that scrolled back and forth quickly! They seemed to understand the
line following much better than I had expected and without any coaching from me.
(I probably should have just showed them the scrolling LED project.)

Neither the PBC nor the PBPro code is super complex; it just expands on pre-
vious chapter examples of reading digital I/O. It does, however, offer a real-world
example of interfacing to a sensor, which is really at the heart of robotic control.
Figure 9-6 shows the schematic diagram while Figure 9-7 shows the robot tracking
the path thanks to the completed circuit.

Programming PIC Microcontrollers with PicBasic

264

Figure 9-6: Schematic diagram of the line tracking circuit.

Figure 9-7:The completed line tracking circuit in action.

16F876

+5v

+5v

+5v

+5v4 Mhz

1K

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

Servo

Motor

Servo

Motor

–
+
S

–
+
S

Servo
B+

L

C

R

Infared

Detector

10K

100

100
Yellow

Green

Red

Robotics

265

Hardware

This circuit expands on the one for the previous project to add circuitry to follow the
line. I show it as a block diagram since the infrared circuitry is contained in a kit. It
has three infrared detector pairs soldered to the board. Each one has an infrared LED
and an infrared detector transistor built together inside of a small package. The
infrared light from the LED shines down and is reflected back off of the test track
surface. The infrared detector transistor receives the reflected light and turns on if the
light is strong enough. Since black absorbs light and white reflects light, the black
line will not reflect any light, so the detector transistor will not turn on. The transis-
tor will turn on when the detector is over the white portion of the test track.

The biggest hang-up is getting the proper height set for the detector. If the sen-
sor is too far away from the track, the reflection will not be strong enough and
inconsistent signals will result. If it’s too close, the reflection will not be picked up.
Once you get it set, it will work great. The added circuitry in the detector module
cleans up the transistor signal and outputs the low or high signal the PIC monitors.
For example, when the detector is over black and the transistor is off, the circuitry
drives the output low for the PIC to read.

The detector module has three outputs, one for each infrared detector. The PIC
uses Port A to read those three outputs. The left detector output is tied to the A1 pin.
The center detector output is tied to the A2 pin. The right detector is tied to the A3
pin. The module also needs power and ground. Because the detector module draws
a small amount of current, the module gets powered off the same 5-volt source used
to power the PIC.

The red, yellow, and green LEDs used for monitoring the detectors are tied to
the PortC pins. The right detector is monitored with a yellow LED connected to pin
C6. The center detector is monitored with a green LED connected to pin C3. The
left detector is monitored with a red LED and connected to C1.

Port B controls the servomotors in the exact same way Project #13 did. They are
once again on a separate power supply than the PIC but have the grounds connected.

PBC Code

This program actually worked the first time I tried it. Then I attempted to improve
it and messed the whole thing up! I fortunately kept the original file and went back

Programming PIC Microcontrollers with PicBasic

266

to it when all else failed. Through that experience, I found several bugs that the first
trial run missed. As I mentioned earlier, the bugs would only show up when the sen-
sor was in a position where all of the sensors were sensing white. It pays to save the
original file.

Let’s examine this program as chunks of code, similar to the way I described the
previous project. First the constants are established:

symbol LSENS = bit1 ‘Left detector element
symbol RSENS = bit2 ‘Right detector element
symbol CSENS = bit3 ‘Center detector element
symbol adcon1 = $9F ‘A/D control register location
symbol trisa = $85 ‘PortA Tris register location
symbol trisc = $87 ‘PortC Tris register location
symbol porta = 5 ‘PortA register location
symbol portc = 7 ‘PortC register location

LSENS, RSENS, and CSENS are the line detector sensor inputs. I tied them to bits
1, 2, and 3 within the predefined PBC byte B0. ADCON1 is the PIC Port A control
register that we use to set Port A as digital pins. PBC does not allow direct control
of that register, so to make the code easier to understand the name ADCON1 is tied to
memory location $9F where the ADCON1 register resides in the PIC.

Next we make the port control easier to understand by defining the locations for
Port A and Port C. Because PBC only works directly on Port B, we setup the TrisA
and TrisC locations along with the Port A and Port C data registers. We will later
use POKE and PEEK to control these ports.

At the next chunk we establish the same variables used in Project #13, “move”
and “x”.

symbol move = b3 ‘robot movement variable
symbol x = b4 ‘general purpose variable

Now the program enters the initialization phase at the init label:

Init:
poke ADCON1, 7 ‘Set portA to digital I/O
poke TRISA, %11111111 ‘Set portA to all inputs
poke TRISC, %00000000 ‘Set portC to all outputs
DIRS = %11111111 ‘Set portB to all outputs

Robotics

267

The program uses POKE to set up the ports. The ADCON1 register is set to
%00000111 or decimal 7. This makes Port A into digital pins. Then the program
“POKEs” TrisA with all ones to make Port A all inputs. Port A is now ready to run.

Port C is next. The program “POKEs” TrisC with all zeros to make all of Port
C into outputs. Finally the DIRS directive is used to make all of Port B into outputs.
Note that Port B is the only port that uses 1 as output set-up and 0 as input set-up;
this was explained in earlier chapters but I wanted to remind you of this.

Now the main code loop is entered.

main:
peek porta, b0
if csens = 1 and lsens = 1 and rsens = 1 then error ‘Can’t find

‘line
if lsens = 0 and rsens = 0 then halt ‘Both elements

‘found line
if csens = 0 then center ‘Center element on line goto center

‘routine
if lsens = 0 then left ‘Left element on line goto left

‘routine
if rsens = 0 then right ‘Right element on line goto

‘right routine
goto main ‘Loop back and do it

‘again

The first line uses the PEEK command to read Port A and store the result in pre-
defined variable “B0”. I could have given “B0” a better name using the symbol
directive, but I wanted you to understand how reading that variable is used to read
the line detector. Remember that Bits 1, 2, and 3 of the “B0” variable are assigned
to the detector pins. This only works when B0 is filled from a Port A read (or PEEK).

Pin 1 of the detector is connected to Port A pin1. Therefore when Port A is
“PEEKed” into B0, Bit 1 holds the state of Port A pin 1. By reading these bits, we
can determine which detectors see black line and which see white space. That is
exactly what the next set of commands does.

Through a series of IF-THEN commands, we test each of the inputs as a group
and also individually. First the program checks if all inputs see white space (“1”).
The first IF-THEN statement handles this by using the “AND” logical within the IF-
THEN statement as seen below:

Programming PIC Microcontrollers with PicBasic

268

if csens = 1 and lsens = 1 and rsens = 1 then error ‘Can’t find
‘line

If all of the detectors see a high level, then the program jumps to the following
error routine:

‘ *** All elements not on line error routine
error:
poke portc, %01001010 ‘All LEDs on
move = 1 ‘Preset move variable to 1
gosub fwd ‘Jump to fwd subroutine
goto main ‘Jump back to main loop

This error routine first sets all three LEDs to on, indicating the robot is in the
error mode. That is done in one line by “POKEing” the Port C data register with the
proper bits. I used the binary “%” directive so I could easily read which bits were 1
and which were 0.

Next the routine sets the “move” variable to one. This is a small number to make
the robot creep forward. Then the routine jumps to the FWD subroutine. We do this
so the robot will continue to slowly creep forward looking for the line. Since the
robot never drives perfectly straight, the assumption is the robot will eventually find
the line with one of the sensors. It worked quite well. The FWD subroutine is the
same one discussed in the previous project:

FWD:
For x = 1 to move ‘Start forward movement loop
pulsout 2, 100 ‘Turn right wheel forward
pulsout 7, 200 ‘Turn left wheel forward
pause 10 ‘Delay to control robot speed
next ‘Repeat forward movement loop
return ‘Jump back to where this subroutine was called

At the forward subroutine, the “move” variable is used as the end point of a
FOR-NEXT loop. Therefore the “move” variable just controls how many times the
servomotor is turned on by this subroutine and thus controls the distance the robot
wheels travel.

Within the FOR-NEXT loop are the PULSOUT commands that turn the robot wheels.
They just send a pulse to the servomotors that their circuitry reads and then drives
the motor shaft. Since the servomotors are reworked, the position that matches the

Robotics

269

pulse width value sent is never seen by their internal circuitry. That makes the wheel
continue to turn and drive the robot wheel every time it gets a signal.

After the PULSOUT commands have pulsed the robot wheels a short distance, the
subroutine has a PAUSE command. This pause slows down the loop time and thus
controls the robot speed. Make this value too small and you won’t slow it down
much, but if you make it too large the robot operates in a “jumpy” fashion. I used
strictly a trial-and-error method to arrive at a delay of 10 msec.

When the FOR-NEXT loop is complete, the subroutine uses the RETURN command
to jump back to the error routine. At that point, the next command in the error rou-
tine jumps back to the main loop so the detectors can be tested again.

The test for all detectors at once is purposely put first in the list of IF-THEN
statements. This is because the robot needs to find a line before any of the other IF-
THEN statements mean anything. The robot will continue to creep forward until the
line is found.

What would happen if the black line were never found? The robot would con-
tinue to creep all the way off the white surface to a nonreflective surface. At that
point, I wanted the robot to stop. The second IF-THEN line takes care of that.

if lsens = 0 and rsens = 0 then halt ‘Both elements
found line

I figured if the two outer sensors did not see white reflective surface, the robot
must have gone off the test track. At that point I wanted it to stop. It also made it
easy to create a stop point on the test track by ending the black line with a 90-degree
line to form a “T.” Once the robot got to the end of the track, both outer detectors
saw the top bar of the “T” and the robot would stop.

The IF-THEN statement handles this by using another “AND” function within
the IF-THEN command. This time we only look at the outer detectors. If both are 0,
then they do not see white and the program jumps to the halt label, as seen below:

‘ *** Outer elements sense black line
halt:
poke portc, %01000010 ‘Right,Left LED on, Center LED off
pause 10 ‘Add delay for 10 msec
goto main ‘Jump back to main loop

Programming PIC Microcontrollers with PicBasic

270

The halt routine first turns on the outer two LEDs with a POKE command to the
Port C data register. Then it pauses for 10 msec. After that, the program jumps back
to the main loop to test the detectors again. If the robot is still seeing darkness at the
outer detectors, then the halt routine runs again. It’s a delay routine that waits until
the robot it picked up and placed back on the white test track.

The next series of IF-THEN statements in the main loop test each detector indi-
vidually. If the sensors see a 0, then the black line is detected, so they jump to sep-
arate routines.

if csens = 0 then center ‘Center element on line goto
‘center routine

if lsens = 0 then left ‘Left element on line goto left
‘routine

if rsens = 0 then right ‘Right element on line goto
‘right routine

The “CSENS” detector is the one we want to stay on the black line. If a 0 is
sensed in that line, the robot moves forward using the routine at the center label.
It’s similar to other robot movement routines, so I won’t go into its details. It just
inches the robot forward by driving both wheels and then jumps back to the main
loop to test the detectors again.

LSENS and RSENS are used to correct when the robot is going off the black line.
If the “LSENS” detector sees black, then the program jumps to the left label. At
that label, the robot’s right wheel is driven to turn the robot back towards the black
line. If the “RSENS” detector sees black, then the program jumps to the right
label. At that label, the robot’s left wheel is driven to turn the robot back towards the
black line.

These three IF-THEN statements do most of the control to make the robot zig-
zag along the black line. After all the IF-THEN statements are complete, the program
jumps back to the main label using a GOTO command and starts checking the IF-
THEN statements all over again.

‘ ——-[Title]———————————————————————————-
‘
‘ File...... proj14pb.BAS
‘ Purpose... Robot to follow Black Line PIC16F876 -> IRD Line
‘ Detector
‘ Author.... Chuck Hellebuyck

Robotics

271

‘ Started... March 1, 2002
‘ Updated...

‘ ——-[Program Description]————————————————————-
‘
‘ This Program uses the 16F876 to control a Servo robot platform.
‘ The robot has an infrared 3 element line detector module mounted
‘ under its platform. This program will drive the robot forward
‘ while it scans for the black line under the detector. If the
‘ black line hits one of the outer elements, the robot will
‘ correct back to center as it moves forward. The object is to
‘ have the robot follow the line from one end to the other.
‘
‘ RA1 Left Detector Element Output
‘ RA2 Center Detector Element Output
‘ RA3 Right Detector Element Output
‘ RC1 Left LED
‘ RC3 Center LED
‘ RC6 Right LED
‘ RB2 Right Wheel Servo
‘ RB7 Left Wheel Servo

‘ ——-[Revision History]——————————————————————
‘
‘

‘ ——-[Constants]—————————————————————————-
‘
symbol LSENS = bit1 ‘Left detector element
symbol RSENS = bit2 ‘Right detector element
symbol CSENS = bit3 ‘Center detector element
symbol adcon1 = $9F ‘A/D control register location
symbol trisa = $85 ‘PortA Tris register location
symbol trisc = $87 ‘PortC Tris register location
symbol porta = 5 ‘PortA register location
symbol portc = 7 ‘PortC register location

‘ ——-[Variables]—————————————————————————-
‘
symbol move = b3 ‘robot movement variable
symbol x = b4 ‘general purpose variable

Programming PIC Microcontrollers with PicBasic

272

‘ ——-[Initialization]———————————————————————
‘

Init:
poke ADCON1, 7 ‘Set portA to digital I/O
poke TRISA, %11111111 ‘Set portA to all inputs
poke TRISC, %00000000 ‘Set portC to all outputs
DIRS = %11111111 ‘Set portB to all outputs

‘ ——-[Main Code]—————————————————————————-
‘

main:
peek porta, b0
if csens = 1 and lsens = 1 and rsens = 1 then error ‘Can’t find

‘line
if lsens = 0 and rsens = 0 then halt ‘Both elements found

‘line
if csens = 0 then center ‘Center element on line goto

‘center routine
if lsens = 0 then left ‘Left element on line goto left

‘routine
if rsens = 0 then right ‘Right element on line goto

‘right routine
goto main ‘Loop back and do it again

‘ *** Center element on line routine
center:
poke portc, 0 ‘All LEDs off
poke portc, 3 ‘Center LED on
move = 5 ‘Preset move variable to 5
gosub fwd ‘Jump to fwd subroutine
goto main ‘Jump back to main loop

‘ *** Left element on line routine
left:
poke portc, 0 ‘All LEDs off
poke portc, 1 ‘Left LED on
move = 5 ‘Preset move variable to 5
gosub lfwd ‘Jump to lfwd subroutine
goto main ‘Jump back to main loop

‘ *** Right element on line routine
right:
poke portc, 0 ‘All LEDs off
poke portc, 6 ‘Right LED on

Robotics

273

move = 5 ‘Preset move variable to 5
gosub rfwd ‘Jump to rfwd subroutine
goto main ‘Jump back to main loop

‘ *** All elements not on line error routine
error:
poke portc, %01001010 ‘All LEDs on
move = 1 ‘Preset move variable to 1
gosub fwd ‘Jump to fwd subroutine
goto main ‘Jump back to main loop

‘ *** Outer elements sense black line
halt:
poke portc, %01000010 ‘Right,Left LED on, Center LED off
pause 10 ‘Add delay for 10 msec
goto main ‘Jump back to main loop

‘ *** Move robot forward subroutine
FWD:
For x = 1 to move ‘Start forward movement loop
pulsout 2, 100 ‘Turn right wheel forward
pulsout 7, 200 ‘Turn left wheel forward
pause 10 ‘Delay to control robot speed
next ‘Repeat forward movement loop
return ‘Jump back to where this subroutine was

‘called

‘ *** Move robot in reverse subroutine
revrs:
For x = 1 to move ‘Start reverse movement loop
pulsout 2, 200 ‘Turn right wheel in reverse
pulsout 7, 100 ‘Turn left wheel in reverse
pause 10 ‘Delay to control robot speed
next ‘Repeat reverse movement loop
return ‘Jump back to where this subroutine was

‘called

‘ *** Move robot forward-left subroutine
Lfwd:
For x = 1 to move ‘Start left-forward movement loop
pulsout 2,100 ‘Turn right wheel forward to go left
pause 10 ‘Delay to control robot speed
next ‘Repeat left-forward movement loop
return ‘Jump back to where this subroutine was

‘called

Programming PIC Microcontrollers with PicBasic

274

‘ *** Move robot forward-right subroutine
Rfwd:
For x = 1 to move ‘Start right-forward movement loop
pulsout 7, 200 ‘Turn left wheel forward to go right
pause 10 ‘Delay to control robot speed
next ‘Repeat right-forward movement loop
return ‘Jump back to where this subroutine was

‘called

PBPro Code

This PBCPro program is very similar to the PBC version just presented. The biggest
difference is the direct control of the registers rather than using the PEEK and POKE
commands. This is yet another example of a PBPro advantage over PBC.

Let’s go through this as chunks of code, similar to the way I described the pre-
vious project. First the constants are established using the VAR directive.

LSENS var porta.1 ‘Left detector element
RSENS var porta.2 ‘Right detector element
CSENS var porta.3 ‘Center detector element
LLED var portc.1 ‘Left LED pin
CLED var portc.3 ‘Center LED pin
RLED var portc.6 ‘Right LED pin

LSENS, RSENS, and CSENS are the labels for the line detector sensor inputs con-
nected to Port A. Using the VAR directive, these labels are tied to the specific Port A
pins they connect to. The next set of labels, LLED, CLED, and RLED, are connected to
the Port C pins that drive the LEDs. Labels like this make the program easier to read
although “porta.1,” etc. is fairly clear in what it represents.

At the next chunk we establish the same variables used in Project #13, “move”
and “x”.

move var byte ‘robot movement variable
x var byte ‘general purpose variable

Robotics

275

Now the program enters the initialization phase at the init label:

define loader_used 1 ‘Used for bootloader only

Init:
ADCON1 = 7 ‘Set portA to digital I/O
TRISA = %11111111 ‘Set portA to all inputs
TRISC = %00000000 ‘Set portC to all outputs
TRISB = %00000000 ‘Set portB to all outputs

The program first defines loader_used 1 because we are once again using a
bootloader to program the PIC. Then the ADCON1 register is set to %00000111 or
decimal 7. This sets Port A as digital pins. Following that, the port direction regis-
ters are set directly; Port A is set to all inputs and Ports B and C are made into all
outputs.

From that section the main code loop is entered:

main:
if csens = 1 and lsens = 1 and rsens = 1 then error ‘Can’t find

‘line
if lsens = 0 and rsens = 0 then halt ‘Both elements found line
if csens = 0 then center ‘Center element on line goto center

‘routine
if lsens = 0 then left ‘Left element on line goto left

‘routine
if rsens = 0 then right ‘Right element on line goto right

‘routine
goto main ‘Loop back and do it again

Through a series of IF-THEN commands we test each of the inputs as a group
and also individually. First the program checks to see if all inputs see white space
(“1”). The first IF-THEN statement handles this by using the “AND” logical within
the IF-THEN statement as seen below.

if csens = 1 and lsens = 1 and rsens = 1 then error ‘Can’t find
‘line

If all of the detectors see a high level, then the program jumps to the error rou-
tine shown below.

Programming PIC Microcontrollers with PicBasic

276

‘ *** All elements not on line error routine
error:
high rled ‘Right LED on
high lled ‘Left LED on
high cled ‘Center LED on
move = 1 ‘Preset move variable to 1
gosub fwd ‘Jump to fwd subroutine
goto main ‘Jump back to main loop

This error routine first sets all the LEDs to on. That indicates the robot is in the
“error mode”. I did it with a set of HIGH commands but could have done it similar
to the PBC program in one line such as:

portc = %01001010

It was easier to remember the LED name rather than the port position for the
LEDs. Because PBPro allows me to use the HIGH command directly on Port C, I did
it the less efficient way for code but more efficient for my mind.

Next the routine sets the “move” variable to 1. This is a small number to make
the robot creep forward. Then the routine jumps to the FWD subroutine. We do this
so the robot will continue to slowly creep forward looking for the line. Since the
robot never drives perfectly straight, the assumption is the robot will eventually find
the line with one of the sensors. It worked quite well.

The FWD subroutine is the same one discussed in the previous project:

FWD:
For x = 1 to move ‘Start forward movement loop
pulsout 2, 100 ‘Turn right wheel forward
pulsout 7, 200 ‘Turn left wheel forward
pause 10 ‘Delay to control robot speed
next ‘Repeat forward movement loop
return ‘Jump back to where this subroutine was called

At the forward subroutine, the move variable is used as the end point of a FOR-
NEXT loop. Therefore the “move” variable simply controls how many times the ser-
vomotor is turned on by this subroutine and thus controls the distance the robot
wheels travel.

Robotics

277

Within the FOR-NEXT loop are the PULSOUT commands that turn the robot’s
wheels. They just send a pulse to the servomotors that are read by their internal cir-
cuitry and then drive their motor shafts. Since the servomotors are reworked, the
position that matches the pulse width value sent is never seen by their internal cir-
cuitry. That makes the wheel continue to turn and drive the robot wheel every time
it gets a signal.

After the PULSOUT commands have pulsed the robot wheels a short distance, the
subroutine has a PAUSE command. This pause slows down the loop time and thus
controls the robot speed. As we noted with previous projects and the PBC version,
the robot’s movement will be erratic if the value is too large or too small. I used trial
and error to determine that a delay of 10 msec worked best.

When the FOR-NEXT loop is complete, the subroutine uses the RETURN command
to jump back to the error routine. At that point the next command in the error rou-
tine jumps back to the main loop so the detectors can be tested again.

The test for all detectors at once is purposely put first in the list of IF-THEN
statements. This is because the robot needs to find a line before any of the other IF-
THEN statements can be executed. As a result, the robot will continue to creep for-
ward until the line is found.

Now it’s certainly possible that the black line is never found. The robot would
continue to creep all the way off the white surface to a nonreflective surface. At that
point I wanted the robot to stop. The second IF-THEN line takes care of that:

if lsens = 0 and rsens = 0 then halt ‘Both elements found
‘line

I figured if the two outer sensors did not see white reflective surface, then the
robot must have gone off the test track. At that point I wanted it to stop. It also made
it easy to create a stop point on the test track by ending the black line with a 90-
degree line to form a “T.” Once the robot got to the end of the track, both outer
detectors saw the top bar of the “T” and the robot would stop.

The IF-THEN statement handles this by using another “AND” function within
the IF-THEN command. This time we only look at the outer detectors. If both are 0,
then they do not see white and the program jumps to the halt label seen below:

Programming PIC Microcontrollers with PicBasic

278

‘ *** Outer elements sense black line
halt:
high rled ‘Right LED on
high lled ‘Left LED on
low cled ‘Center LED off
pause 10 ‘Add delay for 10 msec
goto main ‘Jump back to main loop

The halt routine first turns on the outer two LEDs with high commands to the
PortC data register. Then it pauses 10 msec. After that the program jumps back to
the main loop to test the detectors again. If the robot is still seeing darkness at the
outer detectors, then the halt routine runs again. It waits until the robot is picked
up and placed back on the white test track.

The next series of IF-THEN statements in the main loop test each detector indi-
vidually. If the sensors see a 0, then the black line is detected, so they jump to sep-
arate routines:

if csens = 0 then center ‘Center element on line goto
‘center routine

if lsens = 0 then left ‘Left element on line goto left
‘routine

if rsens = 0 then right ‘Right element on line goto
‘right routine

The “CSENS” detector is the one we want to stay on the black line. If a 0 is
sensed in that line, the robot moves forward using the routine at the center label.
It’s similar to the previous robot movement routines so I won’t go into details. It
slowly moves the robot forward by driving both wheels and then jumps back to the
main loop to test the detectors again.

LSENS and RSENS are used to correct when the robot is going off the black line.
If the “LSENS” detector sees black, the program jumps to the left label. At that
label, the robot’s right wheel is driven to turn the robot back towards the black line.
If the “RSENS” detector sees black, then the program jumps to the right label. At
that label, the robot’s left wheel is driven to turn the robot back towards the black
line.

These three IF-THEN statements do most of the control to make the robot zig-
zag along the black line. After all the IF-THEN statements are complete, the program

Robotics

279

jumps back to the main label using a GOTO command and starts checking the IF-
THEN commands all over again.

‘ ——-[Title]———————————————————————————-
‘
‘ File...... proj14pr.BAS
‘ Purpose... Robot to follow Black Line PIC16F876 -> IRD Line
‘ Detector
‘ Author.... Chuck Hellebuyck
‘ Started... March 1, 2002
‘ Updated...

‘ ——-[Program Description]————————————————————-
‘
‘ This Program uses the 16F876 to control a Servo robot platform.
‘ The robot has an infrared 3 element line detector module mounted
‘ under its platform. This program will drive the robot forward
‘ while it scans for the black line under the detector. If the
‘ black line hits one of the outer elements, the robot will
‘ correct back to center as it moves forward. The object is to
‘ have the robot follow the line from one end to the other.
‘
‘ RA0 GP2D15 Detector Output
‘ RA1 Left Detector Element Output
‘ RA2 Center Detector Element Output
‘ RA3 Right Detector Element Output
‘ RC1 Left LED
‘ RC2 Left Center LED
‘ RC3 Center LED
‘ RC5 Right Center LED
‘ RC6 Right LED
‘ RB2 Right Wheel Servo
‘ RB5 GP2D15 Servo
‘ RB7 Left Wheel Servo

‘ ——-[Revision History]——————————————————————
‘
‘

Programming PIC Microcontrollers with PicBasic

280

‘ ——-[Constants]—————————————————————————-
‘
LSENS var porta.1 ‘Left detector element
RSENS var porta.2 ‘Right detector element
CSENS var porta.3 ‘Center detector element
LLED var portc.1 ‘Left LED pin
CLED var portc.3 ‘Center LED pin
RLED var portc.6 ‘Right LED pin

‘ ——-[Variables]—————————————————————————-
‘
move var byte ‘robot movement variable
x var byte ‘general purpose variable

‘ ——-[Initialization]———————————————————————
‘

define loader_used 1 ‘Used for bootloader only

Init:
ADCON1 = 7 ‘Set portA to digital I/O
TRISA = %11111111 ‘Set portA to all inputs
TRISC = %00000000 ‘Set portC to all outputs
TRISB = %00000000 ‘Set portB to all outputs

‘ ——-[Main Code]—————————————————————————-
‘

main:
if csens = 1 and lsens = 1 and rsens = 1 then error ‘Can’t find

‘line
if lsens = 0 and rsens = 0 then halt ‘Both elements found line
if csens = 0 then center ‘Center element on line goto center

‘routine
if lsens = 0 then left ‘Left element on line goto left

‘routine
if rsens = 0 then right ‘Right element on line goto right

‘routine
goto main ‘Loop back and do it again

‘ *** Center element on line routine
center:
high cled ‘Center LED on
low rled ‘Right LED off
low lled ‘Left LED off
move = 5 ‘Preset move variable to 5

Robotics

281

gosub fwd ‘Jump to fwd subroutine
goto main ‘Jump back to main loop

‘ *** Left element on line routine
left:
high lled ‘Left LED on
low cled ‘Center LED off
low rled ‘Right LED off
move = 5 ‘Preset move variable to 5
gosub lfwd ‘Jump to lfwd subroutine
goto main ‘Jump back to main loop

‘ *** Right element on line routine
right:
high rled ‘Right LED on
low cled ‘Center LED off
low lled ‘Left LED off
move = 5 ‘Preset move variable to 5
gosub rfwd ‘Jump to rfwd subroutine
goto main ‘Jump back to main loop

‘ *** All elements not on line error routine
error:
high rled ‘Right LED on
high lled ‘Left LED on
high cled ‘Center LED on
move = 1 ‘Preset move variable to 1
gosub fwd ‘Jump to fwd subroutine
goto main ‘Jump back to main loop

‘ *** Outer elements sense black line
halt:
high rled ‘Right LED on
high lled ‘Left LED on
low cled ‘Center LED off
pause 10 ‘Add delay for 10 msec
goto main ‘Jump back to main loop

‘ *** Move robot forward subroutine
FWD:
For x = 1 to move ‘Start forward movement loop
pulsout 2, 100 ‘Turn right wheel forward
pulsout 7, 200 ‘Turn left wheel forward
pause 10 ‘Delay to control robot speed
next ‘Repeat forward movement loop
return ‘Jump back to where this subroutine was called

Programming PIC Microcontrollers with PicBasic

282

‘ *** Move robot in reverse subroutine
revrs:
For x = 1 to move ‘Start reverse movement loop
pulsout 2, 200 ‘Turn right wheel in reverse
pulsout 7, 100 ‘Turn left wheel in reverse
pause 10 ‘Delay to control robot speed
next ‘Repeat reverse movement loop
return ‘Jump back to where this subroutine was called

‘ *** Move robot forward-left subroutine
Lfwd:
For x = 1 to move ‘Start left-forward movement loop
pulsout 2,100 ‘Turn right wheel forward to go left
pause 10 ‘Delay to control robot speed
next ‘Repeat left-forward movement loop
return ‘Jump back to where this subroutine was called

‘ *** Move robot forward-right subroutine
Rfwd:
For x = 1 to move ‘Start right-forward movement loop
pulsout 7, 200 ‘Turn left wheel forward to go right
pause 10 ‘Delay to control robot speed
next ‘Repeat right-forward movement loop
return ‘Jump back to where this subroutine was called

Final Thoughts

My test track was rather short, so I could test the robot right on my bench. Making
a more elaborate test track is a great addition to this project. Make it into a circle
with “T” crossings so the robot goes a distance and then stops. Then you can mod-
ify the halt routine so it delays a period of time and then drives forward. This
would make the robot act like a train stopping at the station, but do so automatically.

Another option is to play with the “move” values and try to make the robot move
down the line faster. I once saw a robot competition where the object was simply to
follow a line. Each team had the same robot and started with the same code. They
were allowed to modify the program in any way they wanted to speed up the robot,
but it had to follow the line. The winning team was the team that went the full dis-
tance of the black line in the fastest time. You could try this by timing your first run
and then trying to improve it.

Robotics

283

Project #15—Obstacle Detection

A common means of obstacle detection is to bump into something and then back
up. That’s the method used in the real robot pictured at the beginning of this chap-
ter. I wanted to do something different; a noncontact obstacle detection method was
my goal. I decided to use the Sharp GP2D15 infrared detector (IRD) in this project.
It can detect objects 10 cm to 80 cm away from its sensor, and outputs a digital high
signal when an obstacle is detected. This is easy to monitor with a standard PIC I/O
pin. In addition, the Sharp IRD was mounted on top of a servomotor so it could be
moved back and forth in a sweeping motion to look for obstacles all across the front
of the robot (sort of a “roving eye”).

To test my idea out, I wanted to see if the robot could find the only opening in
a large enclosed area without bumping into the walls. For the most part it worked,
but more than one IRD would make it better at detecting obstacles; the single IRD
has a limited range.

Because the IRD cannot detect anything less than 10 cm, the servomotor/IRD
assembly was positioned 10 cm back from the front of the robot. This allowed the
robot to see objects right in front without a dead zone. As a final step, three LEDs
were used to show the detected direction. One for each detectable position was
used: left, center, and right. This helped to show what the robot was “thinking” and
also helped debug the software.

I made the arena out of 8.5x11-inch sheets of printer paper taped together. I
folded the edge to make the base. I wanted it to be weak so the robot would not be
able to bump into it and keep going. Instead, this method allowed the robot to drive
right over the walls if something did not work. When it was finished, the robot
found the opening every time. Figures 9-8 through 9-12 show the completed robot,
with servomotor IRD “eye,” in action. The pictures show the robot as it finds the
opening and begins to drive through it.

Programming PIC Microcontrollers with PicBasic

284

Figure 9-8: The robot inside the “arena.”

Figure 9-9: The robot looks for an opening.

Robotics

285

Figure 9-10: The robot moves toward the opening.

Figure 9-11: The robot enters the opening of the “arena.”

Programming PIC Microcontrollers with PicBasic

286

Figure 9-12: Success! The robot “escapes” the “arena.”

Hardware

The schematic in Figure 9-13 shows the circuit for this project. The same connec-
tions are used for the drive servomotors on Port B pin 2 and pin 7. The third servo-
motor for the IRD is connected to Port B pin 5.

The IRD is connected to Port A pin 0. A single 10k pull-up resistor is attached
to the sense lead as required by the Sharp GP2D15 data sheet. The direction LEDs
are driven by Port C. By putting all the LEDs on a common port, they can be shut
off or turned on with a single command.

The IRD servomotor is different from the drive servomotors. The IRD servo-
motor is not reworked for continuous rotation. It is a standard servomotor that drives
back and forth based on the pulse of the signal it is sent. The rest of the connections
are the same as in all previous projects.

I attached the Sharp sensor to the servomotor with double-sided sticky foam
tape. It worked well, but an even stronger mounting would have been better. The
wires for the sensor were a bit stiff, and the constant back and forth motion caused

Robotics

287

the wires to push the sensor. After time, the sensor would lean forward and cause
strange readings. If you build this, make a better mount or use a more flexible wire
than the ones that are typically available for the sensor.

Figure 9-13: Circuit for the robot’s IRD sensor and servomotor circuitry.

PBC Code

The code has similarities to the two previous projects. It uses the same subroutines
as before. The biggest difference is the code to read and control the sensor. It was
trickier than I thought to drive the robot and the sensor servomotor without having
very jumpy movement. I learned a little more about controlling a servomotor, and
as a result I came to understand one of the reasons why larger, more complex robots
use geared DC motors and drive them directly through separate control electronics.
It gives the programmer more control than relying on the internal servomotor elec-
tronics.

16F876

+5v

+5v4 Mhz

1K

MCLR

RAO

RA1

RA2

RA3

RA4

RA5

VSS

OSC1

OSC2

RCO

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

RC5

RC4

IRD

+ – S

B+

B+

10k

Servo

Motor

–
+
S

Servo

Motor

Servo

Motor

–
+
S

–
+
S

Servo
B+

100

100

Red

Green

Yellow

Programming PIC Microcontrollers with PicBasic

288

The first step in this code is setting up the constants and variables:

‘ ——-[Constants]—————————————————————————-
‘
symbol GP2D15 = bit0 ‘IRD sensor connected to PortA bit0
symbol adcon1 = $9F ‘A/D control register location
symbol trisa = $85 ‘PortA Tris register location
symbol trisc = $87 ‘PortC Tris register location
symbol porta = 5 ‘PortA register location
symbol portc = 7 ‘PortC register location

‘ ——-[Variables]—————————————————————————-
‘
symbol position = b2 ‘obstacle position variable
symbol move = b3 ‘robot movement variable
symbol x = b4 ‘general purpose variable
symbol scan = b5 ‘GP2D15 position variable

The GP2D15 name is tied to bit0 of the “B0” variable. This way we can PEEK
PortA and then just read bit 0 to know the state of the GP2D15.

Next we make constant names for all the important registers: ADCON1,
TRISA, TRISC, PORTA and PORTC. This makes the code easier to read and the
PEEK and POKE command lines easier to write. After the constants are set, the vari-
ables are established. We use the same “move” and “x” variables as before and add
two more. The first is “position,” which indicates where the sensor is pointing and
the second is “scan,” which controls the movement of the sensor’s servomotor.

The init label begins our command code:

Init:
poke ADCON1,7 ‘Set portA to digital I/O
poke TRISA, %11111111 ‘Set portA to all inputs
poke TRISC, %00000000 ‘Set portC to all outputs
DIRS = %11111111 ‘Set portB to all outputs
scan = 100 ‘Preset GP2D15 variable to 100

First we POKE the ADCON1 register to 7, which makes Port A all digital I/O.
Next we POKE TRISA and TRISC to all inputs and all outputs, respectively. Port B
is controlled with the DIRS directive, so we make Port B all outputs by making the
DIRS directives all ones. Finally we preset the “scan” variable to 100.

Robotics

289

The main code loop is entered next. It’s much longer than the previous main
loops so I’m going to break it up a bit here at the beginning, which is the scan rou-
tine. Later on, the loop performs functions based on whether an obstacle was or was
not detected in the scan routine.

First, we POKE Port C with 0 to turn off all LEDs. Then we preset the “position”
variable to 0. You may be wondering why I didn’t just do that at the init label. I
did this because I wanted them refreshed every time the program went through the
main loop.

Main:
poke portc, 0 ‘Set all LEDs off
position = 0 ‘Preset position to 0

The next section is the scan routine. A FOR-NEXT loop is used to step the ser-
vomotor through 17 steps of movement from one side of the robot to the other.
Normally a servomotor only works from 100 msec to 200 msec. I found the servo-
motor was not reacting quickly enough, but when I went outside those boundaries
it began to work so I kept it in.

‘ *** Scan routine
for scan = 70 to 230 step 10 ‘Start scanning GP2D15 right to

‘left
pulsout 5, scan ‘Send scanning position signal to

‘servo
pause 20 ‘Delay fo Servo to react
peek porta, b0 ‘Read porta
if GP2D15 = 0 then skp ‘If obstacle not detected, jump to

‘skp
if scan <= 150 then pas ‘Test value of scan
position = 1 ‘Scan less or equal to 150, set position

‘to 1
goto skp ‘Bypass scan > 150 routine
pas:
position = 2 ‘Scan greater than 150, set position to

‘2
skp:
next ‘Loop back for next GP2D15

‘position

The program sends the servomotor pulse out using the PULSOUT command. Then
a 20-msec delay is added to allow the servomotor to react. The program quickly

Programming PIC Microcontrollers with PicBasic

290

scans the GP2D15 bit to see if it is 0, which indicates no obstacle was detected. A
1 indicates an obstacle was detected. If an obstacle is not detected, the program
jumps to the skp label and then jumps back to the next value of the FOR-NEXT loop.

If an object was detected, the program then tests the “scan” variable value. If the
value is less than or equal to 150, then the “position” variable is set to 1. If the value
is greater than 150, then the “position” variable is set to 2. Later in the program we
read that variable to determine if the obstacle was detected to the right and/or cen-
ter of the robot or to the left of the robot. We use that to decide which way to turn.

We do this until the servomotor has completely scanned from right to left. Then
we take the last value of the “position” variable and jump to the obstacle detected
routine:

‘ *** Obstacle Detected

if position <> 0 then decide ‘Test for obstacle in previous
‘loop
‘ if detected jump to decide
‘ routine

First we test the “position” variable to see if it is 0. If it is, then we continue on
to the obstacle not detected routine. If it is not 0, then we jump to the decide
label where we decide how to drive the robot away from the obstacle.

Let’s first cover the obstacle not detected routine:

‘ *** Obstacle not detected, Forward movement routine
poke portc,0 ‘All LEDs off
poke portc, %00001000 ‘Green LED on
move = 6 ‘Preset move variable for forward

‘movement
for x = 1 to move ‘Start loop for servo wheel

‘control
pulsout 2, 100 ‘Turn Right wheel servo
pulsout 7, 200 ‘Turn left wheel servo
pause 10 ‘Delay for 10 msec to slow down

‘robot
next ‘Repeat the move robot routine
Ret:
goto main ‘Jump back to main label and start

‘over

Robotics

291

The first step is to turn all the LEDs off and then turn just the center green LED
on. This indicates the robot “believes” it’s free to move forward. We do this simi-
larly to the previous projects by setting the “move” variable to a value. The differ-
ence is we don’t call the FWD subroutine that we did in the other projects. I put the
FWD subroutine code right in the main loop so the robot will drive forward without
delay. (I’ve covered that code already in the previous projects, so I won’t bore you
with it again.) After the robot’s “move forward” routine is complete, the program
jumps back to the main label to scan again for obstacles.

Now if an obstacle is detected, the program jumps to the decide label. That
code is:

decide:
branch position,(main,right,left) ‘Choose correction routine
goto main ‘Jump to main routine if position

‘> 2

As you can see, this section is very short and just uses a BRANCH command to
redirect the code. The BRANCH command has three options. If the “position” variable
is 0, then the program jumps back to the main label. This should never occur since
the program won’t jump to decide if “position” is zero. If “position” is 1, then the
program jumps to the right label, where the program will react to an obstacle on
the right or center of the robot. If “position” is 2, then the program jumps to the
left label to react to an obstacle on the left of the robot.

Both of the routines are similar to the previous projects in this chapter because
they move one wheel to turn the robot either right or left. In the previous project,
we did it to find the line. In this project, we do it to move away from the paper wall.
Once the robot corrects for the obstacle, it jumps back to the main loop and starts
the scanning all over again. The robot usually found its way out rather quickly!

‘ ——-[Title]———————————————————————————
‘
‘ File...... proj15pb.BAS
‘ Purpose... Robot with obstacle detection PIC16F876 -> Sharp
‘ GP2D15
‘ Author.... Chuck Hellebuyck
‘ Started... March 20, 2002
‘ Updated...

Programming PIC Microcontrollers with PicBasic

292

‘ ——-[Program Description]————————————————————-
‘
‘ This Program uses the 16F876 to control a Servo robot platform.
‘ The robot has a servo mounted at its front with a Sharp GP2D15
‘ infrared detector on top. This program will drive the robot
‘ forward while it scans for obstacles in front of its path. If an
‘ obstacle is detected, the robot will turn away and then move
‘ forward. The object is to have the robot find its way out of a
‘ boxed in arena with only one opening for the exit.
‘
‘ RA0 GP2D15 output
‘ RC1 Left LED (Red)
‘ RC3 Center LED (green)
‘ RC6 Right LED (yellow)
‘ RB2 Right Wheel Servo
‘ RB5 GP2D15 Servo
‘ RB7 Left Wheel Servo

‘ ——-[Revision History]——————————————————————
‘
‘

‘ ——-[Constants]—————————————————————————-
‘
symbol GP2D15 = bit0 ‘IRD sensor connected to PortA bit0
symbol adcon1 = $9F ‘A/D control register location
symbol trisa = $85 ‘PortA Tris register location
symbol trisc = $87 ‘PortC Tris register location
symbol porta = 5 ‘PortA register location
symbol portc = 7 ‘PortC register location

‘ ——-[Variables]—————————————————————————-
‘
symbol position = b2 ‘obstacle position variable
symbol move = b3 ‘robot movement variable
symbol x = b4 ‘general purpose variable
symbol scan = b5 ‘GP2D15 position variable

‘ ——-[Initialization]———————————————————————

Robotics

293

‘
Init:
poke ADCON1,7 ‘Set portA to digital I/O
poke TRISA, %11111111 ‘Set portA to all inputs
poke TRISC, %00000000 ‘Set portC to all outputs
DIRS = %11111111 ‘Set portB to all outputs
scan = 100 ‘Preset GP2D15 variable to 100

‘ ——-[Main Code]—————————————————————————-
‘
Main:
poke portc, 0 ‘Set all LEDs off
position = 0 ‘Preset position to 0

‘ *** Scan routine
for scan = 70 to 230 step 10 ‘Start scanning GP2D15 right to

‘left
pulsout 5, scan ‘Send scanning position signal to

‘servo
pause 20 ‘Delay for Servo to react
peek porta, b0 ‘Read porta
if GP2D15 = 0 then skp ‘If obstacle not detected, jump to

‘skp
if scan <= 150 then pas ‘Test value of scan
position = 1 ‘Scan less or equal to 150, set position

‘to 1
goto skp ‘Bypass scan > 150 routine
pas:
position = 2 ‘Scan greater than 150, set position to

‘2
skp:
next ‘Loop back for next GP2D15

‘position

‘ *** Obstacle Detected

if position <> 0 then decide ‘Test for obstacle in previous
‘loop
‘ if detected jump to decide
‘ routine

‘ *** Obstacle not detected, Forward movement routine
poke portc,0 ‘All LEDs off
poke portc, %00001000 ‘Green LED on
move = 6 ‘Preset move variable for forward

‘movement
for x = 1 to move ‘Start loop for servo wheel

‘control

Programming PIC Microcontrollers with PicBasic

294

pulsout 2, 100 ‘Turn Right wheel servo
pulsout 7, 200 ‘Turn left wheel servo
pause 10 ‘Delay for 10 msec to slow down

‘robot
next ‘Repeat the move robot routine
Ret:
goto main ‘Jump back to main label and start

‘over

decide:
branch position,(main,right,left) ‘Choose correction routine
goto main ‘Jump to main routine if position

‘> 2

‘ *** Left obstacle detected, move right
left:
poke portc, 0 ‘Turn off all LEDs
poke portc, %00000010 ‘Turn on Left LED
move = 6 ‘Preset move variable to 6
for x = 1 to move ‘Start turn right routine
pulsout 7, 200 ‘Turn left wheel servo
pause 30 ‘Delay to control robot speed
next ‘Repeat the move robot routine
goto ret ‘Jump back to main loop at Ret label

‘ *** Right obstacle detected, move left
right:
poke portc,0 ‘Turn off all LEDs
poke portc, %01000000 ‘Turn on Right LED
move = 6 ‘Preset move variable to 6
for x = 1 to move ‘Start turn left routine
pulsout 2, 100 ‘Turn right wheel servo
pause 30 ‘Delay to control robot speed
next ‘Repeat the move robot routine
goto ret ‘Jump back to main loop at Ret label

goto main ‘End program by jumping to main

PBPro Code

As in the PBC example, the PBPro code has similarities to that used in the two pre-
vious projects (for example, it uses the same subroutines as before). The biggest dif-
ference is the code to read and control the sensor. It was trickier than I thought to
smoothly drive the robot and the sensor servomotor.

Robotics

295

The first step is to set the constants and variables:

‘ ——-[Constants]—————————————————————————-
‘
LLED var portc.1 ‘Left LED pin
CLED var portc.3 ‘Center LED pin
RLED var portc.6 ‘Right LED pin

‘ ——-[Variables]—————————————————————————-
‘
position var byte ‘obstacle position variable
move var byte ‘robot movement variable
x var byte ‘general purpose variable
scan var byte ‘GP2D15 position variable

We simplify writing our code by giving LED names to the Port C pins they are
connected to, using the VAR directive. After the constants are set, the variables are
established. We use the same “move” and “x” variables as before, and add two
more: “position” to indicate where the sensor is pointing, and “scan” to control the
movement of the sensor’s servomotor.

The init label begins our command code after we establish the bootloader
DEFINE:

define loader_used 1 ‘Used for bootloader only

Init:
ADCON1 = 7 ‘Set portA to digital I/O
TRISA = %11111111 ‘Set portA to all inputs
TRISC = %00000000 ‘Set portC to all outputs
TRISB = %00000000 ‘Set portB to all outputs
scan = 100 ‘Preset GP2D15 variable to 100

First we set the ADCON1 register to 7, which makes Port A all digital I/O. Next
we set Port A to inputs and Port B and Port C to all outputs. Finally, we preset the
“scan” variable to 100.

The main code loop is entered next. It’s much longer than the main loops in the
previous projects in this chapter, so I’m going to break it up a bit here. At the begin-
ning is the scan routine. Later the loop performs functions based on whether an
obstacle was detected or not in the scan routine.

Programming PIC Microcontrollers with PicBasic

296

First we preset Port C with 0 to turn off all LEDs. Then we preset the “position”
variable to 0. Why didn’t I just do that at the init label? The reason is because I
wanted them refreshed every time the program went through the main loop.

Main:
portc = 0 ‘Set all LEDs off
position = 0 ‘Preset position to 0

The next section is the scan routine. A FOR-NEXT loop is used to step the ser-
vomotor through 17 steps of movement from one side of the robot to the other.
Normally a servomotor only works from 100 msec to 200 msec, but I found the
servo was not reacting quickly enough. But when I went outside those boundaries,
it began to work, so I kept it in.

‘ *** Scan routine
for scan = 70 to 230 step 10 ‘Start scanning GP2D15 right to

‘left
pulsout 5, scan ‘Send scanning position signal to

‘servo
pause 20 ‘Delay fo Servo to react
if porta.0 = 0 then skp ‘If obstacle not detected, jump to

‘skp
if scan <= 150 then pass ‘Test value of scan
position = 1 ‘Scan less or equal to 150, set position

‘to 1
goto skp ‘Bypass scan > 150 routine
pass:
position = 2 ‘Scan greater than 150, set position to

‘2
skp:
next ‘Loop back for next GP2D15

‘position

The program sends the servomotor pulse out using the PULSOUT command. Next
a 20-msec delay is added to give the servomotor time to react. The program quickly
scans the Port A pin 0 connected to the GP2D15 to see if it’s 0. A 0 indicates no
obstacle was detected while a 1 indicates an obstacle was detected. If an obstacle is
not detected, the program jumps to the skp label and then jumps back to the next
value of the FOR-NEXT loop.

If an object was detected, the program then tests the “scan” variable value. If the
value is less than or equal to 150, then the “position” variable is set to 1. If the value

Robotics

297

is greater than 150, then the “position” variable is set to 2. Later in the program we
read that variable to determine if the obstacle was detected to the right and/or cen-
ter of the robot or to the left of the robot. We use that to decide which way to turn.
We do this until the servomotor has completely scanned from right to left. Then we
take the last value of the “position” variable and jump to the obstacle detected
routine below:

‘ *** Obstacle Detected

if position <> 0 then decide ‘Test for obstacle in previous
‘loop
‘ if detected jump to decide
‘ routine

First we test the “position” variable to see if it is 0. If it is, then we continue on
to the obstacle not detected routine. If it is not 0, then we jump to the decide
label where we decide how to drive the robot away from the obstacle.

Let’s first examine the obstacle not detected routine:

‘ *** Obstacle not detected, Forward movement routine
portc = 0 ‘All LEDs off
high cled ‘Green LED on
move = 6 ‘Preset move variable for forward

‘movement
for x = 1 to move ‘Start loop for servo wheel

‘control
pulsout 2, 100 ‘Turn Right wheel servo
pulsout 7, 200 ‘Turn left wheel servo
pause 10 ‘Delay for 10 msec to slow down

‘robot
next ‘Repeat the move robot routine
Ret:
goto main

The first step is to turn all the LEDs off and then turn just the center green LED
on. This indicates the robot “believes” it’s free to move forward. We do this simi-
larly to the previous projects, by setting the “move” variable to a value. The differ-
ence is we don’t call the FWD subroutine as we did in earlier projects because I put
the FWD subroutine code in the main loop so the robot will drive forward without
delay. Since I’ve covered that code in the previous projects, I won’t repeat it here.

Programming PIC Microcontrollers with PicBasic

298

After the robot’s “move forward” routine is complete, the program jumps back
to the main label to scan again for obstacles. If an obstacle was detected, the pro-
gram would jump to the decide label. That code is below.

decide:
branch position,[main,right,left] ‘Choose correction routine
goto main ‘Jump to main routine if position

‘> 2

This section is short and uses a BRANCH command to redirect the code. The
BRANCH command has three options. If the “position” variable is 0, then the program
jumps back to the main label. (This should never occur since the program won’t
jump to decide if “position” is zero.) If “position” is 1, then the program jumps to
the right label where the program will react to an obstacle on the right or center of
the robot. If “position” is 2, then the program jumps to the left label to react to an
obstacle on the left of the robot.

Both of the routines are similar to those in previous projects because they move
one wheel to turn the robot either right or left. In the previous project, we did it to
find the line; in this project, we do it to move away from the paper wall. Once the
robot corrects for the obstacle, it jumps back to the main loop and starts the scan-
ning all over again.

‘ ——-[Title]———————————————————————————-
‘
‘ File...... proj15pr.BAS
‘ Purpose... Robot with obstacle detection PIC16F876 -> Sharp
‘ GP2D15
‘ Author.... Chuck Hellebuyck
‘ Started... March 20, 2002
‘ Updated...

‘ ——-[Program Description]————————————————————
‘
‘ This Program uses the 16F876 to control a Servo robot platform.
‘ The robot has a servo mounted at its front with a Sharp GP2D15
‘ infrared detector on top. This program will drive the robot
‘ forward while it scans for obstacles in front of its path. If an
‘ obstacle is detected, the robot will turn away and then move
‘ forward. The object is to have the robot find its way out of a
‘ boxed in arena with only one opening for the exit.

Robotics

299

‘
‘ RA0 GP2D15 output
‘ RC1 Left LED
‘ RC2 Left Center LED
‘ RC3 Center LED
‘ RC5 Right Center LED
‘ RC6 Right LED
‘ RB2 Right Wheel Servo
‘ RB5 GP2D15 Servo
‘ RB7 Left Wheel Servo

‘ ——-[Revision History]——————————————————————
‘
‘

‘ ——-[Constants]—————————————————————————-
‘
LLED var portc.1 ‘Left LED pin
CLED var portc.3 ‘Center LED pin
RLED var portc.6 ‘Right LED pin

‘ ——-[Variables]—————————————————————————-
‘
position var byte ‘obstacle position variable
move var byte ‘robot movement variable
x var byte ‘general purpose variable
scan var byte ‘GP2D15 position variable

‘ ——-[Initialization]———————————————————————
‘

define loader_used 1 ‘Used for bootloader only

Init:
ADCON1 = 7 ‘Set portA to digital I/O
TRISA = %11111111 ‘Set portA to all inputs
TRISC = %00000000 ‘Set portC to all outputs
TRISB = %00000000 ‘Set portB to all outputs
scan = 100 ‘Preset GP2D15 variable to 100

‘ ——-[Main Code]—————————————————————————
‘
Main:
portc = 0 ‘Set all LEDs off
position = 0 ‘Preset position to 0

Programming PIC Microcontrollers with PicBasic

300

‘ *** Scan routine
for scan = 70 to 230 step 10 ‘Start scanning GP2D15 right to

‘left
pulsout 5, scan ‘Send scanning position signal to

‘servo
pause 20 ‘Delay fo Servo to react
if porta.0 = 0 then skp ‘If obstacle not detected, jump to

‘skp
if scan <= 150 then pass ‘Test value of scan
position = 1 ‘Scan less or equal to 150, set position

‘to 1
goto skp ‘Bypass scan > 150 routine
pass:
position = 2 ‘Scan greater than 150, set position to

‘2
skp:
next ‘Loop back for next GP2D15

‘position

‘ *** Obstacle Detected

if position <> 0 then decide ‘Test for obstacle in previous
‘loop
‘ if detected jump to decide
‘ routine

‘ *** Obstacle not detected, Forward movement routine
portc = 0 ‘All LEDs off
high cled ‘Green LED on
move = 6 ‘Preset move variable for forward

‘movement
for x = 1 to move ‘Start loop for servo wheel

‘control
pulsout 2, 100 ‘Turn Right wheel servo
pulsout 7, 200 ‘Turn left wheel servo
pause 10 ‘Delay for 10 msec to slow down

‘robot
next ‘Repeat the move robot routine
Ret:
goto main ‘Jump back to main label and start

‘over

Robotics

301

decide:
branch position,[main,right,left] ‘Choose correction routine
goto main ‘Jump to main routine if position

‘> 2

‘ *** Left obstacle detected, move right
left:
portc = 0 ‘Turn off all LEDs
high lled ‘Turn on Left LED
move = 6 ‘Preset move variable to 6
for x = 1 to move ‘Start turn right routine
pulsout 7, 200 ‘Turn left wheel servo
pause 30 ‘Delay to control robot speed
next ‘Repeat the move robot routine
goto ret ‘Jump back to main loop at Ret label

‘ *** Right obstacle detected, move left
right:
portc = 0 ‘Turn off all LEDs
high rled ‘Turn on Right LED
move = 6 ‘Preset move variable to 6
for x = 1 to move ‘Start turn left routine
pulsout 2, 100 ‘Turn right wheel servo
pause 30 ‘Delay to control robot speed
next ‘Repeat the move robot routine
goto ret ‘Jump back to main loop at Ret label

goto main ‘End program by jumping to main

Final Thoughts

My young daughter thought it was really neat that the robot “knew” where the open-
ing was. Occasionally the robot would miss the opening the first time around. It
would just loop around again and usually find it the second trip. When that would
happen, she would talk to the robot and tell it to go back because it had missed the
opening. She was only five, but it just proved to me that this is a great project to
show children how robots work.

Programming PIC Microcontrollers with PicBasic

302

One thing I thought about doing was to make a charging station or download
station for the robot. The robot could be reworked to collect data with a digital cam-
era or sensors and then find the docking station using an approach similar to this
project. It will be more complex than this project, but should be easy to build it up
using this program as the starting point.

In Conclusion. . .

This chapter concludes this book with the exception of the appendices. This last
project represents how each project evolved. Each one was filled with walls, but
eventually I found the opening and moved on to the next project!

I hope you likewise find the openings in your “walls” as you work with PICs
and PicBasic.

Robotics

303

APPENDIX A
PicBasic and Project Resources

Here is a list of resources used to develop the projects and code in this book, and I
recommend that you check them out. Through these sources you can find the many
tools and components I used to make the projects in this book. I continue to use
these sites as access for information regarding the ever-expanding world of embed-
ded Basic programming.

Acroname
Offers robotics accessories of various types, including the Sharp sensor.

www.acroname.com
4894 Sterling Dr.
Boulder CO, 80301
(720) 564-0373
email: sales@acroname.com

Basic Micro
Offers MBasic compilers, development boards, programmers, Atom module, and
robotic accessories.

www.basicmicro.com
22882 Orchard Lake Rd.
Farmington Hills, MI. 48336
(248) 427-0040
(734) 425-1722 fax
email: sales@basicmicro.com

305

Chuck Hellebuyck’s Electronic Products
My web site! I Offer PicBasic, Atom modules, programmers, development boards,
and robotic accessories, including reworked servomotors. I’ll also be posting
updates to this book, including this resource list, at the URL below.

www.elproducts.com
1775 Medler
Commerce, MI 48382
(248) 515-4264
email: chuck@elproducts.com

Lynxmotion Inc.
Offers robotics kits and accessories including the robot base used in Chapter 9.

www.lynxmotion.com
PO Box 818
Pekin, IL 61555-0818
866-512-1024
309-382-1254 fax
sales@lynxmotion.com

microEngineering Labs, Inc.
Offers: PicBasic compilers, development boards, programmers, and bootloader.

www.melabs.com
Box 60039
Colorado Springs CO 80960
(719) 520-5323
(719) 520-1867 fax
email: support@melabs.com

Programming PIC Microcontrollers with PicBasic

306

Parallax
Offers Basic Stamp modules and robotics accessories.

599 Menlo Drive
Suite 100
Rocklin, California 95765
(888) 512-1024
(916) 624-8003
email: sales@parallaxinc.com

Reworking servomotors
The hardest part about building a robot is reworking the servomotors. As we dis-
cussed in the previous chapter, servomotors are designed to drive back and forth
based on a pulse-width modulated signal. In order to use these types of motors for
a robot drive, the internals have to be reworked to spin a full 360 degrees in both
directions. A great explanation of how to rework a servomotor can be found at this
Internet link:

http://www.acroname.com/robotics/info/ideas/continuous/continuous.html

Appendix A: PicBasic and Project Resources

307

APPENDIX B
ASCII Table

Decimal Octal Hex Binary Value
———- ——- —— —————- ——————————————

000 000 000 00000000 NUL (Null char.)

001 001 001 00000001 SOH (Start of Header)

002 002 002 00000010 STX (Start of Text)

003 003 003 00000011 ETX (End of Text)

004 004 004 00000100 EOT (End of Transmission)

005 005 005 00000101 ENQ (Enquiry)

006 006 006 00000110 ACK (Acknowledgment)

007 007 007 00000111 BEL (Bell)

008 010 008 00001000 BS (Backspace)

009 011 009 00001001 HT (Horizontal Tab)

010 012 00A 00001010 LF (Line Feed)

011 013 00B 00001011 VT (Vertical Tab)

012 014 00C 00001100 FF (Form Feed)

013 015 00D 00001101 CR (Carriage Return)

014 016 00E 00001110 SO (Shift Out)

015 017 00F 00001111 SI (Shift In)

016 020 010 00010000 DLE (Data Link Escape)

017 021 011 00010001 DC1 (XON) (Device Control 1)

018 022 012 00010010 DC2 (Device Control 2)

019 023 013 00010011 DC3 (XOFF) (Device Control 3)

309

Decimal Octal Hex Binary Value
———- ——- —— —————- ——————————————

020 024 014 00010100 DC4 (Device Control 4)

021 025 015 00010101 NAK (Negative
Acknowledgement)

022 026 016 00010110 SYN (Synchronous Idle)

023 027 017 00010111 ETB (End of Trans. Block)

024 030 018 00011000 CAN (Cancel)

025 031 019 00011001 EM (End of Medium)

026 032 01A 00011010 SUB (Substitute)

027 033 01B 00011011 ESC (Escape)

028 034 01C 00011100 FS (File Separator)

029 035 01D 00011101 GS (Group Separator)

030 036 01E 00011110 RS (Request to Send)(Record
Separator)

031 037 01F 00011111 US (Unit Separator)

032 040 020 00100000 SP (Space)

033 041 021 00100001 !

034 042 022 00100010 “

035 043 023 00100011 #

036 044 024 00100100 $

037 045 025 00100101 %

038 046 026 00100110 &

039 047 027 00100111 ‘

040 050 028 00101000 (

041 051 029 00101001)

042 052 02A 00101010 *

043 053 02B 00101011 +

044 054 02C 00101100 ,

045 055 02D 00101101 -

046 056 02E 00101110 .

Programming PIC Microcontrollers with PicBasic

310

Decimal Octal Hex Binary Value
———- ——- —— —————- ——————————————

047 057 02F 00101111 /

048 060 030 00110000 0

049 061 031 00110001 1

050 062 032 00110010 2

051 063 033 00110011 3

052 064 034 00110100 4

053 065 035 00110101 5

054 066 036 00110110 6

055 067 037 00110111 7

056 070 038 00111000 8

057 071 039 00111001 9

058 072 03A 00111010 :

059 073 03B 00111011 ;

060 074 03C 00111100 <

061 075 03D 00111101 =

062 076 03E 00111110 >

063 077 03F 00111111 ?

064 100 040 01000000 @

065 101 041 01000001 A

066 102 042 01000010 B

067 103 043 01000011 C

068 104 044 01000100 D

069 105 045 01000101 E

070 106 046 01000110 F

071 107 047 01000111 G

072 110 048 01001000 H

073 111 049 01001001 I

074 112 04A 01001010 J

075 113 04B 01001011 K

Appendix B:ASCII Table

311

Decimal Octal Hex Binary Value
———- ——- —— —————- ——————————————

076 114 04C 01001100 L

077 115 04D 01001101 M

078 116 04E 01001110 N

079 117 04F 01001111 O

080 120 050 01010000 P

081 121 051 01010001 Q

082 122 052 01010010 R

083 123 053 01010011 S

084 124 054 01010100 T

085 125 055 01010101 U

086 126 056 01010110 V

087 127 057 01010111 W

088 130 058 01011000 X

089 131 059 01011001 Y

090 132 05A 01011010 Z

091 133 05B 01011011 [

092 134 05C 01011100 \

093 135 05D 01011101]

094 136 05E 01011110 ^

095 137 05F 01011111 _

096 140 060 01100000 `

097 141 061 01100001 a

098 142 062 01100010 b

099 143 063 01100011 c

100 144 064 01100100 d

101 145 065 01100101 e

102 146 066 01100110 f

103 147 067 01100111 g

104 150 068 01101000 h

Programming PIC Microcontrollers with PicBasic

312

Decimal Octal Hex Binary Value
———- ——- —— —————- ——————————————

105 151 069 01101001 i

106 152 06A 01101010 j

107 153 06B 01101011 k

108 154 06C 01101100 l

109 155 06D 01101101 m

110 156 06E 01101110 n

111 157 06F 01101111 o

112 160 070 01110000 p

113 161 071 01110001 q

114 162 072 01110010 r

115 163 073 01110011 s

116 164 074 01110100 t

117 165 075 01110101 u

118 166 076 01110110 v

119 167 077 01110111 w

120 170 078 01111000 x

121 171 079 01111001 y

122 172 07A 01111010 z

123 173 07B 01111011 {

124 174 07C 01111100 |

125 175 07D 01111101 }

126 176 07E 01111110 ~

127 177 07F 01111111 DEL

Appendix B:ASCII Table

313

Index

315

Numbers and Symbols
.hex suffix
@ command, 52, 67
12-bit instruction core, 5
14-bit instruction core, 5
14C000, 8
16-bit instruction core, 9
16C55X, 5
16C62X, 6
16C67X, 7
16C6X, 6
16C7X, 16C71X, 7
16C8X, 16F8X, 7
16C9XX, 8
16F87X, 8, 133–181
7-segment LED, driving, 146–152

A
A/D conversion, 162–173
A/D registers, 123–126
ABS, 64
ADCIN, 52, 67
analog-to-digital conversion, see A/D

conversion
analog-to-digital registers, 123–126
arithmetic operators, 63
ASCII characters, 19, 58–59, 309–313
ASM..ENDASM command, 15, 45, 52
assembler, free, 10
assembly language, 3, 10–12

comHmands, 45–46

B
BASIC Stamp module, 17
binary functions, 65
bootloader, 133
BRANCH command, 15, 28–29, 52, 69–70
BRANCHL command, 52, 70

BUTTON command, 15, 25–27, 52, 70–72

C
CALL command, 15, 46, 52, 72
CLEAR command, 52, 72–73
CLEARWDT, 52, 73
command, PBC, (need page nos.)
commands, PBPro, 66–116
comments

PBC, 19
PBPro, 62

communication commands, 37
communication, serial, 195–204
constants, 57
COS operator, 64
COUNT, 52, 74

D
data memory, 120
data register, 122
DATA, 52, 74–75
DCD operator, 65
DEBUG, 52, 75–76
DEBUGIN, 52, 76
DEFINE statement, 89
DIG, 66
digital operators, 66
direction register, 122
DISABLE, 52, 77
DISABLE DEBUG, 52, 77
DISABLE INTERRUPT, 52, 76
DTMFOUT, 52, 77

E
EEPROM command, 15, 45, 52, 78
EEPROM memory, 221
ELSE, 86
embedded software, 118

ENABLE, 52, 79
ENABLE DEBUG, 52, 79
ENABLE INTERRUPT, 52, 78
END command, 15, 52, 79
ENDIF, 86
external memory, controlling with PIC, 222–232

F
flash memory, 133
FOR.. NEXT command, 15, 31–32, 52, 80
FREQOUT, 52, 81

G
General Instruments, 1
GOSUB command, 15, 29–30, 53, 81
GOTO command, 15, 27–28, 53, 82

H
HIGH command, 15, 22, 53, 82
HSERIN, 53, 83
HSEROUT, 53, 83–85

I
I/O access in PBPro, 59
I/O control in PBC, 22
I/O control in PBPro, 59
I/O registers, 122
I2CIN command, 15, 40
I2COUT command, 15, 40
I2CREAD, 53, 84–85
I2CWRITE, 53, 84–85
IF..THEN command, 16, 53, 86
INHX8M, 10
INPUT command, 16, 22, 53, 87
INTCON register, 129–132
internal memory, accessing, 232–240
interpreted execution, 11

L
label, 55
LCD display, formatting, 90
LCD module, driving, 183–194
LCD, driving with single serial connection,

204–219
LCDIN, 53, 88

LCDOUT, 53, 88
LED, flashing, 133–138
LED, scrolling, 139–145
LET command, 16, 53
line labels, 20
line tracker, robotic, 262–283
LOOKDOWN command, 16, 32–33, 53,

91–92
LOOKDOWN2 command, 53
LOOKUP command, 16, 33, 53, 92–93
LOOKUP2 command, 53
LOW command, 16, 22, 93–94

M
math operators, 20–21, 62–63
memory access, 221
memory commands, 44–45
Merged Intel Hex format, 10
Micro Engineering Labs, 11
Microchip Technology, 1, 2
MIN, MAX operators, 64
music project, 241–247

N
NAP command, 16, 41–42, 53, 94
NCD operator, 65
number definitions, 58
numeric values, 19

O
obstacle detection, robotic, 284–303
ON DEBUG, 95
ON INTERRUPT, 53, 96
one-time programmable devices, see OTP

devices
OPTION register, 127–129
OTP devices, 2
OUTPUT command, 16, 23, 53, 98

P
Parallax, 11
PAUSE command, 16, 42–43, 53, 98
PAUSEUS, 53, 99
PBASIC, 11
PBC command line, 48

Programming PIC Microcontrollers with PicBasic

316

PBC, see PicBasic compiler
PBPro, see PicBasic Pro compiler
PEEK command, 16, 34, 53, 100, 122
peripheral interrupt vector, 126–127
PIC

early development, 1
list of devices, 4
overview, 2, 3
software for, 9–10

PicBasic compiler, 2, 11–12, 13–49
list of commands, 15–16, 21–49
program operators, 18–21
using, 47
variables, memory, and I/O, 17–18

PicBasic Pro compiler, 51–116
benefits, 51
commands, 52–54

POKE command, 16, 34, 53, 100, 122
Port A I/O, accessing, 153–162
POT command, 16, 23–25, 53, 100
potentiometer, 162
power, saving, 94
program memory, 118–119
Programmable Interface Controller, see PIC
project resources, 305–307
pulse control commands, 35–37
PULSIN command, 16, 35, 53, 102
PULSOUT command, 16, 36, 54, 103
PWM command, 16, 36, 103

R
RANDOM command, 16, 34, 54, 104
RCTIME, 104
READ command, 16, 44, 54, 104
READCODE, 54, 105
reading A/D ports, 67
redirection commands for PBC, 27
reset vector, 119
RESUME, 54, 106
RETURN command, 16
REV operator, 65
REVERSE command, 16, 23, 106
robot base, 251–262
robot line tracker, 262–283
robot obstacle detection, 284–303
robotics, 249–303

S
SERIN command, 16, 37–38, 54, 106
SERIN2, 54, 108
SEROUT command, 16, 39–40, 54, 109
SEROUT2, 54, 110–111
servomotor, 173–181
Shift left, right, 65
SHIFTIN, 54, 111–112
SHIFTOUT, 54, 112
SIN operator, 64
size parameter, 56
SLEEP command, 16, 43–44, 54, 112–113, 241
software for PBC, 9–10
SOUND command, 16, 30–31, 54, 113–114
special function commands, PBC, 30
SQR operator, 64
Stamp module, 17
STATUS register, 120–122
STOP, 54, 114
strings, 59
SWAP, 54, 114
SYMBOL statement, 18–19, 58

T
terminal program, 195
timing commands, 41–44
TOGGLE command, 16, 23, 54, 114

U
upgrading PIC, 118

V
variables, 55

W
WEND, 114–115
WHILE, 54, 114
WRITE command, 16, 44, 54, 115
WRITECODE, 54, 105

X
XIN, 54, 115
XOUT, 54, 115

Index

317

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

[[NEWNES.]] AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION OR PRODUC-
TION OF THE ACCOMPANYING CODE (“THE PRODUCT”) CANNOT AND DO NOT WARRANT THE
PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY USING THE PRODUCT. THE PRODUCT
IS SOLD “AS IS” WITHOUT WARRANTY OF ANY KIND (EXCEPT AS HEREAFTER DESCRIBED),
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF PER-
FORMANCE OR ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PAR-
TICULAR PURPOSE. [[NEWNES.]] WARRANTS ONLY THAT THE MAGNETIC CD-ROM(S) ON
WHICH THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND FAULTY WORK-
MANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY (90) DAYS FROM
THE DATE THE PRODUCT IS DELIVERED. THE PURCHASER’S SOLE AND EXCLUSIVE REMEDY
IN THE EVENT OF A DEFECT IS EXPRESSLY LIMITED TO EITHER REPLACEMENT OF THE CD-
ROM(S) OR REFUND OF THE PURCHASE PRICE, AT [[NEWNES.]]’S SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR TORT
(INCLUDING NEGLIGENCE), WILL [[NEWNES.]] OR ANYONE WHO HAS BEEN INVOLVED IN THE
CREATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRODUCT OR ANY MODIFI-
CATIONS THEREOF, OR DUE TO THE CONTENTS OF THE CODE, EVEN IF [[NEWNES.]] HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

ANY REQUEST FOR REPLACEMENT OF A DEFECTIVE CD-ROM MUST BE POSTAGE PREPAID AND
MUST BE ACCOMPANIED BY THE ORIGINAL DEFECTIVE CD-ROM, YOUR MAILING ADDRESS
AND TELEPHONE NUMBER, AND PROOF OF DATE OF PURCHASE AND PURCHASE PRICE. SEND
SUCH REQUESTS, STATING THE NATURE OF THE PROBLEM, TO ELSEVIER SCIENCE CUSTOMER
SERVICE, 6277 SEA HARBOR DRIVE, ORLANDO, FL 32887, 1-800-321-5068. [[NEWNES.]] SHALL
HAVE NO OBLIGATION TO REFUND THE PURCHASE PRICE OR TO REPLACE A CD-ROM BASED
ON CLAIMS OF DEFECTS IN THE NATURE OR OPERATION OF THE PRODUCT.

SOME STATES DO NOT ALLOW LIMITATION ON HOW LONG AN IMPLIED WARRANTY LASTS,
NOR EXCLUSIONS OR LIMITATIONS OF INCIDENTAL OR CONSEQUENTIAL DAMAGE, SO THE
ABOVE LIMITATIONS AND EXCLUSIONS MAY NOT [[NEWNES.]] APPLY TO YOU. THIS WAR-
RANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS THAT
VARY FROM JURISDICTION TO JURISDICTION.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO THE UNITED STATES
LAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY FURTHER SALE
OF THE PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED STATES DEPARTMENT OF
COMMERCE ADMINISTRATION REGULATIONS. COMPLIANCE WITH SUCH REGULATIONS IS
YOUR RESPONSIBILITY AND NOT THE RESPONSIBILITY OF [[NEWNES.]].

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Chapter 1: Getting Familiar with PICs and PicBasic
	PIC Overview
	Software for PICs
	Assembly Language
	PicBasic Compiler

	Chapter 2: PicBasic Compiler (PBC)
	How PBC Works
	Variables, Memory, and I/O
	Program Operators
	PBC Commands
	Using PBC

	Chapter 3: The PicBasic Pro Compiler
	Variables
	Constants
	Symbols
	Numeric and ASCII
	Strings
	I/O Access
	I/O Control
	Comments
	Math Operators
	Arithmetic Operators
	Binary Functions
	PBPro Commands

	Chapter 4: Inside the PIC Microcontroller
	Fundamentals
	Program Memory
	Reset Vector
	Data Memory
	STATUS Register
	I/O Registers
	A/D Registers
	Peripheral Interrupt Vector
	OPTION Register
	INTCON Register
	Summary

	Chapter 5: Simple PIC Projects
	Project #1—Flashing an LED
	Project #2—Scrolling LEDs
	Project #3—Driving a 7-Segment LED Display

	Chapter 6: Moving On with the 16F876
	Project #4—Accessing Port A I/O
	Project #5—Analog-to-Digital Conversion
	Project #6—Driving a Servomotor

	Chapter 7: Communication
	Project #7—Driving an LCD Module
	Project #8—Serial Communication
	Project #9—Driving an LCD with a Single Serial Connection

	Chapter 8: Memory and Sound
	Project #10—Using External Memory
	Project #11—Accessing Internal Memory
	Project #12—Making Music

	Chapter 9: Robotics
	Project #13—Robot Base
	Project #14—Line Tracker
	Project #15—Obstacle Detection

	APPENDIX A: PicBasic and Project Resources
	APPENDIX B: ASCII Table
	Index

